

Lecture Notes in Artificial Intelligence 6572
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Ron van der Meyden Jan-Georg Smaus (Eds.)

Model Checking and
Artificial Intelligence

6th International Workshop, MoChArt 2010
Atlanta, GA, USA, July 11, 2010
Revised Selected and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Ron van der Meyden
University of New South Wales
School of Computer Science and Engineering
Sydney 2052, Australia
E-mail: meyden@cse.unsw.edu.au

Jan-Georg Smaus
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
79110 Freiburg, Germany
E-mail: smaus@informatik.uni-freiburg.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20673-3 e-ISBN 978-3-642-20674-0
DOI 10.1007/978-3-642-20674-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926039

CR Subject Classification (1998): I.2.3, I.2, F.4.1, F.3, D.2.4, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume provides a snapshot of current work on the interaction of model
checking and artificial intelligence. It is based on revised versions of a selection
of the papers presented at the 6th Workshop on Model Checking and Artificial
Intelligence (MoChArt), held as a satellite workshop of the Conference of the
Association for the Advancement of Artificial Intelligence in Atlanta, Georgia,
USA, in July 2010, as well as papers contributed subsequent to the workshop.

Model checking is an approach to verification based on the idea of represent-
ing the system of interest as a model, a semantic structure of which one can
say that it supports the truth or falsity of a formula of a logic. Typically, the
model describes the states of the system and its evolution over time, and the
logic is a modal logic that describes the possible temporal behaviors of the sys-
tem. A model checker is a software system that takes as inputs representations
of the system and its specification in modal logic, and computes whether the
specification holds in the system.

The interactions between model checking and artificial intelligence are rich
and diverse. Originating in the 1980s as an approach to the verification of concur-
rent hardware processes and computer network communications protocols, model
checking has found application in an increasingly broad range of areas. These
days, model checking is applied by researchers working on computer software
such as hardware device drivers and operating systems kernels, cryptographic
protocols, and Web services protocols. Artificial intelligence applications include
planning, stochastic process models, normative systems, autonomous robots, eco-
nomic game theory models, and other forms of multi-agent systems. This broad-
ening of the application area has also led to a broadening of the range of modal
logics studied in the field, and there are now model checkers whose specification
language is able to express modalities such as knowledge, belief, probability,
strategy and obligation as well as time. Such modalities are of particular inter-
est in areas of artificial intelligence dealing with autonomous and multi-agent
systems.

In principle, a model checker conducts an exhaustive examination of the state
space of the system in order to determine whether the specification holds. Under-
pinning the success of the area is a range of sophisticated optimization techniques
and heuristic algorithms that enable this computation to be performed efficiently
rather than by a brute force search. In this regard, model checking has benefited
from a range of ideas from artificial intelligence, where efficient search over large
and complex state spaces has long been a topic of interest. Ideas transferred
from artificial intelligence to model checking include satisfiability solving, search
heuristics such as A∗, and planning approaches to counter-example construction.

The MoChArt series of workshops aims to provide a forum for researchers
interested in these interactions between artificial intelligence and model

VI Preface

checking. Previous editions of MoChArt were held with ECAI 2002, IJCAI 2003,
CONCUR 2005, ECAI 2006 and ECAI 2008. For the 2010 edition at AAAI, the
Program Committee carefully evaluated submissions for quality and relevance
to the MoChArt theme, leading to a selection of papers that were presented at
the workshop and distributed among the participants as AAAI working notes.
The papers presented in this volume include revised versions of a selection of
the papers presented at the workshop.

Several themes are touched upon by these papers. Concerning general search
algorithms, the paper by Edelkamp and Sulewski describes the use of the graph-
ical processing unit (GPU) for external memory breadth-first search.

The potential for the application of AI techniques to automated program
verification is explored in the paper by Edelkamp, Kellershoff and Sulewski,
which deals with the transformation of the problem of verification of C code to
problems of action planning.

A strongly represented theme at the workshop was multi-agent systems and
epistemic logic, building a bridge between AI concepts and model checking. The
paper by Alechina, Logan, Nguyen and Rakib deals with abstraction for specifica-
tions concerned with resource requirements in multi-agent systems. Abstraction
is also a key concern in the paper by Lomusciou, Qu and Russo, which considers
automatic data abstraction in model-checking multi-agent systems. This paper
is one of three dealing with epistemic logic. Huang, Luo and van der Meyden
present results on improvements to bounded model checking for an extension of
CTL with epistemic operators. Finally, Luo, Su, Gu, Wu and Yang study epis-
temic model checking of the Herbivore protocol, which involves knowledge and
anonymity.

Several papers presented at the workshop have not been included in this
volume, for a variety of reasons, including conflicts with publication in other
venues. Stefan Leue presented an algorithm for finding the k shortest paths in
graph, a problem which is relevant, among others, for stochastic model checking.
Siddharth Srivastava spoke on computing applicability conditions for plans with
loops, with various results conerning termination and other behaviors of transi-
tion systems applying not just to a particular planning formalism, and hence of
interest to the model-checking community. There was also lively discussion on
the general direction of the field, and on how best to foster interaction between
the model-checking and artificial intelligence communities.

In addition to these improved versions of papers from the workshop working
notes, this volume also contains an extended abstract of the invited talk pre-
sented at the workshop by Hector Geffner, who spoke on planning with incom-
plete information, stressing that while logic and theory are needed in planning,
the bottom line is heavily empirical.

To round out the topics treated with a contribution to the theory of model
checking, there is also a paper contributed after the event by Kupferman and
Rosenberg, dealing with lower bounds for transformations from LTL to Deter-
ministic Büchi automata.

Preface VII

Taken together, the papers in this volume provide a good sample of current
research, and are representative of the diversity of interactions mentioned above
and the quality of the field.

All papers in this volume were carefully reviewed by our Program Committee
members or external reviewers. Our thanks go to the Program Committee and
these reviewers for their diligent work in reviewing the submissions, to AAAI for
hosting the meeting and handling logistics, to Springer for publication of these
proceedings, to the creators of the wonderful EasyChair conference management
system, and, of course, to the contributing authors.

December 2010 Ron van der Meyden
Jan-Georg Smaus

Conference Organization

Program Chairs

Ron van der Meyden University of New South Wales, Sydney, Australia
Jan-Georg Smaus Albert-Ludwigs-Universität Freiburg, Germany

Program Committee

Rajeev Alur University of Pennsylvania, USA
Massimo Benerecetti Università di Napoli “Federico II”, Italy
Alessandro Cimatti IRST, Trento, Italy
Stefan Edelkamp Universität Bremen, Germany
Enrico Giunchiglia Università di Genova, Italy
Patrice Godefroid Microsoft Research, Redmond, USA
Aarti Gupta NEC Laboratories America, Princeton, USA
Klaus Havelund NASA Jet Propulsion Laboratory & Caltech,

USA
Orna Kupferman Hebrew University, Israel
Marta Kwiatkowska University of Oxford, UK
Alessio Lomuscio Imperial College London, UK
Charles Pecheur Université catholique de Louvain, Belgium
Doron Peled Bar Ilan University, Israel
Jussi Rintanen NICTA & Australian National University,

Australia
Michael Wooldridge University of Liverpool, UK

External Reviewers

Xiaowei Huang
Gavin Lowe

Table of Contents

Planning with Incomplete Information (Invited Paper) 1
Hector Geffner

External Memory Breadth-First Search with Delayed Duplicate
Detection on the GPU . 12

Stefan Edelkamp and Damian Sulewski

Program Model Checking via Action Planning . 32
Stefan Edelkamp, Mark Kellershoff, and Damian Sulewski

Automatic Data-Abstraction in Model Checking Multi-Agent
Systems . 52

Alessio Lomuscio, Hongyang Qu, and Francesco Russo

Automated Verification of Resource Requirements in Multi-Agent
Systems Using Abstraction . 69

Natasha Alechina, Brian Logan, Hoang Nga Nguyen, and
Abdur Rakib

The Blow-Up in Translating LTL to Deterministic Automata 85
Orna Kupferman and Adin Rosenberg

Improved Bounded Model Checking for a Fair Branching-Time
Temporal Epistemic Logic . 95

Xiaowei Huang, Cheng Luo, and Ron van der Meyden

Symbolic Model Checking the Knowledge in Herbivore Protocol 112
Xiangyu Luo, Kaile Su, Ming Gu, Lijun Wu, and Jinji Yang

Author Index . 131

Planning with Incomplete Information

(Invited Paper)

Hector Geffner

ICREA & Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona, Spain

hector.geffner@upf.edu

http://www.dtic.upf.edu/~hgeffner

Abstract. Planning is concerned with the development of solvers for a
wide range of models where actions must be selected for achieving goals.
In these models, actions may be deterministic or not, and full or partial
sensing may be available. In the last few years, significant progress has
been made, resulting in algorithms that can produce plans effectively in a
variety of settings. These developments have to do with new formulations,
inference techniques, and transformations. In this paper, I review some
of these developments, focusing on those pertaining to planning with
incomplete information.

1 Introduction

The problem of creating agents that can decide what to do on their own has been
at the center of AI research since its beginnings. One of the first AI programs to
tackle this problem, back in the 50’s, was the General Problem Solver (GPS) that
selects actions for reducing a difference between the current state and a desired
target state [1]. Ever since then, this problem has been tackled in a number of
ways in many areas of AI, and in particular in the area of Planning.

The problem of selecting actions for achieving goals, however, even in its
most basic version – deterministic actions and complete information – is com-
putationally intractable [2]. Under these assumptions, the problem of finding
a plan becomes the well-known problem of finding a path in a directed graph
whose nodes, that represent the possible states of the system, are exponential in
the number of problem variables.

Until the middle 90’s in fact, no planner or program of any sort could syn-
thesize plans for large problems in an effective manner from a description of the
actions and goals. In recent years, however, the situation has changed: in the
presence of deterministic actions and full knowledge about the initial situation,
classical planning algorithms can find plans quickly even in large problems with
hundred of variables and actions [3, 4]. This is the result of new ideas, like the
automatic derivation of heuristic functions [5, 6], and a established empirical
methodology featuring benchmarks, comparisons, and competitions. Moreover,
many of these planners are action selection mechanisms that can commit to the
next action to do in real-time without having to construct a full plan first [7].

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 1–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 H. Geffner

These developments, however, while crucial, do not suffice for producing au-
tonomous agents that can decide by themselves what to do in environments
where the two assumptions above (deterministic actions, complete information)
do not apply. The more general problem of selecting actions in uncertain, dy-
namic and/or partially known environments arises in a number of contexts (a
rover in Mars, a character in a video-game, a robot in a health-care facility, a
softbot in the web, etc.), and has been tackled through a number of different
methodologies:

1. programming-based: where the desired behavior is encoded explicitly by a
human programmer in a suitable high-level language,

2. learning-based: where the desired behavior is learned automatically from
trial-and-error experience or information provided by a teacher, or

3. model-based: where the desidered behavior is inferred automatically from a
suitable description of the actions, sensors, and goals.

None of these approaches, however, or a combination of them, has resulted yet
in a solid methodology for building agents that can display a robust and flexible
behavior in real time in partially known environments. Programming agents by
hand puts all the burden in the programmer that cannot anticipate all possi-
ble contingencies, leading to systems that are brittle. Learning methods such as
reinforcement learning [8], are restricted in scope and do not deal with the prob-
lem of incomplete state information. Finally, traditional model-based methods,
when applied to models that are more realistic than the ones underlying classical
planning, have difficulties scaling up.

Planning in Artificial Intelligence represents the model-based approach to au-
tonomous behavior: a planner is a solver that accepts a model of the actions, sen-
sors, and goals, and produces a controller that determines the actions to do given
the observations gathered (Fig. 1). Planners come in a great variety, depending
on the types of models they target. Classical planners address deterministic state
models with full information about the initial situation [9]; conformant planners
address state models with non-deterministic actions and incomplete information
about the initial state [10, 11], POMDP planners address stochastic state model
with partial observability [12], and so on.

Goals
Sensors
Actions

SOLVER Agent Controller World
Action

Observation

Fig. 1. Model-based approach to intelligent behavior: the next action to do is deter-
mined by a controller derived from a model of the actions, sensors, and goals

In all cases, the models of the environment considered in planning are in-
tractable in the worst case, meaning that brute force methods do not scale up.
Domain-independent planning approaches aimed at solving these planning mod-
els effectively must thus recognize and exploit the structure of the individual

Planning with Incomplete Information 3

problems that are given. The key to exploiting this structure is inference, as in
other AI models such as Constraint Satisfaction Problems and Bayesian Net-
works [13, 14]. In the paper, we will go over the inference techniques that have
been found computationally useful in planning with incomplete information.

The paper is organized as follows. We consider the model, language, and
inference techniques developed for classical planning, conformant planning, and
planning with sensing, in that order. We focus on inference techniques of two
types: heuristic functions and transformations.

2 Classical Planning

Classical planning is concerned with the selection of actions in environments that
are deterministic and whose initial state is fully known. The model underlying
classical planning can be described as a state space containing

– a finite and discrete set of states S,
– a known initial state s0 ∈ S,
– a set SG ⊆ S of goal states,
– actions A(s) ⊆ A applicable in each s ∈ S,
– a deterministic transition function s′ = f(a, s) for a ∈ A(s), and
– uniform action costs c(a, s) equal to 1.

A solution or plan in this model is a sequence of actions a0, . . . , an that generates
a state sequence s0, s1, . . . , sn+1 such that ai is applicable in the state si and
results in the state si+1 = f(ai, si), the last of which is a goal state.

The cost of a plan is the sum of the action costs, which in this setting, cor-
responds to plan length. A plan is optimal it is has minimum cost, and the cost
of a problem is the cost of an optimal plan.

Domain-independent classical planners accept a compact description of the
above models, and automatically produce a plan (an optimal plan if the planner
is optimal). This problem is intractable in the worst case, yet currently large clas-
sical problems can be solved using heuristic functions derived from the problem
encodings.

A simple but still common language for encoding classical planning problems
is Strips [9]. A problem in Strips is a tuple P = 〈F, O, I, G〉 where

– F stands for set of all atoms (boolean vars),
– O stands for set of all operators (actions),
– I ⊆ F stands for the initial situation, and
– G ⊆ F stands for the goal situation.

The actions o ∈ O are represented by three sets of atoms from F called the
Add, Delete, and Precondition lists, denoted as Add(o), Del(o), Pre(o). The
first, describes the atoms that the action o makes true, the second, the atoms
that o makes false, and the third, the atoms that must be true for the action o
to be applicable.

4 H. Geffner

A Strips problem P = 〈F, O, I, G〉 encodes the state model S(P) where

– the states s ∈ S are collections of atoms from F ,
– the initial state s0 is I,
– the goal states s are those for which G ⊆ s,
– the actions a in A(s) are the ones in O such that Prec(a) ⊆ s, and
– the next state is s′ = f(a, s) = (s \ Del(a)) ∪ Add(a).

All areas in Planning, and in particular Classical Planning, have become quite
empirical in recent years, with competitions held every two years, and hundreds
of benchmark problems available in PDDL, a standard syntax for planning that
extends Strips [15].

The classical planners that scale up best can solve large problems with hun-
dreds of fluents and actions [16, 17]. These planners do not compute optimal
solutions and cast the planning problem P as an heuristic search problem over
the state space S(P) that defines a directed graph whose nodes are the states,
whose initial node is the initial state, and whose target nodes are the states
where the goals are true [18]. This graph is never made explicit as it contains a
number of states that is exponential in the number of fluents of P , but can be
searched quite efficiently with current heuristics.

Heuristic functions h(s) provide an estimate of the cost to reach the goal from
any state s, and are derived automatically from a relaxation (simplification) of
the problem P [19]. The relaxation most commonly used in planning, called
the delete-relaxation and denoted as P+, is obtained by removing the delete
lists from the actions in P . While finding the optimal solution to the relaxation
P+ is still NP-hard, finding just one solution is easy and can be done in low
polynomial time.

The additive heuristic, for example, estimates the cost h(p; s) of achieving the
atoms p from s through the equations [18]:

h(p; s) =
{

0 if p ∈ s
h(ap; s) otherwise

where ap is a best support for p in s defined as

ap = argmina∈O(p)h(a; s)

O(p) is the set of actions that add p in P , and h(a; s) is

h(a; s) = cost(a) +
∑

q∈Pre(a)

h(q; s) .

The cost of achieving the goal G from s is then defined as

hadd(s) =
∑
p∈G

h(p; s) .

Planning with Incomplete Information 5

The heuristic hadd is not admissible (it’s not a lower bound) but is informative
and its computation involves the solution of a shortest-path problem in atom
space as opposed to state space. A plan π+(s) for the relaxation P+ can be
obtained from the heuristic hadd(s) by simply collecting the best supports recur-
sively backwards from the goal [20]. This is actually the technique used in the
state-of-the-art planner LAMA [17], winner of the 2008 International Planning
Competition, that defines the heuristic h(s) as the cost of this ‘relaxed plan’,
and uses it in problems where action costs are not uniform. The search algorithm
in LAMA is (greedy) best first search with the evaluation function f(s) = h(s)
and two open lists rather one, for giving precedence to the actions applicable in
the state s that are most relevant to the goal according to π+(s); the so-called
helpful actions [7].

3 Incomplete Information

The good news about classical planning is that it works: large problems can
be solved quite fast, and the sheer size of a problem is not an obstacle to its
solution. The bad news is that the assumptions underlying classical planning
are too restrictive. We address now the problems that arise from the pres-
ence of uncertainty in the initial situation. The resulting problems are called
conformant as they have the same form as classical plans, namely plain ac-
tion sequences, but they must work for each of the initial states that are
possible.

G
I

Fig. 2. A problem involving incomplete information: a robot must move from an un-
certain initial location I shown in gray, to the target cell G with certainty. For this, it
must locate itself into a corner and then head to G.

An example that illustrates the difficulties that arise from the presence of
incomplete information in the initial situation is shown in Fig. 2. It displays a
robot that must move from an uncertain initial location I, shown in gray, to
the target cell G that must be reached with certainty. The robot can move one
cell at a time, without leaving the grid: moves that would leave the agent out
of the grid have no effects. The problem is very much like a classical planning
problem except for the uncertain initial situation I. The solutions to the problem,
however, are quite different. Indeed, the best conformant plan for the problem
must move the robot to a corner first, and then head with certainty to the target

6 H. Geffner

G. For example, for being certain that the robot is at the left lower corner of the
grid, the robot can move left three times, and down three times. Notice that this
is the opposite of reasoning by cases; indeed, the best action to do from each
of the possible initial locations is not to move left or right, but up or right. Yet
such moves would not help the robot reach the goal with certainty.

The model for the conformant planning problem is the model for classical
planning but with the initial state s0 replaced by a non-empty set S0 of possible
initial states. The Strips syntax for the problem P = 〈F, O, I, G〉 is also extended
to let I stand for a set of clauses and not just a set of atoms, and O to include
actions with effects L, positive or negative, that are conditional on a set of
literals L1, . . . , Ln, written as L1, . . . , Ln → L, where each Li and L are positive
or negative literals.

Conformant planning problems are no longer path-finding problems over a
directed graph whose nodes are the states of the problem, but rather path-finding
problems over a directed graph whose nodes are sets of states, also called belief
states [21]. Belief states express the states of the world that are deemed possible
to the agent. Thus, while in classical planning, the size of the (state) space to
search is exponential in the number of variables in the problem; in conformant
planning, the size of the (belief) space to search is exponential in the number
of states. Indeed, conformant planning is harder than classical planning, as even
the verification of conformant plans is NP-hard [22].

Conformant planners such as Contingent-FF, MBP, and POND [23–25], ad-
dress the search in belief space using suitable belief representations such as OB-
DDs, that do not necessarily blow up with the number of states deemed possible,
and heuristics that can guide the search for the target beliefs. Another approach
that has been pursued recently, that turned out to be the most competitive in
the 2006 Int. Planning Competition, is to automatically transform the confor-
mant problems P into classical problems K(P) that are solved by off-the-shelf
classical planners.

The translation K(P) = KT,M (P) of a conformant problem P involves two
parameters: a set of tags T and a set of merges M [26]. A tag t is a set (conjunc-
tion) of literals in P whose status in the initial situation I is not known, and a
merge m ∈ M is a collection of tags t1, . . . , tn that stands for the DNF formula
t1 ∨ · · · ∨ tn. Tags are assumed to represent consistent assumptions about I, i.e.
I 	|= ¬t, and merges represent disjunctions of assumptions that follow from I;
i.e. I |= t1 ∨ · · · ∨ tn.

The fluents in KT,M (P), for the conformant problem P = 〈F, O, I, G〉 are of
the form KL/t for each L ∈ F and t ∈ T , meaning that “it is known that if t
is true in the initial situation, L is true”. In addition, KT,M (P) includes extra
actions, called merge actions, that allow the derivation of a literal KL (i.e. KL/t
with the “empty tag”, expressing that L is known unconditionally) when KL/t′

has been obtained for each tag t′ in a merge m ∈ M for L.
Formally, for a conformant problem P = 〈F ,O,I,G〉, the translation defines

the classical problem KT,M (P) = 〈F ′,O′,I ′,G′〉 where

Planning with Incomplete Information 7

F ′ ={KL/t, K¬L/t | L ∈ F}
I ′ ={KL/t | if I |= t ⊃ L}
G′ ={KL | L ∈ G}
O′ ={a : KC/t → KL/t, a : ¬K¬C/t → ¬K¬L/t

| a : C → L in P} ∪ {
∧
t∈m

KL/t → KL | m ∈ ML}

with t ranging over T and with the preconditions of the actions a in KT,M (P)
including the literal KL if the preconditions of a in P include the literal L.

When C = L1, . . . , Ln, the expressions KC/t and ¬K¬C/t are abbreviations
for KL1/t, . . . , KLn/t and ¬K¬L1/t, . . . ,¬K¬Ln/t respectively. A rule a : C →
L in P gets mapped into “support rules” a : KC/t → KL/t and “cancellation
rules” a : ¬K¬C/t → ¬K¬L/t; the former “adds” KL/t when the condition
C is known in t, the latter undercut the persistence of K¬L/t except when (a
literal in) C is known to be false in t.

The translation KT,M (P) is sound, meaning that the classical plans that solve
KT,M (P) yield valid conformant plans for P that can be obtained by just drop-
ping the merge actions. On the other hand, the complexity and completeness
of the translation depend on the choice of tags T and merges M . The Ki(P)
translation, where i is a non-negative integer, is a special case of the KT,M (P)
translation where the tags t are restricted to contain at most i literals. Ki(P)
is exponential in i and complete for problems with conformant width less than
or equal to i. The planner T0 feeds the K1(P) translation into the classical FF
planner [7] and was the winning entry in the Conformant Track of the 2006
IPC [27].

4 Sensing and Finite-State Controllers

Most often problems that involve uncertainty in the initial state of the environ-
ment or in the action effects, also involve some type of feedback or sensors that
provide partial state information. As an illustration of a problem of this type,
consider the simple grid shown on the left of Fig. 3, where an agent starting in
some cell between A and B, mut move to B, and then to A. In this problem,
while the exact initial location of the agent is not known, it is assumed that the
marks A and B are observable.

The solutions to problems involving observations can be expressed in many
forms: as contingent plans [23], as policies mapping beliefs into actions [12], and
as finite-state controllers. A finite-state controller that solves the problem above
is shown on the right of Fig. 3. An arrow qi → qj between one controller state qi

and another (or the same) controller state qi labeled with a pair O/a means to
do action a and switch to state qj , when o is observed in the state qi. Starting in
the controller state q0, the controller shown tells the agent to move right until
observing B, and then to move left until observing A or B (the observation ’-’
means no observation).

8 H. Geffner

A B q0

A/Right
-/Right

q1
B/Left

-/Left

Fig. 3. Left: A problem where an agent, initially between A and B, must move to B
and then back to A. Right: A finite-state controller that solves the problem.

Finite-state controllers such as the one displayed above have two features that
make them more appealing than contingent plans and POMDP policies: they are
often very compact, and they often quite general too. Indeed, the problem above
can be changed in a number of ways and the controller shown would still work.
For example, the size of the grid can be changed from 1 × 5 to 1 × n, the agent
can be placed initially anywhere in the grid (except at B), and the actions can
be made non-deterministic by the addition of ’noise’. This generality is well
beyond the power of contingent plans or exact POMDP policies that are tied
to a particular state space. For these reasons, finite-state controllers are widely
used in practice, from controlling non-playing characters in video-games [28] to
mobile robots [29, 30]. Memoryless controllers or policies [31] are widely used
as well, and they are nothing but finite-state controllers with a single state.
The additional states provide finite-state controllers with memory that allows
different actions to be taken given the same observation.

The benefits of finite-state controllers, however, come at a price: unlike con-
tingent trees and POMDP policies, they are usually not derived automatically
from a model but are written by hand; a task that is not trivial even in the
simplest cases. There have been attempts for deriving finite-state controllers for
POMDPs with a given number of states [32–34], but the problem can be solved
approximately only, with no correctness guarantees.

Recently, we have extended the translation-based approach to conformant
planning presented above [26], to derive finite-state controllers [35]. For this,
the control problem P is defined in terms of a conformant problem with no
preconditions, extended with a set O of observable fluents. The solution to the
problem P is defined in terms of finite state controllers CN with a given number
N of controller states. This rules out sequential plans as possible solutions, as
they would involve a number of controller states equal to the number of time
steps in the plan.

The controller CN is a set of tuples t = 〈i, o, a, k〉 that tell the agent to do a
and switch to state qk when the observation is o and the controller state is qi. The
key result is that a finite-state controller CN that solves P can be obtained from
the classical plans of a classical problem PN obtained by a suitable translation
from P , O, and N . The key idea in the translation is to replace each action a in
P by an action a(t), for each t = 〈i, o, a, k〉, so that the effects C → C′ of a in
P become effects qi, o, C → ¬qi, qk, C′ of a(t) in PN . That is, the effects of the
action a are made conditional on the observation o and state qi in the actions
a(t) where t = 〈i, o, a, k〉.

Planning with Incomplete Information 9

Fig. 4 shows a more challenging problem solved in this way, resulting in a
very compact and general controller. In the problem, shown on the left, a visual-
marker (a circle on the lower left) must be moved on top of a green block . The
observations are whether the cell currently marked contains a green block (G),
a non-green block (B), or neither (C); and whether this cell is at the level of the
table (T) or not (’-’). The visual marker can be moved one cell at a time in the
four directions. This is a problem à la Chapman or Ballard, that have advocated
the use of deictic representations of this sort [36, 37]. The finite-state controller
that results for this problem is shown on the right. Interestingly, it is a very
compact and general controller: it involves two states only and can be used to
solve the same problem for any number and arrangement of blocks. See [35] for
details.

q0

TB/Up
-B/Up
TC/Right

q1-C/Down
TB/Right

-B/Down

Fig. 4. Left: Problem where visual-marker (circle on the lower left) must be moved on
top of a green block. The observations are whether the cell currently marked contains
a green block (G), a non-green block (B), or neither (C); and whether this cell is at the
level of the table (T) or not (–). Right: Finite-state controller that solves the problem
for any number and arrangement of blocks.

5 Summary

I have reviewed some of the formulations, transformations, and inference tech-
niques that have been found useful for planning for incomplete information.
While planning with incomplete information can be cast as a search problem
in belief space, the techniques that we have presented aim to exploit the finer
propositional structure of planning problems, and in particular, the performance
of classical planners. The area of planning with incomplete information has ma-
tured much in the last few years, both theoretically and experimentally, although
further work is required to scale up to problems of real size. This is the challenge
for the next few years; many of the basic ideas are already in place.

Acknowledgments. This paper is a revision of [38]. It’s joint work with a
number of students and colleagues, in particular Blai Bonet and Hector Pala-
cios. I thank Jan-Georg Smaus and Ron van der Meyden for the invitation to
MoChaArt. The author is partially supported by grant TIN2009-10232,MICINN,
Spain.

10 H. Geffner

References

1. Newell, A., Simon, H.: GPS: a program that simulates human thought. In: Feigen-
baum, E., Feldman, J. (eds.) Computers and Thought, pp. 279–293. McGraw Hill,
New York (1963)

2. Bylander, T.: The computational complexity of STRIPS planning. Artificial
Intelligence 69, 165–204 (1994)

3. Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proceed-
ings of IJCAI 1995, pp. 1636–1642. Morgan Kaufmann, San Francisco (1995)

4. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and
stochastic search. In: Proc. AAAI, pp. 1194–1201 (1996)

5. McDermott, D.: Using regression-match graphs to control search in planning.
Artificial Intelligence 109(1-2), 111–159 (1999)

6. Bonet, B., Loerincs, G., Geffner, H.: A robust and fast action selection mechanism
for planning. In: Proceedings of AAAI 1997, pp. 714–719. MIT Press, Cambridge
(1997)

7. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

8. Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press,
Cambridge (1998)

9. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 1, 27–120 (1971)

10. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: Proc.
AIPS 1996 (1996)

11. Smith, D., Weld, D.: Conformant graphplan. In: Proceedings AAAI 1998, pp.
889–896. AAAI Press, Menlo Park (1998)

12. Cassandra, A., Kaelbling, L., Littman, M.L.: Acting optimally in partially observ-
able stochastic domains. In: Proc. AAAI, pp. 1023–1028 (1994)

13. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco (1988)

15. McDermott, D.: The 1998 AI Planning Systems Competition. Artificial Intelligence
Magazine 21(2), 35–56 (2000)

16. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006)

17. Richter, S., Helmert, M., Westphal, M.: Landmarks revisited. In: Proc. AAAI,
pp. 975–982 (2008)

18. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1-2),
5–33 (2001)

19. Pearl, J.: Heuristics. Addison-Wesley, Reading (1983)

20. Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In:
Proc. ECAI 2008 (2008)

21. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search
in belief space. In: Proc. of AIPS 2000, pp. 52–61. AAAI Press, Menlo Park (2000)

22. Haslum, P., Jonsson, P.: Some results on the complexity of planning with incom-
plete information. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp.
308–318. Springer, Heidelberg (2000)

23. Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with
implicit belief states. In: Proc. ICAPS, pp. 71–80 (2005)

Planning with Incomplete Information 11

24. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic
domains under partial observability via symbolic model checking. In: Proc. IJCAI
2001 (2001)

25. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief
space search. Journal of AI Research 26, 35–99 (2006)

26. Palacios, H., Geffner, H.: From conformant into classical planning: Efficient transla-
tions that may be complete too. In: Proc. 17th Int. Conf. on Planning and Schedul-
ing, ICAPS 2007 (2007)

27. Bonet, B., Givan, B.: Results of the conformant track of the 5th
int. planning competition (2006), http://www.ldc.usb.ve/~bonet/ipc5/docs/

results-conformant.pdf

28. Buckland, M.: Programming Game AI by Example. Wordware Publishing Inc.,
Plano (2004)

29. Murphy, R.R.: An Introduction to AI Robotics. MIT Press, Cambridge (2000)
30. Mataric, M.J.: The Robotics Primer. MIT Press, Cambridge (2007)
31. Littman, M.L.: Memoryless policies: Theoretical limitations and practical results.

In: Cliff, D. (ed.) From Animals to Animats 3. MIT Press, Cambridge (1994)
32. Meuleau, N., Peshkin, L., Kim, K., Kaelbling, L.P.: Learning finite-state controllers

for partially observable environments. In: Proc. UAI, pp. 427–436 (1999)
33. Poupart, P., Boutilier, C.: Bounded finite state controllers. In: Proc. NIPS, pp.

823–830 (2003)
34. Amato, C., Bernstein, D., Zilberstein, S.: Optimizing memory-bounded controllers

for decentralized pomdps. In: Proc. UAI (2007)
35. Bonet, B., Palacios, H., Geffner, H.: Automatic derivation of memoryless policies

and finite-state controllers using classical planners. In: Proc. Int. Conf. on Auto-
mated Planning and Scheduling, ICAPS 2009 (2009)

36. Chapman, D.: Penguins can make cake. AI magazine 10(4), 45–50 (1989)
37. Ballard, D., Hayhoe, M., Pook, P., Rao, R.: Deictic codes for the embodiment of

cognition. Behavioral and Brain Sciences 20(4), 723–742 (1997)
38. Geffner, H.: Inference and learning in planning (extended abstract). In: Gama, J.,

Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 1–12.
Springer, Heidelberg (2009)

http://www.ldc.usb.ve/~bonet/ipc5/docs/results-conformant.pdf
http://www.ldc.usb.ve/~bonet/ipc5/docs/results-conformant.pdf

External Memory Breadth-First Search with

Delayed Duplicate Detection on the GPU

Stefan Edelkamp and Damian Sulewski

TZI, Universität Bremen, Germany
{edelkamp,sulewski}@tzi.de

Abstract. We accelerate breadth-first search by delegating complex op-
erations to the graphics processing unit (GPU). The algorithm exploits
external memory: if the state space becomes too large to be kept in main
memory, it is maintained I/O-efficiently on disk.

As in many other approaches for external memory graph search, we
apply delayed duplicate detection. The search proceeds in breadth-first
layers with increasing minimum distance from the start state. For each
layer stored on disk, we load chunks into the systems memory, which are
forwarded to the memory on the graphics card. Here we test if outgoing
transitions are enabled and generate all successors. Finally, we eliminate
duplicates delayed by sorting on the GPU. Even facing the overhead of
I/O access, noticeable overall speed-ups are obtained.

1 Introduction

Thanks to a continuous improvement of algorithms, but also because of the in-
creasing power of the graphics processing units (GPUs), search engines have been
able to successfully cope with complexity and tackle a wide range of problems.

Modern GPUs are not only powerful, but also parallel programmable proces-
sors featuring high arithmetic capabilities and memory bandwidths. Its rapid
increase in both programmability and capability has inspired researchers to map
computationally challenging, complex problems to it. These efforts in general
purpose programming on the GPU (GPGPU) have positioned it as a compelling
alternative to traditional microprocessors in high-performance computing. Since
the memory transfer between the graphics card and the main board (using the
express bus) is extremely fast, GPUs have become candidates to speed-up large-
scale computations like sorting [35].

The GPU’s architecture being based on the requirements for visualizing data
is very different to multi-core processors build to manipulate data. It accumulates
a huge number of cores in one chip, but the programming and computational
models are different from each other. GPU programming requires a special com-
piler, which translates the code to native instructions. The number of cores on
the GPU exceeds the one on the CPU, but they are limited to streamed process-
ing. The architecture is that of a vector computer following the single instruction
multiple data (SIMD) paradigm with the same function running on all proces-
sors. While cores on a multi-core processor work autonomously, the operations

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 12–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

External Memory Breadth-First Search 13

of cores on the GPU are strongly correlated. The GPU supports different layers
for accessing memory, forbids common writes to a memory cell and a limited
form of concurrent read.

In the research field of Artificial Intelligence (AI), external memory breadth-
first search [31] branch-and-bound [44] , and A* [16] have been studied and
solved challenging problems. Optimal solutions to AI problems with state spaces
of more than a quintillion (1018 or a billion times a billion) have been obtained.
In extreme cases, weeks of computation time, gigabytes of main memory and
terabytes of hard disk space have been invested to solve search challenges.

For example, the state space of the Fifteen Puzzle has been completely gen-
erated with external memory breadth first search in several weeks of computa-
tion time using 1.4 terabytes of disk space [33]. Memory saving strategies like
bitvector compression in external memory breadth-first search apply in case of
inversible hash functions [32]. The approach has been successfully ported on the
GPU [20] but is less general than the delayed detection of duplicates.

In model checking, external memory BFS is sufficient for the verification of
safety properties. Moreover, variants of it are in use to generate counter-examples
of minimal length [21]. As identified e.g. in [6], complete state space construction
via external memory BFS is the performance bottleneck for large-scale model
checking. Last, but not least, it is essential for constructing the state space
on hard disk for a perfect hash function, the basis for semi-external [17] and
flash-memory efficient model checking [18]. After having generated the state
space its compression in form of a memory based hash function is considerably
fast. In order to avoid the problem of accessing swap space on external memory
(thrashing), several other large-scale model checking attempts [34,15] also refer
to variants of external memory model checking.

An internal memory (RAM) approach to explicit-state GPU-based model
checking [4,3] transforms model checking to a matrix multiplication problem
to apply fast operations on the graphics card. The speed-ups are considerable,
but the approach applies to small state spaces only. We propose a conceptu-
ally different algorithm, suited to parallel model checking large models. In such
large-scale verificationWhile our GPU-based algorithm also applies to internal
memory model checking, our interest is in efficiency advances in exploring state
spaces which exceed the available RAM. For showing significant results the ver-
ified model or, in other words, the number of reachable states in the state space,
has to be big enough to occupy all fragment processors and overcome the slow-
down imposed by copying the data.

This paper applies GPGPU technology to external memory state space gener-
ation using external memory breadth-first search (BFS) in implicit graphs that
are generated via repeatedly applying transitions. Our work extends a techni-
cal report [19] that restricts to advances in the sorting process for the delayed
detection of duplicates, a commonly used technique to avoid random look-up in
external memory search. This revision covers the entire search process, including
the test for the enabledness of transitions and generating the successors.

14 S. Edelkamp and D. Sulewski

Our focus is external memory breadth-first search (BFS) to generate the entire
state space in implicit graphs that are generated via repeatedly applying tran-
sitions. While external memory BFS for explicit graphs is studied by algorithm
engineers [37,36], external memory BFS is relevant for both model checking and
artificial intelligence.

We are interested in sorting based external-memory BFS [27] that leads to
three computationally intensive tasks applied to each BFS layer which are all
portable to the GPU:

– for each state in the layer test the applicability of outgoing transitions.
– generate the set of successors for all states and enabled transitions.
– apply delayed duplicate detection by sorting and scanning all successors.

For all three stages we obtain significant individual speed-ups of more than
one order of magnitude in analyzing benchmark protocols on the GPU1. The
overhead in combining the results of the different stages in the CPU and the
I/O bandwidth limitation limits the, still noticeable, overall speed-ups.

The paper is structured as follows. We next review large-scale explicit state
space generation and the issue of delayed duplicate detection. Then an overview
on the GPU architecture used is provided. Next, we turn to GPU-based BFS
and provide details on delayed duplicate elimination, transition checking and
successor generation and supply a note on their complexities. Finally, we present
empirical results in various benchmark protocols and discuss future research
avenues.

2 External-Memory Breadth-First Search

External memory searching in a graph has to prevent revisiting of already ex-
plored states, so that states that have been processed have to be recognized and
a generated state can be checked against the set of visited ones. Due to the huge
number of states and in some cases their large sizes, time and memory demands
rise rapidly.

To release RAM, states have to be written to disk. A check, whether a state
has been visited, now involves accessing the disk (I/O). Here, an important as-
pect is to access the data in blocks to reduce the I/O waiting time per state and
to be able to increase bandwidth by connecting multiple external devices. Dif-
ferent disk-based solutions to this problem have been published [15,6,5]. In [15],
the authors avoid nested DFS for accepting cycle detection by reducing the live-
ness to a safety problem [40]. The I/O-efficient solution was further improved
by guided and parallel search. Another disk-based algorithm for LTL model
checking [5] avoids the increase in space, but does not operate on-the-fly. The
algorithm given in [6] is both on-the-fly and linear in the space requirements,
but its worst-case time complexity is large.
1 Hashing contributes only a small fraction to the overall performance so that we

compute the hash values in by the CPU. There is a recent study for advanced
incremental hashing in SPIN [38] with moderate but visible performance gains.

External Memory Breadth-First Search 15

In delayed duplicate detection [28] individual checks against the set of visited
states are postponed and performed in a bulk operation to amortize the cost of
I/O. Duplicates have to be eliminated both within one layer and with respect to
previous layers. The additional efforts for detecting duplicates late slows down
the verification, so that various improvements for BFS space generation have
been studied: resisting revisiting states in large search depths [6], or layered
duplicate detection, sacrificing completeness [34].

Hash-based delayed duplicate detection for external memory breadth-first
search has successfully been applied to puzzles like the Towers-of-Hanoi prob-
lem [29]. For the example of the 30-disc 4-peg Towers-of-Hanoi problem the
approach divides the state uniquely by the location of the discs. Using two bits
per disc this gives a total of 60 bits. The discs are divided into the 16 largest
and 14 smallest discs. States are written to the file based on the position of the
16 largest discs. Thus, all states in any given file have the 16 largest discs in
identical positions, and any set of duplicate nodes must be confined to the same
file. This allows to read one file at a time into a hash table in memory, detect
and merge any duplicate nodes in that file, and write out just one copy to an
output file. A similar approach has been applied to the 15-Puzzle [30], where
representation of a state corresponds to 64 bit, but hash functions that take the
first few tiles and the remaining tiles, the space required for the entire puzzle
could be reduced to about 1.4 terabytes. For hash-based delayed duplicate detec-
tion, however, implicit assumptions on the regularity of the domain apply that
illustrate the differences to be applied in model checking domains.

Semi-external model checking [17] is one of the fastest methods for large-scale
verification of LTL properties. It exploits the power of perfect hash functions and
maintains the state space in compressed form by externally constructing a RAM-
based mapping from states to indices. After generating the state space via BFS
on disk, a space-efficient minimum perfect hash function [10,8] is computed and
used to address collision-free bit-state hash tables. In other words, it reinvents
immediate duplicate detection e.g. for depth-first model checking algorithms.

Assumed a perfect hash function is known prior to the search external two-
bit breadth-first search by [32] integrates a tight compression method into an
I/O efficient algorithm. It applies a space-efficient representation in breadth-first
search with two frontier bits per state, an idea that goes back to [14].

To tackle the intrinsic hardness of large search problems in AI, sparse-memory
and disk-based algorithms are in joint use. Examples are frontier search with
duplicate detection schemes (being either delayed [31] or structured [44]). Espe-
cially on multiple disks, instead of I/O waiting time due to disk latencies, the
computational bottleneck for these external-memory algorithms is internal time,
so that a rising number of parallel search variants have been studied [33,45,15].

In [20] a smooth interplay of a bitvector state space representation and parallel
computation on the GPU is proposed. It is shown how to efficiently rank and
unrank states on the GPU. To map the search space to a bit-vector GPU-based
two-bit BFS, and, for limited space, one-bit variants are studied.

16 S. Edelkamp and D. Sulewski

3 GPU Programming

The design of our model checking algorithm is closely related to the architecture
of GPUs. Thus, insights into this architecture are essential.

The application of the modern GPUs goes far beyond the realm of graphics
applications. They can be seen as general purpose multi-threaded data parallel
co-processors. However, there are substantial architectural differences between
GPUs and CPUs, including the new generations of multi-core processors. This
imposes restrictions on the programs that can run on GPUs. Consequently, one
has to cope with several new challenges when developing model checking algo-
rithms for GPUs. The latter can significantly differ not only compared to their se-
quential counterparts, but also to the multi-core and distributed (cluster-based)
analogues.

Harnessing the power of GPUs is facilitated by the new APIs for general
computation on GPUs. CUDA is an interface from NVIDIA where programs
are basically extended C programs. To this end CUDA features extensions like:
special declarations to explicitly place variables in some of the memories (e.g.,
shared, global, local), predefined keywords (variables) containing the block and
thread IDs, synchronization statements for cooperation between threads, run-
time API for memory management (allocation, deallocation), and statements to
launch functions on GPU.

CUDA enforces a program architecture which provides flexibility and mini-
mizes the dependence of the software from the concrete GPU. A CUDA program
consists of a host program which runs on the CPU and a set of CUDA kernels.
The kernels, which are the parallel parts of the program, are launched on the
GPU device from the host program, which comprises the sequential parts. The
CUDA kernel is a parallel program that is executed as a set of threads. Each
thread of the kernel executes the same code. Threads of a kernel are grouped in
blocks that form a grid. Each thread block of the grid is uniquely identified by
its block ID and analogously each thread is uniquely identified by its thread ID
within its block. The dimensions of the thread and the thread block are specified
at the time of launching the kernel. Blocks of a grid are ordered as an one- or
two-dimensional array dividing the block ID in x and y axis component, while
the threads of a block are ordered in up to three dimensions. A thread is then
identified uniquely by the x, y ans z axis component of the thread ID.

The GPU offers three different kind of memories that differ substantially in
access speed (latencies). This has important implications for the efficiency of the
CUDA programs.

The memory hierarchy loosely maps to the program thread-block-kernel hier-
archy. Each thread has its own on-chip registers which are fast and off-chip local
memory, which is quite slow. Per block there is also an on-chip shared mem-
ory(SRAM). Threads within a block cooperate via this memory. If more than
one block is executed in parallel then the shared memory is equally split between
them. The whole grid – all blocks and threads within them – have access to the
off-chip global memory (Video RAM, or VRAM) at the speed of RAM. The host
has read and write access to the VRAM, but cannot access the other memories

External Memory Breadth-First Search 17

Texture Processor Cluster 1 T
exture

P
rocessor

C
lusters

2
...10

Global memory

Streaming
Multiprocessor 1

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 2

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 3

shared
m

em
ory

Streaming
Processors

special function unit 2

special function unit 1

special function unit 2

special function unit 1

special function unit 2

special function unit 1

Fig. 1. Sample GPU Architecture

(registers, local, shared). Thus, as such, global memory is used for communica-
tion between the host and the kernel. Threads within a block can communicate
also via light-weight synchronization barriers.

The GPU architecture, as shown exemplary in 1, consists of a set of mul-
tiprocessor units called streaming multiprocessors (SMs). Each SM contains a
set of processor cores called streaming processors (SPs). The NVIDIA GeForce
GTX280, which we are using for the experiments in this paper, has 30 SMs each
consisting of 8 SPs, which gives in total 240 SPs.

Analogously with the memory model, there is a similar correspondence be-
tween the CUDA logical (programming) hierarchy and the physical (hardware)
hierarchy of the GPU. Each thread is assigned to one processor (SP), whereas
several threads can be executed alternately. Similarly, each block is mapped
to one multiprocessor (SM), whereas each multiprocessor can execute several
blocks. The logical kernel architecture allows flexibility: the GPU can schedule
the blocks of the kernel depending of the concrete hardware architecture in an
optimal way which is completely transparent for the user. Each multiprocessor
performs computations in SIMT (Single Instruction Multiple Threads) manner,
which means that the same instruction is executed for each thread independently
with its own instruction address and local state (registers and local memory).

Due to the above described specific logical and physical architectures, GPU
programs often require optimization techniques which are quite different com-
pared to the multi-core and distributed parallel programming contexts. These
idiosyncrasies of the GPU programming are mainly visible in the optimization
of memory latencies, synchronization, thread mapping, the data layout in the
memory, and data reuse.

Communication with the off-chip device memory is relatively slow compared to
the enormous peak computational power. This is usually the main performance
bottleneck. To fully exploit the capacity of the GPU parallelism this memory

18 S. Edelkamp and D. Sulewski

latency must be minimized. Another issue that can lead to a performance degra-
dation is unnecessary synchronization between thread blocks. The inter-thread
communication within a block is cheap via the fast shared memory, but the ac-
cesses to the global and local memories are more than hundred times slower.

Unlike the CPU threads, the GPU threads are very light-weight with negligi-
ble overhead of creation and switching. This allows GPUs to use thousands of
threads whereas multi-core CPUs use only a few. Usually more threads and blocks
are created than the number of SPs and SMs, respectively, which allows GPU to
maximally use the capacity via smart scheduling - while some threads/blocks are
waiting for data, the others which have their data ready are assigned for execu-
tion. Thus, another way to maximize the parallelism is by optimizing the thread
mapping. This is often tightly coupled with the optimization of the memory ac-
cess. One should strive towards an alignment of the data in the memory such that
threads of the same block access memory locations which are as close as possible.
In this case we have so-called coalesced accesses. Thus, threads that access phys-
ically close memory locations should be grouped together such that they can be
provided data with the same memory access. Finally, in order to minimize the ac-
cess to the slow global memory, one should exploit data reuse. The parts of the
computation are localized to thread blocks which are synchronized as loosely as
possible. These threads use local data as much as possible and the global results
are written only at the end of the computation.

4 External Memory Breadth-First Search on the GPU

In the following, we provide the essentials for large-scale breadth-first explicit-
state model checking on the GPU. We show how to test enabledness for a set of
states in parallel, and – given all sets of applicable transitions – how to generate
the successor state sets accordingly. Duplicate detection is delayed. We restrict
to BFS, generating the entire search space. This is sufficient for verifying safety
properties. As said, exploring large state spaces with breadth-first search on disk
is an essential step for semi-external LTL model checkingL [17]. Our setting, illus-
trated in Fig. 2, indicates the interplay of the different kinds of memory and the
partition of it into cells and of processing units into cores. The intuition behind
our approach to external memory BFS is to dispatch set operations to the GPU.

The pseudo-codes display a fine-grained algorithm, separating the selection of
the transitions from their application. For the sake of clarity, the transfer from

x z

uv w

y
External memory

CPU

RAM

GPU

uvwxy SRAM

VRAM

uvwxy

Fig. 2. External-Memory Search on the GPU

External Memory Breadth-First Search 19

Procedure GPU-BFS
Input: Initial state s, transition conditions guards and updates effects
Output: State space

g := 0; Layer[g] := {s}
while (Layer[g] �= ∅)

Layer[g + 1] :=SuccLayer :=EnabledLayer :=LayerPart :=EnabledLayerPart := ∅
for each s ∈ Layer[g]

LayerPart := LayerPart ∪ {s}
if |LayerPart| = |VRAM|

Enabledlayer := EnabledLayer ∪ GPU-CheckEnabledness(LayerPart, guards)
LayerPart := ∅

EnabledLayer := EnabledLayer ∪ GPU-CheckEnabledness(LayerPart, guards)
for each (s, b) ∈ EnabledLayer

EnabledLayerPart := EnabledLayerPart ∪ {(s, b)}
if |EnabledLayerPart| = |VRAM|

SuccLayer := SuccLayer ∪ GPU-ExpandLayer(EnabledLayerPart, effects)
EnabledLayerPart := ∅

SuccLayer := SuccLayer ∪ GPU-ExpandLayer(EnabledLayerPart, effects)
for each s ∈ SuccLayer

H [hash(s)] := H [hash(s)] ∪ {s}
if |H [hash(s)]| = H [hash(s)]. max then

Sorted := GPU-DetectDuplicates(H)
CompactedLayer := ScanAndRemoveDuplicates(Sorted)
DuplicateFreeLayer := SubtractDuplicates(CompactedLayer, Layer[0..g])
Layer[g + 1] := Merge(Layer[g + 1], DuplicateFreeLayer)
H [0..m] := ∅

Sorted := GPU-DetectDuplicates(H)
CompactedLayer := ScanAndRemoveDuplicates(Sorted)
DuplicateFreeLayer := SubtractDuplicates(CompactedLayer,Layer[0..g])
Layer[g + 1] := Merge(Layer[g + 1], DuplicateFreeLayer)
g := g + 1

return Layer[0..g − 1]

Fig. 3. Large-Scale Breadth-First Search on the GPU

hard disk to RAM (and back) for layers that do not fit in RAM is hidden in the
set based representation, so is the transfer from RAM to VRAM.

For each BFS layer the state space enumeration is divided into three com-
putational stages (see Alg. 3). The GPU functions needed for state exploration
are displayed in Alg. 4 and 5. In the first stage, a set of enabled transitions is
generated by copying the states to the global memory on the graphics card and
replacing them by a bitvector of enabled transitions. In the second stage, sets of
all possible successors are generated. For each enabled transition a pair, joining
the transition ID and the explored state, is copied to the VRAM. Each state is
replicated by the number of successors it generates in order to avoid memory to
be allocated dynamically. The third stage removes all duplicates by hashing the
successors to buckets, which are indexed by the hash value, and by sorting the
buckets in the GPU. Adjacent duplicates are removed in a first scan, followed
by scans to remove duplicates from previous layers.

20 S. Edelkamp and D. Sulewski

For accelerating the exploration of states, we executed both the enabledness
check and the generation of successors on the GPU, parallelizing (the essen-
tials of) the entire model checking process. We exploit the fact that the order
of explorations in one BFS-layer does not matter, so that no communication
between the threads nor explicit load balancing is required. Each processor is
simply assigned to its share and starts operating. Duplicate detection is delayed.
Moreover, we separate the search frontier from the closed set of states, as only
the first one needs to be accessible in uncompressed form.

In the state exploration routine, first we check all transitions and then we fire
the enabled ones. Since the GPU can not access RAM and pointer manipulation
on it is limited, it is necessary to rewrite the transition guard labels to be eval-
uated. This description has to be efficient in memory and evaluation time, since
the size of the VRAM is small taking into account the high number of cores on
the GPU. Furthermore, all transitions should be moved into one memory block
to take advantage of fast block transfer on the express bus.

We rewrite the guards in reverse Polish notation [12], i.e., a postfix represen-
tation of Boolean and arithmetic expressions. This yields a pointer-free, compact
and flat representation of the transition guards. Converting the protocol to such
a notation and transferring it to the GPU is executed before the model checking
process starts. Moreover, additional static information about the structure of the
postfix representation, needed to evaluate a guard is copied to seperate memory
blocks. This information includes, e.g. the offset of the guards for each process and
the starting position of guards depending on the state a process is in2. For the ap-
plication of a transition to a given state, similar to processing the guards, the effect
expressions have been rewritten in reverse Polish notation. Since this static rep-
resentation resides in the GPU’s VRAM for the entire checking process and since
it is addressed by all instances of the same kernel function, its access is fast. The
cause is that broadcasting is an integral operation on most graphics cards.

4.1 Checking Enabledness on the GPU

Exploiting data reuse we make use of the fact that the state, copied to the GPU is
obsolete once it has been evaluated for active transitions. On the other hand the
indices of the transitions have to be transfered to the host for further proceeding
and the global memory should contain a maximum number of states to utilize
most of the fragment processors. This observation immediately leads to filling the
complete VRAM with states and overwriting them with the indices. Considering
the fact that a state and the number of all transitions in the model are both
fixed and known prior to the search we arrive at a bitvector representation for
communicating the active transitions from the GPU to the host. A check weather
the number of transitions exceeds the size of the bitvector representation of a
state is performed once and more space is reserved if needed.

According to that the VRAM is filled with states from the Open list in the
first statge, see Algorithm 3. Then, Alg. 4, executed on the GPU, computes a

2 We assume the transitions to be sorted by the outgoing state.

External Memory Breadth-First Search 21

GPU-Kernel CheckEnabledness
Input: Layer = {s1, . . . , sk}

guards
Output: ELayer = {(s1, b1), . . . , (sk, bk)}

for each group g do
for each thread t do in parallel

i := SelectState(Layer, g, t)
bi := CheckTransition(guards, si)
ELayer := ELayer ∪ {(si, bi)}

return ELayer

GPU-Kernel ExpandLayer
Input: ELayer = {(s1, b1), . . . , (sk, bk)}

effects
Output: SLayer = {s1, . . . , sl}

for each group g do
for each thread t do in parallel

i := SelectTransition(ELayer, g, t)
si := ExpandStates(effects, si, bi)

SLayer := SLayer ∪ Si

return SLayer

Fig. 4. Checking Transitions on the GPU (left). Expanding Layer on the GPU (right).

GPU-Kernel DetectDuplicates
Input: H (unsorted)
Output: H (partially sorted)

for each group g do
i := SelectTable(H,g)
H ′[i] := ParallelSort(H [i])

return H ′

Fig. 5. Detecting Duplicates via Sorting on the GPU

bitvector b of transitions, with bit bi denoting, whether or not transition i applies.
The entire array, whose size is equal to the number of available transitions, is
initialized to false. Each thread reads one single state at a unique position defined
by its ID and computes the set of its enabled transitions. For the implementation,
after having checked all transitions for enabledness, the bitvectors are copied
back to RAM.

To evaluate a postfix representation of a guard, one scan through its represen-
tation suffices. The maximal length of a guard times the number of groups thus
determines the parallel running time, as for all threads in a group, the check for
enabledness is executed concurrently.

4.2 Generating the Successors on the GPU

After having fixed the set of applicable transitions for each state, generating the
successors on the GPU is relatively simple. Each thread needs two informations
to generate a successor; the parent and an index of a transition it has to apply.
We tested two strategies, copying the states as one set and the corresponding
transition indices as the second set, and as a second strategy, creating a pair of
state and transition index and copy a set of this pairs to the GPU. While the
first strategy involves a second access to the global memory on the GPU, the
second strategy involves copying the pairs into a buffer in RAM. An experimental
evaluation identified the second strategy as superior.

Therefore, we replicate each state to be explored by the number of enabled
transitions on the CPU. Moreover, we attach the ID of the transition that is

22 S. Edelkamp and D. Sulewski

enabled together with each state. Then, we move the array of states to the GPU
and generate the successors in parallel overwriting the parent state.

Each state to be explored is overwritten with the result of applying the at-
tached transition, which often results in small changes to the state vector. Finally,
all states are copied back to RAM. The run-time is determined by the maximal
length of an effect times the number of groups, as for all threads in a group we
generate the successors in parallel.

4.3 Delayed Duplicate Detection on the GPU

For the delayed elimination of duplicates, we sort a BFS layer wrt. a comparison
function that operates on states. The array is then scanned and adjacent dupli-
cates are removed. As mentioned above, considering its strong set of assumptions
of orthogonal3, disjoint4 and inversible5 hash functions, hash-based delayed du-
plicate detection as proposed by [33] is not available for general explicit-state
model checking. Therefore, we propose a hybrid of sorting- and hash-based de-
layed duplicate detection, sorting buckets that are filled by applying a first level
hash function. The hidden objective of this approach is that hashing in RAM
allows distant data moves, while sorting only induces local changes and can be
accelerated on the GPU.

GPU-based sorting won the 2006 Indy PennySort category of the TeraSort
competition [22], a sorting benchmark testing performance for database opera-
tions. Since then, various GPU sorting algorithms have been proposed, including
MP56 GPU Bitonic Sort [7] and GPU Quicksort [13]. Probably the best
general GPU sorting algorithm is one by Sanders et al. [35], whose source has
not yet been released.

Depending on the external-memory model checker in use, sorting often con-
sumes the largest amount of time. Consequently, we first parallelized the efforts
for delayed duplicate detection by calling a state vector comparison function
for both mentioned GPU sorting algorithms. The initial results, documented in
[19], were disappointing. Even after further refinements, the best improvement
we could achieve wrt. CPU Quicksort was about 20%.

In further evaluation of both routines we found out that the sorting speed
highly depends on the size of the sorted elements, in our case the binary vectors
of the states. This correlates with the observation that intensive access to the
global memory should be avoided as much as possible. Moving large amounts of
data in the VRAM generates large idle times for the threads which wait for the
data, reducing the computation speed.

3 Two hash functions h1 and h2 are orthogonal, if for all states s, and s′ with h1(s) =
h1(s

′) and h2(s) = h2(s
′) we have s = s′.

4 Two hash functions h1 and h2 on s = (s1, .., sn) are disjoint, if h1(s) = h1(si1 , .., sik)
and h2(s) = h2(sik+1 , .., sin) and k ∈ {i1, .., in} = {1, .., n}.

5 A perfect hash function h is called inversible, if given h(s), state s can be recon-
structed.

6 courses.ece.uiuc.edu/ece498/al/mps/MP5-TopWinners/kaatz/

MP5-parallel sort.zip

External Memory Breadth-First Search 23

As described in detail in [19] Bitonic Sort consists of two phases. In the
first one a block of threads is used to sort a subset of all elements that fits into
the SRAM, then the sorted subsets are joint invoking intensive access to the
VRAM. The crucial observation is, the first phase accesses the global memory
only once for reading and after sorting once for writing so it is fast compared to
the second phase. Therefore, we employed hash-based partitioning on the CPU
in order to distribute the elements into buckets of adequate size and use only
the first phase of Bitonic Sort.

The state array to be sorted is scanned once. Using the hash function h and
a distribution of the VRAM into p blocks, a state s is written to the bucket
with index h′(s) = h(s) mod p. On the first overflow in one of the buckets,
all remaining places in all buckets are set to a pre-defined illegal state vector
that realizes the largest possible value in the total ordering of states. This hash-
partitioned vector is copied to the graphics card and the buckets are sorted
in parallel. A crucial observation is that the array is fully sorted wrt. to the
extended comparison function operating on pairs (h′(s), s). The sorted vector is
copied back from VRAM to RAM, and the array is compacted by eliminating
duplicates with another scan through the elements. Subtracting visited states is
made possible by scanning all previous layers residing on disk. Finally, we flush
the current, duplicate-free BFS layer to disk and iterate.

As long as the files do not exceed the GPUs memory, the above exploration
strategy is sufficient. If a layer becomes too large to be sorted on the GPU,
we split the search frontier into parts that fit in the VRAM. This yields addi-
tional state vector files to be subtracted to obtain a duplicate-free layer. For the
case that subtraction becomes harder, we can exploit hash-partitioning – insert-
ing previous states into files partitioned by the same hash value – a technique
inspired by hash-based duplicate detection [33] and implemented in structured
duplicate detection [44]. Provided that the sorting order is first on the hash value
and then on the state, after the concatenation of files (even if sorted separately)
we obtain a total order on the sets of states. This implies that we can restrict
duplicate detection including subtraction to states with matching hash values.

The shorter the state vector, the more elements fit into one bucket, and the
better the expected speed-up on the GPU. For improving the sorting perfor-
mance we, therefore, compressed the state vectors to 64 bits [41]; Two indepen-
dent 32-bit hash functions h1 and h2 were chosen randomly from a set of universal
hash functions. The state vector for s is compressed to (h1(s), h2(s), a(s)), where
a(s) is the index of the state vector residing in RAM that is needed for state
exploration. The values (h1(s), h2(s), a(s)) are then sorted lexicographically on
the GPU.

For deriving an estimate on the probability of a false positive, we assume a
space of n = 230 states universally hashed to the m = 264 possible bitvectors of
length 64. According to the birthday problem [9], The probability of having no
duplicates is m!/(mn(m−n)!). resolves to 0.9692, such that we have a chance of
less than 96.92% to have no collision during the search. But how much less can
this be? For a better confidence on our algorithm, we need a lower bound. We

24 S. Edelkamp and D. Sulewski

have m!/(mn(m−n)!) ≥ (1−n/m)n. For our case this resolves to (1−2−34)2
30

=
(0.99999999994179233909)1073741824 = 0.9394. Hence, we have a confidence of
such that we arrive at a confidence of at least 93.94% that no duplicate arises.

An alternative way of computing the error probability is as follows. There are
230(230 − 1)/2 pairs of states (x, y), where x < y. For a random hash function h,
and for any such pair, the probability that h(x) = h(y) is 1/264. Therefore, the
expected number of hash conflicts is (230(230 − 1)/2)/264 = (260 − 230)/265 =
1/25 − 1/235 ≤ 0.03126, certifying that with a chance of more than a 99.68%,
no false positive has been produced, while traversing the entire state space.

In contrast, single bit-state hashing with a 8 GB-sized hash table results in an
expected number of about (230(230 − 1)/2)/236 ≈ 223 hash conflicts (see [24] for
an analysis of single, double, and multi bit-state hashing). Moreover, missing a
duplicate harms, only if the missed state is the exclusive way to reach the error
in the system. In the search spaces we looked at the 64 bit compression did not
miss any single state! If the above certified confidence is still too small, one can
re-run the experiment with another set of hash functions, as in the Supertrace
algorithm [23].

Exploiting parallel computation does not change the access times to the hard
disk. According to the external-memory model of Vitter and Shriver [43], BFS
on implicitly generated state space graphs G = (V, E) that appear in model
checking still has an I/O complexity of O(sort(|E|) + locality · scan(|V |)), where
sort(N) is the effort to sort N states on disk, scan(N) is the effort to read (or
write) N states sequentially from disk, and locality is the length of the largest
back-edge in the BFS enumeration of the state space graph [25].

Keeping the list of states in each bucked sorted as in ordered hashing [26]
can accelerate the search on the CPU. However, this requires additional work
for insertion and does not speed up the computation if compared to sorting
the buckets on the GPU. Nonetheless, we implemented one refinement to detect
some duplicates quickly. We check the state to be inserted into a bucket against
its top element.

5 Experiments

We implemented our algorithms in DiVinE (DIstributed VerIficatioN Environ-
ment)7 with CUDA kernel functions linked to it. Models are taken from the
BEEM library [39]. We use an NVIDIA geForce 280 GTX (MSI) graphics card
(with 1 GB VRAM and 240 streaming processors) to measure the impact of
the GPU. RAM amounts to 12 GB, of which only 4 GB were usable due to
the 32-bit implementation of the used DiVinE version, and the external storage
encompasses 600 GB distributed on 3 hard disks connected via software RAID0
(achieving up to 240 MB/sec while sequential reading). The CPU of the PC is
an Intel Core i7 CPU 920 @ 2.67GHz. Only one core was utilized due to the
underlying implementation of DiVinE.

7 Version: 0.7.1 found at: anna.fi.muni.cz/divine

External Memory Breadth-First Search 25

For comparing delayed duplicate detection strategies, we tested different sort-
ing strategies [19]: the built-in CPU Quicksort implementation, the GPU
Quicksort implementation of [13] and a Bitonic Sort routine8, all adapted
to sort state vectors instead of numbers. At the end, we adapted Bitonic Sort
and hash partitioning as well as state compression to 64 bit as motivated above.

Table 1 displays the total run-times of the model checker subject to CPU-
and GPU-based state space exploration on disk for the selected benchmarks
protocols. We observe that using the GPU induces the model checker to perform
consistently better. The impact is even more obvious for the larger Peg Solitaire
instance. To get CPU data in a feasible amount of time, we draw an experiment
terminating Peg Solitaire after layer 17, when it had generated about 10% of
all unique states and show the results in the last line. While the state space
of the At.7 protocol is larger than that of the partially generated Peg Solitaire
instance, surprisingly, the total time for generating it on the CPU is smaller9.
This is due to the fact that the out degree of the Peg Solitaire protocol is much
higher. We observed that 90% of the generated successors are duplicates which
are discarded. For the sake of completeness we tried to compare the algorithm
with the latest DiVinE-MC implementation and the latest Spin (5.2.4) bina-
ries. Since DiVinE-MC and Spin are only able to check instances that fit into
RAM (both were allowed to use 12 GB), we see that they are not terminating
on most models. If they do they are much faster, since both checkers use hash-
ing for state storage, which is very fast compared to our implementation that
uses sorting-based delayed duplicate detection for an increased external-memory
performance10.

The individual speed-ups for enabling transitions, successor generation and
sorting are depicted in Table 2. It shows the protocol and its checked property in
the leftmost column. The remaining columns are divided into three parts showing
the different stages. The timing information is the sum of the efforts for all BFS
Layers in the state space generating process. The table strongly suggests that the
GPU should be used to perform similar tasks on all threads. The table clearly
shows that the impact of the GPU is larger for enabling the transitions than for
generating the successors. This is due to the fact that the task of checking each
transition for activeness is equal for all threads in one group and can be run si-
multaneously. To explore a state, each thread chooses a transition, according to
its number, and applies it. In the worst case each thread applies a different tran-
sition, reducing the amount of parallelism in memory access. The last part of the
table shows a sorting speed-up that differs widely between instances. This was
a surprising result, since we expected that the work of sorting is the same on all
8 Used sources available at courses.ece.illinois.edu/ece498/al/HallOfFame.html
9 Even though AT.7 has more states, the size of a state is much smaller.

10 We also looked into (though not directly comparable) data of a DiVinE based
external-model checker [6] exploring the related Szymanski 5 (P4) protocol with
419,183,762 states on a different architecture (2 GHz Intel Xeon PC, 2 GB RAM,
and 60 GB disk space). The results for full reachability in 51h 20m without and 17h
54 m with revisiting resistance still indicate that our running times are competitive
with other external exploration engines.

26 S. Edelkamp and D. Sulewski

Table 1. Comparing GPU- with CPU-based Performances (The CPU instance of Peg-
Solitaire has been stopped in BFS-Layer 17, o.o.m denotes out of memory)

Protocol State Space (in GB) Runtimes in HH:MM
and Instance Num. of States uncomp. compr. DiVinE Spin CPU GPU

Telephony.6 1,495,154,914 69.0 12 o.o.m o.o.m 4:42 3:03
Telephony.7 21,960,309 1.1 0.168 0:01 0:00.5 0:04 0:02
Telephony.8 854,245,188 43.0 6.4 o.o.m o.o.m 2:22 1:09

Szymanski.5 79,518,741 3.8 0.6 0:03 0:01 0:12 0:08

Anderson.8 538,699,094 26.0 4.1 o.o.m o.o.m 1:32 0:47

At.7 819,243,858 34.0 6.2 o.o.m o.o.m 1:56 0:45

Peg Solitaire.6 2,383,981,575 134.0 18 o.o.m o.o.m o.o.t. 14:57
(first 17 layers) 246,328,560 13.8 1.8 11:52 1:20

Table 2. Comparing GPU- with CPU-based Performances in each enhanced stage

Protocol Enabling Transitions Generating Successors Sorting
and Instance CPU GPU Spdup CPU GPU Spdup CPU GPU Spdup

Telephony.6 3,654s 115s 31.7 1,964s 301s 6.5 4,372s 180s 24.3
Telephony.7 59s 1s 59.0 28s 4s 7.0 62s 41s 1.51
Telephony.8 2,362s 78s 30.2 1193s 196s 6.1 2,447s 134s 18.3

Szymanski.5 188s 5s 37.6 74s 12s 6.2 193s 82s 2.4

Anderson.8 720s 24s 30.0 734s 121s 6.0 1,585s 153s 10.4

At.7 1,727s 46s 37.5 801s 140s 5.7 2,002s 86s 23.2

Peg Solitaire.6 1,308s 1,815s 557s
(first 17 layers) 32,226s 429s 75.6 4.088s 448s 9.1 3,220s 129s 25.0

instances, where a constant number of buckets (VRAM/SRAM) with an in av-
erage constant number of elements (SRAM/64/8/2) is sorted. Looking carefully
at the state space can clarify why the speed-up differs. Since the maximal BFS
depth varies, and the size of the BFS layers is different between the instances,
sorting is not a unified task. The small speed-up of the Szymanski instance can
be explained by a large number of small layers, where, for each layer, all buckets
have to be copied to the GPU.

Finally, we ran a profiler to uncover remaining performance bottlenecks. A
detailed profile for the Solitaire.6 Protocol (explored up to BFS-Level 17) is
provided in Table 3. We see that a lot of the time is lost in pre- and post-
processing the data. The term that harms most is due to the subtraction of
previous layers, for which strategies like revisiting resistance [6] and layered
duplicate detection [34] should apply. Using multiple external drives would also
reduce the impact of reading and writing and yielding a better factor.

Computing (and storing) the hash values on the CPU is the second largest
problem, which might also be exported to the GPU. As illustrated in [19] after
generating the successors, and sorting eliminating duplicates can be accelerated
elegantly by computing prefix sums (which is native on many graphics cards).

Some of the deficiencies contribute to the fact that we have split the model
checking process on the GPU into three disjoint stages. A tighter integration of

External Memory Breadth-First Search 27

Table 3. Comparison of CPU and GPU times for the distinct stages on the first 17
BFS layers of the Solitaire protocol. (The CPU experiment was stopped due to obvious
suboptimal performance).

Operation CPU Time GPU Time Ratio

Reading Search Frontier States from HDD 397s 402s
Find active Transitions (on the GPU incl. Transfer) 32,226s 429s 75.11
Applying Transitions (on the GPU incl. Transfer) 4,088s 448s 9.13
Compressing States (Hash Function and Bucketing) 877s 1,488s
Sorting Compressed States 3,220s 129s 24.96
Subtracting Previous Layers Read from HDD 1,538s 1,577s
Writing Duplicate-Free Layer File to HDD 29s 45s
Appending Full States to Search Frontier on HDD 146s 160s
Other memory operations 178s 167s

Total Time 42,699s 4,845s 9.61

the stages is expected to further speed-up the computation as it avoids moving
the data between VRAM and RAM. A similar solution in external-memory al-
gorithm designs is called pipelining [1], where one stage directly pipes its output
in form of streamed buffers as an input to the next stage. Property checking is
turned off: we restrict to efficient state space exploration.

Disk-based solutions often do not exploit parallelism, parallel solutions often
do not look at I/O, the other ones we have tried to cover. We recognize that
there is still remaining work in enlarging the set of experiments for a clearer
picture on the state-of-the-art in external memory BFS. We would love to have
cross-compare to CMurphi (e.g., in [11]), but it does not parse Promela or DVE,
so we would have had to hand-code models to compare directly. Due to personal
changes in the PARADISE group, experimenting with other I/O versions of
DiVinE was little difficult. We have, however, compare to I/O-HSF-SPIN [25].
The full exploration of peg-solitaire-6 took 21GB and 12h:06m.

6 Conclusion and Discussion

Parallelism is the future of computing; microprocessor development efforts will
concentrate on adding cores rather than increasing single-thread performance.
The purpose of the paper is to show that large-scale external memory search on
the GPU has the potential for growing towards an exciting research field. We
exemplarily looked at external memory BFS, showing significant advances for
analyzing large state spaces.

The contribution of this paper is that (to the best of our knowledge) it is the
first attempt to perform external memory BFS with delayed duplicates detection
on GPU. Comparing to other multi-core and GPU-based exploration engines
typically runs out of memory, this algorithm is capable to handle much bigger
state spaces. Comparing to the same algorithm running on CPU, especially in
sorting we observe significant speed-ups. The individual gains are remarkable,
and likely increase on multiple cards.

28 S. Edelkamp and D. Sulewski

We successfully attacked three causes of bad performance of a CPU model
checker: transition checking, successor generation and delayedduplicate detection.
Our advances lead to significant individual speed-ups of up to factor 75. In the
course of this research project we observed that subtraction of states of one layer
even wrt. the entire set of previous layers is not as inefficient in practice as we have
expected. This is due to the large number of successors that are already eliminated
within one layer. Hence, transition enabledness, successor generation and sorting
were identified as the main performance bottlenecks in large instances.

We encountered that the results on the software RAID are generally better
than on a single HDD. We observe speed-ups of up to one order of magnitude
exceed the number of cores on our PC. This will no longer be true for the dual
6-core CPUs available from Intel. Nonetheless, better speed-ups are certainly
possible. Multiple Nvidia GPUs can be used in SLI mode and the Fermi archi-
tecture (e.g. located on the GeForce GTX 480 graphics card) will go far beyond
the 240 GPU cores we had access to.

Given that disk-based algorithms often take days of computation, we are
convinced that even moderate speed-ups for generating state spaces on disk
are crucial. We observe that multi-core parallelizations usually does not extend
to checking large systems beyond main memory [42] work on muti-core model
checking [2].

Current graphics cards have a hierarchical memory structure, with local,
shared, global, constant and texture memory together with different fragment
processor units. Additionally facing the uncontrolled scheduling algorithm imple-
mented on the graphics card a fine-grained theoretical time complexity analysis
matching the observed performance is involved. The computational model for the
GPU relates to the SIMD (Single Instruction Multiple Data) CREW (Common
Read Exclusive Write) PRAM model, but this is a very rough characterization.
More refined models are needed.

Of course, improving the overall speed-up is subject to further research. Be-
sides the subtraction of previous layers, moving states and hashing takes most
of the time, and shall be considered next.

The presented algorithm might be extended to run on clusters by storing the
open list on a shared external space, dividing a BFS layer into partitions, and
expanding them on different nodes. Duplicate checking has, of course, to be syn-
chronised. The algorithm can in principle be applied to any external memory
BFS. Given the GPU implementation, it is also easy to derive a multi-core ver-
sion. The inverse, however, is not true. Considering the fundamental difference in
the architectures, specialized solutions developed for multi-core model checking
may not easily transfer to the GPU.

The actual code is written for CUDA supporting NVIDIA hardware. For other
vendors the implementation of the pseudo-code algorithms have to be adapted.
One also may combine the three stages into two avoiding some transfer between
RAM and VRAM. Our core design objective, however, was to maximize memory
usage to increase parallelism on the card. As other external-memory algorithms
like External A* [25] are also streamed, they suggest to be executed on the GPU.

External Memory Breadth-First Search 29

References

1. Ajwani, D., Dementiev, R., Meyer, U.: A computational study of external-memory
BFS algorithms. In: ACM-SIAM Symposium On Discrete Algorithms (SODA), pp.
601–610 (2006)

2. Barnat, J., Brim, L., Ročkai, P.: Scalable multi-core LTL model-checking. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 187–203.
Springer, Heidelberg (2007)

3. Barnat, J., Brim, L., Češka, M.: DiVinE-CUDA: A Tool for GPU Accelerated
LTL Model Checking. Electronic Proceedings in Theoretical Computer Science
(PDMC) 14, 107–111 (2009)

4. Barnat, J., Brim, L., Češka, M., Lamr, T.: CUDA accelerated LTL Model Checking.
In: International Conference on Parallel and Distributed Systems (ICPADS 2009),
pp. 34–41 (2009)

5. Barnat, J., Brim, L., Šimeček, P.: I/O efficient accepting cycle detection. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293. Springer, Hei-
delberg (2007)

6. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting resistance speeds up I/O-
efficient LTL model checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)

7. Batcher, K.E.: Sorting networks and their applications. AFIPS Spring Joint Com-
puting Conference 32, 307–314 (1968)

8. Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, displace, and compress.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 682–693. Springer,
Heidelberg (2009)

9. Bloom, D.: A birthday problem. American Mathematical Monthly 80, 1141–1142
(1973)

10. Botelho, F.C., Ziviani, N.: External perfect hashing for very large key sets.
In: ACM Conference on Information and Knowledge Management (CIKM), pp.
653–662 (2007)

11. Brizzolari, F., Melatti, I., Tronci, E., Penna, G.D.: Disk based software verifica-
tion via bounded model checking. In: Asia-Pacific Software Engineering Conference
(APSEC), pp. 358–365 (2007)

12. Burks, A.W., Warren, D.W., Wright, J.B.: An analysis of a logical machine
using parenthesis-free notation. Mathematical Tables and Other Aids to Compu-
tation 8(46), 53–57 (1954)

13. Cederman, D., Tsigas, P.: A practical quicksort algorithm for graphics processors.
In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 246–258.
Springer, Heidelberg (2008)

14. Cooperman, G., Finkelstein, L.: New methods for using Cayley graphs in intercon-
nection networks. Discrete Applied Mathematics 37/38, 95–118 (1992)

15. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

16. Edelkamp, S., Jabbar, S., Schrödl, S.: External A*. In: Biundo, S., Frühwirth,
T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 226–240. Springer,
Heidelberg (2004)

17. Edelkamp, S., Sanders, P., Šimeček, P.: Semi-external LTL model checking. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 530–542. Springer,
Heidelberg (2008)

30 S. Edelkamp and D. Sulewski

18. Edelkamp, S., Sulewski, D.: Flash-efficient LTL model checking with minimal coun-
terexamples. In: International Conference on Software Engineering and Formal
Methods (SEFM), pp. 73–82 (2008)

19. Edelkamp, S., Sulewski, D.: Model checking via delayed duplicate detection on the
GPU. Technical Report 821, Technische Universität Dortmund. Presented on the
22nd Workshop on Planning, Scheduling, and Design PUK 2008 (2008)

20. Edelkamp, S., Sulewski, D., Yücel, C.: Perfect hashing for domain-dependent plan-
ning on the gpu. In: International Conference on Automated Planning and Schedul-
ing, ICAPS (2010) (to appear)

21. Gastin, P., Moro, P.: Minimal counterexample generation for SPIN. In: Bošnački,
D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 24–38. Springer, Heidel-
berg (2007)

22. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: High
performance graphics coprocessor sorting for large database management. In: In-
ternational Conference on Management of Data (SIGMOD), pp. 325–336 (2006)

23. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

24. Holzmann, G.J.: An analysis of bitstate hashing. Formal Methods in System
Design 13(3), 287–305 (1998)

25. Jabbar, S.: External Memory Algorithms for State Space Exploration in Model
Checking and Action Planning. PhD thesis, Technical University of Dortmund
(2008)

26. Knuth, D.E.: The Art of Computer Programming. Addison-Wesley, Reading (1973)
27. Korf, R.: Delayed duplicate detection: extended abstract. In: International Joint

Conference on Artificial Intelligence (IJCAI), pp. 1539–1541 (2003)
28. Korf, R.: Best-first frontier search with delayed duplicate detection. In: National

Conference on Artificial Intelligence (AAAI), pp. 650–657 (2004)
29. Korf, R., Felner, A.: Recent progress in heuristic search: A case study of

the Four-Peg Towers of Hanoi problem. In: International Joint Conference on
Artificial Intelligence (IJCAI), pp. 2334–2329 (2007)

30. Korf, R., Schultze, P.: Large-scale parallel breadth-first search. In: National
Conference on Artificial Intelligence (AAAI), pp. 1380–1385 (2005)

31. Korf, R.E.: Breadth-first frontier search with delayed duplicate detection. In:
MOCHART, pp. 87–92 (2003)

32. Korf, R.E.: Minimizing disk I/O in two-bit-breath-first search. In: National
Conference on Artificial Intelligence (AAAI), pp. 317–324 (2008)

33. Korf, R.E., Schultze, T.: Large-scale parallel breadth-first search. In: National
Conference on Artificial Intelligence (AAAI), pp. 1380–1385 (2005)

34. Lamborn, P., Hansen, E.: Layered duplicate detection in external-memory model
checking. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp.
160–175. Springer, Heidelberg (2008)

35. Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. CoRR, abs/0909.5649
(2009)

36. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear
I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp.
723–735. Springer, Heidelberg (2002)

37. Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: SODA, pp.
687–694 (1999)

38. Nguyen, V.Y., Ruys, T.C.: Incremental hashing for spin. In: Havelund, K., Ma-
jumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 232–249. Springer, Heidelberg
(2008)

External Memory Breadth-First Search 31

39. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

40. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reach-
ability analysis. International Journal on Software Tools for Technology Transfer
(STTT) 5(2-3), 185–204 (2004)

41. Stern, U., Dill, D.L.: Combining state space caching and hash compaction. In:
Methoden des Entwurfs und der Verifikation digitaler Systeme. GI/ITG/GME
Workshop, vol. 4, pp. 81–90. Shaker Verlag, Aachen (1996)

42. Verstoep, K., Bal, H., Barnat, J., Brim, L.: Efficient Large-Scale Model Checking.
In: International Symposium on Parallel and Distributed Processing, IPDPS (2009)

43. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory; I: two-level memo-
ries, II: hierarchical multilevel memories. Algorithmica 12(2/3), 110–169 (1994)

44. Zhou, R., Hansen, E.A.: Structured duplicate detection in external-memory graph
search. In: National Conference on Artificial Intelligence (AAAI), pp. 683–689
(2004)

45. Zhou, R., Hansen, E.A.: Parallel structured duplicate detection. In: National
Conference on Artificial Intelligence (AAAI), pp. 1217–1222 (2007)

Program Model Checking via Action Planning

Stefan Edelkamp1, Mark Kellershoff2, and Damian Sulewski1

1 TZI, University of Bremen, Germany
2 TU Dortmund, Germany

Abstract. In this paper we present steps towards a prototype implementation of
a C++ software model checker based on AI planning technology. It parses source
code annotated with assertions and translates it into the planning domain descrip-
tion language to invoke recent planners. Lifted back to the source code level, com-
puted plans then serve as counterexamples. As the approach can participate from
efficient planner in-built search heuristics, the verification procedure is directed.
For the translation process, different aspects like parsing, generation of a depen-
dency graph, slicing, property conversion, and data abstraction are described. The
program model checker has been embedded as a plugin in the Eclipse software
development environment, resulting in an interactive debugging aid. First em-
pirical findings compare the approach with an existing directed program model
checker parses the same input and executes object code.

1 Introduction

The implementation of correct software is an everyday challenge and crucial for the
development safety-critical systems. Severe software failures such as the explosion of
the Ariane 5 rocket due to an arithmetic overflow [29], the zapping of six Lockheed’s
F-22 Raptor by international date line1, and the power shutdown for about 3 hours of
the USS Yorktown due to a failure in the arithmetic exception handling2, are only a few
examples to illustrate the importance of the automated verification of systems.

The verification task becomes harder, when concurrent threads are involved, since
the order of instruction execution is hard to predict and often not known in advance.
Moreover, by the current rise in the number of processor cores, concurrent program-
ming becomes a necessity, especially considering the continuous economic pressure for
software development companies.

Model checking [14] is a formal method to increase the correctness of non-deter-
ministic system designs by detecting errors (like violated assertions or deadlocks) that
otherwise would require intensive code reviewing efforts. The main disadvantage of
model checking for software verification is that it relies on a formal model of the soft-
ware system to be checked, which might be unavailable, or inconsistent wrt. the ongoing
development of the source code.

In contrast to classical model checking, program model checking aims at the au-
tomated verification of software in source code [34,52]. The advantage of these ap-
proaches is that there is no additional modeling error. As a push-button technology,
program model checking requires tremendous computational power.

1 http://www.dailytech.com/article.aspx?newsid=6225
2 http://www.wired.com/science/discoveries/news/1998/07/13987

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 32–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Program Model Checking via Action Planning 33

For traditional model checkers, property specifications are often provided in some
form of temporal logic, which (in automata-based model checking) can be compiled
into (Büchi) automata to be able to explore a lifted state space graph. In program mod-
els checkers, however, mainly safety errors are validated. To facilitate program model
checking by calling the verification engine during the course of programming, a few
checker specific commands for source code annotation are needed, e.g., to cluster code
into atomic blocks, to lock and unlock the access to shared variables, and to state asser-
tions that should hold at a specific point in the program.

The choice of the language C++ to be checked is imposed by its wide-spread use and
the lack of automated adequate bug-finding support. Besides ordinary debuggers there
are advanced tools like valgrind3 that are able to find memory leaks, and static analysis
tools like Orion [17] that are very effective in reducing programming errors in practice.
Debugging concurrent programs, however, imposes another challenge on top of these
tools.

There is continuous research suggesting that search heuristics included into a di-
rected model checker can outpace traditional model checkers a sizable number of prob-
lems (see survey in [26]). The rationale of applying heuristics is that – due to the large
size of the global system state spaces – correctness is often infeasible to check, and for
falsification states closer to the error can be priortized.

This paper proposes a program model checker that automatically converts C++
source into an action planning model in PDDL [47,27]. Guidance is then applied implic-
itly by exploiting planning heuristics. Besides opening an exciting research field to the
planning community the core rationale to work on a PDDL model rather than to extend
a program model checker is the growing body of results in designing accurate search
heuristics via selecting any of a wide range of advanced heuristic search planners. Since
current PDDL is inherently static, there are several restrictions to the expressiveness of
the sources that can be processed. But the results of our prototype indicates visible ad-
vantages at least for simple benchmarks problems. As arithmetics are essential to follow
the flow of control in most programs, we mainly concentrate on mapping numeric as-
pects. Besides slicing the program without loss of information, we have implemented a
transformation into Level 2 PDDL and, for the case when a program cannot be searched
completely, data abstraction converts infinite state variables to finite ones, into Level 1
PDDL. Various dependencies of variables are detected automatically by examining the
parse of the source.

The paper is structured as follows. First, we recall action planning and the program
domain description language. Next, options for program model checking of C++ source
code is reviewed. To draw a connection between the two exploration objectives we
review some related work on system verification via planning. Then, we address the
translation process in a running example. We highlight various aspects of our program
model checker prototype, including the extension of a C++ parser, the automated con-
struction of the dependency graph, its integration as a Eclipse-plugin, as well as and
the application of (semi-)automated abstractions. We provide some empirical data for
a cross-comparison with a directed program model checker that executes programs on
the assembly level and conclude.

3 http://valgrind.org

34 S. Edelkamp, M. Kellershoff, and D. Sulewski

2 Action Planning

In domain-independent action planning, a running system must be able to find plans and
to exploit search knowledge fully automatically. In this paper we restrict to deterministic
planning (each action application produces exactly one successor) with no uncertainty
in the environment and no observation to infer otherwise inaccessible state variables.
The input of a planning problem consists a set of state variables, an initial state in form
of value assignments to the variables, a goal (condition), and a set of actions consisting
of lists of preconditions and effects. A plan is a sequence of actions that eventually
maps the initial state into one that satisfies the goal (condition).

The problem domain description language PDDL [47] allows flexible specifications
of domain models and problem instances. Starting from problems described in STRIPS
notation, PDDL has grown to an enormous expressive power, including large fragments
of first-order logic to combine propositional expressions, numerical state variables to
feature the handling of real-valued quantities, and constraints to impose additional con-
ditions on the set of valid plans. The agreed standard for PDDL encompasses the fol-
lowing levels of expressiveness.

Level 1: Propositional Planning This level includes all sorts of propositional descrip-
tion languages. It unifies STRIPS-type planning with the abstract description lan-
guage (ADL). ADL allows typed domain objects and any bounded quantification
over these as well as negated and disjunctive preconditions, and conditional effects.
While the former two language extensions can be easily compiled away by intro-
ducing negated predicates and by splitting the operators, the latter ones are essential
in the sense that their compilation induces an exponential increase in the problem
specification. Propositional planning is decidable, but PSPACE-hard [7].

Level 2: Metric Planning This level introduces numerical state variables, so-called
fluents, and an objective function to be optimized (the domain metric) that judges
plan quality. Instead of Boolean values to be associated with each grounded atom,
the language extension enables the processing of continuous quantities, an impor-
tant requirement for modeling many real-world domains. The growing expressive-
ness comes at a high price. Metric planning is not decidable even for very restricted
problem classes [35]. This, however, does not mean that metric planners cannot
succeed in finding plans for concrete problem instances.

More levels and features have been attached to this hierarchy. Level 3 introduces du-
ration, which denotes action execution time. The duration can be a constant quantity
or a numerical expression dependent on the assignment to variables [27]. Two differ-
ent semantics been been proposed. In PDDL semantics each temporal action is divided
into an initial, an invariant, and a final happening. Many temporal planners, however,
assume the simpler black-box semantics. Domain axioms in form of derived predicates
introduce recursion, while timed initial facts allow execution deadlines to be speci-
fied [40]. Newer developments of PDDL focus on temporal and preference constraints
for plans [28]. Higher levels support continuous processes and triggered events [27].

The results of the biennial international planning competitions (started in 1998)
show that planners keep aligned with the language extensions, while preserving good

Program Model Checking via Action Planning 35

performances in finding and optimizing plans. Besides algorithmic contributions, the
achievements also refer to the fact that computers have increased in their processing
power and memory resources. As a consequence, modern action planning is apparently
suited to provide prototypical solutions to specific problems. In fact, action planning
becomes more and more application-oriented.

3 Program Model Checking

The ultimate goal of software model checking is to check programs as a push-button
technology to be used directly within the process of programming. Most advances, how-
ever, are due to bug-hunting. If program model checker finds a counterexample of pro-
gram instructions, which e.g., leads to a failed assertion, the corresponding system state
violates a Boolean expression on the set of state variables.

Program Model Checking via Executables. For this case, at least in theory, there are
no syntactic or semantic restrictions to the programs that can be checked as long as
they can be compiled to an executable. A state vector is essentially composed of the
stack contents and machine registers of the running threads, together with the lock-
and the memory-pool. These pools store the set of locked resources and the set of
dynamically allocated memory regions. The other parts of the state vector contain
the program’s global variables. Program model checkers are frequently composed
on top of a virtual machine that has been extended to analyze programs along differ-
ent execution branches. Checkers like the Java PathFinder (JPF) [33,53], the State
Exploring Assembly Model Checker (StEAM) [46], or the .NET model checker
(Moon Walker) [18], analyze a program as an object code or byte code executable.

Program Model Checking via Translation. Instead of producing a binary for execu-
tion, other approaches like the Bounded Model Checker for ANSI-C programs
(CBMC) [11] perform symbolic simulation on the program. They translate a pro-
gram to a theorem prover input via unrolling loops to some depth, and feed a SAT
or SMT solver for verifying it. C++ input is converted into goto-programs via tools
like goto-cc, while data abstractions have been used in [12]. Via introducing ran-
dom variables, in TCBMC (p)threads have been translated to CMBC [50] and in
a preliminary experiment successfully compared to Microsoft’s ZING [2]. Similar
experiments have been conducted in [15].

As for our research we need both C++-input and threads, we have had difficulties in
comparing with tools like (T)CBMC directly. Hence, we cross-compare our prototype
with our assembly-level program model checker StEAM [46,48]. For better scalability,
it has been externalized [22], such that it efficiently exploits hard disk space much larger
than the RAM. Furthermore, StEAM has been parallelized [23], such that it can work
more efficiently in multi-processor or cluster environments. StEAM parses C++, has the
same in- and output behavior, and shares the same frontend. Program model checking
in StEAM performs a search on the level of machine code instructions, compiled, e.g.,
from a C++ source. The compiled code is stored in ELF, a common object file format
for binaries. Moreover, the virtual machine was extended with multi-threading, which
makes it also possible to model-check concurrent programs.

36 S. Edelkamp, M. Kellershoff, and D. Sulewski

The tool automatically detects deadlocks during the program exploration. A thread
can require and release exclusive access to a resource). When a thread attempts to lock
an already locked resource, it must wait until the lock is released by the thread which
holds it. A deadlock arises, where all running threads wait for a lock to be released.

The state representation is large and one may like to conclude, that program model
checking machine code is infeasible due to the memory required to store the visited
states. In practice, however, most states of a program differ only slightly from their
immediate predecessors. If memory is only allocated for changed components, by using
pointers to unchanged components in the predecessor state, it is possible to explore large
parts of the programs state space, before running out of memory.

Heuristic guidance has been successfully included to improve error detection, see
e.g., [31]. States are evaluated by a estimator function, measuring the distance to an
error state, so that states closer to the faulty behavior have a higher priority and are
considered earlier in the exploration process. An appropriate example for the detection
of deadlocks is the most-block heuristic. It favors states, for which more threads are
blocked. Another established estimate used for error detection in concurrent programs
is the interleaving heuristic. It relies on a quantity for maximizing the interleaving of
thread executions. The heuristic do not assign values to states but to paths. The objective
is that by prioritizing interleavings concurrency bugs are found earlier in the exploration
process. The lock heuristic additionally prefers states with many variable locks and
threads alive. Locks are the obvious precondition for threads to become blocked and
only threads that are still alive, can get in a blocked mode in the future.

4 Model Checking via Planning

At least conceptually, both action planners and model checkers apply a domain-inde-
pendent exploration of so-called Kripke structures, i.e., state space graphs labeled with
atomic propositions. Planning via model checking [8] considers the integration of ver-
ification technology (mainly in form of BDDs [6]) into action planners [9,10]. The in-
verse is less frequently reported, even though SATPLAN [43] inspired bounded model
checking [4] and documents a successful knowledge transfer in the opposite direction.

Considering the rising effectiveness of heuristics in planning (see e.g., [36,32,37]), a
natural question was to apply heuristics to enhance error detection in model checking.
Directed model checkers [24,45,54] have been successfully equipped with heuristics to
provide short traces to programming errors time- and space-efficiently.

The effectiveness of translating model checking input directly into PDDL avoids the
source code extension of an existing model checker and allows to interact with different
kinds of planners. The success of such prototype compilations has been documented by
a series of preceding papers.

LTL Model Checking Input. A prototype compiler from a restricted subset of
SPIN’s4 input language Promela [42] into PDDL exploits the representation of pro-
tocols as communicating finite state machines [19]5.

4 http://spinroot.com
5 One implication was to validate state properties in communication protocols, in particular,

deadlocks, as planning benchmarks in international planning competitions [41].

Program Model Checking via Action Planning 37

CTL Model Checking Input. The translation of (nu)SMV6 input to PDDL to run a
heuristic search planner with promising results in a simple but scaling (Dining
Philosopher) example has been discussed in [1].

μ-calculus Model Checking Input. To solve μ-calculus model checking problems7,
practical models and properties from data-flow analysis were transformed to parity
game graphs, which, in turn, were compiled to planner input [3].

Petri Net Model Checking Input. Finding a particular marking in Petri nets corre-
sponding to a property violation can be reduced to traversing a state space of sets
of reachable markings8. Typical exploration approaches are undirected and do not
take into account any knowledge about the structure of the Petri net. In [20] a
PDDL model to apply heuristic search for enhanced exploration has been pro-
posed. This translation has been included to counterexample-guided abstraction-
refinement [44], while [5] consider the directed unfolding of Petri nets.

Graph Transformation Model Checking Input. Graphs are suitable modeling for-
malisms for software systems involving aspects such as communication, object
orientation, concurrency, mobility, and distribution. State spaces of such systems
can be modeled by graph transition systems, which are basically systems whose
states and transitions reflect graphs and graph morphisms. Inspired by Groove9,
and directed graph transformation [21], modeling of graph transition systems in
PDDL and the application of heuristic search planning for their analysis has been
proposed [25]10.

5 Parsing

In model checking software, state spaces are analyzed that have non-deterministic ef-
fects. Such non-determinism can be due to the interleaving of concurrently running
threads, or to unknown assignments to variables, program inputs, to explicit choice
points imposed by the programmer, or to abstractions of deterministic programs.

For program model checking, the source code has to be parsed. As the program-
ming language C++ is rather complex [51], we adapted the tool JavaCC by Sreenivasa
Viswanadha that was published in 1997 to parse the input. As an unfortunate conse-
quence, recent developments of C++ like STL are not covered by our research. The
parser yields an abstract syntax tree, which we present as a navigational aid to the pro-
grammer, and which is used for further processing for the model checker. Inspired by
an existing interface the different program model checkers including StEAM for the
controlled execution of the verification process, the source code can be annotated with
the following commands:

– VLOCK(<variable>) restricts the access to the variable <variable> in the
currently invoked thread. All upcoming locks to the same variable are blocked.

6 http://nusmv.fbk.eu
7 http://jabc.cs.tu-dortmund.de/modelchecking
8 http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools
9 http://groove.cs.utwente.nl

10 The application domain has been part of international knowledge engineering competitions.

38 S. Edelkamp, M. Kellershoff, and D. Sulewski

– VUNLOCK(<variable>) releases the lock to the variable <variable>.
– BEGINATOMIC() dictates that the current thread cannot be suspended.
– ENDATOMIC() terminates the atomic block selection within a thread.
– VASSERT(<condition>) tracks assertion violations in the model checker, s.t.
<condition> has to be satisfied each time the program reaches VASSERT.

– RANGE(<variable>,<low>,<high>) offers non-deterministic choices to a
program. At this program counter position the variable <variable> is assigned
to a value in between <low> and <high>.

By the current limitation of PDDL, states are fixed-sized variable assignment vectors
and do not allow dynamic creation of domain objects.

6 Generation of the Dependency Graph

A program consists of a hierarchy of variables, methods and classes. This object-oriented
structure represents the scopes of a program and is exploited for constructing a depen-
dency graph. The graph has nodes for representing a class, a method, or a statement, and
edges for representing member, data, control, method call, use, or define dependencies.
An example is shown in Fig. 1 together with parts of the parse tree to its left.

Fig. 1. Parse tree and dependency graph of a sample C++ program in our tool

Program Model Checking via Action Planning 39

The state of a program includes information like assignments to global and local vari-
ables, as well as stack and dynamic memory contents. We distinguish binary, integer-
or real-valued variables. The situation before the execution of a program is called initial
state, and the state of a program at its termination is called (valid) end state. Addition-
ally to the variable assignments, a state contains information about the program counter,
denoting which transition has been or will be executed. If the program is multi-threaded,
a program counter is maintained for every running thread including the thread for main.
For the conversion, we assume that a static analysis, applied after parsing the code, can
detect the number of threads running concurrently.

7 Translation into PDDL

As indicated above, the core motivation of translating C++ sources of a program into
PDDL is the exploitation of planner in-built heuristics to drive the exploration process
towards falsifying a property, e.g., in form of a deadlock, a failed assertion, a global
invariance, or an array access violation. After parsing we can assume the input has been
parsed into some form of internal dictionary, while the output has to please (one of the
first two levels of) PDDL [27]. In the following, we explain the transformation using a
simple example.

7.1 Fluents

For a variable declaration, like int a, we reserve a PDDL fluent int a. Since a
program can contain several variables with name a, every PDDL fluent is suffixed with
an additional id, such that for our case we infer int a 1, as it is the first (and only)
appearance of a that is converted. As a can appear in different threads, we provide an
additional parameter to the PDDL predicate, yielding the expression (int a 1 ?t -
thread) to represent the variable declaration of a. For variable int b the conversion
is analogous. In short, variable conversion is a mapping that assigns a fluent to each
program variable.

7.2 Propositions

In addition to fluents to represent numbers the following (specialized) propositions are
used in the preconditions and effects of the actions as well as in the goal (condition).

(atomic) (is-atomic ?t - thread)
(thread-run ?t - thread) (thread-ended ?t - thread)
(array-index-calculated ?t -thread ?n1 - number)
(array-index-converted ?t - thread ?n1 - number)
(index ?t - thread ?n1 ?n2 - number)
(calculating-index ?t - thread)
(method-call-done ?t - thread ?n - number)
(no-error) (assertion-violation)
(deadlock) (blocked ?t - thread)

40 S. Edelkamp, M. Kellershoff, and D. Sulewski

For example, given that three threads t1, t2 and t3 are blocked based on accessing
already locked variables, a deadlock is declared in PDDL as follows.

(:action detect-deadlock
:precondition (and (blocked t1) (blocked t2) (blocked t3))
:effect (deadlock))

7.3 Expressions

The conversion of Boolean and numerical expressions, which appear in both conditions
and assignments, from infix notation (as used in C++) to prefix notation (as used in
PDDL) is realized by traversing the parse tree and using a stack data structure.

7.4 Assignments

One of the simplest operation in a program is the assignment of a value to a variable. For
translating it into PDDL, we construct actions, which convert the state in the planning
model in the same way it does within the program.

PDDL actions consist of three major parts: the parameter list, the precondition and
the effect lists. If we ignore the working of the program counter, the parameter is se-
lected by the thread, while the effect changes the planning state equivalent to the as-
signment (see Fig. 2 for an example).

(:action SimpleAssignment
:parameters (?t - thread)
:precondition (<predecessor has finished>)
:effect (and (assign (int_a_1 ?t) 1000)

(<this action has finished>)
(not (<predecessor has finished>))))

Fig. 2. PDDL action for a=1000;

7.5 Program Counter

The program counter to monitor the flow of control in the program is the most important
aspect to be modeled. For each action we usually have one predecessors action. Sev-
eral predecessors are available only for the special case of a RANGE-statement, where
different value assignments are made available.

7.6 Control Flow

We use predicates to model line numbers. Every action includes as a precondition that
the predecessor (line) has finished its execution. For example, in a sequential execution
line 20 has to finish before line 21 is processed. To avoid ambiguities, every line number
is attached to the file in which the line is contained. It is also parameterized with the
thread that is invoked. Since in PDDL every possible action is checked for execution,

Program Model Checking via Action Planning 41

the list of preconditions for every action has been enlarged to allow selecting the actions
that are currently active wrt. the flow of the program.

The action for the first line in the main program includes (start T0) as a pre-
condition triggered by the initial state, since it does not have a direct predecessor. The
first instruction of a method also contains a label that it has been called.

Consider the example program in Fig. 3. After calling the run method, we have two
running concurrent threads, the main method (thread t0), and the thread (t1) that has
been invoked. If we omit the details for calling the thread, the remaining program logic
has to include the variables a and b, their order and the constraints imposed. The PDDL
result for the assignment a=1000; and b=20; is shown in Fig. 4.

#include "Thread.h"
[...]
class SimpleExample:public Thread {
public:
SimpleExample();
void run();

};
SimpleExample::SimpleExample(){}

void SimpleExample::run(){
int a;
int b;
a=1000;
b=20;
VASSERT(a < b);

}

Fig. 3. Example program

(:action SimpleExample_cpp_Line_20
:parameters (?t - thread)
:precondition (SimpleExample_cpp_Line_19 ?t)
:effect (and (assign (int_a_1 ?t) 1000)

(SimpleExample_cpp_Line_20 ?t)
(not (SimpleExample_cpp_Line_19 ?t))))

(:action SimpleExample_cpp_Line_21
:parameters (?t - thread)
:precondition (SimpleExample_cpp_Line_20 ?t)
:effect (and (assign (int_b_2 ?t) 20)

(SimpleExample_cpp_Line_21 ?t)
(not (SimpleExample_cpp_Line_20 ?t))))

Fig. 4. PDDL actions for a=1000; and b=20;

42 S. Edelkamp, M. Kellershoff, and D. Sulewski

7.7 Conditional Branches

An if statement exists in two different variants (with or without else block). A model
without an else-branch is not directly convertible in PDDL, as failing the if condition
would not increase the program counter. We observe that every action has access to its
immediate predecessor, and every action has at most two successors in case of a branch
and two predecessors in case of a join. A while statement is an if statement featuring
a backward jump.

For if statements we introduce a virtual-else branch, short VELSE. The if state-
ment itself would vanish as the conditions are imposed as additional preconditions to
the actions. But without modeling the if statements explicitly, there is a subtle problem
in modeling nested if statements. Consider the small extension of the running example
in Fig. 5. If one uses one action per instruction, then implementing correct precedences
among the if statements is tricky, i.e., to connect an else-branch to the corresponding if.
Therefore, we decided to include an additional flag and an additional action for starting
and ending an if or else part.

void SimpleExample::run(){
int a;
int b;
a=1000;
b=20;
if (a > b) {
if (a > 20) {

a=20;
} else {

a=0;
}
} else {
a=1000;

}
VASSERT(a < b);

}

b=20;

VASSERT(a < b);

State

Transition

(a>b)
∧
(a>20)
a=20;

(a>b)
∧
(a<=20)
a=0;

(a<=b)
a=1000;

Fig. 5. A nested if statement and induced control flow for the PDDL model

Fig. 6 relates the source of a simple while statement to the according automaton,
that is used to monitor the flow of control in the PDDL code.

7.8 Model Checking Statements

A VASSERT statement is dealt with similarly to an if statement, and, hence, split into
two parts. One branch considers the violation of the assertion, in which case the pred-
icate assertion-violation is set, the other branch continues with the flow of
instructions. When searching for the violation of safety properties, this predicate is in-
cluded as a precondition of one goal-achieving action. For a RANGE statement we adapt
the increase of the program counter, such that only one action can be executed at a time.

Program Model Checking via Action Planning 43

void SimpleExample::run(){

int a;
int b;

a=1000;
b=20;

while (a > b) {
a=20;
b=1000;

}
VASSERT(a < b);

}

b=20;

b=1000;

a=20;

VASSERT (a < b);

State

TransitionWHILE
(a>b)

ELSE
(a<=b)

WHILE
(a>b)

ELSE
(a<=b)

Fig. 6. A while program and induced control flow for the PDDL model

The VLOCK statement denotes that a thread requires exclusive access to a variable.
The first thread that locks the variable has top priority, such that all upcoming accesses
to the same variable are rejected. The PDDL model is extended in the sense that the
actions include another precondition, denoting that the variable is not locked. As one
subtle issue, we further have to avoid multiple locks on one variable.

A proper locking mechanism yields the implementation for the check of invalid end
states (deadlocks). A supplementary action wait is generated, that indicates that a thread
waits for a resource. If all threads are blocked, a deadlock has occurred, an a goal
achieving flag is triggered. Note that waiting does not increase the program counter to
allow continuation of the program, once the lock is released.

Unlocking via VUNLOCK is converted into an action that increases the program
counter and that deletes the predicate for locking the variable.

For atomic blocks within BEGINATOMIC and ENDATOMIC, in the PDDL model
two new predicates are inserted; atomic, that denotes that the execution is atomic
mode and is-atomic ?t - thread that denotes which thread is actually atomic.
Most ordinary actions are extended by the preconditionatomic⇒ (is-atomic ?t).
The end of the block generates an action without further specialized preconditions that
deletes atomic and (is-atomic ?t).

7.9 Complex Statements

Arrays allow direct access to a vector of variables, like the one illustrated in Fig. 7.
In PDDL2 such indexed variable access to variables is performed in two steps. In the
first step the index is determined, which corresponds to evaluating an expression. In the
second step the access to the array is executed. As PDDL does not provide a mecha-
nism to index variables with numbers, we urge the user to provide array bounds to the
parser. For an array of size k, k + 1 actions are generated, one for the evaluation of
the index and one for the instruction itself. Given that fluents cannot be used directly
for array-access, we introduce additional compare-actions that compare the index with
the available constants and include the appropriate object to the parameters. For an

44 S. Edelkamp, M. Kellershoff, and D. Sulewski

int c[1];
int c[0]=2; // direct addressing + value direct
int a[3];
int b=0;
a[b] = c[0]; // indirect addressing + value indirect

Fig. 7. Different forms of array addressing

example we first compute the index of the array index like 3, converted to a constant
PDDL object like n3, and use it to access the array like (a n3).

Under certain assumptions the conversion of C++-objects into PDDL is possible, if
the initialization uses the new-operator and gets assigned to a unique name. The new-
statement induces the reservation of a PDDL object with a reference to this object; the
variables of the class contain an additional parameter, whose type is the class name.

7.10 Methods

PDDL models cannot generate objects dynamically. The only methods that can be pro-
cessed are those that have integer∗ → integer or integer∗ → void in their signature.
Methods are converted in actions that wait for being invoked by setting a predicate for
the call of the method. The parameters are found on the method-stack, and the solutions
are found in a special solution register, accessible from the calling action, similar to
what is done in an ordinary executable. The actions are indexed such that more than
one call is possible.

The running time of the conversion is comparable to the running time of a compiler,
as they both satisfy similar requirements. The compiler, however, produces object code,
while the approach presented here generated a PDDL model.

8 Data Abstraction

Arithmetics on integer variables suggest a conversion of the C++ program into PDDL2,
level 2, for which inferences can become rather complex. In fact, such metric planning
is undecidable in general [35], while propositional planning is known to be PSPACE-
complete [7]. Abstraction [13] is a simplification of the problem that finds traces to
target states faster, but may introduce spurious counterexample paths. If the abstract
model can be proven correct, however, the original one is correct as well.

We support different forms of abstraction, mainly data abstraction similar to [49]. If
a state s is represented as a state vector (s1, . . . , sk) with variables si in some finite
domains, then data abstraction is established by a projection, reducing the domains of
some si, i ∈ {1, . . . , k}. In the extreme, the domain is reduced to the empty set, which
entails ignoring the value of the variable, matching with pattern abstraction needed for
constructing database heuristics [16]. In model checking this corresponds to a form of
data abstraction, which exploits the fact that specifications for software models usually
consider fairly simple relationships among the data values in the system. In such cases,
one can map the domain of the actual data values into a smaller domain of abstract
data values. Such mapping induces a mapping of the states of the system, which in turn
induces an abstract system. In many cases the abstract system simulates the original
one, by means that each behavior in the original model is present in the abstracted one.

Program Model Checking via Action Planning 45

;constants
neg,zero,pos
;constant definitions
:neg: (x < 0)
:pos: (x > 0)
:zero: (x == 0)
;operation definitions
:add:dadd:
(neg,zero,neg)
(zero,neg,neg)
(neg,pos,*)
(pos,neg,*)
...

Fig. 8. Data abstraction library definition

Data abstraction, however, is not the only approach. With predicate abstraction the
concrete states of a system are mapped to abstract states according to their evaluation
under a finite set of predicates [30]. Automatic predicate abstraction approaches have
been designed and implemented for finite and infinite state systems. Both data and pred-
icate abstraction induce abstract systems that simulate the original one. We call such an
abstraction a simulation abstraction. A refined planning heuristic based on abstraction
has been contributed by [38].

We look at abstractions for the arithmetics with numbers. It is evident that abstrac-
tions introduce additional branching to the search. In the neg-pos-zero abstraction, for
example, integers are projected to three values of being either positive negative, or equal
to zero. If two negative or two positive values are multiplied, the result is determined,
while for mixed multiplication, different options are possible. An alternative is an odd-
even abstraction with obvious semantics.

Numerical abstraction in C++ can be implemented elegantly using the operator over-
loading mechanism. Following the purpose of this paper, however, we propose to build
abstraction libraries on the planning level. For the example of the neg-pos-zero abstrac-
tion we store an convenient PDDL-like interface for the library that is shown in Fig. 8.
The interface serves a macro that is automatically extended to enrich the initial state
and the PDDL operators to realize abstraction.

The dependency graph helps to deduce the set of all variables that are affected if one
is abstracted.

9 Results

The Eclipse plugin that has been developed11 enables software developers to discover
bugs during the process of writing code. Detected errors are presented interactively as a
highlighted sequence of source code. The implementation itself includes the following

11 Available at www.tzi.de/∼edelkamp/AbsPlugin. The repository contains data ab-
straction definition files, the models that were analyzed, models to verify features of the plugin
(such as method call, array access, etc.), planners compiled for x86, and the plugin as jar
package (ready to be used with Eclipse).

46 S. Edelkamp, M. Kellershoff, and D. Sulewski

Fig. 9. Eclipse SDK with (abstraction) plugin and error trailer

components: Eclipse + CDT, (besides others planners like MIPS and SGPLAN) the
planners FF/Metric-FF [39], and the Java SDK. The plugin consists of the GUI for
parameterizing the algorithms, the parser, the generator for the dependency graph data
structure and the PDDL output, and and the error trailer.

Fig. 10 cross-compares12 the performance with our C++ program model checker
StEAM [48]1314.

Recall that StEAM has the same in- and output behavior, systematically analyzes a
program as an executable in object code and can apply different search heuristics. The
C++ source code examples we considered include:

– Mutex is a flawed version of a solution to a mutual exclusion problem as considered
in [42].

– Producer-Consumer is an implementation of a distributed queue, chosen to test a
concurrent program for a assertion.

12 We use a Laptop computer running one core of the Intel(R) Core(TM) 2 CPU with 1.66 GHz
and 1GB RAM for the experiments.

13 Available at http://steam.cs.uni-dortmund.de
14 In our tables l denotes the length of the counterexample, s denotes the number of states, t

denotes the CPU time, DA denotes Data Abstraction, and EHC denotes enforced hill climbing
as applied in MetricFF. A dash (–) denotes that the program model checker ran out of memory.

Program Model Checking via Action Planning 47

Mutex Producer-Consumer BubbleSort10
Checker l s t t s t l s t

StEAM DFS 66 742 90 122 353 59 594 1184 124
StEAM Best-First 30 1630 198 29 4383 690 594 1774 88

MetricFF EHC 27 747 6 20 23 2 - - -
MetricFF Best-First 27 251 4 20 3405 10 - - -

FF DA EHC 28 39 28 20 33 2 661 670 1312
MetricFF DA EHC 28 39 108 20 34 56 661 670 8938

MetricFF DA Best-First 27 922 877 20 3405 1609 661 73294 79674

8-Puzzle 3-Philosophers
Checker l s t l s t

STEAM DFS 36096 70366 6.5s 33 46 0.05s
STEAM Best-First 86 7836 0.26s 33 707 0.13s

MetricFF EHC - - - 42 0.21s 0.003s
MetricFF Best-First - - - 41 3270 0.01s

FF DA EHC 115 932 2585 42 209 0.002s
MetricFF DA EHC 361 56257 1177572 42 212 0.004s

MetricFF DA Best-First 99 4113 96291 41 212 0.01s

Fig. 10. Results for benchmarks domains

Metric-FF EHC Metric-FF Best-First
Program l s t l s t

4-Philosophers 45 0.05 0.05s 45 139 0.01s
5-Philosophers 51 22092 2.23s 61 224 0.03s
8-Philosophers – – – 79 337 0.12s
8-Philosophers – – – 121 663 0.24s
16-Philosophers – – – 369 3887 8.89s
24-Philosophers – – – 745 11719 98.07s
32-Philosophers – – – – – –

Fig. 11. Results for program model checking with a rising number of dining philosophers

– Bubblesort is a deterministic program with one thread that sorts 10 numbers. The
error specification is chosen in such a way that the sorted sequence throws an
exception.

– 8-Puzzle is the implementation of a sliding-tile puzzle on a 3 times 3 board. The
puzzle is described using an integer array 〈1, 4, 2, 3, 7, 5, 6, 0, 8〉, with value 0 de-
noting the blank. Moves are implemented using Range.

– Philosophers is a standard deadlock example. The solution is buggy, as the selec-
tion of forks can be interleaved, and correct if taking the two forks is contained in
an atomic region. Therefore, with this example we tested the correct working of
VLOCK, VUNLOCK, BEGINATOMIC and ENDATOMIC.

Between the two there is no clear-cut winner. In the rather artificial examples for ver-
ification, namely BubbleSort and 8-Puzzle, the program model checker is faster, and
only planning with data abstraction solves the problem. In the three concurrent model

48 S. Edelkamp, M. Kellershoff, and D. Sulewski

checking examples of communication protocols, the analysis via PDDL is superior. In
Producer-Consumer the planner does find the shortest path independent to the use of
breadth-first search. More examples are needed to provide more insights, when and why
general planning heuristics pay off.

In Fig. 11 we increase the number of philosophers. According to [1] nuSMV and ac-
cording to [24] SPIN both have severe problems in proper scaling for this domain (when
given a formal model of the program). The reason is the lack of a proper search heuristic
that guides the exploration towards an error state. Directed model checkers like HSF-
SPIN overcome the problem and scale to a very large number of philosophers. Com-
pared to a recent paper on bounded model checking multi-threaded programs with SMT
solvers [15], however, the number of philosophers was at most 7. Therefore, by program
model checking with over 24 philosophers the presented approach is competitive.

10 Conclusion and Discussion

This work addresses the automated transformation of C++ program source code into
PDDL for a planner to find plans that serve as counterexamples. Using PDDL, the
generic approach adapts to almost all current deterministic planners (including non-
heuristic search planners like SAT- or BDD-based planners). In our example setting we
applied the so-called relaxed planning heuristic as implemented in FF, but the empha-
size is not to experiment with any available heuristics. There are several related directed
model checking approaches, but none of them directly applies heuristic search planning
to program model checking.

Our program model checker prototype is capable of parsing a sizable but small frag-
ment of multi-threaded C++ programs that include non-determinism in form of range
statements and threads. The latter is of increasing importance for validating software
developed for multi-core architectures.

The prototype touches most aspects of a modern program model checking tool:
parsing the sources, generating the dependency graph, slicing the program, specifying
the error type as well as generating and presenting the output in an SDK for debug-
ging. Additionally, different options for data abstractions that determine the planning
level and the complexity of finding a plan are discussed. The core technical contribu-
tion is the representation of the program flow in form of PDDL actions via explicitly
modeling the program counter, and using the schematic representation of such actions
with parameters for representing threads and finite domain numbers.

In some cases, the results compare well with a program model checker that executes
the program on the object code level. At least for some domains advanced planner-
inherent estimates can compete with simpler ones implemented in a directed model
checker. This indicates that existing heuristic search planning technology may have
impact for the formal verification of programs.

As current PDDL is inherently static, besides the restriction due to the chosen pars-
ing tool that cannot handle STL, there are additional restrictions to the expressiveness of
program sources that can be processed. For example, PDDL does not allow the dynamic
creation of objects, which induces a fixed-sized state vector. This implies that dynamic
data structures cannot be checked. Moreover, we have to depend on static bounds for

Program Model Checking via Action Planning 49

modeling array access, and more complex features of C++, e.g., multiple inheritance,
exceptions, etc. are also not yet supported. So far out approach only illustrates the poten-
tial of efficiency advantages, and suggests program checking via PDDL as an exciting
research avenue to the community. On the other hand, as we have concentrated on the
imperative kernel of C++, the approach likely extends to other programming languages.

Acknowledgments. Thanks to the critical reviewers that beside observing traditional
techniques and smaller-sized examples saw pioneering aspects in the interconnection
of planning and program verification, and honored the efforts to design and implement
a novel C++ program model checking approach. We thank DFG for grants in the area
of directed model checking.

References

1. Albarghouthi, A., Baier, J., McIlraith, S.A.: On the use of planning technology for verifica-
tion. In: Workshop on ICAPS 2009 (2009)

2. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: Exploiting program struc-
ture for model checking concurrent software. In: Gardner, P., Yoshida, N. (eds.) CONCUR
2004. LNCS, vol. 3170, pp. 1–15. Springer, Heidelberg (2004)

3. Bakera, M., Edelkamp, S., Kissmann, P., Renner, C.D.: Solving μ-calculus parity games
by symbolic planning. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS,
vol. 5348, pp. 15–33. Springer, Heidelberg (2009)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

5. Bonet, B., Haslum, P., Hickmott, S.L., Thiébaux, S.: Directed unfolding of Petri nets. T. Petri
Nets and Other Models of Concurrency 1, 172–198 (2008)

6. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys 24(3), 142–170 (1992)

7. Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 165–204 (1994)

8. Cimatti, A., Giunchiglia, E., Giunchiglia, F., Traverso, P.: Planning via model checking: A
decision procedure for AR. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 130–142.
Springer, Heidelberg (1997)

9. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning
via symbolic model checking. Artif. Intell. 147(1-2), 35–84 (2003)

10. Cimatti, A., Roveri, M., Bertoli, P.: Conformant planning via symbolic model checking and
heuristic search. Artif. Intell. 159(1-2), 127–206 (2004)

11. Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

12. Clarke, E., Kröning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstrac-
tion for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
570–574. Springer, Heidelberg (2005)

13. Clarke, E.M., Grumberg, O., Long, D.: Model checking and abstraction. ACM Transactions
on Programming Languages and Systems 16(5), 1512–1542 (1994)

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999)
15. Cordeiro, L., Fischer, B.: Bounded model checking of multi-threaded software using smt

solvers, vol. abs/1003.3830 (2010)

50 S. Edelkamp, M. Kellershoff, and D. Sulewski

16. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(4), 318–334
(1998)

17. Dams, D., Namjoshi, K.S.: Orion: High-precision methods for static error analysis of C and
C++ programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2005. LNCS, vol. 4111, pp. 138–160. Springer, Heidelberg (2006)

18. Aan de Brugh, N.H.M., Nguyen, V.Y., Ruys, T.C.: MOONWALKER: Verification of.NET pro-
grams. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 170–173.
Springer, Heidelberg (2009)

19. Edelkamp, S.: Promela planning. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS,
vol. 2648, pp. 197–212. Springer, Heidelberg (2003)

20. Edelkamp, S., Jabbar, S.: Action planning for directed model checking of Petri nets.
Electronic Notes in Theoretical Computer Science (ENTCS) 149(2), 3–18 (2006)

21. Edelkamp, S., Jabbar, S., Lluch-Lafuente, A.: Action planning for graph transition systems.
In: ICAPS 2005-Workshop on Verification and Validation of Model-Based Planning and
Scheduling Systems (2005)

22. Edelkamp, S., Jabbar, S., Midzic, D., Rikowski, D., Sulewski, D.: External memory search
for verification of multi-threaded C++ programs. KI 22(2), 44–50 (2008)

23. Edelkamp, S., Jabbar, S., Sulewski, D.: Distributed verification of multi-threaded C++
programs, vol. 198, pp. 33–46 (2008)

24. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. STTT 5(2-3), 247–267 (2004)

25. Edelkamp, S., Rensink, A.: Graph transformation and AI planning. In: ICAPS 2007-
Workshop on the Knowledge Engineering Competition (2007)

26. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.: Survey on
directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS,
vol. 5348, pp. 65–89. Springer, Heidelberg (2009)

27. Fox, M., Long, D.: PDDL2.1: An extension of pddl for expressing temporal planning
domains. JAIR 20, 61–124 (2003)

28. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the
fifth international planning competition: 7pddl3

29. Gleick, J.: Little bug, big bang. New York Times vom 1 (Dezember 1996)
30. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
31. Groce, A., Visser, W.: Heuristics for model checking java programs. STTT 6(4), 260–276

(2004)
32. Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-independent plan-

ning. In: AAAI, pp. 1163–1168 (2005)
33. Havelund, K., Pressburger, T.: Model checking java programs using JAVA pathfinder.

STTT 2(4), 366–381 (2000)
34. Havelund, K., Visser, W.: Program model checking as a new trend. STTT 4(1), 8–20 (2002)
35. Helmert, M.: Decidability and undecidability results for planning with numerical state vari-

ables. In: AIPS, pp. 303–312 (2002)
36. Helmert, M.: A planning heuristic based on causal graph analysis. In: ICAPS, pp. 161–170

(2004)
37. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: What’s the difference

anyway? In: ICAPS (2009)
38. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for optimal sequential

planning. In: ICAPS, pp. 176–183 (2007)
39. Hoffmann, J.: The Metric-FF planning system: Translating ignoring delete lists to numeric

state variables. JAIR 20, 291–341 (2003)

Program Model Checking via Action Planning 51

40. Hoffmann, J., Edelkamp, S.: The deterministic part of ipc-4: An overview, vol. 24, pp.
519–579 (2005)

41. Hoffmann, J., Edelkamp, S., Thiebaux, S., Englert, R., Liporace, F., Trueg, S.: Engineering
benchmarks for planning: the domains used in the deterministic part of IPC-4. JAIR 26(2),
453–541 (2006)

42. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,
Reading (2004)

43. Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic
search. In: AAAI, pp. 1194–1201 (1996)

44. König, B., Kozioura, V.: Augur - a tool for the analysis of graph transformation systems.
Bulletin of the EATCS 87, 126–137 (2005)

45. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll
abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
203–217. Springer, Heidelberg (2008)

46. Leven, P., Mehler, T., Edelkamp, S.: Directed error detection in C++ with the assembly-level
model checker stEAM. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp.
39–56. Springer, Heidelberg (2004)

47. McDermott, D.: The 1998 AI Planning Competition. AI Magazine 21(2) (2000)
48. Mehler, T.: Challenges and Applications of Assembly-Level Software Model Checking. PhD

thesis, Dortmund University of Technology (2006)
49. Merino, P., del Mar Gallardo, M., Martinez, J., Pimentel, E.: αSPIN: Extending SPIN with

abstraction. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 254–258.
Springer, Heidelberg (2002)

50. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97. Springer, Heidel-
berg (2005)

51. Stroustrup, B.: The C++ Programming Language, 2nd edn. Addison-Wesley Publishing
Company, Reading (1994)

52. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Automated
Software Engineering Journal 10(2), 203–232 (2003)

53. Visser, W., Mehlitz, P.C.: Model checking programs with Java PathFinder. In: Godefroid, P.
(ed.) SPIN 2005. LNCS, vol. 3639, p. 27. Springer, Heidelberg (2005)

54. Wehrle, M., Helmert, M.: The causal graph revisited for directed model checking. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 86–101. Springer, Heidelberg (2009)

Automatic Data-Abstraction in Model Checking

Multi-Agent Systems

Alessio Lomuscio1, Hongyang Qu2, and Francesco Russo1

1 Department of Computing, Imperial College London, London, UK
2 Computing Laboratory, Oxford University, Oxford, UK

Abstract. We present an automatic data-abstraction technique for the
verification of the universal fragment of the temporal-epistemic logic
CTLK. We show the correctness of the methodology and present an
implementation operating on ISPL models, the input files for MCMAS,
a model checker for multi-agent systems. The experimental results point
to the attractiveness of the technique in a number of examples in the
multi-agent systems domain.

1 Introduction

Over the past few years model checking techniques [3] have been extended to
temporal-epistemic logics [11]. Several model checkers, including MCMAS [15],
McK [12] and Verics [14], are now available supporting this and other extended
functionalities. Expressive specification languages find a natural application in
the area of multi-agent systems [18]. Because of their autonomous nature multi-
agent systems (MAS) naturally generate very large state spaces. Therefore, be-
ing able to tackle the state-space explosion remains of fundamental importance
if we are to develop model checking techniques for the verification of MAS.
While a number of abstraction-based techniques have been put forward for plain
temporal logic, e.g., [2,6], little attention has gone so far towards developing effi-
cient state-reduction methodologies preserving the validity of temporal-epistemic
specifications. Crucially, there is no automatic implementation enabling the user
to perform automatic abstraction directly on the program. This paper aims to
make a first attempt at filling this gap.

In line with much of the literature we represent MAS as interpreted systems.
In this paradigm we model agents by programming the local evolution of the
agents’ data in their local states. We use ISPL, the input language of MCMAS,
to program interpreted systems. In this paper we show that data-abstraction
notions can be defined on interpreted systems semantics and automatic reduction
can be performed directly on ISPL programs. We illustrate the technique on two
scenarios inspired by popular examples in the MAS literature: card games [9],
and the bit transmission problem [11]. Both the scenarios we consider have over
1010 reachable states so are too large to be checked by MCMAS directly, but
can be verified effectively by model checking the reduced program.

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 52–68, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 53

Related work. Abstraction for epistemic specifications was defined on Kripke
models in [7,10]. However, given these structures are computationally
ungrounded [17], it is difficult to apply these results to MAS descriptions. Previ-
ous work by some of the authors of this paper [5] established the basic theoretical
framework for abstraction on interpreted systems, but the results were not ap-
plied to data-abstraction specifically, nor to concrete ISPL programs, the basis
for this investigation.

More broadly, three main approaches are prominent in abstraction techniques
for temporal logic. The first focuses on studying partial symmetries of the system
under investigation [4]. In the second, predicate abstraction, introduced in [13],
the system is described by a set of logical formulas; a finite set of local state
predicates are selected, and any two local states satisfying exactly the same
predicates are collapsed. Finally, the third technique, introduced by Cousot [6]
and further developed by Clarke at al. [2,1] involves automatically reducing local
states by collapsing the data values they are built from. This is the basis for the
technique presented here.

Outline of the paper. The rest of the paper is organised as follows. Section 2
describes the interpreted system framework, the temporal epistemic specifica-
tion logic ACTLK, the model checker MCMAS, and abstraction of interpreted
systems. Section 3 reports the theoretical basis of this investigation, namely that
ACTLK properties are preserved under abstraction, as well as details of the im-
plementation. Section 4 presents experimental results. We conclude in Section 5.

2 Interpreted Systems, ACTLK and Abstraction

We use interpreted systems [11] as a semantic model for multi-agent systems.
In this formalism a system is composed of n agents and an environment. Each
agent and the environment are associated with a set of local states and a set
of actions. The local states are private to the agent and the environment. Local
protocols define the actions that may be executed at a given local state. The
local evolution function of the agent defines the transition relation among the
local states. The environment has the same structure as the agents. The formal
definition of an interpreted system is given as follows.

Definition 1 (Interpreted system). An interpreted system over a set Ag =
{1, . . . , n} of agents and an environment e is a tuple

I=〈{Li}i∈Ag∪{Le},{ACTi}i∈Ag∪{ACTe},{Pi}i∈Ag∪{Pe},{ti}i∈Ag∪{te},I0, V 〉
where:

– Li (Le, respectively) is a non-empty set of possible local states for agent
i ∈ Ag (the environment, respectively). The set of possible global states is
denoted by S = L1 × · · · × Ln × Le. For any global state g ∈ S, we write gi

for the i-th component in g, i.e., the local state of agent i in g. Similarly, ge

represents the local state of e in g.

54 A. Lomuscio, H. Qu, and F. Russo

– ACTi (ACTe, respectively) is a non-empty set of possible actions for agent
i ∈ Ag (the environment, respectively). The set of possible joint actions is
denoted by ACT = ACT1 × · · · × ACTn × ACTe.

– Pi : Li −→ 2ACTi is the local protocol for agent i and Pe : Le −→ 2ACTe is
the local protocol for the environment.

– ti : Li × ACT −→ 2Li is the local evolution function for agent i, and te :
Le × ACT −→ 2Le for the environment.

– I0 ⊆ S is a non-empty set of initial states.
– V : S −→ 2AP is the evaluation function for the set AP of atomic

propositions.

The Cartesian product of the local evolution functions denotes the global evo-
lution function that describes how the system evolves from a global state to the
next one. Let a ∈ ACT be a joint action and ai the action of agent i (i ∈ Ag)
in a, as well as ae for the environment.

Definition 2 (Global transition relation). Given an interpreted system I,
the global transition relation T ⊆ S×ACT ×2S is such that 〈g, a, S′〉 ∈ T (where
S′ ⊆ S) if and only if:

(∀i ∈ Ag : 〈gi, a, S′
i〉 ∈ ti ∧ 〈gi, ai〉 ∈ Pi

) ∧ 〈ge, a, S′
e〉 ∈ te ∧ 〈ge, ae〉 ∈ Pe

where S′
i ⊆ Li and S′

e ⊆ Le. In the following we assume that the global transition
relation T is total, i.e., for every g ∈ S, there is S′ ⊆ S such that gT S′ and
S′
= ∅.

Definition 3 (Path). A path π in I is an infinite sequence g0g1 . . . of global
states in S such that every pair of adjacent states forms a transition, i.e.,
gkT gk+1 for all k ≥ 0. Let π(k) be the kth global state in π, i.e., gk.

As standard [11] the knowledge of an agent is defined by means of relations over
global states defined as follows.

Definition 4 (Epistemic indistinguishability relation). The epistemic in-
distinguishability relation for agent i in system I is:

∼i = {〈g, g′〉 ∈ S × S | gi = g′i}

ACTLK logic. We consider specifications expressed in the logic ACTLK [16],
which adds epistemic modalities to the temporal logic ACTL, the universal frag-
ment of Computation Tree Logic [8].

Definition 5 (ACTLK). ACTLK formulae over a set Ag of agents and a set
AP of propositions are defined by:

φ ::= α | ¬α | φ ∧ φ | Kiφ | AXφ | A(φUφ) | A(φRφ)

where α ∈ AP and i ∈ Ag.

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 55

As customary, a formulas Kiφ is read as “Agent i knows φ”. The formula AXφ
specifies that “for all paths φ holds in the next state of the path”; the for-
mula A(φUψ) specifies that “along all paths φ holds until ψ holds”; the formula
A(φRφ′) specifies that “along all paths, φ releases φ′”. Other universal temporal
operators AF and AG can be equivalently expressed as AFφ = A(trueUφ) and
AGφ = A(falseRφ).

The combination of temporal and epistemic modalities allows us to specify
how agents’ knowledge evolves over time. For example, AG(α → AF (KiKjψ))
expresses that whenever α holds, eventually agent i will know that agent j
knows ψ.

Given an interpreted system I, the ACTL modalities are interpreted via the
global transition relation T , while the epistemic modality Ki is interpreted by
the epistemic relation ∼i for agent i:

Definition 6 (Satisfaction). Let I be an interpreted system over the set Ag of
agents and the set AP of propositions, let φ be an ACTLK formula over Ag and
AP , and let g ∈ G be a reachable state. Truth of φ at g in I, written (I, g) |= φ,
is defined inductively by the following conditions:

– (I, g) |= α iff α ∈ V (g), for α ∈ AP ;
– (I, g) |= ¬φ iff (I, g)
|= φ;
– (I, g) |= φ ∧ ψ iff (I, g) |= φ and (I, g) |= ψ;
– (I, g) |= Kiφ iff (I, g′) |= φ for all g′ ∈ G such that g ∼i g′;
– (I, g) |= AXφ iff for every path π = g0g1 . . . in I such that g = g0, we have

(I, π(1)) |= φ;
– (I, g) |= A(φUψ) iff for every path π = g0g1 . . . in I such that g = g0, there

exists k ≥ 0 such that (I, π(k)) |= ψ and (I, π(j)) |= φ for all 0 ≤ j < k;
– (I, g) |= A(φRφ′) iff for every i and every path g0, g1, . . . in I such that

g = g0, if for all 0 ≤ j < i, (I, π(j))
|= φ then (I, π(i)) |= φ′.

Formula φ is true in I, denoted by I |= φ, iff (I, g) |= φ for all g ∈ I0.

The abstraction technique [2] involves converting a ground, or concrete system,
into an abstract system, typically smaller than the original. The abstract sys-
tem is obtained by partitioning the system states into equivalence classes. Each
equivalence class is represented by an abstract state in the abstract system. Ev-
ery transition in the concrete system has a corresponding one in the abstract
system; so every behavior of the concrete system is also a behavior of the abstract
system. In [5] a quotient construction was defined.

Definition 7 (Quotient of interpreted system [5]). Assume an interpreted
system I over the set Ag of agents, the environment e, and the set AP of atomic
propositions. For each i ∈ Ag, assume an equivalence ≡i⊆ Li × Li and an
equivalence ≡a

i ⊆ ACTi × ACTi. For l ∈ Li, we write [l] for the equivalence
class of l with respect to ≡i. Similarly, we write [ai] for the equivalence class
of ai ∈ ACTi with respect to ≡a

i . Likewise we define ≡e, ≡a
e , and equivalence

classes on Le and ACTe. We write [g] for 〈[g1], . . . , [gn], [ge]〉 and write [a] for
〈[a1], . . . , [an], [ae]〉. Let AP ′ ⊆ AP consist of all propositions of AP that do

56 A. Lomuscio, H. Qu, and F. Russo

not distinguish between equivalent local states, i.e., all α ∈ AP such that for all
g, g′ ∈ S: if α ∈ V (g) and gi ≡ g′i for all i ∈ Ag, as well as ge ≡ g′e, then
α ∈ V (g′). The quotient system of I is the interpreted system I ′ over the set Ag
of agents, the environment e and the set AP ′ of proposition such that:

– L′
i = {[l] | l ∈ Li} for all i ∈ Ag, and L′

e = {[l] | l ∈ Le}.
– ACT ′

i = {[a] | a ∈ ACTi} for all i ∈ Ag, and ACT ′
e = {[a] | a ∈ ACTe}.

– P ′
i = {〈[l], [a]〉 | 〈l, a〉 ∈ Pi} for all i ∈ Ag, and P ′

e = {〈[l], [a]〉 | 〈l, a〉 ∈ Pe}.
– t′i = {〈[l], [a], [l′]〉 | 〈l, a, l′〉 ∈ ti} for all i ∈ Ag, and t′e = {〈[l], [a], [l′]〉 |

〈l, a, l′〉 ∈ te}.
– I ′0 = {[g] | g ∈ I0}.
– V ′([g]) = V (g) ∩ AP ′.

It has been proved in [5] that the construction above preserves satisfaction from
abstract to concrete models.

Theorem 1 (Preservation [5]). Let I ′ be a quotient of interpreted system I.
For any ACTLK formula φ over AP ′, if I ′ |= φ, then I |= φ.

3 Implementation and Data Abstraction Theorem

Definition 7 and Theorem 1 do not give a constructive way for building the ab-
stract model. For any implementation purposes we need to give an algorithm for
defining appropriate equivalence relations. In the following we give such proce-
dure in the case of ISPL files, the input to the model checker MCMAS [15]. We
operate on ISPL files as they provide a natural operational correspondence to
interpreted systems.

In a nutshell an ISPL program P defines local states, actions, protocols,
and local transition for agents and environment corresponding to a given in-
terpreted system. Local states for the agents are defined by means of a finite
set V = {v1, . . . , vm} of variables. Each variable vk ∈ V has an associated finite
domain Dk. We consider the set {+,−,÷, ·} denoting standard arithmetic op-
erations. We also use binary relation symbols from the set {<, >, =,≤,≥}. An
arithmetic expression is built from variables in V , constants in Dk and arithmetic
operations; for instance, v2−5 is an arithmetic expression. A logic expression p is
built from arithmetic expressions and relation symbols as natural; for instance,
v2 − 5 > 4 is a logic expression. A Boolean expression ψ is composed from logic
expressions p using negation ¬, conjunction ∧ and disjunction ∨. Any global state
g can be seen as an evaluation over V , i.e., g = (d1, . . . , dm) ∈ D = D1×· · ·×Dm.
Similarly, the local states of an agent can be seen as evaluations over a subset
of V , named local variables of the agent. We proceed by giving an example to
explain the details of the abstraction procedure on the data of the program.
Card Game Example [9,5]. The system has two agents Player1 and Player2 and
an environment e. There is a deck of 2N cards. Each player receives N −1 cards.
Two cards are put aside. Higher index cards beat lower index cards. In each round
of the game, each player plays a card from his or her hand. The player playing

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 57

the stronger card wins the round. The game continues until all cards have been
played. The player who won the most number of rounds wins the game.

An ISPL program for this example is described as follows. Let C = {1, . . . , 2N}
represent the set of 2N cards. We call red cards the subset {N + 1, . . . , 2N} and
the remaining cards black cards. A player i ∈ {1, 2} can either play a card
or do nothing: ACTi = {playcard ck

i | ck
i ∈ C} ∪ {nothing}. The environ-

ment either calculates who wins the current round or does nothing: ACTe =
{eval, nothing}. The local state of an agent describes what cards he or she
holds and how many rounds he has played so far, as well as the outcome of
the game: Li = {(Hi, k, a, b) | |Hi| + 1 = |N |}, where Hi ⊂ C represents the
cards held by the agent i and N = {1, . . . , N} represents the game rounds.
The environment records the current score in its local state, whose domain is
Le = {(H1,H2, a, b) | a + b ≤ N − 1} where a and b encode the number of deals
won by player 1 and 2, respectively. The local protocols are defined as follows.

Pi(Hi, k, a, b) = {playcard ck
i | ck

i ∈ Hi and k ∈ N}, if k < N ;
Pi(Hi, k, a, b) = {nothing}, if k = N ;

Pe(H1,H2, a, b) = {eval}, if a + b < N − 1;
Pe(H1,H2, a, b) = {nothing}, if a + b = N − 1.

The local evolution functions have the form:

ti((Hi, k, a, b), 〈nothing〉) = (Hi, k, a, b); (1)
ti((Hi, k, a, b), 〈playcard ck

i 〉) = (Hi, k + 1, a′, b′), (2)
te((H1,H2, a, b), 〈playcard ck

1, playcard ck
2 , eval〉) = (a + 1, b), if ck

1 > ck
2 ; (3)

te((H1,H2, a, b), 〈playcard ck
1, playcard ck

2 , eval〉) = (a, b + 1), if ck
1 < ck

2 ; (4)
te((H1,H2, a, b), 〈nothing〉) = (a, b). (5)

where a′ and b′ in (2) are the new updated values of a and b, according to (3)
and (4).

The set of initial states is: I0 = {(H1, 0, 0, 0), (H2, 0, 0, 0), (H1,H2, 0, 0)}. The
atomic propositions we consider are allredi (“Player i holds only red cards.”),
wini (“Player i has won the game.”), topredi and lowredi for i ∈ {1, 2}.

allredi holds where Hi ⊂ {N + 1, . . . , 2N};
win1 holds where a > b and a + b = N − 1;
win2 holds where b > a and a + b = N − 1;

topredi holds where Hi = {N + 2, ..., 2N};
lowredi holds where Hi ⊂ {N, ..., 2N}.

Fig 1 shows an ISPL program encoding the example above in the case of N = 3,
where H1 is described by the variables c11 and c12, and H2 by c21 and c22. In
this case, Le = {(H1,H2, a, b) | a + b ≤ 2}, i.e., there are just two rounds. In the
first round, the players play the cards c11, c21; in the second round, they play

58 A. Lomuscio, H. Qu, and F. Russo

Agent Environment
Obsvars:
a: 0 .. 2;
b: 0 .. 2;

end Obsvars
Vars:
c11: 1 .. 6;
c12: 1 .. 6;
c21: 1 .. 6;
c22: 1 .. 6;

end Vars
--Actions and Protocol are omitted
Evolution
a=a+1 if c11>c21 and ...
b=b+1 if c11<c21 and ...

--the rest of the Evolution is omitted
end Agent

Agent Player1
Lobsvars={c11,c12};
Vars:
n: 1 .. 3;

end Vars
Actions = {null,playcard1,playcard2};
Protocol:

n=1: { playcard1 };
n=2: { playcard2 };
n=3: { null };

end Protocol
Evolution:
n = 2 if n=1;
n = 3 if n=2;

end Evolution
end Agent

-- Agent Player2 omitted

Evaluation
lowred1 if (c11>2 and c12>2);
topred1 if (c11>4 and c12>4);
allred1 if (c11>3 and c12>3);
win1 if (a>b and a+b=2);
--The same properties
--for Player2 are omitted

end Evaluation

--InitStates omitted

Formulae
(AG(allred1->K(Player1,(AF win1))));

end Formulae

Fig. 1. Sketch of an ISPL program for the Card Game with 6 cards (N = 3)

Fig. 2. Sketch of the global transition relation for the concrete Card Game Example
with 6 cards. The dashed line represents the epistemic relation ∼1.

c21, c22. Note from Fig 1 that Player1 has a special set called Lobsvars. This
represents the environment variables accessible, i.e., visible, to the agent. This
makes the program more succinct.

Fig 2 illustrates four possible paths in the model representing a run of the
game. The notation “i, j − k, t” in Fig 2 means: c11 = i, c12 = j, c21 = k,
c22 = t for i, j, k, y ∈ {1, 2, 3, 4, 5, 6}.

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 59

Implementation. We now describe the procedure of the tool performing data
abstraction on ISPL programs by partitioning the domain of variables. This ex-
tension takes an ISPL program for an interpreted system I as input and returns
an ISPL program denoting a quotient interpreted system I′ for I according
to Definition 7. Briefly, the tool builds a new set of abstract reachable states
G′ from G by constructing new domains for the variables in I. The procedure
consists of four key steps. All steps are executed automatically.

Algorithm 1. The generation of the Boolean four-dimension Q.
1: for all i ∈ Ag do
2: for all α ∈ AP do
3: for all p in precondition of α do
4: if var(p) ∈ i then LEi ⇐ LEi ∪ p; end if
5: end for
6: end for
7: end for
8: Q(i, v, p, dt) ⇐ 0;
9: for all i ∈ Ag do

10: for all local variable v of agent i do
11: for all p ∈ LEi do
12: for all dt ∈ Dv do
13: if dt |= p then Q(i, v, p, dt) ⇐ True; else Q(i, v, p, dt) ⇐ False; end if
14: end for
15: end for
16: end for
17: end for

1: Building the set LEi. In an ISPL program P each atomic proposition
α ∈ AP is defined by a boolean expression over variables defining on which
global states α holds, thereby implementing the evaluation V . For each agent i,
the tool builds a set LEi of logic expressions containing local variables for agent
i that appear in the definition of any α ∈ AP . In the end, the tool builds LE by
the union of all LEi for all i ∈ Ag.

For example, for the card game reported in Fig 1, we have: Dc11 = Dc12 = Dc21

= Dc22 = {1, 2, 3, 4, 5, 6}, Ve = {c11, c12, c21, c22, a, b }, VP1 = {n}, VP2 = {n}.
Notice that in VP1 and VP2 the other four variables are not present: c11, c12, a,
b for P1 and c21, c22, a, b for P2. Those variable are not inserted in VP1 and VP2

by the procedure since all cij are local observable variables (Lobsvars) and a, b
are global observable variables (Obsvars). Local observable variables of an agent
i are those variables belonging to the environment agent that can be “seen” by
the agent i. Therefore, the agent i knows the values of those variables at every
moment and those variables contribute to form the local state of the agent i.
However, the agent i cannot change the value of a local observable variable.
Observable variables have the same characteristics of the local observable ones,
but they can be seen by all agents indifferently.

60 A. Lomuscio, H. Qu, and F. Russo

Now, the abstraction tool automatically builds the sets LEe = {c11 > 2,
c12 > 2, c21 > 2, c22 > 2, c11 > 3, c12 > 3, c21 > 3, c22 > 3, c11 > 4, c12 > 4,
c21 > 4, c22 > 4}, LEP1 = ∅ and LEP2 = ∅ from the logic expressions found in
the Evaluation section of the ISPL-file. Note the following.

– Local variables from different agents cannot appear in the same logic
expression.

– If a logic expression contains more than one variable, we rewrite it as a
Boolean expression where each logic expression contains exactly one variable.

– If a logic expression contains the “not” connective, we rewrite it as an equiv-
alent Boolean expression where the “not” connective does not appear.

– We cannot collapse values for variables that are updated by an arithmetic
expression. This is because we may have transitions that are present in the
original model but not present in the abstract one. Therefore, for the card
game we cannot collapse a and b as they are updated in the Evolution by
the arithmetic expressions a = a + 1 and b = b + 1 respectively (see Fig.1).

2: Generating the four-dimension vector Q. The tool automatically builds
a four-dimension vector Q of Boolean values. The first dimension, i, of Q repre-
sents the agents; the second dimension, j, encodes the variables of a given agent;
the third one, k, represents all logic expressions in which the current variable
appears; the last one, t, represents the values dt of the current variables. The
vector Q encodes whether a logic expression p is evaluated to true when all free
occurrences of the current variables are replaced by dt, denoted by dt |= p. From
the vector Q we build new domains of abstract variables by collapsing values
of every concrete variable that satisfies the same set of logic expressions. Algo-
rithm 1 presents the generation of Q, where var is a function that returns the
variable contained in the given logic expression.

3: Generating the abstraction functions by defining value clusters.
The tool automatically builds a set of abstraction functions ρ1, . . . , ρn, where
each ρi is defined on Di, the domain of variable vi. Given two local states d̄ =
(d1, . . . , dm) and ē = (e1, . . . , em) of agent i, we define the component abstraction
functions ρi in the same way as defined in [2], i.e.:

ρi(d1, . . . , dm) = ρi(e1, . . . , em) iff
∧

p∈LEi

(d1, . . . , dm) |= p ⇔ (e1, . . . , em) |= p (6)

In other words, two tuples of values ē, d̄ are in the same equivalence class if they
cannot be distinguished by the same subset of logic expressions. Therefore, the
particular ≡i is automatically chosen according to formula (6).

The new values for the card game example (shown in bold fonts) are reported
in Fig 3. Some instances of variables c11, c12, c21, c22 are collapsed into new
values in the following way: 1 = {1, 2}, 2 = {3}, 3 = {4}, 4 = {5, 6}, because
of 1, 2 |= {∅}, 3 |= {cij > 2}, 4 |= {cij > 2, cij > 3}, 5, 6 |= {cij > 2,
cij > 3, cij > 4}, where i, j ∈ {1, 2}. The partitioning of variable domains is
done automatically.

4: Generating new domains for the abstract ispl-file P’. New values of the
variables for the ISPL-file P ′ representing the abstract model are calculated from

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 61

Algorithm 2. The generation of new Domains. Line 8 shows how the partition-
ing of variable domains is calculated.
1: for all i ∈ Ag do
2: for all local variable v of agent i do
3: for all dt ∈ Dv do
4: indxp ⇐ 0; newval ⇐ 0;
5: for all p ∈ LEi do
6: if var(p) ∈ i then
7: if Q(i, v, dt, p) = true then newval ⇐ newval + 2indxp ; end if
8: end if
9: indxp ⇐ indxp + 1;

10: end for
11: D′

v ⇐ D′
v ∪ {newval};

12: end for
13: end for
14: end for

the old ones by taking into account what formulas the old values satisfy. Each
formula is identified by an index (indxp). These indexes are used to calculate an
integer number (see line 8 of Algorithm 2) that will be the corresponding new
value. Line 8 of Algorithm 2 shows how the partitioning of values is calculated.
Values that satisfy the same set of formulas will get the same integer. The
abstract ISPL-file P ′ is generated by substituting in every logic expression p ∈ P
the corresponding new value in D′. Notice from Fig 3 that the new domains of
the abstract model in the example become D′

cij = {0, 1, 3, 7}. The concrete
values 1 and 2 are collapsed into the abstract value 0 as they do not satisfy
any atomic proposition in LEe. The concrete value 3 becames the abstract value
1 = 20 since it satisfies formula cij > 2 and this formula gets the index 0. This
index is used in the power 20 to calculates the new value 1. The concrete value
4 becomes 3 since it satisfies formulas cij > 2 and cij > 3. Those formulas have
the index 0 and 1 respectively. Therefore, the abstract value 3 is the result of the
following calculation: 3 = 20 + 21. Finally, the abstract value 7 represents the
concrete values 5 and 6 that satify formulas cij > 2, cij > 3 and cij > 4. Those
formulas have index 0, 1 and 2 respectively, therefore: 20 +21 +22 = 7. The new
abstract domain D′

cij = {0, 1, 3, 7} is “flattened” by an extra procedure that
transforms D′

cij into D′′
cij = {1, 2, 3, 4}, where 0, 1, 3, 7 of D′

cij correspond to
1, 2, 3, 4 of D′′

cij respectively.
In this case, the abstraction process has reduced the number of reachable

states from 6!
2! = 360 different initial card combinations to 4! = 24 in the new

program.
As expected, the abstraction process might synthesise behaviours not present

in the original model. For instance, let us analyse the following program lines
describing part of the environment’s evolution.

a=a+1 if c11>c21
b=b+1 if c11<c21

62 A. Lomuscio, H. Qu, and F. Russo

Agent Environment
--Obsvars are not changed
Vars:
c11: 1 .. 4;
c12: 1 .. 4;
c21: 1 .. 4;
c22: 1 .. 4;

end Vars
--Actions,Protocol and Evolution omitted

end Agent

Agent Player1
Lobsvars={c11,c12};
Vars:
n: 1 .. 3;

end Vars
Actions = {null,playcard1,playcard2};
Protocol:
n=1: { playcard1 };
n=2: { playcard2 };
n=3: { null };

end Protocol

Evolution:
n = 2 if n=1;
n = 3 if n=2;

end Evolution
end Agent

-- Agent Player2 omitted

Evaluation
lowred1 if (c11>1 and c12>1);
topred1 if (c11>3 and c12>3);
allred1 if (c11>2 and c12>2);
win1 if (a>b and a+b=2);
--The same properties
--for Player2 are omitted

end Evaluation

--InitStates omitted

Formulae
(AG(allred1->K(Player1,(AF win1))));

end Formulae

Fig. 3. Sketch of an ISPL-file for the abstract Card Game with 6 cards

Those lines are transformed in the following:

a=a+1 if (c11=6 and c21=5) or (c11=6 and c21=4) or ...
b=b+1 if (c11=5 and c21=6) or (c11=4 and c21=6) or ...

Following the abstraction process, the program for the abstract model includes
the following non-determinism:

a=a+1 if (c11=4 and c11=4) or ...
b=b+1 if (c11=4 and c21=4) or ...

Fig 4 illustrates execution branches not existing in the original model. This
phenomenon can cause false negatives, i.e., the property checked results to be
false in the abstract model while it is true in the original one.

Still, it can be checked that validity is preserved under the construction above.

Theorem 2 (Data Abstraction Theorem). Given an ISPL-program P de-
scribing an interpreted system I and given a specification φ of the logic ACTLK,
let P ′ be the ISPL program, generated from P by the procedure presented above.
P ′ describes an interpreted system I ′. We have that specification φ holds in I if
φ holds in I ′, i.e.,

I ′ |= φ =⇒ I |= φ.

Proof. We have to show that abstraction algorithm generates an ISPL-code P ′

that describes an interpreted system I ′ that is a quotient one of the interpreted
system I described by the original ISPL-code P

By Theorem 1, we only need to prove that I′ is a quotient of I according to
Definition 7.

1. L′
i is generated by the abstraction function ρi such that L′

i = {[l] | l ∈
Li}, which is a partition of the set Li. So, we have proved point 1 of the
definition 7.

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 63

Fig. 4. Sketch of the global transition relation for the abstract Card Game Example
with 6 cards. Notice how some paths split. This splitting causes new behaviours in the
abstract model.

2. ACT ′
i = ACTi (i.e., [a] ≡ a) because ρi does not partition the set of actions.

3. P ′ = {〈[l], a〉 | 〈l, a〉 ∈ P} because the abstraction technique simply replaces
the old values of a variable with the new ones.

4. Note that [l]
= [l′] ([l], [l′] ∈ L′
i) if and only if there is at least one l ∈ [l] and

one l′ ∈ [l′] in Li such that l
= l′.
Now, we have to show that if they are connected in the concrete system, then
they are also connected in the abstract one. Formally, we have to show the
following condition holds:

∀l, l′(ρ(l) = [l] ∧ ρ(l′) = [l′] ∧ lRl′ ⇒ [l]R̂[l′])

Suppose ρ(l) = [l]∧ ρ(l′) = [l′]∧ lRl′, we show [l]R̂[l′]. By assuming lRl′, we
know ∃ā ∈ Act ∀i ∈ Ag : 〈l, ā, l′〉 ∈ ti and 〈l, a〉 ∈ Pi by definition. Since the
abstraction technique performs a partition of states, we have, for all agents
i ∈ Ag and for all local states, [l]
= [l′]. As actions are not modified, we
have 〈[l], [a]〉 ∈ P ′

i , where l ∈ [l] and a ≡ [a]. Moreover, Since the local
evolution function is rebuilt by substituting li, such that l ∈ [l], with [l], we
have 〈[l], ā, [l′]〉 ∈ t′i iff l, ā, l′〉 ∈ ti. Therefore, we have 〈[l], ā, [l′]〉 ∈ t′i and
〈[l], [a]〉 ∈ P ′

i , but that means [l]R̂[l′].
5. Point 5 and 6 in Definition 7 can be proved trivially. ��

4 Experimental Results

We now report on the experimental results obtained by the implementation
described in the previous section. Specifically, we comment on our findings for
the card game example and a variant of the bit transmission problem. These
scenarios are to be considered as a sanity check of the technique and not as real
applications. We leave these for further work.

64 A. Lomuscio, H. Qu, and F. Russo

Number Transmission Protocol. This scenario is an extension of the well
known bit transmission problem described in [11]. Let Ag = {S, R} be the set of
agents where S, R represent the sender and the receiver respectively. Moreover,
there is the environment agent labelled with the letter E.

In this scenario, a number is sent from the sender to the receiver via a an
unreliable channel modelled by the environment. Note that in the known bit
transmission problem only one bit is sent. In this case the sender sends a number
ranging from 1 to N . In the experiments below we used N in the set D = {0.5·104,
104, 2 · 104, 2.5 · 104, 3 · 104}.

We describe below the interpreted system for the protocol above. The En-
vironment is described by the set of local states LE = {S, R, RS, none}. The
local state S represents the channel reliably sending messages from sender to re-
ceiver and dropping messages from receiver to sender. Conversely, R represents
a situation where messages only travel from receiver to sender. RS encodes a
situation where the channel is transmitting both directions, whereas when in
none the channel loses all messages. The set of local states for the sender is
LS = D × {true, false} where D = {1, . . . , N} represents the domain of the in-
teger that can be sent and {true, false} is the domain of the variable ack keep-
ing track of whether an acknowledgement has been received from the sender.
We model the receiver by considering the set LR = {received, notrec}; notrec
represents a situation where the receiver has not yet received any message, while
received encodes the fact that the receiver got a message. The environment can
perform four actions: ACTE = {S, SR, R, none} representing which direction, if
any, it is letting messages flow. The sender can either send the intended message
or do nothing (null) ACTS = {sendN | N ∈ D} ∪ {nothing}. Similarly, the re-
ceiver can either send an acknowledgement or remain silent: ACTR = {sendack,
nothing}. As in the original bit transmission problem we assume the sender
keeps sending the same message until he or she receives an acknowledgement;
the receiver remains silent before receiving the message from the sender; after
that he repeatedly sends acknowledgements back to the sender. Consequently
the protocols can be defined as follows.

PE(S) = {S}; PE(R) = {R};
PE(SR) = {SR}; PE(none) = {none};

PS(N, false) = {sendN}; PS(N, true) = {nothing};
PR(notrec) = {nothing}; PR(received) = {sendack}.

Local evolution functions are defined as follow:

tE(state, 〈aE , aS, aR〉) = state′; (7)
tS((N, false), 〈SR, aS , sendack〉) = (N, true); (8)

tS((N, false), 〈R, aS , sendack〉) = (N, true); (9)
tR(notrec, 〈SR, send N, aR〉) = received; (10)

tR(notrec, 〈S, sendN, aR〉) = received. (11)

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 65

Where state, state′ ∈ LE and ak ∈ ACTk, for k ∈ Ag. Note that by (7) the
channel moves non-deterministically. In (8) and (9) the sender receives an ac-
knowledgement from the receiver as the channel transmits messages from the
receiver to the sender in both cases. Similarly, in (10) and (11) the receiver
receives the number.

The set of initial states I0 is as follows: I0 = {(E.state, (N, false), notrec) |
E.state∈LE}. The evaluation for the proposition numberN, recack, recNumber
is the obvious one. Fig 5 represents a sketch of an ISPL-file corresponding to the
interpreted system defined above for N = 10000. From Fig 5, in the Evaluation
section, we want to know if the number sent was either exactly 1 or it was greater
than 2500, 5000 or 7500. By running the abstraction toolkit to this file we obtain
an abstract Number Transmission ISPL-file in which the Sender can only send 5
possible digits. This is of course the result we would expect. The system in Fig
5 corresponds to the second one listed in Table 2.

We tested both examples above on the abstraction toolkit paired with MC-
MAS against known specifications for the protocols. In particular we verified
AG(allred1 → KPlayer1(AFwin1)) in the case of the card game example (spec-
ifying that if player one has only red cards he knows he will win the game), and
AG((numberN ∧recack) → (KSKRnumber = N)) for the number transmission
protocol (specifying that once an ack has been received the sender knows that
the receiver knows the value of the number transmitted).

Agent Environment
Vars:
state : {S,R,SR,none};

end Vars
Actions = {S,SR,R,none};
Protocol:
state=S: {S,SR,R,none};
state=R: {S,SR,R,none};
state=SR: {S,SR,R,none};
state=none: {S,SR,R,none};

end Protocol
-- Evolution Omitted
end Agent

Agent Sender
Vars:
number : 0..10000;
ack : boolean;

end Vars
Actions = { send,nothing };
Protocol:
ack=false : {send};
ack=true : {nothing};

end Protocol
Evolution:
(ack=true) if (ack=false)
and (Receiver.Action=sendack)
and ((Environment.Action=SR)
or (Environment.Action=R));

end Evolution
end Agent

Agent Receiver
Vars:
state : boolean;

end Vars
Actions = {nothing,sendack};
Protocol:
state=false : {nothing};
state=true : {sendack};

end Protocol
Evolution:
state=true if (Sender.Action=send)
and (state=false)
and ((Environment.Action=SR)
or (Environment.Action=S));

end Evolution
end Agent

Evaluation
recNumber if ((Receiver.state=true);
recack if ((Sender.ack = true));
N1 if ((Sender.number=1));
N2500 if ((Sender.number>2500));
N5000 if ((Sender.number>5000));
N7500 if ((Sender.number>7500));

end Evaluation
InitStates
!Sender.Number=0 and Receiver.state=false
and Sender.ack=false and (Environment.state=S
or Environment.state=R or Environment.state=SR
or Environment.state=none ;

end InitStates

Fig. 5. Sketch of an ISPL-file for the number transmission protocol for N = 10000

66 A. Lomuscio, H. Qu, and F. Russo

Table 1. Verification results for the Card Game

Number of cards
With reduction Without reduction

States Time (s) BDD (MB) States Time (s) BDD (MB)

6 138 0 4.70 11316 0 4.67
8 22528 2 6.67 80640 4 15.27
10 135866 4 9.59 2, 167 × 109 867 66.71
12 762812 26 31.87 ? > 86400 ?
14 3.877 × 106 106 41.68 ? > 86400 ?

Table 2. Verification results for the Number Transmission Problem

Maximum number N
With reduction Without reduction

States Time (s) BDD (MB) States Time (s) BDD (MB)

5000 48 0 4.55 98292 11 5.72
10000 60 0 4.59 196596 47 6.58
15000 84 1 4.67 196596 118 7.12
20000 108 1 4.64 393204 216 8.24
25000 132 1 4.82 393204 350 8.62
30000 156 1 5.64 393204 485 8.56

The experiments were executed on a machine running Ubuntu 9.10 on an
Intel Core 2 1.86GHz with 1GB memory. The results are reported in Table 1
and Table 2.

From Table 1 we can notice that as expected the implementation drastically
reduces both memory and time for the verification process. In the case of 12
and 14 cards, MCMAS could not verify the specification in over 24hrs, while
the abstract systems could be verified in seconds. It is perhaps less obvious
that, from Table 2, in the transmission problem for the case of N = 10000 and
N = 15000 the two systems have the same number of reachable states. This is
because MCMAS uses 14 BDD variables to encode both 10000 and 15000 states
and MCMAS does not remove redundant states, using 214 BDD states in both
cases. The same phenomenon occurs for N = 20000, N = 25000 and N = 30000.
In this case, MCMAS uses 15 BDD variables.

5 Conclusions

In this paper we began to explore fully automatic abstraction techniques for
multi-agent systems. The technique abstracts a multi-agent system, described
by an ISPL program, by collapsing the local states for the agents. We showed
that our technique builds an abstract system that simulates the concrete thereby
guaranteeing the methodology is sound. We evaluated the technique on a card
game example for several numbers of cards and on the number transmission pro-
tocol. The results produced point to a considerable, although expected, reduction
in the verification time and memory.

Automatic Data-Abstraction in Model Checking Multi-Agent Systems 67

In the future we intend to test the methodology on more complex cases and
to implement a refinement procedure that can be used to refine the model upon
receiving false negatives from MCMAS.

Acknowledgements. This research was partially funded by EPSRC under
grant EP/E035655 “Verification of security protocols: a multi-agent systems
approach”.

References

1. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

2. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

4. Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A data symmetry reduction technique
for temporal-epistemic logic. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS,
vol. 5799, pp. 69–83. Springer, Heidelberg (2009)

5. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking
multi-agent systems. In: AAMAS 2009 (2009)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

7. Dechesne, F., Orzan, S., Wang, Y.: Refinement of kripke models for dynamics.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 111–125. Springer, Heidelberg (2008)

8. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2(3), 241–266 (1982)

9. van Ditmarsch, H., van der Hoek, W., van der Meyden, R., Ruan, J.: Model
Checking Russian Cards. Electr. Notes Theor. Comput. Sci. 149(2), 105–123
(2006)

10. Enea, C., Dima, C.: Abstractions of multi-agent systems. In: Burkhard, H.,
Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI),
vol. 4696, pp. 11–21. Springer, Heidelberg (2007)

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

12. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

13. Graf, S., Säıdi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

14. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter,
M., Wozna, B., Zbrzezny, A.: Verics 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae 85(1-4), 313–328 (2008)

68 A. Lomuscio, H. Qu, and F. Russo

15. Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: A model checker for the verifica-
tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

16. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)

17. Wooldridge, M.: Computationally grounded theories of agency. In: Durfee, E. (ed.)
ICMAS, pp. 13–22. IEEE Press, Los Alamitos (2000)

18. Wooldridge, M.: An introduction to MultiAgent systems, 2nd edn. Wiley,
Chichester (2009)

Automated Verification of Resource Requirements in
Multi-Agent Systems Using Abstraction�

Natasha Alechina, Brian Logan, Hoang Nga Nguyen, and Abdur Rakib

University of Nottingham, UK
{nza,bsl,hnn,rza}@cs.nott.ac.uk

Abstract. We describe a framework for the automated verification of multi-agent
systems which do distributed problem solving, e.g., query answering. Each rea-
soner uses facts, messages and Horn clause rules to derive new information. We
show how to verify correctness of distributed problem solving under resource
constraints, such as the time required to answer queries and the number of mes-
sages exchanged by the agents. The framework allows the use of abstract spec-
ifications consisting of Linear Time Temporal Logic (LTL) formulas to specify
some of the agents in the system. We illustrate the use of the framework on a
simple example.

1 Introduction

Much current work in multi-agent systems (MAS) development relies on the developer
specifying agent behaviour in terms of pre-defined plans [1]. While the use of pre-
defined plans makes it easier to guarantee the behaviour of the multi-agent system, e.g.,
[2], it can make it harder for the system to solve novel problems not anticipated by the
system designers. As a result, there has recently been increasing interest in providing
general reasoning capabilities to agents in multi-agent systems (see, for example, [3,4]).
However, while the incorporation of reasoning abilities into agents brings great benefits
in terms of flexibility and ease of development, these approaches also raise new chal-
lenges for the agent developer, namely, how to ensure correctness (will an agent produce
the correct output for all legal inputs), termination (will an agent produce an output at
all), and response time (how much computation will an agent have to do before it gen-
erates an output). For example, when developing a distributed problem solving system
which provides subway routes to users of the London Underground, a developer may
wish to verify that the system does not provide invalid routes (e.g., that it takes current
service disruptions into account), and that it provides bounded response times under
expected system loads (e.g., asynchronous queries from multiple simultaneous users).
Proving correctness or resource bounds for such large complex reasoning systems is
infeasible with current verification technologies.

In [5], an approach to verifying resource requirements in systems of communicating
rule-based reasoners was proposed. The main emphasis of that paper was on modelling

� This work was supported by the UK Engineering and Physical Sciences Research Council
[grant EP/E031226/1].

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 69–84, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

70 N. Alechina et al.

systems of communicating reasoners as state transition systems, where states corre-
spond to beliefs of the agents and transitions correspond to the application of a rule of
inference or sending a message. Properties of the system, for example, that a system of
two agents will be able to produce an answer to a query after exchanging at most one
message and applying 4 rules, were specified in modal logic, and proof-of-concept ver-
ification experiments using Mocha model-checker [6] reported. However, the encoding
of the system in the Mocha specification language had to be handcrafted, rules had to
be propositionalised using all possible substitutions for variables, and scalability of the
verification approach was not explored.

In this paper we describe an automated verification framework for resource-bounded
reasoners, which takes rules specified in Hornlog RuleML with negation as failure [7]
augmented with communication primitives, and automatically produces a Maude [8]
specification of the system which can be efficiently verified. The properties that we
wish to verify are response-time guarantees of the form: if the system receives a query,
then a response will be produced within n timesteps. To allow larger systems to be
verified, abstract specifications can be used to model some agents in the system. Ab-
stract specifications are given as LTL formulas which describe the external behaviour of
agents, and allow their temporal behaviour (the response time behaviour of the agent),
to be compactly modelled. We illustrate the scalability of our approach by comparing it
to results presented in [9] for a synthetic distributed reasoning problem, and presenting
results for a more complex multi-agent reasoning example.

The remainder of the paper is organised as follows. In section 2 we describe our
model of communicating rule-based reasoners. In section 3 we describe the basic com-
ponents and ideas behind the verification framework, including our approach to pro-
ducing abstractions of agents. In section 4 we briefly describe a tool for translating
rule-based specification of the agents into Maude, and in section 5 we evaluate its per-
formance. We discuss related work and open problems in section 6 and conclude in
section 7.

2 Communicating Reasoners

We adopt a general model of distributed reasoners. A distributed reasoning system con-
sists of n (≥ 1) individual reasoners or agents. Each agent is identified by a value in
{1, 2, . . . , n} and we use variables i and j over {1, 2, . . . , n} to refer to agents. Each
agent i has a program, consisting of first-order Horn clause rules with negation-as-
failure allowed in the premises1, and a working memory, which contains facts (ground
atomic formulas) representing the initial state of the system. The agents execute syn-
chronously. At each cycle, each agent matches (unifies) the conditions of its rules
against the contents of its working memory. The conditions of a rule are evaluated using
the closed world assumption (i.e., not P evaluates to true if P is not in working mem-
ory). A match for every condition of a rule constitutes an instance of that rule (a rule
may have more than one instance). The set of all rule instances for an agent form the
agent’s conflict set. Each agent then chooses a subset of rule instances from the conflict

1 Rules are of the form P1 ∧ . . . ∧ Pn → P where P is an atomic formula and Pi are atomic
formulas or atomic formulas preceded by the negation as failure operator.

Automated Verification of Resource Requirements in Multi-Agent Systems 71

set to be applied. Applying a rule adds the consequent of the rule as a new fact to the
agent’s working memory. The cycle begins again with the match phase and the process
continues until no more rules can be matched and all agents have an empty conflict set.2

We assume that each reasoner has a reasoning strategy (or conflict resolution strat-
egy) which determines the order in which rules are applied when more than one rule
matches the contents of the agent’s working memory. The choice of reasoning strategy
is important in determining the capabilities of the agent. For example, different rea-
soning strategies may determine how quickly/efficiently an answer to a query can be
derived, or even whether an answer can be produced at all. The reasoning strategy is
also important in determining trade-offs between the resources required to process a
query. For example, if multiple queries arrive at about the same time, processing them
sequentially may reduce the memory required at the cost of increasing the worst case
response time for queries. Conversely, processing the queries in parallel may reduce the
worst case response time at the cost of increasing the peak memory usage.

We assume that each reasoner executes in a separate process and that reasoners com-
municate via message passing. For concreteness, we assume a simple query-response
scheme based on asynchronous message passing. Each agent’s rules may contain two
distinguished communication primitives: ASK (i, j, P), and TELL(i, j, P), where i
and j are agents and P is an atomic formula not containing an ASK or a TELL.
ASK (i, j, P) means ‘i asks j whether P is the case’ and TELL(i, j, P) means ‘i tells
j that P (i
= j). The positions in which the ASK and TELL primitives may appear
in a rule depends on which agent’s program the rule belongs to. Agent i may have an
ASK or a TELL with arguments (i, j, P) in the consequent of a rule, e.g.,

P1 ∧ P2 ∧ . . . ∧ Pn =⇒ ASK (i, j, P)

Agent j may have the same expressions in the antecedent of the rule, e.g.,

TELL(i, j, P) =⇒ P

is a well-formed rule for agent j, that causes it to believe i when i informs it that P
is the case. No other occurrences of ASK or TELL are allowed. For simplicity, we
assume that communication is error-free and takes one tick of time.

3 Verification Framework

We would like to be able to verify properties of systems consisting of arbitrary numbers
of complex communicating reasoners. However verifying such large, complex reason-
ing systems is infeasible with current verification technologies.

The most straightforward approach to defining the global state of a multi-agent sys-
tem is as a (parallel) composition of the local states of the agents. At each step in the
evolution of the system, each agent chooses from a set of possible actions (we assume
that an agent can always perform an ‘idle’ action which does not change its state). The

2 Note that, although execution is synchronous, agents can return a ‘null action’ at any given
cycle, allowing the modelling of multi-agent systems in which each agent deliberates at a rate
which is a multiple of the cycle time of the fastest agent.

72 N. Alechina et al.

actions selected by the agents are then performed in parallel and the system advances to
the next state. In a multi-agent system composed of n (≥ 1) agents, if each agent i can
choose between performing at most m (≥ 1) actions, then the system as a whole can
move in mn different ways from a given state at a given point in time. Along with state
space size, model checking performance is heavily dependent on the branching factor
of states in the reachable state space and the solution depth of a given problem. In gen-
eral, the model checking algorithm for reachability analysis performs a breadth-first
exploration of the state transition graph. When checking invariant (safety) properties,
the model-checker will either determine that no states violate the invariant by exploring
the entire state space, or will find a state violating the invariant and produce a counter-
example.3 However, even with state-of-the-art BDD-based model-checkers, memory
exhaustion can occur when computing the reachable state space due to the large size of
the intermediate BDDs (because of the high branching factor).

To overcome this problem, our modelling approach abstracts from some aspects
of system behaviour to obtain a system model that is tractable for a standard model-
checker. Our use of abstraction is however different from classic approaches in model-
checking, such as [11,12]. We assume that, at any given point in the design of the overall
system, the detailed behaviour of only a small number of agents (perhaps only a sin-
gle agent) is of interest to the system designer, and the remaining agents in the system
can be considered at a high level of abstraction. When verifying response time guar-
antees of the ‘focal’ agent(s), the concrete representation of ‘peripheral’ agents can be
replaced by an abstract specification of their external (communication) behaviour, so
long as the abstract specification results in behaviour that is indistinguishable from the
original concrete representation for the purposes of verification, i.e., it produces queries
and responds to queries within specified bounds. All other details of an abstract agent’s
internal behaviour are omitted.

The decision regarding which agents to abstract and how their external behaviour
should be specified rests with the modeller/system designer. Specifications of the ex-
ternal (observable) behaviour of abstract agents may be derived from, e.g., assumed
characteristics of as-yet-unimplemented parts of the system, assumptions regarding the
behaviour of parts of the overall system the designer does not control (e.g., quality of
service guarantees offered by an existing web service) or from the prior verification
of the behaviour of other (concrete) agents in the system. The behaviour of abstract
agents is specified using the language of the temporal logic LTL containing epistemic
operators. The general form of the formulas which can be used to represent the external
behaviour of abstract agents is given below, where X is the next step temporal operator,
Xn is a sequence of n X operators, G is the temporal ‘in all future states’ operator, and
Bi for each agent i is a syntactic epistemic operator used to specify agent i’s ‘beliefs’
or the contents of its working memory.

ρ :: Xnφ1 | G(φ2 → φ3)
φ1 :: Bi ASK(i, j, P)

3 Even with on-the-fly model-checking [10], the model checker has to explore the state space at
least until the solution depth.

Automated Verification of Resource Requirements in Multi-Agent Systems 73

|Bi TELL(i, j, P)
|Bi ASK(j, i, P)
|Bi TELL(j, i, P)
|Bi P

φ2 :: Bj ASK(i, j, P)
φ3 :: Xn Bi TELL(j, i, P)

Formulas of the form Xnφ1 describe agents which produce a certain message or input
to the system within n time steps. The G(φ2 → φ3) formulas describe agents which
are always guaranteed to reply to a request for information within n timesteps. Note
that we do not need the full language of LTL (for example, the Until operator) in order
to specify abstract agents. The verification language of Maude contains full LTL, but
abstract specifications and the response-time guarantee properties we wish to verify can
be expressed in the fragment above.

Formulas expressing abstract specifications are translated into the specification lan-
guage of the model checker. This is a kind of backward modeling, which basically im-
poses a restrictions on possible runs of a model. The multi-agent system is then simply
a parallel composition of both the concrete and abstract agents in the system.

4 Automated Verification Tool

In this section, we describe a tool based on the Maude [8] rewriting system which im-
plements the approach to verification described above. The tool generates an encoding
of a distributed system of reasoning agents for the Maude LTL model checker, which
is then used to verify the desired properties of the system. We chose the Maude LTL
model checker because it can model check systems whose states involve arbitrary al-
gebraic data types. The only assumption is that the set of states reachable from a given
initial state is finite. This simplifies modelling of the agents’ (first-order) rules and rea-
soning strategies. For example, a rule used by a route planning agent such as

Connected(station1, station2, line1)∧ Reachable(station2, station3, [route])
→ Reachable(station1, station3, [station2|route])

where station1, station2, station3, line1 and route are variables, can be represented
directly in the Maude encoding, without having to generate all ground instances result-
ing from possible variable substitutions.

The tool consists of three main components: the user interface, the encoding gen-
erator and the system verifier. The tool takes as input: (a) a set of concrete agent de-
scriptions, each comprising a set of rules, a set of initial working memory facts, and a
control strategy, (b) a set of abstract agent descriptions specified by a set of temporal
epistemic logic formulas, and (c) the properties of the system to be verified specified in
temporal epistemic logic. Rules and facts can be expressed in RuleML or in a simplified
ASCII syntax e.g., < n:P1 & . . .& Pn => P >, Pk . The general XML syntax of rules
accepted by the framework corresponds to Hornlog RuleML with negation as failure,
and is shown below.

74 N. Alechina et al.

<!- -Representation of rules - ->
<Implies>
<head>
<Atom>

<Rel>Predicate< /Rel>
<Var>variable< /Var>

...
<Ind>constant< /Ind>

...
< /Atom>

< /head>
<body>
<And>
<Atom>

<Rel>Predicate< /Rel>
<Var>variable< /Var>

...
<Ind>constant< /Ind>

...
< /Atom>

...
<Naf>

<Atom>
<Rel>Predicate< /Rel>
<Var>variable< /Var>

...
<Ind>constant< /Ind>

...
< /Atom>

< /Naf>
< /And>

< /body>
< /Implies>
...
<!- -Representation of facts - ->
<Atom>
<Rel>Predicate< /Rel>
<Ind>constant< /Ind>

...
< /Atom>
...

Automated Verification of Resource Requirements in Multi-Agent Systems 75

Rules are translated internally into the simplified ASCII syntax. Once translated, they
can be annotated by the user with rule priorities, and these annotated rules are then used
to produce Maude specification. Rule priorities are required by some of the supported
inference (conflict resolution) strategies. The tool supports a wide range of inference
strategies including those provided by the CLIPS expert system shell [13], the Jess rule
engine [14], and others [15]. Different agents in the system may use different strategies.
The LTL specification of the behaviour of abstract agents and properties to be verified
are given in a simplified ASCII notation.

4.1 Maude Implementation

The overall structure of the implementation is shown in Figure 1. Each agent has a
configuration (local state) and the composition of all these (local state) configurations
make the (global state) configuration of the multi-agent system.

Functional Module

System Module System Module System Module

(Agent 1) (Agent 2) (Agent nAg)

System Module

(Multi-Agent System)

Agent 1 || Agent 2 || . . . || Agent nAg

. . .

Fig. 1. Structure of the Maude implementation

The types necessary to implement the local state of an agent (working memory,
program, control strategy, message counters, timestep etc.) are declared in a generic
Maude functional module. The local configuration of each agent is represented as a tu-
ple Si[a : Agenda, a′ : Agenda, tw : T imeWM, w : WM, t : Nat, t′ : Nat, mc :
Nat, b : Bool]iS, where t represents the system cycle time, mc is the message counter,
and b is a Boolean flag which is used for synchronisation. The rules of each agent are
defined using an operator which takes as arguments a set of patterns (of sort T imeWM)
specifying the antecedents of the rule and a single patten (of sort T imeP) specifying
the consequent, and returns an element of sort Rule. In the case of concrete agents,
each of the agent’s Horn clause rules is represented by an element of sort Rule. As
an example, a rule (expressed in the ASCII syntax) 〈1:Father(x , y) => Male(x)〉 is
represented as follows

76 N. Alechina et al.

ceq rule-ins(A, [t1 : Father(x, y)] TM, M) = Rl〈1 : [t1 : Father(x, y)] − >>
[0 :Male(x)]〉lR rule-ins(Rl〈1 : [t1 :Father(x, y)] − >> [0 :Male(x)]〉lR A, [t1 :
Father(x, y)] TM, M) if (not inAgenda(Rl〈1 : [t1 : Father(x, y)] − >> [0 :
Male(x)]〉lR, A)) ∧ (not inWorkingMemory(Male(x), M)).

Note that the rule is translated using the corresponding time pattern for efficiency pur-
poses. In the rule the number 1 represents rule salience and the placeholder t1 repre-
sents time stamp of the corresponding pattern. Each equation may give rise to more
than one rule instance depending on the elements in working memory. To prevent the
regeneration of the same rule instance, the conditional equation checks whether the rule
instance and its consequent are already present in the agenda and working memory. A
sort Agenda is declared as a supersort of Rule. These data types are manipulated by
a set of equations, e.g., to check whether or not a given pattern (used to represent fact)
is already in the agent’s working memory, whether or not a rule instance is already in
the agenda etc. Additional equations are used to implement control strategies, e.g., to
determine the highest priority rule instance in the agenda, or the pattern with highest
time stamp in working memory etc.

We model each (concrete and abstract) agent using a Maude system module which
imports the generic functional module. System modules contain both functions and
rewrite rules which are used to implement the dynamic behaviour of the system. For
concrete agents, the agent’s inference cycle is implemented using three Maude rules:

rl[match] : [A |RL |TM |M | t |msg | 1 | true] => [rule-ins(A, TM, M)A |RL |
TM |M | t |msg | 2 | false].

rl[select] : [A |RL |TM |M | t |msg | 2 | true] => [del(strategy(A, A), A) |
strategy(A, A) RL |TM |M | t |msg | 3 | false].

crl[execute] : [A |Rl〈n : Ant − >> Cons 〉lR RL |Ant TM |M | t |msg | 3 |
true] => [A |RL |Ant time(Cons, t + 1)TM | pattern(Cons) M | t + 1 |msg | 1 |
false] if (not inWorkingMemory(pattern(Cons), M)).

The match phase is implemented by the match rule, which generates a set of rule in-
stances based on the elements of T imeWM . The conflict resolution phase is imple-
mented using the select rule, which selects a subset of rule instances from the agenda
for execution based on the agent’s control strategy. Finally, the execute phase is imple-
mented using the execute rule, which executes the rule instances selected for execution.
These three Maude rules are controlled using a flag which ensures that only one rule is
applied at each system cycle. When the match and select rules execute, the time counter
in the agent’s configuration remain unchanged. However, the time counter is increased
by one when the execute executes. All three phases, match, select and execute, therefore
happen in one timestep.

The external behaviour of abstract agents are represented by means of temporal epis-
temic formulas. These formulas are translated into Maude agent specifications. For ex-
ample, the formula G(BjASK (i, j, P) → XnBiTELL(j, i, P))) which states that if
the abstract agent j believes that (concrete or abstract) agent i asks whether P is the
case, then j should respond to agent i within n time steps, is translated as

op halt-condition : T imeWM Nat WM − > Bool.

Automated Verification of Resource Requirements in Multi-Agent Systems 77

eq halt-condition([t′ :ASK(i, j, p)]TM, t, M) = if ((t == t′ + m) and (not
inWorkingMemory(p, M))) then true else halt-condition(TM, t, M) fi .

eq halt-condition(TM, t, M) = false [owise].
crl [reply] : Sj[A |RL | [t′:ASK(1, 2, P)] TM |M | t |msg | 3 | true]jS => Sj[A |

RL | [t′ :ASK(1, 2, P)][t + 1:P] TM |P M | t + 1 |msg | 1 | false]jS if (not
inWorkingMemory(P, M)) ∧ t < t′ + m.

crl [idle] : S2[A |RL |TM |M | t |msg | 3 | true]2S => S2[A |RL |TM |M | t +
1 |msg | 1 | false]2S if (not halt-condition(TM, t, M)).

where t is the current cycle time, t′ is the time stamp when agent j came to believe that
agent i asked for P and m is the bound defined above. The two Maude rules reply and
idle execute non-deterministically when t < t′ + m, but the idle rule cannot be applied
when t = t′ + m, forcing the agent to reply at t′ + m if it has not already done so.

Once all the agents of the system have been defined using system modules, we import
them all into a single MAS system module. The MAS module defines two Maude rules,
parallel-comp, which implements the parallel composition of agent configurations in
the system, and sync-rule, which is used to synchronise the time cycle of the global
system.

op || : Config Config − > Config [comm assoc].
crl [parallel-comp] : C1:Config ||C2:Config => C1′:Config ||C2′:Config if C1:

Config => C1′ :Config ∧ C2:Config => C2′ :Config ∧ C1′ :Config
= C1:
Config ∧ C2′:Config
= C2:Config .

rl [sync-rule] : S1[A1 |RL1 |TM1|M1 | t1 |msg1| rc1 | false]1S ||. . . || Sn[An |
RLn |TMn |Mn| tn |msgn| rcn | false]nS => S1[A1 |RL1|TM1|M1|t1|msg1 |
rc1 | true]1S || . . . || Sn[An |RLn |TMn |Mn | tn |msgn | rcn | true]nS.

Communication between agents is also implemented using rules in the MAS module.
For example, if agent i fires a communication rule of the form < n:P1& . . .&Pn =>
ASK (i, j, P) > which adds a fact ASK (i, j, P) to its working memory, this fact is
communicated to agent j using the following Maude rule

crl [comm] :
S1[A1 |RL1 |TM1 |M1 | t1 |msg1 | 3 | true]1S
...
||Si[Ai |RLi |TMi |ASK(i, j, P)Mi | ti |msgi | 3 | true]iS
...
||Sj[Aj |RLj |TMj |Mj | tj |msgj | 3 | true]jS
...
||Sn[An |RLn |TMn |Mn | tn |msgn | 3 | true]nS
=>
C1′ : Config
...
||Si[Ai |RLi |TMi |ASK(i, j, P)Mi | ti+ 1 |msgi + 1 | 1 | false]iS

78 N. Alechina et al.

...
||Sj[Aj |RLj | [tj+1:ASK(i, j, P)]TMj |ASK(i, j, P)Mj | tj+1 |msgj+1 | 1 | false]jS
...
||Cn′:Config
if (not inWorkingMemory(ASK (i, j, P), Mj))
∧ S1[A1 |RL1 |TM1 |M1 | t1 |msg1 | 3 | true]1S => C1′:Config
...∧

Sn[An |RLn |TMn |Mn | tn |msgn | 3 | true]nS => Cn′:Config∧
C1′:Config
= S1[A1 |RL1 |TM1 |M1 | t1 |msg1 | 3 | true]1S

...∧
Cn′:Config
= Sn[An |RLn |TMn |Mn | tn |msgn | 3 | true]nS.

When ASK (i, j, P) is added to agent j’s working memory, j may perform some com-
putation if it does not know whether P is the case. In this model, communication re-
quires a single timestep, i.e., when agent i asks agent j whether P is the case at time
step t, agent j will receive the request at time cycle t + 1. However the time agent i has
to wait for a response to its query depends on the reasoning j must (or chooses) to do
(if j is concrete), or j’s specification (if j is abstract). A similar approach is used when
j tells i that P .

5 Experimental Evaluation

In this section we report experiments designed to illustrate the scalability and expres-
siveness of our approach. All the experiments reported here were performed on an Intel
Pentium 4 CPU 3.20GHz with 2GB of RAM under CentOS release 4.8.

5.1 Scalability

To illustrate the scalability of our approach we implemented an example scenario re-
ported in [9]. In this scenario, a system of communicating reasoners attempt to solve
a (synthetic) distributed reasoning problem in which the set of rules and facts that de-
scribes agents’ knowledge base are constructed from a complete binary tree. For exam-
ple, a complete binary tree with 8 leaf facts has the following set of rules

RuleB1 A1(x) ∧ A2(x) → B1(x) RuleB2 A3(x) ∧ A4(x) → B2(x)

RuleB3 A5(x) ∧ A6(x) → B3(x) RuleB4 A7(x) ∧ A8(x) → B4(x)

RuleC1 B1(x) ∧ B2(x) → C1(x) RuleC2 B3(x) ∧ B4(x) → C2(x)

RuleD1 C1(x) ∧ C2(x) → D1(x)

For compatibility with the propositional example considered in [9], we assume that
the variable x is substituted by a single constant value ‘a’, and the goal is to de-
rive D1(a). One can easily see that a larger system can be generated using 16 ‘leaf’
facts A1(x), . . . , A16(x), adding extra rules to derive B5(x) from A9(x) and A10(x),

Automated Verification of Resource Requirements in Multi-Agent Systems 79

etc., and a new goal E1(x) derivable from D1(x) and D2(x) to give a ‘16 leaf exam-
ple’. Similarly, we can consider systems with 32, 64, 128,. . .,2048 etc. leaf facts. Such
generic distributed reasoning problems can be easily parameterised by the number of
leaf facts and the distribution of facts and rules among the agents.

In [9], the results of experiments on such problems using the Mocha model-checker
[6] are reported. In the simplest case of a single agent, the largest problem that could be
verified using Mocha had 128 leaf facts. However, using our tool we are able to verify
a system with 2048 leaf facts. The experimental results are summarised in Table 1.

Table 1. Resource requirements for a single agent

CPU Time
leaves # steps Mocha Maude

128 127 1:47:52 0:0:1
512 511 — 0:1:37
1024 1023 — 0:15:03
2048 2047 — 3:40:52

In case of a multi-agent systems, the exchange of information between agents was
modelled as an abstract Copy operation in [9]. Each copy operation takes one tick of
system time and does not require any special communication rules. As an example, to
verify a multi-agent system consisting of two agents with 16 leaf facts, the Mocha en-
coding requires 1 hour and 36 minutes of CPU time. In our framework, communication
between agents is achieved using ASK and TELL actions. The results presented in
[9] and those for our tool are therefore not directly comparable in the multi-agent case.
Nevertheless, we can show that much larger multi-agent systems can be modelled using
our approach.

A1 A2 . . . A127 A128

E1
E8

H1

Fig. 2. Binary tree

Consider a multi-agent system consisting of two agents each with a knowledge base
of facts and rules for the 128 leaf example (i.e., both agents have all the rules and leaf
facts). Agent1 uses a reasoning strategy which assigns lower priority to rules in the

80 N. Alechina et al.

right-hand shaded triangular region depicted in Fig. 2. In contrast, agent2 uses a rea-
soning strategy which assigns lower priority to rules in the left-hand shaded triangular
region of Figure 2. Suppose agent1 asks agent2 if E8(a) is the case. If agent1 receives
the fact E8(a) from agent2 before deriving E8(a) itself, it can avoid firing 15 rules,
and the agents are able to derive the goal H1(a) in 115 steps while exchanging two
messages.

Similarly, consider the scenario in which there are three agents, each with a knowl-
edge base of facts and rules for the 128 leaf example. Assume agent1 asks agent2 if
E1(a) is the case and also that agent1 asks agent3 if E8(a) is the case. Suppose the
agents utilise reasoning strategies similar to the previous case where the set of rules in
the unshaded region have higher priority for agent1, the rules in left hand shaded region
have higher priority for agent2, and the rules in the right hand shaded region have higher
priority for agent3. Then the agents can derive the goal H1(a) in 103 steps while ex-
changing four messages. The experimental results are summarised in Table 2. Although
these examples are very simple, they point to the possibility of complex trade-offs be-
tween time and communication bounds in systems of reasoning agents.

Table 2. Resource requirements for multiple agents

agents # leaves # steps #msgs CPU Time
2 128 115 2 0:0:7
3 128 103 4 0:0:18

5.2 A More Complex Example

To illustrate the application of the framework on a more complex example we con-
sider the following scenario. The system consists of several agents representing users
who have queries about possible subway routes on the London Underground denoted
by ui, and two agents that provide travel advice: a ‘route planning’ agent, p, which
computes routes between stations and an ‘engineering work’ agent, e, which has infor-
mation about line closures and other service disruptions. The user agents ask for route
information to the route planning agent, that is, they generate queries of the form:

ASK (ui, p, Route(start station, destination station)).

The route planning agent has a set of facts corresponding to connections between sta-
tions, and a set of rules for finding a path between stations which returns a route (a list
of intermediate stations). Upon receiveing a request from the user agent, the route plan-
ning agent tries to find a route from the start station to the destination station by
firing a sequence of rules based on the facts in its working memory. To ensure a route
is valid, the planner must check that it is not affected by service disruptions caused by
engineering work, which it does by querying the engineering work agent. If the route is
open, the planner returns the route from source station to the destination station to
the user agent.

Automated Verification of Resource Requirements in Multi-Agent Systems 81

The user agents are modelled as abstract agents, which generate a query at a nonde-
terministically chosen timestep within a specified interval, e.g.:

X5BuiASK (ui, p, Route(MarbleArch, V ictoria))

The engineering work agent is also modelled as an abstract agent which is assumed to
respond to a query within some bounded number of timesteps, e.g., n timesteps:

G(BeASK (p, e, RouteList(start station, destination station,

[station1 | station2 | . . . | stationn])) →
Xn BeTELL(e, p, RouteList(start station, destination station,

[station1 | station2 | . . . | stationn]))

where [station1 | station2 | . . . | stationn] is a list of intermediate stations from
the start station to the destination station, and the response from the engineering
agent indicates that the route from the start station to the destination station via
station1, station2 , . . . , stationn is open.

The system designer may wish to verify that the proposed design of the route plan-
ning agent, together with the assumed or known properties of the engineering work
agent, is able to respond to a given number of user queries arriving within a specified
interval, within a specified period of time. For a typical routing query, e.g., for an ab-
stract user agent ui asking for a route between station1 and station2, we can verify that
response is received within n timesteps:

G(BuiASK (ui, p, Route(s1, s2)) →
Xn BuiTELL(p, ui, RouteList(s1, s2, [t1|t2| . . . |tn])))

Table 3. Resource requirements for the route planning example

user agents # timesteps CPU Time
2 21 00:00:39
4 29 00:03:56
5 33 00:08:50

Table 3 reports experimental results for a multi-agent system consisting of a planner
agent, an engineering agent and varying number of user agents. In this experiment, we
have used 6 stations connected by 3 different lines (a total of 7 facts) and the planner
can derive 8 different routes. Different user agents in the system make queries about
different routes at different times in the interval [1, 10]. For example, the user agent ui

may request a route between Marble Arch and Victoria:

ASK (ui, p, Route(MarbleArch, V ictoria))

and receive the reply

TELL(p, ui, RouteList(MarbleArch, V ictoria, [BondStreet|GreenPark]))

The timesteps value in Table 3 gives the maximum number of timesteps necessary to
return a route to a user agent under the specified system load.

82 N. Alechina et al.

6 Related Work

There has been considerable work on the execution properties of rule-based systems,
both in AI and in the active database community. In AI, perhaps the most relevant
is that of Chen and Cheng on predicting the response time of OPS5-style production
systems. In [16], they show how to compute the response time of a rule-based program
in terms of the maximum number of rule firings and the maximum number of basic
comparisons made by the Rete network. In [17], Cheng and Tsai describe a tool for
detecting the worst-case response time of an OPS5 program by generating inputs which
are guaranteed to force the system into worst-case behaviour, and timing the program
with those inputs. However, the results obtained using these approaches are specific to
a particular rule-based system (OPS5 in this case), and cannot easily be extended to
systems with different rule formats or rule execution strategies. Nor are they capable
of dealing with the asynchronous inputs found in communicating rule-based systems.
The problem of termination and query boundedness has also been studied in deductive
databases [18]. However, again this work considers a special (and rather restricted with
respect to rule format and execution strategy) class of rule-based systems.

In [19] the Datalaude system is presented, which essentially implements a Datalog
interpreter in Maude. However the encoding of rules and rule execution strategy is very
different from that proposed in this paper, in using functional modules and implement-
ing a backward chaining rule execution strategy. The aim of the Datalaude project is
not to analyse Datalog programs as such, but to provide a fast and ‘declarative’ (in the
sense of functional programming) specification of memory management in Java pro-
grams (the example application in [19] uses Datalog facts represent information about
references, and some simple rules ensure transitivity of the reference relation).

There has been considerable work on the use of abstraction in model-checking, e.g.,
[11,12]. These approaches use a mapping between an abstract transition system and
a concrete program. Depending on this mapping, verification results may be correct
but not complete. In contrast, our approach uses a very specific kind of abstraction,
which replaces a concrete agent with an abstract one that implements guarantees of
its response time behaviour. If those guarantees are correct, then our approach gives
both correct and complete results. Agents can be modelled as abstract if their response
time guarantees have already been verified or the system designer is prepared to assume
them.

7 Conclusion

We described an automated verification framework for communicating resource-
bounded reasoners which takes a set of agents specified in terms of facts and Horn
clause rules and automatically produces a Maude [8] specification of the system which
can be efficiently verified. We illustrated the scalability of our approach by compar-
ing it to results presented in [9] for a synthetic distributed reasoning problem. We also
showed how to further improve scalability by using abstract agents specified in terms
of temporal epistemic formulas.

Automated Verification of Resource Requirements in Multi-Agent Systems 83

The tool described in the paper is a simple prototype. In future work, we plan to
extend the language for specifying the rules of concrete agents to include function
terms, and introduce a language for specifying reasoning strategies.

References

1. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of agent-oriented
programming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
Multi-Agent Programming: Languages, Platforms and Applications. Springer, Heidelberg
(2005)

2. Bordini, R., Fisher, M., Visser, W., Wooldridge, M.: State-space reduction techniques in
agent verification. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) Proceed-
ings of the Third International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2004), pp. 896–903. ACM Press, New York (2004)

3. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed reasoning in a
peer-to-peer setting. In: López de Mántaras, R., Saitta, L. (eds.) Proceedings of the Sixteenth
European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp. 945–946.
IOS Press, Amsterdam (2004)

4. Claßen, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towards an integration of Golog and
planning. In: Proceedings of the 20th International Joint Conference on Artifical Intelli-
gence (IJCAI 2007), pp. 1846–1851. Morgan Kaufmann Publishers Inc., San Francisco
(2007)

5. Alechina, N., Jago, M., Logan, B.: Modal logics for communicating rule-based agents. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI 2006), pp. 322–326. IOS Press, Amsterdam
(2006)

6. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: MOCHA:
Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427,
pp. 521–525. Springer, Heidelberg (1998)

7. Hirtle, D., Boley, H., Grosof, B., Kifer, M., Sintek, M., Tabet, S., Wagner, G.: Schema Spec-
ification of RuleML 0.91 (2006), http://ruleml.org/0.91/

8. Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of maude. Electr. Notes Theor.
Comput. Sci. 4 (1996)

9. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time and communication costs of
rule-based reasoners. In: Peled, D., Wooldridge, M. (eds.) MoChArt 2008. LNCS, vol. 5348,
pp. 1–14. Springer, Heidelberg (2009)

10. Holzmann, G.J.: On-the-fly model checking. ACM Computing Surveys 28(4) (1996)
11. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. In: Proceedings

of the 19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 342–354 (1992)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proceedings of the 4th Annual
ACM Symposium on Principles of Programming Languages, pp. 238–252 (1977)

13. Culbert., C.: CLIPS reference manual. NASA (2007)
14. Friedman-Hill., E.J.: Jess, The Rule Engine for the Java Platform. Sandia National Labora-

tories (2008)
15. Tzafestas, S., Ata-Doss, S., Papakonstantinou., G.: Knowledge-Base System Diagnosis,

Supervision and Control. Plenum Press, New York (1989)

http://ruleml.org/0.91/

84 N. Alechina et al.

16. Chen, J.R., Cheng, A.M.K.: Predicting the response time of OPS5-style production systems.
In: Proceedings of the 11th Conference on Artificial Intelligence for Applications, p. 203.
IEEE Computer Society, Los Alamitos (1995)

17. Cheng, A.M.K., yen Tsai, H.: A graph-based approach for timing analysis and refinement
of OPS5 knowledge-based systems. IEEE Transactions on Knowledge and Data Engineer-
ing 16(2), 271–288 (2004)

18. Brodsky, A., Sagiv, Y.: On termination of Datalog programs. In: International Conference on
Deductive and Object-Oriented Databases (DOOD), pp. 47–64 (1989)

19. Alpuente, M., Feliu, M.A., Joubert, C., Villanueva, A.: Defining datalog in rewriting logic.
In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 188–204. Springer, Heidelberg
(2010)

The Blow-Up in Translating LTL to

Deterministic Automata

Orna Kupferman and Adin Rosenberg

School of Computer Science and Engineering,
Hebrew University, Jerusalem 91904, Israel

{orna,adinr}@cs.huji.ac.il

Abstract. The translation of LTL formulas to nondeterministic au-
tomata involves an exponential blow-up, and so does the translation

of nondeterministic automata to deterministic ones. This yields a 22O(n)

upper bound for the translation of LTL to deterministic automata. A
lower bound for the translation was studied in [KV05a], which describes

a 22Ω(
√

n)
lower bound, leaving the problem of the exact blow-up open. In

this paper we solve this problem and tighten the lower bound to 22Ω(n)
.

1 Introduction

The logic LTL (linear temporal logic) [Pnu81] is used for the specification of on-
going behaviors of reactive systems. Such behaviors can be specified also using
highly expressive second-order logics, but LTL offers two important advantages.
First, writing formulas in temporal logic is simpler. Second, decision procedures
for temporal logic are of elementary complexity. These advantages have made
temporal logic, and in particular LTL, useful in practice.

The key to the elementary complexity of the decision procedures for temporal
logics is their elementary translation to automata on infinite objects. In contrast,
the translation of monadic second order logic formulas to automata is nonele-
mentary [Büc62, Rab69]. In particular, given an LTL formula ψ of length n, it
is possible to translate ψ to a nondeterministic Büchi word automaton (NBW,
for short) with at most 2O(n) states [VW94]. The translation of LTL to NBW
has been a subject of extensive research, studying its theoretical complexity, op-
timizations, and performance in practice (c.f., [GPVW95, EH00, SB00, GO01]).

NBWs are strictly more expressive than deterministic Büchi word automata
(DBWs, for short): a language L ⊆ Σω can be recognized by a DBW iff there
is a language R ⊆ Σ∗ such that for every word w ∈ Σω, we have that w ∈ L iff
w has infinitely many prefixes in R [Lan69]. All ω-regular languages, however,
and therefore also all LTL formulas, can be translated to deterministic word
automata with richer acceptance conditions, like Rabin or parity [Saf88, Pit06].
Such a translation is part of several decision procedures for LTL (e.g., synthesis
and control [PR89]), algorithms for translating LTL to other logics (e.g., LTL to
alternation-free μ-calculus [KV05a] and to general μ-calculus [Dam94]), as well
as decision procedures for other logics (e.g., satisfiability for CTL∗ [ES84]). The

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 85–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

86 O. Kupferman and A. Rosenberg

blow-up that the translation involves plays a role even in algorithms that avoid
determinization [KV05b, Kup06].

Recall that the translation of LTL to NBW involves an exponential blow-up.
Determinization of NBWs also involves an exponential blow-up [Saf88, Pit06],
yielding a doubly-exponential upper bound for the translation of LTL to deter-
ministic automata. The doubly-exponential upper bound holds both for deter-
ministic automata with rich acceptance conditions as well as for DBWs. We note,
however, that the translation of LTL to DBW, when it exists, can avoid Safra’s
determinization and is much simpler [BK09]. In [KV05a], Kupferman and Vardi
studied a lower bound for the translation. They described a family of languages
L1, L2, . . . such that Ln is can be specified by an LTL formula of length O(n2)
yet the smallest DBW for it needs at least 22n

states. This implies a 22Ω(
√

n)

lower bound for the translation, leaving the problem of the exact tight bound
open.

In this paper we solve this problem. We first describe a family of languages
L1, L2, . . . such that Ln can be specified by an LTL formula of length O(n log n)
yet the smallest DBW for it needs at least 22n

states. The languages Ln are
defined with respect to an alphabet of a constant size (6 letters). We then show
that moving to an alphabet of size O(n) we can tighten the lower bound further
and describe a family L1, L2, . . . such that Ln can be specified by an LTL formula
of length O(n) yet the smallest DBW for it needs at least 22n

states. This implies
a 22Ω(n)

lower bound for the translation, matching the known upper bound.
As in [KV05a], the languages we use are DBW-recognizable. By [KPB94], if
a deterministic Rabin automaton (DRW, for short) recognizes a language that
is DBW-recognizable, then a DBW for it can be defined on top of the same
structure. It follows that our results imply a tight 22Θ(n)

bound for the translation
of LTL to both DBW and DRW.

2 Preliminaries

2.1 Linear Temporal Logic

The logic LTL is a linear temporal logic [Pnu81]. Formulas of LTL are con-
structed from a set AP of atomic propositions using the usual Boolean operators
and the temporal operators X (“next time”) and U (“until”). Formally, an LTL
formula over AP is defined as follows:

– true, false, or p, for p ∈ AP .
– ¬ψ1, ψ1 ∧ ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are LTL formulas.

The logic LTL is used for specifying on-going behaviors of reactive systems.
Consider a computation π = π0, π1, π2, . . ., where for every j ≥ 0, the set πj ⊆
AP is the set of atomic propositions that hold in the j-th position of π. We
denote the suffix πj , πj+1, . . . of π by πj . We use π |= ψ to indicate that an LTL
formula ψ holds in the computation π. The relation |= is inductively defined as
follows:

The Blow-Up in Translating LTL to Deterministic Automata 87

– For all π, we have that π |= true and π �|= false.
– For an atomic proposition p ∈ AP , we have that π |= p iff p ∈ π0.
– π |= ¬ψ1 iff π �|= ψ1.
– π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.
– π |= Xψ1 iff π1 |= ψ1.
– π |= ψ1Uψ2 iff there exists k ≥ 0 such that πk |= ψ2 and πi |= ψ1 for all

0 ≤ i < k.

Each LTL formula ψ over AP defines a language L(ψ) ⊆ (2AP)ω of the compu-
tations that satisfy ψ. Formally, L(ψ) = {π ∈ (2AP)ω|π |= ψ}.

We denote the size of an LTL formula ϕ by |ϕ| and we use the following
abbreviations in writing formulas:

– ∨,→, and ↔, interpreted in the usual way.
– Fψ = trueUψ (“eventually”).
– Gψ = ¬F¬ψ (“always”).

2.2 Automata over Infinite Words

For a finite alphabet Σ, an infinite word w = σ1 ·σ2 · · · is an infinite sequence of
letters from Σ. A property of a system with a set AP of atomic propositions can
be viewed as a language over the alphabet 2AP . We have seen in Section 2.1 that
LTL can be used in order to define properties. Another way to define properties
is using automata.

A nondeterministic Büchi automaton over infinite words is a tuple A =
〈Σ, Q, Q0, δ, α〉, where Σ is a finite nonempty alphabet, Q is a finite nonempty
set of states, Q0 ⊆ Q is a nonempty set of initial states, δ : Q × Σ → 2Q is a
transition function, and α ⊆ Q is an acceptance condition. Intuitively, when an
automaton A runs on an input word over Σ, it starts in one of the initial states,
and it proceeds along the word according the transition function. Thus, δ(q, σ)
is the set of states that A can move into when it is in state q and it reads the
letter σ. Note that the automaton may be nondeterministic, since it may have
many initial states and the transition function may specify many possible tran-
sitions for each state and letter. The automaton A is deterministic if |Q0| = 1
and |δ(q, σ)| ≤ 1 for all states q ∈ Q and letters σ ∈ Σ.

Formally, a run r of A on an infinite word w = σ1 · σ2 · · · ∈ Σω is an infinite
sequence q0, q1, . . . of states in Q such that q0 ∈ Q0, and for all i ≥ 0, we have
qi+1 ∈ δ(qi, σi+1). Note that a nondeterministic automaton can have many runs
on a given input word. In contrast, a deterministic automaton can have at most
one run on a given input word. The acceptance condition α determines which
runs are accepting. A run r is accepting if it visits some state in α infinitely often.
Formally, let inf (r) = {q : qi = q for infinitely many i’s }. Then, r is accepting
iff inf (r) ∩ α �= ∅. This is called the Büchi acceptance condition.

We also refer here to the Rabin acceptance condition. The Rabin accep-
tance condition is richer than the Büchi acceptance condition: α ⊆ 2Q × 2Q

is a set of pairs of subsets of states, and a run r satisfies a condition α =

88 O. Kupferman and A. Rosenberg

{〈G1, B1〉, . . . , 〈Gk, Bk〉} iff there is 1 ≤ i ≤ k such that inf (r) ∩ Gi �= ∅ and
inf (r) ∩ Bi = ∅. We are not going to use the Rabin condition and only refer to
known results about it. We use NBW, DBW, and DRW to denote nondetermin-
istic Büchi automata, deterministic Büchi automata, and deterministic Rabin
automata, respectively.

3 From LTL to DBW

It is shown in [VW94] that every LTL formula ψ can be translated to an NBW
Aψ of size 2O(|ψ|) such that L(Aψ) = L(ψ). It is shown in [Saf88] that every
NBW with n states can be translated to a deterministic Rabin automaton with
2O(n log n) states. It follows that every LTL formula ψ can be translated to a
DRW Aψ of size 22O(|ψ|)

such that L(Aψ) = L(ψ). Moreover, it is shown in
[KPB94] that DRWs are Büchi type: if a DRW recognizes a language that is
DBW-recognizable, then an equivalent DBW can be defined on the same struc-
ture. It follows that if L(ψ) is DBW-recognizable, then there is a DBW Aψ of
size 22O(|ψ|)

such that L(Aψ) = L(ψ).

3.1 The Known Lower Bound: From O(n2) to 22n

In [KV05a], Kupferman and Vardi studied a lower bound for the translation of
LTL to DBW. By the Büchi-typeness of DRWs, the same bound applies for the
translation of LTL to DRW. We review their result below.

Theorem 1. [KV05a] There exists an infinite family of DBW-recognizable lan-
guages L1, L2, . . . such that for every n ≥ 1, the language Ln can be specified by
an LTL formula of length O(n2), and every DBW that recognizes Ln has at least
22n

states.

Proof: Let Σ = {a, b, #, $}. We define the family of languages as follows:

Ln = {(a + b + #)∗ · # · w · # · (a + b + #)∗ · $ · w · #ω | w ∈ {a, b}n}.

For n ≥ 1, we use the term n-block to refer to a word in (a + b)n. It is not hard
to see that Ln contains exactly all words in which some n-block w appears both
after the single $, with a #ω tail after it, and before the $, where it is surrounded
by #’s.

For every n, the language Ln can be specified by the LTL formula

ψn = [(¬$)U($ ∧
n︷ ︸︸ ︷

X((a ∨ b) ∧ X((a ∨ b) ∧ . . . X((a ∨ b)∧XG#

n︷ ︸︸ ︷
) . . .)))]∧

F [# ∧ ∧
1≤i≤n((X ia ∧ G($ → X ia)) ∨ (X ib ∧ G($ → X ib))) ∧ Xn+1#].

The first clause of the formula asserts that there is exactly one $ in the word,
followed by an n-block and an infinite tail of #’s. The second clause asserts that
there exists a position in which # is true and the i-th letter from this position,

The Blow-Up in Translating LTL to Deterministic Automata 89

for 1 ≤ i ≤ n, agrees with the i-th letter after the $. Also, the (n + 1)-th letter
from this position is #. Clearly, the length of ψn is quadratic in n. Note that
the quadratic blow-up arises from the need to repeat n checks, where the check
for the i-th letter requires a subformula of length O(i).

By [CKS81], the smallest deterministic automaton on finite words that ac-
cepts Ln (omitting the #ω suffix) has at least 22n

states. The same argument
can be used to prove that the smallest DBW that accepts Ln has at least 22n

states: reaching the $, the DBW should remember the set of n-blocks that have
appeared, surrounded by #’s, before. ��

Note that, for simplicity, [KV05a] assumes that the atomic propositions overwhich
the LTL formulas are defined are mutually exclusive (that is, at each moment, ex-
actly one proposition holds). Since the number of atomic propositions is fixed, this
can be achieved by adding a conjunction of a fixed size that enforces it.

3.2 Improvement # 1: From O(n log n) to 22n

with a Fixed
Alphabet

In the proof above, the LTL formula checks that for some n-block w appearing
before the $, the i-th letter after the $ matches the i-th letter of w. Each of these
checks is done using a subformula of length O(i), and a check is required for all
1 ≤ i ≤ n, leading to an overall formula of a quadratic length. In this section
we consider a variant of Ln in which each letter in the n-blocks is prefixed by
the binary encoding of its position in the block. This enables each of the checks
to be specified by an LTL formula of length O(log n), resulting in a formula
of length O(n log n) for all positions. The formulas should also assert that each
letter is indeed prefixed by the encoding of its position, but this can be done
by a conjunction of length O(n log n), leading to an entire formula of length
O(n log n). Formally, we have the following.

Theorem 2. There exists a family of DBW-recognizable languages L1, L2, . . .
over a 6-letter alphabet, such that for every n, the language Ln can be defined
by an LTL formula of length O(n log n), and every DBW that recognizes Ln has
at least 22n

states.

Proof: Let Σ = {a, b, #, $, 0, 1}. We first introduce some notations.

– For n ≥ 1 and 1 ≤ i ≤ n, let k = �log n� and bn,i be the k-bit binary
encoding of i − 1. For example, b8,4 = 011 and b12,11 = 1010.

– Let bn,i[j] denote the j-th bit in bn,i.

We are going to define Ln as the language of words consisting of a sequence of
n-blocks, separated by #, followed by a $, a copy of some n-block, and an infinite
tail of #’s. Each n-block must be well-formatted; that is, rather than being a
simple word in (a + b)n, it is now a subword of length n(k + 1), consisting of n
letters in {a, b}, with the i-th letter, for 1 ≤ i ≤ n, being prefixed by bn,i. Thus,
each bit in the n-block is “labeled” by its position in the block. These labels

90 O. Kupferman and A. Rosenberg

allow an LTL formula to efficiently verify that the n-block following the letter $
is indeed a copy of one of the n-blocks appearing before the letter $.

We define Ln as an intersection of two languages, Sn and Rn. The language
Sn contains all words that have the proper format; i.e., the word is a sequence of
n-blocks, separated by #’s, followed by $, another n-block, and an infinite tail
of #’s. The language Rn contains all words in which some n-block surrounded
by #’s appear before and after a single $. Formally, let rn = bn,1 · (a + b) · bn,2 ·
(a + b) · · · bn,n · (a + b). Then,

Sn = # · (rn · #)∗ · $ · rn · #ω

Rn =
⋃

w∈rn

Σ∗ · # · w · # · Σ∗ · $ · Σ∗ · w · Σω

Ln = Sn ∩ Rn.

We now turn to define the LTL formula ψn that specifies Ln. As in [KV05a], we
assume that the atomic propositions are mutually exclusive. As there, since the
number of atomic propositions is fixed, this can be enforced by a fixed-length
subformula. For 1 ≤ i ≤ n, we let ϕn,i assert that the current position starts
with bn,i. Formally,

ϕn,i = bn,i[1] ∧ X(bn,i[2] ∧ X(bn,i[3] ∧ . . . ∧ X(bn,i[k]) . . .)).

We now define the LTL formula ψn as the conjunction of the following clauses:

∧ X(ϕn,1) (1)

∧ G(
n−1∧
i=1

(ϕn,i → X((a ∨ b) ∧ Xϕn,i+1))) (2)

∧ G(ϕn,n → X((a ∨ b) ∧ X(# ∧ X(ϕn,1 ∨ $ ∨ G#)))) (3)

∧ (¬$)U($ ∧ Xn·(k+1)G#) (4)

∧ F (# ∧ (
n∧

i=1

(ϕn,i → Xk
∨

σ∈{a,b}
(σ ∧ F ($ ∧ F (ϕn,i ∧ Xkσ)))))U#). (5)

Clause (1) asserts that the word begins correctly. Clause (2) asserts that the
n-blocks are well formed. Clause (3) asserts that the n-blocks are separated by
#’s, and right after them starts a new n-block, or there is a $, or a #ω tail.
Clause (4) asserts that the first $ symbol is followed by a subword of length
n(k+1) after which a #ω tail starts. Clause (5) asserts that there exists a string
w, surrounded by #’s, with each letter appearing again after a $ symbol. Note
that Clauses (1) through (4) assert that the word is in Sn, while Clause (5),
given that Clauses (1)-(4) hold, adds the requirement that the input is in Rn.

Since |ϕn,i| = O(k) and k = �log n�, it follows that |ψn| = O(n log n).
Since Ln is of the form L′

n ·#ω for a regular language L′
n, a DBW recognizing

it can easily be constructed by adding a transition from the accepting state of a
DFW accepting L′

n to a one state DBW that accepts the #ω tail.

The Blow-Up in Translating LTL to Deterministic Automata 91

It is left to prove that every DBW that recognizes Ln must have at least 22n

states. Assume by contradiction that there exists a DBW A that recognizes Ln

and has less than 22n

states. For 0 ≤ i ≤ 2n−1, let wi be the n-block that corre-
sponds to the the i-th word in (a+b)n, say, according to a lexicographic order. For
every S = {i1, i2, . . . , ik} ⊆ {0, 1, . . . , 2n − 1}, let pS = #wi1#wi2# . . .#wik

#$.
Let qS be the state that A visits after reading pS . Since A has less than 22n

states,
there must be two distinct sets S, S′ ⊆ {0, 1, . . . , 2n − 1} such that qS = qS′ .
Since S �= S′, there must be 0 ≤ i ≤ 2n−1 that distinguishes them. Without loss
of generality, assume that i ∈ S \S′. Since i ∈ S, it follows that pS ·wi#ω ∈ Ln,
and the run of A on pS · wi#ω is accepting. Therefore, the run on pS′ · wi#ω

is accepting as well. However, i /∈ S′, so pS′ · wi#ω /∈ Ln, which leads to a
contradiction. ��

3.3 Improvement #2: from O(n) to 22n

with a Linear Alphabet

In the proof above, in a well-formatted n-block, each letter a or b was prefixed
by the binary encoding of its position, which is of length �log n�. By using an
alphabet of linear size, we can use the alphabet in order to encode the position
of the a’s and the b’s. This will allow the LTL formula to check the matching of
each letter in the n-block by a formula of a fixed length. Checking for all letters
can then be done by a formula of a linear length. In addition, we have to check
that the letters we use indeed encode the positions, which again can be done by
a formula of a linear length. Formally, we have the following.

Theorem 3. There exists a family of DBW-recognizable languages L1, L2, . . .
such that for every n, the language Ln can be specified by an LTL formula of
length O(n), and every DBW that recognizes Ln has at least 22n

states.

Proof: First we define the alphabet Σn. Let Σ′
n = {1, 2, . . . , n} × {a, b}, and

Σn = Σ′
n ∪ {#, $}. For clarity, we use the symbols ai and bi for 〈i, a〉 and 〈i, b〉,

respectively.
Next, we define Ln. Intuitively, Ln is again the language of words consisting of

n-blocks, separated by #’s, followed by a $ symbol, a copy of some n-block, and
an infinite #ω tail. Now however, the n-blocks are well-formatted in a different
way: for each 1 ≤ i ≤ n, the i-th letter is ai or bi. Thus, again each occurrence
of a and b is “labeled” by its position in the n-block. These labels allow an LTL
formula to efficiently check that the n-block following the $ symbol is indeed a
copy of one of the n-blocks appearing before the $.

Again, we define Ln as an intersection of Sn and Rn, which are defined exactly
as in the proof of Theorem 2, only with rn = (a1 + b1) · (a2 + b2) · · · (an + bn).
Thus,

Sn = # · (rn · #)∗ · $ · rn · #ω

Rn =
⋃

w∈rn

Σ∗
n · # · w · # · Σ∗

n · $ · Σ∗
n · w · #ω

Ln = Sn ∩ Rn

92 O. Kupferman and A. Rosenberg

Finally, we define an LTL formula ψn that recognizes Ln. Again, we assume that
the atomic propositions are mutually exclusive. A naive way to enforce this is by
a conjunction disabling all pairs of atomic propositions to hold simultaneously.
This, however, would result in a formula quadratic in n, and is thus too long. As
we shall see below, the fact the formula ψn forces the letters # or $ to appear
between n-block can be used in order to specify mutual exclusiveness with a
formula of linear length. Now, ψn is a conjunction of the following clauses.

∧ X(a1 ∨ b1 ∨ $)

∧ G(
n−1∧
i=1

((ai ∨ bi) → X(ai+1 ∨ bi+1)))

∧ G((an ∨ bn) → X(# ∧ X(a1 ∨ b1 ∨ $ ∨ G#)))
∧ (¬$)U($ ∧ X((a1 ∨ b1) ∧ XnG#))

∧ F (# ∧ X(((
n∧

i=1

(ai ∧ F ($ ∧ Fai)) ∨ (bi ∧ F ($ ∧ Fbi))))U#))

The structure of the clauses is similar to these used in the proof of Theorem 2.
Clearly, |ψn| = O(n). Also, the language Ln is DBW-recognizable, and the proof
that the minimal DBW that recognizes Ln has at least 22n

states is identical to
the previous one, with the present format of n-blocks.

It is left to show that we can enforce mutual exclusion using a formula of
linear size. We use the following formula:

G((# ∨ $) → ¬
n∨

i=1

(ai ∨ bi))

∧ G((# → ¬$))

∧ G(
n∧

i=1

(ai → ¬bi)).

The formula guarantees that the atomic propositions # and $ are mutually
exclusive to all other atomic propositions, and that for all 1 ≤ i ≤ n, the atomic
propositions ai and bi are mutually exclusive. We claim that this, together with
ψn, implies that xi and yj are also mutually exclusive, for all x, y ∈ {a, b} and
1 ≤ i < j ≤ n. Assume by contradiction that there is some n-block such that
both xi and yj hold in a position k in the n-block. By the formula ψn, the fact
that yj holds in position k implies that # holds in position k+n−j+1. Also, the
fact that xi holds in position k and i < j implies that ai+n−j+1 ∨ bi+n−j+1 also
holds in position k+n−j+1. This, however, contradicts the mutual exclusiveness
of # with ai+n−j+1 and bi+n−j+1, so we are done. ��

4 Discussion

We tightened the lower bound in the blow-up involved in the translation of LTL
formulas to deterministic Büchi automata from 22Ω(

√
n)

to 22Ω(n)
. Interestingly,

The Blow-Up in Translating LTL to Deterministic Automata 93

we had to distinguish between the case the set of atomic propositions is fixed
and the case it is not. This is interesting, as the known translations with which
the upper bound for the blow-up is proven do not try to take advantage of a
fixed alphabet. Indeed, given an LTL formula ψ of length n, its translation goes
through a nondeterministic Büchi automaton with 2O(n) states, which is then
determinized to a Büchi automaton with 22O(n)

states. A more careful analysis
of the constants hiding in the O() notations reveals that one can actually take
advantage of the fixed alphabet.

In [BKR10], the authors define the class of ordered alternating automata. In
ordered automata, the non-accepting states of the automaton are ordered, and
transitions between non-accepting states must respect the order. LTL formulas
can be translated to ordered alternating automata. Unlike general alternating au-
tomata, for which removal of alternation involves that break-point construction
and a 3n blow up [MH84], alternation of ordered automata (as well as very weak
alternating automata, which are a special case of ordered automata [GO01]) can
be removed with only an n2n blow-up. Moreover, it is shown in [BKR10] that
for ordered automata with m letters, alternation can be removed with a 2m+n

blow-up, in a construction that makes use of the fact that the break-point con-
struction can be based on subsets of letters rather than subsets of states. Our
results here motivate further study of constructions that explicitly refer to the
set of letters. It may well be that the lower bound described here for the case of
an alphabet of a constant size is tight, and that efforts should now be directed
at improving the upper bound for this setting.

Acknowledgement. We thank the anonymous reviewers for helpful comments.

References

[BK09] Boker, U., Kupferman, O.: Co-ing Büchi made tight and helpful. In: Proc.
24th IEEE Symp. on Logic in Computer Science, pp. 245–254 (2009)

[BKR10] Boker, U., Kupferman, O., Rosenberg, A.: Alternation Removal in Büchi
Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 76–87.
Springer, Heidelberg (2010)

[Büc62] Büchi, J.R.: On a decision method in restricted second order arithmetic.
In: Proc. Int. Congress on Logic, Method, and Philosophy of Science.
1960, pp. 1–12. Stanford University Press, Standford (1962)

[CKS81] Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of
the Association for Computing Machinery 28(1), 114–133 (1981)

[Dam94] Dam, M.: CTL� and ECTL� as fragments of the modal μ-calculus. The-
oretical Computer Science 126, 77–96 (1994)

[EH00] Etessami, K., Holzmann, G.J.: Optimizing büchi automata. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167.
Springer, Heidelberg (2000)

[ES84] Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: Proc. 16th
ACM Symp. on Theory of Computing, pp. 14–24 (1984)

94 O. Kupferman and A. Rosenberg

[GO01] Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
53–65. Springer, Heidelberg (2001)

[GPVW95] Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic
verification of linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.)
Protocol Specification, Testing, and Verification, pp. 3–18. Chapman and
Hall, Boca Raton (1995)

[KPB94] Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata
vis-a-vis deterministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.)
ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)

[Kup06] Kupferman, O.: Avoiding determinization. In: Proc. 21st IEEE Symp. on
Logic in Computer Science, pp. 243–254 (2006)

[KV05a] Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM
Transactions on Computational Logic 6(2), 273–294 (2005)

[KV05b] Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th
IEEE Symp. on Foundations of Computer Science, pp. 531–540 (2005)

[Lan69]
[MH84] Miyano, S., Hayashi, T.: Alternating nite automata on!-words. Theoretical

Computer Science 32, 321–330 (1984)
[Pit06] Piterman, N.: From nondeterministic Büchi and Streett automata to de-

terministic parity automata. In: Proc. 21st IEEE Symp. on Logic in Com-
puter Science, pp. 255–264. IEEE Press, Los Alamitos (2006)

[Pnu81] Pnueli, A.: The temporal semantics of concurrent programs. Theoretical
Computer Science 13, 45–60 (1981)

[PR89] Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc.
16th ACM Symp. on Principles of Programming Languages, pp. 179–190
(1989)

[Rab69] Rabin, M.O.: Decidability of second order theories and automata on infi-
nite trees. Transaction of the AMS 141, 1–35 (1969)

[Saf88] Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp.
on Foundations of Computer Science, pp. 319–327 (1988)

[SB00] Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
248–263. Springer, Heidelberg (2000)

[VW94] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Infor-
mation and Computation 115(1), 1–37 (1994)

Improved Bounded Model Checking for a Fair
Branching-Time Temporal Epistemic Logic�

Xiaowei Huang, Cheng Luo, and Ron van der Meyden

The University of New South Wales, Australia
{xiaoweih,luoc,meyden}@cse.unsw.edu.au

Abstract. Bounded model checking is a verification technique based on search-
ing for counter-examples to the validity of the specification using an encoding
to propositional sastisfiability. The paper identifies a number of inefficiencies
in prior encodings for bounded model checking for a logic of knowledge and
branching time. An alternate encoding is developed, and theoretical and exper-
imental results are presented that show this leads to improved performance of
bounded model checking for a range of examples.

1 Introduction

In the context of distributed and multi-agent systems, as well as autonomous systems
that must operate in an uncertain environment, it has been argued that epistemic logics,
i.e., logics of knowledge, provide a useful expressiveness for dealing with agents’ need
to relate their actions to their state of information [5]. This has led to the study of model
checking for temporal epistemic logics [6,10]. There exist a variety of approaches to
model checking. Binary Decision Diagram (BDD) techniques use a graph-based encod-
ing to efficiently represent boolean functions and computes the set of states satisfying
the specification in this encoding. A more recent approach is Bounded Model Check-
ing (BMC) [1], which works by representing the statement that there exists a counter-
example to the specification, of a particular structure and finite size k, as a propositional
logic formula, and then using SAT-solving to determine the satisfiability of this formula.

Bounded model checking was first proposed in the context of linear-time temporal
logic, where the structure of the counter-examples can be taken to be a run, a linear
sequence of states, with the final one equal to one of the intermediate states to rep-
resent cyclical behaviour. There have subsequently been proposals to apply BMC to
branching-time temporal logics, and to logics combining temporal and epistemic logic.
A BMC encoding for ACTL, the universal fragment of the branching time logic CTL,
has been proposed in [14], and extended to the richer logic ACTL* (which combines el-
ements of linear- and branching-time logics) in [16]. The encoding for ACTL has been
extended to a logic ACTLKn, which also contains epistemic operators, in [13].

We show in this paper that it is possible to significantly improve upon the efficiency
of BMC for temporal epistemic logic by means of an improved encoding. We develop

� Work supported by Australian Research Council Linkage Grant LP0882961 and Defence
Research and Development Canada (Valcartier) contract W7701-082453. An abstract of this
paper also appears in the AAMAS 2010 proceedings.

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 95–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

96 X. Huang, C. Luo, and R. van der Meyden

an efficient encoding for fair ACTLKn logic, which extends ACTLKn with a generalized
Büchi fairness condition. Two main ideas underly the efficiency of our encoding. First,
we sharpen the relationship between the formula and the runs in the counter-example:
rather than simply evaluating the semantics of the formula over the counter-example,
so that any run could be a candidate for the witness required for an existential claim,
our encoding identifies a particular run as providing the required witness. Secondly, we
associate particular subformulas with particular points in the counter-example struc-
ture, and use atomic propositions to represent the satisfaction of these subformulas in a
way that eliminates exponential blowups in previous encodings by means of structure-
sharing. Additionally, we use a number of optimizations that enable the number of runs
required in the search for a counter-example to be reduced, and the shape of these runs
to be simplified in a number of cases.

We show by both theoretical arguments and experimental results that our encod-
ing yields an improved performance of BMC on a range of examples. Theoretically,
we present examples where the size of the encoding is reduced from exponential to
quadratic. One such example is the “nested knowledge” formula (KaKb)n p expressing
that two agents a� b have degree n mutual knowledge of the proposition p.

Such improvements in encoding size are shown to have a significant impact on the
runtimes required to find counter-examples in practice. In our experimental results, we
have implemented three BMC encodings (that of [13], an earlier improvement [17] and
our new encoding) in the epistemic model checker MCK [6]. MCK already supported a
range of BDD-based model checking algorithms. We report the results of experiments
on several protocols, including Dining Cryptographers [3], Byzantine Generals [9] and
a simple Pursuit-Evasion Game. For each example, we consider a number of specifi-
cation formulas. Both the systems description and the specification formulas involve
a numerical parameter, and we show how the run-time of model checking scales with
this parameter in each experiment, comparing the BMC techniques and a BDD-based
technique. The experimental results show that our new BMC encoding often yields a
much better performance than the previous BMC encodings. On the other hand, which
of our new BMC encoding and BDD-based model checking is more efficient depends
on the example.

The structure of the paper is as follows. Section 2 defines the logic of knowledge and
time ACTLKn that we study, and defines the model checking problem for this logic.
Previous bounded model checking approaches for this and related logics are reviewed
in Section 3. We describe our new encoding in Section 4, where we also motivate on
theoretical grounds why we expect this encoding to yield improved model checking per-
formance. This is followed in Section 5 by a discussion of experimental results which
validate and quantify the improved performance. Section 6 discusses related work, and
Section 7 concludes with a discussion of future work.

2 Preliminaries

We work with a logic ACTLKn that combines the branching time logic ACTL (i.e.,
the universal fragment of the branching time temporal logic CTL) and the logic of
knowledge and common knowledge for n agents, as well as its dual ECTLKn. Dually,

Improved Bounded Model Checking for a Fair Branching-Time 97

the logic ECTLKn can be defined as ��� � � � ACTLKn�; we give an expressively
equivalent syntax for this logic below. In model checking these logics, we are interested
in verifying that an ACTLKn formula is valid in a model. To find a counterexample for
a specification � in the logic ACTLKn is the same as to find a witness for � � �� in the
logic ECTLKn. Since BMC works by searching for such witnesses, we concentrate on
the ECTLKn syntax in what follows.

Let Prop be a set of atomic propositions and Ags � �1� � � � � n� be a set of n agents.
� and � are used to denote the truth values True and False, respectively. The syntax of
ACTLKn is given by the following grammar 1 :

� :�� p � �p � � � � � � � � � AX� � AF� � AG� � A(�U�) � Ki�

where p � Prop, and i � Ags. Similarly, the syntax of ECTLKn is given by the grammar:

� :�� p � �p � � � � � � � � � EX� � EF� � EG� � E(�U�) � Ki�

where p � Prop, and i � Ags. The connection between the two languages is given
by the following equivalences: �AX� � EX��, �AF� � EG��, �AG� � EF��,
�A(�U�) � EG�� � E(��U(�� � ��)), �Ki� � Ki��. These equivalences may be
used together with DeMorgans laws to transform ��, for any ACTLKn formula �, into
an equivalent ECTLKn formula.

We use a semantics for ECTLKn that is based on a variant of the interpreted systems
model for the logic of knowledge [5]. Let W be a set, which we call the set of global
states. A run over W is a function r : N � W. An interpreted system over W for n
agents is a tuple 	 � (
��1� � � � ��n� �), where
 is a set of runs over W, each �i is an
equivalence relation on W, and � : W � �(Prop) is an interpretation function.

A point of 	 is a pair (r�m) where r �
 and m � N. We say that a run r� is equivalent
to a run r up to time m � N if r�(k) � r(k) for 0 k m. We define the semantics of
ECTLKn by means of a relation 	� (r�m) �� �, where 	 is an intepreted system, (r�m) is
a point of 	, and � is a formula. This relation is defined inductively as follows:

– 	� (r�m) �� p if p � �(r(m)),
– 	� (r�m) �� �p if not 	� (r�m) �� p
– 	� (r�m) �� � � � if 	� (r�m) �� � or 	� (r�m) �� �

– 	� (r�m) �� � � � if 	� (r�m) �� � and 	� (r�m) �� �

– 	� (r�m) �� EX� if there exists a run r� �
 equivalent to r up to time m such that
	� (r��m � 1) �� �

– 	� (r�m) �� EF� if there exists a run r� �
 equivalent to r up to time m and m� � m
such that 	� (r��m�) �� �.

– 	� (r�m) �� EG� if there exists a run r� �
 equivalent to r up to time m such that
	� (r�m�) �� � for all m� � m

– 	� (r�m) �� E(�U�) if there exists a run r� �
 equivalent to r up to time m and a
time m� such that 	� (r�m�) �� � and 	� (r�m��) �� � for all m�� with m m�� 	 m�

– 	� (r�m) �� Ki� if for some point (r��m�) of 	 such that r(m) �i r�(m�) we have
	� (r��m�) �� �

1 In a longer version of the paper we include common knowledge operators, which we omit here
for brevity.

98 X. Huang, C. Luo, and R. van der Meyden

For the knowledge operators, this semantics is essentially the same as the usual (obser-
vational) interpreted systems semantics. For the temporal operators, it corresponds to a
semantics for branching time known as the bundle semantics [2,12].

While they give a clean and coherent semantics to the logic, interpreted systems are
not suitable as inputs for a model checking program, since they are infinite structures.
We therefore also work with an alternate semantic representation based on transition
systems with epistemic indistinguishability relations and fairness condition. A (finite)
system is a tuple M � (W� I����1� � � � ��n� ��
) where W is a (finite) set of global
states, I � W is the set of initial states, �� W � W is a serial temporal transition
relation, each �i� W�W is an equivalence relation representing epistemic accessibility
for agent i � Ags, � : W � �(Prop) is a propositional interpretation, and
 � �(W) � �
is a generalized Büchi fairness condition. The system M can also be regarded as a
generalized Büchi automaton with
 the set of acceptance sets.

Given a system M over global states W, we may construct an interpreted system
	(M) � (
��1� � � � ��n� �) over global states W, as follows. The components �i and �

are identical to those in M. The set of runs is defined as follows. We say that a fullpath
from a state w is an infinite sequence of states w0w1��� such that w0 � w and wi � wi�1

for all i � 0. We use Path(w) to denote the set of all fullpaths from state w. The fairness
condition is used to place an additional constraint on fullpaths. A fullpath w0w1 � � � is
said to be fair if for all Q �
, there exists a state w � Q such that w � wi for infinitely
many i. A run of the system is a fair fullpath w0w1 � � � with w0 � I. We define
 to be
the set of runs of M. A formula � of ACTLKn is said to hold in M, written M ��A �, if
	(M)� (r� 0) �� � for all r �
. Dually, a formula � of ECTLKn is said to be satisfiable
in M, written M ��E �, if 	(M)� (r� 0) �� � for some r �
.

We say that a state w is fair if it is the initial state of some fair fullpath, otherwise the
state is unfair. A state w is reachable if there exists a sequence w0 � w1 � � � �wk � w
where w0 � I. (Some care with this is required because of the epistemic operators.) A
state is fair and reachable iff it occurs in some run. Note that some reachable states may
be unfair — we cannot always assume that a transition takes us to a fair state.

2.1 Model Checking Input Format

From now on, we fix a system M, a specification � in ACTLKn. We are interested
in determining whether M ��A �, or equivalently, whether M ��E � for the ECTLKn

formula � corresponding to ��.
We will assume that the system M is presented in a particular format, in which the

states of the system are viewed as assignments to a set of boolean variables, and the
other components of M are represented by means of propositional logic formulas. In
particular, we assume that there are N boolean variables making up a state. A state can
therefore be represented as a boolean vector of length N. To refer to an arbitrary state,
we may use a vector s � (s1� � � � � sN) of N boolean variables si. Given such a vector, let
s� � (s�1� � � � � s�N) be the “primed” vector of symbols obtained by adding a prime symbol
to each variable name to create N distinct variable names. We assume that the system
M is presented as a tuple �s� I(s)� T (s� s�)� H1(s� s�)� � � � � Hn(s� s�)�
�, where

– s identifies the variables that make up the state, or are used to compute state
transitions,

Improved Bounded Model Checking for a Fair Branching-Time 99

– I(s) is a propositional logic formula; a state is initial if it satisfies this formula,
– T (s� s�) is a propositional logic formula representing the transition relation�; there

is a transition for a state represented by an assignment to s to the state represented
by an assignment s� if this formula holds with respect to the union of these assign-
ments.

– Hi(s� s�) is a propositional logic formula representing the indistinguishability rela-
tion �i for agent i,

–
 � �F1(s)� � � � � Fm(s)� is a set (possibly empty) of propositional logic formulas
Fi(s), each representing one of the sets of states in a generalized Büchi fairness
condition
.

In addition to these formulas, we will make use of the formula H(s� s�) �
�N

i�1 si � s�i
which asserts the the states represented by s and s� are identical.

Given this representation of a system, we may represent length k fragments of runs of
the system using a sequence r�r(0)� r(1)� � � � � r(k�1), where each r(i)� (r(i)1� � � � � r(i)N)
is a vector of N variables. We use the following formulas to express properties of such
sequences:

1. ����k(r) �
k�2�

i�0

T (r(i)� r(i � 1)) expresses that r is a run fragment, in the sense that

there is a transition from each state to the next,
2. �����k(r� l) � ����k(r)�

�k�1
h�0(h � l�T (r(k� 1)� r(h))) expresses that r is a cyclic

run fragment. Here l is an additional variable of type �0 � � � k � 1�, representing the
point at which the cycle starts.

3. ������k(r� l) � �����k(r� l) �
�m

t�1
�k�1

h�0(h � l � Ft(r(h))) expresses that r is a
fair cyclic run fragment. Fairness is obtained from the fact that each condition Ft

in the generalized Büchi fairness condition holds at some point in the cycle. This
implies that when we unfold the cyclic run to an infinite run, each condition Fi will
be satisfied infinitely often, as required. (We remark that the use of the variable l
helps to reduce the size of this formula by a factor of k.)

3 Previous Bounded Model Checking Algorithms for ACTLKn

Bounded model checking approaches the problem of model checking a formula � in
a system M via a search for counter-examples to the validity of the formula. These
counter-examples are parameterized by their size k, and the existence of a counter-
example of size k satisfying the formula � � �� is encoded as a propositional logic
formula [M� �]k. Propositional logic SAT-solvers are then used to search for a satisfying
assignment of this formula.

The details of the encoding depend upon the specification logic in question, and
for a number of logics there have been several distinct proposals for encodings, with
different complexity properties. In this section, we describe two encodings that have
been proposed in the past for branching-time temporal and epistemic logics. This sets
the context for our proposed optimizations.

100 X. Huang, C. Luo, and R. van der Meyden

3.1 Encoding of Penczeck et al

Penczeck et al [14] first proposed a BMC encoding for the logic ECTL, i.e., the logic
ECTLKn described above, but without the knowledge operators. This encoding was
later extended for ECTLKn [13]. In both cases, the encodings were for systems without
fairness conditions, i.e., systems in which
 � � in the presentation above.

The basis for the encoding is a representation of forest-like counter-examples as
set of run fragments. Intuitively, each time that the encoding needs to deal with an
existential formula (such as EF�, which requires the existence of a branch from the
present point on which � is eventually satisfied), it uses a new run fragment (in the
case of EF�, this fragment is required to contain a point at which � holds). The BMC
parameter k is taken to be the length of the run fragments. The total number of run
fragments required to express the expected shape of the counter-example for a given
value k for the formula is 1 � fk(�), where the function fk is defined recursively as
follows: fk(p) � fk(�p) � 0 for p � Prop, fk(� � �) � max� fk(�)� fk(�)�, fk(� � �) �
fk(�) � fk(�), fk(Y�) � fk(�) � 1 with Y � �EX� EF� Ki�, fk(EG�) � k � fk(�) � 1,
fk(E(�U�)) � (k � 1) � fk(�) � fk(�) � 1. A uniform notation is used for these run
fragments. We write ri for the ith run fragment. (For i � j, no variable is shared between
the run fragments ri and r j.)

The whole encoding is made up of two parts as follows.

[M� �]k � I(r0(0)) �
fk(�)�

j�0

����k(r j) � [�]0�0
k (1)

The first part simply says that each r j is a run fragment, and that the first state of r0 is an
initial state of the system. The second part states that this structure supports the formula
�. The notation [�]m�n

k is defined in Table 1. Intuitively, this states that formula � holds
at state m on run fragment rn. We take pi to be the i-th state variable, so that (rn(m))i is
the instance of this variable at the m-th state of the run fragment rn.

Table 1. Encoding Function [�]m�n
k for ECTLKn of Penczeck et al

[pi]
m�n
k � (rn(m))i

[�pi]
m�n
k � �(rn(m))i

[� � �]m�n
k � [�]m�n

k � [�]m�n
k

[� � �]m�n
k � [�]m�n

k � [�]m�n
k

[EX�]m�n
k �

� fk (�)
j�1 (H(rn(m)� r j(0)) � [�]1� j

k)

[EG�]m�n
k �

� fk (�)
j�1 (H(rn(m)� r j(0)) �

�k�1
l�0 [�]l� j

k)
[EF�]m�n

k �
� fk (�)

j�1 (H(rn(m)� r j(0)) �
�k�1

l�0 [�]l� j
k)

[E(�U�)]m�n
k �

� fk (�)
j�1 (H(rn(m)� r j(0)) �

�k�1
l�0 ([�]l� j

k �
�l�1

t�0[�]t� j
k))

[Ki�]m�n
k �

� fk (�)
j�1 (I(r j(0)) �

�k�1
l�0 ([�]l� j

k � H(rn(m)� r j(l))))

For purposes of comparison with our encoding below, which takes fairness con-
ditions into account, we note that fairness may be incorporated into this encoding by
means of a simple change, using ������k(r j) where the encoding above uses ����k(r j).

Improved Bounded Model Checking for a Fair Branching-Time 101

We note that this use of cyclic runs is similar to their use in the BMC encodings for
ACTL* [16] or ACTL*Kn [11].

3.2 Improved Encoding for ECTL by Zbrzezny

Zbrzezny [17] noted that the ECTL encoding of Penczeck et al [14] assumes that there
exist sufficient run fragments in the counter-example to satisfy the existential subfor-
mulas encountered, but it needs to evaluate all of these fragments to check whether it
provides the required witness. For example, in the clause for EG� in Table 1 the pur-
pose of the top level disjunction over j � 1 � � � fk(�) is to assert that one of the run
fragments in the counter-example satisfies � at all points. This is inefficient: since the
number fk(�) of run fragments is deliberately chosen to be large enough to supply all
the witnesses required, we can allocate a specific run fragment to each witness ahead of
time, and replace the check against all run fragments by a check against the specific run
fragment that is supposed to provide the witness.

Zbrzezny gives a BMC encoding for ECTL that is based on this observation, and
shows that his encoding leads to improved performance for model checking ECTL. We
skip the full details of his encoding here: it requires some careful bookkeeping of run
numbers during the encoding. Our own encoding below incorporates this idea with a
slightly different formulation, but goes on to deal with the full logic ECTLKn in a way
that incorporates further optimizations. For purposes of comparison we give just the
clause for EF� (a simplication of the clause for E(�U�) actually presented), which
defines the encoding [EF�][m�n�A]

k as

H(rn(m)� rmin(A)(0)) �
k�1�

j�0

[�][j�min(A)�A��min(A)�]
k �

Intuitively, A is a set of indices of free run fragments, min(A) is index of the next avail-
able run fragment, and A � �min(A)� is the set of run fragments remaining for the encod-
ing of witnesses required by �.

4 Improved encoding for ACTLKn

In this section we define an encoding for ACTLKn that improves upon the encodings
discussed in the previous section. We begin by noting some inefficiencies in these en-
codings, and noting some opportunities for optimization.

4.1 Motivation

Note that both the encodings of Penczeck et al and Zbrzezny construct the encoding
[�]k recursively, but in the process introduce some large disjunctions or conjunctions
when dealing with modal operators. For example, for [EF�]k, both encodings use a
subformula of the form

�k�1
j�0[�] j

k. In the case of formulas with deeply nested operators,
this leads to an exponential blowup. For example for the formula �h defined by �0 � p0

102 X. Huang, C. Luo, and R. van der Meyden

and �i�1 � pi�1 � EF(�i), even using the more efficient Zbrzezny approach we would
obtain an encoding [�h]k of the structure

���

k�1�

j1�0

(���
k�1�

j2�0

� � � (���
k�1�

jh�0

(���)))))

which has size of the order kh. On the other hand, the set of run fragments �r0 � � � rh�

necessary for this encoding is of size merely h � 1, and each run fragment has k states.
(Although Zbrzezny does not discuss knowledge, application of his ideas would involve
dropping only the outer disjunction in the case for Ki in Table 1, so a similar blowup
would be obtained for formulas such as (KaKb)h p that have been of interest when deal-
ing with knowledge.)

We note that it is possible to encode this example more efficiently by introducing
propositions er�n

� representing that � holds at the point (r� n). By Zbrzezny’s ideas, we
can witness each subformula �i by a particular run rh�i, so we would like to have that

er0�0
�h

�

h�

j�1

k�

i�1

e
r j�i
�h� j

which states that �h holds at (r0� 0) and �h� j holds at some point i of r j, plus

h�1�

j�0

k�1�

i�0

e
r j�i
�h� j

� (r j(i)h� j � H(r j(i)� r j�1(0)))

i.e., ph� j holds at (r j� i) and r j�1 is a branch extending from (r j� i). This gives an encoding
that is of size O(h � k) rather than exponential. (We remark that since we only seek to
construct one counter-example, rather than detect all, the converse implications are not
needed.)

0 j 0 1k k

r

r

0

1

Fig. 1. Shapes of Counterexamples

We also note that a further optimization opportunity arises from considerations con-
cerning loops and fairness conditions. Consider the specification �3 � AGAF�p in a
system with fairness condition. Following the BMC approaches describe above, the ex-
pected shape of the counterexample is shown in the left graph of Figure 1. (Lines with
arrows indicate transitions, double lines indicate identity of states.) However, we can
in fact drop the cycle on the run fragment r0, since we need it only to justify fairness
of states up to the point j where we switch to the run fragment r1, which contains a

Improved Bounded Model Checking for a Fair Branching-Time 103

cycle that justifies fairness of all states that can reach this cycle. A similar consideration
applies to the specification AXAX�p, whose counter-example form, consisting of 3 run
fragments, is depicted on the right in Figure 1. However, not only can we drop loops
here, we in fact need only the first step of the first two fragments.

4.2 Encoding

We now develop a new encoding for bounded model checking ACTLKn. The encoding
is based on the optimization ideas discussed above.

The encoding uses three types of resources: singleton run fragments, acyclic run
fragments and cyclic run fragments, for which we use the symbols �, �, 	 respectively.
We use the symbol r to represent an instance of any type of resource. Each resource r is
associated with a length, denoted �r�, which depends on the BMC parameter. For BMC
parameter k, singleton run fragment has length 1, and acyclic and cyclic run fragments
have length k. We use the term point to represent a pair (r� n) where r is a resource
and n 	 �r� is an index, up to the length of that resource. Intuitively, these points will
correspond to points of the system being model checked.

A context is a triple R � (n�� n�� n�) of numbers, representing the index number of
the state, acyclic run fragment and cyclic run fragment that is the next free resource
available for consumption by the encoding. For a resource type T � ��� �� 	�, we write
newT (R) for the resource of type T with index nT . We treat contexts as elements of the
lattice �3, with basis � � (1� 0� 0), � � (0� 1� 0), 	 � (0� 0� 1). Thus, we can represent a
situation in which we consume one singleton run fragment in context R as consuming
new�(R) and changing the context to R � �.

The encoding of each formula � consumes some number of each type of resource.
We denote these numbers by uk

�
(�), uk

�
(�) and uk

�
(�), respectively. The definitions of

these functions can be read from the encoding rules: we describe how this can be done
after we have given these rules. Using the lattice representation, we also write uk(�) �
(uk

�
(�)� uk

�
(�)� uk

�
(�)).

We work with “obligations”, which are tuples �r� n� ��R� representing that the encod-
ing is required to contain components sufficient to express that formula � holds at the
point (r� n) in the counter-example, with the encoding operating with respect to context
R. The latter is used to determine precisely which resource instances will be used in the
encoding.

Associated to these obligations are atomic propositions of the form er�n
� . We call these

atomic propositions skeleton variables. (We note that because the encoding shares re-
sources for disjunctive cases, a run fragment may be a potential witness for several
different subformulas, so we do not take the extra step of indexing run fragments by sub-
formulas.) In general, satisfying the obligation �r� n� ��R� recursively requires the intro-
duction of new obligations, and a formula that relates the atomic proposition er�n

� to other
atomic propositions in the encoding. This formula uses several other atomic proposi-
tions as abbreviations of various formulas that need to be represented: br�n�r��n�

H expresses
H(r(n)� r�(n�)), br�n�r��n�

Hi
expresses Hi(r(n)� r�(n�)), br�n�r��n�

X expresses T (r(n)� r�(n�)), br�n
I

expresses I(r(n)).
We present a set of obligation rewrite rules, parameterized by the BMC parameter k,

which represents the maximal run length in the counterexamples to be encoded. Each

104 X. Huang, C. Luo, and R. van der Meyden

rule is of the form o �k f �O, where o is an obligation, f is a propositional logic for-
mula, and O is a set of obligations. Intuitively, this rule means the obligation o can be
satisfied by including in the encoding the formula f , but that the additional obligations
in O need to be satisfied. The obligation rewrite rules are represented in Table 2. Some
of the rules consume resources, at most one item in each case, the type T of which is
given in the 3rd column. However, recursive satisfaction of the new obligations intro-
duced by a rule leads to further resource consumption. The total resource consumption
when rewriting each type of formula, including this recursive consumption, is given in
the second column, which gives the recursive definition of the resource consumption
function uk with range N3.

The encoding uses several boolean functions of formulas to handle fairness issues.
Define tf (�) � � if � is in the form EY� with Y � �X� F�G� or E(�U�). Then let
tpf (�) � � if tf (�), or � � ��� and either tpf (�) or tpf (�), or � � ��� and both tpf (�)
and tpf (�). Intuitively, this expresses that all ways of satisfying the formula involve
satisfying a temporal formula at some point. We also use the boolean variable � to
represent that the fairness condition
 in the system is non-trivial, i.e.,
 � �. The
condition � ��tpf (�) is used to capture situations where fairness constraints need to be
applied to states in the present run fragment, but we cannot rely upon the fact that some
other run fragment will ensure that all relevant states on the present run are fair.

These rules, which operate on individual obligations, are lifted to set rewriting rules,
that operate on pairs F�O consisting of a set of propositional formulas F and a set of
obligations O, as follows: F�O �k F��O� if there exists an obligation o � O, a rule
o �k f �O�� and F�

� F � � f � and O�
� (O � �o�) � O��.

For a formula �, we start with an initial set of formulas F0 and set of obligations O0

that depend on the type of � and the existence of fairness constraints. If � � �tpf (�),
then we take r0 to be the individual state with index 0, and O0 � �r0� 0� �� ��. Otherwise
we take r0 to be the cyclic run fragment with index 0, and O0 � �r0� 0� �� 	�. In either
case, we take F0 � �er0�0

� }. If there is a sequence of set rewrites F0�O0 ��
k Fk(�)� �

to a pair in which the set of obligations is empty, then we take Fk(�) to be the set of
propositional logic formulas that represents the semantics of � on the counterexample.
Let �k(�) be the set of skeleton variables occurring in Fk(�).

The complete encoding of the model checking problem is then

[M� �]k � br0�0
I �

�

f�Fk (�)

f � Resourcesk(�) � Encode(�k(�))�

Here Resourcesk(�) expresses that the resources used in the encoding of � have the
proper structure, and Encode(�) expresses that the boolean variables in � have the in-
tended meaning. More specifically, for each acyclic run fragment r with index j uk

�
(�)

(cyclic run fragment r with index j uk
�
(�)), Resources(�) contains a conjunct ����k(r)

(respectively, ������k(r)). Similarly, for each b � �k(�), the formula Encode(�k(�))
contains a conjunct b � f , where f is its intended meaning. For example, for b �

br�m�r��m�

H we include the conjunct br�m�r��m�

H � H(r(m)� r�(m�)). See above for the mean-
ings of the remaining cases.

The correctness of the encoding is stated in the following theorem. Note that the
bound on the parameter k also establishes termination (in principle) of BMC.

Improved Bounded Model Checking for a Fair Branching-Time 105

Ta
bl

e
2.

O
bl

ig
at

io
n

re
w

ri
ti

ng
ru

le
s

�r

�n

��
�R

�
�

k
f�

O
,w

he
re

r�
�

ne
w

T
(R

)

�

uk
(�

)
T

f
O

co
nd

it
io

ns
p i

0
er�

n

�

�

r(
n)

i
p i

	

P
ro

p

�

p i
0

er�

n

�

�

�

r(
n)

i
p i

	

P
ro

p

�
�
�

uk
(�

)�

uk (�

)
er�

n

�

�

er�

n

�

�

er�

n

�

�r

�n

��
�R

��
�r

�n

��
�R

�

uk (�

)�

�
�
�

m
ax

(u
k
(�

)�

uk (�

))
er�

n

�

�

er�

n

�

�

er�

n

�

�r

�n

��
�R

��
�r

�n

��
�R

�

E
X

�

�

�

uk (�

)

�

er�

n

�

�

br�

n�

r�
� 0

X

�

er�
�0

�

�r

�
�0

��
�R

�

�
�

�
�
�

tp
f(

�

)

�

�

uk (�

)

�

er�

n

�

�

br�

n�

r�
� 0

X

�

er�
�0

�

�r

�
�0

��
�R

�

�
�

ot
he

rw
is

e

E
G

�

�

�

k

uk (�

)

�

er�

n

�

�

br�

n�

r�
�0

H

�

k�

1

� i�

0

er�
�i

�

�r

� �

i�
�
�R

�

�

�

i

uk
(�

)�
�

i

�

0

��
�k

�

1

E
F

�

�

�

uk (�

)

�

er�

n

�

�

br�

n�

r�
�0

H

�

k�

1

� i�

0

er�
�i

�

�r

�
�i

��
�R

�

�
�,

i

�

0

��
�k

�

1

�
�
�

tp
f(

�

)

�

�

uk (�

)

�

er�

n

�

�

br�

n�

r�
�0

H

�

k�

1

� i�

0

er�
�i

�

�r

�
�i

��
�R

�

�
�,

i

�

0
��
�k
�

1
ot

he
rw

is
e

K
i�

�

�

uk (�

)

�

er�

n

�

�

br�
�0

I

�

k�

1

� j�

0

(b
r�

n�

r�
�j

H
i

�

er�
�j

�

)

�r

�
�i

��
�R

�

�
�,

i
�

0

��
�k

�

1

�
�
�

tp
f(

�

)

�

�

uk (�

)

�

er�

n

�

�

br�
�0

I

�

k�

1

� j�

0

(b
r�

n�

r�
�j

H
i

�

er�
�j

�

)

�r

�
�i

��
�R
�

�
�,

i

�

0

��
�k

�

1
ot

he
rw

is
e

E
[�

U

�

]

�

�

uk
(�

)�

(k

�

1)
uk

(�

)

�

er�

n

�

�

br�

n�

r�
� 0

H

�

k�

1

� i�

0

(i�

1 � j�

0

er�
�j

�

�

er�
� i

�

)
�r

�
�

j�
�
�R

�

�

�

j

uk
(�

)�
��

r�
�i

��
�R

�

�

�

(k

�

1)

uk
(�

)�
�

�
�
�

tp
f(

�

)

i

�

0

��
�k

�

1�

j

�

0

��
�k

�

2

�

�

uk
(�

)�

ku
k
(�

)

�

er�

n

�

�

br�

n�

r�
� 0

H

�

k�

1

� i�

0

(i�

1 � j�

0

er�
�j

�

�
er�

� i

�

)

�r

�
�

j�
�
�R

�

�

�

j

uk
(�

)�
��

r�
�i

��
�R

�

�

�

k

uk
(�

)�
�

ot
he

rw
is

e

i

�

0

��
�k

�

1�

j

�

0

��
�k

�

2

106 X. Huang, C. Luo, and R. van der Meyden

Theorem 1. Let M be a (finite) system, � an ACTLKn formula. Then M ��� � iff [M� �]k

is satisfiable for some k �M�, where � � ��.

We can also state a general result on the size of the encoding, compared with the
complexity of the previous encodings.

Theorem 2. For our new encoding, the size of [M� �]k is O(lrk2), where r is the number
of consumed run fragments and l is the size of formula �.

This is to be compared with a size of O(lrd�2kd�2) for the encoding of Penczek and
O(lrkd�2) for the encoding of Zbrzezny, where d is the depth of nesting of modalities
in �.

5 Experimental Results

We argued above that it is possible to obtain an exponential improvement in the size
of the encoding, so there are good theoretical grounds to believe that our approach will
improve the performance of bounded model checking, particularly as the encoding is
an input to a SAT-solver, which deals with an NP-complete problem. In this section
we experimentally validate the expectation that our encoding yields a performance im-
provement over the earlier BMC encodings.

We conducted experiments using several classical multi-agent protocols, varying
several aspects of the model checking problem. Each experiment measured runtime
as a function of some parameter n of the problem: in some cases n was the number
of agents, in others it concerned the depth of nesting, in others it was the size of the
state space. Information about protocols, specifications and fairness conditions is listed
in Table 3. Here n is the problem scale, NoS is the size of state space, and NoV is the
number of state variables. For each of these protocols, we collect data on three spec-
ifications. The specifications all have the form AG(�) or AF(�) where � is a formula
that uses epistemic operators, but no temporal operators. For these specifications, we
state the depth of modality nesting d. All the specifications are invalid, and we state
the number of run fragments NoR in the BMC encoding as a function of the problem
scale n and BMC parameter k. The minimal value of the BMC parameter yielding a
counterexample is also stated (bound[k]).

Each specification is model checked using a BDD-based model checker (MCK based
on CUDD [15] with sifting optimization), and three different BMC encodings: that of
Penczek et al (BMC P), Zbrzezny (BMC Z), and our new BMC encoding (BMC H), all
implemented as extensions to MCK, so that the inputs to all four algorithms are the
same. We included our fairness optimization in the BMC Z implementation.

We report performance results on a 2� 3GHz Quad-core Intel Xeon MacPro with
16GB 667 MHz RAM. (Parallelism in the architecture is not used by the implementa-
tion.) BMC performance results are the cumulative timing for all values of the parameter
k until a counter-example is found. Since the examples show exponential growth pat-
terns as a function of the problem scale n, we plot results using a log-scale for run-times
s. Thus, fitting a line s � an � b to the data corresponds to a model of O(ean), and an
increase in the slope a corresponds to a polynomial order increase in running time.

Improved Bounded Model Checking for a Fair Branching-Time 107

Table 3. Parameter values in the experiments

Sys scale[n] NoS NoV fair. spec. depth[d] valid NoR[r] bound[k]
DC agents O(22n) O(n log n) �dc1 2 2 2

� 3 �dc2 2 n 2
�dc3 2 k � 1 3

BG msgs O(2n) O(n log n) �bg1 �bg1 3 3 6
� 2 �bg2 �bg2 n n n � 3

�bg3 2 2k � 1 3
PE length O(6n2) O(log n) �pe1 2 3 n	2� � 2

� 3 �pe2 2 n � 2 n	2� � 2
�pe3 2 k � 1 2n � 1

The first protocol (DC) is Chaum’s Dining Cryptographers [3], a protocol for anony-
mous broadcast. In this protocol, n agents first share the outcomes of coins they flip in
a pairwise fashion around a ring, and then each agent i makes a public announcement
determined from the two coinflips for which they know the outcome and a proposition
paidi (representing whether or not they paid for the meal – at most one is assumed
to have paid.) The proposition stop is used to indicate completion of the protocol. This
protocol is scaled according to the number of agents, i.e., the problem parameter n is the
number of agents. The characteristics of this protocol are that the size of its state space
is O(22n) and the number of state variables is O(n log n). The formulas we consider are
given in Table 4.

Table 4. Specifications for Dinning Cryptographers

�dc1 AG((stop � �paid0) � K0(
n�1�

i�1

paidi))

�dc2 AG((stop � �paid0 � odd) �
n�1�

i�1

K0 paidi)

�dc3 AF(�paid0 � K0(
n�1�

i�1

paidi)))

Performance results for these formulas are given in Figure 2. (In all these figures,
f � g and gi are propositional logic formulas used as abbreviations.) Counterexamples
for these formulas require only small bounds of k but may need a large number of runs.

The second protocol (BG) is the two agent Byzantine Generals Problem, first pro-
posed in [9], in which two agents repeatedly send each other acknowledgements through
a lossy channel to increase their mutual knowledge of receipt of a message. This pro-
tocol is scaled according to the total number of messages sent by the agents. The char-
acteristics of this protocol are that the size of its state space is O(2n) and the number
of state variables is O(n log n). The formulas for this protocol are given in Table 5, and
performance results for these formulas are given in Figure 3.

108 X. Huang, C. Luo, and R. van der Meyden

Table 5. Specifications for Byzantine Generals

�bg1 AG(sndmsg0 � KAliceKBob sndmsg0)
�bg1 ��sndmsg0 � rcvmsg0��sndack0 � rcvack0�

�bg2

�������
AG(rcvmsg n

2 �1 � �rcvack n
2 �1 � (KAliceKBob)

n�2
2 KAlicercvmsg0) if n is even

AG(rcvack n�3
2
� �rcvmsg n�1

2
� (KBobKAlice)

n�1
2 rcvmsg0) if n is odd

�bg2

���������������������

n
2 �1	

i�0

��sndmsgi � rcvmsgi��sndacki � rcvacki� if n is even

��sndmsg� n
2 � � rcvmsg� n

2 �� �

� n
2 ��1	

i�0

��sndmsgi � rcvmsgi��sndacki � rcvacki� if n is odd

�bg3 AF(KBob sndmsg0 � KAlicercvmsg0)

The third protocol (PE) is a two agent Pursuit-Evasion Game on a very simple dis-
crete linear terrain consisting of positions 0 to n — the pursuer needs to determine if
the evader is in the terrain or not, and has perfect visibility on its present location. The
game starts with the evader at the rightmost position n and the pursuer at leftmost posi-
tion 0. The evader moves randomly between position 0 and n, while the pursuer patrols
between position 0 and n � 1. The game ends with a successful capture when they are
either at the same position or cross over, exchanging their positions in two successive
rounds. This example is scaled according to the length of terrain. The characteristics
of this protocol are that the size of its state space is O(6n2) and the number of state
variables is only O(log n). Formulas for this protocol are given in Table 6. Here ep is
the Evader’s position, pp is the Pursuer’s position and n is the length of terrain. Per-
formance results for these formulas are given in Figure 4. The specifications need large
but linear bounds to find their counterexamples.

Table 6. Specifications for Pursuit Evation Game

�pe1 AG(f ound � direction � 0 � (Kpursuerep � pp) � (Kpursuerep � pp � 1))

�pe2 AG(f ound �

n�

i�0

Kpursuerep � i)

�pe3 AF(Kpursuerep � pp)

In all cases, our new BMC encoding (BMC H) gives a significant improvement in
running time over the Penczek et al encoding (BMC P). In some cases, we find a con-
stant factor improvement, indicated by parallel curves in the logscale plot with differing
initial points. E.g., for �bg1 and �bg3 we have roughly a 100-fold speedup, and for �dc1

and �dc3 we have roughly a 10-fold speedup. In other cases, we see in the logscale plot
roughly linear curves in both cases but with a lower slope for our encoding, implying
that for some c 1, the new encoding performs as f (n)1�c where the Penczek et al
encoding performs as f (n), e.g., for �dc2, �bg2 and �pe1- �pe3. In the latter cases, we

Improved Bounded Model Checking for a Fair Branching-Time 109

 0.1

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18 20

s
o

lu
ti
o

n
 t

im
e

 i
n

 l
o

g
s
c
a

le
:

s

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψdc1 : AG(f ⇒ K0(
∨n

i=1 gi))

 0.1

 1

 10

 100

1000

 4 6 8 10 12 14 16 18 20

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψdc2 : AG(f ⇒ ∨n
i=1 K0(gi))

 0.1

 1

 10

 100

1000

 4 6 8 10 12 14 16 18 20

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψdc3 : AF(f ⇒ K0(
∨n

i=1 gi))

Fig. 2. Dining Cryptographers

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35

s
o

lu
ti
o

n
 t

im
e

 i
n

 l
o

g
s
c
a

le
:

s

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψbg1 : AG(f ⇒ KAKB(g))
|χbg1| = O(1)

 0.01

 0.1

 1

 10

 100

1000

 2 4 6 8 10 12 14 16 18 20

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψbg2 : AG(f ⇒ (KAKB)n/2(g))
|χbg2| = O(n)

 0.01

 0.1

 1

 10

 100

1000

 5 10 15 20 25 30 35

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψbg3 : AF(KA(f) ∨ KB(g))

Fig. 3. Byzantine Generals

 0.01

 0.1

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18 20

s
o

lu
ti
o

n
 t

im
e

 i
n

 l
o

g
s
c
a

le
:

s

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψpe1 : AG(f ⇒ KP(g1)∨KP(g2)))
|gi| = O((log n)2)

 0.01

 0.1

 1

 10

 100

1000

 4 6 8 10 12 14 16 18 20

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψpe2 : AG(f ⇒ ∨n
i=1 KP(gi))

|gi| = O(log n)

 0.01

 0.1

 1

 10

 100

1000

 4 6 8 10 12 14 16 18 20

problem scale: n

BDD
BMC_P
BMC_Z
BMC_H

ψpe3 : AF(KP(g))
|gi| = O(log n)

Fig. 4. Pursuit-Evasion Games

110 X. Huang, C. Luo, and R. van der Meyden

obtain a very substantial improvement in the scale of example that the method is able
to handle in reasonable running times.

Performance of the Zbrzezny BMC encoding (BMC Z) is generally intermediate be-
tween the Penczek et al BMC encoding and ours. On deeply nested examples (e.g.,
�bg2) our encoding performs significantly better, as expected. However, the depth of
nesting does not need to be deep for an order of magnitude improvement to be visible
(e.g., �dc1, �dc2, �pe1 and �pe2). Finally, in some shallowly nested cases (�dc3, �bg3 and
�pe3) the performance is very similar to ours, and slightly faster by a small factor. (This
may be due to the overhead of constructing our slightly more intricate encoding.)

The performance comparison between the bounded model checking approaches and
the BDD approach depends on the example. BDD model checking outperforms all
the BMC approaches in all the pursuit-evasion game examples. On the Dining Cryp-
tographers example, the BDD model checker initially has comparable performance to
BMC H, but eventually BMC H wins out, and by more than a constant factor: we did not
get termination for the BDD on problems of scale 18, whereas BMC continued to per-
form steadily in logscale. For the Byzantine Generals, the BDD approach sometimes
(the deeply nested example �bg2) performs significantly better, or (�bg1 and �bg3) per-
forms better on small examples but eventually performs chaotically around our BMC
approach, but still better than the older BMC encodings.

6 Related Work

Kacprzak et al [7] have previously compared performance of the Penczek et al BMC
encoding, as implemented in the model checker Verics [8], with BDD based model
checking, implemented in MCMAS [10]. They study the Dining cryptographers proto-
col. We note that whereas we work from a single common model representation, they
need to work with different input representations. For BMC they report only 5 data
points, for BDD, up to 11. They conclude that the BDD approach is generally faster,
but that BMC may handle larger models. By contrast, we find that with our new en-
coding, BMC eventually has better performance. (This also seems to hold for BMC Z,
though for �dc2 this is not clear.)

Another comparison of epistemic model checkers is by van Ditmarsch et al [4], who
compare MCK, MCMAS and DEMO, principally from the point of view of ease of en-
coding of specifications of the Russian cards problem. In fact, the encodings developed
are somewhat different and are not directly comparable for performance purposes.

7 Conclusion and Future Work

In this paper, we have proposed a new BMC encoding function for fair ACTLKn. Com-
pared with previous encodings [14,13] whose complexity increases exponentially with
respect to the bound k and the number r of runs, the complexity of our encoding is only
quadratic on k and linear on r. We conduct experiments on it for several protocols, in-
cluding Dining Cryptographer, Byzantine Generals, and a Pursuit-Evasion Game. These
experiments show that the new encoding often performs much better than the old en-
codings. The performance comparison with BDD model checking gives mixed results,
but we note that unlike BDD model checking, BMC is able to return a counterexample.

Improved Bounded Model Checking for a Fair Branching-Time 111

For future work, we are investigating generalizing this counterexample-based encod-
ing to some more expressive logics, e.g., an universal fragment of modal �-calculus with
epistemic operators. We have already developed an encoding function for synchronous
systems with perfect recall semantics, and will report on its performance elsewhere.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118–149 (2003)

2. Burgess, J.P.: Logic and time. J. Symb. Log. 44(4), 566–582 (1979)
3. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untrace-

ability. J. Cryptology 1(1), 65–75 (1988)
4. van Ditmarsch, H.P., van der Hoek, W., van der Meyden, R., Ruan, J.: Model checking russian

cards. Electronic Notes in Theoretical Computer Science 149(2), 105–123 (2005); Proc. of
MoChart 2005

5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

6. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)

7. Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., Szreter, M.:
Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptogra-
phers protocol. Fundam. Inform. 72(1-3), 215–234 (2006)

8. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter,
M., Wozna, B., Zbrzezny, A.: Verics 2007 - a model checker for knowledge and
real-time. Fundam. Inform. 85(1-4), 313–328 (2008)

9. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

10. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of multi-
agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688.
Springer, Heidelberg (2009)

11. Luo, X., Su, K., Sattar, A., Reynolds, M.: Verification of multi-agent systems via bounded
model checking. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp.
69–78. Springer, Heidelberg (2006)

12. van der Meyden, R., Wong, K.: Complete axiomatizations for reasoning about knowledge
and branching time. Studia Logica 75(1), 93–123 (2003)

13. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via
bounded model checking. In: AAMAS, pp. 209–216. ACM, New York (2003)

14. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal fragment
of CTL. Fundam. Inform. 51(1-2), 135–156 (2002)

15. Fabio Somenzi. CUDD: CU Decision Diagram Package, http://vlsi.colorado.
edu/˜fabio/CUDD

16. Wozna, B.: ACTLS properties and bounded model checking. Fundam. Inform. 63(1), 65–87
(2004)

17. Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundam. Inform. 85(1-4),
513–531 (2008)

http://vlsi.colorado.edu/~fabio/CUDD
http://vlsi.colorado.edu/~fabio/CUDD

Symbolic Model Checking the Knowledge
in Herbivore Protocol

Xiangyu Luo1,2, Kaile Su3,4,�, Ming Gu2, Lijun Wu5, and Jinji Yang6

1 College of Computer Science & Technology, Huaqiao University, Xiamen, China
shiangyuluo@gmail.com

2 School of Software, Tsinghua University, Beijing, China
3 College of Mathmatics Physics and Information Engineering, Zhejiang Normal University,

Jinhua, China
4 Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia

5 School of Computer Science and Engineering, University of Electronic Science and
Technology of China, Chengdu, China

6 School of Computer, South China Normal University, Guangzhou, China

Abstract. The importance of anonymity has increased over the past few years in
many applications. Herbivore is a distributed anonymous communication system,
providing private file sharing and messaging over the Internet. In this paper, we
utilize MCTK to model the round protocol of the Herbivore system and verify
the anonymity and other knowledge properties that the protocol should provide,
where MCTK is an OBDD-based symbolic model checker for temporal logic of
knowledge developed by us, under the semantics of interpreted systems with local
propositions. We model the round protocol of the Herbivore system in MCTK
under the assumption that all agents have perfect recall of all observations. We
implement the round protocol of the Herbivore system in MCTK and another
epistemic model checker MCK. The encouraging experimental results show the
validity of our MCTK.

Keywords: symbolic model checking, temporal logic of knowledge, multi-agent
systems, the Herbivore system, anonymity.

1 Introduction

The security of cryptographic protocols, such as SSL, mainly depends on the assump-
tion that all agents are computationally limited and that certain computational problems
are intractable under these computational limits. So it is computationally difficult for at-
tackers to decipher what was sent. However, these cryptographic protocols cannot pro-
vide anonymity, that is to say, they cannot mask the identity of communication agents.
In recent years, the importance of anonymity has increased in many applications, such
as Web-browsing, message-sending and file-sharing. A typical system of such appli-
cations is Herbivore [1], which is a distributed anonymous communication system that
provides private file sharing and messaging over the Internet. It simultaneously provides
scalability, efficiency and strong anonymity. In this paper, we focus on constructing a

� Corresponding author.

R. van der Meyden and J.-G. Smaus (Eds.): MoChArt 2010, LNAI 6572, pp. 112–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Symbolic Model Checking the Knowledge in Herbivore Protocol 113

formal framework in which to reason about the anonymity and other properties that the
Herbivore system provides.

Knowledge provides a natural way to express information-hiding properties, that is
to say, a message is hidden from a if a does not know about it. As for anonymity, it says
that an agent performing an action maintains anonymity with respect to an observer
if the observer never learns certain facts having to do with whether or not the agent
performed the action. The logic of knowledge is a type of modal logic, which can ex-
press information flow among agents. This logic contains, for each agent i in a system,
a modal operator Ki, with the intuitive meaning of formula Kiϕ that agent i knows
that ϕ is true. In this paper, we will apply MCTK, a symbolic model checker for the
temporal logic of knowledge developed by us, to reasoning about agents’ knowledge in
the Herbivore system.

Model checking is most widely understood as a technique for automatically veri-
fying that finite state systems satisfy formal specifications. The formal specifications
for finite state systems are most commonly expressed as formulas of temporal logics
such as LTL (Linear Temporal Logic) in the case of SPIN and CTL (Computation Tree
Logic) in the case of SMV. The application of model checking within the context of
the logic of knowledge was first mooted by Halpern and Vardi [2]. A number of algo-
rithms for model checking epistemic specifications and the computational complexity
of the related problems were studied in [3]. To represent the evolution of knowledge,
some state-of-the-art model checkers combine the logic of knowledge with LTL and/or
CTL temporal logics. For example, the model checker MCK [4] deals with the logic of
knowledge and both linear and branching time. The model checker MCMAS [5] handles
the logic of knowledge and branching time. Both MCK and MCMAS are implemented
by using OBDD-based symbolic algorithms.

In [6,7], based on the semantics of interpreted systems with local propositions [8], we
proposed a methodology of symbolic model checking for Halpern and Vardi’s logic of
CKLn with path quantifiers, which leads to a “direct” implementation of model check-
ing for the CTL∗-based temporal logic of knowledge, where CTL∗ is the combination
of LTL and CTL. Moreover, the corresponding symbolic model checker MCTK [7,9]
was implemented by Xiangyu Luo by using OBDD (Ordered Binary Decision Diagram
[10]). This paper attempts to apply our model checker MCTK to modeling and verifi-
cation of the Herbivore system.

The structure of this paper is as follows. Section 2 introduces the framework of in-
terpreted system with local variables in our model checker MCTK. Section 3 briefly in-
troduces the implementation of MCTK. Section 4 introduces the round protocol of the
Herbivore system and then models this protocol in MCTK and MCK. The experimental
results from MCTK and MCK will be presented in Section 5. Finally we conclude this
paper in Section 6.

2 A Brief Review of Knowledge and Time in Multi-agent Systems

In this section, we briefly summarize the framework of the interpreted systems with
local variables as implemented in MCTK. We first introduce the interpreted systems,
and then give the syntax and semantics of the temporal logic of knowledge ECKLn in
terms of the interpreted systems with local variables.

114 X. Luo et al.

The systems we are modeling are composed of multiple agents, each of which is
in some state at any point of time. We refer to this as the agent’s local state, in order
to distinguish it from the system’s state, the global state. Without loss of too much
generality, we make the system’s state a tuple (s1, · · · , sn), where si is agent i’s state.

Let Li be a set of possible local states for agent i, for i = 1, · · · , n. We take G ⊆
L1 × · · · × Ln to be the set of reachable global states of the system. A run over G
is a function from the time domain–the natural numbers in our case–to G. Thus, a run
over G can be identified with a sequence of global states in G. We refer to a pair (r, m)
consisting of a run r and time m as a point. We denote the i’th component of the tuple
r(m) by ri(m). Thus, ri(m) is the local state of agent i in run r at “time” m.

The idea of the interpreted system semantics is that a run represents one possible
computation of a system and a system may have a number of possible runs, so we say a
system is a set of runs. Assume that we have a set Φ of primitive propositions, which we
can think of as describing basic facts about the system. An interpreted system I consists
of a pair (R, π), where R is a set of runs over a set of global states and π is a valuation
function, which gives the set of primitive propositions true at each point in R [11].

To define knowledge in interpreted systems, we associate every agent i with an equiv-
alence relation ∼i over the set of points [11]:

(r, u) ∼i (r′, v) iff ri(u) = r′i(v).

If (r, u) ∼i (r′, v), then we say that (r, u) and (r′, v) are indistinguishable to agent i,
or, alternatively, that agent i carries exactly the same information in (r, u) and (r′, v).
Further, we associate the “distributed knowledge” and “common knowledge” among
a group Γ of agents respectively with two relations ∼D

Γ and ∼C
Γ [11], where ∼D

Γ =⋂
i∈Γ ∼i and ∼C

Γ is the transitive closure of
⋃

i∈Γ ∼i.
We can now define what it means for a formula ϕ to be true at a point (r, m) in an

interpreted system I. The logic language adopted in the model checker MCTK is an
extension of temporal logic of knowledge CKLn by incorporating two path quantifiers
A (for all paths) and E (for some path). We call the resulting logic ECKLn . The syntax
of ECKLn involves two classes of formulae:

– state formulas, which are evaluated in states:

φ ::= p | ¬φ | φ ∧ φ | Aα | Eα | Kiφ | DΓ φ | CΓ φ

where p is any primitive proposition in Φ and α any path formula; and
– path formulas, which are evaluated along paths:

α ::= φ | ¬α | α ∧ α | ©α | αUα

where φ is any state formula.

Intuitively, Eα is true if there exists a path fulfilling α; and Aα is true if all paths fulfill
α. Thus Aα can be defined by ¬E¬α. ©ϕ is true if ϕ is true at the next step; and ϕUψ
is true if ϕ is true until ψ is true. The other future-time connectives � (sometime or
eventually) and � (always) can be derived from the basic temporal connective U by the
following equivalences: �ϕ ≡ trueUϕ and �ϕ ≡ ¬�¬ϕ.

Symbolic Model Checking the Knowledge in Herbivore Protocol 115

The state formulas of ECKLn involve three epistemic modal operators: Ki for each
agent i’s knowledge, DΓ for distributed knowledge and CΓ for common knowledge,
where Γ is a group of agents.

The semantics of ECKLn is given via the satisfaction relation “|=”. Given an inter-
preted system I = (R, π) and a point (r, u) in I, we define (I, r, u) |= ψ by induction
on the structure of ψ.

(I, r, u) |= p ‘ iff p ∈ π(r(u)), where p ∈ Φ.
(I, r, u) |= ¬ϕ iff it is not (I, r, u) |= ϕ.
(I, r, u) |= ϕ1 ∧ ϕ2 iff (I, r, u) |= ϕ1 and (I, r, u) |= ϕ2.
(I, r, u) |= ©ϕ iff (I, r, u + 1) |= ϕ
(I, r, u) |= ϕUϕ′ iff (I, r, u′) |= ϕ′ for some u′ ≥ u and (I, r, u′′) |= ϕ for

all u′′ with u ≤ u′′ < u′.
(I, r, u) |= Eϕ iff there exists a run r′ such that r′(u′) = r(u) for some u′,

and (I, r′, u′) |= ϕ.
(I, r, u) |= Aϕ iff for all runs r′ such that r′(u′) = r(u) for some u′, we

have (I, r′, u′) |= ϕ.
(I, r, u) |= Kiϕ iff (I, r′, u′) |= ϕ for all (r′, u′) such that (r, u) ∼i (r′, u′).
(I, r, u) |= DΓ ϕ iff (I, r′, u′) |= ϕ for all (r′, u′) such that (r, u) ∼D

Γ (r′, u′).
(I, r, u) |= CΓ ϕ iff (I, r′, u′) |= ϕ for all (r′, u′) such that (r, u) ∼C

Γ (r′, u′).

Intuitively, from the semantics above, agent i knows ϕ (Kiϕ) in state r(u) exactly if ϕ
is true at all states that i considers possible in s; A group Γ of agents has distributed
knowledge of ϕ (DΓϕ) exactly if the “combined” knowledge of the members of Γ
implies ϕ; and a group Γ of agents has common knowledge of ϕ (CΓ ϕ) exactly if
everyone in Γ knows ϕ, everyone in Γ knows that everyone in Γ knows ϕ, etc.

We say that ϕ is valid in I, denoted by I |= ϕ, if (I, r, u) |= ϕ for every point (r, u)
in I. For a propositional formula ϕ, we use |= ϕ to express that ϕ is a valid formula or
tautology.

3 MCTK: A Symbolic Model Checker for Temporal Logic of
Knowledge ECKLn

In this section we briefly introduce the implementation of our symbolic model checker
MCTK for ECKLn . We will introduce the finite-state program with n agents as the
modelling language of MCTK. It is a symbolized and finite-state transition representa-
tion for the interpreted systems with local variables.

The problem of model checking can be defined as establishing whether or not a
model M satisfies a formula ϕ (M |= ϕ). OBDDs are an efficient representation for
the manipulation of boolean functions. OBDDs of different functions can be composed
efficiently: in [12] algorithms are provided for the manipulation and the composition of
OBDDs. Model checking techniques using OBDDs are called symbolic model check-
ing. The use of OBDDs in model checking resulted in a significant breakthrough in
verification in the early 1990s, because they have allowed systems with much larger
state spaces to be verified.

116 X. Luo et al.

To be convenient for representing an interpreted system as an input language of
MCTK, we first formally define a (symbolic) finite-state program with n agents, a tuple

P = (x, θ(x), τ(x,x′), O1, · · · , On)

where

– x = {x1, . . . , xk} is a set of boolean variables. A state can be encoded as an
assignment for x, thus a set of states can be represented as a boolean formula over
x or a subset of x;

– θ is a boolean formula over x representing the set of initial states, called the initial
condition;

– τ is a boolean formula over x ∪ x′, called the transition relation, where x′ =
{x′

1, . . . , x
′
k} is a copy of x, encoding the next state in a transition relation; and

– for each i, Oi ⊆ x is the set of agent i’s local variables, or observable variables.

Given a state s, we define agent i’s local state at state s to be s ∩ Oi. For convenience,
we denote (s ∩ O1, · · · , s ∩ On) by g(s). We associate with P the interpreted system
IP = (R, π), where R is a set of those runs r satisfying that

1. for each m, r(m) is of the form g(s) = (s ∩ O1, · · · , s ∩ On) where s is a state in
P and the assignment π(s) is the same as s;

2. r(0) is g(s) for some assignment s that satisfies θ; and
3. for each natural number m, if r(m) = g(s) and r(m + 1) = g(s′) for some

assignments s and s′ for x , then s ∪ N(s′) is an assignment satisfying τ(x,x′),
where N(s′) denotes {x′

j | xj ∈ s′ and 0 < j ≤ k}.

The interpreted system IP is called the generated interpreted system of P . The model
checking problem for ECKLn we are concerned with is to determine whether, given a
finite-state program with n agents P and a formula ϕ, the formula ϕ is true in the initial
state of every run in the R of the generated interpreted system IP = (R, π). More
concisely, we say that IP realizes ϕ if (IP , r, 0) |= ϕ for every run r in IP .

A key idea of symbolic model checking a logic by using OBDDs is to represent
the sets of states and the transition relations in a model by means of boolean formu-
lae. The first problem of our model checking approach is to represent a finite-state pro-
gram with n agents as a dedicated programming language, such as PROMELA [13] and
NuSMV [14]. Because the NuSMV input language is a natural representation of finite-
state transition system, we adopt the NuSMV input language and extend the NuSMV
syntax descriptions for defining each agent’s observable variables and the ECKLn logic
language to the input language. Therefore, by making use of and fixing the compilation
unit in the open source of NuSMV, we can get an OBDD-based representation of a
finite-state program with n agents.

We do not introduce the entire symbolic model checking algorithm for ECKLn here
and refer to [6,7] for more details. Roughly speaking, the symbolic model checking
algorithm for ECKLn is based on the idea of local proposition [8] and the tableau
construction described in [15] and [16], and implemented by using OBDDs. An i-local
proposition is one whose interpretation is the same in each of the points in each equiva-
lence class induced by the ∼i relation. The intuition of our model checking approach to

Symbolic Model Checking the Knowledge in Herbivore Protocol 117

a formula of the form Kiϕ is to automatically replace the formula by some i-local for-
mula ψ over the variables in Oi, even in the case that the formula ϕ contains temporal
operators. the formula ψ is achieved by composing OBDDs, quantifying over OBDDs
variables, and computing fix-points of operators on OBDDs.

The MCTK model checker is an extension of NuSMV 2.1.2, so it supports all func-
tions of NuSMV. The OBDD package exploited in MCTK is the CUDD library devel-
oped by Fabio Somenzi at Colorado University. MCTK can be run from the command
line and accepts various options to modify verbosity, to inspect OBDDs statistics and
memory usage, and to enable variable reordering in CUDD. MCTK is written in the
C programming language and has been compiled with gcc/g++ on x86 platform under
Linux. In the next section we will show how the MCTK model checker can be applied
to the verification of the Herbivore protocol.

4 The Herbivore Protocol

There are two components in the Herbivore system. At the lowest level, a round pro-
tocol governs how bits are sent among the participating nodes. This protocol achieves
strong anonymity by building on DC-nets at the wire level. DC-nets were introduced
in 1988 [17], which use unconditional secrecy channels to provide an unconditionally
secure untraceable-sender system. To scale well in the face of planetary scale networks
and malicious participants, Herbivore employs a global topology control algorithm to
divide the network into smaller anonymizing cliques. Herbivore guarantees that each
clique will have at least k nodes, where k is a predetermined constant that describes the
degree of anonymity offered by the system.

In this paper, we are mainly concerned about honest agents’ knowledge during the
execution of the round protocol. As Sharad Goal et al. described in [1], the round pro-
tocol governs the behavior of nodes within a given clique. It ensures that nodes can
transmit data anonymously, reserve bandwidth and detect tampering. In each round,
fixed amounts of data, corresponding to packets, are anonymously transferred in con-
secutively numbered slots. A round then proceeds in the following three phases.

Reservation Phase. This phase assigns transmission slots to nodes in order to reduce
collisions and improve bandwidth utilization. Let mr be the number of bits used
in the reservation phase, each node that would like to transmit during this round
uniformly at random picks a number i from {1, . . . , mr}, and then anonymously
transmits the mr-bit vector with a 1 in the ith bit and zeros everywhere else. All
others anonymously transmit the 0 vector. The vector broadcast (transmitted to all
participants) by the clique indicates the order of sending in the next phase. Since
multiple nodes broadcast the reservation block simultaneously, it is possible for
their transmissions to collide. If an even number of nodes attempt to reserve a given
slot, the collision will be evident in the reservation phase, and they will simply wait
until the next round to transmit. If an odd number of nodes collide, the collision
will occur during the transmission phase.

Transmission Phase. This is the phase in which data transmission occurs. Each node
that has reserved a slot anonymously transmits its packet in the appropriate slot;

118 X. Luo et al.

all other nodes anonymously transmit 0. Each node is both transmitting and re-
ceiving in this phase. Specifically, the nodes who have reserved a slot monitor the
anonymous channel and monitor the packet sent anonymously. They can thus de-
tect bona-fide collisions and tampering by malicious nodes: The packet received
over the anonymous channel will simply not match the data they intended to send
in that slot. This is akin to collisions in an Ethernet. A node that detects a collision
waits until the next round to try to retransmit. After a fixed number of unsuccessful
retries, it joins the network in a different location. The integrity of the transmitted
data is protected by an MD5 checksum attached to each packet.

Exit Phase. The purpose of the exit phase is to ensure that long-running network trans-
actions are protected from traffic analysis. This phase consists of a vote to check
if the current round is a suitable time for changes in clique membership. A node
may use this phase to anonymously signal to other nodes that it is in the midst of a
long-running transaction, and that they should delay their departure from the clique
if possible. This process is quite efficient, requiring a constant number (mv) of bits
independent of clique size, but it is not binding, as nodes may leave or crash at any
time.

We now show how the round protocol can be modeled and verified by using MCTK.
To abstract the practical round protocol to a model that can be checked by MCTK, we
make the following simplifications:

– We don’t formalize the exit phase here because it is only used to protect long-
running transactions from intersection attack, which is not considered in this paper.

– We adopt key ring, instead of the fully-connected key graph used in the practical
protocol. Logically, all agents form a ring, and each agent only has two shared
keys with his left and right neighbor, respectively. This simplification also preserves
anonymity of one agent’s message because coordinated attacks made by all other
agents in the same clique aren’t considered here. Figure 1 is the key and network
topology of a five node clique in our framework.

– We use one bit, instead of a mr-bit vector, to describe the transmission slot(s). That
is, there is only one slot in our model. This simplification can greatly reduce the
size of the model.

4.1 The Environment in MCTK

Figure 2 is the MCTK environment description of the round protocol with N agents and
N shared keys (N ≥ 3). Logically, these N agents A 1, ... , A N are arranged in turn and
widdershins to form a clique. Each agent shares two different keys with his left and
right neighbors, respectively. In addition, each key shared among two agents may be
different in the reservation and transmission phases. To model these keys, we can de-
fine 2N boolean variables as Line 3-6 of Figure 2. For example, the keys shared between
agent i and his neighbor j are key i j[1] and key i j[2], the former is for the
reservation phase and the latter for the transmission phase. In Line 25 init(phase)
denotes that the initial value of variable phase is equal to the right hand side of sym-
bol ’:=’, that is reservation. In the input language, the sentences in the form of
“next(var):=exp” mean that the value of variable var in the next state is equal

Symbolic Model Checking the Knowledge in Herbivore Protocol 119

A2

A1

A3

A5

A4

key
_1_2 key_5_1

key_4_5

key_2_3

key_3_4

Network topology

Key topology

Fig. 1. A five node clique

to the current value of the expression exp. The “case” expression in Line 26-30 re-
turns the value of the first expression on the right hand side of the symbol “:”, such
that the corresponding condition on the left hand side evaluates to be true. So, the as-
signments for variable phase in Line 25-30 represent that the protocol starts from the
reservation phase, then arrives at the transmission phase after taking the first
step, and will finish after the transmission phase.

In the environment, we don’t assign any initial value to these keys used in the reser-
vation phase and in Line 31-32 we specify the next value of them to be their current
value, which means that these keys used in the reservation phase are nondeterminis-
tically chosen in the initial state and will keep invariant in the future. While in Line
33-37, these keys used in the transmission phase are nondeterministically chosen in the
transmission phase and will keep invariant henceforth.

For each i ∈ {1, . . . ,N}, A i is an agent that uses the protocol Agent, which will
be shown in Figure 3. For the declaration of agent A i, all of the actual parameters are
observable for A i itself. The parameter phase indicates whether the current phase is
reservation, transmission or end, where end denotes that the execution of
the round protocol finish. The two parameters key {i-1} i[1], key i {i+1}[1]
and the other two parameters key {i-1} i[2], key i {i+1}[2] are the agent’s
left and right shared keys respectively used in the reservation and transmission phases.
Note that in the actual input program, {i-1}, i or {i+1} is replaced by its value when
its value is between 1 and N. But if its value is larger than N, it is replaced by 1; if its
value is less than 1, it is replaced by N. The rest parameters are all other agent’s local
variables said[1] and said[2], which are used to record what an agent say in the
reservation and transmission phases respectively. In other words, agent A i
can observe the messages that all other agents send in the two phases.

4.2 The Agent’s Module in MCTK

We now present the MCTK module declaration for N agents in Figure 3. The name of
agents’ module is Agent, which is followed by its formal parameters that are listed

120 X. Luo et al.

1 MODULE main()
2 VAR
3 key_1_2: array 1..2 of boolean;
4 key_2_3: array 1..2 of boolean;
5 ...
6 key_N_1: array 1..2 of boolean;
7 phase: {reservation, transmission, end};
8 A_1: Agent(phase, key_N_1[1], key_N_1[2],
9 key_1_2[1], key_1_2[2],
10 A_2.said[1], A_2.said[2],...,
11 A_N.said[1], A_N.said[2]);
12 ...
13 A_i: Agent(phase, key_{i-1}_i[1], key_{i-1}_i[2],
14 key_i_{i+1}[1], key_i_{i+1}[2],
15 A_1.said[1], A_1.said[2],...,
16 A_{i-1}.said[1], A_{i-1}.said[2],
17 A_{i+1}.said[1], A_{i+1}.said[2],...,
18 A_N.said[1], A_N.said[2]);
19 ...
20 A_N: Agent(phase, key_{N-1}_N[1], key_{N-1}_N[2],
21 key_N_1[1], key_N_1[2],
22 A_1.said[1], A_1.said[2],...,
23 A_{N-1}.said[1], A_{N-1}.said[2]);
24 ASSIGN
25 init(phase) := reservation;
26 next(phase) := case
27 phase=reservation: transmission;
28 phase=transmission: end;
29 phase=end: end;
30 esac;
31 next(key_1_2[1]) := key_1_2[1]; ...
32 next(key_N_1[1]) := key_N_1[1];
33 next(key_1_2[2]) :=
34 case phase=reservation: {1,0}; 1: key_1_2[2]; esac;
35 ...
36 next(key_N_1[2]) :=
37 case phase=reservation: {1,0}; 1: key_N_1[2]; esac;

Fig. 2. The MCTK environment of the round protocol

in parentheses. All of the formal parameters are observable for the agents using this
module.

There are four local boolean variables defined in the module. Variable msg is the
message that the agent wants to send in current round; Variable slot indicates whether
or not this agent wants to send message msg. If slot = 1 then the agent wants to send
it, otherwise the agent does not; Variables said[1] and said[2], the two elements
of array said, records what the agent said in the reservation and transmission phases
respectively.

Symbolic Model Checking the Knowledge in Herbivore Protocol 121

1 MODULE Agent(observable phase,
2 observable lkey1, observable lkey2,
3 observable rkey1, observable rkey2,
4 observable said_1_1, observable said_1_2,
5 ...
6 observable said_{N-1}_1, observable said_{N-1}_2)
7 VAR
8 msg: boolean;
9 slot: boolean;
10 said: array 1..2 of boolean;
11 ASSIGN
12 next(msg) := msg;
13 next(slot) := slot;
14 next(said[1]) := case
15 phase=reservation: lkey1 xor rkey1 xor slot;
16 1: said[1];
17 esac;
18 next(said[2]) := case
19 phase=transmission: lkey2 xor rkey2 xor (slot & msg);
20 phase=end: said[2];
21 esac;

Fig. 3. The Agent protocol in MCTK

From the MCTK agent declaration language in [7], we know that the set Oi of agent
i’s observable variables is the set of agent i’s local variables and his observable actual
parameters. Therefore, we can present the set of observable variables of each agent of
the round protocol as the set of boolean encoding variables of the corresponding actual
parameters of phase, lkey1,lkey2,rkey1, rkey2, said 1 1, said 1 2, ... ,
said {N-1} 1, said {N-1} 2, as well as the local variables msg, slot, said[1]
and said[2]. For agent A 1 for example, his observable variables are the boolean en-
coding variables ofphase,key N 1[1],key N 1[2],key 1 2[1],key 1 2[2],
A 2.said[1], A 2.said[2], ... , A N.said[1], A N.said[2], A 1.msg,
A 1.slot, A 1.said[1] and A 1.said[2].

The assignment part of an agent’s module specifies what happens in the two different
phases of the execution of the round protocol. Line 12-13 keeps the values of variables
msg and slot invariant in the execution of the protocol since their initial values are
chosen nondeterministically.

Line 14-17 specifies that said[1], the message the agent wants to send in the reser-
vation phase, is the XOR of slot, his left key lkey1 and his right key rkey1 for the
reservation phase. The message will be sent in the second round of the protocol (be-
cause the initial value of phase is equal to reservation) and will keep invariant
henceforth. Line 18-21 specifies that said[2], the message the agent wants to send
in the transmission phase, is the XOR of his left key lkey2 and his right key rkey2
for the transmission phase, and the conjunction of his slot and msg. It means that
if the agent does not want to send a message, then he simply sends (broadcasts) a “0”

122 X. Luo et al.

anonymously. The message will be sent in the next round of the transmission phase and
will keep invariant henceforth.

4.3 The Specifications in MCTK

So far we finished the description of the round protocol in MCTK. We now list some
specifications that are checked to be true in our model checker MCTK, and will explain
how the agents’ knowledge evolves in each phase via the agents’ limited observation on
the environment and other agents. Notice that in an ECKLn specification, a formula in
the form of “X f” denotes that f will hold in the next state. Formula “ag K f” indicates
that agent ag knows f . Formula “ags C f” denotes that f is the common knowledge of
the agents in ags.

We introduce some expressions that will be used in the specifications at first. Ex-
pression conflict is defined as the expression that the sum of variable slot in
each agent’s module is lager than 1, i.e. (A 1.slot+...+A N.slot)>1, so there
is a collision if and only if conflict is true. Expression xor said1 is defined as
the XOR of what all agents send in the reservation phase, i.e. (A 1.said[1] xor
... xor A N.said[1]). Similarly, expression xor said2 is the XOR of what
all agents send in the transmission phase and equal to (A 1.said[2] xor ...
xor A N.said[2]).

The first specification we check is that in the reservation phase, the sender’s (for
example A 1’s) anonymity is a common knowledge among all agents in a clique:

(1) X(A_1.slot -> ((A_1,...,A_N) C
(!(A_2 K A_1.slot) &...& !(A_N K A_1.slot)))).

We now check whether the reservation phase can reduce collisions or not. As Sharad
Goal et al. [1] claimed for this phase, it is possible for agents’ transmissions to collide
since multiple agents broadcast the reservation message simultaneously. If there is an
even number of agents who attempt to reserve the slot to send a message, the collision
will be evident in the reservation phase; if there is an odd number of agents who attempt
to reserve the slot, the collision will occur during the transmission phase. This claim can
be checked by the following specification:

(2) X(((A_1.slot & !xor_said1) -> (A_1 K conflict)) &
((A_1.slot & xor_said1) -> !(A_1 K conflict))).

Note that xor said1, the broadcast by agent A 1 in the reservation phase, is equal to
the XOR of all agents’ slot, so xor said1 = 0 means that there is an even number
of agents who want to send their messages. Therefore, the first line of spec. (2) says
that if agent A 1 wants to send a message and he observes that there is an even number
of agents who want to send their messages, he then knows that there exists a collision
in the reservation phase. It is easy to prove that because in this precondition, agent A 1
knows that the XOR of all other agents’ slot must be 1, which means that at least one
of the other agents’ slot is equal to 1, so agent A 1 is able to deduce the collision.
The second line of spec. (2) says that in the reservation phase, if agent A 1 observes
that there is an odd number of agents who want to send their messages, he can not know
whether there exists a collision or not, which means that the collision will occur during
the transmission phase.

Symbolic Model Checking the Knowledge in Herbivore Protocol 123

When a sender observes there is an even number of the senders, or an agent that does
not send a message observes there is an odd number of the senders, then he will know
at least one of the other agents is the sender, but will not know who is the sender. This
anonymity can be checked by the following spec. (3):

(3) X(((A_1.slot & !xor_said1) | (!A_1.slot & xor_said1)) ->
((A_1 K (A_2.slot | ... | A_N.slot)) &
!(A_1 K A_2.slot) & ... & !(A_1 K A_N.slot))).

Sharad Goal et al. [1] claimed that in the transmission phase, agents can detect bona-
fide collisions and tampering by malicious nodes when they observe the packet received
over the anonymous channel does not match the data they intended to send. The claim
can be checked by the following temporal epistemic spec. (4):

(4) X X((A_1.slot & (xor_said2!=A_1.msg)) -> (A_1 K conflict))

Spec. (4) says that if agent A 1 intends to send a message and observes that the broad-
cast he get in the transmission phase is not equal to his own message, then in the trans-
mission phase, he will know there is a collision.

We are interested in an agent’s knowledge about collision in the case that the broad-
cast he get in the transmission phase is equal to the conjunction of his slot and message,
in this case agents should keep in ignorance of the collision in the transmission phase,
no matter whether he is a sender or not:

(5) X X((xor_said1 & (xor_said2 <-> (A_1.slot & A_1.msg))) ->
!(A_1 K conflict)).

Spec. (5) says that if there is an odd number of agents who want to send message and
the broadcast in the transmission phase is equivalent to the conjunction of agent A 1’s
slot and message, then in the transmission phase he will not know there is a collision.

Now let’s consider these specifications with two tiers of knowledge, by these spec-
ifications we can examine one agent’s knowledge about other agents’ knowledge. We
first check that if agent A 1 knows there is a collision in the reservation phase, then he
knows that all of the senders (such as agent A 2) also know the collision, but the other
agents do not know the collision:

(6) X((A_1 K conflict) -> (A_1 K ((A_2.slot->(A_2 K conflict)) &
(!A_2.slot->!(A_2 K conflict))))).

If agent A 1 doesn’t know there is a collision in the reservation phase but will know
the collision in the transmission phase, then he will know in the transmission phase that
any agent having the same slot and message will know the collision in the transmission
phase too:

(7) X((!(A_1 K conflict) & X(A_1 K conflict)) ->
X(A_1 K ((A_2.slot=A1.slot & A_2.msg=A_1.msg) ->

(A_2 K conflict)))).

If agent A 1, who intends to send message ’1’, doesn’t know there is a collision in the
reservation phase, but he will know the collision in the transmission phase, then he will
know in the transmission phase that if agent A 2’s message is ’0’, then agent A 2 will
not know the collision in the transmission phase:

(8) X((!(A_1 K conflict) & X(A_1 K conflict) & A_1.slot &
A_1.msg) -> X(A_1 K (!A_2.msg -> !(A_2 K conflict)))).

124 X. Luo et al.

4.4 The Round Protocol in MCK

As mentioned in Section 1, besides MCTK, there are two state-of-the-art model check-
ers MCK and MCMAS for temporal logics of knowledge. Because we know that the
knowledge modality in MCMAS and MCTK is evaluated only under the current ob-
servation of agents, we consider that the modelling and verifying method for the round
protocol in MCMAS is similar to that in MCTK and not novel. We prefer to model and
verify the round protocol in MCK and compare the running efficiency between MCK
and MCTK.

MCK [4], for “Model Checking Knowledge”, is a model checker for the logic of
knowledge, developed at the School of Computer Science and Engineering at the Uni-
versity of New South Wales. Currently, the MCK system is primarily on OBDD-based
model checking algorithms and supports both linear and branching time temporal op-
erators. The novelty of this model checker is that it supports several different ways of
defining knowledge given a description of a multi-agent system and the observations
made by the agents: observation alone, observation and clock, and perfect recall of all
observations. The first way of observation alone is to evaluate an agent’s knowledge
based just on its current observation, which is the same as the knowledge evaluating
method in MCMAS and MCTK; the second way of observation and clock is to com-
pute an agent’s knowledge based both on its current observation and the current clock
value; and the final way of perfect recall of all observations is to compute an agent’s
knowledge based on the complete record of all its observations. So, an agent can extract
more information if it computes its knowledge in the last two ways. To the best of our
knowledge, currently the last two ways are supported only in MCK. Because in the last
two ways it is not necessary to model the clock explicitly, we consider the MCK model
described in the last two ways is more succinct than that in the way of observation
alone. Therefore, in this paper we are also interested in modelling the round protocol in
MCK and verifying some MCK specifications that are formally similar to the MCTK
specifications listed above in the way of observation and clock.

The MCK input program for the environment of the round protocol just includes
some variables and agent declarations. We also define 2N boolean variables for repre-
senting keys:

key_1_2:Bool[2] key_2_3:Bool[2] ... key_N_1:Bool[2],

where the array elements with index 0 are the keys used in reservation phase, and
the array elements with index 1 are the keys used in transmission phase. Two arrays
said1:Bool[N] and said2:Bool[N] are defined for the messages sent by N
agents respectively in the reservation phase and the transmission phase. For example,
said1:Bool[i] is the message sent by agent i in the reservation phase. N agents
are declared by

agent A_1 "prot" (key_N_1, key_1_2, said1, said2)
...
agent A_i "prot" (key_{i-1}_i, key_i_{i+1}, said1, said2)
...
agent A_N "prot" (key_{N-1}_N, key_N_1, said1, said2)

Symbolic Model Checking the Knowledge in Herbivore Protocol 125

The name of the agent i is A i. It uses the protocol “prot”. Agent A i can interact with,
and potentially observe the variables between parentheses. The first two parameters are
keys shared with its left and right neighbors, while said1 and said2 appear in all
agent definitions, as they are publicly observable.

1 protocol "prot"(
2 keyl: observable Bool[2], --the agent’s left key
3 keyr: observable Bool[2], --the agent’s right key
4 said1: observable Bool[3],
5 said2: observable Bool[3])
6
7 msg: observable Bool --the message the agent sends
8 slot: observable Bool --the slot the agent tries to use
9
10 begin
11 <<said1[self].write(keyl[0] xor keyr[0] xor slot)>>;
12 <<said2[self].write(keyl[1] xor keyr[1] xor (slot/\msg))>>
13 end

Fig. 4. The agent protocol in MCK

The agent protocol in MCK is shown in Fig. 4. The body of this protocol specifies,
for the reservation and transmission phase, what happens in the two phases. In MCK,
keyword self is the index of an agent using the agent protocol “prot”, and any action
between << and >> will be executed. Therefore, Line 11 means that the agent will send
the XOR of his left key, right key and the slot he tries to send it in. Line 12 says that
the agent will send the XOR of his left key, right key and the conjunction of his slot
and message. It means that if the agent does not want to send a message, then he simply
sends an “0” anonymously.

Now, we can list various temporal epistemic specifications syntactically similar to the
above specifications in MCTK. We do not list all these specifications here. To make the
execution efficiency of these specifications checked by MCTK and MCK more com-
parable, we check spec. (1)-(6) in MCK as the spec clk xn specifications, which
indicates that the formula uses linear time temporal logic operators. First, we take the
MCTK spec. (1) with 3 agents as an example, the corresponding MCK specification is

spec_clk_xn =
X(C1.slot =>
(CK(neg (Knows C2 C1.slot) /\ neg (Knows C3 C1.slot)))).

Note that in MCK, the knowledge formula KAgentϕ is written as “Knows Agent ϕ”.
The common knowledge formula Call agentsϕ is written as “CK ϕ”, it means that ϕ
is common knowledge to all agents. The temporal formula in the form of “X n ϕ” is
evaluated under the semantics of taking n steps before evaluating ϕ, while ϕ must not
contain temporal operators.

Below we take the MCTK spec. (4) with 3 agents as one more example, the corre-
sponding MCK specification can be described as

126 X. Luo et al.

spec_clk_xn =
X 2 ((A_1.slot /\

((said2[0] xor said2[1] xor said2[2]) xor A_1.msg))
=> (Knows A_1 ((A_1.slot /\ A_2.slot) \/

(A_1.slot /\ A_3.slot) \/
(A_2.slot /\ A_3.slot)))).

Besides, in MCK we check spec. (7) and (8) as the spec clk ctl nested specifi-
cations, which indicates that the formula uses branching time temporal logic operators.
For example, the MCK specification corresponding to the MCTK spec. (8) can be de-
scribed as

spec_clk_ctl_nested =
(AX(neg (Knows C1 ((C1.slot /\ C2.slot) \/

(C1.slot /\ C3.slot) \/
(C2.slot /\ C3.slot)))) /\

(AX AX (Knows C1 ((C1.slot /\ C2.slot) \/
(C1.slot /\ C3.slot) \/
(C2.slot /\ C3.slot)))) /\

C1.slot /\ C1.msg
) => AX AX (Knows C1 ((neg C2.msg) =>

neg (Knows C2 ((C1.slot /\ C2.slot) \/
(C1.slot /\ C3.slot) \/
(C2.slot /\ C3.slot))))).

The knowledge modality in the spec clk xn and spec clk ctl nested specifi-
cations is evaluated under the clock semantics, that is agents compute knowledge using
both of their current observation and the current global clock value.

5 Experimental Results

To show the effectiveness and the running efficiency of MCTK and MCK, it is inter-
esting to model the round protocol in MCK and verify some of MCK’s specifications
equivalent to the specifications listed above.

Let’s review the MCTK model of the round protocol, in which we explicitly simu-
late clock tick by a variable phase, which is observable for all agents. It means that
all agents are sharing a global clock. In the MCTK model checker, we compute agents’
knowledge in terms of their observable variables. Therefore, we can say that the knowl-
edge in the above MCTK specifications is interpreted in clock semantics for knowledge,
that is to say, agents compute knowledge using both their current observation and the
current value of the global clock. Furthermore, for each agent in MCTK, he can get
all information (including his left key, right key and what the other agents said in both
of the reservation and transmission phases) via his observable formal parameters, so
we can say these agents have “perfect recall” of all observations. Therefore, we can say

Symbolic Model Checking the Knowledge in Herbivore Protocol 127

that the knowledge evaluated under the MCTK model of the round protocol simulates
the knowledge under the clock and perfect recall semantics in MCK. From the above
analysis of knowledge evaluation in MCTK and MCK, we can say the following exper-
imental comparison between them is reasonable.

Based on a laptop configuration Ubuntu 5.04 Pentium M 1.6GHz and 512M RAM,
we verify that all of the specifications above are true in MCTK and MCK, both using
OBDD dynamic ordering (add parameter ’-dynamic’ for MCTK and ’-rs’ for MCK).
We directly use the binary file of MCK of version 0.1.0 that is available at the MCK
website1. Table 1 shows the experimental results. Each specification is checked indi-
vidually. Table 1 demonstrates that MCTK performs better than MCK, in particular for
larger systems.

However, just based on the total time and space consumption for modeling and veri-
fication for a given specification, we can not conclude that the verification algorithm in
MCTK must be more efficient than that in MCK. As far as we are concerned, there are
at least four reasons. Firstly, we believe the high performance of MCTK is mainly due
to the running efficiency of CUDD BDD package used in MCTK is much better than
that of David Long’s BDD package, which is used in MCK. Secondly, MCTK is an
extension of NuSMV, in which some optimization modeling and verifying techniques,
such as partitioned transition relations, can provide a much more concise OBDD-based
representation of the formal model. We guess MCK seldom adopts these similar op-
timization techniques. Thirdly, the input language of MCK is customized for describ-
ing multi-agent systems, while the input language of MCTK is a minor extension of
the input language of NuSMV 2.1.2, so we guess the OBDD-based formal model in
MCK is more complicated than that in MCTK, which requires MCK create more BDD
variables and larger OBDDs than MCTK. The second and third reasons can be demon-
strated by Table 1, from it we can see that each MCK model needs more than two times
the number of BDD variables for the corresponding MCTK model. It causes the state
space of a MCK model is much larger than that of the corresponding MCTK model.
Fourthly, we believe that different MCK specification forms such as spec obs ltl,
spec clk xn and spec clk ctl nested, execute quite different algorithms. So it
is not fair, from this point of view, to evaluate agents’ knowledge based just on the cur-
rent observation in MCTK while based both on the current observation and the current
clock value in MCK. In spite of this, the experimental results in this paper still convince
us that evaluating knowledge based on the observational semantics usually gives better
performance results than that based on the observational and clock semantics.

Therefore, it is hard to fairly compare the running efficiency of the verification al-
gorithms within MCK and MCTK just based on the total time and space consumption
for modeling and verification for a given specification. We may model some examples,
including the Herbivore protocol, and verify some related temporal epistemic specifica-
tions only under the observational semantics in MCTK, MCK and MCMAS, to compare
the running efficiency of the evaluating algorithms under the observational semantics in
these three model checkers. Furthermore, to compare these model checkers completely,
it is necessary to analyze their source codes. We leave these as our future works.

1 http://www.cse.unsw.edu.au/∼mck/Sources/mck

128 X. Luo et al.

Table 1. Experimental results

20 agents
spec tool time memory BDD vars

(1)
MCTK 0m26.352s 10.5MB 287
MCK 15m36.113s 8.9MB 760

(2)
MCTK 0m16.773s 12.8MB 287
MCK 7m51.958s 7.3MB 580

(3)
MCTK 0m30.316s 9.3MB 287
MCK 6m32.665s 3MB 580

(4)
MCTK 0m12.191s 10.5MB 289
MCK 8m14.593s 7.4MB 580

(5)
MCTK 0m12.384s 11.2MB 289
MCK 6m14.748s 3.2MB 580

(6)
MCTK 1m14.791s 16.2MB 287
MCK 6m19.799s 7.8MB 580

(7)
MCTK 1m10.927s 16.2MB 291
MCK 23m0.896s 25.2MB 580

(8)
MCTK 1m20.062s 18.6MB 291
MCK 20m45.827s 27MB 580

30 agents
spec tool time memory BDD vars

(1)
MCTK 1m0.717s 13.3MB 427
MCK 52m3.411s 7.1MB 1140

(2)
MCTK 0m57.961s 14.5MB 427
MCK 26m18.280s 15.2MB 870

(3)
MCTK 0m57.701s 14.4MB 427
MCK 34m12.154s 12.7MB 870

(4)
MCTK 0m31.327s 11.7MB 429
MCK 42m46.440s 29.2MB 870

(5)
MCTK 0m18.410s 11.6MB 429
MCK 42m54.903s 19.5MB 870

(6)
MCTK 2m46.860s 22.2MB 427
MCK 27m10.214s 28.1MB 870

(7)
MCTK 0m53.868s 13.1MB 431
MCK 94m25.166s 38.3MB 870

(8)
MCTK 1m9.040s 11.1MB 431
MCK 82m58.828s 46MB 870

6 Conclusions

In this paper, we have implemented and verified the round protocol of the Herbivore
system in our model checker MCTK and MCK. The experimental results show that our
MCTK is an efficient model checker for temporal logic of knowledge. As for future
work for the Herbivore protocol, we will consider the formalization of the exit phase
in MCTK to verify whether or not the phase is able to protect long-running network
transactions from traffic analysis. We also intend to implement more complex protocols
in MCTK and verify more complex properties, such as these for the analysis of coor-
dinator attack, topology attacks, collusion and occupancy attacks, and so on. For these
works, MCTK will be further extended and optimized.

Acknowledgments. We would like to thank the anonymous referees for their valu-
able comments. This work is supported by the National Natural Science Foundation of
China (Nos.90718039, 60725207, 60763004 and 61073033), the Chinese National 973
Plan (No.2010CB328103), the Scientific Research Foundation of Huaqiao University
(No.11BS108), and the ARC Future Fellowship FT0991785.

References

1. Goel, S., Robson, M., Polte, M., Sirer, E.G.: Herbivore: A Scalable and Efficient Protocol for
Anonymous Communication. Technical Report TR2003-1890, Cornell Univeristy Comput-
ing and Information Science (2003)

2. Halpern, J., Vardi, M.Y.: Model Checking vs. Theorem Proving: A Manifesto. Technical
Report, IBM Almaden Research Center(1991); An extended version of a paper in Proc. 2nd
Int. Conf. on Principles of Knowledge Representation and Reasoning (1991)

Symbolic Model Checking the Knowledge in Herbivore Protocol 129

3. van der Meyden, R.: Common Knowledge and Update in Finite Environments. Information
and Computation 140(2), 115–157 (1998)

4. Gammie, P., van der Meyden, R.: MCK: Model Checking the Logic of Knowledge. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidel-
berg (2004)

5. Lomuscio, A., Raimondi, F.: MCMAS: a Model Checker for Multi-Agent Systems. In: Her-
manns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006)

6. Su, K.: Model Checking Temporal Logics of Knowledge in Distributed Systems. In: Proceed-
ings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference
on Innovative Applications of Artificial Intelligence, pp. 98–103. AAAI Press / The MIT
Press (2004)

7. Su, K., Sattar, A., Luo, X.: Model Checking Temporal Logics of Knowledge Via OBDDs.
The Computer Journal 50(4), 403–420 (2007)

8. Engelhardt, K., van der Meyden, R., Moses, Y.: Knowledge and the Logic of Local Proposi-
tions. In: TARK 1998: Proceedings of the 7th Conference on Theoretical Aspects of Ratio-
nality and Knowledge, pp. 29–41. Morgan Kaufmann Publishers Inc., San Francisco (1998)

9. Luo, X.: Symbolic Model Checking Multi-Agent Systems. Phd Thesis, School of Informa-
tion Science and Technology, Sun Yat-sen University (2006) (in Chinese)

10. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transac-
tions on Computers 35(8), 677–691 (1986)

11. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cam-
bridge (1995)

12. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Computing Surveys 24(3), 293–318 (1992)

13. Holzmann, G.: The Model Checker SPIN. IEEE Transactions on Software Engineering 23(5),
279–295 (1997)

14. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

15. Lichtenstein, O., Pnueli, A.: Checking That Finite State Concurrent Programs Satisfy Their
Linear Specification. In: POPL 1985: Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pp. 97–107. ACM Press, New York
(1985)

16. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another Look at LTL Model Checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 415–427. Springer, Heidelberg (1994)

17. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability. Journal of Cryptology 1, 65–75 (1988)

Author Index

Alechina, Natasha 69

Edelkamp, Stefan 12, 32

Geffner, Hector 1
Gu, Ming 112

Huang, Xiaowei 95

Kellershoff, Mark 32
Kupferman, Orna 85

Logan, Brian 69
Lomuscio, Alessio 52
Luo, Cheng 95
Luo, Xiangyu 112

Nguyen, Hoang Nga 69

Qu, Hongyang 52

Rakib, Abdur 69
Rosenberg, Adin 85
Russo, Francesco 52

Su, Kaile 112
Sulewski, Damian 12, 32

van der Meyden, Ron 95

Wu, Lijun 112

Yang, Jinji 112

	6572
	Preface
	Organization
	Table of Contents
	Planning with Incomplete Information
	Introduction
	Classical Planning
	Incomplete Information
	Sensing and Finite-State Controllers
	Summary
	References

	External Memory Breadth-First Search with Delayed Duplicate Detection on the GPU
	Introduction
	External-Memory Breadth-First Search
	GPU Programming
	External Memory Breadth-First Search on the GPU
	Checking Enabledness on the GPU
	Generating the Successors on the GPU
	Delayed Duplicate Detection on the GPU

	Experiments
	Conclusion and Discussion
	References

	Program Model Checking via Action Planning
	Introduction
	Action Planning
	Program Model Checking
	Model Checking via Planning
	Parsing
	Generation of the Dependency Graph
	Translation into PDDL
	Fluents
	Propositions
	Expressions
	Assignments
	Program Counter
	Control Flow
	Conditional Branches
	Model Checking Statements
	Complex Statements
	Methods

	Data Abstraction
	Results
	Conclusion and Discussion
	References

	Automatic Data-Abstraction in Model Checking Multi-Agent Systems
	Introduction
	Interpreted Systems, ACTLK and Abstraction
	Implementation and Data Abstraction Theorem
	Experimental Results
	Conclusions
	References

	Automated Verification of Resource Requirements in Multi-Agent Systems Using Abstraction
	Introduction
	Communicating Reasoners
	Verification Framework
	Automated Verification Tool
	Maude Implementation

	Experimental Evaluation
	Scalability
	A More Complex Example

	Related Work
	Conclusion
	References

	The Blow-Up in Translating LTL to Deterministic Automata
	Introduction
	Preliminaries
	Linear Temporal Logic
	Automata over Infinite Words

	From LTL to DBW
	The Known Lower Bound: From O(n2) to 22n
	Improvement # 1: From O(n logn) to 22n with a Fixed Alphabet
	Improvement #2: from O(n) to 22n with a Linear Alphabet

	Discussion
	References

	Improved Bounded Model Checking for a Fair Branching-Time Temporal Epistemic Logic
	Introduction
	Preliminaries
	Model Checking Input Format

	Previous Bounded Model Checking Algorithms for ACTLKn
	Encoding of Penczeck et al
	Improved Encoding for ECTL by Zbrzezny

	Improved encoding for ACTLKn
	Motivation
	Encoding

	Experimental Results
	Related Work
	Conclusion and Future Work
	References

	Symbolic Model Checking the Knowledge in Herbivore Protocol
	Introduction
	A Brief Review of Knowledge and Time in Multi-agent Systems
	MCTK: A Symbolic Model Checker for Temporal Logic of Knowledge ECKLn
	The Herbivore Protocol
	The Environment in MCTK
	The Agent's Module in MCTK
	The Specifications in MCTK
	The Round Protocol in MCK

	Experimental Results
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

