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Czech Technical University
Faculty of Mechanical Engineering
Karlovo náměstí 13
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Editors Preface

The sixth International Symposium on Finite Volumes for Complex Applications,
held in Prague (Czech Republic, June 2011) follows the series of symposiums held
successively in Rouen (France, 1996), Duisburg (Germany, 1999), Porquerolles
(France, 2002), Marrakech (Morocco, 2005), Aussois (France, 2008).

The sixth symposium, similarly to the previous ones, gives the opportunity of
a large and critical discussion about the various aspects of finite volumes and
related methods: mathematical results, numerical techniques, but also validations
via industrial applications and comparisons with experimental test results.

This book tries to assemble the recent advances in both the finite volume method
itself (theoretical aspects of the methods, new or improved algorithms, numerical
implementation problems, benchmark problems and efficient solvers) as well as
its application in complex problems in industry, environmental sciences, medicine
and other fields of technology, so as to bring together the academic world and
the industrial world. The topics of the proceedings reflect this wide range of
perspectives and include: advanced schemes and methods (complex grid topology,
higher order methods, efficient implementation), convergence and stability analysis,
global error analysis, limits of methods, purely multidimensional difficulties, non
homogeneous systems with stiff source terms, complex geometries and adaptivity,
complexity, efficiency and large computations, chaotic problems (turbulence, igni-
tion, mixing, . . . ), new fields of application, comparisons with experimental results.
The proceedings also include the results to a benchmark on three–dimensional
anisotropic and heterogeneous diffusion problems, which was designed to test some
16 different schemes, among which finite volume methods, finite element methods,
discontinuous Galerkin methods, mimetic methods and discrete gradient schemes.
A new feature of this benchmark is the comparison of various iterative solvers on
the matrices resulting from the different schemes.

Of course, the success of the symposium crucially depends on the quality of
the contributions. Therefore we would like to express many thank all the authors
of regular papers, who provided high quality papers on the above mentioned wide
range of subjects, or contributed to the 3D anisotropic diffusion benchmark. The
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level the contributions was ensured by the Scientific Committee members, who
organized the reviewing process of each paper. We express our gratitude to members
of the Scientific Committee as well as to many other reviewers.

The symposium could not have been organized without the local support of
Czech Technical University, Faculty of Mechanical Engineering and financial
support of French contributors: CMLA ENS Cachan, IFP Energies nouvelles, IRSN,
LATP Université Aix Marseille I, MOMAS group, Université Paris XIII, Université
Paris Est Marne la Vallée, Université Pierre et Marie Curie.

Finally we would like to thank Springer Verlag Editor’s team for their coopera-
tion in the proceedings preparation, conference secretary T. Němcová and all others,
who ensured logistic and communication before and during the conference.

Jaroslav Fořt
Jiřı́ Fürst

Jan Halama
Raphaèle Herbin
Florence Hubert



Organization

Committees

Organizing Committee:

Jaroslav Fořt
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A Sharp Contact Discontinuity Scheme for Multimaterial Models . . . . . . 581
Angelo Iollo, Thomas Milcent, and Haysam Telib



xiv Contents

Numerical Simulation of Viscous and Viscoelastic Fluids Flow
by Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
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Flux-Based Approach for Conservative Remap of Multi-
Material Quantities in 2D Arbitrary Lagrangian-Eulerian
Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Milan Kucharik and Mikhail Shashkov

Optimized Riemann Solver to Compute the Drift-Flux Model . . . . . . . . . . . 633
Anela Kumbaro and Michaël Ndjinga
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Volume-Agglomeration Coarse Grid In Schwarz
Algorithm

H. Alcin, O. Allain, and A. Dervieux

Abstract The use of volume-agglomeration for introducing one or several levels
of coarse grids in an Additive Schwarz multi-domain algorithm is revisited. The
purpose is to build an algorithm applicable to elliptic and convective models.
The sub-domain solver is ILU. We rely on algebraic coupling between the coarse
grid and the Schwarz preconditioner. The Deflation Method and the Balancing
Domain Decomposition (BDD) Method are experimented for a coarse grid as well
as domain-by-domain coarse gridding. Standard coarse grids are built with the
characteristic functions of the sub-domains. We also consider the building of a
set of smooth basis functions (analog to smoothed-aggregation methods). The test
problem is the Poisson problem with a discontinuous coefficicent. The two options
are compared for the standpoint of coarse-grid consistency and for the gain in
scability of the global Schwarz iteration.

Keywords domain decomposition, coarse grid
MSC2010: 65F04, 65F05

1 Volume agglomeration in MG and DDM

The idea of Volume Agglomeration is directly inspired by the multi-grid idea,
but inside the context of Finite-Volume Method. In this paper the finite-volume
partition considered is built as the dual of triangles, Fig. 1, right. In order to
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I

J

Fig. 1 Left: finite-Volume partition built as dual of a triangulation. Right: Greedy Algorithm for
finite-volume cell agglomeration: four fine cells (left) are grouped into a coarse cell

build a coarser grid, it is possible to build coarse cells by sticking together
neighboring cells for example with a greedy algorithm, Fig. 1, left. The coarser grid
is a priori unstructured as is the fine one. By the magic of FVM, a consistent coarse
discretisation of a divergence-based first-order PDE is directly available. Indeed, we
can consider that the new unknown is constant over the coarse cell and it remains to
apply a Godunov quadrature of the fluxes between any couple of two coarse cells.
Elliptic PDE can also be addressed in similar although more complicated way.

As a result, consistent linear and non-linear coarse grid approximations are built
using the agglomeration principle. Linear and nonlinear MG have been derived,
in contrast with AMG algorithms. This method extends to Discontinuous Galerkin
approximations [13]. The extension of Agglomeration MG to multi-processor
parallel computing, however, are less easily achieved, as compared to Domain
Decomposition Methods.

The many works on multi-level methods à la Bramble-Pasciak-Xu [2] has drawn
attention to the question of basis smoothness. Indeed, the underlying basis function
in volume-agglomeration is a characteristic function equal to zero or one. In [10],
the agglomeration basis is extended to H1 consistent ones in an analog way to
smoothed-aggregation. In [4], a Bramble-Pasciak-Xu algorithm is built on these
bases for an optimal design application.

While MG appeared, at least for a while, as the best CFD solution algorithm,
Domain Decomposition methods (DDM) were seen as a new star for computational
Structural Dynamics due to matrix stiffness issues. Domain decomposition methods
assume the partition of the computational domain into sub-domains and assume that
representative sub-problems on sub-domains can be rather easily computed and help
convergence towards global problem’s solution. An ideal DDM should be weakly
scalable, that is, when it produces in some time with p processors a result on a
given mesh, the result on a two times larger mesh should be produced in the same
time with 2p processors. In Schwarz DDM, The set of local problems preconditions
the global loop. Boundary conditions for each sub-domain problem are fetched in
neighboring domains. The resulting iterative solver generally involves a Krylov
iteration and is often refered as Newton-Krylov-Schwarz. It has been shown by
S. Brenner [3] that the resulting algorithm is not scalable, unless a extension called
coarse grid is added. In [3], the coarse grid correction is computed on a particular
coarser mesh, embedded into the main mesh. The advantage of this approach is to
produce a convergent coarse mesh solution. However the coarse mesh option is not
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practical in many cases, in particular for arbitrary unstructured meshes. As a result,
it was tried later to build a coarse basis using other principles. An option is to look
for a few global eigenvectors of the operator, see for example [15]. For CPU cost
reasons, these eigenvectors should not be exactly computed but only approximated.
In a recent study [11, 12], it is proposed to compute eigenvectors of the local
Dirichlet-to-Neumann operator, which can be computed in parallel on each sub-
domain. The evaluation of eigenvectors is difficult when the matrix has a dominent
Jordan behaviour (as for convection dominent models, the privilegiated domain of
finite-volume methods). In the proposed study, we try to build a convergent coarse
mesh basis for an arbitrary unstructured fine mesh. It has been observed that coarser
meshes for unstructured meshes are elegantly build with volume-agglomeration.
In this study, we follow this track, define a convergent basis and examine how
it behaves as a coarse grid preconditioner. The test problem we concentrate on is
inspired by a pressure-correction phase in Navier-Stokes (see for example [6]), and
expresses as a Neumann problem with strongly discontinuous coefficient and writes:

� r� 1
�
rp D RHS in ˝

@p

@n
D 0 on @˝ p.0/ D 0:

in which the well-posedness is fixed with a Dirichlet condition on one cell.

1.1 Basic Additive exact and ILU Schwarz algorithm

Our discrete model relies on a vertex-centered formulation expressed on a triangula-
tion. Let us assume that the computational domain˝ is split into two sub-domains,
˝1 and ˝2 , with an intersection ˝1 \ ˝2 with a thickness of at least one layer of
elements. The Additive Schwarz algorithm is written in terms of preconditioning, as
M�1 DP2

iD1 A�1j˝i where A�1j˝i holds for the Dirichlet problem on sub-domain˝i .

The preconditionerM�1 can be used in a Krylov subspace method. In this paper, in
order to keep some generality in our algorithms, we use GMRES, also used in [15].
In the Additive Schwarz-ILU version, the exact solution of the Dirichlet on each sub-
domain is replaced by the less costly Incomplete Lower Upper (ILU) approximate
solution.

1.2 Algebraic Coarse grid

As shown by S. Brenner [3], the combinationM�1 D A�10 C
PN

iD1 A�1j˝i of the Addi-

tive Schwarz method with a coarse gridA�10 reduces the complexity to an essentially
scalable one. Two methods have been proposed in the literature for introducing a
coarse grid in an algebraic manner. Both rely on the following ingredients:
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• Ahu D fh is the linear system to solve in V , fine-grid approximation space.
• V0 � V coarse approximation space. V0 D Œ˚1 � � �˚N �.
• Z an extension operator from V0 in V andZT a restriction operator from V in V0.
• ZTAhZuH D ZT fh is the coarse system.

The Deflation Method (DM) has been introduced by Nicolaides [14] and is used
by many authors. Saad et al. [15] encapsulates it into a Conjugate Gradient. Aubry
et al. [1] apply it to a pressure Poisson equation. In DM, the projection operator is
defined as:

PD D In � AhZ.ZT AhZ/
�1ZT avec Ah 2 Rn�n et Z 2 Rn�N

The DM algorithm consists in solving first the coarse system ZTAhZuH D ZT fh,
then the projected system PDAh Lu D PDfh in order to get finally u D .In�PT

D /uC
PT
D u D Z.ZTAhZ/

�1ZT fh C PT
D Lu. The Balancing Domain Decomposition has

been introduced by J. Mandel [9] and applied to a complex system in [7]. In [16]
a formulation close to DM is proposed. It consists in replacing the preconditioner
M�1 (ex.: global ILU, Schwarz, or Schwarz-ILU) by:

PB D PT
DM

�1PD CZ.ZTAhZ/
�1ZT :

1.3 Smooth and non-smooth coarse grid

The coarse grid is then defined by set of basis functions. A central question is the
smoothness of these functions. According to Galerkin-MG, smooth enough func-
tions provide consistent coarse-grid solutions. Conversely, DDM methods prefer-
ably use the characteristic functions of the sub-domains,˚i.xj / D 1 si xj 2 ˝i .
In the case ofP1 finite-elements, for example, the typical basis function corresponds
to setting to 1 all degrees of freedom in sub-domain. According to [10], the coarse
system

UH.x/ D ˙iUi˚i.x/ I
Z

rUHr˚i D
Z

f ˚i 8i

produces a solution UH which does not converge towards the continous solution U
whenH tends to 0.

In order to build a better basis, we need to introduce a hierarchical coarsening
process from the fine grid to a coarse grid which will support the preconditioner.
Level j is made of Nj macro-cells Cjk, i.e. Gj D [NjkD1Cjk . Transfer operators are
defined between successive levels (from coarse to fine):

P
j
i W Gi ! Gj P

j
i .u/.Ck0i / D u.Ckj / with Ck0i � Ckj
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Following [10] we introduce the smoothing operator:

.Lku/i D
X

j2N .i/[fig
meas.j / uj =f

X

j2N .i/[fig
meas.j /g

where N .i/ holds for the set of cells which are direct neigbors of cell i . The
smoothing is applied at each level between the coarse level k defining the char-
acteristic basis and the finest level.

�k D .L1P 2
1 L2 � � �Pp�1

p�2 Lp�1P
p
p�1/˚k:

The resulting smooth basis function is compared with the characteristic one in Fig. 2.

The inconsistency of the characteristic basis and the convergence of this new
smooth basis is illustrated by the solution of a Poisson equation with a sin function
as exact solution, Fig. 3.

1.4 Three-level Algorithm

Because the local solver is not an exact one but an ILU solver, computing with
a larger number of nodes in each sub-domain leads to a degradation of the
convergence. It is then interesting to add a coarse grid on each sub-domain. This
principle has been investigated in [8], where the authors use a non-smoothed
aggregated basis.

Fig. 2 Left: characteristic coarse grid basis function. Right: smooth coarse grid basis function

Fig. 3 Accuracy of the coarse grid approximation for a Poisson problem with a sin function (of
amplitude 2:) as exact solution. Left: coarse grid solution with the characteristic basis (amplitude
is 0:06). Right: coarse grid solution with a smooth basis (amplitude is 1:8)
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Our proposition is to build sub-domain bases which are consistent with the
Dirichlet condition of the Schwarz interface condition. To satisfy this, the Dirichlet
condition is introduced in each smoothing step of the smooth basis function building
process.

The global algorithm is made of a GMRES iteration preconditioned by the PB
operator combining a global coarse system with sub-domain preconditioners. The
latter ones combine the local medium basis and the local ILU solver.

2 Numerical evaluation

We present some performance evaluations for the proposed algorithm. In all cases
the conjugate gradient is used as fixed-point. The test case is a Neumann problem
with discontinuous coefficient as in Section 2.1. The computational domain is a
square. The coefficient takes two values with a ratio 100:, on two regions separated
by the diagonal of the domain. The right-hand side is a sin function. In the sequel,
convergence is always measured for a division of the residual by 1020. Convergence
at this level were problematic with DM and the results are presented for BDD.

We recall first how behaves the original Schwarz method with one layer
overlapping when the number of domains is fixed but the number of nodes increased.
We compare in Table 1 a 2D calculation with two domains and 400 nodes with the
analog computation with two domains and 10;000 nodes, which correspond to a
h ratio of 5. We observe (Table 1) that the convergence of a Schwarz-ILU is four
times slower on the finer mesh. We also observe that the convergence of the Schwarz
algorithm with exact sub-domain solution is also degraded by a factor 2.6, a loss
which may be explained by the thinner overlapping.

We continue with the study of the impact of choosing a smooth basis for the
two-level Additive Schwarz ILU method. We observe that the scalability again does
not hold, but it is nearly attained for the smooth basis option. It is rather bad for the
characteristic basis. The rest of the paper uses only the smooth basis.

Table 1 Additive Schwarz method
# sub- # Local #
domains cells solver Iterations

2 400 ILU 55
2 400 Direct 28
2 10,000 ILU 221
2 10,000 Direct 74

Table 2 Scalability of the two-level AS-ILU
method

Cells 10K 20K 47K 94K

Domains 12 28 66 142
Cells/domain 833 714 712 661
Char. basis 480 546 750 810
Smooth basis 400 391 444 491

The impact of the medium grid is examined in a third series of experiment is
performed on a mesh of 40;000 cells, with 4 sub-domains and a total of 64 medium
basis function (8 per sub-domain). In Table 3, we observe that without a coarse grid,
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Table 3 Convergence of the different preconditioners (40;000 cells)

Type of preconditioner M�1 # sub-domains Iterations

Global ILU 1 348
Schwarz-ILU 4 431
Schwarz-ILU+coarse-grid 4 334
Three-level 4 264
Three-level 16 164

the Schwarz-ILU solver is 20% slower than the global (1-sub-domain) ILU solver
(in terms of iteration count for 20 decades), the Schwarz-ILU with coarse-grid is
slightly faster and the three level is 30% faster.

The speedup is measured for a given problem, set on a mesh of 40;000 cells.
We compare the iteration count between a 4-sub-domain computation and a 16-sub-
domain one. The coarse system solution with 16 unknowns is not parallel, but its
cost is very small. Using four times more processors turn into a 6:4 smaller number
of iterations before obtaining the solution (Table 3).

For a scalability measure, the mesh is taken finer and the number of sub-domain
increased accordingly. We compare a 40;000-cell computation on 4 processors with
a 160;000-cell on with 16 processors. We would like to mention that the Schwarz
method with exact sub-domain resolution is far from being scalable: in Table 4,
increase in iteration count is 40%. These bad news were announced by Table 1. We

Table 4 Scalability for the Schwarz, two-level Schwarz and three level Schwarz-ILU

Method # cells # sub-domains # medium basis funct Iterations

Schwarz 40,000 4 320
Schwarz 160,000 16 451
two-level Schwarz 40,000 4 130
two-level Schwarz 160,000 16 212
Three level 40,000 4 64 164
Three level 160,000 16 256 176

turn the combination of the Schwarz method with our smooth coarse grid. Exact
solution is again performed on each sub-domain. Convergence becomes at least
twice better. However, passing from 40;000 cells with 4 sub-domains to 160;000
cells with 16 sub-domains increases the iteration count by 60%, Table 4. We have
checked that results with characteristic coarse grid are worse. In order to perform
the analog comparison for the proposed three-level method (smooth coarse grid,
smooth medium grid, ILU), we specify a four times higher number of medium-grid
basis functions for the computation with four times higher number of cells (and
sub-domains). Scalability in iterations is nearly satisfied, with 7% loss, Table 4.
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3 Concluding remarks

We have proposed a three-level algorithm for solving a linear system with a Schwarz
method. The basis functions are independent of the system to solve and building
them is not computationally expensive. The coarse grid solution is obtained after one
iteration and yields a good initial solution. A few preliminary results show that the
proposed method appears to be suitable for a pressure-projection system. The CPU
cost (measured on a 2.6GHz workstation) for the heaviest example is of 0:05nS for
the coarse factorization, 660nS (20nS per processor) for the coarse system assembly
while the Schwarz preconditioner cost is 124�S . Further measures and applications
to convection-diffusion models are in progress, as well as the introduction into a
compressible Navier-Stokes model, [5].
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A comparison between the meshless
and the finite volume methods for shallow
water flows
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Abstract A numerical comparison is presented between a meshless method and a
finite volume method for solving the shallow water equations. The meshless method
uses the multiquadric radial basis functions whereas a modified Roe reconstruction
is used in the finite volume method. The obtained results using both methods are
compared to experimental measurements.

Keywords Meshless method, shallow water equations, finite volume method,
radial basis functions, numerical simulation
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1 Introduction

Finite volume method have been widely used to solve shallow water flows due to
their conservation properties and the ability to handle complex geometries. Recently,
meshless methods using radial basis functions have attracted many researcher in
mechanical engineering as well as in computational fluid dynamics. Application of
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meshless methods for numerical solution of shallow water equations has already
been addressed in many references in the literature, see for example [9] and further
references are therein. However, to our best knowledge, no comparison between
the meshless method and the finite volume method is available in the literature
for shallow water flows. The aim of the present work is therefore, to perform a
comparative study between the meshless and the finite volume methods for solving
the shallow water equations rearranged in a conservative form as

@W
@t
C @F.W/

@x
C @G.W/

@y
D 0; (1)

where W is the vector of conserved variables, F and G are the tensor fluxes

W D

0

B
B
@

h

hu

hv

1

C
C
A ; F.W/ D

0

B
B
@

hu

hu2 C 1
2
gh2

huv

1

C
C
A ; G.W/ D

0

B
B
@

hv

huv

hv2 C 1
2
gh2

1

C
C
A ;

where g is the gravitational acceleration, h.t; x; y/ is the water depth, u.t; x; y/ and
v.t; x; y/ are the depth-averaged velocities in the x- and y-direction, respectively.
Note that the equations (1) has to be solved in a bounded spatial domain ˝ with
smooth boundary � , equipped with given boundary and initial conditions. It is well
known that the system (1) is strictly hyperbolic with real and distinct eigenvalues.

The basic references for the present finite volume method are [1, 2]. In [1], a
description of the overall structure of the finite volume method is presented. In
particular, the discretization of the gradient fluxes using the sign matrix of the
Jacobian is described in details for both scalar equations and hyperbolic systems
of conservation laws with source terms. In [2], the implementation of the finite
volume scheme on unstructured grids is analyzed and applied to pollutant transport
by shallow water flows. This implementation involves an original treatment of the
flux derivatives coupled with the source term in unstructured meshes. The current
work aims to compare this finite volume method to a meshless method using
the multiquadric radial basis. The numerical results are presented for the shallow
water flow in a backward facing step. This test problem has been experimentally
investigated in [6]. The obtained results using the meshless and the finite volume
methods are compared against the measurements from [6].

2 Solution procedures

In this section we briefly describe the two methods used in solve the shallow
water equations (1). Further details on the formulation and implementation of these
techniques can be found in the cited references.
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2.1 A meshless method

The principal idea of the radial basis interpolation is to interpolate a finite series of
an unknown function f .X/ atN distinct points Xj on˝ by the following expansion

f .X/ '
NX

jD1
˛j '.kX - Xjk/; (2)

Here ˛j ’s are the unknown coefficients to be calculated at each time step, and
'.kX - Xj k/ is the radial basis function, Xj 2 R

n, j D 1; 2; : : : ; N , kX - Xjk D
rj , rj D

p
.xi � xj /2 C .yi � yj /2 is the Euclidean distance and X D .x; y/,

Xj D .xj ; yj /. Since multiquadrics (MQ) are infinitely smooth functions, they are
often chosen as the trial function for ', i.e.,

'.rj / D
q
r2j C c2 D

q
.x � xj /2 C .y � yj /2 C c2;

where c ¤ 0 is the shape parameter controlling the fitting of a smooth surface to the
data, see for instance [7].

The application of collocation radial basis functions to a system (1) and its
boundary conditions start by first selecting a set of .x1; y1/; :::; .xb ; yb/ boundary
and .xbC1; ybC1/; :::; .xdCb ; ydCbDN / domain nodes. The unknown solution of the
problem at each time t can be determined under the form

˚.X; t/ D
NX

jD1
˛j .t/'.rj /; (3)

where X D .x; y/T and f˛j g are unknown coefficients to be determined. To solve
the two-dimensional time-dependent differential equations given by (1), the time
explicit forward difference scheme is used, then

˚nC1
i D ˚n

i ��t
�@Gn

i

@x
C @F n

i

@y

�
; (4)

where �t is the time step, ˚nC1
i is the numerical solution vector at points Xi D

.xi ; yi / in time n�t . The values of the interpolate ˚n are given by the following
MQ radial basis function

˚n.Xi ; t/ D
NX

jD1
˛nj .t/

q
r2ij C c2; (5)

where rij D
p
.xi � xj /2 C .yi � yj /2 C c2; which are collocating with a set of

data .xi ; yi /NiD1 over the domain˝ � R
2, and forms a system of N linear algebraic
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equations in N unknowns

0

B
B
B
B
B
B
B
B
B
B
B
@

˚n
1

˚n
2

:::

˚n
N

1

C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
@

'.r11/ '.r12/ : : : '.r1N /

'.r21/ '.r22/ : : : '.r2N /

:::
:::

: : :
:::

'.rN1/ '.rN2/ : : : '.rNN /

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
@

˛n1

˛n2

:::

˛nN

1

C
C
C
C
C
C
C
C
C
C
C
A

; (6)

The numerical scheme (4) gives a system of N linear equations in N unknowns can
be expressed in matrix form �!̊ D A�!̨; (7)

whereA D Œ'j .xi ; yi /� is a N �N matrix,�!̨ D Œ˛nj � and
�!̊ D Œ˚n

j � areN vectors.
Note that for n D 0 the coefficients f˛0j g can be found using the initial conditions.
Hence the solution ˚0

1 is well-determined and it will be used as initial condition
for the scheme (4). The numerical values of the unknown spatial derivatives of
˚n.xi ; yi / is approximated using the multiquadric radial basis functions as

@m˚n

@xm
.xi ; yi ; t/ D

NX

jD1
˛nj .t/

@m'j

@xm
.xi ; yi /;

@m˚n

@ym
.xi ; yi ; t/ D

NX

jD1
˛nj .t/

@m'j

@ym
.xi ; yi /;

where m D 1; 2. Thus, at each time step n, the numerical solution of the vector
˚.xi ; yi ; t/

bCd
iDbC1 at the interior points are computed by substituting the ˚ and its

spatial derivatives into equation (4). The boundary values ˚.xi ; yi ; t/biD1 are given
by boundary conditions.

Finally, the numerical solution is obtained by solving the system of N linear
equations �!̊nC1 D .A��tAL/�!̨n; (8)

where AL D ŒL.'n.rij //� is an N �N matrix coefficient of which are defined by

L.'n.rij // D
�@G.'n.rij //

@x
C @F.'n.rij //

@y

�
:

Hence, the unknown coefficients vector Œ˛nj � can be determined using Gaussian
elimination or Gmres methods.
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2.2 A finite volume method

Discretizing the computational domain in control volumes, the finite volume method
applied to (1) results in

WnC1
i DWn

i �
�t

jTi j
X

j2N.i/

Z

�ij

F .WnIn/ d�; (9)

whereN.i/ is the set of neighboring triangles of the cell Ti , Wn
i is an average value

of the solution W in the cell Ti at time tn. jTi j denotes the area of Ti and @V is
the surface surrounding the control volume V . Here, n D .nx; ny/T denotes the unit
outward normal to the surface @V , and

F .WIn/ D F.W/nx CG.W/ny:

Following the formulation in [1], the proposed finite volume scheme consists of a
predictor stage and corrector stage. It can be formulated as

Wn
ij D

1

2

�
Wn

i CWn
j

�
� 1
2

sgn
h
rF

�
W

n

ij Inij
�i�

Wn
j �Wn

i

�
;

(10)

WnC1
i DWn

i �
�t

jTi j
X

j2N.i/
F
�

Wn
ij Inij

� ˇ
ˇ�ij

ˇ
ˇC�tSni ;

with sgn ŒA� denotes the sign matrix of A, and W
n

ij is approximated either by Roe’s
average state or simply by the mean state

W
n

ij D
1

2

�
Wn

i CWn
j

�
: (11)

A detailed formulation for the sign matrix in (10) are given in [1, 2] and will not be
repeated here.

3 Numerical Results

To validate the results obtained using the meshless and finite volume methods we
consider the test problem of flow in a backward facing step. Experimental data
for this test problem have been provided in [6] and are used here to compare our
numerical results. The domain geometry is depicted in Fig. 1 and for the other
involved parameters we refer the reader to [6]. On the upstream and downstream
boundaries we used the condition as in [6] i.e.
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Fig. 1 Schematic domain used in the experimental setup and in our simulations

• On the upstream boundary: The discharge,Q D 20:2 l=s, is imposed.
• On the downstream boundary: The measured depth, h D 24:2 cm, is imposed.

In our finite volume simulations we have used an unstructured mesh shown in
the left plot of Fig. 2. This mesh contains 5209 triangles and 2779 nodes. In the
computations reported herein, the Courant number C is set to 0:8 and the time
stepsize �t is adjusted at each step according to the stability condition

�t D C min
�ij

 
jTi j C

ˇ
ˇTj

ˇ
ˇ

2
ˇ
ˇ�ij

ˇ
ˇmaxp

ˇ
ˇ.	p/ij

ˇ
ˇ

!

;

where 	p are the eigenvalues of the system (1), �ij is the edge between two triangles
Ti and Tj . For the meshless method we used the node distribution shown in the
right plot of Fig. 2. Here we used 229 collocation points uniformly distributed in
the computational domain. It should be stressed that the stability condition in the
meshless method is

�t � C dmin

max
�p

U ˙ gh;pV ˙ gh
� ; (12)

where dmin is the minimum distance between any two adjacent collocation points
and C is the courant number set to 0:1 in our simulations. In our computations the
shape coefficient in the multiquadric radial basis functions is selected according to
[5, 9]. It has been shown in these references that a near-optimal approximation of
the model hydrodynamic can be achieved by using the proposed value

c D 0:815dmin:

Steady-state solutions are presented for both methods.
Figure 3 illustrates the cross sections of the velocity component u at vertical

lines located in x D 2:03 and in x D 2:53. These two location belong to the zone
where measurements have been taken. The agreement between the simulations using
the finite volume method and measurements is fairly good. The velocity magnitude
and recirculation location are well predicted by the both numerical methods. As
expected, a reverse flow is formed near the upper and lower walls and propagates
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Fig. 2 Finite volume mesh (left plot) and node distribution for meshless method (right plot)
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Fig. 3 Comparison results for cross sections of the velocity field u at vertical line x D 2:03 (left
plot) and at vertical line x D 2:53 (right plot)

upstream. However, the location of the recirculation is less accurately predicted by
the numerical methods. This may be attributed to the absence of shear stresses from
the bed and eddy viscosity in the governing equations (1). It should also be pointed
out that the numerical diffusion is more pronounced in the results obtained using the
finite volume method than those obtained using the meshless method.

In terms of computational costs for this test problem, the CPU time for the
meshless method is about 34 minutes. The considered finite volume method
requires more than four times the CPU used for the meshless method. This is a
clear indication that the meshless method is more efficient than the finite volume
method regardless the number and the distribution of the collocation points in the
computational domain.

Acknowledgements The authors would like to thank Prof. Jaime Fe Marqués for providing the
experimental data to us.
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Time Compactness Tools
for Discretized Evolution Equations
and Applications to Degenerate Parabolic PDEs

Boris Andreianov

Abstract We discuss several techniques for proving compactness of sequences of
approximate solutions to discretized evolution PDEs. While the well-known Aubin-
Simon kind functional-analytic techniques were recently generalized to the discrete
setting by Gallouët and Latché [15], here we discuss direct techniques for estimating
the time translates of approximate solutions in the space L1. One important result
is the Kruzhkov time compactness lemma. Further, we describe a specific technique
that relies upon the order-preservation property. Motivation comes from study-
ing convergence of finite volume discretizations for various classes of nonlinear
degenerate parabolic equations. These and other applications are briefly described.

Keywords time translates, Kruzhkov lemma, order-preservation, finite volumes
MSC2010: Primary: 65M12, 46B50, 35K65; Secondary: 46E39, 65M08

1 Introduction

Let us think of evolution equations set on a cylindrical domainQ WD .0; T /�˝ �
IRC � IRN . Proving convergence of space-time discretizations of such equations
often includes the three following steps: constructing discrete solutions and get-
ting uniform (in appropriate discrete spaces) estimates; extracting a convergent
subsequence; writing down a discrete weak formulation (e.g., with discretized test
functions) and passing to the limit in the equation in order to infer convergence.

For the first step, obtention of estimates is greatly simplified by preservation, at
the discrete level, of the key structure properties of the PDE (such as symmetry,
coercivity, monotonicity of the diffusion operators involved; entropy dissipation,
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for the nonlinear convection operators in the degenerate parabolic case; etc.). For
getting discrete a priori estimates test functions are often used, as in the continuous
case. Therefore, some analogues of integration-by-parts formulas and chain rules
are instrumental for the first step. For the examples we give in this paper, “discrete
duality” type schemes (mimetic, co-volume, DDFV; see, e.g., [3] and references
therein) can be used to guarantee an exact integration-by-parts feature. In contrast,
chain rules for derivation in time or in space must be replaced by approximate
analogues, often taking the form of convexity inequalities (see, e.g., [4], [3, Sect. 4]).

In this note, we give some insight into convergence proofs for different sub-
classes of degenerate elliptic-parabolic-hyperbolic PDEs under the general form1

u D b.v/;w D '.v/; ut � div
�
G.v/� a0

�rw
��C .v/ D f in Q D .0; T /�˝

(1)
with b.�/; '.�/;  .�/ continuous2 non-decreasing on IR, normalized by zero at zero,
with a continuous convection flux G.�/ and with a0 W IRN ! IRN of Leray-Lions
type (see e.g. [1, 4]; p-laplacian, with a0.
/ D j
jp�2
 is a typical example). For
the sake of simplicity, homogeneous Dirichlet boundary condition on .0; T / � @˝
is taken.

But our main goal is to discuss the second step of the proofs3, the one of getting
compact4 sequences of discrete solutions. For linear problems, the two latter steps
are somewhat trivial; indeed, mere functional-analytic bounds would lead to com-
pactness in a weak topology, which is enough to pass to the limit from the discrete
to the continuous weak formulation of the PDE. Thinking of nonlinear problems
and passage to the limit in nonlinear terms, bounds in functional spaces can be
sufficient when combined with basic compact embeddings; but this requires rather
strong bounds involving e.g. some estimates of the derivatives. Regarding evolution
PDEs of, say, porous medium type,Lp bounds are available on the space derivatives
but not on the time derivatives (those belong to some negative Sobolev spaces). In
this situation, either compactness in an ad hoc strong topology is needed; or the
weak compactness coming from uniform boundedness should be combined with
some compactification arguments (compensated compactness, Young measures and
their reduction, etc.) that exploit in a non-trivial way the particular structure of the
PDE in hand (div-curl structure, pseudo-monotonicity, entropy inequalities, etc.).

In this note, we first recall in � 2 the fundamental techniques using only bounds
in well-chosen functional spaces (see [2, 9, 11, 17] for the continuous setting; see
[12, 15] for the corresponding discrete results). In � 3, we present a collection

1See [5] and references therein for well-posedness theory of such “triply nonlinear” equations.
These are mathematical models for porous media, sedimentation, Stefan problem, etc..
2Actually, we assume that either these functions are uniformly continuous, or v is bounded a priori.
3When the compactification methods strongly utilize a particular structure of the underlying PDE,
this step is in fact combined with the third step of passing to the limit.
4Throughout the note, “compact” actually signifies “relavively compact”.
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of complementary techniques for estimation of time translates of families of
functions that already possess some estimate of space translates. In � 4, we describe
one indirect method for proving compactness and convergence of families of
approximate solutions. The method heavily exploits the order-preservation property,
required both for the PDE in hand and for the approximation scheme in use.
Throughout the note, the exposition is motivated and illustrated by applications to
approximation of several cases of problem (1) (different cases requiring different
approaches).

2 Functional-analytic approach
of Aubin-Lions-Dubinskii-Simon

In the continuous setting, one celebrated result is the Aubin-Lions or Dubinskii
lemma ([9] and [11]) and its generalization by Simon [17] (see also Amann [2]).
To give an example relevant for the applications we have in mind, let us simply
state here that a sequence .uh/h bounded in L1.0; T IW 1;1.˝// and such that
..uh/t /h is bounded in L1.0; T IW �1;1.˝// is relatively compact in L1.Q/, cf. [15].
More generally, compactness comes from an a priori bound on uh in some space
Lp.0; T;X/ with X compactly embedded in L1.˝/ (e.g., X D W 1;1.˝/) while
the PDE brings information on boundedness of the time derivatives .uh/t in some
space Lq.0; T IY / where Y can be a subspace of distributions on ˝ equipped with
a rather weak topology (e.g., Y D W �1;1.˝/). A discrete version of the Aubin-
Simon lemma was recently proposed by Gallouët and Latché in [15]; it is based
upon a careful reformulation of estimates in terms of “coherent” families .Xh/h,
.Yh/h of discrete spaces.

A related result taken from Simon [17] and Amann [2] uses a bound on fractional
time derivatives of uh. As it was demonstrated by Emmrich and Thalhammer in
[12], this version is quite appropriate in the time-discretized setting. Indeed, time
fractional derivatives of order less than 1=2 exist even for piecewise constant
functions. Technically, this method involves an indirect estimation of weighted

time translates, under a form
Z T

0

Z T

0

juh.t/ � uh.s/jp
jt � sj1C�p ds dt with some p � 1 and

� 2 .0; 1=2/.
These results only use bounds in functional spaces and very few of the underlying

PDE properties. They offer a very wide spectrum of applications; yet they are
difficult to apply on degenerate parabolic problems with non-Lipschitz nonlin-
earities. The difficulty comes from the fact that non-Lipschitz mappings make
bad correspondence between linear functional spaces. Yet this difficulty is not a
fundamental one; roughly speaking, it is settled by a careful use of translation
arguments and of moduli of continuity. This is the object of the next section.
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3 Direct estimation of time translates

In this section, the compactness question is studied using the one and only space5

L1.Q/. By the Fréchet-Kolmogorov compactness criterion in L1.Q/, uniform
bounds on space and time translates of uh are needed. In the setting of the present
note, the first ones are readily available. The difficulty lies in estimating the time
translates as

8h
Z T�ı

0

Z

˝

ˇ
ˇ
ˇuh.tCı/ � uh.t/

ˇ
ˇ
ˇ � !.ı/ with lim

ı!0 !.ı/ D 0; (2)

!.�/ being a modulus of continuity, uniform in h. Here are two ways to obtain (2).

A discrete Kruzhkov lemma6

Lemma 1 (Kruzhkov [16]). Assume that the families of functions .uh/h; .F ˛
h /h;˛

are bounded in L1.Q/ and satisfy @
@t

uh DPj˛j�m D˛F ˛
h in D 0.Q/. Assume that uh

can be extended outsideQ, and one has7

Z Z

Q

juh.t; xCı/�uh.t; x/j dxdt � !.ı/; with lim
ı!0 !.ı/ D 0; (3)

where !.�/ does not depend on h. Then .uh/h is (relatively) compact in L1.Q/.

Clearly, this is an L1loc compactness result (one can apply the lemma locally in Q).

For problem (1), the value m D 1 is relevant, because an L1 bound is available
for the flux

�
G.v/ � a0

�r'.v/��; therefore we limit to this case the discussion of
discrete analogues of Lemma 1. To give an idea of discrete versions of the Kruzhkov
lemma8, assume we are given a family of meshes of ˝ indexed by their size h and
satisfying mild proportionality restrictions (e.g., for the case of two-point flux finite
volume schemes as described in [13], one needs for all neighbour volumes K;L,
diam.K/Cdiam.L/�const dK;L uniformly in h). Assume that on these meshes, spaces of

5Working in an h-independent space is an advantage for producing discrete versions of com-
pactness arguments; yet the approach of [15] exhibits a simple and efficient use of h-dependent
spaces.
6There is a strong relation to the method of � 2. The Kruzhkov lemma allows for general moduli of
continuity. E.g., for problem (1) with ' D Id , the Aubin-Lions-Dubinskii-Simon argument can be
used if b.�/ is Lipschitz continuous (with X D W

1;p
0 .˝/) or Hölder continuous (with a fractional

Sobolev space chosen for X), and the Kruzhkov lemma can be used for any continuous b.�/.
7In practice, space translation estimates of the kind (3) can be obtained via an estimate of some
discrete gradients; notice that estimates of kind (3) are stable upon composing .uh/h by a function
b.�/ which is uniformly continuous (as in (1), we mean that uh D b.vh/).
8Here we give a rather heuristic presentation; see [7] and [3] for two precise formulations covering,
e.g., the two-point flux finite volume schemes ([13]) and DDFV schemes ([3] and ref. therein).
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discrete functions IRh and discrete fields .IRN /h are defined (each element uh 2 IRh
or Fh 2 .IRN /h is a piecewise constant on˝ function reconstructed from the degrees
of freedom of the discretization method). Assume we are given discrete gradient
and discrete divergence operators rh and divh mapping between these spaces. Thus
all discrete objects (functions, fields, gradient, divergence) are naturally lifted to
L1.Q/.

Let .ıh/h be the associated time steps, let Nh be the entire part of T=ıh. Assume
that we are given an initial condition b0

h and discrete evolution equations under the
form

for n 2 Œ1; Nh C 1�; b.vnh/ � b.vn�1h /

ıh
D divh ŒFnh�C f n

h in IRh; (4)

where families (
��

unh
�
n

�
h
,
��
f n
h

�
n

�
h

(discrete functions) and
��

Fnh
�
n

�
h

(discrete
fields) are bounded in L1.Q/. Assume that the discrete gradients

��rhvnh
�
n

�
h

are
bounded in L1.Q/ and that this bound implies a uniform translation bound in
space of the family vh (this is true, e.g., when discrete Poincaré inequalities can
be proved). Under these assumptions, reproducing at the discrete level the proof
[16] of Lemma 1 as it is done in [3, 7], one concludes that the family .b.vh//h is
relatively compact in L1.Q/. Note that, the case m � 2 would require more work.

A classical technique for the “variational” setting

Following [1], by “variational” we mean a setting where the solution w is an admis-
sible test function in the weak formulation of the PDE; e.g., (1) can be tested with
w D '.v/. It typically comes along with a priori estimates that can be reproduced
at the discrete level, provided the discretization is somewhat structure-preserving.9

The technique of [1] used, in its finite volume version, e.g., in [4, 13, 14], is to
integrate10 the equation in time from t to tCı, take wh.tCı/�wh.t/ for test function,
then integrate in .t; x/. On problem (1), this leads to a uniform estimate

8h > 0
Z T�ı

0

Z

˝

�
b.vh/.tCı/� b.vh/.t/

��
'.vh/.tCı/� '.vh/.t/

�
� !.ı/: (5)

Then Lipschitz continuity of ' ı b�1 (resp., of b ı'�1) can be used to infer uniform
L2 time translates of wh D '.vh/ (resp., of uh D b.vh/). Yet the L1 time translates
can be obtained in the case ' ı b�1 (resp., b ı'�1) is a merely continuous function.

9Notice that for evolution PDEs governed by accretive in L1.˝/ operators, of which (1) is an
example, time-implicit discretizations are better suited for structure preservation. Use of numerical
schemes in space that possess a kind of discrete duality (mimetic, co-volume, DDFV schemes, etc.)
enables getting discrete estimates analogous to the continuous ones. For notions of solution involv-
ing some version of chain rule (e.g., entropy, renormalized solutions) orthogonality assumption on
the meshes and isotropy assumption on the diffusion operator may be needed, see e.g. [4].
10Here, for the sake of simplicity, we stick to the terminology and notation of the continuous case.
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� A technique for L1 estimates involving non-Lipschitz nonlinearities (see [4])

Consider the case wheree' WD 'ıb�1 is a uniformly continuous function (moreover,
it is non-decreasing). Let � be a concave modulus of continuity for ' ıb�1,˘ be its
inverse, and set ĕ.r/ D r ˘.r/. Let e� be the inverse of ĕ . Note that e� is concave,
continuous, and e�.0/ D 0. Set uı D b.vh/.tCı; x/ and u D b.vh/.t; x/. We have
Z

Q

je'.uı/�e'.u/j D
Z

Q

e�ı ĕ�je'.uı/�e'.u/j� � jQje�
�

1
jQj
Z

Q

ĕ
�je'.uı/�e'.u/j�

�
:

Since je'.uı/ �e'.u/j � �.juı � uj/, we have ˘.je'.uı/�e'.u/j/ � juı � uj and

ĕ.je'.uı/�e'.u/j/ D ˘.je'.uı/�e'.u/j/je'.uı/ �e'.u/j � juı � uj je'.uı/�e'.u/j:

Therefore, (5) implies an L1 estimate of the kind (2) on wh D '.vh/:
Z

Q

jwh.tCı/�wh.t/j � jQje�
�

1
jQj
Z

Q

juı�ujje'.uı/�e'.u/j
�
D jQje�

�
1
jQj!.ı/

�
:

� Use of contraction arguments and absorption terms (see [8])

Let us mention one more possibility for getting estimates of kind (2) for (1),
which takes advantage of the monotonicity of  .�/. Assume ' D Id in (1);
to shorten the arguments, assume f D 0. Then L1 translates in time of uh D
b.vh/ can be estimated with every of the two preceding methods, the Kruzhkov
lemma and a direct estimation of translates with variational techniques. This makes
.b.vh//h relatively compact; yet, when b�1.�/ is discontinuous, no information on
compactness of .vh/h is obtained this way. Now, let us use the translation (in time)
invariance of the equation and the L1 contraction property11 natural for (1). This
yields the estimate (see [8])

Z

˝

jb.vıh/�b.vh/j.T�ı/C
Z T�ı

s

Z

˝

j .vıh/� .vh/j �
Z

˝

jb.vıh/.s/�b.vh/.s/j (6)

for all s 2 .0; T �ı/, where vıh.t/ D vh.t C ı/. Integrating in s > ˛ > 0, using
the time translation bound for .b.vh//h we get an L1..˛; T / � ˝/ estimate of time
translates of .vh/. If .�/ is strictly increasing, this is enough forL1loc compactness
of .vh/h.

Applications to (1) and some other parabolic PDEs

� Application to a parabolic-hyperbolic PDE (see [4])

For problem (1) with b D Id , providedLp.Q/ estimates of the discrete gradient of
'.vh/ are available, space translates of '.vh/ (and the functions '.vh/ themselves)

11Discrete version of (6) (see [8]) assumes theL1 contraction property (linked to order preservation
via the Crandall-Tartar lemma) is preserved at the discrete level. Estimate (6) is exploited in � 4.
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can be estimated uniformly, and an estimate of the form (5) can be obtained. Then
the above technique for exploiting (5) assesses the L1.Q/ compactness of .'.vh//h,
which is a first step of the convergence proof for this problem (see [4])12.

� Application to an elliptic-parabolic PDE with the structure condition (see [3])

Assume ' D Id . Estimate (5) controls the L1 time translates of b.vh/ similarly to
what was described above13. If the structure condition G.v/ D F.b.v// is satisfied,
compactness of .b.vh//h is enough to pass to the limit, see [1] (cf. [10] and � 4).

� Application to a cross-diffusion system (see [7])

The following kind of models comes from population dynamics:
�

ut �D1�u � div
�
.uC v/ruC urv

� D u.a1 � b1u � c1v/;
vt �D2�v � div

�
vruC .uC v/rv

� D v.a2 � b2u � c2v/: (7)

Natural estimates for approximate solutions of (7) areL2 bounds on
p
1C uC v ru,p

1C uC v rv; this gives only an L4=3 bound on the diffusion fluxes in (7), thus
we are not in a variational setting14. Therefore for a proof of convergence of finite
volume approximations of the kind [13], the Kruzhkov lemma was used in [7]15.

� Application to convergence of some linearized implicit schemes (see [6])

In [6], discretization of the simplified version of cardioelectrical bidomain model:
�

vt � div
�
Mi .�/rui

�CH.v/ D Iap.�/;
vt C div

�
Me.�/rue

�CH.v/ D Iap.�/; v D ui � ue; (8)

was considered; here, the “ionic current”H.�/ is a cubic polynomial. This nonlinear
reaction term brings an estimate of vH.v/ which bounds v in L4.Q/. Time-implicit
DDFV discretization of (8) preserves this structure; then the problem falls into the
“variational” framework16 and time translates can be estimated like in [1, 13, 14].
From the practical point of view, it is important to accelerate computations, and
to consider a linearized method where the discretization of the reaction term H.v/
is not fully implicit. Unfortunately, for theoretical analysis L4 estimate for vh is
not available any more; only a weaker estimate can be obtained with interpolation
arguments. In [6], we applied the Kruzhkov lemma to exploit this weaker estimate17.

12For Lipschitz '.�/, also the Aubin-Lions-Dubinskii-Simon and Kruzhkov lemmas could be used.
For general '.�/, the author thinks that neither of these lemmas can replace the direct use of (5).
13Alternatively, the Kruzhkov lemma can be used in a straightforward way, see [3].
14From the practical point of view, e.g. the first equation cannot be tested with u.tCı/.
15Alternatively, the discrete Aubin-Lions-Dubinskii-Simon lemma (see [15]) could be used here.
16Indeed, we have vh bounded in L4.Q/ and H.vh/ is bounded in L4=3.Q/ D .L4.Q//�.
17A discrete Aubin-Lions-Dubinskii-Simon argument could have been applied as well.
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4 Advanced use of the underlying PDE features

Often mere functional-analytic bounds are not enough, but additional constraints
coming from the particular structure of the approximated PDE may permit an
indirect compactness/convergence proof. E.g., for the parabolic-hyperbolic PDE (1)
(case b D Id ) we proved the compactness of .'.vh//h in � 3. The two final steps (see
[4]; see also [14]) exploit fine PDE tools. First, the Minty argument (see, e.g., [1])
is used for .a0.rh'.vh//h; second, the “nonlinear weak-* convergence” ([4,13,14])
for .vh/h is upgraded to strong convergence using entropy inequalities for (1).

Let us show how one very delicate case of (1), see [10], can be treated indirectly.

Compactness from monotone penalization and order-preservation

For getting (6), we already used the order-preservation structure for (1). Its further
use, in conjunction with penalization, may lead to the following convergence proof.

� The structure needed for compactification

Assume that one can prove uniqueness of a solution to a PDE (Eq0) under study.
Assume that (Eq0) can be embedded “continuously” into a family (Eq") of per-
turbed PDEs having the property that v"1h � v"2h when "1 � "2, where v"1h , v"2h are the
associated discrete solutions. Continuity in " 2 Œ�1; 1�means, we assume that limits
as "!0 (if they exist) of exact solutions v" of (Eq") solve the limit equation (Eq0).

Assume that for " ¤ 0, the corresponding sequence .v"
h/h is well defined and it

converges to an exact solution v" of (Eq"). Then solutions .v0h/h to the discretized
equation (Eq0) converge a.e., as h ! 0, to the unique solution of (Eq0). Indeed,
write

v�1h � v�1=2h � ::: � v�1=mh � ::: � v0h � ::: � v1=mh � ::: � v1=2h � v1h; (9)

and pass to the limit as h! 0 to define v˙1=m WD limh!0 v˙1=mh (up to extraction of
a subsequence) solution to (Eq˙1=m); then, (9) is inherited at the limit (except that
.v0h/h may not have a limit). By monotonicity, we can define v WD limm!1 v�1=m
and v WD limm!1 v1=m; furthermore, we have v � lim infh!0 v0h � lim suph!0 v0h �
v: Both v; v solve (Eq0). Thus, by uniqueness, .v0h/h converges to v 	 v the solution
of (Eq0).

� Application to an elliptic-parabolic PDE without the structure condition (see [8])

We assume that ' D Id ,  D 0 in (1). We have seen that compactness of .b.vh//h
can be established, e.g., with the Kruzhkov lemma. Under the structure condition
G.v/ D F.b.v//, this is enough to pass to the limit in the equation. But in general
(see [10]) one lacks control of time oscillations of G.vh/, and the method of [1] fails.
Yet it is enough to add penalization term of the form  ".v/ D ".arctan v
 �

2
sign "/

to get into the setting where (6) can be exploited to control discrete solutions .v"
h/h

and to pass to the limit, as h ! 0, for the  "-penalized equation (1"). The order-
preservation assumptions of the above method being fulfilled due to the choice of
 ", we get convergence of .vh/h in the cases where uniqueness for (1) can be shown.
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9. J.-P. Aubin. Un théorème de compacité. (French) C.R. Acad. Sc. Paris, (1963), 256:5042–5044.
10. Ph. Bénilan and P. Wittbold. Sur un problème parabolique-elliptique. (French) M2AN Math.

Modelling and Num. Anal., (1999), 33(1):121–127.
11. J.A. Dubinskii. Weak convergence for elliptic and parabolic equations. (Russian) Math. USSR

Sbornik, (1965), 67:609–642.
12. E. Emmrich and M. Thalhammer. Doubly nonlinear evolution equations of second order:

Existence and fully discrete approximation. J. Diff. Eq., (2011), to appear.
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Penalty Methods for the Hyperbolic System
Modelling the Wall-Plasma Interaction
in a Tokamak

Philippe Angot, Thomas Auphan, and Olivier Guès

Abstract The penalization method is used to take account of obstacles in a
tokamak, such as the limiter. We study a non linear hyperbolic system modelling
the plasma transport in the area close to the wall. A penalization which cuts
the transport term of the momentum is studied. We show numerically that this
penalization creates a Dirac measure at the plasma-limiter interface which prevents
us from defining the transport term in the usual sense. Hence, a new penalty
method is proposed for this hyperbolic system and numerical tests reveal an optimal
convergence rate without any spurious boundary layer.

Keywords hyperbolic problem, penalization method, numerical tests
MSC2010: 00B25, 35L04, 65M85

1 Introduction

A tokamak is a machine to study plasmas and the fusion reaction. The plasma at
high temperature (108K) is confined in a toroı̈dal chamber thanks to a magnetic
field. One of the main goals is to perform controlled fusion with enough efficiency
to be a reliable source of energy. But, since the magnetic confinement is not perfect,
the plasma is in contact with the wall. In order to preserve the integrity of the wall
and to limit the pollution of the plasma, it is crucial to control these interactions.

We study, using a fluid approximation of the plasma, a simplified system of
equations governing the plasma transport in the scrape-off layer, parallel to the
magnetic field lines. In this paper, after a numerical study of the penalization
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introduced by Isoardi et al. [9], we modify the boundary conditions to ensure the
well-posedness of the hyperbolic system and we propose another penalty method
which seems to be free of boundary layer.

2 The model hyperbolic problem

In this paper, we consider a very simple model taking only into account the transport
in the direction parallel to the magnetic field lines, (see for example [9, 13]). It is
a one dimensional 2 � 2 hyperbolic system of conservation laws for the particle
density N and the particle flux � , which reads:

8
ˆ̂
<

ˆ̂
:

@tN C @x� D S
@t� C @x

	
� 2

N
CN




D 0
Initial conditions: N.0; :/ D N0 and � .0; :/ D �0

.t; x/ 2 R
C� �� �L;LŒ (1)

Here, the boundaries of the domain x D L and x D �L correspond to the
”limiters”, which are material obstacles for the fluid (see Fig. 1). In the right-hand
side, S is a source term.

There is a difficulty with the choice of the boundary conditions for the system (1).
From physical arguments, it follows that the domain (namely the scrape-off layer)
is basically divided into two regions [13]:

• One region far from the limiter, the pre-sheath, where the plasma is neutral and
the Mach numberM D � =N of the plasma satisfies jM j � 1.

• One region next to the limiter (in a thin layer called the sheath area, whose typical
thickness is of the order of 10�5m), where the electroneutrality hypothesis does
not hold and we have jM j > 1. More precisely M > 1 close to x D L and
M < �1 close to the boundary x D �L.

It could seem natural to prescribe M D 1 (resp.M D �1) as a boundary condition
at x D L (resp. x D �L) for the system, since the physical arguments imply
that M D ˙1 very close to the obstacle (Bohm criterion). These are exactly
the boundary conditions which are chosen in [9]. However, in that case, as the
eigenvalues of the Jacobian of the flux function areM �1 andMC1, it follows that
at the plasma limiter interface one eigenvalue is 0 (the boundary is characteristic)
and the other one is outgoing (it is also true at x D �L), and clearly the problem
does not satisfy the usual sufficient conditions for well posedness, see [3, 8, 11]:
the number of boundary conditions (D 1) is not equal to the number of incoming
eigenvalues (D 0).

In order to test our penalty approach with a well-defined hyperbolic boundary
value problem, in Sect. 3, we slightly modify the boundary conditions of the paper
[9], and impose M D 1 �  on x D L and M D �1 C  on x D �L with
a fixed  > 0, which leads to a well-posed hyperbolic problem. In our numerical
simulations we use  D 0:1.
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Fig. 1 Schematic representation of the scrape-off layer. The x-axis corresponds to the curvilinear
coordinate along a magnetic line close to the wall of the tokamak

The numerical tests presented below, use a finite volume scheme with a
second order extension: MUSCL reconstruction with the minmod slope limiter and
the Heun scheme which is a second order Runge–Kutta TVD time discretization.
The finite volume scheme is the VFRoe using the non conservative variables for the
linearized Riemann solver [7]; here, the non conservatives variables are N and M .
To avoid stability issues, the penalized terms are treated implicitly for the time
discretization.

3 Study of penalty methods

3.1 A first penalty method

The following penalty approach has been proposed by Isoardi et al. [9]. Let’s � be
the characteristic function of the limiter, i.e. �.x/ D 1 if x is in the limiter, and
�.x/ D 0 elsewhere, and � the penalization parameter. The penalized system is
given by:

8
ˆ̂
<̂

ˆ̂
:̂

@tN C @x� C �

�
N D .1 � �/SN in R

C� � R

@t� C .1� �/@x
	
� 2

N
CN




C �

�
.� �M0N/ D .1 � �/S�

Initial conditions: N.0; :/ D N0 and � .0; :/ D �0

(2)

M0 is a function such that, at the plasma-limiter interface we have jM0j D 1. Here,
the two components of the unknown are penalized although there is no incoming
wave. At least formally,N is forced to converge to 0 inside the limiter when � tends
to 0.

The flux of the second equation is cut inside of the limiter, and this causes some
troubles from the mathematical point of view. Indeed, this is an hyperbolic system
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with discontinuous coefficients and the meaning of the term

.1 � �/@x
	
� 2

N
CN




is not clear because it can involve the product of a measure with a discontinuous
function which has no distributional sense. As a consequence and as a confirmation
of this fact, our numerical tests show the existence of a strong singularity at the
interface for the numerical discrete solution. Concerning the interpretation of this
numerical singularity, it could happen (but we don’t have any rigorous proof and
this is just an open question) that this system admits generalized solutions in the
spirit of Bouchut–James [4] (see also Poupaud–Rascle [10], or Fornet–Guès [5])
such as measure-valued solutions, which can for example exhibit a Dirac measure
at the interface, and this generalized solution could be selected by the numerical
approximation process.

For the numerical test, we choose SN and S� so that the following functions
define a solution of the boundary value problem:

N.t; x/ D exp

	 �x2
0:16.t C 1/




� .t; x/ D sin
��x

0:8

�
exp

	 �x2
0:16.t C 1/




These test solutions are regular (at least inside the plasma area) and has no
singularity at the plasma-limiter interface. In the Fig. 2, we observe that a peak
appears very quickly, then jMn

i j become very large (about 108) in a few points.
The same computations are made for two more refined meshes (respectively for

0
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8

10

12

14

0.390 0.395 0.400 0.405 0.410

M versus x

x

M

Fig. 2 M versus x with � D 10�3, a mesh of J D 1280 cells using the penalization of Isoardi
et al. [9]. The computations are stopped when maxi2f1;:::;J g.jMn

i j/ > 10, which corresponds to
the time: t D 0:008822. The computational domain was Œ0; 0:5� and L D 0:4 (plasma-limiter
interface). At x D 0, we impose a symmetry condition
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2560 and 10240 cells) and we observe that the peak is nearer and nearer to the
plasma limiter interface, when the resolution increases. Besides, when the mesh
step decreases, the peak appears earlier and earlier. We stop the computations when
maxi2f1;:::;J g.jMn

i j/ > 10 but similar results are obtained when the stop criterion is
maxi2f1;:::;J g.jMn

i j/ > 100. This leads one to believe that, if the solution converges
to a generalized solution of the continuous problem, then this generalized solution
must have a singularity supported by the interface (that could be a Dirac measure for
example). We notice that the presence of a Dirac measure at the interface is not only
a theoretical issue since it has been observed numerically and that the Dirac measure
destabilizes numerical schemes. In the following section, we propose a modification
of the boundary value problem to obtain a well-posed version.

3.2 A new penalty method for the modified boundary conditions

After the modifications proposed in Sect. 2, the well-posed initial boundary value
problem reads:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@tN C @x� D S
@t� C @x

	
� 2

N
CN




D 0
M.:;�L/ D �1C  and M.:; L/ D 1 � 
N.0; :/ D N0 and � .0; :/ D �0

.t; x/ 2 R
C� �� �L;LŒ (3)

For this problem, the boundary is not characteristic, and the boundary conditions are
maximally dissipative. Hence, for compatible initial data, the problem has a unique
local in time solution, which is regular enough: at least C 1 is sufficient to perform
the asymptotic analysis; see e.g. [3, 12].

To penalize (3), we use a method developed in the semi-linear case by Fornet
and Guès [6]. In order to have an homogeneous Dirichlet boundary condition for
the theoretical study, the system is reformulated with the unknowns Qu D ln.N / and
Qv D � =N � M0. Although our system is quasi-linear (and not semi-linear), the
method can be extended to this case. An interesting feature of the method is that
it yields to a convergence result without generation of a boundary layer inside the
limiter. Up to now, we don’t know if this method can be extended to more general
quasi-linear first order hyperbolic system with maximally dissipative conditions.

We assume that M0 is a constant such that 0 < M0 < 1. We denote by � the
characteristic function associated to the limiter, i.e. �.x/ D 1 if the point x is in the
limiter.

The new penalized problem reads:

8
ˆ̂
<

ˆ̂
:

@tN C @x� D SN
@t� C @x

	
� 2

N
CN




C �

�

	
�

M0

�N



D S�
N.0; :/ D N0 and � .0; :/ D �0

in R
C� � R (4)
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The formal asymptotic expansion of a continuous solution to (4) with the BKW
(Brillouin–Kramers–Wentzel) method does not contain any boundary layer term [1]
and this suggests strongly that there is no boundary layer at all in the solution. Notice
that the penalization is incomplete: only one field is penalized, which is natural since
there is only one boundary condition.

For the numerical tests, we use a regular solution:

N.t; x/ D exp

	 �x2
0:16.t C 1/




� .t; x/ DM0 sin
��x

0:8

�
exp

	 �x2
0:16.t C 1/




and SN ; S� are well chosen. The spatial domain is Œ0; 0:5� with a symmetry
condition at x D 0 and the limiter set corresponds to x 2 Œ0:4; 0:5�.
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x

Fig. 3 Plot of N , � andM as functions of x (at t D 1) with the penalty method free of boundary
layer for � D 0:1. The continuous lines represent the numerical solutions whereas the dashed lines
corresponds to the exact solution of the hyperbolic limit problem (�! 0). The limiter corresponds
to the area x 2 Œ0:4; 0:5�. For smaller values of �, for instance for � D 10�5, the plot is almost the
same as the plot of the exact solution (dotted lines)

We analyze the convergence when the penalization parameter � tends to 0 using
a uniform spatial mesh of step ıx D 10�5. We calculate the error in L1 norm forN ,
@xN , � and @x� . The goal is to confirm numerically the absence of boundary layer
with an optimal rate of convergence as O.�/.

One of the main difficulties for the implementation of the penalization, is the
choice of a boundary condition at x D 0:5 which is necessary for the numerical
scheme. As only � is penalized, we need a transparent boundary condition
for N . For the numerical tests, the boundary condition comes from the asymptotic
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+ : in the plasma, x : in the limiter, o: x-derivative in the plasma, *:x-derivative in the limiter (Delta_x=1e-05)
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Fig. 4 Errors for N , @xN , � and @x� in L1 norms with the penalization free of boundary layer.
The dashed lines represent the curves �

1
4 ; �

1
2 and �

expansion up to the first order of the BKW analysis. We carry out the computations
up to t D 1 with an adaptive time step so that the CFL condition is always satisfied.
The results are plotted in Fig. 3. In Fig. 4, we observe that the optimal rate of
convergence O.�/ is reached for the L1 norms, even for the derivatives. This gives
a numerical evidence of the absence of boundary layer. The same numerical results
in O.�/ are obtained if the penalty term in (4) is replaced by �

�

�
�
N
�M0

�
, see [2].
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When the parameter  D 0:01, i.e. close to a characteristic boundary, the
computations show that, for � sufficiently small, � � O./, the convergence results
are similiar; see details in [1].
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Abstract We present a new fast vector penalty-projection method (VPP"), issued
from noticeable improvements of previous works [3,4,7], to efficiently compute the
solution of unsteady Navier-Stokes/Brinkman problems governing incompressible
multiphase viscous flows. The method is also efficient to solve anisotropic Darcy
problems. The key idea of the method is to compute at each time step an accurate
and curl-free approximation of the pressure gradient increment in time. This
method performs a two-step approximate divergence-free vector projection yielding
a velocity divergence vanishing as O." ıt/, ıt being the time step, with a penalty
parameter " as small as desired until the machine precision, e.g. " D 10�14, whereas
the solution algorithm can be extremely fast and cheap. The method is numerically
validated on a benchmark problem for two-phase bubble dynamics where we
compare it to the Uzawa augmented Lagrangian (UAL) and scalar incremental
projection (SIP) methods. Moreover, a new test case for fluid-structure interaction
problems is also investigated. That results in a robust method running faster than
usual methods and being able to efficiently compute accurate solutions to sharp test
cases whatever the density, viscosity or anisotropic permeability jumps, whereas
other methods crash.
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1 Introduction to model incompressible multiphase flows

Let ˝ � R
d (d D 2 or 3 in practice) be an open bounded and connected domain

with a Lipschitz continuous boundary � D @˝ and n be the outward unit
normal vector on � . For T > 0, we consider the following unsteady Navier-
Stokes/Brinkman problem [9] governing incompressible non-homogeneous or mul-
tiphase flows where Dirichlet boundary conditions for the velocity vj� D 0 on � ,
the volumic force f and initial data v.t D 0/ D v0, '.t D 0/ D '0 2 L1.˝/
with '0 � 0 a.e. in ˝ , are given. For sake of briefness here, we just focus on the
model problem (1-3) where d.v/ D .rv C .rv/T /=2, as a part of more complex
fluid mechanics problems.

� .@t vC .v�r/v/� 2r� .�d.v//C �K�1 vCrp D f in ˝ � .0; T / (1)

r� v D 0 in ˝ � .0; T / (2)

@t ' C v�r' D 0 in ˝ � .0; T /: (3)

The permeability tensor K in the Darcy term is supposed to be symmetric, uniformly
positive definite and bounded in ˝ . We refer to [1, 9] for the modeling of
flows inside complex fluid-porous-solid heterogeneous systems with the Navier-
Stokes/Brinkman or Darcy equations. The equation (3) for the positive phase
function ' governs the transport by the flow of the interface between two phases,
either fluid or solid, respectively in the case of two-phase fluid flows or fluid-
structure interaction problems. The force f may include some volumic forces like the
gravity force � g as well as the surface tension force to describe the capillarity effects
at the phase interfaces ˙ . The advection-diffusion equation for the temperature
T is not precised here and we assume some given state laws: � D �.';T / and
� D �.';T / for each phase, where the functions are continuous and positive.

2 The fast vector-penalty projection method (VPP")

2.1 The (VPP") method for multiphase Navier-Stokes/Brinkman

We describe hereafter the two-step vector penalty-projection (VPP") method with a
penalty parameter 0 < " � 1; see more details in [5]. For '0 with '0 � 0 a.e. in
˝ , v0 and p0 2 L20.˝/ given, the method reads as below with usual notations for
the semi-discrete setting in time, ıt > 0 being the time step. For all n 2 N such that
.nC 1/ ıt � T , find QvnC1, vnC1, pnC1 2 L20.˝/, 'nC1 2 L1.˝/, such that:
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�n
	 QvnC1 � vn

ıt
C .vn�r/QvnC1




� 2r� ��n d.QvnC1/� C�n K�1 QvnC1CrpnD fn (4)

"

ıt
�n OvnC1 � r �r� OvnC1� D r �r� QvnC1� (5)

vnC1 D QvnC1 C OvnC1; and r.pnC1 � pn/ D ��
n

ıt
OvnC1(6)

pnC1 D pn C �nC1 with �nC1 reconstructed from r�nC1 D ��
n

ıt
OvnC1(7)

'nC1 � 'n
ıt

C vnC1�r'n D 0(8)

with: QvnC1j� D 0, or for non homogeneous Dirichlet conditions: QvnC1j� D vnC1D , and

OvnC1� nj� D 0. Here vn; pn are desired to be first-order approximations of the exact
velocity and pressure solutions v.tn/; p.tn/ at time tn D n ıt . Since the end-of-
step velocity divergence is not exactly zero, the additional spherical part 	r� v I
of the Newtonian stress tensor is included within the dynamical pressure gradient
rp. Once the equations (4-8) have been solved, the advection-diffusion equation of
temperature can be solved too for T nC1 and we can find: �nC1 D �.'nC1;T nC1/
and �nC1 D �.'nC1;T nC1/.

The key feature of our method is to calculate an accurate and curl-free approxi-
mation of the momentum vector correction �n OvnC1 in (5). Indeed (5-6) ensures that
�n OvnC1 is exactly a gradient which justifies the choice for r�nC1 D r.pnC1�pn/
since we have:

�n OvnC1 D ıt

"
r �r� vnC1

� ) r.pnC1 � pn/ D ��
n

ıt
OvnC1 D �1

"
r �r� vnC1

�
:

(9)
The (VPP") method effectively takes advantage of the splitting method proposed in
[4] for augmented Lagrangian systems or general saddle-point computations to get
a very fast solution of (5); see Theorem 1. When we need the pressure field itself,
e.g. to compute stress vectors, it is calculated in an incremental way as an auxiliary
step. We propose to reconstruct �nC1 D pnC1 � pn from its gradient r�nC1 given
in (6) with the following method.
Reconstruction of �nC1 D pnC1 � pn from its gradient.
By circulating on a suitable path starting at a point on the border where �nC1 D 0 is
fixed and going through all the pressure nodes in the mesh, we get with the gradient
formula between two neighbour points A and B using the mid-point quadrature:

�nC1.B/ � �nC1.A/ D
Z B

A

r�nC1�d l D �
Z B

A

�n

ıt
OvnC1�d l � ��

n

ıt
jOvnC1j hAB

(10)
with hAB D distance .A;B/. The field �nC1 is calculated point by point from
the boundary and then passing successively by all the pressure nodes. This fast
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algorithm is performed at each time step to get the pressure field pnC1 from the
known field pn. We refer to [5] for more details and validations on the present
method.

2.2 The (VPP") method for anisotropic Darcy problems

We present below the fast solution to incompressible Darcy flow problems in porous
media with the (VPP") method. The model problem reads in dimensionless form:

s @t vC �K�1 vCrp D f in ˝ � .0; T / (11)

r� v D 0 in ˝ � .0; T / (12)

v� n D 0 on � � .0; T / (13)

where the viscosity � > 0 is constant and the permeability tensor K is supposed
to be symmetric, bounded in ˝ and uniformly positive definite. The dimensionless
stationarity parameter s > 0 includes the Darcy number:Da D Kref =L

2
ref and thus

we have s � 1 for most practical problems or even s D 0 for the steady anisotropic
Darcy problem. The equations (11-13) also model flows inside heterogeneous
porous-solid systems by letting the permeability tend to zero inside the impermeable
media; see also [1, 9] for the analysis and validations of the so-called L2 volume
penalty method.

The (VPP") method with r D O."/ > 0 and 0 < " � 1 to solve (11-13) reads
as follows. For all n 2 N such that .nC 1/ ıt � T , find QvnC1, vnC1 and pnC1 such
that:

s
QvnC1 � vn

ıt
C �K�1 QvnC1 � r r �r� QvnC1�Crpn D fn (14)

"
� s

ıt
C �K�1

�
OvnC1 � r �r� OvnC1� D r �r� QvnC1� (15)

vnC1 D QvnC1 C OvnC1;
and r.pnC1 � pn/ D �

� s

ıt
C �K�1

�
OvnC1 � r r �r� QvnC1� (16)

pnC1 D pn C �nC1 with �nC1 reconstructed from its gradient r�nC1 (17)

with the boundary conditions: QvnC1� nj� D 0 and OvnC1� nj� D 0 on � . The space
discrete solution to the prediction step (14) is explicit for s and r sufficiently small to
invert a perturbation of the Identity matrix with a Neumann asymptotic expansion.
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3 On the fast discrete solution to the (VPP") method

The great interest for solving (5) or (15) instead of a usual augmented Lagrangian
problem lies in the following result issued from [4] which shows that the method
can be ultra-fast and very cheap if � D "=ıt is sufficiently small.

Let us now consider any space discretization of our problem. We denote by B D
�divh the m � n matrix corresponding to the discrete divergence operator, BT D
gradh the n �m matrix corresponding to the discrete gradient operator, whereas I
denotes the n� n identity matrix with n > m andD the n� n diagonal nonsingular
matrix containing all the discrete density values of �n > 0 a.e. in ˝ . Here n is the
number of velocity unknowns whereasm is the number of pressure unknowns. Then,
the discrete vector penalty-projection problem corresponding to (5) with " D � ıt

reads: 	

D C 1

�
BTB




Ov� D �1
�
BTB Qv; with v� D QvC Ov�: (18)

We proved in [4] the crucial result below due to the adapted right-hand side in the
correction step (18) which lies in the range of the limit operator BTB . Indeed, (18)
can be viewed as a singular perturbation problem with well-suited data in the right-
hand side. More precisely, we give in Theorem 1 the zero-order term of the solution
Ov� to (18):

Ov� D �1
�

	

D C 1

�
BTB


�1
BTB Qv (19)

when the penalty parameter � is chosen sufficiently small; see the asymptotic
expansion of Ov� and the proof in [4, Theorem 1.1 and Corollary 1.3].

Theorem 1 (Fast solution of the discrete vector penalty-projection). Let D be
an n � n positive definite diagonal matrix, I the n � n identity matrix and B an
m � n matrix. If the rows of B are linearly independent, rank.B/ D m, then for all
� small enough, 0 < � < 1=kS�1k where S D BD�1BT , there exists an n � n
matrix C1 bounded independently on � such that the solution of the correction step
(19) writes for any vector Qv 2 R

n:

Ov� D C0 QvC �C1 Qv with C0 D �D�1BT S�1B D �D�1BT .BD�1BT /�1B:
(20)

If rank.B/ D p < m, there exists a surjective p � n matrix T such that BTB D
T T T and a similar result holds replacing B by T .

Hence, for a constant density � > 0 and choosing now � D � "=ıt , we have:
D D I , S D BBT and C0 D �BT S�1B D �BT .BBT /�1B . Moreover, if
rank.B/ D p � m � n, the zero-order solution Ov D C0 Qv in (20) is the
solution of minimal Euclidean norm in R

n to the linear system: B Ov D �B Qv by
the least-squares method, and the matrix B� D BT .BBT /�1 is the Moore-Penrose
pseudo-inverse ofB such thatC0 D �B�B . Indeed, a singular value decomposition
(SVD) or a QR factorization of B yields: C0 D �I0 where I0 is the n � n diagonal
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matrix having only 1 or 0 coefficients, the zero entries in the diagonal being the
n � p null eigenvalues of the operator BTB .

Hence, for � small enough, the computational effort required to solve (18) amounts
to approximate the matrix C0 which includes both D and D�1 inside non commu-
tative products. Thus, we always use the diagonal preconditioning in the case of
a variable density which makes the effective condition number quasi-independent
on the density or permeability jumps. We also use the Jacobi preconditioner in the
prediction step (4) to cope with the viscosity or permeability jumps as performed
in [9]. However, for a constant density when D D I , we get C0 D �I0. This
explains why the solution can be obtained with only one iteration of a suitable
preconditioned Krylov solver whatever the size of the mesh step or the dimension
n; see the numerical results in [4].

4 Numerical validations with discrete operator calculus

The (VPP") method has been implemented with discrete exterior calculus (DEC)
methods, see the recent review in [6], for the space discretization of the Navier-
Stokes equations on unstructured staggered meshes. The (DEC) methods ensure
primary and secondary discrete conservation properties. In particular, the space
discretization satisfies for the discrete operators: rh � .rh �/ D 0 and rh � .rh �
 / D 0, which is not usually verified by other methods; see [6]. Hence, the (VPP")
method is now validated on unstructured meshes both in 2-D or 3-D.

The structure and solver of the computational code are issued from previous
works, originally implemented with a Navier-Stokes finite volume solver on the
staggered MAC mesh and using the Uzawa augmented Lagrangian (UAL) method
to deal with the divergence-free constraint; see [9]. We refer to [1, 2, 9] and the
references therein for the analysis and numerical validations of the fictitious domain
model using the so-calledL2 orH1-penalty methods to take account of obstacles in
flow problems with the Navier-Stokes/Brinkman equations. Hence, our approach
is essentially Eulerian with a Lagrangian front-tracking of the sharp interfaces
accurately reconstructed on the fixed Eulerian mesh, see e.g. [10, 11] and the
references therein. Thus we use no Arbitrary Lagrangian-Eulerian (ALE) method,
no global remeshing nor moving mesh method.

4.1 Multiphase flows: dispersed two-phase bubble dynamics

The (VPP") method is numerically validated for multiphase incompressible flows by
performing with the three methods (UAL), (SIP) and (VPP), the benchmark problem
studied in [8] for 2-D bubble dynamics. In that problem, we compute the first test
case which considers an initial circular bubble of diameter 0:05m with density and
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Fig. 1 Benchmark for 2-D bubble dynamics with (VPP") method, " D 10�8: motion of a circular
bubble with surface tension at time t D 3 and Re D 35 - bubble initial diameter ˛ D 0:05,
�1=�2 D 1000=100 D 10, �1=�2 D 10=1 D 10, domain 0:1 � 0:2, mesh size 128 � 256,
ıt D 0:007143, circular bubble initially with no motion at height y D 0:05. LEFT: isobars and
isoline ' D 0:5 of the phase function at interface. RIGHT: superposition of isoline ' D 0:5 at
interface for (UAL), (SIP), (VPP) and vertical velocity field (in absolute referential)

viscosity ratios equal to 10 which undergoes moderate shape deformation. In this
case, the bubble is driven up by the external gravity force f D � g, whereas the
surface tension effect on the interface ˙ between the two fluid phases is taken into
account through the following force balance at the interface˙ :

ŒŒv��˙ D 0 and ŒŒ
��p IC � �rvC .rv/T

�� � n��˙ D � � nj˙ ; or fst D � � nj˙ ı˙

where � D 24:5 is the surface tension coefficient, � the local curvature of the
interface, nj˙ the outward unit normal to the interface and ı˙ the Dirac measure
supported by the interface ˙ . The solution of the phase transport (3) is carried out
by the so-called VOF-PLIC method, i.e. the famous VOF method using a piecewise
linear interface construction proposed in [12] to precisely reconstruct the sharp
interface ˙ at the isoline ' D 0:5, with '0 D 0 in ˝1 and '0 D 1 in ˝2; see
[10, 11].

The results of the three methods (UAL), (SIP) and (VPP) after 420 time iterations
are presented in Fig. 1 by superposing the different fields to get a more precise
comparison. We observe an excellent agreement both between the three methods
and the reference solution in [8]. However, the (VPP) method runs faster.

4.2 A test case for fluid-structure interaction problems

To evaluate the robustness of the (VPP") method with respect to large density or
viscosity ratios, we compute the motion of an heavy solid body which freely falls
vertically in air with the gravity force f D �s g. The rigid behaviour of the body
is obtained by letting the viscosity �s tend to infinity inside the ball in order to
penalize the tensor of deformation rate d.v/. This fictitious domain method using a
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Fig. 2 ACF11-ball with (VPP") method, " D 10�6: free fall of a heavy solid body in air at time
t D 0:15 and Re D 7358 - Cylinder diameter ˛ D 0:05, �s D 106 , �f D 1, �s D 1012,
�f D 10�5, domain 0:1 � 0:2, mesh size 256 � 512, ıt D 0:0002, cylinder initially with no
motion at height y D 0:15. LEFT: isobars and isoline ' D 0:5 of the phase function at interface.
RIGHT: vertical velocity field and horizontal velocity isolines

penalty was studied in [1] (see the references therein) to design a numerical wind-
tunnel, then numerically validated in several works, e.g. [11], and also analyzed
theoretically in [1, 2] where optimal global error estimates are proved for the
H1 penalty method. Moreover, this fictitious domain method allows us to easily
compute the forces applied on the obstacle, see [9]; the error estimate being proved
in [1] when the nonlinear convection term is neglected inside the solid obstacle.

The results obtained by the (VPP") method are presented in Fig. 2 at time
t D 0:15 s after 750 time iterations when the ball velocity reaches: Vb D g t D
1:4715m=s. The computation shows that the strain rate tensor inside the ball ˝s

vanishes as kd.v/kL2.˝s/ D O.�f =�s/, i.e. of the order of the machine precision.
Hence, the (VPP") method efficiently ensures both the rigidity of the solid body and
a velocity divergence vanishing as O." ıt/ [5], whereas it avoids the blocking effect
observed with other methods; see e.g. [11].

The (SIP) method crashes after a few time iterations. The (UAL) method is still
able to compute the flow with a larger velocity divergence and the computation is
far more expensive than with the (VPP") method.
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Numerical Front Propagation Using
Kinematical Conservation Laws

K.R. Arun, M. Lukáčová-Medvid’ová, and P. Prasad

Abstract We use the newly formulated three-dimensional (3-D) kinematical con-
servation laws (KCL) to study the propagation of a nonlinear wavefront in a
polytropic gas in a uniform state at rest. The 3-D KCL forms an under-determined
system of six conservation laws with three involutive constraints, to which we add
the energy conservation equation of a weakly nonlinear ray theory. The resulting
system of seven conservation laws is only weakly hyperbolic and therefore poses a
real challenge in the numerical approximation. We implement a central finite volume
scheme with a constrained transport technique for the numerical solution of the
system of conservation laws. The results of a numerical experiment is presented,
which reveals some interesting geometrical features of a nonlinear wavefront.

Keywords kinematical conservation laws, kink, weakly nonlinear ray theory,
wavefront, polytropic gas
MSC2010: 35L60, 35L65, 35L67, 35L80

1 Introduction

A curved nonlinear wavefront or a shock front during its evolution develops certain
curves of discontinuity, across which the normal to the front and the amplitude

K.R. Arun
Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D-52056
Aachen, Germany, e-mail: arun@igpm.rwth-aachen.de
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distribution on it are discontinuous. Some of these curves of discontinuity are
called kinks, which are shocks in a corresponding ray coordinate system in which
a physically realistic system of conservation laws has been formulated. The conser-
vation form of the system of evolution equations of a surface is called kinematical
conservation laws (KCL). The KCL is a pure geometrical result and it does not
take into consideration any dynamics of the propagating front. This makes the KCL
an incomplete system and additional closure equations derived by considering the
dynamical conditions of the propagating front are required for applications. Prasad
and collaborators have used the KCL in two dimensions along with some closure
equations derived on physical considerations to solve several interesting problems,
see the review paper [6] and the references therein. The KCL for a surface evolving
in three space dimensions, called 3-D KCL, is a system of six conservation laws
with three divergence-free type stationary constraints, all three together are termed
as ‘geometric solenoidal constraint’, see [3]. The analysis of the 3-D KCL system,
with the closure equation from a weakly nonlinear ray theory (WNLRT), was done
in [3] and it has been shown that the resulting system of conservation laws, the so-
called conservation laws of 3-D WNLRT give rise to a weakly hyperbolic system;
in the sense that the system has zero as a repeated eigenvalue with multiplicity five,
but the associated eigenspace is only four-dimensional.

Despite the 3-D WNLRT being a weakly hyperbolic system, in [1, 2] we have
been able to develop efficient numerical approximations for it using simple, but
robust central schemes. It is well known that the solution to the Cauchy problem
for a weakly hyperbolic system (with deficiency in dimension of the eigenspace by
one) typically contains a mode, the so-called ‘Jordan mode’, which grows linearly
in time. However, it has been proved in [1] that when the geometric solenoidal
constraint is satisfied initially, the solution to the Cauchy problem for linearised 3-D
WNLRT at any time does not exhibit the Jordan mode. Motivated by this, a con-
strained transport technique has been employed to enforce the geometric solenoidal
constraint in the numerical solution of 3-D WNLRT, see [1] for more details.

The aim of the present paper is to give a brief overview of the recent results
obtained with 3-D WNLRT and to show its efficacy to model propagating wave-
fronts. The layout of the paper is as follows. In Sect. 2 we introduce the governing
equations of 3-D WNLRT. The numerical approximation and the constrained
transport strategy are outlined in Sect.3. In Sect.4 we present the results of a
numerical experiment, showing the efficiency and robustness of the present method.
Finally, we close this article with some concluding remarks in Sect.5.

2 Governing equations

Consider a one parameter family of surfaces in .x1; x2; x3/-space such that it rep-
resents the successive positions of a moving surface ˝t as time varies. Associated
with the family, we have a ray velocity � at any point .x1; x2; x3/ on the surface
˝t . We consider only the isotropic evolution of ˝t so that we take � to be in the
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direction of the unit normal n to ˝t , i.e. � D mn, where m is the normal velocity
of propagation of ˝t . Hence, the evolution of ˝t is governed by

dx
dt
D mn: (1)

We introduce a ray coordinate system .
1; 
2; t/ such that for t D const, we get
.
1; 
2/ as the surface coordinates on ˝t . Further, 
1 D const; 
2 D const represent
the rays, a two parameter family of curves orthogonal to ˝t . Let u and v be
respectively unit tangent vectors to the curves 
2 D const and 
1 D const on ˝t .
Let n be a unit normal to ˝t given by

n D u � v
ku � vk (2)

so that .u; v;n/ forms a right handed system. Let an element of distance along a
curve .
2 D const; t D const/ be g1d
1. Analogously, denote by g2d
2, the element
of distance along a curve .
1 D const; t D const/. The element of distance along a
ray .
1 D const; 
2 D const/ is mdt . Based on geometrical considerations we can
derive the 3-D KCL [3],

.g1u/t � .mn/
1 D 0; (3)

.g2v/t � .mn/
2 D 0 (4)

subject to the condition
.g1u/
2 � .g2v/
1 D 0: (5)

Note that the constraint (5) is an involution, i.e. if it is satisfied at time t D 0,
then the equations (3)-(4) imply that it is satisfied for every time. Note that
each of the scalar equations in (5) can be written as div.Bk/ D 0, where
Bk WD .�g2vk; g1uk/; k D 1; 2; 3. Therefore, the vector constraint (5) has been
designated as geometric solenoidal constraint. The 3-D KCL (3)-(4), being a system
of six evolution equations in seven unknowns u1; u2; v1; v2;m; g1 and g2, is under-
determined. We use the closure equation by considering the energy propagation
along the rays of a WNLRT, c.f. [6]. The energy transport equation of WNLRT for
a polytropic gas initially at rest and in uniform state can be written in a conservation
form [3] �

.m � 1/2e2.m�1/g1g2 sin�
�
t
D 0; (6)

where � is the angle between the vectors u and v. The system of equations (3)-
(4) and (6), hereafter designated as the conservation laws of 3-D WNLRT, is the
complete set of equations describing the evolution of the nonlinear wavefront˝t .

Remark 1. It has been proved in [3] that the eigenvalues of 3-D WNLRT are
	1; 	2.D �	1/; 	3 D � � � D 	7 D 0, where 	1 is given by
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	1 D
�
m � 1
2 sin2 �

	
e21
g21
� 2e1e2
g1g2

cos�C e22
g22


� 1=2

: (7)

Here, .e1; e2/ 2 R
2 with e21 C e22 D 1. Further, there are only four independent

eigenvectors for the eigenvalue zero. Note that 	1 is real for m > 1 and purely
imaginary for m < 1. Hence, the 3-D WNLRT forms a weakly hyperbolic system
whenm > 1. In this article we consider only the case when m > 1.

3 Numerical approximation

In this section we present a numerical approximation of the conservation laws of
3-D WNLRT to study evolution of a weakly nonlinear wavefront˝t and formation
and propagation of kink curves on it. Note that the system of conservation laws of
3-D WNLRT can be recast in the usual divergence form

Wt C F1.W /
1 C F2.W /
2 D 0; (8)

where the vector of conserved variablesW and the flux-vectors F1.W / and F2.W /
in the 
1- and 
2-directions respectively, are given by

W D �g1u; g2v; .m � 1/2e2.m�1/g1g2 sin�
�T
;

F1.W / D .mn; 0; 0/T ; F2.W / D .0; mn; 0/T :
(9)

In what follows we briefly summarise the central finite volume scheme for (8), first
employed in [1].

1. The cell integral averages W i;j of the conservative variable W are used in the
discretisation of the system of conservation laws (8).

2. A second order TVD Runge-Kutta method [8] is used for time integration. The
time-step is chosen to be inversely proportional to the maximum of the nonzero
eigenvalue 	1, c.f. (7), taken over the entire computational domain.

3. A nonlinear iterative solver is employed to recover the values of u; v; g1; g2 and
m from the computed values of W .

4. A second order MUSCL reconstruction with a central weighted essentially non-
oscillatory (CWENO) limiter [4] is used to reconstruct the variables at the cell
interfaces.

5. The Kurganov-Tadmor high resolution flux [5] is used as the numerical flux at a
cell interface, for example at a right hand vertical edge

FiC 1
2 ;j

�
W R
i;j ;W

L
iC1;j

�
D 1
2

�
F1

�
W L
iC1;j

�
CF1

�
W R
i;j

��
�
aiC 1

2 ;j

2

�
W L
iC1;j �W R

i;j

�
;

(10)
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where W L.R/
i;j denote respectively the left and right interpolated states. Here,

aiC1=2;j is the maximal wave-speed, which can be computed with the help of
the maximum of eigenvalues, c.f. [5]. The numerical flux at a horizontal edge
can be computed in an analogous manner.

6. In order that the numerical solution satisfy a discrete version of the geometric
solenoidal constraint (5), we use a constrained transport algorithm [7]. We
employ three potentials A1;A2;A3, corresponding to the three components of the
vectors g1u and g2v. Note that the geometric solenoidal constraint (5) implies
the conditions

g1uk D Ak
1 ; g2vk D Ak
2 ; k D 1; 2; 3: (11)

The use of (11) in the 3-D KCL system (3)-(5) immediately yields the evolution
equations

Akt �mnk D 0: (12)

We numerically solve (12) to get the updated values of the potentials Ak . The
resulting values of Ak are used to suitably discretise (11) to yield the corrected
values of g1u and g2v. It is these updated values which satisfy a discrete version
of (5), see [1] for more details.

At any time t , we approximate the wavefront ˝t by a discrete set of points
xi;j .t/ WD x.
1i ; 
2j ; t/. To get the successive positions of˝t , we numerically solve
the system of ODEs (1) in the discretised form dxi;j .t/=dt D mi;j .t/ni;j .t/ where
mi;j .t/ and ni;j .t/ are the corresponding values of m and n obtained fromW i;j .t/.

In order to start the algorithm, the conserved variable W has to be initialised at
each mesh point. Here, some care has to be taken, so that (11) is satisfied by the
initial values. Let us assume that the initial wavefront˝0 is given a parametric form
x D x0.
1; 
2/, with some appropriate choice of surface coordinates 
1 and 
2. The
initial values for g1u and g2v and the potentials A1;A2;A3 can be chosen to be

g1u.
1; 
2; 0/ D x0
1.
1; 
2/; g2v.
1; 
2; 0/ D x0
2.
1; 
2/; (13)

Ak.
1; 
2; 0/ D xk.
1; 
2/; k D 1; 2; 3: (14)

Note that (5) and (11) are satisfied by the above choice of initial values. In the
numerical test problem considered here, the normal velocity m on ˝0 has been
assigned a constant value m0 D 1:2. For more details of the numerical scheme and
its implementation, we refer the reader to [1].

4 Numerical test problem

We choose initial wavefront˝0 in such a way that it is not axisymmetric. The front
˝0 has a single smooth dip. The initial shape of the wavefront is given by



54 K.R. Arun et al.

˝0Wx3 D ��
1C x21

˛2
C x22

ˇ2

; (15)

where the parameter values are set to be � D 1=2; ˛ D 3=2; ˇ D 3. The ray
coordinates .
1; 
2/ are chosen initially as 
1 D x1 and 
2 D x2. The computational
domain Œ�20; 20��Œ�20; 20� is divided into 401�401mesh points. The simulations
are done up to t D 2:0; 6:0; 10:0. We have set non-reflecting boundary conditions
for all the variables.

Fig. 1 The successive positions of the nonlinear wavefront ˝t with an initial smooth dip which is
not axisymmetric

In Fig. 1 we plot the initial wavefront ˝0 and the successive positions of the
wavefront ˝t at times t D 2:0; 6:0; 10:0. It can be seen that the wavefront has
moved up in the x3-direction and the dip has spread over a larger area in x1- and
x2-directions. The lower part of the front moves up leading to a change in shape of
the initial front ˝0. It is very interesting to note that two dips appear in the central
part of the wavefront, which are clearly visible at t D 6:0 and t D 10:0. These two
dips are separated by an elevation almost like a wall parallel to the x2-axis.

To explain the results of convergence of the rays we give in Fig. 2 the slices of
the wavefront in x2 D 0 section and x1 D 0 section from time t D 0:0 to t D 10:0.
Due to the particular choice of the parameters ˛ and ˇ in the initial data (15), the
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section of the front ˝0 in x2 D 0 plane has a smaller radius of curvature than that
of the section in x1 D 0 plane. This results in a stronger convergence of the rays
in x2 D 0 plane compared to those in x1 D 0 plane as evident from Fig. 2. In the
diagram on the top in Fig. 2, we clearly note a pair of kinks at times t D 3:0 onwards
in the x2 D 0 section. However, there are no kinks in the bottom diagram in Fig. 2
in x1 D 0 section.

We give now the plots of the normal velocity m in .
1; 
2/ plane along 
1- and

2-directions in Fig. 3. It is observed thatm has two shocks in the 
1-direction which
correspond to the two kinks in the x1-direction. We have also plotted the numerical
values of the divergence of B1 at time t D 10:0 in Fig. 4. It is evident that the
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Fig. 2 The sections of the nonlinear wavefront at times t D 0:0; : : : ; 10:0 with a time step 0.5. On
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Fig. 4 The divergence of B1 at t D 10:0. The error is of the order of 10�15

geometric solenoidal condition is satisfied with an error of 10�15. The divergences
of B2 and B3 also show the same trend.

5 Concluding remarks

An efficient central finite volume scheme for the weakly hyperbolic system of
conservation laws of 3-D WNLRT has been described and tested. Reconstruction
is achieved component-wise and a simple central flux is employed in the numerical
flux evaluation. Based on our numerical experiment and the ones reported in [1], it
can be concluded that the solenoidal condition is preserved up to machine accuracy
if the present finite volume scheme with a constrained transport technique is used.
Moreover, none of the solution components exhibits any linearly growing Jordan
mode.
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Preservation of the Discrete Geostrophic
Equilibrium in Shallow Water Flows

E. Audusse, R. Klein, D.D. Nguyen, and S. Vater

Abstract We are interested in the numerical simulation of large scale phenomena
in geophysical flows. In these cases, Coriolis forces play an important role and the
circulations are often perturbations of the so-called geostrophic equilibrium. Hence,
it is essential to design a numerical strategy that preserves a discrete version of
this equilibrium. In this article we work on the shallow water equations in a finite
volume framework and we propose a first step in this direction by introducing an
auxiliary pressure that is in geostrophic equilibrium with the velocity field and that is
computed thanks to the solution of an elliptic problem. Then the complete solution is
obtained by working on the deviating part of the pressure. Some numerical examples
illustrate the improvement through comparisons with classical discretizations.

Keywords Geostrophic Adjustment, Shallow Water Flows, Finite Volume Method,
Well-balanced Scheme
MSC2010: 65M08, 76U05, 86A05

1 Introduction

We are interested in the numerical simulation of large scale phenomena in geo-
physical flows. At these scales, Coriolis forces play an important role and the
atmospheric or oceanic circulations are frequently observed near geostrophic
equilibrium situations, see for example [11, 12]. For this reason it is essential to
design a numerical strategy that preserves a discrete version of this geostrophic
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equilibrium: if numerical spurious waves are created, they quickly become higher
than the physical ones we want to capture. This phenomenon is well known but its
solution in the context of finite volume methods is still an open problem. We address
this question in this article.

One of the most popular systems that is used to model such quasi-geostrophic
flows are the shallow water equations with ˇ-plane approximation

ht Cr � .hu/ D 0; (1)

.hu/t Cr � .hu˝ u/Cr.gh
2

2
/ D �f ez � .hu/; (2)

The shallow water system is the simplest form of equations of motion that can be
used to model Rossby and Kelvin waves in the atmosphere or ocean, and the use
of the ˇ-plane approximation allows the model to take into account a non-constant
Coriolis parameter f that varies linearly with the latitude without considering a
spherical domain. We choose to work in a finite volume framework to discretize the
equations because of its ability to deal with complex geometries and its inherent
conservation property, see [4, 9]. In this context, the discrete preservation of the
geostrophic equilibrium, which is mainly the balance between pressure gradient and
Coriolis forces in (2), is a hard touch: the main reason is that the fluxes are upwinded
for stability reasons while the source terms are usually discretized in a centered way.

The question of the preservation of non-trivial equilibria in geophysical fluid
models has received great attention in the area of numerical modeling in the last
decade. Many studies were devoted to the preservation of the so-called hydrostatic
and also lake-at-rest equilibria, see [2–4] and references therein. More recently
some authors investigated the problem of the geostrophic equilibrium [5, 6, 8, 10].
However, this question is more delicate for two reasons: it is an essentially 2d
problem, and it involves a non-zero velocity field. It follows that its solution is still
incomplete. In this work we propose a solution to this problem by introducing an
auxiliary water depth which is in geostrophic balance with the velocity field and
then by working on the deviation between the actual and auxiliary water depths
instead of considering the water depth itself. The auxiliary water depth is computed
through the solution of a Poisson problem on a dual grid [13].

2 Position of the problem

In this short note we present the method by considering a constant Coriolis
parameter. In order to exhibit the importance of the geostrophic equilibrium, we
introduce the non-dimensional version of the shallow water equations (1)–(2)
written in non-conservative form

ht Cr � .hu/ D 0;

ut C u � ruC 1

Fr2
rhC 1

Ro
2ez � u D 0:
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Here, h and u are the unknown dimensionless depth and velocity fields and

Fr D Up
gH

; Ro D U

˝L

are the Froude and Rossby numbers, respectively, with U , L and H some
characteristic velocity, length and depth for the flow, g the gravity coefficient and˝
the angular velocity of the earth. For large scale phenomena typical values for these
numbers are

Fr � Ro �  D 10�2;

We then expand the unknowns in term of "

h D h0 C "h1 C "2h2 C : : : ; u D u0 C "u1 C "2u2 C : : :

and we keep the leading order terms to exhibit the following stationary state

O
�
�2

� W rh0 D 0 (3)

O
�
�1

� W rh1 C 2ez � u0 D 0 (4)

O
�
0
� W r � u0 D 0; (5)

This set of equations is called the geostrophic equilibrium. It follows from equation
(3) that the water depth is constant at the leading order and from equation (5) that
the main part of the velocity field is divergence free. Equation (4) is nothing but
the fact that the pressure gradient and the Coriolis term are in balance for leading
varying terms h1 and u0. Let’s now turn to the numerical point of view. Preservation
of the discrete equilibrium (3) is obvious. The divergence free condition (5) is much
more delicate to deal with but it has been widely investigated for Stokes or Navier-
Stokes equations, mostly in the framework of finite element methods. It is also the
subject of a recent work [13], where the authors study the zero Froude number limit
of the shallow water equations. In this note we focus on a proper way to preserve
the balance in equation (4).

3 The well-balanced finite volume scheme

We choose to discretize the shallow water equations (1)–(2) in a finite volume
framework [4, 9]. The reason to consider this particular method is related to its
inherent conservation properties that are interesting for geophysical applications
and in particular for long time simulations [1]. A second reason is that the finite
volume method is also able to deal with sharp fronts that can occur in geophysical
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applications. We first recall the formulation of the finite volume method and the
classical centered discretization of the Coriolis source term. Then, we derive the
new well-balanced scheme by introducing an auxiliary pressure that is computed
through the solution of a Laplace equation on a dual grid.

System (1)–(2) is a particular case of a 2d conservation law with source term:

Ut C .F.U //x C .G.U //y D S.U /; (6)

in which U D .h; hu; hv/T and

F.U / D
0

@
hu

hu2 C 1
2
gh2

huv

1

A ; G.U / D
0

@
hv
huv

hv2 C 1
2
gh2

1

A ; S.U / D
0

@
0

2˝hv
�2˝hu

1

A :

In this note we only consider Cartesian grids. Then, the finite volume discretization
of equation (6) leads to the computation of approximated solutions Un

i;j through the
discrete formula

UnC1
i;j D Un

i;j �
ıt

ıx

�
Fn
iC 1

2 ;j
� Fn

i� 12 ;j
�
� ıt
ıy

�
Gn

i;jC 1
2

�Gn

i;j� 12

�
C ıt Sni:j ;

where Fn
iC 1

2 ;j
is a discrete approximation of the flux F.U / along the interface

between cells Ci;j and CiC1;j that is constructed through a three points formula

Fn
iC 1

2 ;j
D F

�
.hni;j ; u

n
i;j ; v

n
i;j /; .h

n
iC1;j ; uniC1;j ; vniC1;j /

�
: (7)

Here we use the HLL solver [7] to compute these approximations.
The classical discretization of the source term Sni:j is computed through the

centered formula

Sni:j D
 

0

�2˝z � .hni;j uni;j /

!

where hni;j denotes the approximated value at time tn on cell Ci;j . We will exhibit
in the last section that this approach suffers from important drawbacks when we
consider applications for small Froude and Rossby numbers.

The main idea of our method to overcome this problem is to introduce an
auxiliary water depth hc that is in balance with Coriolis forces related to the actual
velocity field. This idea is an extension of the notion of hydrostatic reconstruction
that was introduced in [3] for the Euler equations and in [2] for shallow water flows.
Here, hc will satisfy the equation

grhc D �2˝ � u: (8)
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In our approach, hc is discretized as a grid function, which is piecewise bilinear on
each grid cell and continuous at the interfaces. The second ingredient of the well-
balanced scheme is the representation of the Coriolis forces by the gradient of this
quantity. Furthermore, the fluxes in the conservative part of the scheme are modified
in the following way: For each cell, we introduce a deviation in the water depth by

�hni;j D hni;j � hnc .xi ; yj /

Then, the interface water depths are computed by

bhn;k;x
iC 1

2 ;j
D 1

2

h
hnc

�
xiC 1

2 ;jC 1
2

�
C hnc

�
xiC 1

2 ;j� 12
�i
C�hnk;j ; for k D i; i C 1:

and the original three points formula (7) for the flux is replaced by

Fn
iC 1

2 ;j
D F

�
.bhn;i;x
iC 1

2 ;j
; uni;j ; v

n
i;j /; .

bhn;iC1;x
iC 1

2 ;j
; uniC1;j ; vniC1;j /

�
;

If the flow satisfies the geostrophic equilibrium, Oh and hc are equal. The consistency
of the flux will then provide some numerical balance between the conservative part
and the source term that will directly impact the results. Note also that the time
step is now related to the interface water depths. Nevertheless, in the numerical
applications, the numerical values remain very close for both methods.

It remains to explain the computation of the auxiliary water depth hc that is the
solution of a discrete equivalent of equation (8). We first take the divergence of this
equation and then search for the solution of a Poisson equation

��� D r �
�
k � u

�
:

Integration of this equation on the dual cell CiC 1
2 ;jC 1

2
and application of the Gauss

theorem leads to
Z

@C
iC 1

2 ;jC
1
2

r� � n d� D �
Z

@C
iC 1

2 ;jC
1
2

kzu � t d�;

where n (resp. t ) is a normal (resp. tangential) vector to the interface of the dual
cell. We solve this equation by using the technique presented in [13] for the solution
of a similar problem. We refer the reader to this article for the details of the method
that is in particular proved to provide an inf-sup-stable projection. We finally obtain
a linear system with a nine point stencil. The boundary conditions for this auxiliary
problem are prescribed by using the fact that the computed pressure (or height) field
is equivalent to a stream function for the associated balanced geostrophic flow. For
example a rigid wall type boundary condition for the flow translates into a Dirichlet
type boundary condition for the stream function. Similar types of equivalences can
be used to prescribe other types of boundary conidtions.
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4 Numerical results

In order to test the new scheme, we consider a stationary vortex in the square domain
Œ0; 1� � Œ0; 1�. We consider periodic boundary conditions, and as initial conditions
we choose a velocity field of the form

u0.r; �/ D v� .r/e� ; v� .r/ D "
�

5r �

	

r <
1

5




C .2 � 5r/ �
	
1

5
� r < 2

5




;

where r is the distance to the center of the domain and � denotes the characteristic
function of a given interval. Some computations show that the vortex is a stationary
solution of the shallow water equations (1)-(2), if the initial water depth h0.r/ is a
radial solution of the ODE

h00.r/ D
1

g

	

2˝v� C v2�
r




:

Note that if we choose a water depth and an angular velocity of order O.1/, the
Froude and Rossby numbers are of order O./. It follows that our interest is for
small values of the parameter .

We first work on a regular grid with 30 � 30 cells and we consider four Froude
resp. Rossby numbers: 0:05; 0:1; 0:5 and 1. The numerical solution is computed
by using both schemes described in the previous section. In order to compare the
accuracy of the schemes, we compute the relative L2 error in the water depth. In
Fig. 1 we present the time evolution of this error for the four values of . It appears
that for both schemes the error is increasing with time before reaching a stationary
value. More interesting is that for the classical (resp. well-balanced) scheme the
error is increasing (resp. decreasing), when the Froude number is decreasing. While
the error is of the same order for both schemes when  D 1, for other values of 
the well-balanced scheme is always more precise than the classical one.

Fig. 1 Error in time for both classical and well-balanced schemes (30�30 grid cells) and for four
different Froude numbers
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Fig. 2 Contour of the computed fluid depth with 100�100 grid cells. Fr D 0:95 (Top), Fr D 0:1

(bottom)

We then consider a finer grid with 100�100 cells and we present the water depth
for both schemes and for two values of : 0:95 (large) and 0:1 (small). In Fig. 2 we
present the 2d contour of the water depth. The results look similar and quite close
to the initial solution when  is large (top row). But when  is small (bottom row),
the classical scheme totally fails to compute the right solution, whereas the water
depth computed by the well-balanced scheme stays close to the initial one. In Fig. 3
we give more quantitative results by presenting a cut of the solution along x–axis
at y D 0:5. These pictures clearly exhibit that the results are very close when  is
large, but very different when  is small. In this last case the classical scheme is not
able to maintain the vortex, whereas the well-balanced scheme preserves the shape
of the free surface. Note that the small diffusion that is observed even for the well-
balanced scheme is due to the fact that we consider only first order schemes in this
work. We end this short note by some words on the CPU time. We first notice that
for the last numerical test case, the time steps are very close for both methods, as it
is reported in the table below. We then consider the CPU time for both methods and
conclude that it is four times larger for the well-balanced scheme. It is obviously
due to the solution of the linear system related to the elliptic problem at each time
step. This observation leads to two comments. First, and since the solution of the
linear system is only required for the computation of the auxiliary water depth, it
is possible to obtain a compromise between accuracy and efficiency of the whole
process by considering iterative methods with a small number of iterations. Second
we recall that our final objective is to couple the presented process with a numerical
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Fig. 3 Fluid depth profiles – cut along the x–axis at y D 0:5 with 100 � 100 grid cells. R line:
Initial solution, W line: Well-balanced scheme, C line: Classical scheme

scheme adapted for small Froude number flows and then to generalize the method
presented in [13] to rotating flows. Since the technique introduced in [13] already
requires for the solution of a related linear system, the additional computational cost
of the well-balanced process presented here is very small.

Classical scheme Well-balanced scheme
Time Step 9.7702e-005 9.7464e-005
CPU Time 1547 s 5564 s
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tured polygonal meshes for the diffusion problem in primal form. The new nodal
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experiments confirm the convergence rate that is expected from the theory.
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1 The nodal mimetic finite difference method

We consider a nodal mimetic discretization of the steady diffusion problem for the
scalar solution field u given by

div.Kru/ D f in ˝; (1)

u D g on �; (2)
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where the computational domain˝ is a bounded, open, polygonal subset of R2 with
Lipshitz boundary� , the diffusion tensor K is a 2�2 bounded, measurable, strongly
elliptic and symmetric tensor describing the material properties, f 2 L2.˝/ is
the forcing term and g 2 H1=2.� / is the boundary function that defines the
non-homogeneous Dirichlet boundary condition.

Let us consider the set of functionsH1
g .˝/ D fv 2 H1.˝/; vj� D gg. Problem (1)-

(2) can be restated in the variational form:

find u 2 H1
g .˝/ such that

Z

˝

Kru�rv dV D
Z

˝

f v dV 8v 2 H1
0 .˝/: (3)

Under the previous assumptions problem (3) is well-posed [5]. The existence and
uniqueness of the weak solution follows from continuity and coercivity of the
bilinear form in (3).

The mimetic discretizations that are available in the literature for this problem
have usually low-order accuracy. The nodal MFD method in [3] uses degrees
of freedom associated with the mesh vertices and is derived from a consistency
condition, i.e., a discrete integration by parts formula, that is exact for linear
polynomials. This method was proven to be first-order accurate in a mesh-dependent
H1-seminorm.

To some extend, the mixed and mixed-hybrid MFD scheme in [4] can be
interpreted as a generalization of the RT0 � P0 mixed finite element (FE) method
to polygonal and polyhedral meshes Similarly, the nodal MFD method in [3] can
be viewed as a generalization of the linear Galerkin FE method. The essential
difference between FE and MFD methods is that the latter does not use shape
functions and operates directly with degrees of freedom. This result in a number
of useful consequences such as a family of equivalent MFD methods.

The numerical approximation to (3) is performed on a sequence of polygonal
partitions f˝hgh of the domain ˝ , which are required to satisfy a suitable set of
regularity conditions [4]. For any mesh ˝h, the subscripted label h is the mesh size
and is defined by h D maxP2˝h hP where hP D supx;y2P jx � yj is the diameter of
the polygonal cell P 2 ˝h. On a mesh ˝h, we approximate the scalar fields from
H1.˝/ through a set of suitable degrees of freedom uh; vh 2 Vh, where Vh denotes
the linear space of the discrete scalar fields. Then, we introduce the bilinear form
Ah

��; �� W Vh � Vh ! R, which approximates the left-hand side of (3), and the
bilinear form

��; ��
h
W L2.˝/ � Vh ! R, which approximates the right-hand side

of (3). In the nodal mimetic finite difference formulation, the Dirichlet boundary
conditions are essential and are incorporated through the subspace Vh;g of Vh. The
set of discrete scalar fields Vh;g is formed by the elements of Vh whose degrees of
freedom associated with the boundary edges approximate the boundary datum g.
We also consider the linear space Vh;g , which is obtained by setting g D 0. Finally,
the mimetic finite difference method for (3) reads:
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m=1 m=2 m=3

Fig. 1 Degrees of freedom for m D 1; 2; 3

Find uh 2 Vh;g such that:

Ah

�
uh; vh

� D �f; vh
�
h

8vh 2 Vh;0: (4)

The well-posedness of the numerical approximation (4) follows from the coercivity
and the continuity properties of the bilinear form Ah

��; ��.

Degrees of freedom, norms, and the interpolation operator. Let V and F be
sets of mesh vertices and edges, respectively. Let m be a positive integer number.
A discrete scalar field vh in Vh consists of:

(i) one real number vv per mesh vertex v 2 V ;
(ii) .m � 1/ real numbers vf;i per mesh edge f 2 F , where i D 1; : : : ; m � 1;

(iii) m.m�1/=2 real numbers vP;k;i per mesh cell P 2 ˝h, where k D 0; : : : ; m�2,
and i D 0; : : : ; k.

The first two sets of degrees of freedom represent nodal degrees of freedom. They
are associated with the vertices of edge f and with the m � 1 internal nodes of
the Gauss-Lobatto numerical integration rule of order 2m � 1. These nodes are
defined uniquely and symmetrically on each edge f 2 F (see formula 25.4.32 and
Table 25.6 of [1] for details). The last set is introduced into the nodal MFD scheme to
represent k-th order moments of scalar fields over polygons P. We refer to the latter
degrees of freedom as the internal degrees of freedom. Examples of the degrees of
freedom on a generic cell are shown in Fig. 1 form D 1; 2; 3.

Combining the previous definitions allows us to write

vh D
˚
.vv/v2V ; .vf;i /f2F ;iD1;:::;m�1; .vP;k;i /P2˝h;kD0;:::;m�2;iD0;:::;k

�
(5)

for any vh 2 Vh. Therefore, the global approximation space Vh has dimensionNV C
NF .m � 1/C NPm.m � 1/=2, where NV is the number of mesh vertices, NF

the number of mesh edge, and NP the number of mesh cells.
The sub-set Vh;g is obtained by approximating the datum g by a (globally

continuous) piecewise polynomial function gm of order m, and then enforcing
vh;f D gmjf for every f 2 � . Note that if g is continuous, this can be simply achieved
by interpolating g at the Gauss nodes of each edge.
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We will find it useful to introduce Vh;P WD VhjP, the linear space of discrete
scalar fields whose members contain only the degrees of freedom associated with
the vertices, the edge and the interior of cell P. The local linear space Vh;P has
dimension mVh;P D NF

P m C m.m � 1/=2, where NF
P is the number of the edges

forming the boundary @P and the second term is the number of internal degrees of
freedom.

Let vh;P D P
v2@P vv=N

V
P be the arithmetic mean of the vertex values of vh;P.

The mesh-dependent norm jjvhjj21;h D
P

P2˝h jjvhjj21;h;P for the elements of Vh
mimics the H1.˝/ seminorm when the summation arguments are given by

jjvhjj21;h;P D
X

f2@P
hP

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
@vh;f
@s

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

L2.f/
C �vP;0;0 � vh;P

�2 C
m�2X

kD1

kX

iD0
jvP;k;i j2 ; (6)

where vh;f is the polynomial on edge f corresponding to the values vf;i , i D 0; : : : ; m
and @vh;f=@s is the directional derivative along f.

For every polygon P of ˝h and every function v 2 H1.P/ \ C0.P/, we define
the interpolation operator vIP to the discrete local space Vh;P. For the nodal degrees
of freedom, we set

vIv D v.xv/ 8v 2 @PI (7)

vIf;i D v.xf;i / 8f 2 @P; i D 1; 2; : : : ; m � 1: (8)

Now, for every cell P 2 ˝h, we consider the set ofm.m�1/=2 polynomial functions
'k;i W P ! R for k D 0; : : : ; m � 2 and i D 0; : : : ; k such that '0;0 D 1 and for
every k the set f'k;igiD0;:::;k forms an L2-orthogonal basis for the linear space of the
polynomials of degree exactly equal to k on P and orthogonal to the polynomials of
degree up to .k � 1/. Then, the interior degrees of freedom of the interpolated field
vI are given by

vIP;k;i D
1

jPj
Z

P
v'k;i dV; k D 0; : : : ; m � 2; i D 0; 1; : : : ; k: (9)

Construction of the mimetic bilinear form Ah

��; ��. The bilinear form Ah

��; �� is
obtained by assemblying the contributions from each polygonal cell

Ah

�
uh; vh

� D
X

P2˝h
Ah;P

�
uh;P; vh;P

� 8uh; vh 2 Vh;

where Ah;P
��; �� W Vh;P�Vh;P ! R is a local symmetric bilinear form defined on P.

To define it, we proceed throughout the following three steps. In the first step, we
introduce the linear vector functional G k W .L2.P//2 ! .Pk.P//2, which is the L2-
orthogonal projection on the linear space of two-dimensional vectors of polynomials
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of degree k on P. For p 2 H1.P/ and K 2 L1.P/ it holds that div.G m�1.Krp//
belongs to Pm�2.P/. Therefore, we can express this divergence as the unique linear
combination of the polynomial basis functions 'k;i of Pm�2.P/:

div.G m�1.Krp// D
m�2X

kD0

kX

iD0
˛k;i 'k;i ; (10)

where the coefficients ˛k;i depend on p. In the second step, we define the
“numerical integration” formula IP

�
vh;P; p

�
as:

IP
�
vh;P; p

� D
m�2X

kD0

kX

iD0
jPj ˛k;i vP;k;i ; (11)

where the real numbers ˛k;i are the coefficients for the polynomial p in summation
(10). In the third step, we assume that the symmetric bilinear form Ah;P

� � ; � �
satisfies the following two conditions:

(S1) spectral stability: there exists two positive constants �� and �� such that
for every vh;P 2 Vh;P there holds:

��jjvh;Pjj21;h;P � Ah;P
�
vh;P; vh;P

� � ��jjvh;Pjj21;h;PI

(S2) local consistency: for every vh;P 2 Vh;P and for every p 2 Pm.P/ there
holds:

Ah;P
�
vh;P; p

I
P

� D �IP
�
vh;P; p

�C
X

f2@P

Z

f
vh;f.s/G

m�1.Krp/�nP;f ds: (12)

As usual, in the mimetic methods, the bilinear form Ah;P is not unique. Its
representing matrix has two terms, a unique consistency term due to (S2) and a
non-unique stabilizing term due to (S1). The possibility to vary the stabilizing term
is the unique characteristic of the mimetic approach; see also [2].

Discretization of the load term
��; ��

h
. Let Pk

P W L2.P/ ! Pk.P/ be the L2-
orthogonal projector of scalar functions onto the space of polynomials of degree at
most k. We introduce OfP D Pm�2

P .f /, where f is the forcing term in (3). Since
OfP 2 Pm�2.P/, we can write it as a linear combination of the basis functions 'k;i :

OfP D
m�2X

kD0

kX

iD0
ck;i 'k;i (13)

using the .mC 1/.mC 2/=2 real coefficients ck;i . Then, we define
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Table 1 Number of degrees of freedom

Mesh Family M1 Mesh Family M2

lev m D 2 m D 3 m D 4 m D 5 m D 2 m D 3 m D 4 m D 5

0 441 861 1381 2001 881 1521 2261 3101

1 1681 3321 5361 7801 3361 5841 8721 12001

2 6561 13041 21121 30801 13121 22881 34241 47201

3 25921 51681 83841 122401 51841 90561 135681 187201

4 103041 205761 334081 488001 206081 360321 540161 745601

Table 2 Test Case 1: relative errors and convergence rates on mesh family M1 (random-
ized quadrilaterals) for different polynomial order m D 2; 3; 4; 5 and non-constant diffusion
tensor K

m D 2 m D 3 m D 4 m D 5

lev Error Rate Error Rate Error Rate Error Rate

0 1:529 10�1 �� 9:510 10�2 �� 8:590 10�3 �� 8:237 10�3 ��
1 2:577 10�2 2:60 1:043 10�2 3:23 1:496 10�3 2:55 5:240 10�4 4:03

2 5:218 10�3 2:29 1:590 10�3 2:70 9:476 10�5 3:96 2:507 10�5 4:37

3 1:192 10�3 2:19 1:885 10�4 3:16 6:620 10�6 3:94 8:663 10�7 4:98

4 2:991 10�4 2:06 2:413 10�5 3:06 4:199 10�7 4:11 2:850 10�8 5:09

�
f; vh

�
h
D
X

P2˝h

� OfP; vh;P
�
h;P;

� OfP; vh;P
�
h;P D jPj

m�2X

kD0

kX

iD0
ck;i vP;k;i ;

where we use the coefficients ck;i from (13).

2 Convergence theorem

For simplicity, we consider the homogeneous boundary value problem (3), i.e.
g D 0.

Theorem 1. Let u 2 HmC1.˝/ be the solution of the variational problem (3) under
assumptions (H1)-(H3). Let uI 2 Vh be its interpolant defined by (7)-(9). Let uh be
solution of the MFD problem (4) under assumption (HG) and (S1)-(S2). Let us
assume that KjP 2 W m;1.P/ for any polygon P. Finally, let mesh ˝h be shape
regular. Then, there exists a positive constant C , which depends only on the shape
regularity constants and is independent of h, such that

jjuI � uhjj1;h � ChmjjujjHmC1.˝/: (14)
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Table 3 Test Case 2: relative errors and convergence rates on mesh family M2 (non-convex cells)
for different polynomial order m D 2; 3; 4; 5 and non-constant diffusion tensor K

m D 2 m D 3 m D 4 m D 5

lev Error Rate Error Rate Error Rate Error Rate

0 3:007 �� 9:873 10�1 �� 2:059 10�1 �� 1:988 10�2 ��
1 8:081 10�1 1:89 2:760 10�1 1:84 1:367 10�2 3:92 1:016 10�3 4:29

2 2:071 10�1 1:96 5:621 10�2 2:29 7:562 10�4 4:18 3:924 10�5 4:69

3 5:303 10�2 1:97 9:083 10�3 2:63 4:210 10�5 4:17 1:351 10�6 4:86

4 1:348 10�2 1:98 1:292 10�3 2:81 2:441 10�6 4:11 4:472 10�8 4:92

Fig. 2 The first mesh in families M1 (left) and M2 (right)

3 Numerical experiments

The numerical experiments presented in this section are aimed to confirm the a
priori analysis developed in the previous section. To this purpose, we solve the
discrete problem (4) on the domain˝ D�0; 1Œ��0; 1Œ with the diffusion tensor given
by

K.x; y/ D
	
.x C 1/2 C y2 �xy
�xy .x C 1/2




:

The forcing term f and the Dirichlet boundary condition g are set in accordance
with the following exact solution:

• test case 1: u.x; y/ D �x � e2.x�1/��y2 � e3.y�1/�;
• test case 2: u.x; y/ D e�2�y sin.2�x/.

The performance of the MFD method is investigated by evaluating the rate of
convergence on a sequence of refined meshes. Test case 1 is solved using mesh
family M1, where each mesh is formed by randomized quadrilaterals; test case 2
is solved using mesh family M2, where each mesh is obtained by filling the unit
square with a suitably scaled non-convex octagonal reference cell, see the Fig. 2.
The meshes are parametrized by the number of partitions in each direction. The
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Table 4 Mesh parameters

Mesh Family M1 Mesh Family M2

lev NP NF NV h NP NF NV h

0 100 220 121 1:922 10�1 100 440 341 1:458 10�1

1 400 840 441 9:705 10�2 400 1680 1281 7:289 10�2

2 1600 3280 1681 4:838 10�2 1600 6560 4961 3:644 10�2

3 6400 12960 6561 2:467 10�2 6400 25920 19521 1:822 10�2

4 25600 51520 25921 1:263 10�2 25600 103040 77441 9:111 10�3

starting mesh for both families is built from a 10 � 10 regular grid, and the refined
meshes are obtained by doubling this parameter. The first mesh in each family is
shown in Fig. 2. Mesh data for the refinement level lev are reported in Table 4.
Here, NP , NF and NV are the numbers of mesh elements, edges and vertices,
respectively. Table 1 shows the total number of degrees of freedom that are required
by the nodal MFD method form D 2; : : : ; 5.

The rate of convergence is measured in the mesh-dependent norm (6). Relative
errors and convergence rates are reported in Tables 2-3 and are in good accordance
with the theoretical prediction of Theorem 1.

4 Conclusions

In this paper, we presented a new family of nodal arbitrary-order accurate MFD
methods for unstructured polygonal meshes. The construction of the method is
based on a local consistency condition, i.e., a discrete integration by parts formula,
that holds for polynomials of degreem. The arbitrary-order accurate MFD methods
use nodal degrees of freedom on mesh edges representing solution values at the
quadrature nodes of the Gauss-Lobatto formulas and internal degrees of freedom
inside polygons representing solution moments.

Acknowledgements The work of the second author was supported by the Department of Energy
(DOE) Advanced Scientific Computing Research (ASCR) program in Applied Mathematics. The
work of the third author was partially supported by the Italian MIUR through the program
PRIN2008.

References

1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Dover, New York, ninth Dover printing, tenth gpo printing edition,
1964.

2. L. Beirão da Veiga, K. Lipnikov, and G. Manzini. High-order nodal mimetic discretizations of
elliptic problems on polygonal meshes. Submitted to SIAM J. Numer. Anal. (also IMATI-CNR
Technical Report 32PV10/30/0, 2010).



Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes 77

3. F. Brezzi, A. Buffa, and K. Lipnikov. Mimetic finite differences for elliptic problems. M2AN
Math. Model. Numer. Anal., 43(2):277–295, 2009.

4. F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of the mimetic finite difference method
for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal., 43(5):1872–1896, 2005.

5. P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in
Mathematics. Pitman, Boston, 1985.

The paper is in final form and no similar paper has been or is being submitted elsewhere.



Adaptive cell-centered finite volume method
for non-homogeneous diffusion problems:
Application to transport in porous media

Fayssal Benkhaldoun, Amadou Mahamane, and Mohammed Seaı̈d

Abstract We investigate time stepping schemes for the adaptive cell-centered finite
volume solution of diffusion equations with heterogeneous diffusion coefficients.
The proposed finite volume method uses the cell-centered techniques to discretize
the diffusion operators on unstructured grids. Explicit and implicit time integration
schemes are used and a comparative study is presented in terms of accuracy and
efficiency. Numerical results are presented for a transient diffusion equation with
known analytical solution. We also apply these methods to a problem of oil recovery
using a two-phase flow problem in porous media.

Keywords Diffusion problems, finite volume, flow in porous media
MSC2010: 76S05, 65N08, 65Y20

1 Introduction

In the last decade, finite volume methods have offered a remarkable level of
accuracy and robustness required for solving complex flow problems governed
by hyperbolic systems of conservation laws. However, engineering applications
often involve coupled hyperbolic and elliptic partial differential equations which
have to be solved on complex geometries, thus suggesting the use of the same
spatial discretization for both hyperbolic and elliptic equations. As an example
of these applications where hyperbolic and elliptic equations coexist we mention
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 9, © Springer-Verlag Berlin Heidelberg 2011

79

fayssal@math.univ-paris13.fr
mahamane@math.univ-paris13.fr
m.seaid@durham.ac.uk


80 F. Benkhaldoun et al.

the multi-phase flows in porous media, see for example [1, 3, 5]. In practice,
the focus is on unstructured meshes where a non-trivial reconstruction scheme
is required to have a high-order spatial accuracy. Most of upwind finite volume
methods for unstructured grids proposed to date employ a cell-vertex discretization,
since it allows a natural definition of the flow gradients: using a dual mesh, a
gradient-based reconstruction is applied on the two sides of each interface, where
an approximate Riemann solver is finally applied to select the proper upwind
contributions. However, solving diffusion equations using the finite volume methods
is still a considerable task in the case of unstructured meshes; particularly when
these equations have to be solved in conjunction with partial differential equations of
hyperbolic type. The emphasis in this work is on the time integration of the resultant
system of ordinary differential equations induced from cell-centered finite volume
discretization in space variable of the transient diffusion problems. The proposed
schemes are the explicit Euler and implicit Euler scheme. These two different
methods lead to techniques all of which are occurring in time integration framework
since years. Theoretical considerations can provide some ideas concerning stability,
convergence rates, restriction on time stepsizes, or qualitative behaviour of the
solution, but a complete quantitative analysis is not possible today. Therefore, the
only way to make a judgment is to perform numerical tests, at least for some
problems which seem to be representative. However, looking into the literature, it
seems that there have not been many studies of this type which can give satisfactory
answers.

2 Adaptive cell-centered finite volume method

Our main concern in the present study is on the finite volume discretization of the

two-dimensional gradient operator r D
�
@
@x
; @
@y

�T
resulting from the weak

formulation of the diffusion equations. To this end we discretize the spatial domain
N̋ D ˝ [ @˝ in conforming triangular elements Ki as N̋ D [NiD1Ki , with N

is the total number of elements. Each triangle represents a control volume and the
variables are located at the geometric centers of the cells. To discretize the diffusion
operators we adapt the so-called cell-centered finite volume method based on a
Green-Gauss diamond reconstruction, see for example [5] and further references are
therein. Hence, a co-volume,D� , is first constructed by connecting the barycentres
of the elements that share the edge � and its endpoints as shown in Fig. 1. Then, the
discrete gradient operator r� is evaluated at an inner edge � as

r�uh D 1

2meas.D�/

�
.uL � uK/meas.�/nK;� C .uS � uN /meas.s� /n0�

�
; (1)

where uh is the finite volume discretization of a generic function u, meas.D/ denotes
the area of the elementD, nK;� denotes the unit outward normal to the surface � , uK
and uL are the values of the solution uh in the elementsK andL, respectively. In (1),
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Fig. 1 A generic two-dimensional finite volume and notations

uS and uN are the values of the solution uh at the co-volume nodes approximated by
a linear interpolation from the values on the cells sharing the same vertex S and N ,
respectively. For further details on the formulation and analysis of the considered
cell-centered finite volume method we refer to [4, 5] among others.

The treatment of boundary conditions in the cell-centered finite volume method is
performed using similar techniques as those described in [2, 5]. In order to improve
the efficiency of the proposed finite volume method, we have performed a mesh
adaptation to construct a nearly optimal mesh able to capture the small solution
features without relying on extremely fine grid in smooth regions far from steep
gradients. In the present work, this goal is achieved by using an error indicator
for the gradient of the solution. This indicator requires only information from
solution values within a single element at a time and it is easily calculated, see
for instance [2].

3 Time stepping schemes

For simplicity in the presentation we consider the transient diffusion problem

@u

@t
� r � .K.x/ru/ D f .x; t/; .x; t/ 2 ˝ � .0; T �; (2)

where ˝ is a subset of R
2 with smooth boundary @˝ , .0; T � is the time interval,

K.x/ is a 2�2matrix with entries kij , and f .x; t/ is an external force. In the current
study the spatial discretization of the diffusion equation (2) is carried out using the
cell-centered finite volume method and two time stepping schemes are considered
for the time integration.

For the time integration of (2) we discretize the time interval into subintervals
Œtn; tnC1� with length�t , 0 D t0; t1; : : : ; tN D T and tn D n�t . We use the notation
!n to denote the value of a generic function ! at time tn. Hence, using the forward
Euler method, the fully discrete version of the diffusion equation (2) reads
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unC1K D unK C
�t

meas.K/

X

�2EK
FK;�

�
unh
�

meas.�/C�tf nK; 8 K 2 T ; (3)

where EK is the set of all edges of the control volumeK and F n
K;� are the numerical

fluxes reconstructed as
FK;� .u/ D K�r�u � nK;� ; (4)

with K� is an averaged values of the diffusion matrix K on the edge � and r� is the
cell-centered finite volume discretization of the gradient operator defined in (1).

An implicit time stepping scheme for (2) is formulated using the backward Euler
scheme as

unC1K D unKC
�t

meas.K/

X

�2EK
FK;�

�
unC1h

�
meas.�/C�tf nC1

K ; 8 K 2 T : (5)

To find the solution unC1K from (5) one has to solve, at each time level, a linear
system of algebraic equations. In our simulations, the linear system is solved using
the preconditioned GMRES solver with a convergence criteria of 10�6, we use the
diagonal as a preconditionner.

4 Numerical Results

In this section we examine the accuracy and performance of the proposed time
stepping schemes using two test examples. The first example solves a transient
diffusion equation with analytical solution that can be used to quantify errors in the
time stepping schemes. The second example considers a problem of oil recovery
using the equations of two-phase flows in porous media. This last example is
used to qualify the considered implicit time stepping scheme for more complicated
nonlinear convection-dominated flows. In all the computations reported herein, a
two-level refining and fixed CFL numbers are used.

4.1 Accuracy test problem

First we consider the problem of a diffusion problem with manufactured exact
solution in a squared domain ˝ D Œ�1; 1� � Œ�1; 1�. Here, we solve the transient
equation (2) subject to a nonhomogenuous diffusion tensor given by

K D .1C ˛x/2
	

1 10�2
10�2 10�6




: (6)
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The reaction term f is explicitly calculated such that the exact solution of the
diffusion problem (2) and (6) is

U.x; y; t/ D sin.�x/ sin.�y/
�
1 � e�	t

�
: (7)

In our computations ˛ D 	 D 0:1, the initial condition is calculated from the
analytical solution (7) and homogeneous Dirichlet boundary conditions are imposed
on @˝ . To quantify the errors in this test example we consider the L2-error norm
defined as

kehk D
 
X

K2T
meas.K/e2

K

!1
2

;

where eK.T / D jUK � uK j with uK and UK are respectively, the computed and
exact solutions on the control volumeK . In the current study, we present numerical
results at the transient regime corresponding to the simulation time T D 1.

Table 1 Relative error and statistics using the explicit and implicit schemes at the transient time
T D 1 and different CFL numbers. min �t is the minimum �t used in the scheme and GMRES
iter refers to the mean number of iterations in the GMRES solver

Coarse mesh
Explicit scheme Implicit scheme

CFL = 1 CFL = 5 CFL = 10 CFL = 50 CFL = 100
min�t 4.70E-04 2.35E-03 4.70E-03 2.35E-02 4.70E-02
Relative error 1.15E-02 9.65E-03 8.07E-03 1.44E-02 3.49E-02
# time steps 2126 426 213 43 22
CPU time 0.76 0.44 0.32 0.20 0.16
GMRES iter —– 5 8 28 44
# elements 896 896 896 896 896
# nodes 481 481 481 481 481

Fine mesh
min�t 7.32E-06 3.66E-05 7.32E-05 3.66E-04 7.32E-04
Relative error 1.73E-04 1.41E-004 1.097E-04 1.958E-04 5.569E-04
# time steps 136576 27316 13658 2732 1366
CPU time 4814.781 2187.42 1415.296 1981.735 1297.94
GMRES iter —– 2 4 29 42
# elements 57344 57344 57344 57344 57344
# nodes 28929 28929 28929 28929 28929

Adaptive mesh
min�t 8.91E-06 4.46E-05 8.92E-05 4.46E-04 8.91E-04
Relative error 1.83E-03 1.82E-03 1.80E-03 1.918E-03 2.12E-03
# time steps 112120 22383 11166 2192 1070
CPU time 1496.57 595.63 294.846 148.28 124.38
GMRES iter —– 2 3 9 19
# elements 17256 17249 17248 16480 15507
# nodes 8681 8676 8676 8292 7806

To quantify the considered time stepping schemes applied to this example we
summarize in Table 1 the results obtained at the transient time T D 1. In this
table we present the minimum time stepsize, the relative error, the number of time
steps required to reach the steady state, the CPU time in seconds, the number
of iterations in the GMRES solver, the number of elements and the number of
nodes in the considered meshes. A simple inspection of these results shows that
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the implicit schemes can use larger CFL numbers than those required for a stable
explicit scheme. Note that using large CFL numbers in the implicit scheme results
in a decrease on the number of time steps needed to reach the steady state and at
the same time results in an increase on the number of the iterations in the GMRES
solver. As expected the highest accuracy is obtained for both explicit and implicit
schemes on the fine mesh but with a large CPU time compared to the results on
coarse and adaptive meshes. No remarkable difference is obtained in the relative
errors for the implicit and explicit schemes on the coarse and fine meshes. However,
using an adaptive mesh the implicit scheme produces smaller errors than the explicit
scheme. On the other hand, due to grid adaptation the final mesh at CFL = 100
consists of 15507 cells only compared to the 57344 cells for the fixed fine mesh.
This results in a significant reduction of the computational cost. An examination of
the CPU times in the tables reveals that, the cell-centered finite volume method on
fixed meshes requires more computational work than its adaptive counterpart.

4.2 Transport in porous media

We solve a problem of oil recovery in a two-dimensional porous reservoir. The
problem statement is solving a two-phase flow problem in porous media on the
computational domain defined by N̋ D ˝ [ @˝ with @˝ D �1 [ �2 [ �3 as
illustrated in Fig. 2. Here, the governing equations consist of the pressure equation

q D �d.u/K.x/rp; .x; t/ 2 ˝ � .0; T �;

r � q D 0; .x; t/ 2 ˝ � .0; T �; (8)

q � nˇˇ�1 D �1:4; q � nˇˇ�2 D 0; pˇˇ�3
D 0; t 2 .0; T �;

and the saturation equation

�.x/
@u

@t
� r � �b.u/q�K.x/a.x/ru

� D 0; .x; t/ 2 ˝ � .0; T �;

uˇˇ�1
D 1; K � nˇˇ�2 D 0; uˇˇ�3

D 0; t 2 .0; T �; (9)

u.x; 0/ D u0.x/; x 2 ˝;

where p is the pressure, q the Darcy velocity, u the saturation, K is the permeability
of the medium, � the porosity and d.u/ D kw.u/C ko.u/ is the total mobility with
kw.u/ and ko.u/ are the mobility of water and oil, respectively. In (9),
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Fig. 2 Computational domain for the example of transport in porous media

b.u/ D kw.u/

kw.u/C ko.u/ ; a.u/ D kw.u/ko.u/

kw.u/C ko.u/p
0.u/;

with p.u/ represents the capillary pressure. Note that, in most practical appli-
cations, the effects of Darcy velocity dominates the effects of diffusion. As a
consequence the saturation equation (9) results in a convection-dominated problem
which requires special numerical treatment and many numerical methods from the
literature fail to accurately approximate its solution. In addition, since the diffusion
in (9) depends on the Darcy velocity, the accuracy on the solution of saturation
equation (9) strongly needs an accurate solution of the pressure equation (8). For
more details on this model we refer the reader to [1, 3, 5] among others. In our
simulations, the permeability K D Id , with Id is the 2 � 2 identity matrix, the
porosity � D 0:2, the water and oil mobility along with the capillary pressure are
given by

kw.u/ D 1

2
u5; ko.u/ D 1

3
.1 � u/3 ; p.u/ D �

r
1 � u

u
:

The initial condition u0 is defined as

u0.x/ D

8
<̂

:̂

1; if x 2 �1;

0; elsewhere:

This problem has an interesting structure and will be used to verify the adaptive cell-
centered finite volume method namely, to verify that the adaptation methodology is
able to compute the right speed of the saturation fronts, and to verify that adaptive
refinement is computationally cheaper than fixed mesh for a given level of solution
resolution. Based on the conclusions drawn in the previous test example, only results
using the implicit time stepping scheme are presented for this example. Figure 3
shows the adapted meshes and plots of the saturation at two different times, namely
t D 0:022 and t D 0:048. The initial mesh contains 3662 cells and a�t D 2�10�5
is used in our simulations. At earlier time of the simulation, the front entering the
reservoir starts to develop and will be advected later on by the flow at far exit
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Fig. 3 Adaptive meshes and saturation contours at time t D 0:022 (top) and t D 0:048 (bottom)

of the reservoir. The interaction between the Darcy pressure and the saturation is
detected across the reservoir during the simulation time. It can be clearly seen that
the saturation front structures being captured by the cell-centered finite volume
method. Another important result is that positions of the saturated waves are not
deteriorated by the multiple mesh adaptations. The adaptive cell-centered finite
volume method accurately approximates the solution to this problem of two-phase
flow in porous media. In addition, the comparison with similar numerical results
available in the literature [1] on the same test case is also satisfactory. It should be
stressed that, due to grid adaptation the final mesh at times t D 0:022 and t D 0:048
consists of 4039 and 4947 cells, respectively. This results in a significant reduction
of the computational cost compared to a cell-centered finite volume method on fixed
meshes.
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A Generalized Rusanov method for Saint-Venant
Equations with Variable Horizontal Density

Fayssal Benkhaldoun, Kamel Mohamed, and Mohammed Seaı̈d

Abstract We present a class of finite volume methods for the numerical solution
of Saint-Venant equations with variable horizontal density. The model is based on
coupling the Saint-Venant equations for the hydraulic variables with a suspended
sediment transport equation for the concentration variable. To approximate the
numerical solution of the considered models we propose a generalized Rusanov
method. The method is simple, accurate and avoids the solution of Riemann
problems during the time integration process. Using flux limiters, a second-order
accuracy is achieved in the reconstruction of numerical fluxes. The proposed finite
volume method is well-balanced, conservative, non-oscillatory and suitable for
Saint-Venant equations for which Riemann problems are difficult to solve. The
numerical results are presented for two test examples.

Keywords Shallow water equations, variable density, finite volume method
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1 Introduction

In this paper we are interested to develop a robust finite volume method for solving
Saint-Venant equations with variable horizontal density. The governing equations
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can be formulated in a conservative form as

@W
@t
C @F.W/

@x
D Q.W/; (1)

where W, F.W/ and Q.W/ are vector-valued functions in R
3 given by

W D

0

B
B
B
@

�h

�hu

�shc

1

C
C
C
A
; F.W/ D

0

B
B
B
@

�hu

�hu2 C 1

2
g�h2

�shuc

1

C
C
C
A
; Q.W/ D

0

B
B
B
@

0

�g�h@Z
@x

0

1

C
C
C
A
;

where h is the water height above the bottom, u the water velocity, g the acceleration
due to gravity, Z the function characterizing the bottom topography and �s the
sediment density. For constant density �, the equations (1) reduce to the standard
Saint-Venant equations. In the current work, we assume that a sediment transport
takes place such that the density depends on space and time variables, i.e., � D
�.x; t/. This requires an additional equation for its evolution. Here, the equation
used to close the system is given by

� D �w C .�s � �w/ c; (2)

where �s is the sediment density and c is the depth-averaged concentration of the
suspended sediment. Further details on the formulation of the above equations we
refer to [3] and further references are therein. It is clear that the system (1) is
hyperbolic and the associated eigenvalues 	k (k D 1; 2; 3) are

	1 D u �
p
gh; 	2 D u and 	3 D uC

p
gh: (3)

Note that in the above hydrodynamical model, we have considered only the source
terms related to bottom topography while the source terms related to bed friction are
neglected. Moreover, the bed-load sediment transport is assumed to be negligible
in the considered model compared to the suspended sediment load. It should also
be stressed that the transport of suspended sediments involves different physical
mechanisms occurring within different time scales according to their time response
to the hydrodynamics. In practice, the sediment transport of the bed occurs on a
transport time scale much longer than the flow time scale. It is therefore desirable to
construct numerical schemes that preserve stability for all time scales. In the current
study we propose a modified Rusanov method studied and analyzed in [1] for the
numerical solution of conservation laws with source terms. This method is simple,
accurate and avoids the solution of Riemann problems during the time integration
process. Our main goal is to present a class of numerical methods that are simple,
easy to implement, and accurately solves the Saint-Venant equations with variable
horizontal density without relying on Riemann solvers or front tracking techniques.
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Fig. 1 An illustration of modified Riemann problems in the proposed finite volume method

2 A generalized Rusanov method

To formulate our finite volume method, we discretize the spatial domain into control
volumes Œxi�1=2; xiC1=2� with uniform size �x D xiC1=2�xi�1=2 and we divide the
temporal domain into subintervals Œtn; tnC1� with uniform size �t . Following the
standard finite volume formulation, we integrate the equation (1) with respect to
time and space over the domain Œtn; tnC1� � Œxi�1=2; xiC1=2� to obtain the following
discrete equation

WnC1
i DWn

i �
�t

�x

�
F.Wn

iC1=2/ � F.Wn
i�1=2/

�
C�tQn

i ; (4)

where Wn
i is the time-space average of the solution W in the domain Œxi�1=2; xiC1=2�

at time tn and F.Wn
i˙1=2/ is the numerical flux at x D xi˙1=2 and time tn. The

spatial discretization of the equation (4) is complete when a numerical construction
of the fluxes F.Wn

i˙1=2/ is chosen and a discretization of the source term Qn
i is

performed. In general, the construction of numerical fluxes requires a solution of
Riemann problems at the interfaces xi˙1=2.

In order to avoid these difficulties and reconstruct an approximation of Wn
iC1=2,

we adapt a finite volume method proposed in [1] for numerical solution of
conservation laws with source terms. The key idea is to integrate the equation (1)
over a control domain Œtn; tn C �niC1=2� � Œxi ; xiC1� containing the point .tn; xiC1=2/
as depicted in Fig. 1. It should be stressed that, the integration of the equation (1)
over the control domain Œtn; tnC�niC1=2�� Œxi ; xiC1� is used only at a predictor stage
to construct the intermediate states Wn

i˙1=2 which will be used in the corrector stage
(4). Here, Wn

i˙1=2 can be viewed as an approximation of the averaged Riemann
solution over the control volume Œxi ; xiC1� at time tn C �niC1=2. Thus, the resulting
intermediate state is given by
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Wn
iC1=2 D

1

2

�
Wn

i CWn
iC1
� � �

n
iC1=2
�x

�
F.Wn

iC1/� F.Wn
i /
�
C �niC1=2Qn

iC1=2; (5)

whereQn
iC1=2 is an approximation of the averaged source term Q i.e.

Qn
iC1=2 D

1

�niC1=2�x

Z tnC�niC1=2
tn

Z xiC1

xi

Q.W/ dt dx:

In order to complete the implementation of the above finite volume method the
parameters �niC1=2 and Qn

iC1=2 have to be selected. Based on the stability analysis
reported in [1] for conservation laws with source terms, the variable �n

iC1=2 is
selected as

�niC1=2 D ˛niC1=2 N�iC1=2; N�iC1=2 D �x

2SniC1=2
; (6)

where ˛niC1=2 is a positive parameter to be calculated locally and SniC1=2 is the local
Rusanov’s velocity defined as

SniC1=2 D max
kD1;2;3

	

max
�ˇ
ˇ	nk;i

ˇ
ˇ ;
ˇ
ˇ	nk;iC1

ˇ
ˇ
�


; (7)

with 	nk;i is the kth eigenvalue in (3) evaluated at the solution state Wn
i . Notice that

the introduction of the local time step �n
iC1=2 in the predictor stage (5) is motivated

by the fact that �niC1=2 should not be larger than the value N�iC1=2 which corresponds
to the time required for the fastest wave generated at the interface xiC1=2 to leave
the cell Œxi ; xiC1�, compare Fig. 1.

It is clear that by setting ˛niC1=2 D 1 the proposed finite volume method reduces
to the well-established Rusanov method for linear systems of conservation laws,
whereas for ˛niC1=2 D �t=�xSniC1=2 one recovers the well-known Lax-Wendroff
scheme. Another choice of the slopes ˛niC1=2 leading to a first-order scheme is
˛niC1=2 D Q̨niC1=2 with

Q̨niC1=2 D
SniC1=2
sniC1=2

; (8)

where

sniC1=2 D min
kD1;2;3

	

min
�ˇ
ˇ	nk;i

ˇ
ˇ ;
ˇ
ˇ	nk;iC1

ˇ
ˇ
�


: (9)

In the current study we incorporate limiters in its reconstruction as

˛niC1=2 D Q̨niC1=2 C �niC1=2˚
�
riC1=2

�
; (10)

where Q̨niC1=2 is given by (8) and ˚iC1=2 D ˚
�
riC1=2

�
is an appropriate limiter

which is defined by using a flux limiter function˚ acting on a quantity that measures
the ratio riC1=2 of the upwind change to the local change, see for instance [6]. In the
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present study,

�niC1=2 D
�t

�x
SniC1=2 �

SniC1=2
sniC1=2

;

and the ratio of the upwind change is calculated locally as

riC1=2 D WiC1�q �Wi�q
WiC1 �Wi

; q D sgn
h
Q̨niC1=2

i
:

As a slope limiter function, we consider the Minmod function

˚.r/ D max .0;min .1; r// : (11)

Note that other slope limiter functions functions from [4, 6] can also apply. The
reconstructed slopes (10) are inserted in (6) and the numerical fluxes Wn

iC1=2 are
computed from (5). Remark that if we set ˚ D 0, the spatial discretization (10)
reduces to the first-order scheme.

3 Numerical Results

Two test examples are selected to check the accuracy and the performance of the
proposed finite volume scheme. As with all explicit time stepping methods the
theoretical maximum stable time step �t is specified according to the Courant-
Friedrichs-Lewy condition

�t D Cr �x

max
i

�ˇ
ˇ
ˇ˛niC1=2

ˇ
ˇ
ˇ
� ; (12)

where Cr is a constant to be chosen less than unity. In all our simulations, the fixed
Courant number Cr D 0:5 is used and the time step is varied according to (12).

3.1 Example 1

We consider a density dam-break problem with a single initial discontinuity. The
problem consists of solving the equations (1) in a flat channel of length 500 m filled
with two liquids with density � D 10 kg=m3 in the left section and � D 1 kg=m3 in
the right section. Initially, the system is at rest with constant water height h D 1 m

and g D 1 m=s2. In Fig. 2 we display the time evolution of the density, water height,
velocity and concentration variables using a mesh with 500 gridpoints. It is clear
from these results that at the initial time, the hydrostatic pressure difference at the
interface of the two liquids drives a flow of higher density liquid towards the right,
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pushing the lower density liquid ahead. To conserve mass, the free surface of the
lower density liquid rises and a rightward propagating shock-like bore forms. This
flow features have been accurately captured by our generalized Rusanov scheme.
It should be stressed that the mechanisms of the density dam-break problems are
similar to that of the standard dam-break induced by change in free-surface depth,
in that a leftward rarefaction, a rightward shock and a contact wave are formed.
Similar wave structures also occur in shock tube gas dynamics.
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Fig. 2 Numerical results for density dam-break problem with a single initial discontinuity

For the sake of comparison, we present in Fig. 3 the results for the water height at
t D 70 s obtained using the classical Rusanov method and the proposed method
using a mesh with 500 and 1000 gridpoints. We have also included a reference
solution obtained using a refined mesh with 100000 gridpoints. As can be seen
from this figure, the results obtained using the classical Rusanov method are more
diffusive than those obtained using our finite volume method. Similar conclusion
can be drawn from other results (not reported here) obtained for the velocity field
and sediment concentration.

3.2 Example 2

In this example we solve a density dam-break problem with two initial disconti-
nuities. Here, a flat channel of length 100 m is filled at the left-hand side and
right-hand side of the channel with a liquid with density � D 1 kg=m3. At the
centre of the channel there is a liquid column of density � D 10 kg=m3 and width
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Fig. 3 Comparative results for the water height at t D 70 s for density dam-break problem with a
single initial discontinuity using a mesh with 500 gridpoints (left) and 1000 gridpoints (right)
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Fig. 4 Numerical results for density dam-break problem with two initial discontinuities

of 1 m. Initially, the system is at rest with constant water height h D 1 m and
g D 1 m=s2. The computed results are illustrated in Fig. 4 for the t-x phase space.
It is evident that the sudden collapse of the denser liquid in the central column
causes primary shock waves to be created and propagate as bores in the direction
from high to low density. Two outward propagating bores are generated, traveling in
opposite directions. Each primary bore decreases in strength with time, which can
be seen from the curved shock path. On the other hand, a pair of rarefaction waves
travels inward from the interfaces. The rarefaction waves are almost immediately
reflected at the center, and then move outward, weakening rapidly. The accuracy of
the proposed finite volume is highly achieved in reproducing these physical features.
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Fig. 5 Comparative results for the water height at t D 20 s for density dam-break problem with
two initial discontinuities using a mesh with 500 gridpoints (left) and 1000 gridpoints (right)

In Fig. 5 we illustrate a comparison between the results for the water height at t D
20 s obtained using the classical Rusanov method and the proposed method using
a mesh with 500 and 1000 gridpoints. Again, a reference solution obtained using a
refined mesh with 100000 gridpoints is included in this figure. As in the previous
test example, an excessive numerical diffusion is detected in the results obtained
using the classical Rusanov method. This numerical diffusion has been noticeably
reduced in the results obtained using the proposed finite volume method.
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Hydrostatic Upwind Schemes
for Shallow–Water Equations

Christophe Berthon and Françoise Foucher

Abstract We consider the numerical approximation of the shallow–water equations
with non–flat topography. We introduce a new topography discretization that makes
all schemes to be well–balanced and robust. At the discrepancy with the well–known
hydrostatic reconstruction, the proposed numerical procedure does not involve any
cut–off. Moreover, the obtained scheme is able to deal with dry areas. Several
numerical benchmarks are performed to assert the interest of the method.

Keywords shallow–water equations, finite volume schemes, source term approxi-
mations, well–balanced schemes, positive preserving schemes
MSC2010: 65M12, 76M12, 35L65

1 Introduction

The present work concerns the derivation of finite volume methods to approximate
the solutions of the shallow–water equations when involving non–flat topography.
The model under interest is given as follows:

8
<̂

:̂

@thC @xhu D 0;

@t huC @x
	

hu2 C gh
2

2




D �gh@xz;
(1)

where h > 0 is the local water–depth and u 2 R is the depth–average velocity. Here,
z W R! R

C denotes the topography while g > 0 is the gravitational constant.
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To shorten the notations, let us set

w D
 
h

hu

!

; f .w/ D

0

B
@

hu

hu2 C gh
2

2

1

C
A ;

respectively the state vector R �R
C ! ˝ and the flux function˝ ! R

2 where˝
stands for the convex space of admissible states:

˝ D fw 2 R
2I h > 0; hu 2 Rg:

Let us recall that the steady state of the lake at rest, defined by u D 0 and hC z D
cste, is of primary importance and it must be preserved by the numerical schemes.

The objective is now to derive schemes which preserve positive the water
depth and exactly capture the lake at rest. Several approaches have been recently
introduced in the literature to approximate the solutions of (1). Most of them propose
to consider the discretization of the associated homogeneous system:

@twC @xf .w/ D 0; (2)

to suggest a relevant approximation of the topography source term able to restore the
expected lake at rest. For instance, we refer to [10] where a suitable correction of
the VFRoe scheme is proposed (see also [4, 11, 12]). Other approaches consider
systematic corrections to enforce the required well–balanced property; i.e. to
enforce the exact capture of the lake at rest. The hydrostatic reconstruction [1]
(for instance, see also [5, 18]) is certainly one of the most celebrate well–balanced
technique. However, to be water–depth positive preserving, this approach introduces
a cut–off procedure which may involve some failures. Indeed, after the work by
Delestre [9], let us consider a small water–depth on a topography with constant
slope. Next, let us increase the slope to reduce the water–depth. Considering
coarse grids, the hydrostatic reconstruction introduces a wrong behavior since the
water–depth increases (see Fig. 4).

In this paper, we derive a new strategy to systematically enforce the well–
balanced property. In fact, the proposed scheme is able to deal with vanishing water
height without any additional correction and it is proved to be robust. Arguing
[2, 15–17], we suggest a relevant upwind form of the topography source term but
by involving the free surface.

The paper is organized as follows. In the next section, we introduce a new
formulation of (1) and we present the suggested scheme. Section 3 is devoted to
some essential properties as consistency and robustness. The last section presents
numerical experiments to illustrate the interest of the method. Specifically, the
adopted numerical scheme is shown to capture the correct behavior for large
topography slopes.
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2 Upwind source term discretization

In order to derive our scheme, we need considering a reformulation of system (1)
by introducing the free surface H D h C z and a fraction of water X D h

H
. As

usual, one can chose arbitrarily the topography origin (see [6, 13] and references
therein), and thus we impose a bottom reference so that H > 0. As a consequence,
X is well–defined. Involving such notations, the weak solutions of (1) satisfy the
following system:

8
<̂

:̂

@thC @xXHu D 0;

@thuC @x
	

X

	

Hu2 C gH
2

2




� g
2
hz




C gh@xz D 0:
(3)

Let us remark the following identity:

1

2
@x.hz/ � h@xz D H2

2
@xX;

to simplify the discharge equation. Then the smooth solutions of (1) also satisfy:

8
<̂

:̂

@thC @xXHu D 0;

@thuC @x
	

X

	

Hu2 C gH
2

2





� gH
2

2
@xX D 0:

(4)

For the sake of simplicity in the notations, let us set

W D .H;Hu/T ;

to rewrite (4) as follows:

@twC @xXf .W / �
 

0

gH
2

2
@xX

!

D 0:

Now, we propose a discretization of (4), but let us note from now on that the
discrete form we will obtain for (4) will be consistent with (3). As a consequence,
the suggested discretization will be relevant to approximate the weak solutions
of (3) or equivalently (1). We suggest to modify any scheme associated with the
homogeneous system (2). Hence, let us consider f �x W ˝ �˝ ! R

2 a consistent
numerical flux function, i.e. f �x.w;w/ D f .w/. We restrict ourselves to the regular
meshes of size �x such that �x D xiC1=2 � xi�1=2 for all i 2 Z, and we denote
the time step by �t , with tnC1 D tn C�t for all n 2 N. The proposed scheme thus
reads:
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wnC1i D wni �
�t

�x

�
Xn
iC1=2f �x.W n

i ;W
n
iC1/� Xn

i�1=2f �x.W n
i�1;W n

i /
�

C
 

0
�t
�x

g

2
Hn
iC1=2Hn

i�1=2.Xn
iC1=2 � Xn

i�1=2/

!

;

(5)

where we have set

Hn
iC1=2 D

(
Hn
i ; if f �x

h .W n
i ;W

n
iC1/ > 0;

Hn
iC1; otherwise;

(6)

Xn
iC1=2 D

(
Xn
i ; if f �x

h .W n
i ;W

n
iC1/ > 0;

Xn
iC1; otherwise;

(7)

where f �x
h denotes the first component of the numerical flux function. Here, we

have set W n
i D Xn

i h
n
i where Xn

i D hni =.hni CZi/.
Before we establish the main properties of the scheme, let us emphasize that the

suggested numerical procedure is an extremely easy way to consider the topography
from a relevant discretization of the homogeneous shallow–water equation (2). The
reader is referred to [15] where similar ideas were introduced.

3 Main properties

First of all, let us remark that the scheme (5) is obviously consistent with (4). Since
(4) turns out to be a non conservative formulation of (3), or equivalently (1), after
the work by Dal Maso, LeFLoch and Murat [8] (see also [3,7,14]), this may suggest
that our approach cannot deal with weak solutions of (1). As a consequence, we first
prove the consistency of (5) with (1).

Lemma 1. Let .wnC1i /i2Z be given by (5)-(6)-(7). Then .wnC1i /i2Z satisfies in
addition:

hnC1i D hni �
�t

�x

�
Xn
iC1=2f �x

h .W n
i ;W

n
iC1/ �Xn

i�1=2f �x
h .W n

i�1;W n
i /
�
; (8)

.hu/nC1i D .hu/ni �
�t

�x

�
Xn
iC1=2f �x

hu .W
n
i ;W

n
iC1/� Xn

i�1=2f �x
hu .W

n
i�1;W n

i /
�

C�t
�x

g

2

�
hniC1=2zniC1=2 � hni�1=2zni�1=2

�

��t
�x

g

2
.hniC1=2 C hni�1=2/.zniC1=2 C zni�1=2/; (9)
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where hniC1=2 D Hn
i�1=2Xn

i�1=2 and zniC1=2 D Hn
i�1=2.1�Xn

i�1=2/. As a consequence,
the scheme (5) is consistent with (3) and thus with (1).

We skip the proof of this result since it is just a reformulation of (5).
At this level, the adopted scheme turns out to be relevant when approximating the

weak solutions of (1). Moreover, let us note that the above scheme derivation does
not need some smoothness argument concerning the topography function z. Now,
let us state our main result.

Theorem 1. Let wni belongs to ˝ for all i in Z. Under a suitable CFL like
restriction, let us assume that the numerical flux function f �x is ˝–preserving as
follows:

wni �
�t

�x

�
f �x.wni ;w

n
iC1/� f �x.wni�1;wni /

� 2 ˝:

1. Assume an additional CFL restriction given by

�t

�x

�
max.0; f �x

h .W n
i ;W

n
iC1// �min.0; f �x

h .W n
i�1;W n

i //
�
< Hn

i ;

then wnC1i given by (5) stays in ˝ for all i in Z.
2. The scheme (5) is well–balanced. Assume uni D 0 and hni C zi D H a positive

constant, then unC1i D 0 and hnC1i C zi D H for all i in Z.

We here do not prove the above result but we just establish the preservation of the
lake at rest. Let us assume uni D 0 and hni C zi D H > 0 for all i 2 Z. As a
consequence, we have W n

i D .H; 0/T for all i 2 Z. Arguing the consistency of the
numerical flux function f �x , we have

f �x.W n
i ;W

n
iC1/ D f .W / D

0

B
@

0

g
H2

2

1

C
A ; 8i 2 Z:

Concerning the water heigh, we immediately deduce hnC1i D hni for all i 2 Z to
obtain hnC1i C zi D hni C zi D H . Now, let us rewrite the discretization of the
discharge:

.hu/nC1i D.hu/ni �
�t

�x

	

Xn
iC1=2g

H2

2
� Xn

i�1=2g
H2

2




C �t

�x

g

2
Hn
iC1=2Hn

i�1=2.Xn
iC1=2 � Xi�1=2/:

Since Hn
iC1=2 D H for all i 2 Z, we get .hu/nC1i D 0. The scheme is thus well–

balanced.
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4 Numerical results

The numerical experiments are performed on a grid made of 500 cells. Here,
the CFL number is systematically fixed to 0:5. To validate the derived numerical
scheme, we first propose to consider transcritical flow with shock over a bump.
Figure 1 shows a comparison between the classic hydrostatic reconstruction and
our scheme. From now on, let us underline that the scheme formulation (5)
depends on the choice of the bottom origin. Hence, the comparison is performed by
involving three distinct origins. Since the consistency property is not modified, the
approximated solutions stay similar. In Fig. 2, we give the approximation obtained
when considering a numerical flux function of HLLC type, VFRoe type and Lax–
Friedrichs type. In Fig. 3 we present a comparison between first and second order
schemes. Here, a MUSCL second order extension has been performed. The second
test concerns the known hydrostatic reconstruction failure. Here, the topography is
made of a constant slope. As the slope increases, the expected water height must
decrease. Because of the cut–off involved into the hydrostatic reconstruction, a
wrong water behavior is noted. The same simulation obtained with the hydrostatic
upwind scheme gives the required water behavior, see Fig. 4.

The last experiment, presented in Fig. 5, concerns a drain on a non flat bottom
in order to simulate dry areas. Once again we obtain an excellent behavior of the
derived numerical scheme. As a perspective of the derived 1D technique, we must
now propose an extension for 2D unstructured meshes. To address such an issue,
arguing the rotational invariance of the model, we should write the 2D formulation
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Fig. 1 Comparison hydrostatic reconsturction/hydrostatic upwind involving an arbitrary topogra-
phy origin so that min.z/ D 1, 0:1 and 0:001
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associated with (4) in the x–direction to obtain the required flux approximation per
edge. The interest of such an extension should be an easy topography discretization
to obtain 2D well–balanced schemes.
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Finite Volumes Asymptotic Preserving Schemes
for Systems of Conservation Laws with Stiff
Source Terms

C. Berthon and R. Turpault

Abstract We consider here a numerical technique that allows to build asymptotic-
preserving schemes for hyperbolic systems of conservation laws with eventually
stiff source terms. The scheme is build in 1D and extended to unstructured 2D
meshes. Its behavior is illustrated by numerical experiments on different physical
applications.

Keywords systems of conservation laws, stiff, source terms, asymptotic preserving
schemes, finite volumes schemes
MSC2010: 65N08, 65Z05

1 Introduction

Our objective is to develop numerical schemes adapted to the resolution of
hyperbolic systems of conservation laws with source terms of the form:

@tU C div.F.U // D ��R.U /; (1)

where the state vector U 2 R
N lies in a convex set ˝ � R

N . Here, � 2 R, which
may be a function ofU , controls the stiffness of the source term. The functionR.U /
is supposed to fulfill the compatibility properties required in [2] (see also [10]). In
particular, we assume the existence of a constant n�N matrixQ with rank n < N
such thatQR.U / D 0. It has been showed in [2] that when � is large, the long-time
behavior of such systems degenerates into a nonlinear parabolic system which can
be written as:
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@tu D �div .M .u/ru/ ; (2)

where u D QU and M .u/ is a nonlinear diffusion matrix.
Such systems are involved in numerous physical models found for instance in

radiotherapy, radiative transfer or fluid dynamics with friction. Typical applications
may involve domains where the source term is neglectable (hyperbolic-dominant
zones), very stiff (diffusion-dominant zones) or in-between. Therefore, it is crucial
to dispose of a numerical scheme able to handle every regime. The construction of
such schemes is generally very difficult. Former works (see for instance [1, 6, 8, 9,
12]) usually concentrate on modifying the HLL scheme [16] to adequately include
the source term with respect to the physics of a given problem.

In this article, we will propose a generic numerical technique which extends
any approximate Riemann solver into an asymptotic preserving scheme for (1).
We will first introduce the construction of a finite volumes scheme adapted to the
approximation of the solutions of (1) in 1D. This scheme will then be extended for
2D unstructured meshes. Finally, it will be applied on three numerical simulations
that will emphasize the relevance of this numerical technique and underline a
possibility to improve it.

2 Description of the Scheme

2.1 Construction in 1D

We first show the construction of the numerical technique as it was introduced in
[3] and extended in [2]. It consists in a suitable modification of an approximate
Riemann solver designed for the transport part of (1) (ie � D 0).

Therefore, we start by selecting such a solver. A Riemann problem is thus
approximated at each cell interface:

QUR.
x

t
IUL;UR/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

UL if
x

t
< b�;

QU? if b� <
x

t
< bC;

UR if
x

t
> bC;

(3)

where jb˙j are chosen to be larger than the fastest wave speed of the problem.
For the sake of simplicity in the notations, we will consider in the following that
bC D �b� D b > 0. Furthermore, QU? represents the value of the intermediate
states and hence generally depends on UL;UR and x=t .

As soon as the CFL condition b �t
�x
� 1

2
holds, we are considering a juxtaposition

of non-interacting approximate Riemann solvers denoted QUn
�x.x; t

n C t/ for t 2
Œ0;�t/. The updated approximated solution at time tnC1 is then naturally defined as
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follows:
QUnC1
i D 1

�x

Z xiC1=2

xi�1=2

QUn
�x.x; t

n C�t/dx: (4)

This scheme can be written in the following usual conservation form:

QUnC1
i D Un

i �
�t

�x
.FiC1=2 �Fi�1=2/; (5)

where FiC1=2 denotes the numerical flux at the interface xiC1=2. Any (approximate)
Riemann solver enter this framework, including for instance Godunov, HLL, HLLC
and relaxation schemes. As an example, in the case of the well-known HLL scheme
[16], QU? and FiC1=2 are given by:

QU?;HLL D 1

2
.UL C UR/ � 1

2b
.F.UR/� F.UL//; (6)

FiC1=2 D 1

2
.F.U n

i /C F.U n
iC1// �

b

2
.U n

iC1 � Un
i /: (7)

In order to take into account the source term, we now modify the approximate
Riemann solver (3) as follows:

UR.
x

t
IUL;UR/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

UL if
x

t
< �b;

U ?L if � b < x

t
< 0;

U ?R if 0 <
x

t
< b;

UR if
x

t
> b;

(8)

where we have set:

U?L D ˛ QU? C .Id � ˛/.UL � NR.UL//;
U ?R D ˛ QU? C .Id � ˛/.UR � NR.UR//:

(9)

Here, ˛, which denotes a N �N matrix, and NR.U / are defined by:

˛ D
	

Id C ��x

2b
.Id C �/


�1
; NR.U / D .Id C �/�1R.U /: (10)

TheN�N matrices Id and � respectively denote the identity matrix and a parameter
matrix to be defined. The updated approximated solution at time tnC1 is once again
naturally defined:
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UnC1
i D 1

�x

Z xiC1=2

xi�1=2

U n
�x.x; t

n C�t/dx: (11)

A straightforward computation leads to:

1

�t
.U nC1

i � Un
i /C

1

�x
.˛iC1=2FiC1=2 � ˛i�1=2Fi�1=2/

D 1

�x
.˛iC1=2 � ˛i�1=2/F.U n

i /�
�

2
.˛iC1=2 C ˛i�1=2/R.U n

i /:

(12)
Observe that whenever � D 0, then ˛ D Id and (12) is nothing but (5).

It was proved in [2] that the scheme (12) is consistant with (1) and preserves ˝
as soon as the approximate Riemann solver for the transport part does so. These
properties hold for any relevant choice of the parameter matrices � . These matrices
may therefore be chosen to enforce the scheme (12) to be consistant with (2) in the
asymptotic regimes. Indeed, an asymptotic analysis of the scheme shows that it is
asymptotic preserving if �iC1=2 is chosen so that the following relation holds:

Q.Id C �iC1=2/�1 D
1

b2
MiC1=2Q; (13)

where MiC1=2 is a discretization of the diffusion matrix M .u/ at the interface
xiC1=2. One of the edges of this scheme is that it allows to consider applications
where � is a nonlinear function of x and U (see examples in [3] and [4]).

2.2 Extension for 2D unstructured grids

In the case of unstructured grids, the 1D scheme (12) can be extended into the
following scheme:

UnC1
K D Un

K �
�t

jCK j
X

e2@K
jej˛e

h
Fe:ne � F.U n

K/nx �G.U n
K/ny

i

C c�t

jCK j
X

e2@K
jejˇebe.Id � ˛e/ NR.U n

K/; (14)

where jKj is the measure of the cell K and jej is the measure of the interface e.
Furthermore, ˛e is chosen as:

˛e D jej
	

jejId C � jKj
2b

.Id C �/

�1

;
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Finally, ˇ is set to 1=2. It is to note that the choices of ˛ and ˇ are the simplest
admissible ones. However, they are not unique and other expressions may even
improve the accuracy of the scheme.

This scheme has successfully been used in the case of cartesian grids in 2D (see
for example [5]). In the case of unstructured grids however, in order to enforce
the asymptotic preserveness of (14), the choice of �e implies the knowledge of
a relevant scheme for the diffusion equation (2). Due to the nonlinear nature of
the anisotropy of the diffusion matrix M .u/, the classical two-point scheme (aka
FV4, see [15]) lacks of consistance. Therefore, efficient compact schemes have to
be considered in order to discretize the diffusion operator. In this framework, we
are considering Discrete-Duality Finite Volumes schemes (see for instance [7, 11,
13, 17]). The rich structure of the DDFV schemes can obviously also be used to
improve the hyperbolic solvers.

3 Numerical Results

In this section, numerical examples illustrate the behavior of the scheme (12) on
three different test-cases. For the sake of simplicity, we used the HLL solver for the
transport part.

TC1: Euler with friction
We first consider the 1D isentropic Euler equations with friction. The system reads:

@t�C @xq D 0;

@tq C @x
�q2

�
C p.�/

�
D ��q;

where � > 0 denotes the density and q 2 R is the fluid momentum. The pressure
function p W RC ! RC is assumed to be regular enough and to satisfy p0.�/ > 0 in
order to ensure the first-order homogeneous associated system to be hyperbolic.

The associated diffusive regime is governed by:

@t � D @x.p0.�/@x�/: (15)

Figure 1 shows the density computed at time t D 20. The reference solution is a
grid-converged result with a scheme that approximates the diffusion equation (15).

The results of the scheme (12) are in very good agreement with the reference
solution even on a coarse grid (�x D 0:02). The results of the scheme with � D 0

are also plotted on Fig. 1. They are representative of what happens with a scheme
which is not asymptotic-preserving (although consistant). Indeed, an asymptotic
analysis of this scheme shows that it is consistant with a diffusion equation with
the wrong diffusion coefficient (see [3]).
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Fig. 1 TC1: computed values of � at time t D 20. Reference solution (full line) and HLL scheme
with (C) or without (dashed line) AP correction

TC2: M1 model for radiative transfer
Now we are interested in the 2D M1 model for radiative transfer:

@tE C @xFx C @yFy D c�.aT 4 � E/;
@tFx C c2@xPxx C c2@yPxy D �c�Fx;

@tFy C c2@yPxy C c2@yPyy D �c�Fy ;

�Cv@tT D c�.E � aT 4/;

where E;F and P respectively denote the radiative energy, the radiative flux vector
and the radiative pressure tensor. Moreover, T is the material temperature, � is
the opacity, a and c are physical parameters. Finally P D P. kFk

cE
/ is a prescribed

function (see [14]).
The associated asymptotic regime is described by the so-called equilibrium

diffusion equation:

@t .�CvT C aT 4/C div
�4acT 3

3�
rT

�
D 0:

In order to obtain a scheme which is consistant with the diffusion operator,
unknowns on the triangular mesh were considered at the orthocenter and the
classical FV4 scheme (see [15]) was used. Of course, this trick is not valid in general
so that other approaches have to be considered as was mentionned in Sect. 2.

Figure 2 shows the results of the scheme (14) on a left-entering Marshak wave
inside a square 1m-wide domain with an obstacle. The parameters are E.t D 0/ D
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Fig. 2 TC2: Radiative energy (l) and normalized flux (r). Top: t D 1:e � 8 and � D 0. Bottom:
t D 1:e � 5 and � D 10. Same contours for the energy, same number of contours for the flux
(max' 0:8 (T) and 0.1 (B)). Triangular mesh with h' 6:5e � 3

a10004, F.t D 0/ D .0; 0/, T .t D 0/ D 1000, EL D a20004, FL D .0; 0/ and
TL D 2000. Two computations were carried on with � D 0 and � D 10.

TC3: toy model
For this last application, we consider an interesting toy model that is one of the
simplest nontrivial example where the asymptotic regime is described by a system
of two equations. It writes:

@t�C @xq D 0;

@tq C @x
�q2

�
C p.�/

�
D ��q C �f;

@t e C @xf D 0;

@t f C @x�
	
f

e




e D ��f;

where �.
/ D 3C4
2
5C2
p
4�3
2 .
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Fig. 3 TC3: computed values of e (l) and � (r) at time t D 50. Reference solution (full line) and
HLL scheme with (C) or without (dashed line) AP correction

The asymptotic regime of this system is given by:

@t� � 1
�
@2xp.�/ �

1

3�
@2xe D 0;

@t e � 1

3�
@2xe D 0:

(16)

Figure 3 shows the results of scheme (12) at time t D 50 compared with a reference
solution for the following test-case: the initial values are �.t D 0/ D 0:2, q.t D
0/ D f .t D 0/ D 0 and e.t D 0/ D 2 � 0:5 � 1Œ0:45I0:55�. The other parameters are
� D 2000, � D 1000, p.�/ D 10�3�2.

With these parameters, the solution is governed by the asymptotic system (16).
The results given by the AP preserving scheme (12) are in excellent agreement with
the reference solution, even on a very coarse grid (only 80 points where used). It
is to note that this test-case is very challenging and that a scheme which does not
preserve the asymptotics gives poor results here. As a illustration, the results given
by the choice � D 0 are also showed on Fig. 3.
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Development of DDFV Methods for the Euler
Equations

Christophe Berthon, Yves Coudière, and Vivien Desveaux

Abstract We propose to extend some recent gradient reconstruction, the so–
called DDFV approaches, to derive accurate finite volume schemes to approximate
the weak solutions of the 2D Euler equations. A particular attention is paid
on the limitation procedure to enforce the required robustness property. Some
numerical experiments are performed to highlight the relevance of the suggested
MUSCL–DDFV technique.

Keywords Finite volume methods for hyperbolic problems, Euler equations,
DDFV reconstruction, MUSCL reconstruction, Robustness
MSC2010: 65M08, 65N12, 76N99

1 Introduction

This work is devoted to the numerical approximation of the 2–D Euler equations,
given as follows:

@t

2

6
6
4

�

�u
�v
E

3

7
7
5C @x

2

6
6
4

�u
�u2 C p
�uv

u.E C p/

3

7
7
5C @y

2

6
6
4

�v
�uv

�v2 C p
v.E C p/

3

7
7
5 D 0; (1)

where � > 0 denotes the density, .u; v/ 2 R
2 the velocity vector andE > 0 the total

energy. For the sake of the simplicity in the presentation, the pressure is given by
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the perfect gas law p D .� � 1/ �E � �

2
.u2 C v2/

�
. The forthcoming developments

will easily extend to general pressure laws. To shorten the notations, the system can
be rewritten as follows:

@tW C @xf .W /C @yg.W / D 0; (2)

where W D t .�; �u; �v; E/ W R
2 � R

C ! ˝ is the unknown state vector and
f .W / W ˝ ! R

4 and g.W / W ˝ ! R
4 are the flux functions which find clear

definitions. The convex set of admissible states is defined by:

˝ D
n
W 2 R

4I � > 0; .u; v/ 2 R
2; E � �

2

�
u2 C v2

�
> 0

o
: (3)

When approximating (1), several strategies have been proposed to increase the
accuracy of the numerical solutions among which the most popular is certainly
the MUSCL scheme (for instance see [12, 13, 15, 16]). This scheme extends any
first–order scheme into a second–order approximation using a piecewise linear
reconstruction. In the 2–D case, the main difficulty is to find a technique to
reconstruct gradients that can be extended to unstructured meshes (see [4]).

The DDFV (Discrete Duality Finite Volume) method was introduced in the field
of elliptic equations in order to reconstruct gradients on distorted meshes (see [1, 6,
9,10]). The idea of this method is to combine two distinct finite volume schemes on
two overlapping meshes: the primal mesh and the dual mesh whose cells are built
around the vertices of the primal mesh. This process adds new numerical unknowns
at the vertices of the primal mesh, but it will allow to reconstruct very accurate
gradients.

It was first proposed to take advantage of the DDFV gradient in order to built
second order schemes for the linear convection–diffusion equation in [5]. In this
paper, new values of the unknown are built at the midpoint of the interfaces by
mean of some averages of the DDFV gradient. The resulting scheme is proved to be
of second order in the diffusive regime.

The aim of this work is to extend DDFV–like methods to the case of the Euler
equations. As a first step, we have only developed such a method on structured
meshes in order to simplify the computation and to check its efficiency. On
unstructured meshes, the extension of the DDFV gradient is straightforward. Our
reconstruction and limitation procedures generalize although being more technical.
Note that the vertices of the primal cells do not coincide with the center of gravity of
the dual cells. It might influence the accuracy of the method and some alternatives
will be considered in future work.

The paper is organized as follows. In Sect. 2, we introduce the dual mesh and
we describe the reconstruction process and the limitation process of our scheme.
Section 3 concerns the robustness of our scheme. Indeed, with most of first–
order schemes, if a numerical solution is initially valued in ˝ , then it remains
in ˝ . Such a property must be preserved by the second–order accurate scheme.
Section 4 is devoted to numerical experiments to illustrate the relevance of DDFV
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approach when evaluating second–order reconstructions. We give some conclusions
and future developments in Sect. 5.

2 Presentation of the scheme

First let us introduce the main notations. We consider a primal mesh composed of
rectangular cells

Ki;j D Œxi� 1
2
; xiC 1

2
� � Œyj� 12 ; yjC 1

2
�; i; j 2 Z: (4)

For the sake of simplicity, we will assume that the mesh is uniform, and we enforce
xiC 1

2
� xi� 12 D yjC 1

2
� yj� 12 D h, for all i; j 2 Z, where h > 0 is fixed.

Let W n
i;j stand for an approximation of the mean value of W on the cell Ki;j at

time tn. We denote by �t > 0 the time increment. At time tnC1 D tn C �t , the
updated first–order approximation is given by (see [7, 12, 13]):

W nC1
i;j D W n

i;j �
�t

h

�
F.W n

i;j ;W
n
iC1;j /� F.W n

i�1;j ;W n
i;j /

CG.W n
i;j ;W

n
i;jC1/ �G.W n

i;j�1;W n
i;j /
�
; (5)

where F W ˝ � ˝ ! R
4 and G W ˝ � ˝ ! R

4 are consistent numerical flux
functions. In addition, to avoid some instabilities [12, 13], the time step is restricted
according to a CFL–like condition given as follows:

�t

h
max
.i;j /2Z2

�ˇ
ˇ
ˇ	Ḟ .W

n
i;j ;W

n
iC1;j /

ˇ
ˇ
ˇ ;
ˇ
ˇ
ˇ	Ġ .W

n
i;j ;W

n
i;jC1

ˇ
ˇ
ˇ
�
� 1

4
; (6)

where 	˙̊.WL;WR/ denotes suitable numerical wave velocities associated to the
numerical flux function ˚.WL;WR/.

2.1 The dual mesh

We denote by BiC 1
2 ;jC 1

2
D
�
xiC 1

2
; yjC 1

2

�
the vertices of the primal mesh and by

Bi;j D .xi ; yj / the center of the primal cell Ki;j . Around each vertex of the primal
mesh BiC 1

2 ;jC 1
2
, we construct a dual cell KiC 1

2 ;jC 1
2
D Œxi ; xiC1� � Œyj ; yjC1�. The

set of the dual cells
�
KiC 1

2 ;jC 1
2

�

i;j2Z

constitutes a second mesh which we call

dual mesh. The centers of the dual cells are the vertices of the primal mesh and
conversely.
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Fig. 1 (Left) Geometry of the cell Ki;j . (Right) Location of the known states and of the
reconstructed states

At time tn, we assume known approximations W n

iC 1
2 ;jC 1

2

of the mean values of

W on cells KiC 1
2 ;jC 1

2
. As a consequence, at time tn, on each primal or dual cell,

we know four approximate values at the vertices and one approximate value at the
center (see Fig. 1b).

In the sequel, we will deal simultaneously with primal and dual cells. We thus
define the set of the indexes of primal and dual cells S D Z

2 [ .Z C 1
2
/2. The

set of primal and dual cells is then fKi;j g.i;j /2S. For .i; j / 2 S, we denote by
QiC 1

2 ;j
D .xiC 1

2
; yj /, the middle of the interface between the cells Ki;j and

KiC1;j and byQi;jC 1
2
D .xi ; yj C 1

2
/, the middle of the interface between the cells

Ki;j and Ki;jC1 (see Fig. 1a). On each cell Ki;j for .i; j / 2 S, we reconstruct
values W n

i˙;j
and W n

i;j˙
at points Qi˙ 1

2 ;j
and Qi;j˙ 1

2
(see Fig. 1b). Arguing these

notations, the second order scheme reads as follows:

W nC1
i;j D W n

i;j �
�t

h

h
F
�
W n
iC;j

; W n
iC1�;j

�
� F

�
W n
i�1C;j ; W

n
i�;j

�

CG
�
W n
i;jC

;W n
i;jC1�

�
�G

�
W n
i;j�1C ;W

n
i;j�

�i
: (7)

We now detail the evaluation of W n

i˙;j
and W n

i;j˙
. We recall that both the primal

and dual unknowns are solutions of a finite volume scheme. The two schemes are
coupled through the gradient reconstruction.

2.2 Gradient reconstruction

As a first step, we perform a gradient reconstruction. To address such an issue, we
derive a relevant cell splitting. We consider a primal or dual cell Ki;j , .i; j / 2 S.
The cell can be decomposed into four triangles using the four vertices and the center.
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We denote by T1 the bottom triangle and the other ones are denoted by T2, T3 and
T4, clockwise (see Fig. 1a).

We define a function bW W Ki;j ! R
4 piecewise linear on the Tl and which

coincides with the approximate values at the four vertices and at the center.
Next, we project each coordinate bW k of bW on the space of linear function which

takes the value .Wi;j /
n
k

at the point Bi;j . This means that for all integers k 2 Œ1; 4�,
we seek �k 2 R

2 which minimizes the functionalEk.�/ W R2 ! R defined by

Ek.�/ D
Z

Ki;j

ˇ
ˇ
ˇbW k.X/�

h�
W n
i;j

�

k
C � � .X � Bi;j /

iˇ
ˇ
ˇ
2

dX: (8)

Existence and uniqueness of the minimum are immediate since the functional is
strictly convex. The numerical computation of the minimum is quite easy since
we only need to compute the Jacobian of Ek and to find its zero. For the sake of
simplicity in the notations, we denote by � D t .�1; �2; �3; �4/, the vector of the
solutions of these minimization problems. Hence, we define eW �.X/ W K ! R

4 the

function whose k–th coordinate is
�
W n
i;j

�

k
C �k � .X � Bi;j /.

2.3 Limitation

We assume that the states W n
i;j , .i; j / 2 S, are in ˝ . Let us remark that the

reconstructed function eW � does not necessarily remain in ˝ . As a consequence,
we have to limit the slopes �k . To address such an issue, we propose to substitute
the slope � by �� where � 2 Œ0; 1� is a limitation parameter to be fixed according to
the required robustness property. To ensure existence and uniqueness of an optimal
limited slope, we have to restrict ˝ to a close set. We fix a small parameter  > 0

and we define

˝ D
n
W 2 R

4I � � ; .u; v/ 2 R
2; E � �

2

�
u2 C v2

� � 
o
: (9)

Since we need the values of the reconstructed function only at points Bi˙ 1
2 ;j

and

Bi;j˙ 1
2
, we require eW ��.Bi˙ 1

2 ;j
/ 2 ˝ and eW ��.Bi;j˙ 1

2
/ 2 ˝ . We thus define the

optimal slope limiter by

� D max
n
t 2 Œ0; 1�I eW t�.Bi˙ 1

2 ;j
/ 2 ˝; eW t�.Bi;j˙ 1

2
/ 2 ˝

o
: (10)

We emphasize that this set is nonempty since it contains 0. Besides, the maximum is
reached because ˝ is a close set and t 7! eW t�.Bl;m/ is continuous. Solving for �
requires to find the roots of some quadratic functions (the energy). Finally, the recon-
structed states are given byW n

i˙;j
D eW �	.Bi˙ 1

2 ;j
/ and W n

i;j˙
D eW �	.Bi;j˙ 1

2
/.
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3 Robustness

We now establish the robustness of the proposed reconstruction. First, let us assume
that the directional flux functions F andG are first–order robust on both primal and
dual meshes. Indeed, under the CFL condition

�t

h
max
.i;j /2S

�ˇ
ˇ
ˇ	Ḟ .W

n
i;j ;W

n
iC1;j /

ˇ
ˇ
ˇ ;
ˇ
ˇ
ˇ	Ġ .W

n
i;j ;W

n
i;jC1

ˇ
ˇ
ˇ
�
� 1

4
; (11)

we assume that the updated states, given by (5) for all pairs .i; j / in S, stay in ˝ .
Now, let us recall the following statements (for instance see [2,12]) about robustness
of the directional numerical flux functions:

Theorem 1. Let us consider a robust numerical flux ˚ . Assume that W1, W2 and
W3 are in ˝ . Let W �2 and W C2 be two reconstructed states in ˝ such that W2 D
W�2 CWC2

2
. Assume the CFL condition

�t

h
max

�j	C˚ .W1;W
�
2 /j; j	˙̊.W �2 ;W C2 /j; j	�̊.W C2 ;W3/j

� � 1

4
: (12)

Then we haveW2 � �t
h

�
˚.W C2 ;W3/ �˚.W1;W

C
2 /
� 2 ˝ .

We assume that the 1D numerical fluxes F andG are robust. In addition, we assume
that the statesW n

i;j , .i; j / 2 S are in˝ , so that the limitation procedure described in
Sect. 2.3 ensures that the reconstructed states W n

i˙;j
and W n

i;j˙
, .i; j / 2 S, remain

in ˝ . To shorten the notations, we set

�F D max
.i;j /2S

�
j	Ḟ .W n

i�;j ; W
n
iC;j

/j; j	Ḟ .W n
iC;j

; W n
iC1�;j /j

�
;

�G D max
.i;j /2S

�
j	Ġ .W n

i;j� ;W
n
i;jC

/j; j	Ġ .W n
i;jC

;W n
i;jC1�/j

�
:

By applying Theorem 1 we have

W n
i;j �

�t

h

h
F
�
W n
iC;j

; W n
iC1�;j

�
� F

�
W n
i�1C;j ; W

n
i�;j

�i
2 ˝; (13)

as soon as the CFL restriction �t
h
�F � 1

4
holds, and we get

W n
i;j �

�t

h

h
G
�
W n
i;jC

;W n
i;jC1�

�
�G

�
W n
i;j�1C ;W

n
i;j�

�i
2 ˝; (14)

under the CFL condition �t
h
�G � 1

4
.

Considering half sum of (13) and (14), we finally obtain W nC1
i;j 2 ˝ , for all

.i; j / 2 S under the CFL condition [12] �t
h

max .�F ;�G/ � 1
8
. The robustness of

the proposed numerical method is thus established.
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4 Numerical tests

We have chosen two cases from the collection of 2D Riemann problems proposed by
[11], namely configuration 3 (p. 594) and 6 (p. 596). They are called case 1 and case
2. These problems are solved on the square Œ0; 1� � Œ0; 1� divided in four quadrants
by lines x D 1=2 and y D 1=2. The Riemann problems are defined by initial
constant states on each quadrant. All four 1D Riemann Problems between quadrants
have exactly one wave: four shocks for the case 1 and four contact discontinuities
for the case 2. Both cases were computed with primal grids of 200 � 200 cells
which represent about 80,000 cells counting the dual mesh. In order to complete
the scheme (7), the adopted numerical flux functions F and G are given by the
well–known HLLC approximate Riemann solver (see [3, 8, 14]). The results are
displayed for density in Fig. 2. We also provide a comparison with the classical
MUSCL scheme on the line y D x and a comparison of the CPU time between the
two methods.

1
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1000

1000 10000 100000 1e+06

C
PU

 ti
m

e

Number of cells

DDFV

MUSCL

Fig. 2 Results for the 2D Riemann Problem Case 1 (top left) and case 2 (top right) obtained by
the derived MUSCL–DDFV scheme. Comparison between the MUSCL–DDFV scheme and the
classical MUSCL scheme for case 1: density on the line y D x (bottom left) and CPU time
(bottom right)
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5 Conclusion

We have presented a second–order robust scheme to approximate the solutions of the
2D Euler equations. The main novelty of this work lies in the gradient reconstruction
based on the DDFV methods and the use of two overlapping meshes. We have shown
that the method gives good results on structured meshes. Arguing the properties of
the DDVF approach, unstructured mesh extensions will be easily obtained.

In order to ensure the robustness, we have enforced that the reconstructed state
vectors remain conservative. Another improvement must be performed to propose
robust non–conservative reconstructions.
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Abstract The simulation of sediment transport, based on the shallow-water equa-
tions coupled with Grass model for the sediment transport equation is considered.
The aim of the present paper is to investigate the behavior of implicit linearized
schemes in this context. A finite-volume method is considered and second-order
accuracy in space is obtained through MUSCL reconstruction. A second-order time
accurate explicit version of the scheme is obtained through a two step Runge-
Kutta method. Implicit linearized schemes of second-order of accuracy in time are
derived thanks to a BDF method associated with a Defect Correction technique.
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1 Introduction

A huge amount of work has been done in the last decades to develop numerical
methods for the simulation of sediment transport problems (see, e.g., the references
in [1, 4]). In this context, the hydrodynamics part is usually modeled through
the classical shallow-water equations coupled with an additional equation for the
morphodynamical component. The Grass equation [6] is considered herein, which
is one of the most popular and simple models. In this context, the treatment of
the source terms and of the bed-load fluxes has received the largest attention while
time advancing has received much less attention and it is usually carried out by
explicit schemes. The focus of the present paper is on the comparison between
explicit and implicit schemes in the simulation of a 2D sediment transport problem.
We only consider flows over wet areas. The extension to cases in presence of
dry areas will the object of further studies. If the interaction of the water flow
with the mobile bed is slow, the characteristic time scales of the flow and of the
sediment transport can be very different introducing time stiffness in the global
problem. Thus, for these cases, it can be advantageous to use implicit schemes.
On the other hand, since the considered problems are unsteady, attention must
be paid for implicit schemes in the choice of the time step. Another difficulty
with implicit schemes is that, in order to avoid the solution of a nonlinear system
at each time step, the numerical fluxes must be linearized in time. In order to
overcome these difficulties, we use an automatic differentiation tool (Tapenade,
[7]). Our starting point was the SRNH numerical scheme, specifically developed
and validated for the numerical simulation of sediment transport problems [1].
An implicit version of this scheme is derived herein by computing the Jacobian
matrices of the first-order accurate numerical fluxes by the previously mentioned
automatic differentiation tool. A defect-correction approach [10] is finally used to
obtain second-order accuracy at limited computational costs. The implicit method
is compared with the explicit one in a 2D benchmark.

2 Physical model and Numerical Method

The physical model used in this work consists in the well known shallow-water
equations coupled with an additional equation to describe the transport of sediment:

@W
@t
C @F.W/

@x
C G.W/

@y
D S.W/ (1)

where x and y are the spatial coordinates, t is the time, and W, F.W/, G.W/ and
S.W/ are defined as follows:
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

W D . h; hu; hv; Z /T

F.W/ D
	

hu; hu2 C 1

2
gh2 C ghZ; huv;

1

1 � pQx


T

G.W/ D
	

hv; hvu; hv2 C 1

2
gh2 C ghZ; 1

1 � pQy


T

S.W/ D
	

0; gZ
@h

@x
; gZ

@h

@y
; 0


T

(2)
In (2) h is the height of the flow above the bottom Z, g is acceleration of gravity
and u and v are the velocity components in the x and y directions. The first three
equations of (1) are the standard 2D Shallow Water equations, recast as in [8] in
order to avoid the singularity of the Jacobian of the flux function. The last one is
the well-known Exner equation for the evolution of the bed level. We restrict our
attention to the case in which the sediment transport porosity p is constant and the
bed-load sediment transport fluxesQx andQy are defined by the Grass model:

Qx D Au
�
u2 C v2

�m�1
2 ; Qy D Av

�
u2 C v2

�m�1
2 (3)

where A and 1 � m � 4 are experimental constants depending on the particular
problem under consideration. The classical case m D 3 is considered here.

The numerical method proposed to discretize in space the system of equations
(1)-(2) is a finite-volume approach, applicable to unstructured grids. Namely, it is
the SRNH scheme introduced in [11]. A brief summary of the main characteristics
of the scheme is given herein, for additional details we refer to [1, 11].

The scheme is composed by a predictor and a corrector stage: in the predictor
stage an averaged state Un

ij is computed, then this predicted state is used in the
corrector stage to update the solution. The predictor stage is based on primitive
variables projected on the normal and tangential directions with respect to the cell
interface, n and � . Hence, by introducing the normal and tangential components of
the velocity, un and u� , it is possible to reformulate the system (1) as follows:

@U
@t
C An.U/

@U
@n
D 0 (4)

U D

0

B
B
@

h

un

u�
Z

1

C
C
A ; An.U/ D

0

B
B
@

un h 0 0

g un 0 g

0 0 un 0

0 A.1 � p/�1.3u2n C u2� / 2A.1� p/�1unu� 0

1

C
C
A

(5)
Starting from (5) it is possible to introduce a Roe average state Uij and a sign

matrix sgn
�
An.U/

�
defined as:
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Uij D
 
hi C hj
2

;
un;i
p
hi C un;j

p
hjp

hi C
p
hj

;
u�;i
p
hi C u�;j

p
hjp

hi C
p
hj

;
Zi CZj

2

!T

(6)

sgn
�
An.U/

� D R.U/�sgn.U/R�1.U/ (7)

where the elements of the diagonal matrix �sgn.U/ are the sign function of the
eigenvalues of An.U/ and R.U/ is the corresponding right-eigenvector matrix.

The explicit SRNH scheme is then formulated as follows:

Un
ij D

1

2

�
Un
i C Un

j

�
� 1
2

sgn
�
An.Uij /

� �
Un
j � Un

i

�
(8)

WnC1
i �Wn

i

�nt
D � 1

jVi j
X

j2N.i/
F .Wn

ij ;nij /j�ij j C Sni (9)

where Wn
ij is obtained from Un

ij , N.i/ is the set of neighboring cells of the i th cell,

jVi j is the area of the cell, �ij is the interface between cell i and j , �nt is the nth

time-step and F is the analytical flux function. Sni is the discretization of the source
term which, in order to satisfy the C-property [2] is defined as follows:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Z
n

x;i D
1

2

X

j2N.i/

�
Zn
ij

�2
nx;ij j�ij j

X

j2N.i/
Zn
ij nx;ij j�ij j

; Z
n

y;i D
1

2

X

j2N.i/

�
Zn
ij

�2
ny;ij j�ij j

X

j2N.i/
Zn
ij ny;ij j�ij j

Sni D
0

@0; gZ
n

x;i

X

j2N.i/
hnij nx;ij j�ij j; gZ

n

y;i

X

j2N.i/
hnij ny;ij j�ij j; 0

1

A

T

(10)

To switch from an explicit scheme to an implicit one it is sufficient, to compute
the quantities F nC1

ij D F .WnC1
ij ;nij / and SnC1i instead of F .Wn

ij ;nij / and Sni .
However, from a practical point of view this would require the solution of a large
non-linear system of equations at each time step. The computational cost for this
operation is in general not affordable in practical applications and generally greatly
overcomes any advantage that an implicit scheme could have with respect to its
explicit counterpart. A common technique to overcome this difficulty is to linearize
the numerical scheme, i.e. to find an approximation of F nC1

ij and SnC1i in the form:

�nFij ' D1;ij �
nWi CD2;ij �

nWj ; �nSi '
X

j2 NN.i/
D3;ij�

nWj (11)

where�n.�/ D .�/nC1 � .�/n and NN.i/ D N.i/[ fig. Using this approximation, the
following linear system must be solved at each time step:
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WnC1
i �Wn

i

�t
C 1

jVi j
X

j2N.i/
j�ij j

�
D1;ij �

nWi CD2;ij �
nWj

��
X

j2 NN.i/
D3;ij �

nWj

D � 1

jVi j
X

j2N.i/
F .Wn

ij ;nij /j�ij j C Sni (12)

The implicit linearized scheme is completely defined once a suitable definition
for the matrices D1;ij ;D2;ij ;D3;ij is given. If the flux function and the source term
are differentiable, a common choice is to use the Jacobian matrices. Nevertheless,
it is not always possible nor convenient to exactly compute the Jacobian matrices.
In fact, it is not unusual to have some lack of differentiability of the numerical
flux functions. Furthermore the explicit scheme (9) is composed by a predictor and
a corrector stage and this significantly increases the difficulty in linearizing. This
problem has been solved herein by computing through the automatic differentiation
software Tapenade [7] the flux Jacobians, which are used to approximateF nC1

ij and

SnC1i , as defined in Eq. (11). Given the source code of a routine which computes the
explicit numerical fluxes, the differentiation software generates a new source code
which computes the flux Jacobians, and, thus, the derivation and the implementation
of their analytical expressions can be avoided.

The extension to second-order accuracy in space can be achieved by using a
classical MUSCL technique [9], in which (8) is computed by using extrapolated
values at the cell interfaces. The extrapolation is done here as in [3] associated
with the Minmod slope limiter. For the explicit scheme, second-order accuracy in
time is achieved through a two-step Runge-Kutta scheme. Considering the implicit
case, it is possible to obtain a space and time second-order accurate formulation by
considering the MUSCL technique for space as previously defined and a second-
order backward differentiation formula in time. However, the linearization for the
second-order accurate fluxes and source terms and the solution of the resulting linear
system implies significant computational costs and memory requirements. Thus, a
defect-correction technique [10] is used here, which consists in iteratively solving
simpler problems obtained, just considering the same linearization as used for the
first-order scheme. Thus defining W 0 D Wn, the defect-correction iterations write
as follows, the unknown being�sWi :

.1C 2�/
�nt .1C �/�

sWi C 1

jVi j
X

j2N.i/
j�ij j

�
D1;ij �

sWi CD2;ij �
sWj

��
X

j2 NN.i/
D3;ij �

sWj

D .1C 2�/W s
i � .1C �/2Wn

i C �2Wn�1
i

�nt .1C �/ � 1

jVi j
X

j2N.i/
F
�
W s
ij ;W

s
j i

�
j�ij j C ŒS2�si

(13)

for s D 0; � � � ; r � 1. In (13), � D �nt
�n�1t

, D1;ij ;D2;ij ;D3;ij are the matrices of
the approximation (11) and the update solution is WnC1 D W r . It can be shown
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[10] that only one defect-correction iteration is theoretically needed to reach a
second-order accuracy while few additional iterations (one or two) can improve the
robustness.

3 Numerical Experiments

The 2D test case considered herein is a well-known benchmark test, proposed in
several papers (see, e.g. [1,5]). It is a sediment transport problem in a square domain
˝ of dimensions 1000 � 1000 m2 with a non constant bottom relief. The initial
bottom topography is defined as follows:

Z.0; x/ D sin2
	
.x � 300/�

200




sin2
	
.y � 400/�

200




if .x; y/ 2 Qh; 0 elsewhere

(14)
whereQh D Œ300; 500��Œ400; 600�. GivenZ.0; x/, the remaining initial conditions
are h.0; x; y/ D 10 � Z.0; x; y/, u.0; x; y/ D 10

h.0;x;y/
and v.0; x; y/ D 0.

Considering the boundaries, Dirichlet boundary conditions are imposed at the inlet,
while at the outlet characteristic based conditions are used. Finally, free-slip is
imposed on the lateral boundaries. The spatial discretization of the computational
domain has been carried out by using two different grids: for the first grid GR1, the
number of the nodes and the characteristic length of the elements are, respectively,
lm D 20 m and Nc D 2901. The second grid GR2 is characterized by lm D 10 m

and Nc D 11425.
Two different values of the parameterA are considered, namely a case with slow

interaction between the flow and the bed, A D 0:001 and a fast one, A D 1. Due to
the different time scales for the evolution of the bottom topography, different time
intervals have been simulated for the considered cases: the total simulation time is
500 seconds for A D 1 and 360000 seconds for A D 0:001.

For the slow speed of interaction case, Figure 1a shows a comparison of the
results obtained by means of the explicit version of the scheme at CFL D 0:8 with
those of the implicit one at CFL D 1000 both for 1st and 2nd -order accuracy for
grid GR2. For the definition of the CFL number we refer to [1]. There is practically
no difference between the solutions obtained with the implicit and explicit version
of the schemes, while the results obtained at 1st -order of accuracy significantly
differ from the 2nd -order ones. Note that the results shown in Fig. 1a for the 2nd -
order implicit scheme are computed using only one DeC iteration. By increasing
the number of DeC iterations it is possible to further increment, without loosing
in accuracy, the CFL number of the 2nd -order implicit scheme (see Fig. 1b). In
particular, when 3 DeC iterations are considered it is possible to use a CFL number
equal to 104 (see also Table 1). As shown in Fig. 1b, similar results can be obtained
by considering the grid GR1 instead of the GR2. The profiles of hC Z are shown
if Fig. 1c. Slightly larger oscillations are observed for the second-order implicit
scheme, but at the first order both schemes gave practically the same results. As
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Fig. 1 Comparison of the results given the explicit and implicit schemes; profiles along the line
y D 500 of: (a) Z for A D 10�3 and GR2, (b) Z for implicit schemes and A D 10�3, (c) hCZ
for AD 10�3 GR2, (d) Z for AD 100 and GR2

for the computational costs, Table 1 shows that already at CFL D 1000 the gain
in CPU time obtained with the implicit scheme is large, both for 1st and 2nd -order
of accuracy. The CPU gain obtained with the implicit scheme is significantly larger
for 2nd -order accuracy. Indeed, when the implicit formulation is used, there are
not significant differences, in terms of CPU time, between the 1st and 2nd -order
simulations. Instead in the explicit case an important computational cost increase is
observed to reach 2nd -order accuracy: the 2nd -order approach is ' 2:4 times more
expensive than the 1st -order one. As a consequence, already at CFL D 1000 using
1 DeC iteration the 2nd -order implicit approach is more than 60 times faster than
the explicit one on GR1 and about 30 times faster on GR2. The CPU gain of the
2nd -order implicit approach can be further increased considering 3 DeC iterations
and CFL D 104. For the fast speed of interaction case, to avoid loss of accuracy the
CFL number of the implicit scheme must be lowered down to 1. On the other hand,
by increasing the number of DeC iterations, it is possible to increase the maximum
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Explicit CFL= 0.8, Implicit, CFL= 10, 3 DeC iteration
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Fig. 2 Comparison of the results for the bed profile of the 2nd -order scheme, A D 1, Grid GR2

CFL value by a factor 10. As an example Fig. 2 shows a comparison between the
explicit and implicit approach at different CFL values for the grid GR2. Due to the
reduced CFL number achievable without loss of accuracy for the implicit scheme
in this test case the computational cost of the implicit scheme is larger than for the
explicit one, both at first and second order of accuracy, as it is shown in Table 1.
Summarizing, in order to avoid loss of accuracy, the CFL number of the implicit
scheme must be reduced to a value roughly inversely proportional to the velocity of
the interaction between the flow and the bed-load. Also, the increase of the number
of DeC iterations allows the maximum CFL number achievable without loosing in
accuracy to be increased, and therefore the simulation CPU time is reduced. The
implicit code has been found to be computationally more efficient than the explicit
one for slow rates of the interaction between the bed and the flow.

Table 1 CPU time required for the considered simulations, comparison between explicit and
implicit approach, both at first and second-order of accuracy

A D 0:001 A D 1

Method GR1 GR2 CFL GR1 GR2 CFL
Explicit 1st order 12824s 103238s 0:8 21:0s 169:7s 0:8

Explicit 2nd order 30996s 247215s 0:8 52:4s 409:9s 0:8

Implicit 1st order 323:6s 4336s 103 191:5s 1541s 100

Implicit 2nd order 1 DeC 481:5s 8537s 103 198:7s 1582s 100

Implicit 2nd order 3 DeC 265:9s 4866s 104 74:5s 606:8s 101

Acknowledgements This work has been realized in the framework of the EuroMéditerranée 3C3
network MhyCoF.



Comparison of Explicit and Implicit Time Advancing for Sediment Transport Problems 133

References

1. F. Benkhaldoun, S. Sahmim, M. Seaı̈d. A two-dimensional finite volume morphodynamic model
on unstructured triangular grids. Int. J. Numer. Meth. Fluids, 63:1296–1327, 2010.

2. A. Bermudez, M.E. Vazquez. Upwind methods for hyperbolic conservation laws with source
terms. Computers & Fluids, 23(8):1049–1071, 1994.

3. S. Camarri, M.V. Salvetti, B. Koobus, A. Dervieux. A low-diffusion MUSCL scheme for LES
on unstructured grids. Computers & Fluids, 33:1101–1129, 2004.

4. M.J. Castro Dı́az, E.D. Fernández-Nieto, A.M. Ferreiro. Sediment transport models in shallow
water equations and numerical approach by high order finite volume methods. Computers &
Fluids, 37(3):299–316, 2008.

5. M.J. Castro Dı́az, E.D. Fernández-Nieto, A.M. Ferreiro, C. Parés. Two-dimensional sediment
transport models in shallow water equations. A second order finite volume approach on
unstructured meshes. Computer Meth. Appl. Mech. Eng., 198:2520–2538, 2009.

6. A.J. Grass. Sediments transport by waves and currents. Tech. Rep., SERC London Cent. Mar.
Technol., Report No. FL29, 1981.
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Numerical Simulation of the Flow
in a Turbopump Inducer in Non-Cavitating
and Cavitating Conditions

M. Bilanceri, F. Beux, and M.V. Salvetti

Abstract A numerical methodology for the simulation of cavitating flows in
real complex geometries is presented. A homogeneous-flow cavitation model,
accounting for thermal effects and active nuclei concentration, which leads to
a barotropic state law is adopted. The continuity and momentum equations are
discretized through a mixed finite-element/finite-volume approach, applicable to
unstructured grids. A robust preconditioned low-diffusive HLL scheme is used to
deal with all speed barotropic flows. Second-order accuracy in space is obtained
through MUSCL reconstruction. Time advancing is carried out by a second-order
implicit linearized formulation together with the Defect Correction technique. The
flow in a real 3D inducer for rockets turbopumps is simulated for a wide range of
conditions: different flow rates and rotating speeds as well as non-cavitating and
cavitating flows are considered. The results obtained with this numerical approach
are compared with experimental data.

Keywords cavitating flows, homogeneous flow model, low diffusive HLL scheme,
linearized implicit time advancing
MSC2010: 65-06

1 Introduction

A tool for numerical simulation of 3D compressible flows satisfying a barotropic
equation of state is presented in this work. In particular, we are interested in
simulating cavitating flows through the barotropic homogeneous flow model pro-
posed in [1]. The numerical method used in this work is based on a mixed
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finite-element/finite-volume spatial discretization on 3D unstructured grids. Viscous
fluxes are discretized using P1 finite-elements while for the convective fluxes
the LD-HLL scheme [2], a low-diffusive modification of the Rusanov scheme,
is adopted. Second-order in space is obtained using a MUSCL reconstruction
technique and time-consistent preconditioning is introduced to deal with the low
Mach number regime. A linearized implicit time-advancing is associated to a defect-
correction technique to obtain a second-order accurate (both in time and space)
formulation at a limited computational cost. A non inertial reference frame, rotating
at constant angular velocity, is used to account for possible solid-body rotation and
the standard k � " turbulence model is introduced to capture turbulence effects. The
considered numerical tool is used to simulate the flow in a real 3D inducer in both
non-cavitating and cavitating conditions.

2 Physical model and numerical method

The physical model considered in this work consists in the standard Navier-Stokes
equations for a barotropic flow. Due to the barotropic equation of state (EOS)
considered, the energy equation can be discarded since it is decoupled from the
mass and momentum balances. Thus, considering a reference frame rotating with
constant angular velocity !, the following system of equations is obtained:

@W
@t
C @

@xj
Fj .W/ � @

@xj
�Vj .W;rW/ D S .!; x;W/ (1)

In Eq. (1) the Einstein notation is used, � is the molecular viscosity of the fluid,
W D .�; �u1; �u2; �u3/

T is the unknown vector, where � is the density and ui the
velocity component in the i th direction. F D .F1; F2; F3/ and V D .V1; V2; V3/ are,
respectively, the convective fluxes and the diffusive ones (not shown here for sake
of brevity). Finally, S is the source term appearing in a frame of reference rotating
with constant speed !:

(
S D � .2! ^ �uC �! ^ .! ^ x//

S .!; x;W/ D
�
0; S

T
�T (2)

System (1) is completely defined once a suitable constitutive equation p D p.�/
is introduced. In this work a weakly-compressible liquid at constant temperature TL
is considered as working fluid. The liquid density � is allowed to locally fall below
the saturation limit �Lsat D �Lsat .TL/ thus originating cavitation phenomena. A
regime-dependent (wet/cavitating) constitutive relation is therefore adopted. As for
the wet regime (� � �Lsat ), a barotropic model of the form

p D psat C 1

ˇsL
ln

	
�

�Lsat




(3)
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is adopted, psat D psat .TL/ and ˇsL D ˇsL .TL/ being the saturation pressure
and the liquid isentropic compressibility, respectively. As for the cavitating regime
(� < �Lsat ), a homogeneous-flow model explicitly accounting for thermal cavitation
effects and for the concentration of the active cavitation nuclei in the pure liquid has
been adopted [1]:

p

�

d�

dp
D .1 � ˛/

�

.1 � "L/ p

�Lsat a
2
Lsat

C "Lg?
	
pc

p


�

C ˛

�V
(4)

where g?, �, �V and pc are liquid parameters, aLsat is the liquid sound speed at
saturation, ˛ D 1 � �=�Lsat and "L D "L .˛; #/ is a given function (see [1] for its
physical interpretation and for more details). The resulting unified barotropic state
law for the liquid and for the cavitating mixture only depends on the two parameters
TL and #. For instance, for water at TL D 293:16K , the other parameters involved
in (3) and (4) are: psat D 2806:82 Pa, �Lsat D 997:29 kg/m3, ˇsL D 5 10�10 Pa�1,
g� D 1:67, � D 0:73, �V D 1:28, pc D 2:21 107 Pa and aLsat D 1415 m/s [6].
Note that despite the model simplifications leading to a unified barotropic state law,
the transition between wet and cavitating regimes is extremely abrupt. Indeed, the
sound speed falls from values of order 103 m/s in the pure liquid down to values
of order 0:1 or 1 m/s in the mixture. The corresponding Mach number variation
renders this state law very stiff from a numerical viewpoint. As for the definition of
the molecular viscosity, a simple model, which is linear in the cavitating regime, is
considered:

�.�/ D
8
<

:

�L if � � �Lsat
�v if � � �v

˛�v C .1 � ˛/�L otherwise
(5)

in which�v and�L are the molecular viscosity of the vapor and of the liquid respec-
tively, which, consistently with the assumptions made in the adopted cavitation
model, are considered constant and computed at T D TL.

The spatial discretization of the governing equations is based on a mixed
finite-element/finite-volume formulation on unstructured grids. Starting from an
unstructured tetrahedral grid, a dual finite-volume tessellation is obtained by the
rule of medians. The semi-discrete balance applied to cell Ci reads (not accounting
for boundary contributions):

Vi
dWi

dt
C

X

j2N.i/
˚ij C $i D ˝i (6)

where Wi is the semi-discrete unknown associated with Ci , Vi is the cell volume,
andN.i/ represents the set of neighbors of the i th cell. The numerical discretization
of the convective flux crossing the boundary @Cij shared by Ci and Cj (positive
towards Cj ) is denoted ˚ij , while $i and ˝i are the numerical discretizations for,
respectively, the viscous fluxes and the source term. Let us describe, first, the first-
order version of the used numerical method. Once defined nij D

�
nij;1; nij;2; nij;3

�T
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as the integral over @Cij of the outer unit normal to the cell boundary, it is possible
to approximate ˚ij by the following preconditioned flux function:

˚ij D nij;k
�
Fk.Wi /C Fk.Wj /

�

2
�

1

2

0

B
B
B
@

	
p
1 0 0 0

0
�
�32	p

�
n2ij;1 C 	p3

�
�32	p

�
nij;1nij;2

�
�32	p

�
nij;1nij;3

0
�
�32	p

�
nij;2nij;1

�
�32	p

�
n2ij;2 C 	p3

�
�32	p

�
nij;2nij;3

0
�
�32	p

�
nij;3nij;1

�
�32	p

�
nij;3nij;2

�
�32	p

�
n2ij;3 C 	p3

1

C
C
C
A
.Wj�Wi /

(7)

where�32	p D 	p2 �	p3 , 	p1 D ��1	ij , 	p2 D �	ij , 	p3 D 	ij and the parameters �
and 	ij are defined as follows:

� D �.M/ D
�
10�6 if M � 10�6
min.M; 1/ otherwise

; M D jQuij jQaij ; 	ij D Quij C Qaij (8)

Quij and Qaij being the Roe averages for, respectively, the velocity and the sound of
speed. The discretization (7) is the 3D extension of LD-HLL scheme defined in [2]
as a low diffusive modification of the Rusanov scheme.

The discretization of the viscous fluxes is instead based on P1 finite-elements in
which the test functions are linear functions on the tetrahedral element. The source
term is discretized as follows:

˝i WD
	

0

� 2 ! ^ �iui C �i ri




ri WD �! ^ .! ^ gi / (9)

gi being the centroid of the i th cell.
A first-order implicit Euler method can be used for time-advancing. As a

consequence, at each time step it is necessary to compute F nC1
i D F .WnC1

j ; j 2
NN.i//, where NN.i/ D N.i/[fig and Fi is defined as Fi DPj2N.i/ ˚ijC$i�˝i .

In order to avoid the direct solution of large non-linear system of equations at
each time step a linearization can be performed finding an approximation of F nC1

i

in the form:
�nFi '

X

j2 NN.i/
Dij�

nWj (10)

where�n.�/ D .�/nC1 � .�/n. Using this approximation, the following linear system
must be solved at each time step:

jVi jW
nC1
i �Wn

i

�t
C

X

j2 NN.i/
Dij�

nWj D �F .Wn
j ; j 2 NN.i// (11)
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The implicit linearized scheme is completely defined once a suitable definition
for the matrices Dij is given. Since viscous and source terms are easily differ-
entiable, the use of the Jacobian matrices has been considered here to compute
their contribution to Dij . However the computation of the Jacobian matrices can
be more challenging for the convective fluxes. Thus, in this work the approximate
linearization developed in [2] for the numerical flux function (7) has been used.
Once matrices Dij are given, the first-order numerical method (11) is completely
defined.

Since viscous and source terms are already second-order accurate in space, the
extension to second-order accuracy in space can be achieved by simply using a
classical MUSCL technique [4], in which the convective fluxes are computed by
using extrapolated values at the cell interfaces. The second-order accuracy in time
is then achieved through the use of a backward differentiation formula. However, the
linearization for the second-order accurate fluxes and the solution of the resulting
linear system imply significant computational costs and memory requirements.
Thus, a defect-correction technique [5] is used here. It consists in iteratively solving
simpler problems obtained just considering the same linearization as used for the
first-order scheme. The number of DeC iterations r is typically chosen equal to 2.
Indeed, it can be shown [5] that only one defect-correction iteration is theoretically
needed to reach a second-order accuracy while few additional iterations (one or two)
can improve the robustness.

Finally, in order to account for the turbulence effects the RANS approach
together with the standard turbulence model k � " have been used. For the sake
of brevity the additional terms introduced in the system of equation by this model
are not shown. We just mention that the convective and viscous turbulent fluxes
are discretized using the same methods considered for their laminar counterparts.
Similarly, the turbulent source term appearing in the equations for k and " is
discretized using the same approach considered for the source term associated to
the rotating frame of reference.

3 Numerical experiments

In this section the numerical tool described in Sect. 1 is applied to the simulations
of the flow in a real three blade axial inducer [6]. It is a three blade inducer
with a tip blade radius of 81 mm and 2 mm radial clearance between the blade
tip and the external case. Experimental data are available for all the numerical
simulations described in the following. In particular the pressure jump between
two different stations has been measured for a wide range of working conditions:
from small to large mass flow rates, non-cavitating and cavitating conditions and
different values of the rotational speed !z. The results are presented in terms of
the mean adimensionalized pressure jump ‰ as a function of the adimensionalized
dischargeˆ:
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‰ D �P

�L!2zR
2
T

ˆ D Q

�R2T !zRT
(12)

where Q is the discharge, RT is the radius of the tip of blade, �L the density of
the liquid and !z is the angular velocity. Note that the numerical pressure jump is
averaged over one complete revolution of the inducer. A cylindrical computational
domain is used, whose external surface is coincident with the inducer case. The
inlet is placed 249 mm ahead of the inducer nose and the outlet is placed 409 mm
behind. A second computational domain, characterized by a larger streamwise
length (the inlet 1120 mm ahead the inducer nose ) has also been considered. Two
different grids have been generated to discretize the shorter domain: the basic one
G1 (1926773 cells) and G2 (3431721 cells) obtained from G1 by refining the region
between the blade tip and the external case. In particular, inside the tip clearance
region there are 3�4 nodes for the grid G1, while there are 9�10 points for G2. The
larger domain has been discretized by grid G1L (2093770 cells), which coincides
with G1 in the original domain. The working conditions considered in this work are

shown in Table 1, where pout is the outlet pressure of the flow and � D p � pLsat
0:5�!2zR

2
T

is the cavitating number (only shown for cavitating simulations). Note that, except
when differently stated, the simulations do not include turbulence effects.

Table 1 Conditions of the numerical simulations and of the experiments
Benchmark Ind1 Ind2 Ind3 Ind4 Ind5 Ind6

ˆ 0:0584 0:0391 0:0185 0:0531 0:0531 0:0531

!z (rpm) 1500 1500 1500 3000 3000 3000

pout (Pa) 125000 125000 125000 60000 85000 82500

T (Cı) 25ı 25ı 25ı 16:8ı 16:8ı 16:8ı

� - - - 0:056 0:084 0:077

As shown in Table 1, all the simulations in non cavitating conditions use the
same rotational velocity of 1500 rpm. In the ˆ � ‰ plane the experimental curves
of the performances of the inducer are roughly independent from the rotational
velocity !z [6]. As a consequence, validating the numerical tool for a specific
rotational velocity and different flow rates should validate the proposed numerical
tool for a generic rotational velocity. Table 2 shows the results for the non-cavitating
simulations. It clearly appears that the lower is the discharge ˆ, the worse are the
results. Already with the coarsest grid G1, rather satisfactory results are obtained for
intermediate and high discharge values, Ind2 and Ind1, respectively. Furthermore
the quantitative agreement is further improved considering the more refined grid
G2 for the case Ind2. Conversely, for the low discharge case, Ind3, the simulations
with the grid G1 and G2 greatly overestimate the pressure jump by, respectively,
41% and 30%. The magnitude of this error could be ascribed to the backward flow
between the inducer blades and the external case. The correct resolution of this flow
is of crucial importance for the determination of the performance of an inducer.
Since the smaller is the mass flow rate the greater is the backflow, we investigated
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Table 2 Pressure jump in non-cavitating conditions
Experimental ‰ Numerical ‰ Error%

G1-Ind1 0:122 0:114 �6:6%

G1-Ind2 0:186 0:204 C9:7%
G2-Ind2 0:186 0:179 �3:8%

G1-Ind3 0:214 0:302 C41%
G2-Ind3 0:214 0:278 C30%

G1L-Ind3 0:214 0:297 C39%
G1L-Ind3-T 0:214 0:239 C12%

Turbulent Kinetic Energy (k)
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Fig. 1 Cross section of the averaged k field at � D 15ı, simulation G1L-Ind3 (view of the shorter
domain)

two possible explanations of this behavior. The first one was that the distance of
the inlet from the inducer nose was not large enough to avoid spurious effects on the
solution, the second one was that for this case turbulence effects have to be included.
The results of the first simulations for the longer computational domain, G1L-Ind3,
show that even if there is a small effect, a decrease from 41% to 39%, this is not
the source of the error. Instead the results of the simulation G1L-Ind3-T, i.e. the
one done considering the RANS model, show that in this case turbulence is a key-
issue. Indeed, in this case the error falls down to 12%, less than the error obtained
with the refined grid G2 in laminar conditions. As expected the effects of turbulence
are particularly important near the gap between the blades and the external case,
as it is shown by Fig. 1 by considering the isocontours of k. This strongly affects
the backflow and, thus, the pressure jump. This also explains why for larger flow
rates, for which the backflow is less important, the effects of turbulence are not so
strong and a good agreement with experimental data can be obtained also in laminar
simulations.

The mass flow rate for the cavitating cases is large enough to prevent the issues
related to the backflow previously described, thus only laminar simulations are
considered. The results for the cavitating conditions, reported in Table 3, show
that the first grid G1 is not enough refined to correctly describe cavitation for this
case. The pressure jump is greatly overestimated. For these conditions the error is
related to the underestimation of the cavitating region: the experimental data for
� D 0:056 show a large cavitating zone and consequently the performance of the
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Table 3 Numerical results for the cavitating simulations
Experimental ‰ Numerical ‰ Error%

G1-Ind4 0:105 0:143 C36%
G2-Ind5 0:143 0:130 �8:9%
G2-Ind6 0:137 0:130 �5:0%

Fig. 2 Isocontours of the cavitating region, ˛ D 0:005, for the simulation G2-Ind6

inducer is significantly deteriorated. Instead, in the simulation with grid G1 the
extension of the cavitating region is greatly underestimated and, as a consequence,
the “numerical” performance of the inducer is similar to the non cavitating case.
Grid refinement is particularly effective as shown by the results for the simulations,
G2-Ind5 and G2-Ind6. The error in the prediction of the pressure jump is reduced
and the extension of the cavitating region, even if it is still underestimated, is closer
to the one found in experiments, as it is shown by Fig. 2 which plots the isocontours
of the void fraction, corresponding to the cavitating region. Note that when the
coarse grid G1 is used the cases Ind5 and Ind6 are not cavitating.
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On Some High Resolution Schemes for Stably
Stratified Fluid Flows

Tomáš Bodnár and Luděk Beneš

Abstract The aim of this paper is to present some high-resolution numerical
methods in the context of the solution of stably stratified flow of incompressible
fluid. Two different numerical methods are applied to a simple 2D test case of wall
bounded flow and results are compared and discussed in detail with emphasize on
the specific features of stratified flows. The two numerical methods are the AUSM
finite–volume scheme and the high order compact finite-difference scheme.

Keywords finite–volume, finite–difference, stratification, compact, AUSM
MSC2010: 65M08, 65M06, 76D05, 76D50, 76D33

1 Introduction

The numerical solution of stably stratified fluid flows represents a challenging class
of problems in modern CFD. This study was motivated by the air flow in the stably
stratified Atmospheric Boundary Layer, where the presence of stratification leads
to appearance of gravity waves in the proximity of terrain obstacles. These small–
amplitude waves are affecting the flow–field at large distances which is in contrast
to the typical non-stratified case, where the flow–field is only affected locally in the
close proximity of the obstacle. The wavelength of these waves is governed by the
Brunt–Väisälä frequency, i.e depends on the product of the gravity acceleration and
the background density gradient.
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 16, © Springer-Verlag Berlin Heidelberg 2011

145

bodnar@marian.fsik.cvut.cz
Ludek.Benes@fs.cvut.cz


146 T. Bodnár and L. Beneš

From the numerical point of view, the simulations of stratified fluid flows are in
general more demanding than the solution of similar non-stratified flow cases (see
our previous work [10], [4], [1], or [6]). First of all the model of stratified fluid
flow has to be chosen. Such models are based on variable-density incompressible
fluid model including gravity force terms. A simple approximation of such model
is developed in Sect. 2. The appearance of the gravity waves in the computational
field adds some more constrains on the choice of numerical scheme and grid. The
limiting factor here is the proper resolution of gravity waves in the whole domain
with sufficient number of grid points per wavelength and low amount of numerical
dumping to preserve the resolved gravity waves rather than excessively dumping
them. Last but not least problem comes with boundary conditions. Their proper
choice and implementation affects the computational field much strongly than in
the non–stratified case.

One of the aims of this paper is to demonstrate that the high-order compact
finite-difference schemes offer an interesting alternative to the modern finite–
volume discretizations. Beside of the high resolving capabilities of both methods,
the compact discretizations have well defined dispersion/diffusion properties and
thus can safely be applied to the numerical simulations of wave phenomena.
These specific properties of compact discretizations have been successfully used
in computational aeroacoustics. This paper is one of the first attempts to use these
wave resolving capabilities in the numerical solution of stratified fluid flows.

2 Mathematical Model

Full incompressible model The motion equations describing the flow of incom-
pressible Newtonian fluid could be written in the following general form

@u

@x
C @v

@y
C @w

@z
D 0 (1)

@�

@t
C @.�u/

@x
C @.�v/

@y
C @.�w/

@z
D 0 (2)

�

	
@u

@t
C @.u2/

@x
C @.uv/

@y
C @.uw/

@z




D �@p
@x
C ��u (3)

�

	
@v

@t
C @.uv/

@x
C @.v2/

@y
C @.vw/

@z




D �@p
@y
C ��v (4)

�

	
@w

@t
C @.uw/

@x
C @.vw/

@y
C @.w2/

@z




D �@p
@z
C ��wC �g (5)

The governing system (1)–(5) for unknowns u, p and � is sometimes called the
Non-homogeneous (incompressible) Navier-Stokes equations.
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The small perturbation approximation Now we will assume that the pressure
and density fields are perturbation of hydrostatic equilibrium state, i.e.:

�.x; y; z; t/ D �0.z/C �0.x; y; z; t/ (6)

p.x; y; z; t/ D p
0
.z/C p0.x; y; z; t/ (7)

where the background density and pressure fields are linked by the hydrostatic
relation:

@p0
@z
D �0g: (8)

The small perturbation approximation of momentum equations is obtained by
introducing the above decomposition of density and pressure into the momentum
equations (3), (4) and (5). The density perturbation �0 is neglected on the left–hand
side while on the right–hand side it is retained. On the right–hand side we have
removed the hydrostatic pressure using the relation (8) and the fact that according
to (7) the horizontal parts of the background pressure gradient are zero.
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D 0 (9)
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D 1

�0

	

�@p
0

@z
C ��wC �0g




(13)

This model is in 2D (x–z) version used for all the simulations presented in this work.

3 Numerical Methods

Two different numerical methods were chosen to perform a comparative study
allowing for cross-comparison of results. The first method is the AUSM finite–
volume scheme. For comparison, the compact finite–difference schemes were
implemented.
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3.1 AUSM Finite–Volume Scheme

This method has been chosen to represent the modern high resolution finite–volume
schemes. This particular scheme was previously used for the simulation of stratified
flow and compared successfully with other methods in [2], [3].

Space discretizations For numerical solution the artificial compressibility method
in dual time was used. Continuity equation is rewritten in the form (in 2D, x–z plane)

@p

@�
C ˇ2. @u

@x
C @w

@z
/ D 0

where � is the artificial time. The equations (9)–(13) rewritten in the 2D conservative
form are

PWt C F.W /x CG.W /y D S.W /:
Here W D Œ�0; u; v; p�T , F D F i � �F v and G D Gi � �Gv contain the
inviscid fluxes F i , Gi and viscous fluxes F v and Gv, S is the source term, and
P D diag.1; 1; 1; 0/. the fluxes and the source term are

F i .W / D Œ�0u; u2 C p; uw; ˇ2u�T ; Gi .W / D Œ�0w; uw;w2 C p; ˇ2w�T ; (14)

F v.W /D Œ0; ux;wx; 0�T ; Gv.W /D Œ0; uy ;wy; 0�T ; S.W /D Œ�wd�0=dz; 0; �0g; 0�T :

The finite volume AUSM scheme was used for spatial discretizations of the inviscid
fluxes:
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(15)
where n is normal vector, un is normal velocity vector, and .q/L=R are quantities
on left/right hand side of the face respectively. These quantities are computed using
MUSCL reconstruction with Hemker–Koren limiter.

qR D qiC1 � 1
2
ıR qL D qi C 1

2
ıL

ıL=R D
aL=R.b

2
L=R C 2/C bL=R.2a2L=R C 1/

2a2L=R C 2b2L=R � aL=RbL=R C 3
aR D qiC2 � qiC1 aL D qiC1 � qi bR D qiC1 � qi bL D qi � qi�1

The viscous fluxes are discretized in central way on a dual mesh. This scheme is
formally of the second order of accuracy in space.
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Time integration For the finite–volume AUSM scheme a fully unsteady solver
was used. The dual time stepping approach was adopted, so the separate time–
discretizations were needed for physical and artificial time. The derivative with
respect to the physical time t is discretized by the second order BDF formula,

P
3W nC1 � 4W n CW n�1

2�t
C F nC1

x .W /CGnC1
y .W / D SnC1 (16)

ReznC1.W / D P. 3

2�t
W nC1� 2

�t
W nC 1

2�t
W n�1/CF nC1x .W /CGnC1y .W /�f nC1�SnC1:

Arising system of equations is solved by artificial compressibility method in the
dual (artificial) time � by an explicit 3–stage Runge-Kutta method.

3.2 Compact Finite-Difference Schemes

Here again the artificial compressibility method was used. The solver is limited to
steady problems solution, employing the time–marching method.

Space discretizations The spatial discretizations used in this work is directly based
on the paper [8], where the class of very high order compact finite difference
schemes was introduced and analyzed. The main idea used to construct this
family of schemes is that instead of approximating the spatial derivatives �0 of
certain quantity � explicitly from the neighboring values �i , the (symmetric) linear
combination of neighboring derivatives .: : : ; �0i�1; �0i ; �0iC1; : : :/ is approximated by
weighted average of central differences.

The simplest compact finite–difference schemes use the approximation in the
form

a �0i�1 C �0i C a �0iC1 D ˛1
�iC1 � �i�1

2h
C ˛2 �iC2 � �i�2

4h
(17)

Here h D xi�xi�1 is the spatial step, while a and ˛k are the coefficients determining
the specific scheme within the family described by (17). It is easy to see that e.g.
for a D 0, ˛1 D 1 and ˛2 D 0, the explicit second order central discretizations is
recovered. For the simulations presented here, the following coefficients were used:

˛1 D 2

3
.aC 2/ ˛2 D 1

3
.4a � 1/: (18)

This choice of parameters leads to a one–parametric family of formally fourth order
accurate schemes. For a D 0 the classical explicit fourth order discretizations is
recovered, while for a D 0:25 the well known Padé scheme is obtained.

The above presented schemes are based on central discretizations in space and
thus non-physical oscillations can occur in the numerical approximations. A very
efficient algorithm for filtering out these high frequency oscillations was proposed
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in [8]. The low–pass filter (for the filtered values b�i ) can be formulated in a form
very similar to (17):

bb�i�1 Cb�i C bb�iC1 D 2ˇ0�i C ˇ1
�iC1 C �i�1

2h
C ˇ2 �iC2 C �i�2

4h
C : : : (19)

The filters of different orders could be obtained for various choices of coefficients.
Here the sixth order filter with coefficients

ˇ0 D 1

16
.11C10b/I ˇ1 D 1

32
.15C34b/I ˇ2 D 1

16
.6b�3/I ˇ3 D 1

32
.1�2b/ (20)

was used. For other filters see e.g. [12]. The parameter �0:5 < b < 0:5 is used to
fine–tune the filter.1 More information on the compact space discretizations can be
found in [8], [12], [7].

Temporal discretizations The system of governing Partial Differential Equations
was discretized in space using the above described finite–difference technique. This
leads to a system of Ordinary Differential Equations for time-evolution of grid
values of the vector of unknowns W . Resulting system of ODE’s can be solved by
a suitable time-integration method. In this study we have used the so called Strong
Stability Preserving Runge–Kutta methods [9,11]. The three stage second order SSP
Runge–Kutta method was used to obtain the results presented here.

4 Numerical Results

Computational domain The 2D computational domain is selected as a part of
wall-bounded half space with low smooth cosine-shaped hill. The hill height is
h D 1m, while the whole domain has dimensions 90 � 30m. The numerical
simulations were performed on a structured, non-orthogonal wall-fitted grid that has
233 � 117 points with the minimum cell size in the near-wall region �z D 0:03m.
The grid is smoothly coarsened from the proximity of the hill towards the far field.
The maximum growth of consequent cells is 3%.

Boundary conditions On the inlet the velocity profile u D .u.z/; 0; 0/ is pre-
scribed. The horizontal velocity component u is given by u.z/ D U

0.z=H/
1=r with

U0 D 1m=s and r D 40. Density perturbation �0 is set to zero, while homogeneous
Neumann condition is used for pressure. On the outlet the homogeneous Neumann
condition is prescribed for all velocity components, as well as for the density
perturbations. Pressure is set to a constant. On the wall the no-slip conditions are

1In order to distinguish between different finite–difference schemes we use the notation
CXaaaF Ybbb for compact scheme of order X with parameter a D aaa combined with filter of
order Y applied with the dumping parameter b D bbb.
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used for velocity. Homogeneous Neumann condition is used for pressure and density
perturbation. For free stream the homogeneous Neumann condition is used for all
quantities including pressure and density perturbations.

The background density field is given by �0.z/ D �wC�z with �w D 1:2 kg �m�3
and � D �0:01 kg �m�4. The gravity acceleration was set to g D �50m �s�2 to test
the behavior of the model and numerical method for sufficiently high Brunt–Väisälä
frequency (i.e. short wavelength). The Reynolds number was in the range 100–500
(i.e. � D 1 � 10�2 � 2 � 10�3kg �m�1 � s�1).
Numerical results The small hill placed at the origin of the coordinate system
generates a perturbation in the density field. Due to the buoyancy term in the
equation (13), this density perturbation is translated into vertical motion that is
superposed to the mean horizontal flow. The gravity waves are best visible in the
vertical velocity contours (Fig. 1–4). The same color scale was used in all figures.
The results of both schemes are quite close to each other as it is visible from the
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Fig. 5 Vertical velocity profiles comparison for Re D 500 in a horizontal cut at the height z D
10m

vertical velocity profiles shown in the Fig. 5. The basic structure of the results
of both numerical methods is very similar. The compact finite difference scheme
has clearly an advantage in being able to resolve the gravity waves in the far–field
regions where the grid is very coarse.
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5 Conclusions and Remarks

The numerical test have demonstrated the ability of both numerical methods to
capture the main features of stably stratified flows. The advantage of high order
methods was well documented by resolving the gravity waves in the regions of
very coarse grid. The numerical simulations have brought some more problems that
need to be further explored in detail. From these issues let’s mention the the non–
physical waves generated and reflected by the artificial boundaries, strong influence
of numerical discretization/stabilization techniques on the small amplitude gravity
waves, and the grid spacing limits related to Brunt–Väisälä frequency. Some of these
problems are discussed in more detail in our recent study [5].
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Convergence Analysis of the Upwind Finite
Volume Scheme for General Transport Problems

Franck Boyer

Abstract This work is devoted to the convergence analysis of the implicit upwind
finite volume scheme for the initial and boundary value problem associated to
the linear transport equation in any dimension, on general unstructured meshes.
We are particularly concerned with the case where the initial and boundary data
are in L1 and the advection vector field v has low regularity properties, namely
v 2 L1.�0; T Œ; .W 1;1.˝//d /, with suitable assumptions on its divergence. We prove
strong convergence in L1.�0; T Œ; Lp.˝// with p < C1, of the approximate
solution towards the unique weak solution of the problem as well as the strong
convergence of its trace.

Keywords Transport equation, upwind finite volume method, renormalized solu-
tions
MSC2010: 35D30, 35L04, 65M08, 65M12

1 Introduction

Let d � 1,˝ � Rd a bounded polygonal (or polyhedral) domain, and T > 0 given.
We are interested here in the following initial and boundary value problem

8
ˆ̂
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ˆ̂
:

@t�C div .�v/C c� D 0; in �0; T Œ�˝;
�.0; �/ D �0; in ˝;

� D �in; on �0; T Œ�� , where .v � �/ < 0:
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We consider the following assumptions for the data

c 2 L1.�0; T Œ�˝/; (2)

v 2 L1.�0; T Œ; .W 1;1.˝//d /; and .v � �/ 2 L˛.�0; T Œ�� /; for some ˛ > 1; (3)

.c C div v/� 2 L1.�0; T Œ; L1.˝//; and .div v/C 2 L1.�0; T Œ; L1.˝//; (4)

where xC and x� stands for the positive and negative parts of any real number x.
Associated to the vector field v, we introduce the measure d�v D .v � �/ dx dt
on �0; T Œ�� and we denote by d�Cv (resp. d��v ) its positive (resp. negative) part in
such a way that jd�vj D d�Cv Cd��v . The support of d�Cv (resp. d��v ) is the outflow
(resp. inflow) part of the boundary. In this framework, Problem (1) is well-posed in
the following sense.

Theorem 1 (Existence and uniqueness). We assume that assumptions (2), (3), (4)
hold. For any �0 2 L1.˝/ and �in 2 L1.�0; T Œ��; d��v /, there exists a unique
weak solution .�; �.�// 2 L1.�0; T Œ�˝/�L1.�0; T Œ��; jd�vj/ of (1) in the sense
that

Z T

0

Z

˝

�.@t� C v � r� � c�/ dx dt �
Z T

0

Z

�

�.�/�.v � �/ dx dt

C
Z

˝

�0�.0; :/ dx D 0; 8� 2 C 1
c .Œ0; T Œ�˝/; (5)

with �.�/ D �in; d��v -almost everywhere.
Moreover, � 2 C 0.Œ0; T �; Lp.˝// for any p < C1, and we have

k�kL1.�0;T Œ�˝/ � max.k�0kL1 ; k�inkL1/e
R T
0 k.cCdiv v/�kL1.˝/ dt :

Finally, the following renormalization property holds : for any smooth function
ˇ W R 7! R, the following system holds in the weak sense

8
ˆ̂
<

ˆ̂
:

@tˇ.�/C div .ˇ.�/v/C cˇ0.�/�C .div v/.ˇ0.�/� � ˇ.�// D 0; in �0; T Œ�˝;
ˇ.�/.0; :/ D ˇ.�0/;
�.ˇ.�// D ˇ.�.�//; on �0; T Œ�� :
This result originates first from DiPerna-Lions theory [10] in the case when

v � � D 0 on the boundary. The initial and boundary value problem is studied in
[4] in the case c D div v D 0 and for a smooth domain˝ , whereas the general case
is studied in [6]. Note that the assumptions we consider on the vector field v are
almost minimal to prove the well-posedness of the transport problem. In fact, for
v 2 L1.�0; T Œ; .BV.˝//d /, it is known that many of the results of the renormalized
solutions theory still hold [1], but we will not consider this case here.
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The main aim of this work is to prove, in the above weak regularity framework,
the convergence of the upwind finite volume method in a strong sense. The detailed
proofs of all the results given here can be found in [5]. To our knowledge, the only
available result in this framework is a L1 weak-? convergence result, in the case
where v � � D 0 on @˝ , which can be found in [12]. When the transport vector field
v is more regular (say Lipschitz continuous) and when v � � D 0 on the boundary,
the upwind finite volume scheme was studied in many references (see for instance
[3, 7–9, 13, 14]). In summary, it is known that the convergence rate of the scheme is
1
2

as soon as the initial data is discontinuous, even for regular meshes, whereas this
rate is 1 for smooth data and regular meshes.

2 The finite volume setting

2.1 Notation

We introduce here the main notation we need to define and analyse the finite volume
method, following quite closely the notation introduced for instance in [11].

A finite volume mesh of the domain˝ is a set T D .K/K2T of closed connected
polygonal subsets of Rd , with disjoint interiors and such that ˝ D S

K2T K . The
boundary of each control volume K 2 T can be written as the union of a finite
number of edges/faces (we will use the word “edge” even for d > 2) which are
closed connected sets of dimension d�1. We denote by EK the set of the faces/edges
ofK . We assume that for anyK;L such thatK ¤ L andK \L is of co-dimension
1, then K \ L 2 EK \ EL, in that case the corresponding face is denoted by KjL.
The set of all the faces in the mesh is denoted by E and Ebd denote the subset of the
faces which are included in the boundary @˝ , Eint D E n Ebd the set of the interior
faces.

• For each K 2 T , and � 2 EK , we denote by �K� the unit outward normal vector
to K on � . If � D KjL 2 Eint, we we observe that �K� D ��L� .

• We will denote by jKj (resp. j� j) the d -dimensional Lebesgue measure of the
control volumeK (resp. the d � 1 dimensional measure of the face �).

• The diameter of a control volume K shall be denoted by dK and the size of the
mesh is defined by hT D maxK2T dK .

We will need to measure the regularity of the mesh. To this end, we denote by
reg.T /, the smallest positive number such that

kf kL1.@K/ � reg.T /

dK
kf kW 1;1.K/; 8K 2 T ;8f 2 W 1;1.K/: (6)

In the convergence results given below we shall assume that reg.T / remains
bounded as hT ! 0, which amounts to assume that the control volumes do not
degenerate when one refines the mesh.
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2.2 Definition of the scheme

Let us first define the discretization of the data needed to define the scheme.

• For any K 2 T , n 2 �0;N � 1�, we define

cn
K
D 1

ıt jKj
Z tnC1

tn

Z

K

c dx dt; and vn
K� D

1

ıt j� j
Z tnC1

tn

Z

�

.v��K� / dx dt; 8� 2 EK:

Furthermore, if � 2 Eint, with � D KjL we shall use the notation vn
KL
D vn

K� D
�vn

L� , and if � 2 EK \ Ebd we will denote vn� D vn
K� .

• For any boundary edge � 2 Ebd and any n 2 �0;N � 1�, we define

�in;nC1� D 1

ıt j� j
Z tnC1

tn

Z

�

�in dx dt: (7)

Notice that �in is a priori only given d��v -almost everywhere so that in this
formula we need, in fact, to consider an extension of �in in L1.�0; T Œ�� /.

The implicit upwind finite volume scheme we consider is the following: Find
approximate values f�n

K
; n 2 �0;N �; K 2 T g such that

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

jKj�
nC1
K
� �n

K

ıt
C

X

�2EK\Eint

j� j��vn
K�

�C
�nC1
K
� �vn

K�

��
�nC1
L

�

C
X

�2EK\Ebd

j� jvn
K��

nC1
� C jKjcn

K
�nC1
K
D 0; 8n 2 �0;N � 1�;8K 2 T ;

�0
K
D 1

jKj
Z

K

�0 dx; 8K 2 T ;

�nC1� D �in;nC1� ; 8n 2 �0;N � 1�;8� 2 Ebd; s.t. vn
K� � 0;

�nC1� D �nC1
K

; 8n 2 �0;N � 1�;8� 2 Ebd; s.t. vn
K� > 0:

(8)

Note that the boundary data �in is only taken into account on the boundary edges
such that vn

K� � 0. Those edges are not necessarily included in the inflow boundary,
that is the support of the measure d��v . That’s the reason why we need to extend the
definition of �in to the whole boundary �0; T Œ�� .

2.3 Existence and uniqueness

The first result we can prove is the following existence and uniqueness result.
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Theorem 2. Assume that (2),(3) and (4) hold. There exists ıtmax > 0 (depending
only on .cCdiv v/�) such that for any ıt � ıtmax, any mesh T and any data �in; �0,
there exists an unique solution to the scheme (8).

Moreover, the approximate solution is non-negative as soon as the data is.
Finally, we have the following a priori bound

max
K2T
n2�0;N �

j�n
K
j � max.k�0kL1 ; k�inkL1/ exp

	

2

Z T

0

k.c C div v/�kL1 dt



: (9)

In the case of the pure transport problem, that is when c D �div v, we find that
ıtmax D C1. From now on we will denote by �T ;ıt (and its trace .��T ;ıt /) the
piecewise constant function build upon the approximate solution as follows

�T ;ıt D
N�1X

nD0

X

K2T
�nC1
K

1�tn;tnC1Œ�K; �.�T ;ıt / D
N�1X

nD0

X

�2Ebd

�nC1
K

1�tn;tnC1Œ�� ;

where, in the last sum, K is the unique control volume in T such that � 2 EK .

3 Convergence analysis

3.1 Uniform in time strong convergence

The main result of this work is the following

Theorem 3. Assume that (2), (3) and (4) hold. Let regmax > 0 be given and
consider a family of meshes and time steps, such that .ıt; hT / ! 0 and satisfying
the bound

max

	

reg.T /;max
K2T

ıt

dK




� regmax:

Then, for any bounded data �0 and �in, we have the following convergences

�T ;ıt �������!
.ıt;hT /!0 �; in L1.�0; T Œ; Lp.˝//;

�.�T ;ıt / �������!
.ıt;hT /!0 �.�/; in Lp.�0; T Œ��; jd�vj/; 8p < C1;

where .�; �.�// is the unique solution to (5).

We want to emphasize the fact that the convergence of �T ;ıt is uniform in time with
values in Lp.˝/. We describe now the main steps of the proof of this result.
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• Using the a priori L1 bound (9), we can extract a subsequence of �T ;ıt (resp.
�.�T ;ıt /) which weak-? converges towards a limit denoted by � (resp. g) in
L1.�0; T Œ�˝/ (resp. in L1.�0; T Œ�� /).
– We prove that g D �in d��v -almost-everywhere.
– We prove that .�; g/ satisfy the weak formulation of the problem.
– Since the weak solution .�; �.�// is unique, we deduce the weak-? conver-

gence of the whole sequence of approximate solutions.

• For any " > 0 we construct a smooth function �" associated to � such that

– k�"kL1 � k�kL1 ;
– �" converges to � in C 0.Œ0; T �; Lp.˝//, for any p < C1;
– �.�"/ converges to �.�/ in Lp.�0; T Œ��; jd�vj/ for any p < C1;
– �" solves

@t�
" C div .�"v/C c�" D R";

where R" 2 L1.�0; T Œ�˝/ tends to 0 in L1.

Following [10], this sequence is built by convolution with a mollifier and the
regularity assumptions on v and c let us prove the property of the remainder term
R" (Friedrichs commutator lemma). Nevertheless, since the boundary of˝ is not
characteristic for v, the argument has to be adapted (see [2, 4, 6]).

• We define the discretization of �" to be

�"T ;ıt D
N�1X

nD0
ıt
X

K2T
�".tnC1; xK/1�tn;tnC1Œ�K;

where xK is an arbitrary point in K .
• We use now the triangle inequality to get

k�T ;ıt � �kL1.�0;T Œ;L2.˝// � k�T ;ıt � �"T ;ıtkL1.�0;T Œ;L2.˝//
C k�"T ;ıt � �"kL1.�0;T Œ;L2.˝// C k�" � �kL1.�0;T Œ;L2.˝//: (10)

In this inequality, the last term converges to 0 when "! 0 by construction of �".
The second term can be easily estimated by Ck�"kW 1;1.hT C ıt/. Obviously
k�"kW 1;1 blows up when "! 0, but if " is fixed, this term converges to 0 when
.ıt; hT /! 0.

• Finally, we are led to compare the approximate solution �T ;ıt and the projection
�"T ;ıt of �". This can be done by writing the discrete equations satisfied by �"T ;ıt

in a form which is similar to that of (8) with additional remainder terms in the
right-hand side.
We subtract the two set of equations and we perform an usual L1.�0; T Œ;
L2.˝// estimate of the difference �T ;ıt � �"T ;ıt . It can then be proved that
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all the contribution of the remainder terms can be controlled by two types of
quantities:

– some of them tend to zero when "! 0, independently on ıt and hT .
– some of them tend to zero when .ıt; hT /! 0, as soon as " is fixed.

The conclusion is then clear. The main tools we use in these estimates are

– The fact that, by the Friedrichs Lemma, we have kR"kL1 ! 0.
– The weak L2.H1/ estimate satisfied by the approximate solution which reads

N�1X

nD0
ıt
X

�2Ebd

j� jjvn
K� j.�nC1K

� �nC1� /2

C
N�1X

nD0
ıt

X

�2Eint
�DKjL

j� jjvn
KL
j.�nC1

L
� �nC1

K
/2 �M; (11)

for someM > 0which only depends on the data. This estimate corresponds in
the linear case to the so-called “weak BV estimate” for nonlinear hyperbolic
equations (see [11]).

– The density of the set of smooth vector fields in L1.�0; T Œ; .W 1;1.˝//d /.

3.2 Discrete renormalization property and consequences

We now state a result which is a discrete counter-part of the renormalization property
given in Theorem 1 for the weak solution of the continuous problem. This kind
of result might be important when studying the coupling between problem (1)
and some other equations (in the nonhomogeneous incompressible Navier-Stokes
system for instance).

Theorem 4. For any function ˇ W R 7! R which is continuous and piecewise C 1,
the approximate solution �T ;ıt satisfy the following set of equations

jKjˇ.�
nC1
K

/� ˇ.�n
K
/

ıt
C

X

�2EK\Eint

j� j�vnC
K� ˇ.�

nC1
K

/� vn�
K�ˇ.�

nC1
L

/
�

C
X

�2EK\Ebd

j� jvn
K�ˇ.�

nC1
� /C jKjcn

K
ˇ0.�nC1

K
/�nC1

K

CjKj.div v/n
K

�
ˇ0.�nC1

K
/�nC1

K
�ˇ.�nC1

K
/
� D jKjRnC1

K
; 8n 2 �0;N �1�;8K 2 T ;

(12)
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where the remainder term .RnC1
K

/K2T ;n2�0;N�1� strongly converges towards zero in
L1.�0; T Œ�˝/, that is

N�1X

nD0
ıt
X

K2T
jKjjRnC1

K
j �������!
.ıt;hT /!0 0:

Furthermore, when ˇ is convex we have RnC1
K
� 0; 8K 2 T ;8n 2 �0;N � 1�.

Note that this result holds for any arbitrary choice of the value of ˇ0 at singular
points. We can deduce from Theorem 4 many properties of the approximate
solution. For instance, we can prove:

• For any ˛ 2 R n f0g, we have

N�1X

nD0
ıt
X

K2T
jKjjcn

K
C .div v/n

K
j1f�nC1K D˛g �������!.ıt;hT /!0 0:

This is the discrete counter part of the following property of the weak solution of
the problem

c C div v D 0; for almost every .t; x/ in the level set f� D ˛g:

• The total numerical dissipation term associated with the upwind discretization
(that is the left-hand side term in (11)) tends to 0 when .ıt; hT /! 0. This is an
improvement of the weak L2.H1/ estimate which only says that this quantity is
bounded.
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A Low Degree Non–Conforming Approximation
of the Steady Stokes Problem with an Eddy
Viscosity

F. Boyer, F. Dardalhon, C. Lapuerta, and J.-C. Latché

Abstract In the context of Large Eddy Simulation, the use of a turbulence
model brings the question of the implementation of the eddy–viscosity. In this
communication, we propose to assess the discretization of the diffusive term based
on a low–order non–conforming finite element. For this, we build a manufactured
solution of the incompressible steady Stokes problem, for which the turbulent
viscosity is given either by the Smagorinsky or WALE models. Numerical tests
are performed for both models with the finite element approximation and the MAC
scheme.

Keywords Large Eddy Simulation, WALE and Smagorinsky models, incompress-
ible steady Stokes equations, low-order finite element approximation
MSC2010:65N30, 76D05

1 Introduction

In the context of turbulence modelling, there is an increasing interest in the Large
Eddy Simulation approach (LES), resulting from the augmentation of the computer
resources. LES modelling solves large turbulent structures, while small–scale
effects are modelled (see [2, 13]). The approach consists in averaging the Navier–
Stokes equations in space (by convolution), and then commuting this filtering
operation (denoted with the overbar symbol) with space and time derivatives. This
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yields balance equations, which keep the same form as the original ones, for the
resolved (large scales) velocity u and pressure p. Due to the presence of the
nonlinear convection term, the unclosed quantity �div.T/, with T D uu � u u
appears at the right–hand side, and must be modelled, i.e. recast as a function of the
unknowns u and p.

The key issue in the LES approach is thus to find a suitable expression for the
subgrid–scale tensor T. A common assumption is to suppose a proportional relation
between T and the deformation tensor S:

T D �2 �t S; with Si;j D 1

2
.@jui C @iuj /; 8i; j 2 f1; � � � ; d g;

the scalar �t being referred to as the turbulent viscosity. We propose to study
here two subgrid–scale models often encountered in the literature, namely the
Smagorinsky [14] and WALE [10] models.

The Smagorinsky model is the most frequently used because of its quite simple
form and reads:

�t D .Cs �/2
q

2 Trace.S S
T
/ D .Cs �/2

0

@2
X

i;j2f1;��� ;dg
Si;j Si;j

1

A

1
2

; (1)

where Cs is a constant adjusted as a function of the flow and � is the cut–off
length scale, usually identified to a characteristic size of the cell. However, the
viscosity obtained in this way behaves like O.1/ near a wall, contrary to the scaling
�t D O.y3/, where y stands for the distance to the wall, which may be inferred by
asymptotic analysis [13]. So this model dissipates the large scales too much near a
wall.

The WALE model (Wall Adaptating Local Eddy–viscosity) aims at solving this
problem and reads:

�t D .Cw�/
2

�P
i;j & i;j & i;j

�3=2

�P
i;j Si;j Si;j

�5=2 C
�P

i;j & i;j & i;j

�5=4 ; (2)

Cw being a real constant adjusted as a function of the flow and

& D 1

2

�
ru2 C .ru2/T

�
� 1

d
Trace.ru2/ Id ;

Id being the d � d identity matrix. Asymptotic analysis of Eq. (2) shows that
the proper behaviour O.y3/ of the viscosity is recovered, without any near–wall
modification, which makes this model particularly attractive to deal with complex
geometries.
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As a first step toward the construction of a scheme for LES equations, we propose
in this paper to study the discretization of the nonlinear (due to the presence of the
subgrid model) diffusion term of the momentum balance equation. To this purpose,
we address a simplified problem, namely the steady incompressible Stokes problem
obtained by dropping the time derivative and convection terms in the original
Navier-Stokes equations:

8
ˆ̂
<

ˆ̂
:

�div.2�S.u//C rp D f in ˝;

div u D 0 in ˝;

u D 0 on @˝;

(3)

where S.u/ D 1
2
.ru C ruT / is the symmetric part of the gradient of u and f is

a known forcing term. This problem is posed in ˝ , an open, connected, bounded
domain of R

d (d D 2; 3), supposed to be polygonal for the sake of simplicity. The
effective viscosity � is equal to the sum of the laminar and turbulent viscosities
denoted by �l and �t , respectively, the latter one being given as a function of the
velocity by Eqs. (1) or (2) with a coefficient � supposed here to be fixed (i.e.
independent of the mesh). Since the velocity is prescribed to zero on the whole
boundary, the pressure must be supposed to be mean-valued to obtain a well-posed
problem.

Two approaches are considered for the spatial discretization: low order finite
element (Rannacher–Turek element) and MAC scheme. We focus the paper on the
finite element version, the description of the MAC scheme used for comparison in
the numerical experiments being given in [6–8]. The obtained schemes are assessed
by numerical experiments, using a manufactured solution technique.

The outline of the article is as follows. After the introduction of the Rannacher–
Turek finite element (Sect. 2), we describe the resulting discretization of Problem
(3), i.e., essentially, the proposed discrete expression for the Smagorinsky or WALE
subgrid viscosity (Sect. 3). Numerical tests are reported in Sect. 4.

To alleviate the notations, we drop in the remainder of this paper the overbar
symbol to denote the averaged fields.

2 Mesh and discrete spaces

Let M be a decomposition of the domain ˝ into quadrangles, supposed to be
regular in the usual sense of the finite element literature [4]. We denote by E the
set of all faces � of the mesh; by Eext the set of faces included in the boundary of˝ ,
by Eint the set of internal faces (i.e. E n Eext) and by E.K/ the faces of a particular
cell K 2 M. By jKj and j� j we denote the measure, respectively, of the control
volumeK and of the face � .
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The space discretization relies on the Rannacher–Turek mixed finite element.
The degrees of freedom for the velocity are located at the mass center of the faces
of the mesh, and we use the version of the element where they represent the average
of the velocity over the face. The set of degrees of freedom thus reads:

fu�;i ; � 2 E ; i D 1; � � � ; d g:

The discrete functional space over a cell K is obtained through the usual Q1 map-
ping from the space span

˚
1; .xi /iD1;:::;d ; .x2i � x2iC1/iD1;:::;d�1

�
over the reference

element. The approximation for the velocity is non–conforming: the space Xh is
composed of discrete functions which are discontinuous through an edge, but the
jump of their integral is imposed to be zero. We denote by '.i/� the vector shape
function associated to u�;i , which, by definition, reads '.i/� D '� e.i/, where '� is
the Rannacher–Turek scalar shape function and e.i/ is the i th vector of the canonical
basis of R

d , and we define u� by u� DPi u�;i e.i/. With these definitions, we have:

u D
X

�2E

X

iD1;��� ;d
u�;i '.i/� .x/ D

X

�2E
u� '� .x/; for a.e. x 2 ˝:

Dirichlet boundary conditions are built in the definition of the discrete velocity space
Xh by fixing u�;i D 0 for all faces in Eext and any component i .

The pressure is piecewise constant, and its degrees of freedom are denoted by
pK for any cell K 2M. We denote by Mh the discrete pressure space.

3 The scheme

In this section, we begin with describing the approximation of the turbulent
viscosity, which is chosen piecewise constant by cell, and we then present the
discretization of Problem (3).

Expression of the cell viscosity �K for the Smagorinsky model – We propose to
study two discretizations of the term S in Eq. (1) of the turbulent viscosity. The first
one consists in approximating the expression Trace.S ST / by its mean value over a
cell K:

S2
K D 1

jKj
Z

K

S.u/ W S.u/ dx:

The second approach is to compute the mean value of the velocity gradient over K
and then to use it in the definition of S:

Sij
K D 1

2

�
@jui

K C @iuj K
�
D 1

2

	
1

jKj
Z

K

@jui dx C 1

jKj
Z

K

@iuj dx




: (4)
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Finally, the expression of the effective viscosity for both approximations is:

– for the method 1:

�K D �l C .Cs �/2
�
2S2

K
� 1
2

; (5)

– for the method 2:

�K D �l C .Cs �/2
0

@2
X

i;j

Sij
K

Sij
K

1

A

1
2

: (6)

These discretizations are different since the discrete velocity field is not piecewise
affine. Hovever, as reported hereafter in Sect. 4, they give similar results, so only
Method 2 is retained for the discretization of the WALE model, to avoid the
computation of integrals needing high order quadrature formulas.

Expression of the cell viscosity �K for the WALE model – The discretization of
the tensor & in a cell K 2M is:

&ij
K D 1

2

X

`2f1;��� ;dg

�
@`ui

K
@ju`

K C @iu`K@`uj K
�

�
0

@ 1

d

X

m;n2f1;��� ;dg
@mun

K
@num

K

1

A ıi;j ; 8i; j 2 f1; � � � ; d g; (7)

where ı is the Kronecker symbol. Using the approximations of S and & given
respectively by (4) and (7), the effective viscosity onK reads:

�K D �l C .Cw �/
2

0

@
X

i;j

&ij
K &ij

K

1

A

3=2

0

@
X

i;j

Sij
K

Sij
K

1

A

5=2

C
0

@
X

i;j

&ij
K &ij

K

1

A

5=4
:

Discretization of Problem (3) – The scheme for the solution of Problem (3) consists
in searching for u 2 Xh and p 2 Mh such that the mean value of p over ˝ is zero
and:
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for 1 � i � d and for any � 2 Eint;

X

K2M
2�K

Z

K

S.u/ W S.'.i/� / dx �
X

K2M

Z

K

p div.'.i/� / dx D
Z

)

f � '.i/� dx;

8K 2M;

Z

K

div.u/ dx D 0:
(8)

4 Numerical tests

In this section, we build a manufactured solution to Problem (3) in 2D, and compare
the results obtained with the considered discretizations to the analytical solution
and to the discrete solutions obtained with the MAC scheme. The simulations are
performed with the ISIS software based on the platform PELICANS, both developed
at IRSN [9, 11].

Description of the numerical test – The computational domain˝ is the unit square
.0; 1/2 and we calculate the forcing term f such that the exact velocity and pressure
fields, uexact and pexact , are given by:

uexact D curl.sin.�x/ sin.�y//; pexact D cos.�x/ sin.�y/:

Note that uexact indeed satisfies homogeneous Dirichlet boundary conditions on @˝ ,
and the mean value over˝ of pexact is zero.

We take �l D 10�3 and the coefficient Cw� in the expression of �t (Eqs. (1) and
(2)) is set to Cs� D 0:007 for the Smagorinsky model and Cw� D 0:009 for the
WALE model, which yields a turbulent and a laminar viscosity of the same range.
The Smagorinsky and WALE viscosities obtained for uexact are plotted on Fig. 1.
The profiles are quite different, and one remarks that, as expected, the turbulent
viscosity vanishes near the wall with the WALE model while it does not decrease
with the Smagorinsky model.

The nonlinear problem (8) is solved using an iterative process analog to a time
marching algorithm of pressure correction type [5], computing at each step the value
of the turbulent viscosity from the beginning-of-step velocity. The steady state is
supposed to be reached when velocity and pressure increments are small enough.

The discrete L2–norm defined by

jjujj20 D
X

K

jKj
4

X

�

ju� j2

is used to measure the spatial error for n�n structured uniform meshes, with n D 10,
20, 40 and 80.
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(a) Smagorinsky model (b) WALE model

Fig. 1 Repartition of the effective viscosity
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Fig. 2 L2 error norm for the velocity and the pressure as a function of the space step for both
discretizations of the Smagorinsky viscosity: Method 1 corresponds to Eq. (5), Method 2 to Eq. (6)

Comparison of both implementations for the Smagorinsky model – On Fig. 2,
the spatial error in L2–norm is plotted for both methods for the computation of
the Smagorinsky viscosity. Both implementations give about the same accuracy.
Consequently, Method 2 is chosen for further numerical experiments, because its
implementation is simpler.

Comparison of the finite element approach and the MAC scheme for both
models – On Fig. 3 and Fig. 4, ‘FE’ and ‘FV’ represent the discretization chosen,
namely the Rannacher–Turek Finite Element and the MAC scheme (Finite Volume)
respectively. Both discretizations seem to lead to the same order of convergence in
space, that is 2 for the velocity and 1 for the pressure, for the Smagorinsky model.
The FE discretization is more accurate than the MAC scheme but, for a given mesh,
the number of degrees of freedom for the velocity for the FE discretization is twice
(for d D 2) greater than for the MAC approximation (the number of degrees of
freedom for the pressure being the same in both cases). For the WALE model, results
look similar, with a more irregular convergence for the velocity.



172 F. Boyer et al.

1e-02 1e-01 1e-02 1e-01

L
2  

er
ro

r 
no

rm

L
2  

er
ro

r 
no

rm

(a) Velocity (b) Pressure

Space step

1e-04

1e-03

1e-02

1e-01

FV,Smagorinsky
FE,Smagorinsky

slope 2

Space step

1e-03

1e-02

1e-01

FV,Smagorinsky
FE,Smagorinsky

slope 1

Fig. 3 L2 error norm for the velocity and the pressure as a function of the space step for the
Smagorinsky model
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Fig. 4 L2 error norm for the velocity and the pressure as a function of the space step for the WALE
model

5 Conclusion

As a conclusion, the space discretizations retained for the Smagorinsky model and
the WALE model give satisfactory results for the considered steady nonlinear Stokes
problem, both for the finite element method and for the MAC scheme. Next steps
will be to extend the scheme to the complete Navier–Stokes equations with the
same subgrid models (see [1, 3] for a kinetic energy preserving discretization of
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the convection term) and assess it on the academic test of the plane channel, before
turning to more complex industrial applications.
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Some Abstract Error Estimates of a Finite
Volume Scheme for the Wave Equation on
General Nonconforming Multidimensional
Spatial Meshes

Abdallah Bradji

Abstract A general class of nonconforming meshes has been recently studied for
sationary anisotropic heterogeneous diffusion problems, see [2]. The aim of this
contribution is to deal with error estimates, using this new class of meshes, for
the wave equation. We present an implicit time scheme to approximate the wave
equation. We prove that, when the discrete flux is calculated using a stabilized
discrete gradient, the convergence order is hD C k, where hD (resp. k) is the
mesh size of the spatial (resp. time) discretization. This estimate is valid for discrete
norms L

1.0; T IH1
0 .˝// and W 1;1.0; T IL2.˝// under the regularity assumption

u 2 C 3.Œ0; T �IC 2.˝// for the exact solution u. These error estimates are useful
because they allow to obtain approximations to the exact solution and its first
derivatives of order hD C k.

Keywords second order hyperbolic equation, wave equation, non–conforming
grid, SUSHI scheme, implicit scheme, discrete gradient
MSC2010: 65M08, 65M15

1 Motivation and aim of this paper

We consider the wave equation, as a model for second order hyperbolic equations:

ut t .x; t/ ��u.x; t/ D f .x; t/; .x; t/ 2 ˝ � .0; T /; (1)

where ˝ is an open polygonal bounded subset in IRd , T > 0, and f is a given
function.
An initial condition is given by: for given functions u0 and u1 defined on ˝
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u.x; 0/ D u0.x/ and ut .x; 0/ D u1.x/ x 2 ˝; (2)

Homogeneous Dirichlet boundary conditions are given by

u.x; t/ D 0; .x; t/ 2 @˝ � .0; T /: (3)

2 Definition of the scheme

The discretization of˝ is performed using the mesh D D .M ;E ;P/ described in
[2, Definition 2.1] which we recall here for the sake of completeness.

Definition 1. (Definition of the spatial mesh, cf. [2, Definition 2.1, Page 1012]) Let
˝ be a polyhedral open bounded subset of IRd , where d 2 IN n f0g, and @˝ D
˝ n ˝ its boundary. A discretisation of ˝ , denoted by D , is defined as the triplet
D D .M ;E ;P/, where:

1. M is a finite family of non empty connected open disjoint subsets of ˝ (the
“control volumes”) such that ˝ D [K2MK . For any K 2M , let @K D K nK
be the boundary of K; let m .K/ > 0 denote the measure of K and hK denote
the diameter of K .

2. E is a finite family of disjoint subsets of ˝ (the “edges” of the mesh), such that,
for all � 2 E , � is a non empty open subset of a hyperplane of IRd , whose
.d � 1/–dimensional measure is strictly positive. We also assume that, for all
K 2M , there exists a subset EK of E such that @K D [�2EK � . For any � 2 E ,
we denote by M� D fKI � 2 EKg. We then assume that, for any � 2 E , either
M� has exactly one element and then � � @˝ (the set of these interfaces, called
boundary interfaces, denoted by Eext) or M� has exactly two elements (the set
of these interfaces, called interior interfaces, denoted by Eint). For all � 2 E , we
denote by x� the barycentre of � . For all K 2M and � 2 E , we denote by nK;�
the unit vector normal to � outward to K .

3. P is a family of points of ˝ indexed by M , denoted by P D .xK/K2M , such
that for all K 2 M , xK 2 K and K is assumed to be xK–star-shaped, which
means that for all x 2 K , the property ŒxK; x� � K holds. Denoting by dK;�
the Euclidean distance between xK and the hyperplane including � , one assumes
that dK;� > 0. We then denote by DK;� the cone with vertex xK and basis � .

The time discretization is performed with a constant time step k D T
NC1 , where

N 2 IN?, and we shall denote tn D nk, for n 2 � 0;N C 1�. Throughout this paper,
the letter C stands for a positive constant independent of the parameters of the space
and time discretizations and its values may be different in different appearance.

We define the space XD as the set of all ..vK/K2M ; .v� /�2E /, and XD ;0 �XD

is the set of all v 2 XD such that v� D 0 for all � 2 Eext. Let HM .˝/ � L
2.˝/

be the space of piecewise constant functions on the control volumes of the mesh
M . For all v 2 XD , we denote by ˘M v 2 HM .˝/ the function defined by
˘M v.x/ D vK , for a.e. x 2 K , for all K 2M .
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For all ' 2 C .˝/, we define PD' D ..'.xK//K2M ; .'.x� //�2E / 2 XD . We
denote by PM' 2 HM .˝/ the function defined by PM '.x/ D '.xK/, for a.e.
x 2 K , for all K 2M .
In order to analyze the convergence, we need to consider the size of the discretiza-
tion D defined by hD D supfdiam.K/;K 2 M g and the regularity of the mesh

given by �D D max

	

max
�2Eint;K;L2M

dK;�

dL;�
; max
K2M ;�2EK

hK

dK;�




. The scheme we want

to consider in this note (A general framework will be detailed in a future paper.) is
based on the use of the discrete gradient given in [2]. For u 2 XD , we define, for
all K 2M

rD u.x/ D rK;� u; a: e: x 2 DK;� ; (4)

where DK;� is the cone with vertex xK and basis � and

rK;�u D rK uC
 p

d

dK;�
.u� � uK � rK u � .x� � xK//

!

nK;� ; (5)

where rK u D 1

m.K/

X

�2EK
m.�/ . u� � uK/nK;� and d is the space dimension.

We define the finite volume approximation for (1)–(3) as
�

unD
�NC1
nD0 2 X NC2

D ;0 with
unD D

� �
unK
�
K2M ;

�
un�
�
�2E

�
, for all n 2 �0;N C 1� and

1. discretization of the initial conditions (2):

h u0D ; viF D �
�
� u0;˘M v

�
L2.˝/

; 8 v 2XD ;0; (6)

and

h u1D � u0D
k

; viF D �
�
� u1;˘M v

�
L2.˝/

; 8 v 2XD ;0; (7)

2. discretization of equation (1): for any n 2 � 1;N �, v 2 XD ;0

�
˘M @2 unC1D ; ˘M v

�
L2.˝/

C h unC1D ; viF D
X

K2M
m.K/f nKvK; (8)

where

h u; viF D
Z

˝

rD u.x/ � rD v.x/dx; 8 u; v 2XD ; (9)

@2 vnC1 D vnC1 � 2vn C vn�1

k2
; 8 n 2 � 1;N �; (10)

f n
K D

1

km.K/

Z tnC1

tn

Z

K

f .x; t/d x dt; (11)

and . �; �/
L2.˝/ denotes the L

2 inner product.

The main result of the present contribution is the following theorem.
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Theorem 1. (Error estimates for the finite volume scheme (6)–(11)) Let ˝ be
a polyhedral open bounded subset of IRd , where d 2 IN n f0g, and @˝ D
˝ n ˝ its boundary. Assume that the solution (weak) of (1)–(3) satisfies u 2
C 3.Œ0; T �IC 2.˝//. Let k D T

NC1 , with N 2 IN?, and denote by tn D nk, for
n 2 � 0;N C 1�. Let D D .M ;E ;P/ be a discretization in the sense of [2,
Definition 2.1]. Assume that �D satisfies � � �D .
Then there exists a unique solution

�
unD
�NC1
nD0 2X NC2

D ;B for problem (6)–(11).
For each n 2 � 0;N C 1�, let us define the error enM 2 HM .˝/ by:

enM DPM u.�; tn/ �˘M unD : (12)

Then, the following error estimates hold

• discrete L
1.0; T IH1

0 .˝//–estimate: for all n 2 � 0;N C 1�

k enMk1;2;M � C.k C hD /k ukC 3.Œ0;T �I C 2.˝//: (13)

• discrete W 1;1.0; T IL2.˝//–estimate: for all n 2 � 1;N C 1�

k @1 enMkL2.˝/ � C.k C hD/k ukC 3.Œ0;T �I C 2.˝//; (14)

where @1vn D 1

k

�
vn � vn�1

�
.

• error estimate in the gradient approximation: for all n 2 � 0;N C 1�

krD unD � r u.�; tn/kL2.˝/ � C.k C hD/k ukC 3.Œ0;T �I C 2.˝//: (15)

The following lemma will help us to prove Theorem 1

Lemma 1. Let ˝ be a polyhedral open bounded subset of IRd , where d 2 IN n f0g,
and @˝ D ˝ n ˝ its boundary. Let k D T

NC1 , with N 2 IN?, and denote by
tn D nk, for n 2 � 0;N C 1�. Let D D .M ;E ;P/ be a discretization in the sense
of [2, Definition 2.1]. Assume that �D satisfies � � �D . Assume in addition that
there exists

�
�nD
�NC1
nD0 2X NC2

D such that for any n 2 � 1;N �, for all v 2XD

�
˘M @2 �nC1D ; ˘M v

�
L2.˝/

C h �nC1D ; viF D
X

K2M
m.K/S n

KvK; (16)

where S n
K 2 IR, for all n 2 � 1;N � and for all K 2M .

Then the following estimate holds, for all j 2 � 1;N �.

k˘M @1 �
jC1
D k2

L2.˝/
C C j �jC1D j2X

� C
�
k˘M @1 �1Dk2L2.˝/ C j�1D j2X C .S /2

�
; (17)

where
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S D max

8
<

:

 
X

K2M
m.K/

�
S n
K

�2
! 1

2

; n 2 � 1;N �

9
=

;
: (18)

Proof. Taking v D @1 �nC1D in (16) and summing the result over n 2 � 1; j �, where
j 2 � 1;N �, we get

jX

nD1

�
˘M @2 �nC1D ; ˘M @1 �nC1D

�
L2.˝/

C
jX

nD1
h �nC1D ; @1 �nC1D iF

D
jX

nD1

X

K2M
m.K/S n

K@
1 �nC1K : (19)

We need the following two rules

�
˘M @2 �nC1D ; ˘M @1 �nC1D

�
L2.˝/

D 1

2k
k˛nC1D � ˛nDk2L2.˝/

C 1

2k

�
k˛nC1D k2

L2.˝/
� k˛nDk2L2.˝/

�
; (20)

where ˛nD D ˘M @1 �nD and

h �nC1D ; @1 �nC1D iF D 1

2k
h �nC1D � �nD ; �nC1D � �nDiF

C 1

2k

˚h �nC1D ; �nC1D iF � h�nD ; �nDiF
�
: (21)

Identities (20)–(21) yield

jX

nD1

�
˘M @2 �nC1D ; ˘M @1 �nC1D

�
L2.˝/

C
jX

nD1
h �nC1D ; @1 �nC1D iF

� 1

2k

�
k˛jC1D k2

L2.˝/
C h �jC1D ; �

jC1
D iF

�
� 1

2k

�
k˛1Dk2L2.˝/ C h �1D ; �1DiF

�
:

This with (19) and [2, Lemma 4.2] implies

1

2k

�
k˛jC1k2

L2.˝/
C C j �jC1D j2X

�
�

jX

nD1

X

K2M
m.K/S n

K@
1 �nC1K

C 1

2k

�
k˛1Dk2L2.˝/ C C j�1D j2X

�
: (22)
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Multiplying both sides of the previous inequality by 2k and using the Cauchy
Schwarz inequality, we get

k˘M @1 �
jC1
D k2

L2.˝/
C C j �jC1D j2X � 2kS

jX

nD1
k˘M @1 �nC1D kL2.˝/

Ck˘M @1 �1Dk2L2.˝/ C C j�1D j2X ; (23)

where S is given by (18).
This with the inequality ab � T

k
a2 C k

T
b2, (23) implies, for all j 2 � 1;N �

k˘M @1 �
jC1
D k2

L2.˝/
C C j �jC1D j2X �

2k

T

jX

nD2

�
k˘M @1 �nDk2L2.˝/ C C j �nD j2X

�

C2k˘M @1 �1Dk2L2.˝/ C C j�1D j2X C 8T 2 .S /2 : (24)

Using the discrete version of the Gronwall’s Lemma, (24) implies estimate (17).

Sketch of the proof of Theorem 1: The uniqueness of
�

unD
�
n2� 0;NC1� satisfying

(6)–(11) can be deduced from the [2, Lemma 4.2]. As usual, we can use this
uniqueness to prove the existence. To prove (13)–(15), we compare the solution�

unD
�
n2� 0;NC1� satisfying (6)–(11) with the solution (it exists and it is unique thanks

to [2, Lemma 4.2]): for any n 2 � 0;N C 1�, find NunD 2 XD ;0 such that, see (9)

h NunD ; viF D �
X

K2M
vK

Z

K

� u.x; tn/dx; 8 v 2XD ;0: (25)

Taking n D 0 in (25), using the fact that u.�; 0/ D u0.�/, and comparing this with
(6), we get the following property which will be used below

Nu0D D u0D : (26)

One remarks that the solution of (25) is the same one of [1, (12)], one can use error
estimates [1, (13), (15), and (16)] as error estimates for the solution of (25).
Writing (25) in the step nC 1 and substracting the result from (8) to get

�
˘M @2 �nC1D ; ˘M v

�
L2.˝/

C h �nC1D ; viF D
X

K2M
m.K/S n

KvK; (27)

where �nD D unD � NunD , for all n 2 � 0;N C 1� and

S n
K D

1

km.K/

Z tnC1

tn

Z

K

f .x; t/d x dt C 1

m.K/

Z

K

� u.x; tnC1/dx � @2 NunC1K :

(28)
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Equation (27) with Lemma 1 implies that, for all n 2 � 1;N �

k˘M @1 �nC1D k2
L2.˝/

C C j �nC1D j2X
� C

�
k˘M @1 �1Dk2L2.˝/ C j�1D j2X C .S /2

�
: (29)

To estimate the terms on the right hand side of the previous inequality, we consider


nD D NunD �PD u.�; tn/; 8 n 2 � 0;N C 1�: (30)

It is useful to remark that (recall that �nD D unD � NunD )

unD �PD u.�; tn/ D �nD C 
nD : (31)

1. Estimate of k˘M @1 �1DkL2.˝/: using (31), we get (recall that ut .�; 0/ D u1.�/)

k˘M @1 �1DkL2.˝/ �
4X

iD1
Ti ; (32)

where
T1 D k˘M @1
1DkL2.˝/; T2 D k˘M @1 u1D � u1kL2.˝/;

T3 D k ut .�; 0/� @1 u.�; t1/kL2.˝/; and T4 D k @1 u.�; t1/�PM@1 u.�; t1/kL2.˝/:
Estimate [1, (15)], when j D 1, with (30) leads to

T1 � C hDk ukC 1.Œ0;T �I C 2.˝//: (33)

Equation (7) can be written as

h @1 u1D ; viF D �
�
� u1;˘M v

�
L2.˝/

; 8 v 2XD ;0: (34)

This with [2, (4.25)] and the triangle inequality implies that

Ti � C .k C hD /k ukC 1.Œ0;T �I C 2.˝//; 8 i 2 � 2; 4�: (35)

Thanks to (32), (33), and (35), we have

k˘M @1 �1DkL2.˝/ � C .k C hD/k ukC 1.Œ0;T �I C 2.˝//: (36)

2. Estimate of j�1D jX : let us first remark that thanks to (6) and (7), we have

h u1D ; viF D �
�
�.u0 C ku1/;˘M v

�
L2.˝/

; 8 v 2XD ;0: (37)
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In order to bound j�1D jX D j u1D � Nu1D jX , we use the triangle inequality to get

j�1D jX � j u1D �PD .u
0 C ku1/jX C jPD .u

0 C ku1/�PD u.�; t1/jX
C jPD u.�; t1/ � Nu1D jX : (38)

This with the proof of [2, (4.29)] and suitable Taylor expansions, we get

j�1D jX � C .k C hD /k ukC 2.Œ0;T �I C 2.˝//: (39)

3. Estimate of S : substituting f by ut t �� u, see (1), in the expansion of S n
K , we

get

S n
K D

1

km.K/

Z tnC1

tn

Z

K

ut t .x; t/d x dt � 1

km.K/

Z tnC1

tn

Z

K

�.x; t/d x dt

C 1

m.K/

Z

K

� u.x; tnC1/dx � @2 NunC1K : (40)

Thanks to the Taylor expansion and [1, (15)], when j D 2, we have

S � C .k C hD /k ukC 3.Œ0;T �I C 2.˝//: (41)

Gathering now (29), (36), (39), and (41) yields, for all n 2 � 2;N C 1�

k˘M @1 �nDkL2.˝/ � C .k C hD /k ukC 3.Œ0;T �I C 2.˝//; (42)

and
j �nD jX � C .k C hD /k ukC 3.Œ0;T �I C 2.˝//: (43)

We now combine (42)–(43) with [1, (13), (15), and (16)] to prove the required
estimates (13)–(15).

– Proof of estimate (13): estimate (43) with [2, (4.6)] implies

k˘M �nDk1;2;M � C .k C hD /k ukC 3.Œ0;T �I C 2.˝//; 8n 2 � 2;N C 1�: (44)

This with (31), the fact that˘M 
nD D ˘M NunD�PM u.�; tn/, estimate [1, (13)],
and the triangle inequality implies estimate (13) for all n 2 � 2;N C 1�. The
case when n D 1 in (13) can be proved by gathering (39), [2, (4.6)], and the case
n D 1 of [1, (13)]. Property (26) with the case n D 0 of [1, (13)] yields the case
n D 0 of (13).

– Proof of estimate (14): the case when n 2 � 2;N C 1� of (14) can be proved by
gathering (42), the case when j D 1 in [1, (15)], and the triangle inequality. The
case n D 1 of (14) can be proved by gathering (36), the case when n D 1 and
j D 1 in [1, (15)], and the triangle inequality.
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– Proof of estimate (15): gathering (39) and (43), and [2, Lemma 4.2] leads to

krD�
n
DkL2.˝/ � C .k C hD/k ukC 3.Œ0;T �I C 2.˝//; 8 n 2 � 1;N C 1�: (45)

Combining (45), [1, (16)], and the triangle inequality yields (15) for all n 2
� 1;N C 1�. The case n D 0 of (15) can be deduced directly from the case n D 0
of [1, (16)] by using (26). �
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A Convergent Finite Volume Scheme
for Two-Phase Flows in Porous Media with
Discontinuous Capillary Pressure Field

K. Brenner, C. Cancès, and D. Hilhorst

Abstract We consider an immiscible incompressible two-phase flow in a porous
medium composed of two different rocks. The flows of oil and water are governed
by the Darcy–Muskat law and a capillary pressure law, where the capillary pressure
field may be discontinuous at the interface between the rocks. Using the concept
of multi-valued phase pressures, we introduce a notion of weak solution for the
flow, and prove the convergence of a finite volume approximation towards a weak
solution.

Keywords Finite volume, two phase flow, discontinuous capillary pressures
MSC2010: 65M112, 76M12, 35K65, 76S05

1 The Continuous Problem

1.1 Multivalued Phase Pressures

Consider a heterogeneous porous medium, represented by a polygonal domain˝ �
R
d , built of two homogeneous and isotropic subdomains, represented by polygonal

domains ˝1;˝2 � R
d . We assume that ˝1 [˝2 D ˝ and ˝1 \ ˝2 D ;, and

we denote by � the interface between the two rocks, i.e. � D @˝1 \ @˝2. We
consider two immiscible incompressible phases (e.g. water and oil), whose flows
within ˝i are described by the conservation of mass equations together with the
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Darcy–Muskat law:

�i@t s � r � .�o;i .s/.rpo � �og// D 0; (1)

��i@t s � r � .�w;i .s/.rpw � �wg// D 0; (2)

where s denotes the oil saturation of the fluid, �i > 0 the porosity of ˝i , the
oil mobility �o;i is a Lipschitz continuous increasing function on Œ0; 1� satisfying
�o;i .0/ D 0, while the water mobility �w;i is Lipschitz continuous, decreasing on
Œ0; 1� and such that �w;i .1/ D 0. The density of the phase ˛ (˛ 2 fo;wg) is
denoted by �˛ , and g is the gravity vector. Assume first that both phases coexist,
i.e. s 2 .0; 1/, then each phase has its own pressure denoted by p˛. Classically, they
are supposed to be linked by the capillary pressure relation

po � pw D �i .s/; (3)

where the capillary pressure function �i is supposed to be increasing and to belong
to C 1..0; 1/IR/ \ L1.0; 1/. Since the equation (1) degenerates, there is no control
on the oil pressure po on fs D 0g \ ˝i , excepted that, because of (3), one has
po � pw C �i .0/. Similarly, on fs D 1g \˝i , pw � po � �i .1/. In these cases, the
pressure has to be considered as multivalued, i.e.

s D 0, po D Œ�1; pw C �i .0/�; s D 1, pw D Œ�1; po � �i .1/�: (4)

We deduce from (4) that the capillary pressure function �i has to be extended into
the monotone graph Q�i , already introduced in [3, 5], defined by

Q�i .s/ D
8
<

:

Œ �1; �i .0/� if s D 0;
�i .s/ if s 2 .0; 1/;
Œ�i .1/;C1� if s D 1:

(5)

Note that there exists a continuous non-decreasing reciprocal function on R, which
we denote by Q��1i .

At the interface� , we prescribe the continuity of the multivalued phase pressures

p˛;1 \ p˛;2 ¤ ;; .˛ 2 fo;wg/ (6)

where p˛;i denote the trace of the pressure of the phase ˛ on � from˝i . It is worth
noticing that the condition (6) is equivalent to the continuity of the mobile phases
prescribed in [8]. The volume conservation of each phase yields

X

iD1;2
�˛;i .si /.rp˛;i � �˛g/ � ni D 0; (7)

where ni denote the outward normal to @˝i w.r.t.˝i . In order to close the problem,
we prescribe the initial condition
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s0 2 L1.˝/; 0 � s0 � 1 a.e. in ˝; (8)

and the null-flux boundary condition on @˝i \ @˝:

�˛;i .si /.rp˛;i � �˛g/ � ni D 0: (9)

1.2 Reformulation of the Problem

We define the fractional flow function fi .s/ D �o;i .s/

�o;i .s/C�w;i .s/
. We introduce the

Kirchhoff transform 'i .s/ and the global pressure P defined by

'i.s/ D
Z s

0

fi .a/�w;i .a/�
0
i .a/da; (10)

P D pw C 	w;i .�/ D po C 	o;i .�/ for some � 2 Q�i .s/; (11)

where 	w;i .�/ D
Z �

0

fi ı Q��1i .p/dp and 	o;i .�/ D 	w;i .�/ � � . Classical

computations (see e.g. [7]) allow the rewrite the equations (1) as

�i@t s � r � .�o;i .s/.rP � �og/Cr'i.s// D 0; (12)

while the sum of the equations (1) and (2) yields

� r � .Mi.s/rP � #i .s/g/ D 0; (13)

where Mi.s/ D �o;i .s/C �w;i .s/ � ˛M > 0 and #i .s/ D �o;i .s/�o C �w;i .s/�w. At
the interface, the relations (6) have to be replaced (see [6]) by

9� 2 Q�1.s1/\ Q�2.s2/ s.t. P1 � 	w;1.�/ D P2 � 	w;2.�/: (14)

We solve the problem on the domain Q D ˝ � .0; T / for some T > 0, and we
defineQi D ˝i � .0; T /.
Definition 1 (weak solution). A pair .s; P / is said to be a weak solution of the
problem if

1. s 2 L1.Q/ with 0 � s � 1 a.e. in Q, 'i.s/ and P belong to L2..0; T /;
H1.˝i//;

2. there exists a measurable function � mapping � � .0; T / to R such that

� 2 Q�1.s1/ \ Q�2.s2/ and P1 � 	w;1.�/ D P2 � 	w;2.�/I

3. for all  2 C1c .˝ � Œ0; T //,



188 K. Brenner et al.

“

Q

�s@t dxdt C
Z

˝

�s0 .�; 0/dxdt

�
X

iD1;2

“

Qi

.�o;i .s/.rP � �og/Cr'i .s// � r dxdt D 0; (15)

“

Q

.Mi.s/rP � #i .s/g/ � r dxdt D 0: (16)

Because of the choice of the boundary conditions, the global pressure P is only
defined up to a constant. In order to eliminate this degree of freedom, we prescribe
that Z

˝

P.x; t/dx D 0; 8t > 0: (17)

The equation (13) can be reformulated as

r � q D 0; with q D �Mi.s/rP C #i .s/g; (18)

while (12) can be rewritten under the form

�i@t s Cr � .qfi .s/C �i.s/g � r'i .s// D 0; (19)

with �i .s/ D .�o � �w/�w;i .s/fi .s/.

2 The Finite Volume Scheme

Since nonlinear test functions are necessary for proving the convergence of the
scheme, we must restrict our study to spatial discretizations satisfying an orthog-
onality condition, as developed in [9].

Definition 2 (admissible discretization of Q).

1. An admissible discretization of ˝ is given by .T ;E ; .xK/K2T / where for all
K 2 T , K is an open polygonal subset of ˝ such that K � ˝i for some i . We
define Ti D fK � ˝ig, and we assume that ˝i D S

K2Ti
K. For K;L 2 T

with K ¤ L, then either the .d � 1/-Lebesgue measure of K \ L is 0, or there
exists � 2 EK\EL (denoted by � D KjL) such that � D K\L. For allK 2 T ,
there exists EK � E such that @K D S

�2EK � . Moreover, E D S
K2T EK . We

define E� D f� 2 E W � � � g, Ei D f� 2 E W � � ˝i g and Eext D f� 2
E W � � @˝g, and set EK;� D EK \ E� , EK;i D EK \ Ei . The family of points
.xK/K2T is such that xK 2 K and if � D KjL, the straight line .xKxL/ is
orthogonal to � . We denote by dK;L the distance between xK and xL, and by
dK;� the distance between xK and � 2 EK . For all K 2 T and � 2 E we denote
by m.K/ andm.�/ the corresponding Lebesgue measures.
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2. Let N be a positive integer, and ıt D T=N ; then a uniform discretization of
.0; T / is given by the family .tn/n2f0;:::;N g, where tn D nıt .

3. A discretization DD �
T ;E ; .xK/K2T ; .tn/n2f0;:::;N g

�
of Q is said to be admis-

sible if .T ;E ; .xK/K2T / is an admissible discretization of ˝ and .tn/n is a
uniform discretization of .0; T /.

For a given admissible discretization D D .T ;E ; .xK/K2T ; .tn/n2f0;:::;N g/ of
Q, we define the quantities

size.T / D max
K2T diam.K/; reg.T / D max

iD1;2 max
K2T

0

@
X

�DKjL2EK;i

m.�/dK;L

m.K/

1

A ;

and
size.D/ D max .size.T /; ıt/ ; reg.D/ D reg.T /:

Remark 1. The choice of uniform time steps is not necessary, and all the results
presented here can be adapted to the case of nonuniform time steps.

For K 2 Ti , we define gK.s/ D gi .s/ for all functions g whose definition depends
on the subdomain˝i , as for example �i ; 'i ;Mi ; fi ; : : : .

We propose a fully implicit cell-centered finite volume scheme for the problem,
whose unknowns at each time step are .snK; P

n
K/K2T and an interface unknown�

�n�
�
�2E� . For all � 2 EK;� , we define snK;� D Q��1K .�n� /, so that, if � D KjL, one

directly has that
�n� 2 Q�K.snK;� / \ Q�L.snL;� /:

The total flux balance equation (18) is discretized by

X

�2EK
m.�/Qn

K;� D 0; 8n 2 f1; : : : ; N g;8K 2 T ; (20)

with

Qn
K;� D

8
<̂

:̂

MK;L.s
n
K ;s

n
L/

dK;L

�
Pn
K � Pn

L

�CR
�
ZK;� I snK; snL

�
if � D KjL 2 EK;i ;

MK.s
n
K/

dK;�

�
Pn
K � Pn

K;�

�CR
�
ZK;� I snK; snK;�

�
if � 2 EK;� ;

0 if � 2 EK;ext;

(21)

where MK;L.s
n
K; s

n
L/ D ML;K.s

n
L; s

n
K/ is an average of MK.s

n
K/ and ML.s

n
L/. For

example, we can suppose, as in [10] that it is given by the harmonic mean

MK;L.s
n
K; s

n
L/ D

MK.s
n
K/MK.s

n
L/dK;L

dL;�MK.s
n
K/C dK;�MK.s

n
L/
:

The function ZK;� is defined by ZK;� .s/ D #K.s/g � nK;� , where nK;� denotes the
outward normal to � with respect to K . For a function f , we denote by R.f I a; b/
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the Riemann solver

R.f I a; b/ D
�

minc2Œa;b� f .c/ if a � b;
maxc2Œb;a� f .c/ if b � a:

The oil-flux balance equation (19) is discretized in the form

�K
snK � sn�1K

ıt
m.K/C

X

�2EK
m.�/F n

K;� D 0; 8n 2 f1; : : : ; N g;8K 2 T ;

(22)
with

F n
K;� D

8
<̂

:̂

Qn
K;� fK.s

n
K;� /CR.GK;� I snK; snL/C 'K.s

n
K/�'K.snL/
dK;L

if � D KjL 2 EK;i ;

Qn
K;� fK.s

n
K;� /CR.GK;� I snK; snK;� /C

'K.s
n
K/�'K.snK;� /
dK;�

if � 2 EK;� ;

0 if � 2 EK;ext;
(23)

where GK;� .s/ D �K.s/g � nK;� and snK;� is the upstream value defined by

snK;� D

8
<̂

:̂

snK if Qn
K;� � 0;

snL if Qn
K;� < 0 and � D KjL 2 EK;i ;

snK;� if Qn
K;� < 0 and � 2 EK;� :

(24)

The interface values
�
�n� ; P

n
K;� ; P

n
L;�

�
for � D KjL 2 E� are defined by the

following nonlinear system:

Pn
K;� � 	w;K

�
�n�
� D Pn

L;� � 	w;L
�
�n�
�
: (25)

Qn
K;� CQn

L;� D 0; (26)

F n
K;� C F n

L;� D 0: (27)

Note that since the equations (25) and (26) are linear with respect to Pn
K;� and Pn

L;� ,
one can eliminate these interface values, only keeping �n� . We impose the discrete
counterpart of (17), that is

X

K2T
m.K/P n

K D 0; 8n 2 f1; : : : ; N g: (28)

The discrete initial data is given by:

s0K D
1

m.K/

Z

K

s0.x/dx; 8K 2 T ;

so that 0 � s0K � 1.



A Convergent Finite Volume Scheme for Two-Phase Flows 191

Proposition 1 (existence of a discrete solution). For all n 2 f1; : : : ; N g, there

exists
��
snK
�
K2T ;

�
Pn
K

�
K2T ;

�
�n�
�
�2E�

�
satisfying the relations (20)–(28). More-

over,
0 � snK � 1; 8K 2 T : (29)

The proof of Proposition 1 will be given in the forthcoming paper [2].
For an admissible discretization D ofQ, we denote by sD and PD the piecewise

constant functions defined almost everywhere by

sD .x; t/ D snK; PD .x; t/ D Pn
K if .x; t/ 2 K � .tn�1; tn�:

We consider now a sequence .Dm/m�0 of admissible discretizations of Q in the
sense of Definition 2 such that size.Dm/ tends to 0 and reg.Dm/ remains uniformly
bounded as m tends to1. We denote by .sDm; PDm/m a corresponding sequence of
discrete solutions, whose existence has been stated in Proposition 1.

Theorem 1 (main result). There exists a weak solution .s; P / in the sense of
Definition 1 such that, up to a subsequence,

sDm ! s and a.e. in Q as m!1;

PDm ! P weakly in L2.Q/ as m!1:
The proof of Theorem 1 that we will present in the forthcoming paper [2] is based
on compactness arguments, using the material developed in [9,10]. The proof adapts
the steps that are given in [6] for the continuous frame.

3 Numerical Results

We consider a model porous medium ˝ D .0; 1/2 composed of two layers ˝1 D
f.x; y/ 2 ˝ j y < � .x/g and˝2 D f.x; y/ 2 ˝ j y > � .x/g, which have different
capillary pressure laws. The fluid densities are given by �o D 0:81, �w D 1, and
g D �9:81ey . We suppose that the porosity is such that �i D 1; i 2 f1; 2g, and we
define the oil and water mobilities by

�o;i .s/ D 0:5s2 and �w;i D .1 � s/2; i 2 f1; 2g:

Moreover we suppose that the capillary pressure curves have the form

�1.s/ D s and �2.s/ D 0:5C s:

and that the initial saturation is given by
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Fig. 1 Saturation for t D 0:06, t D 0:11 and t D 0:6

Fig. 2 Capillary pressure for t D 0:06, t D 0:11 and t D 0:6

s0.x/ D
�
0:3 if x 2 ˝1;

0 otherwise:

The flow is driven by buoyancy, making the oil move along ey until it reaches the
interface � . For t � 0:11, oil can not access the domain ˝2, since the capillary
pressure �1.s1/ is lower than the threshold value �2.0/ D 0:5, which is called
the entry pressure, see the Fig. 2. Hence the saturation (see the Fig. 1) below the
interface s1 increases, as well as the capillary pressure �1.s1/. As soon as the
capillary pressure �1.s1/ reaches the entry pressure �2.0/, oil starts to penetrate in
the domain˝2. Nevertheless, as pointed out in [1,4], a finite quantity of oil remains
trapped under the rock discontinuity. This phenomenon is called oil trapping.

Acknowledgements This work was supported by the GNR MoMaS (PACEN/CNRS, ANDRA,
BRGM, CEA, EdF, IRSN), France.

References

1. M. Bertsch, R. Dal Passo, and C. J. van Duijn. Analysis of oil trapping in porous media flow.
SIAM J. Math. Anal., 35:245–267, 2003.

2. K. Brenner, C. Cancès, and D. Hilhorst. Convergence of a finite volume approximation of
an immiscible two-phase flow in porous media with discontinuous capillary pressure field. In
preparation.



A Convergent Finite Volume Scheme for Two-Phase Flows 193

3. F. Buzzi, M. Lenzinger, and B. Schweizer. Interface conditions for degenerate two-phase flow
equations in one space dimension. Analysis, 29:299–316, 2009.

4. C. Cancès. Finite volume scheme for two-phase flow in heterogeneous porous media involving
capillary pressure discontinuities. M2AN, 43:973–1001, 2009.
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Uncertainty Quantification
for a Clarifier–Thickener Model
with Random Feed

Raimund Bürger, Ilja Kröker, and Christian Rohde

Abstract The continuous sedimentation process in a clarifier–thickener can be
described by a scalar nonlinear conservation law for the solid volume fraction. The
flux is discontinuous with respect to space due to the feed mechanism. Typically
the feed flux cannot be given in an exact manner. To quantify uncertainty the
unknown solid concentration and the feed bulk flow are expressed by polynomial
chaos. A deterministic hyperbolic system for a finite number of stochastic moments
is constructed. For the resulting high-dimensional system a simple finite volume
scheme is presented. Numerical experiments cover one- and two-dimensional
situations.

Keywords Clarifier–Thickener model, Polynomial chaos, Uncertainty quantifica-
tion, Galerkin projection, Finite–Volume method
MSC2010: 65M08, 68U20, 35R60

1 Introduction

Modelling uncertainty is important in many technical applications. Straightforward
Monte-Carlo computations are easy but computationally inefficient or even impossi-
ble. The quantification of randomness by stochastic Galerkin or collocation methods
seems to be more promising in many situations as this leads to deterministic models
for at least a finite number of stochastic moments (cf. [MK05] for an overview).
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Roughly speaking, there is by now a well-understood theory for models that
can be described by linear partial differential equations. What concerns nonlinear
problems –we are interested in hyperbolic conservation laws– first steps have been
done just recently [Abg07, PDL09, TLMNE10].

As a prototype model in this field we consider a clarifier–thickener (CT) model
for the continuous fluid-solid separation of suspensions under gravity. The CT
model provides an idealized description of secondary settling tanks in waste water
treatment or of thickeners in mineral processing [BCBT99]. Typically, many input
parameters can not be described with deterministic accuracy but behave noisily. We
take into account two stochastic dimensions: the uncertainty of the rate of inflow of
feed suspension and that of the fraction of solid material. This uncertainty produces
a hyperbolic equation with a doubly random flux function. To be precise, consider
the longitudinal-infinite vessel D WD R � S � R

d with the cross-sectional domain
S � R

d�1 and coordinates x D .x1; x2; : : : ; xd /
T . The longitudinal direction is

aligned with gravity. For a final time T > 0 we search then as the unknown the solid
volume fraction u W DT WD D � .0; T /! Œ0; 1�. According to [BKRT04, BWC00]
the sedimentation process can be modelled by the initial value problem

ut .x; t; !/C div
�
h.x; t; u.x; t; !//

� D ı.x1/QF.t; !1/uF.t; !2/ in DT �˝;
u.:; 0/ D 0 in D:

(1)

The nonlinear flux is given by

h.x; t; u/ D q.x; t/uC .�.�1;1/�S .x/b.u/; 0; � � � ; 0/T ;

where b is the given nonlinear batch flux density function. The vector field
q D q.x; t/ 2 R

d is the volume average flow velocity which satisfies a
coupled Navier–Stokes-like system [BWC00]. For simplicity, we assume q to be
a given deterministic quantity whose transversal components vanish on R � @D.
Furthermore, �.�1;1/�S is the characteristic function for the set .�1; 1/ � S . This
choice describes the upper overflow boundary and the lower discharge boundary
of the vessel. The right-hand side in (1) models the stochastic feed process. For
probability measures P1; P2 let ˝ D ..˝1; P1/; .˝2; P2// be the vector-valued
probability space. By QF D QF.t; !1/ > 0, !1 2 ˝1, we denote the random
feed rate and by uF D uF.t; !2/ 2 Œ0; 1�, !2 2 ˝2, the feed solid volume fraction.
For the idealized vessel we assume that the feed source is distributed over the whole
cross section f0g � S , i.e. ı denotes the Dirac function in (1). As we will show
below, the complete feed term in (1) can be rewritten as part of the flux such that
(1) gets the form of a nonlinear conservation law with discontinuous flux. To our
knowledge such a situation has not yet been treated in the framework of uncertainty
quantification.

In Sect. 2 we detail the model and introduce an approximation for the stochastic
process u by a polynomial chaos (PC-) ansatz. A numerical scheme for the PC-
system on the base of the Lax–Friedrichs approach is presented. Note that the
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Engquist–Osher flux, which is usually applied for problems with discontinuous flux,
cannot be used for the higher-dimensional PC-system. Finally, in Sect. 3 numerical
experiments are displayed.

2 A Polynomial Chaos Approach for Discontinuous Fluxes

2.1 Formulation of the Model

For notational simplicity we choose d D 1 (i.e. S D ; ) in (1) and use x D x1 for
the remaining vertical coordinate. The source term is formally rewritten as

ı.x/QF.t; !1/uF.t; !2/ D .H.x/QF.t; !1/uF.t; !2//x; (2)

where H denotes the Heaviside function. Following [BKRT04] we obtain then the
flux formulation form

ut .x; t; !/C
�
g.x; t; u; !/

�
x
D 0 in R � .0; T / �˝: (3)

The flux function g is determined for t 2 .0; T / and ! 2 ˝ by the flux in (1) (see
assumptions below) minus the flux in (2). This leads to

g.x; t; u; !/ WD

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

qL.t; !1/.u � uF.t; !2// for x < �1;
qL.t; !1/.u � uF.t; !2//C b.u/ for �1 < x < 0,

qR.t; !1/.u � uF.t; !2//C b.u/ for 0 < x < 1,

qR.u � uF.t; !2// for x > 1.

(4)

To obtain this representation, firstly we have made for q D q.x; t/ the ansatz

q.x; t/ D
(
qL.t; !1/ for x < 0,

qR for x > 0;
qL.:; !1/ 2 C1.Œ0; T //; qL.:; !1/ < 0; qR > 0:

Stochasticity is solely attached to qL. Secondly, to ensure global conservativity, we
have chosen QF.t; !1/ D qR � qL.t; !1/.

The flux (4) has discontinuities for x 2 f�1; 0; 1g. We will not directly work with
(3) but expand the equation to a system. For x 2 R, t 2 Œ0; T /, !1 2 ˝1 we define

�1.x; t; !1/ WD
(
qL.t; !1/ for x < 0;

qR for x > 0;
�2.x; t/ WD

(
1 for x 2 .�1; 1/;
0 for x … .�1; 1/:

(5)
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With the flux f .t; u; �1; �2; !2/ WD �1.�; !1/.u � uF.t; !2// C �2b.u/ we can
understand (3), (4) as a (only seemingly trivial) system of balance laws

u.x; t; !/t C
�
f .t; u; �1; �2; !2/

�
x
D 0;

�1t .x; t; !1/ D H.�x/qL;t .t; !1/; �2t .x; t/ D 0
(6)

for the unknown vector .u; �1; �2/T 2 Œ0; 1� � R
2.

2.2 Polynomial Chaos Representation

Let � D �.!/ D .�1.!1/; �2.!2//
T 2 R

2 be a vector of i.i.d. (independent
identically distributed) random variables. Define

 jk.�/ D �j .�1/�k.�2/ .j; k 2 N0/;

where �k is the k-th Legendre polynomial. Then f jk.�/gj;k2N0 is a family of
L2.˝1 �˝2/-orthonormal polynomials in the sense

˝
 jk.�/;  lm.�/

˛
L2.˝/

WD
Z

˝1

Z

˝2

 jk.�/ lm.�/ dP1.!1/dP2.!2/ D ıjkılm: (7)

We recall that for some second order random field w D w.x; t; !/ the polynomial
chaos (PC-) representation

w.x; t; !/ D
X

j;k2N0

wjk.x; t/ jk.�.!//; wjk WD
Z

˝1

Z

˝2

w jk dP1.!1/dP2.!2/

(8)
holds [GS91]. For the sake of a more handsome notation let w0; : : : ;wP for P D
P.M/ D .M C 1/.M C 2/=2 � 1 be an arbitrary but fixed re-indexing of the set
fwjk j j; k 2 N0; j C k � M g. The M -th order approximation of w.x; t; !/ in (8)
is given by

.˘Pw/.x; t; !/ WD
PX

pD0
wp.x; t/ p.�.!//:

The standard stochastic Galerkin approach (for the first equation in (6)) reads as
follows. For M 2 N0 find u0; : : : ; uP W D � .0; T /! R such that

Z

˝1

Z

˝2

�
˘PuC �˘M

2 �
1
�
˘P u �˘M

1 uF
�C �2b �˘Pu

��
x

�
�q dP1.!1/dP2.!2/ D 0

(9)
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holds for q D 0; : : : ; P . We used for the given, stochastically one-dimensional
approximation of uF the notation ˘M

1 uF. An analogous formulation holds for the
unknown (stochastically one-dimensional) approximation˘M

2 �
1 of �1.

Using now the orthogonality from (7) the equations (9) can be written in the form

upt C
0

@
MX

mD0

PX

qD0
�1

m
uqcmqp �

MX

m;lD0
�1

m
ulF.t/dmlp C �2E

�
b
�
˘P u

�
 p
�
1

A

x

D 0;

(10)
with p D 0; : : : ; P . Here E denotes the expectation value and

cmqp D
Z

˝1

Z

˝2

�m.!2/ q.!/ p.!/ dP.!1/ dP.!2/;

dmlp D
Z

˝1

Z

˝2

�m.!2/�l.!1/ p.!/ dP.!1/ dP.!2/:
(11)

Below we choose b to be a polynomial such that the expectation in (10) can be
computed exactly.
We obtain finally from (10) and equations for �1

0
; : : : ; �1

M
the .P C M C 3/-

dimensional PC-system. Using the definition of the coefficients in (11) and the
(weak) hyperbolicity of (6) it can be shown that the PC-system (10) is weakly
hyperbolic.

2.3 1D Finite–Volume Method

The PC-system (10) is quite general and it appears hard to construct e.g. a Godunov-
type solver. Therefore, at least in this paper, we use the simple Lax–Friedrichs
method on a uniform mesh with cells Œxi�1=2; xiC1=2/, i 2 Z and �x D xiC1=2 �
xi�1=2. Restricting to the u-components u0; : : : ; uP we have for time step �tn > 0

the scheme

up;nC1i D up;ni �
�tn

�x

�
F
p;n

iC1=2 � F p;n

i�1=2
�

.i 2 Z; n 2 N; p D 0; : : : ; P /;

F
p;n

iC1=2 WD
1

2

	

f p.tn; u0;ni ; : : : ; u
P;n
i ; �1i

0;n
; : : : ; �1i

M;n
; �

2;n
i /

Cf p.tn; u0;niC1; : : : ; u
P;n
iC1; �

10;n

iC1; : : : ; �1
M;n

iC1 ; �
2;n
iC1/




C �x

2�tn
.up;niC1 � up;ni /:

The function f p is defined by
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f p.t; u0; : : : ; uP ; �1
0
; : : : ; �1

M
; �2/ D

MX

mD0

PX

qD0
�1

m
uqcmqp �

MX

m;lD0
�1

m
ulF.t/dmlp C �2E

�
b
�
˘P u

�
 p
�
:

Initial values are obtained from u0i D : : : D uP;0i D �1
1;0

i D : : : D �1
M;0

i D 0 (cf.
(1)) and averaging �1; �2 from (5) for �1

0;0

i ; �
2;0
i .

3 Numerical Experiments

Example 1: [1D Computation with one random dimension ]
We consider the problem (3) with the batch flux function b.w/ WD 27

4
w..1 � w/2/

[BKRT04] and u0 D 0. The solid volume feed fraction uF satisfies

uF.t; !1/ WD 0:6C 0:2�.!2/;

such that � is uniformly distributed on Œ0; 1�. Consequently the random variable uF

has the expectation 0:7. No further uncertainty is assumed. We choose qL D �1,
qR D 0:6. Figure 1 shows (total view and blow-up close to inflow) the numerical
solution with P D 5 together with the numerical solution of the deterministic
problem using uF 	 0:7 and the numerical Monte-Carlo approach with 5000

samples computed with �x D 0:01. We use Lax–Friedrichs method for our
computation. Almost no differences can be detected.

This is confirmed by the subsequent table which displays the L1.R/-difference
between the Monte-Carlo sample solution and the PC-approach for P D 1; : : : ; 6.

P 1 2 3 4 5 6

L1-Error 1.1372e-02 1.5566e-02 3.2322e-03 1.4975e-03 8.5714e-04 5.0671e-04
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Fig. 1 Solid volume fraction for the deterministic case using the expectation value of the feeding
rate, PC-solution, and Monte-Carlo samples. Blow-up in the right figure
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We here observe a clear convergence for a reasonable number of stochastic modes.

Example 2: [1D Computation with two random dimensions ]
We choose the same setting as in Example 1 but introduce the second random
dimension in the suspension feed rate via

qL.t; !1/ D �1:2C 0:4�.!1/:

Again let � be uniformly distributed on the interval Œ0; 1�. Figure 2 shows the
numerical solution with M D 3 and P D 9. This is compared with the numerical
solution of the deterministic problem using the expectation values qL D �1 and
uF 	 0:7, and the numerical Monte-Carlo approach with 50000 samples at time
T D 1.

Already for this low random (and spatial) dimension we immediately attain the
limits of available computing power. The table below shows the computing time of
the PC-approach.

M .P / 1 ( 2) 2 ( 5) 3 ( 9) 4 (14) 5 (20)

cpu-time [s] 1.3721e+03 3.9463e+03 1.2037e+04 3.5001e+04 6.6399e+04

Example 3: [2D Computation with one random dimension]
Let us consider the CT problem (1) for d D 2 and S D .�1:2; 1:2/, with
flux components h1.x; t; u; !/ D g.x1; t; u; !/ defined in (4) and h2.x; t; u; !/ D
0:02cos.�x2

0:6
/u This corresponds not to a realistic velocity field q but we understand

this example as a test case for the uncertainty quantification. The batch flux function
b, solid volume feed fraction uF .t; !1/, and qL; qR are as in Example 1. For
the numerical approximation we use an adaptive finite-volume method based on
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Fig. 2 Solid volume fraction for the deterministic case using the expectation values for solid
fraction feeding rate and suspension feeding rate, PC-solution, and Monte-Carlo samples
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unstructured triangular meshes with the Lax–Friedrichs flux (cf. [Krö08]). Initially
4608 triangles are used.
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Fig. 3 Solid volume fraction for the deterministic case using the expectation values for solid
fraction feeding rate and suspension feeding rate (a), and PC-solution (b) at time T D 1

Figure 3(a) shows a deterministic computation with uF D 0:7 and the PC-
solution with P D 7 (Fig. 3(b)). As in the 1D computations the PC-solution is
much smoother and does not develop a peak close to the inlet. As a consequence
the adaptive algorithm uses a coarser grid for the PC-solutions. To be specific, at
T D 1 we had 11826 triangles for the deterministic computation, 8280 for P D 7,
and 4608 for P D 1 (no refinement). Because of the long computation time of each
deterministic solution, the computational effort of the Monte-Carlo simulation with
a considerable number of samples significantly is higher then the computational
effort of the PC approach.
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Asymptotic preserving schemes
in the quasi-neutral limit for the drift-diffusion
system

Chainais-Hillairet Claire and Vignal Marie-Hélène

Abstract We are interested in the drift-diffusion system near quasi-neutrality. For
this system, classical explicit schemes are decoupled but subject to severe numerical
constraints in the quasi-neutral regime. By constrast, the implicit discretizations are
unconditionally stable but non linearly coupled. Then, an iterative method must be
used yielding a large numerical cost. Here, we propose a new decoupled asymptotic
preserving scheme. We perform one and two dimensional numerical experiments
which show its good behavior.

Keywords drift-diffusion, asymptotic preserving schemes, quasi-neutral regime
MSC2010: 65M08, 65M12

1 Presentation of the problem

Let ˝ � R
d (d � 1) be an open bounded domain describing the geometry of

a semiconductor device. The unknowns of the linear drift-diffusion system are the
density of electrons and holes, N and P , and the electrostatic potential � . It writes:

@tN C div.�rN CNr�/ D 0 on ˝ � Œ0; T �; (1a)

@tP C div.�rP � Pr�/ D 0 on ˝ � Œ0; T �; (1b)

� 	2�� D P �N C C on ˝ � Œ0; T �; (1c)
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 22, © Springer-Verlag Berlin Heidelberg 2011

205

Claire.Chainais@math.univ-lille1.fr
mhvignal@math.univ-toulouse.fr


206 C-H. Claire and V. Marie-Hélène

where C is the given doping profile non depending on t . The parameter 	 comes
from the scaling of the physical model. It is called the rescaled Debye length and is
given by the ratio of the Debye length to the size of the domain. The Debye length
measures the typical scale of electric interactions in the semiconductor.

The system (1) is supplemented with initial conditions N0, P0 and with mixed
boundary conditions: Dirichlet boundary conditions on � D (ND, PD and �D) and
homogeneous Neumann boundary conditions on � N (with @˝ D � D [ � N ).

We are interested in the so-called quasi-neutral regime. This regime occurs when
the parameter 	 tends to zero. There has been an intense literature on the rigorous
quasi-neutral limit of the drift-diffusion model; we can refer for instance to [9] for
a zero doping profile C and to [10] for a regular doping profile.

Many different numerical methods have been already developed for the approx-
imation of (1); see for instance [1] and [12, 13] in the non linear case. The
convergence of some finite volume schemes has been proved in [2, 3]. But, up to
our knowledge, all the schemes are studied in the case 	 D 1. In this paper, we
focus on the behavior of schemes in the quasi-neutral limit, that means when 	
tends to zero. In this regime, the local electric charge vanishes everywhere. However,
simultaneously, very high frequency oscillations, of order 1=	2, are triggered. When
a standard explicit scheme is used, the scale of these very high frequency oscillations
must be resolved by the time step. Hence, the time step must be smaller than 	2

otherwise a numerical instability appears. The satisfaction of this constraint requires
huge computational resources which makes the explicit methods unusable.

Here, the purpose is to define numerical schemes free of such constraints. For a
given time step, we look for schemes which may be used as well as for values of 	
of order 1 and for values of 	 as small as possible. Furthermore, these schemes must
preserve the behavior of the continuous problem in the quasi-neutral limit (	! 0).
Such schemes are called asymptotic preserving schemes, this name has been
introduced in [11] for relaxation limits of kinetic systems. Asymptotic preserving
schemes in the quasi-neutral limit have been developed in [5] for the Euler-Poisson
problem and in [6, 7] for the Vlasov-Poisson system. For the drift-diffusion model,
implicit strategies have been proposed in [15].

This paper is organized as follows. In Section 2, we present the formal quasi-
neutral limit of the drift-diffusion system. Then, in Section 3, we recall two classical
schemes and discuss their stability. Section 4 is devoted to the presentation of a
new scheme for the drift-diffusion model. Finally, in Section 5, we conclude with
numerical simulations.

2 The formal quasi-neutral limit

Formally, passing to the limit 	 ! 0 in system (1) gives the quasi-neutral drift-
diffusion system. It is constituted of the mass equations (1a), (1b) and of the
quasi-neutrality constraint P � N C C D 0. The Poisson equation is lost, and the
electrostatic potential becomes the Lagrange multiplier of this constraint. In order to
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obtain an explicit equation for the potential we subtract the mass equations (1a), (1b)
and we remark that thanks to the quasi-neutrality constraint P � N D �C . This
yields an elliptic equation for the potential: �div..P CN/r�/ D ��C .

Let us perform the same transformations on the original drift-diffusion system.
We begin by subtracting the mass equations. Then, remarking that, thanks to Poisson
equation, @t .P �N/ D @t .P �N C C/ D @t .�	2��/, we obtain

� 	2 @t�� � div..P CN/r�/ D �.P �N/: (2)

Following [5], we call this equation the reformulated Poisson equation. If P and
N are constant, this equation is an order one differential equation on the quantity
��� . And, we can note that solutions oscillate in time at the period 	2.

Thus, an explicit discretization of the electric force terms in (1) will give an
explicit discretization of equation (2) and so a stability non uniform in 	. By
contrast, an implicit discretization of these terms will give an implicit discretization
of (2) and so a stability uniform in 	. This remark will be used in Section 4 for the
construction of our decoupled asymptotic preserving scheme.

3 “Classical” schemes

In this section, we present the classical schemes used for the discretization of the
drift-diffusion system. The mesh is given by T , a family of control volumes, E , a
family of edges and P D .xK/K2T a family of points. We assume that the mesh is
admissible in the sense of [8]. The set of edges will be split into E D Eint [ Eext
and for the exterior edges, we distinguish the edges included in � D from the edges
included in � N : Eext D E D

ext [ E N
ext . For a given control volumeK 2 T , we define

EK the set of its edges, which is also split into EK D EK;int [ E D
K;ext [ E N

K;ext .
For all edge � 2 E , we define d� D d.xK; xL/ if � D KjL 2 Eint and d� D

d.xK; �/ if � 2 EK;int . Then, the transmissibility coefficient is defined by �� D
m.�/=d� , for all � 2 E .

Let �t be the time step. A finite volume scheme for (1) writes:

m.K/
NnC1
K �Nn

K

�t
C
X

�2EK
F nC1
K;� D 0;8K 2 T ;8n � 0;

m.K/
P nC1
K � Pn

K

�t
C
X

�2EK
G nC1
K;� D 0;8K 2 T ;8n � 0;

� 	2
X

�2EK
��D�

n
K;� D m.K/.P n

K �Nn
K C CK/;8K 2 T ;8n � 0:

It remains to define the numerical fluxesD�n
K;� , F nC1

K;� and G nC1
K;� . As usually, we set

D�n
K;� D �n

L��n
K if � D KjL,D�n

K;� D �D
� ��n

K if � 2 E D
K;ext andD�n

K;� D 0
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elsewhere. The numerical approximations of the convection-diffusion fluxes in (1a)
and (1b), F nC1

K;� and G nC1
K;� , are written with the following compact form:

F nC1
K;� D ��

�
B.�D�m

K;� /N
nC1
K � B.D�m

K;� /N
nC1
L

�
; 8� 2 Eint ; � D KjL (3a)

G nC1
K;� D ��

�
B.D�m

K;� /P
nC1
K � B.�D�m

K;� /P
nC1
L

�
; 8� 2 Eint ; � D KjL: (3b)

If � 2 E D
K;ext , we replace NnC1

L by ND
� in (3a) and PnC1

L by PD
� in (3b). If � 2

E N
K;ext , we set F nC1

K;� D G nC1
K;� D 0.

The case m D n corresponds to a semi-implicit and decoupled scheme: at each
time step .N nC1

K /K2T , .P nC1
K /K2T , and .�nC1

K /K2T , are obtained by solving three
linear systems. With m D nC 1, we write a fully implicit scheme. For the function
B , we may choose either B.x/ D 1 � min.x; 0/ or B.x/ D x=.exp.x/ � 1/ with
B.0/ D 1. The first choice corresponds to a classical two-points discretization of
the diffusion with an upwinding for the convection. With the Bernoulli function, we
get the Scharfetter-Gummel scheme. One main advantage of this last choice, well-
known in semiconductor device simulation, is that the scheme is order 2 in space
(see [14]). Moreover, as shown in [4], the Scharfetter-Gummel scheme satisfies
some crucial properties like energy and energy dissipation decrease.

The decoupled scheme (m D n) has been studied in [2] forB.x/ D 1�min.x; 0/
and the convergence has been established (for the nonlinear drift-diffusion system).
The proof can be extended to the Scharfetter-Gummel scheme (in the linear case).
However, in [2], the convergence proof has been done for 	2 D 1 and in fact all
the a priori estimates (leading to stability, compactness and convergence) depend
on 	2. More precisely, when there is no doping profile or when the doping profile
is constant in space, there exists uniform in time L1 estimates on the densities N
and P (see [10]). In this case, the L1 estimates holds at the discrete level, but only
under a condition of the form:�t � D	2 withD 2 R. It means that such a scheme
might not be used for small values of 	.

Let us now consider the fully implicit scheme (m D n C 1). In this case,
existence of a solution to the scheme can be proved via a fixed point theorem.
Moreover, when the doping profile is constant in space, we can prove that the
scheme is unconditionally stable. However, the implementation of the scheme needs
the resolution of a nonlinear system of equations at each iteration. This might be
done using a Newton’s method. It has a numerical cost and the solution is computed
up to a precision criterion.

In the next section, we propose a new scheme with the same numerical cost as
the decoupled scheme, but remaining stable and consistent when 	 tends to 0.

4 Construction of an asymptotic preserving scheme

Following the remark given in Section 2, let us first consider the following semi-
discretization of (1) in which the electric force terms are discretized implicitly.
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NnC1 �Nn

�t
C div.�rNn CNnr�nC1/ D 0 on ˝ � Œ0; T �; (4a)

PnC1 � Pn

�t
C div.�rPn � Pnr�nC1/ D 0 on ˝ � Œ0; T �; (4b)

� 	2��nC1 D PnC1 �NnC1 C C on˝ � Œ0; T �: (4c)

We eliminate PnC1 and NnC1 in (4c) using their expression respectively given
in (4b) and (4a). It yields:

�	2��nC1��t div..P nCNn/r�nC1/ D Pn�NnCC C�t�.P n�Nn/: (5)

The semi-discretization given by (4a), (4b) and (5) is uniformally stable in 	 but not
unconditionaly stable. Then, in order to construct an unconditionally stable semi-
discretization we just have to change the discretizations (4a), (4b) into the implicit
semi-discretizations of the mass equations.

This corresponds to the following fully discrete scheme:

m.K/
NnC1
K �Nn

K

�t
C
X

�2EK
F nC1
K;� D 0;8K 2 T ;8n � 0; (6a)

m.K/
P nC1
K � Pn

K

�t
C
X

�2EK
G nC1
K;� D 0;8K 2 T ;8n � 0; (6b)

�
X

�2EK
�� .	

2 C�t.P n
� CNn

� //D�
nC1
K;� D m.K/.P n

K �Nn
K C CK/

C�t
X

�2EK
�� .DP

n
K;� �DNn

K;� /8K 2 T ;8n � 0; (6c)

with the values (3a), (3b) and m D n C 1 for the numerical fluxes F nC1
K;� , G nC1

K;� .
The interface values, Pn

� and Nn
� are defined by taking the mean value between the

values of Nn and Pn at two neighboring control volumes. Let us also note that we
keep an implicit discretization on N and P in (6a) and (6b) in order to avoid any
CFL condition on the time step.

We stress that our scheme is decoupled. It means that, at each time step, if the
values .N n

K/K2T , .P n
K/K2T are known,

• we first compute .�nC1
K /K2T by solving the linear system (6c), whose matrix

and right-hand-side depend on Nn and Pn,
• then we compute .N nC1

K /K2T and .P nC1
K /K2T solutions of the linear systems

(6a) and (6b), whose matrices depend on �nC1.

The matrices from (6a) and (6b) are identical to that obtained in the classical
decoupled scheme. They are M-matrices, which ensure the positivity at Nn and
Pn for all n (starting with positive initial and boundary conditions). However, the



210 C-H. Claire and V. Marie-Hélène

numerical analysis of the scheme (6) is not straightforward and is in progress.
In the next section, we present the results of numerical simulations in which we
compare our new decoupled scheme to the fully implicit scheme. We will focus on
the behavior when the rescaled Debye length tends to 0.

5 Numerical experiments

Test case 1. The first test case is a one-dimensional test case (˝ D�0; 1Œ). The
doping profile is a continuous function satisfying C.x/ D �1 for 0 � x � 0:4,
C.x/ D C1 for 0:6 � x � 1 and C.x/ affine on Œ0:4; 0:6�. The initial and the
boundary conditions satisfy the quasi-neutrality conditionP CC �N D 0, in order
to avoid any boundary or initial time layers:

ND D 0; PD D 1; �D D 0 in x D 0; ND D 1; PD D 0; �D D 4 in x D 1;
(7a)

N0.x/ D max.C.x/; 0/ P0.x/ D �min.C.x/; 0/: (7b)

With a time step �t D 10�3, we run computations with the fully implicit scheme
and with the new one for different values of 	2 on a mesh made of 100 cells. The
solution is computed at the final time T D 1. For the Newton’s method used in the
fully implicit scheme the precision criterion is set to 10�10 and the maximal number
of iterations to 60. In Table 1, we present the CPU times needed by both schemes
and also the relative error between the two solutions in a discrete L2-norm.

We note that the CPU time needed by the new scheme is almost independent of
	. For the fully implicit scheme, we see that for 	2 � 10�6 the CPU time has a ratio
3 with those of the new scheme. For smaller values of 	2, it appears some default of
convergence of the Newton’s method with the given time step for the fully implicit
scheme. However, the new scheme still works and we show on Fig. 1(a) the density
profiles obtained for 	2 D 10�14.

Table 1 Comparison of the fully implicit scheme with the new scheme for the Test Case 1
	2 CPU time CPU time ratio relative error relative error relative error

fully implicit new scheme on N on P on �
1 1.92 0.64 3.00 1.32e-08 1.32e-08 5.94e-09

1e-2 1.82 0.59 3.08 5.73e-06 5.73e-06 2.98e-06
1e-4 2.07 0.59 3.51 2.77e-04 2.77e-04 1.99e-04
1e-6 1.67 0.60 2.78 5.15e-04 5.15e-04 5.70e-04
1e-8 51.46 0.60 85.77 5.24e-04 5.24e-04 5.88e-04

Test Case 2. We change the doping profile for a discontinuous doping profile:
C.x/ D �1 for x � 0:5 and C.x/ D C1 for x � 0:5. We keep (7) as initial



Asymptotic preserving schemes in the quasi-neutral limit for the drift-diffusion system 211

(a) Test case 1 (b) Test case 2

Fig. 1 Density profiles computed by the new scheme for 	2 D 10�14 on a mesh made of 100
cells, with �t D 10�3

and boundary conditions. The numerical results, presented in Table 2, are similar to
those of Test Case 1. We just observe that the relative errors are bigger. This is due to
the discontinuity appearing in the density profiles (due to the discontinuity in C ): the
two schemes do not capture the discontinuity similarly. However, we still note that
the new scheme has the same efficiency up to very small values of 	. On Fig. 1(b),
we present the density profiles obtained for 	2 D 10�14.

Table 2 Comparison of the fully implicit scheme with the new scheme for the Test Case 2
	2 CPU time CPU time ratio relative error relative error relative error

fully implicit new scheme on N on P on �
1 2.09 0.67 3.12 1.31e-08 1.31e-08 5.89e-09

1e-2 1.88 0.60 3.13 7.50e-06 7.50e-06 4.22e-06
1e-4 2.15 0.61 3.52 1.36e-02 1.36e-02 9.51e-03
1e-6 1.73 0.61 2.84 1.03e-01 1.03e-01 6.07e-02
1e-8 51.51 0.60 85.85 1.08e-01 1.08e-01 6.23e-02

Test Case 3. We consider now the simulation of a two-dimensional forward PN
diode. The device is made of two different regions: a P-region with a doping profile
equal to -1 and an N-region with a doping profile equal to 1 (see [3]). We use a
triangular mesh made of 896 triangles and we set the time step �t D 5 � 10�4.

Table 3 shows the efficiency of the new scheme. It really runs faster than the
fully implicit scheme. Moreover, the fully implicit scheme did not give results for
values of 	2 less that 10�3, while the new scheme still works. We show on Fig. 2,
the density profiles obtained with the new scheme for 	2 D 10�10.

As a conclusion, we recall that we have proposed in this paper a new scheme
for the drift-diffusion system, whose efficiency is independent of the value of
the rescaled Debye length. This scheme can be used at the quasi-neutral limit.
Numerical analysis of the scheme is in progress.
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Table 3 Comparison of the fully implicit scheme with the new scheme for the Test Case 3
	2 CPU time CPU time ratio relative error relative error relative error

fully implicit new scheme on N on P on �
1 203.28 14.68 13.85 1.13e-01 2.78e-01 2.54e-03

1e-1 219.85 14.52 15.14 8.54e-02 2.19e-01 3.01e-02
1e-2 310.72 14.52 21.40 3.21e-02 1.00e-01 4.50e-02
1e-3 718.09 14.68 48.92 4.84e-02 8.30e-02 7.49e-02

Electron density N Hole density P

Fig. 2 Test case 3. Density profiles computed by the new scheme for 	2 D 10�10 on a mesh made
of 896 triangles, with�t D 5 � 10�4
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Abstract We derive a posteriori error estimates for the discretization of the
unsteady linear convection–diffusion–reaction equation approximated with the cell-
centered finite volume method in space and the backward Euler scheme in time. The
estimates are based on a locally postprocessed approximate solution preserving the
conservative fluxes and are established in the energy norm. We propose an adaptive
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@tu � r�.Sru/Cr�.ˇu/C ru D f a.e. in QT WD ) � .0; T /; (1a)

u.�; 0/ D u0 a.e. in ); (1b)

u D 0 a.e. on @) � .0; T /: (1c)

Here S is the diffusion–dispersion tensor, ˇ is the velocity field, r is the reaction
function, f is the source term, ) � IRd , d � 2, is the space domain which we
suppose polyhedral, and .0; T / is the time interval. We suppose that S D .Si;j /
with Si;j 2 L1.QT /, 1 � i; j � d , is a symmetric, bounded, and uniformly
positive definite tensor (we suppose that Si;j are piecewise constant on space-time
meshes defined below), ˇ 2 C0.Œ0; T �I ŒW 1;1.)/�d /, r 2 L1.QT /, f 2 L2.QT /,
and u0 2 L2.)/.

Several works have studied a posteriori error estimates for the cell-centered finite
volume method. Ohlberger derives in [7] estimates in the L1-norm. Nicaise [6]
establishes a posteriori energy-norm estimates using Morley-type interpolants of
the original piecewise constant finite volume approximation. Guaranteed flux-based
estimates were established in [8] and extended in [3] to the parabolic case. Estimates
for vertex-centered unsteady convection–diffusion–reaction problems were derived
in [1] and [5].

The purpose of this work is to derive guaranteed a posteriori error estimates for
the discretization of (1a)–(1c) by the cell-centered finite volume method in space
and the backward Euler scheme in time. We allow for time-varying meshes.

2 Notation and Continuous Problem

2.1 Notation

We consider a strictly increasing sequence of discrete times ftng0�n�N such that
t0 D 0 and tN D T . For all 1 � n � N , we define £n WD tn � tn�1 and I n WD
.tn�1; tn�. On each time interval I n, we consider partition T n of ) such that ) DS
K2T n K . For simplicity, we assume that the meshes are simplicial and matching

(in the sense that they do not contain hanging nodes). For 1 � n � N , T n�1;n is
a common refinement of T n�1 and T n. For all 0 � n � N and all K 2 T n, hK
denotes the diameter of K . We denote by cnS;K the smallest eigenvalue of S on K

and by cnˇ;r;K the essential minimum of 1
2
r�ˇ C r on K � I n. We denote by EK the

set of the sides of K 2 T n, and we fix nK;¢ as the unit normal vector to a side ¢
outward to K .

We denote by .�; �/S the L2.S/ inner product, by k�kS the associated norm (when
S D ), the index is dropped), and by jS j the Lebesgue measure of S . Next,
we set H.div; S/ D fv 2 L2.S/I r�v 2 L2.S/g. Moreover, we use the “broken
Sobolev space” H1.T n/ WD f® 2 L2.)/I®jK 2 H1.K/ 8K 2 T ng. Finally, we
use the Raviart–Thomas–Nédélec space RTN0.T n/ WD fvh 2 H.div; )/I vhjK 2
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RTN0.K/8K 2 T ng where RTN0.K/ WD ŒIP0.K/�d C xIP0.K/. For W , a vector
space of functions defined on ), we define P1

£ .W / (respectively P0
£ .W /) as the

vector space of functions v defined on QT such that v.�; t/ takes values in W and is
continuous and piecewise affine (respectively constant) in time.

Because of the nonconformity of the cell-centered finite volume method, we
introduce, for all 0 � n � N , the broken gradient operator rn such that for a
function v 2 H1.T n/, rnv 2 ŒL2.)/�d is defined as .rnv/jK WD r.vjK/ for
all K 2 T n. The broken gradient operator rn�1;n on the mesh T n�1;n is defined
similarly.

2.2 Continuous Problem

Let X WD L2.0; T IH1
0 .)//, X

0 D L2.0; T IH�1.)//, and Y WD fv 2 X I @tv 2
X 0g. The weak solution u of the problem (1a)–(1c) is such that u 2 Y with u.�; 0/ D
u0. For a.e. t 2 .0; T / and for all ® 2 H1

0 .)/, there holds

h@tu; ®i.t/C .Sru;r®/.t/C .r�.ˇu/; ®/.t/C .ru; ®/.t/ D .f; ®/.t/; (2)

where h�; �i stands for the duality pairing betweenH�1.)/ and H1
0 .)/.

For y 2 X , we introduce the space-time energy norm kyk2X WD
R T
0
jjjyjjj2.t/dt ,

where jjjyjjj2 WD kS 1
2ryk2 C k. 1

2
r�ˇ C r/ 12 yk2. We extend the energy norm to

discrete functions using the broken gradient.

3 The Cell-centered Finite Volume Schemes and Postprocessing

A general cell-centered finite volume scheme for the problem (1a)–(1c) can be
written in the following form: for all 1 � n � N , find unh WD .unK/K2T n , such
that

1

£n
.unh�un�1h ; 1/KC

X

�2EK
SnK;�C

X

�2EK
W n
K;�CrnK.unh; 1/K D f n

K jKj 8K 2 T n; (3)

where f n
K D 1

£n

R
In
.f .�; t/; 1/K=jKjdt , rnK D 1

£n

R
In
.r.�; t/; 1/K=jKjdt , SnK;¢ and

W n
K;¢ are, respectively, the diffusive and convective fluxes through a side ¢ of an

elementK , and un�1h is the postprocessed solution that we define below.
For 1 � n � N , we reconstruct a conforming convective flux  n and a

conforming diffusive flux �n such that  n, �n 2 RTN0.T n/ and verifying
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h n�nK;� ; 1i¢ D W n
K;¢ 8K 2 T n; 8¢ 2 EK; (4)

h�n�nK;� ; 1i¢ D SnK;¢ 8K 2 T n; 8¢ 2 EK: (5)

We refer to [4, 8] for more details on such construction. We define � and  in
P0

£ .H.div; )// by �jIn WD �n and  jIn WD  n.
Following [8], we introduce a piecewise quadratic approximation unh for all 1 �

n � N verifying for all K 2 T n,

� SrunhjK D �njK; (6)

.unh; 1/K D jKjunK: (7)

When S D �Id , unh lies in the space IP1;2.T n/ which is IP1.T n/ enriched

elementwise with
Pd

iD1 x2i . Finally, we set u0h the L2-projection of u0 onto
IP1;2.T n/.

Because of the nonconformity of unh, i.e., of the fact that unh 2 H1.T n/,
unh 62 H1

0 .)/, we define an averaging interpolate sn D Iav.unh/ 2 H1
0 .)/ of unh

that verifies

.sn; 1/K D .unh; 1/K 8K 2 T n;nC1; 80 � n � N; (8)

with the convention T N;NC1 WD T N . We refer to [3] for the details on such
construction. Finally, we consider uh;£ 2 P1

£ .H
1.T n// and s 2 P1

£ .H
1
0 .)//. They

are defined by the values un
h and sn for all 0 � n � N . We set @nt v D @tvjIn . An

important consequence of this construction is the following, cf. [3],

.@nt s; 1/K D .@nt uh;£; 1/K 8K 2 T n: (9)

4 A Posteriori Error Estimate

Our a posteriori estimate bounds the energy error between the weak solution u and
the approximate solution uh;£. We use the postprocessed solution instead of the
original piecewise constant solution since the latter has a zero broken gradient and
therefore is not suitable for energy norm estimates.

Let 1 � n � N and K 2 T n. We define the residual estimator as

˜nR;K WD mn
Kkef n � @nt s � r��n � r� n � rnKsnkK: (10)

Here ef n D 1
£n

R
In
f .�; t/dt and mn

K WD minfCP;KhK.c
n
S;K/

� 12 ; .cnˇ;r;K/�
1
2 g is the

constant from the inequality

k' � 'KkK � mn
K jjj'jjjK 8K 2 T n; 8' 2 H1.K/; (11)
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shown in [8]. Here, 'K WD .'; 1/K=jKj and CP;K WD 1=� is the constant from the
Poincaré inequality (recall that K are convex). We define the flux estimator as

˜nF;K.t/ WD kS
1
2rs C S�

1
2 �n � S�

1
2ˇs C S�

1
2 nkK: (12)

Furthermore, we define the following nonconformity estimator

˜nNC;K.t/ WD jjjuh;£ � sjjjK: (13)

Let mn WD minfCF;)h).c
n
S;)/

� 12 ; .cnˇ;r;)/�
1
2 g, where CF;) is the Friedrichs inequal-

ity constant detailed in [5]. The quadrature estimator is given by

˜nQ;K.t/ WD mnkf � ef n � rs C rnKsnkK: (14)

Finally, we define the initial condition estimator as

˜IC WD 2� 12 ks0 � u0k: (15)

We now state and prove our main result concerning the error upper bound.

Theorem 1 (Energy norm a posteriori estimate). Let ˜nR;K , ˜nF;K , ˜nNC;K , ˜nQ;K ,
and ˜IC be defined by (10) and (12)–(15). Then,

ku � uh;£kX � ˜ WD
� NX

nD1

Z

In

X

K2T n

�
˜nR;K C ˜nF;K.t/

�2
dt
� 1
2

C ˜IC

C
� NX

nD1

Z

In

X

K2T n

.˜nQ;K.t//
2dt
�1
2

C
� NX

nD1

Z

In

X

K2T n

.˜nNC;K.t//
2dt
�1
2

:

Proof. For s 2 Y , we define R.s/ in X 0 by hR.s/; 'i WD R T
0
f.f � @t s �r�.ˇs/�

rs; ®/ � .Srs;r®/g.t/dt , for all ® 2 X . We obtain

1

2
ku � sk2.T / D 1

2
ku0 � s0k2 C

Z T

0

h@t .u � s/; u � si.t/dt;

which yields

ku � sk2X �
1

2
ku0 � s0k2 C hR.s/; u � si:

Using the definition of the dual norm yields ku�sk2X � kR.s/kX 0ku�skXC 1
2
ku0�

s0k2. Since x2 � ax C b2 implies x � aC b, (a; b > 0), we infer

ku � skX � kR.s/kX 0 C 2� 12 ku0 � s0k: (16)
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For 1 � n � N , set hRn.s/; ®i WD T nR .®/C T nF .®/C T nQ .®/ with

T nR .®/ WD
X

K2T n

.ef n � @nt s � r��n � r� n � rnKsn; ®/K;

T nF .®/ WD �.Srs C �n C n � ˇs;r®/;
T nQ.®/ WD

X

K2T n

.f � ef n � rs C rnKsn; ®/K:

First, we have T nR .®/ D T nR .® � ˘0®/, where ˘0®jK WD ®K for all K , using
.ef n � @nt s � r��n � r� n � rnKsn; 1/K D 0 from (3), (4), (5), and (7)–(9).
Hence, T nR .®/ �

P
K2T n ˜nR;K jjj®jjjK using the Cauchy–Schwarz inequality and

(11). Moreover, T nF .®/ is bounded by
P

K2T n ˜nF;K jjj®jjjK using the Cauchy–

Schwarz inequality, and T nQ.®/ is bounded by
nP

K2T n.˜nQ;K/
2
o1=2 jjj'jjj as in

[5]. Using (16), the definition of R.s/, and the Cauchy–Schwarz and triangle
inequalities concludes the proof.

In order to make the calculation efficient, it is important to distinguish the
space and time errors. To this purpose, the flux estimator ˜nF;K.t/ is split into two
contributions using the triangle inequality. We define, for all 1 � n � N ,

.˜nsp/
2 WD 4

X

K2T n

�

£n.˜nR;K C ˜nF;1;K/2 C
Z

In
.˜nNC;K/

2.t/dt
�

;

.˜ntm/
2 WD 4

X

K2T n

�Z

In
kS 1

2r.s � sn/ � S�
1
2 .ˇs �ˇnsn/k2K.t/dt C

Z

In

�
˜nQ;K.t/

�2
dt
�

;

where ˇn WD 1
�n

R
In
ˇ.�; t/dt and ˜nF;1;K WD kS

1
2rsn C S� 12 �n � S� 1

2ˇnsn C
S� 12 nkK .

Proceeding as in [3], we obtain

Theorem 2 (A posteriori estimate distinguishing the space and time errors).
There holds

ku � uh;£kX �
� NX

nD1

˚
.˜nsp/

2 C .˜ntm/2
�
� 1=2
C ˜IC:

5 A Space-time Adaptive Time-marching Algorithm

We present here an adaptive algorithm based on our a posteriori error estimates
which ensures that the relative energy error between the exact and the approximate
solutions is below a prescribed tolerance ©. At the same time, it intends to equilibrate
the space and time estimators ˜nsp and ˜ntm. Recalling Theorem 2 and neglecting ˜IC
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we aim at achieving
PN

nD1f.˜nsp/
2 C .˜ntm/2g

PN
nD1 kuh;£k2X.tn�1;tn/

� ©2: (17)

On a given time level tn�1, we set Crit WD ©
kuh;£kX.tn�1;tn/p

2
and we choose the

space mesh T n and the time step £n such that ˜nsp � Crit and ˜ntm � Crit.
For practical implementation purposes and because of computer limitations, we
introduce maximal refinement level parameters Nsp and Ntm. The actual algorithm
is as follows:

Choose an initial mesh T 0, an initial time step £0, and set t 0 D 0

Set n D 1 and t 1 D t 0 C £0
Loop in time: While t n�T

Set T n? WD T n�1

Do
Solve un?h D Sol.un�1h ; £n�1;T n?/

Estimate ˜nsp and ˜ntm
Refine the elements K 2 T n? where ˜nsp;K � Ref ˜nsp and such

that their level of refinement is less than Nsp

While f˜nsp � Crit or ˜nsp is much larger than ˜ntmg
If f˜ntm � Crit or ˜ntm is much larger than ˜nsp and when

the level of time refinement is less than Ntmg
Set t n D t n � £n�1 and £n�1 D £n�1=2

Else
Save the approximate solution unh WD un?h , the mesh T n WD T n?,

and the time step £n, and set n D nC 1
In this version we are only refining the elements and time steps where the estimated
error is large. In a later version, we will also coarsen elements and time steps where
the estimated error is small.

6 Numerical Experiments

We consider (1a)–(1c) on ) D .0; 3/ � .0; 3/ with S D +Id , ˇ D .“1; “2/, r D 0,
and f D 0, where + > 0 determines the amount of diffusion. The initial condition
u0, as well as the Dirichlet boundary condition, are given by the exact solution

u.x; y; t/ D 1

200+t C 1e�50
.x�x0�“1t/

2
C.y�y0�“2t/

2

200+tC1 :

Here x0 D 0:33, y0 D 1:125, “1 D 0:8, and “2 D 0:4. We set T D 0:6. We
use the DDFV method detailed in [2]. We neglect the additional error from the
inhomogeneous Dirichlet boundary condition. We consider two cases + D 0:1 and
+ D 0:001. We start from an initial time step £ D 0:05 and an initial mesh of 336
triangles and we refine uniformly by dividing the time step by 2 and each triangle
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into 4 subelements. Tables 1 and 2 show the actual and estimated energy error
where ˜ is the upper bound from Theorem 1, as well as the contribution of each
estimator to the upper bound. Specifically, we define the global-in-time and global-
in-space version of the estimators, .˜R/

2 WD PN
nD1 £n

P
K2T n.˜nR;K/

2, .˜NC/
2 WD

PN
nD1

R
In

P
K2T n.˜nNC;K.t//

2dt and .˜F/
2 WDPN

nD1
R
In

P
K2T n.˜nF;K.t//

2dt .

Table 1 Convergence results with uniform refinement in the case + D 0:1

ku� uh;£kX ˜ ˜R ˜F ˜NC
˜

ku�uh;£kX

0.0625 0.2070 0.0420 0.0910 0.0600 3.3102
0.0366 0.1299 0.0242 0.0613 0.0327 3.5464
0.0199 0.0662 0.0065 0.0328 0.0179 3.3182
0.0104 0.0335 0.0017 0.0167 0.0095 3.2104

Table 2 Convergence results with uniform refinement in the case + D 0:001

ku� uh;£kX ˜ ˜R ˜F ˜NC
˜

ku�uh;£kX

0.0342 1.6490 0.3894 1.0875 0.0101 48.2496
0.0286 1.2341 0.2175 0.8354 0.0091 43.2175
0.0221 0.7992 0.0701 0.5541 0.0083 36.1332
0.0158 0.4773 0.0226 0.3312 0.0076 30.2736
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Fig. 1 Energy error in adaptive and uniform refinement for + D 0:1 (left) and + D 0:001 (right)

We next compare the uniform and adaptive refinement strategies. We note that
the refinement maintains the conformity of the mesh. Figure 1 shows that we obtain
a better precision in the adaptive strategy for much fewer space–time unknowns.
Figure 2 depicts the approximate solution at the final time for + D 0:001 obtained
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Fig. 2 Approximate solution with adaptive refinement: Nsp D Ntm D 2 (left), Nsp D Ntm D 4

(right)

with adaptive refinement for Nsp D Ntm D 2, and Nsp D Ntm D 4. We can see that
in the second case the approximate solution better approximates the exact solution.
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Large Time-Step Numerical Scheme for the
Seven-Equation Model of Compressible
Two-Phase Flows

Christophe Chalons, Frédéric Coquel, Samuel Kokh, and Nicole Spillane

Abstract We consider the seven-equation model for compressible two-phase flows
and propose a large time-step numerical scheme based on a time implicit-explicit
Lagrange-Projection strategy introduced in Coquel et al. [6] for Euler equations.
The main objective is to get a Courant-Friedrichs-Lewy (CFL) condition driven by
(slow) contact waves instead of (fast) acoustic waves.

Keywords Compressible two-phase flows, Baer-Nunziato model, seven-equation
model, large time-step numerical scheme
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1 Introduction

We are interested in the computation of compressible two-phase flows with the
so-called two-fluid two-pressure or seven-equation model. It was first proposed in
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Coquel & Galié [1], Ambroso, Chalons & Raviart [2], and the references therein.
One of the main features of this model is that it is hyperbolic, at least in the context
of subsonic flows. In particular, an interesting property is that the seven-equation
model possesses seven real eigenvalues given by 	

k̇ .u/ D uk˙ck , 	0k.u/ D uk and
	I .u/ D uI , where uk denote the velocities of both phases k D 1; 2, ck the sound
speeds, uI an interfacial velocity and u the vector of unknowns.
However from a numerical point of view, the seven-equation model raises some
issues. The first difficulty is related to the large size of the model and as a
consequence to the Riemann problem that is difficult to solve, even approximately.
The second difficulty comes from the presence of nonconservative products and
more precisely the fact that the model cannot be equivalently recast in full
conservative form. However, the nonconservative products naturally vanish when
the void fractions ˛k are locally constant in space, and the model coincides in that
case with two (decoupled) gas dynamics systems. This property will be used in the
numerical strategy.
Numerous papers are devoted to the numerical study of two-fluid two-pressure
models, see again for instance [8], [3], [9], [12], [10], [14], [1], [2] and the
references therein. Many of the proposed methods are based on time-explicit, exact
or approximate, Godunov-type methods (Roe or Roe-like scheme, HLL or HLLC
scheme...). For stability reasons, the time steps �t involved in such methods are
subject to a usual Courant-Friedrichs-Lewy (CFL) condition that reads

max
k;u
.j	k̇ .u/j; j	0k.u/j; j	I .u/j/�t � 0:5�x;

where�x represents the space step. It is then clear that the definition of�t is driven
by the fastest eigenvalues 	k̇ .u/, associated with the so-called acoustic waves.
In many applications, like for instance in two-phase flows involved in nuclear
reactors, the acoustic waves are not predominant physical phenomena. A CFL
condition based on the most influent waves, the so-called contact waves associated
with eigenvalues 	0

k.u/ and 	I .u/ would be more adapted. The idea is then to
propose a time-implicit treatment of the (fast) acoustic waves, in order to get rid
of a too restrictive CFL condition, together with an explicit treatment of the (slow)
contact waves in order to preserve accuracy. This was recently proposed in Coquel
et al. [6] in the context of Euler equations, using a Lagrange-Projection approach.
This approach is well-adapted as it naturally decouples the fast and slow waves in
the Lagrange and Projection steps respectively.
In this paper, we propose a first attempt to extend this approach to the seven-equation
model. The idea is to operate a relevant operator splitting between the conservative
and nonconservative parts of the original model, in order to make Euler systems
for each phase appear. The latter parts are treated as in [6]. The nonconservative
products are then discretized so as to maintain conservativity properties of the model
on each partial mass, on the total momentum and total energy. Numerical results are
proposed. We underline that this work is still in progress.
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2 Governing equations

The model under consideration in this contribution reads as follows:

8
ˆ̂
<

ˆ̂
:

@t˛k C uI @x˛k D 0; t > 0; x 2 R;

@t˛k�k C @x˛k�kuk D 0;
@t˛k�kuk C @x˛k.�ku2k C pk/ � pI@x˛k D 0;
@t˛k�kek C @x˛k.�kek C pk/uk � pIuI @x˛k D 0;

(1)

with k D 1; 2. Here, ˛k; �k; uk; ek and pk denote the volume fraction, density,
velocity, specific total energy and pressure of the phase k D 1; 2. The two phases
are assumed to be non-miscible that is ˛1 C ˛2 D 1. The structure of (1) is
the one of two gas dynamics systems for each phase, coupled with a transport
equation on the void fraction ˛k at speed uI . We note that nonconservative products
involving the interfacial pressure pI and velocity uI (to be precised later on) and the
space derivative of the void fractions ˛k are present in the momentum and energy
equations. These terms act as coupling terms in the evolution of the two phases.
Source terms like external forces, pressure and velocity relaxations, dissipation, heat
conduction, phase changes and heat exchanges between the two phases are not taken
into account.
Each phase is provided with an equation of state pk D pk.�k; "k/, where "k D
ek � u2k=2 is the specific internal energy. So far as the definitions of uI and pI are
concerned, we follow [8] and first observe that the characteristic speeds of (1) are
always real and given by uI ; uk; uk ˙ ck; k D 1; 2, where ck denotes the speed of
sound in phase k. System (1) turns out to be only weakly hyperbolic since there are
not enough eigenvectors to span the entire space when uI D uk˙ ck for some index
k (resonance occurs). When (1) is hyperbolic, one can easily check that similarly to
the classical gas dynamics equations, the characteristic fields associated with the
eigenvalues uk ˙ ck are nonlinear while the one associated with uk is linearly
degenerate. Regarding the characteristic field associated with uI , it is generally
required to be linearly degenerate in practice. This property holds as soon as

uI D ˇu1 C .1 � ˇ/u2; ˇ D �˛1�1

�˛1�1 C .1 � �/˛2�2 (2)

where � 2 Œ0; 1� is a constant (we refer to [8] for the details), which gives a natural
definition for the interfacial velocity uI . The usual choices for � are 0; 1=2 and 1.
Regarding the interfacial pressure pI , we set pI D �p1 C .1 � �/p2, � 2 Œ0; 1�.
The choice of the coefficient � is not detailed here (see again [8]) but is related to
the ability to provide the system with an entropy balance equation. Indeed, it can be
proved that for a specific choice of�, smooth solutions of (1) verify the conservation
law @t�C @xq D 0, where .�; q/ plays the role of a mathematical entropy pair.
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3 A natural operator splitting

The starting point is to propose an equivalent form of (1) where the space derivatives
of ˛kpk and ˛kpkuk are decomposed using a chain rule:

8
ˆ̂
<

ˆ̂
:

@t˛k C uI @x˛k D 0;
@t˛k�k C @x˛k�kuk D 0;
@t˛k�kuk C @x˛k�ku2k C ˛k@xpk C .pk � pI /@x˛k D 0;
@t˛k�kek C @x˛k�kekuk C ˛k@xpkuk C .pkuk � pIuI /@x˛k D 0:

(3)

We then suggest to split (3) into two independent and quasi-classical gas dynamics
equations (their Lagrangian forms will be seen to be classical), namely

8
ˆ̂
<

ˆ̂
:

@t˛k D 0;
@t˛k�k C @x˛k�kuk D 0;
@t˛k�kuk C @x˛k�ku2k C ˛k@xpk D 0;
@t˛k�kek C @x˛k�kekuk C ˛k@xpkuk D 0;

(4)

and into the following genuinely nonconservative system:

8
ˆ̂
<

ˆ̂
:

@t˛k C uI @x˛k D 0;
@t˛k�k D 0;
@t˛k�kuk C .pk � pI /@x˛k D 0;
@t˛k�kek C .pkuk � pIuI /@x˛k D 0:

(5)

This transformation aims at proposing in the next section an implicit-explicit
Lagrange-Projection scheme similar to [6], and at treating separately the nonconser-
vative products. Note from now on that the overall algorithm will be conservative
on the partial mass ˛k�k , total momentum ˛1�1u1 C ˛2�2u2 and on the total energy
˛1�1e1 C ˛2�2e2, as it is expected from the original form (1) of the model.

4 Numerical approximation

This section is devoted to the discretization of (1), using (4) and (5). Let us
introduce a time step �t > 0 and a space step �x > 0 that we assume to
be constant for simplicity. We set 	 D �t=�x and define the mesh interfaces
xjC1=2 D j�x for j 2 Z, and the intermediate times tn D n�t for n 2 N. In
the sequel, unj D .˛1;u1;u2/nj where .uk/nj D .˛k�k; ˛k�kuk; ˛k�kek/nj denotes the
approximate value of the unknowns at time tn and on the cell Cj D�xj�1=2; xjC1=2Œ.

Implicit-explicit discretization of (4). We first recall that (4) is made of two
independent quasi-classical gas dynamics systems, whose eigenvalues are given by



Large Time-Step Numerical Scheme for the Seven-Equation Model 229

uk ˙ ck , uk and 0. As already stated, our aim is to propose an implicit treatment of
the fast waves uk˙ ck , and an explicit treatment of uk . With this in mind, we follow
[6] and adopt a Lagrange-Projection scheme, coupled with a pressure relaxation
strategy that is well adapted to this purpose. A Lagrange-Projection splitting strategy
applied to (4) amounts to introducing the Lagrangian system

8
ˆ̂
<̂

ˆ̂
:̂

@t˛k D 0;
@t˛k�k C ˛k�k@xuk D 0;
@t˛k�kuk C ˛k�kuk@xuk C ˛k@xpk D 0;
@t˛k�kek C ˛k�kek@xuk C ˛k@xpkuk D 0;

or equivalently

8
ˆ̂
<̂

ˆ̂
:̂

@t˛k D 0;
@t �k � �k@xuk D 0;
@tuk C �k@xpk D 0;
@t ek C �k@xpkuk D 0;

(6)
with �k D 1=�k, and the transport (or projection) system

8
ˆ̂
<

ˆ̂
:

@t˛k D 0;
@t˛k�k C uk@x˛k�k D 0;
@t˛k�kuk C uk@x˛k�kuk D 0;
@t˛k�kek C uk@x˛k�kek D 0:

(7)

We note that (6) coincides with two classical gas dynamics systems written in
Lagrangian coordinates, the eigenvalues of which are given by ˙ck and 0. This
system is treated using a pressure relaxation approach that consists in introducing
a linearized pressure �k (see for instance [5] and especially the references therein),
such that .�k/nj D .pk/nj , and in solving the partial differential system

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@t˛k D 0;
@t �k � �k@xuk D 0;
@tuk C �k@x�k D 0;
@t�k C a2k�k@xuk D 0;
@t ek C �k@x�kuk D 0;

or equivalently

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@t˛k D 0;
@t Ik D 0;
@tw
C
k C ak�k@xwCk D 0;

@tw
�
k � ak�k@xw�k D 0;

@t ek C �k@x�kuk D 0;

(8)

where wk̇ D �k ˙ akuk, Ik D �k C a2k�k , and ak is a constant satisfying the
subcharacteristic condition ak > �kck . A natural time-implicit discretization of (8)
is 8

ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.˛k/
nC1D
j D .˛k/nj ;

.Ik/
nC1D
j D .Ik/nj ;

.wCk /
nC1D
j D .wCk /nj � 	.�k/nj ak

�
.wCk /

nC1D
j � .wCk /nC1Dj�1

�
;

.w�k /
nC1D
j D .w�k /nj C 	.�k/nj ak

�
.wCk /

nC1D
jC1 � .wCk /nC1Dj

�
;

.ek/
nC1D
j D .ek/nj � 	.�k/nj

�
.�kuk/

nC1D
jC1=2 � .�kuk/

nC1D
j�1=2

�
;

(9)

with .�kuk/
nC1D
jC1=2 D .�k/nC1DjC1=2.uk/

nC1D
jC1=2 and

.�k/
nC1D
jC1=2D

1

2

�
.wCk /

nC1D
j C.w�k /nC1Dj

�
; .uk/

nC1D
jC1=2D

1

2ak

�
.wCk /

nC1D
j �.w�k /nC1Dj

�
:
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The updated values of uk , �k and �k are recovered from the formulas uk D
.wCk � w�k /=2ak, �k D .wCk C w�k /=2, �k D .Ik � �k/=a2k and �k D 1=�k. The
computation of .wk̇ /

nC1D
j is cheap and amounts to solving a tridiagonal system of

linear equations, while the time-implicit definition of .ek/
nC1D
j explicitly follows.

Then, the transport equations involved in (7) are associated with the following
classical time-explicit update formula

.uk/nC1�j D.uk/nC1Dj C	 �
max..uk/nC1Dj�1=2; 0/.uk/

nC1D
j�1 �min..uk/nC1DjC1=2; 0/.uk/

nC1D
jC1

C
Œmin..uk/

nC1D
jC1=2; 0/ �max..uk/

nC1D
j�1=2; 0/�.uk/

nC1D
j�

;
(10)

and of course .˛k/nC1�j D .˛k/nC1Dj .

Discretization of (5). Our objective is to propose a consistent approximation of
(5) such that the overall algorithm is conservative for each partial mass, for the total
momentum and for the total energy, as already motivated. First of all and similarly
to (10), the transport equation associated with ˛k is treated as follows:

.˛k/
nC1
j D.˛k/nC1Dj C	 �

max..uI /
nC1D
j�1=2; 0/.˛k/

nC1D
j�1 �min..uI /

nC1D
jC1=2; 0/.˛k/

nC1D
jC1

C
Œmin..uI /nC1DjC1=2; 0/ �max..uI /nC1Dj�1=2; 0/�.˛k/

nC1D
j�

where .uI /
nC1D
jC1=2 D ˇnC1DjC1=2.u1/

nC1D
jC1=2 C .1 � ˇnC1DjC1=2/.u2/

nC1D
jC1=2 and for instance

ˇnC1DjC1=2 D 1
2

�
ˇnC1Dj C ˇnC1DjC1

�
: We set .˛k�k/

nC1
j D .˛k�k/

nC1�
j for the partial

mass, so that only the treatments of the momentum and total energy of each phase
are now left. We propose

.˛k�kuk/
nC1
j � .˛k�kuk/

nC1�
j

�t
C �.pk/j � .pI /j

� .˛k/
n
jC1=2 � .˛k/nj�1=2

�x
D 0;

.˛k�kek/
nC1
j � .˛k�kek/nC1�j

�t
C �.pkuk/j � .pIuI /j

� .˛k/
n
jC1=2 � .˛k/nj�1=2

�x
D 0:

In order to get the expected overall conservativity properties, we pay a particular
attention to the definitions of .pk/j , .pI /j , .pkuk/j and .pIuI /j . For any consistent
definition of the flux .˛k/njC1=2, we set with �j 2 Œ0; 1�
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8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.˛k/
n
j D �j .˛k/njC1=2 C .1 � �j /.˛k/nj�1=2;

.pk/j D .1 � �j /.�k/nC1DjC1=2 C �j .�k/nC1Dj�1=2;

.pkuk/j D .1 � �j /.�kuk/
nC1D
jC1=2 C �j .�kuk/

nC1D
j�1=2;

and
8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.pI /j D�nC1DjC1=2.p1/j C .1 � �nC1DjC1=2/.p2/j ; with �nC1DjC1=2D 1
2

�
�nC1Dj C�nC1DjC1

�

.uI /j D ˇnC1DjC1=2.u1/j C .1 � ˇnC1DjC1=2/.u2/j ; with .uk/j D .pkuk/j =.pk/j ;

.pIuI /j D .pI /j .uI /j :

We choosed in practice .˛k/njC1=2 D .˛k/nj or equivalently �j D 1.

With such definitions, it can be proved that under a suitable CFL condition based
on the velocities uk and uI only, and not on the acoustic waves uk ˙ ck , the void
fractions .˛k/

nC1
j belong to .0; 1/ if .˛k/nj do. We can also prove that under the same

restriction on the time step .�k/
nC1
j is positive, as well as ."k/

nC1�
j and .pk/

nC1�
j .

Unfortunately, the positivity of ."k/nC1j and .pk/nC1j is not proved at the moment.

5 Numerical experiments

For the sake of illustration, we present in this section the results given by our
algorithm on three Riemann problems, see the Fig. 1. They are all taken from [2]
and are fully described therein. Space and time orders of accuracy are one. The first
one (top left) corresponds to an isolated contact discontinuity propagating with a
positive velocity, while the second one (top right) and the third one (bottom) involve
several distinct waves. The scheme we propose here is denoted LP implicit and
is compared with its explicit version (which amounts to replacing (9) by its time-
explicit version) and the well-known Rusanov scheme (see [8]). We observe that
our approach is clearly less diffusive around the contact discontinuities since the
CFL condition is well-adapted to the corresponding speed of propagation, but more
diffusive around the acoustic waves since it is implicit. Table 1 gives for each test
case the number of iterations needed to perform the computations. As expected,
the gain is important when using the proposed implicit-explicit algorithm and the
corresponding CFL restriction based on the material waves (instead of the acoustic
waves as for the explicit scheme). A careful evaluation of the CPU cost necessitates
an additional programming effort that has not been implemented yet.
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Table 1 Number of time-iterations for each test case
Test 1 Test 2 Test 3

Rusanov 4231 550 2630
LP explicit 4297 551 2631
LP implicit 63 41 151
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Fig. 1 Comparison of several schemes with a reference solution (density profile)
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Asymptotic Behavior of the
Scharfetter–Gummel Scheme for the
Drift-Diffusion Model

Marianne CHATARD

Abstract The aim of this work is to study the large-time behavior of the
Scharfetter–Gummel scheme for the drift-diffusion model for semiconductors.
We prove the convergence of the numerical solutions to an approximation of the
thermal equilibrium. We also present numerical experiments which underline the
preservation of long-time behavior.

Keywords Drift-diffusion system, finite volume scheme, thermal equilibrium.
MSC2010: 65M08, 76X05, 82D37.

1 Introduction

In the modeling of semiconductor devices, the drift-diffusion system is widely used
as it simplifies computations while giving an accurate description of the device
physics.
Let ˝ � R

d (d � 1) be an open and bounded domain describing the geometry
of the semiconductor device. The isothermal drift-diffusion system consists of two
continuity equations for the electron density N.x; t/ and the hole density P.x; t/,
and a Poisson equation for the electrostatic potential V.x; t/:

8
<

:

@tN � div.rN �NrV / D 0 on ˝ � .0; T /;
@tP � div.rP C PrV / D 0 on ˝ � .0; T /;
	2�V D N � P � C on ˝ � .0; T /;
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where C.x/ is the doping profile, which is assumed to be a given datum, and 	 is
the Debye length arising from the scaling of the physical model. We supplement
these equations with initial conditions N0.x/ and P0.x/ and physically motivated
boundary conditions: Dirichlet boundary conditionsN , P and V on ohmic contacts
� D and homogeneous Neumann boundary conditions on insulating boundary
segments � N .
There is an extensive literature on numerical schemes for the drift-diffusion
equations: finite difference methods, finite elements methods, mixed exponential
fitting finite elements methods, finite volume methods (see [1]). The Scharfetter–
Gummel scheme is widely used to approximate the drift-diffusion equations in the
linear case. It has been proposed and studied in [7] and [10]. It preserves steady-
state, and is second order accurate in space (see [9]).
The purpose of this paper is to study the large time behavior of the numerical
solution given by the Scharfetter–Gummel scheme for the transient linear drift-
diffusion model (1). Indeed, it has been proved by H. Gajewski and K. Gärtner in
[5] that the solution to the transient system (1) converges to the thermal equilibrium
state as t ! 1 if the boundary conditions are in thermal equilibrium. A. Jüngel
extends this result to a degenerate model with nonlinear diffusivities in [8].
The thermal equilibrium is a particular steady-state for which electron and hole
currents, namely rN �NrV and rP C PrV , vanish.
If the Dirichlet boundary conditions satisfy N;P > 0 and

log.N / � V D ˛N and log.P /C V D ˛P on � D; (2)

the thermal equilibrium is defined by

�
�V eq D exp .˛N C V eq/� exp .˛P � V eq/ � C on ˝;
N eq D exp .˛N C V eq/ ; P eq D exp .˛P � V eq/ on ˝;

(3)

with the same boundary conditions as (1).
Our aim is to prove that the solution of the Scharfetter–Gummel scheme converges
to an approximation of the thermal equilibrium as t ! C1. Long-time behavior of
solutions to discretized drift-diffusion systems have been studied in [5], [2] and [6],
using estimates of the energy.
In the sequel, we will suppose that the following hypotheses are fulfilled:

(H1) N , P are traces on � D�.0; T / of functions, also denotedN and P , such that
N; P 2 H1.˝ � .0; T // \L1.˝ � .0; T // and N; P � 0 a.e.,

(H2) N0; P0 2 L1.˝/ and N0; P0 � 0 a.e.,
(H3) there exist 0 < m �M such that: m � N;N0; P ; P0 �M ,
(H4) N , P and V satisfy the compatibility condition (2).
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2 Numerical schemes

In this section, we present the finite volume schemes for the time evolution drift-
diffusion system (1) and for the thermal equilibrium (3).
An admissible mesh of ˝ is given by a family T of control volumes (open and
convex polygons in 2-D, polyhedra in 3-D), a family E of edges in 2-D (faces in
3-D) and a family of points .xK/K2T which satisfy Definition 5.1 in [4]. It implies
that the straight line between two neighboring centers of cells .xK; xL/ is orthogonal
to the edge � D KjL.
In the set of edges E , we distinguish the interior edges � 2 Eint and the boundary
edges � 2 Eext . We split Eext into Eext D E D

ext [ E N
ext where E D

ext is the set of
Dirichlet boundary edges and E N

ext is the set of Neumann boundary edges. For a
control volume K 2 T , we denote by EK the set of its edges, Eint;K the set of its
interior edges, E D

ext;K the set of edges of K included in � D and E N
ext;K the set of

edges of K included in � N .
The size of the mesh is defined by �x D max

K2T .diam.K//.

We denote by d the distance in R
d and m the measure in R

d or R
d�1.

We also need some assumption on the mesh:

9 
 > 0 s. t. d.xK; �/ � 
d.xK; xL/ for K 2 T ; for � D KjL 2 Eint;K:

For all � 2 E , we define the transmissibility coefficient �� D m.�/

d�
, where

d� D d.xK; xL/ for � D KjL 2 Eint and d� D d.xK; �/ for � 2 Eext .
Let .T ;E ; .xK/K2T / be an admissible discretization of ˝ and let us define the
time step �t , NT D E.T=�t/ and the increasing sequence .tn/0�n�NT , where
tn D n�t , in order to get a space-time discretization D of ˝ � .0; T /. The size of
the space-time discretization D is defined by ı D max.�x;�t/.
First of all, the initial conditions and the doping profile are approximated by�
N0
K; P

0
K; CK

�
K2T by taking the mean values of N0, P0 and C on each cell K .

The numerical boundary conditions
�
NnC1
� ; P nC1

� ; V nC1
�

�
n�0;�2ED

ext
are also given

by the mean values of .N ; P ; V / on � � Œtn; tnC1Œ.

2.1 The scheme for the thermal equilibrium

We compute an approximation .N eq
K ; P

eq
K ; V

eq
K /K2T of the thermal equilibrium

.N eq; P eq; V eq/ defined by (3) with the finite volume scheme proposed by C.
Chainais-Hillairet and F. Filbet in [2]:
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8
<

:

	2
X

�2EK
��DV

eq
K;� D m.K/

�
exp.˛N C V eq

K / � exp.˛P � V eq
K /� CK

� 8K 2 T ;

N
eq
K D exp.˛N C V eq

K /; P
eq
K D exp.˛P � V eq

K / 8K 2 T ;
(4)

where for a given function f and .UK/K2T , Df.U /K;� is defined by:

Df.U /K;� D
8
<

:

f .UL/ � f .UK/ if � D KjL 2 Eint;K;

f .U�/� f .UK/ if � 2 E D
ext;K;

0 if � 2 E N
ext;K:

Assuming that the boundary conditions satisfy hypotheses (H1)–(H4), the scheme
(4) admits a unique solution (see [2]).

2.2 The scheme for the transient model

The Scharfetter–Gummel scheme for the system (1) is defined by:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

m.K/
NnC1
K �Nn

K

�t
C
X

�2EK
F nC1
K;� D 0; 8K 2 T ;8n � 0;

m.K/
P nC1
K � Pn

K

�t
C
X

�2EK
G nC1
K;� D 0; 8K 2 T ;8n � 0;

	2
X

�2EK
��DV

n
K;� D m.K/

�
Nn
K � Pn

K � CK
�
; 8K 2 T ;8n � 0;

(5)

with for all � 2 EK

F nC1
K;� D ��

�
B
��DV nC1

K;�

�
NnC1
K � B �DV nC1

K;�

�
NnC1
�

�
; (6)

G nC1
K;� D ��

�
B
�
DV nC1

K;�

�
PnC1
K � B ��DV nC1

K;�

�
PnC1
�

�
; (7)

where B is the Bernoulli function defined by:

B.x/ D x

ex � 1 for x ¤ 0; B.0/ D 1: (8)

We consider a fully implicit discretization in time to avoid the restrictive stability
condition�t � 	2=M .
Using a fixed point theorem, we can prove the following result:

Theorem 1. Let us assume (H1)–(H4) and C D 0. Then there exists a solution
f.N n

K; P
n
K; V

n
K/;K 2 T ; 0 � n � NT C1g to the scheme (5)–(6)–(7), and moreover

we have
0 < m � Nn

K; P
n
K �M; 8K 2 T ; 8n � 0: (9)
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3 Asymptotic behavior of the Scharfetter–Gummel scheme

We may now state our main result.

Theorem 2. Let us assume (H1)–(H4) andC D 0. Then solution .Nı; Pı; Vı/ given
by the scheme (5)–(6)–(7) satisfies for eachK 2 T

�
Nn
K; P

n
K; V

n
K

� �! �
N
eq
K ; P

eq
K ; V

eq
K

�
as n! C1;

where
�
N
eq
K ; P

eq
K ; V

eq
K

�
K2T is an approximation to the solution of the steady-state

equation (3) given by (4).

The proof is based, as in the continuous case (see [5] and [8]), on an energy
estimate and a control of its dissipation, given in Proposition 1 which is valid even
if C ¤ 0. Nevertheless to prove rigorously the convergence to equilibrium, we
need the uniform lower bound (9) on N and P which holds under the restrictive
assumption C D 0.
In the last section, we perform some numerical experiments and observe a conver-
gence to steady-state even when this condition is not satisfied.

3.1 Notations and definitions

For U D .UK/K2T , we define the H1-seminorm as follows:

jU j21;˝ D
X

�2Eint
�DKjL

�� jDUK;� j2 C
X

K2T

X

�2Eext;K
�� jDUK;� j2

Since the study of the large time behavior of the scheme (5)–(6)–(7) is based on
an energy estimate with the control of its dissipation, let us introduce the discrete
version of the deviation of the total energy from the thermal equilibrium:

E n D
X

K2T
m.K/

�
H.Nn

K/ �H.N eq
K / � log.N eq

K /
�
Nn
K �Neq

K

��

C
X

K2T
m.K/

�
H.Pn

K/�H.P eq
K / � log.P eq

K /.P
n
K � P eq

K /
�

C	
2

2
jV n � V eq j21;˝ :

Since s 7! H.s/ D
Z s

1

log.�/d� is defined and convex on RC, we have E n � 0 for

all n � 0. We also introduce the discrete version of the energy dissipation:
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I n D
X

�2Eint
�DKjL

�� min
�
Nn
K;N

n
L

� �
D .log .N n/� V n/K;�

�2

C
X

K2T

X

�2Eext;K
�� min

�
Nn
K;N

n
�

� �
D .log .N n/� V n/K;�

�2

C
X

�2Eint
�DKjL

�� min
�
Pn
K; P

n
L

� �
D .log .P n/C V n/K;�

�2

C
X

K2T

X

�2Eext;K
�� min

�
Pn
K; P

n
�

� �
D .log .P n/C V n/K;�

�2
:

3.2 Energy estimate

The following Proposition gives the control of energy and dissipation. With this
result, Theorem 2 can be proved in the same way as Theorem 2.2 in [2].

Proposition 1. Under hypotheses (H1)–(H4), we have for all n � 0:

0 � E nC1 C�tI nC1 � E n:

Proof. Firstly, using the convexity of H and (4), we get

E nC1 � E n �
X

K2T
m.K/

�
log

�
NnC1
K

� � ˛N � V eq
K

� �
NnC1
K �Nn

K

�

C
X

K2T
m.K/

�
log

�
PnC1
K

� � ˛P C V eq
K

� �
PnC1
K � Pn

K

�

C	
2

2

ˇ
ˇV nC1 � V eq

ˇ
ˇ2
1;˝
� 	

2

2
jV n � V eq j21;˝ ;

and then, by adding V nC1
K � V nC1

K in the two first sums, we have

E nC1 � E n � T1 C T2 C T3;

where

T1 D
X

K2T
m.K/

�
log

�
NnC1
K

� � ˛N � V nC1
K

� �
NnC1
K �Nn

K

�
;

T2 D
X

K2T
m.K/

�
log

�
PnC1
K

� � ˛P C V nC1
K

� �
PnC1
K � Pn

K

�
;
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T3 D
X

K2T
m.K/

�
V nC1
K � V eq

K

� �
NnC1
K �Nn

K � PnC1
K C Pn

K

�

C	
2

2

ˇ
ˇV nC1 � V eq

ˇ
ˇ2
1;˝
� 	

2

2
jV n � V eq j21;˝ :

Using the scheme (5) and an integration by parts, we get that T3 � 0 and

T1 D �t
X

�2Eint
�DKjL

��R
nC1
K;� C�t

X

K2T

X

�2ED
ext;K

��R
nC1
K;� ;

where for � D KjL,

RnC1
K;� D

�
D log

�
NnC1�

K;�
�DV nC1

K;�

��
B
��DV nC1

K;�

�
NnC1
K �B�DV nC1

K;�

�
NnC1
L

�
:

We now prove that

RnC1
K;� � S nC1

K;� WD �min
�
NnC1
K ;N nC1

L

� �
D log

�
NnC1�

K;�
�DV nC1

K;�

�2
:

Indeed, applying the property B.�x/ � B.x/ D x, we obtain

RnC1
K;� �S nC1

K;� D
�
D log

�
NnC1�

K;�
�DV nC1

K;�

�
�

h�
B
��DV nC1

K;�

� � B
�
�D log

�
NnC1�

K;�

�� �
NnC1
K �min

�
NnC1
K ;N nC1

L

��

�
�
B
�
DV nC1

K;�

� � B
�
D log

�
NnC1�

K;�

�� �
NnC1
L �min

�
NnC1
K ;N nC1

L

��

C B
�
�D log

�
NnC1�

K;�

�
NnC1
K � B

�
D log

�
NnC1�

K;�

�
NnC1
L

i
:

Now, since B is non-increasing on R, the two first terms are non positive, and by
using the definition (8) of B , the third term is equal to zero. Then we can conclude
that

T1 � �t
X

�2Eint
�DKjL

��S
nC1
K;� C�t

X

K2T

X

�2ED
ext;K

��S
nC1
K;� ;

and we obtain in the same way a similar estimate for T2. To sum up, we have

E nC1 � E n � T1 C T2 � ��tI nC1;

which completes the proof. ut
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Fig. 1 Evolution of the relative energy E n and its dissipation I n in log-scale

4 Numerical experiments

We present here a test case for a geometry corresponding to a PN-junction in 1D.
The doping profile is piecewise constant, equal to +1 in the N-region �0:5; 1Œ and�1
in the P-region �0; 0:5Œ. The Debye length is 	 D 10�2.
In Fig. 1 we compare the relative energy E n and its dissipation I n obtained with the
the Scharfetter–Gummel scheme (5) and with the scheme studied by C. Chainais-
Hillairet, J. G. Liu and Y. J. Peng in [3], where the diffusion terms are discretized
classically and the convection terms are discretized with upwind fluxes. With the
Scharfetter–Gummel scheme, we observe that E n and I n converge to zero when
n!1, which is in keeping with Theorem 2. On the contrary, the upwind scheme,
which does not preserve thermal equilibrium, is not very satisfying to reflect the
long time behavior of the solution.
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8. A. Jüngel. Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for
semiconductors. Math. Models Methods Appl. Sci., 5(5):497–518, 1995.

9. R. D. Lazarov, Ilya D. Mishev, and P. S. Vassilevski. Finite volume methods for convection-
diffusion problems. SIAM J. Numer. Anal., 33(1):31–55, 1996.

10. D.L. Scharfetter and H.K. Gummel. Large signal analysis of a silicon Read diode. IEEE Trans.
Elec. Dev., 16:64–77, 1969.

The paper is in final form and no similar paper has been or is being submitted elsewhere.



A Finite Volume Solver for Radiation
Hydrodynamics in the Non Equilibrium
Diffusion Limit

D. Chauveheid, J.-M.Ghidaglia, and M. Peybernes

Abstract We derive an Implicit Explicit finite volume scheme for the computation
of radiation hydrodynamics. The convective part is handled through a classical
upwind method while the reactive and diffusive parts are discretized thanks to a
centered scheme. These results are compared to semi-analytic solutions obtained by
Lowrie and Edwards [10].

Keywords Cell centered finite volume scheme, Radiation hydrodynamics,
Implicit/Explicit schemes
MSC2010: 65M08, 76M12, 76N99, 80A99

1 Introduction

Radiation hydrodynamics models are of interest for many applications e.g. astro-
physics, inertial confinement fusion (ICF) and other flows with very high tem-
peratures. One of the major difficulties for these multi-physics problems is the
presence of multiple time scales. From the numerical point of view, this leads to
build implicit-explicit schemes with respect to time. The implicit part is here to
handle small time scales while the explicit one takes care of larger time scales. In
our context, the small time scales result from the radiation transport part (diffusion)
while larger time scales come from purely hydrodynamical phenomena (entropy and
pressure waves). Our strategy consists in relying on classical cell centered Finite
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Volume schemes based on approximate Riemann solver (namely Flux Schemes see
Ghidaglia [5]) for the hydrodynamics part and on an implicit Finite Volume scheme
for the radiative one.

This article is a first step towards the derivation of a multi-material solver, that
is studying flows with two or more different materials. For example in the ICF
applications, we have at least two materials in presence, a metal (Gold) and a
highly compressed gas (a mixture of Deuterium and Tritium). The multi material
version of the scheme (Chauveheid [3]), relies on a generalization of the method
of Braeunig et al. [1]. The latter method computes sharp interfaces between non
miscible materials whose computation uses directional splitting. Hence in this paper,
although we solely address the case of one material, we shall use cartesian meshes.

The governing equations, in non dimensional form (Lowrie and Edwards [10],
Lowrie and Morel [9]), read in 3D as:

@�

@t
Cr � .�u/ D 0 ; (1)

@.�u/
@t
Cr �

	

�u˝ uC
	

p CP0

Er
3




Id




D 0 ; (2)

@.�E/

@t
Cr � ..�E C p/ u/ D �P0

	

�.T 4 � Er /C u � r Er
3




; (3)

@Er
@t
Cr � .Eru/C Er

3
r � u D r � .�rEr /C �.T 4 � Er / ; (4)

where we denote by � the density, u the velocity field, p the hydrodynamic
pressure, related to the density � and the internal energy e by an equation of state:
EOS.p; �; e/ D 0. The hydrodynamic specific energy E D e C 1

2
kuk2 is the

sum of the specific internal energy e and the kinetic energy, T is the material
temperature. The radiative energy is denoted by Er and we define the radiation
temperature by T 4r D Er . Finally, P0 is a non dimensional number ([9, 10]). This
system is non conservative but adding (3) and P0 (4) we readily obtain the total
energy conservation law:

@.�E CP0Er /

@t
Cr �

		

�E C p C 4P0

Er
3




u



DP0r � .�rEr / : (5)

Then, introducing the radiative entropy (as done in [2]) Sr 	 T 3r , we can rewrite
(4) as

@Sr

@t
Cr � .Sru/ D 3

4Tr

�r � .�rEr /C �.T 4 � Er /
�
: (6)

The system (1), (2), (5) and (6) is conservative as far as convection terms are
concerned. Equation (6) is a non linear heat equation for the radiative temperature
Tr . This variable is therefore diffused and the non conservative product appearing in
the right hand side of this equation should not induce non uniqueness of solutions.
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2 Numerical scheme

We use an operator splitting which consists in solving first the left-hand side
of (1), (2), (5) and (6) by means of an upwind explicit finite volume scheme.
Then, the diffusion-reaction part is discretized thanks to a centered implicit finite
volume scheme. This kind of technique is often referred to as IMEX method (for
Implicit/Explicit), see for example [7, 8].

We consider a regular cartesian grid and split also the space differential operators,
that is to say we solve successively the x-derivative terms, the y-derivative terms and
the z-derivative term.

Therefore, and without loss of generality, we deal only with 1D schemes,
corresponding to what is done direction by direction. From now on, we call x the
generic direction that we are looking at.

2.1 Cell centered upwind Finite Volume scheme for the
convection operator

We denote by v D .�; �u; �E C P0Er ; Sr / the conservative variables for the
convective part of the system (1), (2), (5) and (6), and F.v/ the flux matrix such
that:

F.v/ � n 	 .�.u � n/; �u.u � n/C .p CP0Er=3/n; Sr.u � n// ; (7)

is the normal flux in the direction n 2 S
d�1, d being the physical space dimension.

With these notations, the left-hand side of equations (1)-(2)-(5)-(6) reads:

@v

@t
Cr � F.v/ D 0 : (8)

The integration of (8) over a control volume Ki;j;k D Œxi ; xiC1� � Œyj ; yjC1� �
Œzk; zkC1�, keeping only the terms corresponding to the derivation in the generic
x-direction, leads to a system of ordinary differential equations:

dVKi;j;k

dt
C 1

jKi;j;kj
�
AiC1=2;j;k�.viC1;j;k; vi;j;k/ �Ai�1=2;j;k�.vi;j;k; vi�1;j;k/

� D 0 ;
(9)

where �.viC1;j;k; vi;j;k/ denotes the numerical flux at the interface between volumes
Ki;j;k and KiC1;j;k. AiC1=2;j;k is the measure of the edge located at xiC1=2 	
xiCxiC1

2
.

The Characteristic Flux Finite Volume (CFFV) scheme. The CFFV scheme [4]
consists in choosing, for the numerical flux in (9), the following value:

�.v;w;n/ D F.v/C F.w/
2

� n�U .u; v;n/
F.w/ � F.v/

2
� n : (10)
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Here, n D ex , for the generic x-direction. U .u; v;n/ is the sign matrix of the
jacobian @F.v/�n

@v , in the sense that it has the same eigenvectors as, and its eigenvalues

are the signs of those of @F.v/�n
@v . Namely, when @F.v/�n

@v reads L.diag.	i //R
(which is the case for hyperbolic problems), with 	i the eigenvalues, R right
eigenvectors, and L left eigenvectors such that LR D Id , we have U .u; v;n/ D
L.diag.sign.	i ///R.

The boundary conditions use the normal flux method, we refer to [6].
Eigenelements. The jacobian matrix @F.v/�n

@v of the normal flux (7) is found to be
equal to:

0

B
B
B
B
@

0 n 0 0

Kn� u.u � n/ u˝ n� kn˝ uC .u � n/Id kn 4
9
P0Tr .1� 3k/n

.K � .H C 4P0Er

3�
//u � n .H C 4P0Er

3�
/n� k.u � n/u u � n.k C 1/ 4

9
P0Tr .1� 3k/u � n

� T 3r
�

u � n T 3r
�

n 0 u � n

1

C
C
C
C
A
:

Its eigenvalues are as follows:

8
ˆ̂
<

ˆ̂
:

	1.v;n/ D u � n � cs ;
	2.v;n/ D � � � D 	dC2.v;n/ D u � n ;
	dC3.v;n/ D u � nC cs :

(11)

with k D 1
�T

�
@p

@s

�

�
, c2 D

�
@p

@�

�

s
, s being the material entropy, H D E C p

�
,

K D c2 C k.kuk2 �H/ and c2s D c2 CP0
4Er
9�

.
The right eigenvectors associated to these eigenvalues can be taken equal to:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

r1.v;n/ D .1;u� csn;H C 4P0Er
3�
� csu � n; T

3
r

�
/ ;

rdC1.v;n/ D .1;u;H � c2

k
; 0/ ;

rdC2.v;n/ D .P0Tr ;P0Tru;P0Tr .H � 3c2/;� 94 c2/ ;
rdC3.v;n/ D .1;uC csn;H C 4P0Er

3�
C csu � n; T

3
r

�
/ ;

r2.v;n/ D .0;n?2 ;u � n?2 /; � � � ; rd .v;n/ D .0;n?d ;u � n?d / :

(12)

where n?2 � � �n?d is an orthonormal basis of the hyperplane orthogonal to n.
The dual basis is then:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

`1.v;n/ D 1
2c2s
.K C csu � n;�ku � csn; k; 49P0Tr .1 � 3k// ;

`dC1.v;n/ D k
c2
.H � kuk2;u;�1; 4

9
P0Tr // ;

`dC2.v;n/ D 4
9�c2c2s

.T 3r K;�kT 3r u; kT 3r ;��c2 � 4
9
P0kEr / ;

`dC3.v;n/ D 1
2c2s
.K � csu � n;�kuC csn; k; 49P0Tr .1 � 3k// ;

`2.v;n/ D .�u � n?2 ;n?2 ; 0; 0/; � � � ; `d .v;n/ D .�u � n?d ;n?2 ; 0; 0/ :

(13)
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Time discretization and stability condition. We use the explicit Euler’s scheme to
discretize the time derivative in (9) and then the Courant condition for the linearized
scheme reads:

max
i;j;k
j	ni;j;kj

Ai;j;k

jKi;j;kj�t
n 6 CFL 6 1; (14)

where Ai;j;k is either�xi �yj , �yj �zk or�zk �xi depending on the direction we
solve.

2.2 Implicit centered finite volume scheme for the diffusion
equation

The diffusion part consists in the following system:

@�

@t
D 0 ; (15)

@.�u/
@t
D 0 ; (16)

@.�E/

@t
D �P0�.T

4 � Er / ; (17)

@Er
@t
D r � .�rEr /C �.T 4 � Er / : (18)

Since (18) is a heat equation, if we want to use reasonable time step (governed
by the Courant Friedrichs Lewy condition (14)), we have to make use of an implicit
time discretization.

Writing E D CvT C kuk2=2, and using (15) and (16), we can show that (17)
reduces to an ODE for the temperature T :

�Cv
@T

@t
D �P0�.T

4 � Er / : (19)

The scheme then reads:

�ni Cv
T nC1i � T ni

�tn
D �P0�

n
i ..T

nC1
i /4 � E nC1r;i /; (20)

E nC1r;i �E nr;i
�tn

� 2
�n
iC1=2

E nC1
r;iC1

�E nC1
r;i

�xiC1
� �n

i�1=2
E nC1
r;i �E nC1

r;i�1

�xi

.�xi C�xiC1/ D �ni ..T nC1i /4 � E nC1r;i /; (21)

2

�niC1=2
D 1

�ni
C 1

�niC1
:
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It can be shown by a motonicity argument that this system has a unique solution.
It is then solved by the Newton method, mainly because of the nonlinear terms, and
the GMRES algorithm ([11]) at each Newton iteration to solve the linear system.

3 Numerical results

In this section, we present numerical simulations of radiative shock solutions. These
results are compared to semi-analytic solutions obtained following the method
described in [10].

We initialize a Riemann problem setting the left-state (subscript 0) to �0 D
1; T r0 D 1; T0 D 1; u0 D M , for a given M (some different values are chosen
for the tests), and the right-state (subscript 1) is obtained by solving the so-called
“overall jump conditions” ([10]), and taking material and radiative temperatures
equal to each other:

�0u0 D �lu1 (22)

�0u
2
0 C p0 CP0

T 4r;0

3
D �1u21 C p1 CP0

T 4r;1

3
(23)

u0.�0E0 C p0 C 4

3
P0T

4
r;0/ D u1.�1E1 C p1 C 4

3
P0T

4
r;1/ (24)

Here, � D 1, � D 106 and P0 D 10�4.
We take perfect gas equation of state p D �T

�
, with � D 5=3.

Figure 1 shows a continuous solution computed over 128 cells. Solutions of
Figs. 2 to 4 undergo discontinuities. For these simulations, a finer mesh is used to
capture the solutions.
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Fig. 1 Solution for density, temperature and radiative temperature for M D 1:05. Comparison
with semi-analytic solutions. Number of cells: 128
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Fig. 2 Solution for density, temperature and radiative temperature for M D 1:2. Comparison with
semi-analytic solutions. Number of cells: 256
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Fig. 3 Solution for density, temperature and radiative temperature for M D 1:4. Comparison with
semi-analytic solutions. Number of cells: 512
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Fig. 4 Solution for density, temperature and radiative temperature for M D 3. Comparison with
semi-analytic solutions. Number of cells: 512

Numerical and theoretical results are in good agreement. The conservative
formulation chosen in (6) seems to be relevant with regard to these particular
physical solutions.
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4 Conclusion

As said in the introduction, this work is a first step towards the derivation of a multi
material 3D solver for multi material radiative hydrodynamics. In this paper we
have presented our method for the single material case and shown that on physically
relevant non trivial solutions, our solver behaves well. The extension for multi
material flows is in progress (Chauveheid [3]). The method presented here was
designed in order to make this extension as simple as possible. In fact it only remains
to extend the so-called condensate techniques of Braeunig et. al. [1] to radiative
flows.
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An Extension of the MAC Scheme to some
Unstructured Meshes

Eric Chénier, Robert Eymard, and Raphaèle Herbin

Abstract We give a variational formulation of the standard MAC scheme for the
approximation of the Navier-Stokes problem. This allows an extension of the MAC
scheme to locally refined Cartesian meshes. A numerical example is presented,
which shows an efficient computation of the solution of the Navier-Stokes problem
for a general 2D or 3D domain, using locally refined meshes.

Keywords MAC scheme, incompressible Navier-Stokes, non conforming grid
MSC2010: 65N08,76D05

1 Introduction

Our aim is the approximation on an unstructured mesh, of the weak solution to the
steady-state Navier-Stokes equations, defined by

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

u 2 E.˝/; p 2 L2.˝/ with
Z

˝

p.x/dx D 0;
Z

˝

ru.x/ W rv.x/dx C R
Z

˝

.u.x/ � r/u.x/ � v.x/dx
�
Z

˝

p.x/divv.x/dx D
Z

˝

f .x/ � v.x/dx; 8v 2 H1
0 .˝/

d ;

(1)

where
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Université Aix-Marseille, e-mail: Raphaele.Herbin@latp.univ-mrs.fr
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d 2 f2; 3g denotes the space dimension;
˝ is an open polygonal bounded and connected subset of R

d ;

with Lipschitz-continuous boundary @˝;

R 2 Œ0;C1/; f 2 L2.˝/d ;
E.˝/ WD fv D .v.i//iD1;:::;d 2 H1

0 .˝/
d ; divv D 0 a.e. in ˝g;

and, for all u; v 2 H1
0 .˝/

d and for a.e. x 2 ˝ , ru.x/ W rv.x/ D
dX

iD1
ru.i/.x/ �

rv.i/.x/: The approximation of Problem (1) may be performed with several
schemes among which the MAC scheme: see e.g. [7] for a presentation of its
implementation and [3–6] for its mathematical analysis; the MAC scheme is very
popular, in particular because it is simple and needs no stabilisation procedure.
Its main drawback is that it only holds on domains which can be gridded by
rectangular conforming meshes, in the sense that no hanging node is permitted.
This paper is devoted to the presentation of a simple way to extend this scheme
to any geometry and to possibly refined meshes, while keeping simplicity and
convergence properties. In Sect. 2, we first write a discrete variational formulation of
the standard MAC scheme on the Stokes problem, which is (1) with R D 0. Thanks
to this formulation, we are able in Sect. 3 to extend this scheme to more complex
geometries and to the Navier-Stokes equation (1). Section 3 proposes a numerical
example on a non-rectangular domain, using local refinement along the boundary of
the domain.

2 The standard MAC scheme for the Stokes equations

Let us consider in this section the standard MAC scheme for the approximation of
the Stokes problem, that is (1) with R D 0. We then consider the following case and
notations, as depicted in Fig. 1. Let us consider the unit square: ˝ D�0; 1Œ��0; 1Œ,
let N andM be two positive integers. With the notations of Fig.1, we denote by M
the set of pressure grid cells:

M D
n
�xi� 1

2
; xiC 1

2
Œ��yj� 1

2
; yjC 1

2
Œ; 1 � i � N; 1 � j �M

o
;

and by E D E .1/[E .2/ the set of the edges of the mesh, where E .1/ (resp. E .2/) is the
set of vertical (resp. horizontal) edges, associated to the x (resp. y) component of the
velocity. In order to define the normal velocity flux from one cell to a neighbouring
one, we introduce, for any pair �; � 0 2 E .k/, k D 1 or 2, the transmissivity ��;� 0

between cell K.k/
� and cell K.k/

� 0 :
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Fig. 1 Notations for the standard MAC scheme

��;� 0 D j@K
.k/
� \ @K.k/

� 0
j

d.x� ;x� 0/
; (2)

For instance, for a vertical edge � D fxi� 12 g��yj� 12 ; yjC 1
2
Œ2 E .1/, one has:

�
.1/

�;� 0 D

8
ˆ̂
<

ˆ̂
:

yjC 1
2
� yj� 12

xiC 1
2
� xi� 12

if � 0 D fxiC 1
2
g��yj� 12 ; yjC 1

2
Œ;

xi � xi�1
yjC1 � yj if � 0 D fxi� 12 g��yjC 1

2
; yjC 3

2
Œ:

(3)

Denoting by .e.k//kD1;:::;d the canonical orthonormal basis of R
d and, for K 2M ,

nK;� the unit normal vector to � outward to K , the MAC scheme then reads:

Find .u�/�2E � R; .pK/K2M � R I
X

K2M
jKjpK D 0;

2X

kD1

X

�2E .k/
K

j� ju�e.k/ � nK;� D 0; 8K 2M ; (4a)

�
X

� 02E .k/

�
.k/

�;� 0
.u� 0� u�/Cj� j.pL�� pM�/D

Z

K
.k/
�

f .k/.x/dx;8� 2 E .k/; k D 1; 2; (4b)

where L� and M� 2 M are the two cells which share � 2 E .k/ as an edge, and
such that e.k/ is oriented from L� and M� , and where the value of u� is set to 0 on
all exterior edges.

In order to extend the MAC scheme, the idea is to rewrite (4a) and (4b)
under a variational formulation. We first define HM .˝/ as the set of piecewise
functions constant in K 2 M , and H.k/

E .˝/ as the set of piecewise functions
which are constant in K� , for � 2 E .k/, and which are meant to approximate
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the kth component of the velocity. We finally denote by HE .˝/ the set of all
v D .v.k//kD1;:::;d with v.k/ 2 H.k/

E .˝/. We then define the discrete divergence by:

divKv D 1

jKj
X

�2EK
j� jvK;� ; 8K 2M ; 8v 2 HE .˝/; (5)

where, denoting by Eint (resp. Eext) the set of internal (resp. boundary) edges,

vK;� D
(

v�n� � nK;� 8� 2 EK \ Eint;

0 8� 2 EK \ Eext;
8K 2M ; 8v 2 HE .˝/; (6)

where n� denotes the basis vector e to which � is orthogonal. Using (5), we may
define the following operator:

divDv.x/ D divKv; for a.e. x 2 K; 8K 2M ; 8v 2 HE .˝/; (7)

and remark that (4a) can be written

divDu.x/ D 0; for a.e. x 2 ˝: (8)

Next, for k D 1; : : : ; d , we define an inner product on the space H.k/

E :

hu; vik D
X

f�;� 0g�E .k/

�
.k/

�;� 0.u� � u� 0/.v� � v� 0/; 8u; v 2 H.k/

E .˝/I (9)

this allows the definition of the following inner product on HE .˝/ which is
expected to approximate

R
˝ ru.x/ W rv.x/dx:

hu; viE D
dX

kD1
hu.k/; v.k/ik; 8u; v 2 HE .˝/: (10)

We then obtain, multiplying (4b) by v� and summing on k D 1; 2 and � 2 E .k/,

hu; viE �
Z

˝

p.x/divDv.x/dx D
Z

˝

f .x/ � v.x/dx; 8v 2 HE .˝/; (11)

A discrete variational formulation of the MAC scheme (4) is therefore:

Find u 2 HE .˝/ and p 2 HM .˝/ s. t.
X

K2M
jKjpK D 0 and (8) and (11) hold:

(12)
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3 The extended MAC scheme for the Navier-Stokes equations

We extend the standard MAC scheme to cases where all internal edges (2D) or
faces (3D) whose normal is parallel to a basis vector e.k/, such as the pressure
grid depicted in Fig. 2 (left). Because of possibly hanging nodes, we may no longer
define the velocity meshes by dual rectangles, but use instead the Voronoi cells
associated with the barycentres of the edges .x� /�2E ; they are defined as follows:

K.k/
� D fx 2 ˝; d.x;x� / < d.x;x� 0/; � 0 2 E .k/ n f�gg; 8� 2 E .k/;

Note that in the case of a uniform rectangular mesh, the Voronoi cells thus defined
are equal to the velocity cells defined in the previous section. However, this is no
longer true if a non uniform mesh is used, even in the conforming case; indeed, in
this latter case, the Voronoi cells K.k/

� are again rectangles, but they are not equal to
the rectangular cells K.k/

� defined previously. In the case of hanging nodes, they are
no longer rectangular, as can be seen in Fig. 2, where we depict the pressure mesh,
the horizontal and vertical velocity grids.

Fig. 2 The pressure and velocity grids

The diffusion term is again approximated by the discrete inner product defined
by (9)-(10)-(2), but the expression of ��;� 0 given by (2) can no longer be written as in
(3) for non rectangular cells. For Voronoı̈ cells K.k/

� and K.k/

� 0 separated by a (dual)

dK(k)
σ

K(k)
σ

xσ
xσ

|e|
e

e

Fig. 3 Notations for a velocity cell

edge ", such as those depicted in Fig. 3,
one has

��;� 0 D j"j
d"

(13)

where j"j denotes the length of the
edge " shared by K.k/

� and K.k/

� 0 , and
d" D d.x� ;x� 0/ the distance between
the two cell centres x� and x� 0 , which
are also the barycentres of the edges �
and � 0: We can again define HM .˝/



258 E. Chénier et al.

as the set of piecewise functions constant on the pressure cells K 2 M , the set
H
.k/

E .˝/ of piecewise constant functions on the grid cells K� , for � 2 E
.k/

int [ Eext

which vanish on any grid cell K� for a boundary edge � � @˝; this discrete set is
the space of functions meant to approximate the k-th component of the velocity. We
finally denote by HE .˝/ the set of all v D .v.k//kD1;:::;d with v.k/ 2 Hk

E .˝/. The
extended MAC scheme for the Stokes equations (R D 0) is again (5)-(12), with the
new definition (13) for ��;� 0 .

In order to write this generalized scheme for the Navier-Stokes equations, we
need to add the discretization of the nonlinear term

R
˝
.u.x/ � r/u.x/ � v.x/dx. For

u; v;w 2 HE .˝/, we define the discrete nonlinear convection term

bE .u; v;w/ D
X

K2M

X

�2EK
M�DfK;Lg

j� juK;�˘ KvC˘ Lv
2

�˘ Kw;

where uK;� is defined by (6) ˘ Kv is a reconstruction of the full velocity on each
pressure cell K defined by its components .˘ Kv/k; k D 1; : : : ; d :

.˘ Kv/k D 1
P

�2EK\E .k/ jK.k/
� j

X

�2EK\E .k/

jK.k/
� jv� :

The extended MAC scheme for the Navier-Stokes equation then reads:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Find u 2 HE .˝/ and p 2 HM .˝/ s. t.
X

K2M
jKjpK D 0;

divDu.x/ D 0; for a.e. x 2 ˝:
hu; viE �

Z

˝

p.x/divDv.x/dxCR bE .u;u; v/D
Z

˝

f .x/ � v.x/dx;8v2HE .˝/:

With this scheme, a control over the discrete kinetic energy can be obtained,
which allows to prove some discrete H1 estimates on the velocity. Then an L2

estimate is proved for the discrete pressure, using the standard Necas lifting, which
is particularly easy thanks to the staggered grids. The proof of convergence is then
completed, considering the interpolation of regular test functions. Details may be
found in [2].

4 Numerical example

We consider a problem where the continuous solution of the Navier–Stokes
equations (1) with R D 1 is given by:
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Nu1.x1; x2/ D 2� sin2.�x1/ cos.�x2/ sin.�x2/

Nu2.x1; x2/ D �2� cos.�x1/ sin.�x1/ sin2.�x2/

Np.x1; x2/ D sin2.�x1/ sin2.�x2/

in a circle with centre .0; 0/ and radius 0:45. We consider four meshes for the mass
conservation Mj , j D 0; : : : ; 3, defined in the following way:

1. a structured square 10 � 10 is given on the square Œ0; 1� � Œ0; 1�,
2. for i D 0; : : : ; 3, let us split in 4 control volumes each grid block whose centre
.x1; x2/ satisfies

p
.x1 � 0:5/2 C .x2 � 0:5/2 � 0:45 � 0:25=2i ;

3. for i D 0; : : : ; j , let us split in 4 control volumes each grid block K ,
4. get rid of all the control volumes K with centre .x1; x2/ such that

p
.x1 � 0:5/2 C .x2 � 0:5/2 > 0:45:

Let us denote card.Mj / the number of control volumes of the mesh Mj . We
get that card.M0/ D 1604, card.M1/ D 6416, card.M2/ D 25592 and
card.M3/ D 102324. The L2 errors of unknowns u1; u2; p, respectively denoted
by e2.u1/; e2.u2/; e2.p/, are respectively computed in the Voronoi grids associated
to the velocity components and in Mj .

Left part of Fig. (4) shows the errors log 10.e2.u1// and log 10.e2.p// with
respect to log 10.1=

p
card.Mj // for j D 0; : : : ; 3. On right part of Fig. (4) are

Fig. 4 Left: The L2 error with respect to the number of control volumes. Right: Stream lines

plotted the stream lines for the finest mesh. The velocity components and the
pressure are respectively shown in Figs. (5), (6) and (7). Although the velocity
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Fig. 5 Horizontal component of the velocity for j D 0 and j D 2

Fig. 6 Vertical component of the velocity for j D 0 for j D 2

Fig. 7 Pressure for j D 0 and j D 2

fields are accurately computed on the coarsest mesh, the pressure fields show
oscillations where neighbouring control volumes have contrasted sizes. However,
these oscillations disappear while refining the mesh.
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5 Conclusion

The generalised MAC scheme seems very efficient on meshes which are parallel
to the axes. In particular, the scheme keeps a five-point stencil on all non-refined
regions. It can also be extended to more general non-structured grids. However
for these latter grids, the stencil may become large, which can be a problem when
solving the linear systems in the Newton iteration.
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Abstract The Multi-dimensional Optimal Order Detection (MOOD) method is an
original Very High-Order Finite Volume (FV) method for conservation laws on
unstructured meshes. The method is based on an a posteriori degree reduction of
local polynomial reconstructions on cells where prescribed stability conditions are
not fulfilled. Numerical experiments on advection and Euler equations problems are
drawn to prove the efficiency and competitiveness of the MOOD method.
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1 Introduction

The Multi-dimensional Optimal Order Detection has been introduced in [6] as an
original High-Order Finite Volume method for conservation laws on unstructured
meshes. As multi-dimensional MUSCL [2–4,8] or ENO/WENO methods [1,7,10],
the MOOD method is based on a high-order space discretization with local
polynomial reconstructions coupled with a high-order TVD Runge–Kutta method
for time discretization.
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Departamento de Matemática e Aplicações, Campus de Gualtar - 4710-057 Braga Campus de
Azurm - 4800-058 Guimares, Portugal, e-mail: clain@math.uminho.pt

S. Diot, and R. Loubère
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The main difference between classical high-order methods and the MOOD one is
that the limitation procedure is done a posteriori. Inside a time step, a first solution
is computed with numerical fluxes evaluated from unlimited high-order polynomial
reconstructions. Then polynomial degrees are reduced on cells where prescribed
stability conditions are not fulfilled and the solution is re-evaluated. That iterative
procedure provides a solution which respects the stability constraints.

The present article is devoted to an extension of the MOOD method to a sixth-
order space discretization on triangular meshes. Numerical tests for the advection
problem and Euler equations with gravity are given in last section.

2 Framework

We consider the scalar hyperbolic equation defined on a bounded polygonal domain
˝ � R

2 written in its conservative form

@tuCr � F.u/ D 0; (1)

u.�; 0/ D u0;

where u D u.x; t/ is the unknown function with t > 0, x 2 ˝ , F is the physical
flux and u0 stands for the initial condition. We consider a triangular tessellation of
˝ where Ki is a generic triangle with centroid ci . Moreover nij is the unit normal
vector of edge eij from Ki to Kj and qrij ; r D 1; 2; 3; are the Gaussian quadrature
points of eij . Finally �.i/ (resp. �.i/) is the index set of cells which share an edge
(resp. an edge or a node with Ki ). This notation is summarized in Fig. 1.
We recall the generic first-order Finite Volume discretization of (1)

unC1i D uni ��t
X

j2�.i/

jeij j
jKi j G.u

n
i ; u

n
j ;nij /; (2)

where uni is an approximation of the mean value of u on cell Ki at time tn and jeij j,
jKi j stand for the edge length and the cell surface respectively. We assume that the
numerical flux G.uni ; u

n
j ;nij / satisfies the consistency and monotonicity properties

such that, under an adequate CFL condition, the following Discrete Maximum
Principle (DMP) is fulfilled

min
j2�.i/ .u

n
i ; u

n
j / � unC1i � max

j2�.i/
.uni ; u

n
j /: (3)

Only few modifications of (2) are needed to get the following High-Order Finite
Volume scheme
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Fig. 1 Mesh notation. Index set �.i/ corresponds to blue cells with dots and �.i/ corresponds to
every non-white cells

unC1i D uni ��t
X

j2�.i/

jeij j
jKi j

3X

rD1

rG.u

n
ij;r ; u

n
j i;r ;nij /; (4)

namely the use of a sixth-order Gaussian quadrature rule with weights 
r
.r D 1; 2; 3/ and the replacement of uni (resp. unj ) by unij;r (resp. unj i;r) which is
an approximation of u.qrij ; t

n/ from the high-order polynomial reconstruction on
Ki (resp. Kj ). Notice that the high-order scheme (4) corresponds to a convex
combination of the first-order one (2), that is important from a practical point of
view for an easy and effective implementation.

It is well known that methods based on high-order reconstructions without
limiting procedure produce spurious oscillations in the vicinity of discontinuities.
In order to prevent such oscillations, the today’s effective high-order methods
(MUSCL, WENO...) use a priori limitation procedures.
The Multi-dimensional Optimal Order Detection (MOOD) method breaks away
from this approach through an original effective iterative procedure based on an
a posteriori detection of such unphysical oscillations (see Fig. 2). The details of
MOOD method are recalled in next section

Fig. 2 A simplistic view of the Multi-dimensional Optimal Order Detection concept
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3 MOOD method

For the sake of clarity, we only consider a forward Euler method and one
quadrature point per edge. Consequently we denote by uij (resp. uj i ) the high-order
approximation of u on edge eij from cell Ki (resp. Kj ).

3.1 Basics

Polynomial reconstruction.

High-order approximations of the solution at quadrature points are mandatory.
To this end, multi-dimensional polynomial reconstructions from mean values are
carried out. There exist several techniques [1, 5] to obtain such reconstructions, but
we choose to use the one from [7] where a over-determined linear system is solved
using a QR decomposition. The reconstructed polynomial of arbitrary high-order
dmax C 1 has the form

eu.x; y/ D Nu C
X

1�˛Cˇ�dmax
R˛ˇ

 

.x� cx/˛.y � cy/ˇ � 1

jKj
Z

K

.x� cx/˛.y � cy/ˇ dxdy
!

;

where .cx; cy/ is the centroid of a generic cell K and R˛ˇ are the unknowns
polynomial coefficients. In this way mean value on K is conserved and the
truncation of all terms of degree ˛ C ˇ > Nd produces a relevant approximation of
u as a polynomial of degree Nd � dmax.
At least N .d/ D .d C 1/.d C 2/=2 � 1 neighbors are needed to perform
reconstructions. However for the sake of robustness at least 1:5�N .d/ elements are
involved. We first take the neighbors by nodes ofK and then the neighbors by faces
of already picked elements. Lastly, since the condition number of the generated
system is dependent of spatial characteristic length, we use the technique proposed
in [5] to overcome this problem.

CellPD and EdgePD.

We recall the fundamental notions introduced in [6].

• di is the Cell Polynomial Degree (CellPD) which represents the degree of the
polynomial reconstruction on cell Ki .

• dij and dj i are the Edge Polynomial Degrees (EdgePD) which correspond to
the effective degrees used to respectively build uij and uj i on both sides of edge
eij .

We now detail the MOOD method using both notions in the case of the scalar
problem (1).
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3.2 Algorithm for the scalar case.

The MOOD method consists of the following iterative procedure which details the
concept depicted in Fig. 2.

1. CellPD initialization. Each CellPD is initialized with dmax .
2. EdgePD evaluation. Each EdgePD is set up as the minimum of the two

neighboring CellPD.
3. Quadrature points evaluation. Each uij is evaluated with the polynomial

reconstruction of degree dij .
4. Mean values update. The updated values u?

h are computed using the finite
volume scheme (4).

5. DMP test. The DMP criterion is checked on each cell Ki

min
j2�.i/ .u

n
i ; u

n
j / � u?i � max

j2�.i/ .u
n
i ; u

n
j /: (5)

If u?i does not satisfy (5) the CellPD is decremented, di WD max.0;di � 1/.
6. Stopping criterion. If all cells satisfy the DMP property, the iterative procedure

stops with unC1
h D u?h else go to Step 2.

Since only problematic cells and their neighbors in the compact stencil �.i/ have to
be checked and re-updated during the iterative MOOD procedure, the computational
cost is dramatically reduced.

3.3 Algorithm for the Euler equations case.

We now extend the MOOD method to the Euler system, namely

@t

0

B
B
@

�

�u
�v
E

1

C
C
AC @x

0

B
B
@

�u
�u2 C p
�uv

u.E C p/

1

C
C
AC @y

0

B
B
@

�v
�uv

�v2 C p
v.E C p/

1

C
C
A D 0; (6)

where �, V D .u; v/ and p are the density, velocity and pressure respectively while
the total energy per unit volume E is given by

E D �
	
1

2
V2 C e




; V2 D u21 C u22; e D p

�.� � 1/ ;

where e is the specific internal energy and � the ratio of specific heats.
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The reconstruction is classically done on the primitive variables �; u; v; p while
U D .�; �u; �v; E/ and we use the same CellPD and EdgePD for all variables in a
cell. In other words, the two notions are linked to cells and edges and not affected by
the number of variables. Furthermore steps 5 and 6 of the previous MOOD algorithm
are substituted with the following stages.

5. Density DMP test. The DMP criterion is checked on the density

min
j2�.i/ .�

n
i ; �

n
j / � �?i � max

j2�.i/ .�
n
i ; �

n
j /: (7)

If �?i does not satisfy (7) the CellPD is decremented, di WD max.0;di � 1/.
6. Pressure positivity test. The pressure positivity is checked and if p?i � 0 and di

has not been altered by step 5 then the CellPD is decremented, di WD max.0;di�
1/.

7. Stopping criterion. If for all i 2 Eel , di has not been altered by steps 5 and 6
then the iterative procedure stops with UnC1

h D U?
h else go to step 2.

4 Numerical results

The reader should refer to [6] for a study on the effective convergence rate and for
more hydrodynamics test cases. In this paper, we restrict the presentation to two
representative tests.

Scalar case
We first deal with the classical Solid Body Rotation (see [6] for details) test

case for the advection problem. We plot in Fig. 3 isolines top views of the solution
obtained with the MOOD method applied to different polynomial degrees and
meshes. Method name, triangles number and computational times are embedded
in each figure. Time is given in relative time units (r.t.u) where MOOD-P1 is taken
as reference with 100 r.t.u.

First solutions obtained on the 5190 cells mesh (3 top) clearly show that the
MOOD method is able to handle high-order polynomials with a great improvement
of solutions while enforcing a strict DMP. Then for the sake of comparison, results
with lower degrees on finer meshes are given in the bottom line of Fig. 3. Finally
notice that the computational cost increase is mainly due to the reconstruction step.
However since profiles are not smooth the DMP is often violated and the iterative
procedure cost more than in a smooth case. For example a sixth-order unlimited
version of the scheme costs 586 r.t.u., thus the iterative procedure costs about a third
of the total time of the MOOD-P5 computation.
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MOOD-P3 - 10142 triangles - 830 r.t.u.

Fig. 3 Solid Body Rotation. 10 isolines (0 to 1). Time in relative time units (r.t.u.)

Euler equations case
For the system case, a Rayleigh–Taylor Instability for the Euler equations with

gravity is considered. The reader should refer to [9] for complete description of the
test case. A zoom on the pattern of the unstructured symmetric triangular mesh of
28800 cells and the density solutions for MOOD-P1, MOOD-P3 and MOOD-P5 are
plotted in Fig. 4.

As for the scalar case the MOOD method is plainly able to improve the solution
through the use of high-order polynomial reconstructions. From a computational
cost point of view, computational times given in Fig. 4 prove that the MOOD
iterative procedure is effective since the time raise from a degree to a bigger one is
mainly due to the reconstruction cost itself.

Decrementation procedure
In Table 1, we give the mean percentage over all the calculation of polynomial

degrees actually used to compute the solution, i.e. the CellPD at the end of the
iterative procedure. Three test cases are taken as examples (see [6] for details),
the Solid Body Rotation of Fig. 3 with MOOD-P3, the classical Double Mach
Reflection on a 57600 cells uniform mesh with MOOD-P2 and the Mach 3 Wind
Tunnel on a 4978 cells Delaunay mesh with MOOD-P3. Results show that only few
cells are affected by the a posteriori limitation.
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Fig. 4 Rayleigh–Taylor Instability. Density. 5 isolines from 0.8 (dark) to 2.3 (light)

Test case P0 P1 P2 P3

Solid Body Rotation 7.16% 0.78% 0.64% 91.42%

Double Mach Reflection 5.69% 0.72% 93.69% —

Mach 3 Wind Tunnel 3.02% 0.36% 0.16% 96.46%

Fig. 5 Mean percentage of polynomial degrees actually used with MOOD method

References

1. R. Abgrall, On Essentially Non-oscillatory Schemes on Unstructured Meshes: Analysis and
Implementation, J. Comput. Phys. 114 45–58 (1994)

2. T. J. Barth, Numerical methods for conservation laws on structured and unstructured meshes,
VKI March 2003 Lectures Series

3. T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured
meshes, AIAA Report 89-0366 (1989)

4. T. Buffard, S. Clain, Monoslope and Multislope MUSCL Methods for unstructured meshes,
J. Comput. Phys. 229 3745-3776 (2010)

5. O. Friedrich, Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean
Values on Unstructured Grids, J. Comput. Phys. 144 (1998) 194–212.

6. S. Clain, S. Diot, R. Loubère A high-order finite volume method for systems of conservation
laws — Multi-dimensional Optimal Order Detection (MOOD), accepted in J. Comput. Phys.
(2011)



Multi-dimensional Optimal Order Detection (MOOD) 271

7. C. F. Ollivier-Gooch, Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-
Dependent Least-Squares Reconstruction, J. Comput. Phys. 133 6–17 (1997)

8. J. S. Park, S.-H. Yoon, C. Kim, Multi-dimensional limiting process for hyperbolic conservation
laws on unstructured grids, J. Comput. Phys. 229 788–812 (2010)

9. J. Shi, Y-T Zhang, C-W Shu, Resolution of high order WENO schemes for complicated flow
structures, J. Comput. Phys. 186 690–696 (2003)

10. W. R. Wolf , J. L. F. Azevedo, High-order ENO and WENO schemes for unstructured grids,
International Journal for Numerical Methods in Fluids, 55 Issue 10 917—943 (2007)

The paper is in final form and no similar paper has been or is being submitted elsewhere.



A Relaxation Approach for Simulating Fluid
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Abstract We present here a Godunov-type scheme to simulate one-dimensional
flows in a nozzle with variable cross-section. The method relies on the construction
of a relaxation Riemann solver designed to handle all types of flow regimes, from
subsonic to supersonic flows, as well as resonant transonic flows. Some computa-
tional results are also provided, in which this relaxation method is compared with
the classical Rusanov scheme and a modified Rusanov scheme.

Keywords Relaxation scheme, Godunov-type scheme, resonant transonic flows.
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1 Introduction

In this paper, we are interested in the numerical approximation of the solutions of
a model describing one-dimensional barotropic flows in a nozzle. In this model, �
and w are respectively the density and the velocity of the fluid while ˛ stands for
the cross-section of the nozzle, which is assumed to be constant in time. Under
the classical assumption that ˛ is small with respect to a characteristic length in the
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mainstream direction, the flow can be supposed to be one-dimensional and described
by the following set of partial differential equations:

@t˛ D 0;
@t .˛�/C @x.˛�w/ D 0; t > 0; x 2 R;

@t .˛�w/C @x.˛�w2 C ˛p.�// � p.�/@x˛ D 0;
(1)

where � D ��1 is the specific volume and � 7! p.�/ is a barotropic pressure law
(satisfying p0.�/ < 0 and p00.�/ > 0). System (1) takes the condensed form:

@tUC @xf.U/C c.U/@xU D 0; (2)

where the state vector is U D .˛; ˛�; ˛�w/T . The solutions are sought in the phase
space of positive solutions defined as

˝ D fU D .˛; ˛�; ˛�w/T 2 R
3; ˛ > 0; ˛� > 0g: (3)

We recall the properties of this model:

• Property 1.1 (Hyperbolicity) System (1) admits, for U in ˝ , the following
eigenvalues

	0.U/ D 0; 	1.U/ D w� c.�/; 	2.U/ D wC c.�/; (4)

where c.�/ D �
p�p0.�/. The system is hyperbolic (i.e. the corresponding

eigenvectors span R
3) if and only if jwj ¤ c.�/. Besides, the fields associated

with the 	1 and	2 eigenvalues are genuinely non-linear while the field associated
with 	0 is linearly degenerate.

• Property 1.2 (Entropy) The entropy solutions of system (1) satisfy the follow-
ing inequality in the weak sense

@t .˛�E /C @x .˛�E wC ˛p.�/w/ � 0 (5)

where E D w2

2
C e.�/ is the total energy and where the function � 7! e.�/ is

given by e0.�/ D �p.�/.
The Godunov scheme for this model is difficult to implement because the

Riemann problem for system (1) is hard to solve due to the non linearities of
the pressure law (giving rise to the genuinely non-linear acoustic fields), to the
absence of a satisfactory definition of the non-conservative product p.�/@x˛ and
to the resonance phenomenon that appears for transonic flows causing the model to
lose hyperbolicity [5]. For these reasons, we rather follow the classical approach of
[7] and design an approximate Riemann solver, relying on a relaxation method. With
this end in view, the solutions of system (1) are approximated by the solutions of the
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following enlarged relaxation system in the limit of a vanishing positive parameter ":

@t˛
" D 0;

@t .˛�/
" C @x.˛�w/" D 0; t > 0; x 2 R;

@t .˛�w/" C @x.˛�w2 C ˛�.�;T //" � �.�;T /"@x˛
" D 0;

@t .˛�T /" C @x.˛�T w/" D 1

"
.˛�/".� � T /";

(6)
with a linearization of the pressure law given by �.�;T / D p.T / C a2.T � �/.
The variable T is an additionnal unknown relaxing towards the specific volume � in
the limit "& 0, and the constant a is a numerical parameter that must be taken large
enough so as to guarantee the non-linear stability of the numerical approximation.
The state vector for the relaxation system is W D .˛; ˛�; ˛�w; ˛�T /T and the
solutions are sought in the phase space

˝r D fW D .˛; ˛�; ˛�w; ˛�T /T 2 R
4; ˛ > 0; ˛� > 0; ˛�T > 0g: (7)

The following property motivates the introduction of this relaxation system

Property 1.3 (Hyperbolicity) The convective part of (6) admits, for W in ˝r , the
following eigenvalues

�0.W/ D 0; �1.W/ D w � a�; �2.W/ D w; �3.W/ D wC a�: (8)

The system is hyperbolic (i.e. the corresponding eigenvectors span R
4) if and only

if jwj ¤ a� , and all the fields are linearly degenerate.

2 The Riemann problem for the relaxation system

In this section, we give the main ideas leading to the construction of solutions to the
Riemann problem for the convective part of the relaxation system (6). Being given
WL and WR two states in ˝r , we look for solutions of

�
@tWC @xg.W/C d.W/@xW D 0;
W.x; 0/ DWL if x < 0 and WR if x > 0:

(9)

As all the characteristic fields are linearly degenerate, the solution turns out to be
simpler to construct than a solution of the Riemann problem for the equilibrium
system (1). Indeed, the solution is sought in the form of a self-similar function
consisting in constant intermediate states separated by contact discontinuities.
The linear degeneracy of the fields provides natural jump relations across each
discontinuity and yields a set of equations eventually leading to the expessions of the
wave speeds and intermediate states. However, some issues related to the resonance
phenomenon still need to be handled with care (see [2] for details).
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We show that the solutions can be expressed in terms of the physical data VL D
.�L;wL;TL/ and VR D .�R;wR;TR/ (i.e. all the initial data excluding the cross-
section ˛) and of the ratio of left and right initial sections � WD ˛L

˛R
. More precisely,

we introduce the following quantities depending only on .VL;VR/

w] WD 1

2
.wL C wR/ � 1

2a
.�R � �L/; (10)

�
]
L WD �L C

1

a
.w] � wL/ D �L C 1

2a
.wR � wL/ � 1

2a2
.�R � �L/; (11)

�
]
R WD �R �

1

a
.w] � wR/ D �R C 1

2a
.wR � wL/C 1

2a2
.�R � �L/; (12)

where w] has the dimension of a speed and �]L; �
]
R the dimension of specific volumes.

These quantities appear in the explicit expressions of the solutions and it can be
proved that these specific volumes need to be positive in order to guarantee the
positivity of the solutions. In the numerical applications however, a will be chosen
large for stability matters (see Sect. 4) and it will always be possible to impose the
positivity of �]L and �]R by taking a large enough.

The main result of this section is the existence theorem for the Riemann problem.

Theorem 2.1 Let WL and WR be two positive states in ˝r . Assume that a is such
that �]L > 0 and �]R > 0. Then the Riemann problem (9) admits a positive self-similar
solution whatever the ratio � D ˛L

˛R
is.

Sketch of the proof (see [2] for details). The proof consists in the effective con-
struction of a solution. For the relaxation system, the eigenvalues are not naturally
ordered because of the existence of a standing wave, and a resonance phenomenon
does appear for transonic flows. Therefore, in order to construct solutions, we
investigate all admissible wave configurations (including sonic and supersonic
ones) and for each admissible ordering of the eigenvalues, we determine sufficient
conditions on the initial states WL and WR for the solution to have this particular
ordering. Eventually, we check a posteriori that the determined conditions totally
cover the whole space of initial conditions˝r �˝r . ut

Figure 1 represents the map of the admissible solutions given by Theorem 2.1
with respect to the initial states WL and WR. The right part of the chart corresponds
to the solutions with positive material speed, while the left part depicts the
symmetric configurations with negative material speed.
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Fig. 1 Wave configuration of the solution of the Riemann problem (9) with respect to WL and
WR. ML D wL

a�L
and MR D wR

a�R
are the Mach numbers of the initial left and right states WL and

WR. The material wave is represented by a dashed line

3 Numerical approximation

In this section, we derive a numerical scheme from the relaxation approximation
introduced in Sect. 1, the aim being to approximate the weak solutions of a Cauchy
problem associated with system (1):

�
@tUC @xf.U/C c.U/@xU D 0;
U.x; 0/ D U0.x/:

(13)

Let �x be a space step and �t a time step. The space is partitioned into cells R DS

j2Z

Cj with Cj D Œxj� 12 ; xjC 1
2
Œ, where xjC 1

2
D .j C 1

2
/�x are the cell interfaces.

At the discrete times tn D n�t , the solution of (13) is approximated on each cell

Cj by a constant value denoted by U
n
j D

�
˛nj ; .˛�/

n
j ; .˛�w/nj

�T
. We now describe

the two-step splitting method associated with the relaxation system (6) in order to
calculate the values of the approximate solution at time tnC1 .UnC1

j /j2Z from those
at time tn.

Step 1: Time evolution .tn ! tnC1;�/

We first introduce the piecewise constant approximate solution of the relax-
ation system at time tn: x 7! W.x; tn/ D W

n
j in Cj with W

n
j D

�
˛nj ; .˛�/

n
j ; .˛�w/nj ; .˛�T /nj

�
, where T n

j WD �nj , i.e. W
n
j is at equilibrium. Then,

the following Cauchy problem is exactly solved for t 2 Œ0;�t� with �t small
enough (see condition (15) below)
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�
@t eWC @xg.eW/C d.eW/@xeW D 0;
eW.x; 0/ DW.x; tn/:

(14)

Since the initial condition x 7! W.x; tn/ is piecewise constant, the exact solution
of (14) is obtained by gluing together the solutions of the Riemann problems set
at each cell interface xjC 1

2
, provided that these solutions do not interact during the

period�t , i.e. provided the following classical CFL condition

�t

�x
max

W

j�i .W/j < 1

2
; i 2 f0; :::; 3g; (15)

for all W under consideration. More precisely, if .x; t/ is in Œxj ; xjC1� � Œ0;�t�,
then

eW.x; t/ DWr

�x � xjC1=2
t

I ajC1=2;Wn
j ;W

n
jC1

�
; (16)

where .x; t/ 7! Wr

�
x
t
I a;WL;WR

�
is the self-similar solution of the Riemann

problem constructed in Sect. 1, which clearly depends on the local choice of the
parameter a. Then, in order to define a piecewise constant approximate solution at
time tnC1;�, the solution eW.x; t/ is averaged on each cell Cj at time �t :

W.x; tnC1;�/ DW
nC1;�
j WD 1

�x

Z x
jC 1

2

x
j� 12

eW.x;�t/dx; 8x 2 Cj ; 8j 2 Z:

(17)

Step 2: Instantaneous relaxation .tnC1;� ! tnC1/

The second step consists in sending " to zero instantaneously in the piecewise
constant function W.x; tnC1;�/ obtained at the end of the first step. This amounts to
imposing T nC1

j WD �nC1j , thus we have

W
nC1
j D

�
˛nC1;�j ; .˛�/nC1;�j ; .˛�w/nC1;�j ; ˛nC1;�j

�T
: (18)

Finally, the new cell value at time tnC1 of the approximate solution reads

U
nC1
j D

�
˛
nC1;�
j ; .˛�/

nC1;�
j ; .˛�w/nC1;�j

�T
: (19)

We can prove that this two-step relaxation method can be equivalently rewritten in
the form of a Godunov-type finite volume scheme [7].
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4 Non-linear stability of the scheme

Non-linear stability issues are usually dealt with through a so-called discrete entropy
inequality, which is the discrete counterpart of the entropy inequality (5) satisfied
by the weak solutions of the model. We have the following definition:

Definition 4.1 We say that a numerical scheme satisfies a discrete entropy inequal-
ity if there exists a numerical entropy flux G.UL;UR/ which is consistent with the
exact entropy flux G D ˛�E wC ˛p.�/w (in the sense that G.U;U/ D G .U/ for all
U) such that, under some CFL condition, the discrete values .Un

j /j2Z;n2N computed
by the scheme automatically satisfy

.˛�E /.UnC1
j / � .˛�E /.Un

j /C
�t

�x
.G.Un

j ;U
n
jC1/�G.Un

j�1;Un
j // � 0: (20)

As seen in Sect. 3, under the CFL condition (15), the different Riemann problems
at each interface do not interact and the parameter a D ajC 1

2
can be chosen locally

interface by interface. Usually, if ajC 1
2

is large enough, so as to satisfy a so-called
Whitham condition (see [1]), then a discrete entropy inequality (20) is guaranteed.
In order to define ajC 1

2
, we propose a weak Whitham-like condition that handles

the resonance phenomenon and still guarantees a discrete entropy inequality under
the CFL condition (15) (see [2] for details).

5 Numerical tests

In this section, we run the relaxation scheme described in Sect. 3 on a Riemann
problem that contains the standing wave associated with the constant cross-section
˛, a left-going 	1-rarefaction wave, a sonic right-going 	1-rarefaction wave and a
right-going 	2-shock. The chosen pressure law is an ideal gas barotropic pressure
law p.�/ D ��� , with � D 3. The left and right initial conditions are given by
˛L D 3:0, �L D 1:0, wL D 0, ˛R D 1:0, �R D 0:1, and wR D 0. The outcome of
the relaxation method is compared with two other numerical schemes. The first one
is the classical Rusanov scheme where the cross-section ˛ is preserved throughout
time:

˛nC1j WD ˛nj : (21)

The second one is a modification of the Rusanov scheme that consists in applying
the scheme to the whole state vector U (including the cross-section ˛) causing ˛ to
be dissipated:

˛nC1j WD ˛nj �
�t

�x

�
qn
jC 1

2

� qn
j� 12

�
; (22)

with qn
jC 1

2

D �r.Un
j /.˛

n
jC1 � ˛nj / where the scalar r.Un

j / is the maximal value

of the spectral radius of the Jacobian matrices .rf C c/.Un
k/ for k D j; j C 1.
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Fig. 2 Solution of the Riemann problem at time T D 0:2. Space step �x D 10�5. Straight line:
relaxation scheme, circles: classical Rusanov scheme, triangles: Rusanov scheme with dissipation
of the cross-section

In Fig. 2, we can see that, due to a smoothing effect, the dissipation of the cross-
section ˛ provides a notable improvement for the Rusanov scheme (see [4] and [8]
for different approaches to improve the Rusanov scheme). TheL1-norm of the error
on ˛, at the final time T , vanishes as the space step �x goes to zero (with �t=�x
constant) with the order O.�x1=2/.
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A CeVeFE DDFV scheme for discontinuous
anisotropic permeability tensors

Yves Coudière, Florence Hubert, and Gianmarco Manzini

Abstract In this work we derive a formulation for discontinuous diffusion tensor
for the Discrete Duality Finite Volume (DDFV) framework that is exact for affine
solutions. In fact, DDFV methods can naturally handle anisotropic or non-linear
problems on general distorded meshes. Nonetheless, a special treatment is required
when the diffusion tensor is discontinuous across an internal interfaces shared
by two control volumes of the mesh. In such a case, two different gradients
are considered in the two subdiamonds centered at that interface and the flux
conservation is imposed through an auxiliary variable at the interface.

Keywords Finite volume schemes, Darcy flow
MSC2010: 65N08, 76S05

1 Introduction

In this proceeding we propose a Discrete Duality Finite Volume (DDFV) method
that can handle discontinuous permeability coefficients. This method is a variant
of the DDFV formulation proposed by Y. Coudière and F. Hubert in [6] to
extend to three-dimensional (3D) problems the original two-dimensional finite
volume schemes by F. Hermeline [11] and K. Domelevo and P. Omnès [9]. In
the DDFV approach the diffusive flux is approximated using a piecewise constant
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approximation of the solution gradient over a set of edge-based cells called diamond
cells. In the two dimensional formulation, the gradient is approximated by a formula
that requires the vertex values of the scalar solution. Following the DDFV approach,
such vertex values are the solution of another finite volume method whose control
volumes are built around the vertices. Therefore, the resulting scheme combines two
distinct finite volume methods for the cell unknowns and the vertex unknowns on
two overlapping meshes. Effectiveness and efficiency of such coupled finite volume
formulation are documented in [5, 10].

Several generalizations of the two-dimensional DDFV formulation have been
proposed in the literature; it is worth mentioning the works by F. Hermeline in [12],
C. Pierre in [8,13], and B. Andreianov and collaborators in [1–4]. Here, we consider
the alternative construction proposed in [6], which uses two families of additional
unknowns. In the first family, the unknowns are located at the vertices of the mesh
and are the solution of a finite volume method whose control volumes are built
around the vertices. In the second family, the unknowns are located at the centers of
mesh edges and faces and are the solution of a finite volume method whose control
volumes are built around such geometric objects. Therefore, the resulting scheme
couples three distinct finite volume methods through a 3D gradient formula that
generalizes the 2D one on a set of special cells, the so called diamond cells, built
around edges and faces as will be discussed in the next sub-section.

The outline of the paper is as follows. In Sect. 2 we present a short review of
the DDFV method. In Sect. 3 we present the numerical treatment that we propose
for the case of discontinuous permeabilities. In Sect. 6 we offer final remarks and
conclusions.

2 The Discrete Duality Finite volume formulation

Meshes

Given a general finite volume mesh M of the computational domain ˝ , composed
of polyhedra, three additional polyhedral partitions of ˝ are built, denoted by N ,
FE and D , hereafter described.

We denote the control volumes of the initial mesh M by K or L. The set @M
gathers the boundary faces, which we consider as degenerated control volumes, and
we complete the initial mesh as M DM [@M . We associate a set of points xK 2 K

with the control volumes in M ; specifically, in the current applications we use the
arithmetic average of the vertex position vectors for each polyhedral cell. We denote
the vertices, the edges, and the faces of mesh M by xA, E and F, respectively, and
we define some additional points: the center of gravity xF of each face F and the
midpoint xE of each edge E. These points are ordered following the relation

xA � xE � xF � xK which means that xA � @E; E � @F; F � @K:



A CeVeFE DDFV scheme for discontinuous anisotropic permeability tensors 285

The 3D gradient formula that we will introduce in the next subsection provides
a piecewise constant approximation of the solution gradient on the mesh D , which
is the set of diamond cells D. To each one of the pairs “(edge, face)” .E; F/ related
by xE � xF there corresponds a different diamond cell D that we define as follows.
Cell D is the convex polyhedra with vertices xA; xB; xE; xF ; xK; xL, where xA and
xB denote the endpoints of E, K and L the two cells sharing the common face
F. Specifically, it holds that D D hull.xA; xF ; xB; xK/ [ hull.xA; xF; xB; xL/. We
associate with each diamond cell D the point xD D 1

2
.xE C xF/ 2 D.

We partition each diamond cell into eight tetrahedra sharing xD as common vertex
and having the remaining three vertices chosen within the pairs .xA; xB/, .xE; xF/

and .xK; xL/, respectively. Formally, we denote the eight possible combinations by

D D hull

	

xD;

	
xA

xB




;

	
xE

xF




;

	
xK

xL





; with

	
xA

xB




� xE � xF �
	
xK

xL




:

We assume the six vertices xK; xL, xA; xB and xE; xF of the diamond cell D.E; F/ to
be ordered in such a way that �EF WD det.xB � xA; xF � xE; xL � xK/ > 0. Thus, the
measure of D is jDj D 1

6
�EF.

We denote the control volume associated with a vertex xA of the mesh by A.
This control volume is built by gathering the contributions (i.e., sub-tetraedra) of
the diamond cells that share vertex xA as:

A D [
D2DA

hull

	

xD; xA;

	
xE

xF




;

	
xK

xL





;

where DA D fD 2 D ; such that xA � xE � xFg for xA fixed. The resulting finite
volume partition of ˝ , denoted by N , forms the vertex mesh. The vertex mesh is
split into interior and boundary controls volumes, respectively denoted by N and
@N ; formally, it holds that N D N [ @N .

Similarly, we associate a control volume denoted either by F or by E, with
the point xF (face center) or the point xE (edge midpoint) in accordance with the
following formula:

E D [
D2DE

hull

	

xD;

	
xA

xB




; xE;

	
xK

xL





; F D [
D2DF

hull

	

xD;

	
xA

xB




; xF;

	
xK

xL





;

where DE D fD 2 D ; with xE � xFg with xE fixed and DF D fD 2 D ; with xE �
xFg with xF fixed. The resulting finite volume partition of ˝ , denoted by FE , is
the face-edge mesh. This partition contains both control volumes associated with
the faces and the edges of the initial mesh and is split into the interior and boundary
controls volumes, respectively denoted by FE and @FE ; formally, it holds that
FE D FE [ @FE .
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The 3D “Cell-Vertex-Face/Edge” DDFV Scheme

We say that uT D .uM ; uN ; uFE / is a discrete function on ˝ whenever its three
components are piecewise constant functions on the meshes M , N and FE ,
respectively, and take the form

uM D
X

K2M
uK�K; uN D

X

A2N
uA�A; uFE D

X

F2F
uF�F C

X

E2E
uE�E:

Let X denote the set of the degrees of freedom of the form

uT D �.uK/K2M ; .uA/A2N ; .uE/E2E ; .uF/F2F
�
:

In order to take into account the Dirichlet boundary conditions, this set is supple-
mented by the boundary data

ıuT D ..uK/xK2@M ; .uA/xA2@N ; .uE/xE2@FE ; .uF/xF2@FE / ;

which form the set @X . We will search the numerical approximation to the scalar
solution field u in the product set .uT ; ıuT / 2 X � @X . Note that X , @X , and
X � @X can be given the algebraic structure of a linear space after introducing (in
the obvious way) the addition of two elements of the set and the multiplication of
an element of the set by a real number.

The gradient of the discrete unknown uT , denoted byrT uT , is a constant vector
field on each diamond cell and is identified with a piecewise constant vector field
on mesh D . It depends on the boundary data ıuT and can be written as rT

ıu uT DP
D2D rD

ıuuT �D where

rD
ıuuT D 1

3jDj
�
.uL � uK/NKL C .uB � uA/NAB C .uF � uE/NEF

�
: (1)

for any D 2 D and with the vectors NKL D 1
2
.xB � xA/ � .xF � xE/, NAB D

1
2
.xF �xE/� .xL �xK/ andNEF D 1

2
.xL �xK/� .xB�xA/. This procedure defines a

gradient operator, denoted by rT

ıu , mapping the discrete space X onto the space of
the discrete vector fields rT uT , which we conveniently denote by Q.

Using the gradient formula we define the flux through each interface of the
control volumes of the three meshes M , N and FE . The three finite volume
schemes are written by using a discrete divergence operator that maps each vector
field in Q to a triple of scalar functions in X . Formally, we introduce the operator

divT W 
 D .
D/D2D 2 Q 7! .divM 
; divN 
; divFE 
/ 2 X

where divM 
 D .divK
/K, divN 
 D .divA
/A and divFE 
 D f.divE
/E; .divF
/Fg
are given by
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jKjdivK
 D
X

D2DK


D �NKL; jAjdivA
 D
X

D2DA


D �NAB; (2)

jEjdivE
 D
X

D2DE


D �NEF; jFjdivF
 D
X

D2DF


D � .�NEF/ : (3)

In the previous statements, the symbols DK, DA, DE, DF refer to the diamond cells
which overlap the cells labeled by the corresponding subscripted indices K, A, E,
and L.

Since each of the divC
 approximates 1
jCj
R

C
div
 (for C D K; A; E; F), the right

hand side of the discrete problem is given by the piecewise constant projection of
the function f onto the space X , �T f D f.fK/K2M ; .fA/A2N ; .fE; fF/E2E ;F2F g
with fC D 1

jCj
R

C
f .x/dx for any cell C D K 2M or A 2 N or F or E 2 FE .

Finally, the DDFV scheme reads as

� divT .KDrD
ıuuT / D �T f (4)

where KD D 1
jDj
R

D
K.x/dx is defined piecewise on the diamond cells. The scheme

in (4) originates a symmetric and positive-definite linear system of equations (see
[6] for a thourough discussion of the other properties). Assembling the matrix of
the system amounts to gathering the local contributions of the discrete gradient
associated to each diamond cell. These contributions are explicitly taken into
account by the local Gram matrix

KD D
0

@
KDNKL �NKL KDNKL �NAB KDNKL �NEF

KDNAB �NKL KDNAB �NAB KDNAB �NEF

KDNEF �NKL KDNEF �NAB KDNEF �NEF

1

A

The right hand side in (4) is split similarly in elementary contributions on the eight
tetrahedra that compose the diamond cells D.

3 Treatment of discontinuous permeability tensors

The case of a discontinuous permeability tensor in the DDFV framework deserves
a special treatment that we discuss in this subsection. Let us suppose that the
permeability tensor is discontinuous across the interfaces of the control volumes
of mesh M . We decompose each diamond cell into two sub-diamonds DK and DL,
i.e., D D DK [ DL, where DK is the union of the four tetrahedra with vertices xD, xK,
the third vertex being xA or xB, and the fourth vertex being xE or xF.

Then, we introduce an additional degree of freedom at xD, the center of the
diamond cell, and we write a gradient formula that is exact for affine functions on
the two sub-diamonds. We obtain the two following formulas
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rT

K uT D 1

3jDKj
�
.uD � uK/NKL C .uB � uA/N

K
AB C .uF � uE/N

K
EF

�

rT

L uT D 1

3jDLj
�
.uL � uD/NKL C .uB � uA/N

L
AB C .uF � uE/N

L
EF

�

using the geometric vectors N K
AB D 1

2
.xF � xE/ � .xD � xK/, N L

AB D 1
2
.xF � xE/ �

.xL � xD/, N K
EF D 1

2
.xD � xK/ � .xB � xA/, N L

EF D 1
2
.xL � xD/ � .xB � xA/, and

introducing the two volume factors jDKj D 1
6

det.xB � xA; xF � xE; xD � xK/ and
jDLj D 1

6
det.xB � xA; xF � xE; xL � xD/. Also, we remark that jDj D jDKj C jDLj,

NAB D N K
AB C N L

AB NEF D N K
EF C N L

EF and it holds that jDKjN L
AB � jDLjN K

AB D
jDKjNAB � jDjN L

AB.
Let KDK

D 1
jDKj

R
DK

K.x/dx and KDL
D 1

jDL j
R

DL
K.x/dx be the constant

approximation of the diffusion tensor on the two sub-diamonds DK and DL. We
determine the additional unknown uD in terms of the other local degrees of freedom
uK, uL, uA, uB, uE and uF by imposing that

KDK
rT

K uT �NKL D KDL
rT

L uT �NKL;

which is the flux conservation through the common face DK jDL. Moreover, let
us introduce the following geometric factors that also depend on the permeability
coefficients:

ˇKL D CjDLjKDK
NKL �NKL C jDKjKDL

NKL �NKL

ˇAB D �jDLjKDK
N K

AB �NKL C jDKjKDL
N L

AB �NKL

ˇEF D �jDLjKDK
N K

EF �NKL C jDKjKDL
N L

EF �NKL

A straightforward calculation yields the formula for uD

uD D jDLjKDK
NKL �NKL

ˇKL
uK C jDKjKDL

NKL �NKL

ˇKL
uL C ˇAB

ˇKL

�
uB � uA

�C ˇEF

ˇKL

�
uF � uE

�
;

and the formulas for the numerical gradients:

3rT

K uT D KDL
NKL �NKL

ˇKL
NKL

�
uL � uK

�C
	

ˇAB

jDKjˇKLNKL C 1

jDKjN
K

AB




.uB � uA/

C
	

ˇEF

jDKjˇKLNKL C 1

jDKjN
K

EF




.uF � uE/;

3rT

L uT D KDK
NKL �NKL

ˇKL
NKL

�
uL � uK

�C
	

ˇAB

jDLjˇKLNKL C 1

jDLjN
L

AB




.uB � uA/

C
	

ˇEF

jDLjˇKLNKL C 1

jDLjN
L

EF




.uF � uE/:
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Finally, we define the divergence operator for a discrete vector field which is
piecewise constant on DK \ DL and may be discontinuous across DK jDL as

jKjdivK

D D

X

DjK

DK
�NKL D

X

DjK

DL
�NKL D

X

DjK

	 jDKj
jDj 
DK

C jDLj
jDj 
DL




�NKL;

(5)

jAjdivA

D D

X

DjA
.
DK
�N K

AB C 
DL
�N L

AB/; (6)

jEjdivE

D D

X

DjE
.
DK
�N K

EF C 
DL
�N L

EF/; (7)

jFjdivF

D D

X

DjDF

.
DK
� ��N K

EF

� � 
DL
� ��N L

EF

�
/: (8)

The DDFV method for the discontinuous case follows by using (5)-(8) with the
approximate permeability tensors KDK

and KDL
instead of (2)-(3) in the scheme

formulation (4). Let 
D D KDrT uT and evaluate the quantities:

	 jDKj
jDj 
DK

C jDLj
jDj 
DL




�NKL D ˛KL�KL.uL � uK/C ˛KL�AB.uB � uA/C ˛KL�EF.uF � uE/


DK
�N K

AB C 
DL
�N L

AB D ˛AB�KL.uL � uK/C ˛AB�AB.uB � uA/C ˛AB�EF.uF � uE/


DK
�N K

EF C 
DL
�N L

EF D ˛EF�KL.uL � uK/C ˛EF�AB.uB � uA/C ˛EF�EF.uF � uE/

using the entries of the coefficient matrix

Knew
D D

0

@
˛KL�KL ˛KL�AB ˛KL�EF

˛AB�KL ˛AB�AB ˛AB�EF

˛EF�KL ˛EF�AB ˛EF�EF

1

A :

Since Knew
D is a 3 � 3 symmetric elements we have only six independent entries,

which after a straightforward calculations are given by:

˛KL�KL D 1

3

KDK
NKL �NKL KDL

NKL �NKL

ˇKL
;

˛KL�AB D KDK
NKL �N K

AB KDL
NKL �NKL CKDL

NKL �N L
AB KDK

NKL �NKL

ˇKL
;

˛KL�EF D 1

3

KDK
NKL �N K

EF KDL
NKL �NKL CKDL

NKL �N L
EF KDK

NKL �NKL

ˇKL
;

˛AB�AB D 1

3

�
� ˇ2AB
jDKjjDLjˇKL C

1

jDKjKDK
N K

AB �N K
AB C

1

jDLjKDL
N L

AB �N L
AB

�
;



290 Y. Coudière et al.

˛AB�EF D 1

3

�
� ˇABˇEF

jDKjjDLjˇKL C
1

jDKjKDK
N K

EF �N K
AB C

1

jDLjKDL
N L

EF �N L
AB

�
;

˛EF�EF D 1

3

�
� ˇ2EF
jDKjjDLjˇKL C

1

jDKjKDK
N K

EF �N K
EF C

1

jDLjKDL
N L

EF �N L
EF

�
:

and the remaining coefficients are determined by symmetry, i.e., ˛AB�KL D ˛KL�AB,
˛EF�KL D ˛KL�EF, and ˛EF�AB D ˛AB�EF.

4 Conclusions

In this work, we discussed how a discontinuous permeability can be treated in the
numerical framework offered by the DDFV method. Whenever the discontinuity is
across an internal interfaces shared by two control volumes of the primal mesh, two
different gradients are considered on the two subdiamonds centered at that interface.
Introducing an auxiliary variable at the interface and imposing flux conservation
makes it possible to derive a formula for both gradients that is exact for affine
functions. Then, a DDFV method can be formulated using a discrete divergence
operator to express the flux balance on the overlapping meshes for primal control
volumes, vertex control volumes and face-edge control volumes. The numerical
experiments in [7] show the effectiveness of the method.
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through the program PRIN2008.
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Multi-Water-Bag Model And Method
Of Moments For The Vlasov Equation

Anaı̈s Crestetto and Philippe Helluy

Abstract The kinetic Vlasov-Poisson model is very expensive to solve numerically.
It can be approximated by a multi-water-bag model in order to reduce the complex-
ity. This model amounts to solve a set of Burgers equations, which can be done
easily by finite volume methods. However, the solution is naturally multivalued
(filamentation). The multivalued solution can be computed by a moment method.
We present here several numerical experiments.

Keywords Vlasov-Poisson, water-bag approximation, Burgers equation, multival-
ued solution
MSC2010: 35Q83, 44A60, 65M08

1 Introduction

Kinetic equations are used in several domains, such as plasma physics or bubble
flows in gases or liquids. The distribution function depends on space and time but
also on an additional velocity variable. Computations are thus very expensive. It is
of great interest to reduce the complexity of the resolution by using fluid methods.

We consider a plasma containing ions of positive charge and electrons of
negative charge. Ions are much heavier than electrons so that we can neglect their
displacement and assume that their density n0 is constant. The electrons move
following the system of Vlasov-Poisson in a periodic domain in x:
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@tf .x; v; t/ C v � rxf .x; v; t/C q

m
E .x; t/ � rvf .x; v; t/ D 0; (1)

div E .x; t/ D � .x; t/ D q

m

	Z

f .x; v; t/ dv � n0



; (2)

Z

E .x; t/ dx D 0; (3)

f .x; v; 0/ D f0 .x; v/ � n0: (4)

The unknowns are the distribution function of electrons f , and the electric field E.
The electric field depends on space and time x; t , while the distribution function
depends also on an additional velocity variable v. The charge and the mass of one
electron are noted q < 0 andm > 0 respectively. Without loss of generality, we can
take q

m
D �1 and n0 D 1. In one dimension of space, this system becomes:

@tf .x; v; t/ C v@xf .x; v; t/ � E .x; t/ @vf .x; v; t/ D 0; (5)

@xE .x; t/ D � .x; t/ D 1 �
Z

f .x; v; t/ dv; (6)

Z

E .x; t/ dx D 0; (7)

f .x; v; 0/ D f0 .x; v/ � 1: (8)

The distribution function f is initially a perturbation of the equilibrium n0. After
simple calculations, Equation (6) can also be written

@tE .x; t/ D
Z

vf .x; v; t/ dv �
Z

vf .0; v; t/ dv: (9)

In higher dimensions, Equation (6) would be replaced by a Poisson equation,
assuming that E D �r˚ , where ˚ is the electric potential.

The solution can be stable (for example in the case of Landau damping). But
since there is no dissipation, the solution can become unstable and filamentation
can appear.

In order to reduce the complexity of our model, we propose to approximate the
kinetic equation by fluid models. We consider two possibilities:

• the multi-water-bag model,
• the method of moments.

Then we propose numerical approximations of these models by simple finite
volume schemes. The numerical results will be compared to those obtained with
a full resolution of the kinetic model by the popular Particle-In-Cell (PIC) method
(described for example in [3]).
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2 Multi-water-bag model

The multi-water-bag model, detailed in [2], generalizes the water-bag model (see
for example [1]). It consists of replacing f by a piecewise constant approximation
in the velocity variable. Each piece is called a “water-bag”. It is possible to compute
only the boundaries of the water-bags.

2.1 Presentation of the model

Let N be an integer, vCj .x; t/ and v�j .x; t/ velocities, Aj constants, j D 1; : : : ; N ,
such that we can write:

f .x; v; t/ D
NX

jD1
Aj

�
H
�

vCj .x; t/ � v
�
�H

�
v�j .x; t/ � v

��
; (10)

whereH is the Heaviside function:H .u/ D
(
0 if u < 0;

1 if u > 0:
Injecting this expression in the Vlasov equation, and assuming that there is no

two vj̇ .x; t/ equal, we obtain the following system:

@tvj̇ C vj̇ @xvj̇ C E D 0; 8j D 1; : : : ; N; (11)

@tE D �
NX

jD1
Aj

 
vC2j .x; 0/ � v�2j .x; 0/

2
� vC2j .x; t/ � v�2j .x; t/

2

!

: (12)

The velocities follow a Burgers equation with a source term. Instead of evolving
the distribution function f , we evolve these velocities. The natural solution
can become multivalued (filamentation). The weak entropy solution is only an
approximation in this context, when shocks appear.

2.2 Numerical scheme

We discretize our domain: xi D x0 C i�x, with �x being the spacial step, and
consider a time step�t such that tn D n�t . We evolve each velocity independently
by using, for example, the Godunov scheme:

v˙;nC1j;i D v˙;nj;i �
�t

�x

0

B
@

�
v˙;?
j;iC 1

2

�2

2
�
�

v˙;?
j;i� 12

�2

2

1

C
A ��tEn

i ; (13)
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where v˙;nj;i ' vj̇ .xi ; t
n/ and En

i ' E .xi ; tn/. We compute the vj˙;? with an exact
Riemann solver.

We compute the electric field with the following scheme:

EnC1
i D En

i ��t
NX

jD1
Aj

0

B
@

�
vC;0j;i

�2 �
�

v�;0j;i

�2

2
�
�

vC;nj;i

�2 �
�

v�;nj;i

�2

2

1

C
A : (14)

In higher dimension, this step should be replaced by the numerical resolution of a
Poisson equation.

2.3 Remarks

Before the shock, the weak solution and the multivalued solution coincide. After
the shock, the natural solution is multivalued, filaments or branches appear, and the
weak solution becomes discontinuous. In Sect. 4, we compare numerically the two
kinds of solutions. It is also possible to compute several branches by the method of
moments [4].

3 Method of moments

The method of moments, presented in [5, 6], consists in taking the first moments of
the equation that we have to solve in order to reduce the number of variables. The
system is closed by assuming that the distribution function is made of water-bags.

3.1 Presentation of the method

Definition 1. The momentMk of order k of f is defined by:

Mk .x; t/ D
Z C1

�1
vkf .x; v; t/ dv: (15)

Taking the 2N first moments of the Vlasov equation:

Z

vk@tf .x; v; t/ dvC
Z

vkC1@xf .x; v; t/ dv �E.x; t/
Z

vk@vf .x; v; t/ dv D 0;
(16)
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we obtain the following system of moments, coupled with the equation for the
electric field:

@tM0 C @xM1 D 0 (17)

@tMk C @xMkC1 C kEMk�1 D 0; for k D 1; : : : ; 2N � 1; (18)

@tE .x; t/ D M1 .x; t/ �M1 .0; t/ : (19)

We now have a system of 2NC1 equations, in which the velocity no longer appears.
There are 2N C 2 unknowns: the momentsMk for k D 0; : : : ; 2N and E. We have
to close this system by finding an expression for M2N .

3.2 Closure relation

We represent f by water-bags for closing the system:

f .x; v; t/ D
NX

jD1
Aj

�
H
�

vCj .x; t/ � v
�
�H

�
v�j .x; t/ � v

��
: (20)

We obtain:

Mk .x; t/ D
NX

jD1
Aj

vCkC1j .x; t/ � v�kC1j .x; t/

k C 1 ; 8 k D 0; : : : ; 2N; (21)

and thus have an expression of M2N , assuming that we know the vj̇ .

3.3 Numerical scheme

At time tn, we know the 2N first moments of f and the electric field. We solve the
system:

Mk .x; t/ D
NX

jD1
Aj

vCkC1j .x; t/ � v�kC1j .x; t/

k C 1 ; 8 k D 0; : : : ; 2N � 1; (22)

to obtain vj̇ , at time tn. In general, the system may have several solutions.
Uniqueness can be recovered through an entropy argument [4].

To solve this system, we can use the Newton method. But we have no rigorous
result of convergence.
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When the problem is such that f can be written:

f .x; v; t/ D
2NX

jD1
.�1/j�1 H

�
aCj .x; t/ � v

�
; (23)

where �1 < a2N � � � � � a1 < C1, we can use the algorithm described in [4, 7],
which solves rigorously such a system. It is then possible to catch numerically the
multivalued solutions.

For approximating the system of moments, we use a natural kinetic scheme.
Formally, we write :

@tf .x; v; t/CvC@xf .x; v; t/Cv�@xf .x; v; t/�E .x; t/ @vf .x; v; t/ D 0; (24)

where vC D max .0; v/ and v� D min .0; v/. Denoting �x as the space step, �t
as the time step, and f n

i as the approximation of f .xi ; v; tn/, we use the following
upwind discretization for the Vlasov equation:

f nC1
i � f n

i

�t
C 1

�x

�
vC
�
f n
i � f n

i�1
�C v�

�
f n
iC1 � f n

i

�� �En
i @vf

n
i D 0: (25)
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Fig. 1 Landau damping. Multi-water-bag model, method of moments and PIC method compared
to the exact solution
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We multiply it by vk and integrate it in v:

1

�t

Z

vk
�
f nC1
i � f n

i

�
dv

C 1

�x

Z �
vCkC1

�
f n
i � f n

i�1
�C v�kC1

�
f n
iC1 � f n

i

��
dv

�En
i

Z

vk@vf
n
i dv D 0:

(26)

We obtain a finite volume scheme:

MnC1
k;i �Mn

k;i

�t
C 1

�x

�
F
�
Mn
k;i ;M

n
k;iC1

� � F �Mn
k;i�1;Mn

k;i

�� � kEn
i M

n
k�1;i D 0:

(27)

The scheme for the electric field is:

EnC1
i �En

i

�t
DMn

1;i �Mn
1;0: (28)

4 Numerical results

We validate our models on classical test cases: Landau damping and two stream
instability, and obtain good decrease rates for the electric potential energy, when N
is big enough. An example for a Landau damping test case is given in Fig. 1, with
N D 5.

We are now interested in solutions that can initially exactly be depicted by the
multi-water-bag model, and that are unstable. We compare the three methods in
Fig. 2, for N D 1:

• the method of moments with an approximation by water-bags,
• the multi-water-bag model with the scheme of Godunov,
• the Particle-In-Cell (PIC) method, considered as the reference.

Before the shock, the two fluid methods describe precisely the solution. After the
shock, they describe the main part of the solution, but cannot catch the filaments.
More test cases will be presented at the conference, with higher N .
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Fig. 2 Test case for N D 1 in the phase space at times T D 2 and T D 5. Multi-water-bag model
(black circles), method of moments (empty squares) and PIC method (dots)
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Comparison of Upwind and Centered Schemes
for Low Mach Number Flows

Thu–Huyen DAO, Michael NDJINGA, and Frédéric MAGOULES

Abstract In this paper, fully implicit schemes are used for the numerical simulation
of compressible flows at low Mach number. The compressible Navier–Stokes
equations are discretized classically using the finite volume framework and a Roe
type scheme for the convection flux. Though explicit Godunov type schemes are
inaccurate for low Mach number flows on Cartesian meshes, we claim that their
implicit counterpart can be more precise for that type of flow. Numerical evidence
from the lid driven cavity benchmark shows that the centered implicit scheme can
capture low Mach vortices, unlike the upwind scheme. We also propose a Scaling
strategy based on the convection spectrum to reduce the computational cost and
accelerate the convergence of both linear system and Newton scheme iterations.

Keywords Low Mach number, centered scheme, upwind scheme, compressible
flows, scaling preconditioner
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1 Introduction

Accurate numerical simulation of compressible flows at low Mach number is of
great practical importance in the design and safety analysis of nuclear reactors and
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corresponding two-phase flow models are based on Riemann approximate solvers
which are robust and can efficiently capture shock wave solutions using an upwind
strategy. However, when the flow is at low Mach number, especially on Cartesian
meshes, these schemes are inaccurate, and corrections have to be made to capture
the correct dynamics (see for example [8]). In [5], a detailed analysis of the
behavior of Godunov type schemes applied to the compressible Euler system at
low Mach number is proposed. The upwind part of the Roe scheme is identified as
bringing excessive numerical diffusion and several corrections are proposed. These
corrections aim at reducing the numerical diffusion of the explicit schemes, as well
as maintaining their stability.

In this paper we present a more general strategy that could be easily applied
to simulate various multiphase models at low Mach number. Such a strategy is
inspired by single phase analysis and is first tested on the compressible Navier–
Stokes equations in the present paper. In order to reduce the numerical diffusion, we
consider a scheme that is order two in space such as the implicit centered scheme,
already studied for example in [9].

In Sect. 2, we briefly recall the mathematical model and the considered numerical
schemes. In Sect. 4 we give numerical evidence that the centered implicit scheme is
much less diffusive than the upwind scheme (whether explicit or implicit) and can
capture low Mach vortices. In order to reduce the computational cost involved by the
resolution of many linear systems, Sect. 3 presents preconditioning strategy based
on the scaling of the linear system matrix. This strategy is based on the underlying
hyperbolic operator and could be applied to other set of equations.

2 Mathematical model and Numerical method

2.1 Mathematical model

The model consists of the following three balance laws for the mass, the momentum
and the energy:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@�

@t
C r:q D 0

@q
@t
C r:

�
q˝ q

�
C pId

�
� ��. q

�
/ D 0

@.�E/

@t
C r:

h
.�E C p/ q

�

i
� 	�T D 0

(1)

where � is the density, v the velocity, q D �v the momentum, p the pressure, �e the

internal energy, �E D �eC jjqjj2
2�

the total energy, T the absolute temperature, � the
viscosity and 	 the thermal conductivity. We close the system (1) by the ideal gas
law p D .� � 1/�e. For the sake of simplicity, we consider constant viscosity and
conductivity, and neglect the contribution of viscous forces in the energy equation.
By denoting U D .�;q; �E/t the vector of conserved variables, the Navier–Stokes
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system (1) can be written as a nonlinear system of conservation laws:

@U

@t
Cr ˘ .F conv.U //Cr ˘

�
F diff .U /

� D 0; (2)

where F conv.U / D

0

B
@

q
q˝ q

�
C pId

.�E C p/ q
�

1

C
A ; F diff .U / D

0

B
@

0

��r . q
�
/

�	rT

1

C
A :

2.2 Numerical method

The conservation form (2) enables to define the concept of weak solutions, which
can be discontinuous ones. Discontinuous solutions such as shock waves are of great
importance in transient calculations. In order to correctly capture shock waves, one
needs a robust, low diffusive conservative scheme. The finite volume framework
is the best appropriate setup to build such schemes as it enables to write discrete
equations that express the conservation laws at each cell (see for example [1]).

We decompose the computational domain into N disjoint cells Ci with volume
vi . Two neighboring cells Ci and Cj have a common boundary @Cij with area
sij . We denote N.i/ the set of neighbors of a given cell Ci and nij the exterior
unit normal vector of @Cij . Integrating the system (2) over Ci and setting Ui.t/ D
1
vi

R
Ci
U.x; t/dx and Un

i D Ui.n�t/, the discretized equations can be written:

UnC1
i � Un

i

�t
C

X

j2N.i/

sij

vi

��!̊conv
ij C�!̊diff

ij

�
D 0: (3)

with:
�!̊conv

ij D 1
sij

R
@Cij

F conv.U /:nij ds;
�!̊diff

ij D 1
sij

R
@Cij

F diff .U /:nij ds:

To approximate the convection numerical flux
�!̊conv

ij we solve an approximate
Riemann problem at the interface @Cij . Using the Roe local linearisation of the
fluxes [2], we obtain the following formula:

�!̊conv
ij D F conv.Ui/CF conv.Uj /

2
:nij �D.Ui ; Uj /

Uj � Ui
2

(4)

D F conv.Ui/nij C A�.Ui ; Uj /.Uj � Ui/; (5)

where D is an upwinding matrix, A.Ui ; Uj / the Roe matrix and A� D A�D
2

. The
choice D D 0 gives the centered scheme, whereas D D jAj gives the upwind
scheme. For the Euler equations, we can build A.Ui ; Uj / explicitly using the Roe
averaged state (see [1]).
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The diffusion numerical flux
�!̊diff

ij is approximated on structured meshes using
the formula:

�!̊diff
ij D D.Ui C Uj

2
/.Uj � Ui/ (6)

with the matrix D.U / D

0

B
@

0 0 0
�q
�2

��
�

Id 0

	
cv

�
cvT
�
� jjqjj2

2�3

�
q t 	

�2cv
� 	
cv�

1

C
A, where cv is the heat

capacity at constant volume.

2.3 Newton scheme

Finally, since
P

j2N.i/ F conv.Ui /:nij D 0, using (5) and (6) the equation (3) of the
numerical scheme becomes:

UnC1
i � Un

i

�t
C

X

j2N.i/

sij

vi
f.A� CD/.U nC1

i ; U nC1
j /g.U nC1

j � UnC1
i / D 0: (7)

The system (7) is nonlinear. We use the following Newton iterative method to obtain
the required solutions:

ıU kC1
i

�t
C

X

j2N.i/

sij

vi

h
.A� CD/.U k

i ; U
k
j /
i �
ıU kC1

j � ıU kC1
i

�

D �U
k
i � Un

i

�t
�

X

j2N.i/

sij

vi

h
.A� CD/.U k

i ; U
k
j /
i
.U k

j � U k
i /;

where ıU kC1
i D U kC1

i � U k
i is the variation of the k-th iterate that approximate

the solution at time nC 1. Defining the unknown vector U D .U1; : : : ; UN /t , each
Newton iteration for the computation of U at time step nC1 requires the numerical
solution of the following linear system:

A .U k/ıU kC1 D b.U n;U k/: (8)

2.4 The low Mach problem

When the flow is smooth and the Mach number jjvjj
c

(where c D
q

�p

�
is the

sound speed) is small, the solutions of the system (1) should behave as those of an
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incompressible Navier–Stokes model (see [10]). However, in general, Godunov type
schemes do not preserve the asymptotic behavior and generate spurious solutions
when applied to low Mach number flows (see [5]). The analysis presented in [5]
suggests that the inaccuracies originate from the anisotropy of the upwind matrix
D , and various “ Low Mach Schemes ” are proposed in the explicit context. In order
to avoid the stability issue, we propose to use implicit schemes and to consider the
simpler case D D 0 (no upwinding). The resulting centered scheme can be applied
to any system of conservation law, and we present in Sect. 4 our first numerical
experiments.

3 Description of the Scaling strategy

The larger the time step, the worse the condition number of the matrix A in (8).
As a consequence, it is important to apply a preconditioner before solving the linear
system. The most popular choice is the Incomplete LU factorisation (later named
ILU, see [3] for more details). The error made by the approximate factorisation
using an ILU preconditioner depends on the size of the off diagonal coefficients of
the matrix. For a better performance of the preconditioner, it is desirable that off
diagonal entries of the matrix have small magnitudes.

As we are interested in convection dominated flows, the main contributions to the
matrix A come from the convective part discretisation of the equations through the
matrix A�. Unfortunately, the coefficients of the Roe matrix have very different
magnitudes for low Mach number flows. Consequently, A� and hence A have
coefficients with very different magnitudes.

We are now going to detail a procedure that scales the matrix coefficients so that
they have the same magnitude. The matrix A� can be expressed using a complete
eigenstructure decomposition of the Roe matrix: A D P

k 	kL
k ˝ Rk: The three

eigenvalues of the Roe matrix are vn C c, vn (multiplicity d ), and vn � c. As we
are interested in flows at low Mach number, we can assume v � 0 and in that case
the eigenvalues of A become 	� D �c; 	v D 0, and 	C D Cc. The right and left
eigenvectorsR˙ and L˙ associated to the sound waves are:

R˙ D .1; ˙cn;
c2

� � 1/
t ; L˙ D 1

2
.0; ˙1

c
n;
� � 1
c2

/t : (9)

We have:

A� D �cL� ˝R� for the upwind scheme;

A� D 1

2
.cLC ˝RC � cL� ˝R�/ for the centered scheme:

One sees from (9) that the disequilibrium in A� coefficients comes from the dif-
ference in the magnitude of the components of the left and right eigenvectors of A.
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If we multiply A� to the left (respectively to the right) by a diagonal matrix with
the coefficients dsca D diag.1; cn; c2

��1 /, respectively d�1sca D diag.1; 1
c
n; ��1

c2
/

(n is the unit normal vector), we obtain vectors and matrices with better balanced
coefficients:

d�1scaR˙ D .1;˙n; 1/t ; dscaL
˙ D .0;˙n; 1/t ;

L˙ ˝R˙ D 1

2

0

B
@

0 0 0

˙ 1
c n n˝ n ˙ c

��1n
��1
c2
˙ ��1

c nt 1

1

C
A ; dscaL

˙ ˝R˙d�1sca D
1

2

0

B
@

0 0 0

˙n n˝ n ˙n
1 ˙nt 1

1

C
A

Any mesh can be associated with two diagonal matrices Dsca and D�1sca having the
size of the mesh and containing the successive coefficients of the local matrices dsca
and d�1sca. Instead of solving system (8), one can rather solve:

QA V D Qb; (10)

where QA D DscaAD�1sca, V D DscaU and Qb D Dscab. System (10) can be
resolved more easily using an ILU preconditioner. Once the solution V is obtained
we computeD�1scaV to obtain the original unknown vector U .

4 Numerical results

4.1 Upwind scheme vs Centered one

Figures 1 and 2 present the streamlines of the steady state result obtained using
either the upwind or the centered schemes to discretize the convective part of the
Navier–Stokes equations with the fully implicit scheme presented in Sect. 2.2. Our
test case is a lid driven cavity flow at Reynolds number 400 solved on a cartesian
50 � 50 cell mesh. This case is described in [4], with the correct solution given
by an incompressible solver. The lid speed is 1m=s, the maximum Mach number
of the flow is 0:008. The Roe approximate Riemann solver [2] employed for the
convection fluxes is known to have problem solving such low Mach number flows
when the scheme is explicit, especially on multidimensional cartesian meshes (see
[5]). It can be seen on Fig. 1 that the upwind scheme does not capture the correct
streamlines. However, on Fig. 2, it can be seen that the implicit centered scheme is
much less diffusive and captures the correct solution with its expected three vortices.

4.2 Assessment of the Scaling strategy

We now study the performance of our numerical methods on the same lid driven
cavity test case presented in Sect. 4.1. In this section, we vary the time step
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Fig. 1 Steady state, upwind scheme Fig. 2 Steady state, centered scheme

Fig. 3 Number of GMRES iterations for the
upwind scheme, CFL 1000

Fig. 4 Number of GMRES iterations for the
upwind scheme, mesh 100� 100

(CFL number) and the mesh size. We also compare the direct solver with the
iterative one and the effect of different preconditioners on the resolution of the linear
systems.

Considering first the upwind scheme, we remark that the ILU preconditioner with
no level of fill-in performs well. Figs. 3 and 4, show the average number of GMRES
iterations at each Newton iteration. We observe that the use of our Scaling strategy
presented in Sect. 3 reduces more than twice the iteration number.

When we use the centered scheme, the system matrix has a poor diagonal, and
ILU preconditioner with no fill-in is not efficient in preconditioning the linear
system. One needs to use an incomplete factorisation with two levels of fill-in to
solve linear system up to the CFL 100, and the Scaling strategy enables to save a
considerable number of iterations (Fig. 5). Beyond that value, only a direct solver is
able to solve the system. However, one can remark that the Scaling strategy enables
a reduction of the number of Newton iterations using a direct solver (Fig. 6). We
also stress that the steady state solution obtained with very large CFL numbers is
still accurate and displays the expected vortices.



310 T.-H. Dao et al.

Fig. 5 Number of GMRES iterations for the
centered scheme, mesh 50� 50

Fig. 6 Number of Newton iterations for the
centered scheme, mesh 50� 50s

5 Conclusion and Perspectives

In this paper, two simple and general fully implicit schemes have been presented
for the simulation of compressible Navier–Stokes equations at low Mach number.
We have shown that the centered scheme is able to capture low Mach vortices
unlike the upwind scheme. However, ILU preconditioning performs better with the
upwind scheme than with the centered scheme. Thanks to the particular features
of Roe matrix for compressible Navier–Stokes equations, we have proposed a
preconditioning strategy Scaling+ILU that considerably reduces the computation
time. The centered scheme and the scaling strategy can be applied to other sets of
equations than Navier–Stokes. Study of these techniques applied to two-phase flow
models will follow.
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On the Godunov Scheme Applied to the Variable
Cross-Section Linear Wave Equation

Stéphane Dellacherie and Pascal Omnes

Abstract We investigate the accuracy of the Godunov scheme applied to the vari-
able cross-section acoustic equations. Contrarily to the constant cross-section case,
the accuracy issue of this scheme in the low Mach number regime appears even in
the one-dimensional case; on the other hand, we show that it is possible to construct
another Godunov type scheme which is accurate in the low Mach number regime.

Keywords Variable cross-section, wave equation, low Mach, Godunov scheme
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1 Introduction

It is well-known that Godunov type schemes suffer from an accuracy problem at
low Mach number. The analysis of this scheme applied to the linear wave equation
has shown that this problem already occurs for such a simple submodel, except
in the one-dimensional case [1]. However, it has also been proved that in higher
dimensions, simplicial meshes perform much better than rectangular meshes [2].
These results are obtained by the analysis of the invariant space of the discrete wave
operator: when this invariant space is rich enough to approach well the invariant
space of the continuous wave operator (that is to say the incompressible fields),
then the Godunov scheme is accurate at low Mach number. With the same type of
analysis, we show in the present work that accuracy problems may already occur in
the one-dimensional case for the variable cross-section linear wave equation, if one
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is not careful about the expression of the diffusion terms inherent to the Godunov
scheme. This equation may be seen as a simple model for diphasic flows in which
the volumic fraction plays the role of the variable cross-section.

2 The variable cross-section wave equation

For regular solutions, the dimensionless barotropic Euler system with variable cross-
section may be written as

@t .A�/Cr � .A�u/ D 0 and �.@tuC u � ru/C rp
M2
D 0; (1)

where the Mach number M is supposed to be small and where p D p.�/ with
p0.�/ > 0. Denoting by a� a reference sound velocity, and setting

�.t; x/ WD ��
�

1C M

Aa�
s.t; x/



; (2)

system (1) may be written, after some simplifications

@t q CH .q/C LA;M

M
.q/ D 0 (3)

with

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

q D � s ; u
�T
; (a)

H .q/ D �r � .us/ ; .u � r/u �T ; (b)

LA;M .q/ D
 

a�r � .Au/ ;
p0Œ��.1C M

Aa�
s/�

a� C M
A
s

r
� s

A

�
!T

: (c)

(4)

2.1 The linear wave equation with variable cross-section

When A is bounded by below and by above independently of M , we formally have
that M

Aa�
s.t; x/ � 1 in (2) and O.jjLA;M .q/jj/ D 1 in (3) when O.jjqjj/ D 1.

In that case, (3) contains a transport contribution whose characteristic time scale is
a O.1/ and a non-linear acoustic contribution whose characteristic time scale is a
O.M/, like in the usual barotropic low Mach number Euler system. In that case,
at least in a first approach, we may drop the transport contribution and study the
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linearized cross-section acoustic equation which reads

@tq C LA

M
q D 0 with LAq D a�

�
r � .Au/ ; r

� s

A

��T
: (5)

3 Basic properties of the variable cross-section linear wave
equation

3.1 General properties

In this section, we are interested in basic properties of (5) solved on a periodic torus
T
d2f1;2;3g. For this, we define the energy space

.L2A.T
d //1Cd WD

�

q WD �
s ; u

�T
such that

Z

Td

s2
dx

A.x/
C
Z

Td

juj2A.x/dx < C1
�

endowed with the scalar product

hq1; q2iA D
Z

Td

s1s2
dx

A.x/
C
Z

Td

u1 � u2 A.x/dx: (6)

On the other hand, we set

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

EA D
n
q WD � s ; u

�T 2 .L2A.Td //1Cd such that s D aA; a 2 R and r � .Au/ D 0
o
;

E? D
n
q WD �

s ; u
�T 2 .L2A.Td //1Cd

such that
Z

Td

sdx D 0 and 9� 2 H1.Td /; u D r�
o
:

We remark that EA ? E ? for the scalar product (6). We shall admit the following
extension of the Hodge decomposition .L2A.T

d //1Cd D EA ˚ E ?. Moreover, we
have

EA D KerLA: (7)

Finally, for all q 2 .L2A.T
d //1Cd , we define the energy EA WD hq; qiA: The

following lemma is an easy extension of the energy conservation property to the
variable cross-section case:

Lemma 1. Let q.t; x/ be the solution of (5) on T
d2f1;2;3g. Then:

EA.t � 0/ D EA.t D 0/:
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We also have the following result:

Lemma 2. Let q.t; x/ be the solution of (5) on T
d2f1;2;3g with initial condition q0.

Then:
1) 8q0 2 EA W q.t � 0/ 2 EA;
2) 8q0 2 E ? W q.t � 0/ 2 E ?.

Proof of Lemma 2: The first point is a direct consequence of (7). The second point
is inferred from the first item, from Lemma 1, and from the following Lemma, a
proof of which may be found in the appendix A of [1].

Lemma 3. Let A be a linear isometry in a Hilbert space H and let E be a linear
subspace of H. Then: A E D E H) A E ? � E ?:

3.2 The one-dimensional case

In the particular case of the one-dimensional geometry, equation (5) is now set in
T
dD1 and writes

@tq C LA

M
q D 0 (8)

with

LAq D a�
�
@x.Au/ ; @x

� s

A

��T
: (9)

The subspaces EA and E ? are now characterized by

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

EA D
�

q WD � s ; u
�T 2 .L2A.T1//2 such that s D aA and u D b

A
; .a; b/ 2 R

2

�

;

E ? D
�

q WD � s ; u
�T 2 .L2A.T1//2 such that

Z

Td

s dx D
Z

Td

u dx D 0
�

:

In the one-dimensional case, we remark that, as soon as A0.x/ 6D 0, the variables s
and u do not play the same role, while when A D 1, they do play symmetrical roles.

4 Numerical approximation in the one-dimensional geometry

We now consider the numerical approximation of (8)–(9) on a mesh with N cells
Œxi�1=2; xiC1=2� of constant size �x. We denote by xi the midpoints of the cells and
by ui .t/ and si .t/ the numerical approximation of u and s in the cell Œxi�1=2; xiC1=2�.
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4.1 A first numerical scheme

Integrating (8) over the cell Œxi�1=2; xiC1=2�, we obtain

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

d

dt
si C a�

M
� AiC1=2uiC1=2.t/ �Ai�1=2ui�1=2.t/

�x
D 0;

d

dt
ui C a�

M
�
siC1=2.t/
AiC1=2

� si�1=2.t/
Ai�1=2

�x
D 0;

(10)

where AiC1=2 WD A.xiC1=2/ and where the interface values .siC1=2.t/; uiC1=2.t//
are determined by the solution of a Riemann problem (R.P.) based on the equation

@tq C a�
M

	

AiC1=2@xu;
1

AiC1=2
@xs


T
D 0;

which amounts to locally neglect the variations of A in (8). The left and right
initial states of the R. P. being .si .t/; ui .t// and .siC1.t/; uiC1.t// respectively, its
solution is 8

<̂

:̂

siC1=2 D 1
2
.si C siC1/C AiC1=2

2
.ui � uiC1/;

uiC1=2 D 1
2AiC1=2

.si � siC1/C 1
2
.ui C uiC1/:

(11)

Plugging (11) into (10), we obtain the following scheme

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

d

dt
si C a�

M
� AiC1=2.ui C uiC1/ �Ai�1=2.ui�1 C ui /

2�x
D a�
2M�x

.siC1 � 2si C si�1/ ;

d

dt
ui C a�

M
�
.si C siC1/
AiC1=2

� .si�1 C si /
Ai�1=2

2�x
D a�
2M�x

.uiC1 � 2ui C ui�1/ ;
(12)

whose first-order modified equation is given by

@tq C LA

M
q D ��s@2xxs ; �u@

2
xxu

�T
(13)

with .�s; �u/ D a��x
2M

.1; 1/. This shows that for all non trivial .�s; �u/ 2 R
2, the

space EA is no more invariant as soon as A0 6D 0. In particular, even when �u D 0,
the space EA is not invariant as soon as A0 6D 0: this property stresses the fact
that the Godunov scheme, as well as its low Mach modification obtained by simply
removing the dissipative term in the right-hand side of the second equation of (12)
like in [1, 2], may not be accurate at low Mach number, including in the 1D case,
contrarily to the case A0 D 0.
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4.2 Study of a second numerical scheme

In order to propose a numerical scheme which will be accurate at low Mach number,
we proceed like in [1]. That is to say:

• First, we try to modify the diffusion term in (13) such that the new equation
preserves the invariance of EA.

• Then, we identify a numerical scheme whose modified equation corresponds to
the equation with the new diffusion term.

To these two points, we add something new with respect to what is done in [1]: we
shall show that it is possible to define a Godunov type scheme which corresponds
to the numerical scheme proposed in the second point above. This stresses the fact
that it is possible to build a particular Godunov scheme that is accurate at low Mach
number for the linear wave equation with variable cross-section, if one discretizes
equation (8) in a adequate set of variables. Another interest of this scheme is that it
doesn’t suffer from any checkerboard mode (see [3] when A D 1).

4.2.1 Modification of the diffusion term

Let us replace the diffusion term

�
�s@

2
xxs ; �u@

2
xxu

�T
(14)

in equation (13) by the diffusion term

	

�s@x

h
A@x

� s

A

�i
; �u@x

�
1

A
@x .Au/


T
(15)

with .�s; �u/ 2 R
2. Then, by construction, the space EA is invariant for equation

@t q C LA

M
q D

	

�s@x

h
A@x

� s

A

�i
; �u@x

�
1

A
@x .Au/


T
: (16)

Moreover, we have the following result:

Lemma 4. Let q.t; x/ be solution of (16) over T
1. Then:

EA.t � 0/ � EA.t D 0/:

A numerical scheme associated to (16) is then likely to be stable.
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Proof of Lemma 4: Let q.t; x/ be solution of (16). There holds

1

2

d

dt
EA D �s

Z

Td

s@x

h
A@x

� s

A

�i dx

A.x/
C �u

Z

Td

u@x

�
1

A
@x .Au/



A.x/dx

D ��s
Z

Td

h
@x

� s

A

�i2
A.x/dx � �u

Z

Td

Œ@x .Au/�2
dx

A.x/
� 0:

This proves that EA.t � 0/ � EA.t D 0/.�

4.2.2 Identifying the numerical scheme

A numerical scheme whose modified equation corresponds to (16) is given by

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

d

dt
si C a�

M
� AiC1uiC1 �Ai�1ui�1

2�x
D

a�
2M�x

�
AiC1=2
AiC1

siC1 �
	
AiC1=2 CAi�1=2

Ai




si C Ai�1=2
Ai�1

si�1


(a)

;

d

dt
ui C a�

M
�
siC1
AiC1

� si�1
Ai�1

2�x
D

a�
2M�x

�
AiC1
AiC1=2

uiC1 �Ai
	

1

AiC1=2
C 1

Ai�1=2




ui C Ai�1
Ai�1=2

ui�1


(b)

(17)
where Ai WD A.xi /. A discrete analogue of Lemma 4 may be proved through
“discrete integration by parts” and shows that the scheme is stable and that the
discrete invariant space is the set

E h
A D

�

q WD � s ; u
�T 2 .RN /2 such that si D aAi and ui D b

Ai
; .a; b/ 2 R

2

�

;

which admits the orthogonal set

.E h/? D
�

q WD � s ; u
�T 2 .RN /2 such that

NX

iD1
si D

NX

iD1
ui D 0

�

for the discrete scalar product hq1; q2ihA WD
NX

iD1
�x

	
.s1/i .s2/i

Ai
C .u1/i .u2/iAi




.
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4.2.3 The associated Godunov scheme

It is possible to obtain scheme (17) from (10) by the following process: we set

eq WD � r ; j �T ; r WD s

A
; j WD Au

and solve the Riemann Problem based on the equation

@teq C a�
M

	

@x

	
j

AiC1=2




; @x.AiC1=2r/

T
D 0

with initial left and right states given by

	
si

Ai
; Aiui


T
and

	
siC1
AiC1

; AiC1uiC1

T

respectively. This provides an expression for
�
riC1=2; jiC1=2

�T
which is plugged

into (10) for the evaluation of
siC1=2
AiC1=2

and AiC1=2uiC1=2, and we obtain (17).

5 Numerical results in 1D

In this section, we chose A.x/ D 1
4

sin.2�x/ C 1
2
. As an initial condition, we

choose s0.x/ D A.x/ and u0.x/ D 1=A.x/. At the discrete level, we choose
s0i D A.xi / and u0i D 1=A.xi/, so that the initial condition belongs to E h

A . Then,
with (17), this initial condition is left unchanged for all times, as is the case with the
continuous solution. On the other hand, with (12), the solution .si .t/; ui .t//Ti2Œ1;N �
has a non zero component in the space .E h/? as soon as t > 0, which may be
computed by an orthogonal projection. Figure 1 shows the discrete weighted L2
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Fig. 1 norm of the spurious component for M D 10�4 as a function of t=M
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norm of this spurious component in .E h/? as a function of time scaled by M , with
M D 10�4 and for two different values of�x. The size of the spurious wave grows
up from 0 at t D 0 to O.�x/ at t D O.M/, which is much greater than O.M/,
since M � �x.
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Towards stabilization of cell-centered
Lagrangian methods for compressible gas
dynamics

Bruno Després and Emmanuel Labourasse

Abstract We propose a sub-cell procedure for the stabilization of cell-centered
Lagrangian numerical schemes for the computation of compressible gas dynamics.
This procedure is intended to stabilize the mesh, indeed cell-centered schemes are
already stable for shocks since they are based on a Riemann solver technology. In
this work we focus on the basic principles and on the compatibility with the entropy.
We show that a sub-cell decomposition into four triangles is always mesh-stable
provided the scheme is entropy increasing. Numerical examples serve as illustration.
We also discuss the consistency issue.

Keywords Finite Volume, Lagrangian scheme, stabilization
MSC2010: 65M08, 65M12, 65Z99, 76M12

1 Introduction

Cell centered Finite Volume numerical methods for the calculation of the equations
of Lagrangian gas dynamics [1]

8
ˆ̂
<

ˆ̂
:

@t �Cr � .�u/ D 0;
@t .�u/Cr � .�u˝ u/Crp D 0;
@t .�e/Cr � .�ue C pu/ D 0;
@t .�S/Cr � .�uS/ � 0:

(1)
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receive increasing interest nowadays due to three facts: 1) these are cell centered
methods, like any Finite Volume scheme this is easy to handle in a multidimensional
code [4, 9]; 2) in the context of compressible gas dynamics new corner based
cell centered Riemann solvers have been developed which make these methods
appropriate for shock calculations; 3) remeshing and projection techniques are easy
to developed for such algorithms (but not that easy to optimize). However these
methods suffer for the clue of all numerical methods on moving grids [2, 8, 10].
The mesh may become pathological (tangling) due to physical features of the
flow (vortex, shear). Spurious modes, like checkerboard modes, may indeed be
responsible of local negative volumes. This problem does not show up in dimension
one but is the rule in dimension two and three.

In this paper, we focus on the underlying subcell finite volume structure in
the context of finite Volume discretization and on possible ideas which can be
used to develop an unconditionally stable lagrangian algorithm for compressible
gas dynamics. Notice that other stabilization processes have been developed for
Lagrangian hydrodynamics discretization [2], using subcell modeling [3] and also
for ALE techniques which are another way to stabilize Lagrangian calculations [7].

2 An example

In order to establish a guideline for further developments, we want first to consider
the example of a Sod shock tube problem computed with two different meshes and
with the GLACE scheme [4]. We display a zoom in the shocked zone is in Fig. 1.

One sees a difference between triangles and quadrangles. Meshes made with
triangles are stable in the sense that the volume of all cells always remain positive.
Numerical observation with quadrangles show that the total volume is also positive,
but the local volumes may become negative. This phenomenon is generated by the
numerical scheme used to move the mesh. In our case the scheme is the cell-centered
Glace scheme. But this behavior is common to any Lagrangian scheme.

In what follows we propose to introduce some aspects of the computation with
triangles into the computation with quadrangles in order to improve the robustness.

3 Subcell modeling

To overcome the difficulties encountered with quadrangles we propose to consider
a subcell modeling. The idea is to consider one cell at time step n. The volume of
the cell is referred to as V n. The total mass in the cell is

M D V n�n:
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Fig. 1 The first mesh on the top is made with triangles: all cells have a positive volume. The
second mesh on the bottom is made with quadrangles: pathological cells are visible to rows on the
right of the interface between the coarse mesh and the fine mesh. The calculation stops

Notice that the total mass does not depend upon n since the scheme is Lagrangian.
The momentum in the cell is the vector

In D V n�nun

and the total energy is
En D V n�nen:

The internal energy is

"n D En � 1
2
jInj2 :

Next we split the cell into triangles. For example the quadrangle of Fig. 2 is split into
four triangles V D T1 [ T2 [ T3 [ T4 where the center O is simply the average of
the corners

0 D 1

4
.AC B C C CD/ :
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T4

T1

T2

A
B

C

D

0

T3

Fig. 2 Decomposition of a quad into four triangles

Then we decide arbitrarily that the total mass is split into four equal parts and
affected in each triangle

mi D 1

4
M

and the same for the internal energy

"ni D
1

4
"n:

In our mind it is absolutely essential to characterize this very simple operation at the
thermodynamical level, that is for the entropy variable. We present here a somewhat
naive procedure for doing this.

Assume for example a perfect gas pressure law p D .� � 1/�" and S D
log ."���/. The entropy in Ti is

Si D log
�
"i�
��
i

�
:

The density in triangle Ti is

�i D mi

jTi j D
1

4

m

jTi j D
1

4
fi�

where fi D jTi jV is the volume fraction. So the entropy in Ti is

Si D log."���/ � � logfi C .� � 1/ log 4:

The new total entropy in the cell is

S D S1 C S2 C S3 C S4
4

D S � �
4

X

i

logfi C .� � 1/ log 4:

This very basic example shows that subcell modeling is somehow equivalent to
modifying the entropy S into a new entropy variable

S D S C '.f1; : : : ; f4/: (2)
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Definition 1. For any pressure law, we say that the subcell model (2) is entropy
consistent if the function ' satisfies two conditions: it is a concave function and

f1f2f3f4 D 0 implies that ' D �1:

We say that ' is a subzonal entropy.

In order to stabilize a given Lagrangian computation, the general principle is to
introduce a subzonal entropy in the numerical method which can be either staggered
[2] or cell-centered as in our case [4]. The next proposition explains a fundamental
advantage of subzonal entropies.

Proposition 1. Consider a Lagrangian scheme which has the property to be
entropy consistent, that the entropy in the cell increases from time step n to time
step nC 1 SnC1 � Sn.

Assume that we are able to modify this scheme in order to introduce a subzonal
entropy in a way such that

S
nC1 � Sn: (3)

Then the mesh is never pathological.

Indeed by continuity a pathological mesh is such that one volume fraction tends
to zero, becomes zero and after become negative. In this case 'nC1 � �1 and it is
in contradiction with the assumption (3).

Once the general framework of a thermodynamically consistent subcell model
has been identified, it remains to use these new subzonal entropies in the scheme.
In our case we focus on the GLACE scheme [4] which is cell-centered and of
Finite Volume type. It is quite technical and there are many options, this is why
we prefer to skip this issue in this presentation. However we managed to stabilize
some computations which were unstable before. We present a numerical result that
has been computed with the function ' D P

i logfi in order to illustrate the
numerical performances of the method proposed in this work. One sees on Fig. 3
that the robustness of the simulation is achieved with a result which is still physically
correct.

Another major point is the convergence (as the mesh size tends to zero) of the
new scheme with the new entropy. Indeed such a modification could be a source
of major errors and of some fundamental inconsistency with the real problem (1).
However since the proposed procedure is compatible with the idea of a geometric
sub-cell modeling which is a kind of interpolation between a computation with
quadrangles and a computation between triangles, it is reasonable to think the
numerical solution is indeed consistent. At least the numerical test displayed in
Fig. 3 shows the correctness of the result. In some situations it is also possible to
show that this procedure is weakly consistent as proposed in [5]: the key property is
to show consistency in the mimetic sense of the scheme [6].
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Fig. 3 Top: the quad mesh of Fig. 1 with the subzonal entropy; the mesh is no more pathological.
Bottom: we plot the reference density of the Sod shock tube problem, the density calculated with
the classical scheme and the density calculated with the subzonal entropy: there all agree which
means that the subzonal entropy does not perturb the accuracy for this particular problem
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4. G. Carré, S. Delpino, B. Després, and E. Labourasse. A cell-centered Lagrangian hydrody-
namics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys.,
228:5160–5183, 2009.

5. B. Després. Weak consistency of the cell-centered lagrangian glace scheme on general meshes
in any dimension. CMAME, 199:2669–2679, 2010.

6. B. Després and E. Labourasse. Subzonal entropy stabilization of cell-centered lagrangian
methods. in preparation.

7. Liska, Shashkov, Vchal, and Wendroff. Optimization-based synchronized flux-corrected con-
servative interpolation (remapping) of mass and momentum for arbitrary lagrangian-eulerian
methods. J. Comput. Phys., 229(5):1467–1497, 2010.

8. R. Loubere, J. Ovadia, and R. Abgrall. A Lagrangian discontinuous Galerkin type method on
unstructured meshes to solve hydrodynamics problems. Int. J. Num. Meth. in Fluids, 2000.

9. P.H. Maire, R. Abgrall, J. Breil, and J. Ovadia. A cell-centered lagrangian scheme for 2D
compressible flow problems. Siam J. Sci. Comp., 29, 2007.

10. G. Scovazzi, E. Love, and M.J. Shashkov. Multi-scale Lagrangian shock hydrodynamics on
Q1/P0 finite elements: Theoretical framework and two-dimensional computations. Comp.
Meth. in Applied Mech. and Eng., 197:1056–1079, 2008.

The paper is in final form and no similar paper has been or is being submitted elsewhere.



Hybrid Finite Volume Discretization of Linear
Elasticity Models on General Meshes

Daniele A. Di Pietro, Robert Eymard, Simon Lemaire, and Roland Masson

Abstract This paper presents a new discretization scheme for linear elasticity
models using only one degree of freedom per face corresponding to the normal
component of the displacement. The scheme is based on a piecewise constant gra-
dient construction and a discrete variational formulation for the displacement field.
The tangential components of the displacement field are eliminated using a second
order linear interpolation. Our main motivation is the coupling of geomechanical
models and porous media flows arising in reservoir or CO2 storage simulations.
Our scheme guarantees by construction the compatibility condition between the
displacement discretization and the usual cell centered finite volume discretization
of the Darcy flow model. In addition it applies on general meshes possibly non
conforming such as Corner Point Geometries commonly used in reservoir and CO2
storage simulations.

Keywords Hybrid finite volumes, linear elasticity, general meshes
MSC2010: 74S10, 74B05

1 Introduction

The oil production in unconsolidated, highly compacting porous media (such as
Ekofisk or Bachaquero) induces a deformation of the pore volume which (i)
modifies significantly the production, and (ii) may have severe consequences such as
surface subsidence or damage of well equipments. This explains the growing interest
in reservoir modeling for simulations coupling the reservoir Darcy multiphase
flow with the geomechanical deformation of the porous media [3]. Similarly,
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poromechanical models are also used in CO2 storage simulations to predict the over
pressure induced by the injection of CO2 in order to assess the mechanical integrity
of the storage in the injection phase.

The most commonly used geometry in reservoir and CO2 storage models is the
so called Corner Point Geometry or CPG [7]. Although the CPG discretization
is initially a structured hexahedral grid, vertical edges of the cells may typically
collapse to account for the erosion of the geological layers and vertices may
be dedoubled and slide along the coordlines (i.e. straight lines orthogonal to the
geological layers) to model faults. In addition non conforming local grid refinement
is used in near well regions. The resulting mesh is unstructured, non conforming, it
includes all the degenerate cells obtained from hexahedra by collapsing edges, and
hence it is not adapted to conforming finite element discretizations.

The objective of this paper is to introduce a new discretization scheme for linear
elasticity equations which should

• apply on general meshes possibly non conforming;
• guarantee the stability of the coupling with Darcy flow models using cell centered

finite volume discretization for the Darcy equation [1].

Our discretization is based on the family of Hybrid Finite Volume schemes
introduced for diffusion problems on general meshes in [5] and also closely related
to Mimetic Finite Difference schemes [6] as shown in [4]. The degrees of freedom
are defined by the displacement vector u� at the center of gravity of each face � of
the mesh as well as the displacement vector uK at a given point xK of each cell K
of the mesh. Following [5], a piecewise constant gradient is built and can be readily
used to define the discrete variational formulation which mimics the continuous
variational formulation for the displacement vector field. In order to stabilize this
formulation and to reduce the degrees of freedom, the tangential components of
the displacement are interpolated in terms of the neighbouring normal components.
Numerical experiments on two dimensional and three dimensional meshes show that
the resulting discretization is stable and convergent. In addition, this discretization
satisfies by construction the compatibility condition or LBB (see [2], [1]) condition
for poroelastic models when coupled with a cell centered finite volume scheme for
the Darcy flow equation.

2 Discretization of Linear Elasticity Models

Let ˝ be a d -dimensional polygonal or polyhedral domain (d D 2 or 3) and let us
consider the following linear elasticity problem in infinitesimal strain theory:

8
<

:

div .�.u// C f D 0 on ˝;
u D uD on @˝D;

�.u/ � n D g on @˝N ;

(1)



Hybrid Finite Volume Discretization of Linear Elasticity Models 333

where u 2 R
d is the unknown displacement field and D and N the two exponents

standing respectively for Dirichlet and Neumann boundary conditions. �.u/ is the
Cauchy stress tensor and is given by Hooke’s law �.u/ D 2�".u/ C 	tr .".u// 1,
where �, 	 are the Lamé parameters and ".u/ D 1

2

�ruCruT
�

is the infinitesimal
strain tensor.

2.1 Hybrid Finite Volume Discretization

The simulation domain ˝ is discretized by a set of polygonal or polyhedral control
volumesK 2K , such that˝ DSK2K K. The set of faces of the mesh is denoted
by E and splits into boundary interfaces Eext and inner interfaces Eint . Among the
boundary interfaces, we denote by E D

ext and E N
ext the subsets of boundary faces

verifying Dirichlet or Neumann conditions. The center of gravity of the face � is
denoted by x� and its d � 1 dimensional measure by j� j. A point xK is defined
inside each cell K of the mesh. The set of faces of each cell K is denoted by EK ,
and the distance between xK and � by dK;� . The cone of base � 2 EK and top xK is
denoted by K� .

Brief reminder of the hybrid finite volume discretization of a scalar diffusion
problem (see [5]):

We first define the discrete hybrid spaces V D f.vK 2 R/K2K ; .v� 2 R/�2E g and
V 0 D ˚v 2 V j v� D 0 8� 2 E D

ext

�
. V 0 is endowed with the discreteH1

0;D.˝/ norm

kvkV 0 D
0

@
X

K2K

X

�2EK

j� j
dK;�
jv� � vK j2

1

A

1
2

: (2)

Then, following [5], a discrete gradient is defined on each cone K� which only
depends on vK and v� 0 for � 0 2 EK . This gradient is exact on linear functions and
satisfies a weak convergence property. According to [5], it can be written

rK� v D
X

� 02EK
.v� 0 � vK/y��

0

K 8 v 2 V; (3)

where y��
0

K 2 R
d only depends on the geometry.

Hybrid finite volume discretization of the linear elasticity model:

As we did above, we introduce V D ˚
.vK 2 R

d /K2K ; .v� 2 R
d /�2E

�
as the

discrete hybrid space. With an equivalent definition for V0, the discrete norm is
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now defined as kvk2V0 D
Pd

iD1 kvik2V 0 . Let us also introduce the space W D
˚
.wK 2 R

d /K2K ; .w� 2 R
d /�2ED

ext
; .wn

� 2 R/�2Eint[E N
ext

o
and the following pro-

jection operator PW W V ! W; v 7!
�
.vK/K2K ; .v� /�2ED

ext
; .v� � n� /�2Eint[EN

ext

�
,

where n� is a unit vector normal to � which orientation is fixed once and for all.
Let us finally define the space W0 D PW.V0/ endowed with the discrete norm
kwkW0 D infv2V0 jPW.v/Dw kvkV0 .

The main novelty of our discretization lies in the definition of a linear interpola-
tion operator I W W ! V. This linear interpolation operator must be second order
accurate to preserve the order of approximation of the scheme and interpolant in the
sense that PW .I.w// D w for all w 2 W. It must also be local in the sense that
it computes the displacement vector v� at a given face � 2 Eint [ E N

ext in terms
of a given number of normal components v� 0 � n� 0 taken on a stencil S� � E of
neighbouring faces � 0 of � (with � 2 S� ). An example of construction of such an
interpolator is given in subsection 2.3.

The use of the interpolation operator I will bring two crucial improvements to
the discretization: first a drastic reduction of the degrees of freedom and secondly a
stabilization of the discretization.

Finally, generalizing the scalar framework to the vectorial case of the linear
elasticity model, we introduce a piecewise constant discrete gradient for each
coneK� :

rK� v D
X

� 02EK
.v� 0 � vK/˝ y��

0

K 8 v 2 V: (4)

2.2 Discrete Variational Formulation

Starting from (1), we deduce a discrete weak formulation of the problem in W0.
Setting "K� .v/ D 1

2

�rK� vCrK� vT
�

and �K� .v/ D 2�"K� .v/C 	tr ."K� .v// 1
for all v 2 V, we introduce the discrete bilinear form on W �W

aD.u; v/ D
X

K2K

X

�2EK
jK� j �K� .I.u// W "K� .I.v// : (5)

Then, the discrete variational formulation reads: find u 2W such that u� D uD� for
all � 2 E D

ext and such that, for all v 2W0,

aD .u; v/ D
X

K2K
jKj fK � vK C

X

�2EN
ext

j� j g� � I.v/� ; (6)

where uD� D 1
j� j
R
�

uDd� , fK D 1
jKj
R
K

f dx and g� D 1
j� j
R
�

g d� are average values.
It is important to keep in mind that numerical experiments show that without

interpolation, the bilinear form aD on the space V � V leads to an unstable scheme
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with vanishing eigenvalues on triangular or tetrahedral meshes with mixed Neumann
Dirichlet boundary conditions.

Note also that for the solution of the linear system (6), the unknowns uK can
easily be eliminated without any fill in, reducing the degrees of freedom to the face
normal components of the displacement.

2.3 Interpolation of the tangential components
of the displacement

Given a face � 2 Eint [ E N
ext , for each component i 2 �1; d � of the displacement

field u� , we look for a linear interpolation of the form

Nu i
� .x/ D

dX

jD1
˛ij� xj C ˇi� : (7)

In order to determine the d.d C 1/ coefficients .˛ij� /i;j2�1;d�, .ˇi� /i2�1;d� as linear
combinations of normal components u� 0 � n� 0 , � 0 2 S� , we look for a set S� of
d.dC1/ neighbouring faces � 0 of the face � , with � 2 S� and such that the system
of equations Nu� .x� 0/ � n� 0 D u� 0 � n� 0 is non singular. The set S� is built using the
following greedy algorithm:

1. Initialization: for a given number k > d.d C 1/, we select the k closest
neighbouring faces of the face � which are sorted from the closest to the farthest
using the distance between the face center and x� : �0 D �; �1; � � � ; �k�1. We set
S� D f�g and q D 1, l D 0;

2. while q < d.d C 1/ and l < k � 1:

• l D l C 1;
• if the equation Nu� .x�l / � n�l D u�l � n�l is linearly independent with the set of

equations Nu� .x� 0/ � n� 0 D u� 0 � n� 0 for all � 0 2 S� , then S� D f�lg [ S� ,
q D q C 1;

3. if q < d.d C 1/, the algorithm is rerun with a larger value of k.

Note that since � 2 S� , the interpolation operator satisfies as required the property
PW .I.u// D u for all u 2W.

2.4 Compatibility condition with cellwise constant pressure
for poroelastic models

Let L20.˝/ be the subspace of functions of L2.˝/ with vanishing mean values.
For the sake of simplicity but without any loss of generality, we consider here



336 D.A. Di Pietro et al.

@˝D D @˝ and uD D 0. It is well known (see [1]) that the well-posedness of
linear poroelasticity models relies on the well-posedness of the following saddle
point problem: find .u; p/ 2 H1

0 .˝/
d � L20.˝/ such that

(
a.u; v/C b.v; p/ D .f; v/

L2.˝/
d for all v 2 H1

0 .˝/
d
;

b.u; q/ D .h; q/L2.˝/ for all q 2 L20.˝/;
(8)

where a is the bilinear form of the linear elasticity model and b.v; p/ D
�.div v; p/L2.˝/. The stability of this saddle point problem results from the
coercivity of a and the following LBB condition (see [2]) which guarantees the
existence and uniqueness of the solution: infp2L20.˝/ sup

v2H1
0 .˝/

d
b.v;p/

kvk
H10 .˝/

d kpkL2.˝/ �
� > 0.

The following theorem states that the LBB condition holds on the discrete spaces
W0 � M0, where M0 is the space of cellwise constant functions on the mesh K
with vanishing mean values endowed with the L2.˝/ norm, and for the discrete
divergence operator defined by:

bD.w; p/ D �.divDw; p/L2.˝/ D �
X

K2K
pK

X

�2EK\Eint

j� jwn
� .n� � nK;� / ; (9)

for all .w; p/ 2 W0 �M0, and where nK;� is the normal to the face � outward K .
It implies that, assuming the coercivity of aD , the coupling of our discretization for
the elasticity model with a cell centered finite volume scheme for the Darcy pressure
equation will lead to a convergent and stable scheme for the poroelastic model.

Theorem 1. The bilinear form bD defined on W0 �M0 satisfies the LBB condition

inf
p2M0

sup
w2W0

bD.w; p/
kwkW0kpkL2.˝/

� �D > 0; (10)

with a constant �D depending only on usual regularity parameters of the mesh.

Proof. From the continuous LBB condition, for all p 2 M0, there exists a
displacement field v 2 H1

0 .˝/
d

such that b.v; p/ � � kvk
H1
0 .˝/

d kpkL2.˝/. Let u

be the element of V0 such that uK D 1
jKj
R
K

v dx for K 2 K and u� D 1
j� j
R
�

v d�

for � 2 E . Then, w D PW.u/ 2W0 satisfies bD.w; p/ D b.v; p/.
Since it is shown in [9] that kukV0 � � kvk

H1
0 .˝/

d , with a constant � depending

on usual regularity parameters of the mesh, and since we have by definition the
inequality kwkW0 � kukV0 , the discrete LBB condition holds with �D D �

�
. ut
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3 Numerical experiments

In this section, the convergence of the scheme is tested on the linear elasticity model
with exact solution

ui D ecos
�Pd

jD1 �
ij xj

�

; i D 1; � � � ; d: (11)

The right hand side and the Dirichlet boundary conditions are defined by the exact
solution. The Lamé parameters 	 and � are set to 1.

The tests have been held using an object oriented C++ implementation which
original approach is described in [8]. The relative l2 error on the displacement and
on the gradient of the displacement are plotted function of the number of inner
faces. In the computation of these errors, the cellwise constant discrete solution and
discrete gradient are used. We first consider the triangular meshes (mesh family 1),
the Cartesian grids (mesh family 2), the local grid refinement (mesh family 3) and
the Kershaw meshes (mesh family 4) from the FVCA5 2D benchmark. The exact
solution is defined by

� D
	
1 1

2 �1



:

The results presented on Fig. 1 show the good convergence behaviour of the scheme.
The expected order of convergence is reached for all the meshes (for the solution
and its gradient) and is even exceeded for the gradient on Cartesian grids. Next,
let us consider the Cartesian grids (mesh family A), the randomly distorted grids
(mesh family AA), and the tetrahedral meshes (mesh family B) from the FVCA6
3D benchmark. The exact solution is defined by
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Fig. 1 l2 error for the displacement and for the gradient of the displacement function of the
number of inner faces for the triangular meshes, the Cartesian grids, the local grid refinement
and the Kershaw meshes
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number of inner faces for the Cartesian grids, the randomly distorted grids and the tetrahedral
meshes

� D
0

@
1 1 1

2 1 �1
�1 1 2

1

A :

The results exhibited on Fig. 2 show again the good convergence behaviour of the
scheme with the expected order on the three meshes for both the discrete solution
and its gradient.

4 Conclusion

In this paper, a new discretization method has been introduced for linear elasticity
using only one degree of freedom per face. It applies to general polygonal and
polyhedral meshes possibly non conforming. In addition this discretization satisfies
the compatibility condition when coupled with cell centered finite volume schemes
for the Darcy equation in poroelastic models.

First numerical experiments in 2D and 3D exhibit the stability and convergence
of the scheme. In the near future, further testings will be performed on CPG grids
with erosions, local grid refinement and faults, to assess the potential of this scheme
for reservoir and CO2 storage simulations.
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An A Posteriori Error Estimator for a Finite
Volume Discretization of the Two-phase Flow

Daniele A. Di Pietro, Martin Vohralı́k, and Carole Widmer

Abstract We derive a posteriori error estimates for a multi-point finite volume
discretization of the two-phase Darcy problem. The proposed estimators yield
a fully computable upper bound for the selected error measure. The estimate
also allows to distinguish, estimate separately, and compare the linearization and
algebraic errors and the time and space discretization errors. This enables, in
particular, to design a discretization algorithm so that all the sources of error are
properly balanced. Namely, the linear and nonlinear solvers can be stopped as soon
as the algebraic and linearization errors drop to the level at which they do not
affect to the overall error. This can lead to significant computational savings, since
performing an excessive number of unnecessary iterations can be avoided. Similarly,
the errors in space and in time can be equilibrated by time step and local mesh
adaptivity.

Keywords Finite volumes, a posteriori error estimates, darcy model, fully com-
putable upperbound, twophase flow.
MSC2010:65M08,65M50,76S05.

1 The two-phase flow model

Let ˝ � R
d , d � 1, denote a bounded connected polygonal domain and let tF > 0.

Let w denote the wetting phase (e.g., water) and o the non-wetting phase (e.g., oil),
and let there be given sources fo; fw 2 L2..0; tF/IL2.˝// and a (constant) porosity
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� 2 .0; 1�. We consider the two-phase flow (see, e.g., [3]): Find U WD fP; So; Swg,
with P the pressure and Sp, p 2 fo;wg, the saturations, such that

@t .�So/Cr � .�o.P; So/uo.P; So// D fo in ˝ � .0; tF/;
@t .�Sw/Cr � .�w.P; Sw/uw.P; Sw// D fw in ˝ � .0; tF/;

So C Sw D 1 in ˝ � .0; tF/:
(1)

For p 2 fo;wg, �p denotes here the mobility of the phase p defined as the ratio
of the relative permeability to the viscosity. In (1), uo and uw are such that

up.P; Sp/ WD �Kr
�
P C Pc;p.Sp/

�
; for p 2 fo;wg, in ˝ � .0; tF/, (2)

where Pc;p.Sp/ is the capillary pressure and K denotes a piecewise constant,
uniformly elliptic tensor-valued field corresponding to the absolute permeability.
To find some example of the physics laws (capillarity pressure, phase mobility) or
of the absolute permeability see [7].

Problem (1) is complemented by the initial conditions:

So.�; 0/ D S0o and P.�; 0/ D P0; in ˝; (3)

as well as by no-flow boundary conditions:

up.P; Sp/ � n˝ D 0; in @˝ � .0; tF/. (4)

The purpose of this paper is to propose fully computable a posteriori error
estimates for the discretization of (1)–(4) by cell-centered finite volume methods
in space and the backward Euler scheme in time. In particular, we consider the
multi-point finite volume method proposed in [1]. Using a dual error norm is
motivated by, e.g., [8]. Developing the ideas of [4–6, 9], we in particular separate
the estimate into contributions representing the space discretization error, time
discretization error, linearization error, and algebraic error. Then, at each time
step, the linearization algorithm and the iterative algebraic solver can be stopped as
soon as the corresponding errors no longer affect the total error, and space and the
time errors can be equilibrated.

2 Discretization by the finite volume method

2.1 Notations

Let T D fT g denotes a partition of˝ into simplices or rectangular parallelepipeds
(the extension to general polygonal meshes is possible via the introduction of
simplicial submeshes). For rectangular parallelepipeds, we further assume that K
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is diagonal to perform H.divI˝/-conforming reconstructions. For every element
T 2 T , we denote by jT j its measure and by hT its diameter. Let F D f�g be
the set of faces of the mesh and, for all T 2 T , set FT WD f� 2 F j � � @T g.
The time discretization is defined by a strictly increasing sequence of discrete times
ftng0�n�N such that t0 D 0 and tN D tF. For 1 � n � N , we define the time
interval In WD .tn�1; tn� and the time step �n WD tn � tn�1.

2.2 The finite volume scheme

The discrete problem reads: For all 1 � n � N , all T 2 T , and all p 2 fo;wg, find
Un
T WD fPn

T ; S
n
o;T ; S

n
w;T g such that

�
jT j
�n

�
Snp;T � Sn�1p;T

�
C

X

�2FT

�p.P
n�1
T ?p .�/

; Sn�1p;T ?p .�/
/F n

p;T;� � f n
p;T D 0; (5)

where f n
p;T D .f n

p ; 1/T and f n
p D 1

�n

R tn
tn�1 fp.t/ dt . We set P0

T WD .P 0; 1/T =jT j,
S0o;T WD .S0o ; 1/T =jT j, and impose Sno;TCSnw;T D 1 for all 0 � n � N . Furthermore,
F n
p;T;� D Fp;T;� .fUn

T 0gS� / is a multi-point approximation of the flux of the phase p
leaving T 2 T through the face � 2 FT that depends on the unknowns associated
to the elements of the face stencil S� � T . The numerical flux is assumed to
be conservative, i.e., for all internal faces � � @T1 \ @T2, there holds F n

p;T1;�
D

�F n
p;T2;�

. The upwind cell T ?p .�/ is equal to T1 if F n
p;T1;�

� 0, to T2 otherwise.
For boundary faces � � @T \ @˝ , F n

p;T;� D 0 to honor the no-flow boundary
condition (4), and we can leave T ?p .�/ undefined.

For all 0 � n � N and T 2 T , the unknown Snw;T is eliminated using the local
volume conservation equation Sno;T C Snw;T D 1. We introduce the reduced set of

unknowns U
n WD fPn;Snog, where Pn D fPn

T gT2T and Sno D fSno;T gT2T . With a
little abuse of notation, for a function 
.Sw/, we write 
.So/ to mean 
.1 � So/.
As a consequence, �w.So/ and Pc;w.So/ are equal to �w.1 � So/, Pc;w.1 � So/ and
uw.P; 1 � So/ respectively. Equation (5) becomes, for all 1 � n � N , all T 2 T ,
and all p 2 fo;wg

Dn
p;T .U

n
/ D 0; with, (6)

Dn
p;T .U

n
/ WD � jT j

�n
.�1/j .Sno;T � Sn�1o;T /C

X

�2FT

�p.P
n�1
T ?p .�/

; Sn�1o;T ?p .�/
/F n

p;T;� � f n
p;T ;

(7)
where j D 1 if p D w and 0 otherwise.
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2.3 Linearization

Problem (6) is a system of nonlinear algebraic equations that can be solved using

the Newton algorithm. For a fixed 1 � n � N , let U
n;0

be given (typically,

U
n;0 D U

n�1
). For 1 � k, a new estimate U

n;k
is computed from the previous U

n;k�1

by solving the following system of linear algebraic equations: For all T 2 T and
all p 2 fo;wg,

X

T 02T

@Dn
p;T

@UT 0

�
U
n;k

T 0 �U
n;k�1
T 0

�
D �Dn

p;T .U
n;k�1

/; (8)

where U
n;k

T D fPn;k
T ; S

n;k
o;T g denotes the approximate solutions in T at the n-th time

step and k-th Newton iteration. We suppose that (8) is solved using an iterative

linear solver. For a fixed 1 � n � N and k � 1, let U
n;k;0

be given (typically,

U
n;k;0 D U

n;k�1
). Then, at a given step i � 1, we have, for all T 2 T and p 2

fo;wg,
X

T 02T

@Dn
p;T

@UT 0

�
U
n;k;i

T 0 �U
n;k�1
T 0

�
C Dn

p;T .U
n;k�1

/ D Rn;k;i
p;T ; (9)

where Rn;k;i
p;T is the algebraic residual, while U

n;k;i

T D fPn;k;i
T ; S

n;k;i
o;T g denotes the

approximate solution at the n-th time step, k-th Newton iteration, and i -th linear
solver iteration.

3 A posteriori error estimate

3.1 Space-time approximate solutions

Let, for 0 � n � N and p 2 fo;wg, Snp;h be the piecewise constant function
such that Sp;hjT D Sp;T for all T 2 T . We introduce the space-time function
Sp;h� continuous and piecewise affine in time, and such that Sp;h� .tn/ D Snp;h for
0 � n � N . In order to give a meaning to the gradient operator appearing in (2), we
need to postprocess the approximate cell pressures fPn

T gT2T and capillary pressures
fPn

c;p;T gT2T , Pn
c;p;T WD Pc;p.S

n
p;T /, p 2 fo;wg. As in [5, 6, 9], we introduce an

elementwise postprocessing of fPn
T gT2T and fPn

c;p;T gT2T , 1 � n � N , yielding

piecewise quadratic functions QPn
h and QPn

c;p;h ( QP0
h is given by a projection of the

initial pressure P0). As for the saturations, QPh� and QPc;p;h� are the space-time
functions, continuous and piecewise affine in time, and such that QPp;h� .tn/ WD QPn

h

and QPc;p;h� .t
n/ WD QPn

c;p;h, respectively.
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3.2 Error measure

Set X WD L2..0; tF/IH1.˝//. For ' 2 X , let k'k2X WD
R tF
0 kr'k2dt and

k�k denotes the L2-norm on ˝ . We suppose that the solution .P; So; Sw/ of
the problem (1)–(4) has the necessary regularity to permit the following weak
formulation characterization: For all ' 2 X , and all p 2 fo;wg,

Z tF

0

˚h@t .�Sp/; 'i �
�
�p.P; Sp/up.P; Sp/;r'

�
˝
� .fp; '/˝

�
dt D 0: (10)

The aim of the following measure is to evaluate the residual of the approximate
solution and the nonconformity of the approximate pressure (i.e., the facts that
. QPh� ; So;h� ; Sw;h� / do not satisfy (10) and that QPh� … X in general). Note that if
Sp;h� coincide with Sp, p 2 fo;wg, and QPh� with P , the error measure equals zero:

jjj.Sp � Sp;h� ; P � QPh� /jjj

WD sup
'2X; k'kXD1

Z tF

0

(

h@t .�Sp/� @t .�Sp;h� /; 'i

� ��p.P; Sp/up.P; Sp/ � �p. QPh� ; Sp;h� /up. QPh� ; Sp;h� /;r'
�
)

dt

C inf
ı2X

(Z tF

0

�
��p. QPh� ; Sp;h� /up. QPh� ; Sp;h� / � �p.ı; Sp;h� /up.ı; Sp;h� /

�
�2 dt

) 1
2

:

(11)

3.3 A posteriori error estimate

We let RTN.T / WD ŒP0.T /�
d C P0.T /x and RTN.T / WD ŒP0.T /�d C ŒP0.T /�dx,

on simplices and on rectangular parallelepipeds respectively, and we introduce the
Raviart–Thomas–Nédélec space

RTN.T / WD fvh 2 H.div;˝/ j vhjT 2 RTN.T /; 8T 2 T g:
Following [2, 4, 5, 9], in order to obtain an estimate on (11), we introduce for 1 �
n � N and p 2 fo;wg the flux reconstructions �np;h 2 RTN.T / such that for
1 � n � N , T 2 T , T 0 2 TT , (T \ T 0 D �T;T 0), and p 2 fo;wg,

h�np;h � nT j�T;T 0 ; 1i�T;T 0 WD �p.P n�1
T ?p .�/

; Sn�1o;T ?p .�/
/F n

p;T;� : (12)

The following local conservation property is obtained by the Green theorem from (6)
and (12):

.f n
p � @t .�Sp;h� /� r��np;h; 1/T D 0: (13)
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Let us now define the residual estimators �nR;T;p , the diffusive flux estimators
�nDF;T;p , and the nonconformity estimators �nNC;T;p as

�nR;T;p WD
hT

�
kfp � @t .�Sp;h� /� r��np;hkT ;

�nDF;T;p.t/ WD
�
�
��np;h � �p. QPh� ; Sp;h� /up. QPh� ; Sp;h� /.t/

�
�
�
T
; (14)

�nNC;T;p.t/ WD
�
��p. QPh� ; Sp;h� /up. QPh� ; Sp;h� /.t/��p.ıh� ; Sp;h� /up.ıh� ; Sp;h� /.t/

�
�
T
:

Here ıh� 2 X is continuous and piecewise affine in time and such that ıh� .tn/ D ınh ,
with ınh WD Iav. QPn

h / for all 0 � n � N ; Iav is an averaging operator as in [5, 6, 9].

Theorem 1 (Guaranteed a posteriori error estimate). Let p 2 fo;wg. Then

jjj.Sp � Sp;h� ; P � QPh� /jjj �
(

NX

nD1

Z

In

X

T2T
.�nR;T;p C �nDF;T;p.t//

2 dt

) 1
2

C
(

NX

nD1

Z

In

X

T2T
.�nNC;T;p.t//

2 dt

) 1
2

:

(15)

Proof. The proof is straightforward using the definition of the error measure (11)
and following the techniques of [5]. The second term in (15) clearly issues from the
second term in the right hand-side of (11). We thus only have to prove that the
first term is an upper bound on the first term in the right hand-side of (11).
Let ' 2 X , k'kX D 1, and p 2 fo;wg. Set wp WD �p.P; Sp/up.P; Sp/ and
wp;h� WD �. QPh� ; Sp;h� /up. QPh� ; Sp;h� /. Then using the characterization of the weak
solution (10),

Z tF

0

fh@t .�Sp/ � @t .�Sp;h� /; 'i � .wp �wp;h� ;r'/gdt

D
Z tF

0

f.fp � @t .�Sp;h� /; '/C .wp;h� ;r'/gdt:

Let now 1 � n � N be given. Adding and subtracting .�np;h;r'/, using the Green
theorem, the local conservativity property (13), the Poincaré inequality, and the
Cauchy–Schwarz inequality, we obtain

.fp; '/ � .@t .�Sp;h� /; '/C .wp;h� ;r'/
D .fp � @t .�Sp;h� /� r��np;h; '/C .wp;h� � �np;h;r'/
D .fp � @t .�Sp;h� /� r��np;h; ' �˘0'/C .wp;h� � �np;h;r'/
�

X

T2T
.�nR;T;p C �nDF;T;p.t//kr'kT ;
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where ˘0 denotes the L2-orthogonal projection onto piecewise constants on T .
The assertion follows by the Cauchy–Schwarz inequality and by k'kX D 1. ut

3.4 Identification of different components of the error

Let 1 � n � N , T 2 T , and p 2 fo;wg. In Section 2.2, we define the nonlinear
system (6) and we solve it in Section 2.3 using an iterative solver for the Newton
algorithm. Let assume we are at the n-th time step, k-th Newton step and i -th
linearization step. We introduce the following notations:

A
n;k;i
p;T WD �

jT j
�n

h
.S

n;k;i
p;T � Sn;k�1p;T / � Sn�1p;T

i
; B

n;k;i
p;T;� WD �p.P n;k�1

T ?p .�/
; S

n;k�1
p;T ?p .�/

/F
n;k;i
p;T;� :

The linear system (9) is then equivalent to the following sum of diagonal terms and
face fluxes:

@A
n;k;i
p;T

@UT

C
X

�2FT

X

T 02S�

@B
n;k;i
p;T;�

@UT 0
C Dn

p;T .U
n;k�1

/ D Rn;k;i
p;T : (16)

Let us now define a linearization flux �
n;k;i

p;h 2 RTN.T / and algebraic solver flux

rn;k;ip;h 2 RTN.T / such that �n;k;ip;h WD �
n;k;i

p;h C rn;k;ip;h and such that

h�n;k;ip;h � nT j�T;T 0 ; 1i�T;T 0 WD
X

T 02TT

@Bn;k;i
p;T;�

@UT 0
and .r � rn;k;ip;h ; 1/T D �Rn;k;i

p;T : (17)

Note that �
n;k;i

p;h is fully specified; rn;k;ip;h can be constructed as in [6]. This gives

.f n
p � @t .�Sk;ip;h� /� r � �

n;k;i

p;h ; 1/T D .r � rn;k;ip;h ; 1/T ; p 2 fo;wg: (18)

We can now define the same estimators as in (14) and we have:

�
n;k;i
R;T;p C �n;k;iDF;T;p.t/C �n;k;iNC;T;p.t/ � �n;k;itm;T;p.t/C �n;k;isp;T;p.t/C �n;k;ilin;T;p.t/C �n;k;ialg;T;p;

with

�
n;k;i
tm;T;p.t/WD

�
�
��p. QP k;i

h� ; S
k;i
p;h� /up. QP k;i

h� ; S
k;i
p;h� /.t/��p. QP n;k;i

h ; S
n;k;i
p;h /up. QP n;k;i

h ; S
n;k;i
p;h /

�
�
�
T
;

�
n;k;i
sp;T;p.t/ WD�n;k;iR;T;p C �n;k;iNC;T;p.t/; (19)

�
n;k;i
lin;T;p.t/WD

�
�
��p. QP n;k;i

h ; S
n;k;i
p;h /up. QP n;k;i

h ; S
n;k;i
p;h / � �

n;k;i

p;h

�
�
�
T
;

�
n;k;i
alg;T;p WDkrn;k;ip kT :
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3.5 Adaptive algorithm

To solve the nonlinear system (6), let us introduce the following algorithm, for 1 �
n � N .

1. Choose initial saturations Sn;0o and pressures Pn;0 according to (3). Typically, we
put Sn;0o D Sn�1o and Pn;0 D Pn�1. Set k D 1.

2. Set up the linear system (8).

a. Choose some initial saturation Sn;k;0o and pressure Pn;k;0. Typically, we
let Sn;k;0o D Sn;k�1o and Pn;k;0 D Pn;k�1. Set i D 1.

b. Perform a step of a chosen iterative method for the solution of (8),
starting from Sn;k;i�1o and Pn;k;i�1. This gives approximations Sn;k;io and
Pn;k;i .

c. Postprocess locally the pressures Pn;k;i .

d. Construct the fluxes �
n;k;i

p;h 2 RTN.T /, p 2 fo;wg, according
to Section 3.4.

e. For p 2 fo;wg, from the algebraic residual vectors Rn;k;i
p construct the

fluxes rn;k;i
p;h 2 RTN.T /, as described in Section 3.4.

f. We evaluate all the indicators (19)and define their global versions by
their Hilbertian sums. The convergence criterion for the linear solver is:

�
n;k;i
alg;p � �alg.�

n;k;i
sp;p C �n;k;itm;p C �n;k;ilin;p /; p 2 fo;wg: (20)

Here, 0 < �alg � 1 is a user-given weight, typically close to 1.
Criterion (20) expresses that there is no need to continue with the
algebraic solver iterations if the overall error is dominated by the other
components. If (20) is reached, set Sn;ko WD Sn;k;io and Pn;k WD Pn;k;i . If
not, i WD i C 1 and go back to step 2(b).

3. The convergence criterion for the nonlinear solver is:

�
n;k;i
lin;p � �lin.�

n;k;i
sp;p C �n;k;itm;p /; p 2 fo;wg: (21)

Here 0 < �lin � 1 is a user-given weight, typically close to 1. Criterion (21)
expresses that there is no need to continue with the linearization iterations if the
overall error is dominated by the other components. If criterion (21) is reached,
finish. If not, k WD k C 1 and go back to step 1.

Additionally, for all 1 � n � N , the space and time estimators �nsp;p and �ntm;p
should be made of similar size.
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A Two-Dimensional Relaxation Scheme
for the Hybrid Modelling of Two-Phase Flows

Kateryna Dorogan, Jean-Marc Hérard, and Jean-Pierre Minier

Abstract Recently, a new relaxation scheme for hybrid modelling of two-phase
flows has been proposed. This one allows to obtain stable unsteady approximations
for a system of partial differential equations containing non-smooth data. This paper
is concerned with a two-dimensional extension of the present method, in which two
alternative relaxation schemes are compared. A short stability analysis is given.

Keywords Finite Volumes, Relaxation schemes, Hybrid methods
MSC2010: 76M12, 65M12

1 Introduction

This paper deals with the modelling and the numerical simulation of polydispersed
turbulent two-phase flows, where one phase is a turbulent fluid (considered to be
a continuum) and the other appears as separate inclusions carried by the fluid
(solid particles, droplets or bubbles). Such a kind of flows can be encountered
in many industrial situations (combustion, water sprays, smokes) and in some
environmental problems. Despite the need of their accurate prediction, the physical
complexity of these processes is so broad that existing methods are either too
expensive (in calculation cost) or not sufficiently accurate. A hybrid approach
recently proposed in [2] enables to reach an acceptable compromise between the
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physical realism and a cheap numerical treatment. For two-phase flows, it consists
in coupling two classic approaches (Eulerian and Lagrangian) in the particle phase
description. This method allows to gather the advantages of classic approaches:
high level of physical description, lower calculation costs, correct treatment of
non-linearities and polydispersity, expected values free from statistical error. From
now on, “L” and “E” superscripts respectively refer to all quantities calculated
with the Lagrangian and Eulerian descriptions, and subscript “p” is used for the
particle phase. The Lagrangian part of the particle phase description is given by the
stochastic differential equations:

dZi .t/ D Ai.t; Z; f .t I z/; Y /dt CPj Bij .t; Z; f .t I z/; Y /dWj .t/; (1)

where f .t I z/ stands for the probability density function (pdf) of the particle state
vector Z D .xp; Up; Us/ with xp.t/ the particle position, Up.xp.t/; t/ the particle
velocity, Us.xp.t/; t/ the fluid velocity seen at the particle position and the local
relative velocity Ur D Us � Up , whereas external mean fields, i.e. the fluid mean
fields defined at particle locations [9, 10] are denoted by Y . Ai and Bij represent
the drift vector and the diffusion matrix, andW.t/ the vector of independent Wiener
processes. Here we assume that the particles are only influenced by the drag and
the gravity forces. Then, using corresponding Fokker-Planck equation we deduce
from (1) a system of equations for the mean particle concentration ˛Ep and flow rate
˛Ep hUE

p;i i, which represents an Eulerian description of the particle phase:

@t˛
E
p C @xi

�
˛Ep

D
UE
p;i

E�
D 0

@t

�
˛Ep hUE

p;ii
�
C @xj

�
˛Ep

�
hUE

p;i ihUE
p;j i C hup;iup;j iL

��
D ˛Ep .gi C

*
UL
r;i

�Lp

+

/

(2)
Usually, only one among the two systems (1), (2) is solved. However, in this case we
are faced with shortcomings of the standard methods. In fact, system (1) contains
a bias-error and thus needs calculations with a larger number of particles, whereas
the Reynolds stress term hup;iup;j iL in system (2) is not closed. The new hybrid
approach consists in solving both of these systems at the same time. Thus, the
terms with superscript “L”, calculated with a better accuracy in the Lagrangian
part of the model, are provided to the Eulerian part (2). The latter, in turn, gives the
values of hUE

p;i i free from statistical error, that enable computations with a smaller
number of particles in (1). Hence, for the same accuracy, the total calculation cost is
reduced with reference to the pure Lagrangian approach. However, such a coupling
introduces noisy quantities (computed by the stochastic equations) in the Eulerian
part of the model, which presents an important convective part and thus requires a
stabilization. A specific relaxation approach was proposed in [3,4] in order to tackle
this problem in a one-dimensional case. It relies both on upwinding techniques
and relaxation tools [8] and it allows to obtain stable unsteady approximations of
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solutions of system (2), even with noisy data hup;iup;j iL. Actually, two slightly
distinct relaxation systems were examined and compared in references [3, 4]. The
present paper is concerned with a two-dimensional extension of these relaxation
approaches. In section 2, we propose two forms of the relaxation system that are
very similar and give the motivation for such a choice. Some stability results are
presented in section 3 and we briefly describe the numerical treatment and results in
section 4. We recall that the density of particles is constant.

2 Relaxation approach in a two-dimensional framework

From now on, we omit the superscripts “E” and subscripts “p”, and introduce the
-constant- density of particles �p . Thus we denote by � D ˛Ep �p the mean density

distribution of the particles in the domain, by Ui D
D
UE
p;i

E
; i D 1; 2 the mean

particle velocity. Hence, for given non-smooth values of the Lagrangian Reynolds
stress tensor RL

ij
D hup;iup;j iL, we want to compute stable approximations of

solutions of:

@t�C @xj .�Uj / D 0
@t .�Ui /C @xj .�UiUj /C @xj .�RLij / D �gi C �

˝
Ur;i=�p

˛L (3)

By construction, RL
ij

complies with the realisability condition: xtRLx � 0 for all

x 2 R2. Since non-smooth external data RL
ij

are introduced in the system (3), we

are formally interested in finding discontinuous solutions. In order to overcome this
difficulty, a relaxation technique was proposed in [5, 6], which is in fact grounded
on ideas developed in [1]. It consists in introducing new variables R

ij
(that are

expected to relax towardsRL
ij

when a given relaxation time scale �Rp tends to 0), and

supplementary partial differential equations that govern the time evolution of the
Reynolds stresses R

ij
, in such a way that the new relaxation system is hyperbolic

and preserves the realizability of solutions (xtRx � 0 for x 2 R2). On the basis of
[1, 7], the following relaxation system naturally arises:

@t�C @xj .�Uj / D 0
@t .�Ui /C @xj .�UiUj /C @xj .�Rij / D 0
@t .�Rij /C @xk .�UkRij /C �.Rik@xkUj CRjk@xkUi / D �.RLij � Rij /=�Rp

(4)

Since this system is invariant under frame rotation, we consider the reference frame
.n; �/: n D .nx; ny/; � D .�ny; nx/; such that n2x C n2y D 1, for a given interface
whose normal is n. We also introduce: Un D U :n, U� D U :� , Rnn D nt :R:n,
Rn� D nt :R:� D � tR:n D R�n, R�� D � t :R:� . When neglecting transverse
variations (i.e. 8� W @�=@� D 0), the relaxation system corresponding to system



354 K. Dorogan et al.

(4) written in terms of variableZt D .�; Un; U� ; �Rnn; �Rn� ; S/ takes the following
form for smooth solutions:

@tZ C An.Z/@nZ D S .Z/; (5)

with: Z D Z.t; xn/, S D
�
.�Rnn/.�R�� /� .�Rn� /2

�
=�4 and noting #.x; t/ D

1=�.x; t/:

An.Z/ D

0

B
B
B
B
B
B
B
@

Un � 0 0 0 0

0 Un 0 # 0 0

0 0 Un 0 # 0

0 ‰nn 0 Un 0 0

0 2�Rn� ˚n� 0 Un 0

0 0 0 0 0 Un

1

C
C
C
C
C
C
C
A

; S .Z/ D

0

B
B
B
B
B
B
B
@

0

0

0

�.RLnn �Rnn/=�Rp
�.RLn� �Rn�/=�Rp
.SL � S/=�Rp

1

C
C
C
C
C
C
C
A

where: ‰nn D 3�Rnn; ˚n� D �Rnn: (6)

Eigenvalues of the homogeneous part of system (5) are:

	1;6 D Un ˙ c1; 	2;5 D Un ˙ c2; 	3 D 	4 D Un; (7)

with c21 D ‰nn=� D 3Rnn and c22 D ˚n�=� D c21=3. Thus, system (5) is hyperbolic
(unless vacuum occurs in the solution) if ‰nn > 0 and ˚n� > 0, thus if Rnn > 0.
This first method associated with the choice (6), and refered to as (A1), takes
advantage of the hyperbolic structure of the set of PDE that governs Eulerian
Reynolds stress components, while assuming classical closure laws [1]. Actually,
we note that system (5) is characterized by four linearly-degenerate (LD) fields
associated with 	2;3;4;5 and by two genuinely non-linear (GNL) fields associated
with 	1;6. Details can be found in [6, 7]. A nice feature is that the whole set of
partial differential equations in the evolution step preserves the realisability of the
Reynolds stress tensor Rij , both at the continuous and the discrete levels. This is
in fact mandatory since eigenvalues remain real if and only if the quadratic form
niRij nj remains positive (see the form of c1; c2 above). However, a drawback in
this approach is due to the true non-conservative form of the governing equations
for the Reynolds stress components in (5). Thus, non-conservative products that are
active in genuinely non-linear fields are not uniquely defined.

This has motivated the introduction of a second form for .‰nn, ˚n�/ - corre-
sponding to (A2). The aim is to comply with specifications (i,ii): (i) the relaxation
system should be hyperbolic, (ii) jump conditions in the relaxation system should be
uniquely defined, field by field. The idea is to introduce functions which are close
to (6), but such that non-conservative products are only effective through linearly
degenerate fields. Introducing .Rnn/0 > 0 and choosing functions .‰nn; ˚n�/ as:

‰nn D 3�20.Rnn/0#; ˚n� D ‰nn=3 D �20.Rnn/0#; (8)
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we note that the relaxation system corresponding to system (5) with the choice (8)
is hyperbolic and it is characterized by 6 LD fields; thus the jump relations are
uniquely defined. Eigenvalues of the homogeneous part of the modified system (5)
are now:

	01;6 D Un ˙ c01; 	02;5 D Un ˙ c02; 	03 D 	04 D Un; (9)

with .c01/2 D 3.c02/2 D 3�20.Rnn/0#
2. This method associated with the choice (8)

will be refered to as (A2). We provide below some properties of approaches (A1,
A2), assuming that the initial conditions are physically relevant:

� > 0; xt :R:x > 0: (10)

Property 1 (Existence and Uniqueness of the solution of the Riemann problem
for A1). The Riemann problem associated with (5), (6), approximate jump relations
given in [6, 7], and initial conditions for left and right states ZL;ZR in agreement
with condition (10), admits a unique solution if:

.Un/R � .Un/L <
p
3
�p

.Rnn/L C
p
.Rnn/R

�
: (11)

The solution is composed of six constant states ZL;Z1;Z2;Z3;Z4;ZR separated
by 2 GNL waves associated with 	1;6 and 4 LD waves associated with 	2;3;4;5.

Property 2 (Existence and Uniqueness of the solution of the Riemann problem
for A2). Assume that �20.Rnn/0 � 0 is such that it satisfies the Wave Ordering
Condition (WOC): 	01 < 	02 < 	03 D 	04 < 	05 < 	06. Then the Riemann problem
associated with (5), (8) and initial conditions ZL;ZR satisfying (10), admits a
unique solution composed of six constant states ZL;Z

0

1; Z
0

2; Z
0

3; Z
0

4; ZR separated
by 6 LD waves. The WOC is the same as in the pure one-dimensional framework
(see [3, 4]).

Property 3 (Positivity of interface values of the density).
� The realisability in approach (A1) is ensured by condition (11) and density

intermediate states are such that: �1 D �2 > 0, �3 D �4 > 0;
� For (A2), the latter condition (11) is replaced by the WOC, that guarantees the

positvity of the densities in intermediate states: �
0

1 D �
0

2 > 0, �
0

3 D �
0

4 > 0.

Remark 1 (Positivity of interface values of Reynolds stresses). In approach (A1),
the realisability of the Reynolds stress tensor is required to ensure the hyperbolicity
property for the corresponding relaxation system and, at the same time, is preserved
by the very construction of this system. In approach (A2) the realisability of
Reynolds stresses in the intermediate states is not preserved for any initial condition;
however, the hyperbolicity of the relaxation system in (A2) holds since #2 > 0 and
the realisability is recovered through the instantaneous relaxation step.
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3 Stability properties of approaches A1, A2

We focus now on the evolution step in the relaxation procedure, thus on the
homogeneous system corresponding to the left hand side of (4). In order to give
an estimation of the mean kinetic energy, which characterises the initial system of
equations (3), we focus only on smooth solutions (we assume that: �.x; t/; Ui .x; t/,
Rij .x; t/ 2 C 1, i; j D 1; 2), and we study the evolution of the “total” energy in the
relaxation system (4). Let us denote by

E1.t/ D 1

2

Z

˝

�U 2
i .x; t/d˝ and E2.t/ D 1

2

Z

˝

� tr.R/.x; t/d˝; i D 1; 2:
(12)

the kinetic energy of the drift (the mean motion) and the energy of the fluctuating
particle motion. The total particle energy is given by E .t/ D E1.t/CE2.t/:We also
assume that: 8x 2 @˝ U :n D 0.

Property 4 (Energy estimation for A1). We define: ı D R11R22 � R212 and we
assume that ı.x 2 @˝; t > t0/ > 0, ı.x 2 ˝; t0/ > 0. Then smooth solutions of
the homogeneous relaxation system corresponding to approach (A1) (left-hand side
of system (4)) satisfy the following energy estimate:

0 � E1.t/ D E .t0/ � E2.t/ � E .t0/; since E2.t/ � 0: (13)

An important ingredient in the proof is linked with the fact that the governing
equation of X D ı=�2 reads:

@tX C .U � r /X D 0: (14)

However we can only give a partial estimation for approach (A2). Actually, for
the system corresponding to (5), (8), we must introduce a modified definition of the
total energy in a pure 1D framework in order to get some estimation (see [4]):

QE D E1.t/C E2.t/C
Z

˝

�.a20# � 3�Rnn/2
16a20

d˝; with a20 D 3�20.Rnn/0; (15)

Remark 2 (Energy estimation for A2). In a one-dimensional framework, smooth
solutions of the homogeneous relaxation system corresponding to (5), (8) satisfy:

0 � E1.t/ and E1.t/C E2.t/ � QE .t0/: (16)
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4 Numerical algorithm and results

In order to compute the approximations of solutions of system (3) at each time
step, the Finite Volume method relies on a classical fractional step method, which
proceeds in three distinct steps (Evolution/Instantaneous Relaxation/Sources):

� Step 1 (Evolution): Starting from �n; .�Ui /
n; .�Rij /

n, compute approximate
solutions �nC1;�, .�Ui/nC1;�, .�Rij /nC1;� of the homogeneous system correspond-
ing to the left hand side of (4) at time tnC1, using an approximate Godunov solver
for (A1) [7] or an exact Godunov solver for (A2) (using property 2, see [3, 4]).

� Step 2 (Relaxation): restore local values of the Reynolds stresses Rij D RLij :

�nC1 D �nC1;�; .�Ui /
nC1 D .�Ui /nC1;�; .�Rij /

nC1 D �nC1.RLij /nC1:

� Step 3 (Sources): account for physical source terms (right hand side of (3)).

An extensive validation of both methods (A1, A2) has been achieved in [3, 4]
in the one-dimensional framework, by computing the L1 norm of the error for
analytical solutions of Riemann problems associated with the homogeneous part
of (3), assuming specific forms for RLij D rij .�; U /. We only show here a few
computations and we put emphasis on the main conclusions.

Analytical test cases: In order to validate the two approaches (A1, A2), we consider
some test cases where analytical solutions are known and we focus especially on the
most difficult configurations. Assuming the following closure relation:

RLij D S0���1ıij

with S0 D 105 and � D 3 (this value of � corresponds to the isentropic case arising
in [1, 7]), we focus on two 1D Riemann problems. The computational domain is a
square Œ�1; 1�2, the time step is in agreement with the CFL condition (CFL = 0.49),
and the regular meshes contain from 2 � 102 up to 2 � 105 cells. The figures below
(Fig. 1) represent the L1-norm of the errors w.r.t. the mesh size. On the whole, both
methods (A1, A2) guarantee the correct convergence of approximations, even when
the solution contains strong shocks. This is very encouraging and not obvious since
(A1) involves non conservative products in GNL fields, which means that we might
expect to retrieve convergence of approximations towards wrong shock solutions.
Though we have no proof at all for that, the fact that the scheme preserves the
conservative form of the first two equations of (4) might explain this good behaviour.
Moreover, we note (see Figs. 1) that we retrieve the classical h1 convergence since
no LD wave is involved here. Whereas (A1) and (A2) schemes exhibit almost the
same accuracy, (A2) seems to be a little bit more stable than (A1). Eventually, both
schemes can handle vacuum occurence and strong shock waves.
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Fig. 1 L1 convergence curves for symmetric double shock (left) and symmetric double rarefaction
waves with vacuum occurence (right). Coarser mesh: 200 cells; finer mesh: 200000 cells

Numerical results with noisy Reynolds stresses: We choose the initial conditions
of a subsonic shock tube problem and we plug noisy Reynolds stresses in the system
of equations (3) at each time step in the cells that belong to the region .x; y/ 2
Œ�0:25; 0:25� � Œ�1; 1� with: RLij D S0�

��1.1 C rms.0:5 � rand.0; 1///ıij ; where
rms stands for the noise intensity and rand allow to manage the noise amplitude.
The noisy region is not developping in time (Fig. 2). The same remark holds for
other values of the noise intensity. Other test cases with noisy data [3] show that
the noise is independent of the mesh refinement. Eventually, the difference between
noisy approximations and those without a noise is increasing with rms in a linear
manner. Both methods are stable.
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Fig. 2 Approximations of the density (left) and the velocity (right) with rms = 0.5 and rms = 0 in
time. Mesh size: 1000 cells in the x-direction
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Finite Volume Method for Well-Driven
Groundwater Flow

Milan Dotlić, Dragan Vidović, Milan Dimkić, Milenko Pušić,
and Jovana Radanović

Abstract Finite volume method for well-driven porous media flow which uses
a computational mesh tailored for finite elements is presented. It replaces one-
dimensional elements used to model well drains in the original mesh with one-
dimensional cells. It does not modify the original mesh by adding or moving
nodes. It can handle the discontinuous anisotropic hydraulic conductivity. Special
discretization of the flux between the porous medium and the drain is proposed.
Numerical results are compared to an analytical solution.

Keywords Finite volume method, well-driven flow, porous media, privileged
routes, 1d elements
MSC2010: 76S05, 65N08

1 Introduction

A significant number of finite element codes for well-driven groundwater flow
simulation is available (FEFLOW [1], HydroGeoSphere [6], PAKP–Lizza [2], etc).
Well drains are represented in these codes as arrays of one-dimensional elements,
i.e. mesh edges. Triangulators, such as Triangle [5], allow the user to specify the
exact location of these drains prior to triangulation, and place the mesh nodes and
the edges at the specified locations.
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This arrangement is appropriate for finite element method because it associates
the discrete variables with the mesh nodes. Cell-centered finite volume methods
associate the discrete variables with mesh cells. Thus, matching the cell center with
the exact well location and representing a drain as an array of cells would be more
appropriate.

Since numerous tools exist to construct finite element meshes, our goal is to find
a suitable way to use these meshes with finite volumes.

One possibility to obtain a suitable finite volume mesh is to construct a dual
of a finite element mesh. However, the conductivity, which is associated with the
finite element mesh cells and may be discontinuous between the cells, will now be
associated with the nodes of the dual mesh. In finite volumes the conductivity is
also associated with cells. Therefore, some kind of interpolation must be performed
in order to compute the dual cell conductivity, which may introduce significant
error because the conductivity may vary by several orders of magnitude between
geological layers.

Another possibility is to associate a fictive one-dimensional cell with each 1d
element. These new cells are connected with the surrounding three-dimensional
cells by one-dimensional faces, and with each other by zero-dimensional faces. In
order to compute non-zero fluxes and finite hydraulic heads, physical surfaces and
volumes of the real drain portions must be associated with these new entities.

In this paper we present details of such discretization. Groundwater flow equation
is given in Section 2, together with boundary conditions and a well clogging model.
Interpretation of the mesh is explained in Section 3, and the flux and the boundary
conditions discretization is specified. Obtained numerical results are compared to an
analytical solution in Section 4, and a correction to the flux discretization between
the porous medium and a drain is proposed.

2 Problem formulation

Correlation between the hydraulic head gradient rh and the flux density q is known
as Darcy’s law

q D �Krh; (1)

where the hydraulic conductivity K is in general a symmetric positive piecewise-
continuous anisotropic tensor.

Mass conservation is expressed trough the groundwater flow equation

S
@h

@t
D �r � q; (2)

where S is the specific storage. Substituting (1) into (2) results in a form suitable
for solving

S
@h

@t
D r � .Krh/: (3)
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Domain boundary is divided in two parts @˝ D �D [ �N , �D \ �N D ;, and
Dirichlet and Neumann boundary conditions are specified:

h D gD on �D; (4)

.�Krh/n D gN on �N ; (5)

where n is the outward unit normal to @˝ . In addition to these common boundary
conditions, either the hydraulic head or the total flux per unit of time Q is specified
in each well.

Initial condition is
hjtD0 D h0; (6)

and the final time is t D T .
Drain clogging, which happens due to complex mechanical, chemical, and

biological processes [3, 4], results in a colmated layer along the drain wall, which
causes an additional hydraulic resistance. This can be expressed as

q � n D �.hf � hw/; (7)

where hw is the hydraulic head inside the well, hf is the hydraulic head just outside
the colmated layer, n is the unit normal to the drain wall pointing inside, � D Kc=dc
is the transfer coefficient,Kc is the unknown conductivity of the colmated layer, and
dc is it’s unknown thickness.

3 Discretization

Integrating (3) over polyhedral control volume T , and using the divergence theorem
and implicit Euler time integration results in

jT jS h
nC1 � hn
�t

D
X

f 2@T
�T;f Q

nC1
f ; Qf D

Z

f

q � nf ds; (8)

whereQf is the flux through face f , nf is a unit vector normal to face f fixed once
and for all, and �T;f D 1 if nf points outside of T , or �1 otherwise. At boundary
faces, fixed normal vectors point outside.

3.1 Drains

It is assumed that well drains coincide with the mesh edges (see Fig. 1). Each well
may have one or more connected drains.
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r

Fig. 1 Drain discretization

A cylindrical cell called 1d cell is associated with each edge e belonging to a
well drain. This cell is logically plugged into the grid by defining interfaces between
it and the surrounding cells, but nodes are not added or moved. A volume r2�jej,
where r is the drain radius and jej is the edge length, is associated with this cell. Each
volume T sharing the edge e is reduced by r2 ˛

2
jej, where ˛ is the angle between the

faces of the cell T sharing the edge e.
Interface f between the 3d cell T and a 1d cell is called 1d face. This is a portion

of the cylinder with surface ˛r jej. Unit normal nf belongs to the bisector plain of
the angle ˛ and it points into the cylinder. Center xf of the face f is obtained by
shifting the centroid of the 1d cell by vector �rnf .

Interfaces between the 1d cells are so-called 0d faces. These are circles with
radius r associated with nodes where the drain edges meet.

If more drains meet in a node, a 0d cell is introduced. This cell has zero volume
and it is connected with each of the drains by a 0d face.

Hydraulic head or the total well flux is specified at a boundary 0d face, which
may be at a drain end, or it may be an extra face introduced in a 0d cell in order to
impose a boundary condition.

Hagen–Poiseuille law is used for a flow through a pipe, which means that
within the drains we take k D r2=8, K D k�g=�, where � D 1000kg=m3 is
the water density, � D 0:001307kg=.ms/ is the dynamic viscosity of water, and
g D 9:81m=s2.

3.2 Flux

It is assumed that K is continuous within cells. Possible discontinuities happen
along faces. At the interface between a 3d cell and a drain,K is discontinuous.

If f is an internal face and if K is continuous in f , then

Qf D �jf jkKnk hout � hin
kxout � xink ; (9)
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where jf j is the face f area, and xin and xout are the centroids of the cells sharing
the face f such that n points from cell in to cell out . This is the most basic finite
volume flux discretization used here for simplicity, and it is not very accurate.
A more accurate non-linear flux discretization [7] is planned.

If K is discontinuous in f , then two one-sided flux approximations

Qf D �jf jkKoutnk hout � hf
kxout � xf k ; Qf D �jf jkKinnk hf � hinkxf � xink (10)

are combined to compute the face hydraulic head and eliminate it from (10):

Qf D �jf j �in�out

�in C �out
.hout � hin/; (11)

�in D kKinnk
kxin � xf k ; �out D kKoutnk

kxf � xoutk : (12)

At the interface between a drain and a 3d cell, transfer coefficient � defined in
(7) is substituted in (11) instead of �out .

Second formula in (10) is inadequate when the drain radius is much smaller than
the mesh size. This is demonstrated in Section 4, and a correction is proposed.

3.3 Boundary conditions

If f is a boundary face, one-sided flux approximation is used:

Qf D �jf jkKnk hf � hinkxf � xink : (13)

Flux Qf or hydraulic head hf imposed at f is used trough this relation. If f is a
0d face, thenK D Kdrain.

4 Flux correction

Example 1. If K is constant, then

h.�/ D AC B ln � (14)

is a stationary solution of (3), where � is the distance from the well central axis. If
domain˝ is a cylinder with radiusR and a well of radius r at the center (see Fig. 2),
then A and B can be found from the requirement that h.r/ D hr and h.R/ D hR,
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Fig. 2 Example domain

for some specified hr and hR. The resulting solution is

h.�/ D
hr ln R

�
C hR ln �

r

ln R
r

: (15)

Total well flux is

Q D 2�KH hR � hr
ln R

r

; (16)

whereH is the cylinder height. Axial well resistance has been neglected here.
In order to incorporate the resistance of the colmated layer, we compute � from

(7) using the exact flux obtained in (16), so that we obtain a desired hydraulic head
decrease in the well hr � hw due to colmation.

We choose K D 10�4, R D 20, H D 10, hR D 100, hr D 60, hw D 55, and
compute fluxes for two different well radii, r D 0:5 andD 0:01, to test the scheme
in cases when the well radius is close to the mesh size, and when it is much smaller
than the mesh size. The computational mesh with the maximal base triangle area of
0.5 is shown in Fig. 3.

Fig. 3 Computational grid

Exact hydraulic head is specified at the inner and the outer cylinder. Zero flux is
specified at the flat boundaries.

The exact and the numerical fluxes are given in Table 1. If the well radius is much
smaller than the mesh size, the flux is about ten times smaller than what it should
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Table 1 Exact and numerical fluxes for r D 0:01 and r D 0:5, with and without the proposed
correction

Exact Q Numerical Q Q with correction
r D 0:5 0.06813 0.06634 0.06894
r D 0:01 0.03306 0.00322 0.03312

be. The reason is that h0.�/ is very sharp at � D r , and it is not well approximated
with a finite difference.

To allow the computation on coarse meshes, we replace R in (15) with the
distance between xin and the central well axis �.xin/, and use the derivative of this
formula to derive a replacement for the second formula in (10) for the case of a
3d-1d cell interface:

Qf D �jf jkKinnkhf � hin
r ln �.xin/

r

: (17)

Results presented in the last column of Table 1 show that the total well flux
computed with this correction is much more accurate.

Example 2. Another stationary analytical solution of (3) can be obtained by
superposing a linear solution h D cy to (15), where c is an arbitrary constant:

h D
hr ln R

�
C hR ln �

r

ln R
r

C cy: (18)

The fluxes in the well which are due to the linear term cancel out, and the total well
flux is the same as in Example 1. This solution is not constant at � D r and we
cannot set such a boundary condition in our method. However, presuming that r is
small, h varies little around the well, thus specifying a constant hr should give a
close approximation. We take c D 1 and specify the exact hydraulic head at � D R.
The obtained total well flux given in Table 2 shows that correction (17) improves
the accuracy even if formula (15) on which the correction is based is not the exact
solution, because the influence of the well is still dominant near the well.

Table 2 Numerical fluxes in Example 2 for r D 0:01 with and without the correction
Q without correction Q with correction

0.00322 0.03309

5 Conclusion

We have presented a finite volume method for well-driven groundwater flow that
uses a computational grid tailored for a finite element method, in which well drains
are represented by one-dimensional elements. In its interpretation of the grid, our
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method adds faces and cells that correspond to well drains with geometry that is not
fully resolved in the original grid. However, the original grid is not modified in the
sense that nodes are not added or moved.

We compared the obtained numerical fluxes with the analytical solution in cases
when the well radius is close to the grid resolution, and also when it is much
smaller than the grid resolution, and we found that the match is poor for the small
radius case. We proposed a correction to the discretization of the flux between the
3d porous medium and a drain. Total well flux obtained with this correction is
very accurate in all cases, bearing in mind that the inaccurate linear two-point flux
discretization was used.
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Adaptive Reduced Basis Methods for Nonlinear
Convection–Diffusion Equations

Martin Drohmann, Bernard Haasdonk, and Mario Ohlberger

Abstract Many applications from science and engineering are based on parame-
trized evolution equations and depend on time-consuming parameter studies or need
to ensure critical constraints on the simulation time. For both settings, model order
reduction by the reduced basis methods is a suitable means to reduce computational
time. In this proceedings, we show the applicability of the reduced basis framework
to a finite volume scheme of a parametrized and highly nonlinear convection-
diffusion problem with discontinuous solutions. The complexity of the problem
setting requires the use of several new techniques like parametrized empirical
operator interpolation, efficient a posteriori error estimation and adaptive generation
of reduced data. The latter is usually realized by an adaptive search for base
functions in the parameter space. Common methods and effects are shortly revised
in this presentation and supplemented by the analysis of a new strategy to adaptively
search in the time domain for empirical interpolation data.

Keywords Finite volume methods, model reduction, reduced basis methods,
empirical interpolation
MSC2010: 65M08, 65J15, 65Y20

1 Introduction

Reduced basis (RB) methods are popular methods for model order reduction of
problems with parametrized partial differential equations that need to be solved for
many parameters. Such scenarios might occur in parameter studies, optimization,
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control, inverse problems or statistical analysis for a given parametrized problem.
Such problems deal with different solutions uh .�/ 2 Wh from a high dimensional
discrete function space Wh � L2.˝/ which are characterized by a parameter � 2
P � R

p . For evolution problems, a discrete solution forms a series of what we call
“snapshot solutions” ukh.�/ indexed by a time-step number k D 0; : : : ; K .

By applying the reduced basis method, these solution trajectories need to be
computed for a few parameters only and can then be used to span a problem-
specific subspace Wred � Wh. If this subspace captures a broad solution variety,
a numerical scheme based on this reduced basis space Wred can produce reduced
solutions ured.�/ 2 Wred very inexpensively for every parameter � 2 P . In
case of nonlinear discretizations or complex dependencies of the equations on the
parameter, the reduced scheme requires an empirical interpolation method [1] to
efficiently interpolate operator evaluations in a low-dimensional discrete function
space.

The applicability of the reduced scheme has been successfully demonstrated
for stationary, instationary, linear and nonlinear problems mainly based on finite
element schemes (cf. [7] and the references therein). In this presentation, we
focus on a scalar, but highly nonlinear convection–diffusion problem: For a given
parameter� 2P determine solutions u D u.x; t I�/ fulfilling

@tuCr � .v.uI�/u/� r � .d.uI�/ru/ D 0 in ˝ � Œ0; Tmax� (1)

u.0I�/ D u0.�/ in ˝ � f0g (2)

plus Dirichlet boundary conditions u.�/ D udir.�/ on �dir � Œ0; Tmax�, Neumann
boundary conditions .v.uI�/u � d.uI�/ru/ �n D uneu.�/ on �neu� Œ0; Tmax� with
suitable parametrized functions v.�I�/ 2 C.R;Rd / and d.�I�/ 2 C.R;RC/.

For complex data functions, solutions of this problem can depend on the
parameter in a highly nonlinear way, and the convection term can lead to a variety of
solution snapshots which is difficult to capture by a linear subspace Wred. This makes
the construction of the reduced basis space Wred difficult and therefore requires
sophisticated construction algorithms for the reduced data. After elaborating on the
empirical operator interpolation and the reduced basis scheme for problem (1)-(2)
in Section 2, we provide an overview of such algorithms in Section 3 with a focus
on the time-adaptive construction of interpolation for the empirical interpolation. In
Section 4, we numerically discuss the effects and costs of the introduced algorithms
based on a finite volume discretization of a Buckley–Leverett type problem.

2 Reduced basis method

In this section, we present a reduced basis method for general operator based
discretizations of equations (1), (2). We show that the reduced scheme depends
both in memory and computational complexity on the low dimensions of suitable
reduced spaces only and can therefore be efficiently evaluated. We first introduce the
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basic approach, and discuss the main ingredients to efficiently compute the reduced
solutions at the end of this section. For a more detailed presentation, we refer to [2].

As a starting point for the reduced basis scheme, we assume a high dimensional
discretization scheme producing for each parameter � 2P a sequence of solution
snapshots uk

h.�/ stemming from anH -dimensional discrete function space Wh. The
sequence indices k D 0; : : : ; K correspond to strictly increasing time steps tk WD
k�t from the interval Œ0; Tmax�, where �t > 0 is a global time step size. For the
high-dimensional scheme, first, the initial data is projected on the discrete function
space yielding a discrete solution u0

h.�/ D Ph Œu0.�/�, where Ph W L2.˝/! Wh

is a projection operator. Subsequently, equations of the form

.IdC�tLI .�//
h
ukC1h .�/

i
� .IdC�tLE .�//

�
ukh .�/

� D 0 (3)

are solved with the Newton–Raphson method. The operators LI .�/;LE.�/ W
Wh ! Wh describe the explicit and implicit discretization terms of a first order
Runge–Kutta scheme. For our numerical experiments presented in Section 4, the
operators implement finite volume fluxes for the diffusive respectively convective
terms.

For the reduced basis scheme, we first assume a given reduced basis space
Wred � Wh of dimension N � H . This space is spanned by selected solution
snapshots and its construction implies a computationally expensive preprocessing
step. This allows to solve for reduced solutions ukred.�/ 2 Wred. These are computed
by projection of the initial data on the reduced basis space and with the same
evolution scheme as in (3), but with the operators LI .�/;LE.�/ substituted by
reduced counterparts

L kC1
red;I .�/ WDPred ıI kC1

MkC1 ıLI .�/ and L k
red;E.�/ WDPred ıI k

Mk ıLE.�/

(4)
at each time instance k D 0; : : : ; K � 1. Here, Pred W Wh ! Wred is a further
projection operator and the actual operator evaluations are substituted by approxi-
mations in a further low dimensional function space WM � Wh. This approximation,
the so-called empirical operator interpolation, is denoted by IM ıL and shortly
summarized in the next subsection. Note that in this scheme the empirical operator
interpolation and therefore also the reduced function spaces can vary over time.

Empirical operator interpolation and offline/online splitting The idea of empir-
ical interpolation was first introduced in [1]. The empirical operator interpolation
presented here is extracted from [2].

The principal idea is to interpolate functions vh 2 Wh in a collateral reduced
basis space WM spanned by basis functions qm;m D 1; : : : ;M with exact
evaluations at interpolation points xm 2 TM , i.e.

IM Œvh� .xm/ D
MX

mD1
�mqm.xm/ D vh.xm/; (5)
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where the coefficients can be determined easily because the construction process for
the basis functions ensures for each m D 0; : : : ;M that the condition qm.xm0/ D 0
is fulfilled for all m0 < m. By optimizing the collateral reduced basis space such
that it well approximates operator evaluations Lh.�/ Œvh� 2 Wh of a parameterized
discrete operator Lh.�/ on solution snapshots vh, we obtain an approximation
IM ŒLh.�/ Œvh�� � Lh.�/ Œvh� which can be computed by evaluating the operator
locally at M given interpolation points. If such an evaluation depends only on a
few degrees of freedom of the argument function (H independent Dof-dependence)
and M � H , the interpolation can be computed very efficiently. The interpolant
is therefore suitable for the reduced basis method. Furthermore, it can be verified
that the same argumentation also applies to Fréchet derivatives of discrete operators
fulfilling the H independent Dof-dependence. This result is needed for the efficient
implementation of the Newton–Raphson method. In Section 3.2, we summarize how
the discrete function space WM can be constructed by a greedy search algorithms in
a finite set of operator evaluations.

In order to evaluate the reduced numerical scheme efficiently, the high dimen-
sional data needs to be precomputed in an expensive offline phase and to be
reduced to low-dimensional matrices and vectors. Afterwards, every Newton step of
a reduced simulation can be computed with complexity O.NM2CN3/ including the
costs of the linear equation solver. In [2], the computations leading to these results
are presented in detail. The same article also introduces an efficiently computable a
posteriori error estimator �.�/ estimating the error

max
kD0;:::;K

�
�ukh.�/ � ukred.�/

�
� � �.�/ (6)

for a suitable problem-specific norm k�k.

3 Adaptive basis generation strategies

In this section, we give an introduction on how reduced basis functions and
empirical interpolation data are constructed by algorithms that greedily search in a
finite subset of the parameter space for new basis functions. For complex parameter
sets or complex dependencies of the solution on the parameter, these algorithms,
however, can result in very large reduced basis spaces and therefore make the speed
advantages of the reduced simulations obsolete. For this reason, we also discuss
variations of the algorithms adapting the parameter search set during the basis
construction which lead to smaller and better basis spaces.
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3.1 POD-greedy algorithm

The “POD-greedy” algorithm introduced in [4] is used to generate the reduced
basis space Wred. Its purpose is to minimize the error kuh.�/ � ured.�/k for all
� 2 P in a suitable problem-specific norm. We assume the existence of an
estimator �.�/ as introduced in (6), a finite training set Mtrain � P and an
initial choice for the reduced basis ˚N0 WD f'ngN0nD1. For evolution problems,
the span of this initial reduced basis usually comprises all initial data functions.
Then, the reduced basis can be iteratively extended by searching for the parameter
�max WD arg max�2Mtrain �.�/ of the worst approximated trajectory, and adding the
first and most significant mode gained from a proper orthogonal decomposition of

this trajectory’s projection errors
˚
ukh.�max/ �Pred

�
ukh.�max/

��K
kD0 as a new basis

function. This algorithm is repeated, until �.�max/ falls beneath a given tolerance.

Adaptation techniques: The basic algorithm described above depends on a fixed
initial choice for the training subset Mtrain. In case of complex dependencies of
the solution trajectories on the parameter, the reduced basis approximation can
therefore turn out to be very bad for parameters not in the training set. In [6] this
problem is addressed by adaptively refining the parameter space if indicated by bad
approximations from a further validation training set.

Other variations of the POD-Greedy algorithm adaptively partition the parameter
space and construct different reduced bases for each of these partitions [3,5] leading
to faster reduced simulations at the cost of a more expensive offline phase.

3.2 Time-adaptive empirical operator interpolation

The construction of the collateral reduced basis space and corresponding
interpolation points follows a similar idea like the “POD-greedy” algo-
rithms. For the empirical interpolation of an operator IM ıLh, the inter-

polation error
�
�
�vh �PM

jD1 IM Œvh�
�
�
� is minimized over all vh 2 L WD

˚
Lh.�/

�
ukh.�/

� j� 2P; k D 0; � � � ; K � 1�. Analogously to the reduced basis
generation, we define a finite subset Ltrain � L and pick one of this set’s snapshots
as an initial collateral reduced basis function. The extension step for the empirical
interpolation then looks as follows:

1. Find the approximation with the worst error vM  arg supvh2Ltrain
kuh �IM Œvh�k :

2. Compute the residual between vM and its interpolant rM  vM �IM Œvh�.
3. Find the interpolation point maximizing the residual xM  arg supx2Xh jrM .x/j.
4. Normalize to construct new reduced basis space function qM  rM

rM .xM /
.

These steps are repeated until the maximum interpolation error falls beneath a given
tolerance. We call this algorithm EIDETAILED in the sequel.
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Fig. 1 Detailed simulation solution snapshots at time instants t D 0:0 (first column), t D 0:1

(second column), t D 0:3 (third column) and for different parameters � D .0; 0:1; 0:4/ (first row)
and � D .2; 0:1; 0:4/ (second row). The last column shows the reduced solution on cross-sections
at y D 0:5 for the time instants t D 0 (solid line), t D 0:1 (dotted line), t D 0:3 (dashed line)

Adaptation techniques: The adaptation techniques mentioned in Section 3.1 can
also be applied to the empirical interpolation algorithm EIDETAILED, but so far
no actual implementation for this is known to us. Supplementary to the adaptive
search in the parameter space, we propose to build different collateral reduced basis
spaces for different time instant sets K � f0; : : : ; K � 1g. As this time-adaptation
strategy is the main focus of this article, we want to give a detailed description of
the algorithm:

procedure TIMESLICEDEI(Winit;K ; LK
train)

WM  EIDETAILED(Winit; L
K
train;Mmax; "tol )

if "tol reached then
Mk  M and W k

Mk  WM for all k 2 K .
else if card.K / � 2cmin then

W k
Mk  EIDETAILED(WM;L

K
train;1; "tol ) for all k 2 K .

else % maximum number of extensions Mmax reached
K1;K2 SPLITTIMEINTERVAL(K ;WM )
TIMESLICEDEI(W K1

M ; L
K1

train)
TIMESLICEDEI(W K2

M ; L
K2

train)
end if

end procedure

The training sets LK
train are restrictions of the full training set Ltrain to operator

evaluations on solutions snapshots at time steps tk for k 2 K . Likewise W K
M

is a restriction of the discrete space WM build only out of solution snapshots
with time indices stemming from K . This strategy reduces the computation time,
as no computed reduced basis function needs to be thrown away. The method
SPLITTIMEINTERVAL splits the interval K such that afterwards the spaces W K1

M

and W K2

M are of equal dimension. The threshold cmin asserts a lower bound on the
size of the time intervals.
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Table 1 Comparison of the number of bases, the reduced basis sizes averaged over sub-intervals,
offline time, averaged online reduced simulation times and maximum errors for non-adaptive and
adaptive runs with threshold cmin D 5, and D 1. The average online run-times and maximum
errors are obtained from 20 simulations with randomly selected parameters �

4 Example: Buckley–Leverett equation

We consider a Buckley–Leverett type problem in two space dimensions fulfilling
the equations (1)-(2) on a rectangular domain˝ WD Œ0; 1�2 with initial data function
u0.�/ D clowC.1�clow/�Œ0:2;0:6��Œ0:25;0:75� , velocity vector v.uI�/ D .0; 1/tf .uI�/
and diffusion d.uI�/ D KD.sI�/. Here f .uI�/ D u3

�1
�
�

u3

�1
C .1�u/3

�2

��1
denotes

the fractional flow rate,D.uI�/ D .1�u/3

�2
f .uI�/p0c.uI�/ the capillary diffusion for

a capillary pressure pc.uI�/ D u�	. The variable parameters are chosen as � WD
.K; clow; 	/ and the parameter space is given by P WD Œ1; 2� � Œ0; 0:1� � Œ0:1; 0:4�.
The scalar viscosities are fixed at �1 D �2 D 5. At the boundary of the domain a
Dirichlet condition applies with uNdir.�/ D clow.

Discretization The problem is discretized with a standard finite volume scheme
comprising an explicitly computed Engquist–Osher flux for the convective terms
and an implicit discretization of the diffusive terms. The underlying grid has a
dimension of H D 25 � 25 grid cells and the time interval Œ0; Tmax� is discretized
by 60 uniformly distributed time steps. Fig. 1 illustrates solution snapshots for two
different parameters with different diffusion levelsK D 0 respectivelyK D 2. The
cross-section plots in the last column show the expected behaviour of combinations
of rarefaction waves and smoothed shocks.

Offline phase In order to assess the effects of the adaptation algorithms, the
reduced basis algorithms are run three times, once without the time adaptive empir-
ical operator interpolation and two times with adaptation, but different thresholds
cmin to bound the time interval size from below. The results concerning reduced
basis sizes, offline and reduced simulation time, are summarized in Table 1.

In order to assure that the generated reduced basis leads to equally small
reduction errors for all parameters of the parameter space, the parameter training set
for the “POD-greedy” algorithm has been adapted with a validation set of randomly
chosen parameters � in both runs. In the test runs, after three refinement steps the
training parameter set comprises 255 elements, and the chosen validation ratio of 1:4
is assured after the maximum error for the training parameters has fallen beneath the
targeted level of 5�10�4. The target interpolation error for the empirical interpolation
was set to 10�6 in all runs. This error is reached with an average number of 198
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Fig. 2 Illustration of basis sizes on time intervals after adaptation with (a) cmin D 1 and (b)
cmin D 5. Plot (c) illustrates the error decrease during generation of bases on three intervals marked
with the same color in plot (a). The dashed line graph shows the slower decrease for a single basis
without adaptation

respectively 223 basis functions in the adaptive cases, and 350 basis functions
without adaptation. In the adaptive runs, the time interval has been decomposed
into 11 respectively 26 sub-intervals (cf. Fig 2(a)&(b)). Fig. 2(c) illustrates the error
decrease during the generation of the reduced spaces for selected time intervals
(dashed lines) for the run with cmin D 1. It can be observed that the slopes for the
error graphs are much steeper than in the non-adaptive case illustrated with a dashed
line. Because of the larger variation of the solutions for larger time steps, however,
the basis on the last interval Œ0:29; 0:30� still shows the slowest error decrease. Fig.
2(a+b) show that for both adaptive runs the bases dimensions for all intervals stay
significantly below the non-adaptive basis size of 350.

Conclusion We observed that the adaptive search in the time domain can lead to
faster reduced simulations. However, the costs of 26 generated basis spaces for an
average dimension reduction by a factor of approximately 0:56 turned out to be very
expensive. We therefore advice to combine the time domain search with a parameter
domain search to obtain a further improvement of the method.
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Adaptive Time-Space Algorithms for the
Simulation of Multi-scale Reaction Waves

Max Duarte, Marc Massot, Stéphane Descombes, and Thierry Dumont

Abstract We present a new resolution strategy for multi-scale reaction waves based
on adaptive time operator splitting and space adaptive multiresolution, in the context
of localized and stiff reaction fronts. The main goal is to perform computationally
efficient simulations of the dynamics of multi-scale phenomena under study, consid-
ering large simulation domains with conventional computing resources. We aim at
time-space accuracy control of the solution and splitting time steps purely dictated
by the physics of the phenomenon and not by stability constraints associated with
mesh size or source time scales. Numerical illustrations are provided for 2D and 3D
combustion applications modeled by reaction-convection-diffusion equations.

Keywords time adaptive integration, space adaptive multiresolution, combustion
MSC2010: 65M08, 65M50, 65Z05, 65G20

1 Introduction

Numerical simulations of multi-scale phenomena are commonly used for modeling
purposes in many applications such as combustion, chemical vapor deposition, or
air pollution modeling. In general, all these models raise several difficulties created
by the high number of unknowns, the wide range of temporal scales due to large and
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detailed chemical kinetic mechanisms, as well as steep spatial gradients associated
with localized fronts of high chemical activity. In this context, faced with the
induced stiffness of these time dependent problems, a natural stumbling block to
perform 3D simulations with all scales resolution is either the unreasonably small
time step due to stability requirements or the unreasonable memory and computing
time required by implicit methods. Furthermore, an accurate description of such
spatial multi-scale phenomena would also lead to large and sometimes unfeasible
computation domains, if no adaptive meshing technique is used.

To overcome these difficulties, we present a new numerical strategy with a
time operator splitting that considers dedicated high order time integration methods
for reaction, diffusion and convection problems, in order to build a time operator
splitting scheme that exploits efficiently the special features of each problem. Based
on recent theoretical studies of numerical analysis, such a strategy leads to a splitting
time step which is not restricted neither by the fastest scales in the source term nor
by restrictive stability limits of diffusive or convective steps, but only by the physics
of the phenomenon. Moreover, this splitting time step is dynamically adapted taking
into account local error estimates [4]. The time integration is performed over a
dynamic adapted grid obtained by multiresolution techniques in a finite volumes
framework [2, 9, 11], which on the one hand, yield important savings in computing
resources and on the other hand, allow to somehow control the spatial accuracy of
the compressed representation based on a solid mathematical background.

Even though, the strategy was developed for the resolution of general multi-scale
phenomena in various domains as biomedical applications [7] or nonlinear chemical
dynamics [6], we will focus here on multidimensional combustion problems at
large Reynolds numbers in order to assess the capability of the method. The paper
is organized as follows: section 2 describes briefly the numerical strategy, based
on spatial adaptive multiresolution and second order adaptive time integration.
Physical configuration and modeling equations are presented in section 3 for
laminar premixed flames interacting with vortices, along with 2D and 3D numerical
illustrations. We end in the last part with some concluding remarks.

2 Construction of the Numerical Strategy

We detail briefly the developed operator splitting strategy with splitting time step
adaptation, and some fundamental aspects of the adaptive multiresolution method.

2.1 Adaptive Time Operator Splitting

Given a general convection-reaction-diffusion system of equations

@tu � @x .F .u/C D.u/@xu/ D f .u/ ; x 2 R
d ; t > 0; (1)
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with u.0; x/ D u0.x/, where F, f W R
m ! R

m and u W R � R
d ! R

m, with
diffusion matrix D.u/: a tensor of order d � d �m; an operator splitting procedure
allows to consider dedicated solvers for the reaction part which is decoupled from
the other physical phenomena like convection, diffusion or both, for which there
also exist dedicated numerical methods. These dedicated methods chosen for each
subsystem are then responsible for dealing with the fast scales associated with each
one of them, in a separate manner, while the reconstruction of the global solution
by the splitting scheme should guarantee an accurate description with error control
of the global physical coupling, without being related to the stability constraints of
the numerical resolution of each subsystem.

A second order Strang scheme is then implemented [12]

S �t.u0/ D R�t=2D�t=2C�tD�t=2R�t=2.u0/; (2)

where operators R, D , C indicate respectively the independent resolution of the
reaction, diffusion and convection problems with �t defined as the splitting time
step. Usually, for propagating reaction waves where for instance, the speed of
propagation is much slower than some of the chemical scales, the fastest scales
are not directly related to the global physics of the phenomenon, and thus, larger
splitting time steps might be considered. Nevertheless, order reductions may then
appear due to short-life transients associated to fast variables and in these cases,
it has been proved in [5] that better performances are expected while ending the
splitting scheme by operator R or in a more general case, the part involving the
fastest time scales of the phenomenon.

An adaptive splitting time step strategy, based on a local error estimate at the
end of each�t , is implemented in order to control the accuracy of computations. A
second, embedded and lower order Strang splitting method eS �t was developed [4]
in order to dynamically calculate a local error estimate that should verify

�
�S �t.u0/� eS �t.u0/

�
� � O.�t2/ < �split; (3)

in order to accept current computation with�t , and thus, the new splitting time step
is given by

�tnew D �t
s

�split
�
�S �t .u0/ � eS �t .u0/

�
�
: (4)

The choice of suitable time integration methods to approximate numerically
R, D and C during each �t is mandatory not only to guarantee the theoretical
framework of the numerical analysis but also to take advantage of the particular
features of each independent subproblem. A new operator splitting for reaction-
diffusion systems was recently introduced [6], which considers a high fifth order,
A-stable, L-stable method like Radau5 [8], based on implicit Runge-Kutta schemes
for stiff ODEs, that solves with a local cell by cell approach the reaction term:
a system of stiff ODEs without spatial coupling. On the other hand, a high fourth
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order method was chosen, like ROCK4 [1], based on explicit stabilized Runge-Kutta
schemes which features extended stability domains along the negative real axis, very
appropriate for diffusion problems because of the usual predominance of negative
real eigenvalues. Both methods incorporate adaptive time integration tools, similar
to (4), in order to control accuracy for given �Radau5 and �ROCK4.

An explicit high order in time and space one step monotonicity preserving
scheme OSMP [3] is used as convective scheme. It combines monotonicity pre-
serving constraints for non-monotone data to avoid extrema clipping, with TVD
features to prevent spurious oscillations around discontinuities or sharp spatial
gradients. Classical CFL stability restrictions are though imposed during each
splitting time step �t . Notice that the overall combination of explicit treatment of
spatial phenomena as convection and diffusion, with local implicit integration of
stiff reaction implies important savings in computing time and memory resources.
For the reaction, local treatment plus adaptive time stepping allow to discriminate
cells of high reactive activity in the neighborhood of the localized wavefront, saving
as a consequence a large quantity of integration time.

2.2 Mesh Refinement Technique

We are concerned with the propagation of reacting wavefronts, hence important
reactive activity as well as steep spatial gradients are localized phenomena. This
implies that if we consider the resolution of reactive problem, a considerable amount
of computing time is spent on nodes that are practically at (partial) equilibrium.
Moreover, there is no need to represent these quasi-stationary regions with the same
spatial discretization needed to describe the reaction front, so that convection and
diffusion problems might also be solved over a smaller number of nodes. An adapted
mesh obtained by a multiresolution process which discriminates the various space
scales of the phenomenon, turns out to be a very convenient solution to overcome
these difficulties [6, 7].

In practice, if one considers a set of nested spatial grids from the coarsest to
the finest one, a multiresolution transformation allows to represent a discretized
function as values on the coarsest grid plus a series of local estimates at all other
levels of such nested grids. These estimates correspond to the wavelet coefficients
of a wavelet decomposition obtained by inter-level transformations, and retain the
information on local regularity when going from a coarse to a finer grid. Hence,
the main idea is to use the decay of the wavelet coefficients to obtain information
on local regularity of the solution: lower wavelet coefficients are associated to
local regular spatial configurations and vice-versa. This representation yields to a
thresholding process that builds dynamically the corresponding adapted grid on
which the solutions are represented; then the error committed by the multiresolution
transformation is proportional to �MR, where �MR is a threshold parameter [2, 9].
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3 Numerical Illustration

In these illustrating examples, we are concerned with the numerical simulation
of premixed flames interacting with vortex structures: a pair of counter rotating
vortices in a 2D configuration and a 3D toroidal vortex. This is usually a difficult
problem to solve because of the localized and stiff reactive fronts, even more with
large Reynolds numbers. Nevertheless, in order to properly evaluate the proposed
strategy we consider only time evolution problems for which the hydrodynamics is
not solved but a large Reynolds number velocity field is imposed. Based on a model
presented in [10], we consider that the chemistry may be modeled by a global, single
step, irreversible reaction characterized by an Arrhenius law; and a thermodiffusive
approach of laminar flame theory is adopted in order to decouple velocity field
computation from determination of species mass fractions and temperature. Known
solutions of incompressible Navier-Stokes equations may then be imposed, and the
problem is reduced to solving the standard species and energy balance equations.

Following [10], a progress variable c.x; y; t/ is introduced:

c D T � To

Tb � To
; (5)

where subscripts . /o and . /b indicate respectively, fresh mixture zone and burnt
product zone; and we finally obtain for a 2D configuration

@c

@t?
C u?

@c

@x?
C v?

@c

@y?
�
	
@2c

@x2?
C @2c

@y2?




D Da.1 � c/ exp

	

� Ta

To.1C �c/



; (6)

where Da is a Damköhler number, Ta the activation energy, � D Tb=To � 1, and
. /? indicates dimensionless variables. The velocity field .u?.t/; v?.t// is deduced
analytically and imposed into (6), considering a 2D viscous core vortex with a
dimensionless azimuthal velocity of the form:

v�?.r?; t?/ D Re Sc

r?

	

1 � exp

	

� r2?
4 Sc t?





; (7)

with r?.x?; y?/, the distance to the vortex center, Reynolds and Schmidt numbers.
Figure 1 shows the interaction of the premixed flame with two counter rotat-

ing vortices modeled each one of them by (7), centered at .�0:25;�0:5/ and
.0:25;�0:5/ for a 2D spatial domain of Œ�1; 1�2. The upper (red) and lower (blue)
regions correspond respectively to burnt product (c D 1) and fresh mixture (c D
0) zones. The corresponding adapted mesh tightens around the stiff regions and
propagates along the wavefronts.

The following modeling values were considered into (6) and (7): Da D 2:5�109,
Ta D 20000 K, To D 300 K, Tb D 2315:4 K, � � 6:72, Sc D 1 and Re D 1000.
The initial condition corresponds to a planar premixed flame at y D �0:5 and the
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Fig. 1 2D premixed flame interacting with two counter rotating vortices. Solution of variable c at
t? D 4� 10�4 (left) and corresponding adapted mesh (right). Finest grid: 10242

phenomenon is studied over a time domain of Œ0; 4 � 10�3�. The MR procedure
considers a set of 10 grids, equivalent to 10242 D 1048576 cells on the finest grid.
MR and adaptive splitting time step tolerances were set to �MR D 10�2 and �split D
10�3, with �Radau5 D �ROCK4 D 10�5.

Fig. 2 2D premixed flame interacting with two counter rotating vortices. Time evolution of data
compression in the solution representation (left) and splitting, diffusive, reactive and convective
time steps (right). Finest grid: 10242

Figure 2 shows data compression obtained by MR representation of the solution,
measured as the percentage of active cells with respect to the finest grid represen-
tation; in this case, lower than 9% of 10242. On the other hand, splitting time step
starts from an initial value set to 10�8 in order to handle correctly the initial sudden
apparition of the vortices, that evolves rapidly to a final quasi stable value of 10�5,
which indicates the decoupling degree achieved within the accuracy prescribed to
describe the global propagating phenomenon. The corresponding convective time
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step with CFL D 1 illustrates the time scale decoupling obtained by a splitting
technique and highlights the eventual inconveniences of solving (6) considering all
phenomena at once. The same conclusion is valid concerning reactive and diffusive
time steps. By the way, larger convective time steps are used thanks to the adapted
grid representation which allows to discriminate locally large velocity values (in this
case ju?j, jv?j � 40000) from the refined regions around the wavefront, as we can
see in the “jumps” of convective time steps in Fig. 2. Reactive time steps correspond
to cells at the wavefront (for furthest cells, reactive time steps are equal to splitting
ones), while lower diffusive time steps are needed in order to fulfill each splitting
time step, which explains the “oscillations”. Diffusive time steps might take values
beyond classical stability constraints (of the order of 10�6 for explicit RK4 [8] and
eigenvalues of �2:2 � 106), and it is finally set by the accuracy criterion.

Fig. 3 3D premixed flame interacting with a toroidal vortex. Solution of variable c at t? D 1:1 �
10�3 showing isosurface c D 0:5 (left) and corresponding adapted mesh (right). Finest grid: 2563

This resolution technique has a straightforward extension to 3D configurations.
Figure 3 shows the interaction of the premixed flame with a toroidal vortex modeled
by (7) centered at

p
x2? C y2? D 0:25, z? D �0:5 for a 3D spatial domain of Œ�1; 1�3.

The modeling and tolerance parameters are taken equal to the 2D case and the MR
procedure considers a set of 8 grids, equivalent to 2563 D 16777216 cells on the
finest grid. The splitting time step shows the same behavior as for the previous case
with same order of values, while the data compression is lower than 17%, taking
into account that a lower scale discrimination is available with 8 different grids. All
the computations have been performed on a AMD Shanghai processor of 2.7 GHz
with memory capacity of 4 GB. Computing times for the 2D and 3D configurations
were about of 0h57m and 14h40m, respectively.
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4 Concluding Remarks

The present work proposes a new numerical approach which is shown to be
computationally efficient. It couples adaptive multiresolution techniques with a new
operator splitting strategy with high order time integration methods to properly
solve the entire spectrum of scales of each phenomenon. The splitting time step
is chosen on the sole basis of the structure of the continuous system and its
decoupling capabilities, but not related to stability requirements of the numerical
methods involved in order to integrate each subsystem, even if stiffness is present.
The global accuracy of the simulation is controlled and dynamically evaluated
based on theoretical and numerical results. As a consequence, the resulting highly
compressed data representations as well as the accurate and feasible resolution
of these stiff phenomena prove that large computational domains previously out
of reach can be successfully simulated with conventional computing resources.
At this stage of development, the same numerical strategy can be coupled to
a hydrodynamics solver, considering though that an important amount of work
is still in progress concerning programming features such as data structures and
parallelization strategies.
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Dispersive wave runup on non-uniform shores

Denys Dutykh, Theodoros Katsaounis, and Dimitrios Mitsotakis

Abstract Historically the finite volume methods have been developed for the
numerical integration of conservation laws. In this study we present some recent
results on the application of such schemes to dispersive PDEs. Namely, we solve
numerically a representative of Boussinesq type equations in view of important
applications to the coastal hydrodynamics. Numerical results of the runup of a
moderate wave onto a non-uniform beach are presented along with great lines of
the employed numerical method (see D. Dutykh et al. (2011) [6] for more details).

Keywords dispersive wave, runup, Boussinesq equations, shallow water
MSC2010: 65M08, 76B15

1 Introduction

The simulation of water waves in realistic and complex environments is a very
challenging problem. Most of the applications arise from the areas of coastal and
naval engineering, but also from natural hazards assessment. These applications
may require the computation of the wave generation [5, 12], propagation [17],
interaction with solid bodies, the computation of long wave runup [16, 18] and
even the extraction of the wave energy [15]. Issues like wave breaking, robustness
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of the numerical algorithm in wet-dry processes along with the validity of the
mathematical models in the near-shore zone are some basic problems in this
direction [11]. During past several decades the classical Nonlinear Shallow Water
Equations (NSWE) have been essentially employed to face these problems [7].
Mathematically, these equations represent a system of conservation laws describing
the propagation of infinitely long waves with a hydrostatic pressure assumption.
The wave breaking phenomenon is commonly assimilated to the formation of
shock waves (or hydraulic jumps) which is a common feature of hyperbolic PDEs.
Consequently, the finite volume (FV) method has become the method of choice
for these problems due to its excellent intrinsic conservative and shock-capturing
properties [3, 7].

In the present article we report on recent results concerning the extension of the
finite volume method to dispersive wave equations steming essentially from water
wave modeling [4, 6, 14].

2 Mathematical model and numerical methods

Consider a cartesian coordinate system in two space dimensions .x; z/ to simplify
notations. The z-axis is taken vertically upwards and the x-axis is horizontal and
coincides traditionally with the still water level. The fluid domain is bounded below
by the bottom z D �h.x/ and above by the free surface z D �.x; t/. Below we will
also need the total water depth H.x; t/ WD h.x/ C �.x; t/. The flow is supposed
to be incompressible and the fluid is inviscid. An additional assumption of the flow
irrotationality is made as well.

In the pioneering work of D.H. Peregrine (1967) [14] the following system of
Boussinesq type equations has been derived:

�t C
�
.hC �/u�

x
D 0; (1)

ut C uux C g�x � h
2
.hu/xxt C h2

6
uxxt D 0; (2)

where u.x; t/ is the depth averaged fluid velocity, g is the gravity acceleration and
underscripts (ux, �t ) denote partial derivatives.

In our recent study [6] we proposed an improved version of this system which
contains higher order nonlinear terms which should be neglected from asymptotic
point of view and can be written in conservative variables .H;Q/ D .H;Hu/ as:

Ht CQx D 0; (3)

��
1C 1

3
H2
x �

1

6
HHxx

�
Qt � 1

3
H2Qxxt � 1

3
HHxQxt

�
C
�Q2

H
C g
2
H2
�

x
D gHhx:

(4)
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Obviously the linear characteristics of both systems (1), (2) and (3), (4) coincide
since they differ only by nonlinear terms.

However, this modification has several important implications onto structural
properties of the obtained system. First of all, the magnitude of the dispersive terms
tends to zero when we approach the shoreline H ! 0. This property corresponds
to our physical representation of the wave shoaling and runup process. On the other
hand, the resulting system becomes invariant under vertical translations (subgroup
G5 in Theorem 4.2, T. Benjamin & P. Olver (1982) [2]):

z zC d; � � � d; h hC d; u u; (5)

where d is some constant. This property is straightforward to check since we use
only the total water depth variable H D h C � which remains invariant under
transformation (5).

Remark 1. In this paper we will consider the initial-boundary value problem posed
in a bounded domain I D Œb1; b2� with reflective boundary conditions. In this
case one needs to impose boundary conditions only in one of the two dependent
variables, cf. [8]. In the case of reflective boundary conditions it is sufficient to take
u.b1; t/ D u.b2; t/ D 0.

2.1 Finite volume discretization

Let T D fxi g; i 2 Z denotes a partition of R into cells Ci D .xi� 12 ; xiC 1
2
/ where

xi D .xiC 1
2
C xi� 12 /=2 denotes the midpoint of Ci . Let �xi D xiC 1

2
� xi� 12 be the

length of the cell Ci , �xiC 1
2
D xiC1 � xi . (Here, we consider only uniform grids

with �xi D �xiC 1
2
D �x.)

The governing equations (3), (4) can be recast in the following vector form:

ŒD.vt/�C ŒF.v/�x D S.v/;

where

D.vt/ D
	

Ht

.1C 1
3
H2
x � 1

6
HHxx/Qt � 1

3
H2Qxxt � 1

3
HHxQxt




; (6)

F.v/ D
 

Q
Q2

H
C g

2
H2

!

; S.v/ D
	

0

gHhx




: (7)

We denote by Hi and Ui the corresponding cell averages. To discretize the
dispersive terms in (6) we consider the following approximations:
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1

�x

Z x
iC 1

2

x
i� 12

�

1C 1

3
.Hx/

2 � 1
6
HHxx



Q dx �
 

1C 1

3

	
HiC1 �Hi�1

2�x


2
� 1
6
Hi

HiC1 � 2Hi CHi�1
�x2

!

Qi;

1

�x

Z x
iC 1

2

x
i� 12

1

3
HHxQx dx � 1

3
Hi

HiC1 �Hi�1
2�x

QiC1 �Qi�1
2�x

;

1

�x

Z x
iC 1

2

x
i� 12

1

3
H2Qxx dx � 1

3
H2
i

QiC1 � 2Qi CQi�1
�x2

:

We note that we approximate the reflective boundary conditions by taking the
cell averages of u on the first and the last cell to be u0 D uNC1 D 0. We do not
impose explicitly boundary conditions on H . The reconstructed values on the first
and the last cell are computed using neighboring ghost cells and taking odd and
even extrapolation for u and H respectively. These specific boundary conditions
appeared to reflect incident waves on the boundaries while conserving the mass.

This discretization leads to a linear system with tridiagonal matrix denoted by L
that can be inverted efficiently by a variation of Gauss elimination for tridiagonal
systems with computational complexityO.n/, n-being the dimension of the system.
We note that on the dry cells the matrix becomes diagonal since Hi is zero on dry
cells. For the time integration the explicit third-order TVD-RK method is used. In
the numerical experiments we observed that the fully discrete scheme is stable and
preserves the positivity of H during the runup under a mild restriction on the time
step �t .

Therefore, the semidiscrete problem of (6) - (7) is written as a system of ODEs
in the form:

Livi t C 1

�x
.FiC 1

2
�Fi� 12 / D

1

�x
Si;

where Li is the i�th row of matrix L and FiC 1
2

can be chosen as one of the
numerical flux functions [6] (in computations presented below we choose the FVCF
flux [9]). In the sequel we will use the KT and the CF numerical fluxes. In this case
the Jacobian of F is given by the matrix

A D
	

0 1

gH � .Q=H/2 2Q=H



;

and the eigenvalues are 	1;2 D Q=H ˙ pgH . Therefore, the characteristic
numerical flux [9] takes the form

FiC 1
2
D

F.VL

iC 1
2

/C F.VR

iC 1
2

/

2
�U.�/

F.VR

iC 1
2

/ � F.VL

iC 1
2

/

2
;
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where � D .�1; �2/T are the Roe average values,

�1 D
HL
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CHR
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2
; �2 D

q
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iC 1
2

U L

iC 1
2

C
q
HR

iC 1
2

U R

iC 1
2q

HL

iC 1
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C
q
HR

iC 1
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and

U.�/ D
 
s2.�2Cc/�s1.�2�c/

2c
s1�s2
2c

.s2�s1/.�22�c2/
2c

s1.�2Cc/�s2.�2�c/
2c

!

; c D pg�1; si D sign.	i /:

For more details on the discretization and reconstruction procedures, (that are
based on the hydrostatic reconstraction, [1]), we refer to our complete work on this
subject [6].

3 Numerical results

In the present section we show a numerical simulation of a solitary wave runup onto
a non-uniform sloping beach. More precisely, we add a small pond along the slope.
As our results indicate, this small complication is already sufficient to develop some
instabilities which remain controlled in our simulations.

As an initial condition we used an approximate solitary wave solution of the
following form:

�0.x/ D Assech2
�
	.x � x0/

�
; u0.x/ D �cs �0.x/

1C �0.x/ ;

where As is the amplitude relative to the constant water depth taken to be unity in
our study. The solitary wave speed cs along with the wavelength 	 are given here:

	 D
s

3As

4.1C As/ ; cs D pg
p
6.1C As/p
3C 2As

�
p
.1CAs/ log.1C As/ �As

As
:

The solitary wave is centered initially at x0 D 10:62 and has amplitude As D 0:08.
The constant slope ˇ is equal to 2:88ı. The sketch of the computational domain can
be found in [6].

In numerical simulations presented below we used a uniform space discretization
with �x D 0:025 and very fine time step �t D �x=100 to guarantee the accuracy
and stability during the whole simulation.

Snapshots of numerical results are presented on Figs. 1 – 6. We present simulta-
neously three different computational results:
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Fig. 1 Solitary wave aproaching a sloping beach with a pond

−2 0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2

0.3

x

(a) t  =  3.5 s

−2 0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2

0.3

x

(b) t  =  4 s

Boussinesq (UNO)
Boussinesq (TVD)
Shallow water (UNO)

Boussinesq (UNO)
Boussinesq (TVD)
Shallow water (UNO)

Fig. 2 Beginning of the pond inundation
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Fig. 3 A part of the wave mass is trapped in the pond volume
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Fig. 4 Wave oscillations in the pond
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Fig. 5 Stabilization of wave oscillations

Boussinesq (UNO)
Boussinesq (TVD)
Shallow water (UNO)

−2 0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2

0.3

x

Fig. 6 The whole system is tending to the rest position (t D 10 s)
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• Modified Peregrine system solved with UNO2 reconstruction [10]
• The same system with classical MUSCL TVD2 scheme [13]
• Nonlinear Shallow Water Equations (NSWE) with UNO2 scheme [10]

Surprisingly good agreement was obtained among all three numerical models.
Presumably, the complex runup process under consideration is governed essentially
by nonlinearity. However, on Figs. 1(b) and 2(a) the amplitude predicted by NSWE
is slightly overestimated.

On Figs. 3(b) – 4(b) some oscillations (due to the small-dispersion effect
characterizing dispersive wave breaking procedures) can be observed. However,
their amplitude remains small for all times and does not produce any blow up
phenomena. Later these oscillations decay tending gradually to the “lake at the rest”
state (see Figs. 5, 6).

In the specific experiment a friction term could be beneficial to reduce the
amplitude of oscillations (or damp them out completely). However, we prefer to
present the computational results of our model without adding any ad-hoc term to
show its original performance.

4 Conclusions

In this study we presented an improved version of the Peregrine system which
is particularly suited for the simulation of dispersive waves runup. This system
allows for the description of higher amplitude waves due to improved nonlinear
characteristics. Better numerical stability properties have been obtained since most
of the dispersive terms tend to zero when we approach the shoreline. Consequently,
our model naturally degenerates to classical Nonlinear Shallow Water Equations
(NSWE) for which the runup simulation technology is completely mastered nowa-
days. However we underline that there is no artificial parameter to turn off dispersive
terms. Their importance is naturally governed by the underlying physical process.
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MAC Schemes on Triangular Meshes

Robert Eymard, Jürgen Fuhrmann, and Alexander Linke

Abstract We present numerical results for two generalized MAC schemes on
triangular meshes, which are based on staggered meshes using the Delaunay–
Voronoi duality. In the first one, the pressures are defined at the vertices of the mesh,
and the discrete velocities are tangential to the edges of the triangles. In the second
one, the pressures are defined in the triangles, and the discrete velocities are normal
to the edges of the triangles. In both cases, convergence results are obtained.
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1 Introduction

We consider in this paper two different generalizations of the classical MAC scheme
[1] for the incompressible Stokes problem

��uCrp D f x 2 ˝;
r � u D 0 x 2 ˝; (1)
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u D 0 x 2 @˝:
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We assume that f 2 L2.˝/2 holds, where˝ is an open polygonal bounded and
connected subset of R

2 without holes and with boundary @˝ .
The MAC scheme [1] is based on a staggered approach on structured grids,

where the velocity and the pressure control volumes are dual to each other and
have square or rectangular shape. Since the scheme is staggered, the pressure is
not prone to instabilities. In this situation, convergence proofs for the linear Stokes
and the nonlinear Navier–Stokes problems (with small data assumption) have been
presented by Nicolaides [2, 3]. But in spite of its success, this scheme has the main
drawback that complex geometries cannot be well approximated by structured grids.
Therefore, several attempts have been made to generalize it for unstructured grids,
see e.g., [4], where the unstructured simplex grid possesses the Delaunay property.
Then the dual Voronoi grid can be defined in a sensible way, and two different
staggered approaches are possible, where the pressure is discretized either in the
triangles or at the vertices of the mesh:

1. in the first scheme, in the sequel called tangential velocity scheme, the velocity
is approximated by its tangential values along the edges of the triangles, whereas
the pressures are approximated at the vertices of the triangles;

2. in the second scheme, in the sequel called normal velocity scheme, the velocity
is approximated by its normal values to the edges of the triangles, whereas the
pressures are approximated at the center of the triangles.

For these generalized MAC schemes on unstructured grids, no convergence proofs
have been found up to now. Therefore, we will present in this paper an appropriate
discrete weak formulation of the problem, which allows to give a convergence
proof [5]. Moreover, we show experimental orders of convergence in appropriate
norms for a test problem with known analytical solution. It is worth noticing that
for both schemes, the discrete rotation operator is consistent, but not the discrete
divergence operator. In order to obtain a consistent discrete rotation operator for
the tangential velocity scheme, the locations of the discrete velocity degrees of
freedom are imagined as the midpoints of the triangle edges. On the other hand,
in order to obtain a consistent discrete rotation operator for the normal velocity
scheme, the locations of the discrete velocity degrees of freedom are imagined as the
midpoints of the Voronoi faces. We note that for the tangential velocity scheme, the
proposed discretization of r � u D 0 exactly coincides with the discrete solenoidal
condition allowing to prove a discrete maximum principle for the Voronoi finite
volume method for convective transport of a dissolved species in the velocity field
u [6].

The structure of the paper is as follows: In the second section, the notions of a
Delaunay mesh and its dual, the Voronoi mesh, are introduced, and related quantities
are defined. With these notions, discrete divergence and rotation operators for the
tangential and the normal scheme are introduced, and both discretization schemes
for the incompressible Stokes equations are presented. In the third section, a numer-
ical example exhibits the convergence properties of both schemes on structured and
unstructured grids. Experimental convergence rates for the tangential and normal
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scheme are given for the corresponding discrete L2 norms for the velocities, the
corresponding discrete L2 norms for the pressure, and the corresponding discrete
norms for the discrete rotation of the velocities.

2 Definition of the schemes

We define primal and dual meshes of the domain˝ as follows:

1. The set T is the finite set of disjoint triangles (considered as open subsets of R
2)

such that
S
T2T T D ˝. It is considered as the primal mesh. We denote by hmesh

the greatest diameter of all triangles. For all T 2 T , the point xT , defined as the
center of the circumcircle of T , is such that xT 2 T .

2. The set V contains the vertices of all the triangles (and therefore of the edges of
the triangles). For all y 2 V , we denote by Vy the Voronoi box around the vertex
y 2 V , defined as Vy D fx 2 ˝; jx � y j < jx � y 0j for all y 0 2 V ;y 0 ¤ yg.
The set of Voronoi boxes is considered as the dual mesh.

3. The set E contains all the edges of the triangles, and is such that, for all � 2 E ,
either � is located on the boundary of ˝ (we denote by Ebnd the set of these
boundary edges), either � is common to two neighboring triangles (we denote
by Eint the set of these interior edges). We then denote by x� the middle of �
and by �mesh the infimum of all quantities jx� � xT j=hT , for all triangles T , and
hT =hT 0 , for any pair of neighboring triangles T and T 0.

We note that the circumcenter condition xT 2 T 8T 2 T implies that the
triangulation is acute, and, therefore, Delaunay. In agreement with the numerical
results, we believe that it is possible to weaken the conditions on the triangulation to
boundary conforming Delaunay meshes, i.e. Delaunay meshes with the additional
property that xT 2 ˝ 8T 2 T [7].

For every edge � , we define a fixed orientation, which is given by a unit vector
t� parallel to � , and we define n� the normal vector to � , obtained from t� by a
rotation with angle �=2 in the counterclockwise sense (this rotation operator will
be denoted as ��

2
, see Fig. 1). We further assume that the edges � 2 Ebnd at the

border of ˝ build a counterclockwise path around ˝ . Then, for any edge � 2 Ebnd

the exterior of ˝ is located to the right of � . For every T 2 T we denote by ET
the set of edges of the triangle T , and we denote, for any � 2 ET , by tT;� the unit
vector parallel to � oriented in the counterclockwise sense around T , by nT;� the
unit vector normal to � and outward to T , and by DT;� the cone with basis � and
vertex xT . For any � 2 Eint, let T and T 0 be the two neighboring triangles such
that � is an edge of T and T 0. We denote by �? the segment ŒxT ;xT 0 � and by
D� D DT;� [DT 0;� . For any � 2 Ebnd, let T be the triangle such that � is an edge
of T . We then denote by �? the segment ŒxT ;x� � and by D� D DT;� .

For any y 2 V , we denote by Ey the set of all the edges where y is a vertex
of, and we denote, for any � 2 Ey , by ty;� the unit vector parallel to � oriented
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Fig. 1 Notations for the mesh: Left: the Voronoi box associated to a vertex. Right: Zoom on a
diamond

from y to the other vertex of � and by ny;� the unit vector normal to � and in the
counterclockwise sense around y .

The space of degrees of freedom at edges, vertices and triangles are respectively
defined by XE D R

E , XV D R
V and XT D R

T .
For the tangential velocity scheme, the degrees of freedom for the velocity

represent the tangential velocity components v � t� at the midpoint of the edges
� 2 E , which are oriented in the direction t� . The degrees of freedom for the
pressure represent the pressure at the vertices of the triangulation. The space

PXE D fv 2 XE ; v� D 0;8� 2 Eextg (2)

represents the degrees of freedom for the velocity, when homogeneous Dirichlet
boundary conditions are prescribed at the boundary edges. We introduce the
following discrete differential operators:

rotT v D 1

jT j
X

�2ET
j� jv� t� � tT;� 8v 2 XE ; 8T 2 T ;

divyv D 1

jVy j
X

�2Ey
j�?jv�t� � ty;� 8v 2 XE ; 8y 2 V :

Then the tangential velocity scheme reads:
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find .v; p/ 2 PXE �XV such that

X

T2T
jT jrotT vrotTw �

X

y2V
jVy jpydivyw D

X

�2E
2w�

Z

D�

f � t�dx; 8w 2 PXE

X

y2V
jVy jpy D 0;

Divyv D 0; 8y 2 V :

For the normal velocity scheme, the degrees of freedom for the velocity represent
the normal velocity components v � n� at the midpoints of the Voronoi faces �? for
all � 2 E , which are oriented in the direction n� , and the degrees of freedom for
the pressure represent the pressure at the center of the triangles. Using the discrete
differential operators

rotyv D 1

jVy j
X

�2Ey
j�?jv�n� � ny� 8v 2 XE ; 8y 2 V ;

divT v D 1

jT j
X

�2ET
j� jv�n� � nT� 8v 2 XE ; 8T 2 T ;

the normal velocity scheme writes:

find .v; p/ 2 PXE �XT such that

X

y2V
jVy jrotyvrotyw �

X

T2T
jT jpT divTw D

X

�2E
2w�

Z

D�

f � n�dx; 8w 2 PXE

X

T2T
jT jpT D 0;

divT v D 0; 8T 2 T :

3 Numerical results

In order to investigate numerically the convergence rate that can be achieved with the
extended MAC schemes introduced above, we define an academic Stokes problem
on two sequences of meshes. We remark that we achieved the same experimental
convergence rates for the full nonlinear Navier–Stokes equations [5], where the
nonlinear term was discretized in rotational form. The problem is posed on ˝ D
Œ0; 1�2, has homogeneous Dirichlet boundary conditions and reads
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v D
	
2.x � 1/2x2.y � 1/y.2y � 1/
�2.2x � 1/.x � 1/x.y � 1/2y2




;

p D x3 C y3 � 0:5:

The vector f is computed such that v and p fulfill the Stokes equations (1).
In the first sequence of meshes, every mesh is build up from small squares, where

the side length of such a square defines the mesh size. Every square in the mesh is
split into two triangles. This mesh is not admissible in the strict sense of the above
definition, since the circumcenters of these two triangles coincide. But this does not
pose any problem, since in this degenerated case, the discrete method is equivalent
to a method where the squares take over the role of triangles, and the diagonals of
the squares can be removed from the above considerations, as the measure of their
corresponding Voronoi faces are zero. At the same time, on these meshes, triangle
edge midpoints and Voronoi face midpoints coincide. This fact will result in superior
convergence behavior on these meshes in comparison to “purely” triangular meshes.

In Table 1 we show some information about the degrees of freedom in these
square meshes. The last two columns of this Table show some quite interesting
information. The penultimate column reveals that the tangential velocity scheme is
quite efficient in terms of degrees of freedom, since the ratio between the number of
degrees of freedom corresponding to discretely divergence-free velocities and the
total number of degrees of freedom is about 0:5. For the normal velocity scheme,
the corresponding ratio is only 0:20.

Table 1 Number of edges, vertices and triangles in different square meshes. The penultimate
column shows the ratio between discretely divergence-free degrees of freedom and the total number
of degrees of freedom for the tangential velocity scheme. The last column shows the ratio between
discretely divergence-free degrees of freedom and the total number of degrees of freedom for the
normal velocity scheme

mesh size jEj jV j jT j jEj�jV j

jEjCjV j

jEj�jT j

jEjCjT j

1
32

2945 1024 1922 0:484 0.210
1
64

12033 4096 7938 0:492 0.205
1
128

48641 16384 32258 0:496 0.203
1
256

195585 65536 130050 0:498 0.201
1
512

784385 262144 522242 0:499 0.201
1

1024
3141633 1048576 2093058 0:500 0.200

The second sequence of meshes are made up of isotropic, unstructured boundary
conforming Delaunay meshes. They have been generated by the mesh generator
TRIANGLE [8]. We remark, that this approach does not guarantee that the triangu-
lation is acute. In Table 2 we show some information about the degrees of freedom
in these triangle meshes. An approximate mesh size was defined according to the
largest triangle area that the mesh generator was allowed to generate within a mesh.
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From Tables 1 and 2 we recognize that the degrees of freedom of corresponding
meshes in the two mesh families are quite similar, such that the definition of the
mesh size for unstructured meshes seems to be reasonable. The two schemes are

Table 2 Number of edges, vertices and triangles in different Delaunay meshes generated by
the mesh generator TRIANGLE[8]. The penultimate column shows the ratio between discretely
divergence-free degrees of freedom and the total number of degrees of freedom for the tangential
velocity scheme. The last column shows the ratio between discretely divergence-free degrees of
freedom and the total number of degrees of freedom for the normal velocity scheme

mesh size jEj jV j jT j jEj�jV j

jEjCjV j

jEj�jT j

jEjCjT j

1
32

3121 1084 2038 0:484 0:210
1
64

12326 4195 8132 0:492 0:205
1
128

48664 16393 32272 0:496 0:203
1
256

194879 65302 129578 0:498 0:201
1
512

779506 260519 518988 0:499 0:201
1

1024
3114404 1039501 2074904 0:500 0:200

implemented within the framework of the software package PDELIB[9]. All the
discrete linear systems are solved with the direct solver PARDISO[10, 11].

In Figs. 2 and 3, for both schemes and series of meshes, we plot various measures
of the error between the discrete solution and a projection of the exact solution onto
the grid. We used two different projections for both schemes. For the tangential
velocity scheme, we evaluate the tangential velocities at the edge midpoints and
assign them to the corresponding velocity degrees of freedom. For the normal
velocity scheme, we evaluate the normal velocities at the Voronoi face midpoints
and assign them to the corresponding velocity degrees of freedom, likewise.
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Fig. 2 Discrete L2-norm of the error between the projected exact solution and the discrete
solution. Left: velocity, right: pressure

We start the discussion with the approximation of the velocity, see Fig. 2, left. We
observe similar behavior for the two discretization schemes proposed. On triangular
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Fig. 3 Discrete L2-norm of the discrete vector calculus operators applied to the difference
between the projected exact velocity and the velocity component of the discrete solution. Left:
rotational, right: divergence

meshes the convergence order is approximatelyO.h/. On square meshes, we gain an
order of magnitude in the convergence rate in comparison to the triangular meshes.

Also, concerning the approximation orders of the pressure, both schemes behave
in a similar way, including second order convergence on square meshes, see Fig. 2,
right. We observe that on triangular meshes, the convergence order drops to O.h

1
2 /.

At the same time, the accuracy of the normal velocity scheme on triangular meshes
is better by a factor of� 10 in comparison to the tangential velocity scheme.

As shown by the mathematical analysis [5], the discrete rotation is convergent for
both schemes. This is confirmed by Fig. 3 (left), where we observe the convergence
of the difference between the discrete rotation of the discrete solution and the
discrete rotation of the projected exact solution. On square meshes, for the normal
velocity scheme, the L2 norm of this difference exhibitsO.h

3
2 /-convergence, while

the convergence order of the tangential velocity scheme is onlyO.h/. On triangular
meshes, both schemes exhibitO.h

1
2 / convergence with an advantage for the normal

velocity scheme concerning the constants.
By construction, for both schemes, the discrete divergence of the velocity

component of the discrete solution is zero. Therefore, the error shown in Fig. 3
(right) coincides with the discrete divergence of the projected exact velocity. On
square meshes, for both schemes, the discrete divergence operator is consistent,
since mid points of an edge coincide with mid points of the orthogonal Voronoi
faces. Therefore, the discrete divergence converges on square meshes to zero with
order O.h1:5/ for the tangential velocity scheme and O.h/ for the normal velocity
scheme. On the triangular meshes, edge mid points and Voronoi face mid points do
not coincide and the discrete divergence operator is not consistent resulting in no
convergence at all if it is applied to the projection of the velocity component of the
exact solution.

We note that the convergence behavior on the boundary conforming Delaunay
meshes, which are not acute, is consistent with the theoretical considerations which
for technical reasons had been constrained to acute triangulations.
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Multiphase Flow in Porous Media Using
the VAG Scheme

Robert Eymard, Cindy Guichard, Raphaèle Herbin, and Roland Masson

Abstract We present the use of the Vertex Approximate Gradient scheme for the
simulation of multiphase flow in porous media. The porous volume is distributed
to the natural grid blocks and to the vertices, hence leading to a new finite volume
mesh. Then the unknowns in the control volumes may be eliminated, and a 27-
point scheme results on the vertices unknowns for a hexahedral structured mesh.
Numerical results show the efficiency of the scheme in various situations, including
miscible gas injection.

Keywords two-phase flow in porous media, vertex approximate gradient scheme,
reservoir simulation.
MSC2010: 65M08,76S05

1 Introduction

Simulation of multiphase flow in porous media is a complex task, which has been
the object of several works over a long period of time, see the reference books [12]
and [3]. Several types of numerical schemes have been proposed in the past decades.
Those which are implemented in industrial codes are mainly built upon cell centred
approximations and discrete fluxes, in a framework which is also that of the method
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we propose here. Let us briefly sketch this framework. The 3D simulation domain
˝ is meshed by control volumes X 2M . Let us denote by � the diffusion matrix
(which is a possibly full matrix depending on the point of the domain).

For each control volume X 2M , the set of neighbours Y 2 NX is the set of all
control volumes involved in the mass balance in X , which means that the following
approximation formula is used: � R

X
r ��grad p dx 'PY2NX

FX;Y .P /; where
P D .pZ/Z2M is the family of all pressure unknowns in the control volumes, and
where the flux FX;Y .P /, between control volumes X and Y , is a linear function of
the components of P which ensures the following conservativity property:

FX;Y .P / D �FY;X.P /: (1)

Such a linear function, which is expected to vanish on constant families, may be
defined by

FX;Y .P / D
X

Z2MX;Y

aZX;Y pZ; (2)

where the family .aZX;Y /Z2MX;Y and MX;Y �M are such that
P

Z2MX;Y
aZX;Y D 0.

Assuming Nc constituents and N˛ phases, the discrete balance laws then read

˚X

ıt
.A

.nC1/
X;i � A.n/X;i /C

NX̨

˛D1

X

Y2NX

M
.nC1/;˛
X;Y;i F

.nC1/;˛
X;Y D 0; 8i D 1; : : : ; Nc;

F
.nC1/;˛
X;Y D FX;Y .P .nC1/;˛/� �.nC1/;˛X;Y g � .xY � xX/; 8˛ D 1; : : : ; N˛;

(3)

where n is the time index, ıt is the time step, ˚X is the porous volume of the control
volume X 2 M , AX;i represents the accumulation of constituent i in the control
volume X per unit pore volume (assumed to take into account the dependence
of the porosity with respect to the pressure), M˛

X;Y;i is the amount of constituent
i transported by phase ˛ from the control volume X to the control volume Y
(generally computed by taking the upstream value with respect to the sign of FX;Y ),
P˛ is the family of the pressure unknowns of phase ˛, g is the gravity acceleration,
�˛X;Y is the bulk density of phase ˛ between control volumes X and Y and xX
is the centre of control volume X . In addition to these relations, the differences
between the phase pressures are ruled by capillary pressure laws. Thermodynamical
equilibrium and standard closure relations are used.

When applying scheme (3), one should be very wary of the use of conformal
finite elements in the case of highly heterogeneous media. Indeed, assuming that the
control volumes are vertex centred with vertices located at the interfaces between
different media, then the porous volume concerned by the flow of very permeable
medium includes that of non permeable medium. This may lead to surprisingly
wrong results on the component velocities. A possible interpretation of these poor
results is that, when seen as a set of discrete balance laws, the finite element method
provides the same amount of impermeable and permeable porous volume for the
accumulation term for a node located at a heterogeneous interface.
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We present in this paper the use of a new scheme, called Vertex Approximate
Gradient (VAG) scheme [8, 9], which can be implemented in (3) so that the
components velocities are correctly approximated, thanks to a special choice of
the control volumes and of the discrete fluxes, which respect to the form (2). The
purpose of respecting the form (3)-(2) is to be able to plug it easily into an existing
reservoir code, say Multi-Point Flux Approximation (MPFA), by simply redefining
the control volumes and the coefficients aZX;Y of the discrete flux.

Although part of this scheme is vertex centred, we show that the solution obtained
on a very heterogeneous medium with a coarse mesh remains accurate. This is a
great advantage of this scheme, which is also always coercive, symmetric, and leads
to a 27-stencil on hexahedral structured meshes. In addition the VAG scheme is
very efficient on meshes with tetrahedra since the scheme can then be written with
the nodal unknowns only, thus inducing a reduction of the number of degrees of
freedom by a factor 5 compared with cell centred finite volume schemes such as
MPFA schemes [1, 2, 4, 5].

2 Presentation of the scheme

The VAG scheme is described in [8,9], and its gradient scheme properties are related
to those presented in [7]; therefore we focus here on the use of this scheme for a
multiphase flow simulation of the form (3). Let M be a general mesh of˝ , defined
by a set G of grid blocks and the set V of their vertices; this is a mesh of control
volumes in the sense of the preceding section: a control volume is either a grid block
K 2 G or a vertex v 2 V . In particular, a porous volume must be associated to each
control volume, i.e. to each grid block and to each vertex. Finally a flux FX;Y from
the control volume X to the control volume Y must be specified.

Any given grid blockK 2 G has, say, NK vertices; let us denote by VK � V the
set of these vertices. We wish to define a flux between neighbouring control volumes
X D K and Y D v 2 VK , and between neighbouring control volumes X D v 2 VK
and Y D K 2 Gv D fY D K 2 G such that v 2 VKg; for this purpose, we introduce
a local discrete gradientrK;v.PK/ 2 R

3 (see [8,9] for the precise definitions), which
only depends on the values PK D .PK;v/v2VK D .pv �pK/v2VK . We then introduce
the matrices .Av;v0

K /v;v02VK , which are defined by the following relation

jKj
NK

X

v2VK
�KrK;vPK � rK;vQK D

X

v2VK

X

v02VK
A

v;v0

K PK;v0QK;v; 8PK;QK 2 R
VK :

The flux from control volume X D K to control volume Y D v is then given by

FX;Y .P / D FK;v.P / D �
X

v02VK
A

v;v0

K .pv0 � pK/;
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which is of the same form as (2) ; using (1), we get FY;X .P / D �FX;Y .P /. Let
us now turn to the definition of porous volumes for all X 2 M . The question is to
associate to each vertex a porous volume in such a way that the component velocities
are well approximated. Let us denote by e̊K D

R
K
˚.x/ dx the total porous volume

of each grid block K 2 G . We shall then take out a little bit of this porous volume
of each grid block to associate it with the control volumes of the vertices. In order to
obtain a systematic way to redistribute the porous volume between the grid blocks
and the vertices, we define a first indicator of the transmissivity between K and v
by BK;v DPv02VK A

v;v0

K > 0;8K 2 Gv; and then, for a global small value � 2�0; 1Œ
(for example, � D 0:05), a weighted relative transmissivity (which is larger for
permeable regions than for impermeable ones):

eBK;v D � BK;v
X

L2Gv

BL;v
; 8v 2 V ; 8K 2 Gv; (4)

Note that it might be expected that a too small value for � lead to some numerical
problems; nevertheless, such consequences have not been observed within the range
� 2 Œ0:01; 0:05�. The total porous volume can then be redistributed between all
control volumes X 2 M , that is between the grid blocks and the vertices, by the
following relations:

˚X D
(P

K2Gv
eBK;ve̊K if X D v 2 V ;

e̊
K.1 �Pv2VK eBK;v/ if X D K 2 G :

Hence, we distribute a small amount of the porous volume of K to its vertices, in a
conservative way; indeed, by construction, we get that

X

X2M
˚X D

X

K2G
e̊
K;

with all ˚X > 0, provided that the value � be chosen sufficiently small. We can
remark that:

1. the porous volume of a vertex v 2 V located at the interface between high and
low permeability regions is mainly extracted from the higher permeability region,

2. the part of the lower permeability region distributed to the vertices is reduced by
the factor �.

We recall that we keep the property ensured in the monophasic case on the full
system: indeed, the linear systems issued from Newton’s method may be solved by
first eliminating all unknownsK 2 G , and then solve a 27-point system on v 2 V .
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3 Numerical applications

3.1 Heterogeneous case

The first example is the injection of CO2, considered as immiscible with the liquid
phase, at the middle point of an isotropic and heterogeneous reservoir, with size
Œ�100; 100� � Œ0; 50� � Œ0; 45� m3. The reservoir includes three 15 m-thick layers.
The top and bottom layers are assumed to be weakly permeable (j�j D 10�16 m2)
and the medium layer is much more permeable (j�j D 10�12 m2). A regular coarse
100 � 10 � 15 mesh is used for the simulation (depicted in Fig. 1). The values

Fig. 1 First example. Left: mesh and layers. Right: the well is depicted at the centre of the section
y D 25 m, illustrated by the white block

� D 0:01 and � D 0:05 have been tested in (4), without significant influence on the
results both in terms of accuracy and CPU time. The results of the VAG scheme
are compared to those obtained using the two-point flux approximation (TPFA)
scheme, which is available on such a regular mesh. We observe in Fig. 2 that the
numerical diffusion along the axes of the mesh leads, after a short injection time,
to a distorted profile of the gas saturation in the case of the TPFA scheme, known
as Grid Orientation Effect (GOE), see also [10]. This phenomenon is clearer in

Fig. 2 View of the gas saturation in the reservoir, after a short injection time. Farthest to the well:
S D 0:001. Closest to the well : S D 0:042. Left: TPFA scheme. Right: VAG scheme

the profile of the saturation at the end of the gas injection. We see in Fig. 3 the
important GOE due to the TPFA scheme, whereas this effect is nearly invisible in
the results obtained with the VAG scheme. Moreover, this distortion, also visible in
the vertical section (Fig. 4), is again corrected using the VAG scheme. These results
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can be explained by the construction of the fluxes. In fact, after elimination of the
cell centred unknowns, the resulting scheme on the vertex unknowns has a 27-point
stencil, whereas it remains a 7-point scheme on the control volumes unknowns using
the TPFA scheme.

Fig. 3 Gas saturation at the end of the gas injection. Section z D 22:5 m. Farthest to the well :
S D 0. Closest to the well : S D 1. Left: TPFA scheme. Right: VAG scheme

Fig. 4 Gas saturation at the end of the gas injection. Section y D 25 m. Farthest to the well :
S D 0. Closest to the well : S D 1. Left: TPFA scheme. Right: VAG scheme

3.2 Near-Well case

In the second example, we consider the numerical simulation of the injection of
CO2 in near-well regions for a deviated well. A hexahedral radial part is connected
to the outside boundary either by a hexahedral mesh or a hybrid mesh (using both
pyramids and tetrahedra) as illustrated in Fig. 5. The number of cells is roughly the
same for both types of grids. This family of meshes is also used in the 3D benchmark
on monophasic diffusion [11]. The medium is homogeneous, but anisotropic. We
consider that the CO2 can be dissolved in the aqueous phase.

We consider in Figs. 7 and 6 the mass outflow rate of CO2 in the two phases at
the outer boundary using the VAG scheme and the MPFA O-scheme on both types
of grids. The values 0:01 and 0:05 have been tested for the parameter � used in (4)
and the results are almost the same. In order to keep the output clearer, the curves
are only plotted for � D 0:05. We observe that the VAG scheme produces results
which are not very sensitive to the type of the grid. On the contrary, the MPFA O-
scheme shows a significant sensitivity to the type the grid, since the production of
CO2 is slowed down by the use of the tetrahedral mesh.

We finally remark that there are 74 679 cell unknowns and 74 800 nodal
unknowns for the hexahedral mesh, to be compared with 77 599 cell unknowns
(including 28 704 tetrahedra) and only 37 883 nodal unknowns for the hybrid mesh.
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Fig. 5 Near-well grid : the hexahedral mesh (left) and the hybrid mesh (right)

Fig. 6 Outflowing mass flow rate of CO2 in the water phase at the outer boundary

As stated in the introduction, we see on this example that computing costs of the
VAG scheme may be reduced in the case of meshes with tetrahedra.

4 Conclusion

The above numerical results show that the VAG scheme seems to be an efficient
scheme for multiphase flow simulation of a heterogeneous anisotropic reservoir; it
features the following properties:

1. it may be implemented, without any additional cost, into an MPFA industrial
code;



416 R. Eymard et al.

Fig. 7 Outflowing mass flow rate of CO2 in the gas phase at the outer boundary

2. it leads to a 27-point compact stencil and a symmetric and coercive operator for
the treatment of the diffusion terms, even in the case of distorted meshes and
heterogeneous and anisotropic diffusion,

3. its cost is considerably reduced in the case of meshes with tetrahedra compared
with cell centred MPFA schemes;

4. it remains accurate on coarse meshes thanks to a well-chosen distribution of the
porous volume between the centre of the control volumes and the vertices;

5. since a pore volume is assigned to the Neumann boundary nodes, the Neumann
conditions are obtained by writing the conservation and closure equations as in
the inner control volumes.

Full scale reservoir simulations will be performed in order to confirm the efficiency
of the method.
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Abstract Some cases of nonlinear coupling between a diffusion equation, related
to the computation of a pressure field within a porous medium, and a convection
equation, related to the conservation of a species, lead to the apparition of the so-
called grid orientation effect. We propose in this paper a new procedure to eliminate
this Grid Orientation Effect, only based on the modification of the stencil of the
discrete version of the convection equation. Numerical results show the efficiency
and the accuracy of the method.
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Methods
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1 Introduction

In the 1980’s, numerous papers have been concerned with the so-called grid orien-
tation effect, in the framework of oil reservoir simulation. This effect is due to the
anisotropy of the numerical diffusion induced by the upstream weighting scheme,
and the computation of a pressure field, solution to an elliptic equation in which the
diffusion coefficient depends on the value of the convected unknown. This problem
has been partly solved in the framework of industrial codes, in which the meshes
are structured and regular (mainly based on squares and cubes). The literature on
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 44, © Springer-Verlag Berlin Heidelberg 2011

419

robert.eymard@univ-mlv.fr
cindy.guichard@ifpen.fr
roland.masson@ifpen.fr


420 R. Eymard et al.

this problem is huge, and is impossible to exhaustively quote; let us only cite [3, 4,
6, 10, 11] and references therein. In the 2000’s, a series of new schemes have been
introduced in order to compute these coupled problems on general grids [1, 2, 5, 8].
But, in most of the cases, the non regular meshes conserve structured directions,
although the shape of the control volumes is no longer that of a regular cube. This
is the case for the Corner Point Geometries [9] widely used in industrial reservoir
simulations. The control volumes which are commonly used in 3D reservoir simu-
lations are generalised “hexahedra”, in the sense that each of them is neighboured
by 6 other control volumes. In this case, the stencil for the pressure resolution may
have a 27-point stencil (using for instance a MPFA scheme). Nevertheless, selecting
a 27-point stencil instead of a 7-point stencil for the pressure resolution has no
influence on the Grid Orientation Effect, which results from the stencil used in
upstream weighted mass exchanges coupled with the pressure resolution.

In order to overcome this problem, we study here a generalisation of methods
consisting in increasing the stencil of the convection equation, without modifying
the pressure equation. The method will be presented on a simplified problem,
modelling immiscible two-phase flow within a porous medium. Let ˝ � R

d (with
d D 2 or 3) be the considered space domain. We consider the following two-phase
flow problem in ˝:

�
ut � div.k1.u/�rp/ D 0
.1 � u/t � div.k2.u/�rp/ D 0; (1)

where u.x; t/ 2 Œ0; 1� is the saturation of phase 1 (for example water), and
therefore 1 � u.x; t/ is the saturation of phase 2, k1 is the mobility of phase 1
(increasing function such that k1.0/ D 0), k2 is the mobility of phase 2 (decreasing
function such that k2.1/ D 0), and p is the common pressure of both phases (the
capillary pressure is assumed to be negligible in front of the pressure gradients
due to injection and production wells) and we consider a horizontal medium with
permeability tensor �. It is therefore possible to see System (1) as the coupling of
an elliptic problem with unknown p and a nonlinear scalar hyperbolic problem with
unknown u: 8

ˆ̂
<

ˆ̂
:

m.u/ D k1.u/C k2.u/; f .u/ D k1.u/

m.u/
divF D 0 with F D �m.u/�rp
ut C div.f .u/F / D 0

(2)

We then consider a MultiPoint Flux Approximation finite volume scheme for the
approximation of Problem (1), coupled with an upstream weighting scheme for the
mass exchanges. Such a scheme may be written:

F
.n/
K;L D m.n/

KL

X

M2M
aMKLp

.nC1/
M with

X

M2M
aMKL D 0 (3)

X

L2NK

F
.n/
K;L D 0 (4)
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F
.n/
K;L C F .n/

L;K D 0 (5)

jKj
�

u.nC1/K � u.n/K

�
C ıtn

X

L2NK

�
f .u.n/K /.F

.n/
K;L/

C � f .u.n/L /.F .n/
K;L/

�� D 0: (6)

In the above system, we denote by M the finite volume mesh of˝ ,K;L are control
volumes, NK is the set of the neighbours ofK (i.e. control volumes exchanging fluid
mass withK), n is the time index and ıtn is the time step (ıtn D t .nC1/ � t .n/), p.n/M
and u.n/M are respectively the pressure and the saturation in control volumeM at time
t .n/. The coefficients aMKL are computed with respect to the geometry of the mesh

and to�. The valuem.n/
KL is any average value (arithmetic or harmonic) of the values

m.u.n/K / and m.u.n/L /. Then F .n/
K;L is the approximation of F � n at the interface KjL

between control volumes K and L at time step n, and, for all real a, the values aC
and a� are respectively defined by max.a; 0/ and max.�a; 0/.

The set NK of the neighbours of K is classically defined as all the control
volumes which have a common face with K . But, as we show in this paper, this
notion may be relaxed. Defining the notion of “stencil” S �M 2 by S D f.K;L/ 2
M 2; L 2 NKg, this stencil is then equal to the set of all .K;L/ 2 M 2 such that
F
.n/
K;L may be different from 0. In view of (5), S must verify the symmetry property

S �M 2 and 8.K;L/ 2 S; .L;K/ 2 S: (7)

As we stated in the introduction, the drawback of the use of this stencil for
practical problems, where F .n/

K;L is computed from the resolution of a pressure
equation, is that it leads to the Grid Orientation Effect. Therefore, we want to replace
(6) by

jKj
�

u.nC1/K � u.n/K

�
C ıtn

X

L2bN K

�
f .u.n/K /.bF

.n/
K;L/

C � f .u.n/L /.bF .n/
K;L/

�� D 0; (8)

where the new stencilbS , defined bybS D f.K;L/ 2M 2; L 2 cN Kg, is such that the
Grid Orientation Effect is suppressed. In (8), the values of the fluxes .bF .n/

K;L/.K;L/2bS
will be set such that the two following properties hold: the flux continuity holds

bF
.n/
K;L C bF .n/

L;K D 0; 8.K;L/ 2 bS; (9)

and the balance in the control volumes is the same as that satisfied by the fluxes
.F

.n/
K;L/.K;L/2S :

X

L;.K;L/2bS
bF
.n/
K;L D

X

L;.K;L/2S
F
.n/
K;L; 8K 2M : (10)

In view of (15), we again prescribe the symmetry property
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bS �M 2 and 8.K;L/ 2 bS; .L;K/ 2 bS: (11)

The section 2 of this paper is devoted to the description of a method for constructing
bF
.n/
K;L for a given stencil bS , which ensures properties (9) and (10) (corresponding,

for a given n, to (15) and (16) below). The application of this method to the case
of an initial five-point pattern stencil S and of a nine-point stencil bS is detailed in
Section 3. Then numerical tests show the efficiency of the method to fight the Grid
Orientation Effect (section 4).

2 Construction of bFK;L in the new stencil bS

The method presented in this section concerns the reconstruction of the fluxes,
which has to be applied to each time step. Hence, for the simplicity of notation,
we drop the index n in this section. For a stencil bS �M 2 such that (11) holds and
for given .K;L/ 2 M 2, the set bS K;L of the paths from K to L following bS is
defined by

bS K;L WD
�

P D
�
.Ki ;KiC1/; i D 1; : : : ; N � 1 with K1DK; KN DL
and Ki ¤ Kj for i ¤ j D 1; � � � ; N

�

� bS
�

:

(12)
We denote by ]bS K;L the cardinality of bS K;L, i.e. the number of paths P
from K to L following bS . For any P D f.Ki ;KiC1/; i D 1; : : : ; N � 1g 2
bS K;L, we denote by P the inverse path from L to K following bS , defined by
P D f.KiC1;Ki/; i D 1; : : : ; N � 1g.

We may now state the following result.

Lemma 1 (New stencil and fluxes). Let M be a finite set, let S � M 2 be given
such that (7) holds. Let .FK;L/.K;L/2S be a family such that the property

FK;L C FL;K D 0; 8.K;L/ 2M 2

holds. Let bS �M 2 be given such that (11) holds and such that
8.K;L/ 2 S; ]bS K;L > 0:

For all .K;L/ 2 S , let .F P
K;L/P2bS K;L

be a family such that

8.K;L/ 2 S; P
P2bS K;L

F P
K;L D FK;L;

satisfying the property

8.K;L/ 2 S; 8P 2 bS K;L; F
P
K;L C FP 

L;K D 0: (13)

Then the family .bFK;L/.K;L/2bS , defined by

8.I; J / 2 bS; bF I;J D
X

.K;L/2S

X

P2bS K;L


I;J;P F
P
K;L; (14)
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where 
I;J;P is such that 
I;J;P D 1 if .I; J / 2 P and 
I;J;P D 0 otherwise, satisfies

bFK;L C bFL;K D 0; 8.K;L/ 2 bS; (15)

and X

L;.K;L/2bS
bFK;L D

X

L;.K;L/2S
FK;L; 8K 2M : (16)

Proof. Firstly, using definitions, for a given .I; J / 2 bS , we have .J; I / 2 bS and
bF J;I D

X

.L;K/2S

X

P2bS L;K


J;I;P F
P
L;K : Then, thanks to the following equivalences

8
<

:

.L;K/ 2 S” .K;L/ 2 S
P 2 bS L;K ” P 2 bS K;L

.J; I / 2 P ” .I; J / 2 P ;

and using (13), we can rewrite bF J;I as follows

bF J;I D �
X

.K;L/2S

X

P2bS K;L


I;J;P F
P
K;L D �bF I;J

;

which proves (15).
Secondly, for a given I 2M , by reordering the sums, we can write that

X

J;.I;J /2bS
bF I;J D

X

J;.I;J /2bS

X

.K;L/2S

X

P2bS K;L


I;J;P F
P
K;L D

X

.K;L/2S

X

P2bS K;L

�I;P F
P
K;L

where �I;PD
X

J;.I;J /2bS

I;J;P is equal to 1 if there exists J 2M such that .I; J / 2 P

(therefore I ¤ L), and to 0 otherwise. Note that, for .K;L/ 2 S with K ¤ I and
for P 2 bS K;L with �I;P D 1, we have I ¤ L, .L;K/ 2 S , P 2 bS L;K and
�I;P D 1. So, using (13), we obtain

X

.K;L/2S s.t. K¤I

X

P2bS K;L

�I;P F
P
K;L D 0:

Therefore we can write

X

J;.I;J /2bS
bF I;J D

X

L;.I;L/2S

X

P2bS I;L

�I;P F
P
I;L D

X

L;.I;L/2S

X

P2bS I;L

F P
I;L D

X

L;.I;L/2S
FI;L;

which proves (16).
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3 Application to an initial five-point stencil on a structured
quadrilateral mesh

Let us assume, taking the example of a 2D situation, that the initial stencil S is a
five-point stencil, defined on a regular quadrilateral mesh

S D f.K;L/ 2M 2; K and L have a common edgeg; (17)

and that the new stencilbS is the nine-point stencil (see the figure below), defined by

bS D S [ f.K;L/ 2M 2; K and L have a common point g: (18)

Then we define .F P
K;L/P2bS K;L

, for all P 2 bS K;L and all .K;L/ 2 S (remark

that in this case, S � bS ):

M1

L

M4M3

K

M2

For a given ! > 0 (we take the value ! D
0:1 in the numerical examples), we define

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

F
P0
K;L D .1 � 4!/FK;L for P0 D f.K;L/g;

F
Pi
K;L D !FK;L

for Pi D f.K;Mi/; .Mi ; L/g; 8i D 1; : : : ; 4;

F P
K;L D 0 otherwise.

Assuming that this procedure has been applied to all initial five-point connection,
let us give the resulting values of bFK;L deduced from (14) in two cases:

(
bFK;L D .1 � 4!/FK;L
bFK;M2 D !.FK;L C FL;M2 C FK;M1 C FM1;M2/:

4 Numerical results

The numerical tests presented here are inspired by [7]. The domain is defined by
˝ D Œ�0:5; 0:5�xŒ�0:5; 0:5�xŒ�0:15; 0:15�: The permeability �.x/; x 2 ˝ is equal
to 1 if the distance from x to the vertical axis 0z is lower than 0:48, and to 10�3
otherwise (see Fig. 1), which ensures the confinement of the flow in the cylinder with
axis 0z and radius 0:48. We use two Cartesian grids, the second one deduced from
the first one by a rotation of angle � D �

6
with axisOz. The number of cells in each
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Fig. 1 The two meshes used. In grey scale, the highest permeability zone, in black the lower
permeability zone. Squares indicate wells

direction .x; y; z/ are Nx D Ny D 51 and Nz D 3. At the initial state, the reservoir
is assumed to be saturated by the oil phase. Water is injected at the origin by an
injection well. Two production wells, denoted byP1 andP2, are respectively located
at the points .�0:3cos�

3
;�0:3sin�

3
; 0/ and .0:3cos�

3
;�0:3sin�

3
; 0/ (that means that

the three wells are numerically taken into account as source terms in the middle layer
of the mesh). The oil and water properties are respectively denoted by the index o
and w. The viscosity ratio between the two phases is given by �o=�w D 100 and,
the density ratio is given by �o=�w D 0:8. We use Corey-type relative permeability,
krw D S4w and kro D S2o . We use the method described in Sections 2 and 3, with
! D 0:1 for all grid blocks which are inscribed in the cylinder (this value, also
used in [6], provides the less sensitive numerical results with respect to the grid
orientation). The same value for the time step is used for all the computations, which
are stopped once a given quantity of water has been injected. Note that, in the mesh
depicted on the right part of Fig. 1, the line .P2;O/ is the axis 0y of the mesh.
We then see on Fig. 2 the resulting contours of the saturation. We observe that the
results obtained using the method described in Sections 2 and 3 look very similar
in the two grids, whereas the ones obtained using the five-point stencil are strongly
distorted by the Grid Orientation Effect.

5 Conclusion

The method presented in this paper is a natural extension of the nine-point schemes
defined some decades ago on regular grids. Its advantage is that it applies on
the structured but not regular grids used in reservoir simulation, in association
with MultiPoint Flux Approximation finite volume schemes. It demands no further
modification to the standard industrial codes, since the modification are only the
definition of new coefficients aMKL used in (3).
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Fig. 2 Water saturation contours Sw D 0:1; 0:2; : : : ; 1 at the same time

References

1. Aavatsmark, I., Eigestad, G.T.: Numerical convergence of the MPFA O-method and U-method
for general quadrilateral grids. Int. J. Numer. Meth. Fluids 51, 939–961 (2006)

2. Agelas, L., Masson, R.: Convergence of the finite volume MPFA O scheme for heterogeneous
anisotropic diffusion problems on general meshes. C. R. Math. 346, 1007–1012 (2008)

3. Aziz, K., Ramesh, A.B., Woo, P.T.: Fourth SPE comparative solution project: comparison of
steam injection simulators. J. Pet. Tech. 39, 1576–1584 (1987)

4. Corre, B., Eymard, R., Quettier, L.: Applications of a thermal simulator to field cases, SPE
ATCE (1984)

5. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport.
Comput. Meth. Appl. Mech. Eng. 193, 2565–2580 (2004)

6. Eymard, R., Sonier, F.: Mathematical and Numerical Properties of Control-Volumel Finite-
Element Scheme for Reservoir Simulation. SPE Reservoir Eng. 9, 283–289 (1994)



Grid Orientation Effect and MultiPoint Flux Approximation 427

7. Keilegavlen, E., Kozdon, J., Mallison, B.T.: Monotone Multi-dimensional Upstream Weighting
on General Grids. Proceeding of ECMOR XII (2010)

8. Lipnikov, K., Moulton, J.D., Svyatskiy, D.: A multilevel multiscale mimetic (M3) method for
two-phase flows in porous media. J. Comput. Phys. 14, 6727–6753 (2008)

9. D.K. Ponting. Corner Point Geometry in reservoir simulation. In Clarendon Press, editor, Proc.
ECMOR I, 45–65, Cambridge, 1989

10. Vinsome, P., Au, A.: One approach to the grid orientation problem in reservoir simulation. Old
SPE J. 21, 160–161 (1981)

11. Yanosik, J.L., McCracken, T.A.: A nine-point, finite-difference reservoir simulator for realistic
prediction of adverse mobility ratio displacements. Old SPE J. 19, 253–262 (1979)

The paper is in final form and no similar paper has been or is being submitted elsewhere.



Gradient Schemes for Image Processing
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Abstract We present a gradient scheme (which happens to be similar to the MPFA
finite volume O-scheme) for the approximation to the solution of the Perona-
Malik model regularized by a time delay and to the solution of the nonlinear
tensor anisotropic diffusion equation. Numerical examples showing properties of
the method and applications in image filtering are discussed.
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1 Introduction

A series of methods for image processing are based on the use of approximate
solutions to equations of the type

ut � div .G.u; x; t/ru/ D r.x; t/; for a.e. .x; t/ 2 ˝��0; T Œ (1)
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and the homogeneous Neumann boundary condition

G.u; x; t/ru.x; t/ � n@˝.x/ D 0; for a.e. .x; t/ 2 @˝ � RC; (3)

where˝ is an open bounded polyhedron in R
d , d 2 N

?, with boundary @˝ , T > 0,
uini 2 L2.˝/, r 2 L2.˝��0; T Œ/, and G is such that, for all v 2 L2.˝/ and
a.e. .x; t/ 2 ˝��0; T Œ, G.v; x; t/ is a self-adjoint linear operator with eigenvalues
in .	; 	/ with 0 < 	 � 	, and G.v; x; t/ is continuous with respect to v and
measurable with respect to x; t . In image processing applications, uini represents
an original noisy image, the solution u.x; t/ represents its filtering which depends
on scale parameter t and d D 2 for 2D image filtering, d D 3 for 3D image
or 2DCtime movie filtering and d D 4 for 3DCtime filtering of spatio-temporal
image sequences.

The image processing methods based on approximations of equation (1) differ
by definition of the function G. The first such model was proposed by Perona-
Malik in 1987 [9], and nowadays, its regularization (by spatial convolution) due
to Catte, Lions, Morel and Coll [2] is usually used. The regularized equation has the
following form

@tu � r:.g.jrG�  uj/ru/ D 0 (4)

where g.s/ is a Lipschitz continuous decreasing function, g.0/ D 1; 0 < g.s/! 0

for s ! 1, G� 2 C1.Rd / is a smoothing kernel, e.g. the Gauss function
or mollifier with a compact support, for which

R
Rd
G�.x/dx D 1. Thanks to

convolution, the nonlinearity in difusion term depends on the unknown function
u, opposite to the original Perona-Malik equation (without convolution) where it
depends on the gradient of solution. For the regularized model, the finite volume
scheme were suggested and convergence and error estimates were proved in [3, 8].

Next interesting image processing model with the structure of equation (1) is the
so-called nonlinear tensor anisotropic diffusion introduced by Weickert [11]. In that
case, the matrix G.u; x; t/ represents the so-called diffusion tensor depending on
the eigenvalues and eigenvectors of the (regularized) structure tensor

J�.ruQt / D G�  .ruQtruQt T /; (5)

where
uQt .x; t/ D .GQt  u.�; t//.x/ (6)

and GQt and G� are Gaussian kernels. In computer vision, the matrix J� D	
a b

b c




, which is symmetric and positive semidefinite, is also known as the interest

operator or second moment matrix. If we denote x D .x2; x2/ we can write

a D G� 
�
@Gt
@x1
 u
�2

, b D G� 
��

@Gt
@x1
 u
��

@Gt
@x2
 u
��

and c D G� 
�
@Gt
@x2
 u
�2

.

The orthogonal set of eigenvectors .v;w/ of J� corresponding to its eigenvalues
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.�1; �2/; �1 � �2, is such that the orientation of the eigenvector w, which
corresponds to the smaller eigenvalue�2, gives the so-called coherence orientation.
This orientation has the lowest fluctuations in image intensity. The diffusion tensor
G in equation (1) is then designed to steer a smoothing process such that the filtering
is strong along the coherence direction w and increasing with the coherence defined
by difference of eigenvalues .�1 � �2/2. To that goal, G must possess the same
eigenvectors v D .v1; v2/ and w D .�v2; v1/ as the structure tensor J�.ruQt / and the
eigenvalues of G can be chosen as follows

�1 D ˛; ˛ 2 .0; 1/; ˛ � 1; (7)

�2 D
(
˛; if �1 D �2;
˛ C .1 � ˛/ exp

�
�C

.�1��2/2
�
; C > 0 else:

So, the matrix G is finally defined by

G D ABA�1; where A D
	

v1 �v2
v2 v1




and B D
	
�1 0

0 �2




: (8)

By the construction, again thanks to convolutions, we see that diffusion matrix
depends nonlinearly on the solution u and it satisfies smoothness, symmetry and
uniform positive definitness properties. The so-called diamond-cell finite volume
schemes for the nonlinear tensor anisotropic diffusion were suggested and analyzed
in [6, 7].

In this paper, we use a new class of finite volume schemes, the so-called gradient
schemes [5], for solving image processing models based on equation (1). Moreover,
we suggest and study numerically new type of regularization of the classical Perona-
Malik approach by considering the gradient information from delayed time t � t .
We called this model time-delayed Perona-Malik equation, and consider (1) with
uini 2 H1.˝/, and we define u.x; t/ D uini.x/ for x 2 ˝ and t < 0 and functionG
is defined by

G.u; x; t/ D max

	
1

1C jru.x; t � t /j2 ; ˛



(9)

where t is a time delay and ˛ > 0 is a parameter. It turns out that for any k 2 N in
the time interval �kt ; .k C 1/tŒ, G is a given function of .x; t/ only, which leads to
a construction of efficient linear numerical scheme for this type of problems.

2 Gradient scheme approximation

In order to describe the scheme, we now introduce some notations for the space
discretisation, see the Fig. 1.
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p

xp xσ

xi (1)
(1)

xi (2)
(2)

xi (1)
(1)

+1

xi (2)
(2)

+1
σ

dpσ

Kp,y

y

np,σ

Fig. 1 Notations for the meshes

1. A rectangular discretisation of ˝ is defined by the increasing sequences ai D
x
.i/
0 < x

.i/
1 < : : : < x

.i/

n.i/
D bi , i D 1; : : : ; d .

2. We denote by

M D
n
�x
.1/

i .1/
; x

.1/

i .1/C1Œ� : : :��x
.d/

i .d/
; x

.d/

i .d/C1Œ; 0� i .1/ <n.1/; : : : ; 0� i .d/ <n.d/
o

the set of the control volumes. The elements of M are denoted p; q; : : :. We
denote by xp the centre of p. For any p 2M , let @p D p n p be the boundary
of p; let jpj > 0 denote the measure of p and let hp denote the diameter of p
and hD denote the maximum value of .hp/p2M .

3. We denote by Ep the set of all the faces of p 2M , by E the union of all Ep, and
for all � 2 E , we denote by j� j its .d �1/-dimensional measure. For any � 2 E ,
we define the set M� D fp 2 M ; � 2 Epg (which has therefore one or two
elements), we denote by Ep the set of the faces of p 2 M (it has 2 d elements)
and by x� the centre of � . We then denote by dp� D jx� � xpj the orthogonal
distance between xp and � 2 Ep and by np;� the normal vector to � , outward to
p.

4. We denote by Vp the set of all the vertices of p 2M (it has 2d elements), by V
the union of all Vp, p 2M . For y 2 Vp, we denote byKp;y the rectangle whose
faces are parallel to those of p, and whose the set of vertices contains xp and y.
We denote by V� the set of all vertices of � 2 E (it has 2d�1 elements), and by
Ep;y the set of all � 2 Ep such that y 2 V� (it has d elements).

5. We define the set XD of all u D ..up/p2M ; .u�;y/�2E ;y2V� /, where all up and
u�;y are real numbers.

6. We denote, for all u 2 XD , by ˘Du 2 L2.˝/ the function defined by the
constant value up a.e. in p 2M .

7. For u 2 XD , p 2M and y 2 Vp , we denote by
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rp;yu D 2

jpj
X

�2Ep;y
j� j.u�;y � up/np;� D

X

�2Ep;y

u�;y � up
dp�

np;� ; (10)

and by rDu the function defined a.e. on˝ by rp;yu onKp;y .

Let T > 0 be given, and � > 0 such that there exists NT 2 N with T D NT � , We
then define XD ;� D X

NT
D D f.un/nD1;:::;NT ; un 2 XDg, and we define the mappings

˘D ;� W XD ;� ! L2.˝/ and rD ;� W XD ;� ! L2.˝/d by

˘D ;�u.x; t/ D ˘Dun.x/; for a.e. x 2 ˝; 8t 2�.n � 1/�; n��; 8n D 1; : : : ; NT ;
(11)

rD ;�u.x; t/ D rDun.x/; for a.e. x 2 ˝; 8t 2�.n � 1/�; n��; 8n D 1; : : : ; NT :
(12)

We then define the following gradient scheme approximation [5] for the discretiza-
tion of Problem (1):

u 2 XD ;� ; D�u.x; t/ WD 1

�
.˘Du1.x/ � uini.x//; for a.e. x 2 ˝; 8t 2�0; ��;

D�u.x; t/ D 1

�
.˘Dun.x/ �˘Dun�1.x//;

for a.e. x 2 ˝; 8t 2�.n � 1/�; n��;8n D 2; : : : ; NT ;
(13)

and Z T

0

Z

˝

.D�u ˘D ;�vCGD ;� .˘D ;�u; x; t/rD ;�u � rD ;�v/ dxdt

D
Z T

0

Z

˝

r˘D ;�vdxdt; 8v 2 XD ;� ;

(14)

where GD ;� .v; x; t/ is a suitable approximation of G.v; x; t/. The mathematical
properties of this scheme are studied in [4].

Remark 1. The equations obtained, for a given y 2 V , defining v 2 XD for a
given � 2 Ey by v�;y D 1 and all other degrees of freedom null, constitute a local
invertible linear system, allowing for expressing all .u�;y/�2Ey with respect to all
.up/p2M . This leads to a nine-point stencil on rectangular meshes in 2D, 27-point
stencil in 3D (this property is the basis of the MPFA O-scheme [1]).

3 Numerical experiments

3.1 Numerical study of the error for the time-delayed
Perona-Malik model

We consider equation (1) in case of G defined by (9) and with a right hand side
computed such that the function u.x; y; t/ D ..x2 C y2/=2 � .x3 C y3/=3/t is its
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exact solution. The domain ˝ is square Œ0; 1� � Œ0; 1�. We consider two cases, first,
the time delay Nt D 0:0625 and the overal time T D 0:625, and then Nt D 0:625 and
T D 1:25. In both cases we used coupling between space and time step � � h2,
where h D 1

n
is length of the side of finite volume in uniform squared partition

of ˝ . We observe the second order convergence in L2 and L1 norms of solution
(denoted byE2 andE1) and its gradient (denoted byEG2 andEG1) in this special
example, see Tables 1 and 2.

Table 1 The errors and EOC for the time-delayed Perona-Malik model, Nt D 0:0625, T D 0:625

n � E2 EOC E1 EOC EG2 EOC EG1 EOC

4 0.0625 4.771e-4 - 1.022e-3 - 7.184e-3 - 1.450e-2 -

8 0.015625 1.172e-4 1.429 2.692e-4 1.925 1.707e-3 2.073 3.615e-3 2.004

16 0.00390625 2.913e-5 2.604 6.812e-5 1.982 4.213e-4 2.019 9.031e-4 2.001

32 0.0009765625 7.270e-6 2.002 1.708e-5 1.996 1.050e-4 2.004 2.257e-4 2.000

64 0.000244140625 1.815e-6 2.001 4.273e-6 1.999 2.624e-5 2.000 5.643e-5 1.999

Table 2 The errors and EOC for the time-delayed Perona-Malik model, Nt D 0:625, T D 1:25

n � E2 EOC E1 EOC EG2 EOC EG1 EOC

4 0.0625 1.482e-3 - 2.237e-3 - 1.913e-2 - 2.848e-2 -

8 0.015625 3.745e-4 1.985 5.889e-4 1.925 4.651e-3 2.040 7.083e-3 2.007

16 0.00390625 9.379e-5 1.998 1.450e-4 2.022 1.155e-3 2.009 1.768e-3 2.002

32 0.0009765625 2.346e-5 1.999 3.735e-5 1.957 2.881e-4 2.003 4.419e-4 2.000

64 0.000244140625 5.865e-6 2.000 9.343e-6 1.999 7.201e-5 2.003 1.105e-4 2.000

3.2 Image filtering by the time-delayed Perona-Malik model

The example of image filtering by the gradient scheme applied to the time-delayed
Perona-Malik equation is presented in Fig. 2. The original clean image can be seen
in Fig. 2 left top. It is damaged by 40% additive noise, see Fig. 2 right top. In
the bottom raws of Fig. 2 we present 5th, 10th and 20th denoising step which
show the reconstruction of the original. In the last step we see the correct shape
reconstruction with the keeping of the edge, with only slighly changed intensity
values inside and outside quatrefoil due to diffusion. The following parameters were
used in computations: n.1/ D n.2/ D 200; h D 0:0125; � D 0:01; Nt D 0:1.

3.3 Image filtering by the nonlinear anisotropic tensor diffusion

In this example we present the image denoising by the nonlinear tensor diffusion
and show improvement of the coherence of the line structures, which is the basic
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Fig. 2 Image filtering by the time-delayed Perona-Malik model: the original image (left top), the
noisy image (right top) and the results after 5, 10 and 20 filtering steps
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Fig. 3 The enhancement of the coherence by the nonlinear anisotropic tensor diffusion, original
image (left) and the result of filtering after 100 time steps (right)

property of such models. Here, in the evaluation of diffusion matrix we use the semi-
implicit approach, which means that in (6) we use the solution shifted by one time
step backward, uQt .x; t/ D .GQt u.�; t � �//.x/, cf. also [6]. The original image with
three crackling lines can be seen in Fig. 3 left. On the right, one can see its filtering
after 100 time steps which indeed enhance the coherence of those line structures. In
this experiment we used the following parameters: n.1/ D n.2/ D 250, h D 0:01,
� D 0:0001, Qt D 0:0001, � D 0:01, ˛ D 0:001, C D 1.
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Abstract We propose in this paper the definition and main properties of a family
of nonconforming methods, dedicated to the approximation of diffusion problems
on general meshes. We give an example of theoretical convergence result in the
case of a nonlinear diffusion problem. We then review a few schemes that are
part of this family, such as standard conforming and nonconforming finite element
schemes, mixed finite element schemes, the SUSHI scheme, the vertex gradient
approximation and particular DDFV schemes in 3D.
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The 2D [13] and 3D [12] benchmarks for the approximation of heterogeneous and
anisotropic diffusion show the large range of schemes which can be used in this
setting. The aim of this paper is to propose a simple framework for nonconforming
approximation methods, which can include a number of schemes such as some
finite volume schemes or nonconforming finite element methods. The interest of this
framework is that it provides a simple assessment of the approximation error with
respect to some consistency errors. We consider the following problem, posed on
an open bounded subset ˝ � R

d (where d is the space dimension), with boundary
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Université Aix-Marseille, France, e-mail: Raphaele.Herbin@latp.univ-mrs.fr
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where u is an unknown field (temperature, pressure, . . . ), f 2 L2.˝/ is a volumetric
source term, and � W L2.˝/! .L1.˝//d�d is a continuous operator with respect
to the L2 norm on both L2.˝/ and .L1.˝//d�d . Furthermore, we assume that
for any u 2 L2.˝/ and a.e. x 2 ˝ , the matrix �.u/.x/ is symmetric and the
eigenvalues of �.u/.x/ belong to Œ	; 	�, 0 < 	 � 	. Note that, if �.u/.x/ only
depends on u through the value u.x/ for a.e. x 2 ˝ , it may be defined by�.u/.x/ D
Q�.u.x/; x/ where Q� is a Caratheodory function.

We wish to approximate a function u solution of the weak form of the problem,
that is:

u 2 H1
0 .˝/ and 8v 2 H1

0 .˝/;

Z

˝

�.u/ru.x/ � rv.x/dx D
Z

˝

f .x/v.x/dx: (1)

In order to obtain a consistent approximation of this problem, we define the follow-
ing nonconforming method, called in this paper a Gradient Scheme Approximation.
Defining the set XD ;0 of all families of discrete unknowns (which may take into
account the homogeneous Dirichlet boundary condition if the discrete unknowns
include approximate values at the boundary of the domain), we denote for a family
of discrete unknowns u 2 XD ;0 by ˘Du 2 L2.˝/ a reconstruction of a measurable
function and by rDu 2 L2.˝/d a discrete approximation of its gradient.

Then Problem (1) is naturally approximated by the discrete weak formulation

u 2 XD ;0; 8v 2 XD ;0;

Z

˝

�.˘Du/rDu.x/ � rDv.x/dx D
Z

˝

f .x/˘Dv.x/dx; (2)

which yields a numerical scheme once the set XD ;0 and the operators ˘D and
rD are defined. In Section 2, we provide the characterisation of the coercivity,
compactness, strong and dual approximation properties for given XD ;0, ˘D and
rD . In the case where � does not depend on u and where the Gradient Scheme
Approximation checks suitable properties in terms of coercivity, strong and dual
approximation, then Scheme (2) may be shown to converge to (1). In the general
case of an operator�.u/, a requirement on the compactness property is then needed
for proving the convergence of the scheme (2). We then review in Section 3 a few
known schemes which can be seen as Gradient Scheme Approximations.

2 Gradient Scheme Approximation

2.1 Definition and properties

Definition 1 (Gradient scheme discretization). Let ˝ be an open bounded
domain of R

d , with d 2 N
?. A gradient scheme discretization D is defined by

D D .XD ;0; hD ; ˘D ;rD/, where:
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1. the set of discrete unknownsXD ;0 is a finite dimensional vector space on R,
2. the space step hD 2 .0;C1/ is a positive real number,
3. the mapping ˘D W XD ;0 ! L2.˝/ is the reconstruction of the approximate

function (for any u 2 XD ;0, ˘Du is prolonged by 0 outside˝),
4. the mapping rD W XD ;0 ! L2.˝/d is the reconstruction of the gradient of

the function (for any u 2 XD ;0, rDu is prolonged by 0 outside ˝); accounting
for the homogeneous Dirichlet boundary condition, it must be chosen such that
k � kD D krD � kL2.˝/d is a norm on XD ;0.

Remark 1. In the case of the homogeneous Neumann boundary condition, one
requires that
k � kD D ..

R
˝
˘D � dx/2 C krD � k2L2.˝/d /1=2 be a norm on XD ;0.

Then the coercivity of the discretization is measured through the norm CD of the
linear mapping˘D , defined by

CD D max
v2XD;0nf0g

k˘DvkL2.˝/
kvkD : (3)

Note that, in the homogeneous Dirichlet boundary condition framework, (3) yields
the following “discrete Poincaré” inequality:

k˘DvkL2.˝/ � CDkrDvkL2.˝/d ; 8v 2 XD ;0:

The consistency of the discretization is measured through the interpolation error
function SD W H1

0 .˝/! Œ0;C1/, defined by

SD.'/ D min
v2XD;0

�
k˘Dv � 'k2

L2.˝/
C krDv � r'k2

L2.˝/d

� 1
2
; 8' 2 H1

0 .˝/; (4)

The dual consistency of the discretization is measured through the conformity
error functionWD : Hdiv.˝/! Œ0;C1/, defined by

WD.'/ D max
v2XD;0nf0g

R
˝
.rDv.x/ � '.x/C˘Dv.x/div'.x// dx

kvkD ;

8' 2 Hdiv.˝/:

(5)

The compactness of the discretization is measured through the function
TD W R

d ! R
C, defined by

TD .
/ D max
v2XDnf0g

k˘Dv.� C 
/ �˘DvkL2.Rd /
kvkD ; 8
 2 R

d : (6)
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We may remark that the function ˘Du lies in a finite dimensional subspace of
L2.˝/ and therefore TD is such that limj
j!0 TD .
/ D 0 and that, for any j
j 2 R

d ,
TD.
/ � 2CD , showing the link between compactness and coercivity.

If D D .XD ;0; hD ; ˘D ;rD / is an approximate gradient discretization, we shall
say that (2) is a Gradient Scheme Approximation.

In [11] the following results are proved:

Lemma 1 (Control of the approximation error, linear case). Let˝ be a bounded
open domain of R

d , with d 2 N
?, let f 2 L2.˝/ and let � 2 .L1.˝//d�d be

such that, for a.e. x 2 ˝ , the matrix�.x/ is symmetric and the eigenvalues of�.x/
belong to Œ	; 	�, 0 < 	 � 	. Let u 2 H1

0 .˝/ be the solution of (1) (remark that
since f 2 L2.˝/, one has�ru 2 Hdiv.˝/).

Let D be an approximate gradient discretization in the sense of Definition 1.
Then there exists one and only one uD 2 XD ;0, solution to the Gradient Scheme
Approximation (2), which moreover satisfies the following inequalities:

kru � rDuDkL2.˝/d �
1

	
.WD .�ru/C .	C 	/SD.u//; (7)

and

ku �˘DuDkL2.˝/ �
1

	
.CDWD.�ru/C .CD	C 	/SD.u//: (8)

Corollary 1 (Convergence, linear case). Under the assumptions of Lemma 1, let
F be a family of gradient discretizations in the sense of Definition 1, which satisfies
the following assumptions:

(P1) there exists CP 2 R such that CD � CP for any D 2 F ,
(P2) for all ' 2 H1

0 .˝/ and D 2 F , SD.'/ tends to 0 as hD ! 0,
(P3) for all ' 2 Hdiv.˝/ and D 2 F , WD .'/ tends to 0 as hD ! 0.

For D 2 F , let uD 2 XD ;0 be the solution to the Gradient Scheme Approximation
(2), then˘DuD converges to u in L2.˝/ and rDuD converges to ru in L2.˝/d as
hD ! 0.

Lemma 2. Let ˝ be a bounded open domain of R
d , with d 2 N

?. Let F be a
family of approximate gradient discretizations in the sense of Definition 1. Then, for
any dense subspace R of H1

0 .˝/, the two properties:

lim
hD!0

SD.'/ D 0; 8' 2 R; (9)

and
lim
hD!0

SD.u/ D 0; 8u 2 H1
0 .˝/; (10)

are equivalent. Furthermore, if there exists CP > 0 such that the following uniform
discrete Poincaré inequality holds:
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CD � CP ; 8D 2 F ; (11)

then for any dense subspace S of Hdiv.˝/, the two properties:

lim
hD!0

WD.'/ D 0; 8' 2 S ; (12)

and
lim
hD!0

WD.U / D 0; 8U 2 Hdiv.˝/; (13)

are equivalent.

Let us now prove a convergence result in the nonlinear case.

Lemma 3 (Convergence of the scheme, nonlinear case). Let ˝ be a bounded
open domain of R

d , with d 2 N
?, let f 2 L2.˝/ and let � W L2.˝/ !

.L1.˝//d�d be a continuous operator with respect to the L2 norm on both L2.˝/
and .L1.˝//d�d ; furthermore, we assume that for any u 2 L2.˝/ and a.e.
x 2 ˝ , the matrix �.u/.x/ is symmetric and the eigenvalues of �.u/.x/ belong
to Œ	; 	�, 0 < 	 � 	. Let F be a family of gradient discretizations in the sense
of Definition 1, which satisfies properties (P1), (P2) and (P3) of Corollary 1, and
moreover satisfies

(P4) the family of functions .TD/D2F (which is bounded by 2CP thanks to (P1))
is such that

lim
j
j!0

sup
D2F

TD .
/ D 0: (14)

Then, for any D 2 F , there exists at least one uD 2 XD ;0, solution to the Gradient
Scheme Approximation (2). Moreover, for a sequence .Dn/n2N of elements of F
such that hDn ! 0 as n ! 1, there exists u 2 H1

0 .˝/, solution to (1) and a
subsequence of .Dn/n2N, again denoted .Dn/n2N, such that then˘DnuDn converges
to u in L2.˝/ and rDnuDn converges to ru in L2.˝/d as n!1.

Remark 2. It is possible to find a family of gradient discretizations in the sense of
Definition 1, which only satisfies (P1), (P2), (P3) and not (P4).

Proof. The existence of a solution to (2) is an immediate consequence of the
topological degree argument and of the estimate

	krDukL2.˝/d � kf kL2.˝/CD : (15)

We then define, for all n 2 N, a solution un to (2) for D D Dn. Thanks to properties
(P1) and (P4), to (15) and to the Kolmogorov theorem, the family .˘Dnun/n2N is
relatively compact in L2.˝/. Then there exists u 2 L2.˝/ and a subsequence
of .Dn/n2N, again denoted .Dn/n2N, such that ˘Dnun converges to u in L2.˝/.
Extracting again a subsequence, we get that rDnun converges weakly in L2.Rd /

to some function G 2 L2.Rd /. Using (P3), we get that G D ru, hence showing
that u 2 H1

0 .˝/. Then, for all v 2 H1
0 .˝/, denoting by vn 2 XDn;0 the element
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minimising SDn.v/, we get from (P2) that rDnvn converges in L2.˝/d to rv. It is
then possible, by weak/strong limit, to pass to the limit as n!1 in (2); thus, u is
solution to (1). Letting v D un in (2) and v D u in (1) shows that

lim
n!1

Z

˝

�.˘Dnun/rDnun.x/ � rDnun.x/dx D
Z

˝

�.u/ru.x/ � ru.x/dx;

and therefore:

lim
n!1

Z

˝

�.˘Dnun/.rDnun.x/� ru.x// � .rDnun.x/� ru.x//dx D 0;

hence proving the convergence of rDnuDn to ru in L2.˝/d as n!1.

3 Application to some schemes

Let us notice that standard conforming finite element discretizations may be seen
as Gradient Scheme Approximations. If Vh � H1

0 .˝/ is the usual conforming finite
element space spanned by the basis functions '1; : : : 'N , the space XD ;0 is then R

N

and for u D .u1; : : : ; uN / 2 XD ;0, ˘Du DPN
iD1 ui 'i , and rDu DPN

iD1 uir'i D
r˘Du: Hence

WD.'/ D 0 for all ' 2 Hdiv.˝/: (16)

Note that in fact, an approximate gradient discretization is conforming if and only
if (16) holds. The compactness property (P4) is satisfied since in this conforming
case, we have TD.
/ D j
j.

Let us now turn to the case of the non conforming P1 finite element discretiza-
tion on conforming simplicial meshes. In this case, the basis functions of the finite
element space Vh are associated with the N internal faces of the mesh, and Vh is
spanned by the basis functions '1; : : : 'N which are piecewise affine and continuous
at the barycentre of the faces. In this case, the space XD ;0 is then again R

N and
for u D .u1; : : : ; uN / 2 XD ;0, ˘Du D PN

iD1 ui 'i , but rDu cannot be defined as
in the conformal case; it is only piecewise defined as the gradient of ˘Du. It is
possible, under some geometrical conditions on the mesh (see e.g. [9]) to get from
classical results that for all ' 2 .C 1.Rd //d , WD.'/ � hDC': Property (P4) is also
classically shown.

In fact, the mixed finite element discretization may also be seen as a Gradient
Scheme Approximation. We denote by .'i /iD1;:::;N � L2.˝/ the basis functions
for the approximation of u, and .'i /iD1;:::;M � Hdiv.˝/ the basis functions for the
approximation of�ru. We then defineXD ;0 � R

NCM as the set of all families u D
�
.u1; : : : ; uN /; .q1; : : : ; qM /

�
such that, denoting ˘Du D PN

iD1 ui 'i and rDu D
PM

iD1 qi��1'i , the relation
R
˝

�
'j .x/ � rDu.x/C ˘Du.x/div'j .x/

�
dx D 0 holds
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for all j D 1; : : : ;M . Then the mixed finite element scheme may be written as (2).
The property (P3) is a direct consequence of the imposed relation between˘Du and
rDu. The property (P1) is the consequence of the so-called “infsup” condition, and
the properties (P2) and (P4) may be shown to be satisfied.

The SUSHI scheme [10], as well as the vertex gradient scheme [11] are
explicitly defined through the space XD ;0, the reconstruction operator ˘D and the
discrete gradient rD . The compactness property (P4) is detailed in the appendix
of [10]. The study of SD is also detailed in [10], and that of WD in [11]. Note
that the SUSHI scheme is part of the Mimetic Mixed Hybrid family [8]; however,
it does not seem easy to write a general mimetic scheme as a Gradient Scheme
Approximation, because the stabilisation term which is needed for the coercivity of
the scheme (except in its SUSHI implementation) be included in the gradient term,
and therefore the scheme cannot be written under the form (2).

The DDFV scheme, see [3,7,14] for the two dimensional case and [1,2,4–6,15,
16] for the three dimensional case may also be seen, in some cases, as a Gradient
Scheme Approximation. Consider the case where the domain ˝ is the union of
octahedra which are the so-called diamond cells (such a cell is depicted in Figure 1).
Octahedral meshes may be obtained from general hexahedral meshes by introducing
an internal point to each hexahedron. We show in Fig. 1 a locally refined face of
hexahedral cell where we depict a octahedron constructed with an internal point of
the cell and the barycentre of the four points of a face. With such a construction, we
can easily take into account boundary conditions and heterogeneous media (each
octahedron is homogeneous). The unknown at the centre of the internal faces (point
B on the right side of Figure 1), may be easily eliminated. Let us define the space
XD ;0 as XD ;0 D f.us/s2V ; us D 0; 8s 2 Vextg, where V denotes the set of vertices
of the octahedral mesh M and Vext denotes the set of the elements of V located
on the boundary of ˝ . Referring to Fig. 1, we define a discrete piecewise constant

F

B

C

E

A
O

D

A

B = OE

F

C

D

Fig. 1 Left: A generic octahedral cell for the DDFV scheme - Right: An example of construction
of an octahedron from a locally refined face of a hexahedron
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gradient by its value on the octahedronK 2M :

rDu.x/ D 1

�K

�
.uB � uA/

��!
CD ^ ��!EF C .uD � uC /

��!
EF ^ ��!AB

C.uF � uE/
��!
AB ^ ��!CD�; 8x 2 K;

(17)

where �K D Det.
��!
AB;
��!
CD;
��!
EF /. Let O be a well chosen point in K, for instance

the barycentre of the six vertices A;B;C;D;E and F . Taking the example of the
vertex F , we denote by �EF the union of the four trianglesOAC ,OCB ,OBD and
ODA, and we denote by VK;F the subset of K of all points which are on the same
side of �EF asF . We proceed similarly for the five other vertices. The reconstruction
operator is then defined for x 2 K by:

˘Du.x/ D 1
3

�
uA1VK;A.x/C uB1VK;B .x/C uC 1VK;C .x/
CuD1VK;D.x/C uE1VK;E .x/C uF 1VK;F .x/

�
:

With these definitions, (2) is identical to a DDFV scheme [4] formulated on three
grids.
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Cartesian Grid Method for the Compressible
Euler Equations

M. Asif Farooq and B. Müller

Abstract The accuracy of the Cartesian grid method has been investigated for the
2D compressible Euler equations. We impose wall boundary conditions at ghost
points by interpolation or extrapolation at the corresponding mirror points either
linearly or quadratically. We find that linear or quadratic interpolation does not affect
the accuracy of our node-centered finite volume method. Two different ghost point
treatments have been compared.

Keywords Cartesian Grid Method, Ghost Point Treatment, Compressible Euler
Equations, Conservation Laws, Oblique Shock Wave
MSC2010: 76J20, 76L05, 35L03, 35L65, 76N15

1 Introduction

The Cartesian grid method has recently become one of the widely used methods
in CFD [1–7]. This is due to its simplicity, faster grid generation, simpler program-
ming, lower storage requirements, lower operation count, and easier post processing
compared to body fitted structured and unstructured grid methods. The Cartesian
grid method is also advantageous in constructing higher order methods. Problems
occur at the boundary, when this method is applied to complex domains [8].
When the Cartesian grid method is applied at curved boundaries the cells at the
boundaries are not rectangular and these cut-cells create problems for the scheme to
be implemented. The time step restriction problem caused by small cut-cells can be
solved by merging those cut-cells with neighboring cells [7].
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Cut cells are avoided altogether by ghost point treatment at the boundary. In this
method symmetry conditions with respect to the boundary are imposed at ghost
points in the solid adjacent to the boundary [9]. However, conservativity is lost in
this process. Nevertheless, the simplicity of the ghost point treatment has motivated
us to use that approach instead of the more complicated cut-cells.

The Cartesian grid method is also called immersed boundary method, in particu-
lar when it is applied to the incompressible Navier-Stokes equations. Often the effect
of solid boundaries cutting a Cartesian grid has been modelled by a force term in the
incompressible momentum equations [10]. Since this approach is not so practical for
compressible flow due to the sensitive coupling of all flow variables, it has not been
used for compressible flow simulation except for [2, 11]. Instead, the effect of the
tangency or slip condition at solid boundaries for inviscid compressible flow is used
in the Cartesian grid method to determine the flow variables in ghost cells or at ghost
points near solid boundaries [9, 12–16]. In the ghost point treatment we divide our
domain into three types of points: fluid, ghost and solid points. For first and second
order schemes the methods require one and two ghost points, respectively. Solid and
ghost points are flagged inactive.

In this paper we employ the Sjögreen and Petersson ghost point treatment [16],
while in [17] we applied a simplified ghost point treatment for the 2D compressible
Euler equations. A comparison of these two ghost point treatments at the boundary
is also presented in this paper. Sjögreen and Petersson [16] used linear interpolation
at the boundary, while we use linear and quadratic interpolation at the boundary.
We impose the wall boundary conditions at the ghost points by interpolating the
numerical solution at their mirror points with respect to the wall in the fluid domain
and mirroring the interpolated values to ensure reflective boundary conditions. If
the numerical solution at a mirror point cannot be approximated by interpolation,
we employ extrapolation. We employ the local Lax-Friedrichs (lLF) method for
the spatial discretization. To increase the accuracy we apply the MUSCL approach
with the minmod limiter. For time integration we use the first order explicit Euler
and the third order TVD Runge-Kutta (RK3) methods. As a test case, we consider
supersonic flow over a wedge and solve the 2D compressible Euler equations by
time stepping for the steady state.

The paper is organized as follows. In Section 2 we present the governing
equations, i.e. the 2D compressible Euler equations. In Section 3 we outline the
boundary conditions. In Section 4 we explain the ghost point treatment at the
embedded boundary. In section 5 we present results and discussions. Conclusions
are given in section 6.

2 Compressible Euler Equations

The 2D compressible Euler equations serve as a model for a 2D nonlinear hyperbolic
system. In conservative form the 2D compressible Euler equations read

@U

@t
C @F

@x
C @G

@y
D 0; (1)
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where

U D

2

6
6
4

�

�u
�v
�E

3

7
7
5 ; F D

2

6
6
4

�u
�u2 C p
�uv

.�E C p/u

3

7
7
5 ; G D

2

6
6
4

�v
�uv

�v2 C p
.�E C p/v

3

7
7
5 ; (2)

with � , u, v, E, and p are density, velocity components in x and y-directions, total
energy per unit mass and pressure, respectively.

For perfect gas we have the following relation

p D .� � 1/.�E � 1
2
�.u2 C v2//; (3)

where � is the ratio of specific heats. We consider � = 1.4 for air.

3 Approximation of Boundary Conditions

The inflow boundary conditions for supersonic flow at x D 0 are imposed as
U0;j .t/ D g.yj ; t/: The flow variables at the outlet x D L1 are approximated by
UI;j .t/ D UI�1;j .t/, i.e. by constant extrapolation. This approximation implies that
the upwind finite volume method is used to determine the numerical fluxes FI� 12 ;j .
The symmetry boundary conditions are implemented by considering an extra line
below y D 0. There we use Ui;1.t/ D diag.1; 1;�1; 1/Ui;3.t/: The boundary
conditions at y D L2 are treated as Ui;J .t/ D Ui;J�1.t/:

4 Ghost Point Treatment at Embedded Boundary

4.1 Sjögreen and Petersson [16] Ghost Point Treatment
for Two Dimensional Embedded Boundary

In Fig. 1 we show the flagging strategy. We flag the ghost and solid points by
assigning them 0 and -1 values. The fluid points are assigned values equal to 1. In
Fig. 2(a) we show a 2D graphical description of the treatment at the boundary [16].
The distance of ghost point g from the wedge is denoted by b1. The straight line
through g normal to the wedge is intersecting the horizontal lines at three points
denoted by vertical lines. At the first intersection point I we obtain the primitive
variables VI by linear interpolation of the values at the neighboring horizontal grid
points. And similarly we get VII and VIII . We introduce a coordinate s on the line
in the direction of the outer unit normal n of the boundary. Now we proceed as
follows. Subtract the distance b1 from the boundary coordinate swedge to obtain the
mirror point sm. Then we reach between intersection points I and II on the straight
line normal to the boundary. Here we apply either linear interpolation between
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Fig. 1 Flagging strategy for fluid (1), ghost (0) and solid points (-1)

VI and VII or quadratic interpolation among VI , VII and VIII for normal and
tangential components of velocity, pressure p and density �. The mathematical
description of this strategy is explained as follows.

b1 D sg � swedge; (4)

sm D swedge � b1; (5)

Vm D VI C VII � VI
�s

.sI � sm/: (6)

Vm D VIIIC VII � VIII
sII � sIII .sm�sIII /C

VI�VII
sI�sII � VII�VIII

sII�sIII
sI � sIII .sm�sIII /.sm�sII / (7)

where V D .�; u; v; p/ and �s D sI � sII . Then we use reflection boundary
conditions

utg D utm ; ung D �unm; pg D pm; �g D �m; (8)

where ut and un denote the tangential and normal components of the velocity vector,
respectively.

4.2 Simplified Ghost Point Treatment for Two Dimensional
Embedded Boundary

In Fig. 2(b) we show a simplified ghost point treatment at the solid boundary [17].
A ghost point is denoted by G. In the simplified ghost point treatment we consider
the fluid point F on the vertical grid line through G adjacent to the boundary as the
mirror point. Then, we assume the wedge is in the middle between ghost and fluid
points. The mathematical description of this strategy is given as

�G D �F ; pGDpF ; uG D uF � 2.n1uF C n2vF /n1; vG D vF � 2.n1uF C n2vF /n2;
(9)

where n1 and n2 are the x-and y-components of the outer unit normal n of the
boundary.
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F
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(a) Ghost point treatment at the boundary
[16].

(b) Simplified ghost point treatment [17].

Fig. 2 Ghost point treatment

5 Results

5.1 Two Dimensional Compressible Euler Equations

We verify our 2D code of the Cartesian grid method for an oblique shock wave.
For the spatial discretization we use the local Lax-Friedrichs (lLF) method, and to
increase the order of our method we employ the MUSCL scheme with the minmod
limiter. For time integration we use the first order explicit Euler and third order TVD
Runge-Kutta (RK3) methods. A supersonic flow moves from left to right and hits a
wedge with the wedge angle - D 15. The supersonic upstream flow conditions are
given as

M D 2; p1 D 105Pa; �1 D 1:2kg=m3 (10)

(a) Density contours for supersonic wedge
flow (M• = 2, Q = 15 degrees).

(b) Comparison of exact and numerical solu-
tions for density at different grid levels.

Fig. 3 Left: Density contours. Right: Comparison of exact and numerical solutions for density
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(a) Comparison of exact and numerical so-
lutions for velocity component u at different
grid levels.

(b) Comparison of exact and numerical so-
lutions for velocity component v at different
grid levels.

Fig. 4 Comparison of exact and numerical solutions for velocity components

(a) Comparison of exact and numerical solu-
tions for pressure p at different grid levels.

(b) Residual of density.

Fig. 5 Left: Comparison of exact and numerical solutions for pressure. Right: Residual of density

In Fig. 3(a) we present density contours obtained with the TVD RK3 method in
time and the local Lax-Friedrichs (lLF) method in space with MUSCL and minmod
limiter using the Sjögreen and Petersson ghost point treatment [16]. The apex of the
wedge is placed at x D 0:4. When the supersonic flow hits the wedge an oblique
shock wave is produced which begins at the apex of the wedge.

In Fig. 3(b) and Fig. 4(a) we compare the exact and numerical solutions for
density � and velocity component u at x D 0:75m. We observe that � and u are
getting closer to the exact solution as we refine the grid. However, there is some
discrepancy between the exact and computed solutions near the wall of the wedge.
This might be due to the ghost point method not guaranteeing conservativity and
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Table 1 Mass flow error for simplified ghost point treatment [17]

2D Compressible Euler Equations
First Order Method MUSCL with minmod limiter

Number of points � PmŒ kg
s
� � Pm

Pm
% � PmŒ kg

s
� � Pm

Pm
%

41�41 23.7115 2.9797 17.0569 2.1275
81�81 11.5532 1.43 8.3530 1.0298
161�161 5.6317 0.6920 4.0201 0.4930

Table 2 Mass flow error for Sjögreen and Petersson [16] method

2D Compressible Euler Equations
Linear Interpolation Quadratic Interpolation

Number of points � PmŒ kg
s
� � Pm

Pm
% � PmŒ kg

s
� � Pm

Pm
%

41�41 23.3362 2.9311 23.3219 2.9293
81�81 11.3940 1.41 11.3653 1.4064
161�161 5.5727 0.6847 5.5465 0.6814

due to numerical problems near the apex of the wedge. This apex is acting like a
singular point where the flow variables are multivalued.

In Figs. 4(b) and 5(a) we compare the exact and numerical solutions for velocity
component v and pressure p. The computed results for v and p are in good agreement
with the exact solutions.

In Fig. 5(b) we show the l2-norm of the residual .
�
nC1
i;j ��ni;j
�t

/ of the density for
the first order method in time and space. We see that the residual has dropped to
machine accuracy after 5500 time levels.

In Tables 1 and 2 we present the mass flow error for the simplified ghost point
treatment and the Sjögreen and Petersson [16] method. In Table 1 we present results
for the first order node-centered finite volume method and the corresponding method
with MUSCL and minmod limiter. From Table 1 we observe that by doubling the
number of grid points in each direction the percentage of mass flow error is almost
halved. In Table 2 we present results for the first order method by using linear and
quadratic interpolation using the Sjögreen and Petersson [16] ghost point treatment.
We see that linear and quadratic interpolation is not affecting the accuracy of our
first order method. The mass flow error in Table 2 obtained with [16] is only slightly
lower than the mass flow error of the first order method in Table 1 obtained with the
simplified ghost point treatment [17].

6 Conclusions

The Cartesian grid method has been applied to the compressible Euler equations.
Local symmetry boundary conditions have been employed at ghost points. The
ghost point treatments at the solid boundary are not conservative, and the mass flow
error is calculated. We find that linear or quadratic interpolation does not affect
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the results for the Sjögreen and Petersson method. For supersonic wedge flow, the
simplified ghost point treatment on vertical grid lines yields similar results as the
ghost point treatment on lines normal to the boundary.

Acknowledgements The current research has been funded by Higher Education Commission
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Compressible Stokes Problem with General EOS

A. Fettah and T. Gallouët

Abstract In this paper, we propose a discretization for the compressible Stokes
problem with an equation of state of the form p D '.�/ (where p stands for
the pressure, � for the density and ' is a nondecreasing function belonging to
C1.RC;R/). This scheme is based on Crouzeix-Raviart approximation spaces. The
discretization of the momentum balance is obtained by the usual finite element
technique. The discrete mass balance is obtained by a finite volume scheme, with
an upwinding of the density, and two additional terms. We prove existence of a
discrete solution and convergence of this approximate solution to a solution of the
continuous problem.

Keywords Compressible Stokes, finite element, finite volume
MSC2010: 35Q30,65N12,65N08,65N30

1 Introduction

Let ˝ be a bounded open set of R
d , polygonal if d D 2 and polyhedral if d D 3,

and � > 0. ForM > 0, f 2 L2.˝/d and ' 2 C1.RC;R/ a nondecreasing function
satisfying:

8s 2 RC, as� � b � '.s/ � Qas2��1 C Qb; (1)

with a; Qa; b; Qb > 0 and � > 1, we consider the following problem:
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� ��u � �
3
r.d ivu/Crp D f in ˝; u D 0 on @˝; (2a)

div.�u/ D 0 in ˝; � � 0 in ˝;
Z

˝

�.x/ dx D M; (2b)

p D '.�/ in ˝: (2c)

Remark 1. The second inequality in (1) is used only in Section 3, for the passage to
the limit in the EOS. It can be replaced by an hypothesis of convexity of '.

Definition 1. Let f 2 L2.˝/d and M > 0. A weak solution of Problem (2) is a
function .u; p; �/ satisfying:

.u; p; �/ 2 H1
0.˝/

d � L2.˝/ � L2� .˝/; (3a)

�

Z

˝

ru W rv dx C �

3

Z

˝

div.u/div.v/ dx �
Z

˝

p div.v/ dx D
Z

˝

f � v dx

for all v 2 .H1
0.˝//

d ; (3b)
Z

˝

�u � r dx D 0 for all  2W1;1.˝/; (3c)

� � 0 a.e. in ˝;
Z

˝

� dx DM; p D '.�/ a.e. in ˝: (3d)

In Section 2, we give a possible discretization of this problem and we prove
the existence of a solution of the discrete problem. In Section 3 we prove the
convergence (up to a subsequence, since no uniqueness result of a solution of (3) is
avalaible), as the mesh size goes to zero, of this approximate solution to a solution
of (3). In particular, we then obtain existence of a solution of (3). The present paper
generalizes the results of [3] where convergence was proven if '.�/ D �� . The
main additional difficulties of the present paper with respect to [3] are in the proof
of the crucial lemma 1 (which yields the estimate on the approximate velocity),
in the proof of the estimate of the approximate pressure (Inequality (13)) and in
the last proof of the paper, which consists in proving p D '.�/. The proof of
p D '.�/ cannot be done using a strict monotony argument as in [3] because '
is not necessarily an increasing function. We overcome this difficulty by using the
so called “Minty trick” (the drawback of this method is that we do not obtain the
a.e. convergence, up to a subsequence, of pressure and density).

2 Discrete spaces and scheme

Let T be a decomposition of the domain ˝ in simplices, which we call hereafter
a triangulation of ˝ , regardless of the space dimension. By E .K/, we denote the
set of the edges (d D 2) or faces (d D 3) of the element K 2 T ; for short, each
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edge or face will be called an edge hereafter. The set of all edges of the mesh is
denoted by E ; the set of edges included in the boundary of˝ is denoted by Eext and
the set of internal edges (i.e. E n Eext) is denoted by Eint. The decomposition T is
assumed to be regular in the usual sense of the finite element literature. For each
internal edge of the mesh � D KjL, nKL stands for the normal vector of � , oriented
from K to L (so that nKL D �nLK ). By jKj and j� j we denote the (d and d � 1
dimensional) measure, respectively, of an elementK and of an edge � , and hK and
h� stand for the diameter ofK and � , respectively. We measure the regularity of the
mesh through the parameter � defined by:

� D inf f 
K
hK
; K 2 T g (4)

where 
K stands for the diameter of the largest ball included in K . Finally, as usual,
we denote by h the quantity maxK2T hK . The space discretization relies on the
Crouzeix-Raviart element (see [1] for the seminal paper and, for instance, [2, pp.
199–201] for a synthetic presentation). The space of approximation for the velocity
is the space Wh of vector-valued functions each component of which belongs to Vh:
Wh D .Vh/d , where Vh is the discrete space defined as follows:

Vh D f v 2 L2.˝/ W 8K 2 T ; vjK 2 P1.K/ I
8� 2 Eint; � D KjL; F�.vjK/ D F�.vjL/I 8� 2 Eext; F� .v/ D 0g; (5)

where F�.v/ is the mean value of v on � , denoted hereafter by v� . The pressure
and the density are approximated in the space Lh of piecewise constant functions,
namely Lh D

˚
q 2 L2.˝/ W qjK D constant; 8K 2 T

�
. For u 2 Wh, the discrete

gradient and discrete divergence of u are defined by rhu D ru and divh.u/ D
div.u/ on K , for K 2 T . The Crouzeix-Raviart pair of approximation spaces for
the velocity and the pressure is inf-sup stable, in the sense that there exists ci > 0

only depending on ˝ and, in a monotone way, on � , such that:

8p 2 Lh; sup
v2Wh

Z

˝

p divh.v/ dx

jjvjj1;b � ci jjp �m.p/jjL2.˝/ ;

wherem.p/ is the mean value of p over˝ and jj�jj1;b stands for the broken Sobolev
H1 semi-norm, which is defined for scalar as well as for vector-valued functions by:

jjvjj21;b D
X

K2T

Z

K

jrvj2 dx D
Z

˝

jrhvj2 dx:

This norm is known to control the L2 norm by a Poincaré inequality (e.g. [2, lemma
3.31]). We also define a discrete semi-norm on Lh, similar to the usual H1 semi-
norm used in the finite volume context:
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8p 2 Lh; jpj2T D
X

�2Eint;
�DKjL

j� j
h�

.pK � pL/2:

We refer to [1] for the usual properties of the interpolation operator from the Sobolev
spaces to the Crouzeix-Raviart spaces. We now describe the numerical scheme. Let
�� be the mean density, i.e. �� D M=j˝j where j˝j stands for the measure of ˝ .
We consider the following numerical scheme for the discretization of (2):

u 2 Wh; p 2 Lh; � 2 Lh; (6a)

8v 2 Wh; �

Z

˝

rhu W rhv dx C �

3

Z

˝

divh.u/divh.v/ dx �
Z

˝

p divh.v/ dx

D
Z

˝

f � v dx; (6b)

8K 2 T ;
X

�DKjL
vC�;K �K � v��;K �L CMK C TK D 0; (6c)

8K 2 T ; pK D '.�K/; (6d)

where:

• v�;K D j� ju� � nKL, vC�;K D max.v�;K; 0/, v��;K D �min.v�;K; 0/,
• the terms MK and TK read, with # D max.0; 2� �/, ˛ � 1 and 0 < 
 < 2,

MK D h˛ jKj
�
�K � ��

�
; (7a)

TK D
X

�DKjL
.hK C hL/
 j� j

h�
.j�K j C j�Lj/# .�K � �L/ : (7b)

As it is proven in [3], if .u; �/ 2 Wh � Lh is solution of (6c), one has necessarily
�K > 0 for all K 2 T , so that (6d) makes sense, and

P
K2T jKj�K D M .

The existence of a solution to the numerical scheme (6) can be proven with the
Brouwer fixed point Theorem, using a simple adaptation of the proof of [3], which
we therefore omit.

3 Convergence of approximate solutions

We first have to obtain some estimates on the approximate solution. In order to
obtain an estimate on the velocity, we will use the following crucial lemma 1.

Lemma 1. Let T be a triangulation of the computational domain ˝ and .u; �/ 2
Wh � Lh satisfy Equation (6c). (As above mentioned, this gives � > 0.) Then:
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Z

˝

'.�/divh.u/ dx � 0:

Proof. Let  2 C1.R?C/ be a function satisfying  0.s/ D '0.s/

s
(so that  is

nondecreasing). Multiplying (6c) by  K D  .�K/ and summing over K 2 T
yields T1 C T2 C T3 D 0 with:

T1 D
X

K2T
 K

X

�DKjL
j� j�� u� � nKL; T2 D

X

K2T
h˛ jKj .�K/

�
�K � ��

�
;

T3 D
X

K2T
 .�K/

X

�DKjL
.hK C hL/
 j� j

h�
.�K C �L/# .�K � �L/ :

Let T4 DPK2T
R
K '.�K/div.u/ DP�DKjL j� ju� �nKL.'.�K/�'.�L//. We have

T4 D T4 � T1 � T2 � T3 and then

T4 D
X

�DKjL
j� ju� � nKLŒ'.�K/ � '.�L/� ��. .�K/�  .�L//� � T2 � T3: (8)

The fact that  is nondecreasing (and
P

K2T jKj�K DM ) yields:

• T2 �PK2T h˛jKj .�?/ .�K � ��/ D 0
• T3 DP�DKjL.hK C hL/
 j� jh� .�K C �L/# .�K � �L/ . .�K/ �  .�L// � 0.

In order to conclude that T4 � 0, we now introduce, for ˛ > 0, the function ˚
defined on R

?C by

˚.s/ D '.˛/ � '.s/ � ˛. .˛/ �  .s//:

Since s 0.s/ D ' 0.s/ (for s > 0), one has ˚.s/ � 0 for all s > 0 and then:

X

�DKjL
j� ju� � nKLŒ'.�K/ � '.�L/� ��. .�K/�  .�L//� � 0:

We then conclude, with (8), that
R
˝
'.�/divh.u/ dx D T4 � 0.

Theorem 1. Let �0 > 0 and let T be a triangulation of the computational domain
˝ such that � � �0, where � is defined by (4). Let .u; p; �/ be a solution of (6).
Then, there exist C , only depending on the data of the problem (˝ , �, f ,M and ')
and on �0 such that:

jjujj1;b � C; jjpjjL2.˝/ � C; jj�jjL2�.˝/ � C and h
=2 j�jT � C: (9)

Proof. Let .u; p; �/ be a solution of (6) . Taking u as test function in (6b) yields:

� jjujj21;b C
�

3

Z

˝

div2h.u/ dx �
Z

˝

p div.u/ dx D
Z

˝

f � u dx: (10)
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Using Lemma 1, a discrete Poincaré Inequality (as in [3]) and the Hölder inequality,
yields the existence of C1 only depending on˝;f;� and �0 such that jjujj1;b � C1.
Using the inf-sup stability of the discretization, we hence get from (10) a control of
jjp �m.p/jjL2.˝/ (wherem.p/ stands for the mean value of p over˝).

In order to obtain an estimate on p, we set (for simplicity) '.s/ D s C '.0/
for s < 0 and we define the function ˚ from R to R by ˚.s/ D infft 2 RCI
s D 3'.t/g. The function ˚ satisfies the following properties:

s D 3'.t/) ˚.s/ � t; (11a)

s D 3'.˚.s//; (11b)

˚.s/! C1; as s !C1; (11c)

˚ is nondecreasing: (11d)

For all x 2 ˝ one hasm.p/ � jm.p/�p.x/jCjp.x/j � jm.p/�p.x/jC2j'.0/jC
p.x/. Then, using (11d),

˚.m.p// � ˚.3jm.p/ � p.x/j/C ˚.6j'.0/j/C ˚.3p.x//:

Since 3p.x/ D 3'.�.x//, (11a) gives ˚.m.p// � ˚.3jm.p/ � p.x/j/ C
˚.6j'.0/j/ C �.x/. By summing equation (6c) for K 2 T , we obtain that the
integral of � over˝ is M , which yields:

Z

˝

˚.m.p//dx �
Z

˝

˚.3jm.p/� p.x/j/dx CM C ˚.6j'.0/j/j˝j: (12)

On the other hand, if ˚.s/ � 0, one has, with (11b) and the first inequality of (1),

s

3
D '.˚.s// � a.˚.s//� � b;

and then ˚.s/ � . jsj
3a
C b

a
/
1
� � . jsj

3a
C b

a
C 1/2. This inequality gives an estimate onR

˝
˚.3jm.p/�p.x/j/dx from the L2-estimate on .p�m.p//. We hence get, with

(12), an estimate on ˚.m.p//. Using (11c) yields an estimate on m.p/. Finally, the
estimate on Œm.p/� and Œp�m.p/� gives the existence of C2 (depending on the data
and �0) such that

jjpjjL2.˝/ � C2: (13)

Finally, thanks to p D '.�/ and the first inequality of (1), the estimate on � follows.
For the estimate on j�jT , which comes form the TK term in (6c), we refer to [3]
where the proof is the same.

Let us now state the final convergence result:

Theorem 2. Let a sequence of triangulations .T .n//n2N of˝ be given. We assume
that hn tends to zero when n!1. In addition, we assume that the sequence of
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discretizations is regular, in the sense that there exists �0 > 0 such that �n � �0 for
all n 2 N. For n 2 N, we denote by W .n/

h and L.n/h the discrete spaces associated to
T .n/ and b .un; pn; �n/ a corresponding solution to the discrete problem (6), with
˛ � 1 and 0 < 
 < 2. Then, up to the extraction of a subsequence, when n!1:

1. the sequence .un/n2N (strongly) converges in L2.˝/d to a limit u 2 H1
0.˝/

d ,
2. the sequence .pn/n2N weakly converges in L2.˝/,
3. the sequence .�n/n2N weakly converges in L2� .˝/,
4. .u; p; �/ is a solution to Problem (3).

Proof. The first item of Theorem 2 (namely the convergence, up to the extraction
of a subsequence, of the sequence .un/n2N and the fact that the limit belongs to
H1
0.˝/

d ) is a consequence of the uniform (with respect to n) estimate of Theorem 1,
applying a compactness result wich is proven for instance in [4, Theorem 3.3]. The
second and third item of Theorem 2 are trivial consequences of the uniform (with
respect to n) estimate of Theorem 1. It remains to prove that .u; p; �/ is solution to
(3b)–(3d).

The proof that the limit satisfies � � 0 a.e. in ˝ ,
R
˝
� dx D M and Equation

(3b) is strictly the same as the proof of the same result for a linear equation of state,
i.e. Theorem 6.1 in [4]. The fact that .u; �/ satisfies Equation (3c) follows the proof
of [3]. Then, we only need here to prove that the equation of state is satisfied, that is
p D '.�/ a.e. in ˝ .

The fact that � 2 L2� .˝/, � � 0 a.e. in˝ , u 2 .H1
0.˝//

d and that .�; u/ satisfies
(3c) yields, see Lemma 2.1 in [3]:

Z

˝

� div.u/ dx D 0: (14)

Then, using (14), we have, following the proof given in [3]:

lim
n!1

Z

˝

�
pn � divh.un/

�
�n dx �

Z

˝

p � dx D 0:

As in [3], we also have lim supn!1
R
˝ divh.un/ �n dx � 0. Hence:

lim sup
n!1

Z

˝

pn �n dx �
Z

˝

p � dx: (15)

We want to deduce from (15) that p D '.�/. But, since ' in only nondecreasing
(and not necessarily increasing), we cannot use the proof given in [3]. We use here
the so called Minty trick.

For simplicity, we define ' on R
� setting '.s/ D '.0/ if s < 0. Let N� 2 L2�

and, for n 2 N, Gn D .'.�n/ � '. N�//.�n � N�/. One has Gn � 0 a.e. in ˝ (since
' is nondecreasing). Thanks to the second inequality of (1) (which is used only in
this proof) one has '. N�/ 2 L2�=.2��1/.˝/ and then '. N�/ N� 2 L1.˝/. Then, one has
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Gn 2 L1.˝/ and

0 �
Z

˝

Gn dx D
Z

˝

.pn�n � pn N� � '. N�/�n C '. N�/ N�/ dx:

Using (15) and the weak convergences of pn to p and �n to � in L2.˝/ and L2�.˝/
respectively, we obtain:

0 � lim sup
n!1

Z

˝

Gn dx �
Z

˝

.p � '. N�//.� � N�/ dx:

We have thus proven that

Z

˝

.p � '. N�//.� � N�/ dx � 0 for all N� 2 L2�.˝/: (16)

We now have to choose N� conveniently to deduce p D '.�/ from (16). Let  2
C1c .˝;R/. For n 2 N

?, we set �n D � C 1
n
 . Since �n 2 L2� , we can choose

N� D �n in (16). We obtain

Z

˝

.p � '.�C 1

n
 // � 0:

We now use the Dominated Convergence Theorem on the sequence .gn/n2N? with
gn D .p � '.�C 1

n
 // . The continuity of ' gives gn ! .p � '.�// a.e. in ˝:

Since ' is nondecreasing, one has, for all n 2 N
?,

jgnj � G D jp j C j'.�C jj jj1 / j C j'.0/ j a.e. in ˝:

The second inequality of (1) gives '.� C jj jj1 / 2 L1.˝/. Then one has
G 2 L1.˝/ and the Dominated Convergence Theorem yields

R
˝
.p � '.�// � 0.

Changing  in � , we conclude that
R
˝
.p � '.�// D 0 for all  2 C1c .˝;R/.

This gives p D '.�/ a.e. in ˝ . The proof of Theorem 2 is now complete.
If ' is increasing, we can prove, as in [3], the a.e. convergence, up to a

subsequence, of p and �.

Conclusion We gave a scheme for the discretization of the compressible
Stokes problem with a quite general EOS and we proved the convergence of the
approximate solution to an exact solution (up to a subsequence) as the mesh size
goes to zero. The main difficulty of the paper is in the passage to the limit in EOS.
This difficulty is due to the nonlinearity of the EOS and the fact that the estimates
on pressure and density only lead to weak convergences. It will be now interesting
to consider the Navier-Stokes problem along with the evolution problem.
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Asymptotic Preserving Finite Volumes
Discretization For Non-Linear Moment Model
On Unstructured Meshes

Emmanuel Franck, Christophe Buet, and Bruno Després

Abstract In this work we present a new finite volume discretization of the
nonlinear model M1 [2]. This new method is based on nodal solver for hyperbolic
systems [3, 6] and overcomes, on 2-D unstructured meshes, the problem of the
inconsistent diffusion limit for schemes based on classical edge formulation. We
provide numerical examples to illustrate the properties of the method.

Keywords asymptotic preserving, M1 model, unstructured, diffusion limit,
GLACE scheme
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1 Introduction

Our physical motivation stems from the discretization of the linear transport
equation @tf .t; x; !/C 1


!rf .t; x; !/ D �

2
Q.f / in diffusive regime. f .t; x; !/ �

0 is the distribution function associated to particles located in x and having a
direction !. Q.f / is a Lorentz operator for scattering of lights particles. It is
well known that on coarse grids, numerical schemes for such hyperbolic systems
does not capture the diffusion limit (" << 1) correctly. Since many years, many
Asymptotic Preserving (AP) schemes have been proposed to correct this problem.
But extended in 2-D unstructured meshes these methods are not consistent with a
diffusion operator in diffusive regimes and coarse grids.
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In this work we present an attempt to overcome this difficulty on a simplified non
linear model which is the M1 model: this model is the first element of a family of
angular discretization based on minimization of entropy procedure [2]. It writes

8
<̂

:̂

@tE C 1


r:F D 0

@tFC 1


r. OP / D � �

2
F

(1)

E is the energy, F is the flux and OP the pressure tensor. The pressure tensor is
defined by

OP D 1

2
..1 � �.f//Id C .3�.f/� 1/ f˝ f

k f k /E

with f D F=E , �.f/ D 3C 4f2

5C 2p4 � 3f2
for M1 model. When  tends to zero these

models tends to the linear diffusion equation @tE.t; x/� 1
3�
4E.t; x/ D 0:

The original contribution of this work concerns news results for the construction
of an AP scheme for the non-linear M1 models on 2-D unstructured meshes. For
this we first rewrite the M1 model as a compressible gas dynamics like equation as
in [4], and second we adapt the linear scheme developed in [5] to the non linearM1

model. For the P1 model [5]: one shows that in diffusive regime and on coarse grids
the asymptotic limit of the finit volume based scheme is consistent with the right
diffusion equation. Numerical results that it is also the case for the discretization
of the M1 model. To finish we present news numerical results for the equilibrium
radiative model, with a non-linear coupling between a moment model and a non
linear temperature relaxation.

2 Notations on 2-D unstructured meshes

Jin, Levermore in [9] or Gosse, Toscani in [7] proposed methods based on the
incorporation to the source term in the fluxes in order to obtain AP schemes. We
introduce some notations which are used to define a particular AP scheme on
unstructured mesh.

Our idea is to use a nodal scheme like “GLACE” [6] or “CHIC” [3] for the
linearized Euler equations, since the hyperbolic heat equation is a special case
of them and incorporate the source term in the Riemann solver by Jin-Levermore
procedure [9] to obtain an AP scheme. Let us consider the 2D unstructured mesh of
Fig. 2. The mesh is defined by the vertices xr and the cells˝j . We denote by xj the
gravity center of ˝j . In each cell j , we define the length and the normal associated
to the node of local index r

ljr D 1

2
k xrC1 � xr�1 k and njr D 1

2ljr

	�yr�1 C yrC1
xr�1 � xrC1




: (2)
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xj

xr+1

xr−1

xr

Cell Ωj

Cell Ωk

ljrnjr

Fig. 1 Notation for the nodal formulation

where .xr ; yr / are the coordinates of xr . We use a tensor definition of nodal schemes
introduced in [8]. We define the scheme by

8
ˆ̂
<

ˆ̂
:

ˇ
ˇ˝j

ˇ
ˇ @tEj .t/C 1

"

X

r

ljr .Fr :njr / D 0
ˇ
ˇ˝j

ˇ
ˇ @tFj .t/C 1

"

X

r

Gjr D � �
"2

X

r

b̌
jrFr

(3)

The fluxes associated to these schemes are
8
ˆ̂
<̂

ˆ̂
:̂

Gjr D ljrEjnjr C b̨jr .Fj � Fr /� �
"
b̌
jrFr

0

@
X

j

b̨jr C �

"
b̌
jr

1

AFr D
X

j

ljrEjnjr C b̨jrFj
(4)

b̨jr and b̌jr are defined by b̨jr D ljrnjr ˝ njr , b̌jr D ljrnjr ˝ .xr � xj / For the
b̨jr tensor we can use also the CHIC tensor [5].

The matrix
P

j ljrb̨jr is always invertible on non-degenerate meshes. For the
matrix Ar DPj ljrnjr ˝ .xr � xj / we do not have a complete result. However we

give a sufficient condition for positivity of the matrix. We prove thatAr D Vr OIdCP;
where P is the matrix with T r.P / D 0 and Vr is the control volume around the
node r . Studying P we obtain the sufficient condition. For example, on triangular
meshes the matrix is positive definite if the angles are superior to 11 degrees. In
practice, these matrix are always non singular. Under the condition that the matrix is
invertible we prove that the scheme isL2 stable for the different tensor defined in [5].

The previous scheme tends to a new diffusion scheme on coarse grids
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8
ˆ̂
<

ˆ̂
:

E 0j .t/C
1

ˇ
ˇ˝j

ˇ
ˇ

X

r

ljr
�
njr ;Fr

� D 0;

Ar�Fr D
X

j

ljrnjrEj ; with Ar D
�P

j ljrnjr ˝
�
xr � xj

��
:

(5)
In [5] we prove the first order convergence to the solution of the linearP1 model. The
numerical results show a convergence at the second order on different unstructured
meshes. This scheme may exhibit spurious modes but this problem can be solve by
a modification of the normal and length associated to the node.

3 An AP scheme for theM1 model on 2-D unstructured meshes

We reformulate theM1 model as gas dynamics equations, see [4] in 1D, and we use
a nodal solver as in [3, 6]. The new formulation writes

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@t �C 1


d iv.�u/ D 0

@t�vC 1


d iv.�u˝ v/C 1


rq D � �

2
�v

@t �e C 1


d iv.�ueC qu/ D 0

@t�s C 1


d iv.�us/ D 0

(6)

with S D �s (S the radiation entropy), F D �v and E D �e. We define also the
hydrodynamics variables

• q D 1 � �
2

E,

• u D 3�� 1
2

f
j f j2

with f D j F j
E

.

To discretize this model we use a Lagrange+remap scheme. The lagrangian step
is solved by a nodal scheme which is a non-linear generalization of (11) coupled
with the Jin-Levermore method
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Mj

�nC1j � �nj
�t

� 1


X

r

ljr .ur ;njr / D 0

Mj

vnC1j � vnj
�t

C 1



X

r

Gjr D � �
2

X

r

b̌
jrkrur

Mj

enC1j � enj
�t

C 1



X

r

.ur ;Gjr / D 0

(7)

with the fluxes

8
<̂

:̂

Gjr D ljrqjnjr C rjr Ǫjr .uj � ur/� �

kr Ǒjrur

.
X

j

rjr Ǫjr C �


kr Ǒjr /ur D

X

j

ljrqjnjr C rjr Ǫjruj
(8)

where Mj Dj ˝j jnC1 �nC1 Dj ˝j jn �n, and kr D 2Er jfrj2
.3��1/ ; rjr D 4p

3

Ej

3Cjuj2 ; rjr
is the wave-speed calculated for the one dimensional Riemann solver. In diffusive
regime, the previous lagrangian scheme gives the following non-linear positive
diffusion scheme.

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

j ˝j j
EnC1
j � En

j

�t
C
X

r

1

12�
..ljrEjnjr � �b̌jrur /; ur

Er
/ D 0

�

0

@
X

j

Ǒ
jr

1

A ur D
X

j

ljrEjnjr

(9)

This scheme can be seen as the non linear extension to the previous limit scheme. If
b̌
jr ' ljrnjr ˝ .xr � xj / and ur discretize correctly the gradient then

.ljrEjnjr � �b̌jrur / ' ljrErnjr
We obtain a result very close to the linear limit diffusion scheme. For the remap
step, we can use any advection scheme. In asymptotic regime the lagrangian step
gives a diffusion coefficient 1

12�
. Studying the asymptotic limit we remark that ur

is homogeneous to rE
4E�

when " tends to zero. Therefore the remap step gives a
first order diffusion scheme with the coefficient 1

4�
. The two steps are necessary to

obtain the good diffusion coefficient. To obtain a second order scheme, we must use
a MUSCL procedure with slop limiter in the remap step.



472 E. Franck et al.

4 Numerical results

4.1 Numerical results for the limit diffusion scheme

We begin by study he convergence to the limit diffusion scheme. The studied scheme
is the sum to (9) and the limit scheme of advection step. The initial condition is the
fundamental solution of the heat equation at t D 0:001. the final time is t D 0:01.
We obtain the following order of convergence K the coefficient of deformation for

Mesh order negative coef
Cartesian 1.92 0

Rand. quad. mesh 1.9 0
Cartesian trig. mesh 2.23 0

Rand. trig. mesh 2.16 0
Kershaw K=1 1.93 0

Kershaw K=1.5 2.02 0

the Kershaw mesh. This results show that the scheme is a valid second order scheme
on unstructured meshes.
Remark: Other test cases show that the scheme is convergent with the second order
for th free-streaming regime (� D 0) to the M1 model.

4.2 Numerical results for radiation equilibrium models

The convergence results show that the limit scheme and the hyperbolic for all 
scheme are convergent. We solve

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@tE C 1


r:F D �

"2
.aT 4 � E/

@tFC 1


r. OP / D � �

2
F

�Cv@tTj D � �
"2
.aT 4 �E/

(10)

Where T is the material temperature. We define Tr D .E=a/
1
4 the radiation

temperature. To treat this model, we use a splitting strategy. The moment model
part is solve with the previous scheme and the temperature relaxation part part is
solve with a implicit fixed point procedure.
To obtain this implicit procedure we linearize in time the equation of T . We define
- D aT 4, consequently we obtain for the relaxation part the scheme
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Fig. 2 The curve represent the solution Tr at the final time. The square and cross correspond to
the solution with the AP correction on Cartesian and random mesh with 10 cells by direction. The
point and circle correspond to the solution without the AP correction on Cartesian and random
mesh with 10 cells by direction. At left this is the result for the P1 model and at right for the M1

model

8
<

:

E
qC1
j �Ej
�t

D �
"2
.-

qC1
j �Ej /

�Cv�j
E
qC1
j �Ej
�t

D � �
"2
.-

qC1
j � Ej /

(11)

with �j D T
q
j �Tj

-
q
j�-q . This method is convergent and preserve the positivity of E

and T .

We use the Marshak test describe in [1]. For the test case we consider a material
initially cold and at radiative equilibrium. A heat wave enters the domain and we
observe this evolution. The calculation is realized on a 2D mesh. We present the
results for one line of cells. This test show the AP scheme capture the correct
solution on coarse grid contrary to the classical scheme. The Fig. 2 show also that
the scheme give the good result on random grid.

5 Conclusion

Starting from an asymptotic preserving scheme on 2-D unstructured meshes
obtained in [5] for the linear P1 model, we propose in this work its extension
for the non-linear M1 model. The scheme is valid on unstructured meshes, and
is asymptotic preserving for the non-equilibrium regime (without coupling with
matter) and for the equilibrium regime (with the coupling). Future works will be
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devoted to higher order angular discretization of the linear transport equations such
as the discrete ordinates method or PN equations.

References

1. C. Berthon, P. Charrier and B. Dubroca: An HLLC scheme to solve M1 model of radiative
transfer in two space dimensions, J. Scie. Comput., 31 (2007), pp. 347–389

2. J.L. Feugeas and B. Dubroca, Entropy moment closure hierarchy for the radiative transfer
equation, C. R. Acad. Sci., Paris, Sér. I, Math. 329, No.10, 915-920 (1999).

3. P-H. Maire, R. Abgrall, J. Breil, J. Ovadia A cell-centered lagragian scheme for two-dimensional
compressible flow problems. SIAM J. Sci. Comput. Vol 29, No. 4, pp. 1781-1824. 2007.

4. C. Buet, B. Després: A gas dynamics scheme for a two moments model of radiative transfer,
Mathematical models and numerical methods for radiative transfer, Panorama er synthse 2009.

5. C. Buet, B. Després, E. Franck: Design of asymptotic preserving schemes for hyperbolic heat
equation on unstructured meshes. Preprint LJLL UPMC, 2010.
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Mass Conservative Coupling Between Fluid
Flow and Solute Transport

Jürgen Fuhrmann, Alexander Linke, and Hartmut Langmach

Abstract We present a coupled discretization approach for species transport in an
incompressible fluid. The Navier-Stokes equations for the flow are discretized by
the divergence-free Scott-Vogelius element. The convection-diffusion equation for
species transport is discretized by the Voronoi finite volume method. The species
concentration fulfills discrete global and local maximum principles. We report
convergence results for the coupled scheme and an application of the scheme to
the interpretation of limiting current measurements in an electrochemical flow cell.

Keywords Incompressible Navier-Stokes Equations, Convection-Diffusion Equa-
tion, Finite Element Method, Finite Volume Method, Limiting Current
MSC2010: 76V05 76D05 65N08 65N30

1 Introduction

For the transport of a substance dissolved in a dilute solution in an incompressible
fluid characterized by a velocity field v, local mass conservation and maximum
principle for the substance concentration c are directly connected to the solenoidal
condition r � v D 0 on the velocity field.

The Scott-Vogelius mixed finite element Pk-P disc
k�1 with order k � 1 for the

Navier-Stokes equations guarantees a point-wise divergence-free discrete velocity
field.

Upwinded Voronoi finite volume methods guarantee the desired qualitative prop-
erties for the discrete transport problem if the discrete velocity field fulfills a discrete
counterpart of the solenoidal condition and if the underlying simplicial mesh fulfills
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the boundary conforming Delaunay property [1, 2]. Recent developments in mesh
generation [3, 4] allow to consider this approach as a realistic option.

Using exact integration of the normal component of the discrete flow through
the faces of the Voronoi volumes, we couple both schemes [5]. We discuss the
application to the limiting current problem in a thin layer flow cell [6].

Let˝ � R
d be a simply connected Lipschitz domain with d 2 f2; 3g. We regard

the stationary, incompressible Navier-Stokes equations coupled to the equation of
stationary transport of a dissolved species The flow is described using the steady,
incompressible Navier-Stokes equations:

.v � r/vCrp � ��v D f; r � v D 0: (1)

Here, v is the fluid velocity, p is the pressure, � is the fluid viscosity, and f is a force
vector. The steady transport of a species dissolved in the fluid is described by

r � q D s; q D �.Drc � cv/ (2)

Here, q is the species molar flux, c is the species concentration, D is the diffusion
coefficient, and s is a given source term.

The boundary conditions correspond to the limiting current problem in a flow
cell [6]. Let I� D fA; I;O; S;W g be a set of labels for boundary segments. We
assume that the boundary � D @˝ D S

i2I�
�i is subdivided into an inlet �I , an

outlet �O , an anode �A, and a symmetry boundary on �S . For an illustration, see
Fig. 1. The remaining part of � is assumed to consist of inert, impermeable walls
�W . We further assume that �A; �I ; �O are separated from each other by sections
belonging either to �W or �S . We impose the following boundary conditions:

Section c .v; p/
Inlet �I c D cI .x/ v D vI .x/

Anode �A c D 0 v D 0
Outlet �O @c

@n D 0 � @v
@n D pn

Symmetry �S @c
@n D 0 v � n D 0; @.v�t/

@n D 0
Wall �W @c

@n D 0 v D 0:

(3)

The flow boundary condition at the outlet �O states that the stress �rv � p � Id
projected onto the outward normal direction n is zero. For the concentration, it states
that all solute transported to �O by convection leaves the domain there [2].

Let � NS
D D �I [ �A [ �W denote the Dirichlet boundary for the Navier-Stokes

equations. Let vD be a vector function on� NS
D which is defined by the corresponding

boundary values in (3). By applying the differential operator to the extension of vD
into ˝ , and adding the result to the right hand f side we derive a new right hand
side, also denoted by f which allows to assume that the solution v is in the space
V D fv 2 ŒH1.˝/�d jv D 0 on� NS

D ; v � n D 0 on�Sg: The weak formulation of (1)
arises as follows: Find .v; p/ 2 V �L2.˝/ such that for all .w; q/ 2 V � L2.˝/
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Z

˝

�rv W rw dxC
Z

˝

..v � r/v/ � w dxC
Z

˝

pr � w dx D
Z

˝

f � w dx

Z

˝

qr � v dx D 0:
(4)

The weak formulation of (2) relies on the particular choice of boundary condi-
tions for v. Let � T

D D �A[�I be the Dirichlet boundary for the transport equation,
and let s be the right hand side containing the Dirichlet boundary conditions.

Let W D fc 2 H1.˝/j cj� TD D 0g. Then we look for c 2 W such that for all
� 2 W , Z

˝

.Drc � cv/ � r� dxC
Z

�O

v � nc� ds D
Z

˝

s�dx: (5)

2 Scott Vogelius mixed finite elements for fluid flow

Let NTh denote a regular finite element triangulation of the domain˝ in the sense of
[7], called macro triangulation. For each simplex NT 2 NTh we connect its barycenter
with its vertices, and we thereby get d C 1 new simplices from each macro
simplex.This new triangulation Th is called an SV-admissible mesh. We define
Vh WD

˚
vh 2 ŒC.˝/�d \ V W vhjT 2 ŒPd .T /�d 8T 2 Th

�
as the space of continuous

element-wise polynomial vector functions of order d on the triangulation Th.
The pressure space Ph WD

˚
q 2 L2.˝/ W qjT 2 Pd�1 8T 2 Th

�
is defined as

the space of element-wise polynomial functions of degree d � 1 without the
constraint of continuity between elements. The derivation of the triangulation
Th from a macro-triangulation NTh assures that the discrete saddle point problem
derived from the Scott-Vogelius element has a unique solution by fulfilling in
a stable manner the necessary and sufficient inf� sup condition 0 < ˇ � ˇh D
infph2Ph;ph¤0 supvh2Vh

.r�vh;ph/
jjph jj jjvh jj [8–10].

The discretization of of the Navier-Stokes equations is derived in a standard
manner from (4): find .vh; ph/ 2 Vh � Ph such that 8 .wh; qh/ 2 Vh � Ph,

Z

˝

.vh � r/vh � wh dx �
Z

˝

phr � wh dxC
Z

˝

�rvh W rwh dx D
Z

˝

f � wh dx

�
Z

˝

qhr � vh dx D 0:
(6)

3 Voronoi Finite Volumes for solute transport

Let @˝ be the union of straight lines resp. planar polygons. Let P D fxKg � N̋
be a set of points which includes all the vertices of the polygons constituting @˝ .
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A simplicialization of this point set is Delaunay if no circumball of any simplex
contains a point xK of P . Besides the fact that it is related to the same domain
˝ , this simplicialization may be completely independent of the triangulations
introduced in section 2. For a point xK 2 P , the Voronoi cell V 0

K � R
d around

xK is defined as the set of points x 2 R
d which are closer to xK than to any other

point xL of P . We define as the control volume around xK the Voronoi box VK
associated with xK as VK D V 0

K \˝ . The Delaunay simplicialization is boundary
conforming [1] if

1. ˝ is the union of all simplices;
2. no simplex circumball contains any other discretization vertex;
3. all simplex circumcenters are contained in N̋ ;
4. the boundary sections �i (i 2 I� ) are the unions of simplex faces, and all

circumcenters of boundary simplices from �i are contained in N�i .
We will use K in order to denote the Voronoi boxes VK . Let K denote the set

of control volumes K , and Ki denote the set of control volumes K which share
facets with �i . Let KD D .KI [KA/ denote the set of Dirichlet control volumes
and K 0 D K n KD denote the set of non-Dirichlet control volumes. For two
neighboring control volumes K;L, xKxL is an edge of the boundary conforming
Delaunay simplicialization which is known to be orthogonal to the Voronoi box
face @K \ @L. Let NK denote the set of neighbors of K . For i 2 I� , let G i

K be
the set of facets of K with nonempty intersection with boundary section �i . Then
@K \ �i D S�2G i

K
� and

@K D
0

@
[

L2NK

@K \ @L
1

A [
0

@
[

i2I�

.[�2G i
K
�/

1

A :

Let v 2 ŒH1.˝/�d fulfill the boundary conditions (3) and r � v D 0. These
conditions are fulfilled by every solution v of (4) and every solution vh of (6). For
anyK 2K , the H1-regularity of v allows to define the scaled velocity projections

vKL D 1

j@K \ @Lj
Z

@K\@L
v � .xK � xL/ds; L 2 NK (7)

v� D 1

j� j
Z

�

v � n�ds; � 2 G i
K (8)

They are discretely divergence-free in the sense that for all K 2 K holds

X

L2NK

j@K \ @Lj
jxK � xLj vKL C

X

i2I

X

�2G i
K

j� jv� D 0: (9)

We introduce the space of functions Wh D fch 2 L2.˝/ W chjK D cKg;
consisting of scalar functions which are piecewise constant on each control volume.
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For a given upwind function U.z/, the average normal flux of q D �Drc C cv
between two neighboring control volumes K;L is approximated by a flux function
g.cK; cL; vKL/ D D

�
U
�

vKL
D

�
cK � U

�� vKL
D

�
cL
�
; depending on the values of the

discrete solution in the adjacent control volumes and the velocity projection [2].
Further, we define the discrete right-hand side of the discrete convection-

diffusion equation by the average value of the continuous right-hand side over the
control volume K sK D 1

jKj
R
L
s.x/ dx: Then, the finite volume scheme for the

transport equation (5) reads as: we look for ch 2 Wh such that

(P
L2NK

j@K\@Lj
jxK�xLjg.cK; cL; vKL/C

P
�2GO

K
j� jg.cK; cK; v� / D sK K 2 K 0

cK D cD.xK/; K 2 KD;

(10)

where the treatment of the outflow boundary conditions is taken from [2]. For
U.z/ D Udcd.z/ D 1 C z

2
we yield the central difference scheme. The simple

upwind discretization is given by the upwind function Udsu.z/ D 1 C maxf0; zg:
Our preferable choice is the Bernoulli function Uexp.z/ D B.z/ D z

1�e�z ; leading to
the the so-called exponential fitting scheme [11, 12].

4 Convergence of the coupled FVM-FEM scheme

The convergence results are given for homogeneous Dirichlet boundary conditions
on � D @˝: cj� D 0 vj� D 0: As a consequence, in the weak formulations (4)
and (5), we assume that � D �I and v 2 V D ŒH1

0 .˝/�
d and c 2 H1

0 .˝/.
We investigate a sequence of mesh pairs .Th;Vh/ indexed by the mesh parameter

h, and where Th;Vh are SV-admissible and boundary conforming Delaunay,
respectively and possess uniform bounds for their respective mesh regularities. The
only geometrical assumption relating both sequences is that there are h-independent
constants C1 and C2 such that C1hFEM.h/ � hFVM.h/ � C2hFEM.h/.

Theorem 1 (Finite Element Convergence).

1. Equation (6) has at least one solution .vh; ph/ on every SV-admissible grid.
2. For a sequence of Scott-Vogelius solutions .vh/ in (6) we can extract a subse-

quence which converges weakly in V D ŒH1
0 .˝/�

d to some v 2 V . Moreover,
this convergence is strong in ŒL2.˝/�d and the limit v is divergence-free.

3. The limit v of said subsequence .vh/h is a solution of (4), and vh
H1
0! v:

Theorem 2 (Convergence of the coupled scheme). We assume that .vh; ch/ is a
sequence of pairs of discrete solutions of (6) and (10) such that the sequence .vh/
converges strongly in ŒH1

0 .˝/�
d to a solution v of (4).
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1. From the sequence .ch/ we can extract a subsequence which converges strongly
in L2.˝/ to some c 2 H1

0 .˝/.
2. The accumulation point c 2 H1

0 .˝/ of said subsequence .ch/h is the unique
solution of the continuous problem (5), where the solution v of (4) drives the
convection. Therefore, also the entire sequence .ch/ converges strongly in L2 to
the unique c, and not only a subsequence.

The discretization matrix of (10) has the M property. Furthermore, (9) leads to

Lemma 1. For any solution .cK/K2K of (10) with .sK/ D 0, we have:

1. Global minimax principle: 0 � cK � cI 8K 2K
2. Local minimax principle: minL2NK cL � cK � maxL2NK cL 8K 2K 0

The convergence of the finite volume scheme for an analytically given velocity
in the discrete L2, discrete maximum, and discrete H1 norms has been investigated
[5]. On a mesh obtained from a rectangular mesh by subdividing each rectangle into
two triangles, the exponential fitting and the central schemes exhibit second order
convergence in all three norms, while the simple upwind scheme is first order. On
a genuinely triangular mesh, first order convergence in the discreteH1-norm for all
three schemes has been indicated. Replacing the analytical velocities by velocities
obtained using the Scott-Vogelius element resulted in the same asymptotic behavior.

5 Interpretation of a limiting current experiment

We report results from [6]. At the inlet �I , a sulphuric acid (H2SO4) based
electrolyte with given velocity profile vI .x/ derived from Poiseuille flow is injected
with a concentration cI of dissolved hydrogen H2. At a certain potential applied
between the anode �A covered with a platinum catalyst, and a counter electrode
placed in the electrolyte outside the domain of consideration, the part of the H2

reaching �A reacts immediately according to H2 ! 2HC C 2e�. The flow
containing the unreacted H2 leaves the cell at the outlet �O . All H2 reaching
the anode �A is consumed by the reaction, so homogeneous Dirichlet boundaries
for the concentration are assumed. The source terms f; s in (1), (2) are zero. The
geometry is depicted in Fig. 1. The symmetry of the cell allows to reduce the
computational domain to one twelfth of the original problem by applying symmetry
boundary conditions at the corresponding cut planes �S . The anode current IE D
2F

R
�A
D @c

@nds is called the limiting current.
Figure 2 compares the concentration isosurfaces obtained with the Scott-Vogelius

and Taylor-Hood Elements, respectively. We clearly see a striking difference
concerning the preservation of the maximum principle.

Figure 3 (left) shows the maximum concentration vs. flow rate for the two finite
element discretizations. For the Taylor-Hood element, we are unable to control the
violation of the maximum principle. For the Scott-Vogelius element, we see that the
a-priori bound for the concentration given by the inlet velocity is observed.



Mass Conservative Coupling Between Fluid Flow and Solute Transport 481

Fig. 1 Left: Schematic of a thin layer flow cell [13]. By symmetry, the problem is reduced to
the 30 degrees (gray) circular arc shown. Right: computational domain with boundary segments.
Reprinted with permission from [5]

Fig. 2 Concentration profiles for flow rate 80mm3=s on a coarse grid: Flow calculated using
Scott-Vogelius element (left) and Taylor-Hood element (right). Isosurfaces (c D 1:0; 2:0 : : : 6:0)
are shown in the interior of the working chamber. Isolines and grayscale color code at surfaces are
shown at the inlet, the outlet, and the bottom of the working chamber. The graphical representation
has been stretched by a factor around 10 in z direction. Reprinted with permission from [5]

The right plot in Fig. 3 compares the values of the limiting current for different
grids and discretizations with those measured in [14]. The grid dependency of this
value is well below the accuracy of the experimental data [6]. At the same time one
observes that the violation of the maximum principle does not significantly influence
the value of the limiting current.
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Fig. 3 Maximum concentration vs. flow rate (left). Measured [14] and calculated limiting current
for different grids and discretizations (right). Reprinted with permission from [5]

6 Conclusions and Outlook

We presented a new scheme allowing for mass conservative coupling of solute
transport and Navier-Stokes flow. It shows the expected convergence properties, and
can be used in relevant applications. The approach has some drawbacks. Whereas
in the implementation of the scheme (10), only the areas j@K \ @Lj are used, which
can be assembled from simplicial contributions, for the velocity projections (7),
the entities @K \ @L need to be constructed [5]. The Scott Vogelius element is
expensive. Static condensation may allow for more efficient assembly. There may
be other routes to the discrete solenoidal condition (9) – for the tangential velocity
MAC scheme [15], it exactly corresponds to the discretization of the mass balance
for fluid flow.
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Large Eddy Simulation of the Stable Boundary
Layer

Vladimı́r Fuka and Josef Brechler

Abstract The model CLMM (Charles University Large-eddy Microscale Model)
is a large-eddy simulation model for atmospheric flows. It solves Navier-Stokes
equations for incompressible flow using the projection method and the 3rd order
Runge-Kutta method in time. The spatial discretization is performed using the finite
volume method on a uniform staggered grid.

The capability of the model to compute flows influenced by buoyancy is
evaluated in this study in the case of stable stratification of the planetary boundary
layer. The results are compared to the results of the project GABLS [2] with a good
agreement.

Keywords large eddy simulation, planetary boundary layer, stable stratification,
atmosphere
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1 Introduction

The large eddy simulation (LES) has been an important tool in boundary layer mete-
orology for several decades [4]. The presented model CLMM (Charles University
Large-eddy Microscale Model) is a nonhydrostatic model for flows in the planetary
boundary layer (PBL) and uses LES as it’s main framework. It has been extended
for the effects of buoyancy (or temperature stratification). The aim of this study is to
present the numerical methods used in the dynamical core of the model and evaluate
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it’s results in the situations influenced by buoyancy. All computations presented here
are performed above a flat homogeneous terrain for simplicity.

2 Numerical methods

The model CLMM solves the Navier-Stokes equations for incompressible flow in
the Boussinesq approximation. These equations in the filtered form for the use in
LES are as follows

@ui
@t
C @uiuj

@xj
D � @p

@xi
C @�ij

@xj
C ıi3 g

�ref
.� � �ref/C fij 3uj (1)

@�

@t
C @�uj

@xj
D @qj

@xj
(2)

�ij D uiuj � uiuj (3)

qi D ui � � ui � ; (4)

@ui
@xi
D 0 (5)

where �ref is the reference potential temperature, f the Coriolis parameter and �ij
and qi are the subgrid stress tensor and the subgrid temperature fluxes respectively.
The molecular viscosity and diffusivity is neglected. CLMM uses implicit filtering,
i.e. the use of finite grid is considered as a sort of filtering. The overlines will be
omitted hereinafter.

The solution of equations (1-5) is based on the method of lines (MOL), i.e. on
discretization of time and space separately. The time discretization is based on a
projection method [3] and the 3rd order low storage Runge-Kutta method combined
with the Crank-Nicolson method [7]. The semi-discretized system can be written as

Ouki � uk�1i

�t
D ��k

�
@uiuj
@xj

k�1
� �k

�
@uiuj
@xj

k�2
�

� ˛k @p
@xi
C ˛k

2

 
@�kij

@xj
C @�k�1ij

@xj

!

C ˛kfij 3uj C

C �kıi3 g
�ref

.�k�1 � �ref/C �kıi3 g
�ref

.�k�2 � �ref/ (6)

@2'

@x2i
D 1

˛k�t

@Oui
@xi

(7)

uki D Ouki � ˛k�t
@'

@xi
; (8)
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pk D pk�1 C ' � ˛k�t�t

2

@2'

@x2i
; (9)

�k � �k�1
�t

D ��k
�
@�uj
@xj

k�1
� �k

�
@�uj
@xj

k�2
C

C ˛k
 
1

2

@qkj

@xj
C 1

2

@qk�1j

@xj

!

; (10)

where

k D .1; 2; 3/; (11)

�k D .8=15; 5=12; 3=4/; (12)

�k D .0;�17=60;�5=12/; (13)

˛k D .8=15; 2=15; 1=3/ (14)

(15)

and Oui and ' are auxiliary intermediate variables. The Oui does not fulfill the
continuity equation (4) and is corrected in the latter steps.

The spatial discretization is carried out using the finite volume method on a
uniform staggered grid. The standard second order central differences are used for
most of the terms. In the case of scalar advection this method is not adequate because
negative values and spurious oscillations have to be avoided at the cost of slightly
increased numerical diffusion. For this reason CLMM employs a third order non-
split semi-discrete advection method [5] which employs a flux limiter. This method
is conservative, positive, but is not TVD. It still prevents the spurious oscillations to
emerge and for 1D problems TVD and positive schemes may be equivalent [8].

The Poisson equation (7) is solved using a multigrid method with the Gauss-
Seidel smoother and the Gaussian elimination solver on the smallest grid.

A crucial part in LES is the evaluation of the subgrid stresses. Many approaches
are possible, but the eddy viscosity models are the basic and still widely used ones
[6]. In these models it is assumed, that the subgrid stresses and fluxes are correlated
to the strain rates and gradients in the same way, as in the case of molecular
diffusion. CLMM uses the Vreman [9] algebraic model. It is simple to use, but
it’s results are claimed to be close to that of a dynamic model. The eddy viscosity is
computed using the equation

�t D c
s

Bˇ

˛ij ˛ij
; (16)
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where

˛ij D @uj
@xi

; (17)

ˇij D
X

m

�2
m˛mi˛mj (18)

Bˇ D ˇ11ˇ22 � ˇ212 C ˇ22ˇ33 � ˇ223 C ˇ33ˇ11 � ˇ231: (19)

The constant c was set to 0:05 in present computations. The temperature diffusivity
is computed using a constant subgrid Prandtl number Prsgs D 0:5 in all presented
cases.

At the surface the flow cannot be accurately resolved and the subgrid terms have
to be computed using a wall model. because of the buoyancy effects the Monin-
Obukhov similarity theory is employed [1]. The surface stress and the surface
temperature flux are computed using the following expressions

U

u?
D ln.z=z0/ � �M.z=L/

�
(20)

� � �0
�?

D ln.z=z0/ � �H.z=L/

�
(21)

where �D 0:4 is the von Kármán constant, z0 is the roughness parameter, �0 is
the surface potential temperature, u?Dp�0 is the friction velocity and �?D �
.w0� 0/0=u� is the friction temperature, �0 is the surface stress and

L D � u3?�0

�g.w0� 0/0
(22)

is the Obukhov length. The empirical similarity functions are set according to the
GABLS [2] recommendation

�M D �4:8 z

L
; (23)

�H D �7:8 z

L
: (24)

3 Boundary and initial conditions

The boundary and initial conditions in the present study follow the GABLS
intercomparison project. It is based on the results of the Beaufort Sea Arctic Stratus
Experiment (BASE) and should approximate a quasi-stationary stable boundary
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layer over sea ice. The Coriolis parameter was set a value at the latitude of 73ı
north and the roughness parameter was set to a value of z0 D 0:1m.

The computational domain measured 400 m in all three dimensions. The
computations were been carried out using resolutions 16 � 16 � 17, 32 � 32 � 33,
64 � 64 � 65 and 128 � 128 � 129. The vertical resolution is different from the
horizontal one due to a limitation of the multigrid solver in various boundary
conditions.

The boundary conditions at the limits of the domain in x and y directions were
periodic. At the upper boundary the free-slip condition was used with a sponge layer
damping the oscillations in the upper 100 meters.

The initial conditions consists of a neutrally stratified layer in the lowest 100 m
and a stable layer with the lapse rate of 0.01 K/m. In the lowest 50 m random
fluctuations with amplitude 0.1 K are applied to start-up turbulence. The initial
surface temperature is 265 K and drops with a cooling rate of 0.25 K per hour.

4 Results

The model was run with described conditions for 9 hours. The last one hour was
used for computing statistics. In the next paragraphs the results of CLMM are
combined with the results of the groups participating in the project GABLS. All
presented profiles are averaged temporally on the last one hour and spatially on
horizontal planes.

4.1 Mean quantities

In Fig. 1 are the profiles of potential temperature at different resolutions. It is
obvious, that a proper grid convergence has not been achieved.The GABLS paper
[2] suggest the importance of even larger resolution. For the finest computed grid
the comparison with GABLS results in Fig. 2 shows noticeable difference in the
temperature gradient in the boundary layer. This value is sensitive to the choice of
the subgrid model [2] and should be investigated more in the future.

For the wind velocity magnitude (Fig. 3 and the wind direction (Ekman spiral,
Fig. 4) the agreement with GABLS results is better. The super-geostrophic jet and
the wind turning in the boundary layer are well pronounced.

4.2 Turbulent fluxes

The vertical buoyancy and momentum fluxes are depicted in Figs. 5 and 6
respectively. In both cases the profiles follow the shape and fall within the range
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Fig. 1 Grid convergence study for the vertical temperature profile. Other variables yield similar
results
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Fig. 2 The vertical temperature profile in comparison with the GABLS results
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Fig. 3 The vertical profile of the wind velocity in comparison with the GABLS results
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Fig. 4 The Ekman spiral (graph of horizontal velocity components) in comparison with the
GABLS results
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Fig. 5 The vertical buoyancy flux profile in comparison with the GABLS results

of the referenced GABLS simulations. The value of the fluxes is at the lower side of
the range.

The gradient Richardson number and the flux Richardson number profiles are
in Fig. 7. Their values are almost equal throughout the boundary layer reaching
approximately the critical value 0.25 at it’s top.

5 Conclusion

The ability of the model CLMM to simulate turbulent flow in the stable boundary
layer has been tested. The results agree to those of model intercomparison initiative
GABLS. Some inconsistency has been found in the temperature gradient in the
boundary layer and will be investigated further. In next development the model will
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Fig. 6 The vertical momentum flux profile in comparison with the GABLS results
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Fig. 7 The vertical profile of the gradient and flux Richardson number

be extended for inhomogeneous or spatially developing flows and for flows over a
complex terrain. The model is also aimed to atmospheric dispersion studies.
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3D Unsteady Flow Simulation with the Use
of the ALE Method

Petr Furmánek, Jiřı́ Fürst, and Karel Kozel

Abstract This works deals with three-dimensional numerical simulation of tran-
sonic and subsonic inviscid compressible steady and unsteady flow. The problem
is solved using finite volume method, namely the so–called Modified Causon’s
scheme [3] in combination with Arbitrary Lagrangian–Eulerian method [5]. This
scheme is based on TVD form of classical MacCormack scheme. Although it is not
TVD it retains almost the same precision as the original TVD scheme, but demands
approximately 30% less computational memory and power. Both subsonic and
transonic regimes of flow over oscillating wings are simulated. The subsonic case
(flow over the AS28 wing) is compared with experimental data with a very good
agreement. Comparison for the transonic unsteady case (flow over the ONERA M6
wing) is unfortunately not possible, but numerical results show very good properties.

Keywords ALE, FVM, TVD, unsteady flow
MSC2010: 65M08, 65Y20

1 Introduction

Unsteady effects appear in many physical phenomena including flows in external
aerodynamics. Their appearance usually entails very unpleasant problems, some-
times even with fatal consequences (e.g. flutter). It is therefore necessary to research
unsteady behaviour of the flow - both forced and induced. The authors made a series
of numerical experiments featuring subsonic and transonic flow over an oscillating
wing using the finite volume method (FVM) [4] in combination with the Arbitrary
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Lagrangian–Eulerian method (ALE) in order to study behaviour of the flow field
and its development towards unsteady state.

2 Mathematical Model

The flow was considered inviscid and compressible and hence system of the Euler
equations was employed as a mathematical model. It can be written down in the
following conservative vector form:

Wt C F.W /x CG.W /y CH.W /z D 0; (1)

where subscripts denote partial derivatives and

W D �
�; �u; �v; �w; e

�T
;

F.W / D �
�u; �u2 C p; �uv; �uw; .eC p/u�T ;

G.W / D �
�v; �uv; �v2 C p; �vw; .e C p/v�T ; (2)

H.W / D �
�w; �uw; �vw; �w2 C p; .e C p/w�T :

W is vector of conservative variables with components: � - density, w D .u; v;w/ -
velocity vector, e - total energy per unit volume and p - static pressure. F;G;H are
inviscid fluxes. System (1) is enclosed by the Equation of State:

p D .� � 1/
h
e � 1

2
�.u2 C v2 C w2/

i
; � D cp

cv
: (3)

where cp and cv are specific heat capacities under constant pressure (at constant
volume).

3 Numerical Method

When solving (1) by the finite volume method for the case of steady flow the
computational domain ˝ is divided into a number of quadrilateral cells Di such
that ˝ D S

i Di and i 2 h1;Nii where Ni is total number of cells. For each i the
following relation must be fulfilled

d

dt

Z

Di

W d˝X C
Z

@Di

�
F.W /x;G.W /y;H.W /z

�� n d˝S D 0; (4)
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where n is unit normal outer vector ofDi . In the unsteady case system (4) is altered
in order to meet the needs of the ALE method. Computational cells Di are now
time-dependent and

d

dt

Z

Di .t/

W d˝X C
Z

@Di .t/

� QF .W;w1/x; QG.W;w2/y; QH.W;w3/z
�� n d˝S D 0 (5)

where

QF .W;w1/x D F.W /x � w1W;

QG.W;w2/y D G.W /y � w2W; (6)

QH.W;w3/z D H.W /z � w3W:

.w1;w2;w3/ is velocity of mesh vertices during motion [5]. System (5) is now
solved by the Modified Causon’s scheme in ALE formulation [3]. This cell-centred
scheme is derived from TVD form of the MacCormack scheme. It is not TVD but
saves approximately 30% of computational time and memory with almost no loss
in accuracy. The ALE method uses computation on moving meshes and hence an
algorithm for mesh modification is needed. The actual position of mesh vertices xi
is in our case given by the following prescription

xi .t/ D Q
�
�.t; jjxi .0/� xref jj/

�
.xi .0/� xref /C xref ; (7)

where

Q.�/ D
	

cos� � sin �
sin� cos�




; (8)

and

�.t; r/ D
8
<

:

�˛1.t/ for r < r1;
�˛1.t/fD.r/ for r1 � r < r2;
0 for r2 < r:

(9)

where

fD.r/ D
"

2

	
r � r1
r2 � r1


3
� 3

	
r � r1
r2 � r1


2
C 1

#

(10)

The computational area is divided into three regions by spheres (or hemispheres)
with different radius. The hemisphere with centre in xref and radius r1 is rotating
according to the prescribed change of pitching angle as a solid body. Outer area
of the second hemisphere with radius r2 > r1 is motion-less and in space between
these two hemispheres motion of the mesh is damped by damping function fD.� /.
Wing moves according to the following prescription for pitching angle:

˛1.t/ D ˛init C A sin.!t/ (11)
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with angular velocity

! D 2�kU1
c

; (12)

U1 DM1 is the free-stream velocity, c is chord length (in the wing-root) and k is
reduced frequency (or! D 2�f with f being real /dimensional/ frequency). In both
simulated cases structured C-mesh was used for discretization of the computational
domain. In the case of the AS28 wing the mesh consisted from 396000 cells, in the
case of the ONERA M6 wing it was made from 493000 cells.

4 Numerical Results

Forced oscillations of the wing were both in subsonic and transonic regimes given
by formally the same relation (11) but with various values of ˛init ; A and !.

4.1 Unsteady Subsonic Flow over the AS28 wing

The initial conditions for unsteady subsonic flow over the AS28 wing were as
follows: inlet Mach numberM1 D 0:51; ˛init D �0:5ı; f D 45Hz; A D 3ı: The
wing oscillated around reference axis parallel with wing span and going through
point xref D Œ0:25; 0; 0�. Numerical and experimental results were compared on
behaviour of lift coefficient in cuts along the wing (Fig. 2). Development of the
periodic state can be observed on Fig. 1.

4.2 Steady Transonic Flow over the ONERA M6 wing

A well-known test case published in AGARD report no. 138 [1] and characterised
by inlet Mach numberM1 D 0:8395 and angle of attack ˛init D 3:06ı was chosen
as initial condition for unsteady transonic flow computation. Numerical results
obtained by the MCS scheme are compared to results of WLSQR scheme [6] with
HLLC numerical flux [7] and also to the experimental data (Fig. 3). Agreement
between numerical and experimental results is more than satisfactory.

4.3 Unsteady Transonic Flow over the ONERA M6 wing

Simulation of transonic flow over the ONERA M6 wing was based on a test case
mentioned Sect. 4.2 with initial conditions: M1 D 0:8395; ˛init D 3:06ı; f D
10Hz; A D 1:5ı: The wing oscillated around reference axis parallel with its span,
this time going through point xref D Œ0:35; 0; 0�.

As can be seen from Figs. 1 to 4 the scheme delivers very good results for both
steady and unsteady flow. Considering subsonic regime, behaviour of cl coefficient
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a = 0°, wt = 0p+4p.

a = 0°, wt = p+4p.

a = 3°, wt = 1
2p + 4p .

a = –3°, wt = 3
2p + 4p .

a = –2.12° a = 0°, wt = 6p

Fig. 1 cp coefficient in cuts alongside the AS28 wing during 3rd period of forced oscillatory
motion. Cuts are placed in 17.05%, 35.38%, 53.72%, 72.05% and 93.38% of the wing span
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93.38% wing span.

17.05% wing span. 35.38% wing span.

53.72% wing span. 72.05% wing span.

Fig. 2 cl coefficient in cuts alongside the AS28 wing, forced oscillatory motion. Red line -
numerical results, black line - experimental results
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Fig. 3 cp coefficient in cuts alongside the ONERA M6 wing during 3rd period of forced
oscillatory motion

obtained by numerical computation corresponds very well to the experimental
observations. Moreover, the results show that fully periodic state has been achieved
at least during the 3rd period of oscillatory motion. Pressure coefficient decreases
with increasing angle of attack (and vice versa) and the scheme does not produce
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Fig. 4 cp coefficient in cuts alongside the ONERA M6 wing during 3rd period of forced
oscillatory motion



3D Unsteady Flow Simulation with the Use of the ALE Method 503

spurious oscillations. Comparison between experimental and numerical data is
unfortunately not available in the transonic case, but the numerical results have all
the mentioned characteristics as in subsonic flow.

5 Conclusion

The scheme is able to capture important flow characteristics even in the case of
inviscid flow and can be used as a reliable numerical simulation of mentioned
problems. From Figs. 1 to 4 can be seen that fully periodic state was achieved
during at least 3rd period of oscillatory motion. The future steps intended are
implementation of implicit version of the scheme and its extension to aero-elastic
problems.
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FVM-FEM Coupling and its Application
to Turbomachinery

J. Fořt, J. Fürst, J. Halama, K. Kozel, P. Louda, P. Sváček, Z. Šimka,
P. Pánek, and M. Hajsman

Abstract The paper deals with the numerical solution of turbulent flows through a
2D turbine cascade considering heat exchange between the gas and the solid blade.
The flow field is described by the Favre averaged Navier-Stokes equations, and the
temperature field inside the solid blade is given by the Laplace equation. Both parts
are coupled in order to achieve continuity of the temperature as well as of the heat
flux along the fluid-solid boundary. The analysis of simplified model case is pre-
sented and the results obtained with two in-house codes with several two-equation
turbulence models are compared to results of commercial software (Fluent).

Keywords finite volumes, finite elements, heat transfer
MSC2010: 65M08, 65M12, 65N30, 76M10, 76M12

1 Introduction

The objective of this paper is to describe the coupled solution of turbulent flows
through turbine cascade with heat transfer inside the blade. Due to the geometry of
blades and expansion of the compressible fluid there is a temperature jump between
suction and pressure side of blade profile, which is overestimated for commonly
used adiabatic case compared to case with blade-fluid heat exchange. The correct
modeling of heat exchange between blade and fluid is important for blades with
high thermal conductivity and of course it is essential when considering some heat
source inside the blade.
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The solution of fluid part is obtained with the help of our in-house code using
finite volumes whereas the heat equation is solved with finite elements. In order
to achieve the continuity of temperature filed between the fluid and solid parts, the
Dirichlet-Neumann coupling is used.

It is well known that the Dirichlet-Neumann coupling is under some conditions
divergent in FEM-FEM case (see e.g. [8]). Therefore we do an analysis of simplified
2D problem in our FVM-FEM case in section 2 and we show that the method is
under certain conditions stable.

The section 3 describes an application of the coupled algorithm to quite complex
case of heat transfer between the turbulent flow field in turbine cascade and the solid
blade.

2 Model problem

Our goal is to solve the heat transfer problem in turbomachinery (see section 3).
The analysis of full model involving the solution of Navier–Stokes equations with
a turbulence model is rather difficult, therefore we will analyze simplified model of
Dirichlet–Neumann coupling of temperature field with different heat conductivities.
We assume that the domain ˝ is divided onto two parts: ˝f covered by fluid with
heat conductivity kf and thermal capacity C and ˝s corresponding to solid part
with heat conductivity ks . The solid part is in the interior of ˝ (see Fig. 1 a).

We assume that the temperature field is described by parabolic heat equation in
fluid part and by elliptic equation in solid part:

C
@T .x; t/
@t

D kf �T .x; t/; for x 2 ˝f ; (1)

��.x; t/ D 0 for x 2 ˝s: (2)

Here T and � denote the temperature in fluid and solid parts. The initial-boundary
value problem for fluid part is equipped with the initial and boundary condition

T .x; 0/ D T0.x/ for x 2 ˝f ; (3)

T .x; t/ D g.x; t/ for x 2 @˝ and t > 0: (4)

We assume, that the temperature is continuous at the interface � D ˝f \ ˝s .
Moreover, the conservation of energy dictates also the continuity of heat fluxes
across � . Hence

�.x; t/ D T .x; t/ for x 2 �; (5)

kf
@T

@n
D ks @�

@n
for x 2 �: (6)

Here n is the outer normal with respect to ˝f .
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The solution is calculated using following semi-discrete time marching algo-
rithm

1. Set n D 0 and T 0 D T0.
2. Solve the Laplace equation (2) for �n using Dirichlet boundary condition �nj� D
T nj� .

3. Calculate T nC1 using the parabolic equation (1) with Dirichlet boundary con-
dition (4) at the @˝ and Neumann boundary condition (6) at the interface �
calculating the heat flux using �n.

4. Increment n and repeat steps 2-4.

2.1 FE solution in˝s

We are solving the Laplace equation with Dirichlet boundary condition using
standard FEM method with piece-wise linear base functions with triangular mesh
in 2D. Let �i denotes the solution at FEM mesh node i (we omit the superscript
n in this section). The standard discretization then leads to the algebraic system of
equations

A� D b; (7)

where bi D 0 for internal nodes and bj D T nj for boundary nodes.
It is known, that the Delaunay triangulation in 2D implies for piece-wise linear

elements discrete maximum principle, i.e.

min
j2� T

n
j � �i � max

j2� T
n
j ; (8)

where the shorthand notation j 2 � denotes boundary nodes (see e.g. [9] or
[3]). This discrete maximum principle is equivalent in our case to the fact, that the
solution in internal points i is a convex combination of boundary values T nj , i.e.

�i D
X

j2�
˛ij T

n
j ; (9)

with ˛ij � 0 and
P

j ˛ij D 1.

2.2 FV solution in˝f

Assume that the parabolic equation is solved with the explicit cell-centered FV
scheme using an unstructured mesh. Assume that the mesh is orthogonal in the
sense, that the face between two adjacent cell is orthogonal to the line connecting
the cell centers. In that case the flux through the interface between cells i and k is
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proportional to Tk � Ti and the explicit scheme for internal points reads

T nC1i D T ni C�t
X

k

ˇik.T
n
k � T ni /; (10)

with ˇik � 0 (k goes over cells adjacent to cell i ).
Including the Neumann boundary condition kf @T=@n D Pq, the scheme for cells

adjacent to � is

T nC1i D T ni C�t
X

k

ˇik.T
n
k � T ni /C�tˇbi Pqi ; (11)

with ˇbi > 0.
The scheme for internal cells is positive and hence stable for small enough time

steps. On the other hand the positivity is not obvious for boundary cells.

2.3 Coupling method

Here we assume that the nodes for FEM correspond to the cell vertices of FVM
method at the boundary (see Fig. 1b, quadrilateral FV mesh in the upper part is
connected to triangular FE mesh in the lower part).

Before solving the FE problem, we have to obtain a value at the boundary (points
A and B at Fig. 1b). We calculate the boundary values using a weighted average of
the cell-centered values adjacent to the boundary node with non-negative weights,
e.g. T nA D 0:5T nW C 0:5T nP . Let us note, that this interpolation implies low order of
accuracy at the interface. On the other hand we have to use very fine mesh spacing
and high aspect ration cells in the fluid part near the interface due to thin boundary
layers. Therefore we hope that the low order interpolation doesn’t impair the overall
accuracy.

Ωf Ωs

FVM

FEM

Γ
A

P

N

B

C

C’

W

(a) Domain (b) FVM-FEM coupling

E

Fig. 1 Domain ˝ D ˝f [˝s , meshes for FVM-FEM coupling
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Combining this positive interpolation with the equation (9) we get the solution in
the solid part as

�i D
X

k2�
�ikT

n
k with �ik � 0; (12)

where k 2 � means that k goes over FV cells adjacent to the boundary � , i.e.
k D W;P;E; ::: at Fig. 1b.

The “natural” evaluation of the normal derivative of � in the triangle ABC yields

@�

@n
jABC D f .�A; �B; �C / D �C � �C 0

jCC 0j ; (13)

whereC 0 is the orthogonal projection ofC onto lineAB and �C 0 is the obtained with
linear interpolation of �A and �B . Unfortunately it is very difficult to analyze the
scheme with formula. Therefore we propose to use an approximation (see Fig. 1b)

�C 0 D T nP : (14)

Then the gradient of � with respect to n is

@�

@n
jABC D �C � T nP

jCC 0j ; (15)

and taking into account the relation (12) we get

@�

@n
jABC D

P
k2� �CkT nk � T nP
jCC 0j ; (16)

Then the final scheme for cell P is

T nC1P D T nP C�t
X

k2fN;W;Eg
ˇPk.T

n
k � T nP /C�tˇbP ks

P
j2� �Cj T nj � T nP
jCC 0j (17)

with ˇ, and � being non-negative. Therefore we can make the scheme positive using
small enough time step.

Note 1: the final scheme for T is under appropriate limit for time step�t positive

T nC1i D
X

j

bij T
n
j ; bij � 0: (18)

Moreover taking T nj D � a constant, we can easily show that the boundary values

T nA , T nB ,... are equal to � too. Then �C D � and finally T nC1i D � . Canceling � yieldsP
j bij D 1. Therefore the T nC1i is convex combination of values T nj and therefore

it satisfies the discrete maximum principle (as far as the FE mesh is Delaunay and
the FV mesh is orthogonal).
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Note 2: the approximation (14) introduces an error in the heat flux. Nevertheless
as we stated before, we are using fine near-wall scaling dictated by the turbulence
model in the fluid part. In order to eliminate the error caused by “side shift” (i.e.
different x coordinate of P and C 0 at the Fig. 1b) we can use isosceles triangles
near the boundary in the FEM part.

3 Fluid-solid heat exchange in turbine cascade

Here we describe the application of this method to the solution of turbulent flows
including heat transfer in the solid blade.

The fluid field is described by the set of Favre-averaged Navier-Stokes equa-
tions for compressible flows using several two-equations turbulence models. The
temperature field inside the blade˝s is described by the Laplace equation (2).

The problem was numerically solved using commercial software Fluent at Škoda
Plzeň and two different versions of in-house software developed at Czech Technical
University.

3.1 Commercial software

The calculation by Škoda was performed in Fluent version 6.2 with the two-
dimensional, double-precision, pressure-based solver. The turbulence models tested
were the RNG k� model and the k�! SST model. A second-order discretization
scheme was employed. All calculations started on a coarse initial grid generated
in Gambit, which was gradually refined at walls using the hanging-node adaption
method to achieve adequate mesh resolution for low Reynolds turbulence models.
The software does the computation of temperature field in both parts with the same
FVM, hence it does not use the above described coupling procedure.

3.2 In-house codes

The coupling algorithm from previous section was used in the combination of two
in-house codes developed at the Czech Technical University in Prague. The first
one, denoted as solver 1 in later text, uses structured multiblock mesh, AUSM
flux by [6] and quasi one-dimensional reconstructions with Van Leer limiter. The
time discretization is achieved with backward Euler method for details see [1]. The
second solver (solver 2) uses AUSMPW+ flux of [4], unstructured meshes, and
multidimensional weighted least squares reconstruction described in [2].

The turbulence is modeled using Low-Reynolds k�! model by [10], TNT k�!
model by [5], and SST model by [7].

The temperature field in solid is solved with FEM and is coupled to fluid part
using the algorithm described above with “natural” approximation of heat fluxes, see



FVM-FEM Coupling and its Application to Turbomachinery 511

eq. (13). Moreover, the FV mesh is not orthogonal in the above mentioned sense,
therefore the sufficient conditions for positivity of the scheme were not satisfied.
Nevertheless we didn’t met serious problems with stability in this case.

3.3 Results

Calculations were performed using structured and unstructured hybrid meshes with
10-20 000 cells in fluid part with in-house codes and using an extremely fine mesh
with 650 000 cells using Fluent. The flow regime is characterized by the outlet
isentropic Mach numberM2i D 0:34 and with the Reynolds numberRe D 820 000
related to the parameters at the outlet and to the blade pitch.

Figure 2 shows the iso-lines of the temperature obtained with solver 2 in the fluid
part of the domain (a), the iso-lines of the temperature in the blade (b) calculated
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with FEM. Moreover, it compares the distribution of temperature (c) and heat flux
(d) along the blade surface obtained with both in-house methods including several
turbulence models and the results of calculation made by commercial software.
However there are some differences in the temperature and consequently in the heat
flux, we can say that the agreement of all methods is satisfactory.

4 Conclusions

The article shows some results concerning the solution of heat transfer between
turbulent flow and solid blades. The analysis shows that it is possible to couple
FVM with FEM for this kind of problems. The second part shows an application of
the procedure to conjugated heat transfer problem. Due to missing experimental data
for our case, we were able to compare only our solution to the results obtained with
commercial software which uses different approach. However the comparison was
quite satisfactory, we have to do a comparison with experimental data in the future.
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Abstract The van Roosbroeck system describes the transport of holes and electrons
in semiconductors in a drift-diffusion approximation (a special type of Nernst-
Planck-Poisson systems). The classic finite volume scheme used in the field allows
to prove the existence of bounded steady state solutions and the uniqueness of
the thermodynamic equilibrium solution by using the duality of the boundary
conforming Delaunay grid and the Voronoi diagram. The article gives an overview
over properties proven for this discrete version. The time dependent problem is dis-
sipative in case of the implicit Euler scheme. The free energy decays exponentially
in case of boundary conditions compatible with the thermodynamic equilibrium.
The interesting qualitative properties of the analytic problem can be carried over to
the discrete case for any h and � (spatial, time step size respectively).
A weak interpretation of the scheme is helpful: using test functions one to gets
estimates, and the weak discrete maximum principle allows to prove the bounds.
An implementation following the theory strictly (Oskar3) is used to solve 3d
silicon detector problems, characterized by large volumes, multiple floating regions
per detector pixel and extreme charge conservation requirements. An example is
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1 The van Roosbroeck system

The continuity equations for the particle densities of electrons and holes are given on
a bounded polyhedral domain˝ D [i˝i ,˝i a subdomain containing one material.

@n

@t
� r.Dnni � r n

ni
� �nn � rw/CR.n; p/ D 0; (1)

@p

@t
� r.Dpni � r p

ni
C �pp � rw/CR.n; p/ D 0: (2)

The main interaction of electrons and holes is described by the Poisson equation

� r � ."r"srw/ D C � nC p: (3)

The meaning of the quantities is:
� w - electrostatic potential,
� n D niew��n - electron density, �n - quasi-Fermi potential of electrons,
� p D ni e�p�w - hole density, �p - quasi-Fermi potential of holes,
� C - density of impurities, ni intrinsic carrier density,
� " D "r"s - dielectric permittivity, "r relative permittivity, "s scaled permittivity
� R - recombination-generation rate R D r.x; n; p/.np � 1/, r.x; n; p/ � 0,
� �n;p - carrier mobilities �n;p > 0.

The Einstein relation is supposed to hold (diffusion constant Di D �ikBT=qe , kB
Boltzmann constant, T temperature, qe elementary charge). Hence a natural scaling
is to ‘measure’ all potentials in thermal voltages UT and densities in a nref � ni
resulting in "s � 1:4 � 10�13m2, 1V � 40UT at room temperature, and n C p can
easily be of the order 1010 or 10�10 in different parts or states of a device.

The free energy of van Roosbroeck system is (compare [8, 16, 17])

F.w; n; p/ D
Z

Œn.ln
n

n�
� 1/C n�Cp.ln p

p�
� 1/Cp�� d˝C 1

2
jjjw�w�jjj2; (4)

with jjjhjjj2D
Z

"jrhj2 d˝C
Z

˛h2 d�; � �rw�C˛.w��w� /D 0; � outer normal,

and
� r � ."rw�/ D C C nie�w� � niew� in ˝ (5)

the .w�; n�; p�/ (unique weak) thermal equilibrium solution. The dissipation rate is
given by

d.w; n; p/ D
Z

Œn�njr�nj2 C p�p jr�pj2 C r.x; n; p/.np � 1/ ln.np/� d˝ � 0:
(6)

The problem is supplemented by boundary conditions on � D �D [�N describing
contacts (Dirichlet boundary conditions for w, n, p on �D D N�D), gate contacts
(third kind boundary condition for w, homogeneous Neumann boundary condition
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for n, p), and homogeneous Neumann boundary conditions on different parts of the
boundary of the domain. The analytic results obtained by different techniques and
for different assumptions on data [6, 9, 19–21] can be summarized for the purpose
in mind here by: existence of steady state solutions (in H1 \L1).

2 Spatial discretization

The aim from this application point of view is to have discretizations, that carry over
the analytic properties for classes of grids, hence parameters like step sizes are a
question of precision and not of existence of the solution. For boundary conforming
Delaunay meshes and the Scharfetter- Gummel scheme together with an implicit
Euler time discretization the following table summarizes the proven properties: At
a first glance that may look like a pretty comfortable position, but the headroom for
improvement by better understanding is large.
A short summary with respect to Delaunay meshes [3] introduces notations and the
following part reviews results establishing the lower right part of Table 1, see [10].
Let a vertex vk 2 IRN be denoted by vk D .x1; : : : ; xN /T , ENl is simplex l in the
Delaunay grid,B.EM

l / its circumscribed ball (ifM < N the smallest circumscribed
ball). Vertex numbers are chosen such that the local coordinate system for each
simplex defined by the matrix Pl;k D .vkC1 � vk; : : : ; vkCN � vk/ results in the
volume jPl;k j=N > 0. Interfaces and � are given by N � 1 dimensional simplices
in the grid. The Delaunay property requires that for all l vj j2 B.EN

l /, 8vj ¤ Pl ,
and B.EN

l / is the circumscribed ball of EN
l . The Voronoi volume Vi is the set of

all points closer to vi than to vj ; j ¤ i . @Vi D NVi n Vi denotes the surface of the
Voronoi volume and the intersections with the simplex ENj are Vij DVi \ ENj and
@Vij W D @.Vi\ENj /. @Vij is the union of planar pieces of @Vi and thoseEN�1

l 2 EN
j

sharing the vertex i . The Delaunay property guarantees a non negative surface
measure per edge in the interior of each subdomain˝i , the boundary conformity [5]
(per subdomain) requires that all lower dimensional simplices on the boundary have
empty smallest circumscribed balls, too. Together with the fact that all interfaces
(boundaries) coincide with a set of EN�1

l both types of surface measures (in or
orthogonal to each interface) per edge and subdomain are non negative.
Starting with the equation �r � "rwDf , using Gauss’s theorem on Vij , and
assuming " D const per simplex yields:

Table 1 Proven properties, compare [7, 8, 10–15]
property analytic discrete
dissipativity yes yes
exponential decay free energy yes yes
existence of bounded steady state sol. yes yes
uniqueness for small applied voltages yes yes
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Z

Vij

�r � "lrw dV D �"l
Z

@Vij

rw � dSk D �"l
X

k.j /

Z

@Vi;k.j /

rw � dSk C BIVij

� �"l
X

k

@Vi;k.j /

jeik.j /j .wk � wi /C BIVij D "l Œ�k.i/� QGNwjENj C BIVij ;

whereBIVij denotes boundary integrals in case of boundary faces. It is compensated
in the interior by the neighboring BIVij 0 , ei;k.j / is the edge from node i to k in

simplex j , and QGN is a difference matrix, mapping from nodes to edges.

. QGT QG/ii > 0; . QGT QG/i>j < 0; and 1T QGT D 0T : (7)

�k.i/ D @Vi;k.i/

jeik.i/j (8)

denotes the elements of a diagonal matrix of geometric weights per simplex.
Functions are approximated by

Z

Vij

fdV � Vij f .xi /; ŒV �i D
X

j

Vij ; (9)

where Œ�� denotes a diagonal matrix. Summing over all vertices of the simplex j
yields

X

Vij2ENj

Z

Vij

�r � "rw dV � " QGT Œ�� QGwjENj C BI : (10)

The explicit form of the boundary integrals (in the generic situation 
1wC
2@w=@�C

3 D 0, with 
i defined on � , 
1.x;w; : : : / � 0, 
2.x;w; : : : / > 0) is given by

BIVij D
X

i 0¤i;i 02ENj

Z

EN�1
i 0
\@Vij
�"rw�dS �

X

i 0¤i;i 02ENj

jEN�1
i 0 \@Vij j

"


2i 0
.
1i 0wiC
3i 0 /;

where EN�1
i 0 denotes the N � 1 dimensional simplex opposite to i 0 2 ENj , EN�1

i 0 2
� , and BI DPi2ENj

BIVij .

Remark 1. A ‘discrete weak maximum principle’ holds (wC pos. part)

.w � w0/
CT QGT Œ�� QGw > 0;

if w > w0 D const at least for one xi 2 ˝ , as long as the Voronoi faces related to
each edge and subdomain fulfill

X

ENj 3eik ;ENj 2˝l

@Vik � 0: (11)
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This is exactly the requirement fulfilled by a ’boundary conforming Delaunay
mesh’ and has to be preserved for acceptable averages N"ij in case of
"D ".x; n; p; jrwj; : : :/. In the sequel the notation

G WD Œp�� QG;

is used to denote the discrete gradient and summation (elements, edges, nodes) is
not indicated any more—the context should indicate a local or global use.

The continuity equations can be transformed by changing variables n D nie
wu,

p D nie�wv, hence the steady state case reads:

�r � niDne
wruCR D 0; (12)

�r � niDpe
�wrvCR D 0; (13)

with an elliptic main part for bounded electrostatic potentials. Application of the
discretization scheme and integration along each edge (the term wk � wi in the
discrete current expression (7) is just a special case of integrating the equation
w.s/00 D 0 along the edge from si to sk) using
� . N�ew.x/.e��/0/0 D 0, N� edge average,
� w.x/ piecewise linear,
� sh.s/ WD sinh.s/=s, b.2s/ D e�s=sh.s/ D 2s=.e�2s�1/, b Bernoulli function:

GT Œ"�Gw D ŒV �g.C;n;p/; g D C � nC p; n D ni Œew�u; p D ni Œe�w�v; (14)

ASn.Dn;w/e��n D GT Œ NDne
Nw=sh. QGw=2/�Gu D ŒV �Œr.x;n;p/�.1 � Œv�u/; (15)

ASp .Dp;�w/e�p D GT Œ NDpe
�Nw=sh. QGw=2/�Gv D ŒV �Œr.x;n;p/�.1 � Œu�v/: (16)

The diagonal transformations n D Œni e
w�u, p D Œni e

�w�v yield the well known
Scharfetter-Gummel (Il’in) scheme, dating back to Allen and Southwell ([1,18,22],
see [4], too), generalized to boundary conforming Delaunay grids and used since
the early eighties in semiconductor device simulations (compare [2, 23]).

The thermodynamic equilibrium solution is given by (w�, u� D 1, v� D 1) and
w� solution of (14) with u D u�, v D v�.

The proof of bounded steady state solutions for the system (14, 15, 16) proceeds
in the following steps (for details see [10]):
a) for �1 < Lw0 � w � Ow0 < 1 matrices ASn , ASp are weakly diagonally
dominant (positive Dirichlet boundary measure).
b) for some Lu � u0i � Ou; Lv � v0i � Ov 8 xi 2 N̋ , LC D min.C.x// and
OC D max.C.x//, the extreme boundary values, and the monotone mapping with

respect to wj , gj .Cj ; nj ; pj / D Vj .Cj � nj C pj / (right hand side of the discrete
Poisson equation) allow to bound the solution of (14) by construction contradictions
using the weak discrete maximum principle.
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c) supposing properly chosen bounds for Qw D max jwi j one proves e�Qw � u0; v0 �
e Qw using the maximum principle and the properties of the recombination-generation
term, hence e�Qw, e Qw is a lower, upper solution respectively for equations (15, 16)
with properly frozen u0, v0 in r.x;u0; v0/ and .1 � Œv0�u0/ .1 � Œu0�v0/ in (15, 16)
respectively.
d) Brouwer’s fixed point theorem guarantees the existence of at least one fixed point.
The bounds are identical with the analytic ones.
The discrete dissipation expression is obtained from testing the discrete equations
by the discrete quasi-Fermi potentials.
The uniqueness in the neighborhood of the discrete thermodynamic equilibrium
follows by linearization at .w�;u�; v�/, resulting in a decoupling of the continuity
equations and the Poisson equation, the Schur complement due to elimination of u
is a weakly diagonally dominant M-matrix (compare [10]).

3 Example

Silicon detectors for high energy and astrophysics are nice examples to stress
the algorithms used: each new detector is in some sense an extreme design for
one special purpose. The new X-ray lasers for instance require high speed, low
power, high spatial and energy resolution and the best possible signal to noise ratio.
Extreme charge conservation requirements (see Fig. 4) in the interesting parts of the
detector, hence in the computations, are typical.
The example shown is a pnCCD for SLAC’s Linac Coherent Light Source designed
at the MPI HLL, Munich. The Fig. 1 shows the relative simple geometry of
two quarter CCD registers, two times two half CCD registers, and again two
quarter CCD registers. This is the minimal configuration for testing the charge shift
properties of the CCD (Fig. 3). Questions of interest are:
� The maximum number of electrons to be stored in one register (see Fig. 2)?
� Appeare losses to the surface, hence recombination with holes from contacts?
� How fast is shifting by changing boundary conditions on top of the registers?
� Do electrons stay in the start register, reach all the aim register, see Fig. 4?

The computations predicted the possibility to store 5 to 10 times more electrons in
an optimized pnCCD. That was verified by experiments just now.
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Fig. 1 Doping as equivalent equilibrium potential, white negative, dark positive, R1 quarter of a
register, R2a one half register, side a is separated by the ‘channel stop’ C from side b, R3b one half
register, F floating region to create a potential minimum beneath each register in the shift layer S,
G gate contact to tune register separation in shift direction; dimensions x D 75¯m, y D 75¯m,
z D 150¯m, 958 399 nodes, BACK: -50V, REGISTER 1, 3, 4: -18V, REGISTER 2: -10V, GATE
1, 2, 3: 5V

Fig. 2 Overflow of electrons at the arrival of the charge cloud created close to the bottom in the
center of register 2 at ymax , 10ni iso-surface of log.n/ (left), weakest point in the potential barrier
(properly selected electrostatic potential iso-surface, right)
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Fig. 3 In computations one can not shift the electrons 1000 times in one direction, hence a
minimal configuration is used, to shift them back and forth. Shifting of electrons (not shown) takes
place inside the moving potential barriers (iso-surfaces) due to time dependent boundary conditions
at register 2 and 3 (compare the plotted electrostatic potential elevation over the y D ymax
surface). Initial state, the electrons are inside the iso-surface centered at register 2 (top left), the
boundary value at register 3 reduces the potential barrier between register 2 and 3 (top right), both
registers are ’open’ (bottom left), register 2 has pushed out the electrons to register 3 (bottom right).
Graphics by gltools
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Fig. 4 The electron balance in the volume of interest is one crucial point: after order 1000
shift operations total losses of 0.1% are acceptable in the detector. The charge balance in the
computations can be explained up to one third missing electron (out of 402225) after two
integrations over 7 orders in time or 668 time steps
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Playing with Burgers’s Equation

T. Gallouët, R. Herbin, J.-C. Latché, and T.T. Nguyen

Abstract The 1D Burgers equation is used as a toy model to mimick the resulting
behaviour of numerical schemes when replacing a conservation law by a form which
is equivalent for smooth solutions, such as the total energy by the internal energy
balance in the Euler equations. If the initial Burgers equation is replaced by a
balance equation for one of its entropies (the square of the unknown) and discretized
by a standard scheme, the numerical solution converges, as expected, to a function
which is not a weak solution to the initial problem. However, if we first add to
Burgers’ equation a diffusion term scaled by a small positive parameter  before
deriving the entropy balance (this yields a non conservative diffusion term in the
resulting equation), and then choose  and the discretization parameters adequately
and let them tend to zero, we observe that we recover a convergence to the correct
solution.

Keywords Burgers equation, compressible flows, Euler equations, finite volumes
MSC2010: 65M08,76N99

1 Introduction

Computer codes developed for the simulation of inviscid and non heat-conducting
compressible flows are in general based on the conservative form of the Euler
equations, which read in the one-dimensional case:
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@t �C @x.�u/ D 0; (1a)

@t .�u/C @x.�u2/C @xp D 0; (1b)

@tE C @x
�
.E C p/u� D 0; (1c)

where t stands for the time, �, u and p are the density, velocity and pressure in the
flow, andE stands for the total energy,E D �u2=2C�e, with e the internal energy.
This system must be complemented by an equation of state, giving for instance the
pressure as a function of the density and the internal energy p D }.�; e/.

For physical reasons, the density and internal energy must be non-negative
(in usual applications, positive). In addition, for the continuous problem as well
as, at the discrete level, for a wide range of schemes (the so-called conservative
schemes), the non-negativity of these variables allows a (weak) control on the
solution; assuming that � and E are known on the parts of the boundary where
the flow is entering the computational domain, Equations (1a) and (1c) indeed
yield an L1.0; T IL1.˝//-estimate (with ˝ � .0; T / the space-time domain of
computation) for the density and the total energy respectively. The positivity of
the density at the discrete level is easily obtained from a convenient discretization
of (1a). The positivity of the internal energy does not seem easily obtained other
than by replacing Equation (1c) by a balance equation for the internal energy in the
discrete problem; this balance equation is formally derived (i.e. supposing that the
solution is regular) from (1b) and (1c) and reads:

@t .�e/C @x.�eu/C p@xu D 0: (2)

In this relation, the discrete convection operator may be built so as to respect the
positivity of e: provided that the equation of state is such that for any value of �,
p vanishes for e D 0, testing the discrete counterpart of (2) by the negative part
of e proves e � 0 (see [5] for the initial paper, [2, Appendix B] for another proof
suitable in this context, and [4] in the framework of the compressible Navier-Stokes
equations).

Instead of Equation (1c), one may also prefer to use a conservation equation for
the physical entropy s, because this equation (derived for regular solutions) is a
simple transport equation:

@t .�s/C @x.�su/ D 0: (3)

Let us then consider that, for computational efficiency or robustess reasons, (2) or
(3) are prefered to (1c). Since both (2) and (3) are derived from (1c) assuming
a regular solution, there is no reason for their discretization to yield the correct
weak solutions in the presence of shocks. Nevertheless, we may reasonably expect
to recover the correct shock solutions if we use the following strategy:

(i) regularize the problem by adding a small diffusion term,
(ii) derive the counterpart of (2) or (3) taking into account the diffusion terms,
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(iii) solve these equations,
(iv) let  tend to zero.

Of course, step .iii/ is performed numerically, and convergence is monitored by the
space and time discretization steps h and k; the question which arises is then to find
a convenient way to let  and the numerical parameters h and k tend to zero. The
aim of this paper is to perform numerical experiments in order to investigate this
issue on a toy problem, namely the inviscid Burgers equation. Note that we only
consider explicit schemes in this study.

2 The equations and the numerical schemes

The inviscid Burgers equation reads:

@tuC @x.u2/ D 0; for x 2 R; t 2 .0; T /; (4)

which we complement with the initial condition:

u.x; 0/ D u0.x/; for x 2 R: (5)

Following the above mentioned strategy (items (i)-(iv)), we first add to (4) a viscous
term, to obtain: @tu C @x.u2/ � @xxu D 0: Now, multiplying this relation by 2u
yields the following perturbed equation:

@tu
2 C 4

3
@xu3 � 2u@xxu D 0: (6)

For " D 0, we get the following “Burgers square entropy” equation:

@tu
2 C 4

3
@xu3 D 0: (7)

which also reads, setting v D u2:

@tvC 4

3
@x.v

3
2 / D 0: (8)

We consider the following initial data, chosen such that the entropy solution of (4)-
(5) contains a discontinuity:

u0.x/ D
(
10; x � �0:25
1; x > �0:25

: (9)

It is well known that for such an initial condition, the entropy weak solutions of
equations (4) and (7) differ. Let us then turn to their numerical approximations.
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Since the chosen initial data (9) is positive, the celebrated Godunov scheme reduces
for both equations to the classical upwind scheme, thanks to the fact that the upwind
scheme preserves (for these equations) the sign of the solution; it is well known
that it leads to an approximate solution which converges, under a so called CFL
condition, to the exact solution as the discretization parameters go to zero [1]
(note that this is not the case for the centred finite volume scheme, although it
is conservative). For the sake of simplicity, we consider constant time and space
steps h and k. For i 2 Z, we set xi D ih and for n 2 f0; : : : ;M g, with
.M � 1/k < T � Mk, we set tn D nk. The discrete unknowns are the real
numbers u.n/i , with i 2 Z and n 2 f0; : : : ;M g. The values u.0/i are obtained with the
initial condition:

u.0/i D
1

h

Z xiC h
2

xi� h2
u0.x/dx: (10)

Since the discrete solution is positive, the upwind scheme for Equation (4) reads:

u.n/i D u.n�1/i C k

h

h�
u.n�1/i�1

�2 � �u.n�1/i

�2
i
: (11)

For this particular problem and scheme, the maximum value for the solution is
reached at the initial time step so that the CFL number is the number G such that:

k D G h

maxf2s; s 2 Œ1; 10�g D G
h

20
: (12)

Similarly, the upwind scheme for Equation (8) reads:

v.n/i D v.n�1/i C 4k

3h

h�
v.n�1/i�1

� 3
2 � �v.n�1/i

� 3
2

i
; (13)

and the CFL number is the same number G. The numerical solutions obtained with
(11) for the Burgers equation (4) and with (13) for the Burgers square entropy
equation (7) are depicted in Fig. 1. Both are obtained with CFL equal to 1, for
T D 1=20 and with various values of N , starting from N D 200 and multiplying
successively by two the number of cells up to N D 1600. As expected, the upwind
scheme (13) yields a numerical solution which converges (as the discretization
parameters go to zero and under a CFL condition) to a weak solution of (7) (and
even to its entropy solution), which is not a weak solution of (4), since the Rankine-
Hugoniot conditions differ. At time T D 1=20, the shock for the solution of (4) is
located at x D 0:3, while the shock of the solution of (7) is located at x > 0:4.

Remark 1 (Link with a non-conservative diffusion term). For the Burgers equation
(4), upwinding may be seen as adding a diffusion, namely discretizing (since u > 0):

@tuC @x.u2/ � @x..hu � 2ku2/@xu/ D 0:
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Fig. 1 Upwind Scheme for (4)-(9) (left) and (7)-(9) (right) with different mesh sizes, CFLD 1

Note that one has hu�2ku2 � 0 thanks to the CFL condition. For the Burgers square
entropy equation (7), upwinding may be seen, formally, as solving the following
parabolic equation (since u > 0): @tu2C .4=3/@x.u3/� @x..2hu2� 4ku3/@xu/ D 0:
This equation is equivalent to the following parabolic perturbation of the Burgers
equation:

@tuC @x.u2/ � 1
u
@x..hu2 � 2ku3/@xu/ D 0:

The third term at the left-hand side may be seen as a numerical diffusion (thanks to
the CFL condition) which is not in a conservative form, because of the factor 1=u.
The above numerical results show that such a non conservative diffusion may lead
to wrong discontinuities.

3 Numerical solution of the perturbed equation

We then discretize the perturbed equation (6) with  D 0h
˛, where 0 > 0 and

˛ > 0 are fixed. Note that, setting v D u2, (6) can also be recast as:

@tvC 4

3
@x.v

3
2 / � v

1
2 0h

˛@x.v
� 12 @xv/ D 0;

that is a nonlinear hyperbolic equation augmented with a nonlinear nonconservative
diffusion term. The upwind finite volume discretization of this equation reads (in
the u variable), with u.0/i given by (10),

�
u.n/i

�2 D �u.n�1/i

�2 C 4k

3h

h�
u.n�1/i�1

�3 � �u.n�1/i

�3
i

C k

h2
0h

˛ u.n�1/i

h
u.n�1/i�1 � 2u.n�1/i C u.n�1/iC1

i
: (14)

We present in Figs. 2, 3 and 4 the numerical solutions obtained with (14) for
˛ D 0:5, ˛ D 1 and ˛ D 2 respectively, and for the same time T D 1=20,
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Fig. 2 Upwind Scheme for (6) with non conservative diffusion term, ˛ D 0:5

Fig. 3 Upwind Scheme for (6) with non conservative diffusion term, ˛ D 1

CFL D 0:1 and meshes as in Sect. 2. The parameter 0 is such that 0h˛ D 0:2

forN D 200 (whatever ˛ may be). Figure 2 shows that for 0 < ˛ < 1, the sequence
of approximate solutions given by (14) converges to a weak solution of the initial
Burgers equation (4), as h and k tend to 0, under a stability condition, which, since
˛ < 1, becomes more stringent than a CFL condition when h tends to zero. Figure 3
shows that for ˛ > 1, we obtain the convergence to the solution of (7); Fig. 4 shows
that for ˛ D 1, the location of the discontinuity lies in between the discontinuities
of the solution to (6) and (7). These results seem to indicate that the convergence to
the solution of (7) (resp. (6)) occurs when the added diffusion dominates (resp. is
dominated by) the numerical one.
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Fig. 4 Upwind Scheme for (6) with non conservative diffusion term, ˛ D 2

Fig. 5 Centered Scheme for (6) with non conservative diffusion term, ˛ D 1

Let us finally study the following finite volume centred scheme for Equation (7),
which reads:

�
u.n/i

�2 D �u.n�1/i

�2 C 4k

3h

h�u.n�1/i�1 C u.n�1/i

2

�3 � �u.n�1/i C u.n�1/iC1
2

�3
i

C k

h2
0h

˛ u.n�1/i

h
u.n�1/i�1 � 2u.n�1/i C u.n�1/iC1

i
: (15)

Results for ˛ D 1, ˛ D 1:5 and ˛ D 2 (and 0 such that 0h˛ D 0:2 for N D 200,
whatever ˛ may be) are reported on Figs. 5, 6 and 7, respectively. The numerical
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Fig. 6 Centered Scheme for (6) with non conservative diffusion term, ˛ D 1:5

Fig. 7 Centered Scheme for (6) with non conservative diffusion term, ˛ D 2

solution now seems to converge to the solution of (7), at least for ˛ 2 .0; 2/. For the
finest mesh and ˛ D 2, the diffusion is no longer sufficient to prevent some spurious
oscillations near the shock. Last but not least, the additional diffusion which is
necessary to recover the right shock location is considerably reduced with respect to
the upwind scheme (even if the scheme still appears more diffusive than the standard
upwind scheme applied to (4)), which is encouraging in view of practical extensions
to Euler equations.
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Conclusion We tested two discretizations for the modified equation (6):

– an upwind scheme for which the solution converges to the weak solution of (4)
if the viscous term is predominant with respect to the numerical diffusion, that
is if  D 0h˛ , with 0 > 0 and ˛ 2 .0; 1/.

– a centred scheme which yields correct solutions for all values ˛ 2 .0; 2/.
The extension of this work to Euler equations is under way, and results are

encouraging. Indeed, it seems that we are able to build convergent schemes, even in
the presence of shocks, using either the entropy or internal energy balance. A next
step might be to use a nonlinear viscosity to avoid an excessive smearing of the
solutions, following the ideas developed in [3].
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On Discrete Sobolev–Poincaré Inequalities
for Voronoi Finite Volume Approximations

Annegret Glitzky and Jens A. Griepentrog

Abstract We prove a discrete Sobolev–Poincaré inequality for functions with
arbitrary boundary values on Voronoi finite volume meshes. We use Sobolev’s
integral representation and estimate weakly singular integrals in the context of finite
volumes. We establish the result for star shaped polyhedral domains and generalize
it to the finite union of overlapping star shaped domains.

Keywords Discrete Sobolev inequality, Sobolev integral representation, Voronoi
finite volume mesh
MSC2010: 46E35, 46E39, 31B10

1 Introduction and notation

In this paper we study discrete Sobolev inequalities. In the continuous situation the
Sobolev embedding estimates

kukLq.˝/ � CqkukH1.˝/ 8u 2 H1.˝/ (1)

for q 2 Œ1;1/ in two space dimensions and for q 2 Œ1; 2n=.n � 2/� in n � 3 space
dimensions are well known [1, 10, 15].

For the finite volume discretized situation some results can be found in [3, 6].
But these estimates concern only the case of zero boundary values. The two-
dimensional case for admissible finite volume meshes (see [6, Definition 9.1]) is
treated in [6, Lemma 9.5]. The corresponding three-dimensional result is proved
in [3, Lemma 1]. For p 2 Œ1; 2�, a discrete Sobolev inequality estimating the Lp

�

-
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norm (where p� D np=.n � p/ if p < n and p� < 1 if n D p D 2) by
the discrete W 1;p-norm is presented in [5, Proposition 2.2]. Moreover, for the zero
boundary value case and 1 � p < 1, the discrete embedding of W 1;p

0 into Lq

for some q > p, 1 � p < 1 is established in [7, sect. 5]. A corresponding
result for discontinuous Galerkin methods working in the spaces of piecewise
polynomial functions on general meshes is obtained in [4, Theorem 6.1]. The idea
there is to follow Nirenberg’s proof of Sobolev embeddings. Recently in [2], in the
context of discontinuous Galerkin finite element methods, broken Sobolev–Poincaré
inequalities were proved. There, known classical results in BV.˝/ and in Sobolev
spaces W 1;p.˝/, together with local norm equivalence and global estimates for the
reconstruction operator, lead to the desired estimates.

According to our knowledge and to the information of authors of the cited
papers concerning finite volume schemes, finding discrete versions of the Sobolev
inequality (1) for functions with arbitrary boundary values has been an open
question up to now. Only a discrete Poincaré inequality (q D 2) is available in
[6, Lemmas 10.2, 10.3] and [9, Lemma 4.2]. But in both papers the second step of
the proof is done only for two space dimensions.

The aim of the present paper is to establish a discrete Sobolev–Poincaré
inequality for functions with nonzero boundary values on Voronoi finite volume
meshes. Such results can be applied to more general boundary value problems,
for instance, to problems with inhomogeneous Dirichlet, Neumann, or mixed
boundary conditions. The technique used here is an adaptation of Sobolev’s integral
representation and of the treatment of weakly singular integrals in the context of
Voronoi finite volume meshes. The Voronoi property of the mesh essentially comes
into play in the proofs of the potential theoretical results, Lemmas 1–3.

The plan of the paper is as follows. In the remainder of this section we introduce
our notation. In Sect. 2 we formulate our assumptions and our main result, the
discrete Sobolev–Poincaré inequality for star shaped domains (see Theorems 1
and 2 for a uniform estimate for a class of Voronoi finite volume meshes having
comparable mesh quality). In Sect. 3 we collect three potential theoretical lemmas
needed for the proof of our main result. In Sect. 4 we generalize the discrete Sobolev
inequality to domains which are a finite union of overlapping star shaped domains
(see Theorem 3). The last section contains some remarks concerning applications of
discrete Sobolev inequalities.

Let˝ � B.0;R0/ � R
n, n 2 N, n � 2, be a bounded, open, polyhedral domain,

and let @˝ be its boundary. We work with Voronoi finite volume meshes of ˝ , and
our notation is basically taken from [3, 6]. Moreover, for set valued arguments we
write diam.�/ for the diameter of the corresponding set. By mes.�/ and mesd .�/ we
denote the n- and d -dimensional Lebesgue measures, respectively.

A Voronoi finite volume mesh of˝ denoted by M D .P;T ;E / is formed by a
family of grid points P in˝, a family T of Voronoi control volumes, and a family
of relatively open parts of hyperplanes in R

n denoted by E (which represent the
faces of the Voronoi boxes). For a Voronoi mesh we use the following notation:

For each grid point xK of the set P the control volume K of the Voronoi mesh
belonging to the point xK is defined by
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K D fx 2 ˝ W jx � xK j < jx � xLj 8xL 2P; xL ¤ xKg; K 2 T :

ForK , L 2 T withK ¤ L either the .n� 1/-dimensional Lebesgue measure of
K\L is zero orK\L D � for some � 2 E . In the latter case the symbol � D KjL
denotes the Voronoi surface between K and L. We introduce the following subsets
of E : The sets of interior and external Voronoi surfaces are denoted by Eint and Eext ,
respectively. Additionally, for every K 2 T we call EK the subset of E such that
@K D K n K D [�2EK� . Then E D [K2T EK . Moreover, for � 2 E we use the
following notation: m� represents the .n � 1/-dimensional measure of the Voronoi
surface � , and x� corresponds to the coordinates of the center of gravity of � .

For � D KjL 2 Eint let d� be the Euclidean distance between xK and xL. For
K 2 T , � 2 EK we define dK;� to be the Euclidean distance between xK and the
hyperplane containing � . Then, in the case of (isotropic) Voronoi meshes we have
dK;� D d�

2
for � 2 Eint .

We work with half-diamonds DK� D ftxK C .1 � t/y W t 2 .0; 1/; y 2 �g,
where nmes.DK�/ D m�dK;� . Then due to our definitions,

nmes.K/ D
X

�2EK
m�dK;� 8K 2 T :

The mesh size is defined by size.M / D supK2T diam.K/. We denote byX.M /

the set of functions from ˝ to R which are constant on each Voronoi box of the
mesh. For u 2 X.M / the value in the Voronoi box K 2 T is denoted by uK .
Finally, for u 2 X.M / the discrete H1-seminorm juj1;M of u is defined by

juj21;M D
X

�2Eint

m�

d�
.D�u/2;

whereD�u D juK � uLj, uK is the value of u in the Voronoi boxK , and � D KjL.

2 Main result

First we formulate our assumptions on the geometry and the meshes as follows:

Assumption 1. We assume that the open, polyhedral domain˝ � B.0;R0/ � R
n

is star shaped with respect to some ball B.0;R/.

Let the function � W Rn ! Œ0; 1� be given by

�.y/ D
8
<

:

exp
n
� R2

R2�jyj2
o

if jyj < R;
0 if jyj � R:
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We introduce the piecewise constant approximations �M 2 X.M / as

�M
K .x/ D min

y2K
�.y/ for x 2 K: (2)

Assumption 2. Let M D .P;T ;E / be a Voronoi finite volume mesh of ˝ with
the property that EK \ Eext ¤ ; implies xK 2 @˝ . Moreover, the local mesh size
near B.0;R/ is assumed to be so small that there exists a constant �0 > 0 such thatR
˝
�M .x/ dx � �0.
Let us remark that the constant �0 in Assumption 2 can be fixed, for instance, if

we demand that for some r � R=4 we have diam.K/ < r for all xK 2 P with
xK 2 B.0;R/. Then, for almost all x 2 B.0; r/ we find

�M .x/ � exp

�

� R2

R2 � .2r/2
�

� exp

�

�4
3

�

and Z

˝

�M .x/ dx � mes.B.0; r// exp

�

� R2

R2 � .2r/2
�

;

which can be taken as �0 in Assumption 2.
Under Assumption 2 there exist minimal constants �1.M / > 0, �2.M / � 1 such

that the geometric weights fulfill

0 < diam.�/ � �1.M / d� 8� 2 Eint (3)

and
max

�2EK\Eint
max
x2� jxK � xj � �2.M / min

�2EK\Eint
dK;� 8xK 2P : (4)

Having in mind that

RK;out WD max
�2EK\Eint

max
x2� jxK � xj; RK;inn WD min

�2EK\Eint
dK;�

are the smallest radius of a circumscribed ball ofK centered at xK and the greatest
radius of a ball fully contained in K and centered at xK , respectively, inequality (4)
implies that

RK;out � �2.M /RK;inn:

Moreover, inequality (4) implies that

max
�2EK\Eint

jxK � x� j � �2.M / min
�2EK\Eint

dK;� 8xK 2P : (5)

In this prescribed setting of a Voronoi finite volume mesh we establish the
discrete Sobolev–Poincaré inequality:
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Theorem 1. Let Assumptions 1 and 2 be satisfied, and let q 2 Œ1;1/ for n D 2

and q 2 Œ1; 2n
n�2 / for n � 3, respectively. Then there exists a constant cq.M / > 0

depending only on n, q, ˝ and the constants �0, �1.M /, and �2.M / such that

ku �m˝.u/kLq.˝/ � cq.M / juj1;M 8u 2 X.M /;

where m˝.u/ D mes.˝/�1
R
˝ u.x/ dx.

For the proof this theorem (see [14, sect. 4]) we adapt techniques used in [16, 17]
to the discretized situation using Voronoi diagrams. To do so, we establish some
discrete analogue for Sobolev’s integral representation (see [16, sect. 116]) and of
the treatment of weakly singular integral operators (see [16, sect. 115]).

Note that for n � 3, the discrete version of the Sobolev embedding H1.˝/ ,!
L2n=.n�2/.˝/ for the critical Sobolev exponent can not be obtained by using only
Sobolev’s integral representation. This is exactly the same situation as for the
continuous case (see [10, Chap. 7.8], [16, sect. 114–116], [17, sect. 8]).

We generalize our result to a class of Voronoi finite volume meshes having a
unified mesh quality. Namely, we additionally assume the following for the meshes:

Assumption 3. There exist constants �1 > 0 and �2 � 1 such that the geometric
weights fulfill 0 < diam.�/ � �1 d� for all � 2 Eint and max�2EK\Eint jxK � x� j �
�2 min�2EK\Eint dK;� for all xK 2P .

Now we can formulate the main theorem of our paper, the discrete Sobolev
inequality uniformly on a class of Voronoi finite volume meshes M characterized
by Assumptions 2 and 3:

Theorem 2. Let ˝ be an open bounded polyhedral subset of R
n, and let M be a

Voronoi finite volume mesh such that additionally Assumptions 1–3 are fulfilled. Let
q 2 Œ1;1/ for n D 2 and q 2 Œ1; 2n

n�2 / for n � 3, respectively. Then there exists a
constant cq > 0 depending only on n, q, ˝ and the constants in Assumptions 1–3
such that

ku �m˝.u/kLq.˝/ � cq juj1;M 8u 2 X.M /:

Note that the constant cq in Theorem 2 depends on the fixed constants �1, �2
from Assumption 3 instead of �1.M /, �2.M /. The dependency on �0 is of the
same quality as in Theorem 1.

3 Potential theoretical lemmas

In this section we introduce three potential theoretical lemmas which are essential
for the proof of the discrete Sobolev–Poincaré inequality, Theorem 1. The proofs of
these lemmas can be found in [14, sect. 5].

Lemma 1. Let n 2 N, n � 2 and Assumptions 1 and 2 be satisfied. Let xK0 2P be
a fixed grid point and let � 2 Eint be an internal Voronoi surface with gravitational
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center x� . Then

mes
�fx 2 B.0;R/ W ŒxK0; x� \ � ¤ ;g

� � An m�

jxK0 � x� jn�1
;

where An WD 1
n

maxf2; 4 �1.M /gn�1diam.˝/n.

Lemma 2. Let n 2 N, n � 2 and Assumptions 1 and 2 be satisfied. Let q 2 .2;1/
for n D 2 and q 2 .2; 2n

n�2 / for n � 3. Moreover, let ˇ > 0 be given by 2ˇ D
n
q
� n

2
C 1, and let xK0 2P be a fixed grid point. Then

X

K2T

X

�2EK
jxK0 � x� j�nC2ˇ m�dK;� � Bn;

where Bn WD n
2ˇ

maxf1C 2�1.M /; 2gn�2ˇ.2R0/2ˇmesn�1.@B.0; 1//.

Lemma 3. Let n 2 N, n � 2 and Assumptions 1 and 2 be satisfied. Let q 2 .2;1/
for n D 2 and q 2 .2; 2n

n�2 / for n � 3. Moreover, let ˇ > 0 be given by 2ˇ D
n
q
� n

2
C 1, let � 2 Eint be a fixed inner Voronoi surface, and let x� denote its center

of gravity. Then

X

K02T

X

�02EK0
jxK0 � x� j�nCqˇ m�0dK0;�0 � Dn;

where Dn WD n
qˇ

�
1C �2.M /.1C 2�1.M //

�n�qˇ
.2R0/

qˇmesn�1.@B.0; 1//.

4 Sobolev–Poincaré inequalities for more general domains

In this section we discuss how the results of Theorems 1 and 2, which hold true for
star shaped domains˝ , can be used to obtain assertions for a more general situation.
In the nondiscretized situation the result can be carried over to domains ˝ , which
are a finite union of star shaped domains ˝i (see [16, sect. 118], [17, pp. 69–70]).
In our discretized situation we assume the following:

Assumption 4. The open, connected, polyhedral domain ˝ � B.0;R0/ is a finite
union of open, polyhedral sets ˝i , i D 1; : : : ; N , and there are ı > 0, R > 0,
and points zi 2 ˝ such that ˝i , as well as the set ˝iı WD ˝i [ [j¤ifx 2 ˝j W
dist.x;˝i / < ıg, is star shaped with respect to the ball B.zi ; R/, i D 1; : : : ; N .

We introduce the functions

�i W Rn ! Œ0; 1�; �i .y/ D
8
<

:

exp
n
� R2

R2�jy�zi j2
o

if jy � zi j < R;
0 if jy � zi j � R
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and their piecewise constant approximations �M
i 2 X.M /. Concerning the mesh,

we assume the following:

Assumption 5. Let M D .P;T ;E / be a Voronoi finite volume mesh of ˝ with
the property that EK \ Eext ¤ ; implies xK 2 @˝ . Moreover, the local mesh size
near B.zi ; R/, i D 1; : : : ; N , is assumed to be so small that there exists a constant
�0 > 0 such that

R
˝
�M
i .x/ dx � �0; i D 1; : : : ; N .

Then the discrete Sobolev–Poincaré inequalities remain true also for finite unions
of ı-overlapping star shaped domains:

Theorem 3. Let Assumptions 3–5 be satisfied, and q 2 Œ1;1/ for n D 2 and
q 2 Œ1; 2n

n�2 / for n � 3, respectively. Then there exists a constant Cq > 0 depending
only on n, q, ˝ , and the constants in Assumptions 3–5 such that

ku �m˝.u/kLq.˝/ � Cq juj1;M 8u 2 X.M /:

For a proof we refer to [14, sect. 6]. Since Theorem 2 is a direct consequence of
Theorem 1 (with fixed �1; �2), this statement also remains true for more general
domains characterized by Assumption 4.

5 Applications of discrete Sobolev inequalities

A functional analytic tool like a discrete Sobolev–Poincaré inequality enables us to
treat discretized boundary value problems similarly to the corresponding continuous
boundary value problems. Especially, if the embedding constants hold true for a
class of meshes, uniform results with respect to the mesh can be obtained which can
be used, for instance, for convergence results, too.

We were forced to prove the discrete Sobolev–Poincaré inequality by the
analytical and numerical treatment of (nonlinear) reaction-diffusion systems. For the
nondiscretized systems under consideration the free energy decays exponentially to
its equilibrium value. We introduced a discretization scheme (Voronoi finite volume
in space and fully implicit in time) which has the special property that it preserves
the main features of the continuous problem, namely, positivity, dissipativity, and
flux conservation (see [13]). For each fixed mesh we proved the exponential decay
of the discretized free energy, too (see [11]). This proof works with the finite
dimensional quantities.

To obtain uniform decay rates for a class of Voronoi finite volume meshes we
had to translate the quantities from the finite dimensional discretized problems
into expressions of functions from X.M / being defined on ˝ and being constant
on Voronoi boxes of the corresponding meshes, and we had to consider limits of
such functions belonging to sequences of Voronoi finite volume meshes to find a
contradiction in the indirect proof of an estimate of the free energy by the dissipation
rate (see [12, Theorem 3.2]). The essential ingredient in that proof is the discrete
Sobolev–Poincaré inequality, Theorem 2.
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For the application of discrete versions of Sobolev’s inequality in the case of
homogeneous Dirichlet boundary conditions we refer to [7, sect. 5]. Moreover, this
inequality in the discrete W 1;p

0 -setting (where p 2 .1;1/) comes into play in the
discretization of nonlinear elliptic problems of the form

�div a.x;ru/ D f in ˝; u D 0 on @˝

on general polyhedral meshes in n space dimensions. In [8, sect. 3] it is used to
obtain an estimate of the approximate solution. In this setting the Caratheodory
function a W ˝�R

n fulfills, with suitable positive constants c1, c2, and d 2 Lp0.˝/,

a.x; #/ � # � c1j#jp for almost all x 2 ˝;8# 2 R
n;

.a.x; #/ � a.x; �// � .# � �/ > 0 for almost all x 2 ˝;8# ¤ � 2 R
n;

ja.x; #/j � d.x/C c2j#jp�1 for almost all x 2 ˝;8# 2 R
n:
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A Simple Second Order Cartesian Scheme
for Compressible Flows

Y. Gorsse, A. Iollo, and L. Weynans

Abstract A simple second order scheme for compressible inviscid flows on
cartesian meshes is presented. An appropriate Rieman solver is used to impose
the impermeability condition. The level set function defines the immersed body
and provides some useful geometrical data to increase the scheme accuracy.
A modification of the convective fluxes computation for the cells near the solid
ensures the boundary condition at second order accuracy. The same procedure is
performed in each direction independently. An application to the simulation of a
Ringleb flow is presented to demonstrate the accuracy of the method.

Keywords compressible flow, second order scheme, level set method, Riemann
solver, cartesian meshes
MSC2010: 65M08, 65M12, 76N15

1 Introduction

The computation of flows in complex unsteady geometries is a crucial issue to
perform realistic simulations of physical or biological applications like for instance
biolocomotion (fish swimming or insect flight), turbomachines, windmills... To this
end several class of methods exist. Here we are concerned with immersed boundary
methods, i.e., integration schemes where the grid does not fit the geometry. These
methods have been widely developed in the last 15 years, though the first methods
were designed earlier (see for example [2,3,10]). The general idea behind immersed
boundary methods is to take into account the boundary conditions by a modification
of the equations to solve, either at the continuous level or at the discrete one,
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rather than by the use of an adapted mesh. The main advantages of using these
approaches, compared to methods using body-conforming grids, are that they are
easily parallelizable and allow the use of powerful line-iterative techniques. They
also avoid to deal with grid generation and grid adaptation, a prohibitive task when
the boundaries are moving. A recent through review of immersed boundary methods
is provided by Mittal and Iaccarino [6].
In this paper we present a simple globally second order scheme inspired by ghost
cell approaches to solve compressible inviscid flows. In the fluid domain, away from
the boundary, we use a classical finite-volume method based on an approximate
Riemann solver for the convective fluxes and a centered scheme for the diffusive
term. At the cells located on the boundary, we solve an ad hoc Riemann problem
taking into account the relevant boundary condition for the convective fluxes by an
appropriate definition of the contact discontinuity speed. These ideas can be adapted
to reach higher order accuracy. However, here our objective is to device a method
that can easily be implemented in existing codes and that is suitable for massive
parallelization.
In section 2 we describe the finite volume scheme used to solve the flow equations
in the fluid domain, away from the interface. In section 3 we introduce our method
to impose impermeability condition. Finally, in section 4 we present a numerical
test in two dimensions to validate the expected order of convergence and to discuss
performance compared to others immersed boundary or body fitted methods.

2 Resolution in the fluid domain

We briefly describe how we solve the Euler equations in the fluid domain.

2.1 Governing equations

The compressible Euler equations are:

@�

@t
Cr � �u D 0 (1)

@�u
@t
Cr � .�u˝ uC pn/ D 0 (2)

@E

@t
Cr � ..E C p/u/ D 0 (3)

where E denotes the total energy per unit volume. For a perfect gas
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E D p

� � 1 C
1

2
�u2 and p D �RT (4)

2.2 Discretization

We focus on a two-dimensional setting. Let i and j be integers and consider the
rectangular lattice generated by i and j , with spacing hx and hy in the x and y
direction, respectively.

Let W be the conservative variables, F x.W /, F y.W // the convective flux
vectors in the x and y directions, respectively. By averaging the governing equations
over any cell of the rectangular lattice we have

dWi j

dt
C 1

hx
.F x

iC1=2 j �F x
i�1=2 j /C 1

hy
.F y

i jC1=2 �F y
i j�1=2/ D 0 (5)

whereWi j is the average value of the conservative variables on the cell considered,
F x
iC1=2 j the average flux in the x direction taken on the right cell side, and similarly

for the other sides.
The average convective fluxes at cell interfaces are approximated using the Osher

numerical flux function [9].
A second order Runge-Kutta scheme is used for the time integration.

3 A second order impermeability condition

For Euler equations, the boundary condition on the interface is the impermeability
assumption, i.e., given normal velocity to the boundary (zero for a static wall,
but non-zero for a moving solid). We are concerned with recovering second order
accuracy on the impermeability condition.

3.1 Level set method

In order to improve accuracy at the solid walls crossing the grid cells we need
additional geometric information. This information, mainly the distance from the
wall and the wall normal, is provided by the distance function. The level set method,
introduced by Osher and Sethian [8], is used to implicitly represent the interface of
solid in the computational domain. We refer the interested reader to [11,12] and [7]
for recent reviews of this method. The zero isoline of the level set function represents
the boundary˙ of the immersed body. The level set function is defined by:
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'.x/ D
�
dist˙.x/ outside of the solid
�dist˙.x/ inside of the solid

(6)

A useful property of the level set function is:

n.x/ D r'.x/ (7)

where n.x/ is the outward normal vector of the isoline of ' passing on x.
In particular, this allows to compute the values of the normal to the interface,
represented by the isoline ' D 0.

3.2 The impermeability condition in one dimension

To make the ideas clear, let us start from a simple case. The typical situation for a
grid that does not fit the body is shown in Fig. 1. The plan is to modify the flux at the
cell interface nearest to the boundary of the solid, in order to impose the boundary
condition at the actual fluid-solid interface location. For a fixed body, we want to
impose ub D u.xb/ D 0 at the boundary point xb where '.xb/ D 0.

Fig. 1 Mesh near the solid. The interface lies between the center of cell i (fluid) and the center
of cell i C 1 (solid). The flux in i C 1=2 has to be modified in order to account for the boundary
conditions

Let u� be the contact discontinuity speed resulting from the solution of the
Riemann problem defined at the interface between cell i and cell iC1. The plan is to
define a fictitious fluid state in i C 1 such that the resulting velocity at the interface
u� takes into account, at the desired degree of accuracy, the boundary condition
ub D 0 in xb . In particular, taking a second order Taylor expansion of the velocity
at xb , we have

u� D ub C
	
hx

2
� 'i



@u

@x

ˇ
ˇ
ˇ
ˇ
xb

CO.h2x/ (8)

The boundary can be located anywhere between xi and xiC1, so to ensure a well

defined derivative (if xb ! xi ,
ub � ui
xb � xi is not numerically well defined), we use

xi�1 instead of xi to compute the first order derivative at the interface:
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@u

@x

ˇ
ˇ
ˇ
ˇ
xb

D ub � ui�1
hx C 'i (9)

To obtain u� as the contact discontinuity speed of the Riemann problem, having
computed the left state of the Riemann problem with the MUSCL reconstruction
and slope limiters: U� D .u�; p�; c�/, we create the right state UC D .�u� C
2u�; p�; c�/, where c is the speed of sound. The left and right state of the variables
p and c are chosen identical to express the continuity of these variables on the
interface.

3.3 The impermeability condition in two dimensions

In two dimensions the flow equations are solved by computing independently the
flux in each direction, so we want to apply in each direction the same kind of ideas
as in one dimension in order to accurately enforce the boundary conditions. When
the level set function changes sign between two cells, we need to modify the fluxes
at the interface between these cells.
The interface point is the intersection between the interface (' D 0) and the segment
connecting the two cell centers concerned by the sign change (for example the points
A, B and C on Fig. 2). For the flux computation, a fictitious state is created for
instance between the cells .i; j / and .i C 1; j / on Fig. 2. The boundary condition
that we have to impose now is ub:nb D 0, where ub is the speed of the fluid at the
boundary, and nb the outward normal vector of the body.

Fig. 2 Example of geometric configuration at the interface. B is the interface point located
between .i; j / and .i C 1; j /. The flux on cell interface .i C 1=2; j / is modified to enforce the
boundary condition on B
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With reference to Fig. 2, the level set function changes sign between xi;j and
xiC1;j at pointB . Let the normal vector point to the fluid side. If we assume that the
boundary ' D 0 is locally rectilinear, using the side splitter theorem, the distance
between xi;j and B is

d D hx j'i;j j
j'i;j j C j'iC1;j j (10)

and the normal vector nb is computed by

nb D ni;j C d

hx

�
niC1;j � ni;j

�
(11)

where ni;j is a second order centered finite-difference approximation of r' at point
.i; j /. To impose the boundary condition at the interface point B , we determine a
value of the contact discontinuity speed u�, relative to a Riemann problem defined
in the direction normal to the cell side through xiC1=2;j , consistent at second order
accuracy with ub � nb D 0 in B. Figure 3 illustrates graphically the following steps.
Let the normal component of u� be u�n D u� � nb .
u�n is computed with a second order Taylor expansion of the normal velocity at the
interface point, that is:

u�n D ub � nC
	
hx

2
� d



ub � n � ui�1 � n

hx C d CO.h2x/: (12)

Then, let determine u�� the tangential component of u� by u�� D u� � �b , �b being
the vector tangential to the interface at point B . We use the continuity property of
the tangential component of the velocity to define u�� according to

u�� D u� � � (13)

Fig. 3 Graphical illustration of the construction of the u� vector

Finally we decompose u� in the canonical basis by its horizontal and vertical
components u� and v�, that is
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u� D u�nnx C u�� �x (14)

v� D u�nny C u�� �y (15)

To obtain u� as the contact discontinuity speed of the Riemann problem, the left
state resulting from the MUSCL reconstruction with slope limiters being U� D
.u�; v�; p�; c�/, we choose the right state to be UC D .�u� C 2u�; v�; p�; c�/.

4 Numerical illustration: The Ringleb flow

The objective is to ascertain the actual accuracy obtained at the solid interface.
The Ringleb flow refers to an exact solution of Euler equations. The solution is

obtained with the hodograph method, see [13]. The streamlines and iso-Mach lines
are shown on Fig. 4.

Fig. 4 Streamlines (black) and iso-Mach lines (grey) of the Ringleb flow

The exact solution is formulated in .�; V / variables with u D V cos � , v D
V sin � and V D

p
u2 C v2.

The stream function is given by � D sin �
V

.
The streamlines equations are:

x D 1

2�

	
1

V 2
� 2�2




C L

2
; y D sin � cos �

�V 2
(16)

with:
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L D �
	
1

2
ln
1C c
1� c �

1

c
� 1

3c3
� 1

5c5




; c2 D 1 � � � 1
2

V 2; � D c5 (17)

In our test case, the computational domain is Œ�0:5I �0:1� � Œ�0:6I 0� and we
numerically solve the flow between the streamlines �1 D 0:8 and �2 D 0:9.
The inlet and outlet boundary condition are supersonic for y D �0:6 and y D 0

respectively. The convergence orders are calculated for each variable in L1, L2, L1
norms on four different grids 32�48, 64�96, 128�192 and 256�384 and presented
on Table 1.

Table 1 Global orders of convergence for each variable

Variables L1 norm L2 norm L1 norm

x-velocity 2.04 1.68 1.28
y-velocity 1.97 1.6 1.13
pressure 2.0 2.02 1.97
sound velocity 1.95 1.58 1.03
entropy 1.9 1.49 1.08

The error for several variables is order 1 for the Linf ty norm. Colella et al. [5]
obtain the same kind of results on other test cases. One argument developed in [5]
to explain this order degradation is that the solid wall is characteristic for entropy,
and hence the error on this variable accumulates from inlet to outlet. For the same
test case, Coirier and Powell [4] observed also a convergence order between one
and two in the case of their own cartesian method. In [1], Abgrall et al. obtain a L2

numerical order of convergence for the density equal to 1.5 with their second order
residual distribution scheme.

5 Conclusions

In this paper we have presented a new second order cartesian method to solve
compressible flows in complex domains. This method is based on a classical finite
volume approach, but the values used to compute the fluxes at the cell interfaces
near the solid boundary are determined so to satisfy the boundary conditions
with a second order accuracy. A test case for inviscid flows was presented. The
order of convergence of the method is similar to those observed in the literature.
This method is particularly simple to implement, as it doesn’t require any special
cell reconstruction at the solid-wall interface. The extension to three-dimensional
cases is natural as the same procedure at the boundary is repeated in each
direction. Forthcoming work will concern the extension of the present approach
to multi-physics problems.
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Efficient Implementation of High Order
Reconstruction in Finite Volume Methods

Florian Haider, Pierre Brenner, Bernard Courbet, and Jean-Pierre Croisille

Abstract The paper presents a new algorithm for high order piecewise polynomial
reconstruction. This algorithm computes a high order approximant in a given cell
using data from adjacent cells in several steps, eliminating the need to handle
directly large reconstruction stencils. The resulting high order finite volume method
is well suited for modern parallel and vector (array) computers.

Keywords High Order Scheme, Unstructured Grid, Finite Volume Method,
MUSCL
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1 Introduction

The finite volume MUSCL method to solve hyperbolic conservation laws was
introduced by B. Van Leer in [7] thirty years ago. The main idea is to increase the
accuracy of the first order finite volume scheme by a piecewise linear reconstruction
used to evaluate upwinded fluxes at the cell interfaces.

Practical applications for convection dominated flows in complex geometries
have motivated many extensions of the MUSCL approach to unstructured grids.
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A typical example is the flow solver CEDRE developed at ONERA. It uses a cell
centered finite volume scheme with piecewise linear reconstruction on general
polyhedral grids to solve the compressible Navier Stokes equations. A large choice
of physical models is available in CEDRE: turbulence, combustion, diphasic flow,
radiation etc.

Our experience has shown that second order accuracy becomes insufficient for
LES and to capture contact discontinuities. The easiest way to increase the spatial
accuracy is to replace the linear interpolation with quadratic or cubic ones. Indeed,
the MUSCL scheme with quadratic reconstruction (3rd order) was already discussed
by B. Van Leer [7]. The quadratic approach was extended to unstructured grids
[1, 2]. The need for large (non compact) stencils seems to have limited the use of
cubic reconstructions (4th order), although some practical applications exist [6].

For reasons of performance, the computation of a polynomial reconstruction on a
grid cell must be local, using data in neighboring cells only. On the other hand, high
order approximation requires sufficiently many data samples, which means that data
from cells beyond adjacent cells in the grid must be accessed.

This paper shows how to compute a high order approximant in a given cell using
data from adjacent cells in several steps, eliminating the need to handle directly
large reconstruction stencils. No additional degrees of freedom are added: the
independent variables are the cell averages of the conserved quantity. The resulting
high order finite volume method is well suited for modern parallel and vector (array)
computers. This aspect is of primary importance for large scale industrial software.

2 Semi-discrete High Order Finite Volume Scheme

• Geometric notation: an unstructured grid is a triangulation of a domain ˝ � R
d

consisting of N general polyhedra. The cell with number ˛ is denoted T˛ , with
barycenter x˛ and d -volume jT˛j. The face A˛ˇ , with barycenter x˛ˇ , has a
normal vector a˛ˇ oriented from cell T˛ to Tˇ and of length

�
�a˛ˇ

�
� equal to

the surface
ˇ
ˇA˛ˇ

ˇ
ˇ. The oriented normal unit vector of the face A˛ˇ is �˛ˇ .

Furthermore, define h˛ˇ D xˇ � x˛ and

z.k/˛ˇ , 1
ˇ
ˇTˇ
ˇ
ˇ

Z

Tˇ
.x � x˛/˝k dx D 1

ˇ
ˇTˇ
ˇ
ˇ

Z

Tˇ
.x � x˛/˝ � � � ˝ .x � x˛/

m factors
dx

(1)
The kth moment of cell T˛ is then defined as x.k/˛ , z.k/˛˛ . Note that x.1/˛ D 0. For
a locally integrable function u, define its average over cell T˛ as u˛ .

• Semi-discrete MUSCL scheme: consider a hyperbolic conservation law with flux
f . Its balance equation over a cell T˛ can be written as

du˛ .t/

dt
D � 1

jT˛j
X

ˇ

Z

A˛ˇ

�˛ˇ � f .u .x; t// d� : (2)
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The semi-discrete MUSCL discretization of such a conservation law gives the
finite volume scheme

du˛ .t/

dt
D � 1

jT˛j
X

ˇ

Z

A˛ˇ

ef ˛ˇ

�
w˛ Œu .t/� .x/;wˇ Œu .t/� .x/

�
d�: (3)

In (3), ef˛ˇ W R � R ! R is a numerical flux that is consistent with f :
ef˛ˇ .u; u/ D �˛ˇ � f .u/. The functions w˛ and wˇ are reconstructed from the
cell averages u .t/ D .u1 .t/ ; : : : ; uN .t//. The dependence of w˛ on the cell
averages is denoted by square brackets w˛ Œu .t/� and the dependence on x by
w˛ Œu .t/� .x/.

• Accuracy: the piecewise reconstruction operates on each cell so that only the cell
averages in a certain neighborhood – the reconstruction stencil – of the cell T˛
determine the approximant w˛ . Assume that the reconstruction satisfies for all
smooth functions u and uniformly in x 2 T˛ for all cells T˛

ˇ
ˇ
ˇw˛ Œu .t/� .x/ � u .x; t/

ˇ
ˇ
ˇ � O �hkC1� : (4)

Assuming f is Lipschitz continuous, one verifies easily that (3) is kth order
accurate.

• Conservation: the reconstruction is required to be conservative, i.e. the mean
value of the function w˛ Œu .t/� over the cell T˛ must always be u˛ .t/.

3 High Order Polynomial Reconstruction

This section gives a short overview of k-exact reconstruction along the line of [1,4].
The goal is to reconstruct the functions w˛ used in (3) in such a way that they satisfy
(4). The time dependency is dropped to simplify the notation.

Let Pk

�
R
d
�

be the space of polynomials of degree k in R
d . In each cell T˛ , the

reconstruction procedure is represented by the linear operator

R˛ W RN ! Pk

�
R
d
� I u 7�! w˛ Œu� : (5)

Define a neighborhood of cell T˛ as a set of cells W˛ � f1 : : : ; N g such that ˛ 2
W˛ and associate with W˛ a local cell average operator

PkIW˛ W Pk
�
R
d
�! R

N (6)

given by .PkIW .p//ˇ D pˇ if ˇ 2W˛ and .PkIW .p//ˇ D 0 if ˇ …W˛.

A reconstruction operator R˛ W R
N ! Pk

�
R
d
�

is called k-exact if it is a left
inverse of (6)
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R˛PkIW˛ D Id
Pk.Rd / : (7)

It can be shown that, under certain conditions, (7) provides an approximation error
(4) that is O

�
hkC1

�
[3].

The space of symmetric tensors of rank m in R
d is denoted Sm

�
R
d
�
. For all

a;b 2 Sm
�
R
d
�

and c 2 R
d define

a � b ,
dX

i1D1
� � �

dX

imD1
ai1 ���imbi1���im (8)

.a � c/j1���jm�1 ,
dX

jmD1
aj1���jm�1jmcjm : (9)

A function u is called k-exact on W˛ if the restriction of u to the cells in W˛ is a
polynomial of degree k. Note that the mth derivative of u can be considered as an
element of Sm

�
R
d
�
.

A k-exact mth derivative on the neighborhood W˛ at cell T˛ is defined to be a
linear map w.mjk/˛ W RN �! Sm

�
R
d
�

such that for all polynomials p of degree k

w.mjk/˛ ŒPkIW˛ .p/� D D.m/p
ˇ
ˇ
ˇ
x˛
: (10)

Since a polynomial is determined by its cell average and its mth derivatives at
a point x˛ , a k-exact reconstruction operator is equivalent to a set of k-exact mth

derivatives w.mjk/˛ for 1 � m � k. By linearity, (10) can be expressed as

w.mjk/˛ Œu� D
X

ˇ2W˛

w.mjk/˛ˇ uˇ (11)

In (11), the symmetric tensors w.mjk/˛ˇ , called the reconstruction coefficients of w.mjk/˛ ,

depend only on the local cell geometry. In principle, a complete set of w.mjk/˛ˇ can be

computed by applying (10) to a basis of the space Pk

�
R
d
�

and solving the resulting

linear system in the least squares sense. Since this algorithm computes the w.mjk/˛

directly from the cell averages, we will refer to this method in Sect. 5 as direct least
squares reconstruction (DLS). However, an obvious drawback of this method is that
its implementation requires the computation of (11) over large stencils W˛ .

Taking into account the constraint of conservation and using k-exact mth

derivatives (10), one can write the reconstructed polynomial at cell T˛ in the general
form

w Œu� .x/ D u˛ C
kX

mD1

1

mŠ
w.mjk/˛ Œu� �

h
.x � x˛/˝m � x.m/˛

i
: (12)
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In (12), .x � x˛/˝m is defined as in (1) and x.m/˛ , z.m/˛˛ .
When a k-exact mth derivative (11) is applied to a polynomial p of degree

.k C 1/, the reconstruction error can be expressed as

w.mjk/˛ Œp� � D.m/p
ˇ
ˇ
ˇ
x˛
D 1

.k C 1/Š
X

ˇ2W˛

w.mjk/˛ˇ

	

z.kC1/˛ˇ � D.kC1/p
ˇ
ˇ
ˇ
x˛




: (13)

The interest of (13) is that a .k C 1/-exact .k C 1/th derivative can be used to
compute the right hand side of (13) and to subtract it from w.mjk/˛ , making w.mjk/˛

.k C 1/-exact.
Finally, we introduce the following smoothing technique: let V˛ be the set of

direct neighbors of cell T˛ , including T˛ itself. Let 0 � 
ˇ � 1 be such that
P

ˇ2V˛

ˇ D 1. If a set of k-exact kth derivatives w.kjk/ˇ is known, one can define a

new k-exact kth derivativeew.kjk/˛ as a convex combination

ew.kjk/˛ Œu� D
X

ˇ2V˛


ˇw.kjk/ˇ Œu� : (14)

It is natural to choose the weights 
ˇ in (14) proportional to the cell volumesˇ
ˇTˇ
ˇ
ˇ.The stencil of (14) is larger which increases stability, see [3, 5].

4 Efficient Algorithms for High Order Reconstruction

The computation of (11) involves large (non compact) stencils. To avoid this
undesirable feature, we compute a .k C 1/-exact .k C 1/th derivative not directly
from the cell averages, but from a family of k-exact kth derivatives w.kjk/ˇ at cells Tˇ
for ˇ in a small neighborhood W˛ of cell T˛ . This is done as follows:

Let W˛ be a neighborhood of cell T˛ . Let w.kjk/ˇ be a family of k-exact kth

derivatives with stencils W
.k/

ˇ at cells Tˇ for ˇ 2 W˛ . Assume that
S
ˇ2W˛

Tˇ is

path connected where the paths are piecewise C1. Let m˛ , jW˛j � 1 and define
the linear operator

J
.kC1/
W˛

W S.kC1/ �Rd
� �!

�
S.k/

�
R
d
��m˛

: (15)

The i th component of (15) is defined using h˛ˇ D xˇ � x˛ , (1), (8) and (9) as

�
J
.kC1/
W˛

.b/
�

i
, b � h˛ˇi C

1

.k C 1/Š
X

�

w.kjk/ˇi �

�
z.kC1/ˇ� � b

�
�

� 1

.k C 1/Š
X

�

w.kjk/˛�

�
z.kC1/˛� � b

�
: (16)
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Proposition 1 (Functional Identity for Reconstruction). Let u be a function that
is .k C 1/-exact on

S
ˇ2W˛

W
.k/

ˇ . Then the following identity holds

J
.kC1/
W˛

	

D.kC1/u
ˇ
ˇ
ˇ
x˛




D

D
�

w.kjk/ˇ1
Œu� � w.kjk/˛ Œu� ; : : : ;w.kjk/ˇm˛

Œu� � w.kjk/˛ Œu�
�
: (17)

The main result of this section is

Proposition 2 (.k C 1/-exact .k C 1/th derivative). Assume that the operator
J
.kC1/
W˛

defined in (16) has a left inverse D
.kC1/
W˛

. Then the following expression

defines a .k C 1/-exact .k C 1/th derivative on the neighborhood
S
ˇ2W˛

W
.k/

ˇ :

ew.kC1jkC1/˛ Œu� ,

, D
.kC1/
W˛

�
w.kjk/ˇ1

Œu� � w.kjk/˛ Œu� ; : : : ;w.kjk/ˇm
Œu� � w.kjk/˛ Œu�

�
(18)

Prop. 2 gives the following algorithm.

Definition 1 (k-exact Coupled Least Squares Algorithm (CLS)).

1. Compute a 1-exact 1st derivative directly from the cell averages on a small stencil.
2. Iterate the following step from m D 1 to m D k � 1 at each cell:

a. Compute a .mC 1/-exact .mC 1/th derivative from am-exactmth derivative,
using the pseudo inverse of (15) in (18).

b. On tetrahedral grids, apply (14) to the .mC 1/-exact .mC 1/th derivative.

3. Use (13) to obtain k-exact mth derivatives for 1 � m � k � 1.

Remark 1. The smoothing step 2b is important on tetrahedral meshes due to
stability considerations, see [5].

5 Numerical Results

As a test case, we apply the cell centered finite volume scheme (3) to the linear
advection equation with constant velocity c D �

1
10
; 1
5
; 1
�

on the unit cube with
periodic boundaries. The numerical flux is the classical upwinded flux

ef˛ˇ
�
u˛; uˇ

�
,
�
c � �˛ˇ

�
C u˛ C

�
c � �˛ˇ

�
� uˇ :
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Table 1 Grid convergence: series of tetrahedral grids (CLS with smoothing)

havg N CLS D2(4) CLS D3(6) DLS D1(2) DLS D2(3) DLS D3(4)

0.042316 5928

0.037870 8406 2.2661 4.4984 1.9190 1.5232 4.8690

0.032909 12817 2.3654 4.4386 1.9881 1.8080 4.8354

0.027354 22493 2.7521 4.5814 2.2780 2.3162 5.0287

0.022707 39518 2.7832 4.3773 2.3307 2.5409 4.8292

0.018133 77770 2.8736 4.2354 2.3583 2.7250 4.7772
0.013422 192972 2.9989 4.3158 2.3962 2.9245 4.8433

Table 2 Grid convergence: series of cartesian grids (CLS with smoothing)

havg N CLS D2(4) CLS D3(6) DLS D1(2) DLS D2(3) DLS D3(4)

0.045455 10648

0.035714 21952 2.4243 4.4868 1.9355 1.9313 4.4325

0.029412 39304 2.6872 4.5062 2.1330 2.3892 4.4078

0.025000 64000 2.8119 4.4633 2.1923 2.6240 4.3497

0.021739 97336 2.8791 4.4349 2.2001 2.7541 4.3267

0.019231 140608 2.9175 4.3359 2.1894 2.8310 4.2191
0.017241 195112 2.9406 4.3225 2.1720 2.8779 4.2215

Table 3 Grid convergence: series of polyhedral grids (CLS without smoothing)

havg N CLS D2(2) CLS D3(3) DLS D1(2) DLS D2(3) DLS D3(4)

0.044784 13819

0.041544 17933 3.1771 5.4782 1.3943 1.0037 4.9159

0.038507 22983 2.9794 4.9878 1.4959 1.2227 4.5057

0.033027 35595 2.4432 3.3753 1.4035 1.3847 3.9068

0.029400 52487 3.3681 4.8044 2.1503 2.2422 5.1493

0.025212 80995 2.5399 2.3076 1.6894 1.9848 4.0666
0.021547 135609 3.5112 5.4666 2.4056 2.8601 5.3057

The scheme has been tested with the CLS reconstruction of Def. 1 for k D 2 –
named CLS D2 – and k D 3 – named CLS D3. The direct least squares
reconstruction mentioned in Sect. 3 serves as comparison, named DLS Dk for
k D 1; 2; 3. Tables 1, 2 and 3 display the convergence rate for the `2 error at t D 10
as a function of the average cell diameter havg on three different shapes of grids
for the initial value u0 .x; y; z/ D sin .2�x/ sin .2�y/ sin .2�z/. The column N
displays the number of cells. The number (n) indicates that the effective stencil is
the nth neighborhood: The first neighborhood of the cell T˛ consists of the cell T˛
itself and its adjacent cells Tˇ . The second neighborhood of the cell T˛ is the union
of the first neighbors of the first neighbors, etc.
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Observe that the algorithm CLS in Def. 1 gives the desired convergence rates for
quadratic (3rd order) and cubic reconstruction (4th order). The rates are comparable
to those of the direct method DLS.

6 Conclusion

The algorithm of Def. 1 avoids large stencils in implementing high order finite
volume schemes (3), without introducing additional degrees of freedom. The
integration of the CLS algorithm in the CEDRE software is an ongoing work. This
requires appropriate limiting techniques to deal with monotonicity.
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A Well-Balanced Scheme For Two-Fluid Flows
In Variable Cross-Section ducts

Philippe Helluy and Jonathan Jung

Abstract We propose a finite volume scheme for computing two-fluid flows in
variable cross-section ducts. Our scheme satisfies a well-balanced property. It is
based on the VFRoe approach. The VFRoe variables are the Riemann invariants of
the stationnary wave and the cross-section. In order to avoid spurious pressure oscil-
lations, the well-balanced approach is coupled with an ALE (Arbitrary Lagrangian
Eulerian) technique at the interface and a random sampling remap.

Keywords Well-balanced scheme, Glimm scheme, Lagrange projection, two-fluid
flows.
MSC2010: 65M08, 76M12, 76T10, 35Q31

Introduction

Classical finite volume solvers generally have a bad precision for solving two-fluid
interfaces or flows in varying cross-section ducts. Several cures have been developed
for improving the precision.

• For cross-section ducts, the well-balanced approach of Greenberg and Leroux [4]
(see also [7] and [5]) is an efficient tool to improve the precision.

• For two-fluid flows the pressure oscillations phenomenon (see [6] and [2] for
instance) can be cured by a recent tool developed in [3] and [1]. It is based on
an ALE (Arbitrary Lagrangian Eulerian) scheme followed by a random sampling
projection step.

In this paper, we show that is is possible to mix the two approaches in order to design
an efficient scheme for computing two-fluid flows in variable cross-section ducts.
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 59, © Springer-Verlag Berlin Heidelberg 2011

561

jonathan.jung@math.unistra.fr


562 P. Helluy and J. Jung

1 A well-balanced two-fluid ALE solver

1.1 Model

We consider the flow of a mixture of two compressible fluids (a gas (1) and a liquid
(2), for instance) in a cross-section duct. The time variable is noted t and the space
variable along the duct is x. We denote by A.x/ the cross-section at position x. The
unknowns are the density �.x; t/; the velocity u.x; t/, the internal energy e.x; t/ and
the fraction of gas '.x; t/. Following Greenberg and Leroux [4] it is now classical
to consider the cross-sectionA as an artificial unknown. The equations are the Euler
equations in a duct, which read

@t .A�/C @x.A�u/ D 0; (1)

@t .A�u/C @x.A.�u2 C p// D p@xA; (2)

@t .A�E/C @x.A.�E C p/u/ D 0; (3)

@t .A�'/C @x.A�'u/ D 0; (4)

@tA D 0; (5)

with
p D p.�; e; '/; (6)

E D e C u2

2
: (7)

Without loss of generality, in this paper we consider a stiffened gas pressure law
(see [8] and included references)

p.�; e; '/ D .�.'/ � 1/�e � �.'/�.'/: (8)

The mixture pressure law parameters �.'/ and �.'/ are obtained from the pure
fluid parameters �i > 1; �i , i D 1; 2 thanks to the following interpolation, which is
justified in [2]

1

�.'/ � 1 D '
1

�1 � 1 C .1 � '/
1

�2 � 1; (9)

�.'/�.'/

�.'/� 1 D '
�1�1

�1 � 1 C .1 � '/
�2�2

�2 � 1 : (10)

We define the vector of conservative variables

W D .A�;A�u; A�E;A�';A/T : (11)
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The conservative flux is

F.W / D .A�u; A.�u2 C p/;A.�E C p/u; A�'u; 0/T ; (12)

and the non-conservative source term is

S D .0; p@xA; 0; 0; 0/; (13)

such that the system (1)-(5) becomes

@tW C @xF.W / D S.W /: (14)

We define the vector of primitive variables

Y D .�; u; p; '; A/T : (15)

We define also the following quantities

Q D mass flow rate D �Au; (16)

s D entropy D .p C �.'//���.'/; (17)

h D enthalpy D e C p

�
; (18)

H D total enthalpy D hC u2

2
: (19)

The entropy is solution of the partial differential equation

Tds D de � p

�2
d�C 	d': (20)

It is useful to express also the pressure p and the enthalpy h as functions of .�; s; '/

p D p.�; s; '/; h D h.�; s; '/: (21)

Then in these variables the sound speed c satisfies

c2 D p� D �h�: (22)

The jacobian matrix F 0.W / in system (14) admits real eigenvalues

	0 D 0; 	1 D u � c; 	2 D 	3 D u; 	4 D uC c: (23)

However, the system may be resonant (when 	0 D 	1 or 	0 D 	4.) The quantities
', s, Q and H are independant Riemann invariants of the stationnary wave 	0. In
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the sequel, the vector of “stationary” variablesZ will play a particular role

Z D .A; '; s;Q;H/T : (24)

1.2 VFRoe ALE numerical flux

We recall now the principles of the VFRoe solver. We first consider a arbitrary
change of variables U D U.W /. In practice, we will take the set of primitive
variables U D Y (15) or the set of stationnary variables U D Z (24). The vector U
satisfies a non-conservative set of equations

@tU C C.U /@xU D 0: (25)

The system (1)-(5) is approximated by a finite volume scheme with cells
�xi�1=2; xiC1=2Œ, i 2 Z. We denote by � the time step and by�xi D xiC1=2 � xi�1=2
the size of cell i . We denote by W n

i the conservative variables in cell i at time step
n. The cross-section A is approximated by a piecewise constant function, A D Ai
in cell i .

We consider first a very general scheme where the boundary of the cell xiC1=2
moves at the velocity vniC1=2 between time steps n and nC 1, thus we have

xnC1iC1=2 D xniC1=2 C �vniC1=2: (26)

In a VFRoe-type scheme, we have to define linearized Riemann problems at
interface i C 1=2 between the state WL D W n

i and WR D W n
iC1, we introduce

U D 1

2
.UL C UR/: (27)

In this way, it is possibe to define

W D W.U /; C D C.U /: (28)

We then consider the linearized Riemann problem

@tU C C@xU D 0; (29)

U.x; 0) D
�
UL if x < 0;
UR if x > 0:

(30)

We denote its solution by

U.UL;UR;
x

t
/ D U.x; t/: (31)
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Because of the stationary wave, U.UL;UR; xt / is generally discontinuous at x=t D
0: We are then able to define a discontinuous Arbitrary Lagrangian Eulerian (ALE)
numerical flux

F.WL;WR; v
˙/ WD F.W.U.UL;UR; v˙///� vW.U.UL;UR; v

˙//: (32)

The sizes of the cells evolve as

�xnC1i D �xni C �.vniC1=2 � vni�1=2/: (33)

If vniC1=2 � 0 and vni�1=2 � 0, the ALE scheme is

�xnC1i W nC1;�
i ��xni W n

i C
�
�
F.W n

i ;W
n
iC1; v

n;�
iC1=2/ � F.W n

i�1;W n
i ; v

n;C
i�1=2/

�
D 0: (34)

If vniC1=2 > 0 then we have to add the following term to the left of the previous
equation

�
�
F.W n

i ;W
n
iC1; 0�/� F.W n

i ;W
n
iC1; 0C/

�
: (35)

If vni�1=2 < 0 then we have to add also the following term

�
�
F.W n

i�1;W n
i ; 0

�/� F.W n
i�1;W n

i ; 0
C/
�
: (36)

1.3 ALE velocity

We have now to detail the choice of the variableU and the velocity v according to the
data WL and WR. The idea is to use the classical well-balanced scheme everywhere
but at the interface between the two fluids, where we use the Lagrange flux. When
our initial data satisfy ' 2 f0; 1g, the algorithm reads

• If we are not at the interface, i.e. if 'L D 'R, we take U D Z and v D 0. This
choice corresponds to the VFRoe well-balanced scheme described in [5].

• If we are at the interface, i.e. if 'L ¤ 'R then we choose U D Y .
This choice ensures that the linearized Riemann solver presents no jump of
pressure and velocity at the contact discontinuity. We thus denote by u�.WL;WR/

and p�.WL;WR/ the velocity and the pressure at the contact. We take v D
u�.WL;WR/, A� D AL if v < 0 and A� D AR if v > 0. The lagrangian
numerical flux then takes the form

F.WL;WR; v
˙/ D .0; A�p�; A�u�p�; 0;�A�u�/T : (37)
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1.4 Glimm remap

We go back to the original Euler grid by the Glimm procedure.
We construct a sequence of pseudo-random numbers !n 2 Œ0; 1Œ: In practice, we

consider the .5; 3/ van der Corput sequence [1]. According to this number we take

W nC1
i D W nC1;�

i�1 if !n <
�n

�xi
max.vni�1=2; 0/; (38)

W nC1
i D W nC1;�

iC1 if !n > 1C �n

�xi
min.vniC1=2; 0/; (39)

W n
i D W nC1;�

i if
�n

�xi
max.vni�1=2; 0/ � !n � 1C

�n

�xi
min.vniC1=2; 0/: (40)

1.5 Properties of the scheme

The constructed scheme has many interesting properties:

• it is well-balanced in the sense that it preserves exactly all stationary states (i.e.
initial data for which the quantities '; s;Q;H are constant);

• for constant cross-section ducts, it computes exactly the contact discontinuities,
with no smearing of the density and the mass fraction;

• if at the initial time the mass fraction is in f0; 1g, then this property is exactly
preserved at any time.

For detailed proofs, we refer to [5] and [1]. Some other subtleties are given in the
same references. For instance, the change of variables Z D Z.W / is not always
invertible. This implies to define a special procedure for constructing completely
rigorously the well-balanced VFRoe solver.

2 Numerical results

In order to test our algorithm, we consider a Riemann problem for which we know
the exact solution. The initial data are discontinuous at x D 1. The data of the
problem are given in Table 1.

The pressure law parameters are �1 D 1:4, �1 D 0, �2 D 1:6 and �2 D 2:

We compute the solution on the domain Œ0:4I 1:6� with approximately 2000 cells.
The final time is T D 0:2 and the CFL number is 0:6. The density, the velocity
and the pressure are represented on Figs. 1, 2 and 3. We observe an excellent
agreement between the exact and the approximate solution. The mass fraction is
not represented: it is not smeared at all and perfectly matches the exact solution.
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quantity Left Right

� 2 3.230672602
u 0.5 -0.4442565900
p 1 12
' 1 0
A 1.5 1

Table 1 Numerical results. Data of the Riemann problem

Fig. 1 Two-fluid, discontinuous cross-section Riemann problem. Density plot. Comparison of the
exact solution (dotted line) and the approximate one (continuous line)
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Fig. 2 Two-fluid, discontinuous cross-section Riemann problem. Pressure plot. Comparison of the
exact solution (dotted line) and the approximate one (continuous line)
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Fig. 3 Two-fluid, discontinuous cross-section Riemann problem. Velocity plot. Comparison of the
exact solution (dotted line) and the approximate one (continuous line)

3 Conclusion

We have constructed and validated a new scheme for computing two-fluid flows in
variable cross-section ducts. Our scheme relies on two ingredients:

• a well-balanced approach for dealing with the varying cross-section;
• a Lagrange plus remap technique in order to avoid pressure oscillations at the

interface. The random sampling remap ensures that the interface is not diffused
at all.

On preliminary test cases, our approach gives very satisfactory results. We intend
to apply it to the computation of the oscillations of cavitation bubbles. More results
will be presented at the conference.

The authors wish to thank Jean-Marc Hérard for many fruitful discussions.
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Discretization of the viscous dissipation term
with the MAC scheme

F. Babik, R. Herbin, W. Kheriji, and J.-C. Latché

Abstract We propose a discretization for the MAC scheme of the viscous dissipa-
tion term �.u/ W ru (where �.u/ stands for the shear stress tensor associated to the
velocity field u), which is suitable to obtain an unconditionally stable scheme for
the compressible Navier-Stokes equations. It is also shown, in some model cases, to
ensure the strong convergence in L1 of the dissipation term.

Keywords compressible Navier-Stokes, MAC scheme
MSC2010: 65M12

1 Introduction

Let us consider the compressible Navier-Stokes equations, which may be written as:

@t �C div.�u/ D 0; (1a)

@t .�u/C div.�u˝ u/Crp � div.�.u// D 0; (1b)

@t .�e/C div.�eu/C pdivuC div.q/ D �.u/ W ru; (1c)

� D }.p; e/; (1d)

where t stands for the time, �, u, p and e are the density, velocity, pressure and
internal energy in the flow, �.u/ stands for the shear stress tensor, q for the energy
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diffusion flux, and the function} is the equation of state. This system of equations is
posed over˝� .0; T /, where˝ is a domain of R

d , d � 3. It must be supplemented
by a closure relation for �.u/ and for q, assumed to be:

�.u/ D �.ruCr tu/� 2�
3

divu I; q D �	re; (2)

where � and 	 stand for two (possibly depending on x) positive parameters.
Let us suppose, for the sake of simplicity, that u is prescribed to zero on the whole

boundary, and that the system is adiabatic, i.e. q � n D 0 on @˝ . Then, formally,
taking the inner product of (1b) with u and integrating over˝ , integrating (1c) over
˝ , and, finally, summing both relations yields the stability estimate:

d

dt

Z

˝

�1

2
� juj2 C �e� dx � 0: (3)

If we suppose that the equation of state may be set under the form p D f .�; e/

with f .�; 0/ D 0 and f .0; �/ D 0, Equation (1c) implies that e remains positive
(still at least formally), and so (3) yields a control on the unknown. Mimicking
this computation at the discrete level necessitates to check some arguments, among
them:

.i/ to have available a discrete counterpart to the relation:

Z

˝

�
@t .�u/C div.�u˝ u/

� � u dx D d

dt

Z

˝

1

2
� juj2 dx:

(ii) to identify the integral of the dissipation term at the right-hand side of the
discrete counterpart of (1c) with the (discrete) L2 inner product between the
velocity and the diffusion term in the discrete momentum balance equation
(1b).

(iii) to be able to prove that the right-hand side of (1c) is non-negative, in order
to preserve the positivity of the internal energy.

The point .i/ is extensively discussed in [5] (see also [6]), and is not treated here.
Indeed, we focus here on a discretization technique which allows to obtain (ii)
and (iii) with the usual Marker and Cell (MAC) discretization [3, 4], and which
is implemented in the ISIS free software developed at IRSN [8] on the basis of
the software component library PELICANS [10]. We complete the presentation
by showing how .i i/ may also be used, in some model problems, to prove the
convergence in L1 of the dissipation term.
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2 Discretization of the dissipation term

2.1 The two-dimensional case

Let us begin with a two-dimensional case. The first step is to propose a discretization
for the diffusion term in the momentum equation. We begin with the x-component
of the velocity, for which we write a balance equation on Kx

i� 12 ;j
D .xi�1; xi / �

.yj� 12 ; yjC 1
2
/ (see Figs. 1 and 2 for the notations). Integrating the x component of

the momentum balance equation overKx

i� 12 ;j
, we get for the diffusion term:

NT dif
i� 12 ;j D �

hZ

Kx

i� 12 ;j

div
�
�.u/� dx

i
� e.x/ D �

hZ

@Kx

i� 12 ;j

�.u/ n d�
i
� e.x/; (4)

: Kx
i− 1

2 j

xi− 3
2

xi− 1
2

xi+ 1
2

xi− 1 xi
yj − 3

2

yj − 1
2

yj

yj+ 1
2

yj+ 3
2

ux
i− 1

2 jux
i− 3

2 j
ux
i+ 1

2 j

ux
i− 1

2
j− 1

ux
i− 1

2 j+1

: σ x
i j
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i− 1
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hx
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2
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Fig. 1 Dual cell for the x-component of the velocity
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Fig. 2 Dual cell for the y-component of the velocity
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where e.x/ stands for the first vector of the canonical basis of R
2. We denote by �xi;j

the right face of Kx

i� 12 ;j
, i.e. �xi;j D fxi g � .yj� 12 ; yjC 1

2
/. Splitting the boundary

integral in (4), the part of NT dif
i� 12 ;j

associated to �xi;j , also referred to as the viscous

flux through �xi;j , reads:

�
hZ

�xi;j

�.u/ n d�
i
� e.x/ D �2

Z

�xi;j

� @xux d� C 2

3

Z

�xi;j

� .@xux C @yuy/ d�;

and the usual finite difference technique yields the following approximation for this
term:

� 4
3

Z

�xi;j

� @xux d� C 2

3

Z

�xi;j

� @yuy d�

� �4
3
�i;j

h
y
j

hxi
.ux
iC 1

2 ;j
� ux

i� 12 ;j /C
2

3
�i;j

h
y
j

h
y
j

.uy
i;jC 1

2

� uy
i;j� 12

/; (5)

where �i;j is an approximation of the viscosity at the face �xi;j . Similarly, let
�x
i� 12 ;jC 1

2

D .xi�1; xi / � fyjC 1
2
g be the top edge of the cell. Then:

�
hZ

�x
i� 12 ;jC

1
2

�.u/ n d�
i
� e.x/ D �

Z

�x
i� 12 ;jC

1
2

� .@yux C @xuy/ d�

� ��i� 12 ;jC 1
2

h hx
i� 12
h
y

jC 1
2

.ux
i� 12 ;jC1 � ux

i� 12 ;j /C
hx
i� 12
hx
i� 12

.uy
i;jC 1

2

� uy
i�1;jC 1

2

/
i
;

where �i� 1
2 ;jC 1

2
stands for an approximation of the viscosity at the edge �x

i� 12 ;jC 1
2

.

Let us now multiply each discrete equation for ux by the corresponding degree of
freedom of a velocity field v (i.e. the balance over Kx

i� 12 ;j
by vx

i� 12 ;j
) and sum over

i and j . The viscous flux at the face �xi;j appears twice in the sum, once multiplied
by vx

i� 12 ;j
and the second one by �vx

iC 1
2 ;j

, and the corresponding term reads:

T dis
i;j .u; v/ D

�i;j

h
�4
3

h
y
j

hxi
.ux
iC 1

2 ;j
� ux

i� 12 ;j /C
2

3

h
y
j

h
y
j

.uy
i;jC 1

2

� uy
i;j� 12

/
i
.vx
i� 12 ;j � vx

iC 1
2 ;j
/

D �i;j hyj hxi
h4

3

ux
iC 1

2 ;j
� ux

i� 12 ;j
hxi

� 2
3

uy
i;jC 1

2

� uy
i;j� 12

h
y
j

i vx
iC 1

2 ;j
� vx

i� 12 ;j
hxi

: (6)
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Similarly, the term associated to �x
i� 12 ;jC 1

2

appears multiplied by vx
i� 12 ;j

and by

�vx
i� 12 ;jC1

, and we get:

T dis
i� 12 ;jC 1

2

.u; v/ D �i� 1
2 ;jC 1

2
hx
i� 12 h

y

jC 1
2

hux
i� 12 ;jC1

� ux
i� 12 ;j

h
y

jC 1
2

C
uy
i;jC 1

2

� uy
i�1;jC 1

2

hx
i� 12

i vx
i� 12 ;jC1

� vx
i� 12 ;j

h
y

jC 1
2

: (7)

Let us now define the discrete gradient of the velocity as follows:

– The derivatives involved in the divergence, @Mx ux and @My uy , are defined
over the primal cells by:

@Mx ux.x/D
ux
iC 1

2 ;j
� ux

i� 12 ;j
hxi

; @My uy.x/D
uy
i;jC 1

2

� uy
i;j� 12

h
y
j

; 8x 2 Ki;j :

(8)

– For the other derivatives, we introduce another mesh which is vertex-centred,
and we denote by Kxy the generic cell of this new mesh, with Kxy

iC 1
2 ;jC 1

2

D
.xi ; xiC1/ � .yj ; yjC1/. Then, 8x 2 Kxy

iC 1
2 ;jC 1

2

:

@My ux.x/ D
ux
iC 1

2 ;jC1
� ux

iC 1
2 ;j

h
y

jC 1
2

; @Mx uy.x/ D
uy
iC1;jC 1

2

� uy
i;jC 1

2

hx
iC 1

2

: (9)

With this definition, we get:

T dis
i;j .u; v/ D �i;j

Z

Ki;j

h4

3
@Mx ux � 2

3
@My uy

i
@Mx vx dx;

and:

T dis
i� 12 ;jC 1

2

.u; v/ D �i� 12 ;jC 1
2

Z

K
xy

i� 12 ;jC
1
2

.@My ux C @Mx uy/ @My vx dx:

Let us now perform the same operations for the y-component of the velocity.
Doing so, we are lead to introduce an approximation of the viscosity at the edge
�
y

i� 12 ;jC 1
2

D fxi� 12 g � .yj ; yjC1/ (see Fig. 2). Let us suppose that we take the same

approximation as on �x
i� 12 ;jC 1

2

. Then, the same argument yields that multiplying

each discrete equation for ux and for uy by the corresponding degree of freedom of
a velocity field v, we obtain a dissipation term which reads:

T dis.u; v/ D
Z

˝

�M.u/ W rMv dx; (10)
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where rM is the discrete gradient defined by (8)-(9) and �M the discrete tensor:

�M.u/ D
"

2� @Mx ux �xy .@My ux C @Mx uy/

�xy .@My ux C @Mx uy/ 2� @My uy

#

� 2
3
� .@Mx ux C @My uy/ I; (11)

where � is the viscosity defined on the primal mesh by �.x/ D �i;j ; 8x 2
Ki;j and �xy is the viscosity defined on the vertex-centred mesh, by �.x/ D
�iC 1

2 ;jC 1
2
; 8x 2 Kxy

iC 1
2 ;jC 1

2

.

Now the form (10) suggests a natural to discretize the viscous dissipation term
in the internal energy balance in order for the consistency property .i i/ to hold.
Indeed, if we simply set on each primal cell Ki;j :

.�.u/ W ru/i;j D 1

jKi;j j
Z

Ki;j

�M.u/ W rMu dx; (12)

then, thanks to (10), the property (ii) which reads:

T dis.u; u/ D
X

i;j

jKi;j j .�.u/ W ru/i;j :

holds. Furthermore, we get from Definition (11) that �M.u/.x/ is a symmetrical
tensor, for any i; j and x 2 Ki;j , and therefore an elementary algebraic argument
yields:

.�.u/ W ru/i;j D 1

jKi;j j
Z

Ki;j

�M.u/ W rMu dx

D 1

2 jKi;j j
Z

Ki;j

�M.u/ W �rMuC .rMu/t
�

dx � 0:

Remark 1 (Approximation of the viscosity). Note that, for the symmetry of �M.u/
to hold, the choice of the same viscosity at the edges �x

i� 12 ;jC 1
2

and �y
i� 12 ;jC 1

2

is

crucial even though other choices may appear natural. Assuming for instance the
viscosity to be a function of an additional variable defined on the primal mesh, the
following construction seems reasonable:

1. define a constant value for � on each primal cell,

2. associate a value of � to the primal edges, by taking the average between the
value at the adjacent cells,
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3. finally, split the integral of the shear stress over �x
i� 12 ;jC 1

2

in two parts, one

for the part included in the (top) boundary of Ki�1;j and the second one in
the boundary ofKi;j .

Then the viscosities on �x
i� 12 ;jC 1

2

and �y
i� 12 ;jC 1

2

coincide only for uniform meshes,

and, in the general case, the symmetry of �M.u/ is lost.

2.2 Extension to the three-dimensional case

Extending the computations of the preceding section to three space dimensions
yields the following construction.

– First, define three new meshes, which are “edge-centred”: Kxy

iC 1
2 ;jC 1

2 ;k
D

.xi ; xiC1/ � .yi ; yjC1/ � .zk� 1
2
; zkC 1

2
/ is staggered from the primal mesh

Ki;j;k in the x and y direction, Kxz
iC 1

2 ;j;kC 1
2

in the x and z direction, and

K
yz

i;jC 1
2 ;kC 1

2

in the y and z direction.

– The partial derivatives of the velocity components are then defined as
piecewise constant functions, the value of which is obtained by natural finite
differences:

- for @Mx ux, @My uy and @Mz uz, on the primal mesh,
- for @My ux and @Mx uy on the cells .Kxy

iC 1
2 ;jC 1

2 ;k
/,

- for @Mz ux and @Mx uz on the cells .Kxz
iC 1

2 ;j;kC 1
2

/,

- for @My uz and @Mz uy on the cells .Kyz

i;jC 1
2 ;kC 1

2

/.

– Then, define four families of values for the viscosity field, �, �xy , �xz and
�yz, associated to the primal and the three edge-centred meshes respectively.

– The shear stress tensor is obtained by the extension of (11) to d D 3.

– And, finally, the dissipation term is given by (12).

3 A strong convergence result

We conclude this paper by showing how the consistency property (ii) may be used,
in some particular cases, to obtain the strong convergence of the dissipation term,
and then pass to the limit in a coupled equation having the dissipation term as right-
hand side. To this purpose, let us just address the model problem:

��u D f in ˝ D .0; 1/� .0; 1/; u D 0 on @˝; (13)
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with u and f two scalar functions, f 2 L2.˝/. Let us suppose that this problem
is discretized by the usual finite volume technique, with the uniform MAC mesh
associated to the x-component of the velocity. We define a discrete function as a
piecewise constant function, vanishing on the left and right sides of the domain (so
on the left and right stripes of staggered (half-)meshes adjacent to these boundaries),
and we define the discrete H1-norm of a discrete function v by:

jjvjj21 D
Z

˝

.@Mx v/2 C .@My v/2 dx:

Let .M.n//n2N be a sequence of such meshes, with a step hn tending to zero, and
let .u.n//n2N be the corresponding sequence of discrete solutions. Then, with the
variational technique employed in the preceding section, we get, with the usual
discretization of the right-hand side:

jju.n/jj21 D
Z

˝

.@Mx u.n//2 C .@My u.n//2 dx D
Z

˝

f u.n/ dx: (14)

Since the discrete H1-norm controls the L2-norm (i.e. a discrete Poincaré inequality
holds [2]), this yields a uniform bound for the sequence .u.n//n2N in discrete H1-
norm. Hence the sequence .u.n//n2N converges in L2.˝/ to a function Nu 2 H1

0.˝/,
possibly up to the extraction of a subsequence [2], and he discrete derivatives
.@Mx u.n//n2N and .@My u.n//n2N weakly converge in L2.˝/ to @x Nu and @y Nu respec-
tively. This allows to pass to the limit in the scheme, and we obtain that Nu satisfies
the continuous equation (13). Thus, taking Nu as a test function in the variational form
of (13): Z

˝

.@x Nu/2 C .@y Nu/2 dx D
Z

˝

f Nu dx:

But, passing to the limit in (14), we get:

lim
n 7!1

Z

˝

.@Mx u.n//2 C .@My u.n//2 dx D lim
n 7!1

Z

˝

f u.n/ dx D
Z

˝

f Nu dx;

which, comparing to the preceding relation, yields:

lim
n!1

Z

˝

.@Mx u.n//2 C .@My u.n//2 dx D
Z

˝

.@x Nu/2 C .@y Nu/2 dx:

Since the discrete gradient weakly converges and its norm converges to the norm of
the limit, the discrete gradient strongly converges in L2.˝/2 to the gradient of the
solution. Let us now imagine that Equation (13) is coupled to a balance equation
for another variable, the right-hand side of which is jruj2; this situation occurs for
instance in models involving ohmic losses [1], or RANS turbulence models [9]. The
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discretization (12) of the dissipation term in the cell K , which reads here:

�jru.n/j2�
K
D 1

jKj
Z

K

.@Mx u.n//2 C .@My u.n//2 dx;

yields a convergent right-hand side, in the sense that, for any regular function ' 2
C1c .˝/, we have:

lim
n!1

X

K

Z

K

�jru.n/j2�
K
' dx D

Z

˝

jruj2' dx:

(A declination of) this argument has been used to prove the convergence of
numerical schemes in [1, 9].
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7. R. Herbin, W. Kheriji, J.-C. Latché: An unconditionally stable Finite Element-Finite Volume
pressure correction scheme for compressible Navier-Stokes equations. In preparation (2011).

8. ISIS: a CFD computer code for the simulation of reactive turbulent flows,
https://gforge.irsn.fr/gf/project/isis.
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for Multimaterial Models
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Abstract We present a method to capture the evolution of a contact discontinuity
separating two different materials. This method builds on the ghost-fluid idea:
a locally non-conservative scheme allows an accurate and stable simulation of
problems involving non-miscible media that have significantly different physical
properties. Compared to the ghost-fluid approach, the main difference is that with
the present method no ghost fluid is introduced. Numerical illustrations involving
one-dimensional interfaces show that with this scheme the contact discontinuity
stays sharp and oscillation free.
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1 Introduction

Physical and engineering problems that involve several materials are ubiquitous in
nature and in applications: multi-phase flows, fluid-structure interaction, particle
flows, to cite just a few examples. The main contributions in the direction of
simulating these phenomena go back to [7] and [8] for the model and to [1] for
a consistent and stable discretization. The idea is to model the eulerian stress
tensor through a constitutive law reproducing the mechanical characteristics of the
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medium under consideration. Hence, for example, an elastic material or a gas will
be modeled by the same set of equations except for the constitutive law relating the
deformation and the stress tensor. The system of conservation laws thus obtained
can be cast in the framework of quasi-linear hyperbolic partial differential equations
(PDEs). From the numerical view point this is convenient since classical integration
schemes can be employed in each material. However, it turns out that the evolution
of the interface, which is represented in this model by a contact discontinuity, is
particularly delicate because standard Godunov schemes fail. In [1] it was shown
that a simple and effective remedy to this problem is the definition of a ghost fluid
across the interface. A remarkable application based on this approach is presented
in [6]. This method, however, has the disadvantage that the interface is diffused over
a certain number of grid points. From a practical view point this can be a serious
drawback if one is interested in the geometric properties of the evolving interface,
as, for example, in the case of surface tension or when the interface itself is elastic.
In this paper we propose a simple first-order accurate method to recover a sharp
interface description keeping the solution stable and non-oscillating.

2 The model

This approach was discussed in [4, 6, 7], and [8]. We develop here the principal
elements of the formulation. The starting point is classical continuum mechanics.
Let ˝0 be the reference or initial configuration of a single material and ˝t the
deformed configuration at time t . We define X.
; t/ as the image at time t of a
material point 
 belonging to the initial configuration, in the deformed configuration,
i.e.,X W ˝0�Œ0; T � �! ˝t , .
; t/ 7! X.
; t/, and the corresponding velocity field u
as u W ˝t�Œ0; T � �! R

3, .x; t/ 7! u.x; t/whereXt.
; t/ D u.X.
; t/; t/ completed
by the initial conditionX.
; 0/ D 
. Also we introduce the backward characteristics
Y.x; t/ that for a time t and a point x in the deformed configuration, gives the
corresponding initial point 
 in the initial configuration, i.e., Y W ˝t � Œ0; T � �!
˝0, .x; t/ 7! Y.x; t/ with the initial condition Y.x; 0/ D x. Of course, we have
Œr
X.
; t/� D ŒrxY.x; t/��1 and Yt C .u � r/Y D 0.

In elasticity, the internal energy is a function of the strain tensor r
X and the
entropy s: W D W.r
X; s/. The potential W has to be Galilean invariant and,
eventually, isotropic. It can be proven that (Rivlin-Eriksen theorem [3]) this is
the case if, and only if, E , the energy, is expressed as a function of s.
; t/, the
entropy, and of the invariants of C.
; t/ D Œr
X�T Œr
X�, the right Cauchy-Green
tensor. The invariants often considered in the literature are J.
; t/ D det.Œr
X�/,
Tr.C.
; t// and Tr.Cof.C.
; t///.We assume that the internal energy per unit
volume is the sum of a term depending on volume variation and entropy, and a term
accounting for isochoric deformation. In general the term relative to an isochoric
transformation will also depend on entropy. Here, we will limit the discussion to
materials where shear forces are conservative. The governing equations derived
from the above formulation in the deformed configuration are:
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8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�t C divx.�u/ D 0
�.ut C .u � rx/u/� divx � D 0
�."t C .u � rx/"/� � W rxu D 0

Yt C .u � rx/Y D 0

(1)

where �.x; t/ is the Cauchy stress tensor in the physical domain. The unknowns are
the backward characteristics of the problem Y.x; t/, the velocity u.x; t/, the internal
energy per unit mass ".x; t/ D W=�0 and the density �.x; t/. The initial velocity
u.x; 0/, the initial internal energy ".x; 0/ and Y.x; 0/ D x are given. If the initial
density �0.
/ is known, the equation of mass conservation is actually redundant
because �.x; t/ D det.rxY.x; t//�0.Y.x; t//.

To close the system, a constitutive law which connects � to Y is necessary. In the
deformed domain energy can be written

E D
Z

˝t

�
Wvol.J; s/CWiso.Tr.B/;Tr.Cof.B//

�
J�1dx (2)

where

B.x; t/ D B.x; t/

det.B.x; t//
1
3

B.x; t/ D ŒrxY.x; t/��1ŒrxY.x; t/��T

(3)
with B.x; t/ the left Cauchy-Green tensor and

J.x; t/ D det.ŒrxY.x; t/�/�1 D det.B.x; t//
1
2 : (4)

It can be shown that

�.x; t/ D W 0vol.J; s/I C 2J�1
	

� iso � 1
3
I.� iso W I /




(5)

with

� iso D @Wiso

@a
B � @Wiso

@b
B
�1
: (6)

By definition pressure is given by p D �1
3

Tr .�/ D �W 0vol.J; s/.

For the objectives of this paper, we restrict our investigation to an elastic one-
dimensional isoentropic case with non-zero transverse velocity. Let xi , i D 1 : : : 2

be the coordinates in the canonical basis of R
2, ui the velocity components, Y i the

components of Y and �ij the components of the stress tensor. Also, let us denote
by ; i differentiation with respect to xi . We consider the governing equations in two
space dimensions and we assume thatrY is a function only of one direction (x1), as
well as u1 and u2. In this case we have that .Y 1;2/t D .Y 2;2/t D 0. Since Y.x; 0/ D x,
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we have also that Y 1;2 D 0, Y 2;2 D 1 and hence

ŒrY � D
 
Y 1;1 0

Y 2;1 1

!

: (7)

The governing equations in conservative form become

�t C .F.�//;1 D 0

with

� D

0

B
B
B
B
B
@

�

�1
�2
Y 1;1
Y 2;1

1

C
C
C
C
C
A

F.�/ D

0

B
B
B
B
B
B
B
@

�1
.�1/

2

�
� �11

�1�2
�
� �21

�1Y
1
;1

�
�1Y

2
;1C�2
�

1

C
C
C
C
C
C
C
A

In two dimensions we define B D B

det.B/
1
2

, so that det.B/ D 1. Let now

" D Wvol CWiso

�0
D

exp

	
s � s0
cv




���1

� � 1 C p1
�
C �.Tr .B/� 2/ (8)

where s0 is the reference entropy, �i D �ui and � , p1; � 2 R
C are constants that

characterize a given material. This model accounts for elastic deformations in the
transverse direction, i.e., �21 ¤ 0. Here the termWvol represents a stiff gas, the term
Wiso a Mooney-Rivlin solid.

3 Multimaterial solver

We assume that the initial condition at time tn, the n-th time step, is known. Let
�n
k D �.xk; tn/, with xk the spatial coordinate x of grid point k. The discretization

points are N C 1 and let I D f1; � � � ; N g. Consider two non-miscible materials
separated by a physical interface located, at time tn, in xnf and let \ D i such that
xi � xf < xiC1, i 2 I . The space and time discretization 8k 2 I and k ¤ \; \C 1
is as follows

�nC1
k � �n

k

�t
D �F n

kC1=2.�n
k ; �

n
kC1/�F n

k�1=2.�n
k�1; �n

k /

�x
(9)
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where �t D tnC1 � tn, �x D xkC1=2 � xk�1=2 and F n
k˙1=2 are the numerical

fluxes evaluated at the cell interface located at xk˙1=2. For consistency F is a
regular enough function of both arguments and F .�; �/ D F.�/. Numerical
conservation requires that F .� 0; �/ D F .�; � 0/. The numerical flux function
FkC1=2.�n

k ; �
n
kC1/ is computed by an approximate Riemann solver. In the following

we use the HLLC [9] approximate solvers.
In any case, we assume that Riemann solver employed defines at least two

intermediate states �n� and �nC, in addition to �n
k and �nC1

kC1 and a contact
discontinuity of speed un�. The fluid speed is continuous across the states �n� and
�nC. These states are defined so that mechanical equilibrium is ensured at the contact
discontinuity.

Let us assume that�n� is the state to the left of the contact discontinuity and�nC to
the right. The main idea is to use a standard numerical flux function F .�k; �kC1/,
8k 2 I , k ¤ \; \C 1 and from (9) to deduce �nC1

k . In contrast, for �nC1
\ and �nC1

\C1
we have 8

ˆ̂
<̂

ˆ̂
:̂

�nC1
\ � �n

\

�t
D �F n�.�n�/�F n

\�1=2.�n
\�1; �n

\ /

�x

�nC1
\C1 � �n

\C1
�t

D �F n
\C3=2.�n

\C1; �n
\C2/ �F nC.�nC/
�x

(10)

where F n˙ D F.�n˙/. The scheme is locally non conservative since F nC ¤ F n�.
However, the effect on the approximation of shocks is negligible. The interface
position is updated in time using un�, i.e., xnC1f D xnf C un� �t . For numerical
stability, the integration step is limited by the fastest of the characteristics over the
grid points. Hence, the interface position will belong to the same interval between
two grid points for more than one time step. When the physical interface overcomes
a grid point, i.e., xnC1

f � xiC1 or xnC1f < xi then \ D i ˙ 1 accordingly. In other
words, the above integration scheme is simply shifted of one point to the right or to
the left.

When the interface crosses a grid point, however, the corresponding conservative
variables �nC1

\ do not correspond anymore to the material present at that grid point
before the integration step. When \ D i C 1, i.e., the physical interface moves to the
right of i C 1, then we take �nC1

\ D �n�, whereas if \ D i � 1, �nC1
\ D �nC. The

scheme proposed in [2] can be recast in a form similar to what we presented here.

4 Results

As a first test case we show the results (Fig. 1) of a computation on 200 grid points
of the classical perfect gas (� D 1:4) shock tube with conditions � D 1, u1 D 1:0

and p D 0:75 to the left and � D 0:125, u1 D 0 and p D 0:1 to the right. The
governing equations are in this case the usual one-dimensional compressible Euler
equations. The multimaterial solver is applied across the contact discontinuity, that
stays sharp during the transient.
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Fig. 1 Shock tube

The subsequent test case is relevant to elastic materials with different physical
properties separated by an interface. It represents a one-dimensional configuration
with non-zero transverse velocity. This velocity is constant in the transverse
direction but may be variable in the longitudinal direction. This configuration is
similar to that presented in [5].

The test case concerns a copper-air interface with discontinuous initial conditions
in the copper. The copper-air interface is at x1 D 0:4. To left of the interface there
is copper with p1 D 342 � 108, � D 4:22, � D 9:2 � 1010and �0 D 8:9 � 103.
To the right there is air with p1 D 0, � D 1:4, � D 0 and �0 D 1. The initial
conditions are uniform static pressure (105) and uniform horizontal velocity (0)
across the materials. Inside copper the vertical velocity is 103 between x1 D 0

and x1 D 0:15 and 0 elsewhere. The vertical velocity in air is 0. The left boundary
conditions are such that the solution is symmetric.

The results obtained on 2000 grid points are presented in Fig. 2 and Fig. 3.
The initial discontinuity in vertical velocity at time 0 breaks down in two waves
travelling in opposite directions. These waves are reflected on the left border and
on the copper-air interface, giving rise to subsequent wave interactions. The sharp
contact discontinuity is between copper and air. When the transverse wave hits this
interface, since �21 D 0, the transverse speed is discontinuous. The results are in
good accordance with those presented in [5].
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Numerical Simulation of Viscous
and Viscoelastic Fluids Flow by Finite
Volume Method

Radka Keslerová and Karel Kozel

Abstract This paper deals with the numerical modeling of steady incompressible
laminar flows of viscous and viscoelastic fluids. The governing system of the
equations is based on the system of balance laws for mass and momentum for
incompressible fluid. Two models for the stress tensor are tested. The models used
in this study are generalized Newtonian model with power-law viscosity model and
Oldroyd-B model with constant viscosity. The numerical results for these models
are presented.

Keywords viscous and viscoelastic stress tensor, generalized Newtonian and
Oldroyd-B model, Runge–Kutta method, finite volume method
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1 Introduction

Generalized Newtonian fluids can be subdivided according to the viscosity behavior.
For Newtonian fluids the viscosity is constant and is independent of the applied
shear stress. Shear thinning fluids are characterized by decreasing viscosity with
increasing shear rate. Shear thickening fluids are characterized by increasing
viscosity with increasing shear rate. The Fig. 1 shows the dependence of viscosity
on the shear rate, see e.g. [2].
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Fig. 1 Viscosity generalized Newtonian fluid as a function of shear rate for power-law fluid

2 Mathematical Model

The governing system of equations is the system of balance laws of mass and
momentum for incompressible fluids [1], [7]:

div u D 0 (1)

�
@u
@t
C �.u:r/u D �rP C div T (2)

where P is the pressure, � is the constant density, u is the velocity vector. The
symbol T represents the stress tensor.

2.1 Stress tensor

In this work the different choices of the definition of the stress tensor are used.
a) Viscous fluids
The simple viscous model is Newtonian model:

T D 2�D (3)

where � is the dynamic viscosity and tensor D is the symmetric part of the velocity
gradient.

This model could be generalized by extending Newtonian model for shear
thinning and thickening fluids flow. For this case the viscosity� is no more constant,
but is defined as the viscosity function by the power-law model [4]

� D �. P�/ D �
�p

trD2

�r
; (4)

where � is a constant, e.g. the dynamic viscosity for Newtonian fluid. The symbol
tr D2 denotes the trace of the tensor D2. The exponent r is the power-law index. This
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model includes Newtonian fluids as a special case (r D 0). For r > 0 the power-law
fluid is shear thickening, while for r < 0 it is shear thinning, (see Fig. 1).

b) Viscoelastic fluids
The behavior of the mixture of viscous and viscoelastic fluids can be described

by Oldroyd-B model and it has the form

TC 	1 ıT
ıt
D 2�

	

DC 	2 ıD
ıt




: (5)

The parameters 	1; 	2 are relaxation and retardation time.
The stress tensor T is decomposed to the Newtonian part Ts and viscoelastic part

Te .T D Ts C Te/ and

Ts D 2�sD; Te C 	1 ıTe
ıt
D 2�eD; (6)

where

	2

	1
D �s

�s C �e ; � D �s C �e: (7)

The upper convected derivative ı
ıt

is defined (for general tensor) by the relation
(see [7])

ıM
ıt
D @M

@t
C .u:r/M � .WM�MW/ � .DMCMD/ (8)

where D is the symmetric part of the velocity gradient D D 1
2
.ru C ruT / and W

is the antisymmetric part of the velocity gradient W D 1
2
.ru� ruT /.

The governing system (1), (2) of equations is completed by the equation for the
viscoelastic part of the stress tensor

@Te
@t
C .u:r/Te D 2�e

	1
D � 1

	1
Te C .WTe � TeW/C .DTe C TeD/: (9)

3 Numerical Solution

Numerical solution of the described models is based on cell-centered finite volume
method using explicit Runge–Kutta time integration. The unsteady system of equa-
tions with steady boundary conditions is solved by finite volume method. Steady
state solution is achieved for t ! 1. In this case the artificial compressibility
method can be applied. It means that the continuity equation is completed by the
time derivative of the pressure in the form (for more details see e.g. [8]):
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1

ˇ2
@p

@t
C div u D 0; ˇ 2 R

C: (10)

The system of equations (including the modified continuity equation) could be
rewritten in the vector form.

QRˇWt C F c
x CGc

y D F v
x CGv

y C S; QRˇ D diag.
1

ˇ2
; 1; 1; 1; 1; 1/: (11)

where W is the vector of unknowns, F c;Gc are inviscid fluxes, F v; Gv are viscous
fluxes defined as

W D

0

B
B
B
B
B
B
B
@

p

u
v
t11
t12
t22

1

C
C
C
C
C
C
C
A

; F c D

0

B
B
B
B
B
B
B
@

u
u2 C p

uv
ut11
ut12
ut22

1

C
C
C
C
C
C
C
A

; Gc D

0

B
B
B
B
B
B
B
@

v
uv

v2 C p
vt11
vt12
vt22

1

C
C
C
C
C
C
C
A

; (12)

F v D

0

B
B
B
B
B
B
B
@

0

2�. P�/ux
�. P�/.uy C vx/

0

0

0

1

C
C
C
C
C
C
C
A

; Gv D

0

B
B
B
B
B
B
B
@

0

�. P�/.uy C vx/
2�. P�/vy

0

0

0

1

C
C
C
C
C
C
C
A

(13)

and the source term S is defined as where tij are components of the symmetric
tensor Te

S D

0

B
B
B
B
B
B
B
@

0

t11x C t12y
t12x C t22y

2
�e
	1

ux � t11
	1
C 2.uxt11 C uyt12/

�e
	1
.uy C vx/� t12

	1
C .uxt12 C uyt22 C vxt11 C vyt12/

2
�e
	1

vy � t22
	1
C 2.vxt12 C vyt22/

1

C
C
C
C
C
C
C
A

(14)

The following special parameters are used:

Newtonian �. P�/ D �s D const. Te 	 0
Generalized Newtonian �. P�/ Te 	 0
Oldroyd-B �. P�/ D �s D const. Te

The eq. (11) is discretized in space by the cell-centered finite volume method (see
[3]) and the arising system of ODEs is integrated in time by the explicit multistage
Runge–Kutta scheme (see [4], [6], [9]):
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W n
i D W .0/

i

W
.s/
i D W .0/

i � ˛s�1�tR.W /.s�1/i (15)

W nC1
i D W .M/

i s D 1; : : : ;M;

where M D 3, ˛0 D ˛1 D 0:5; ˛2 D 1:0, the steady residual R.W /i is defined by
finite volume method as

R.W /i D 1

�i

4X

kD1

h�
F
c

k � F v
k

�
�yk �

�
G
c

k �Gv
k

�
�xk

i
C S; (16)

where �i is the volume of the cell, �i D
R R

Ci
dx dy. The symbols F

c

k;G
c

k and

F
v
k; G

v
k denote the numerical approximation of the inviscid and viscous fluxes, for

more details see [5], symbol S represents the numerical approximation of the source
term with central approximation of derivatives.

4 Numerical results

The steady numerical results in the branching channel for two dimensional general-
ized Newtonian fluids are shown in the Sect. 4.1. In the Sect. 4.2 the comparison of
Newtonian and Oldroyd-B fluids is presented for simple 2D channel.

4.1 Two Dimensional Case

In this section the steady numerical results are presented. The comparison of
Newtonian and non-Newtonian shear thickening and shear thinning fluids for Re D
400 in the geometry of the branching channel in the form of the velocity isolines is
shown in the Fig. 2.

The following choices of the power-law index were used: for Newtonian fluid
r D 0, for shear thickening and shear thinning fluid values r D 0:5 and r D � 0:5.
In the inlet the velocity is prescribed by the parabolic profile. The histories of the
convergence are also presented in the Fig. 2. One can observe some differences
between tested fluids in the size of the separation region.

The nondimensional axial velocity profile for steady fully developed flow of
considered fluids is shown in the Fig. 3. In these figure the small channel is
sketched. The line (inside the domain) marks the position where the cuts for the
velocity profile were done.
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0.10.20.30.40.50.60.70.80.9
0.10.20.30.40.50.60.70.80.9 1

0.1

Newtonian (r = 0)
shear thickening (r = 0.5)

shear thinning (r = −0.5)

0.20.30.40.50.60.70.80.9

iterations
ax

ia
l 
ve

lo
ci

ty
 r

es
id

ua
l

0 200000 400000
-15

-10

-5

Newtonian r=0
shear thickening r=0.5
shear thinning r= -0.5

Fig. 2 Velocity isolines and history of the convergence of steady flows for generalized Newtonian
fluids

y

u

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Newtonian

shear thickening r = 0.5

shear thinning r = -0.5

y

u

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x

v

3 3.2 3.4

0

0.1

0.2

a b c

Fig. 3 Nondimensional velocity profile for steady fully developed flow of generalized Newtonian
fluids in the branching channel (the line legend in the a) is the same for all figures)

2R

2R R 2R 5R

10R

R

Fig. 4 Structure of the computational domain

4.2 Viscous and Visoelastic Model

This section deals with the comparison of the numerical results of Newtonian and
Oldroyd-B fluids. Fig. 4 shows the shape of the tested domain.
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The following model parameters are:

�e D 4:0 � 10�4Pa � s �s D 3:6 � 10�3Pa � s
	1 D 0:06s 	2 D 0:054s

U0 D 0:0615m � s�1 L0 D 2R D 0:0062m
�0 D � D �s C �e � D 1050kg �m�3

In the Figs. 5 and 6 the comparison of the axial velocity isolines and the pressure
distributions is presented.
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Fig. 5 Axial velocity isolines for Newtonian and Oldroyd-B fluids
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Fig. 6 Pressure distribution for Newtonian and Oldroyd-B fluids

Pressure and velocity distribution along the axis for both tested fluids models is
shown in the Fig. 7. By simple observation one can conclude that the main effect of
the Oldroyd-B fluids behavior is visible mainly in the recirculation zone.
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Fig. 7 Pressure and axial velocity distribution along the central axis of the channel
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5 Conclusions

Newtonian model with its generalized modification and Oldroyd-B model have
been considered for numerical simulation of fluids flow in the branching channel
and in the idealized axisymmetric stenosis. The cell-centered finite volume solver
for incompressible laminar viscous and viscoelastic fluids flow has been described.
Generalized Newtonian model was used for testing of different choices of the power-
law index r in the branching channel. For time integration the explicit Runge–
Kutta method was considered. The numerical results obtained by this method are
presented. We can conclude that the numerical results of the tested fluids agrees with
well-known non-Newtonian behavior. The differences between these three fluids are
given mainly in the separation region.

In the idealized stenosis we tested the Newtonian and Oldroyd-B fluids models.
Here the two definitions of the stress tensor were used. Based on the above
numerical results we can conclude that the difference between the viscous and
viscoelastic fluids is visible in the recirculation zone.
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An Aggregation Based Algebraic Multigrid
Method Applied to Convection-Diffusion
Operators

Sana Khelifi, Namane Méchitoua, Frank Hülsemann, and Frédéric Magoulès

Abstract The paper focuses on an aggregation-based algebraic multigrid method
applied to convection/diffusion problems. We show that for an unstructured finite
volume approach on arbitrary shaped cells, the separation of the two operators
associated with suitable smoothers improves the aggregation-based multigrid. While
the convection is treated by a piecewise constant prolongation, the off-diagonals
entries of the diffusionP0 Galerkin operator are scaled by a parameter representative
of the mesh spacing ratio between the fine and coarse mesh in the vicinity of the
coarse mesh cell boundaries. Some numerical examples are shown to assess the rate
of convergence and the robustness of the proposed approach.

Keywords finite volumes, algebraic multigrid, convection-diffusion
MSC2010: 76M12

Introduction

The ongoing increase in computing power renders the solving of ever larger linear
systems possible, so that the use of algorithms with optimal algebraic complexity
becomes necessary. From this point of view, multigrid methods (MG) represent a
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viable alternative to other solution strategies since their theoretical computational
complexities scale quasi-linearly with the problem size, especially for elliptic
dominated problems [11]. The key ingredient of the multigrid technique relies on the
use of a hierarchy of grids for solving a linear set of equations. The fast convergence
of the multigrid scheme is based on the fact that, for each component of the error,
there exists a grid level on which the error component in question is efficiently
reduced. Compared to the standard geometric procedure, the algebraic multigrid
has become very competitive. The hierarchy of grids is created automatically, taking
into account the matrix entries of the discretized operator. This procedure allows the
effective solution of a large class of linear systems arising from highly non homoge-
neous PDE discretized with unstructured meshes. Among the different interpolation
schemes used for the restriction and prolongation operators involved in the coarse
level matrix calculation, the piecewise constant interpolation is a limiting case of the
“Ruge-Stüben” multigrid procedure [11]. Consisting of agglomerating the fine mesh
points for creating coarse mesh points, this approach is widely used in finite volume
based CFD solvers [8]. In order to recover the theoretical convergence for elliptic
second order operators [6], the rescaling of the coarse level P0 Galerkin operator is
a judicious and quite simple mean. The trivial method, consisting of rescaling by
a global number is very simple to implement but it is limited to problems that can
be solved effectively with a geometric multigrid procedure [9]. A second approach
called “smoothed aggregation” [12] improves the MG convergence, but it increases
the number of off-diagonal entries of the coarse level matrix and therefore destroys
the simplicity of the original approach. A third approach, although only studied
with a finite volume scheme on fully unstructured meshes, greatly improves the
scaled P0 Galerkin multigrid procedure, thanks to an original face based rescaling
[10]. It maintains the simplicity of P0 interpolation. However, for equations mixing
convection and diffusion operators, acting preferentially at different grid scales, the
optimal use of multilevel techniques is less evident, with the presence of several
different strategies for overcoming these difficulties [2], [4], [5], [7]. The aim of the
paper is to present a strategy for solving such systems, in the framework of the face
based rescaling algebraic multigrid procedure.

1 Finite Volume procedure

The scalar convection/diffusion equation div.
�!
QC � ��!rC/ D b; where

�!
Q; � and

C represent respectively a divergence free velocity field, a diffusion coefficient and
the unknown scalar to be solved, is representative of the transport/diffusion terms of
the momentum, energy or stationary mass fraction equations used in CFD solvers
[1]. The integration over a discrete cell˝I is written as:

Z

˝I

div.
�!
QC���!rC/ D

X

J2VI
.
�!
Q IJ:
�!
N IJ/CIJC

X

J2VI
.���!rC/IJ:

�!
N IJ D bI j˝I j; (1)
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where VI represents the neighbourhood of the cell I , i.e the set of cells J sharing a

non-zero area surface IJ with the cell I and
�!
N IJ designs the normal vector to the face

IJ pointing from ˝I to ˝J . Numerical consistency and precision for diffusive and
convective fluxes for non-orthogonal cells are taken into account using a gradient
reconstruction technique. This technique is useful for increasing the order of some
numerical schemes, when applied to complex situations as unstructured meshes
for instance. It concerns both first order (convection) and second order (diffusion)
differential equations, discretized with finite volume methods. Among the various
numerical fluxes, assuming regular coefficient �, the following one is used for the
diffusion:

.���!rC/IJ:
�!
N IJ D �IJ.CI � CJ /C .

�!
II0 � �!JJ0/:.�

�!rC/cIJ
I 0J 0

:j�!N IJj; (2)

where .�
�!rC/cIJ � 0:5.�I

�!rCIC�J�!rCJ / represents the cell gradient projected at
the face centre F, either evaluated with a finite volume or a least square formulation
and �IJ represents the face interpolation of the diffusion coefficient (with arithmetic,
harmonic or geometric interpolation). For the convective part of the fluxes, the
simplest upwind scheme remains consistent for non orthogonal smooth meshes, but
the order can be less than one. Among the various numerical higher order convective
fluxes, the following one is used for a centred interpolation of the convected variable
C at the face centre F (also named IJ) of the interface separating two cells I and J
(see Fig.1):

CIJ D CF D CO C��!OF :�!rC
c

IJ

CO D OJ
IJ CI C OI

IJ CJ
(3)

In order to avoid instabilities, the convective schemes for all variables, except
the pressure, are non-linear centred or second order upwind schemes. The switch
between first order upwind and higher order interpolation is triggered if the
non-monotony of the variable in the neighbourhood of the interpolation point is
detected. The linear set of equations arising from discrete formulations (1) with
the higher order diffusive flux (2) and convective flux (3), is not solved directly
with GMRES or BICG-STAB method, because the resolution can be too expensive

I

F

J

O
J’

I’ N_IJ

Fig. 1 Geometrical parameters at the face separating cells I and J. I’ (res. J’) is the orthogonal
projection of I (res. J) on the normal through the face centre F
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or even impossible without robust pre-conditioners. The computation of such
systems is made through a defect correction technique. The explicit (or initial)
convective/diffusive flux (named old) computed with the scheme (2) and (3) is taken
into account in the right hand side. The iteration matrix for solving the correction,
making use only of the original finite volume neighbourhood, is a positive M matrix,
which can be solved by suitable iterative methods, such as conjugate gradient or
multigrid solvers.

R
˝I
d iv.
�!
Q� � ��!r �/ �

X

J2VI
.
�!
QIJ :

�!
N IJ /�

upwind
IJ C �IJ.�I � �J /

I 0J 0
j�!N IJj

D bI˝I �
X

J2VI
.
�!
QIJ :

�!
N IJ�IJ � ��!rC old

IJ :
�!
N IJ/

C new D C old C �

(4)

In (4) , �upwind
IJ D �I if .

�!
QIJ :

�!
N IJ / > 0 and �upwind

IJ D �J otherwise: The defect
correction procedure (4) is repeated, by replacing C old by C new, until the residual
tends towards a user defined value.

2 Multigrid procedure

Many of the multigrid approaches for CFD solvers are based on the idea of
separating the elliptic part from the non-elliptic one in the PDE [3]. System (4)
can be written as .C C D/� D f , where C is a non-symmetric M-matrix
obtained by upwind-biased discretization of the convection and D is a symmetric
M-matrix corresponding to a low order discrete scheme (on non orthogonal meshes)
of diffusion. The piecewise constant interpolation for restriction and prolongation
operators involved in the coarse level matrix construction preserves the M-matrix
properties of the 2 operators, and hence the smoothing properties of simple
Gauss-Seidel or Jacobi-type relaxation schemes. The coarse convection operator is
constructed based on the Galerkin product with a piecewise constant interpolation
operator [11]. The off-diagonal entries XC0 of the coarse convection operator read
as:

XC0IC JC D
X

.Ik;Jk /

Min..
�!
QIkJk

�!
N IkJk /; 0/

XC0JC IC D �
X

.Ik;Jk /

Max..
�!
QIkJk

�!
N IkJk /; 0/

The upwind character of the finest level discretization is propagated to all coarse
levels. This property, associated with an algebraic multigrid procedure allowing
the aggregation along the streamlines and associated with an appropriate smoother
ensures a physical coarse grid correction for the convective part. The piecewise
constant interpolation for the elliptic part is not optimal from a theoretical viewpoint
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I1

I2

I0
IC

JC

J1

J2

J0

Fig. 2 Sketch of an aggregate and coarse mesh boundary where IC and JC are the gravity centres
of the coarse cells, (Ik ,Jk) are the fine mesh cells situated on both sides of the coarse mesh interface
and I0 (resp. J0) is an average value of I1; I2 (resp. J1; J2)

[6]. The optimal multigrid convergence of the elliptic part is obtained in a quite
simple manner, considering a finite volume discretization on fully unstructured
meshes [10]. A geometrical face-based rescaling of the off-diagonal entries XD0 of
the P0 coarse mesh matrix takes into account the mesh spacing ratio between the fine
and coarse level in the vicinity of the coarse mesh cell boundaries, as represented in
Fig.2. In our notation, the rescaling reads as follows:

XDIC JC D
I
0

0J
0

0

I
0

CJ
0

C

XD0
IC JC

; with XD0
IC JC
D �

X

.Ik ;Jk/

�IJ

I
0

kJ
0

k

j�!N IkJk j

The detailed derivation of the rescaling method for the elliptic part is given
in [10]. The singularly perturbed character of convection complicates the use of
multigrid techniques, because of the possible poor coarse grid approximation of the
convective part. The typical approach is to use a smoother which eliminates the
singular perturbation errors on the finest level, so that the coarse grid correction can
handle efficiently the remaining elliptic part of the errors. Gauss-Seidel like methods
are quite fast iterative solvers for convection operators discretized with upwind
biased techniques. Downwind numbering w.r.t constant characteristics [2] or, more
generally, curved characteristics following the vortices in the flow [5] renders the
Gauss-Seidel iteration sufficiently robust. Nevertheless, these formulations cannot
be easily applied to complex flows inside complex geometries, in terms of imple-
mentation and set up phase computing time. The symmetric Gauss-Seidel (SSOR)
relaxation scheme, for which upwind and downwind directions are swept, represents
a viable alternative for complex situations. Previous numerical assessments have
shown that it is nearly as robust as circular ordering [7].

The simplest cycle in the multigrid resolution, the V-cycle, is used, in combina-
tion with SSOR methods acting as smoothers. The algebraic multigrid procedure is
based upon the strength of the matrix connectivity, defined in a symmetric way
for an aggregation-based procedure. Two cells numbered i and j are merged if
max.A2ij ; A

2
j i /=AiiAjj is greater than a threshold value, progressively relaxed until

the targeted coarsening is reached. Each coarse grid has approximately one third of
the number of cells of the previous fine grid, representing a good trade off between
the efficiency of the smoothing with few iterations (3 for a coarsening ratio of about
3) and grid complexity.
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Fig. 3 The square test case: initial parameters and the coarsest level with a finest mesh of 100�100

3 Numerical examples

In the following examples, we tested the based piecewise constant multigrid scheme
(referred as P0) and the new scheme with the rescaled diffusion operator (referred
as P1). The multigrid scheme is used as a stand alone solver. Our unit of measure
is the equivalent of the number of matrix-vector products performed on the finest
level. It is a representative measure of the arithmetic and memory access operations
performed during the resolution that does not depend on the computer.

3.1 The square test

In this example, the diffusion coefficient is piecewise constant with a strong jump
and the convection velocity is horizontal and equal to 1, as shown on Fig. 3. The
right hand side is homogeneous and equal to 0. The initial solution is zero on
the whole domain with the boundary conditions shown on Fig. 3. The stopping
criterion is based on a threshold on a normalised residual. The number of iterations
presented in Table 1 stands for the equivalent of the number of matrix-vector
products performed on the initial mesh (the finest grid). The number between
brackets represents the number of cycles performed. For Gauss-Seidel as a stand
alone solver, one iteration counts for 3 matrix-vector products (2 sweeps and the
computing of the residual). Observing the different results, we notice a stability of
the P1 multigrid solver while the P0 one exhibits a mesh dependency. The mesh
dependency of the aggregation P0 solver is a well known fact. The rescaling of this
operator yields much better results. For the SSOR stand alone solver, it is clear that
it is not competitive. It is not efficient because of diffusive part.
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Table 1 The number of matrix-vector products (MG cycles), for different solvers on a sequence
of 2D meshes for the square problem

Number of cells in one direction 10 100 500 1,000
Symmetric Gauss-Seidel 63 3,372 74,409 284,301

P0 V-cycle 71 (5) 547 (31) 1,588 (94) 5,353 (298)
P1 V-cycle 55 (4) 126 (8) 135 (9) 135 (9)

3.2 The 600 MW corner fired boiler

The second example concerns the steady transport/diffusion source term of NOx

polluant inside a 600 MW corner fired boiler, see the Fig. 4. The boiler is fitted with
24 burners displayed at 3 levels. The velocity field and the diffusivity are relatively
complex [13]. The hierarchy of grids obtained is summarised in Table 2. A reduction
by a factor around 3 is noticed between all the levels. The agglomeration is stopped
when the coarse level size drops below 1% of the cells number in the finest level.

(a) The geometry (b) The coarsest level

Fig. 4 The geometry, the initial mesh and the coarsest level of the boiler test case

Table 2 Hierarchy of grids obtained for the boiler test case
Grid level 0 1 2 3 4 5

Ncelk 462,784 158,169 52,631 17,403 5,739 1,898
Nfack 1,363,784 629,626 278,518 113,296 42,760 15,106

The different results obtained with the multigrid scheme, the stand alone sym-
metric Gauss-Seidel solver and the stand alone BICG-Stab solver are summarised
in Table 3. As we recompute the residual at the end of each BICG-Stab iteration,
each iteration counts for 3 matrix-vector products. The number between brackets
represents the number of MG cycles performed. It is clear that symmetric Gauss-
Seidel is not competitive because of the presence of diffusive dominated regions
and recirculation zones. The results obtained with BICG-Stab are reasonable but far
away from those obtained with the proposed scheme.

Conclusion: Based on a finite volume approach on arbitrary cell shapes, the
rescaling of the piecewise constant elliptic part of the convection/diffusion equation
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Table 3 Number of matrix-vector products (and multigrid cycles) for the boiler test case
solver P0 V-cycle P1 V-cycle SSOR BICG-Stab

number of iterations 919 (49) 387(20) 115,806 4227

was successfully accomplished. The separation of the convection and the diffusion
operators in order to enable the use of the basic piecewise constant interpolation
operator for the convection while rescaling the Galerkin coarse grid operator of the
diffusion, associated with suitable smoothers, yields better results than using the
same interpolation for both operators. The numerical examples show the robustness
and the convergence rate of the proposed technique.
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Stabilized DDFV Schemes
For The Incompressible Navier-Stokes
Equations

Stella Krell

Abstract “Discrete Duality Finite Volume” schemes (DDFV for short) on general
meshes are studied here for the Navier-Stokes problem with Dirichlet boundary
conditions. The DDFV method falls in the class of the so-called staggered scheme:
the discrete unknowns, the components of the velocity and the pressure, are
located on different nodes. The scheme is stabilized using a finite volume analogue
to Brezzi-Pitkäranta techniques. We prove the wellposedness of the scheme for
general meshes and we derive the first energy estimates. Finally, we illustrate the
convergence properties with numerical experimentations.

Keywords Finite-volume methods, Navier-Stokes problem, DDFV scheme.
MSC2010: 65N08, 76D03, 76D05.

1 Introduction

We restrict here the presentation to the Navier-Stokes problem with homogeneous
Dirichlet boundary conditions and a smooth viscosity which depends on the spatial
variable. The system reads as follows:

(
@tuC div .�2�.x/DuC pId/C .u � r/u D f; in �0; T Œ�˝;

div.u/ D 0; in �0; T Œ�˝; (1)

where the unknowns are the velocity u W�0; T Œ�˝ ! R
2 and the pressure p W

�0; T Œ�˝ ! R such that
Z

˝

p.t; x/dx D 0, for all t 2�0; T Œ, ˝ is a polygonal

open bounded connected subset of R
2, T > 0. We recall that Du D 1

2
.ruC tru/
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and .u � r/u D
2X

iD1
ui @iu for u D .u1;u2/. We supplement the system (1) with the

following boundary and initial conditions:
(

u D 0; on �0; T Œ�@˝;
u.0; :/ D uini; in ˝:

We assume that f is a function in .L2.�0; T Œ�˝//2, uini is a function in .L1.˝//2
and the viscosity � is a function in W 1;1.˝/ with Inf

˝
� > 0.

Finite volume approximation of Navier-Stokes problem is a current research
topic, we refer to [5, 6, 9–11, 17] for the description and the analysis of the main
available schemes up to now. We consider here the class of finite volume schemes
called DDFV, which have been first introduced and studied in [7,12] to approximate
the solution of the Laplace equation on a large class of 2D meshes including non-
conformal and distorted meshes and without “orthogonality” assumptions as for
classical finite volume methods. This strategy has been extended to a wide class
of PDE problems [1–4, 13, 15] and gives a staggered method for the Navier-Stokes
equations: the approximate velocity is located at the centers and at the vertices of
the mesh and the approximate pressure at the edges of the mesh. In a previous work
[15], we proposed a stabilized DDFV scheme for the Stokes problem with variable
viscosity, which is equivalent (except on the boundary) to two uncoupled MAC
schemes [14, 16] when the grid is cartesian and the viscosity is constant. We will
use here the same discretization for the viscous part of momentum conservation and
the mass conservation equations of (1).

This paper is organized as follows. In Sect. 2, we construct the approximation
of the non-linear convective term. In Sect. 3, we introduce the DDFV stabilized
scheme for the Navier-Stokes problem (1), we begin with existence and uniqueness
of the approximate solution, then we present the first energy estimates. Finally, in
Sect. 4, we illustrate the convergence with numerical results.

2 The DDFV framework

We use the same notation as in [15] for the Stokes problem. We do not recall here
the complete description of meshes and operators:

• the DDFV meshes .T;D/: T is constituted by the primal mesh M [ @M, which
is the initial mesh, and the dual mesh M�[@M�, whose cells K� are built around
the vertices of the primal mesh (Fig. 1), and D is the diamond mesh, whose cells
D are built around the edges of the primal mesh.

• a discrete gradient rD W �R2
�T ! .M2.R//D, its discrete dual operator divT W

.M2.R//D !
�
R
2
�T

, its trace divD W �R2
�T ! R

D, a discrete strain rate tensor
DD W �R2

�T ! .M2.R//D and a stabilization term �D W RD ! R
D.
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Fig. 1 The mesh T (left). A diamond D with a neighbour diamond D0(right)

Concerning the discretization of the nonlinear term .un � r/unC1, a conflict
appears when writing the DDFV scheme because un is defined on centers and
vertices of the mesh whereas runC1 is defined on the diamond mesh. We have

to approach
Z

V

.un � r/unC1dx on both the primal and dual cells. Using a Stokes

formula, we get
X

�2@V

Z

�

.un � n�;V /unC1ds, this quantity will be approached using

a scheme of the form:
X

�2@V
F�;V unC1œ . In the following section, we explain how to

define F�;V and in Sect. 2.2, how to define unC1œ .

2.1 Approximation of the normal flux

The major difficulty in the construction of the scheme lies in the approximation of

Z

�

.un � n�;V /ds: (2)

We use the idea already presented in [8, 11] that is to define discrete mass fluxes
taking into account the stabilization term. This allows to ensure the convenient
property given below in Proposition 2.
Expression of discrete mass fluxes through a diamond edge. At the continuous
level, the Stokes formula gives:

Z

D

div.un/dx D
X

s2@D

Z

s

un � nsDds:

The discrete counterpart of this equality is:

jDjdivD.un/ � 	d2D jDj�Dpn D
X

s2@D
Gs;D.un; pn/;
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where dD is the diameter of D and for s D ŒxK; xK� � D DjD0 (see Fig. 1), we have:

Gs;D.uT; pD/ D ms
uK C uK�

2
� nsD � 	.d2D C d2D0/.pD0 � pD/:

We can approach the mass fluxes
Z

s

un � nsDds by using Gs;D.un; pn/.

Link between the integral (2) and the mass conservation equation. NotingeDK the
triangle whose vertices are xK, xK� and xL� (see Fig. 1), we remark that:

0 D
Z

QDK
div.un/dx D

Z

�

un � n�Kds C
X

s2SK\@D

Z

s

un � nsDds:

where SK D fs 2 S; s. t. s � Kg for all K 2M and SK� D fs 2 S; s. t. s � K�g for
all K� 2 M�, recalling that S is the set of interior diamond sides. Thus, we define
F�;K and F��;K� , the approximation of mass fluxes (2), as follows:

F�;K.uT; pD/ D�
X

s2SK\@D
Gs;D.uT; pD/; where � � D; 8K 2M;

F��;K�.uT; pD/ D�
X

s2SK�\@D
Gs;D.uT; pD/; where �� � D; 8K� 2M�:

(3)

We remark that if .uT; pD/ satisfies divD.uT/ � 	d2D�DpD D 0, we have the
conservativity of the fluxes:

F�;K.uT; pD/ D� F�;L.uT; pD/; 8� D KjL;
F��;K�.uT; pD/ D� F��;L� .uT; pD/; 8�� D K�jL�:

With our choice, we obtain that the approximation of the integral of the velocity
divergence on the primal and dual cells vanishes:

Proposition 1. Let T be a DDFV mesh. For all .uT; pD/ 2 �R2
�T � R

D, we have

8K 2M;
X

�2@K
F�;K.uT; pD/ D 0 and 8K� 2M�;

X

��2@K�
F��;K� .uT; pD/ D 0:

2.2 Discretization of the non-linear term

Using the definition of the mass fluxes given by (3), we can define the discretization
of the non-linear term with an upwind method.

Definition 1. We define bT W �R2
�T �R

D � �R2
�T ! �

R
2
�T

, as follows:

bK.uT; pD; vT/ D 1

jKj
X

�2@K
F�;K.uT; pD/v�C ; 8K 2M;
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bK�.uT; pD; vT/ D 1

jK�j
X

��2@K�
F��;K� .uT; pD/v

��C
; 8K� 2M�;

where

v�C D
(

vK if F�;K.uT; pD/ � 0;
vL elsewhere:

v
��C
D
(

vK� if F��;K� .uT; pD/ � 0;
vL� elsewhere:

The unconditional stability of the scheme is ensured by the crucial result:

Proposition 2. Let T be a DDFV mesh. For all .uT; pD; vT/ 2 E0 �R
D �E0 such

that divD.uT/ � 	d2D�DpD D 0, we have

X

K2M
jKjbK.uT; pD; vT/ � vK C

X

K�2.M�[@M�/
jK�jbK�.uT; pD; vT/� vK�� 0:

3 DDFV schemes for the Navier-Stokes equation

LetN 2 N
�. We note ıt D T

N
and tn D nıt for n 2 f0; � � � ; N g. We use an implicit

Euler time discretization except for the non-linear term which is linearized thanks
to a standard semi-implicit approximation .un � r/unC1. The DDFV scheme for the
problem (1) reads as follows:

• Initialization: we define u0 2 E0 and p0 2 R
D as follows:

8
<̂

:̂

u0 D P
T

muini 2 E0;

p0 2 R
D; s. t. �Dp0 D 1

	d2D
divD.PT

muini/ with
X

D2D
jDjp0D D 0:

(4)

Note that with this choice of .u0; p0/, we have divD.u0/� 	d2D�Dp0 D 0.
• Time stepping: assume that .un; pn/ 2 E0�R

D are given (n 2 f0; � � � ; N �1g).
We have to find unC1 2 E0 and pnC1 2 R

D such that:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

8K 2M;
unC1K � unK

ıt
C divK.�2�DDDunC1 C pnC1Id/C bK.un; pn; unC1/ D fnC1K ;

8K� 2M�;
unC1
K�
� un

K�

ıt
C divK�

.�2�D DDunC1 C pnC1Id/C bK� .un; pn; unC1/ D fnC1
K�

;

divD.unC1/ � 	d2D�DpnC1 D 0;
X

D2D
jDjpnC1D D 0;

(5)
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where �D D .�.xD//D2D, 	 > 0 given, fnC1K D 1

ıt jKj
Z tnC1

tn

Z

K

f.t; x/dxdt for all

K 2M and fnC1
K�
D 1

ıt jK�j
Z tnC1

tn

Z

K�
f.t; x/dxdt for all K� 2M�.

Note that, in order to be able to apply Proposition 2, we have to ensure the property
divD.un/ � 	d2D�Dpn D 0 even for the initial time (i.e. for n 2 f0; � � � ; N g). This
permits to prove the following stability proposition.

Proposition 3 (Discrete energy estimates). Let T be a DDFV mesh. The finite
volume scheme (4)-(5) with 	 > 0 admits a unique solution .un; pn/n2f0;��� ;N g. For
N > 1, there exists a constant C > 0, depending only on ˝ , 	, �, uini and f, such
that:

NX

nD1
ıt jjjrDunjjj22 � C;

NX

nD1
ıt jpnj2h � C;

N�1X

nD0
kunC1 � unk22 � C and kuN k22 � C:

4 Numerical results

We show here some numerical results obtained on a domain˝ D�0; 1Œ2 with T D 1
and ıt D 10�2. Error estimates are given on a test with a stabilization coefficient
chosen to be 	 D 10�3. In order to illustrate error estimates, the family of meshes
(see Fig. 2) are obtained by successive global refinement of the original mesh.

(a) Non conformal square
mesh.

(b) Triangle mesh.

Fig. 2 Family of meshes

The exact solution is the Green-Taylor vortex:

u D
 � cos.2�x/ sin.2�y/e�2t�

sin.2�x/ cos.2�y/e�2t�

!

; p D �1
4
.cos.4�x/C cos.4�y//e�4t�:
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The viscosity � being chosen, we define the source term f and the boundary data g
in such a way that (1) is satisfied.

We compare the relative L2.˝��0; T Œ/-norm of the error obtained with the
DDFV scheme, for the pressure (denoted Erpre), for the velocity gradient (denoted
Ergradvel) and for the velocity (denoted Ervel) respectively. On the two tables,
we give the number of primal cells (denoted NbCell) and the convergence rates
(denoted Ratio).

Table 1 � D 1 on the non conformal square mesh Fig. 2(a)

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

208 2.804E-02 - 8.508E-02 - 1.526E+00 -

736 6.761E-03 2.052 4.309E-02 0.9815 6.574E-01 1.215

2752 1.803E-03 1.907 2.158E-02 0.9973 3.237E-01 1.022

10624 6.045E-04 1.577 1.079E-02 1.001 1.633E-01 0.9874

When the viscosity is equal to 1 (Table 1), we observe a first order convergence
for the L2-norm of the velocity gradient and of the pressure, which seems to
be optimal. We obtain a super-convergence for the L2-norm of the velocity.
Furthermore, let us emphasize that the convergence rate is not sensitive to the
presence of non conformal control volumes.

Table 2 � D 10�3 on the triangle mesh Fig. 2(b)

NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

256 2.952E-01 - 4.403E-01 - 5.181E-01 -

960 2.080E-01 0.5049 3.551E-01 0.3105 3.718E-01 0.4788

3712 1.292E-01 0.6871 2.465E-01 0.5262 2.420E-01 0.6195

14592 7.432E-02 0.7975 1.643E-01 0.5858 1.432E-01 0.7573

When the viscosity is equal to 10�3 (Table 2), the convective term is dominant
and we observe that the scheme is still convergent even if the convergence of the
velocity gradient deteriorates.

5 Conclusion

In this paper, we proposed a stabilized DDFV scheme for the Navier-Stokes prob-
lem. This scheme is well-posed on 2D general meshes. Its convergence properties
were illustrated with numerical experimentations. In a work in progress, we provide
a proof of this result.
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10. R. Eymard, R. Herbin, and J.-C. Latché. Convergence analysis of a colocated finite volume
scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J.
Numer. Anal., (2007) 45(1):1–36.
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Higher-Order Reconstruction: From Finite
Volumes to Discontinuous Galerkin

Václav Kučera

Abstract This work is concerned with the introduction of a new numerical scheme
based on the discontinuous Galerkin (DG) method. We follow the methodology of
higher order finite volume (FV) and spectral volume (SV) schemes and introduce a
reconstruction operator into the discontinuous Galerkin (DG) method. This operator
constructs higher order piecewise polynomial reconstructions from the lower order
DG scheme. We present two variants, the generalization of standard FV schemes,
already proposed by Dumbser et al. (2008) and the generalization of the SV method.
Theoretical aspects are discussed and numerical experiments are carried out.

Keywords Discontinuous Galerkin, finite volumes, reconstruction
MSC2010: 65M15, 65M60, 65M12

1 Problem formulation and notation

For simplicity, we shall be concerned with a scalar hyperbolic equation, although the
same arguments basically hold for any time-dependent PDE. We treat a nonlinear
nonstationary scalar hyperbolic equation in a bounded domain ˝ � IRd with a
Lipschitz-continuous boundary @˝ . We seek u W ˝ � Œ0; T �! IR such that

@u

@t
C divf.u/ D 0 in ˝ � .0; T / (1)

along with an appropriate initial and boundary condition. Here f D .f1; � � � ; fd / and
fs; s D 1; : : : ; d are Lipschitz continuous fluxes in the direction xs; s D 1; : : : ; d .
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Let Th be a partition (triangulation) of the closure ˝ into a finite number of
closed simplices K 2 Th. In general we do not require the standard conforming
properties of Th used in the finite element method (i.e. we admit the so-called
hanging nodes). We shall use the following notation. By @K we denote the boundary
of an elementK 2 Th and set hK D diam.K/; h D maxK2Th

hK .
Let K;K 0 2 Th. We say that K and K 0 are neighbours, if they share a common

face � � @K . By Fh we denote the system of all faces of all elementsK 2 Th.
For each � 2 Fh we define a unit normal vector n� , such that for � 2 FB

h the
normal n� has the same orientation as the outer normal to @˝ .

Over a triangulation Th we define the broken Sobolev spaces

Hk.˝;Th/ D fvI vjK 2 Hk.K/; 8K 2 Thg:

For each face � 2 F I
h there exist two neighbours K.L/

� ; K
.R/
� 2 Th such that

� � K.L/
� \K.R/

� . We use the convention that n� is the outer normal to K.L/
� . For

v 2 H1.˝;Th/ and � 2 F I
h we introduce the following notation:

vj.L/� D trace of vj
K
.L/
�

on �; vj.R/� D trace of vj
K
.R/
�

on �; Œv�� D vj.L/� � vj.R/� :

On boundary edges we define vj.R/� D Œv�� WD vj.L/� .
Let n � 0 be an integer. We define the space of discontinuous piecewise

polynomial functions

Snh D fvI vjK 2 Pn.K/;8K 2 Thg;

where Pn.K/ is the space of all polynomials on K of degree � n. Specifically,

• S0h : is the space of piecewise constant functions as known from the FV method,
• Sn

h ; n � 0: the DG solution lies in this space of piecewise nth degree poly-
nomials,

• SN
h ; N > n: the higher order reconstructed DG solution will lie in this space.

2 Discontinuous Galerkin (DG) formulation

We multiply (1) by an arbitrary 'nh 2 Snh , integrate over an element K 2 Th and
apply Green’s theorem. By summing over all K 2 Th and rearranging, we get

d

dt

Z

˝

u.t/ 'nh dx C
X

� 2Fh

Z

�

f.u/ � n Œ'nh � dS �
X

K2Th

Z

K

f.u/ � r'nh dx D 0: (2)

The boundary convective terms will be treated similarly as in the finite volume
method, i.e. with the aid of a numerical flux H.u; v;n/:
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Z

�

f.u/ � n Œ'nh � dS �
Z

�

H.u.L/; u.R/;n/Œ'nh � dS: (3)

We assume that H is Lipschitz continuous, consistent and conservative, cf. [4].
Finally, we define the convective form bh.�; �/ defined for v; ' 2 H1.˝;Th/:

bh.v; '/ D
Z

Fh

H.v.L/; v.R/;n/Œ'� dS �
X

K2Th

Z

K

f.v/ � r' dx:

Definition 1 (Standard DG scheme). We seek u W Œ0; T �! Snh such that

d

dt

�
uh.t/; '

n
h

�C bh
�
uh.t/; '

n
h

� D 0; 8'nh 2 Snh ; 8t 2 .0; T /: (4)

We note that if we take n D 0, i.e. uh W .0; T /! S0h , then from the definition of bh,
we see that the DG scheme (4) is equivalent to the standard FV method.

3 Reconstructed discontinuous Galerkin (RDG) formulation

For v 2 L2.˝/, we denote by ˘n
h v the L2.˝/-projection of v on Snh :

˘n
h v 2 Snh ;

�
˘n
h v � v; 'nh

� D 0; 8 'nh 2 Snh : (5)

The basis of the proposed method lies in the observation that (2) can be viewed as
an equation for the evolution of˘n

h u.t/, where u is the exact solution of (1). In other
words, due to (5), ˘n

h u.t/ 2 Snh satisfies the following equation for all 'nh 2 Snh :

d

dt

Z

˝

˘n
h u.t/ 'nh dx C

Z

Fh

f.u/ � n Œ'nh � dS �
X

K2Th

Z

K

f.u/ � r'nh dx D 0: (6)

Now, let N > n be an integer. We assume that there exists a piecewise polynomial
function UN

h .t/ 2 SNh , which is an approximation of u.t/ of order N C 1, i.e.

UN
h .x; t/ D u.x; t/CO.hNC1/; 8x 2 ˝; 8t 2 Œ0; T �: (7)

This is possible, if u is sufficiently regular in space, e.g. u.t/ 2 W NC1;1.˝/, cf.[1].
Now we incorporate the approximationUN

h .t/ into (6): the exact solution u satisfies

d

dt

�
˘n
h u.t/; 'nh

�C bh
�
UN
h .t/; '

n
h

� D E.'nh ; t/; 8'nh 2 Snh ; 8t 2 .0; T /; (8)

where E.'nh/ is an error term defined as

E.'nh; t/ D bh
�
UN
h .t/; '

n
h

� � bh
�
u.t/; 'nh

�
: (9)
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Lemma 1. The following estimate holds for all t 2 Œ0; T �:

E.'nh; t/ D O.hN /k'nhkL2.˝/: (10)

Proof: Due to the consistency and Lipschitz continuity of H , we have on � 2 Fh

f.u/ � n�H.UN;.L/

h ; U
N;.R/

h ;n/ D H.u; u;n/�H.UN;.L/

h ; U
N;.R/

h ;n/ D O.hNC1/:

Furthermore, due to the Lipschitz-continuity of f, we have on elementK 2 Th

f.u/� f.U N
h / D O.hNC1/:

Estimate (10) follows from these results and the application of the inverse and
multiplicative trace inequalities, cf [4]. �

It remains to construct a sufficiently accurate approximation UN
h .t/ 2 SNh to

u.t/, such that (7) is satisfied. This leads to the following problem.

Definition 2 (Reconstruction problem). Let v W ˝ ! IR be sufficiently regular.
Given ˘n

h v 2 Snh , find vNh 2 SNh such that v � vNh D O.hNC1/ in ˝ . We define the
corresponding reconstruction operator R W Snh ! SNh by R˘n

h v WD vNh .

By setting UN
h .t/ WD R˘n

h u.t/ in (8), we obtain the following semidiscrete,
formally N th order scheme for the L2.˝/-projections of the exact solution u onto
Snh :

d

dt

�
˘n
h u.t/; 'nh

�C bh
�
R˘n

h u.t/; 'nh
� D O.hN /k'nhkL2.˝/; 8'nh 2 Snh : (11)

By neglecting the right-hand side and approximating unh.t/ � ˘n
h u.t/, we arrive at

the following definition of the reconstructed discontinuous Galerkin (RDG) scheme.

Definition 3 (Reconstructed DG scheme). We seek unh W Œ0; T �! Snh such that

d

dt

�
unh.t/; '

n
h

�C bh
�
Runh.t/; '

n
h

� D 0; 8'nh 2 Snh ; 8t 2 .0; T /: (12)

There are several points worth mentioning.
• The derivation of the RDG scheme follows the methodology of higher order

FV and SV schemes, cf. [7]. The basis of these schemes is an equation for
the evolution of averages of the exact solution on individual elements (i.e. an
equation for ˘0

hu.t/). Equation (11) is a direct generalization for the case of
higher order L2.˝/-projections˘n

h u.t/; n � 0.
• Both un

h.t/ and 'nh lie in Snh . Only Runh.t/, lies in the higher dimensional space
SN
h . Despite this fact, equation (11) indicates that we may expect u � Runh D
O.hNC1/, although u � unh D O.hnC1/.
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• Numerical quadrature must be employed to evaluate surface and volume integrals
in (12). Since test functions are in Snh , as compared to SNh in the corresponding
N th order standard DG scheme, we may use lower order (i.e. more efficient)
quadrature formulae as compared to standard DG.

As in the case of higher order FVM, we use an explicit time stepping method.
For simplicity, we formulate the forward Euler method, which is only first order
accurate, however in Section 5, higher order Adams-Bashforth methods are used.

Let us construct a partition 0 D t0 < t1 < t2 : : : of the time interval Œ0; T � and
define the time step �k D tkC1 � tk . We use the approximation unh.tk/ � un;kh 2 Snh .
The forward Euler scheme is given by:

Definition 4 (Explicit RDG scheme). We seek un;kh 2 Snh ; k D 0; 1; : : : such that

	
un;kC1h � un;kh

�k
; 'nh




C bh
�
Run;kh ; 'nh

� D 0; 8'nh 2 Snh ; k D 0; 1; : : : ; (13)

where un;0h D uh;0 is an Snh approximation of the initial condition u0.

The upper limit on stable time steps, given by a CFL-like condition, is more
restrictive with growing N . However, in the RDG scheme, stability properties are
inherited from the lower order scheme, therefore a larger time step is possible as
compared to the correspondingN th order standard DG scheme.

3.1 Construction of the reconstruction operator

3.1.1 ‘Standard’ approach

In the standard approach, a stencil (a group of neighboring elements and the element
under consideration) is used to build an N th-degree polynomial approximation
to u on the element under consideration ([5] [6]). In the FV method, the von
Neumann neighborhood of an element is used as a stencil to obtain a piecewise
linear reconstruction, cf. Fig. 1, 1). However, for higher order reconstructions, the
size of the stencil increases dramatically, cf. Fig. 1, 2), rendering higher degrees
than quadratic very time consuming. In the case of the RDG scheme, we need not
increase the stencil size to obtain higher order accuracy, it suffices to take the von
Neumann neighborhood and increase the order of the underlying DG scheme.

In analogy to the FV method, the reconstruction operator R is constructed on
each stencil independently and satisfies that R˘n

h is in some sense polynomial
preserving. Specifically, for each element K and its corresponding stencil S , we
require that for all p 2 PN .S/

��
R˘n

h

�ˇ
ˇ
S
p
�ˇ
ˇ
ˇ
K
D pˇˇ

K
: (14)
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Fig. 1 1) FV stencil for linear reconstruction, 2) FV stencil for quadratic reconstruction, 3) Control
volumes in a spectral volume for linear reconstruction, 4) Analogy to the SV approach for DG -
partition of triangle into control volumes, e.g. cubic reconstruction from linear data

This requirement allows us to study approximation properties of R using the
Bramble–Hilbert technique as in the standard finite element method, [1]. The
disadvantage of this approach is that for unstructured meshes, the coefficients of
the reconstruction operator must be stored for each individual stencil.

In the FV method, different conditions on R than (14) are often used, e.g.
continuous or discrete least squares. Special care must be taken in the vicinity of
steep gradients and discontinuities, where the Gibbs phenomenon may occur. In
this case different strategies are employed, e.g. limiting, ENO and WENO schemes,
TVD etc. The generalization of these concepts to the RDG method is left for future
work.

3.1.2 Spectral volume approach

In the spectral volume approach, we start with a partition of ˝ into so-called
spectral volumes S , for example triangles in 2D. The triangulation Th is formed
by subdividing each spectral volume S into sub-cellsK , called control volumes, cf.
[7]. In the FV method, the order of accuracy of the reconstruction determines the
number of control volumes to be generated in each spectral volume. For example,
for a linear reconstruction on a triangle, the triangle is divided into three control
volumes, Fig. 1, 3). Again, in the RDG scheme, we may use only the smallest
available partition into control volumes, and increase the accuracy by increasing
the order of the underlying scheme, cf. Fig. 1, 4).

The reconstruction operator is constructed on each spectral volume indepen-
dently such that it is in some sense polynomial preserving, i.e. for each stencil S ,
we require that for all p 2 PN .S/

�
R˘n

h

�ˇ
ˇ
S
p D p: (15)

The advantage of this approach is that all spectral volumes are affine equivalent,
we construct the reconstruction operator R only on one reference spectral volume.
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4 Relation between RDG and standard DG

The only difference between the DG scheme (4) and RDG scheme (12) is the
presence of the reconstruction operator R in the first variable of bh.�; �/. While the
error analysis of (4) is well understood (at least for convection-diffusion problems
[4]), the analysis of (12) or (13) poses a new challenge. The problem lies in the fact
that we cannot test (12) with 'nh WD Run;kh or something similar, since Run;kh … Snh .
Therefore, we need to establish a relation between (12) and N th order DG, instead
of only nth order DG.

Definition 5 (Auxiliary problem). We seek QuN;kh 2 SNh such that

	 QuN;kC1h � QuN;kh
�k

; 'Nh




C bh
�
R˘n

h QuN;kh ; 'Nh
� D 0; 8'Nh 2 SNh ; k D 0; 1; : : : ;

(16)
where QuN;0

h is an SNh approximation of the initial condition u0.

Lemma 2. Let un;0h D ˘n
h QuN;0h . Then un;kh 2 Snh , the solution of (13) and the solution

QuN;kh 2 SNh of (16) satisfy

un;kh D ˘n
h QuN;kh ; 8k D 0; 1; � � � : (17)

Proof: We prove (17) by induction:
k D 1 W Since un;0

h D ˘n
h QuN;0h , we have for all 'nh 2 Snh

.˘n
h QuN;1h ; 'nh/ D .QuN;1h ; 'nh / D .QuN;0h ; 'nh/ � �kbh

�
R˘n

h QuN;0h ; 'nh
�

D .un;0h ; 'nh/� �kbh
�
Run;0h ; '

n
h

� D .un;1h ; 'nh/;

hence .˘n
h QuN;1h � un;1h ; '

n
h / D 0 for all 'nh 2 Snh . Therefore˘n

h QuN;1h D un;1h .
k > 1 W Assume (17) holds for some k > 1. Then for all 'nh 2 Snh

�
˘n
h QuN;kC1h ; 'nh

� D �QuN;kC1h ; 'nh
� D �QuN;kh ; 'nh

� � �kbh
�
R˘n

h QuN;kh ; 'nh
�

D �un;kh ; 'nh
� � �kbh

�
Run;kh ; 'nh

� D �un;kC1h ; 'nh
�
;

therefore˘n
h QuN;kC1h D un;kC1h . This completes the induction step k ! k C 1. �

As a corollary, error estimates for the auxiliary problem imply error estimates
for the RDG scheme (12). Problem (16) is basically the standard N th order DG
scheme with the operator R˘n

h in the first variable of bh.�; �/. Therefore, sufficient
knowledge of the properties ofR˘n

h (which is polynomial preserving) and standard
DG error estimates would imply the estimates for the RDG scheme.
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5 Numerical experiments

We present numerical experiments for the periodic advection of a 1D sine wave on
uniform meshes. Experimental orders of accuracy ˛ in various norms on meshes
with N elements are given in Tables 1 and 2. Here eh D u�Runh at t corresponding
to ten periods. The increase in accuracy due to reconstruction is clearly visible.

Table 1 1D advection of sine wave, P 2 RDG scheme with P 8 reconstruction
N jjehjjL1.˝/ ˛ jjehjjL2.˝/ ˛ jehjH1.˝;Th/ ˛

4 5.82E-03 – 3.49E-03 – 3.65E-02 –
8 7.53E-05 6.27 4.43E-05 6,30 1.06E-03 5,11

16 9.07E-07 6.38 5.95E-07 6,22 3.58E-05 4,89
32 1.82E-08 5.64 8.70E-09 6,10 1.16E-06 4,95
64 3.41E-10 5.74 1.33E-10 6,03 3.67E-08 4,98

Table 2 1D advection of sine wave, P 2 RDG scheme with P 8 reconstruction
N jjehjjL1.˝/ ˛ jjehjjL2.˝/ ˛ jehjH1.˝;Th/ ˛

4 2.90E-03 – 1.85E-03 – 1.63E-02 –
8 7.75E-06 8.55 3.56E-06 9.02 1.03E-04 7.30

16 2.10E-08 8.53 6.64E-09 9.07 4.34E-07 7.89
32 7.21E-11 8.18 4.02E-11 7.37 1.76E-09 7.94

6 Conclusions

We have presented a possible generalization of higher-order reconstruction oper-
ators as used in the FV method to the DG method. Two constructions of the
reconstruction operator R are presented, the first analogous to the standard FV
case (already treated in [2]) and the construction analogous to the SV method. The
resulting scheme has many advantages over standard DG, FV and SV schemes:

• To increase the order of the scheme, the reconstruction stencil need not be
enlarged, we may simply increase the order of the underlying DG scheme.

• Test functions are from the lower order space, hence more efficient quadratures
may be used than in the corresponding higher order DG scheme.

• Since the RDG scheme is basically a lower order DG scheme with higher order
reconstruction, the CFL condition is less restrictive than for the corresponding
higher order DG scheme.
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of the Czech Science Foundation.
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Flux-Based Approach for Conservative Remap
of Multi-Material Quantities in 2D Arbitrary
Lagrangian-Eulerian Simulations

Milan Kucharik and Mikhail Shashkov

Abstract Remapping is one of the essential parts of most Arbitrary Lagrangian-
Eulerian (ALE) methods. It conservatively interpolates all fluid quantities from the
original (Lagrangian) computational mesh to the new (rezoned) one. This paper
focuses on the situation when more materials are present in the computational
domain – the multi-material remap. We present a new remapping method based
on the computation of the material exchange integrals (using intersections), and
construction of the inter-cell fluxes of all quantities from them. As we are interested
in the staggered ALE, we also briefly discuss the remap of nodal mass and velocity.
Properties of the method are demonstrated on a selected numerical example.

Keywords Multi-material remap, conservative interpolation, staggered arbitrary
Lagrangian-Eulerian methods
MSC2010: 35L65, 41A45, 65D05, 76T99

1 Introduction

Traditionally, there have been two families of numerical method for computational
fluid dynamics, utilizing the Lagrangian or the Eulerian framework, each with its
own advantages and disadvantages. In the pioneering paper [1], Hirt et al. developed
the formalism combining both frameworks, and showed that this general framework
could be used to combine the best properties of the Lagrangian and Eulerian
methods. This class of methods has been termed Arbitrary Lagrangian-Eulerian or
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ALE. This methodology has become very popular in recent years and many authors
contributed to this topic, see for example [2–6].

For multi-material flows, the initial mesh is usually aligned with the material
interfaces – each cell of the mesh contains only one material. For simple flows, it
is possible to rezone the mesh in each material separately and keep the interfaces
aligned with the mesh that is, do not move nodes on the interface at all or move them
along the interface. Unfortunately for realistic simulations, the material interfaces
get often distorted and their rezoning leads to the appearance of mixed cells
containing two or more materials. We focus on the explicit material representation
in form of pure material sub-polygons in each mixed cell, constructed by the modern
moment-of-fluid (MOF) [7] method, which appears to be most optimal for this kind
of application [8].

The ALE algorithm is usually separated into three distinct stages: 1) a Lagrangian
stage in which the solution and the computational mesh are updated; 2) a rezoning
stage in which the nodes of the computational mesh are moved to more optimal
positions; and 3) a remapping stage in which the Lagrangian solution is interpolated
onto the rezoned mesh. Here, we focus on the last stage of the ALE algorithm –
the multi-material remapping. In the multi-material case, the fast and simple swept
region method [9] cannot be used and one must switch to an intersection-based
method.

In this paper, we present a new remapping method for multi-material quantities in
the staggered discretization. The remapping algorithm is based on the computation
of the exchange integrals between the Lagrangian and rezoned meshes, which
represent fluxes of the basic geometry integrals through the computational cell
boundaries, and are computed using intersections (overlays) of the original and
rezoned meshes. These exchange integrals can be pre-computed at the beginning of
the remapping step, and fluxes of all quantities are composed from these integrals.
Due to the flux form of the remapper, this method is best suitable for continuous
remap, where the original and rezoned meshes are similar.

This paper is organized as follows. In Section 2, we describe the construction
of the exchange integrals. In the following two Sections 3 and 4, we describe the
construction of material/average quantity fluxes and remapping all cell-centered and
nodal fluid quantities. In Section 5, we demonstrate the properties of the method on
a selected numerical example. The whole paper is concluded in Section 6.

2 Construction of Exchange Integrals

Our approach is based on expressing the standard overlay formula in the equivalent
flux form [10],

Qc D c [
0

@
[

c02C 0.c/
c0 \ Qc

1

A n
0

@
[

Qc02C 0.Qc/
c \ Qc0

1

A , (1)
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where Qdenotes a particular cell in the new mesh, and C 0.c/ is the set of all cells
neighboring with c (including the corner neighbors). For the construction of the
intersection polygons, we intersect the original cell with the halfplanes defined by
the edges of the rezoned cell [11]. This robust approach works well for intersection
of the generally non-convex polygons (Lagrangian cells) with the convex polygons
(rezoned cells). The situation is demonstrated in Fig. 1. The first term in parentheses
represents the outward part of the flux, while the second term is the inward part
of the flux. Both inward and outward parts can be seen as two light triangles in
image (c) of the Figure. The same expression can be written for each pure material
polygon of cell c. An example of original material polygons is shown in images (a)
and (b) of the Figure, the fluxes of different materials are shown in different shades
in images (d-f) of the Figure. As we can see, the flux between c and a particular
neighbor can have non-zero values of both inward and outward components of the
flux, and each component can include fluxes of several materials (including the
corner fluxes).

Now, suppose that we want to remap volume of a particular materials k of cell c
to the new cell Qc. The new material volume can be written as

VQc;k D
Z

Qck
1 dV , (2)

and after employing formula (1), we can rewrite it as

c c~c c’ c~c

c~c c~c c~c

a b c

d e f

Fig. 1 (a) Original cell c (solid line) containing light and dark materials. (b) New cell Qc (dashed
line). (c) Fluxes between cell c and its left neighbor c0. (d) All outward fluxes around c. (e) All
inward fluxes around c. (f) All fluxes around c



626 M. Kucharik and M. Shashkov

VQc;k D Vc;k C
X

c02C 0.c/
F V
c;c0 ;k , (3)

where the material volume fluxes are defined as

F V
c;c0 ;k D I 1c0k\Qc � I

1
ck\Qc0 , I

f
P D

Z

P

f dV . (4)

Here ck is the polygon of pure material k in cell c, and the total material volume
flux has its outward and inward components. The exchange integral of function
f over polygon P is denoted by the I fP symbol. The exchange integrals can be
pre-computed at the beginning of the remapping step from the mesh geometry,
and can be used for the construction of fluxes of all fluid quantities. Later, we
will need the exchange integrals for polynomials up to the second order, i.e.
f D 1; x; y; x2; x y; y2. Let us note that these are all integrals of polynomials over
polygons (c0

k \ Qc or ck \ Qc0), which can be evaluated analytically.

3 Remap of Cell-Centered Quantities

In this Section, we demonstrate the remap of the cell-centered and material-centered
quantities. All material quantities will be remapped in the same form as we have
shown in equation (3) for material volumes. Material centroids xc;k (needed as
reference centroids for MOF) are remapped as

xQc;k VQc;k D xc;k Vc;k C
X

c02C 0.c/
F x
c;c0 ;k , F x

c;c0 ;k D I xc0k\Qc � I
x
ck\Qc0 (5)

and similarly for yc;k .
Material density is reconstructed in a piece-wise linear way

�c;k.x; y/ D �c;k C Sxc;k .x � xc;k/C Syc;k .y � yc;k/ , (6)

where the material density mean values �c;k are known, and the slopes Sx;yc;k are
determined by minimization of the discrepancy between the reconstructed values
in the centroids of the same material polygons in the neighboring cells from the
mean values there [12]. Limiting by the Barth-Jespersen limiter [13] guarantees
preservation of the local density extrema, while in the mixed cells the 0 and C1
limits are used for limiting to avoid excessive slope degradation in case of thin
material filaments with only few neighbors containing the same material. This
approach implies second order of accuracy of the remapper. The material mass
remap is then performed in a similar form,
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mQc;k D mc;k C
X

c02C 0.c/
F m
c;c0 ;k , Fm

c;c0 ;k D Fm
c0k\Qc � F

m
ck\Qc0 , (7)

where the inward and outward mass fluxes are obtained by the integration of the
reconstructed density over the intersection, which can be composed from the pre-
computed exchange integrals, for example

Fmck\Qc0
D

Z

ck\Qc0

�c;k.x; y/ dVD
�
�c;k � Sxc;k xc;k � Syc;k yc;k

�
I 1ck\Qc0

CSxc;k I xck\Qc0CS
y

c;k I
y

ck\Qc0
. (8)

For the material internal energy, same approach

"Qc;k mQc;k D "c;k mc;k C
X

c02C 0.c/
F "
c;c0 ;k , F "

c;c0 ;k D F "
c0k\Qc � F

"
ck\Qc0 (9)

and (8) with the material specific internal energy " instead of the density � can
be used. However, this approach does not guarantee satisfaction of the local-bound
conservation condition, so a more advanced approach described in [14] must be
used, which constructs the energy fluxes by integration of the reconstructed density
multiplied by the reconstructed specific internal energy, for example

F "
ck\Qc0 D

Z

ck\Qc0
�c;k.x; y/ "c;k.x; y/ dV . (10)

The reconstruction of the specific internal energy cannot be done the same way
as we did for density in (6), it must be centered in material centers of mass
xmc;k D .

R
ck
�c;k.x; y/ x dV /=mc;k instead of material centroids,

"c;k.x; y/ D "c;k C Sx;"c;k
�
x � xmc;k

�C Sy;"c;k
�
y � ymc;k

�
. (11)

Both centers of mass and energy fluxes (10) can be composed from the pre-
computed exchange integrals as we did for mass (8), however, integrals of the
second order polynomials are needed now.

The last cell-centered quantity we need to remap is the average cell pressure
needed for the next Lagrangian step (the material pressures are updated from the
remapped material energies using the equation of state). We suggest to remap the
average pressure in the following form

pQc VQc D pc Vc C
X

c02C 0.c/
F
p

c;c0 , F
p

c;c0 D F p

c0\Qc � F p

c\Qc0 , (12)

where the pressure fluxes are obtained as the exchange volumes multiplied by the
pressure reconstructed by same formula as (6) in the centroid of the intersection
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polygon, for example

F
p

c\Qc0 D I qc\Qc0 pc.xc\Qc0 ; yc\Qc0/ , fx; ygc\Qc0 D
I
fx;yg
c\Qc0
I 1
c\Qc0

. (13)

All terms here can be composed from the pre-computed exchange integrals again.

4 Remap of Nodal Quantities

Nodal mass is tied with the total cell mass through the sub-zonal masses [15]. Our
approach is to remap the nodal mass in a similar flux form,

mQn D mn C
X

n02N 0.n/
F m
n;n0 (14)

where N 0.n/ is the set of nodes neighboring with n and Fm
n;n0 are the inter-

nodal mass fluxes, which can be defined either by interpolation from the inter-cell
fluxes [16], or by minimizing of their difference from given reference fluxes [17].
All remaining nodal quantities are remapped in the same form as (14) by attaching
the particular nodal quantity to the inter-nodal mass flux, for example

uQn mQn D un mn C
X

n02N 0.n/
un;n0 F

m
n;n0 (15)

for nodal velocity, where the value of un;n0 is the reconstructed velocity inside the
inter-nodal swept region, for example a simple bilinear interpolation or the kinetic-
energy conservative approach [18]. Similarly, the kinetic energy can be remapped
in order to perform the standard energy fix [2] ensuring total energy conservation.

5 Numerical Example

To demonstrate the properties of the described remapping method, we present
simulation of the triple point problem described in [19]. The initial data are shown in
image (a) of Fig. 2. This problem contains three materials, the interfaces are initially
aligned with the mesh edges. The simulation was performed in the context of our 2D
staggered research multi-material ALE (RMALE) code on the orthogonal 140� 60
mesh. To stress the influence of the remapper, we run the simulation in the Eulerian
manner – remapping to the initial mesh is done after every single Lagrangian step.
The light material generates a shock wave propagating in different speeds into the
gray and dark materials, causing development of a vertex.



Flux-Based Approach for Conservative Remap of Multi-Material Quantities in 2D ALE 629

The material distribution in the final time t D 5 can be seen in image (b) of Fig. 2.
We can see the thin filament of the dark material which stays compact and does not
break apart even though the width of its tail is smaller than 1 cell size. The profiles of
material density, specific internal energy, and pressure can be seen in images (c-e) of
Fig. 2. As we can see, all fields are smooth without any numerical problems. Finally,
in image (f) of Fig. 2, the material velocity field is shown displaying the vortex
around the triple point. Again, the velocity field is smooth and does not contain any
numerical artifacts.

6 Conclusion

We have briefly described a new method for remapping of all fluid quantities
between similar meshes in the context of staggered multi-material 2D ALE. This
method is flux based, and fluxes of all fluid quantities are constructed from the
pre-computed exchange integrals. As these integrals are computed just once, at the
beginning of the remapping step, computational cost of this method is not excessive
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Fig. 2 Triple point problem: (a) materials in t D 0; (b) materials in t D 5; (c) material density in
t D 5; (d) material energy in t D 5; (e) material pressure in t D 5; (f) velocity field in t D 5
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although it involves intersections. Due to the flux nature of the method, this method
is conservative for all quantities (total energy conservation is assured by the energy
fix). If high order reconstructions are used for fluxes of all quantities, this method
is second order accurate. We have demonstrated that this method can be used as a
remapper in the framework of a full hydrodynamic code.
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Optimized Riemann Solver to Compute
the Drift-Flux Model

Anela Kumbaro and Michaël Ndjinga

Abstract This paper discusses the development of an approximated optimized Rie-
mann solver applied to the two-phase flow drift-flux model. The solver makes use
of a partial eigenstructure information while maintaining the Roe solver accuracy.
Moreover, it allows to take into account the contribution of the dynamic and thermal
non-equilibrium in the upwinding matrix. A further optimization of the solver
is realized by scaling the global matrix which results in better preconditioning.
Both the partial eigenstructure decomposition and the scaling of the matrix are
inspired from the eigenstructure of the two-phase flow model. A number of
physical benchmarks are presented to illustrate this method. Comparison between
the computational results obtained with the optimized solver and the conventional
Roe-type solver demonstrates the efficiency of the new methodology.

Keywords Riemann solver, eigenstructure decomposition, drift-flux model
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1 Introduction

The drift-flux is commonly used to simulate water-vapor flows in nuclear power
plants. Various industrial codes within the nuclear community, for example FLICA4
code of CEA, or THYC of EDF, both dedicated to design and safety studies of
nuclear reactors, rely on this model. When compared with codes that use more
advanced two-phase models, such as the two-fluid or the multifield model, their
strong point is the code-efficiency. Reducing furthermore the CPU time cost is
crucial for the survival of these type of codes. Our work is done within the FLICA-
OVAP code [3], which is a new platform dedicated to core thermal-hydraulic studies,
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funded by the Thermal-hydraulics Simulation project of CEA. To provide a relevant
response to different core concepts and multiple industrial applications, several
models coexist in FLICA-OVAP platform: the Homogeneous Equilibrium model,
the drift flux model which is directly derived from the previous CEA core code
FLICA-4 [1]-[2], the two-fluid model, and finally, a general multifield model [4],
with a variable number of fields for both vapor and liquid phases. We present in
this paper two techniques to reduce the execution time and improve the code’s
performance while using the drift-flux model. Our starting point solver is the weak
formulation of the Roe’s approximate Riemann solver, adapted to low Mach number
[6]. Based on the eigenstructure of the drift-flux model we propose to rewrite the
solver in a more optimized form.

On the other hand, to go forward in time, a fully implicit integrating step is used
that provides fast running steady state calculations. We introduce a scaling of the
implication matrix so that the matrix coefficients have the same order of magnitude.
This allows for a much better preconditioning of the matrix and significantly reduces
the global CPU time.

This paper is organized as follows: to begin with, Sect. 2 briefly describes the
standard two-phase flow drift-flux model we deal with. Next, we introduce an
evaluation of its eigenstructure. In Sect. 4 we present the numerical solver based on
the specific eigenstructure of the drift-flux model and discuss its accuracy. Section 5
introduces the scaling of the matrix. We show that the coefficients of the upwinding
matrix which have different orders of magnitude, have the same magnitude after the
scaling. Some numerical results are presented in Sect. 6 to illustrate the behavior of
the numerical solver. Finally, some conclusions are presented in the last section.

2 Drift-flux two-phase flow model

We introduce here the FLICA-OVAP drift-flux model. For the sake of simplicity
this model is represented without taking into account the porosity variable and the
viscous term. The balance equations for the drift-flux model read:

@

@t
�Cr � .�u/ D 0; (1)

@

@t
.�u/Cr � .�u˝ uC �c.1 � c/ur ˝ ur /Crp D Fext C Fw (2)

@

@t
.�E/Cr � .�HuC �c.1 � c/ur .LC u2v � u2l

2
// D Qtot C Fext � u (3)

@

@t
.�c/Cr � .�cuC �c.1 � c/ur / D �; (4)

where c is the vapor concentration, u, �, p, E, H are the mixture velocity, mixture
density, pressure, total energy and enthalpy, respectively, ur is the relative velocity
between vapor and liquid phases given by a drift-flux model, � is the mass transfer
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term, Fext is the external forces term, F w is the wall friction term, andL is the latent
heat.

The model is closed by a general equation of state � D �.p; h; c/, and by the
assumption that the vapor is saturated in presence of liquid: hv D hsat

v .P /, where hg
is the vapor enthalpy. Closure laws (wall transfer, mass exchange, diffusion, ...) for
this model come from FLICA-4 code and have been described in [1].

3 Eigenstructure of the drift-flux model

If we introduce an orthonormal basis .n; �1; �2/ of the three dimensional space R3,
the one-dimensional formulation of the above drift-flux system (1-4) is:

@V
@t
C @Fn

@n
D S (5)

with the conservative vector V D .�; �u; �E; �c/ 2 R
m, where m D d C 3 and d

is the space dimension, and S the source term vector. The expression of the flux is
separated into two part, the zero order relative velocity part, Fn0, and the relative
velocity dependent part, Fnr :

Fn0 D

0

B
B
@

�u � n
�.u � n/uC pn

�Hu � n
�cu � n

1

C
C
A ; Fnr D

0

B
B
B
@

0

�c.1 � c/ur � nur
�c.1 � c/.LC u2v�u2l

2
/.ur � n/

�c.1 � c/ur � n

1

C
C
C
A

(6)
Let first consider only the part without relative velocity contribution. The

eigenvalues are 	� D u �n�a, 	u D u �n (multiplicity d C 1), and 	C D u �nCa,
where a is the mixture sound velocity. The right and left eigenvectors associated to
the sound waves are

r˙ D

2

6
6
4

1

u � .u � n � 	˙/n
H � .u � n � 	˙/u � n

c

3

7
7
5 l˙ D 1

2a2

2

6
6
4

�
 au � n
��u˙ an

�




3

7
7
5 (7)

where � D @P
@�

, � D @P
@�E

, and 
 D @P
@�c

. If we consider the relative velocity dependent
part, the problem becomes very complex. Indeed, the relative velocity is drift flux
model dependent, and the drift flux model depends on the flow configuration. We
will not represent here any analytical expression about the eigenvalues but we will
only assume that the drift-flux model, like the general multifield model [4], has
two fast eigenvalues of u ˙ a order of magnitude, while the other eigenvalues are
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between uv � n and ul � n. Hence, these so called intermediate eigenvalues have the
same order of magnitude as the mixture velocity.

4 Simplified eigenstructure decomposition solver (SEDES)

Let � be a meshing of ˝ defined as the union of control volumes K . The discrete
unknowns are denoted by Vn

K and represent the approximation of a mean value of
V on the control volume K at time tn.

The Roe-type approximate Riemann solver is the current solver in the CEA
industrial code FLICA-4 [2] and it will be used as the reference solver for this
study. This solver requires the solution of a one-dimensional Riemann problem at
cell interfaces on a non-staggered grid, to define backward and forward differences
used to approximate the spatial derivatives. The numerical flux is the following:

˚nC1
K;L D

Fn.VnC1
K /C Fn.VnC1

L /

2
� jAn.Vn

K;V
n
L/j

2
.VnC1

L � VnC1
K / (8)

So, at the heart of such scheme is the so-called Roe matrix, first introduced in [5]
for the single-phase flow equations, taken at the Roe average state on the interface
between K and L.

To construct this matrix the FLICA-4 standard Roe-type solver makes use of a
complete eigenstructure decomposition:

jAn.Vn
K;V

n
L/j D

mX

kD1
j	kjlk ˝ rk (9)

with 	k , lk and rk the eigenvalues, the left and right eigenvectors of the system
matrix.
First case: If the relative velocity contribution is not considered into the system
matrix, the eigenvalues are 	� D u � n � a, 	u D u � n (multiplicity d ), and 	C D
u � nC a, and the eigenvectors are easily obtained. Therefore, we propose to rewrite
Equation (9)

jAnj D .j	�j � junj/l� ˝ r� C .j	Cj � junj/lC ˝ rC C junjI: (10)

with l˙ and r˙ given by (7). Eq. (10), while corresponding exactly to the Roe
upwinding matrix, provides a more efficient way to calculate this matrix.
Second case: The relative velocity contribution is considered into the system matrix.
In this case Eq. (9) requires the computation of all the eigenstructure of the system
matrix. This computation has to be done using a numerical algorithm and this means
a consistent increase in CPU time. For this reason the FLICA-4 standard Roe-type
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solver does not take into account the relative velocity in the upwind part of the
numerical fluxes.

On the other hand, based on the structure of the complete matrix eigenvalues,
we remark that to compute the absolute value of the upwinding matrix it is
essential to take into account the contributions of the fastest eigenvalues, while the
remaining eigenvalues which have more or less the same order of magnitude, can be
represented by an unique candidate, for instance, the fastest one of this group, that
we will denote simply by Q	.

We can rewrite Eq. (10) using Q	 instead of junj:

jASEDES
n j D .j	�j � Q	/l� ˝ r� C .j	Cj � Q	/lC ˝ rC C Q	I: (11)

Eq. (11) corresponds to a simplified eigenstructure decomposition, hence the name
SEDES of the solver, as it uses only the fastest waves contributions. To construct
the SEDES flux we need the eigenvalues and eigenvectors associated to the sound
waves, which are determined using a shifted power method, and Q	 calculated as
Q	 D u � nC jur � nj.

The spectrum of the approximated upwind matrix jASEDES
n j is very close to the

spectrum of the standard complete Roe decomposition (9), since the spectrum of the
following matrix is close to zero

jASEDES
n j � jARoe

n j D
m�1X

kD2
lk ˝ rk. Q	 � j	kj/: (12)

The general structure of the drift-flux system eigenvalues ensures that Q	�j	kj �
jur � nj, so the truncation error in upwinding matrix remains small, especially when
compared with the two first terms on the right hand side of Eq. (11), as the velocities
are small compared to the sound speeds.

5 Matrix scaling for better preconditioning

We are interested in using a fully implicit method for transient calculations. To this
end we rewrite the numerical flux (8) that gives its contribution on the right hand
side of the disretized system, in either of the two equivalent forms:

˚nC1
K;L D Fn.VnC1

K /C A�n .Vn
K;V

n
L/.V

nC1
L � VnC1

K / (13)

or

˚nC1
K;L D Fn.VnC1

L / �ACn .Vn
K;V

n
L/.V

nC1
L �VnC1

K / (14)
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where Aṅ .V
n
K;V

n
L/ are the negative/positive part of the upwind matrix. The

derivatives of these fluxes give contribution on the implicitation matrix that depends
only on the matrices Aṅ .V

n
K;V

n
L/. We remark that both vapor and liquid velocity

projections on the normal at the cells interface have the same sign in most kind of
two-phase flow configurations, as the relative velocity is smaller compared with the
mixture velocity. Hence, we expect the eigenvalues of the two-phase flow system
to have rather the same sign, except one. We choose in the code to compute first
whichever matrix ACn .Vn

K;V
n
L/ or A�n .Vn

K;V
n
L/ corresponding to a minimal number

of eigenvalues of the same sign. Then, we obtain the other one using the relation
ACn .Vn

K;V
n
L/ � A�n .Vn

K;V
n
L/ D jAn.Vn

K;V
n
L/j, with the absolute value matrix

obtained using the partial eigenstructure decomposition method explained in Sect. 5.
The implicit numerical method finally leads to the solving of the system

MX D b: (15)

n In order to solve efficiently (15) using an iterative solver [7], one needs to find an
approximation of M�1. This is usually done through an approximate factorization
M � LU where U is upper triangular and L is lower triangular. The error made
in the approximate factorisation using an incomplete Gauss factorisation depends
on the size of off-diagonal coefficients of the matrix. Hence one may benefit from
working with matrix having off-diagonal coefficient of smallest possible magnitude.

When looking at the coefficients of the system eigenvectors (7), one sees that
they have very different magnitudes. Indeed in the particular case where u D 0, the
Roe matrix has only two non zero eigenvalues,˙a, with the respective eigenvectors

r˙ D � 1;˙an; h; c
�

l˙ D 1
2a2

�
�;˙an; �; 


�
(16)

For better readability, the rest of the analysis is presented in the 1D case (n D 1)
and derivatives � and 
 having the same order as �h will be replaced by �h. One
has A˙ D ˙a .l˙ ˝ r˙/:

A˙ D 1

2a2

0

B
B
@

h� ˙ah� h2� ch�

˙a a2 ˙ah ˙ac
� ˙a� h� c�

h� ˙ah� h� ch�

1

C
C
A : (17)

We remark that h� has the same order of magnitude as a2. One can see that the
disequilibrium in A˙ coefficients comes from the difference in magnitude of the
left and right eigenvectors of A. Multiplying A˙ to the left (respectively to the
right) by a diagonal matrix with coefficients dscale D diag.1; a; a

2

�
; 1/) (respectively

d�1scale D diag.1; 1
a
; �
a2
; 1/) one obtains a new matrix with better balanced coefficients
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QA D dscaleA
˙d�1scale D

1

2a2

0

B
B
B
@

h� ˙h� h2�2

a2
ch�

˙a2 a2 ˙h� ˙a2c
a2 ˙a2 h� a2c

h� ˙h� h2�2

a2
ch�

1

C
C
C
A
� 1

2

0

B
B
@

1 ˙1 1 c

˙1 1 ˙1 ˙c
1 ˙1 1 c

1 ˙1 1 c

1

C
C
A

(18)
We propose to build two diagonal matrices Dscale and D�1scale having the size of the
mesh and containing the successive coefficients of the local matrices dscale and d�1scale.
Instead of solving system (15) it is equivalent to solve

QMY D Qb (19)

where QM D DscaleMD
�1
scale, Y D DscaleX and Qb D Dscaleb. System (19) can be

more easily resolved using an ILU preconditioner. Once the solution Y is obtained
we computeD�1scaleY to obtain the original unknown vector X .

6 Numerical investigation

We present here three applications to demonstrate the overall efficiency of the new
solver. All the simulations are realized without taking into account the relative
velocity into the upwinding matrix. In this case the SEDES solver gives the identical
results with Roe solver and we can concentrate our attention only to the solver
efficiency. The first two test cases correspond to 1D configurations. The first test
case is a boiling flow in a 1D heated channel and the second one corresponds to
a flow in a PWR reactor core. We have used a 50-cells mesh and a CFL number
of 30 and 833, respectively. Table 1 represents the dimensionless CPU time for the
simplified eigenstructure decomposition solver (SEDES) and the old solver (Roe
solver). The last test corresponds to a steady state computation of a full charge 3D
PWR reactor core configuration. The simulation is run using a 157 assemblies and
32 cells in the axial direction. The CFL number is equal to 2000. We have realized
two runs with and without the scaling using the SEDES solver and compared the
CPU time with the standard Roe solver time results. For this simulation we use
the standard steady state algorithm of FLICA-OVAP code such as described in [2]
which saves the matrix of the linear system at the first time step and uses it for the
whole steady-state calculation. Nevertheless, the scaling decreases both the number

Table 1 Dimensionless CPU time: 1D test cases

CPU Time Boiling PWR

SEDES 0.63 0.55
Roe 1 1
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Table 2 Dimensionless CPU time: 3D PWR

Solver CPU Time

SEDES without scaling 0.89
SEDES with scaling 0.70
Roe 1

of iterations and the cost of an iteration during the resolution of the non linear
system and the new solver is still more efficient as the old one as shown by the
results represented in Table 2. In this last case, the result is nearly the same when
relative velocity is taken into account in the upwind matrix, as the relative velocity
is smaller than mixture velocity which is about 4m/s and both, are much smaller
than the sound velocity.

7 Conclusions

This paper has presented how a simplified account for the system’s eigenvalues
can be considered in order to build a more efficient Riemann solver for the
resolution of two-phase flow drift-flux model considered in industrial codes to
assess the safety of nuclear plants or to support research on two phase thermal-
hydraulics which conserves the accuracy of a Roe solver. Moreover, a procedure
is presented to scale the coefficient of the upwinding matrix in order to obtain
a better preconditioning, which is particularly efficient in complex geometry.
Various test cases have shown that the methodology greatly improves the code
efficiency during the simulation of two-phase flows with realistic state equations
in mono-dimensional and multi-dimensional settings.
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Finite Volume Schemes for Solving Nonlinear
Partial Differential Equations
in Financial Mathematics

Pavol Kútik and Karol Mikula

Abstract In order to estimate a fair value of financial derivatives, various gen-
eralizations of the classical linear Black–Scholes parabolic equation have been
made by adjusting the constant volatility to be a function of the option price
itself. We present a second order numerical scheme, based on the finite volume
method discretization, for solving the so–called Gamma equation of the Risk
Adjusted Pricing Methodology (RAPM) model. Our new approach is based on
combination of the fully implicit and explicit schemes where we solve the system
of nonlinear equations by iterative application of the semi–implicit approach.
Presented numerical experiments show its second order accuracy for the RAPM
model as well as for the test with exact Barenblatt solution of the porous–medium
equation which has a similar character as the Gamma equation.

Keywords finite volume method, second-order scheme, financial mathematics
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1 Motivation from Financial Mathematics

Black–Scholes linear model In 1973 Black and Scholes in [4] and independently
Merton in [9] derived a simple model for pricing financial derivatives based on the
solution of a linear PDE. To obtain the governing equation, they assumed that the
underlying asset S follows a geometric Brownian motion dS D .� � q/Sdt C
O�SdW , where � > 0 is a constant drift, O� > 0 is a constant volatility, q > 0 is
a dividend yield rate and W is a standard Wiener process. Denoting the price of an
option as V.S; t/ and applying Ito’s lemma to obtain the stochastic differential dV ,
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the equation takes the following form [7]:

@V

@t
C O�

2

2
S2
@2V

@S2
C .r � q/S @V

@S
� rV D 0; (1)

where r represents the riskless interest rate. In the case of an European call option
the terminal pay–off condition in time t D T for the strike priceE looks as follows:

V.S; T / D max.S �E; 0/: (2)

For plain vanilla options, an exact solution to (1)–(2) is known (see [7]).

Nonlinear extensions If we assume the volatility parameter to be non-constant, it
can be defined by a function � D �.@2SV; S; T � t/, where @2SV is the so–called
� of an option. In financial theory and practice various nonlinear generalizations
of Black–Scholes linear model exist with such defined volatility function. For
instance, Leland in [8] proposed a model which takes transaction costs into
account. Avellaneda et al. in [1] described option pricing in incomplete markets.
Barles and Soner in [3] adjusted the volatility depending on investor’s preferences.
Illiquid market effects were studied by Schönbucher and Wilmott in [11]. Another
model which we deal with in this paper is the so–called Risk Adjusted Pricing
Methodology (RAPM) model derived by Kratka in [6] and further generalized by
Jandačka and Ševčovič in [5]. Notice that the numerical scheme presented in the
next section can be applied to all the above mentioned models since they can be
represented by a PDE in the general form (5). Interestingly, the nonlinear porous–
medium equation (13) which we deal with in the last section is also a special case
of the Gamma equation (5).

The RAPM model assumes that the portfolio is rehedged only at discrete times,
since continuous rehedging would lead to infinite costs. The more often the portfolio
is being rehedged, the higher the risk associated with transaction costs becomes.
On the other hand, seldom rehedging implies higher risk arising from its weak
protection against the movement of the assets’s price. Hence, there exists an optimal
time step, representing the hedge interval, for which the sum of both risks is
minimal. Using such ideas, the governing PDE in the following form is obtained [5]:

@V

@t
C 1

2
O�2S2

2

41C �
	

S
@2V

@S2


 1
3

3

5 @
2V

@S2
C .r � q/S @V

@S
� rV D 0; (3)

where � D 3
�
C2R
2�

� 1
3
, C � 0 represents the relative transaction costs for buying

or selling one stock and R � 0 is the marginal value of investor’s exposure to risk.

Since 1C� .S� / 13 � 1, the option price computed by this equation is slightly above
that from the linear Black–Scholes model, i.e. we obtain a so–called Ask price. On

the contrary, if 1 � � .S� / 13 � 1, then we get the lower Bid price of an option.
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Gamma equation Let us define a function ˇ.H/ WD 1
2
O�2
�
1C �H 1

3

�
H . Since

the equation (3) contains the term S� we introduce the following transformation:

H.x; �/ D S� D S@2SV .S; t/; (4)

where x D ln
�
S
E

�
, x 2 R and � D T � t , � 2 .0; T /. Moreover, if we take the

second derivative of equation (3) with respect to x it turns out that the function
H.x; �/ is a solution to the following nonlinear PDE, the so–called Gamma
equation [12]:

@H.x; �/

@�
D @2ˇ.H/

@x2
C @̌ .H/

@x
C .r � q/@H.x; �/

@x
� qH.x; �/: (5)

Notice that unlike in equation (3), all terms containing spatial derivatives in the
Gamma equation (5) are in divergent form, thus it is suitable to use finite volume
method discretization which follows. Furthermore, since @2SV tends asymptotically
to zero as S ! 0, respectively S ! 1, from (4) it follows that the transformed
Dirichlet boundary conditions areH.�1; �/ D H.1; �/ D 0.

2 Finite Volume Approximation Schemes

The most general form of the Gamma equation is as follows:

@H.x; �/

@�
D @2ˇ.H; x; �/

@x2
C @̌ .H; x; �/

@x
C f .x/@H.x; �/

@x
C g.x/H.x; �/; (6)

Notice that

@2ˇ.H.x; �/; x; �/

@x2
D @

@x

	

ˇ0H.H; x; �/
@H.x; �/

@x
C ˇ0x.H; x; �/




; (7)

where ˇ0H.H; x; �/ and ˇ0x.H; x; �/ are partial derivatives of the function
ˇ.H.x; �/; x; �/ by H and x, respectively. Moreover,

f .x/
@H.x; �/

@x
D @

@x
.f .x/H.x; �// �H.x; �/f 0x .x/: (8)

Inserting (7) and (8) into (6) and integrating over the finite volume
�
xi� 1

2
; xiC 1

2

�
,

with center point denoted by xi , we get
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Z x
iC 1

2

x
i� 12

@H

@�
dx D

Z x
iC 1

2

x
i� 12

@

@x

	

ˇ0H
@H

@x
C ˇ0x C ˇ C f .x/H




dx

C
Z x

iC 1
2

x
i� 12

�
g.x/ � f 0x.x/

�
H dx: (9)

Using central spatial differences, Newton–Leibniz formula and notations
ˇ?
iC 1

2

Dˇ.H?

iC 1
2

; xiC 1
2
; �?/, ˇ0x

?

iC 1
2
Dˇ0x.H?

iC 1
2

; xiC 1
2
; �?/, ˇ0H

?

iC 1
2

D ˇ0H.H?

iC 1
2

; xiC 1
2
; �?/,

we obtain the following general numerical scheme for solving (6):

h
H
jC1
i �Hj

i

k
D ˇ0H

?

iC 1
2

H?
iC1
�H?

i

h
� ˇ0H?i� 12

H?
i �H?

i�1

h
C ˇ0x?iC 1

2
� ˇ0x?i� 12 C ˇ

?

iC 1
2

�ˇ?
i� 12
C f �xiC 1

2

� H?
iC1
CH?

i

2
� f �xi� 12

� H?
i CH?

i�1

2
C hH?

i

�
g.xi / � f 0x .xi /

�
; (10)

whereHj
i represents the approximate value of the solution in point xi at time �j and

? 2 fj; j C 1g represents the chosen time layer. Depending on in which time we
evaluate the terms on the right–hand side in (10) we obtain three distinct first–order
schemes.

Explicit scheme is obtained by taking all terms from the old time layer, i.e. ? D j .

Semi–implicit scheme is obtained by taking all linear terms from the old time
layer, i.e. ? D j , and all nonlinear terms from the new time layer, i.e. ? D j C 1.
The solution is found by solving a tridiagonal system of linear equations by the
Thomas algorithm.

Fully–implicit scheme is obtained if all terms are taken from the new time layer,
i.e. ? D j C 1. We get a system of nonlinear equations. The algorithm for solving
such a system is based on iterative solution of the semi–implicit scheme. We start
the iterative process by assigning the old time step solution vector to the starting
iteration solution vector for the new time step. Then, in each iteration, we insert the
solution vector into the nonlinear terms, to get their actual iteration. If we collect all
unknowns from the solution vector, i.e. the linear terms from the new layer, on the
left–hand side and all remaining terms, i.e. the nonlinear terms and the linear term
from the old layer, on the right–hand side we obtain a linear tridiagonal system for
determining next iteration of the solution vector. The whole process is terminated
when the successive solution vectors are close enough [2].

New second–order scheme is of the Crank–Nicolson type and is obtained by
the arithmetic average of the explicit and the fully–implicit scheme. The system of
nonlinear equations has a similar structure to that from the fully–implicit scheme,
thus we solve it using the same principles.
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Stability As noticed above, the linear systems arising in our schemes are solved
by the Thomas algorithm. Its numerical stability is guaranteed by the strict diagonal
dominance of the system’s matrix which can be always achieved by a suitable choice
of time step k in (10). Another important issue is the study of stability which is
usually related to the approximation of diffusion and advection terms. Inspecting the
Gamma equation (5), one can see that the diffusion coefficient is given by ˇ0H while
the speed of the advection is proportional to ˇ0HCr�q and thus they are comparable
( O�2 � r � q). The fully explicit scheme gives oscillations for the coupling k � h

due to violating the CFL condition in approximation of the diffusion term. On the
other hand, all other schemes are implicit and we did not observe any oscillations,
mainly due to the fact that the advection does not dominate the diffusion.

3 Numerical Experiments

Three different numerical experiments were made. The first two are concerned with
the approximate solution to the RAPM Gamma equation and the last one deals with
the numerical solution to a nonlinear porous–medium PDE.

RAPM Gamma equation experiments As no comparative exact solution to such
an equation is known, a natural choice is to take the exact solution of the linear
Black–Scholes model. Clearly, to maintain the equality in the Gamma equation we
have to add a residual termRes.x; �/ into (5) which balances the difference between
the Black–Scholes solution and the higher Ask price of the RAPM model:

@H

@�
D @2ˇ

@x
C @̌

@x
C .r � q/@H

@x
� qH CRes; (11)

where ˇ.H/ D O�2
2
.1C�H 1

3 /H . The first two experiments differ from each other in
two main aspects: the coefficient � and the initial condition. Following parameters
were set for both cases the same: O� D 0:30; r D 0:03; q D 0:01; E D 25. In all
numerical experiments we impose boundary conditionsH.xL; �/ D H.xR; �/ D 0,
where xL and xR are boundaries of the space interval.

The intention of the first experiment is to show how well the proposed numerical
schemes can handle the nonlinearity in the Gamma equation (11). We put the
coefficient � D 0:2, hence the function ˇ.H/ is nonlinear. As the initial condition
H.x; �0/ we consider Black–Scholes solution V.S; T � �0/ transformed by (4), in
time �0 D 1. Measurements of the estimated error jjemn jjL2 are done by comparison
with the exact solution H.x; �/ to (11) for � > �0. Since all first–order schemes
exhibited very similar features, we show here outputs just for the semi–implicit
scheme. The reason for exclusion of the explicit scheme was its instability using
coupling k D h. Regarding the fully–implicit scheme, experiments show that the
accuracy of the semi–implicit scheme is very close to the fully–implicit scheme,
thus it is sufficient to use just the former one which is less time consuming. The
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Table 1 Outputs obtained by solving the RAPM Gamma equation (11) (�0 D 1, k D h) using the
semi–implicit scheme: estimated error jjemn jjL2 , CPU–time and EOC with respect to jjemn jjL2
n h jjemn jjL2 CPU EOCk�h

20 0.1 0.00777657 2.231 –
40 0.05 0.00333385 9.126 1.22194
80 0.025 0.00153036 36.614 1.12332
160 0.0125 0.00073141 147.078 1.06512
320 0.00625 0.00035733 582.929 1.03343

Table 2 Outputs obtained by solving the RAPM Gamma equation (11) (�0 D 1, k D h) using
the Crank–Nicolson type scheme: estimated error jjemn jjL2 , CPU–time and EOC with respect to
jjemn jjL2
n h jjemn jjL2 CPU EOCk�h

20 0.1 0.00272286 4.383 –
40 0.05 0.000666762 17.785 2.02988
80 0.025 0.000165182 71.136 2.01311
160 0.0125 5 0.0000412598 294.062 2.00125
320 0.00625 0.0000108204 1206.53 1.93099

experiment was done on the time–space domain .x; �/ D Œ�2; 2� � Œ1; 2�. Tables 1
and 2 indicate that for this type of problem the semi–implicit scheme is first order
accurate while the Crank–Nicolson type scheme is second order accurate.

In the the second experiment we set � D 0 and we show how the regularization
of the transformed initial condition and the backward transformation of the Gamma
equation solution affects the total accuracy of the method. In this case the solution of
the Gamma equation coincides with the transformed solution H.x; �/ of the linear
Black–Scholes equation (1) which implies that the residual term in (11) is zero.
The initial condition H.x; �0/ is considered for �0 D 0. Hence the transformed
payoff function, see (2) and (4), is the Dirac delta function, H.x; 0/ D ı.x/; x 2
R. In order to get a suitable initial condition for our computation, we consider its
regularization given by the function H.x; 0/ D N 0.d/

O�p�� , where �� > 0 is sufficiently

small, N.d/ is the cumulative distribution function of the normal distribution and

d D xC.r�q�O�2=2/��
O�p�� [12]. The backward transformation of numerical solution is

done by using formula

V.Sk; T � �j / D h
nX

iD�n
max.Sk � Eexi ; 0/Hj

i D h
kX

iD�n
.Sk � Eexi /Hj

i

D hSk
kX

iD�n
H
j
i � hE

kX

iD�n
exi H

j
i D hSk Fk � hE Gk; (12)
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Table 3 Outputs obtained by solving numerically Gamma equation (11) (�0 D 0, k D h=4) using
the Crank–Nicolson type scheme and using formula (12) for backward transformation

n h �� jjemn jjL2 EOCk�h CPU
Gamma

CPU
Trans-
form

CPU
Total

5 0.4 0.46765 4.0644 – 0.047 0.011 0.058
10 0.2 0.14602 1.4586 1.4784 0.141 0.016 0.157
20 0.1 0.04371 0.4617 1.6595 0.624 0.047 0.671
40 0.05 0.01269 0.1379 1.7432 2.372 0.187 2.559
80 0.025 0.00361 0.0399 1.787 9.173 0.843 10.016
160 0.0125 0.00101 0.0113 1.816 41.091 3.323 44.414
320 0.00625 0.00028 0.0031 1.8270 150.525 12.87 163.396

where Fk D Fk�1 C Hj

k , Gk D Gk�1 C exkHj

k and Sk D Eexk . Formula (12)
is obtained by integration of (4). Measurements of the estimated error jjemn jjL2 are
done by comparison with the Black–Scholes solution V.S; t/. However, in practice,
doing computations with such an initial condition is not as straightforward task as in
the first experiment. The problem is that we do not know a priori the optimal value of
�� for a given time–space mesh. We consider the optimal value of �� as a value for
which the estimated error of the numerical solution is minimized. Numerical outputs
for the discretized time–space domain .x; �/ D Œ�2; 2� � Œ0; 1� are summarized in
the Table 3. Since the total error is influenced not only by the discretization error,
but also by the error related to the regularization and backward transformation, the
Crank–Nicolson method exhibits EOC slightly below the second order. Finally, in
Fig. 1 we present the numerical solution of the RAPM model for a call option using
parameter �� obtained by the above described strategy but considering nonzero �.
Such an experiment is of particular interest also for practical applications.

Experiment with an exact (Barenblatt) solution The goal of the third experiment
was to investigate the accuracy of the proposed Crank–Nicolson type scheme using
exact solution of the following (porous–medium type) equation [10]:

@tv D @2x.v!/; x 2 R; t > 0; ! > 1 (13)

which is a special case of the Gamma equation (5). The exact solution has the

form v.x; t/ D 1
!.t/

max

�

0; 1 �
�

x
!.t/

�2
 1
!�1

, where 	.t/ D
h
2!.!C1/
!�1 .t C 1/

i 1
!C1

represents a sharp interface of the solution’s finite support. EOC of the Crank–
Nicolson type scheme in L1–norm which is used due to the singularity in the exact
solution, is equal to 2, see Table 4.
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Fig. 1 A comparison of Bid and Ask option prices computed by means of the RAPM model for a
call option in time T � t D 1. Left (right) figure presents the results before (after) the backward
transformation. The dashed (fine–dashed) curve indicates the Ask (Bid) price of a call option. The
solid curve represents the option prices computed by the linear Black–Scholes model and the solid
broken line is the payoff function. Parameters: n D 80, h D 0:025, m D 160, k D 0:00625,
�� D 0:00391, O� D 0:30, � D ˙0:2, r D 0:011, q D 0:0, X D 25

Table 4 Numerical approximation of the Barenblatt exact solution using Crank–Nicolson type
scheme

n h jjemn jjL1 CPU EOCk�h

25 0.1 0.000629 0.312 –
50 0.05 0.000173 1.139 1.8584
100 0.025 0.000048 4.258 1.8543
200 0.0125 0.000012 17.036 1.9161
400 0.00625 3:31 � 10�6 67.798 1.9399
800 0.003125 8:52 � 10�7 250.475 1.9597
1600 0.0015625 2:16 � 10�7 881.905 1.97824

4 Conclusions

In this paper we proposed a new nonlinear second order Crank–Nicolson type
numerical scheme based on the finite volume method. Our main goal was to provide
an efficient and precise numerical solution to nonlinear PDEs arising in financial
mathematics. Various experiments have shown such properties of the new scheme.
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Monotonicity Conditions in the Mimetic Finite
Difference Method

Konstantin Lipnikov, Gianmarco Manzini, and Daniil Svyatskiy

Abstract The maximum principle is a major property of solutions of partial
differential equations. In this work, we analyze a few constructive algorithms that
allow one to embed this property into a mimetic finite difference (MFD) method.
The algorithms search in the parametric family of MFD methods for a member that
guarantees the discrete maximum principle (DMP). A set of sufficient conditions
for the DMP is derived for a few types of meshes. For general meshes, a numerical
optimization procedure is proposed and studied numerically.

Keywords Mimetic method, discrete maximum principle, M-matrix
MSC2010: 35B50, 65N06, 65N50

1 Mimetic finite difference method with parameters

The maximum principle is one of the most important properties of solutions of
partial differential equations [3, 4]. Its numerical analog, the discrete maximum
principle (DMP), is one of the most difficult properties to achieve in numerical
methods, especially when the computational mesh is distorted to adapt and conform
to the physical domain or the problem coefficients are highly heterogeneous and
anisotropic. In this work, we investigate sufficient conditions to ensure the DMP in
the mimetic finite difference (MFD) method [2]. We extend the analysis proposed
in [5] by considering an optimization procedure as a way to achieve the DMP.
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We consider the mimetic discretization of the steady diffusion problem for the
scalar and vector solution fields, p and u, given by

uC Krp D 0 in ˝; (1)

div.u/ D q in ˝; (2)

p D gD on �: (3)

Here, ˝ is an open bounded polygonal subset of Rd with Lipshitz boundary � ;
K is a d � d bounded, strongly elliptic and symmetric diffusion tensor; q 2 L2.˝/
is the forcing term and gD 2 H1=2.� / is the given boundary function.

Hopf’s lemmas in weak and strong form can be summarized as follows [4]. Let
�div.Krp/ � 0 in ˝ . Then, the weak maximum principle holds:

max
x2˝

p.x/ � max
�
0;max

x2� p.x/
�
:

This implies immediately that p � 0 if f and gD are non-negative functions.
Finally, the strong maximum principle says that if p attains a nonnegative maximum
bp at an interior point of ˝ , then p D bp in ˝.

Let ˝h denote a conforming and face-connected partition of ˝ into control
volumes P, which are general polyhedra in 3-D and polygons in 2-D. The degrees
of freedom for the scalar variable p are pP and pf. They approximate the average
of p over elements P and faces f, respectively. The degrees of freedom of the vector
variable u are UP;f. They approximate the normal component of u over mesh faces f.
Any internal face f shared by two elements P0 and P00 is characterized by two flux
unknowns UP0;f and UP00;f that must satisfy the flux conservation condition:

UP0;f C UP00;f D 0: (4)

Let the boundary of P be formed by the m faces fi , i D 1; : : : ; m, with measure
jfi j (length in 2-D, surface area in 3-D). We consider the numerical discretization
of (1) that reads

0

B
@

UP;f1
:::

UP;fm

1

C
A DWP

0

B
@

jf1j.pf1 � pP/
:::

jfmj.pfm � pP/

1

C
A ; (5)

where WP is a symmetric and positive definite (SPD) matrix.
Let UP D .UP;f1 ; UP;f2 ; : : : ; UP;fm/

T be the m-sized vector of numerical fluxes
across faces fi of P. We write the numerical approximation of (2) as

divPUP D qP; and divPUP D 1

jPj
mX

iD1
jfi jUP;fi : (6)
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where qP is the average of q over P, and divP is the primary mimetic divergence
operator. The MFD method is given by equations (4), (5), (6). The Dirichlet
boundary conditions are imposed by assigning average values of gD on boundary
faces f to corresponding unknowns pf.

2 Construction of monotone mimetic methods

In the MFD method, the SPD matrix WP is is built in accordance with a stability
and a consistency conditions [2]. A rich family of matrices satisfies these conditions.
To achieve the DMP, we will impose additional constraints on this family.

The stability condition states that

��
jPj V

T
P VP � VT

PWPVP � ��

jPj VT
P VP 8VP; (7)

where �� and �� are two constants independent of P and of the mesh ˝h.
This condition states that matrix WP is spectrally equivalent to the scalar matrix
jPj�1 Im.

Let xP and xf be centers of gravity of element P and face f, respectively. Let nf

be the external unit normal vector to f. We introduce the following two matrices:

RP D

0

B
@

jf1j.xf1 � xP/
T

:::

jfmj.xfm � xP/
T

1

C
A and NP D

0

B
@

nTf1
:::

nTfm

1

C
AK: (8)

The consistency condition takes the form WPRP D NP.
A straightforward calculation shows that NT

P RP D jPjK. It is proved in [2] that
matrix WP is given by

WP D NP.N
T
PRP/

�1NT
P CDPUPD

T
P ; (9)

where DP is a maximum rank d � .m� d/-sized matrix such that RT
PDP D 0, and

UP is a .m � d/ � .m � d/-sized SPD matrix of parameters.
An effective way to ensure that the monotonicity property holds is to construct a

numerical method such that the final discretization matrix is an M-matrix [1]. In the
MFD method, this occurs when WP satisfies two geometric conditions formulated
below. Let WP D

˚
wij
�m
i;jD1. Since this is an SPD matrix, we obtain that wi i > 0.

We assume that



656 K. Lipnikov et al.

(A1) The matrix WP satisfies the geometric constraint:

wi i jfi j C
X

j¤i
wij jfj j � 0 8i;

and the inequality is strict for at least one matrix row.
(A2) The matrix WP is a Z-matrix, i.e., wij � 0 for i ¤ j .

Sufficient conditions (A1) and (A2) together with positive definiteness of matrix
UP result in a set of inequalities for every element P. These local optimization
problems can be solved analytically on special meshes or numerically to provide an
MFD method for which the following theorem holds.

Theorem 1 (Discrete Maximum Principle). Let pP, pf and UP;f be the solutions
of the MFD method under assumptions (A1) and (A2). Let q and gD be nonnegative
functions. Then, pP � 0 for any P 2 ˝h. Furthermore, if q D 0, then the values of
pP are bounded by the maximum and minimum values of pf on boundary faces f.

3 Oblique parallelepipeds

Let us consider a mesh˝h consisting of regular oblique parallelepipeds. We assume
that parallelepiped faces are planar. To construct matrices NP and RP, we refer to
the numbering order shown in Fig. 1. Let n1 D nBCGF;n2 D nDCGH;n3 D nEFGH

and ˛ WD jfBCGFj D jfADHEj, ˇ WD jfDCGHj D jfABFEj, � WD jfEFGHj D jfABCDj. We
define the rotated diffusion tensor:

K� D .K�ij /3i;jD1 K�ij D nTi Knj :

q
A B

D
C

E

H

F

G

nABCD

Y

f

nEFGH

nBCGF
nABHE

nABFE

nDCGH

x

y

z

(1)
(2)

(3)

(4)

(5)

(6)
x

y

z

Fig. 1 Geometry of an orthogonal (left) and oblique (right) parallelepiped
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Let us choose matrix DT
P as follows:

DT
P D

0

@
1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1

A : (10)

This choice of DP allows us to simplify analysis of the MFD method and to prove
the following results.

Lemma 1. Assumptions (A1) and (A2) imply that

0 < jPjUP

0

@
˛

ˇ

�

1

A � eK�
0

@
˛

ˇ

�

1

A ;

whereeK� D feK�ij g3i;jD1 witheK�i i D K�i i andeK�ij D �jK�ij j for i ¤ j .

From this and assumptions on UP, we derive two necessary conditions for
existence of a monotone MFD method:

eK�

0

@
˛

ˇ

�

1

A > 0 and eK� is SPD: (11)

Conditions (11) impose constraints on the range of values that the coefficients
in K and the face areas jfi j may attain in order to have a monotone mimetic
discretization. If eK� is an SPD matrix, a possible choice for UP, which maximizes
the sparsity its structure, is UP D jPj�1eK� .

Let ˝ be the unit cube a hole �0:6I 0:8Œ��0:438I 0:563Œ��0:5I 0:6Œ. The computa-
tional mesh is 10�16�20with a 2�2�2 hole. A tilted domain and the corresponding
mesh are obtained through the linear transformation x WD x C z cos.�/, y WD
y C z cos.�/, z WD z sin.�/. The diffusion tensor is

K D

0

B
B
@

100 0:25 0:15

0:25 1 0:25

0:15 0:25 1

1

C
C
A : (12)

We set f D 0, gD D 2 on the interior boundary (surface of the hole) and gD D 0

on the exterior boundary. The exact solution is not known but must vary between 0
and 2 due to the maximum principle.

In Table 1, we consider a range of parameters � . The significant violation of
the minimum principle is clearly observed in the MFD method [2] where UP is set
to a scalar matrix. It is due to huge number of negative entries in the inverse of
the stiffness matrix (second column). Fig. 2 shows cuts through the element-based
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Table 1 Original and monotone MFD methods on tilted parallelepiped meshes
Original MFD Monotone MFD

� % min.pf/ max.pf/ min.pP/ max.pP/ min.pP/ max.pP/

90 36:0 �3:651 10�1 2:083 �9:371 10�2 1:669 6:304 10�12 1:700

80 35:9 �3:478 10�1 2:089 �9:039 10�2 1:659 5:224 10�11 1:694

70 35:6 �3:657 10�1 2:092 �9:464 10�2 1:665 5:403 10�11 1:695

60 35:2 �4:019 10�1 2:084 �1:028 10�1 1:679 9:995 10�12 1:699

Fig. 2 Original MFD method: undershoots in the element-based numerical solution on the tilted
domains with angles � D 90ı (left) and 61ı (right)

K11

K22

A

B E C

D

(1) (2)

(3)

(4)

(5)

Fig. 3 A rectangular element ABCD with a handing node E

discrete solution for � D 90ı and 60ı in the original MFD method. For visualization
clarity only two colors are used and the lighter color corresponds to negative solution
values. The monotone MFD method satisfies the DMP.

4 Locally refined rectangular meshes

Let us consider a locally refined rectangular meshes (see Fig. 4). In the MFD
framework, these meshes are considered as general polygonal meshes; thus, no
special treatment of handing nodes is required (see Fig. 3).
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Ω1

Ω2

Ω3

Y2

Y1

0
0 1

1

Fig. 4 The computational domain (left), discrete solution calculated with the monotone MFD
method (middle), and the locally refined mesh (right)

We assume that the diffusion tensor is diagonal, K D diagfK11;K22g. Let r2 D
jfAD j
jfAB j be the aspect ratio of pentagon ABECD. Analysis of the MFD method leads
to the following results.

Lemma 2. A matrix WP satisfying assumptions (A1) and (A2) exists when

r4 < 4
K11
K22

: (13)

For each aspect ratio r satisfying (13), we obtain a family of monotone mimetic
methods. The closer the aspect ratio to the limiting value 4K11=K22, the narrower
this family. Among many of possible choices, we present a member which reduces
the number of nonzero elements in the matrix WP:

UP D 1

jPj

0

B
@

K11
r4
C K22

4
�K22

2
K11
r4

�K22
2

K22 �K22
2

K11
r4

�K22
2

K22
r4
C K11

4

1

C
A ; DT

P D
0

@
2 � 2 r2 0 0

1 1 0 1 0

�2 2 0 0 r2

1

A :

(14)
This choice imposes a stronger condition on the aspect ration, r4 < 8K22=.3K11/.

Let ˝ be the unit square divided into three subdomains ˝1 D .0; 1/ �
.0; Y1/;˝2 D .0; 1/ � .Y1; Y2/; and ˝3 D .0; 1/ � .Y2; 1/ as shown in Fig. 4.
We set the forcing term and the diffusion tensor as follows:

f .x; y/ D
�
0; .x; y/ 2 ˝1 [˝3;

103 sin.�x/ .x; y/ 2 ˝2;
K D

	
103 0

0 1




:

In our experiments Y1 D 3=8 and Y2 D 5=8. The exact solution to this problem can
be calculated using the separation of variables. It is shown in Fig. 4.

The solution profile has sharp gradients around interfaces between subdomains.
Therefore, we refine the subdomain ˝2 and obtain a set of meshes similar to that
shown in Fig. 4. According to the DMP, the solution has to be strictly positive
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inside the computational domain. The numerical results show that the original
MFD method produces numerical solutions that violate the DMP and have large
subdomains with overshoots and undershoots. A cell-centered solution is plotted in
Fig. 4 using three pseudo-colors. The lighter color represents negative solution, the
darker color represents solution overshoot.

The numerical solutions obtained with the original MFD method still violates
the DMP after one mesh refined. With one additional refinement, the undershoots
become comparable with the solver tolerance. The monotone MFD method uses the
parameter matrix in (14) and provides a monotone solution which is bounded by the
minimum and maximum of the analytical solution.

5 Monotone MFD methods based on numerical optimization

On more general meshes, analysis of the MFD family of methods becomes too
complicated. Therefore, we reformulate the problem of constructing an M-matrix
WP as a constrained optimization problem:

min
�P2UP

˚.WP.UP//;

where UP is a set of SPD matrices with the smallest eigenvalue bounded from below
by 	min.KP/=2 and the functional ˚ penalizes positive off-diagonal entries in WP

as well as violation of the assumption (A1):

˚.WP/ D
X

i¤j
.wij C jwij j/2 C

X

i

.si � jsi j/2; si D wi i jfi j C
X

i¤j
wij jfj j:

The functional achieves its minimal value when wij � 0 for i ¤ j and si � 0.
Restriction imposed on the minimal eigenvalue of UP guarantees that the matrix
WP is SPD.

We implemented a simple minimization algorithm based on numerical calcu-
lation of the gradient of ˚ and functional minimization along this direction. Let
us consider again the problem from Sec. 3. Table 2 shows minimal and maximal
solution values for two MFD methods. The first method uses a scalar matrix
UP D aP IP, where aP D trace.KP/=3 lies in a middle of spectrum of KP. The
second method uses this matrix as the initial guess for the minimization algorithm.
Since for every P, the number of parameters is six, we terminate the algorithm after
six steps.

A simple optimization procedure is sensitive to an initial guess. Therefore, in the
future, we plan to analyze more advanced optimization strategies as well as different
functionals.
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Table 2 Original and optimized MFD methods on tilted parallelepiped meshes
Original MFD (�P D aP �P) Optimized MFD

� min.pP/ max.pP/ min.pP/ max.pP/

70 �7:267 10�2 1:577 5:855 10�11 1:641

60 �8:320 10�2 1:602 9:801 10�12 1:648

50 �8:998 10�2 1:628 2:378 10�14 1:641

6 Conclusions

In this paper, we present a new methodology for the construction of mimetic
discretizations which satisfy the discrete maximum principle. A set of sufficient
conditions is derived to ensure that such monotone subfamily exists.
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Discrete Duality Finite Volume Method Applied
to Linear Elasticity

Benjamin Martin and Frédéric Pascal

Abstract We present the Discrete Duality Finite Volume method (DDFV) for
solving the linear elasticity problem on unstructured mesh applied to solids under-
going mechanical loads. The procedure is described in detail for three dimensional
problems and some theoretical results are provided: the discrete problem is well-
posed, stable and convergent. A number of numerical test problems demonstrates the
ability of this finite volume scheme to approach the solution and some comparisons
with the conventional finite element method are provided.

Keywords Finite volume methods, linear elasticity, stability and convergence
MSC2010: 65N08, 73C02, 65N12

1 Motivation

The finite volume method is extensively used in computational fluid dynamics,
on its part the finite element method is the conventional tool for solving solid
mechanics. However there is a multitude of physical problems combining fluid and
solid mechanics where finite volume methods appear to be a pertinent alternative.
Let us quote for instance fluid-structure interaction, deformation of geomechanical
reservoir, or even the frost heave problem in freezing soils where the moving frozen
fringe introduces a discontinuity in the physical parameters. The finite volume
approach for elasticity problems has already been discussed and published in [3],
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[15], [17], [18] for cell-vertex formulations, in [12] for cell centered formulation
with a decoupled strategy for each component, in [6] and [7] for a coupled cell-
center version. In this study, we address the DDFV implementation for solving
linear elasticity. Let us recall that the principle of the DDFV discretization consists
in integrating the system both over a given primal mesh and a dual mesh built from
the primal one. Presentation, convergence analysis and numerical tests of DDFV for
diffusion, convection-diffusion and Stokes problems are available in [1], [2], [4],
[8], [10], [11], [13], [14].

We limit ourselves to the simplest mathematical model of a linear elastic solid
which consists in finding the displacement u 2 R

3 such that

� div � .u/ D f on ˝ ; u D g on �D ; � .u/ � n D h on �N (1)

where n is the outward normal, @˝ D �D [ �N and where the stress tensor �
depends on u by the Hooke relation that links the strain tensor and the trace of the
gradient

� .u/ D 	DivuC 2�Du with Du D ruC .ru/T

2
and Divu D div u Id :

(2)
For sake of clarity, we assume that˝ is a bounded polyhedral subset of R

3 and that
the Lamé coefficients 	 and � are constant.

2 Finite volume discretization

A mesh of˝ is defined by the three sets fM;M�;Dg, corresponding to the primal,
dual and diamond mesh. They form a non overlapping partition of ˝ , so that

˝ D
[

D2D
D D

[

K2M
K D 1

2

[

K�2M�
K� :

The set M is a conforming triangulation of tetraedra. Each element K in M is
supplied with a center xK, in practice the barycenter of K and @M denotes the set
of faces on the boundary of the domain. The elements of M� are polygons K�
corresponding to the primal mesh vertices xK� . These polygons are the union of all
tetrahedra spanned, for each faces s D K\ L or s D K\ @˝ having xK� as vertex,
by xK� himself, xK or xL if it exists, xs the center of the face s, and one of the other
vertices of the face s. In order to take into account the boundary conditions, the dual
mesh is splitted into the internal volumes and the boundary ones corresponding to
vertices on the boundary: M� D M�i [M�b . On its side, diamond cell D in D
associated to the internal face s D K\L is the union of the two tetrahedra DK;s and
DL;s spanned by the face s and respectively by the centers xK and xL (see Fig. 1a).
For the boundary face s D K \ @˝ , the corresponding diamond cell is reduced to
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X2

X
a b

1

XL

XK

XS

K

L

X3

Fig. 1 (a) Primal and diamond cell - (b) Normal orientations in the diamond cell

the tetrahedron DK;s . The number of primal and dual cells is denoted by � and the
number of diamond cell by ı.

2.1 Discrete operators

The idea of the DDFV discretization is to construct gradient and divergence
operators that are under discrete duality relation by a formula that mimics the Green
fomula for continuous functions (see for instance [5] for a detailed construction). A
discrete unknown uK (resp. uK�) is associated to each volume K (resp. K�) of the
primal mesh (resp. dual mesh). They are gathered and denoted by

u� D .uK ; uK�/K2M;K�2M� :

For a vector field u� in .Rd /� , we define on each diamond cell a consistent discrete
gradient operator rDu� D .rDu� /D2D in .Md .R//

ı and a consistent discrete
divergence operator divDu� D .divDu� /D2D in R

ı such that on the internal face
s D K \ L and for the associated diamond cell D D DK;s [ DL;s , the gradient is
given by rDu� D jDK;s j

jDj rDK;su� C jDL;s j
jDj rDL;su� and the divergence by divDu� D

jDK;s j
jDj divDK;su� C jDL;s j

jDj divDL;su� where for K, we take

rDK;su� D 1

3 j DK;s j .us � uK/˝NKs C 1

3 j DK;s j
dX

iD1
ui ˝ .Ni�1 � NiC1/(3)

divDK;su� D 1

3 j DK;s j .us � uK/ �NKs C 1

3 j DK;s j
dX

iD1
ui � .Ni�1 � NiC1/ : (4)

Here j � j denotes the measure and .xi /diD1, respectively .ui /diD1, the vertices of
the face s, respectively the corresponding unknowns, with the local numbering
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convention x0 D xd . The outward normals are defined by (see Fig. 1b)

NKs D
dX

iD1
Ns;i�1;i with Ns;i�1;i D 1

2
.xi � xs/ ^ .xi�1 � xs/

Ni D 1

2
.xK � xs/ ^ .xi � xs/

(5)

and us is chosen in order to satisfy the continuity of fluxes (see 7). Otherwise, on
a boundary face s 2 @M and for the corresponding diamond cell D D DK;s , the
gradient and the divergence are simply rDu� D rDK;su� and divDu� D divDK;su�

but us depending on the boundary datas is explicited in (8).

2.2 The DDFV scheme

For u� in .Rd /� , we are now able to define the discrete strain tensor D
Du� D

.DDu� /D2D and the divergence one DivDu� D .DivDu� /D2D by

D
Du� D r

Du� C .rDu� /T

2
; DivDu� D divDu� Id 8D 2 D : (6)

After extending this definition to each tetrahedron that composes the diamond cell,
we can specify that the displacement us at an internal face s D K \ L has to satisfy
the continuity of the fluxes

.	DivDK;su� C 2�D
DK;su� /NKs D �.	DivDL;su� C 2�D

DL;su� /NLs : (7)

Now for a tensor field 
D in .Md .R//
ı, we define a consistent approximation of the

discrete divergence operator equal to

.divM
D;divM�
D/ D
�
.divK
D/K2M; .divK�
D/K�2M�

�

with

divK
D D 1

j K j
X

s2@K


DNKs and divK�
D D 1

j K� j
X

s3xK�


DNK�s

and where D is the diamond cell associated to the face s. NK�s is the normal to @K�
pointing outward K� and it can be explicited using local numbering and applying
formula (5):

NK�s D
�

NK
iC1 � NK

i�1 C NL
iC1 � NL

i�1 for an internal face s D K \ L
NiC1 � Ni�1 C Ns;i�1;i C Ns;i;iC1 for a boundary face s D K \ @˝
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where we assume that xK� D xK
i (resp. xK� D xL

i ) in the volume K (resp. L).
Let us now denote f M D .f K/K2M and f M�i D .f K�/K�2M�i , where f K and

f K� are the average of the external force f on primal and dual cells. Then the
DDFV scheme, written here, for sake of simplicity, only for displacement boundary
conditions, consists in finding u� 2 .Rd /� such that

8
ˆ̂
<̂

ˆ̂
:̂

�divM.	DivDu� C 2�D
Du� / D f M

�divM�i .	DivDu� C 2�D
Du� / D f M�i

us D g.xs/; 8s 2 @M
uK� D g.xK�/; 8K� 2M�b :

(8)

2.3 Existence, stability and convergence results

Applying discrete Green formula, Korn and Poincaré inequalities, divergence
equality and approximation results on the center value projection operator (see [14]),
we prove that the numerical scheme is well-posed, stable and convergent:

Theorem 1. Under the assumption that mes.�D/ ¤ 0, the DDFV scheme for
linear elasticity (8) yields to a symmetric positive definite system of linear equations.
So it admits exactly one solution u� 2 .Rd /�

Theorem 2. Let u� 2 .Rd /� be the solution of the discrete problem (8). Then there
exists a constant C depending only on the regularity of the mesh such that

� jj rDu� jj22 C
	

3
jj DivDu� jj22� C jj f� jj22 (9)

Theorem 3. Assuming that the exact solution of the continuous problem (1) is
regular enough then there exists a constant C depending only on the regularity
of the mesh, such that

jj u � u� jj2 C jj ru � rDu� jj2� C size.M/ (10)

3 Numerical experiments

The DDFV method has been implemented in two and three dimensions. Free and
imposed traction conditions (described in [16]) are also taken into account. Both
homogeneous and non homogeneous test cases are considered. Comparisons are
made with the analytical solution or with the clasical finite element one.
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Fig. 2 (a) Geometry and test setup - (b) L1 and L2 nors of the error between the analytical and
the numerical displacement.

3.1 Two dimensional examples

Following a study of [9], we apply the code to a simple test case with analytical
solution in order to study the convergence properties. The geometry of the homo-
geneous square plate and the specified boundary conditions are shown in Fig. 2(a).
Lamé coefficients .	; �/ D .2:9 109; 1:9 109/ correspond to Young modulus and
Poisson ratio .E; �/ D .5 109; 0:3/. The displacement g is null on � boundary and
the traction is imposed on �1 and �2 boundaries:

gj�1 D
	
..2�C 	/y � 2	/10�2
�.1 � 2y/10�2




gj�2 D
	
�.x � 2/10�2
.�2.2�C 	/x C 	/10�2




:

The external force is equal to f D .�C	/10�2 .2;�1/ and the corresponding exact
displacement is u D xy10�2 .1;�2/. The comparison between the analytical and
numerical displacement obtained for various primal meshes are plotted in Fig. 2(b)
with an order of convergence of one.

The second example concerns a domain with non homogeneous material prop-
erties. The plate (without deformation) is composed of the part Œ0; 3� � Œ0; 1� with a
hole inside and .	; �/ D .5:6; 2:6/ and the part Œ3; 4�� Œ0; 1� with .	; �/ D .10; 8/.
Null displacement is imposed on the left side of the domain, a load of 1 (resp. a
displacement of 1) is imposed on the right side for Fig. 3 (resp. for Fig. 4). There is
a free traction elsewhere. The deformed domain obtained with the present scheme
(above) and with the conventional finite element method (below) are plotted. In both
case, solution are similar, the largest differences are observed in the load one.
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Fig. 3 Deformed domain for the non homogeneous case with an imposed load on the right. DDFV
above and FE below
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Fig. 4 Deformed domain for the non homogeneous case with an imposed displacement on the
right. DDFV above and FE below

3.2 Three dimensional test

The domain is the unit cube with an embedding condition on the bottom (z D 0),
imposed displacement .0; 0;�0:5/ on the top (z D 1) simulating a compression of
the domain (see Fig. 5b) and free traction conditions on the vertical sides of the
cube. For Lamé coefficients .	; �/ D .28:8; 19:2/, the solution is compared with
the P1 finite element one on a series of meshes: Figure 5a shows the behavior of the
error in L2 and L1 norms and reveals that the DDFV solution of the linear elasticity
problem converges as we expect.
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Fig. 5 (a) Differences with the finite element solution - (b) DDFV deformed domain
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Model Adaptation for Hyperbolic Systems with
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Abstract We address the numerical coupling of two hyperbolic systems, a relax-
ation model and the associated equilibrium model, separated by spatial interfaces
that automatically evolve in time, the whole being approximated by finite volume
schemes. The criterion to choose where each model has to be used results of the
Chapman–Enskog expansion of the relaxed model, both on a continuous and a
discrete view point. Numerical tests illustrate the good behavior of the algorithm.
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1 Introduction

In the framework of the modeling of problems coming from complex phenomena,
it is common to handle different scales of modeling depending on the accuracy
we need. It leads to the use of a hierarchy of models based on the different scales
brought into play both in the spatial and time sides. The problem of spatial coupling
of different hyperbolic models has been the topic of numerous papers, see for
instance [1]. So far the theoretical and numerical techniques developed lied on the
hypothesis that the spatial domains where each model has to be applied is initially
prescribed and fixed in time. We aim at developing analytical and numerical tools
to determine automatically the space–time domains in which each model has to be
used, taking into account the local accuracy and the characteristics of the flow.
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The whole procedure must allow:

• to increase the accuracy in the domain where the phenomenon scales are small,
by means of using a fine model,

• to improve execution time, by the use of a coarse model elsewhere.

It consists thus in constructing local error estimates of modeling and developing
adapted numerical schemes. In the sequel we concentrate on an academic problem,
involving: a fine model by means of a hyperbolic system with relaxation (the
information being contained in the relaxation source term) and a coarse model
corresponding to the associated equilibrium model. To automatically handle the
dynamical decomposition of the computational domain into two sub-domains, we
have to provide a criterion. It consists in using an intermediate model from which
an error estimate is deduced. Since we are dealing with hyperbolic models with
relaxation, we propose to consider the first order corrector resulting from the
Chapman–Enskog expansion of the relaxation model around an equilibrium state.
At the interfaces between fine and coarse models, the coupling strategies we use are
based on techniques for thin coupling interfaces developed in [1] (see also references
therein).

Section 2 is devoted to the structural study of the hyperbolic relaxation system
and its associated equilibrium system of conservation laws. The Chapman–Enskog
expansion is recalled for such systems. Section 3 addresses the finite volume
schemes we use, the derivation of the discrete estimator and the global algorithm
for adaptation. Numerical tests are provided in Section 4 and Section 5 is the
conclusion.

Let us emphasize that this work is still under development. Most of our attention
is paid in this note to the relevance of the developed error estimator but since our
framework is still academic (rather simple 1D models), the CPU time saving is not
significant (see Sections 4 and 5). More results will be provided at the conference.

2 Hyperbolic systems with relaxation

In order to simplify the presentation, we consider systems of hyperbolic equations
which comply with the form

@tU C @xf .U; v/ D 0; (1)

@tvC @xg.U; v/ D 1

"
.h.U / � v/; (2)

where the fluxes f WRn � R ! R
n, gWRn � R ! R and h W Rn ! R are smooth

functions, defining the evolution of the state vector U WR � R
C ! R

n and the
variable vWR�R

C ! R. In the following, we will also use the condensed notations
W D .U; v/T , F D .f; g/T and R D .0; h.U / � v/T . Note that we only focus on
scalar-valued functions v in order to make the notations clearer in the following.
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When the relaxation parameter " tends to 0, the relaxation model (1)–(2) reduces
to the following system of n conservation laws:

@tU C @xfe.U / D 0; where fe.U / D .U; h.U //: (3)

The relaxation process thus determines a local equilibrium state We.U / D
.U; h.U //. Several stability conditions exist to justify the asymptotics  ! 0 [2, 4].
Let .	e;k/1�k�n be the (ordered) eigenvalues of rU fe.U / (i.e. of the equilibrium
system (3)) and .	k/1�k�nC1 be the (ordered) eigenvalues of rWF .We/ (i.e. of the
relaxation system (1)–(2) restricted to equilibrium states). Here, we assume that the
so-called subcharacteristic condition is satisfied:

	k � 	e;k � 	kC1; 81 � k � n: (4)

For more details on the different stability conditions for hyperbolic systems with
relaxation, see [2, 4].

2.1 Chapman–Enskog expansion

With the aim of coupling the relaxed model and the equilibrium one in an adaptive
way, we want to determine a criterion to move from one model to the other. A natural
choice is to consider the first order error resulting from the Chapman–Enskog
expansion of the relaxed model around an equilibrium state. The Chapman–Enskog
method amounts to considering smooth solutions of (1)–(2) near equilibrium which
we assume to satisfy

v D h.U /C "v1 C O."2/: (5)

Plugging (5) into (1)–(2) leads to

@tU C @x.f .U; h.U ///C "@x .r2f .U; h.U //v1/ D O."2/; (6)

@th.U /C @xg.U; h.U // D �v1 C O."/; (7)

where r˛q denotes the derivative of the vector field q w.r.t. its ˛-th variable, ˛ D
1; 2. Multiplying (6) by rh.U /T and combining with (7) leads to

v1 D rh.U /T @x .f .U; h.U ///� @xg.U; h.U //C O."/: (8)

Finally, dropping second order terms with respect to " yields:

@tU C @xf .U; h.U // D �"@x
�r2f .U; h.U //

�rh.U /T @xf .U; h.U // � @xg.U; h.U //
��
:

(9)
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This parabolic system can be interpreted as an intermediate model between the
relaxation model (1)–(2) and the equilibrium model (3). Indeed, smooth solutions
of (1)–(2) solve (9) up to O.2/ and if the right-hand side in (9) vanishes, one
recover (3).

Remark 1. Note that the equivalence between the subcharacteristic condition (4)
and the dissipativity of the second order term in (9) only holds in rather classical
cases. We refer once again to [2, 4] for more details.

2.2 Finite volume methods

We depict now the finite volume schemes used to approximate the equilibrium and
the relaxed models. We first consider the equilibrium model (3). We introduce the
equilibrium state vectorW n

e;i D .U n
i ; h.U

n
i // within each cell Ci D Œxi�1=2; xiC1=2�.

The classical finite volume formulation reads

1

�x
.U nC1

i � Un
i /C

1

�t
.'.U n

i ; U
n
iC1/� '.U n

i�1; U n
i // D 0: (10)

The 2-point numerical flux ' W R
n � R

n ! R
n is consistent with the flux fe in

the sense of finite volume methods, i.e. '.U;U / D fe.U /. We now address the
numerical scheme to approximate the relaxation system (1)–(2), for which a splitting
strategy between the convective part and the source term has been adopted. We
introduce the two numerical fluxes F and G respectively consistent with the fluxes
f and g. In a first step the convective part is approximated by

1

�x
.U nC1;�

i � Un
i /C

1

�t
.F.W n

i ;W
n
iC1/� F.W n

i�1;W n
i // D 0: (11)

1

�x
.vnC1;�i � vni /C

1

�t
.G.W n

i ;W
n
iC1/ �G.W n

i�1;W n
i // D 0: (12)

Then the value UnC1;�
i is taken as the initial data for solving the source term:

UnC1
i D U

nC1;�
i ; (13)

vnC1i D vnC1;�i C �t

"
.h.U nC1

i /� vnC1i /: (14)

Here, the classical implicit Euler scheme has been chosen in order to ensure the
unconditional stability of the second step.

Note that it is natural, at least from the academic viewpoint, to impose the com-
patibility condition between the numerical fluxes '.Ul ; Ur/ D F.We.Ul/;We.Ur//

and it has been done for the numerical results of Section 4.
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3 Model adaptation

This section is devoted to the description of the adaptive coupling procedure from
the numerical point of view. First we detail the dynamical cutting of the space–
time computational domain. Following Section 2.1 the criterion we choose to realize
the cutting corresponds to the first order error coming from the discrete Chapman–
Enskog expansion. The global algorithm is described in 3.3.

3.1 Basic principles

We want to provide a criterion which enables to automatically determine the space
domains DR.t/ and DE.t/ where the fine (that is the relaxation system (1–2)) and
the coarse (that is the equilibrium system (3)) models have to be used respectively.
These two domains evolve as time t increases, without overlapping in such way that
their intersection corresponds to the interfaces where the coupling is performed.

We propose to make the cutting of the space into the sub-domains DE.t/ and
DR.t/ depend on the first order error v1 which results from the Chapman–Enskog
expansion (9). Let � being a threshold arbitrarily chosen. We then have:

• The region where jv1j � � is chosen to be DE.t/. In that domain the error
between the equilibrium model and the relaxed one is assumed to be negligible,
so that the coarse model (3) is applied.

• The domain DR.t/ corresponds to the region where j"v1j � � and the relaxation
model (1)–(2) is solved inside.

• At the interfaces separating the sub-domains DE.t/ and DR.t/, a numerical
coupling method as those developed in [1, 3] is used.

Let us note that several strategies can be applied; in the sequel we give a preference
to the state coupling, that is only the value v is transmitted through the interface at
each time step. Since the interfaces of coupling are always located in a region where
the two models are very close to each other, the different methods of coupling should
provide very similar results (see [1, 3]).

It is important to note that thanks to (8), the estimator v1 can be computed from
the solution of each model, (1)–(2) and (3), since it only depends on U .

3.2 Estimators for adaptation

We now give the discrete estimator we use to perform the adaptive coupling,
following the strategy of the Chapman–Enskog method. First, we take the ansatz

vi D h.Ui/C "v1;i CO."2/
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and denote W n
e;i D We.U

n
i /. Plugging the ansatz in (11)–(13) and (12)–(14) and

dropping high order terms yields

UnC1
i � Un

i C
�t

�x

�
F.W n

e;i ; W
n
e;iC1/� F.W n

e;i�1;W n
e;i /
�

C"�t
�x

�r1F.W n
e;i ; W

n
e;iC1/ � .0; vn1;i /Cr2F.W n

e;i ; W
n
e;iC1/ � .0; vn1;iC1/

�r1F.W n
e;i�1;W n

e;i / � .0; vn1;i�1/Cr2F.W n
e;i ; W

n
e;iC1/ � .0; vn1;i /

� D 0:
(15)

h.U nC1
i / � h.U n

i /C
�t

�x
.G.W n

e;i ; W
n
e;iC1/�G.W n

e;i�1;W n
e;i // D ��t vnC11;i ; (16)

Since h is smooth, there existsU .:; :/ such thatrh.U .U n; U nC1//T .U nC1�Un/ D
h.U nC1/ � h.U n/. Multiplying (16) by rh.U .U n

i ; U
nC1
i //T leads to

h.U nC1
i /� h.U n

i /C
�t

�x
rh.U /T .F.W n

e;i ; W
n
e;iC1/ � F.W n

e;i�1;W n
e;i // D 0:

Combining with (16) provides the following expression of vnC11;i :

vnC11;i D rh.U /
1

�x
.F.W n

e;i ; W
n
e;iC1/� F.W n

e;i�1;W n
e;i //

� 1

�x
.G.W n

e;i ; W
n
e;iC1/�G.W n

e;i�1;W n
e;i // (17)

which is the discretisation of (8). Replacing the terms vn1;i and vn1;i�1 into (15)
allows us to determine the discrete counterpart of (9). Note that in practice, the term
rh.U .U n

i ; U
nC1
i // can be approximated by rh.U n

i / so that the estimator vnC11;i , at
time tnC1, is an explicit function of the discrete solution .U n

i /i2Z, at time tn.

3.3 The general algorithm

We now detail the general algorithm of the dynamical coupling between the fine and
the coarse models. Let .W n

i /i2Z be a sequence known at time tn to be advanced to
time tnC1. The algorithm follows the steps:

• For all i 2 Z, compute in cell Ci the numerical error enC1i WD vnC11;i using
(17)

• For all i 2 Z, if ŒjenC1i j > �� then
Ci 2 DR.tn/
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Else
Ci 2 DE.tn/

• At this stage, DR.tn/[DE.tn/ D R. For all i 2 Z:

– If ŒCi1 ; Ci ; CiC1 2 DR.tn/� (resp. 2 DE.tn/) then

Compute W nC1
i using the numerical scheme (11–14)

(resp. compute W nC1
i D We.U

nC1
i / using the numerical scheme

(10)

– Else

Compute W nC1
i using the state coupling method described in [1, 3]

Besides let us note that the estimator we use is not exactly an a posteriori error
estimate since the adaptation process add a numerical error. The study of this error
estimate is an ongoing work.

4 Numerical experiments

We now present some numerical results in order to illustrate the reliability of
the coupling procedure, using the Rusanov scheme for the approximation of each
model. The problem we address corresponds to a fluid flow problem governed by
the relaxation system

@t � � @xu D 0; (18)

@tuC @x˘ D 0; (19)

@tT D 1

"
.� �T / (20)

which is derived from the works of Suliciu [7] but also corresponds to Chaplygin
gas (see for instance [6]). The state variable � and u stand for the specific volume
and the velocity while T is a perturbed specific volume. The extended pressure law
˘ is defined by˘.�;T / D p.T /C a2.T � �/ where p follows a perfect gas law
p D p.�/ D p�� , � > 1. The associated equilibrium system is obtained setting
T D � and is the so-called p-system

@t � � @xu D 0; (21)

@tuC @xp D 0: (22)

The constant a is assumed to satisfy the Whitham’s condition a2 > maxs.�p0.s//,
which ensures that the subcharacteristic condition (4) is satisfied. Plugging the
expansion T D � C "T1 C O."2/ into (19) yields the parabolic equation, which
corresponds to (9),
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Fig. 1 Density 1=� (left) and velocity (right) with 200 cells at time T D 0:5. The indicator
corresponds to the characteristic function of DR.T /

@tuC @xp.�/ D "@x
�
@xu.p0.�/C a2/�: (23)

Figure 1 presents the solution of test case with � D 1:4 and a D 1:5. The initial data
are �L D 1, uL D 0:75, �R D 8, uR D 0 and the discontinuity is applied at x D 0.
The relaxation parameter is " D 10�6. The mesh contains 200 cells and threshold
for the adaptation is � D 0:5. One may check that our method of adaptation only
uses the fine model in the regions of large variations of the solution. The results are
very close to those with the fine model. One may also note that the results of coarse
model are sensibly different: less diffusion and a different intermediate state.

5 Conclusion

In the frame of hyperbolic systems with relaxation, we have proposed a new
algorithm for dynamical adaptation of models, based on the Chapman–Enskog
expansion. It enables to quantify the difference between a fine model and a coarse
model, from the continuous and the discrete points of view. The global algorithm
of adaptation is based on a series of works on interface coupling of hyperbolic
models and is easy to implement. This is a preliminary work but the first results are
encouraging. We are aware that the presented test case is very academic, but it only
aims at illustrating the relevance of our estimator. Besides, the fine model (18–20)
and its numerical resolution are rather classical and since the space domain is 1D,
comparison of CPU times between a computation with the fine model in the whole
domain and a computation with our algorithm of adaptation would be meaningless.
More complex models (such that nonlinear relaxation terms coming from models of
phase transition) and 2D computations will be presented during the conference.
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Inflow-Implicit/Outflow-Explicit Scheme
for Solving Advection Equations

Karol Mikula and Mario Ohlberger

Abstract We present new method for solving non-stationary advection equations
based on the finite volume space discretization and the semi-implicit discretization
in time. Its basic idea is that outflow from a cell is treated explicitly while inflow
is treated implicitly. Since the matrix of the system in this new I2OE method is
determined by the inflow fluxes it is an M-matrix yielding favourable solvability
and stability properties. The method allows large time steps at a fixed spatial grid
without losing stability and not deteriorating precision which makes it attractive for
practical applications. Our new method is exact for any choice of a discrete time step
on uniform rectangular grids in the case of constant velocity transport of quadratic
functions in any dimension. We show that it is formally second order accurate in
space and time for 1D advection problems with variable velocity and numerical
experiments indicates its second order accuracy for smooth solutions in general.

Keywords Advection equation, semi-implicit scheme, finite volume method
MSC2010: 35L04, 65M08, 65M12

1 Introduction

In this paper we present the inflow-implicit/outflow-explicit (I2OE) method for
solving variable velocity advection equations of the form

ut C v � ru D 0 (1)
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where u 2 R
d � Œ0; T � is the unknown function and v.x/ is a vector field. The basic

idea of our new method is that outflow from a cell is treated explicitly while inflow
is treated implicitly. Such an approach is natural, since we know what is flowing out
from a cell at an old time step n � 1 but we leave the method to resolve a system
of equations determined by the inflows to obtain a new value in the cell at time
step n. Since the matrix of the system is determined by the inflow fluxes it is an M-
matrix for Voronoi like grids and thus it has favourable discrete minimum-maximum
properties. Consequently, the method allows large time steps at a fixed spatial grid
without losing stability. Interestingly, the new I2OE scheme is exact on rectangular
grids for constant velocity transport of quadratic polynomials in any dimension
and for any length of a time step. In general, it is second order accurate for
smooth solutions, both for variable velocity and nonlinear advection problems [5]. A
comparison with the second order Lax-Wendroff method for variable velocity shows
good properties of the new scheme with respect to precision and CPU times. In [5],
the I2OE method was introduced in more general settings where v D v.x; u;ru/.
The semi-implicit forward-backward diffusion level set approach for motion in
normal direction [4] is its special case. The variable and nonlinear velocity fields
to which our method can be successfully applied arise in many applications, e.g.
in level set methods and other transports with non-divergence free velocities and
nonlinear conservation laws or in image segmentation by the active contours.

2 The inflow-implicit/outflow-explicit scheme

Let us consider equation (1) in a bounded polygonal domain ˝ � R
d , d D 2; 3,

and time interval Œ0; T �. Let Qh denote a primal polygonal partition of ˝ . Let p be
a finite volume (cell) of a corresponding dual Voronoi tessellation Th with measure
mp and let epq be an edge between p and q, q 2 N.p/, where N.p/ is a set of
neighbouring finite volumes (i.e. Np \ Nq has nonzero .d � 1/-dimensional measure).
Let cpq be the length of epq and npq be the unit outer normal vector to epq with
respect to p. We shall consider Th to be an admissible mesh in the sense of [1], i.e.,
there exists a representative point xp in the interior of every finite volume p such
that the joining line between xp and xq , q 2 N.p/, is orthogonal to epq . We denote
by xpq the intersection of this line segment with the edge epq . The length of this line
segment is denoted by dpq , i.e. dpq WD jxq � xpj. As we have build Th based on the
primal mesh Qh, we assume that the points xp coincide with the vertices of Qh. Let
us denote by up a (constant) value of the solution in a finite volume p computed by
the scheme. For the solution representation inside the finite volume p we use either
this value up or a reconstructed (but again constant) value denoted by up . A constant
value of the solution assigned to the edge epq (given again by a reconstruction) is
denoted by upq . Let us rewrite (1) in the formally equivalent form with conserving
and non-conserving parts [2]

ut Cr � .vu/� ur � v D 0: (2)
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Integrating (2) over a finite volume p then yields

Z

p

ut dx C
Z

p

r � .vu/ dx �
Z

p

ur � v dx D 0:

Applying the divergence theorem and using constant representations of the solution
on the cell p, denoted by up , and on the cell interfaces epq , denoted by upq , we get

Z

p

ut dx C
X

q2N.p/
upq

Z

epq

v � npq ds � up
X

q2N.p/

Z

epq

v � npq ds D 0:

If we denote the fluxes in the inward normal direction to the finite volume p by

Nvpq D �
Z

epq

v � npq ds; (3)

we finally arrive at the equation

Z

p

ut dx C
X

q2N.p/
Nvpq.up � upq/ D 0: (4)

The novelty of our scheme is to split the resulting fluxes into the corresponding
inflow and outflow parts to the cell p. This is done by defining

ainpq D max.Nvpq; 0/; aout
pq D min.Nvpq; 0/: (5)

We then approximate ut by the time difference
unp�un�1p

�
, where � is a uniform time

step size, and take the inflow parts implicitly and the outflow parts explicitly in
(4). This yields the following system of equations for the finite volume solution
unp; p 2 Th at the n-th discrete time step, representing the general I2OE scheme:

mpunp C �
X

q2N.p/
ainpq.u

n
p � unpq/ D mpun�1p � �

X

q2N.p/
aout
pq .u

n�1
p � un�1pq / : (6)

The most natural choice for reconstructions unp and unpq at any time step n (i.e. old

and new time steps) is given by unp D unp; unpq D 1
2
.unp C unq/ and leads to the basic

I2OE scheme:

mpunp C
�

2

X

q2N.p/
ainpq.u

n
p � unq/ D mpun�1p � �

2

X

q2N.p/
aout
pq .u

n�1
p � un�1q / : (7)

The equation (4) has the form of a discretization of a diffusion equation, where
Nvpq would represent the so-called transmissive coefficients (integrated diffusion
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fluxes divided by distances between cell centers). In standard forward diffusion
all these coefficients are strictly positive which leads to a weighted averaging of
the solution and the implicit schemes are natural in this case. On the other hand
the negative coefficients would correspond to backward diffusion in which case
information propagates outside the cell and explicit schemes are thus natural. In
our case the sign of the coefficients is given by the inflow or outflow character of the
cell boundary and the inflow-implicit/outflow-explicit approach is thus natural. It is
also well-known that in the second order schemes for solving advection problems
one can identify the “forward diffusion” part (like the first order upwinding) and the
”backward diffusion” part given by the additional sharpening terms coming (some-
times surprisingly) from the second order Taylor’s expansions, cf. the Lax-Wendroff
scheme [3]. In our method this splitting arises naturally, gives second order accuracy
and when treating it semi-implicitly it brings significant improvements in stability
of computations.

Let us present the I2OE scheme for 1D variable velocity equation ut C v.x/
ux D 0, which will be used in numerical computations of Section 4. Let pi be the
cell with the spatial index i , length h, center point xi , left border xi� 12 and right
border xiC 1

2
. Let us denote uni the value of the numerical solution at time step n and

uni ; u
n

i� 12 the reconstructed values. We define

ain
i� 1

2

D max.v.xi� 1
2
/; 0/; aout

i� 12 D min.v.xi� 12 /; 0/;

ain
iC 1

2

D max.�v.xiC 1
2
/; 0/; aout

iC 1
2

D min.�v.xiC 1
2
/; 0/ ;

and if we use the reconstructions uni D uni , un
i� 12 D

1
2
.uni C uni�1/ in both new and

old time steps, the basic one-dimensional I2OE scheme has the following form

uni C
�

2h
ain
i� 12 .u

n
i � uni�1/C

�

2h
ain
iC 1

2

.uni � uniC1/ D un�1i (8)

� �

2h
aout
i� 12 .u

n�1
i � un�1i�1 / �

�

2h
aout
iC 1

2

.un�1i � un�1iC1/ :

The scheme (8) requires to solve a tridiagonal system in every time step which is
done by using the standard tridiagonal solver (also called the Thomas algorithm). In
practice, the I2OE scheme allows to use much larger time steps without losing L1-
stability than given by a standard CFL condition for explicit schemes, cf. Section 3.
However, the “backward diffusion” (outflow) explicit part is not necessarily always
dominated by the implicit part in the basic form of the scheme (8). Some oscillations
(not unboundedly growing in time) may arise e.g. on coarse grids or in solutions
tending to a shock. One possibility is to leave the method with oscillations and
remove them at the end of computations using e.g. some edge preserving filters.
Another approach is to supress the oscillations during the computation. In our
scheme, one can use an averaging (by a larger stencil) in the reconstruction of un�1p ,
similarly to the FBD schemes from [4], or to modify the “backward diffusion” part
on the right hand side of (8) by using the standard limiters, for details see [5].
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Theorem 1. Let us consider the equation (1) in 1D with constant velocity v and
I2OE scheme (8) on uniform grid. If the initial condition is given by a second order
polynomial, then the scheme gives the exact solution for any choice of time step.

Proof. The initial condition has the form u0.x/ D ax2 C bx C c and the exact
solution is given by u.x; �/ D u0.x � v�/. For v > 0 the scheme (8) takes the form

uni C
�v

2h
.uni � uni�1/ D un�1i � �.�v/

2h
.un�1i � un�1iC1/ (9)

One can easily check that if we plug the exact values in grid points xi , xi�1, xiC1 at
time steps n D 1 and n � 1 D 0, namely

un�1i D ax2i C bxi C c; un�1iC1 D a.xi C h/2 C b.xi C h/C c; (10)

uni D a.xi � v�/2 C b.xi � v�/C c; uni�1 D a.xi � h � v�/2C b.xi � h � v�/C c;

into the scheme (9), we get true identity, and the same we obtain for v < 0. ut
It is also possible to make similar considerations as above in higher dimensional
case for uniform rectangular grids and constant velocity vector field . One can plug
a general 2D or 3D quadratic polynomial as initial condition and the corresponding
exact solution at time � into the I2OE scheme (7), use a symbolic computational
software like the Mathematica, and check that the scheme is exact in such situations.

Theorem 2. Let us consider the equation (1) in 1D with variable velocity v.x/ � 0
(or v.x/ � 0) and the I2OE scheme (8) on a uniform grid. Then the scheme is
formally second order and the consistency error is of order O.h2/CO.�h/CO.�2/.

Proof. We write our transport equation as @tuC f .v; @xu/ D 0 with f .v; @xu/ WD
v.x/@xu and let v.x/ � 0. We will use notations un WD u.tn/, f n WD f .v; @tun/.
The Taylor expansion in time yields

un D un�1C�@tun�1C �
2

2
@2t u

n�1CO.�3/; un�1 D un��@tunC �
2

2
@2t u

nCO.�3/:

Subtracting these two equations we derive relation

un � un�1 D �

2
.@tu

n C @tun�1/C �2

4
.@2t u

n�1 � @2t un/C O.�3/: (11)

We can see that the second term on the right hand side is also O.�3/ and using the
equation @tuC f .v; @xu/ D 0, we get for the first term of the right hand side

I D �

2
.@tu

n C @tun�1/ D ��
2
.f n C f n�1/ : (12)
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Using the notation fi WD f .xi / D v.xi /@xu.xi /, by the Taylor expansion in space
we have (for v.x/ � 0)

f n
i�1=2 D f n

i �
h

2
@xf

n
i CO.h2/; f n�1

iC1=2 D f n�1
i C h

2
@xf

n�1
i C O.h2/ (13)

or (for v.x/ � 0)

f n�1
i�1=2 D f n�1

i � h
2
@xf

n�1
i C O.h2/; f n

iC1=2 D f n
i C

h

2
@xf

n
i CO.h2/ : (14)

We continue (for v.x/ � 0) and using (12)-(13) we derive

Ii D ��
2
.f n
i C f n�1

i / D ��
2

�
f n
i�1=2 C f n�1

iC1=2 C
h

2
.@xf

n
i � @xf n�1

i /C O.h2/
�
:

The second term in the brackets on the right hand side is of order O.�h/ and we
shall analyse the first one. We know that

@xuni�1=2 D
1

h
.uni � uni�1/C O.h2/; @xun�1iC1=2 D

1

h
.un�1iC1 � un�1i /C O.h2/

and resubstituting for f n
i�1=2 D vi�1=2@xuni�1=2 and f n�1

iC1=2 D viC1=2@xun�1iC1=2 we get

Ii D ��
2

�
vi�1=2

1

h
.uni �ui�1/CviC1=2

1

h
.un�1iC1�un�1i /

�
CO.�2h/CO.�h2/: (15)

From (11) and (15) we finally get

uni � un�1i D � �

2

�vi�1=2
h

.uni � uni�1/C
viC1=2
h

.un�1iC1 � un�1i /
�

C O.�2h/C O.�h2/C O.�3/

where we recognize the scheme (8) for v.x/ � 0, cf. also (9), and dividing by � we
get the consistency error of the I2OE scheme stated in the theorem. ut

3 Numerical experiments

First, let us consider 1D equation (1) with v.x/ 	 1 in interval ˝ D .�1; 1/ and
time interval I D .0; T /, T D 1. Let the initial condition u0 be given by a quadratic
polynomial u0.x/ D 1� 1

2
.x2�x/. The exact solution is given u.x; t/ D u0.x�vt/.

We solve this problem numerically using the exact Dirichlet boundary conditions
and compare the results of the I2OE method (8), the standard Lax-Wendroff and
explicit up-wind schemes [3] with the exact solution. In all experiments we used
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Table 1 Report on the L2.I; L2/ errors of the I2OE method, the Lax-Wendroff scheme, and the
explicit up-wind scheme for the initial quadratic polynomial and for various choices of time step.
We note that all the methods are exact for � D h

n � D h=2 NTS I2OE Lax-Wendroff Up-wind
20 0.05 20 3:7 10�16 5:1 10�17 1:83 10�2

40 0.025 40 8:0 10�16 7:5 10�17 8:99 10�3

80 0.0125 80 1:1 10�15 8:3 10�17 4:45 10�3

160 0.00625 160 2:4 10�15 9:9 10�17 2:22 10�3

n � D 2h NTS I2OE Lax-Wendroff Up-wind
20 0:2 5 2:1 10�16 1:1 10�11 5:02 10�2

40 0:1 10 2:1 10�16 1:4 10�9 0:641

80 0:05 20 3:9 10�16 0:466 3:8 10C3

160 0:025 40 5:7 10�16 1:6 10C16 1:3 10C12

160 � D 10h D 0:125 8 2:5 10�15 � �
160 � D 40h D 0:5 2 1:7 10�15 � �
160 � D 80h D 1 1 2:6 10�15 � �

increasing number n of finite volumes discretizing ˝ , h D 2=n, and we consider
various choices of time step � and corresponding number of time steps NTS. In
Table 1 we report the errors in L2.I; L2/ norm for all the methods. As one can
see, the I2OE method is exact for any relation between space and time step, see
Theorem 1, and one can use extremely large (e.g. just one time step � D T ) without
any deterioration of the numerical result. Here the errors are comparable to machine
precision, they are not exact zeros because we have to solve a tridiagonal system
in every time step yielding some rounding errors which, however, do not propagate
even in a long run. The Lax-Wendroff method, as the second order, is exact for any
quadratic initial function whenever it is stable, i.e. � � h. For Courant numbers
larger than 1, one can see instabilities in the third and 4th rows of Table 1, when
� D 2h and grid is refined. The explicit upwind scheme is the first order and exact
for any initial data only if the relation � D h is fulfilled. Its first order accuracy
can be seen for � D h=2, and oscillations occur soon for � > h as documented in
Table 1.

Next, let us consider an example with variable velocity field v.x/ D � sin.x/
and let the initial profile be given by u0.x/ D sin.x/, ˝ D .�1; 1/ and I D .0; T /,
T D 1. The exact solution can be derived by the method of characteristics and is
given as u.x; t/ D u0. 2� arctg.e�t tg.�x

2
///. We compare the precision and CPU-

time of the I2OE and the Lax-Wendroff scheme [3]. In the solutions a strong peak
is formed at T D 1, see Fig. 1. Both schemes are stable with slight overshoot and
undershoot in the result by the Lax-Wendroff scheme on coarser grids. No overshoot
or undershoot is observed for the I2OE scheme, cf. Fig. 1. Figure 2 shows log-log
plots of CPU time versus error of the schemes. We can see superior behavior of the
I2OE scheme in this example with considerable speed-up when using larger time
steps up to 4-8 times exceeding the CFL condition, which must be respected in the
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Fig. 1 The result of the I2OE scheme (up, red points) at time T D 1, computed with n D 160 and
� D h. By green line we plot the exact solution at T and by black line the initial condition
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Fig. 2 CPU versus L2(I,L2)-error for the Lax-Wendroff method (blue solid line) and for the I2OE
scheme with CFL=1 (red large dashing, � D h), CFL=2 (green medium dashing, � D 2h), CFL=4
(orange small dashing, � D 4h) and CFL=8 (magenta tiny dashing, � D 8h) for the experiment
from Fig. 1. The plots indicate that I2OE scheme is about 4–times faster in order to get the same
L2(I,L2)-error

Lax-Wendroff scheme. In this case both schemes are second order accurate which
holds true for any time step size of the I2OE scheme.

Further 1D and 2D numerical experiments are reported in [5] showing the second
order convergence of the I2OE method for any choice of the time steps. This is
the main advantage of the new scheme when comparing with standard explicit
second order methods, or, when using limiters, in comparison with the so-called
high resolution methods for solving advection equations.
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4D Numerical Schemes for Cell Image
Segmentation and Tracking

K. Mikula, N. Peyriéras, M. Remešı́ková, and M. Smı́šek

Abstract The paper introduces new techniques for 4D (space-time) segmentation
and tracking in time sequences of 3D images of zebrafish embryogenesis. Instead
of treating each 3D image individually, we consider the whole time sequence as
a single 4D image and perform the extraction of objects and cell tracking in four
dimensions. The segmentation of the spatiotemporal objects corresponding to the
time evolution of the individual cells is realized by using the generalized subjective
surface model [1], that is discretized by a new 4D finite volume scheme. Afterwards,
we use the distance functions to the borders of the segmented spatiotemporal objects
and to the initial cell center positions in order to backtrack the cell trajectories that
can be understood as 4D parametrized curves. The distance functions are obtained
by numerical solution of the time relaxed eikonal equation.

Keywords Cell tracking, image segmentation, finite volume method
MSC2010: 65M08, 65-06, 92B05

1 Introduction

Cell tracking, i.e. finding the space-time trajectories and moments of divisions of the
cells of a developing organism, is one of the most interesting challenges of modern
biology. A reliable backward tracking can answer a lot of questions concerning the
origin and formation of cell structures and organs, the global and local movement
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of the cells, the cell division rate and localization etc. They all are fundamental
questions of developmental biology.

In this paper, we introduce the basic concepts of a novel technique that can be
used for the cell tracking from time sequences of 3D images of embryogenesis.
A cell can be represented by the surface of its nucleus or by its membrane,
depending on the type of images we have at disposal. The time evolution of a cell
can be seen as spatiotemporal tube whose cross-section by a chosen time hyperplane
corresponds to the 3D representation of the cell at the selected time. This 4D tube
is bifurcated in the time moments when the cell undergoes division. Thus, we get
a tree-like object corresponding to any cell present at the beginning of the time
sequence. In order to track a cell, we need to descend from its current position to
the root of the tree in which it is situated. This implies that the tracking procedure
consists in solving the following two problems:

1. Segmentation of the 4D cell evolution trees from the spatiotemporal image.
2. Finding the way to the root of a tree from any of its inner points.

In our paper, we discuss the solution of both of these problems. We test our
methods on artificial data and on time sequences of 3D images corresponding to the
zebrafish embryonic development obtained by a confocal microscope. In order to be
able to apply the described methods, we need to have at disposal the approximate
positions of cell centers for all cells visible in the images. For the artificial data, these
points are known by construction and for the zebrafish images, the approximate cell
centers are computed by a level set object detection technique [1].

In order to solve the first problem, we apply the generalized subjective surface
model [1, 6]

ut � warg � ru � wcgjrujr:
	 ru

jruj



D 0 ; (1)

solved in the domain Œ0; TS � � ˝ where ˝ � R4 is the spatiotemporal image
domain, i.e. the whole time sequence of 3D images. We set u.0; x/ D u0.x/ and we
consider the zero Dirichlet boundary condition on @˝ . The edge detector function
g D g.jrG� I0j/, I0 being the 4D image intensity function, and wa and wc are the
advection and curvature parameters of the model that determine the way the function
u is evolving [1]. The desired cell evolution tree segmentation is represented by
a selected isosurface of the function u.x; TS/. We would like to point out the
importance of performing this segmentation in 4D. Although the cell evolution tree
object could be more easily composed of less time and memory consuming 3D cell
segmentations, this could lead to spurious interruptions of the cell trajectories in the
points where the cell center and consequently the corresponding cell segmentation
is missing for some reason. Looking for a whole spatiotemporal structure rather than
a composition of 3D objects makes the procedure more robust and resistant to the
possible errors of the center detection technique.

Having segmented the tree object, we now want to find a way down to its root
from any of its inner points. Since the root can be represented by the center of
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the root cell, a reasonable descend direction indicator could be the gradient of
the distance function d1 to this center computed inside the segmented 4D object.
However, this might not be sufficient. In real data containing a large number of cells,
we can observe that the trees corresponding to different root cells are not always
perfectly isolated. In order to prevent dropping into a wrong tree, it is desirable to
descend along the center line of the tree branches. For this purpose, we compute
the distance function to the border of the 4D tree, denoted by d2, whose negative
gradient leads us towards the center line that we want to follow. The distance
function to a set ˝0 can be computed by solving the time relaxed eikonal equation

dt C jrd j D 1 (2)

in the domain Œ0; TD� � ˝D . In our case, ˝D is the inner part of the segmented
tree object, i.e. the part where u.x; TS/ > V , V being the isosurface value chosen
to represent the segmentation result. The equation (2) has to be coupled with a
Dirichlet type condition

d.x; t/ D 0; x 2 ˝0 (3)

where˝0 can represent the root point of the tree or its boundary, i.e. the set of points
where u.x; TS / D V .

The descend to the root of the tree is performed as follows. Given an arbitrary
point (doxel center) Œx1; x2; x3; x4� inside the tree, we move to the center of the
nearest doxel in the direction given by rd1. Supposing that x4 represents the time
dimension of the 4D data, we repeat this step until we drop to the level x4�1. After,
we move in the direction of �rd2 until we find the nearest ridge point of d2. Thus
we are situated on the center line of the current branch of the tree. From there we
repeat the whole procedure until we descend to the level x4 D 0, resp. to the root of
the tree.

2 Discretization of the models

The time discretization of the generalized subjective surface model (1) is semi-
implicit since in this way we can guarantee unconditional stability of the curvature
term. Let �S be the time discretization step, �S D TS=NS . Then for any n D 1 : : : NS
we get

un � un�1

�S
� warg � run�1 � wc gjrun�1jr � run

jrun�1j D 0 : (4)

where un represents the numerical solution on the nth time level.
The space discretization is realized by applying the finite volume strategy where

one doxel of the 4D image corresponds to one volume of the discretization. Let us
suppose that the volumes are 4D cubes of side length h and let Vi denote the volume
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with index vector i D .i; j; k; l/ and uni the value of the numerical solution un in
the center ci of this volume. Further, let ep, p D 1 : : : 4 represent the standard basis

vectors in R4, FCpi and F�pi the two faces of Vi orthogonal to ep , �˙pi the normal

of the face F˙pi andm.F˙pi / its measure.
Now let us integrate (4) over Vi. We get

Z

Vi

un � un�1

�S
dx�

Z

Vi

warg � run�1dx�
Z

Vi

wc gjrun�1jr � run

jrun�1jdx D 0: (5)

The time derivative term is approximated by

Z

Vi

un � un�1

�S
dx � m.Vi/

uni � un�1i

�S
� (6)

The advection term is approximated by the upwind approach, i.e.

Z

Vi

.�warg � ru/ dx � (7)

wam.Vi/

4X

pD1

 

max
��Dp

i g; 0
� un�1i � un�1i�ep

h
Cmin

��Dp

i g; 0
� un�1iCep

� un�1i

h

!

where Dp

i g D .giCep � gi�ep /=.2h/ and gi is the average value of g in Vi. For the
curvature term we get the approximation

Z

Vi

wcgjrun�1jr: run

jrun�1jdx D wcgi NQn�1
i

4X

pD1

X

qD�p;Cp

Z

F
q
i

run

jrun�1j :�
q
i d�; (8)

where NQn�1
i is the average value of jrun�1j in Vi. Further

Z

F
˙p
i

run

jrun�1j :�
˙p
i d� � m.F

˙p
i /

Q
˙pIn�1
i

uni˙ep
� uni
h

(9)

whereQ˙pIn�1i is the average value of jrun�1j on the face F˙pi .
As we can see, in order to properly perform the approximations indicated in

(7) and (8), we need to find an appropriate approximation of the average value of
jrun�1j in both Vi and on the faces F˙p and the average modulus of g.jrI� j/,
I� D G�  I0, in Vi. There are various possibilities how to do that [4].
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Let us first consider the approximation of run�1 in the barycenter ci˙ 1
2 ep of the

doxel face F˙pi . The component corresponding to the direction of ep is simply
approximated by

D˙pun�1i D ˙
un�1i˙ep

� un�1i

h
� (10)

The other components corresponding to the directions of eq , q D 1 : : : 4, q ¤ p, can

be approximated as follows. The doxel face F˙pi is a 3D cube with faces denoted

by F˙p;˙qi . The barycenter of F˙p;˙qi can be expressed as ci˙ 1
2 ep˙ 1

2 eq . Thus, the

value of un�1 at this point can be approximated as

un�1
i˙ 1

2 ep˙ 1
2 eq
D 1

4
.un�1i C un�1i˙ep C un�1i˙eq C un�1i˙ep˙eq / : (11)

The partial derivatives of un�1 at ci˙ 1
2 ep are then approximated as

D˙p;qun�1i D
un�1

i˙ 1
2 epC 1

2 eq
� un�1

i˙ 1
2 ep� 12 eq

h
(12)

Finally, we can define the required approximations

Q
˙pIn�1
i D

s

.D˙pun�1i /2 C
X

q¤p

�
D˙p;qun�1i

�2
; NQn�1

i D 1

8

4X

pD1

X

qD�p;Cp
Q
qIn�1
i

(13)

G
˙p
i D

s

.D˙pI� Ii/2 C
X

q¤p

�
D˙p;qI� Ii

�2
; gi D 1

8

4X

pD1

�
G
�p
i CGCpi

�
(14)

Combining (6)–(14), we get the finite volume scheme for solving the problem (1).
The eikonal equation (2) is discretized by the Rouy-Tourin scheme [5]. Let �D D

TD=ND be the time discretization step and dni the value of the numerical solution in
the barycenter of the doxel Vi on the nth time level. Let us define for p D 1 : : : 4

D
˙p
i D

�
min

�
dn�1i˙ep � dn�1i

��2
; M

p

i D max
�
D
�p
i ;D

Cp
i

�

Then the numerical scheme is written as follows

dni D dn�1i C �D � �D
h

v
u
u
t

4X

pD1
M

p
i (15)

This scheme is stable for �D � h=4 and it produces monotonically increas-
ing updates that gradually approach a steady state. This leads to an efficient
implementation of the scheme that uses a fixing strategy [2].
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3 Experiments

Before we proceed to the experiments concerning the actual segmentation and
tracking, we test the experimental order of convergence of the finite volume scheme
presented above on a simple regularized mean curvature flow equation

@tu D jruj r �
	 ru

jruj



(16)

with the exact solution u.x1; x2; x3; x4; t/ D x21Cx22Cx23Cx24�1
6

C t . We use the
Dirichlet boundary condition and the initial condition given by this analytical
solution. The problem was solved in the domain Œ�1:25; 1:25�4 � Œ0; 0:08�. The
spatial domain consisted of n4 doxels with h D 2:5=n and � � h2. The error of
the numerical solution was measured in L1.I; L2.˝// norm. The result of this test
is displayed in Table 1.

Table 1 The experimental order of convergence of the finite volume scheme described in Sec. 2

n � error EOC

10 0.04 5.531426e-3
20 0.01 7.276024e-4 2.926
40 0.0025 1.407815e-4 2.370
80 0.000625 3.264185e-5 2.109

The second experiment illustrates the segmentation of artificial 4D data. The 4D
image was constructed as an analogy of the cell nuclei evolution. The cell nuclei
are more or less spherical objects, so we started with two spheres. In each time
slice of the 4D image, these two spheres are situated at different positions but not
far from their positions in the previous time slice. We construct 25 time slices. At
time x4 D 9, one of the spheres divides and from then on, we have 3 spheres in
the image. To make the situation more general, the radii of the spheres change in
time. The centers of these spheres are used to construct the initial segmentation
function. We place a 4D ellipsoid with radii a, b, c, d in each of these centers
and we set u0.x/ D 1 inside these ellipsoids and u0.x/ D 0 outside. The model
parameters were set as follows: g.jrI0j/ D 1=.1C KjrI0j2/, K D 1:0, h D 1:0,
�S D 0:1, wa D 5:0, wc D 0:1, TD D 30. Instead of jruj we use its regularizationp
"C jruj2 with " D 10�6. The procedure is illustrated in Fig. 1. In order to

visualize a 4D discrete function u.x1; x2; x3; x4/ with m slices in x4-coordinate,
we construct its 3D representation by setting the value in each 3D voxel .x1; x2; x3/
to max

x4D1:::m
u.x1; x2; x3; x4/. Then we visualize an isosurface of this representation.

Another experiment shows the segmentation of the zebrafish embryogenesis data.
We segmented a sequence of 20 3D cell nuclei images preprocessed (denoised) by
the geodesic mean curvature flow filter [3]. The initial segmentation function was
constructed in the same way as in the case of the artificial data. Further, we set
g.jrI� j/ D 1=.1 C KjrI� j2/, I� D G�  I0, K D 100:0, � D 0:01, h D 1:0,
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Fig. 1 Segmentation of artificial 4D data. Left, the isosurface V D 128 of the 3D representation
of the data. Middle, the isosurface V D 15 of the 3D representation of the initial segmentation
function. Right, the isosurface V D 15 of the 3D representation of the segmentation result. This
isosurface was chosen as the best representation of the segmented object

Fig. 2 Segmentation of the zebrafish embryogenesis data. On the top, we display 2D slices of
the 4D image corresponding to different x4 (time) values with indication of the position of the
segmented object. On the bottom, we provide the corresponding segmentation result in the form of
isosurface V D 128 of x4-slices of the 4D segmentation function

�S D 0:1, wa D 10:0, wc D 1:0, TD D 50, " D 10�6. Fig. 2 displays 2D slices of
the 4D data (more precisely, 2D slices of x4-slices of the 4D data). The object that
we tried to segment was a simple cell evolution tree containing one cell division.
Together with the image slices, we provide the segmentation result, now displayed
as isosurfaces of x4 (time) slices of the segmentation function.

Fig. 3 shows the result of the cell tracking performed on the artificial data
described above. We backtrack the cells (spheres) from the positions of their centers
at the end of the time sequence. Both distance functions d1 and d2 were computed
by setting h D 1:0, �D D 0:25. The result of the tracking is a set of 4D points
characterizing the cell position on the individual time levels. At each time level, we
get one point that represents the intersection of the time hyperplane with the ridge
of the 4D distance function d2 (note that these points in general do not correspond
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Fig. 3 The result of the cell tracking performed on artificial 4D data. We can see the points
characterizing the positions of the cells at each time level visualized by neglecting their x4
coordinate. The starting points for the tracking are situated on the top of the point sequences

Fig. 4 The effect of using the distance function d2. From the left: first, the tracking line in an
isolated branch obtained by using only d1, second, the tracking line in the same branch when using
d1 and d2, third, the tracking line in a branch interconnected with a neighboring branch drops into a
wrong branch if only d1 and not d2 is applied, fourth, by applying both d1 and d2, the line remains
in the correct branch. The grey level shading of the branches represents the values of d1

to the geometrical centers of the individual 3D spheres). The points are visualized
by neglecting their x4 coordinate.

Finally, we present a test illustrating the effect of using the distance function d2.
In Fig. 4, we can see four branches of 2D cell evolution trees. As we can observe, if
using only the distance function d1, the tracking lines tend to go along the borders
of their

4 Conclusions

To conclude, we presented the main ideas of a new cell tracking technique and we
illustrated the validity of the procedure on several test examples. The method is now
prepared to be applied to long time sequences of biological data.
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requires pressure-velocity coupling in order to prevent the checkerboard phe-
nomenon. A Rhie-Chow interpolation technique can be formulated with such a
coupling involving an explicit time step dependence, suitable for unsteady compu-
tations. Following this approach, it is observed that unphysical pressure oscillations
arise again for sufficiently small time steps. Some remedies have been proposed for
incompressible flows. A simple adaptation of these remedies for low Mach number
flow computation is numerically investigated. A slight departure from the original
approach appears to be suitable.
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1 Introduction

Coupling between velocity and pressure difference on cell faces is necessary in
low Mach number flow computations on grids with co-located arrangement. This
allows to avoid the checkerboard phenomenon, which means unphysical pressure
oscillations, increasing as a Mach number representative of the flow goes to zero.
A pressure-velocity coupling that involves an explicit time step dependence, which
appears to be advantageous with unsteady computations, can be obtained by Rhie-
Chow interpolation method [5]. Unfortunately, with this choice, some pressure
oscillations arise again for ’small’ time steps. This may lead to useless computations.
Some remedies have been proposed, but they concern incompressible flows [6]. In
the present contribution, we investigate numerically this issue in the case of low
Mach number flow computations.

For simplicity, a one-dimensional flow of a perfect and ideal gas in a nozzle with
a variable section is considered. In the following, x denotes the coordinate in the
flow direction. The flow model is given by the Euler equations:

@t .�S/C @x.�vS/ D 0 (1a)

@t .�vS/C @x..�v2 C p/S/ D pdxS (1b)

@t .�ES/C @x.�vHS/ D 0 (1c)

E D e C 1

2
v2 (1d)

�H D �E C p (1e)

�e D p

� � 1 (1f)

where t , �, p, v, e, E and H represent time, density, pressure, velocity, internal
energy, total energy and total enthalpy per unit mass, respectively. Furthermore, �
denotes the specific heats ratio and S the cross-section area of the nozzle.

The x axis along the nozzle is divided into a number N of cells of length �x. A
finite volume formulation in co-located arrangement is applied.

2 Pressure correction algorithm

To solve the set (1) of equations, the energy-based pressure correction algorithm
that we consider takes the following form, where the superscripts ? and 0 denote
estimated and correction quantities of each iteration (first iteration: k D n),
respectively:



Rhie-Chow interpolation for low Mach number flow computation 705

1. Pre-estimation step: Generate a transporting velocity vT at the cell-faces, that
will be used in the following two steps.

2. Estimation step: With p?i D pki , calculate �?i and .�v/?i using

1

2
.3�?i � 4�ni C �n�1i /C �

Si
fŒ�?i C

1

2
 ki .�/.�

k
i � �ki�1/�vTiC1=2SiC1=2

� Œ�?i�1 C
1

2
 ki�1.�/.�ki�1 � �ki�2/�vTi�1=2Si�1=2g D 0 (2)

where � is formally defined as �t=�x and practically calculated as CFLv=vmax,
and vT is positive. A similar equation holds for the momentum. Here  denotes
a slope limiter, for instance MinMod, allowing to reach second-order accuracy
in space, while the same order of accuracy in time is obtained by using the
second-order backward discretization. From the estimated density, momentum
and pressure, calculate the estimated total energy and total enthalpy.

3. Correction step: Calculate the pressure correction p0 by solving the energy
equation in second-order accurate backward discretization form in time. Flux
terms are expanded as

.�vH/kC1
iC1=2 D .�H/?iC1=2v?iC1=2 CH?

iC1=2.�v/0iC1=2 C .�H/0iC1=2v?iC1=2 (3)

where H?
iC1=2 and .�H/?iC1=2 are upwinded in second-order accurate form, as

convected quantities. Furthermore, neglecting the kinetic energy contribution,
.�H/0

iC1=2 D �

��1p
0
iC1=2 and the calculation of .�v/0iC1=2 is derived from the

momentum equation.
4. Updates: pkC1i D p?i C p0i , �kC1i D �?i C .@p�/?i p0i , .�v/kC1i D .�v/?i C .�v/0i ,

where .�v/0i is derived from the momentum equation in accordance with the
derivation of .�v/0

iC1=2. The total energy and the cell-face pressure and velocity
are finally updated.

3 Calculation of cell-face quantities

Let us provide some details on the AUSM/Rhie-Chow combination, which we
consider as suitable for future unsteady computations.

3.1 AUSM interpolation

For explanations on the AUSMC and AUSMC-up schemes, we refer to [2] and
focus only on a low Mach number adaptation of AUSMC, by using a simple scaling
function suggested in this reference for the construction of the AUSMC-up scheme.
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The notation L or R, which refers to the left or right side of the face i C 1=2,
is adopted since an extrapolation technique will be used in the following. Thus, a
Mach number on the side S is defined as

MS D vS
ciC1=2

; S D L;R (4)

where ciC1=2 is the speed of sound at the face i C 1=2 (cf. Ref. [2]). A mean Mach
number at the face i C 1=2 is also defined,

MiC1=2 D
s
.vL/2 C .vR/2
2c2iC1=2

(5)

and a reference Mach numberM0;iC1=2 by

M2
0;iC1=2 D minf1;maxfM2

iC1=2;Ma2cogg (6)

where Maco is a cut-off Mach number value such that: Maco D O.Ma1/. A scaling
function suggested in Ref. [2] is

f .M/ DM.2 �M/ (7)

The use of this function permits the proper asymptotic behaviour of the pressure
dissipation term for M & 0 in the face velocity (see Ref. [2]), defined by the
following construction:

M.̇1/.M/ D 1

2
.M ˙ jM j/ (8)

M.̇4/.M/ D ˙1
4
.M ˙ 1/2 ˙ 1

8
.M2 � 1/2 (9)

P.̇0/.M/ DM.̇1/.M/=M (10)

P.̇5/.M/ D 1

4
.M ˙ 1/2.2
M/˙ 3

16
.5.f .M0//

2 � 4/M.M2 � 1/2 (11)

M˙.M/ D
(
M.̇1/.M/ ; jM j � 1
M.̇4/.M/ ; jM j < 1 (12)

P˙.M/ D
(
P.̇0/.M/ ; jM j � 1
P.̇5/.M/ ; jM j < 1 (13)

piC1=2 DPC.ML/pL CP�.MR/pR (14)

MiC1=2 DMC.ML/CM�.MR/ (15)
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viC1=2 D ciC1=2 MiC1=2 (16)

To reach second-order accuracy in space, the primitive variables p, � and v, which
are used in the AUSMC scheme, are extrapolated at the face i C 1=2 according to

�L D �i C 1

2
 i .�/.�i � �i�1/ ; �R D �iC1 � 1

2
 iC1.�/.�iC1 � �i/

where  denotes a slope limiter. Practically, we choose

 i .�/ D MinMod.�i � �i�1; �iC1 � �i / = .�i � �i�1/

where

MinMod.a; b/ D sign.a/C sign.b/

2
minfjaj; jbjg

3.2 Rhie-Chow interpolation

The pressure-velocity coupling, especially needed at low Mach number, is achieved
through the construction of a transporting velocity with a Rhie-Chow interpolation
technique. According to the ’classical’ Rhie-Chow approach (see e.g. Ref. [1]), the
preceding face velocities are interpolated when assembling the current transporting
velocity. In this case, steady results which are not time step dependent can be
ascertained when a certain interpolation practice is satisfied (see Ref. [4]). However,
the numerical dissipation associated with the pressure-velocity coupling arising with
this choice can lead to unphysical unsteady computations [3]. An alternative way
to allow ’small’ time step computations consists to avoid interpolation by directly
using the preceding transporting velocities. This approach has been proposed in
Ref. [6] for incompressible flows. Its application for low Mach number flow will be
addressed in the rest of this paper.

First, an auxiliary density, that can be thought as a ’pre-predicted’ one, is defined
by solving the continuity equation, as

1

2
.3�??i � 4�ni C �n�1i /C �

Si
fŒ�??i C

1

2
 ki .�/.�

k
i � �ki�1/�vkiC1=2SiC1=2

� Œ�ki�1 C
1

2
 ki�1.�/.�ki�1 � �ki�2/�vki�1=2Si�1=2g D 0 (17)

where the cell-face velocity, which is positive, is given at the last known iteration,
and calculated by the scheme described in subsection 3.1. Then, similarly, an
auxiliary pre-predicted velocity v?? is defined from the momentum equation in
which the pressure gradient influence has been removed, by
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ai�
??
i v??i D �

�

Si

�1

2
 ki .�v/Œ.�v/ki � .�v/ki�1�vkiC1=2SiC1=2

� f.�v/ki�1 C
1

2
 ki�1.�v/Œ.�v/ki�1 � .�v/ki�2�gvki�1=2Si�1=2

�

C .1 � "/Œ2.�v/ni �
1

2
.�v/n�1i � (18)

where 0 � " � 1 and ai D 3
2
C �

Si
vkiC1=2SiC1=2. With a similar equation for v??iC1, a

transporting velocity is defined according to a Rhie-Chow interpolation, as

vTiC1=2 D
1

2
.v??i C v??iC1/ �

�

2
.
1

ai �
??
i

C 1

aiC1�??iC1
/.pkiC1 � pki /

C "

2
.
1

ai
C 1

aiC1
/Œ2.vTiC1=2/n �

1

2
.vTiC1=2/n�1� (19)

Now, the pressure correction-mass flux correction coupling is defined accordingly,
as

.�v/0iC1=2 D �
�

2
.
1

ai
C 1

aiC1
/.p0iC1 � p0i / (20)

and then, the momentum correction is written as

.�v/0i D �
�

ai
.p0iC1=2 � p0i�1=2/ (21)

Taking " D 1 in expressions (18) and (19) corresponds to the remedy suggested
in Ref. [6] to the non-physical pressure oscillations that occur when Rhie-Chow
interpolation is used with small time steps for incompressible flows computation. As
a preliminary discussion on the suitable choice of ", the rest of this paper is devoted
to numerical experiments illustrating some numerical difficulties encountered and
remedies.

4 Numerical experiments

A low Mach number flow in a converging-diverging nozzle is considered. The
prescribed inlet velocity is such that the throat Mach number is 10�3 at convergence.
The cut-off Mach number Maco in expression (6) is set as 10�3. At the inlet, a
constant target value of the density is fixed as �in D 1:2086 kg=m3. At the outlet, a
constant target value of the pressure is fixed as pout D 101 300 Pa. Target values are
mentioned since a non-reflecting treatment of the boundaries is applied, but this does
not relate to the discussion in the present paper. Let us point out that a well-known
complete analytical solution is available for the steady flow under consideration.
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Fig. 1 Pressure distribution (Pa) along the nozzle. �t D 1:75 10�5 s ; " D 1 : Ref. [6]. Number
of cells: 100

First, unphysical pressure oscillations arising with " D 0 are shown in Fig. 1,
left. The oscillations are more pronounced on the left side of the nozzle, which is
the less constraining for the pressure variable – in the sense that no target value is
imposed at the inlet –, but they are present more or less on the totality of the nozzle.
As shown in Fig. 1, right, a simple remedy consists in the choice of " D 1 in Eqs.
(18) and (19), as suggested in Ref. [6].

Between 0 and 1, an intermediate value for " is also possible, that can be thought
as a parameter that manages the deferred treatment of the temporal terms in the
momentum equation at the ’pre-prediction’ stage of the algorithm (see section 3.2).
In Fig. 2, the plot of the error in the pressure versus the parameter " reveals that the
optimal value of " is not 1, as far as the accuracy is the criterion. The optimal value
"opt that minimizes the pressure error is slightly less than 1. Let us notice that, as
�t & 0, the transporting velocity is such that

vTiC1=2 !
1

3
.1 � "/�2

	
.�v/ni
�??i

C .�v/niC1
�??iC1




� 1
2

 
.�v/n�1i

�??i
C .�v/n�1iC1

�??iC1

!
�

C 2

3
"
�
2.vTiC1=2/n �

1

2
.vTiC1=2/n�1

�
(22)

With " ¤ 1 but close to 1, Eq. (22) corresponds to a slight departure from the
original approach of Ref. [6]. The observed sensitivity of "opt to �t suggests that a
comprehensive study of the "opt dependency on CFLv should be carried out.
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5 Conclusion

The Rhie-Chow stabilisation method with a pressure-velocity coupling that involves
an explicit time step dependence does not avoid unphysical oscillations when the
time step is sufficiently small. According to Ref. [6], these oscillations originate
from the interpolation of the previous velocities in the transporting velocity
construction. However, in the steady case considered here, a slight departure from
the approach of Ref. [6] is suitable concerning the deferred treatment of the temporal
terms in the momentum equation.

Since the problem of oscillations also occurs for unsteady computations, the
next step of this study will be to examine how the considered correction of the
Rhie-Chow interpolation works in the case of unsteady low Mach number flow
computations. Last but not least, the appropriate choice of the parameter " if the
exact solution is unknown is also an issue to be investigated.
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the CFL Criteria
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Abstract Whether it is for the recovery of hydrocarbons or the injection and
storage of CO2, the industry uses numerical simulation. The first stage of study
consists in the construction of a geologic model. In view of the field size, the
fine model thus built contains several tens of million cells. Numerical fluid flow
simulations may require a lot of CPU time and are generally impossible to achieve.
To reduce the simulation cost, reservoir engineers use an upscaling of the fine mesh
in a coarse one. If the upscaling of absolute permeabilities was already the object of
detailed research, it is not the case for polyphasics flows. These flows are described
by relative permeabilities and capillary pressure curves defined by limit points and
normalized forms. The curves are different according to the facies of the model
and in this way, according to the cells. The subject of this paper is to study the
IMPES scheme (Implicit Pressure, Explicit Saturation [1], [2], [3]) and to simulate
a diphasic flow in order to prepare the upscaling step. A stability analysis of this
scheme can highlight a CFL condition [4]. This paper proposes a study of this CFL
number for the case of reservoir simulation.
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1 Introduction

The acronym IMPES was used in 1968 in a description of a numerical model for
simulating black oil reservoir behavior. The IMPES method was generalised in 1980
to apply to simulation models involving any number n of conservation equations.
The basic principle is the elimination of differences in non-pressure variables from
the model’s set of conservation equations to obtain a single pressure equation. Stone
[1], Sheldon, Harris, Bavly [5], and Martin [6] used the same principle in deriving
the total compressibility of multiphase black oil systems. For Coats [7], the first
black oil IMPES model was published by Fagin and Stewert in 1966 [8]. In this
work, we deal with the flow of two immiscible and incompressible fluids. We present
the system gouverning a two phase flow and proceed to simplifications. We consider
the case where there is no gravity and no capillary pressure. This system is based on
Darcy’s Law generalized for two-phase flow.

1.1 Fully coupled formulation

The most commonly used description for macro-scale two-phase flow in porous
media uses a phenomenological extension of Darcy’s law introducing the saturation-
dependent parameter: relative permeability. This extension was proposed, in the
thirties, by Leverett [9] and Wyckoff and Botset [10] and the authors have validated
this generalization experimentally.

vi D �kr i
�i
K.rpi � �ig/ (1)

i represents the considered phase. This equation must be formulated for each phase
(for details, see [11–14]). We note kr i the relative permeability,�i the dynamic fluid
viscosity, pi the pressure, �i the density of the phase i , and g is the gravity vector.
We can define 	i D kr i

�i
the mobility of the phase i . We can now write the mass

balance equation for the phase i of a multiphase system:

@t .˚�iSi /Cr:.�i vi /� �iqi D 0 (2)

where ˚ is the porosity, Si the saturation of the phase i , qi the source/sink term.
Inserting the generalised Darcy law (1) into the mass balance equation (2) and
considering the two phases flow system leads to this system of equations:

@t .˚�wSw/� r:.�w	wK.rpw � �wg// � �wqw D 0 (3)

@t .˚�nSn/ � r:.�n	nK.rpn � �ng// � �nqn D 0 (4)
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where w represents the wetting phase and n the not-wetting phase. In our case, we
consider that ˚ is constant in time. Moreover, we suppose that we don’t have mass
transfer between the two phases. The supplementary constraints to close the system
of equations are: the sum of saturations is equal to one (Sw C Sn D 1) and the
capillary pressure between the two phases (dependent on the saturations) is defined
as pc.S/ D pn � pw. So, if we add the two equations and neglect the source/sink
terms, we can present this system with the primary variables pn et Sw:

�@t .Sw/ � r:.	wK.rpn � rpc � �wg// D 0 (5)

�r:.	wK.rpn � rpc � �wg// � r.	nK.rpn � �ng// D 0 (6)

1.2 Simplifications: no capillary pressure, no gravity

In this paper, the problem is simplified and the effects of gravity and capillary
pressure are not considered. This may be the case in large homogeneous porous
media at high capillary number: viscous forces dominate capillary forces. So,
pn D pw and the indice n for pressure is neglected. Furthermore, if the total mobility
	T D 	wC	n is introduced, we can define the total velocity vT with a form similar
to the one of the Darcy law:

vT D �	TK.rp/ (7)

In this step the fractional flow function fi D 	i
	T

is introduced (notice that the
fractional flow function depends on the saturation: fi D fi .Sw/) and if we write
the system in term of vT , the equations (5) and (6) become:

�@t .Sw/Cr:.fwvT // D 0 (8)

rvT D 0 (9)

2 Discretisation of the fully coupled formulation

In this section, the system is discretized in time on a mesh. We introduce the flux
F.x; t; Sw/ D fw.Sw/vT and we note:

FwI=J .S
�
wI
; S�wJ / �

1

�t

Z tmC1

tm

Z

I=J

fwI=J .Sw; x; t/vT .x; t/nI=J .s/dsdt (10)

where nI=J .s/ is the normal vector to the I/J cell interface and where  is a
indecision: if  D m then an explicit scheme is obtained and if  D mC 1 then the
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scheme is implicit. We get:

�
SmC1w � Smw

�t
C

X

J2Neighbor.I /

FwI=J .S
�
wI
; S�wJ / D 0

Moreover, a monotonic flux is needed, i.e: FwI=J .X; Y / increasing with X et
decreasing with Y and FwI=J .X; Y / D �FwI=J .Y;X/. Also, since a fully upwind
scheme is used, the mobility at the cell interface is determined in the following way

(we note VT D
R tmC1
tm

R
I=J

	T .Sw/K.rp/n.s/I=J dsdt):

fwI=J .Sw/ D fw.SwI / if VT > 0 (11)

fwI=J .Sw/ D fw.SwJ / if VT < 0 (12)

The IMPES scheme is obtained for a two phase flow: an implicit treatment for the
pressure terms and an explicit model for the saturation:

V�
SmC1wI � SmwI
tmC1 � tm C

X

J2Neighbor.I /

fw.SwI /
�
VmC1

T

�CCfw.SwJ /
�
VmC1

T

�� D 0 (13)

X

J2Neighbor.I /

�
VmC1

T

�CC �VmC1
T

�� D 0 (14)

3 The CFL criteria

We present here how the CFL criteria of this scheme can be computed using the
boundary conditions.

3.1 Consideration of the boundary conditions

In this paper, a waterflooding is considered: the porous media is subjected to a
difference of pressure, as shown on Fig. 1.

Fig. 1 Pressure imposed
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On the left side P D Pin and Sw D 1. On the right side, we have P D Pout and
Sw D 0 . We must now differentiate the surfaces � between the cells (interior of
the media) or between a cell and the edge. Taking into account these conditions and
multiplying by fw.SwI /, the equation 14 becomes:

X

�DIJ2@I\˙int
fw.SwI /

�
VT;IjJint;mC1

�C C fw.SwI /
�
VT;IjJint;mC1

��

C
X

�DI2@I\˙bound

fw.SwI /
�

Vbound;mC1
T;Ij�

�
D 0 (15)

where:

VT;IjJint;mC1 D �VT;JjI int;mC1D	int;m
T;� T

int
� .p

mC1
I � pmC1J /; � D I jJ 2 ˙int; (16)

Vbound;mC1
T;Ij� D 	bound;m

T;� T bound
� .pmC1I � pmC1� /; � D ˙bound: (17)

with T int� D S�KI jJ
DI jJ

and T bound
� D S�KI

DI.�/
. Taking into account the boundary

conditions in the right and left side, we obtain for the equation 13:

VI�
SmC1wI �SmwI

�t
C

X

�DIJ2@I\˙int

fw.S
m
wI
/
�
VT;IjJint;mC1�CCfw.S

m
wJ
/
�
VT;IjJint;mC1��

C
X

�DIJ2@I\˙bound
C

fw.S
m
wI
/
�
VT;Ijœbound;mC1�C C fw.0/

�
Vbound;mC1

T;Ij�
��

(18)

C
X

�DIJ2@I\˙bound�

fw.1/
�

Vbound;mC1
T;Ij�

�C C fw.S
m
wI /

�
Vbound;mC1

T;Ij�
�� D 0

The last term corresponds to the velocity at the left boundary, where Sw D 1 is
imposed. Thus we introduce the rates of change and we note:

dI jJ D fw.SwI /�fw.SwJ /

SwI�SwJ

I dI j1 D fw.SwI /�fw.1/

SwI � 1
I dI j0 D fw.SwI /�fw.0/

SwI
(19)

The subtraction of these two equations (15 , 18) gives:

SmC1wI
D SmwI

0

@1C �t

VI�

2

4
X

�DIJ2@I\˙int

�
VT;IjJint;mC1�� dI jJ (20)

C
X

�DI2@I\˙bound�

�
VT;Ij�bound;mC1

��
dI j1 C

X

�DI2@I\˙bound
C

�
VT;Ij�bound;mC1

��
dI j0

3

5

1

A
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� �t
VI�

X

�DIJ2@I\˙int

�
VT;IjJ int;mC1�� dI jJ SwJ�

�t

VI�

X

�DI2@I\˙bound�

�
VT;Ij�bound;mC1

��
dI j1

If we introduce the notation:

VCFL D
X

�DIJ2@I\˙int
� �VT;IjJ int;mC1�� dI jJ C

X

�DI2@I\˙bound�

� �VT;Ij�bound;mC1

��
dI j1

C
X

�DI2@I\˙bound
C

� �VT;Ij�bound;mC1

��
dI j0 (21)

To ensure the scheme stability, we must satisfy:

�t � infI .VI /�

sup ŒVCFL� sup0�Sw�1 f
0

w.Sw/
(22)

So, the CFL number is thereby defined: C D infI .VI /�
supŒVCFL� sup0�Sw�1 f

0

w .Sw/

3.2 The fractional flow function: Brooks and Corey [15] [16]

The goal of this section is to describe the terms used in the CFL condition formula.
Classically, in reservoir multiphase simulations, models are used to define relative
permeability. The most known formula was developed by Brooks and Corey and is
based on a power law:

krw.Sw/ D krwmax

	
Sw � Swi

1 � Swi � Snr

aw

I krn.Sw/ D krnmax
	
1 � Sw � Snr
1 � Swi � Snr


an

(23)
where aw and an are the Corey exponent. Note that Sw varies between Swi and
1 � Sor . In the inequation 22, the fractional flow function fw.Sw/ is present:

fw.Sw/ D 	w

	w C 	n D
krw
�w

krw
�w
C kr n

�n

D �n krw

�nkrw C �wkrn
: (24)

Its derivative is computed:

f
0

w.Sw/ D �n kr
0

w Œ�nkrw C �wkrn� � krwŒ�nkr
0

w C �wkr
0

n�

Œ�nkrw C �wkrn�
2

(25)
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3.3 Numerical test case

The aim of this test is to compare the theoretical value CTh of the CFL condition
(inequation 22) andCMa the one found experimentally by slowly raising�t until the
results stop being physically acceptable. Water is injected in a oil-saturated pipe. Its
dimensions are: ŒLx; Ly; Lz� D Œ100; 10; 10� m. The built mesh has 100 elements.
Each cell I has therefore a size of 1�10�10m and VI D 100m3. We choose these
parameters for the test case:

• Independent intrinsic permeability KD 100 � 10�15 m2 and porosity ˚ D 0:2
• Residual oil saturation Snr D 0:5 and critical water saturation Swi D 0:25
• Oil relative permeability at connate water saturation krnmax D 1
• Water relative permeability at the residual oil saturation krwmax D 0:5
• Exponents of relative permeability curves an D 2 and aw D 2
• Entry pressure Pin D 20 � 105 Pa and exit pressure Pout D 10 � 105 Pa
• Non-wetting fluid (oil) viscosity �n D 0:01 Pa:s
• Wetting fluid (water) viscosity �w D 0:001 Pa:s
• Time spent (�t� iterations number) T D 173:61 days

The result of this simulation is drawn in Fig. 2: the water saturation front is apparent.

Fig. 2 Water Saturation in the porous media after simulation T =173 days

In the first step, we take care of the theoretical value of C. Regarding the values
of the parameters, infI VI D 100m3 and ˚ D 0:2. The derivative of fw is drawn
in Fig. 3 and shows a single maximum: resolving f

00

w D 0 for these parameters, we
find easily sup0:25�Sw�0:5 f

0

w.Sw/ ' 9:81

9

dfw
6
4
2
0
0,25 0,30 0,35

Sw

0,40 0,45 0,50

Fig. 3 Derivative of fw in response of Sw
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During a simulation, the value of VCFL is calculated at each iteration and we find
sup ŒVCFL� ' 1:53 � 10�5 m3:s�1. With the equation 22, we can then compute the
theorical value of C :

CTh ' 1:33 � 105 s.

In a second step, the experimental value of C is computed. Many simulations are
performed while �t is increased manually. For any time during one simulation,
if the water saturation curve (Fig. 2) stops being monotonic, �t has reached its
maximum and the result is CMa D �tmax . We find:

CMa ' 1:33 � 105 s.

CTh and CMa are very similar, so we can conclude that if �t doesn’t exceed CTh,
the CFL condition won’t be violated and the results will be physically acceptable.

3.4 Conclusion

In this paper, we have presented the IMPES scheme for two immiscible and
incompressible fluids. For this two-phase flow system, gravity and capillary pressure
are neglected. We also consider that there is neither structural evolution nor
mass transfer. This CFL condition is a necessary condition for convergence. The
approximation was applied to a short example in order to confront the theoretical
value with the one found experimentally. More intricate cases must be studied by
adding spatial dimensions: a complex mesh with numerous cells will set a significant
limit for a heterogeneous test case. Besides, the contribution of gravity and capillary
pressure can be studied.
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Numerical Solution of 2D and 3D Atmospheric
Boundary Layer Stratified Flows

Jiřı́ Šimonek, Karel Kozel, and Zbyněk Jaňour

Abstract The work deals with the numerical solution of the 3D turbulent stratified
flows in atmospheric boundary layer over the “sinus hill”. Mathematical model
for the turbulent stratified flows in atmospheric boundary layer is the Boussinesq
model - Reynolds averaged Navier-Stokes equations (RANS) for incompressible
turbulent flows with addition of the density change equation. The artificial
compressibility method and the finite volume method have been used in all
computed cases and Lax-Wendroff scheme (MacCormack form) has been used
together with the Cebecci-Smith algebraic turbulence model. Computations have
been performed with Reynold’s number 108 � u1 D 1:5 ms and with density range

� 2 Œ1:2I 1:1� kg
m3

.

Keywords CFD, Finite Volume Method, Variable density Flows, Atmospheric
Boundary Layer Flows
MSC2010: 65N08, 65N40

1 Mathematical model

Reynolds averaged Navier-Stokes equations for incompressible flows with addition
of the equation of density change (Boussinesq model) have been used as a
mathematical model for flows in atmospheric boundary layer:
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ux C vy C wz D 0 (1)

ut C .u2 C p/x C .u � v/y C .u � w/z D .�eux/x C .�euy/y C .�euz/z (2)

vt C .u � v/x C .v2 C p/y C .w � v/z D .�evx/x C .�evy/y C .�evz/z (3)

wt C .u � w/x C .v � w/y C .w2 C p/z D .�ewx/x C .�ewy/y C .�ewz/z � �

�0
g (4)

�t C u � �x C v � �y C w � �z D 0; (5)

where .u; v; w/ is a velocity vector, p D P
�0

(P - static pressure, �0 - initial maximal
density), � - density, �e D � C �t , � - laminar kinematic viscosity, �t - turbulent
kinematic viscosity computed by the Cebecci-Smith algebraic turbulence model and
g - gravity acceleration. Upstream density and pressure are changing depending on
height (z-axis) according to the hydrostatic equilibrium pressure function:

�1.z/ D ��0 � �h
h

� zC �0 (6)

@p1
@z
D ��1.z/

�0
� g (7)

The (6) is the linear decreasing function of density and the (7) is the hydrostatic
pressure function.
It is possible to separate p D p1 C p0, where the term p1 is the initial state of
pressure, the term p0 is the pressure disturbance. Using this substitution and � D
�1 C �0 in the system (1) - (5) leads to:

ux C vy C wz D 0 (8)

ut C .u2 C p0/x C .u � v/y C .u � w/z D .�eux/x C .�euy/y C .�euz/z (9)

vt C .u � v/x C .v2 C p0/y C .w � v/z D .�evx/x C .�evy/y C .�evz/z (10)

wt C .u � w/x C .v � w/y C .w2Cp0/z D .�ewx/xC .�ewy/yC .�ewz/z � �
0

�0
g (11)

�t C u � �x C v � �y C w � �z D 0; (12)

Fig. 1 Computational domains
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2 Boundary conditions for 3D computations

Inlet boundary conditions u D u1 D 1:5; v D v1 D 0; w D w1 D 0, � D
�1.z/, where �1.z/ is a linear function which is decreasing with increasing z:

�1.z/ D ��0 � �h
h

� zC �0;

where �0 D 1:2
kg

m3
is a lower (maximal) density and �h D 1:1

kg

m3
is a upper

(minimal) density.
Outlet boundary conditions: p0 D 0
Boundary conditions on the wall: u D 0; v D 0; w D 0; � D �0.
Boundary conditions on the upper domain boundary: p0 D 0, @u

@n
D 0; @v

@n
D 0,

@w
@n
D 0, � D �h

Boundary conditions on side-walls of the domain: symmetry boundary condi-
tions.

3 Boundary conditions for 2D computations

Inlet boundary conditions u D u1 D 1:0; w D w1 D 0, � D �1.z/, where
�1.z/ is a linear function which is decreasing with increasing z:

�1.z/ D ��0 � �h
h

� zC �0;

where �0 D 1:2
kg

m3
is a lower (maximal) density and �h D 0:6

kg

m3
is a upper

(minimal) density.
Outlet boundary conditions: p0 D 0
Boundary conditions on the wall: u D 0; w D 0; � D �0
Boundary conditions on the upper domain boundary: p0 D 0, u D 1:0; @w

@n
D 0,

� D �h

4 Numerical solution

In all cases the artificial compressibility method has been used, i.e. continuity
equation is completed by term p0t

ˇ2
; ˇ2 2 RC - then the modified RANS system

is valid only for steady state solutions in which p0t
ˇ2
D 0. Modified equations can be

expressed in a vector form as follows:

Wt C Fx CGy CHz D Rx C Sy C Tz CK (13)
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W D

�
�
�
�
�
�
�
�
�
�
�

p0

ˇ2

u
v
w
�

�
�
�
�
�
�
�
�
�
�
�

F D

�
�
�
�
�
�
�
�
�
�
�

u
u2 C p0

u � v
u � w
u � �

�
�
�
�
�
�
�
�
�
�
�

G D

�
�
�
�
�
�
�
�
�
�
�

v
v � u

v2 C p0
v � w
v � �

�
�
�
�
�
�
�
�
�
�
�

H D

�
�
�
�
�
�
�
�
�
�
�

w
w � u
w � v

w2 C p0
w � �

�
�
�
�
�
�
�
�
�
�
�

(14)

R D �e

�
�
�
�
�
�
�
�
�
�
�

0

ux
vx
wx
0

�
�
�
�
�
�
�
�
�
�
�

S D �e

�
�
�
�
�
�
�
�
�
�
�

0

uy
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0
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�
�
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�
�
�
�

T D �e
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�
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0

�
�
�
�
�
�
�
�
�
�
�

K D � ���1
�0
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�
�
�
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�
�

0

0

0

g

0
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�
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�
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(15)

Where W is the vector of conservative variables, F; G; H are convective fluxes,
R; S; T are diffusive fluxes andK is the source term, �e D �laminar C �turbulent.

The finite volume method has been used on structured grid of hexahedral cells
(uniform in x and y direction, refined near walls in z direction up to �z D 10�5,
200x100x80 cells) in 3D and the grid of quadrilateral cells (uniform in x and refined
near walls in z direction�z D 10�5, 100x40 cells) in 2D.

Lax-Wendroff predictor-corrector scheme (MacCormack form) has been used in
a following form:

W
nC 1

2
i D W n

i �
�t

Vi

 
6X

kD1
. QF � QR; QG � QS; QH � QT /ni;kn0i;k�Si;k

!

C�tKn
i (16)

W
nC1
i D 1

2
.W

nC 1
2

i CW n
i /� �t

2Vi

 
6X

kD1

. QF � QR; QG � QS; QH � QT /nC 1
2

i;k n0i;k�Si;k

!

C �t

2
K
nC 1

2

i

(17)
Convective fluxes have been taken in a forward direction in a predictor step and
in a backward direction in a corrector step (see Fig. (2)). Viscous fluxes have been
computed centrally (see Fig. (3)).

a b c

Fig. 2 Stencil for inviscid fluxes computation, (a) predictor step, (b) corrector step, (c) predictor
C corrector
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Fig. 3 Stencil for viscous fluxes computation (dual cells)

Jameson’s artificial dissipation has been used to stabilize numerical solution.
Cebecci-Smith algebraic turbulence model has been used to compute the turbu-

lent viscosity �t . Domain˝ is divided into two subdomains. In the inner subdomain
(near walls) the inner turbulent viscosity �T i is computed. In the outer subdomain
the outer turbulent viscosity �To is computed. Most common procedure is to
compute both turbulent viscosities and use the minimal one:

�T D min .�T i ; �To/ : (18)

For turbulent viscosity computing is necessary to use local systems of coordinates
.X; Y /, where X is parallel with the profile and Y is normal of the profile. In inner
subdomain the turbulent viscosity is defined as follows:

�T i D �l2
ˇ
ˇ
ˇ
ˇ
@U

@Y

ˇ
ˇ
ˇ
ˇ ; (19)

where � is the density of fluid, .U; V / are components of velocity vector in direction
of .X; Y / and l is given by equation:

l D �YFD; (20)

where:

FD D 1 � exp

	

� 1

AC
urYRe




; (21)

ur D
	

�

ˇ
ˇ
ˇ
ˇ
@U

@Y

ˇ
ˇ
ˇ
ˇ


 1
2

!

: (22)

In outer subdomain the turbulent viscosity is defined by Clauser‘s equation:

�To D �˛ı�UeFk; (23)
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Fk D
"

1C 5:5
	
Y

ı


6
#�1

; Ue D U.ı/ (24)

where ı is the thickness of boundary layer and

ı� D
Z ı

0

	

1 � U

Ue




dY: (25)

Following values of the constants were used:

� D 0:4; ˛ D 0:0168; AC D 26: (26)

5 3D Numerical results

Following cases of stratified turbulent flows in atmospheric boundary layer have
been computed (see Figs. 7 - 10). Authors consider flows over a geometry with the
“sinus hill” with the height 10% of its basis length - half domain symmetrical case
and the general 3D geometry and the “hill” with the height 15% of its basis length
- general 3D geometry (see Fig. (1)). All the computations have been solved with
Re D 108 � u1 D 1:5 ms and with density change �1 2 Œ1:2I 1:1�.

6 2D Numerical results

One case with Re D 6:67 � 107 � u1 D 1:0 m
s

and with density change �1 2
Œ1:2I 0:6� has been solved. One can see in the Figs. (4) (5) (6) the waving character
of the flow field. These waves are so called Lee waves which should be seen in
the results of the stratified computations. Lee waves were only computed in the 2D
case with a coarser mesh (uniform in x and refined near walls in z direction up to
�z D 10�5, 100x40 cells).

Fig. 4 2D case - Velocity magnitude
�
m
s

�
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Fig. 5 2D case - Z-velocity
�
m
s

�

Fig. 6 2D case - stream lines

Fig. 7 Half domain symmetrical solution - y-slice in the middle; Velocity mag. [m
s

]

Fig. 8 Half domain symmetrical solution - z-slice in the middle of the hill; Velocity mag. [m
s

]

Fig. 9 Full domain solution - y-slice in the middle of the hill; Velocity mag. [m
s

]
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Fig. 10 Full domain solution - z-slice in the middle of the hill; Velocity mag. [m
s

]

7 Conclusions

Three results of the 3D incompressible turbulent stratified flows in atmospheric
boundary layer over the “sinus hill” with Reynolds number Re D 108 � u1 D
1:5 m

s
and with range of density change � 2 Œ1:2I 1:1� kg

m3
have been presented. As

one can see in the Figs. (8) and (10) the solution is not symmetrical and therefore it
is necessary to perform only the full domain computations in the future. Lee waves
were only computed in the 2D case with a coarser mesh.

The future work will be to extend this model for more complex geometries in 3D
and to make a comparison with other numerical methods and mathematical models
for variable density flows.
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References

1. Eidsvik, K., Utnes, T.: Flow separation and hydrostatic transition over hills modeled by the
Reynolds equations, Journal of Wind Engineering and Industrial Aerodynamics, Issues 67 - 68
(1997), p. 408–413
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On The Numerical Validation Study of Stratified
Flow Over 2D–Hill Test Case

Sládek Ivo, Kozel Karel, and Janour Zbynek

Abstract The paper deals with flow validation study performed using our in–house
3D–code which implements mathematical and numerical model capable to compute
stratified atmospheric boundary layer flows over hills or terrain obstacles. The
objectives of the paper are at first to formulate the applied mathematical/numerical
model and at second to present some results from the validation study of thermally
stratified flow over an isolated 2D–hill test case. The mathematical model is based
on system of RANS equations closed by a two–equation high–Reynolds number
k–" turbulence model. The finite volume method and the explicit Runge–Kutta time
integration method are utilized for numerical procedure.

Keywords Turbulent Boundary Layers, Stratification effects, k–" modeling, Finite
Volume Method, Runge–Kutta method
MSC2010: 76F40, 76F45, 76F60, 65N08, 65L06

1 Mathematical model

The flow itself is assumed to be turbulent, viscous, incompressible, stationary
and neutrally/stably stratified in general. The mathematical model is based on the
Reynolds–averaged Navier–Stokes equations (RANS) modified by the Boussinesq
approximation according to which the following decomposition is utilized for
pressure p, density � and potential temperature-
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p D p0 C p0; � D �0 C �0; - D -0 C-0

where 0 denotes synoptic large scale part and 0 concerns the small scale deviation
from the synoptic part due to local conditions. The potential temperature -

is defined as temperature of the atmospheric air after adiabatic compression or
expansion to the reference pressure pref D 1 bar , so - D T .pref =p/� .

The governing equations can be re–casted in the conservative and vector form as
follows, [3], [4]

.F/x C .G/y C .H/z D .R/x C .S/y C .T/z C f; (1)

where the terms F; G; H represent the physical inviscid fluxes and R; S; T denote
the viscous fluxes. The system (1) is then modified in order to be solved by the
artificial compressibility method

WtC

0

B
B
B
B
B
@

u

u2 C p0

�0

uv
uw
u-0

1

C
C
C
C
C
A

x

C

0
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B
B
B
B
@
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v2 C p0

�0

vw
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C
C
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C

0

B
B
B
B
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wv

w2 C p0

�0

w-0
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C
C
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C
A

z

D

0

B
B
B
B
@

0

Kux
Kvx
KwxQK-0x

1

C
C
C
C
A

x

C

0

B
B
B
B
@

0

Kuy
Kvy
KwyQK-0y

1

C
C
C
C
A

y

C

0

B
B
B
B
@

0

Kuz

Kvz

KwzQK-0z

1

C
C
C
C
A

z

Cf

(2)

where

W D .p0=ˇ2; u; v; w; -0 /T ; f D .0; 0; 0; Cg-
0

-0
; �w-0z/T (3)

where W is vector of unknown variables and f is the buoyancy force due to the
thermal stratification.

The velocity vector components read u; v; w, the term g is the gravitational
acceleration, the parameters K; QK refer to the turbulent diffusion coefficients for
the velocity components and for the potential temperature deviation and ˇ is related
to the artificial sound speed.

The synoptic scale part of the potential temperature is taken as -0 D -w C �z
where-w is the wall potential temperature and � refers to the wall–normal gradient
to be > 0 for the stable stratification andD 0 for the neutral stratification.

The system (2) is solved in the computational domain ˝ under a stationary
boundary conditions for t ! 1 (t is an artificial time variable) to obtain
the expected steady–state solution for all the unknown variables involved in the
vector W.

2 Turbulence model

Closure of the system of governing equations (2) is achieved by a standard k–"
turbulence model without damping functions [7], [1]. Two additional transport equa-
tions are added to the system (2), one for the turbulent kinetic energy abbreviated by



On The Numerical Validation Study of Stratified Flow Over 2D–Hill Test Case 733

k and one for the rate of dissipation of turbulent kinetic energy denoted by ". The
thermal stratification is taken into account

�
ku
�
x
C �kv

�
y
C �kw

�
z
D �K.k/ kx

�
x
C �K.k/ ky

�
y
C �K.k/ kz

�
z
CP CG � " (4)

�
"u
�
x
C �"v�

y
C �"w�

z
D �K."/ "x

�
x
C �K."/ "y

�
y
C �K."/ "z

�
z
C

C"1.1C C"3 Rf / "
k
.P CG/� C"2 "

2

k

(5)

where G D ˇ- g �T
�-

@-
@z abbreviates the buoyancy term, Rf D �GP where

P D �ij @vi
@xj

denotes the turbulent production term for the Reynolds stress written as

�ij D �2
3
k ıij C �T

	
@vi
@xj
C @vj
@xi




(6)

and the terms K.k/; K."/; QK stand for the diffusion coefficients and �T for the
turbulence viscosity

K.k/ D � C �T

�k
; K."/ D � C �T

�"
; QK D � C �T

�-
; �T D C�k

2

"
: (7)

The model constants are as follows

C� D 0:09; �k D 1:0; �" D 1:3; C"1 D 1:44; C"2 D 1:92; C"3 D 0:7: (8)

Note that the buoyancy term G D 0 in case of neutral stratification.

3 Numerical model

The cell–centered type of finite volume method is applied on structured non–
orthogonal grid made of hexahedral control cells ˝ijk . The system of equations
(2)+(4)+(5) is integrated over each control cell using the divergence theorem and
the mean value theorem, [2]

Wt

ˇ
ˇ
ˇ
ijk
D � 1

�ijk

I

@˝ijk

h
.F�K � R/ dS1 C .G�K � S/ dS2 C .H�K � T/ dS3

i
;

(9)
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where Wt

ˇ
ˇ
ˇ
ijk

is the mean value of Wt over the control cell and �ijk D
R
˝ijk

dV .

The right hand side of (9) is approximated by

Wt

ˇ
ˇ
ˇ
ijk
	 � 1

�ijk

6X

lD1

h
.QFl �Kl � QRl / �S

l
1 C . QGl �Kl � QSl / �Sl2 C . QHl �Kl � QTl / �Sl3

i
:

(10)

Space discretization of the convective terms in (10) is performed using central
differencing while the dual control volumes of octahedral shape is utilized for
computation of the viscous terms in (10) at each face of ˝ijk . The resulting semi–
discrete system of ordinary differential equations is then integrated in time using the
(3)–stage explicit Runge–Kutta method, [6], [9], [5].

The numerical method is second order accurate both in time and space on
orthogonal grids. Also the artificial viscosity term of the 4th order is applied due
to central differencing of the convective terms in (10) which effectively removes a
spurious, high frequency oscillations generated in the computed flow–field.

4 Boundary conditions

The system (2)+(4)+(5) is solved with the following boundary conditions [1], [7]

• Inlet: u D u�

�
ln
�

z
z0

�
, v D 0, w D 0, k D u�2p

C�

�
1 � z

D

�2
, " D C

3=4
� �k3=2
��z , -0 D 0

where the expression for u velocity component is used to cover the boundary
layer depth D while constant value u D U0 is prescribed above the boundary
layer depth up to the top of computational domain.

• Outlet: homogeneous Neumann conditions for all quantities
• Top: u D U0, v D 0, @w

@z D 0, @k
@z D 0, @"

@z D 0, @C
@z D 0, @-

0

@z D 0
• Wall: standard wall functions are applied and @C

@n
D 0 for the concentration and

-0 D 0 for the potential temperature deviation which is equivalent to -0 D
300K

where U0 represents the free–stream velocity magnitude, u� is the friction velocity,
� D 0:40 denotes the von Karman constant, z0 represents the roughness parameter
and the parameterD refers to the boundary layer depth.

The wall–function approach enables to apply a wall–coarser grid where
near–wall profiles of computed quantities are reconstructed using the algebraic
relations, [8].

5 Validation case

The reference numerical results due to Eidsvik and Utnes [10] have been used for
comparison. The computational domain extended distance �15H up and C25H
downwind of the hill summit and to vertical height 10H , whereH D 1000m is the
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Fig. 1 The whole computational domain and grid 100x40 cells

hill height, see Fig. 1. The integration was performed on grid having 100x40 cells
non–uniformly expanding upwind, downwind from the hill summit and vertically
from wall using the expansion ratio parameters ax D 1:04 and ay D 1:10 leading to
minimum space increments �xmin D 165m and �ymin D 20m. Details regarding
the grid spacing used by Eidsvik are not available in the reference paper [10].

The flow–field input data used in [10]: the free–stream air velocity U0 D
10:5m=s, boundary layer depth of D D 100m, the friction velocity u� D
0:406m=s, the roughness parameters z0 D 5mm and the Reynolds number based
on U0, hill height H and the air kinematic viscosity � D 1:5 � 10�5 m2=s is
Re D 6:7 � 108.

The inlet profiles for velocity vector components u; v; w, turbulence quantities
k; " as well as for potential temperature deviation-0 were constructed as described
in the Sect. 4.

Totally four different computations have been performed using the same labeling
as in [10], N0, N1, N2 and N3. Specifically, the following thermal stratifications of
the atmospheric boundary layer were tested

• N0–case: neutral stratification conditions � D @-0
@z D 0K=m

• N1–case: weak stable stratification conditions � D @-0
@z D 3:09 � 10�3 K=m

• N2–case: middle stable stratification conditions � D @-0
@z D 12:36 � 10�3 K=m

• N3–case: strong stable stratification conditions � D @-0
@z D 27:80 � 10�3 K=m

5.1 Numerical results

Separation zone behind hill was found in N0–case under neutral stratification
conditions having separation point at x1 D 0:9H and reattachment point at
x2 D 3:3H downstream from the hill top, see Fig. 2. The recirculation zone in our
case is smaller compared to Eidsvik [10] under the same flow conditions where his
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Fig. 2 Zoom to separation zone in N0–case under neutral stratification conditions

separation, reattachment points are x1 D 0:8H , x2 D 5:3H , respectively. Contours
of the wall–normal velocity component w are shown in the following four Figs. 3–
6 corresponding to N0–, N1–, N2– and N3–case under neutral, weak, middle and
strong stratification conditions, respectively. All contours are labeled using levels of
w wall–normal velocity component in Œm=s�. The lee–waves in cases N1, N2 and
N3 are well captured as closed isolines of the wall–normal w velocity component
changing sign from ”+” zone where the wave has an increasing slope to ”-” zones
where it has a decreasing slope.

According to theory of the internal gravitational waves [11], it is possible
to estimate the wavelength of the lee–waves depending on selected stratification
conditions. The relation can be written as

	theoretical D 2�U0
	
g

-0

@-0

@z


�1=2
(11)

Our prediction of the wavelength is compared to the theory and also to the
predictions by Eidsvik [10]

• N0–case: no lee-waves present
• N1–case: 	computed D 6:5 km, 	Eidsvik D 6:5 km, 	theoretical D 6:3 km
• N2–case: 	computed D 4:0 km, 	Eidsvik D 3:7 km, 	theoretical D 3:1 km
• N3–case: 	computed D 2:8 km, 	Eidsvik D 2:5 km,	theoretical D 2:1 km.

There is a good matching between 	computed and 	Eidsvik in the N1–case, however
there is a difference about 0:3 km in the other two stratification cases N2 and N3.
The reason is not clearly known for different wavelength predictions in N2 and N3
cases. It can be attributed to a stretched nature of the computational grid applied
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mainly in the vertical direction along the wall and also to the turbulence model. It
will be further investigated.

It is also possible to observe a decreasing tendency of the lee–wave amplitude
as moving further downstream from the hill summit due to a viscous nature of the
flow. Significantly increased flow velocity magnitude was found close to wall on
lee–side of the hill mainly for N2 and N3 cases.

6 Conclusion

The above formulated mathematical/numerical model is capable to simulate the
atmospheric boundary layer flow problems under different thermal stratification
conditions.

The presented validation test case was related to the thermal stratification 2D
study where the reference numerical data are due to Eidsvik [10]. The computed lee–
waves were observed in all thermally stratified cases. The wavelength was found to
be decreasing for increasing thermal stratification conditions. Matching between our
predictions of lee wavelength and the reference numerical data is quite good for the
weak stratification N1–case. However, there is difference about 0.3 km in the other
two cases N2 and N3. Further numerical tests will follow to clarify the differences.
The presented work was supported by the Research Plan VZ6840770010.
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2. Sládek I., Kozel K., Janour Z., Gulı́ková E. (2004): On the Mathematical and Numerical
Investigation of the Atmospheric Boundary Layer Flow with Pollution Dispersion, In: COST
Action C14 “Impact of Wind and Storm on City Life and Built Environment”, von Karman
Institute for Fluid Dynamics, p. 233–242, ISBN 2-930389-11-7.
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A Multipoint Flux Approximation Finite Volume
Scheme for Solving Anisotropic
Reaction–Diffusion Systems in 3D

Pavel Strachota and Michal Beneš

Abstract In [15], our DT–MRI visualization algorithm based on anisotropic texture
diffusion is introduced. The diffusion is modeled mathematically by the problem for
the Allen–Cahn equation with a space–dependent anisotropic diffusion operator.
To preserve its anisotropic properties in the discretized version of the problem,
an appropriate numerical treatment is necessary, reducing the isotropic numerical
diffusion. The first part of this contribution is concerned with the design and
investigation of the finite volume scheme with multipoint flux approximation.
Its desirable properties are investigated by means of our technique based on
total variation measurement. The second part presents the recent achievements in
applying the same scheme to the phase field model of dendritic crystal growth.

Keywords Anisotropic diffusion, finite volume method, multipoint flux approxi-
mation, phase field model, microstructure growth
MSC2010: 35K55, 65M08, 65Z05

1 Introduction

The phase field formulation of the Stefan problem [11] describing phase interface
evolution during material solidification involves the Allen–Cahn equation [1].
Besides its original purpose, this equation can also be applied in image processing
and mathematical visualization [6, 14]. In particular, in order to visualize the
streamlines of a given tensor field in 3D, an initial boundary value problem
for the modified Allen–Cahn equation with incorporated anisotropy can be used
[15], yielding similar results to the LIC method [9]. We begin with the problem
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formulation and describe its numerical solution using several flux approximation
schemes on a rectangular grid. The schemes suffer from an undesired numerical
dissipation effect which demonstrates itself as an additional isotropic diffusion of
the solution. Hence, we proceed with the development of a measurement technique
that would provide for assessing the amount of the numerical diffusion produced
by the schemes. A quantitative scheme comparison criterion is thereby created,
indicating a clear advantage of our multipoint flux approximation (MPFA) scheme.
This scheme is then used for the discretization of the complete phase field model of
dendritic crystal growth in 3D.

2 Allen–Cahn Equation in Tensor Field Visualization

2.1 Formulation

Assume there is a symmetric positive definite tensor field D W N̋ 7! R
3�3 where

˝ � R
3 is a block shaped domain. On the time interval J D .0; T /, the initial

boundary value problem for the anisotropic Allen–Cahn equation reads



@p

@t
D 
r � Drp C 1



f0.p/ in J �˝; (1)

@p

@n

ˇ
ˇ
ˇ
ˇ
@˝

D 0 on NJ � @˝; (2)

pjtD0 D I in ˝ (3)

where f0.p/ D p.1�p/
�
p � 1

2

�
. Let x 2 ˝ . Thanks to D .x/ in the diffusion term

on the right hand side of (1), the diffusion of p at x has a directional distribution

described by the ellipsoid
n
� 2 R

3
ˇ
ˇ �TD .x/�1 � D 1

o
. In terms of tensor field

visualization, we choose the initial condition I in (3) as a noisy texture, preferably
an impulse noise. Due to the anisotropic diffusion process carried out by solving
(1)–(3), the solution p changes in time from noise to an organized structure.
Streamlines of the field of principal eigenvectors of D can be recognized there as
parts with locally similar value of p. The term f0 efficiently increases contrast of
the resulting 3D image provided that the parameter 
 and the final time T are chosen
appropriately (in our case by experiment). In order to actually view the resulting 3D
image p .�; T /, 2D slices through˝ can be helpful.

2.2 Numerical Solution

For numerical solution, the method of lines is utilized. Applying a finite volume
discretization scheme in space, the problem (1)–(3) is converted to a semidiscrete
scheme in the form
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d

dt
pK .t/ D 


X

�2EK
FK;� .t/C 1



f0;K .t/ 8K 2 T (4)

where T is an admissible finite volume mesh [7], K 2 T is one particular
control volume (cell) and EK is the set of all faces of the cell K . FK;� .t/ represent
the respective numerical fluxes at the time t , which contain difference quotients
approximating the derivatives @xp, @yp, @zp at the center of the face � . To solve (4),
we employ the 4th order Runge–Kutta–Merson solver with adaptive time stepping.

2.3 Numerical Diffusion and Finite Volume Scheme Design

As indicated in the introduction, all schemes introduce a certain amount of numer-
ical isotropic diffusion depending on the exact form of FK;� . This phenomenon
caused by high frequency structures in the solution deteriorates the visual quality
of the resulting images by blurring. It needs to be suppressed as much as possible
e.g. by using difference operators of a sufficient order in FK;� [10].

We have assembled and investigated numerical schemes using the following
approximations of the derivatives in the flux term:

• second order central difference approximation with linear interpolation of the
missing points in the difference stencil;

• fourth order multipoint flux approximation (MPFA) central difference scheme
with linear interpolation;

• fourth order MPFA central difference scheme with cubic interpolation.

Thereto, a classical forward–backward first order finite difference (FD) scheme
has been added for comparison. In the MPFA scheme, the numerical flux FK;� is
obtained using the rules below:

• The difference quotient approximating the derivative in the direction perpendic-
ular to the face � uses a non–equidistant point distribution in order to avoid
redundant interpolation (Fig. 1a). Its 1–dimensional analog for a function u 2
C1 .R/ can be represented by the formula

du

dx

ˇ
ˇ
ˇ
ˇ
x
iC 1

2

� 1

24h
.ui�1 � 27ui C 27uiC1 � uiC2/ (5)

where xj D j � h, uj D u
�
xj
�

for j 2 Z; h > 0.
• The remaining derivatives are approximated using a uniform 5–point stencil.

Again, its 1D analog can be written as

du

dx

ˇ
ˇ
ˇ
ˇ
xi

� 1

12h
.ui�2 � 8ui�1 C 8uiC1 � uiC2/ : (6)
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Moreover, the stencil points (the crosses along the dashed line in Fig. 1b)
are interpolated from the neighboring grid nodes using 1–dimensional cubic
interpolation.

a b
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(i, j+2, k)
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(i, j, k−1)

(i, j−1, k)

Fig. 1 Point stencils of difference quotients for derivative approximations in the MPFA finite
volume scheme

3 Numerical Diffusion Measurement

Having the results available obtained by using different schemes but based on
identical input settings, one can try to compare them visually to decide on the
scheme with the least artificial diffusion. In Fig. 2, an example of such comparison
is demonstrated on a real–data DT–MRI neural tract visualization. In the center part
of the images, a major neural tract in the shape of U is displayed in the form of
streamlines. It can be observed that the FD scheme produces undesired isotropic
diffusion greatly dependent on the prescribed direction of diffusion. This is related
to the asymmetry of the difference stencil. The 2nd order central difference flux
approximation used in the FV scheme is already symmetric. However, it is clearly
outperformed by the scheme based on MPFA which causes significantly weaker
blurring.

3.1 Scheme Assessment by Total Variation

In this part we introduce a quantitative measure of the artificial diffusion in the
schemes. For this purpose, the total variation of the numerical solution ph D ph .t/
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FD FV 2nd order MPFA cubic 4th order

Fig. 2 Artificial diffusion in different numerical schemes. Crops from colorized DT–MRI
visualizations based on real data, transverse plane slice (Input data: Courtesy of IKEM, Prague)

finds its rather unusual application. It is defined as

T V
�
ph
� D

X

K2T

ˇ
ˇrhphK

ˇ
ˇm.K/ (7)

where rhphK represents the discrete approximation of the gradient andm.K/ is the
measure of the cell K . From the image processing point of view, the value of T V
is proportional to both the number of edges in the image ph and its contrast. Both
these quantities assume their maxima for the noisy initial condition and change in
time along with the diffuse evolution of the numerical solution. Performing two
computations with identical settings except for the choice of the numerical scheme,
it is possible to directly compare the T V values of the results. The scheme producing
an image with a greater value of T V exhibits less artificial diffusion as it maintains
more edges, more contrast, or both.

3.2 Scheme Comparison Methodology

We have performed extensive testing with phantom input tensor fields to investigate
the behavior of the schemes depending on the prescribed direction of diffusion.
For each triple of spherical coordinates .r D 1; '; �/ where ' 2 Œ0; 360ı�, � 2
Œ�90ı; 90ı�, let a unit vector v1 .'; �/ D .cos' cos �; sin' cos �; sin �/ represent
the principal eigenvector of a uniform tensor field D .'; �/, corresponding to
the eigenvalue 	1 D 100. The remaining eigenvalues are 	2 D 	3 D 1

and the eigenvectors v2; v3 complete the orthonormal basis of R3. Afterwards, a
computation is carried out using D .'; �/ as input data and subsequently, T V is
evaluated from the resulting datasets. The T V values alone are not of particular
interest since they depend on both the grid dimensions and the size of the domain
˝ . However, the relative differences of T V between schemes provide the desired
information.

The results of the procedure described above performed for all the four schemes
in several time levels are shown in Fig. 3. In all graphs, T V is normalized so that
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Fig. 3 Comparison of num. schemes based on T V in 2 time levels, 
 D 5�10�3. The investigated
angles are � D 0, ' 2 Œ0ı; 350ı� in the upper two graphs and � 2 Œ0ı; 90ı�, ' D � in the lower
two

the maximum in each chart is 1. In the upper two graphs, the latitude � is fixed to
0 and the longitude ' traverses the angles from 0ı to 350ı with the step 10ı. The
lower two graphs depict the ”diagonal” cut through the space .'; �/ in the range
from 0ı to 90ı, including the worst situation for all schemes where ' D � D 45ı.
Observations from Fig. 3 can be summed up as follows:

• Artificial diffusion clearly depends on v1 and occurs least when the direction v1 is
aligned with coordinate axes. (In the degenerate case 	2 D 	3 ! 0, the equation
systems for different rows of grid nodes along v1 become independent.)

• The performance of all schemes improves (i.e. T V rises) with growing time as
the ongoing diffusion gradually limits the frequency spectrum of the solution.

• The FD scheme exhibits an asymmetric behavior; FV schemes are symmetric.
• The FV scheme with MPFA and cubic interpolation outperforms all other

schemes in the comparison.
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4 The full Phase Field Model for Crystal Growth

We apply the MPFA scheme to the phase field formulation of the simplified Stefan
Problem, as studied in [4] and extended to the anisotropic case in [3]. Given a
domain˝ and time interval J as in Sect. 2, the full system of phase field equations
reads

@u

@t
D �uC L@p

@t
in J �˝; (8)

˛
2
@p

@t
D 
2r � T 0 .rp/C af0 .p/ � ˇ
2�0 .rp/

�
u � u�

�
in J �˝; (9)

ujtD0 D uini ; pjtD0 D pini in ˝; (10)

with either Dirichlet or Neumann boundary conditions. u represents the temperature
field and p the phase field implicitly determining the phase interface � by the
relation � .t/ D ˚x 2 R

3
ˇ
ˇp .x; t/ D 1

2

�
. The model parameters involve the melting

point of the material u�, the latent heat L, the attachment kinetics coefficient ˛, a
positive constant a and the parameter 
 controlling the recovery of the sharp inter-
face model [5]. The anisotropic operator T 0 (see [2]) is derived from the dual Finsler

metric �0 .��/ as T 0 .��/ D �0 .��/ �0� .��/ where �0� D
�
@��1 �

0; @��2 �
0; @��3 �

0
�T
:

Putting �0 .��/ D j��j 
�
� ��

j��j
�

,  has the meaning of the anisotropic surface

energy [8, 12] and assumes different forms depending on the degree of anisotropy.
The modifications of the MPFA numerical scheme compared to (4) consist in:

1. discretizing the components of rp in the last term of (9) by the equidistant
stencil (6) at the cell centers,

2. expressing the term @p

@t
in (8) from the equation (9) and using the already

computed discretization of its right hand side.

As seen in Fig. 4, the solution of the model can form nontrivial dendritic shapes.
It has been confirmed by early comparisons with the standard 2nd order flux

Fig. 4 Sample simulations of dendritic crystal growth with (from left to right) 4–fold, 6–fold
crystalline anisotropy and a cut through an 8–fold crystal
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approximation that the MPFA scheme inclines to the development of dendritic
structures more easily, capturing the shape complexity even on lower resolution
meshes. This feature was expected due to its low numerical diffusion.

5 Conclusion and Further Research

We have developed an antidiffusive finite volume scheme based on MPFA combined
with higher order interpolation. Its properties are demonstrated by our method for
measuring the amount of numerical isotropic diffusion. Thorough computational
studies based on phantom input data confirm that this technique fulfills the given
objective and produces results in agreement with an intuitive notion of blurring
observable in images obtained by solving (4). The experimental order of conver-
gence [13] of the MPFA scheme has also been measured and found to be equal
to 2. However, the details are beyond the scope of this contribution. Recently, we
have finished a MPFA–based parallel numerical algorithm solving the phase field
model for crystal growth. Despite the promising results, further investigation of the
advantages and verification of the convergence of the numerical solution need to be
performed.
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Higher Order Chimera Grid Interface
for Transonic Turbomachinery Applications

Petr Straka

Abstract In this paper a higher-order accuracy chimera mesh interface for tran-
sonic flow in linear turbine blade cascades is described. Proposed method for
calculation of the flow in a transonic blade cascade is applied. Conservation of mass
flux through the blade cascade is evaluated. Results of calculation are compared
with experimental data.

Keywords Finite-volume method, chimera grid
MSC2010: 35L65, 76H05, 76F40, 65N08

1 Introduction

It is possible to cover a computational domain with structured mesh, even in cases of
complex geometry, using the structured chimera mesh. In transonic turbomachinery
applications, shock waves structures are formed. The interface between overlapped
meshes must operate correctly even if the shock wave intersects. Using of standard
interpolation methods (linear, bilinear, polynomial) as well as conservative interpo-
lation methods proposed for subsonic flow [1–3] leads to non-physical reflections
of the shock waves at the chimera mesh interface in the case of supersonic flow.
A gradient limiting technique is used in this contribution for suppression of the
non-physical reflection of shock wave at the chimera mesh interface.
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 79, © Springer-Verlag Berlin Heidelberg 2011

751

straka@vzlu.cz


752 P. Straka

2 Govering equation

The linear blade cascade is a simple model of an axial turbine stator or rotor wheel.
Flow in the linear turbine blade cascade is modeled as 2D compressible viscous
turbulent flow of perfect gas. This model is described by the Favre-averaged Navier–
Stokes equation

@W
@t
C @Fi
@xi
D Q ; (1)

where W D Œ�; � u1; � u2; e�T is conservative variable vector, � is density, u1
and u2 are velocity vector components, e is total energy per unit volume, Fi D
Finv
i � Fvis

i .i D 1; 2/ stands for flux vectors and Q is source term. In our case
is Q D 0. System (1) is closed by two-equation TNT k � ! turbulence model [4]
which can be formulated in vector form as follows:

@Wt

@t
C @Ft; i

@xi
D Qt ; (2)

where Wt D Œ� k; � !�T is vector of turbulent quantities, k is turbulent kinetic
energy, ! is specific dissipation rate, Ft; i D Finv

t; i � Fvis
t; i .i D 1; 2/ are flux vectors

of turbulent quantities and Qt is production and dissipation source term for turbulent
quantities.

3 Numerical solution method

The govering equations are discretized on the structured multiblock mesh with
quadrilateral elements using a cell-centered finite-volume technique and solved
through a time-marching scheme. Both, the mean flow and the turbulence equations
are integrated over a control volume Di and some area integrals are transformed
into line integrals along its boundary @Di by the Green-Gauss theorem. Thus

Z Z

Di

@W
@t

dx1 dx2 C
I

@Di

Fn ds D
Z Z

Di

Q dx1 dx2 ; (3)

where Fn D ni Fi =jnj (n D Œn1; n2� is the boundary outward normal vector). The
line integrals take the following discrete forms

I

@Di

Finv
n ds D

4X

jD1
ˆinv.WL

j ; WR
j ; nj / sj ; (4)

I

@Di

Fvis
n ds D

4X

jD1
ˆvis.WC

j ; .rW/Ddual
j
; nj / sj : (5)
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In the mean flow equations, the inviscid numerical fluxes ˆinv are computed by
means of the Osher-Solomon flux splitting scheme [5]. Higher order accuracy is
achieved through the 2D linear reconstruction method which will be discussed
later. In eq. (4) WL

j and WR
j denote the left and right states in the corresponding

Riemann problem [6]. In the turbulence equations, the inviscid numerical fluxes
are computed by the first-order upwind flux-splitting scheme, based on the local
convective velocity normal to the cell boundary. The numerical viscous fluxes
ˆvis are computed using second-order central scheme, where rW is approximated
through the Green-Gauss formula on a dual cell (Fig. 1) and the local conservative
variables vector at the cell boundary is computed as WC

j D .WL
j CWR

j /=2.
The time integration is performed using first-order backward Euler scheme

 

IC�t @Rlow
i

@Wi

!

�WnC1=2
i C�t

4X

jD1

@Rlow
i

@Wj

�WnC1=2
j D ��t Rn

i ; (6)

where�WnC1=2 DWnC1 �Wn, and residual approximation Ri is given as

Ri D 1

jDi j
4X

jD1
Œˆinv.WL

j ; WR
j ; nj /�ˆvis.WC

j ; .rW/Ddual
j
; nj /� sj : (7)

Rlow
i denotes first-order approximation in eq. (6).

3.1 Linear reconstruction technique

As mentioned above, higher order accuracy is achived through the 2D linear
reconstruction method, which is used for extrapolation of state vector W at the cell
boundary. A piecewise linear function is used for reconstruction of the components

D j
Di WL

j WR
j

n j
s j

D jDi
Ddual

j

WC
j (Ñ, W) j

Fig. 1 Scheme of the structured quadrilateral mesh with dual volume
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wk .k D 1; : : : 4/ of vector W

wk D fk.x1; x2/ D ak C bk x1 C ck x2: (8)

Coefficients ak , bk and ck are given by supposition

wk; l D 1

jDl j
Z Z

Dl

fk.x1; x2/ dx1 dx2; (9)

where l denotes index of three neighbouring cells. We define four linear functions
f 1
k ; : : : ; f

4
k for reconstruction of state vector components wk C .k D 1; : : : 4/

from centre of cell denoted C (Fig. 2) to centre of boundary with cell denoted
R, where index l in eq. (9) is for function f 1

k : l D C; R T, for function f 2
k :

l D C; T; L, for function f 3
k : l D C; L; B and for function f 4

k : l D C; B; R
(R, T, L, B are designations of cells adjacent to cell C - Fig. 2). Components wL

k; CR

of reconstructed state vector WL
CR (where L means left side in outward normal

direction) are given as
wLk; CR D wk C C ık CR ; (10)

where wk C are components of state vector in centre of cell C and ık CR is defined as

ık CR D ımink CR .r.ı
min
k CR; ı

max
k CR// ; (11)

ımink CR D min
m
ff m
k .xCR; 1; xCR; 2/ � wk Cg ; m D 1; : : : ; 4 ; (12)

ımaxk CR D max
m
ff m
k .xCR; 1; xCR; 2/ � wk Cg ; m D 1; : : : ; 4 : (13)

There is r.ımin; ımax/ D ımax=ımin and  stands for the limiting function
enforcing monotonicity to the solution in eq. (11). The limiters of Van Albada, Van
Leer and the super-bee limiter are used in this work.

 VA.r/ D
�
0; r � 0 ;
.r2 C r/=.r2 C 1/; r > 0; (14)

 VL.r/ D
�
0; r � 0 ;
2 r=.r C 1/; r > 0; (15)

 SB.r/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0; r � 0 ;
2 r; 0 � r � 1=2 ;
1; 1=2 � r � 1 ;
r; 1 � r � 2 ;
2; r � 2 :

(16)
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3.2 Chimera grid interface

For numerical solution of flow in the turbine blade cascade, O-type mesh is used
around the blade profile, H-type mesh covers the chanel between blades as shown
in Fig. 3. For simple implementation of the chimera mesh the cells of mesh are
classified into three categories: category C0 refers to the regular cell in which the
conservative variables vector W is solved, category C1 refers to the hidden cell
which is skiped during the solution procedure, category C2 refers to the interpolation
cell in which the vector W is interpolated from overlapped mesh. The same method,
as described in paragraph 3.1, is used for interpolation of state vector W into the
centre of the cell type C2. We need to have state vector WR for calculation of flux
through boundary between cells type C0 and C2 (Fig. 4 left), which is obtained using
the linear reconstruction in cell type C2. One can see, that for correct reconstruction
of vector WR at the boundary between cells type C0 and C2, we need to have two
layers of interpolation cells type C2 (Fig. 4 right).

Proposed chimera mesh interface is very simple for implementation, is higher-
order of accuracy and is robust for transonic flow calculation. The mass flux
conservation error will be discussed later.

Fig. 2 Scheme of the linear
reconstruction on the
structured quadrilateral mesh

C R

T

L

B

(xC1 xC2)

(xCR1 xCR2)

WL
CR

,

,

Fig. 3 Detail of chimera mesh around leading and trailing edge
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4 Application

The numerical method described in sec. 3 is used for solution of flow in the
linear transonic turbine blade cascade VS33R. The computational domain with set
boundary conditions types is shown in Fig. 5 (left). The solution was calculated for
isentropic output Mach number 0:5 < Mis; out < 1:3, isentropic output Reynolds
number Reis; out D 8:5 � 105, zero angle of attack and 2 % of inlet turbulence
intensity. Transonic flow field in Mach number isolines form is shown in Fig. 5
right. Error of conservation of the mass flux through the blade cascade given as
.1�qin=qout / �100 (where q is the mass flux) is shown in Fig. 7. Further distribution
of the total pressure loss coefficient � D 1 � ptot; out =ptot; in is compared with the
experimental data [7] in Fig. 6.

C0 C2
WRWL

Fig. 4 Left: detail of interface between regular and interpolation cell. Right: two layers of
interpolation cells of C2 type (blue)

periodicity

periodicity

inlet b.c.

outlet b.c.

non slip wall b.c.

Fig. 5 Left: scheme of computational domain in linear blade cascade. Right: Mach number
isolines (Mis; out = 1.3)
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Fig. 8 Chimera mesh and the pressure distribution in 3D problem

4.1 Extension for 3D problem

It is simple to extend the method described in sec. 3 for 3D problems. Two-
blocks structured chimera mesh with the hexahedral elements was used for solution

of 3D transonic inviscid flow (described by Euler equation: @W
@t
C @Finv

i

@xi
, where

W D Œ�; �u1; �u2; �u3; e�T and Finv
i .i D 1; 2; 3/ stands for inviscid flux vector)

in an axial tubine cascade ST6 [8] for isentropic output Mach numberMis; out D 1:3,
isentropic output Reynolds number Reis; out D 7:5 � 105 and angle of attack
˛ D 45ı. Distribution of pressure is shown in Fig. 8.

5 Conclusion

The chimera mesh interface described in this contribution is simple for the
implementation and robust for the transonic turbomachinery applications. Proposed
method was applied for the calculation of transonic flow through the linear blade
cascade VS33R. The results are in good agreement with the experimental data.
Although the condition of conservation is not directly included in the chimera mesh
interface, evaluation of the mass flux conservation error (Fig. 6) shows reasonably
good conservation.
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Application of Nonlinear Monotone Finite
Volume Schemes to Advection-Diffusion
Problems

Yuri Vassilevski, Alexander Danilov, Ivan Kapyrin, and Kirill Nikitin

Abstract Two conservative schemes for the nonstationary advection-diffusion
equation featuring nonlinear monotone finite volume methods (FVMON) are con-
sidered. The first one is an operator-splitting scheme which uses discontinuous finite
elements for the advection operator discretization and FVMON for the diffusion
operator. The second one introduces another type of FVMON and is implicit second-
order BDF in time. A brief description of the schemes and their properties is given.
A numerical study is conducted in order to check their convergence and to compare
them with conventional methods.

Keywords Monotone finite volumes, advection-diffusion.
MSC2010:65M08

1 Formulation of the methods

1.1 Model Problem

Let ˝ be a bounded polyhedral domain in R
3 with a boundary @˝ . Consider the

following model advection-diffusion problem (for simplicity, with homogeneous
Dirichlet boundary conditions):
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@C

@t
� r �DrC C b � rC D F in ˝ � .0; T �; (1a)

C D 0 on @˝ � .0; T �; (1b)

C D C0.x/ in ˝ at t D 0: (1c)

Here,C is the contaminant concentration, bD b.x/ is a conservative convective flux
field, F DF.x/ is the function of sources or sinks, and DDD.x/ is a symmetric
positive definite 3 � 3 diffusion tensor.

1.2 Operator-splitting scheme: DFEM+FVMON

The operator-splitting scheme is designed for tetrahedral grids. It is explained in
details in [9], here we give only a brief description. Let a conformal tetrahedral
mesh "h be introduced in the computational domain˝ . Denote the mesh cells byEi ,
i D 1; : : : ; NE , the nodes byOi D .xi ; yi ; zi /, i D 1; : : : ; NP . We define the space of
discontinuous piecewise linear functions on "h

Wh D fv 2 L2.˝/; vjE 2 P1.E/; vj@E\@˝ D 0 8E 2 "hg:

The concentration is approximated by piecewise linear discontinuous functions
fromWh. The scheme involves splitting over physical components, and the diffusion
and convection operators are handled at different substeps. More specifically, at each
substep, we solve the incomplete equation (see [8]). The time step of the scheme is
defined as follows:

I:

Z

E

C
nC 1

2

h � Cn
h

�t=2
whdx �

Z

E

bCn
h � rwhdx C

Z

@E

bCn
h;in � nwhds D

Z

E

F nwhdx

8wh 2 Wh.E/; 8E 2 "h; (2a)

II:

Z

E

C
?;ad
h � Cn

h

�t
whdx �

Z

E

bC
nC 1

2

h � rwhdx C
Z

@E

bC
nC 1

2

h;in=out � nwhds D

D
Z

E

F nC 1
2 whdx 8wh 2 Wh.E/; 8E 2 "h; (2b)

III: Slope limiter: C �;adh �! C
nC1;ad
h ;

IV:

Z

E

NCnC1
h;E � NCnC1;ad

h;E

�t
dx D �

4X

iD1
rnC1E;i D �

Z

@E

rnC1E � nds 8E 2 "h; (2c)

V: C nC1
h D CnC1;ad

h C . NCnC1
h � NCnC1;ad

h /: (2d)
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The convection operator is approximated by an explicit predictor-corrector
scheme with an upwind regularization in the corrector. The intermediate concentra-

tion C
nC 1

2

h is calculated in predictor (2a) , while C?;ad
h in the corrector is calculated

from the convective fluxes at the intermediate time level. In the integral over the

boundary, C
nC 1

2

h;in=out is taken on the tetrahedron lying upstream. The slope-limiting

procedure (2c) is applied to C?;ad
h . Next, implicit scheme (2d) is used to calculate

the addition to the mean concentration, NCh due to the diffusive fluxes rnC1E;i through
the i -th faces of E. The values of NCnC1

h and rnC1E;i are determined by the nonlinear
monotone finite-volume method (FVMON) [3]. Its goal is to derive an as sparse
as possible monotone approximation matrix by forming two-point diffusive flux
approximations. Then, the solution NCnC1

h remains nonnegative for nonnegative
NCnC1;ad
h . The idea of the two-dimensional FVMON for diffusion problems was set

forth in [4]. The details of the present scheme formulation can be found in [9]. The
main idea of the scheme construction is based on the following steps:

1. Define the collocation points bearing the degrees of freedom inside each
tetrahedron. For cell E we define the point XE .

2. For two neighbouring tetrahedra EC; E� and the corresponding degrees of
freedom CXC , CX� we define the diffusion flux through the common face e:

re � ne D KC.CX/CXC �K�.CX/CX� : (3)

Here CX is the global vector of unknowns, ne is the normal vector to face e.
The flux defined in (3) has a two-point approximation stencil with coefficients
KC.CX/;K�.CX/ depending on the vector of unknown concentrations. The
algorithm of their calculation guarantees positivity of coefficients in case of
non-negative vector CX.

3. Assemble the global nonlinear system and solve it.

To implement step (2c), we find the projection Oc of the solution CnC1;ad
h onto the set

B of the collocation points in cells and solve the FVMON problem for the desired
concentrations Ocdiff at the points of B:

�
VC A. Ocdiff /�t� Ocdiff D V Oc: (4)

Here, V is a diagonal matrix of element volumes and A. Ocdiff / is an asymmetric
matrix whose elements depend on Ocdiff . All the off-diagonal and diagonal nonzero
elements of A. Ocdiff / are negative and positive, respectively, for nonnegative
Ocdiff . Moreover, the transpose .A. Ocdiff //T is row diagonally dominant. Therefore,
.A. Ocdiff //T is an M-matrix and .Œ.A. Ocdiff //T ��1/ij � 0. Since .A�1/T D .AT /�1,
the matrix A. Ocdiff / is monotone. Nonlinear system (4) is solved by the Picard
iteration algorithm

�
VC A. Ocdiff;k /�t� Ocdiff;kC1 D V Oc
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with the initial approximation Ocdiff;0D Oc � 0. Since the matrix VCA. Ocdiff;k /�t is
monotone for any nonnegative Ocdiff;k , all the iterative approximations Ocdiff;kC1 are
nonnegative as well; i.e., scheme (4) is monotone.

After Ocdiff is determined, we use the formula

NCnC1
h;E � NCnC1;ad

h;E D OcdiffE � OcE 8E 2 "h
and find the addition to the mean concentrations due to diffusive fluxes, as required
in (2e).

1.3 Implicit FVMON scheme

The idea of the implicit nonlinear monotone finite volume scheme is to derive a
discretization for the total advective-diffusive flux rD � DrC C Cb and use
the implicit second-order BDF discretization in time. The method is applicable
to arbitrary conformal meshes with polyhedral cells and jumping full anisotropic
diffusion tensors as well as variable convection fields.

For each cell E, we assign one degree of freedom, CE , for concentration C . If
two cells EC and E� have a common face f and the normal nf is exterior to EC,
the two-point flux approximation is as follows:

rf � nf DMCf CEC �M�f CE� ; (5)

whereMCf andM�f are some coefficients. In a linear FV method, these coefficients
are equal and fixed. In the nonlinear FV method, they may be different and depend
on concentrations in surrounding cells.

Diffusive flux rd D � DrC is discretized using the nonlinear two-point flux
approximation [1, 5] with non-negative coefficientsKḟ .C / � 0:

.�DrC/f � nf D KCf .C /CTC �K�f .C /CT� : (6)

Advective flux raDCb is approximated via an upwinded linear reconstruction
RT of the concentration over cell T [6, 7]:

rf;a � nf D bCf REC.xf /C b�f RE�.xf /; (7)

where

bCf D
1

2
.bf C jbf j/; b�f D

1

2
.bf � jbf j/; bf D 1

jf j
Z

f

b � nf ds:

We define the reconstruction RE as a linear function

RE.x/ D CE C gE � .x � xE/; 8x 2 E; (8)
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with a gradient vector gE . Since CE is collocated at the barycenter of E, this
reconstruction preserves the mean value of the concentration for any choice of gE .

The gradient vector gE is the solution to the following constrained minimization
problem:

gE D arg min
QgE2GE

JE.QQgE/; (9)

where the functional

JE.QgE/ D 1

2

X

xk2˙E
ŒCE C QgE � .xk � xE/� Ck�2

measures deviation of the reconstructed function from the targeted values Ck
collocated at points xk from a set ˙E of the neighbouring collocation points.

The set of admissible gradients GE is defined via three constraints surpressing
non-physical oscillations (see [7] for more details).

As the result, we represent the advective flux as the sum of a linear part (the
first-order approximation) and a nonlinear part (the second-order correction):

rf;a � nf D ACf .C /CC � A�f .C /C�; (10)

where
Aḟ .C / D ˙bḟ .1C g˙ � .xf � x˙/C�1˙ / � 0; (11)

subscript˙ stands for E˙ and g˙D gE
˙

.
The resulting nonlinear system is solved using the Picard iterations method. The

matrix is monotone on each iteration (see [7]) providing a nonnegative solution.

2 Results of numerical experiments

2.1 Smooth analytical solution

In the first test case the computational domain˝ is a unit cube Œ0I 1�3, the advection
field bD .0:1I z=10Iy=10/. Two diffusion tensors and the corresponding analitycal
solutions are considered:

1. DD I; C.x; y; z; t/D �
1 � x2� sin.y/e�zsin.t/

2. DD 10�5I C.x; y; z; t/D x2sin.y/e�zsin.t/

The first test case features dominating diffusion, the second - dominating advection.
The choice of analytical solutions is explained by the desire to obtain nonnegative
right-hand sides in the discretization of Eq. (1) in order to verify the monotonicity
of the schemes. Recall that only the FVMON guarantees the absence of negative
concentrations in this case (although it is unsuitable for problems admitting negative
concentrations). Three uniform structured tetrahedral meshes were used in the
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Table 1 Solution and flux L2-errors for DFEM+FVMON scheme

Mesh case DD I case DD 10�5I
eC er eC er

1 1:4 � 10�3 2:8 � 10�2 4 � 10�4 3:8 � 10�7
2 4 � 10�4 1:3 � 10�2 1 � 10�4 1:8 � 10�7
3 1:2 � 10�4 6 � 10�3 2:5 � 10�5 8:3 � 10�8

Table 2 Solution L2-error (eC )for the BDF FVMON scheme

Mesh case DD I case DD 10�5I
1 2:2 � 10�3 5:3 � 10�3
2 5:7 � 10�4 1:5 � 10�3
3 1:4 � 10�4 4:0 � 10�4

computations. The coarsest of them consisted of 3072 tetrahedra (mesh 1). The
other two were obtained by uniformly refining the first and contained 24 576 (mesh
2) and 196 608 (mesh 3) elements, respectively (the mesh size was halved in each
refinement procedure). In all the schemes, the time steps used in the tests were 0.025
for mesh 1, 0.0125 for mesh 2, and 0.00625 for mesh 3. The errors were calculated
for the solution at the time T D 1 and can be seen in tables 1 and 2.

For both schemes we calculate the discrete L2-error for the solution eC . For the
splitting scheme the diffusion fluxL2-error er is computed as well (not implemented
yet for the implicit scheme). In both cases we observe second order convergence for
the solution, the splitting scheme shows first order convergence for the diffusion
fluxes.

2.2 Sharp front resolution

Consider the front of concentration propagating from a constant source occupying a
section on the boundary of the domain˝D .0I 1/� .�0:5I 0:5/� .�0:5I 0:5/. More
specifically, the following inhomogeneous boundary conditions are set at xD 0:

C.0; y; z/ D
�
1 if jyj < 1

4
; jzj < 1

4
;

0 elsewhere.

The initial concentration is zero in the entire domain ˝ , and the convective flux is
bD .1; 0; 0/. For the solution to have a sharp front, the diffusion tensor is chosen to
be small with respect to convection:DD 10�4I .

The analytical solution to this problem in the half-space x � 0 was found in [2].
Passing to the bounded domain˝ , we set Dirichlet conditions on all its boundaries.
A non-uniform tetrahedral grid is used for the domain discretization. The numerical
solutions are compared with the analytical one at the time T D 0:5 and with the
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Fig. 1 Analytical and numerical solutions of the front propagation problem:a—analytical; b—
implicit BDF P1-FEM with SUPG; c— BDF implicit HMFEM scheme; d— operator-splitting
scheme DFEM+FVMON; e— BDF implicit FVMON scheme.

Table 3 Minima of mean cell concentrations
P1-FEM MFEM DFEM+FVMON impl. FVMON
�1:8 � 10�1 �6:4 � 10�2 0 0

solutions obtained by conventional methods: BDF implicit schemes ofP1-FEM with
SUPG and HMFEM with upwinding.

Figure 1 displays the exact (a) and approximate (b-e) solutions at T D 0.5 in
the plane yD 0. The contour lines correspond to the concentration values 0.2, 0.4,
0.6, 0.8, and 1. The conventional methods are nonmonotone, so the solution takes
negative values (Table 3), whereas the considered monotone schemes guarantee
non-negativity of the solution. Figure 1b shows that FEM with SUPG exhibits
strong oscillations. Since the FEM is strongly dispersive, a concentration contour
line corresponding to 1 appears in Fig.1b in the area where the solution must be
the identical unit. Hybrid MFEM demonstrates high numerical dissipation in Fig.1c.
The operator-splitting scheme shows the lowest numerical diffusion (rf.Fig.1d). The
implicit FVMON scheme exhibits numerical diffusion comparable to that of FEM
with SUPG method.
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Conclusions

The two schemes featuring the nonlinear monotone finite volumes prove to be a
good alternative to conventional methods especially in cases when monotonicity
(in the sense of non-negative concentrations) is important. The operator-splitting
scheme makes use of discontinuous finite elements applied for the advection
operator discretization. It produces low numerical diffusion. In this scheme diffusion
is treated implicitly, and advection explicitly. Thus the time step of the scheme
depends on the CFL number. An efficient solution to accelerate its performance
is to use different time steps for advection and diffusion. The extra computational
burden due to nonlinearity seems to be admissible: the scheme is approximately
20% slower than a linear similar splitting scheme [9].

The BDF implicit scheme of FVMON also shows second order convergence on
analytical solutions both for advection and diffusion dominated problems. While
suffering from higher numerical diffusion, the scheme has no time step restriction
and thus can be more suitable in terms of computational efficiency. Also the scheme
is applicable to arbitrary polyhedral cells. Both schemes guarantee non-negativity of
the solution in case of non-negative source terms and proper boundary conditions.
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Scale-selective Time Integration
for Long-Wave Linear Acoustics

Stefan Vater, Rupert Klein, and Omar M. Knio

Abstract In this note, we present a new method for the numerical integration of
one dimensional linear acoustics with long time steps. It is based on a scale-wise
decomposition of the data using standard multigrid ideas and a scale-dependent
blending of basic time integrators with different principal features. This enables
us to accurately compute balanced solutions with slowly varying short-wave
source terms. At the same time, the method effectively filters freely propagating
compressible short-wave modes. The selection of the basic time integrators is guided
by their discrete-dispersion relation. Furthermore, the ability of the schemes to
reproduce balanced solutions is shortly investigated. The method is meant to be
used in semi-implicit finite volume methods for weakly compressible flows.

Keywords linear acoustics, implicit time discretization, large time steps, balanced
modes, multiscale time integration
MSC2010: 35L05, 65M06, 86-08, 86A10

1 Introduction

General circulation models (GCMs) currently used for planetary flow simulations,
are based on the Hydrostatic Primitive Equations. This approximation of the
full compressible flow equations suppresses vertically propagating sound waves,
but it still admits horizontally traveling long wave acoustics, so called “Lamb
waves”. These and other effects of compressibility are increasingly considered to
be non-negligible for planetary-scale dynamics [1, 6]. On the other hand, modern
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high-performance computing hardware is beginning to allow the usage of grids
with horizontal spacings of merely a few kilometers in such applications (see e.g.
[5]). This development introduces considerable numerical difficulties. For explicit
time integration schemes, the propagation of sound perturbations introduced by
compressibility require very small time steps �t � �x=c, where �x is the
typical computational grid size, and c a characteristic sound speed. Alternatively, the
application of implicit time discretizations solves the problem of the severe time step
restriction, but it introduces potentially undesirable numerical dispersion: Most –
if not all – existing implicit schemes slow down modes with high wave numbers.
Furthermore, there are quite popular schemes, such as the implicit trapezoidal
scheme, which preserve the amplitude for all wave numbers. Being a desirable
feature at the first glance, it is a potential source of nonlinear instabilities in practice.

In the present work, a new discretization of the linearized acoustic equations
is introduced, which overcomes some of the disadvantages of standard implicit
discretizations with respect to the representation of compressibility. This means
that the scheme should represent the “slaved” dynamics of short-wave solution
components induced by slow forcing or arising in the form of high-order corrections
to long-wave modes with second-order accuracy. Furthermore, it should eliminate
freely propagating compressible short-wave modes that are under-resolved in time,
while minimizing dispersion for resolved modes. Here, we describe first successful
steps to achieve our goals.

Governing equations. The equations for one dimensional linear acoustics are
given by the system

mt C px D 0
pt C c2mx D q.t; x" / ;

(1)

where p D p.t; x/ and m D m.t; x/ are the pressure and momentum fields. The
speed of sound is specified by c, and the source term q.t; x

"
/, " � 1, is assumed

to be slowly varying in time with small scale variations in space. This source term
could simulate the release of latent heat from localized condensation, for example.

For traveling waves .m; p/.t; x/ D .m0; p0/ exp.i.!t � �x//, the dispersion
relation of (1) is

!2 � �2c2 D 0 : (2)

Thus !.�/ D ˙c�, so that in the continuous system all waves travel with the
same velocity, c D ˙!=�, without dispersion. Also, one can show, that the system
preserves a global pseudo energy.

2 Implicit second-order staggered grid schemes

Before the new time integration scheme is introduced, we investigate two standard
implicit second-order discretizations. These are the implicit trapezoidal rule and
the BDF(2) scheme, which are commonly used in meteorological applications [3].
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Their ability to compute reliable approximations to solutions of (1) is discussed with
respect to the discrete-dispersion relations of these schemes (see [3, 9] for details).

Furthermore, the capability of the schemes to reproduce balanced modes is
discussed. In the case of slow, short-wave forcing the balance is described by

c2mx D q
�
t; x
"

�
and p 	 0 (3)

up to small perturbations introduced by the variation in time of the source term. The
schemes should be able to essentially keep this balance. Furthermore, they should
reproduce the balanced state in one time step by letting the step going to infinity.

Considering a semi-discretization in time, we leave the choice of a spatial
discretization open for the moment. In the subsequent numerical experiments we
choose a staggered grid with central differences for simplicity only.

Implicit trapezoidal rule. The implicit trapezoidal rule is derived by integrating
the differential equation from tn to tnC1. The time integral on the right-hand side
is then approximated by the trapezoidal quadrature rule. For the system of linear
acoustics (1) this results into a Helmholtz problem for pnC1, which is given by

pnC1 � c
2�t2

4

@2pnC1

@x2
D pn � c2�t @m

n

@x
C c2�t2

4

@2pn

@x2
C�t qnC1=2 : (4)

The update form is then obtained by

mnC1 D mn � �t
2

	
@pn

@x
C @pnC1

@x




: (5)

The method is symplectic and A-stable [4]. The discrete-dispersion relation results
in a frequency-wave number relationship of the form

!r D ˙ 2

�t
arctan

	

cfl � sin

	
k�x

2





(6)

where cfl D c�t
�x

is the Courant–Friedrichs–Lewy (CFL) number, and the amplifi-
cation factor per time step is given by jAj 	 1. Thus, essentially, the frequency !r

depends not only on the wave number k, as in the continuous case, but it is also a
function of the CFL number.

Figure 1 shows the discrete-dispersion relation for the trapezoidal rule (dashed
line) applied to the linear acoustic equations for a CFL number cfl D 1. The scheme
slows down modes at almost all wave numbers, and this behavior is amplified the
higher the wave number and the higher the CFL number are. Additionally, the
trapezoidal rule is free of numerical dissipation. By letting �t ! 1, one obtains
the relations
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Fig. 1 Discrete-dispersion relations for the trapezoidal (dashed) and the BDF(2) rules (dot-
dashed) applied to the linear acoustic equations using cfl D 1. Dispersion relation for continuous
system is displayed as black line

c2

2

	
@mn

@x
C @mnC1

@x




D qnC1=2 and
@pnC1

@x
D �@p

n

@x
: (7)

This reflects the inability to reproduce balanced modes of the trapezoidal rule, and
any perturbation of the system cannot dissipate.

BDF(2) scheme. The BDF(2) scheme is a two-step method from the family of
the so called Backward Differentiation Formulas (BDF). Here, the left-hand side is
approximated by the derivative of a parabola at tnC1, which interpolates the solution
at times tn�1, tn and tnC1. For the acoustic system, this discretization results again
in a Helmholtz problem for pnC1, which is

pnC1�4c
2�t2

9

@2pnC1

@x2
D 4

3
pn�1

3
pn�1�c2�t

	
8

9

@mn

@x
� 2
9

@mn�1

@x




C2
3
�t qnC1 :

(8)
The update form is obtained by

mnC1 D 4

3
mn � 1

3
mn�1 � 2

3
�t
@pnC1

@x
: (9)

The method is A- and L-stable [4].
The discrete-dispersion relation for the BDF(2) scheme is given again in Fig. 1

(dot-dashed line). Concerning the phase error, it shows the same behavior as the
trapezoidal rule, although it is considerably amplified. On the other hand, the
scheme introduces dissipation for almost all modes. The damping is amplified for
high wave and CFL numbers. In the limit �t !1 one obtains
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c2
@mnC1

@x
D qnC1 and

@pnC1

@x
D 0 ;

and the scheme achieves balance in a single, sufficiently large, time step. This
behavior is characteristic to backward differences formulas by construction [2].

This analysis reveals the dichotomy a practitioner is faced with when having
to choose between the two time integrators: Either he could choose to minimize
dispersion and preserve the amplitude of well resolved modes by using the
trapezoidal rule, or he could ensure that the solution rapidly relaxes to the balanced
mode in case of short wave number forcing by the application of the BDF(2)
scheme.

3 Multilevel method for long-wave linear acoustics

As described above, the ultimate goal is to filter out all acoustic short wave modes,
which are not resolved in time, while sufficiently long wave data is integrated as
accurate as possible. Here, we present a strategy for combining the two aspects into
one single, scale-dependent numerical time integrator. It is exemplified by using
the implicit trapezoidal rule and the BDF(2) scheme as base schemes. One could
also use other time integrators (see [9] for a more general presentation), the only
restriction is that they are linear in pnC1 and mnC1.

Assume that we have scale dependent splittings of the pressure and momentum
fields, i.e.

p D
�mX

�D0
p.�/ and m D

�mX

�D0
m.�/ (10)

which could be a quasi-spectral or wavelet decomposition, splitting p and m into
(local) high and low wave number components. The idea is to use for each scale
component .p.�/; m.�// a scale dependent blending of the two time integrators.
Taking the �-dependent convex combination with � 2 Œ0; 1� of the two equations
(4) and (8), and summing over the scales results in the Helmholtz problem

pnC1 � c2�t2
�MX

�D0

	
��

4
C 4.1 � ��/

9




p.�/;nC1xx D
�MX

�D0

�
��Rp;.�/TRA C .1 � ��/Rp;.�/BDF2

�
;

(11)
where

Rp;.�/TRA D p.�/;n � c2�t m.�/;n
x C c2�t2

4
p.�/;nxx C�t q.�/;nC1=2 ;

Rp;.�/BDF2 D
4

3
p.�/;n � 1

3
p.�/;n�1 � c2�t

	
8

9
m.�/;n
x � 2

9
m.�/;n�1
x




C 2

3
�t q.�/;nC1 :

(12)
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The momentum update is derived from the blending of (5) and (9), which is

mnC1 D
�MX

�D0
��

�

m.�/;n � �t
2

�
p.�/;nx C p.�/;nC1x

�


C

.1 � ��/
�
4

3
m.�/;n � 1

3
m.�/;n�1 � 2

3
�t p.�/;nC1x



:

(13)

The scale splitting is obtained by the application of restriction and prolongation
operators used in standard multigrid algorithms. Let ' DP '.�/ be a grid function,
which is decomposed into parts '.�/ living on the associated grid levels. Then, the
grid function on the coarsest level is obtained by the operation

'.0/ D �R.0/ ıR.1/ ı � � � ıR.�M�1/� ' (14)

and the grid functions on finer levels are computed by

'.�/ D �I � P .��1/ ıR.��1/� ı �R.�/ ıR.�C1/ ı � � � ıR.�M�1/� ' : (15)

In our current approach the pressure is decomposed using the full weighting
(restriction) and the linear interpolation (prolongation) operators [7]. They can be
defined by their stencil, which are

R.�/ D 1

4

�
1 2 1

�
and P .�/ D 1

2

�
1 2 1

�
: (16)

On a staggered grid the matching splitting in the momentum field is then defined by
(for further details, see [9])

R.�/ D 1

8

�
1 3 3 1

�
and P .�/ D �1 1� : (17)

The description of the scheme is completed by the definition of the weighting
function �.�/. In the subsequent tests, it is chosen such that the scheme in (11) and
(13) associates the standard implicit trapezoidal scheme with all pressure modes
corresponding to coarse grids with grid-CFL number cfl � 1, while we nudge the
discretization towards BDF(2) for pressure modes living on grids with cfl > 1.

4 Numerical Results

Here, we shortly describe a test case with “multiscale” initial data in a periodic
domain x 2 Œ0; 1�. Pressure and momentum fields are chosen in such a way that
one obtains a right running acoustic simple wave with a sound speed of c D 1.
The initial conditions are displayed in Fig. 2 (top row). No source term is present
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Fig. 2 Top row: “Multiscale” initial data. Bottom row: Numerical solution (pressure) with cfl D
10 at time tend D 3 using the trapezoidal rule (left) and the BDF(2) scheme (right). Grid with 512
cells

(for further details see [9]). We use a grid with 512 cells (i.e. �x D 1=512) and a
CFL number cfl D 10. The results are compared at a final time tend D 3:0, which is
equivalent to 154 time steps. At this time the exact solution is identical to the initial
data, and the wave has traveled three times across the domain.

The implicit trapezoidal rule produces the results in Fig. 2 (bottom left). Here,
and in the following, only pressure is displayed, since the momentum field is
essentially the same. The results show what has already been revealed by the
discrete-dispersion relation, i.e., the scheme achieves large-CFL stability by slowing
down the short wave components of the solution. While the long-wave pulse has
traveled at nearly correct speed, the short-wave oscillations have essentially stayed
in place. Furthermore, their amplitude has not diminished.

A different behavior is displayed by the BDF(2) scheme (Fig. 2, bottom right).
It has considerably more dispersion than the trapezoidal rule, and the damping of
the scheme results in a smaller final amplitude, even for the long wave data. On the
short scales, the diffusion is so high that at the final time this part of the solution
has essentially vanished. Thus, the scheme is able to balance the short-wave modes
that are not resolved in time, but it pays the price of simultaneously damping and
dispersing the long scales.

The result of the simulation using the new blended scheme with five grid levels
is displayed in Fig. 3. For comparison, the result of the trapezoidal rule applied only
to long wave data is also shown (dashed line). As one can see, the two results are
nearly identical: The short wave data is filtered in such a way that only the long wave
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Fig. 3 Numerical solution (pressure) using the blended scheme on a grid with 512 cells and cfl D
10 at time tend D 3 (black line). For comparison, the result of trapezoidal rule obtained with only
long wave initial data is plotted as gray dashed line

data is left after some time. On the other hand, the long wave data is integrated as
well as one could hope when using a second-order method.

5 Conclusion

The presented scheme effectively filters freely propagating compressible short-wave
components, which cannot be accurately represented at long time steps. At the
same time, dispersion and the amplitude errors for long-wave modes are minimized.
Further tests show that in the presence of a source term, which slowly varies in
time but has rapid spatial variations, solutions relax to an asymptotic balanced state
(see [9]).

One of the next goals is to apply this scheme into a semi-implicit scheme for
weakly compressible flows. The latter is an extension of a second-order projection
method for incompressible flows as described in [8]. By using the trapezoidal rule
in the implicit part of the scheme, one is faced with instabilities near shocks. This
can partly be cured by so called off-centering. However, it also decreases the order
of the scheme to one. The authors hope to obtain a second-order version by using
the new scheme described in this note.
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Models And Lagrange-Remap Finite Volumes

Florian De Vuyst, Valeria Ricci, and Francesco Salvarani

Abstract In this paper a second order vehicular macroscopic model is derived from
a microscopic car–following type model and it is analyzed. The source term includes
nonlocal anticipation terms. A Finite Volume Lagrange–remap scheme is proposed.
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1 Motivation and introduction

There are many ways to describe and model a vehicular traffic flow. Microscopic
models e.g. [3] describe the interaction between two successive vehicles. It is
known that car–following models may have a complex dynamics (see for example
[8, 9]) and are able to reproduce all the flow regimes. In the macroscopic models,
conservation laws and balance equations on mean quantities are searched. Since
the pioneer works by Lighthill, Whitham and Richards (LWR model), numerous
improvements and contributions have been proposed. In 2000, Aw and Rascle [1]
derived an interesting second order model that fixed the drawbacks of Payne’s
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model, emphasized by Daganzo [4]. More recently, Aw et al. [2] derived the Aw–
Rascle model from microscopic follow–the–leader models. Illner et al. [7] were also
able to retrieve the Aw–Rascle model from a kinetic Vlasov description. For related
works, see for example [5,6]. In this paper, a continuum traffic flow model is derived
from a more complex car–following model.

2 Car–following rule and microscopic model

Let us consider a vehicular traffic flow made of N vehicles, indexed by i , i D
1; : : : ; N . For simplicity, we will assume that all the vehicles are identical, of length
`. The car indexed by i follows the car .i C 1/. At time t , the vehicle i is located at
position xi .t/ with speed Pxi D vi . The spatial gap between the two vehicles i and
.i C 1/ is then given by xiC1.t/� xi .t/� ` (see Fig. 1). The maximum (permitted)
speed will be denoted by vM . Let us also denote by gs.v;i ; viC1/ the safety spatial
gap for the vehicle i , depending on the vehicle speeds i and .i C 1/. A simple
relaxation rule for the spatial gap is

d

dt
.xiC1 � xi � `/ D gs.vi ; viC1/� .xiC1 � xi � `/

xiC1 � xi � ` ai;iC1 (1)

where ai;iC1 is a local characteristic speed. The denominator forbids the collision
between the two vehicles. Then we get a target speed vtargeti equal to

vtarget
i D viC1 C

	

1 � gs.vi ; viC1/
xiC1 � xi � `




ai;iC1: (2)

A simple acceleration rule toward the target speed is given by the relaxation scheme

dvi
dt
D vtarget

i � vi
	

D viC1 � vi
	

C
	

1 � gs.vi ; viC1/
xiC1 � xi � `



ai;iC1
	

(3)

using a characteristic relaxation time 	 > 0. Let us comment three interesting cases.
If 0 < xiC1 � xi � `� 1, then there is a strong breaking in order not to collide. If
xiC1 � xi � ` 	 gs.vi ; viC1/, the vehicle i is at the right safe distance, and in that
case we have the simple car–following rule Pvi D .viC1 � vi /=	. If xiC1 � xi � 1,

Fig. 1 Microscopic description of the vehicular traffic
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Fig. 2 Fundamental diagram of traffic flow and link with the spatial safety gap

the vehicle’s driver i should not be worried about vehicle .i C 1/ because it is
too far from him. In that case, the driver i should accelerate up to the limit speed
vM according to the rule Pvi D .vM � vi /=	. This suggests us to choose ai;iC1 D
vM � viC1. To summarize, we get the microscopic model

dvi
dt
D viC1 � vi

	
C
	

1 � gs.vi ; viC1/
xiC1 � xi � `



vM � viC1

	
: (4)

3 Macroscopic quantities and spatial safety gap

From the microscopic quantities, one can define some macroscopic ones. The
specific volume �iC1=2.t/ WD xiC1.t/ � xi .t/ has the dimension of a length. The
density �iC1=2.t/ D .�iC1=2.t//�1 returns the local number of vehicles per unit
length. The quantity �M D `�1 represents the maximum density (nose–to–tail
vehicles) and �m D ` is the minimum specific volume. Now in (4), we need a
closure for the safety gap function gs . From gs one can define a safety specific
volume �s such that gs D �s � ` D �s � �m and a safety density �s D .�s/�1. The
density �s can be identified to the fundamental diagram of traffic flow which gives a
relation between the density and the equilibrium (safe) speed (see Fig. 2). We shall
here consider

gs.vi ; viC1/ D �s.vi C viC1
2

/ � �m:

4 Macroscopic model

In order to derive a macroscopic model, let us introduce some interpolation
functions v.x; t/ and �.x; t/ such that

v.xi .t/; t/ D vi .t/; �.xiC1=2.t/; t/ D xiC1.t/ � xi .t/ 8i D 1; : : : ; N:
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A Taylor expansion allows us to write

viC1.t/�vi .t / D v.xiC1.t/; t /�v.xi .t/; t / D
	

�
@v

@x




.xiC1=2.t/; t /Co..xiC1�xi /2/:

From the motion equation Pxi D vi , one can write d
dt
.xiC1.t/ � xi .t// D viC1.t/ �

vi .t/. Then we have

D�

Dt
.xiC1=2.t/; t// D @v

@x
.xiC1=2.t/; t/ �.xiC1=2.t/; t/C o..xiC1.t/ � xi .t//2/:

We omit the remaining term and consider that the expression holds almost every-
where, then we get the continuity equation

�
D�

Dt
� @v

@x
D 0 , @�

@t
C @

@x
.�v/ D 0: (5)

Consider now the acceleration equation. First remark that

	
@v

@x
�




.xiC1=2.t/; t / D
	
@v

@x
�




.xi .t/; t /C �

2

@

@x

	

�
@v

@x




.xi .t/; t /C o.xiC1 � xi /:

One can also write viC1.t/ D v.xiC1.t/; t/ D v
�
xi .t/C �.xiC1=2.t/; t/; t

�
, which

allows us to derive the balance equation in Lagrangian form

�
Dv

Dt
D 1

	

@v

@x
C 1

2	

@

@x

	

�
@v

@x




C
	

1 � g
s.v.x C �=2; t//

� � �m



�
vM � v.x C �; t/

	
:

(6)
i.e. in Eulerian form

@

@t
.�v/C @

@x

	

�v2 � 1

	
v




� 1

2	

@

@x

	

�
@v

@x




D
	

1� g
s.v.x C �=2; t//

� � �m



�
vM � v.x C �; t /

	
:

(7)

By multiplying formally equation (6) by v and using the continuity equation we get

@

@t
.�v2=2/C @

@x

	

�v3=2� 1
	

v2=2




� 1

2	

@

@x

	

�
@.v2=2/

@x




�
	

1 � g
s.v.x C �=2; t//

� � �m



�v
vM � v.x C �; t/

	
D � 1

2	
�

	
@v

@x


2
: (8)

This shows that S D �v2=2 is an entropy for the system. It is easy to show that S
is convex with respect to the conservative variables .�; �v/ (but not strictly convex).
More generally, for any C 2 strictly convex function h W R

C ! R
C, the function

S D � h.v/ is a (non strictly) convex entropy for the system.
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Properties Let us consider the first order homogeneous part of the system, i.e.

@t�C @x.�v/ D 0; @t .�v/C @x.�v2 � 1
	

v/ D 0: (9)

In primitive variables .�; v/ we get

@t .�; v/
T C

 
v ��
0 .v � �

	
/

!

@x.�; v/
T D 0:

The system is strictly hyperbolic in the admissible space ˝ad
" D f.�; v/; � 2

Œ"; �M �; v 2 Œ0; vM �g for any " > 0. The characteristic speeds are 	1 D v and
	2 D v � �=	. It easy to check that the two characteristic fields are both linearly
degenerate (LD) so that the eigenvalues of the system 	i , i D 1; 2 are the Riemann
invariants. One gets a straightforward structure of the solutions of the Riemann
problem made of two contact discontinuities.

5 Finite volume scheme

For the sake of simplicity, we shall only deal with the inviscid part of the system
above. Let us consider a uniform discretization of the spatial domain (with constant
mesh step h) made of discrete points .xj /j2Z, xjC1 D xj C h and cells Ij D
.xj�1=2; xjC1=2/, xjC1=2 D .xj C xjC1/=2. From time tn, the time advance is
performed using a time step �tn subject to stability constraints that will be detailed
later on. The numerical discretization here follows ideas from Billot et al. [5].

Homogeneous Part Because of the structure of the eigenwaves in (9), a Lagrange–
remap conservative FV approach is particularly well suited. Initially the discrete
solution is piecewise constant on each control volume Ij with density �nj , specific
volume �nj D .�nj /

�1, and speed vnj . In the Lagrange step, the computational grid
moves according to the flow; the states into each cell evolve according to the
Lagrangian equations. For an initial volume Ij D .xj�1=2; xjC1=2/, the interface
points xj�1=2 are moved according to the motion equations PxjC1=2 D vnjC1=2 over

a time step �tn: this gives xnC1;�j D xnj C�tn vnjC1=2. The choice vnjC1=2 D vnjC1
is compatible with the structure of the solutions of the local Riemann problems,
leading to a stable upwind process. After a time step, the cell sizes hnC1;�j become

h
nC1;�
j D hC�tn

�
vnjC1 � vnj

�
: (10)

The continuity equation shows that the number of vehiclesmj into each Lagrangian
cell Ij is conserved , i.e. mn

j D �nj h D �
nC1;�
j h

nC1;�
j D m

nC1;�
j . Combining (10)

and mass conservation, we get the equivalent script
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�
nC1;�
j D �nj C

�tn

h

�
vnjC1 � vnj

�
: (11)

The CFL–like condition forbids the 1–waves to interact with the moving interfaces:

�tn

h
sup
j2Z

�

vnj �min.0; vnj �
�nj

	
/



� 1: (12)

By defining

vnC1;�j D
R
I
nC1;�
j

�nC1;�.x/vnC1;�.x/ dx
R
I
nC1;�
j

�nC1;�.x/ dx
D
R
I
nC1;�
j

�nC1;�.x/vnC1;�.x/ dx

mn
j

the speed in the cell I nC1;�j before projection, we get the following scheme

vnC1;�j D vnj C
�tn

mn
j 	

�
vnjC1 � vnj

�
: (13)

The Lagrange phase is followed by a conservative projection onto the initial uniform
mesh. Denoting by ˛njC1=2 D vnjC1�tn=h the local Courant number related to the
flow speed, the projection of the density in the cell Ij reads

�nC1j D ˛nj�1=2 �nC1;�j�1 C
�
1 � ˛nC1;�j�1=2

�
�
nC1;�
j (14)

as soon as the time step�tn satisfies the additional CFL condition �tn

h
supj2Z

vnj � 1.
Similarly, the projection of the conservative quantity .�v/ writes

.�v/nC1j D ˛nj�1=2 .�v/nC1;�j�1 C
�
1 � ˛nC1;�j�1=2

�
.�v/nC1;�j (15)

and gives vnC1j . It is easy to prove that this numerical scheme fulfills a discrete
entropy inequality for the family of entropy functions S D �h.v/.
Source Term Integration The second equation has a source term that acts as a
speed relaxation toward the maximum speed vm in the case a free flow regime. The
differential problem to solve is

dv

dt
D
	

1 � g
s.v.x C �=2; t//

� � �m



vM � v.x C �; t/
	

: (16)

When spatially discretized, we have to solve the differential problem

dvj
dt
D
	

1 � g
s.v.xj C �j =2; t//

�j � �m



vM � v.xj C �j ; t/
	

; vj .0/ D v0j : (17)
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The problem (17) is nonstandard because of the presence of delays, nonlocal terms
(due to the anticipation by the drivers) but also the coupling between the space
variable x and the specific volume � . A computational approach for (17) requires an
interpolation of the function v, such as piecewise linear interpolation for example.
If, from the discrete point of view, one expects a local influence of the anticipation,
we have to assume that h is “large enough” to fulfill the inequality

inf
j2Z

�nj � h�1: (18)

The condition (18) may appear surprising, but actually it expresses that the spatial
discretization must be compatible with the maximum space headway. As example,
consider a road section of length L D 200 km and a uniform mesh made of M D
1000 points. Then h D L=M D 0:2 km and h�1 D 5 km�1. The discretization
of the source term may be local as soon as the vehicle density does not go below
5 veh/km.

Whole Fractional Step Method A consistent second–order accurate time splitting
of the full inhomogeneous system may be achieved using the Strang fractional step
approach. Each time iteration is made of three substeps: (i) a time integration of the
source term over a time step�tn=2; (ii) a time advance of the homogeneous system
over a time step �tn, (iii) a time integration of the source term over�tn as in (i).

6 Numerical experiments

In this experiment we use vM D 130, a section length L D 200, a uniform mesh
composed of 500 points, 	 D 4=3600 and �M D 260. We use periodic boundary
conditions. The safety density is chosen as
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Fig. 3 (a) Initial condition: density (left) and speed (right). (b) Discrete solution at final time:
density (left) and speed (right)



788 F. De Vuyst et al.

Fig. 4 Discrete solution in the phase space. From left to right: .�; v/, .�; �v/ and .�v; v/ diagram

Fig. 5 Numerical Fundamental Diagram computed with: (a) LWR model, (b) Aw–Rascle model

�s.v/ D min

	

1500
vM � v

vM
; �jam C .�c � �jam/ v

vM




with �c D 30 and �jam D 130. The initial velocity field is a piecewise constant
function equal to 3 on Œ0; L=4� [ Œ3L=4;L� and equal to 129 on the interval
.L=4; 3L=4/. The initial density profile �0.x/ D .0:6 C 0:4 sin.20�x=L// �s.v/
mimics some nonequilibrium and traffic instabilities (see Fig. 3 (a)). On Fig. 3 (b),
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the discrete solution at final simulation time t D 2:22 is plotted and shows a very
good behaviour of the numerical scheme with strong numerical stability, particularly
through shock waves. Figure 4 shows the discrete solution for all discrete times in
the phase space. One can observe a very good agreement with what is physically
expected. The computed numerical discrete fundamental diagram is compared to
those obtained with the LWR and Aw–Rascle models, respectively. For the Aw–
Rascle model @t �C @x.�v/ D 0, @tvC .v � �p0.�//@xv D A

T
.veq.�/� v/, we used

veq.�/ D min
�
.vM .1 � �

1500
/; vM � vM

���c
�jam��c

�
, p.�/ D vM � veq.�/, A D 1,

T D 	.
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Unsteady Numerical Simulation
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an Exhaust Valve

M. Žaloudek, H. Deconinck, and J. Fořt

Abstract The article presents numerical results of the flow which is exhausted from
the combustion chamber of a four-stroke engine. The unsteady simulations shown
correspond to one working cycle of an exhaust valve.

The flow has been described by the set of Reynolds–averaged Navier–Stokes
equations. The working medium has been assumed an ideal gas. The numerical
solution has been acquired with an in-house numerical code, COOLFluiD, based on
a finite volume method (FVM). The numerical code is being developed by the team
of engineers with wide range of specialization. Our major contribution has been
connected to the implementation of the advanced turbulence models for both steady
and unsteady simulations on moving grids.

The current work focuses on the turbulence modelling and on the simulation of
the real valve movement. The flow structure and the mass flow rate are observed.

Due to a lack of experimental data, the computations are performed in a stepwise
manner, validating each implementation step on the testcases known, before being
applied to the valve geometry. The results presented therefore correspond to a planar
model. The article focuses on the implementation of turbulence models and their
application to complex geometry problems, rather than exploring new numerical
methods.
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1 RANS Equations

The flow is governed by conservation laws of mass, momentum and energy and two
transport equations of the turbulence model.

@W
@t
C @FIi
@xi
D @FVi
@xi
CQ ; (1)

with t representing time, x the Cartesian coordinates, W the vector of conservative
unknowns, FI /FV the convective/viscous fluxes and Q the source term.

W D j� ; �w1 ; �w2 ; e ; �k ; �!jT (2)

FIi D wi j�; �w1 C Qpıi1; �w2 C Qpıi2; e C Qp; �k; �!jT

FVi D
ˇ
ˇ
ˇ
ˇ0; �i1; �i2; �ijwj � qi � qti ; .�C �k�t /

@k

@xi
; .�C �!�t / @!

@xi

ˇ
ˇ
ˇ
ˇ

T

Q D
ˇ
ˇ
ˇ
ˇ0; 0; 0; 0; P � ˇ��k!;

�

�t
P � ˇ�!2 C .1 � F1/ �2�2

!

@k

@xj

@!

@xj

ˇ
ˇ
ˇ
ˇ

T

The unknows �; w D .w1I w2/ ; e; p; T; k; ! denote in turns the density, the
velocity components, the total energy, the pressure, the temperature, the turbulent
kinetic energy and the specific dissipation rate. The stress tensor �ij is expressed as

�ij D .�C �t / Sij ; Sij D 1

2

	
@wi
@xj
C @wj
@xi




� 2
3
� ıij � @wk

@xk
; (3)

with ıij the Kronecker delta and �, �t the molecular and turbulent dynamic
viscosity

� D C1T
3=2

T C S ; �t D ��� k
!
: (4)

The heat flux and the production term read

qi D � 	
Pr

@T

@xi
; qti D qi Pr

�

�t

Prt
; P D �tSij Sij : (5)

Unknowns �k , �! , ˇ, ˇ�, � , ��, �2, C1, S , 	 represent various constants to be found
in the literature [7] and Pr stands for the Prandtl number. The function F1 provides a
blending between the k� model in freestream regions and the k�! model near the
wall surfaces. The system is completed with the state equation. The next turbulence
models presented, have used a similar formulation as (1) and their specifics have
been published in [10] (EARSM model) and [11] (Wilcox k � !, rev. 2008).
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ALE Formulation. For unsteady simulations with a moving valve the arbitrary
Lagrangian–Eulerian formulation of the RANS equations has been used, see [9].
The relative velocity wR is defined as

wR D w �wV ; (6)

with w the flow velocity and wV the velocity of the valve (given by the movement
imposed, see fig. 6). The convective flux FI is then updated to a form

FI;ALEi D wiR j�; �w1 C Qpıi1; �w2 C Qpıi2; e C 2 Qp; �k; �!jT (7)

2 Mathematical Formulation

The system (1) is solved upon the computational domain, see the Fig. 1. Although
the real configuration is fully 3D, the computational domain has been considered
symmetric with respect to the valve axis. Hence, only a half of the domain has been
solved. A mathematic solution fulfils the equation (1) upon the domain interior, the
initial condition at t D 0 and the following boundary conditions on the domain
borders:

inlet total pressure, total temperature, incidence angle, turbulent variables accord-
ing to the paper [8]:

!in D
ˇ
ˇwin

ˇ
ˇ

Lref
; kin D !in � �1

100
: (8)

Fig. 1 Detail of the exhaust valve (left), scheme of the computational domain (right)
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outlet pressure, velocity, temperature and turbulent variables

p D pout ;
@wi
@n
D @T

@n
D @k

@n
D @!

@n
D 0 (9)

wall the adiabatic no-slip condition. The turbulent variables use the expressions
suggested at [8]

w 	 0; @T
@n
D 0; kw D 0; !w D 60�

ˇ1y
2
0

(10)

3 Discretization and Numerical Method

The computational domain has been discretized by a structured triangular grid, see
the Fig. 2. The steady flow computations were achieved with the time marching
method based on a finite volume method, discretizing the equations (1) as

W nC1
i �W n

i

�t
D 1

�i

#facesX

kD1

�� QF I
k � nk C QF V

k � nk
�
; (11)

with �i the area of the i-th volume, QF I
k / QF V

k the numerical approximation of the
advection/viscous fluxes and nk the unit outward normal vector to the k-th face of
the volume i. The fully implicit time integration has been used

W nC1
i D W n

i C
�t

�i

#facesX

kD1

�� QF I
�
W n; W nC1�

k
� nk C QF V

�
W n; W nC1�

k
� nk

�
;

(12)

Fig. 2 Overview of the computational grid with the detail of its structure
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as it is described in [5]. The linear system has been solved numerically by the
GMRES iterative solver, provided by the PETSc library. As the flowfield contains
both regions with the gas of negligible velocity (inside the chamber, Mach number
� 0:05) and regions with the gas of supersonic velocity (between the seats, M �
2:0) the numerical scheme AUSMCup able to capture all the velocity scales has
been used. The algorithm is based on a solution of the Riemann problem (flux over a
discontinuous step between two states) and thanks to the pressure and Mach number
correction terms it improves the convergence also for the low velocity regions. The
scheme has been published in [6]. The viscous fluxes have been computed as a
central approximation, using a diamond dual cell approach.

The spatial accuracy has been improved by a piecewise linear reconstruction that
has been built by the least squares interpolation method, complemented with the
Barth limiter [2].

Unsteady Flow. The computational domain (and grid) changes with the advanc-
ing time. The solution is therefore based on the ALE formulation for moving grids.
In order to avoid the situation of two disjunct subdomains with no flow between
them for the closed valve a minimal valve opening (treshold) has always been used.
Later, due to the significant grid deformation the domain has been remeshed and
the current solutions interpolated in a conservative way. The series of three meshes
(initial valve lift: 0.5 mm, 2.5 mm, 7.0 mm) have been used to resolve one working
cycle of the exhaust valve.

The steady computations algorithm is modified to ensure the accuracy and
consistency also for the unsteady flow. The time accurate solution has been obtained
with the dual time stepping technique, consisting of an outer time stepping loop for
a real time-accurate time step �t and an inner time stepping loop with a fictitious
time step � to solve the system at each real time step. For the initiation phase
the single step Crank–Nicholson method has been used, followed by the backward
differentiation formula BDF2

W nC1;˛C1 �W nC1;˛
�

C 3W nC1;˛C1 � 4W n CW n�1
2�t

D (13)

1

�i

#facesX

kD1

h QFV
�
W n;W nC1;˛; ; W nC1;˛C1�

k
� nk � QF I

�
W n;W nC1;˛; ;W nC1;˛C1�

k
� nk

i

4 Steady Flow Numerical Results

The Fig. 3 reveals the steady solutions with different turbulence models. The compu-
tations have been stated by the parameters: valve opening 4 mm, temperature 500 K,
pressure ratio pinlet

pout let
D 2:5, with the outlet pressure 100 kPa, corresponding to the

exhaust to the atmosphere. The flow topology is similar for all models, consisting
of a main beam (in approximately same position), surrounded by separation zones
on both sides. The differences are visible on the pressure distribution along a
streamline that passes the middle of a channel throat, see the Fig. 4. The BSL and
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Fig. 3 Contours of Mach number for various turbulence models

Fig. 4 The streamline for extracting the flow characteristics (left), comparison of the pressure
through the exhaust pipe (right)

Fig. 5 Position of separation zones meassured from the channel throat

Wilcox models have a similar nature, which justifies similar results achieved by
these models. By the contrary, the EARSM model allows anisotropic turbulence,
see [10], leading to the milder peaks predicted and higher outlet velocity. However,
the qualitative agreement is observed across all the models. Similar behaviour can
be seen also on the comparison of the separation zone positions in the Table 5.

The next expansion is allowed due to the separations which form an artificial
nozzle-like channel inside the exhaust pipe. These separations are described in the
Fig. 5.

5 Unsteady Flow Numerical Results

The movement of the exhaust valve is shown in the Fig. 6a (valve lift vs. time).
The next graph, Fig. 6b, shows the time evolution of the inlet pressure for a spark-
ignition (SI), a compression-ignition (CI) engine and the outlet pressure. Values are
taken from [4] and represent the boundary conditions for the unsteady simulations.
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Fig. 6 The movement of the exhaust valve (left), the operating conditions at the inlet and outlet
(right)

Fig. 7 SI engine. Contours of Mach number, velocity streamlines

Fig. 8 CI engine. Contours of Mach number, velocity streamlines

The computations start at t D 0:022 (see Fig. 6) and the exhaust valve cycle
lasts approximately 0.015 seconds. This interval has been resolved with the timestep
�t D 10�6 s and with a valve lift treshold 0.5 mm. The results of the unsteady
computations correspond to the valve lifts: 0:5 ! 3 ! 7 ! 11! 7 ! 3 mm for
both SI and CI inlet pressure evolutions.

The lift 7 mm has also been supplied by a pair of steady computations at
boundary condition of the CI engine for the given lift, see the Fig. 9. The last Fig. 10
shows the mass flow rate over the valve cycle for the SI and CI engines, the steady
solutions are mapped by two points. The last graph compares the pressure along the
streamline (see Fig. 4) for the unsteady (Fig. 8e) and steady (Fig. 9b) computations
at the same valve lift 7 mm.
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Fig. 9 Steady results. Boundary conditions correspond to CI engine at valve lift 7 mm in the
opening (left) and the closing phase. Contours of Mach number, velocity streamlines

Fig. 10 Comparison of the SI and CI engine model: mass flow rate (left). Comparison of the
unsteady and steady model: pressure development in the exhaust pipe (right)

6 Conclusions

The steady results have shown similar behaviour for all the turbulence models tested.
The flowfield of unsteady results are in qualitative agreement with equivalent

steady solutions, however, the mass flow rate can differ up to approximately 10%
(see Fig. 10). Also the pressure development along the mean streamline behind the
channel throat differs from the steady state.

In case of the CI engine (due to higher inlet pressure) one observes the
aerodynamical choking and larger supersonic regions, compared to the SI engine.
The SI model is choking-free in the dominant time of the valve cycle. The negligible
mass flow in the early and late stages of the valve cycle also justifies the use of grids
with minimal (non-zero) valve opening. The oncoming work will be aimed at more
advanced turbulence models for the unsteady simulations, flow characteristics at
different rpm and mainly on 3D unsteady simulations.
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Lowest order methods for diffusive problems
on general meshes: A unified approach
to definition and implementation

Daniele A. Di Pietro and Jean-Marc Gratien

Abstract In this work we propose an original point of view on lowest order
methods for diffusive problems which lays the pillars of a C++ multi-physics,
FreeFEM-like platform. The key idea is to regard lowest order methods as (Petrov)-
Galerkin methods based on possibly incomplete, broken polynomial spaces defined
from a gradient reconstruction. After presenting some examples of methods entering
the framework, we show how implementation strategies common in the finite
element context can be extended relying on the above definition. Several examples
are provided throughout the presentation, and programming details are often omitted
to help the reader unfamiliar with advanced C++ programming techniques.

Keywords Lowest-order methods, Domain specific embedded language, Petrov-
Galerkin methods, cell centered Galerkin methods, hybrid finite volume methods
MSC2010: 65Y99, 65N08, 65N30

1 Introduction

An increasing amount of attention has recently been given to the discretization
of diffusive problems on general meshes. Lowest order methods possibly featur-
ing conservation of physical quantities are traditionally employed in industrial
applications where computational cost is a crucial issue. In this context, the main
interest of handling general meshes is to reduce the number of elements required
to represent complicate domains. In sedimentary basin modeling, non-standard
elements may also appear due to the erosion of geological layers. Different ways to
adapt finite volume and finite element methods to general, possibly non-conforming
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polyhedral meshes have been proposed. In the context of cell centered finite volume
methods, we recall, in particular, the classical works of Aavatsmark, Barkve, Bøe
and Mannseth [1] and Edwards and Rogers [15] on multipoint fluxes. More recently,
two ways of extending the mixed finite element philosophy to general meshes have
been proposed independently by Brezzi, Lipnikov, Shashkov and Simoncini [5, 6]
(mimetic finite difference methods) and by Droniou and Eymard [13] (mixed/hybrid
finite volume methods). Yet another perspective is considered by Eymard, Gallouët
and Herbin [17], who show, in particular, that face unknowns can be selectively used
as Lagrange multipliers for the flux continuity constraint or be eliminated using
a consistent interpolator (SUSHI scheme). The strong link between the strategies
above has been highlighted by Droniou, Eymard, Gallouët and Herbin [14]. A
slightly different approach based on the analogy between lowest order methods in
variational formulation and discontinuous Galerkin methods has been proposed by
the author in [8–10] (cell centered Galerkin methods). The key advantage of this
approach is that it largely benefits from the well-established theory for discontinuous
Galerkin methods applied to diffusive problems [11]. All of the methods above have
been (or can be) extended to several classical problems for which the discretization
of second order diffusive terms is central.

In this work we present a unified implementation covering a wide range of
lowest order methods and applications based on similar experiences in the context
of finite element methods. Finite element libraries have nowadays reached a good
level of maturity, and user-friendly front-ends are provided in several cases. Just to
mention a few, we recall Feel++ [20] (formerly known as Life), FEniCS [19],
FreeFEM++ [7]. Our goal is to show that similar tools can be conceived and
implemented for lowest order methods. The starting point is to reformulate the
method at hand as a (Petrov)-Galerkin scheme based on possibly incomplete broken
affine spaces. This new unified perspective, drawing on the lines of [9], allows, in
particular, to recycle many ideas originally developed for finite elements. A major
difference, however, is that the lowest order methods considered herein are often
based on reconstructions of first order differential operators which may depend
on problem data such as the diffusion coefficient or the boundary condition. As
a consequence, the classical approach based on a table of degrees of freedom
computed from a mesh and a finite element (see, e.g., [16, Chapters 7–8]) is no
longer adequate. This issue is solved by introducing the programming counterpart of
tensor-valued linear combinations of (globally numbered) degrees of freedom. This
concept allows, in particular, to reproduce a finite element-like matrix assembly
with local contributions stemming from integrals over mesh elements and faces.
A further layer of abstraction is added by defining a domain-specific language
(DSL) for variational formulations. The DSL is closely inspired by that of Feel++,
the most noticeable differences being the type-based identification of test and trial
functions and the possibility to store the expressions defining linear and bilinear
forms independently of their algebraic representation. Another novelty is the
introduction of tensor-like notation for systems of PDEs. Domain-specific languages
and generative programming are an established tool to break down the complexity
of industrial applications by distinguishing the actors that tackle different aspects
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of the problem, and providing each of them with means of expression as close
as possible to his/her technical jargon. An important advantage of the DSL is
that it potentially allows to combine lowest order methods with more standard
discretizations techniques in a seamless way. In the presentation we try to avoid all
technicalities and to pinpoint the main difficulties as well as the proposed solutions.
Although the language of choice is C++, the listings are rather to be intended as
pseudo-code since simplifications are often made to improve readability. The actual
implementation is based on the Arcane framework [18], a proprietary platform
conjointly developed at CEA-DAM and IFP Energies nouvelles which takes care of
technical aspects such as memory management, parallelism and post-processing.

The material is organized as follows. In �2 we propose a unified perspective
and show how several lowest order methods can fit in there for a simple diffusion
problem. In �3 we discuss the implementation. More specifically, we first discuss the
solutions to the issues that arise when trying to mimic the finite element approach
and then present a DSL which allows to conceal the related technicalities.

2 Definition

2.1 Discrete setting

Let ˝ � R
d , d � 2, denote a bounded connected polyhedral domain. The first

ingredient in the definition of lowest order methods is a suitable discretization of˝ .
We denote by Th a finite collection of nonempty, disjoint open polyhedra Th D fT g
forming a partition of˝ such that h D maxT2Th

hT and hT denotes the diameter of
the element T 2 Th. Admissible meshes include general polyhedral discretizations
with possibly nonconforming interfaces; see Fig. 1. Mesh nodes are collected in the
set Nh and, for all T 2 Th, NT contains the nodes that lie on the boundary of T . We
say that a hyperplanar closed subset F of ˝ is a mesh face if it has positive .d�1/-
dimensional measure and if either there exist T1; T2 2 Th such that F � @T1 \ @T2
(and F is called an interface) or there exists T 2 Th such that F � @T \ @˝ (and
F is called a boundary face). Interfaces are collected in the set F i

h, boundary faces
in F b

h and we let Fh WD F i
h [F b

h . For all T 2 Th we set

FT WD fF 2 Fh j F � @T g: (1)

Symmetrically, for all F 2 Fh, we define

TF WD fT 2 Th j F � @T g:

The set TF consists of exactly two mesh elements if F 2 F i
h and of one if F 2 F b

h .
For all mesh nodes P 2 Nh, FP denotes the set of mesh faces sharing P , i.e.
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Fig. 1 Left. Mesh Th Right. Pyramidal submesh Ph

FP WD fF 2 Fh j P 2 F g: (2)

The diameter of a face F 2 Fh is denoted by hF . For every interface F 2 F i
h

we introduce an arbitrary but fixed ordering of the elements in TF and let nF D
nT1;F D �nT2;F , where nTi ;F , i 2 f1; 2g, denotes the unit normal to F pointing out
of Ti 2 TF . On a boundary face F 2 F b

h , nF denotes the unit normal pointing out
of˝ . The barycenter of a face F 2 Fh is denoted by xF WD

R
F

x=jF jd�1. For each
T 2 Th we identify a point xT 2 T (the cell center) such that T is star-shaped with
respect to xT . For all F 2 FT we let

dT;F WD dist.xT ; F /:

It is assumed that, for all T 2 Th and all F 2 FT , dT;F > 0 is comparable to hT .
Starting from cell centers we can define a pyramidal submesh of Th as follows:

Ph WD fPT;F gT2Th; F2FT ;

where, for all T 2 Th and all F 2 FT , PT;F denotes the open pyramid of apex xT
and base F , i.e.,

PT;F WD fx 2 T j 9y 2 F n @F; 9� 2 .0; 1/ j x D �yC .1 � �/xT g:

The pyramids fPT;F gT2Th; F2FT are nondegenerate by assumption. Let Sh be such
that

Sh D Th or Sh DPh: (3)

For all k � 0, we define the broken polynomial spaces of total degree � k on Sh,

P
k
d .Sh/ WD fv 2 L2.˝/ j 8S 2 Sh; vjS 2 P

k
d .S/g;

with P
k
d .S/ given by the restriction to S 2 Sh of the functions in P

k
d .

Remark 1 (Admissible mesh sequence). In the context of a priori convergence anal-
ysis for vanishing mesh size h it is necessary to bound some quantities uniformly
with respect to h. This leads to the concept of admissible mesh sequence. This topic
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is not addressed in detail herein since our focus is mainly on implementation. For a
comprehensive discussion we refer to [5, 6, 9, 13, 17]; see also [11, Chapter 1].

We close this section by introducing trace operators which are of common use
in the context of nonconforming finite element methods. Let v be a scalar-valued
function defined on˝ smooth enough to admit on allF 2 Fh a possibly two-valued
trace. To any interfaceF � @T1\@T2 we assign two nonnegtive real numbers !T1;F
and !T2;F such that

!T1;F C !T2;F D 1;
and define the jump and weighted average of v at F for a.e. x 2 F as

�v�F .x/ WD vjT1 � vjT2 ; ffvgg!;F .x/ WD !T1;F vjT1 .x/C !T2;F vjT2 .x/: (4)

If F 2 F b
h with F D @T \ @˝ , we conventionally set ffvgg!;F .x/ D �v�F .x/ D

vjT .x/. The subscript! is omitted from the average operator when !T1;F D !T2;F D
1
2
. The dependence on x and on the face F is also omitted if no ambiguity arises.

2.2 An abstract perspective

The key idea to gain a unifying perspective is to regard lowest order methods as
nonconforming methods based on incomplete broken affine spaces that are defined
starting from the space of degrees of freedom (DOFs) Vh. More precisely, we let

Th WD R
Th ; Fh WD R

Fh ;

and consider the following choices:

Vh D Th or Vh D Th � Fh.

In every case the elements of Vh are indexed with respect to the mesh entity they
belong to. Other choices for Vh are possible but are not considered herein for the
sake of conciseness. To fix the ideas, one can assume that the choice Vh D Th

corresponds to cell centered finite volume (CCFV) and cell centered Galerkin
(CCG) methods, while the choice Vh D Th � Fh leads to mimetic finite difference
(MFD) and mixed/hybrid finite volume (MHFV) methods.

The key ingredient in the definition of the broken affine space is a piecewise
constant linear gradient reconstruction Gh W Vh ! ŒP0d .Sh/�

d (the linearity of Gh is
a founding assumption for the implementation discussed in �3). Starting from Gh,
we can define the linear operator Rh W Vh ! P

1
d .Sh/ such that, for all vh 2 Vh,

8S 2 Sh; S � TS 2 Th; 8x 2 S; Rh.vh/jS D vTS C Gh.vh/jS �.x � xTS / 2 P
1
d .Sh/:

(5)



808 D.A. Di Pietro and J.-M. Gratien

F F

F F

(a) F = L-groups containing the face F

xT
xT2

xT1

F1

F2

(b) L-construction

Fig. 2 L-construction

The operator Rh maps every vector of DOFs onto a piecewise affine function
belonging to P

1
d .Sh/. Hence, we can define a broken affine space as follows:

Vh D Rh.Vh/ � P
1
d .Sh/: (6)

The operator Rh is additionally assumed to be injective, so that a bijective operator
can be obtained by restricting its codomain. The next section presents some
examples covering the methods listed above.

2.3 Examples

In this section we focus on the model problem

� r�.�ru/ D f; u D 0; (7)

where f 2 L2.˝/ and � 2 ŒP0d .Th/�
d is a piecewise constant, uniformly elliptic

tensor field (possibly resulting from a homogeneization process). Problem (7)
provides the paradigm to illustrate how selected lowest order methods can be recast
in the framework of �2.2.
The G-method As a first example we consider the special instance of CCFV
methods analyzed in [3]. A preliminary step consists in presenting the so-called
L-construction introduced in [2]. The key idea of the L-construction is to use d cell
and boundary face values (provided, in this case, by the homogeneous boundary
condition) to express a continuous piecewise affine function with continuous
diffusive fluxes. The values are selected using d neighboring faces belonging to
a cell and sharing a common vertex. More precisely, we define the set of L-groups
(see Fig. 2) as follows:

G WD fg �FT \FP ; T 2 Th; P 2 NT j card .g/ D d g ;
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with FT and FP given by (1) and (2) respectively. It is useful to introduce a symbol
for the set of cells concurring in the L-construction: For all g 2 G , we let

Tg WD fT 2 Th j T 2 TF ; F 2 gg:

Let now g 2 G and denote by Tg an element Tg such that g � FTg
(this element

may not be unique). For all vh 2 Vh we construct the function 
g
vh piecewise affine

on the family of pyramids fPT;F gF2g; T2Tg
such that: (i) 
g

vh .xT / D vT for all
T 2 Tg and 
g

vh .xF / D 0 for all F 2 g \ F b
h ; (ii) 
g

vh is affine inside Tg and
is continuous across every interface in the group: For all F 2 g \ F i

h such that
F � @T1 \ @T2,

8x 2 F; 
g
vh jT1 .x/ D 
g

vh jT2 .x/I
(iii) 
g

vh has continuous diffusive flux across every interface in the group: For all
F 2 g \F i

h such that F � @T1 \ @T2,

.�r
g
vh /jT1 �nF D .�r
g

vh /jT2 �nF :

For further details on the L-construction including an explicit formula for 
g
vh we

refer to [3]. For every face F 2 Fh we define the set GF of L-groups containing F ,

GF WD fg 2 G j F 2 gg; (8)

and introduce the set of nonnegative weights f&g;F gg2GF such that
P

g2GF &g;F D 1.
The trial space for the G-method is obtained as follows: (i) let Sh D Ph and
Vh D Th; (ii) let Gh D G

g
h with G

g
h such that

8vh 2 Th; 8T 2 Th; 8F 2 FT ; G
g
h.vh/jPT;F

D
X

g2GF
&g;Fr
g

vh jPT;F
:

We denote by R
g
h the reconstruction operator defined as in (5) with Gh D G

g
h and

let V g
h
WD R

g
h.Vh/. The G-method of [3] is then equivalent to the following Petrov-

Galerkin method:

Find uh 2 V g
h s.t. ag

h.uh; vh/ D
Z

˝

f vh for all vh 2 P
0
d .Th/,

where ag
h.uh; vh/ WD �

P
F2Fh

R
F
ff�rhuhgg�nF �vh� with rh broken gradient on Sh.

Remark 2 (An unconditionally stable method). The main drawback of the G-
method is that stability can only be proven under quite stringent conditions; see,
e.g., [3, Lemma 3.4]. A possible way to circumvent this difficulty has recently
been proposed by one of the authors [10] in the context of CCG methods. The
key idea is to use V g

h both as a trial and test space, and modify the discrete
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bilinear form to recover both consistency and stability. Since the discrete functions
in V g

h are discontinuous across the lateral faces of the pyramids in Ph, least-square
penalization of the jumps is required to assert stability in terms of coercivity. The
resulting method also enters the present framework, but is not detailed here for the
sake of conciseness.

A cell centered Galerkin method The L-construction is used to define a trace
reconstruction in the CCG method of [8, 10]. More specifically, for all F 2 F i

h,
we select one group gF 2 GF with GF defined by (8) and introduce the linear trace
operator Tg

h W Th ! Fh which maps every vector of cell centered DOFs vh 2 Th

onto a vector .vF /F2Fh
2 Fh such that

vF D
(



gF
vh .xF / if F 2 F i

h;

0 if F 2 F b
h :

(9)

The trace operator Tg
h is then employed in a gradient reconstruction based on

Green’s formula and inspired from [17]. More precisely, we introduce the linear
gradient operator G

green
h W Th � Fh ! ŒP0d .Th/�

d such that, for all .vT ; vF / 2
Th � Fh and all T 2 Th,

G
green
h .vT ; vF /jT D 1

jT jd
X

F2FT

jF jd�1.vF � vT /nT;F : (10)

The discrete space for the CCG method under examination can then be obtained as
follows: (i) let Sh D Th and Vh D Th; (ii) let Gh D G

ccg
h with G

ccg
h such that

8vh 2 Vh; G
ccg
h .vh/ D G

green
h .vh;T

g
h.vh//: (11)

The reconstruction operator defined taking Gh D G
ccg
h in (5) is denoted by R

ccg
h ,

and the corresponding discrete space by V ccg
h WD R

ccg
h .Th/. We define the weights

in the average operator as follows: For all F 2 F i
h such that F � @T1 \ @T2,

!T1;F D 	T2;F
	T1;FC	T2;F ; !T2;F D 	T1;F

	T1;FC	T2;F ;

where 	Ti ;F WD �jTi nF �nF for i 2 f1; 2g. Set, for all .uh; vh/ 2 V ccg
h � V ccg

h ,

a
ccg
h .uh; vh/ WD

Z

˝

�rhuh�rhvh �
X

F2Fh

Z

F

Œff�rhuhgg! �nF �vh�C �uh�ff�rvhgg! �nF �

C
X

F2Fh

�
�F

hF

Z

F

�uh��vh�;

(12)
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with rh broken gradient on Th, �F D 2	T1;F 	T2;F
	T1;FC	T2;F on internal faces F � @T1 \

@T2 and �F D �jT nF �nF on boundary faces F � @T \ @˝ . The user-dependent
parameter � should be chosen large enough to ensure stability. The CCG method
reads

Find uh 2 V ccg
h s.t. accg

h .uh; vh/ D
Z

˝

f vh for all vh 2 V ccg
h : (13)

The bilinear form a
ccg
h has been originally introduced by Di Pietro, Ern and Guer-

mond [12] in the context of dG methods for degenerate advection-diffusion-reaction
problems. For � D 1d , the bilinear form a

ccg
h becomes

a
sip
h .uh; vh/ D

Z

˝

rhuh�rhvh �
X

F2Fh

Z

F

Œffrhuhgg�nF �vh�C �uh�ffrhvhgg�nF �

C
X

F2Fh

�

hF

Z

F

�uh��vh�;

(14)

and asip
h is the bilinear form yielding the Symmetric Interior Penalty (SIP) method of

Arnold [4]. For further details on the link between CCG and discontinuous Galerkin
methods we refer to [8–10].

A hybrid finite volume method As a last example we consider a variant of the
SUSHI scheme of [17]; see also [14] for a discussion on the link with the MFD
methods of [5, 6]. This method is based on the gradient reconstruction (10), but
stabilization is achieved in a rather different manner with respect to (12). More
precisely, we define the linear residual operator rh W Th�Fh ! P

0
d .Ph/ as follows:

For all T 2 Th and all F 2 FT ,

rh.vT
h ; v

F
h /jPT;F

D d
1
2

dT;F

�
vF � vT �G

green
h .vT

h ; v
F
h /jT �.xF � xT /

�
:

We observe, in passing, that the factor d
1
2 can in general be replaced by a user-

defined stabilization parameter � > 0. The advantage of taking � D d
1
2 is that

it yields the classical two-point method on �-orthogonal meshes. The discrete
space for SUSHI method with hybrid unknowns is obtained as follows: (i) let
Sh D Ph and Vh D Th � Fh; (ii) let Gh D G

hyb
h with G

hyb
h such that, for all

.vT
h ; v

F
h / 2 Th � Fh, all T 2 Th and all F 2 FT ,

G
hyb
h .vT

h ; v
F
h /jPT;F

D G
green
h .vT

h ; v
F
h /jT C rh.vT

h ; v
F
h /jPT;F

nT;F : (15)

Denote by R
hyb
h the reconstruction operator defined by (5) with Gh D G

hyb
h . The

SUSHI method with hybrid unknowns reads
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Find uh 2 V hyb
h s.t. asushi

h .uh; vh/ D
Z

˝

f vh for all vh 2 V hyb
h ,

with asushi
h .uh; vh/ WD

R
˝
�rhuh�rhvh and rh broken gradient on Ph. Alternatively,

one can obtain a cell centered version by setting Vh D Th and replacing G
hyb
h

defined by (15) by Gh D Gcc
h with Gcc

h such that

8vh 2 Th; Gcc
h .vh/ D G

hyb
h .vh;T

g
h.vh//; (16)

and trace operator Tg
h defined by (9). This variant coincides with the version

proposed in [17] for homogeneous�, but it has the advantage to reproduce piecewise
affine solutions of (7) on Th when � is heterogeneous. The discrete space obtained
taking Gh D Gcc

h in (6) is labeled V cc
h .

3 Implementation

The goal of this section is to lay the foundations for a DSL embedded in the
C++ language which transposes the mathematical concepts of �2 into practical
implementations. To illustrate the capabilities of the DSL in a nutshell, compare
Listing 1 with the expression of the bilinear form a

sip
h (14). The material is organized

as follows: �3.1 introduces the algebraic back-end aiming at replacing the table of
DOFs in the context of a element-like assembly procedure; �3.2 deals with more
abstract concepts that mimic function spaces, linear and bilinear forms to offer a
functional front-end.

3.1 Algebraic back-end

In this section we focus on the elementary ingredients to build the terms appearing
in the linear and bilinear forms of �2, which constitute the back-end of the DSL
presented in �3.2.

Linear combination The point of view presented in �2 naturally leads to finite
element-like assembly of local contributions stemming from integrals over elements
or faces. However, a few major differences have to be taken into account: (i) the
stencil of the local contributions may vary from term to term; (ii) the stencil may
be data-dependent, as is the case for the methods of �2 based on the L-construction;
(iii) the stencil may be non-local, as DOFs from neighboring elements may enter in
local reconstructions. All of the above facts invalidate the classical approach based
on a global table of DOFs inferred from a mesh and a finite element in the sense
of Ciarlet. Our approach to meet the above requirements is to (i) drop the concept
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Listing 1 Implementation of the bilinear form a
sip
h defined by (14) using the DSL of �3

/ / Define discrete spaces, test and trial functions; c.f. Table 1
typedef FunctionSpace<span<Polynomial<d, 1> >,

gradient<GreenFormula<LInterpolator> >
>::type CCGSpace;

CCGSpace Vh(Th);
Vh.gradientReconstruction().trace().set(DiffusionCoefficient, �);
CCGSpace::TrialFunction uh(Vh, "uh");
CCGSpace::TestFunction vh(Vh, "vh");
/ / Define the bilinear form
Form2 ah =

integrate(All<Cell>::items(Th), dot(grad(uh),grad(vh)))
-integrate(All<Face>::items(Th), dot(N(),avg(grad(uh)))*jump(vh)

+dot(N(),avg(grad(vh)))*jump(uh))
+integrate(All<Face>::items(Th), �/H()*jump(uh)*jump(vh));

/ / Evaluate the bilinear form
MatrixContext context(A);
evaluate(ah, context);

of local element, and to refer to DOFs by a unique global index; (ii) introduce the
concept of LinearCombination (with template parameters to be specified in
what follows), which realizes a linear application from Vh onto the space Tr of real
tensors of order r � 2.

In practice, a LinearCombination is an efficient mapping of the DOFs in Vh

onto the corresponding coefficients in Tr . A LinearCombinationlr can indeed
be thought of as a list of couples .I; �l;I /I2Il where Il � Vh is the stencil (i.e., a
vector of global DOFs) and �l;I 2 Tr , I 2 Il, are the corresponding coefficients. To
account for strongly enforced boundary conditions, LinearCombination also
contains a constant coefficient �l;0, so that the evaluation at vh 2 Vh (obtained by
calling the function LinearCombination.eval(vh)) actually returns

lr .vh/ D
X

I2Il

�l;I vI C �l;0 2 Tr :

It is useful to define efficient operations such as the sum and subtraction of linear
combinations, as well as different kinds of products by constants. This allows, e.g.,
to implement the gradient G

green
h defined by (10) as described in line 6 of Listing 2.

When needed, each DOF I can be represented as a LinearCombination
containing only the couple .I; 1/. As a result, both the hybrid version with face
unknowns (15) and the cell centered version (11) of the gradient reconstruction
can be obtained from Listing 2 by simply changing the value returned by the trace
interpolator Th.eval(F) in line 5. We also pinpoint that the tensor order is a
template parameter of LinearCombination to reduce the need for dynamic
allocation.
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Listing 2 Implementation of the gradient reconstruction G
green
h (10) for an element T 2 Th. The

gradient G
ccg
h can be obtained by changing the value of the LinearCombination returned by

Th in line 5. Bufferization is used as a means to improve efficiency

LinearCombination<0> vT;
vT += LinearCombination<1>::Term(IT ,1.);
LinearCombination<1, Buffer> buffer;
for(F 2 FT ) {

const LinearCombination<0> & vF = Th.eval(F);

buffer +=
jF jd�1
jT jd (vF-vT)nT;F ;

}
LinearCombination<1, Vector> GT;
buffer.compact(GT);

In the implementation, particular care must be devoted to expressions con-
taining the sum or subtraction of two linear combinations lr1 and lr2, since
this involves computing the intersection of the corresponding set of DOFs, say
Il1 and Il2 respectively. To overcome this difficulty, complicate expressions are
computed in two steps: a first step in which duplicate DOF indices are allowed,
followed by a compaction stage where the algebraic sums of the corresponding
coefficients are performed. This is obtained by changing the value of the second
template parameter of LinearCombination. Specifically, in Buffer-mode a
LinearCombination efficiently supports adding terms and can appear in the
left-hand side of an assignment operator, while Vector-mode (default) only allows
to traverse its elements in a fixed order; c.f. lines 3 and 8 of Listing 2.

Linear and bilinear contributions Exploiting the concept of LinearCombina-
tion, it is possible to devise a unified treatment for local contributions stemming
from integrals over elements or faces. We illustrate the main ideas using the an
example: For a given T 2 Th and for uh; vh 2 V

ccg
h , we consider the local

contribution Aloc associated to the term

Z

T

�rhuh�rhvh:

For the sake of simplicity we focus on the case when the constant coefficient �l;0
is zero (in the example, this corresponds to the homogeneous Dirichlet boundary
condition in problem (7)). The key remark is that both .�rhuh/jT D �jTr.uhjT /
and .rhvh/jT D r.vhjT / can be represented as objects of type LinearCombina-
tion<1>, say l1u D .J; �lu;J /J2J and l1v D .I; �lv;I /I2I. The associated local
contribution reads

Aloc D ŒjT jd �lv;I ��lu;J �I2I; J2J
: (17)

Generalizing the above remark, one can implement local terms in matrix assembly
as BilinearContributions which can be represented as triplets .I; J;Aloc/
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Listing 3 Assembly of a bilinear and linear contribution (A represents here the global matrix b
the global right-hand side vector)

LinearCombination<r> lru, lrv;
/ / Assemble a bilinear contribution into the left-hand side
BilinearContribution<r> blc(�, lru, lrv);
A << blc;
/ / Assemble a linear contribution into the right-hand side
LinearContribution<r> lc(�, lrv);
b << lc;

containing two vectors of DOF indices I and J and the local matrix Aloc. Observe,
in particular, that I and J play the same role as the lines of the table of DOFs
corresponding to test and trial functions supported in T in standard finite element
implementations. As such, they are related to the lines and columns of the global
matrix A to which Aloc contributes,

A.I; J/ A.I; J/C Aloc: (18)

When the LinearCombinations concurring to a local term take values in Tr ,
the vector inner product in (17) should be replaced by the appropriate tensor con-
traction. The additional argument � appearing in Listing 3 serves as a multiplicative
factor for the whole expression (in the above example, � D jT jd ). More generally,
� can be a function of space and time, and may depend on discrete variables.

Similarly, LinearContributions serve to represent right-hand side contri-
butions. LinearContributions are not detailed here for the sake of brevity.
A typical assembly pattern is described in Listing 3. In particular, line 4 is the
programming counterpart of (18).

3.2 Functional front-end

A further level of abstraction can be reached defining a DSL that allows to conceal
all technical details and provide only the relevant components in a form as close as
possible to the mathematical formulations of �2. We focus here, in particular, on the
programming equivalent of discrete spaces and bilinear forms.

Function spaces Incomplete broken polynomial spaces defined by (6) are mapped
onto C++ types conforming to the FunctionSpace concept detailed in Listing 4.
The actual types are generated by a helper template class parametrized by a
containing polynomial space, labeled span, and a piecewise constant gradient
reconstruction, labeled gradient (labels for template arguments are here defined
using the boost::parameter library). An example of usage is provided in
lines 2–4 in Listing 1. The gradient reconstruction implicitly fixes both the
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Listing 4 FunctionSpace concept

class FunctionSpace {
/ / Types for trial and test functions
class TrialFunction;
class TestFunction;
/ / Constructor
FunctionSpace(const Mesh &);
/ / Constant value of GhjS for S 2 Sh as a vector-valued linear combination of DOFs
const LinearCombination<1> & Gh(S) const;
/ / Value of RhjS .x/ for x 2 S and S 2 Sh as a scalar-valued linear combination of DOFs
const LinearCombination<0> & Rh(S, x) const;

};

Table 1 span and gradient template parameters for the class FunctionSpace correspond-
ing to the discrete spaces of �2

Space Sh span gradient

P
0
d .Th/ Th Polynomial<d, 0> Null
V

g
h Ph Polynomial<d, 1> GFormula

V
ccg
h Th Polynomial<d, 1> GreenFormula<LInterpolator>

V
hyb
h Ph Polynomial<d, 1> SUSHIFormula<HybridUnknowns>
V cc
h Ph Polynomial<d, 1> SUSHIFormula<LInterpolator>

choice (6) for the space of DOFs and the choice (3) for Sh. The programming
counterparts of the function spaces appearing in �2 are listed in Table 1.

The key role of a FunctionSpace is to bridge the gap between the algebraic
representation of DOFs and the functional representation used in the methods of �2.
This is achieved by the functions Gh and Rh, which are the C++ counterpart of
the linear operators Gh and Rh respectively; see �2.1. More specifically, (i) for all
S 2 Sh, Gh(S) returns a vector-valued linear combination corresponding to the
(constant) restriction GhjS ; (ii) for all S 2 Sh and all x 2 S , Rh(S, x) returns
a scalar-valued linear combination corresponding to RhjS .x/ defined according
to (5). The linear combinations returned by Gh and Rh can be used to generate
LinearContributions and BilinearContributions to build linear and
bilinear terms as described above. A FunctionSpace also defines the types
TestFunction and TrialFunction that correspond to the mathematical
notions of test and trial functions in variational formulations. The main difference
between a TestFunction and a TrialFunction is that the latter is associated
to a vector of DOFs which is stored in memory. In addition, when used to define
bilinear contributions, test and trial functions are associated to the lines and columns
of the local matrix respectively. We conclude by observing that the choice of
identifying test and trial functions by their type is in contrast with the approach
of [20, �3.4], where special keywords accomplish this task.

Linear and bilinear forms Linear and bilinear forms are obtained as sums of
linear and bilinear terms resulting from the composition of TestFunctions and
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Listing 5 CCG discretization of the Stokes problem

CCGSpace::VectorTrialFunction uh(d);
CCGSpace::VectorTestFunction vh(d);
P0Space::TrialFunction ph;
P0Space::TestFunction qh;
Range::Index i(Range(0,dim-1));
Form2 ah, bh, sh;
ah = integrate(All<Cell>::items(Th),

sum(i)(dot(grad(uh(i)),grad(vh(i))) ))
+integrate(Internal<Face>::items(Th),

sum(i)(-dot(fn,avg(grad(uh(i)))))*jump(vh(i))
-jump(uh(i))*dot(N(),avg(grad(vh(i))))
+�/H()*jump(uh(i))*jump(vh(i))));

bh =-integrate(Internal<Face>::items(Th),
jump(ph)*dot(N(),avg(vh)));

sh = integrate(Internal<Face>::items(Th),H()*jump(ph)*jump(qh));

TrialFunctions (or unary modifications thereof) by suitable tensor contrac-
tions. Examples of tensor contractions in Listing 1 are the dot and * operators.
Products by functions of space, time and possibly discrete variables are also allowed.
In Listing 1 we also display examples of geometric operators such as N() and H(),
which allow to access face normals and diameters respectively. Unary modifiers
encountered in Listing 1 are grad, avg and jump, corresponding, respectively, to
the broken gradient on Sh and to the average and jump operators defined by (4).
When applied to a test or trial function, a unary modifier is an object capable of
returning a LinearCombination at evaluation.

By default, linear and bilinear forms are represented by vectors and (sparse)
matrices, but other representations are possible resulting, e.g., in matrix-free
implementations. In contrast with [20], the expression corresponding to a linear
(resp. bilinear) form is stored as a property of an object Form1 (resp. Form2)
instead of being evaluated on-the-fly. This allows, in particular, to change the
operations actually performed at evaluation according to a context. Changing the
representation of linear and bilinear forms thus amounts to changing the context
of evaluation. An example of evaluation is provided in lines 16–17 of Listing 1,
where the global matrix A is assembled according to the expression of ah and to
the procedure defined in MatrixContext. During the evaluation, each term in the
expression of ah generates a correspondingBilinearContribution, which is
in turn assembled as described in �3.1.

To conclude, we present a more complicate example involving a system of PDEs.
More specifically, we consider the Stokes problem:

�4uCrp D f in ˝; r�u D 0 in ˝; u D 0 on @˝;

with hpi˝ D 0 to ensure well-posedness. Let Xh WD ŒV
ccg
h �d � P

0
d .Th/=R. In

Listing 5 we present the implementation of the CCG method of [9, �3]: Find
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.uh; ph/ 2 Xh such that

ah.uh; vh/C bh.vh; ph/� bh.uh; qh/C sh.ph; qh/ D
Z

˝

f �vh; 8.vh; qh/ 2 Xh

where ah.uh; vh/ WD Pd
iD1 a

sip
h .uh;i ; vh;i /, bh.ph; vh/ WD �

P
F2F i

h

R
F
�ph�ffvhgg�nF

and sh.ph; qh/ WDPF2F i
h
hF
R
F
�ph��qh�. Notice the use of the sum keyword.
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A Unified Framework for a posteriori Error
Estimation in Elliptic and Parabolic Problems
with Application to Finite Volumes

Alexandre Ern and Martin Vohralı́k

Abstract We present a unified framework based on potential and flux recon-
struction for guaranteed and efficient a posteriori error estimation. We consider
as model problems the Laplace equation, the singularly perturbed convection-
diffusion-reaction equation, and the heat equation. The analysis is performed for
a wide class of space discretization schemes. Three simple conditions need to be
verified, which we do for cell- and vertex-centered finite volumes for all model
problems.

Keywords a posteriori error estimation, guaranteed upper bound, efficiency,
robustness, elliptic and parabolic problems
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1 Introduction

A posteriori error estimation is an important tool in practical computations for error
control and computational efficiency by adapting the discretization parameters. In
the context of finite element methods, residual-based a posteriori error estimation
has been initiated by Babuška and Rheinboldt [2] over three decades ago. The
application to finite volume (FV) schemes is more recent; we refer, among others,
to Achdou, Bernardi, and Coquel [1], Nicaise [19], and Ohlberger [20, 21].
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The purpose of this work is to present some recent results (and extensions
thereof) by the authors [9, 11, 28–30] in a general framework. The salient features
of this framework can be summarized as follows. Firstly, the error upper bound is
formulated in terms of a potential and a flux reconstruction which must comply with
some basic physical properties related to the model problem at hand. This approach
allows one to achieve guaranteed error upper bounds, that is, upper bounds without
undetermined constants, which is a key feature in the context of error control. Flux-
based a posteriori error estimation for elliptic problems hinges on the Prager–Synge
equality [22] and was first developed, among others, by Ladevèze [18] and Haslinger
and Hlaváček [14].

Next, the present approach does not rely on a specific discretization scheme (in
space), that is, we bound the difference between the exact solution and an arbitrary
approximate solution which is only required to be piecewise smooth. Owing to
this generality, the approach encompasses a wide class of schemes including FVs
and many other schemes (discontinuous Galerkin, mixed finite elements, etc.) in a
unified setting. At this stage, quite general meshes (e.g., with polygonal elements
and so-called hanging nodes) can be considered as well. Turning next to local
efficiency, that is, to local lower bounds on the error, we still proceed generally
without resorting to any specific discretization scheme under two additional assump-
tions. On the one hand, we suppose that the approximate solution, the potential
and flux reconstructions, and the problem data are piecewise polynomials and that
the meshes possess some regularity which we formulate by introducing a matching
simplicial, shape-regular submesh. On the other hand, we assume that the potential
and flux reconstructions satisfy some local approximation properties which are
expressed in terms of suitable local residuals of the approximate solution (plus its
jumps). Local lower bounds on the error then result from the combination of these
two assumptions and the fact that the local residuals provide local lower bounds on
the approximation error, as previously shown, e.g., in Verfürth [24].

This paper is organized as follows. In �2, we collect some useful notation and
basic ingredients for the analysis. Then, we present our results on three model
problems. In �3, we consider the Laplace equation. The aim is to present in detail
the key ideas in the context of a simple model problem. In �4, we turn to the
convection-diffusion-reaction equation. We focus on singularly perturbed regimes
resulting from dominant convection or reaction and show how the present approach
can achieve robustness with respect to physical parameters. In �5, we consider the
heat equation and the backward Euler scheme to discretize in time. The purpose is to
show how the present approach handles evolution problems including time-varying
meshes. In all cases, we first derive upper and lower bounds on the approximation
error in an abstract framework applicable to a wide class of discretization schemes
in space. Then, we show how the framework can be applied to cell- and vertex-
centered FV schemes. For the sake of simplicity, we only consider model problems
with homogeneous Dirichlet boundary conditions. Inhomogeneous Dirichlet and
Neumann boundary conditions can be taken into account following [29]. Finally,
we observe that some interesting applications of a posteriori error estimates are not
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covered herein; we mention, in particular, the use of such estimates as adaptive
stopping criteria for linear [15] and nonlinear [7] iterative solvers.

2 Basic ingredients

Let ˝ � R
d , d � 2, be a polygonal (polyhedral) domain (open, bounded, and

connected set). Let Th be a partition of˝ into polygonal elements. The elementsK
can be nonconvex or non star-shaped. We denote by hK the diameter ofK 2 Th and
by nK its outward normal. The partition Th can be nonmatching, that is, so-called
hanging nodes are allowed. We only suppose later on (cf. Assumption 3 below) the
existence of a simplicial matching and shape-regular submesh Sh. We say that � is
a mesh side if � has positive .d�1/-dimensional measure and if there are distinct
K;L 2 Th such that � D @K \ @L or if there is K 2 Th such that � D @K \ @˝ .
Mesh sides are collected in the set Eh. We denote by h� the diameter of � 2 Eh,
we fix a unit normal to � denoted by n� , and define the jump across � as the
difference following the direction of n� . Besides the usual Sobolev spaces H1.˝/

and H1
0 .˝/, we consider the so-called broken Sobolev space H1.Th/ spanned by

those functions whose restriction to each elementK 2 Th belongs toH1.K/ and the
so-called broken gradient operator rh acting elementwise on functions in H1.Th/.
Additionally, we need the space H.div;˝/ spanned by those functions in ŒL2.˝/�d

with square-integrable weak divergence. The notation Pk.Th/ stands for the space
of piecewise polynomials of total degree� k on Th, whereas, for Th simplicial and
matching, RTN.Th/ � H.div;˝/ stands for the (lowest-order) Raviart–Thomas–
Nédélec finite element space [3]. For all vh 2 RTN.Th/, vh�n� is constant on all
sides � 2 Eh, the univalued side fluxes hvh�n� ; 1i� representing the degrees of
freedom.

Let D � ˝ be a polygon or polyhedron. The Poincaré inequality states that

k' � 'Dk2D � CP;Dh
2
Dkr'k2D 8' 2 H1.D/; (1)

where 'D is the mean of ' overD given by 'D WD .'; 1/D=jDj. WhenD is convex,
the constantCP;D can be evaluated as 1=�2. The constantCP;D can also be evaluated
for nonconvex D, cf. [12, Lemma 10.2] or [5, �2]. Let now K � ˝ be a simplex
and let � be one of its sides. The trace inequality states that

k'k2� � Ct;K;� .h
�1
K k'k2K C k'kKkr'kK/ 8' 2 H1.K/: (2)

It follows from [23, Lemma 3.12] that the constant Ct;K;� can be evaluated as
j� jhK=jKj, see also [5, Theorem 4.1] for d D 2.
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3 Laplace equation

We consider the second-order elliptic problem

��p D f in ˝; (3a)

p D 0 on @˝; (3b)

with f 2 L2.˝/. The weak formulation consists in finding p 2 H1
0 .˝/ such that

.rp;r'/ D .f; '/ 8' 2 H1
0 .˝/: (4)

The scalar-valued function p 2 H1
0 .˝/ is called the potential and the vector-valued

function t WD �rp 2 H.div;˝/ the (diffusive) flux.

3.1 Abstract framework

The purpose of this section is to present a unified abstract framework for a posteriori
error estimation in problem (3a)–(3b). In order to proceed generally, without the
specification of the numerical scheme at hand, we merely suppose that we are
given a function ph 2 H1.Th/ (which will represent the discrete solution later
on). We define the energy (semi-)norm as jjjvjjj WD krhvk for all v 2 H1.Th/. The
a posteriori estimate for the energy error jjjp � phjjj is formulated in terms of a
potential reconstruction sh and a flux reconstruction th. These reconstructions must
comply with the following assumption.

Assumption 1 (Potential and flux reconstruction for (3a)–(3b)) There holds sh 2
H1
0 .˝/, th 2 H.div;˝/, and

.r�th; 1/K D .f; 1/K 8K 2 Th: (5)

Remark 1 (Assumption 1). Assumption 1 is concerned with basic physical con-
straints and local conservation. For the exact solution, p 2 H1

0 .˝/ and t 2
H.div;˝/ (physical constraints); moreover, r�t D f (conservation). The potential
and flux reconstructions mimic these continuous properties.

We can now state and prove our main result concerning the error upper bound,
see [27, Theorem 4.2] and [30, Theorem 4.5].

Theorem 2 (A posteriori estimate for (3a)–(3b)). Let p be the solution of (4) and
let ph 2 H1.Th/ be arbitrary. Let Assumption 1 be satisfied. Then,
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jjjp � phjjj �
(
X

K2Th

�2NC;K C .�R;K C �DF;K/
2

) 1=2

;

where, for all K 2 Th, the diffusive flux estimator, the nonconformity estimator,
and the residual estimator are respectively given by

�DF;K WD krph C thkK; (6a)

�NC;K WD kr.ph � sh/kK; (6b)

�R;K WD C1=2
P;KhKkf � r�thkK: (6c)

Proof. Following [17, Lemma 4.4], we obtain using sh 2 H1
0 .˝/,

jjjp � phjjj2 � jjjph � shjjj2 C
(

sup
'2H1

0 .˝/;jjj'jjjD1
.rh.p � ph/;r'/

) 2

:

The first term equals the Hilbertian sum of the nonconformity estimators, and we are
thus left with bounding the second term. Using (4) and th 2 H.div;˝/, we obtain

.rh.p � ph/;r'/ D .f; '/ � .rhph;r'/ D .f; '/ � .rhph C th;r'/C .th;r'/
D .f � r�th; '/� .rhph C th;r'/:

We now bound the two above terms separately. For all K 2 Th, let 'K be the mean
value of ' over K . Then, using (5), the Poincaré inequality (1), and the Cauchy–
Schwarz inequality, we infer

j.f � r�th; '/K j D j.f � r�th; ' � 'K/K j � �R;K jjj'jjjK:

Moreover, bounding j.rph C th;r'/K j � �DF;K jjj'jjjK is immediate using the
Cauchy–Schwarz inequality. The conclusion is straightforward. ut

We now address local efficiency and we still proceed generally, without any
notion of a particular numerical scheme. We make two more assumptions.

Assumption 3 (Local efficiency) We suppose that

• there exists a shape-regular matching simplicial submesh Sh of Th such that,
for each K 2 Th, the number of subelements L � K , L 2 Sh, is uniformly
bounded;

• for a fixed integer k � 1, the approximate solution ph and the datum f are in
Pk.Th/, and the flux reconstruction th is in ŒPk.Sh/�

d ;

Henceforth, we use A . B when there exists a positive constantC , that can only
depend on the space dimension d , the shape-regularity parameter of the mesh Sh,
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and the polynomial degree k, such that A � CB . For all K 2 Th, let TK denote all
the elements in Th having a nonempty intersection with K , EK all the sides in Eh
having a nonempty intersection with K , and Eint

K the subset of EK collecting those
sides lying in the interior of ˝ . We introduce the classical residual estimators for
problem (3a)–(3b) (cf. [24] for conforming methods and [1, 6] for nonconforming
methods) given by

�res;K WD hKkf C�phkTK C h1=2K kŒŒrhph�n��kEint
K
; (7a)

jphjJ;K WD h�1=2K kŒŒph��kEK : (7b)

Assumption 4 (Approximation property for (3a)–(3b)) We assume that, for all
K 2 Th,

kr.ph � sh/kK C krph C thkK . �res;K C jphjJ;K: (8)

We can now state and prove our main result concerning efficiency.

Theorem 5 (Efficiency of the estimate of Theorem 2). Let p be the solution of (4)
and let Assumptions 3 and 4 be satisfied. Then, for all K 2 Th,

�NC;K C �R;K C �DF;K . jjjp � phjjjTK C jphjJ;K:

Proof. Our first step is to observe that �NC;KC�R;KC�DF;K . �res;KCjphjJ;K . This
bound is immediate for �NC;K and �DF;K owing to Assumption 4, while for �R;K , the
triangle and inverse inequalities yield �R;K . hKkf C �phkK C krph C thkK .
�res;K C jphjJ;K , owing to Assumptions 3 and 4. Our second step is to observe that
�res;K . jjjp � phjjjTK , as can be derived using suitable bubble functions [24]. ut
Remark 2 (Equivalence result). If ph is in H1

0 .˝/, the jump seminorm jphjJ;K
vanishes. If the jumps of ph have zero mean on each side, proceeding as in [1,
Theorem 10] yields jphjJ;K . jjjp � phjjjTK . Finally, in the general case, an
equivalence result is achieved by adding the jump seminorm jp � phjJ;K D jphjJ;K
to both the error measure and the nonconformity estimator.

3.2 Application to finite volumes

We apply here the framework of �3.1 to cell- and vertex-centered finite volume
schemes, i.e., we specify sh and th, and we verify Assumptions 1, 3, and 4.

3.2.1 Cell-centered finite volumes

Definition 1 (Cell-centered FVs for (3a)–(3b)). A cell-centered FV scheme for
discretizing (3a)–(3b), cf. [12], reads: find Nph 2 P0.Th/ such that
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X

�2EK
FK;� D .f; 1/K 8K 2 Th: (9)

Here, EK collects the sides of K and FK;� is the diffusive flux through the side � ,
which depends on Nph. A simple example is the so-called “two-point” scheme. In
what follows, we do not need the specific form of FK;� , but only the conservation
property FK;� D �FL;� for all interior sides � shared by the elementsK and L.

Let us first suppose that Th is simplicial and matching. Following [13], let th 2
RTN.Th/ be prescribed on all K 2 Th by the fluxes FK;� as

.thjK �nK/j� WD FK;�=j� j: (10)

Since Nph is piecewise constant, the energy error jjjp� Nphjjj D krpk is not relevant.
Instead, following [28, �3.2], we first postprocess Nph locally into ph 2 P2.Th/ such
that, for all K 2 Th,

� rphjK D thjK; .ph; 1/K=jKj D NphjK: (11)

The potential sh is constructed by applying an averaging operator Iav W Pk.Th/ !
Pk.Th/ \ H1

0 .˝/ to ph. This operator sets the Lagrangian degrees of freedom
inside ˝ to the average of the values and sets 0 on @˝ . Theorem 2 can now
used to bound the error jjjp � phjjj observing that (5) in Assumption 1 results
from .r�th; 1/K D hth�nK; 1i@K D P

�2EK FK;� D .f; 1/K . Note that �DF;K D 0

from (11), which is typical for cell-centered finite volumes. To apply Theorem 5,
we verify Assumptions 3 and 4. Assumption 3 is straightforward with Sh D Th,
whereas Assumption 4 is trivial for th since krph C thkK D 0, while the bound on
kr.ph �Iav.ph//kK results from [1, 4, 16].

When Th is not simplicial or is nonmatching, the submesh Sh needs to be
introduced. We can then proceed as in [28, �5] and [10]. The averaging operator for
potential reconstruction maps into Pk.Sh/\H1

0 .˝/, while the flux is reconstructed
in RTN.Sh/ either by direct prescription of its degrees of freedom or by solving
local Neumann problems.

3.2.2 Vertex-centered finite volumes

We suppose here that Th is simplicial and matching. Let Dh be a dual mesh with
dual volumes D associated with the vertices of Th. We refer to Fig. 1, left, for an
illustration. We decompose Dh into D int

h and D ext
h , with D int

h associated with interior
vertices and D ext

h with boundary ones.

Definition 2 (Vertex-centered FVs for (3a)–(3b)). A vertex-centered FV scheme
for discretizing (3a)–(3b), cf. [12], reads: find ph 2 P1.Th/ \H1

0 .˝/ such that
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Th

Dh

Th

Sh

Fig. 1 Simplicial mesh Th and the dual mesh Dh (left); simplicial submesh Sh (right)

� hrph�nD; 1i@D D .f; 1/D 8D 2 D int
h : (12)

To apply the framework of �3.1, we first note that, since ph 2 H1
0 .˝/, we can

set sh D ph. Consequently, �NC;K D 0 in Theorem 2, which is typical for vertex-
centered finite volumes. To construct the flux th, we introduce a matching simplicial
submesh Sh, cf. Fig. 1, right. Such Sh is a refinement of both Th and Dh. The flux
th is reconstructed in RTN.Sh/ such that, at all interior sides � of Sh which lie on
the boundary of some D 2 Dh, th�n� WD �rph�n� . Owing to the Green theorem,
.r�th; 1/D D .f; 1/D for all D 2 D int

h . There are various ways of prescribing the
remaining degrees of freedom of th. We can merely prescribe them directly, but
better computational results are obtained if a local Neumann or Neumann/Dirichlet
problem is solved using mixed finite elements in each D 2 Dh [30, �4.3]. Verifying
Assumptions 1 and 3 is immediate, while Assumption 4 is proven as in [30, �5].

4 Convection-diffusion-reaction equation

We consider the convection-diffusion-reaction equation

�r�."rp �wp/C rp D f in ˝; (13a)

p D 0 on @˝; (13b)

with " > 0, r 2 L1.˝/, w 2 ŒW 1;1.˝/�d , and f 2 L2.˝/. We assume that w
is divergence-free with piecewise polynomial components and that r is piecewise
constant taking nonnegative values. We introduce the bilinear form B WD BSCBA

on H1
0 .˝/ �H1

0 .˝/ such that

BS.p; '/ WD ".rp;r'/C .rp; '/; (14a)

BA.p; '/ WD �.wp;r'/: (14b)

The weak formulation consists in finding p 2 H1
0 .˝/ such that
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B.p; '/ D .f; '/ 8' 2 H1
0 .˝/: (15)

The vector-valued functions t WD �"rp and q WD wp are in H.div;˝/ and are,
respectively, called the diffusive and convective flux.

4.1 Abstract framework

We present here a unified abstract framework for a posteriori error estimation in
problem (13a)–(13b). Extending the above bilinear forms to H1.Th/ � H1.Th/

using broken gradients, we now define the energy (semi-)norm as

jjjvjjj WD BS.v; v/
1=2 D �k"1=2rhvk2 C kr1=2vk2

�1=2 8v 2 H1.Th/: (16)

To achieve robustness of the a posteriori error estimates in the singularly perturbed
regime resulting from dominant convection, we introduce, following Verfürth [26],
the augmented (semi-)norm defined as

jjjvjjj˚ WD jjjvjjj C sup
'2H1

0 .˝/;jjj'jjjD1
BA.v; '/ 8v 2 H1.Th/: (17)

The a posteriori error estimate for jjjp � phjjj˚ is formulated in terms of a
potential reconstruction sh, a diffusive flux reconstruction th, and a convective
flux reconstruction qh. These reconstructions must comply with the following
assumption.

Assumption 6 (Potential and flux reconstruction for (13a)–(13b)) There holds
sh 2 H1

0 .˝/, th;qh 2 H.div;˝/, and

.r�th Cr�qh C rph; 1/K D .f; 1/K 8K 2 Th: (18)

We can now state and prove our main result concerning the error upper bound.
For simplicity, we assume that the mesh Th is matching and simplicial so as to use
the trace inequality (2). The general case can be treated by resorting to a matching
simplicial submesh.

Theorem 7 (A posteriori estimate for (13a)–(13b)). Let p be the solution of (15)
and let ph 2 H1.Th/ be arbitrary. Let Assumption 6 be satisfied. Assume that Th is
matching and simplicial. Then,

jjjp � phjjj˚ � � WD 2
(
X

K2Th

�2NC;K

) 1=2

C
(
X

K2Th

e�2NC;K

) 1=2

C 3
(
X

K2Th

.�R;K C �CDF;K/
2

) 1=2

:
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For all K 2 Th, the convective-diffusive flux estimator is given by

�CDF;K WD min.�CDF;1;K ; �CDF;2;K/; (19a)

�CDF;1;K WD "�1=2kahkK; (19b)

�CDF;2;K WD mKk.I �˘0/r�ahkK C em1=2
K

X

�2EK
C
1=2
t;K;�kah�n�k� ; (19c)

with ah WD thCqhC"rhph�wsh and˘0 theL2-orthogonal projector onto P0.Th/,
the nonconformity estimators by

�NC;K WD jjjph � shjjjK; e�NC;K WD min .e�NC;1;K;e�NC;2;K/; (20a)

e�NC;1;K WD "�1=2kbhkK; (20b)

e�NC;2;K WD mKk.I �˘0/r�bhkK C em1=2
K

X

�2EK
C
1=2
t;K;�kbh�n�k� ; (20c)

with bh WD w.ph � sh/, and the residual estimator by

�R;K WD mKkf � r�th � r�qh � rphkK: (21)

Here mK WD min.C 1=2
P;K"

�1=2hK; r�1=2K / and emK WD 2.1C C1=2
P;K /"

�1=2mK .

Proof. Following [27, Lemma 7.1] and [8, Lemma 3.1], we infer

jjjp � phjjj � jjjph � shjjj C sup
'2H1

0 .˝/;jjj'jjjD1
fB.p � ph; '/CBA.ph � sh; '/g ;

and proceeding as in [9, Lemma 4.2] yields

jjjp � phjjj˚ � 2jjjph � shjjj C sup
'2H1

0 .˝/;jjj'jjjD1
BA.ph � sh; '/

C 3 sup
'2H1

0 .˝/;jjj'jjjD1
fB.p � ph; '/CBA.ph � sh; '/g :

For the second term on the right-hand side, we obtain

BA.ph � sh; '/ D �.bh;r'/ �
X

K2Th

e�NC;K jjj'jjjK:

Indeed, for all K 2 Th, the Cauchy–Schwarz inequality on the one hand yields
�.bh;r'/K � "�1=2kbhkK jjj'jjjK D e�NC;1;K jjj'jjjK , while integrating by parts on
K leads to
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�.bh;r'/K D ..I �˘0/r�bh; '�'K/K�
X

�2EK
.bh�n� ; '�'K/� �e�NC;2;K jjj'jjjK;

owing to the Poincaré inequality (1) and the trace inequality (2). For the third term
on the right-hand side, we observe that

B.p � ph; '/CBA.ph � sh; '/ D .f � r�th � r�qh � rph; '/� .ah;r'/
�
X

K2Th

.�R;K C �CDF;K/jjj'jjjK;

using Assumption 6 for the residual term and proceeding for ah as for bh. ut
We now address the efficiency of the estimate of Theorem 7. In what follows,

. can include factors depending on the maximal ratio mK=mL for K;L hav-
ing a nonempty intersection. We introduce the classical residual estimators for
problem (13a)–(13b) given by

�res;K WD mKkf Cr�."rph � wph/ � rphkTK Cm1=2
K "�1=4kŒŒ"rhph���nkEint

K
;

(22a)

jphjJ;K WD ."1=2h�1=2K Cm1=2
K "�1=4kwkŒL1.K/�d C r1=2K h

1=2
K /kŒŒph��kEK : (22b)

We also set jvjJ WD
˚P

K2Th
jvj2J;K

�1=2
for all v 2 H1.Th/.

Assumption 8 (Approximation property for (13a)–(13b)) We assume that, for all
K 2 Th, with ch D ah or bh,

mKk.I �˘0/r�chkK Cm1=2
K "�1=4

X

�2EK
kch�n�k� . �res;K C jphjJ;K :

Proceeding as in [9, Theorems 3.2 and 3.4] leads to the following lower bound,
which is global in space owing to the use of a dual norm.

Theorem 9 (Efficiency of the estimate of Theorem 7). Let p be the solution
of (15) and let Assumption 8, and the second item of Assumption 3, be satisfied.
Then,

� . jjjp � phjjj˚ C jp � phjJ: (23)

Remark 3 (Fully robust equivalence result). Adding the jump seminorm j�jJ to the
error measure, a fully robust equivalence result is finally achieved in the form

jjjp � phjjj˚ C jp � phjJ � �C jphjJ . jjjp � phjjj˚ C jp � phjJ: (24)
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4.2 Application to finite volumes

We apply here the framework of �4.1 to cell- and vertex-centered finite volume
schemes, i.e., we specify sh, th, and qh, and we verify Assumption 6, and, at least in
some cases, Assumption 8.

4.2.1 Cell-centered finite volumes

Definition 3 (Cell-centered FVs for (13a)–(13b)). A cell-centered FV scheme for
discretizing (13a)–(13b), cf. [12], reads: find Nph 2 P0.Th/ such that

X

�2EK
FK;� C

X

�2EK
WK;� C rK NphjK D .f; 1/K 8K 2 Th: (25)

In addition to the diffusive fluxes FK;� , WK;� are the convective fluxes, also
depending on Nph. We do not need the precise form of the fluxes, but only FK;� D
�FL;� andWK;� D �WL;� for all interior sides � shared by the elementsK and L.

Following the ideas exposed in �3.2.1, we first define th;qh 2 RTN.Th/ by

.thjK �nK/j� WD FK;�=j� j; .qhjK �nK/j� WD WK;�=j� j: (26)

Define ph similarly to (11). It is immediate to see using the Green theorem that (26)
and (25) yield (18). A reasonable condition on WK;� in the context of upwind or
centered convective fluxes is that

kWK;�=j� j �w�nKphjKk� . kwkŒL1.K/�d kŒŒ Nph��k� : (27)

Then, Assumption 8 holds, up to the oscillation terms mKk.I � ˘0/r�.wph/kK ,
when additionally including j NphjJ;K on the right-hand side, and the efficiency
result (23) holds when additionally including jp � NphjJ on the right-hand side.

4.2.2 Vertex-centered finite volumes

Definition 4 (Vertex-centered FVs for (13a)–(13b)). A vertex-centered FV
scheme for discretizing (13a)–(13b), cf. [12], reads: find ph 2 P1.Th/ \ H1

0 .˝/

such that

� h"rph�nD; 1i@DChw�nDph; 1i@DC .rph; 1/D D .f; 1/D 8D 2 D int
h : (28)

Note that we only consider a centered convective flux.
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As in �3.2.2, we set sh D ph in Assumption 6. Consequently, �NC;K De�NC;K D 0
in Theorem 7. For the convective flux reconstruction, we simply set qh WD wph. For
the diffusive flux reconstruction, we introduce the mesh Sh (cf. Fig. 1, right) and
we define th 2 RTN.Sh/ such that th�n� WD �"rph�n� at all interior sides � of
Sh which lie on the boundary of some D 2 Dh. As in �3.2.2, local problems can
be solved to fulfill Assumption 6. Assumption 8 can be verified as in �3.2.2 for the
diffusive part, while the convective part is trivial owing to the choice of qh.

5 Heat equation

We consider the heat equation

@tp ��p D f in ˝ � .0; T /; (29a)

p D 0 on @˝ � .0; T /; (29b)

p.�; 0/ D p0 in ˝; (29c)

with f 2 L2.˝ � .0; T //, initial condition p0 2 L2.˝/, and final time T > 0.
The exact solution is in the space Y WD fy 2 X I @ty 2 X 0g, with X WD
L2.0; T IH1

0 .˝// and X 0 D L2.0; T IH�1.˝//, satisfies (29c) in L2.˝/, and is
such that, for a.e. t 2 .0; T /,

h@tp; 'i.t/C .rp;r'/.t/ D .f; '/.t/ 8' 2 H1
0 .˝/: (30)

The space-time energy norm is given by kykX WD
nR T
0
kryk2.t/ dt

o1=2
for

all y 2 X . Following Verfürth [25], we augment the energy norm by a dual
norm of the time derivative as kykY WD kykX C k@tykX 0 with k@tykX 0 WDnR T
0
k@tyk2H�1 .t/ dt

o1=2
.

5.1 Abstract framework

We consider an increasing sequence of discrete times ftng0�n�N such that t0 D 0

and tN D T and introduce the time intervals In WD .tn�1; tn� and the time steps
�n WD tn � tn�1 for all 1 � n � N . The meshes are allowed to vary in time; we
denote by T n

h the mesh used to march in time from tn�1 to tn, for all 1 � n � N ,
and by T 0

h the initial mesh. We suppose that the approximate solution on tn, denoted
by pnh� , is inH1.T n

h /, and we let ph� be the space-time approximate solution, given
by pnh� at each discrete time tn and piecewise affine and continuous in time. We
denote the space of such functions by P1

� .H
1.Th//. We also denote by P1

� .H
1
0 .˝//

the space of functions that are piecewise affine and continuous in time and H1
0 .˝/

in space and by P0
� .H.div;˝// the space of functions that are piecewise constant



834 A. Ern and M. Vohralı́k

in time and H.div;˝/ in space. For all 1 � n � N , we set ef n WD 1
�n

R
In
f .�; t/ dt ,

and, for 'h� 2 P1
� .H

1.Th//, @tpnh� WD 1
�n
.'nh� � 'n�1h� /.

We aim at measuring the error .p � ph� / in the k�kY -norm using the broken
gradient operator in the energy norm. The a posteriori error estimate is for-
mulated in terms of a space-time potential reconstruction sh� and a space-time
flux reconstruction th� . These reconstructions must comply with the following
assumption.

Assumption 10 (Potential and flux reconstruction for (29a)–(29c)) There holds
sh� 2 P1

� .H
1
0 .˝//, th� 2 P0

� .H.div;˝//, and, for all 1 � n � N and for all
K 2 T n

h ,

.@t s
n
h� ; 1/K D .@tpnh� ; 1/K; (31a)

.ef n � @tpnh� � r�tnh� ; 1/K D 0: (31b)

We can now state our main result concerning the error upper bound, see [11,
Theorem 3.6] and also [11, Theorem 3.2] for a slightly sharper bound.

Theorem 11 (A posteriori estimate for (29a)–(29c)). Let p be the solution of (30)
and let ph� 2 P1

� .H
1.Th// be arbitrary. Let Assumption 10 be satisfied. Then,

kp � ph�kY �
(

NX

nD1
.�nsp/

2

) 1=2

C
(

NX

nD1
.�ntm/

2

) 1=2

C �IC C 3kf � ef kX 0 ; (32)

with, for all 1 � n � N , the space and time error estimators given by

.�nsp/
2 WD

X

K2T n
h

3

�

�n.9.�nR;K C �nDF;K/
2 C .�nNC;2;K/

2/C
Z

In

.�nNC;1;K/
2.t/ dt

�

;

(33a)

.�ntm/
2 WD

X

K2T n
h

3�nkr.snh� � sn�1h� /k2K: (33b)

For all K 2 T n
h , the residual estimator, the diffusive flux estimator, and the

nonconformity estimators are given by

�nR;K WD C1=2
P;KhKkef n � @t snh� � r�tnh�kK; (34a)

�nDF;K WD krsnh� C tnh�kK; (34b)

�nNC;1;K.t/ WD krnh .sh� � ph� /.t/kK; 8t 2 In; (34c)

�nNC;2;K WD C1=2
P;KhKk@t .sh� � ph� /nkK: (34d)

Finally, the initial condition estimator is given by �IC WD 21=2ks0h� � p0k.
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We next turn to the efficiency of the estimate of Theorem 11. We introduce the
classical residual estimators for problem (29a)–(29c) given by

�nres;K WD hKkef n � @tpnh� C�pnh�kTK C h1=2K kŒŒrnhpnh� �n��kEint
K
; (35a)

jpnh� jJ;K WD h�1=2K kŒŒpnh� ��kEK : (35b)

Assumption 12 (Approximation property for (29a)–(29c)) We assume that for
all 1 � n � N and for all K 2 T n

h ,

krnh .pnh� � snh� /kK C krnhpnh� C tnh�kK . �nres;K C jpnh� jJ;K: (36)

We can now state our efficiency result, see [11, Theorem 3.9]. As in [25], the
lower bound is local in time, but global in space.

Theorem 13 (Efficiency of the estimate of Theorem 11). Let Assumption 12 hold,
let Assumption 3 hold at all discrete times, let both the refinement and coarsening
in time be not too abrupt, and let, for all 1 � n � N , .hn/2 . �n. Then, for all
1 � n � N ,

�nsp C �ntm . kp � ph�kY.In/ CJ n.ph� /C kf � ef kX 0.In/; (37)

where J n.ph� / WD
n
�n
P

K2T n�1
h
jpn�1h� j2J;K C �n

P
K2T n

h
jpnh� j2J;K

o1=2
.

Remark 4 (Equivalence result). We refer to [11, Remark 3.10] for bounding the
jumps J n.ph� /, see also Remark 2.

5.2 Application to finite volumes

We apply here the framework of �5.1 to cell- and vertex-centered finite volume
schemes, i.e., we specify sh� and th� , and we verify Assumptions 10 and 12. For
simplicity, we only discuss matching simplicial meshes.

5.2.1 Cell-centered finite volumes

Definition 5 (Cell-centered FVs for (29a)–(29c)). A cell-centered FV scheme
for (29a)–(29c), cf. [12], reads: for all 1 � n � N , find Npnh� 2 P0.T n

h / s. t.

1

�n
. Npnh� � pn�1h� ; 1/K C

X

�2EK
F n
K;� D .ef n; 1/K 8K 2 T n

h : (38)



836 A. Ern and M. Vohralı́k

As in �3.2.1, the fluxes tnh� are constructed from the side fluxes F n
K;� by an

equivalent of (10). An elementwise postprocessing as (11) is applied to obtain pnh�
from Npnh� . The potential is reconstructed at each discrete time from a modification of
the averaging operator of �3.1 where local bubble functions are used to satisfy (31a)
(cf. [11]). Then, owing to the construction of tn

h� , (31b) is also satisfied, whence
Assumption 10 follows. Finally, we set S n

h D T n
h ; Assumption 12 is trivial for th�

since krnhpnh� C tnh�kK D 0 and is proven for snh� in [11].

5.2.2 Vertex-centered finite volumes

Definition 6 (Vertex-centered FVs for (29a)–(29c)). A vertex-centered FV
scheme for (29a)–(29c), cf. [12], reads: for all 1 � n � N , find pnh� 2
P1.T n

h /\H1
0 .˝/ s. t.

.@tp
n
h� ; 1/D � hrpnh� �nD; 1i@D D .ef n; 1/D 8D 2 D int;n

h : (39)

As in �3.2.2, pnh� 2 H1
0 .˝/ for all 1 � n � N , so that we set snh� D pnh� .

Consequently, �nNC;1;K D �nNC;2;K D 0 in Theorem 11. The fluxes th� are constructed
as in �3.2.2, using the simplicial submeshes S n

h . Assumptions 10 and 12 are then
verified by proceeding as in �3.2.2.
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2. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM
J. Numer. Anal. 15(4), 736–754 (1978)

3. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, Springer Series in Computa-
tional Mathematics, vol. 15. Springer-Verlag, New York (1991)

4. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and
advection-diffusion equations. Math. Comp. 76(259), 1119–1140 (2007)

5. Carstensen, C., Funken, S.A.: Constants in Clément-interpolation error and residual based a
posteriori error estimates in finite element methods. East-West J. Numer. Math. 8(3), 153–175
(2000)

6. Dari, E., Durán, R., Padra, C., Vampa, V.: A posteriori error estimators for nonconforming
finite element methods. RAIRO Modél. Math. Anal. Numér. 30(4), 385–400 (1996)

7. El Alaoui, L., Ern, A., Vohralı́k, M.: Guaranteed and robust a posteriori error estimates and
balancing discretization and linearization errors for monotone nonlinear problems. Comput.
Methods Appl. Mech. Engrg. (2010). DOI 10.1016/j.cma.2010.03.024

8. Ern, A., Stephansen, A.F.: A posteriori energy-norm error estimates for advection-diffusion
equations approximated by weighted interior penalty methods. J. Comp. Math. 26(4), 488–510
(2008)



A Unified Framework for a posteriori Error Estimation 837

9. Ern, A., Stephansen, A.F., Vohralı́k, M.: Guaranteed and robust discontinuous Galerkin a
posteriori error estimates for convection–diffusion–reaction problems. J. Comput. Appl. Math.
234(1), 114–130 (2010)

10. Ern, A., Vohralı́k, M.: Flux reconstruction and a posteriori error estimation for discontinuous
Galerkin methods on general nonmatching grids. C. R. Math. Acad. Sci. Paris 347(7-8), 441–
444 (2009)

11. Ern, A., Vohralı́k, M.: A posteriori error estimation based on potential and flux reconstruction
for the heat equation. SIAM J. Numer. Anal. 48(1), 198–223 (2010)
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Staggered discretizations, pressure correction
schemes and all speed barotropic flows

L. Gastaldo, R. Herbin, W. Kheriji, C. Lapuerta, and J.-C. Latché

Abstract We present in this paper a class of schemes for the solution of the
barotropic Navier-Stokes equations. These schemes work on general meshes, pre-
serve the stability properties of the continuous problem, irrespectively of the space
and time steps, and boil down, when the Mach number vanishes, to discretizations
which are standard (and stable) in the incompressible framework. Finally, we show
that they are able to capture solutions with shocks to the Euler equations.

Keywords barotropic Navier-Stokes, staggered discretizations
MSC2010: 65M12

1 Introduction

The problem addressed in this paper is the system of the so-called barotropic
compressible Navier-Stokes equations, which reads:

@t N�C div. N� Nu/ D 0; (1a)

@t . N� Nu/C div. N� Nu˝ Nu/Cr Np � div.�.Nu// D 0; (1b)

N� D }. Np/; (1c)

where t stands for the time, N�, Nu and Np are the density, velocity and pressure in the
flow, and �.Nu/ stands for the shear stress tensor. The function }.�/ is the equation
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of state used for the modelling of the particular flow at hand, which may be the
actual equation of state of the fluid or may result from assumptions concerning
the flow; typically, laws as }. Np/ D Np1=� , where � > 1 is a coefficient which is
specific to the considered fluid, are obtained by making the assumption that the
flow is isentropic. This system of equations is posed over ˝ � .0; T /, where ˝ is
a domain of R

d , d � 3 supposed to be polygonal (d D 2) or polyhedral (d D 3),
and the final time T is finite. We suppose that the boundary of ˝ is split into @˝ D
@˝D [ @˝N , and we suppose that the velocity and density are prescribed on @˝D ,
while Neumann boundary conditions are prescribed on @˝N . The flow is assumed
to enter the domain through @˝D and to leave it through˝N . This system must be
supplemented by initial conditions for N� and Nu.

The objective of this paper is to present a class of schemes which enjoy
three essential features. First, these schemes work on quite general two and three
dimensional meshes, including locally refined non-conforming (i.e. with hanging
nodes) discretizations. Second, they respect the (expected) stability properties of
the continuous problem at hand, irrespectively of the space and time steps: positivity
of the density, conservation of mass, energy inequality. Third, they boil down, for
vanishing Mach numbers, to usual stable coupled or pressure correction schemes,
which means that the discretization enjoys a discrete inf-sup condition. Even if this
is beyond the scope of this paper, we remark that this latter property allows a control
of the pressure to be obtained through a control of its gradient; this property is used
as a central argument to obtain convergence results on model problems [5, 6, 8].

This paper is organized as follows. First, we describe the general form of the
schemes (Sect. 2). Then we show how stability requirements are taken into account
to design the discretization of the velocity convection term (Sect. 3). The final
expression for the schemes is given in Sect. 4, and their stability properties are
stated. Finally, we discuss their capability to capture solutions of the Euler equations
with shocks (Sect. 5).

2 The schemes: general form

2.1 Meshes and unknowns

Dσ

Dσ

σ =K\MK

σ
=
K\L

L

M

ε=Dσ \Dσ

Fig. 1 Notations for primal and dual cells

A finite volume mesh of ˝ is defined
by a set M of non–empty convex
open disjoint subsets K of ˝ (the
control volumes), such that N̋ DS
K2M NK. We denote by E the set

of edges (in 2D) or faces (in 3D),
by E.K/ � E the set of faces of
the cell K 2 M, by Eext and Eint

the set of boundary and interior faces,
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respectively. The set of external faces Eext is split in EN and ED , which stand for the
set of the faces included in @˝N and @˝D , respectively. Each internal face, denoted
by � 2 Eint, is supposed to have exactly two neighboring cells, say K; L 2M, and
NK \ NL D N� which we denote by � D KjL. By analogy, we write � D Kjext for

an external face � of K , even if this notation is somewhat incorrect, since K may
have more than one external face. The mesh M will be referred to hereafter as the
”primal mesh”.

The outward normal vector to a face � ofK is denoted by nK;� . ForK 2M and
� 2 E , we denote by jKj the measure of K and by j� j the .d � 1/-measure of the
face � .

Then, for � 2 E and K 2 M such that � 2 E.K/ (in fact, the only cell if
� 2 Eext and one among the two possible cells if � 2 Eint), we denote by DK;� a
subvolume ofK having � as a face (see Fig. 1), and by jDK;� j the measure ofDK;� .
For � 2 Eint; � D KjL, we set D� D DK;� [DL;� , so jD� j D jDK;� j C jDL;� j ,
and for � 2 Eext; � D Kjext,D� D DK;� , so jD� j D jDK;� j. The set of faces of the
dual cell D� is denoted by NE.D� /, and the face separating two adjacent dual cells
D� and D� 0 is denoted by " D � j� 0.

For 1 � i � d , the degree of freedom for the i th component of the velocity are
assumed to be associated to a subset of E , denoted by E .i/ � E , and are denoted by:

˚
u�;i ; � 2 E .i/

�
:

The sets of internal, external, Neumann and Dirichlet faces associated to the
component i are denoted by E .i/int , E .i/ext , E .i/N and E .i/D (so, for instance, E .i/int D
Eint \ E .i/). We consider the following assumption:

(H1) for 1 � i � d; 8K 2M;

[�2E .i /\E.K/DK;� D K and
X

�2E .i /\E.K/
jDK;� j D jKj;

which means that the volumesDK;� ; � 2 E .i/, are disjoint, and that, for 1 � i � d ,
.D�/�2E .i / is a partition of ˝ . The sets of faces, internal faces and Neumann faces
of this dual mesh are denoted by NE .i/, NE .i/int and NE .i/N respectively.

We suppose that the degrees of freedom for the pressure and the density are
associated to the primal cells, so they read

˚
pK; K 2M

�
;

˚
�K; K 2M

�
:

We denote by V the approximation space for the velocity, by V .i/, 1 � i � d ,
the approximation spaces for the velocity components and by Q the approximation
space for the pressure and the density, and we identify the discrete functions to their
degrees of freedom:

8v 2 V; vi 2 V .i/; 1 � i � d and vi D .v�;i /�2E .i /I 8q 2 Q; q D .qK/K2M:



842 L. Gastaldo et al.

For the velocity, since the concerned degrees of freedom are located on the bound-
ary, the Dirichlet boundary conditions are enforced in the approximation space:

for 1 � i � d; 8vi 2 V .i/; 8� 2 E .i/D ; v�;i D 1

j� j
Z

�

NuD;i d�;

where NuD;i stands for the i th component of the prescribed velocity.

2.2 The schemes

We now introduce the following notations and assumptions:

– for K 2 M and � 2 E.K/, we denote by u � nK;� an approximation of the
normal velocity to the face � outwardK ,

– for v 2 V , 1 � i � d and � 2 E .i/, we denote by .div�.v//.i/� an
approximation of the viscous term associated to � and to the component
i , and we suppose that the following assumption is satisfied:

(H2)
dX

iD1

X

�2E .i /
jD� j .div�.v//.i/� v�;i � 0:

– for q 2 Q, 1 � i � d and � 2 E .i/, we denote by .rq/.i/� the component i
of the discrete gradient of q at the face � , and we suppose that the following
assumption is satisfied for any q 2 Q and v 2 V :

(H3)
dX

iD1

X

�2E .i /
jD� j .rq/.i/� v�;i D

X

K2M
qK

X

�2E.K/
j� j v � nK;� :

With these notations, we are able to write the general form of the implicit scheme:

8K 2M;
jKj
ıt
.�K � ��K/C

X

�2E.K/
FK;� D 0: (2a)

For 1 � i � d; 8� 2 E .i/int [ E .i/N ;
jD� j
ıt

.��u�;i � ���u��;i /C
X

"2 NE.D� /
F�;"u";i

CjD� j .rp/.i/� C jD� j .div�.u//.i/� D 0;

(2b)

8K 2M; �K D }.pK/; (2c)
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where the � superscript denotes the beginning-of-step quantities, FK;� stands for the
mass flux leavingK through � , �� stands for an approximation of the density at the
face, and F�;" is a mass flux leaving D� through ". For the flux FK;� at the internal
face � D KjL, we choose an upwind approximation of the density:

FK;� D j� j u � nK;� �up
� ; with �up

� D �K if FK;� � 0; �up
� D �L otherwise. (3)

On � 2 ED , the density �up
� is given by the boundary condition, and, on � 2 EN ,

� D Kjext, �up
� D �K , which is indeed an upwind choice, since the flow is

supposed to enter the domain through @˝D and to leave it through @˝N . For the
velocity components at the dual faces, u";i , we choose either the centred or upwind
approximation on the internal faces, and the value at the face for the outflow faces.

A pressure correction scheme is obtained from (2) by splitting the resolution in
two steps:

1- Velocity prediction step – Solve for Qu 2 V the momentum balance equation
with the beginning-of-step pressure:

For 1 � i � d; 8� 2 E .i/int [ E .i/N ;
jD� j
ıt

.�� Qu�;i � ���u��;i /C
X

"2 NE.D� /
F�;" Qu";i

CjD� j .rp�/.i/� C jD� j .div�.Qu//.i/� D 0;

(4)

2 - Correction step – Solve for u 2 V and p 2 Q:

8K 2M;
jKj
ıt
.�K � ��K/C

X

�2E.K/
FK;� D 0: (5a)

For 1 � i � d; 8� 2 E .i/int [ E .i/N ;
jD� j
ıt

�� .u�;i � Qu�;i /C jD� j
�r.p � p�/�.i/

�
D 0;

(5b)

8K 2M; �K D }.pK/: (5c)

The equations of the correction step are combined to produce a nonlinear parabolic
problem for the pressure, which reads, 8K 2M:

jKj
ıt

�
}.pK/ � ��K

�C
X

�DKjL

�
up
�

��

j� j2
jD� j .�K � �L/C

X

�2E.K/\EN

�
up
�

��

j� j2
jD� j�K

D 1

ıt

X

�2E.K/
j� j �up

� Qu � nK;� ;
(6)
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where � 2 Q is defined by � D p � p�. Note that the second and third terms
at the left-hand side look like a finite volume discretization of a diffusion operator,
with homogeneous Neumann boundary conditions on ED and Dirichlet boundary
conditions on EN for the pressure increment, as usual in pressure correction schemes
(see [4] for a discussion on the effects of these spurious boundary conditions).

The standard discretizations entering the present framework are either low-
degree non-conforming finite elements, namely the Crouzeix-Raviart element [3]
for simplicial meshes or the Rannacher-Turek element [23] for quadrangles and
hexahedra, or, for structured cartesian grids, the MAC scheme [13,14]. We describe
here the construction of the diffusion and pressure gradient terms for the finite
element schemes, supposing for short that the velocity obeys homogeneous Dirichlet
boundary conditions on @˝ . Let � 2 Eint and '� be the finite element shape function
associated to � . In Rannacher-Turek or Crouzeix-Raviart elements, a degree of
freedom for each component of the velocity is associated to each face, so E .i/int D Eint,
for 1 � i � d . Let 1 � i � d be given, let e.i/ be the i th vector of the canonical
basis of R

d and let us define '.i/� by:

'.i/� D '� e.i/:

Then the usual finite element discretization of the diffusion term reads, for a constant
viscosity Newtonian fluid (that is supposing div�.u/ D ��uC .�=3/rdiv.u/, with
� the viscosity):

jD� j .div�.u//.i/� D
X

K2M
�

Z

K

ru W r'.i/� dx C �

3

Z

K

divu div'.i/� dx:

The pressure gradient term at the internal face � D KjL reads:

jD� j .rp/.i/� D
X

K2M

Z

K

p div'.i/� dx D j� j .pL � pK/ nK;� � e.i/:

3 The stability issue and consequences

3.1 A stability result for the convection

At the continuous level, let us assume that the mass balance @t�Cdiv.ˇ/ D 0 holds,
with ˇ a regular vector-valued function. Then, for all scalar regular functions u and
v, we have:

Z

˝

�
@t .�u/C div.uˇ/

�
v dx D

Z

˝

�
@t .�u/� 1

2
.@t�/ u

�
v dx C s.u; v/C 1

2

Z

@˝

u vˇ � n d� (7)
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where s is the following skew-symmetric bilinear form:

s.u; v/ D 1

2

Z

˝

vˇ � ru dx � 1
2

Z

˝

uˇ � rv dx:

Taking u D v D ui and summing over i , the first term gives the time derivative of the
kinetic energy, the second term vanishes and the last term corresponds to the kinetic
energy flux through the boundary of the domain. The following Lemma, proven in
[20], states a discrete counterpart of this computation in the case where the (possi-
ble) Dirichlet boundary conditions are homogeneous (see also [1] and [9] for a direct
estimate of the kinetic energy, for an implicit and explicit scheme respectively).

Lemma 1. Let us suppose that, for an index i , 1 � i � d , the following discrete
mass balance holds over the dual cells associated to the i th component of the
velocity:

8� 2 E .i/int [ E .i/N ;
jD� j
ıt

.�� � ��� /C
X

"2 NE.D� /
F�;" D 0: (8)

Let u; v 2 V .i/, and let us suppose that these discrete functions obey homogeneous
Dirichlet boundary. Then we have:

X

�2E .i /int[E .i /N
v�
h jD� j
ıt

.��u� � ���u�� /C
X

"2 NE.D� /
F�;"u"

i

� T˝;k.u; v/C T˝;s.u; v/C T@˝.u; v/; (9)

with:

T˝;k.u; v/ D
X

�2E .i /int[E .i /N

jD� j
ıt

.��u� � ���u�� / v� � 1
2
.�� � ��� / u� v� ;

T˝;s.u; v/ D S.u; v/� S.v; u/; S.u; v/ D 1

2

X

"2 NE .i /int ; "DD� jD�0
F�;" v" .u� 0 � u� /;

T@˝.u; v/ D 1

2

X

"2 NE .i /N ; �DD� jext

F�;" u" v":

Inequality (9) becomes an equality for a centred choice of the discretization of the
face values u".

Of course, T˝;s.u; u/ D 0, and an easy computation shows that:

T˝;k.u; u/ � 1

2ıt

X

�2E .i /int[E .i /N
jD� j

�
��u2� � ��� .u�� /2

�
:
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Applying Lemma 1 to each component of the velocity, the obtained term is thus the
discrete time-derivative of the kinetic energy, and may be used to obtain stability
estimates for the scheme (see Sect. 4).

Remark 1 (Non-homogeneous Dirichlet boundary conditions). The limitation to
homogeneous Dirichlet boundary conditions may be seen, from the proof, to stem
from the fact that no balance equation is written on the dual cells associated to faces
lying on @˝D . The problem may thus be fixed by keeping these degrees of freedom
and using a penalization technique.

Remark 2 (Artificial boundary conditions). Lemma 1 may be used to derive
artificial boundary conditions allowing the flow to enter the domain through @˝N ,
by first collecting the boundary terms in the variational form of the momentum
balance equation (i.e. adding to T@˝.u; v/ the terms issued from the diffusion and the
pressure gradient) and then imposing that the result may be written as a linear form
acting on the test function (see [2] for a similar development in the incompressible
case). The so-built boundary condition is observed in practice to give quite good
results when modelling external flows [20].

3.2 Discretization of the convection term

FW FC FE
FNW

FSW

FNE

FSE

K L

Fig. 2 Local notations for the definition of the mass
fluxes at the dual edges with the MAC scheme

The problem to tackle is now the
following one: on one side, the
discrete mass balance over the dual
cells (8) is necessary for the stabil-
ity of the scheme; on the other side,
the mass balance is only written
by the scheme(s) for the primal
cells (Equation (2a) or (5a)). We
are thus lead to express the mass

fluxes .F�;"/ through the dual faces as a function of the mass fluxes .FK;� / through
the primal faces, in such a way that the discrete balance over the primal cells yields
a discrete balance over the dual cells. We describe in this section how this may
be done, first for the MAC (structured) mesh (see also [15]) and, second, for the
Rannacher-Turek element on general quadrangles.

3.2.1 MAC scheme

For the MAC scheme, in two space dimensions and with the local notations
introduced on Fig. 2, the mass balance on the primal cells reads:
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K W jKj
ıt

.�K � ��K/ � FW � FSW C FC C FNW D 0;

L W jLj
ıt

.�L � ��L/� FC � FSE C FE C FNE D 0:

Multiplying both equations by 1=2 and summing them yields, for � D KjL:

jD� j
ıt

.�� � ��� /

� 1
2

�
FW C FC

� � 1
2

�
FSW C FSE

�C 1

2

�
FC C FE

�C 1

2

�
FNW C FNE

� D 0;
(10)

with the usual definition of the dual cell D� , which implies that jDK;� j D jKj=2
and jDL;� j D jLj=2, and with the following definition of the density on the face:

jD� j �� D jDK;� j �K C jDL;� j �L: (11)

Equation (10) thus suggests the following definition for the mass fluxes at the dual
faces:

left face: F�;" D �1
2

�
FW C FC

�I right face: F�;" D 1

2

�
FC C FE

�I

bottom face: F�;" D �1
2

�
FSW C FSE

�I top face: F�;" D 1

2

�
FNW C FNE

�
:

Note that this definition is rather non-standard: for instance, the flux at the left
face of D� , which is included in K , may involve densities of the neighbouring
primal cells. The extension of the above construction to the three-dimensional case
is straightforward.

3.2.2 Rannacher-Turek element

FW FE

FN

FS

Fσ,ε

Fig. 3 Local notations for the definition of
the mass fluxes at the dual edges with the
Rannacher-Turek element

A construction similar to that of the MAC
scheme may be performed for rectangular
meshes. For K and L two neighbouring
cells of M, the half-diamond cell DK;�

(resp.DL;� ) associated to the common face
� D KjL is defined as the cone with vertex
the mass center of K (resp. L) and with
basis � , the density �� is defined by the
weighted average (11), and the dual mass
fluxes are obtained by multiplying the mass
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balances overK and L by 1=4 and summing. With the local notations of Fig. 3, this
yields, for the dual mass flux F�;", an expression of the form:

F�;" D �1
8
FW C 3

8
FN � 3

8
FE C 1

8
FS : (12)

We now explain how to extend this formulation to general meshes.
Let us suppose that, for any cellK 2M, we are able to define the fluxes through

the dual faces included in K in such a way that:

(A1) The mass balance over the half-diamond cells is proportional to the mass
balance overK , in the following sense:

8� 2 E.K/; FK;� C
X

"2 NE.D� /; "�K
F�;" D 
�K

X

�2E.K/
FK;� ;

with
X

�2E.K/

�K D 1 and, for any � 2 E.K/, 
�K � 0.

(A2) The dual fluxes are conservative, i.e., for any " D D� jD0� , F�;" D �F� 0 ;".
(A3) The dual fluxes are bounded with respect to the .FK;� /�2E.K/:

8� 2 E.K/; 8 2 NE.D� / � K jF�;j � C max
n
jFK;� j; � 2 E.K/

o
:

In addition, let us define jDK;� j as:

jDK;� j D 
�K jKj; (13)

and �� , once again, by the weighted average (11). Then the dual fluxes satisfy the
required mass balance. Indeed, for � 2 Eint, � D KjL, we have:

jD� j
ıt

.�� � ��� /C
X

"2E.D� /
F�;"

D jDK;� j
ıt

.�K � ��K/C FK;� C
X

"2 NE.D� /; "�K
F�;"

CjDL;� j
ıt

.�L � ��L/C FL;� C
X

"2 NE.D� /; "�L
F�;"

D 
�K
h jKj
ıt

.�K � ��K/C
X

�2E.K/
FK;�

i
C 
�L

h jLj
ıt

.�L � ��L/C
X

�2E.L/
FL;�

i
D 0:

A similar computation leads to the same conclusion for the (half-)dual cells
associated to the Neumann boundary faces.
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The next issue is to check whether Assumptions (A1)-(A3) are sufficient for
the consistency of the scheme. In this respect, the following lemma [16] brings a
decisive argument.

Lemma 2. Let Assumptions (A1)-(A3) hold. For v 2 V and K 2 M, let vK be
defined by vK DP�2E.K/ 
�K v� . Let u 2 V , andR.u; v/ be the quantity defined by:

R.u; v/ D
X

�2Eint

v�
X

"2 NE.D� /;
"DD� jD0�

F�;"
u� C u� 0

2
�
X

K2M
vK

X

�2E.K/
FK;� u� :

Let us suppose that the primal fluxes are associated to a convection momentum field
ˇ, i.e. 8K 2 M; 8� 2 E.K/; FK;� D j� j ˇ� � nK;� . (For the schemes used
here, of course, ˇ depends the density and the velocity, see (3).) Then there exists C
depending only on the regularity of the mesh such that:

jR.u; v/j � C h jjˇjjl1 jjujj1 jjvjj1;

with jjˇjjl1 D max�2E jˇ� j and the discrete H1-norm on the dual mesh is defined
by:

8v 2 V; jjvjj1 D
X

K2M
hd�2K

X

�;� 02E.K/
.v� � v� 0/

2:

The quantity R.u; v/ compares two discrete analogues to
R
˝

v div.uˇ/ dx; the first
analogue is defined with the divergence taken over the dual meshes while the second
analogue is defined with the divergence over the primal cells. Let us suppose that
the discrete H1-norm of the solution is controlled thanks to the diffusion term.
Then, in a convergence or error analysis study in the linear case (i.e. with a given
regular convection field ˇ), Lemma 2 allows to replace the first discrete analogue by
the second one, thus substituting well defined quantities to quantities only defined
through (A1)-(A3). It is used in [16] to prove that the scheme is first-order for the
stationary convection-diffusion equation. The convergence for the constant density
Navier-Stokes equations (that is with ˇ D u) was also proven, controlling now
jjujjl1 by jjujj1 thanks to an inverse inequality.

The last task is now to build fluxes satisfying (A1)-(A3); this is easily done by
choosing 
�K D 1=4, and keeping for the expression of the dual fluxes as a function
of the primal fluxes the same linear combination (12) as in the rectangular case.
Note that this implicitly implies that the geometrical definition of the dual cells
has been generalized, since it is not possible in general to split a quadrangle in
four simplices of same measure (even if the quadrangle is convex) . The extension
to three dimensions only needs to deal with the rectangular parallelepipedic case,
which is quite simple [1]. Finding directly a solution to (A1)-(A3) may also be an
alternative route, to deal with more complex cases, as done in [16] to extend the
scheme to locally refined non-conforming grids.
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4 Schemes and stability estimates

In order to obtain the complete formulation of the considered schemes, we now have
to fix the time-marching procedure. This is straightforward for the implicit scheme,
and we concentrate here on the pressure correction scheme. The problem which we
face in this case is that the mass balance is not yet solved when performing the
prediction step. In our implementations in the ISIS computer code [18] developed
at IRSN on the basis of the software component library PELICANS [22], it is
circumvented by just shifting in time the density �� ; the mass balance on the dual
cells is recovered from the mass balance on the primal cells at the previous time
step. This has essentially two drawbacks. First, the trick indeed works only if the
time step is constant; for a variable time step, one has to choose between loosing
stability or consistency (locally in time, so fortunately, without observed impact in
practice). Second, the scheme is only first order in time.

In addition, stability seems to require an initial pressure renormalization step,
which is an algebraic variant of the one introduced in [12]. It seems however that
this step may be omitted in practice.

The algorithm (keeping in this presentation the pressure renormalization step)
reads, assuming that un, pn, �n and the family .F n

K;� / are known:

1- Pressure renormalization step – Let .	�/�2Eint be a family of positive real
numbers, and let �div.	r/M be the discrete elliptic operator from Q to Q
defined by, 8K 2M and q 2 Q:

��div.	r/M.q/
�
K
D

X

�DKjL
	�
j� j2
jD� j .qK � qL/C

X

�2EN ;�DKjext

	�
j� j2
jD� jqK:

Then QpnC1 2 Q is given by:

� div.
1

�n
r/M . QpnC1/ D �div.

1

Œ�n �n�1�1=2
r/M .pn/; (14)

the weights .�n� /�2Eint[EN and .�n�1� /�2Eint[EN being the densities involved in
the time-derivative term of the momentum balance equation.

2- Velocity prediction step – Solve for QunC1 2 V , for 1 � i � d and 8� 2
E .i/int [ E .i/N :

jD� j
ıt

.�n� QunC1�;i � �n�1� un�;i /C
X

"2 NE.D� /
F n
�;" QunC1";i

C jD� j .r QpnC1/.i/� C jD� j .div�.QunC1//.i/� D 0; (15)
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where the .F n
�;"/"2 NE.D� / are built as explained in the previous section, from

the primal fluxes at time tn.

3 - Correction step – Solve for unC1 2 V and pnC1 2 Q:

8K 2M;
jKj
ıt
.�nC1K � �nK/C

X

�2E.K/
F nC1
K;� D 0: (16a)

For 1 � i � d; 8� 2 E .i/int [ E .i/N ;
jD� j
ıt

�n� .u
nC1
�;i � QunC1�;i /C jD� j

�r.pnC1 � QpnC1/�.i/
�
D 0;

(16b)

8K 2M; �nC1K D }.pnC1K /: (16c)

The algorithm must be initialized by the data u0 2 V , ��1 2 Q and �0 2 Q

satisfying the discrete mass balance equation, and with the corresponding mass
fluxes .F 0

K;� /. A possible way to obtain these quantities is to evaluate u0 and ��1
from the initial conditions, and, as a preliminary step, to solve for �0 the mass
balance equation.

The upwinding in the discretization of the mass balance equation has for con-
sequence that any density appearing in the algorithm is positive (provided that the
initial density is positive). The existence and uniqueness of a solution to Steps 1 and
2 is then clear: these are linear problems with coercive operators (for Step 2, thanks
to the stability of the convection term). The existence of a solution to Step 3 may be
obtained by a Brouwer fixed point argument, using the fact that the conservativity
of the mass balance yields an estimate for �, so for p, and finally for u (in any norm,
since we work on finite dimensional spaces). The algorithm is thus well-posed.

Let us now turn to the energy estimate. At the continuous level, this relation is
obtained for the barotropic Navier-Stokes equations by choosing the velocity u as a
test function in the variational form of the momentum balance equation, writing the
convection term as the time derivative of the kinetic energy, and setting the pressure
work, namely� R

˝
p div.u/ dx, under a convenient form. This latter step is done by

the following formal computation. Let b.�/ be a regular function from .0;C1/ to
R, and let us multiply the mass balance by b0.�/. Using:

b0.�/div.� u/ D b0.�/Œu � r�C �div.u/� D u � rb.�/C �b0.�/div.u/

D div.b.�/u/C ��b0.�/� b.�/� div.u/;

we get:
@t
�
b.�/

�C div
�
b.�/ u

�C ��b0.�/� b.�/�div.u/ D 0:
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Choosing now the function b.�/ in such a way that �b0.�/ � b.�/ D }�1.p/,
integrating over˝ and supposing homogeneous Dirichlet boundary conditions over
@˝ yields:

�
Z

˝

p div.u/ dx D d

dt

Z

˝

b.�/ dx:

The following lemma [7] states a discrete counterpart of this computation.

Lemma 3. Let us suppose that the velocity field obeys homogeneous Dirichlet
boundary conditions. Let b.�/ be a regular convex function from .0;C1/ to R, and
.�?K/K2M be a positive family of real numbers. Then, with the upwind discretization
(3) of the mass balance equation, the family .�K/K2M is also positive, and we get:

X

K2M
b0.�K/

h jKj
ıt
.�K � ��K/C

X

�2E.K/
FK;�

i
�

1

ıt

X

K2M
jKj �b.�K/ � b.��K/

�C
X

K2M

�
�Kb

0.�K/� b.�K/
� X

�2E.K/
j� j u� � nK;� :

We are now in position to state the following stability result.

Theorem 1. Let us suppose that the velocity field obeys homogeneous Dirichlet
boundary conditions. The scheme (14)-(16) satisfies the following energy identity,
for 1 � n � N :

1

2

dX

iD1

X

�2E .i /int

jD� j �n�1� .un�;i /
2 C ıt

nX

kD1

X

�2E .i /
jD� j .div�.uk//.i/� uk�;i

C
X

K2M
jKj b.�nK/ �

1

2

dX

iD1

X

�2E .i /int

jD� j �.�1/� .u0�;i /
2 C

X

K2M
jKj b.�0K/:

The proof of this theorem is based on Lemma 1 and Lemma 3, and may be found,
for the essential arguments, in [7].

Remark 3. Let us suppose that the equation of state reads p D �� , with � 2
.1;C1/. Then an easy computation yields b.�/ D ��=.� � 1/ D p=.� � 1/.
Theorem 1 thus yields an estimate for the pressure in L1.0; T IL1/-norm. Note
that this estimate is however not sufficient to ensure that a sequence of pressures
obtained as discrete solutions converges to a function; in fact, in convergence studies
of numerical schemes [5,6,8] as well as in mathematical analysis of the continuous
problem [21], the pressure has to be controlled from estimates of its gradient.
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Fig. 4 Solution for the Sod shock-tube problem, obtained with a uniform mesh of 800 cells, with
a residual viscosity – left: velocity, right: pressure

5 Euler equations and solutions with shocks

In this section we briefly discuss the capability of the considered numerical schemes
to compute irregular (i.e. with discontinuities) solutions of inviscid flows.

The results obtained with the above described pressure correction scheme for
the so-called one-dimensional Sod shock-tube problem are displayed on Fig. 4 (see
[19] for a more detailed presentation). From numerical experiments, it seems that
this scheme converges when the velocity space translates are controlled, either
by upwinding the discretization of the velocity convection term, or by keeping
a residual viscosity in the (discrete) momentum balance equation. Numerical
experiments reported in [19] (addressing also an extension of this algorithm to the
barotropic homogeneous two-phase flow model [11]) confirm the stability of the
scheme, and show that the qualitative behaviour of the solution is captured up to
very large values of the CFL number (typically, in the range of 50).

From the theoretical point of view, for Euler equations (i.e., precisely speaking,
with a diffusion vanishing with the space step), the control that we are able to
prove on the solution of course does not yield (weak or strong) convergence in
strong enough norms to pass to the limit in the scheme. We can however prove the
following result: supposing convergence for the density in Lp.˝/, p 2 Œ1;C1/
and for the velocity in Lr .˝/, r 2 Œ1; 3�, it is possible to pass to the limit in the
discrete equations, provided that the viscosity vanishes as h˛ , ˛ 2 .0; 2/ for both
the implicit and the pressure correction scheme. In this case, the limit of a sequence
of discrete solutions is proven to satisfy the weak form of the Euler equations, and
so, in particular, the Rankine-Hugoniot conditions at the shocks.

6 Discussion and perspectives

The theoretical analysis of the schemes presented here has been undertaken for
model stationary problems: in [5, 8], we prove the convergence for the Crouzeix-
Raviart discretization of the Stokes equations (with the additional stabilization
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term needed for purely technical reasons); in [6], we prove the same result for
the (standard) MAC scheme. An extension, still for the MAC discretization, to the
stationary Navier-Stokes equations is underway.

From a practical point of view, a next step for the barotropic Navier-Stokes
equations should be to derive an upwind explicit version of the scheme presented
here; in this direction, an extension of Lemma 1 (stability of the velocity convection
term) to the explicit case may be found in [9].

The main objective is however to deal with the full (i.e. non barotropic, therefore
including an energy balance) Navier-Stokes equations. An unconditionally stable
pressure correction scheme has been derived for this problem [17], but extensive
tests of this scheme remain to be done. In particular, stability requires that the
internal energy remains non-negative (in practice, positive); the way we obtained
this property was to solve the internal energy balance, with a scheme able to preserve
the sign of the unknown. However, it is commonly agreed that, for the scheme
to converge toward the correct weak solution, a conservative discretization of the
total energy balance should be used. The actual occurrence of this problem, and
the possibility to circumvent it, possibly by adding stabilizing viscous terms, will
deserve investigations in the near future; a preliminary step on this route may be
found in [10].
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9. T. Gallouët, R. Herbin, J.-C. Latché: Kinetic energy control in explicit Finite-Volume
discretizations of the incompressible and compressible Navier-Stokes equations. International
Journal of Finite Volumes 2 (2010).



Staggered discretizations, pressure correction schemes and all speed barotropic flows 855
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20. C. Lapuerta, J.-C. Latché: Discrete artificial boundary conditions for compressible external
flows. In preparation (2011).

21. P.-L. Lions: Mathematical Topics in Fluid Mecanics. Volume 2. Compressible Models. Oxford
Lecture Series in Mathematics and its Applications, vol. 10 (1998).

22. PELICANS: Collaborative Development Environment.
https://gforge.irsn.fr/gf/project/pelicans.

23. R. Rannacher, S. Turek: Simple Nonconforming Quadrilateral Stokes Element. Numerical
Methods for Partial Differential Equations, 8, 97–111 (1992).

The paper is in final form and no similar paper has been or is being submitted elsewhere.



ALE Method for Simulations
of Laser-Produced Plasmas
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Abstract Simulations of laser-produced plasmas are essential for laser-plasma
interaction studies and for inertial confinement fusion (ICF) technology. Dynamics
of such plasmas typically involves regions of large scale expansion or compression,
which requires to use the moving Lagrangian coordinates. For some kind of flows
such as shear or vortex the moving Lagrangian mesh however tangles and such flows
require the use of arbitrary Lagrangian Eulerian (ALE) method. We have developed
code PALE (Prague ALE) for simulations of laser-produced plasmas which includes
Lagrangian and ALE hydrodynamics complemented by heat conductivity and laser
absorption. Here we briefly review the numerical methods used in PALE code and
present its selected applications to modeling of laser interaction with targets.
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Understanding of laser-produced plasma behavior and evolution is crucial for
studies of intense laser interaction with targets and for inertial confinement fusion
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of compressible fluid, complemented by laser absorption and heat transfer, which
written in Lagrangian coordinates have the form

1

�

d�

dt
D �div U; (1)

�
dU
dt
D �grad p; (2)

�
d"

dt
D �p div UC div.� grad T /� div I; (3)

where � is density, U velocity, p pressure, " specific internal energy (energy per
unit mass), T temperature, � heat conductivity, I laser energy flux density (Poynt-
ing vector) and d=d t D @=@ t C u � grad is the total Lagrangian time derivative
including convective terms. The system is closed by the equation of state coupling
density, internal energy, pressure and temperature. Laser-produced plasma is usually
modeled in the Lagrangian coordinates moving with the fluid, which are able to deal
with moving boundaries and large scale deformation like compression or expansion
appearing typically in laser-produced plasmas. Some types of plasma flows such as
shear or vortex can result in tangling of the computational mesh. This problem can
be avoided by Arbitrary Lagrangian-Eulerian (ALE) method [8], which smooths
(rezones) the computational mesh and interpolates (remaps) conservative variables
to the smoothed mesh after several Lagrangian time steps. Standard Lagrangian
numerical hydrodynamics employs staggered method [3,4,6], however one can use
composite schemes [18, 26] and recently much attention has been attracted by the
cell-centered methods [19, 22, 23].

We have developed a 2D ALE code PALE (Prague ALE) for laser-produced
plasma simulations, which uses a 2D quadrilateral, logically rectangular compu-
tational mesh, We shortly outline the numerical methods employed in the PALE
code for ALE hydrodynamics, heat conductivity and laser absorption. The PALE
code capabilities are demonstrated on simulations of laser interaction with targets.

2 Hydrodynamics

The hydrodynamical ALE method consists from Lagrangian, rezone and remap
phases. Rezone and remap is applied either regularly after fixed number of
Lagrangian time steps or adaptively when quality of the moving mesh becomes bad.

2.1 Staggered Lagrangian Method

We consider a 2D staggered location of physical variables: velocity vector is defined
at point (node) p of the computational mesh and is denoted Up D .up; vp/,
specific internal energy "c is defined at the center of the cell c and density �pc
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is defined at the center of the subcell ˝pc . The subcell ˝pc is the quadrilateral
whose vertexes are point p, center of cell c and two midpoints of two edges of
cell c originating at point p. In the Lagrangian gas dynamics the nodes move
with the local fluid velocity, and the mass of a subcell is assumed to be constant
in time. Conservative variables are the mass m, momentum mU and total energy
E D m �"C 1

2
jjUjj2�. This discretization is based on the philosophy of compatible

hydrodynamics algorithms introduced in [4]. The Lagrangian phase is conservative,
that is, some discrete form of mass, momentum, and total energy is conserved [4].
The mass of any subcell is given by mpc D �pc Vpc , where Vpc is the volume of
the subcell. Then masses of the cell and node are defined by summation of subcell
masses

mc D
X

n2P.c/

mpc and mp D
X

c2C .p/
mpc

over set of points P.c/ being vertexes of the cell c and set of cells C .p/ sharing
the node p. All these masses participate in the Lagrangian phase of an ALE
method, subcell mass mpc is assumed to be Lagrangian, so it does not change
with time, therefore �pc.t/ D mpc=Vpc.t/, which can be considered as a definition
of subcell density for given constant subcell mass. Masses of cells and nodes are
also Lagrangian because they are sums of subcell masses. As in the subcell density
definition, one gets

�c.t/ D mc

Vc.t/
D

P
p2P.c/ mpc

P
p2P.c/ Vpc.t/

: (4)

The total mass M , which is conserved during the Lagrangian phase, is M DP
pc mpc D P

c mc D P
p mp. In this part we show how momentum and specific

internal energy can be discretized in such a way that mass, momentum and total
energy are conserved.

Assume a general force Fpc modeling the action of subcell pc on point p is
given, then a general force for point p can be assembled as

Fp D
X

c2C .p/
Fpc: (5)

Then spatial discretization of the momentum equation is defined by

mp

dUp

dt
D Fp: (6)

The discrete total energy over the whole domain is given by the sum of internal
energy and kinetic energy

E D
X

c

mc"c C
X

p

1

2
mpjjUpjj2; (7)
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and conservation implies d E =d t/ D 0. However the differentiation of (7) with
respect to time formally gives

d E

d t
D
X

c

mc

d"c
dt
C
X

p

mp

dUp

dt„ ƒ‚ …
DFp

�Up;

D
X

c

0

@mc

d"c
dt
C

X

p2P.c/

Fpc � Up

1

A D 0: (8)

If the sum over cells is set to zero, for each cell this gives an expression for the
change in internal energy as

mc

d"c
dt
D �

X

p2P.c/

Fpc � Up; (9)

such that (8) is true and total energy conservation is preserved. This is the semi-
discrete form of internal energy equation which was derived from the total energy
conservation.

Provided that the subcell force Fpc is known, the numerical scheme is defined
by equations for the velocity (6), specific internal energy (9) and density (4)
defined from the mesh motion. The mesh motion is modeled by the set of ordinary
differential equations dXp=dt D Up being solved at each mesh point p for its
position Xp.t/. Remark that whatever subcell force Fpc one wishes to consider
(pressure force, viscosity, elastic-plastic contribution, etc.), the conservation of
discrete momentum and total energy as defined by (7) is fulfilled. In other words,
the mechanism responsible for the conservativeness is independent of the way the
forces are constructed.

The subcell force is an combination of three forces: a pressure force Fppc that

approximates grad p in the momentum equation (2), a subzonal pressure force Fıppc
designed to prevent the Hourglass mesh motion and an artificial viscosity force Fv

pc

designed to treat shock waves

Fpc D Fppc C Fıppc C Fv
pc: (10)

The pressure force in subcell ˝pc with boundary @˝pc is given by

Fppc D �
Z

˝pc

grad p dV D �
Z

@˝pc

pN dl: (11)

The subzonal pressure force Fıppc [6,20], given by the difference between the subcell
pressure and the cell pressure ppc �pc and the geometry of the cell, acts against the
Hourglass mode motion, which might invert the cell (moving cell is being inverted
when its node crosses another edge of the cell).
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The last part of the subcell force is the artificial viscosity devoted to deal with
shock waves. The simplest viscosity in cell c, across which the velocity has a
difference�U, is in the compression regime�U < 0 [3]

Qc D c1�cac j�Uj C c2�c.�U/2: (12)

Constants c1; c2 are of the order of unity and ac is the sound speed. In the expansion
regime�U � 0 viscosity is set to zero. The artificial viscosity has the dimension of
pressure and is generally added to the classical cell pressure producing the viscosity
force Fv

pc in the same way as pressure force (11), usually preventing spurious
numerical oscillations on shock waves. Many formulations of artificial viscosity
in more than one dimension use the form given above with multidimensional
modifications as edge artificial viscosity [3, 5] or tensor artificial viscosity [2].

2.2 Rezoning Phase

The rezoning phase of the ALE method consists in moving the nodes of the
Lagrangian mesh to improve the geometric quality of the grid while keeping the
rezoned grid as close as possible to the Lagrangian grid. This constraint must
be taken into account to maintain the accuracy of the computation gained by the
Lagrangian phase and to minimize the error of the remap phase. If the Lagrangian
phase produces non-valid (inverted) cells then we have to use an untangling
procedure [27]. The rezoning phase of the ALE method covers mesh smoothing
and untangling.

The mesh resulting from the Lagrangian step can be of low quality and smoothing
process changes the mesh in a way to improve it. One of the simplest smoothing
methods is Winslow smoothing method [28]. The new positions of the mesh nodes
are computed (with possible iteration over l starting at the old Lagrangian mesh) in
case of logically rectangular mesh as

XlC1
i;j D

1

2 .˛l C �l /
�
˛l .Xl

i;jC1 C Xl
i;j�1/C �l .Xl

iC1;j C Xl
i�1;j /

�1
2
ˇl .Xl

iC1;jC1 � Xl
i�1;jC1 C Xl

i�1;j�1 � Xl
iC1;j�1/

�
,

where the coefficients ˛l D x2
 C y2
 , ˇl D x
 x� C y
 y�, �l D x2� C y2� , and
.
; �/ are logical coordinates 
i D i=nx, �j D j=ny for i D 0; : : : ; nx and
j D 0; : : : ; ny . The derivatives x
; x� are approximated by the central differences
.x
/i;j � .xiC1;j � xi�1;j /=.2�
/; .x�/i;j � .xi;jC1 � xi;j�1/=.2��/ and
similarly for y.

Further rezoning methods include the condition number smoothing [10] and the
Reference Jacobian Method [11].



862 Liska R. et al.

2.3 Remapping Phase

The remapping stage of the ALE method is in fact a conservative interpolation of
the discrete conserved quantities from the old Lagrangian mesh to the new smoother
one. The remapping stage consists of three steps: reconstruction, integration and
repair. First, the remapped conservative function g (e.g. density �) is reconstructed
from the discrete values by a piecewise linear function on each old cell, e.g. with
the Barth-Jespersen limiter [1]. Then, the reconstructed piecewise linear function
is integrated over each new cell Qc (objects related to the new mesh are accented
by a tilde here) to get the total value GQc D

R
Qc g dx dy of the conserved quantity

(e.g. mass of the cell) inside the new cell, which defines the remapped density of
conserved quantity gQc D GQc=VQc, where VQc is the volume of the cell Qc.

The natural exact integration of the piecewise linear function over the new cell
requires computing intersections of the new cell with all neighboring old cells. For
example on logically rectangular mesh see Fig. 1 (a) where the new cell Qci;j D
Œ QPi;j ; QPiC1;j ; QPiC1;jC1; QPi;jC1� intersects with nine (3 � 3 patch) old cells ck;l ; k D
i � 1; i; i C 1; l D j � 1; j; j C 1. The linear reconstruction at the old cell c0

g.x; y/ D gc0 C
	
@g

@x




c0
.x � xc0/C

	
@g

@y




c0
.y � yc0/;

(where .xc0 ; yc0/ is the centroid of the cell c0) inside each such intersection I Qcc0 DQc \ c0 results in the contribution

G
I Qc
c0
D gc0

Z

I Qc
c0

dx dy C
�
@g

@x

�

c0

 Z

I Qc
c0

x dx dy � xc0
Z

I Qc
c0

dx dy

!

(13)

C
�
@g

@y

�

c0

 Z

I Qc
c0

y dx dy � yc0
Z

I Qc
c0

dx dy

!

to the whole integral GQc . The integrals in this contribution over the polygonal
intersection are transformed using Green’s theorem into integrals over the edges
of the polygonal intersection and computed analytically. The exact integration is
computationally rather expensive because it requires finding all cell intersections.

The approximate integration over swept regions [14], which are the regions swept
by the cell edges moving from the old mesh to the new position in the new mesh (see
Fig. 1 (b)), is much faster. The contribution from each of the four swept regions has
similar form as (13) with the intersection I Qc

c0 replaced by the swept region. Green’s
theorem again transforms integrals over polygons into integrals over the edges of the
polygon, which can be exactly evaluated. In the swept region method the integrals of
the reconstructed function over the swept regions can be interpreted as remap fluxes
through the mesh edges and the remapping formula can be written in a conservative
flux form.
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Fig. 1 Old (dashed) and new (solid segments) mesh with intersection regions for the exact
integration (a) and swept regions for the approximate integration (b)

The last step of the remapping phase is repair [21] which conservatively
redistributes conserved quantities in such a way that the remapping does not
introduce any new local extrema. The repair is a post-processing adhoc correction.
Better treatment, based on flux corrected transport (FCT) and called flux corrected
remap [16, 17], guarantees that new local extrema are not introduced.

For the staggered scheme the remapping is however more complicated than what
is outlined above as thermodynamical quantities are cell or subcell centered and
velocity (thus also momentum) is centered at mesh nodes. This means that the
internal energy is defined at cells and the kinetic energy at nodes and one has to
be careful to conserve the total energy during the remapping step. The basic idea to
treat this issue is to transform all quantities to subcells, remap on the subcell mesh
and transform the quantities back to staggered form (density in subcells, internal
energy in cells and velocity in nodes). The most accurate method employs the
rigorously derived, matrix based, invertible transformation between the nodal and
subcell velocities [20].

3 Heat Conductivity

The parabolic part of energy equation (3) is treated separately by splitting from the
hyperbolic part of the whole system (1)-(3). It is transformed to the heat equation
for temperature a@ T =@ t D div.� grad T / where a D �@ =@ T . We write the heat
equation as the first order system, in so-called flux form

a
@ T

@ t
� div w D 0; w D �� grad T; (14)
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introducing the heat flux w. The heat equation is solved on domain V with boundary
@V with Neumann boundary conditions.

We treat the space discretization of the heat equation by the mimetic method [25],
which has been generalized to unstructured triangular meshes in [7]. The mimetic
method introduces operators of generalized gradient G and extended divergence D

GT D �� grad T; D w D
�

div w on V

�.w;n/ on @V
:

The integral properties of these operators are given by divergence Green formula
and Gauss theorem. The divergence Green formula

Z

V

div w d V �
I

@V

.w;n/ d S D 0 (15)

can be restated as .D w; 1/H D 0 where we use the inner product on space H of
scalar functions

.u; v/H D
Z

V

u v d V C
I

@V

u v d S: (16)

Gauss theorem
Z

V

T div w d V �
I

T .w;n/ d S C
Z

V

.w; ��1� grad T /d V D 0

can be restated as .Dw; T /H D .w;GT /H where we use also the inner product on
space H of vector functions

.A;B/H D
Z

V

.��1A;B/d V: (17)

Gauss theorem states that the generalized gradient is the adjoint operator of the
extended divergence G D D�. The basic idea of the support operator mimetic
method [25] is to mimic these two integral properties also in the discrete case
on spaces of discrete functions. We discretize the temperature T inside each
computational cell and the vector heat flux w at the center of each edge by its
projections on the normal of the edge. This discretization of vector heat flux
guarantees the continuity of normal flux through each edge. On the spaces of
discrete scalar and vector functions the discrete analogs of the inner products (16)
and (17) are defined. The discrete divergence is derived in a standard way from the
discrete analog of (15) on a computational cell. This gives the discrete operator of
extended divergence D inside computational domain, while on the boundary it is
given by the discrete heat flux (up to sign). Now the discrete extended gradient G
is constructed as the adjoint (in the discrete inner products on the whole domain) of
the discrete extended divergence G D D�. The discrete gradient constructed this
way has a global stencil.
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Now in the heat equation (14) we use this mimetic spatial discretization, i.e. the
discrete extended divergence D and the discrete generalized gradient operators G.
We employ the implicit scheme written in flux form

a
T nC1 � T n

�t
CDWnC1 D 0; WnC1 �GT nC1 D 0: (18)

We express T nC1 D T n�DWnC1 and eliminate it from the second equation which
gives us

.I C�t=aGD/WnC1 D GT n:
This system with a global stencil can be transformed into a system with local stencil
[25] having symmetric, positive definite matrix. The conjugate gradient method,
preconditioned by the altered direction implicit method, is applied as effective
iterative solver for this system resulting in the numerical heat fluxes.

For laser plasma these heat fluxes often produce physically unrealistic (too big)
heat fluxes which cannot be carried by electrons carrying most of heat energy.
Direct decrease of the heat flux magnitude (where needed) leads to temperature
oscillations and checker board patterns, thus the heat flux limiting has to be
performed differently. In the regions where unlimited heat flux violates physical
limits the heat conductivity is decreased by the ratio of the unlimited flux magnitude
and the heat flux limit. The heat equation it then solved again with the updated
heat conductivity giving the final limited heat fluxes. Finally, having fluxes WnC1
the temperature T nC1 is computed from the first equation of (18). The presented
numerical method for heat equation works well on bad quality meshes appearing
often in Lagrangian simulations and it allows discontinuous diffusion coefficient.

4 Laser Absorption and Cylindrical Geometry

Laser absorption in plasma is modeled by the term div I in the internal energy
equation (3). Important notion for laser absorption is a critical density, which for
laser with wavelength 	 is proportional to 1=	2. The critical density defines the
critical surface which is the surface of electron density being equal to critical
density. The laser can propagate only in the sub-critical regions of plasma with
electron density less than critical density. Typically most of the laser energy is
absorbed into plasma around the critical surface. Laser absorption on critical surface
assumes that laser propagates without damping and refraction till the critical surface
where it is absorbed. The absorption term div I with absorption coefficient is
evaluated in cells at the critical surface and is zero everywhere else.

Ray tracing is a more complicated method for laser absorption modeling. The
laser beam is split into many laser rays carrying initially appropriate energy
depending on radius and radial laser profile. Propagating of each ray is computed
(traced) independently. Inside a cell through which the ray propagates it does not
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change direction and deposits a part of its energy into plasma internal energy by
inverse bremsstrahlung. On the edge the ray refracts according to Snell law with
refraction plane being orthogonal to the electron density gradient. A special case is
full reflection near the critical surface when the ray on the edge reflects back.

Laser beam has cylindrical symmetry and most simulated problems are cylindri-
cally symmetric (here all problems except oblique incidence on thin foil studied in
Sect. 5.1), so one has to include cylindrical r � z geometry. All numerical methods,
initially designed in Cartesian geometry, have been generalized into cylindrical
geometry with a special boundary condition on the symmetry axis z. In cylindrical
geometry for Lagrangian method we employ control volume method [4], rezoning
methods need only to change boundary treatment on the symmetry axis z, cylindrical
remapping [13] requires additional factor r in the integrals (13, the mimetic method
for heat conductivity has been generalized to cylindrical geometry and also laser
absorption module supports both cylindrical and Cartesian geometries.

5 Interaction of Laser with Targets

In this section we present selected simulations of laser beam interaction with
targets modeled by our ALE code PALE. All simulations correspond to particular
experiments performed at PALS laser facility in Prague, which provides a laser beam
on the first harmonics with wavelength	 D 1:315 nm or on the third harmonics with
wavelength 	 D 438 nm.

5.1 Oblique Incidence on Thin Foil

We start with oblique incidence of laser beam on a 0:8 �m thin Aluminum foil
which is reasonably simple and provides initial insight into laser interactions with
matter. This simulation is an initial study to double foil targets which are used for
investigation of plasma-wall interactions [24] and which are subject of the next
Sect. 5.2. The third harmonics Gaussian laser pulse with energy 36 J, full width half
maximum (FWHM) length 250 ps and focal spot radius 40 �m interacts with 30ı
oblique thin foil (the angle between laser beam axis and normal to the foil is 30ı).
The simulation starts at time t D 0, which is 250 ps before the laser maximum at
t D 250 ps, and uses Cartesian geometry as the setup is not cylindrically symmetric.
Density of the developing laser plasma at three times 150, 200 and 250 ps is
presented in Fig. 2 in a logarithmic scale with computational mesh and a magenta
curves of the critical surface. Laser is coming from above with the beam axis on
the z axis r D 0. It propagates through the sub-critical plasma until the critical
surface and is absorbed on the critical surface. At time 150 ps in Fig. 2 (a) the
laser does not penetrate the foil, while at time 200 ps in Fig. 2 (b) the laser has
already burned through the foil and only a small part far from the z axis is still being
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Fig. 2 Density for interaction of oblique laser beam with a thin Aluminum foil at time: (a) 150 ps,
(b) 200 ps and (c) 250 ps. Magenta curves denote the position of the critical surface

absorbed at the critical surface. In the beginning of the interaction laser energy is
being deposited close to the upper boundary of the foil which starts to expand in the
upper right direction creating plasma plume (corona). Before time 150 ps the whole
foil in an area around the z axis is heated and secondary plume starts to expand
in the lower left direction. This simulation provides an example of a large scale
change of computational domain (initial 0:8 �m thin foil expands to plumes of the
size around 500 �m at Fig. 2 (c) at time of laser maximum, which is still not the
end of simulation), which dictates the use of Lagrangian coordinates moving with
the moving plasma. The simulation justifies that even with oblique laser incidence
the plasma plumes propagation is orthogonal to the foil. This is going to be used for
oblique incidence double foil targets where the laser going through the upper foil
does not hit the shorter lower foil, which interacts directly with the plasma plume
from the upper foil.

5.2 Double Foil Target

The double foil target shown in Fig. 3 (a) is composed from two parallel foils located
at distance L D 600 �m. The thickness of the upper Aluminum foil is du D 0:8 �m
and the thickness of the lower Magnesium foil is dl D 2 �m. The double foil target
is irradiated by the third harmonics Gaussian laser beam (orthogonal to the foils)
with energy 115 J, FWHM length 300 ps, focal spot radius 40 �m and angular beam
divergence 15ı. The beam is focused on the lower foil. Laser absorption has been
modeled in this simulation by ray tracing. Results are presented in Fig. 3(b) and (c)
by density and pressure color-maps at time 600 ps. Fig. 3 (b) shows density color-
map with selected laser rays in the left part. The thickness of the rays is proportional
to the energy they carry, so when the energy goes below a threshold the thickness
goes to zero and the ray curve ends. Rays are refracted around the critical surface,
some rays are reflected from the z axis. In the beginning the upper foil expands in
two plumes similarly as the oblique foil in Fig. 2. The lower foil remains static until
the laser burns through the upper foil. After burning through the upper foil the laser
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Fig. 3 Experimental setup for double foil target (a), density � with laser rays (b) and pressure p
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Fig. 4 Structured model of the foam (a), burning of laser through the foam target (b) and density
from simulation with the structured target at t D 400 ps (c)

reaches also the lower foil from which at first the upper Magnesium plume starts
to develop. The lower Aluminum plume collides with the upper Magnesium plume
around time 500 ps producing high density and pressure at the colliding area.

5.3 Foam Target

Foam layers are used in the ICF targets for smoothing inhomogeneities in the laser
beam by its propagation through the low density foam. Interaction of laser with low
density foam is difficult to model because for low density homogeneous material one
gets too high speed of laser burning through the foam. This problem can be avoided
by introducing structured model of the foam [9] shown in Fig. 4 (a) consisting from
a series of parallel high-density slabs separated by low-density voids. When the laser
burns through this structured model of foam it is delayed on each slab as it needs
some time to burn through the slab. Here, we simulate the interaction of the third
harmonic Gaussian laser pulse of 320 ps FWHM duration, energy of 170 J and focal
spot radius of 300 �m with 400 �m-thick layer of TAC foam of density 9.1 mg/cm3
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Fig. 5 Experimental setup for high velocity impact (a) and annular radial laser beam intensity
profile at time of laser maximum for jet formation (b)

with 2 �m pores. The foam is modeled by uniform density 9:1 mg=cm3 material
and by structured model consisting from a sequence of ds D 0:018 �m thick dense
slabs of density �s D 1 g=cm3 separated by dv D 1:982 �m thick voids with density
�v D 1mg=cm3. The time evolution of the depth of the burned region of foam on the
z axis is plotted in Fig. 4 (b) for uniform and structured foam model (with density
at t D 400 ps in Fig. 4 (c)). The speed of burning through for the structured model
is reasonably close to the experimental measurement, while this speed for uniform
model is more than twice higher.

5.4 High Velocity Impact

The target setup for the high velocity impact problem is shown in Fig. 5(a). A
cylindrical Aluminum disc flyer with radius r D 150 �m and thickness d D 11 �m
is placed at distance L D 200�m above an Aluminum massive target, parallel
to it. The laser irradiated disc flyer is ablatively accelerated up to very high velocity
(40-190 km/s) and impacts the massive target creating a crater in it. Here the third
harmonics laser pulse of energy 390 J, FWHM length 400 ps and focal spot radius
125 �m interacts with the target. The simulation is split into two parts: ablative disc
flyer acceleration by laser beam and the impact of disc flyer into the massive target.
The density for the final time of disc acceleration is presented in Fig. 6 (a) and (b).
In the presented case the final time of acceleration is about 1.1 ns, when the high
density region, which contains most of the disc mass, momentum and energy and
is seen in Fig. 6 (b), approaches the upper boundary of the massive target located
at z D �200 �m. The average vertical velocity of the impacting disc is 187 km=s.
A new mesh is constructed containing this region and the whole massive target.
Conservative quantities at the final time of acceleration are remapped to this new
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Fig. 6 High velocity impact problem: density (a) and zoomed density (b) of accelerated disc
before the impact, density (c) and temperature (d) at the final time 80 ns after the impact (zoomed
to crater) – three different color scales in temperature color-map distinguish solid (gray), liquid
(blue-red) and gaseous (brown-pink) phase of Aluminum

mesh and serve as initial conditions for the second part of the simulation, disc flyer
impact. The impact creates circular shock wave propagating into the massive target
and visible in density and temperature color-maps in Figs. 6 (c),(d). A large hot
low-density plasma plume is being reflected from the massive target. The impact
melts and evaporates part of massive target creating a crater. Solid, liquid and gas
phase of Aluminum are distinguished by three color-maps in Fig. 6 (d). Solid-liquid
and liquid-gas phase interfaces, given by temperature isolines (corresponding to
Aluminum melting and boiling temperature), are visible in Fig. 6 (d) as two white-
black (in bottom-up direction on the z axis) interfaces. The crater is defined by gas -
liquid phase interface. Simulated craters size and shape correspond reasonably well
to experimental data also for other laser energies and other disc flyers [12].

5.5 Jet Formation

In this section we investigate formation of plasma jets by interaction of annular
laser beam with a massive Aluminum target. We use Gaussian in time laser pulse
on 3-rd harmonics with FWHM length 400 ps and energy 10 J. The radial intensity
profile of the annular beam is presented in Fig. 5(b). It has 10% minimum on the
z axis at r D 0, it is proportional to r2 for small r and has a smooth maximum
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Fig. 7 Plasma jet formation by annular laser beam: (a), (b), (c) density evolution at times 5, 8 and
16 ns; (d) pressure at 8 ns

around r D 600 �m. The density evolution at times 5, 8 and 16 ns is presented
in Fig. 7 (a),(b),(c). Thanks to the annular radial laser profile the plasma plume
develops and expands faster around the radial maximum of intensity at r D 600�m,
than around the z axis at r D 0. Such plume development leads to cone profile of
higher density region visible in Fig. 7 (a) and (b) at 5 and 8 ns. The cone moves
up in z direction and left in r direction towards the z axis and collides on the
symmetry axis creating a plasma jet which can be seen in Fig. 7 (c) at 16 ns as
high density, high pressure region along the z axis propagating up. Important is
the radial pressure gradient on the cone directed inwards towards the z axis which
drives the negative radial velocity towards the z axis, which can be seen in Fig. 7 (d).
The outlined dynamics of the plasma plume created by annular laser provides pure
hydrodynamical mechanism for plasma jets generation [15]. Plasma jets appear not
only on the laser plasma micro-scale presented here, but also astrophysics deals
with giant jets on macro-scale.

6 Conclusion

Numerical methods for Lagrangian and ALE hydrodynamics, heat conductivity and
laser absorption used in our code PALE have been shortly presented. PALE code
have been applied to simulate selected problems of laser interaction with targets. For
most simulations we have to use the ALE method as pure Lagrangian computation
(without any rezoning and remapping) fails due to severe distortion of moving
computational mesh. Only the first simulation of oblique incidence on a thin foil
presented in section 5.1 has been computed by pure Lagrangian method. PALE
code is regularly used for simulations of experiments at PALS laser facility. The
simulations provide theoretical backgound for interpretation of experimetal results.
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27. Váchal, P., Garimella, R., Shashkov, M.: Untangling of 2D meshes in ALE simulations.
J. Comput. Phys. 196(2), 627–644 (2004)

28. Winslow, A.: Equipotential zoning of two-dimensional meshes. Tech. Rep. UCRL-7312,
Lawrence Livermore National Laboratory (1963)

The paper is in final form and no similar paper has been or is being submitted elsewhere.



A two-dimensional finite volume solution
of dam-break hydraulics over erodible
sediment beds
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Abstract Two-dimensional dam-break hydraulics over erodible sediment beds are
solved using a well-balanced finite volume method. The governing equations consist
of three coupled model components: (i) the shallow water equations for the hydrody-
namical model, (ii) a transport equation for the dispersion of suspended sediments,
and (iii) an Exner equation for the morphological model. These coupled models
form a hyperbolic system of conservation laws with source terms. The proposed
finite volume method consists of a predictor stage for the discretization of gradient
terms and a corrector stage for the treatment of source terms. The gradient fluxes
are discretized using a modified Roe’s scheme using the sign of the Jacobian matrix
in the coupled system. A well-balanced discretization is used for the treatment of
source terms. In this paper, we also describe an adaptive procedure in the finite
volume method by monitoring the concentration of suspended sediments in the
computational domain during its transport process. The method uses unstructured
meshes, incorporates upwinded numerical fluxes and slope limiters to provide sharp
resolution of steep sediment concentration and bed-load gradients that may form in
the approximate solution.
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 88, © Springer-Verlag Berlin Heidelberg 2011

875

fayssal@math.univ-paris13.fr
sari@math.univ-paris13.fr
ielmahi@ensa.univ-oujda.ac.ma
ielmahi@ensa.univ-oujda.ac.ma
m.seaid@durham.ac.uk


876 F. Benkhaldoun et al.

1 Introduction

The main concern of the sediment transport (or morphodynamics) is to determine
the evolution of bed levels for hydrodynamics systems such as rivers, estuaries,
bays and other nearshore regions where water flows interact with the bed geometry.
Example of applications include among others, beach profile changes due to severe
wave climates, seabed response to dredging procedures or imposed structures,
and harbour siltation. The ability to design numerical methods able to predict the
morphodynamics evolution of the coastal seabed has a clear mathematical and
engineering relevances. In practice, morphodynamics involve coupling between a
hydrodynamics model, which provides a description of the flow field leading to a
specification of local sediment transport rates, and an equation for bed level change
which expresses the conservative balance of sediment volume and its continual
redistribution with time. Here, the hydrodynamic model is described by the shallow
water equations, the bed-load is modelled by the Exner equation, and the suspended
sediment transport is modelled by an advection equation accounting for erosion and
deposition effects. The coupled models form a hyperbolic system of conservation
laws with a source term. Nowadays, much effort has been devoted to develop
numerical schemes for morphodynamics models able to resolve all hydrodynamics
and morphodynamics scales. In the current study, a class of finite volume methods
is proposed for numerical simulation of transient flows involving erosion and
deposition of sediments. The method consists of a predictor stage where the
numerical fluxes are constructed and a corrector stage to recover the conservation
equations. The sign matrix of the Jacobian matrix is used in the reconstruction of the
numerical fluxes. Most of these techniques have been recently investigated in [1,2]
for solving sediment transport models without accounting for erosion and deposition
effects. The current study presents an extension of this method to transient flows
involving erosion and deposition of sediments. A detailed formulation of the sign
matrix and the numerical fluxes is presented. The proposed method also satisfies the
property of well-balancing flux-gradient and source-term in the system. Numerical
results and comparisons will be shown for several suspended sediment transport
problems.

2 The governing equations

In the current study, the sediment transport model consists of three parts:
A hydraulic variables describing the motion of water, a concentration variable
describing the dispersion of suspended sediments, and a morphology variable
which describes the deformation of the bed-load. In the present work we assume
that the flow is almost horizontal, the vertical component of the acceleration is
vanishingly small, the pressure is taken to be hydrostatic, the free-surface gravity
waves are long with respect to the mean flow depth and wave amplitude, and the
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water-species mixture is vertically homogeneous and non-reactive. The governing
equations are obtained by balancing the net inflow of mass, momentum and species
through boundaries of a control volume during an infinitesimal time interval while
accounting for the accumulation of mass, resultant forces and species within the
control volume, compare for example [1, 17] among others. Thus, the equations for
mass conservation and momentum flux balance are given by
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where t is the time variable, x D .x; y/T the space coordinates, u D .u; v/T the
depth-averaged water velocity, h the water depth, Z the bottom topography, g the
gravitational acceleration, p the porosity, �w the water density, �s the sediment
density, c is the depth-averaged concentration of the suspended sediment, E andD
represent the entrainment and deposition terms in upward and downward directions,
respectively. In (1), � and �0 are respectively, the density of the water-sediment
mixture and the density of the saturated bed defined by

� D �w.1 � c/C �sc;
(2)

�0 D �wp C �s.1 � p/:

The friction slopes Sxf and Syf are defined, using the Manning roughness coefficient
nb , as
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The equation for mass conservation of species is modeled by

@.hc/

@t
C @

@x
.huc/C @

@y
.hvc/ D E �D: (4)

To determine the entrainment and deposition terms in the above equations we
assume a non-cohesive sediment and we use empirical relations reported in [8].
Thus,
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D D w.1 � Ca/mCa; (5)

where w is the settling velocity of a single particle in tranquil water

! D
p
.36�=d/2 C 7:5�sgd � 36�=d

2:8
; (6)

with � is the kinematic viscosity of the water, d the averaged diameter of the
sediment particle, m an exponent indicating the effects of hindered settling due to
high sediment concentrations, Ca the near-bed volumetric sediment concentration,
Ca D ˛cc, where ˛c is a coefficient larger than unity. To ensure that the near-bed
concentration does not exceed .1 � p/, the coefficient ˛c is computed by [10]

˛c D min

	

2;
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:

For the entrainment of a cohesive material the following relation is used
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(7)

where
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p
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and ' is a coefficient to control the erosion forces, �c is a critical value of Shields
parameter for the initiation of sediment motion and � is the Shields coefficient
defined by

� D u2�
sgd

; (8)

with u� is the friction velocity defined using the Darcy-Weisbach friction factor f as

u2� D
r
f

8
u:

In (8), s is the submerged specific gravity of sediment given by

s D �s

�w
� 1:

To update the bedload, we consider the Exner equation proposed in [14]
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where As is a coefficient usually obtained from experiments taking into account the
grain diameter and the kinematic viscosity of the sediments. For simplicity in the
presentation, let us rewrite the equations (1), (4) and (9) in the following vector form

@W
@t
C @F.W/

@x
C @G.W/

@y
D S.W/CQ.W/; (10)

where W is the vector of conserved variables, F and G are the physical fluxes in x-
and y-direction, S and Q are the source terms. These variables are defined as

W D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

h

hu

hv

hc

Z

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; F.W/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

hu

hu2 C 1

2
gh2

huv

huc

As

1 � p u.u2 C v2/

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; G.W/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

hv

huv

hv2 C 1

2
gh2

hvc

As

1 � p v.u2 C v2/

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

S D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

�gh@Z
@x
� .�s � �w/

2�
gh2

@c

@x

�gh@Z
@y
� .�s � �w/

2�
gh2

@c

@y

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; Q D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

E �D
1 � p

�ghSxf �
.�0 � �/.E �D/

�.1� p/ u

�ghSyf �
.�0 � �/.E �D/

�.1 � p/ v

E �D

�E �D
1 � p

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

It is worth emphasizing that, using the Exner equation (9) to model the bed-
load transport, the nonhomegenuous terms in the right-hand side in (10) are not
standard source terms but nonconservative products, since they include derivatives
of two of the variables. The presence of these terms in sediment transport system
can cause sever difficulties in their numerical approximations. In principle, the
nonhomegenuous term in these equations can be viewed as a source term and/or
a nonconservative term. In the approach presented in this study these terms are
considered and discretized as source terms.
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3 The finite volume method

The governing sediment transport equations (10) are formulated in Cartesian
coordinates and will be discretized into the unstructured grids by the finite volume
method. The unstructured grids are polygons and the number of edges of the grids
is not limited in theory, but only triangular grids are considered in the current study.
Hence, we divide the time interval into sub-intervals Œtn; tnC1� with stepsize �t and
discretize the spatial domain in conforming triangular elements Ti . Each triangle
represents a control volume and the variables are located at the geometric centres
of the cells. Hence, using the control volume depicted in Fig. 1, a finite volume
discretization of (10) yields
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�t

jTi j
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Z

�ij
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Z
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where N.i/ is the set of neighboring triangles of the cell Ti , Wn
i is an averaged

value of the solution W in the cell Ti at time tn,

Wi D 1

jTi j
Z

Ti

W dV;

where jTi j denotes the area of Ti and Si is the surface surrounding the control
volume Ti . Here, �ij is the interface between the two control volumes Ti and Tj ,
n D .nx; ny/T denotes the unit outward normal to the surface Si , and

F .WIn/ D F.W/nx CG.W/ny:

To deal with the source terms Q, a standard splitting procedure (see for instance [2])
is employed for the discrete system (11) as
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(12)

WnC1
i D W�i C

�t

jTi j
Z

Ti

Q.W�/ dV:

Note that the time splitting (12) is only first-order accurate. A second-order splitting
for the system (11) can be derived analogously using the Strang method [16]. The
finite volume discretization (11) is complete once the gradient fluxes F .WIn/ and
a discretization of source terms Q.Wn/ and S.Wn/ are well defined.

For the discretization of the gradient fluxes we consider a modified Roe’s method
studied in [3–6] among others. The method consists of the predictor-corrector



A two-dimensional finite volume solution 881

Tp
Tl

Tk

Ti

n

nn

T3

T2

T1

Fig. 1 A generic control volume Ti and notations

procedure

Un
ij D

1

2

�
Un
i C Un

j

�
� 1
2

sgn
h
A�

�
U
�i �

Un
j �Un

i

�
;

(13)

WnC1
i DWn

i �
�t

jTi j
X

j2N.i/
F
�

Wn
ij I �ij

� ˇ
ˇ�ij

ˇ
ˇC�tSni ;

where

U D

0

B
B
B
B
B
B
B
@

h

u�

u�

c

Z

1

C
C
C
C
C
C
C
A

; A�.U/ D

0

B
B
B
B
B
B
B
B
B
@

u� h 0 0 0

g u� 0
.�s � �w/

2�
gh g

0 0 u� 0 0

0 0 0 u� 0

0
As

1 � p .3 u2�C u2� / 2
As

1 � p u� u� 0 0

1

C
C
C
C
C
C
C
C
C
A

:

the normal velocity u� D unx C vny and tangential velocity u� D uny � vnx . The
sign matrix of the Jacobian is defined as

sgn
h
rF�

�
U
�i D R.U/ sgn

h
�.U/

i
R�1.U/;

with �.U/ is the diagonal matrix of eigenvalues, and R.U/ is the right eigenvector
matrix. These matrices can be explicitly expressed using the associated eingenvalues
of A�.U/. The sign matrix can be formulated in the same manner as in [3–6] and
details are omitted here. In (13), U is the Roe’s average state given by
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Next we discuss the treatment of source terms Sni in the proposed finite volume
scheme and also the extension of the scheme to a second-order accuracy. An
adaptive procedure is also described in this section.

3.1 Treatment of the source term

The treatment of the source terms in the shallow water equations presents a chal-
lenge in many numerical methods. In our scheme, the source term approximation
Sni in the corrector stage is reconstructed such that the still-water equilibrium
(C-property) is satisfied. Here, a numerical scheme is said to satisfy the C-property
for the equations (10) if the condition

E �D D 0; u D 0; Z D NZ.x/; hCZ D H; � D C; (15)

holds for stationary flows at rest. In (15), H and C are nonnegative constants.
Therefore, the treatment of source terms in (13) is reconstructed such that the
condition (15) is preserved at the discretized level. Remark that the last condition in
(15) means that at the equilibrium the sediment medium is assumed to be saturated.
Furthermore, from the density equation (2), a constant density is equivalent to a
constant concentration c. Hence, Sni should be consistent discretization of the source
term in (13) defined as

Sni D
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(16)
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The approximations Nhnxi and Nhnyi are reconstructed using a technique recently
developed in [3] for the proposed finite volume method to satisfy the well-known
C-property. In this section we briefly describe the formulation of this procedure and
more details can be found in [3]. Hence, at the stationary state, the numerical flux in
the corrector stage yields
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which is equivalent to
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(17)
where Nxij D nxij

ˇ
ˇ�ij

ˇ
ˇ and Nyij D nyij

ˇ
ˇ�ij

ˇ
ˇ. Next, to approximate the source

terms we proceed as follows. First we decompose the triangle Ti into three sub-
triangles as depicted in Fig. 1. Then, the source term is approximated as

Z
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h
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Z
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dV C
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dV; (18)

where Z

T1

h
@Z

@x
dV D h1

Z

T1

@Z

@x
dV;

with h1 is an average value of h on the sub-triangle T1. Hence,



884 F. Benkhaldoun et al.
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Again, using the stationary flow condition h1CZ1 D hj CZj D H D constant ,
one gets

h1 CZ1 C hj CZj D 2H and
Z1 CZj

2
D H � h1 C hj

2
:

Thus, (19) gives
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Using the fact that
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A similar procedure leads to the following approximations of the other terms in (18)

Z
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h
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dV D �h3

2
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Notice that hp, hk and hl are the average values of h respectively, on the triangle
Tp, Tk and Tl , see Fig. 1. Summing up, the discretization (18) gives
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dV D �h1
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2
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2
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For this reconstruction, the source terms in (16) result in
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Here, (20) forms a linear system of two equations for the three unknowns h1, h2 and
h3. To complete the system we add the natural conservation equation

h1 C h2 C h3 D 3hi :

Analogously, the bottom values Zj , j D 1; 2; 3 are reconstructed in each sub-
triangle of Ti as

Zj C hnj D Zi C hni ; j D 1; 2; 3:
Finally, the source terms in (18) are approximated as
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;

with a similar equation for the other source terms in the y-direction.

4 Numerical results

We present numerical results for a test problem of partial dam-break over erodible
bed. In all the computations reported herein, the Courant number Cr is set to 0:8
and the time stepsize �t is adjusted at each step according to the stability condition

�t D Cr min
�ij

 
jTi j C

ˇ
ˇTj
ˇ
ˇ

2
ˇ
ˇ�ij

ˇ
ˇmaxp

ˇ
ˇ.	p/ij

ˇ
ˇ

!

;

where �ij is the edge between two triangles Ti and Tj . The water density �w D
1000 kg=m3 and the gravitational acceleration is fixed to g D 9:81 m=s2.

We consider a 200 m long and 200 m wide flat reservoir with two different
constant levels of water separated by a dam. At t D 0 part of the dam breaks
instantaneously. The dam is 10 m thick and the breach is assumed to be 75 m wide,
as shown in Fig. 2. Initially, u.x; y; 0/ D v.x; y; 0/ D 0 m=s



886 F. Benkhaldoun et al.

X[m]

Y
[m

]

0 50 100 150 200
0

25

50

75

100

125

150

175

200

x x x
G1 G2 G3

Fig. 2 Computational domain for the partial dam-break over erodible bed

h.x; y; 0/ D
(
10 m; if x < 100 m;

1 m; otherwise;
c.x; y; 0/ D

(
0:01; if x < 100 m;

0; otherwise:

The selected values for the evaluation of the present finite volume model are
summarized in Table 1. At t D 0 the dam collapses and the flow problem consists
of a shock wave traveling downstream and a rarefaction wave traveling upstream.

Table 1 Reference parameters used for the dam-break problem
Quantity Reference value Quantity Reference value

�s 1500 kg=m3 � 1:2 � 10�6 m2=s

p 0:28 nb 0:015 s=m1=3

' 0:015 m1:2 �c 0:045

m 2 d 1 mm

In Fig. 3 we present the water free-surface and bed-load, the adapted meshes
and snapshots of the water depth obtained for the partial dam-break over fixed bed
at times t D 2, 4, 6 and 8 s. The results obtained for the partial dam-break over
erodible bed are presented in Fig. 4. By using adaptive meshes, high resolution
is automatically obtained in those regions where the gradients of the water depth
are steep such as the moving fronts. Apparently, the overall flow pattern for this
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Fig. 3 Water free-surface and bed-load (first column), adapted meshes (second column) and water
free-surface contours (third column) for the partial dam-break over fixed bed at different simulation
times. From top to bottom t D 2, 4, 6 and 8 s
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Fig. 4 Water free-surface and bed-load (first column), adapted meshes (second column) and
water free-surface contours (third column) for the partial dambreak over erodible bed at different
simulation times. From top to bottom t D 2, 4, 6 and 8 s
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Fig. 5 Cross sections at y D 125 m of the water free-surface and bed-load (left plot) and sediment
concentration (right plot) at four instants
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Fig. 6 Time evolution of the water free-surface and bed-load (left plot) and sediment concentra-
tion (right plot) at the three gauges G1, G2 and G3 presented in Fig. 2
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example is preserved with no excessive numerical diffusion in the results by finite
volume method using adaptive mesh. The adaptive finite volume method performs
well for this test problem since it does not diffuse the moving fronts and no spurious
oscillations have been observed when the water flows over the movable bed.

In order to quantify the results for this test example we display in Fig. 5 cross
sections at y D 125 m of the water free-surface and bed-load and sediment
concentration at four instants shown in Fig. 4. The results for the partial dam-break
over fixed bed are depicted in Fig. 7. Figure 6 exhibites the time evolution of the
water free-surface, bed-load and sediment concentration at the three gauges G1, G2
and G3 presented in Fig. 2. As can be observed from these results, the erosion effects
on the bed are clearly visible for the considered sediment conditions. The inclusion
of Exner equation in the model creates a very active sediment exchange between the
water flow and the bed load, and also produces a sharp spatial gradient of sediment
concentration, which justifies its incorporation in the momentum equations (10).
Apparently, the overall flow and sediment features for this example are preserved
with no spurious oscillations appearing in the results obtained using the adaptive
finite volume method. Obviously, the computed results verify the stability and the
shock capturing properties of the proposed finite volume method.
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1 Introduction

The two-dimensional (2D) anisotropy benchmark organized in 2007-2008 [21]
provided a better understanding of the relative properties of a huge number of
numerical schemes in terms of robustness, accuracy, problem size (number of
degrees of freedom and matrix size), quality of the numerical approximation
(maximum/minimum principles), etc. Nonetheless, a direct extrapolation of these
results to three-dimensional (3D) problems is not possible because of the much
higher complexity of the meshes involved in a 3D calculation and the larger size
of the resulting linear systems. Hence, a new benchmark was organized between the
end of 2010 and the beginning of 2011 with the additional goal of comparing CPU
times versus accuracy.

A number of anisotropic and heterogeneous diffusion problems, associated
with general, possibly non-conforming, 3D grids, were proposed in order for the
participants to test a variety of numerical schemes. The participants were expected
to provide information about the results obtained in these test cases and to use a set
of solvers made available by the benchmark organizers for the linear systems arising
from the discretization. In order to ensure a fair comparison of CPU times, all linear
systems were solved by the same program implemented sequentially on the same
computer, located at Université Aix-Marseille, France.

In most test cases the domain ˝ is the unit cube; the boundary of ˝ is denoted
by � . We consider the steady diffusion problem with either homogeneous or non-
homogeneous Dirichlet conditions on the boundary that is formulated in strong form
as:

� r�.Kru/ D f on ˝; (1)

u D Nu on �; (2)

where K W ˝ ! R
3�3 is the diffusion tensor, f is the source term and Nu is the

Dirichlet boundary condition. The tensor fields K that we consider in the benchmark
test cases are, as usual, strongly elliptic in ˝ , i.e., each K is given by a field
of symmetric matrices whose eigenvalues are uniformly bounded from above and
from below by two strictly positive values. The data f and Nu of the problem are
determined in accordance with the given exact solution and the diffusion field of
each test case.

The paper is organized as follows. In Sect. 2, we present the five test cases, each
one being specified by the shape of the computational domain, the exact solution, the
diffusion field, and the set of meshes to be used. In Sect. 3, we briefly describe the
linear solvers that were proposed for the resolution of the linear systems issued from
the different numerical schemes. In Sect. 4, we list the participants to the benchmark
and the numerical method that they used. In Sect. 5, we present the nature of the
results obtained from the participants.

Final conclusions are drawn in Sect. 6. The tables and figures of results are given
in Sect 7.
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B. Tetrahedral C. Voronoi D. Kershaw I. Checkerboard

F. Prism AA. Random BB. Well H. Locally refined

Fig. 1 The different meshes.

2 The test cases and the meshes

The test cases are summarized in Table 1, where we specify, for each test case, the
shape of the computational domain˝ , the label of the permeability tensor, the label
of the exact solution and the name of the mesh family. For more details about the
meshes and other data, see at the URL:

http://www.latp.univ-mrs.fr/latp numerique/?q=node/4,

where mesh data files can be downloaded.

Table 1 The test cases

Test Case Domain
Permeability Solution

Meshes
K.x; y; z/ u.x; y; z/

Test 1
Unit cube K1.x; y; z/ u1.x; y; z/

Tetrahedral (B)

Mild anisotropy
Voronoi (C)
Kershaw (D)

Checkerboard (I)
Test 2

Unit cube K2.x; y; z/ u2.x; y; z/ Prism (F)Heterogeneity
and anisotropy

Test 3 Determined
K3.x; y; z/ u3.x; y; z/ Random (AA)

Random meshes by the mesh
Test 4

˝4 K4.x; y; z/ u4.x; y; z/ Well (BB)
The well

Test 5
Unit cube K5.x; y; z/ u5.x; y; z/ Locally refined (H)

Locally refined

The meshes are presented in Fig. 1.
The data labeled in Table 1 (permeability tensor and exact solution for all test

cases and computational domain for Test Cases 4 and 5) are as follows.
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1. Test Case 1. We consider a constant, anisotropic permeability tensor and a
regular solution that implies a non-homogeneous Dirichlet condition on the
domain boundary � :

K1.x; y; z/ D
0

@
1 0:5 0

0:5 1 0:5

0 0:5 1

1

A

u1.x; y; z/ D 1C sin.�x/ sin

	

�

	

y C 1

2





sin

	

�

	

zC 1

3





2. Test Case 2. We consider a smoothly variable permeability tensor and a regular
solution that implies a non-homogeneous Dirichlet condition on the domain
boundary � :

K2.x; y; z/ D
0

@
y2 C z2 C 1 �xy �xz
�xy x2 C z2 C 1 �yz
�xz �yz x2 C y2 C 1

1

A

u2.x; y; z/ D x3y2zC x sin.2�xz/ sin.2�xy/ sin.2�z/

3. Test Case 3. We consider a constant, anisotropic permeability tensor and a
regular solution on the domain, whose definition results from each of the
considered meshes:

K3.x; y; z/ D
0

@
1 0 0

0 1 0

0 0 103

1

A

u3.x; y; z/ D sin.2�x/ sin.2�y/ sin.2�z/

Since the meshes which are used for this test case (random meshes) have
boundary vertices which are not located exactly on the boundary of the unit cube,
the boundary conditions are non-homogeneous Dirichlet boundary conditions.

4. Test Case 4. The computational domain is given by ˝4 D P n W , where P is
the parallelepiped ��15; 15Œ���15; 15Œ���7:5; 7:5Œ andW is a slanted circular
cylinder with radius rw D 0:1. The axis of this well is a straight line located in
the x0z plane, passing by the origin, with an angle (in degrees) � D �70ı with
the x axis, as shown in Fig. 2.

We consider the constant permeability tensor, which is slightly anisotropic in
the third coordinate direction, given by

K4 D
0

@
1 0 0

0 1 0

0 0 0:2

1

A :
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x

y

θ

z

Fig. 2 The circular slanted well

The exact solution u4.x; y; z/ is detailed in [1]: once a stretching of the axes has
been performed so as to obtain an isotropic problem, we seek an exact solution
that is constant on the well boundary. The solution simulates the pressure field
that would be obtained for the same infinite slanted circular well in an infinite
domain for a given constant flow rate q across any section of the well.

5. Test Case 5. The domain˝ D Œ0; 1�3 is split into four subdomains˝ D [4iD1˝i ,
which are given by

˝1 D f.x; y; z/ 2 Œ0; 1�3 such that y � 0:5; z � 0:5g
˝2 D f.x; y; z/ 2 Œ0; 1�3 such that y > 0:5; z � 0:5g
˝3 D f.x; y; z/ 2 Œ0; 1�3 such that y > 0:5; z > 0:5g
˝4 D f.x; y; z/ 2 Œ0; 1�3 such that y � 0:5; z > 0:5g

The permeability tensor and the exact solution are given by:

K5.x; y; z/D
0

@
aix 0 0

0 aiy 0

0 0 aiz

1

A for .x; y; z/2˝i with

u5.x; y; z/ D ˛i sin.2�x/ sin.2�y/ sin.2�z/

i 1 2 3 4
aix 1 1 1 1
aiy 10 0.1 0.01 100

aiz 0.01 100 10 0.1
˛i 0.1 10 100 0.01

The permeability tensor K5 is discontinuous across the internal planes separating
the unit cube in four subdomains and the exact solution u5 is designed to be con-
tinuous and to ensure the conservation of the normal flux across such planes. Note
that the homogeneous Dirichlet boundary condition is imposed in this test case.

3 Linear solvers used for the linear system benchmark

In order to access the different linear solver packages: UMFPACK [17, 18],
DUNE-ISTL [7, 12], and PETSc [4, 5], all participants were asked to store their
resulting linear systems for each test/mesh using a Compressed Row Storage (CRS)
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format, using an open source software package, which is available on line. All
packages were installed on the 1 node Sun Fire X2270, equipped with 2 Quad-core
processors (Intel, X5570, 2.93 GHz) and 24 GB memory (1333 MHz DDR3) and
run sequentially.

Let us now briefly describe the available linear solvers and preconditioning
methods.

1 The direct solver library UMFPACK. Written in ANSI/ISO C, UMFPACK is a
set of routines for solving unsymmetric sparse linear systems Ax D b, using the
Unsymmetric MultiFrontal method (see [17, 18] for details). For the benchmark,
version 5.4.0 was used.

2 The Iterative Solver Template Library – DUNE-ISTL is a DUNE module
[7, 12], which provides C++ programmed iterative solvers of linear systems
stemming from finite element discretizations. The efficiency of the solvers is
enhanced by taking into account the specific block recursive structure of matrices
and vectors. For the benchmark version 2.0 has been used. The following solvers
and preconditioning methods are used:

• Iterative solvers: Conjugate Gradient, BiCG-stab, GMRES;
• Preconditioning: Jacobi, ILU-0, ILU-n, n D 1; :::; 4, Algebraic Multi Grid.

3 The Portable, Extensible Toolkit for Scientific Computation – PETSc [4, 5]
is a suite of data structures and routines for the scalable (parallel) solution of
scientific applications modeled by partial differential equations. The program
code is written in ANSI C. For the benchmark, version 3.1-p5 was used. The
following iterative solvers and preconditioning methods are used:

• Iterative solvers: Conjugate Gradient, BiCG-stab, GMRES;
• Preconditioning: Jacobi, ILU-n, n D 0; :::; 4.

4 Condition number calculation. For the approximate calculation of the con-
dition number of a given matrix, the Krylov-Schur method from the Scalable
Library for Eigenvalue Problem Computations (SLEPc) package version 3.1-p4
[22] was used. SLEPc is written in ANSI C and built on top of PETSc.

5 CPU time measurement. The measurement of the CPU time spent for the
solution process is based on the getrusage routines. The setup of the matrices (for
the different solvers) is not included in the CPU time measurement in any case.
The CPU time needed for the solution of the system with the iterative solvers
(DUNE-ISTL and PETSc) is calculated by adding the time spent for building
the preconditioner and the time spent in the linear solver. The CPU time with
UMFPACK is not provided because the size of the matrices was too large for a
direct solver in several cases.
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4 The participating schemes and teams

Even though the benchmark is associated with the FVCA6 conference, the call for
submission was by no means restricted to finite volume schemes, and, indeed, many
types of schemes were submitted.
Cell-centered schemes

� MPFA-O: a Multi-Point Flux Approximation O-scheme programmed by the
benchmark organizers for completeness purposes.

� LS-FVM: The cell-centered finite volume method using least squares vertex
reconstruction (diamond scheme) , by Y. Coudière and G. Manzini [14].

Discontinuous Galerkin schemes

� CDG2: The Compact Discontinuous Galerkin 2 Scheme, R. Klöfkorn, [23].
� SWPG: Symmetric Weighted Interior Penalty Discontinuous Galerkin Scheme,

by P. Bastian [6].

Discrete duality finite volume schemes

� CEVEDDFV-A: A version of the DDFV scheme with cell/vertex unknowns on
general meshes, by B. Andreianov, F. Hubert and S. Krell [3].

� CEVEDDFV-B: CeVe-DDFV, a discrete duality scheme with cell/vertex
unknowns, by Y. Coudière and C. Pierre [15].

� CEVEFE-DDFV: CeVeFE-DDFV, a discrete duality scheme with cell/vertex/-
face+edge unknowns, by Y. Coudière, F. Hubert and G. Manzini [13].

Finite element schemes

� FEM: Finite elements of order one (FEM1) and two (FEM2) provided by
P. Bastian with the DUNE environment [8, 9].

� MELODIE, A linear finite element solver, by H. Amor, M. Bourgeois, and
G. Mathieu [2].

Mixed or hybrid methods
� MFD-GEN: Mimetic finite difference method for generalized polyhedral meshes,

by K. Lipnikov and G. Manzini [24].
� MFD-PLAIN: A mimetic finite difference method, by P. Bastian, O. Ippisch, and

S. Marnach, [10].
� MFMFE: A multipoint flux mixed finite element method on general hexahedra,

by M. F. Wheeler, G. Xue and I. Yotov [25].
� CHMFE: A composite hexahedral mixed finite element, by I. Ben Gharbia,

J. Jaffré , N. Suresh Kumar and J. E. Roberts [11].

Gradient schemes

� SUSHI: The SUSHI scheme, by R. Eymard, T. Gallouët and R. Herbin, [19].
� VAG and VAGR: The VAG scheme, by R. Eymard, C. Guichard and R. Herbin,

[20].
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Nonlinear schemes The schemes are nonlinear in order to ensure the positivity of
the scheme (that is, if the right hand side is positive then the solution is positive)
or the discrete maximum principle (that is, if the linear system stems from the
discretization of an elliptic equation satisfying the maximum principle, then its
solution is also bounded by the bounds of the continuous system).

� FVMON: A monotone nonlinear finite volume method for diffusion equations
on polyhedral meshes, by A. Danilov and Y. Vassilevski, [16].

The choice of categories that we considered above is neither exhaustive nor
unique. In fact, most of these categories intersect: schemes are not so easy to
classify, and some schemes are known to be identical in special cases and when
using some special meshes. We refer to the above-cited papers for the details of the
schemes and their implementation. Our purpose is to give here a synthesis of the
results presented by the participants.

5 Results obtained by the participants

5.1 Results provided by the participants

The results obtained by the participants are presented in the contributed papers in
several tables.

First table: it reports the data related to the size of the discrete problem produced
by a numerical scheme and some information about the quality of the numerical
approximation. In particular, the minimum and maximum values of the discrete
solution at cell-centers are compared with the same kind of values for the exact
solution, and an estimate of ngrad� R

˝
kruk allows us to evaluate possible

oscillations of the approximation.
i number of mesh
nu number of unknowns of the linear system
nmat number of non zero terms in the matrix
umin minimum value of the approximate solution at the cell centers
uemin minimum value of the exact solution at the cell centers
umax maximum value of the approximate solution at the cell centers
uemax maximum value of the exact solution at the cell centers
normg L1 norm of the euclidean norm of the approximate gradient

Second table: it provides information about the accuracy of the schemes, which
is measured for all the test cases versus nu, the number of unknowns, by the
following quantities:
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i number of mesh
nu number of unknowns of the linear system
erl2 relative L2 norm of the error with respect to the L2

norm of the exact solution.
ratiol2 order of convergence of the L2 norm of the error on the

solution between mesh i and i-1.
ergrad relative H1 semi-norm of the error with respect to the

H1 semi-norm of the exact solution.
ratiograd order of convergence of the H1 norm of the error on

the solution between mesh i and i-1.
ener relative energy norm of the error with respect to the

energy norm of the exact solution.
ratioener order of convergence of the energy norm of the error

on the solution between mesh i and i-1.
where, denoting err the numerical error,

• the relative L2 norm of the error is given by:

erl2 �
	Z

˝

jerrj2=
Z

˝

juj2

 1

2

I

• the relative L2 norm of the gradient of the error is given by:

ergrad �
	Z

˝

jrerrj2=
Z

˝

jruj2

 1

2

I

• the relative energy norm of the error is given by:

ener �
	Z

˝

Krerr � rerr=
Z

˝

Kru � ru


 1
2

:

and the convergence rates are defined, for i � 2, by:

ratiol2(i) D �3 log .erl2(i)/erl2(i-1)/

log .nu(i)/nu(i-1)/
I

ratiograd(i) D �3 log .ergrad(i)/ergrad(i-1)/

log .nu(i)/nu(i-1)/
I

ratioener(i) D �3 log .ener(i)/ener(i-1)/

log .nu(i)/nu(i-1)/
:

Matrices and right-hand sides were uploaded by the participants on the computer
dedicated to the bench, in order to compare CPU time and memory.
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5.2 Comparisons

• Maximum principle. For all test cases, we collect the values of umin, umax for
the coarsest and finest grids handled by the participants, in Tables 2, 3 and 4 (Test
Case 1), 5 (Test Case 2), 6 (Test Case 3), 7 (Test Case 4) and 8 (Test Case 5). We
colored in red (resp. purple) the values that are below (resp. above) the minimum
value of the exact solution.

• Accuracy. In Figs. 3-10, we report the log-log curves of the approximation
errors measured by the benchmark participants for their numerical schemes.
Each figure refers to a specific combination “test case C mesh family”; the
upper left-most plot reports erl2, the upper right-most plot reports ergrad,
the lower left-most plot reports normg, and the lower right-most plot reports
ener. The convergence rates in these log-log plots are reflected by the slopes of
the convergence curves.

• Condition number. We report the condition number (see Sect. 3) of the matrices
involved in the numerical discretizations of first two test cases in Tables 9, 10,
11 and 12 (Test Case 1) and in Table 13 (Test Cases 2). The condition numbers
in each table are calculated for the first mesh and the two next mesh refinements.
The eigensolver tolerance was set to 10�8 for all matrices.

• Cost of the resolution. The cost of the resolution of the linear systems is shown
in Figs. 11-18, where the L2 error is plotted with respect to the CPU time and
the used memory. The CPU time was measured for the linear system with the
right hand side b D A1, where 1 is the vector with all components equal to 1.
The stopping criterion for all the iterative methods is: residual � 10�10. For the
sake of simplicity, all methods, including conjugate gradient methods, have been
applied to symmetric and non-symmetric matrices.

6 Conclusion

This paper proposes a comparison of sixteen numerical schemes (and variants)
which were tested on a family of three-dimensional anisotropic diffusion problems.
The tests presented here involve both a wide class of diffusion tensors (anisotropic
and at time heterogeneous and/or discontinuous) and a wide class of conforming
and non-conforming meshes with very general polyhedral cells.

The number of results which were obtained on this benchmark is impressive with
respect to the difficulty of the exercise and the time constraint. In fact, additional
results are available on the bench web site:

http://www.latp.univ-mrs.fr/latp numerique/?q=node/4.

and will be updated. The benchmark was found to be most useful to the participants
to compare their schemes to reference solutions. The participation to the 3D bench-
mark was an opportunity for several participants to learn more about the efficient
implementation of their schemes. Indeed, several variants of the schemes were thus
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developed. Last but not least, a user-friendly comparison platform was developed for
this benchmark, which allows anyone to link to the solver and preconditioner of his
choice; this possibility has already been used by other users than the 3D benchmark.
The platform which was developed for the 3D benchmark should proof useful for
further investigations on numerical schemes for various models.

7 Tables and figures of results

Table 2 Maximum principle for Test 1: mild anisotropy on tetrahedral meshes
Scheme umin coarse umax coarse umin fine umax fine

CDG2K1 �1.54E-02 2.017 �6.63E-04 2.002
CDG2K2 0.00 1.999 0.00E+00 1.999

CEVEDDFV-A 0.706E-02 1.992 0.140E-02 1.999

CEVEDDFV-B 1.34E-02 1.99 1.30E-03 2.00

CEVEFE-DDFV 6.09E-03 1.988 1.93E-03 1.999

FEM1 8.34E-02 1.932 6.35E-03 1.990

FEM2 2.13E-02 1.989 1.84E-03 1.997

FVMON 0.028 1.997 0.003 1.998

LS-FVM 2.03E-02 1.989 1.83E-03 1.997

MELODIE 7.69E-02 1.935 6.19E-03 1.991

MPFA-O �1.13E-02 2.01 �1.46E-03 2.00

MFD-PLAIN 2.33E-03 1.994 1.66E-03 1.998

MFD-GEN 2.26E-02 1.986 1.75E-03 1.997

SWPG-1 5.32E-02 1.965 3.69E-03 1.994

SWPG-2 2.11E-02 1.989 1.84E-03 1.997

SWPG-3 2.04E-02 1.989 1.83E-03 1.997

SWPG-4 2.03E-02 1.989 1.83E-03 1.997

SUSHI 3.21E-02 1.98 1.74E-03 2.00

VAG 6.77E-02 1.94 4.62E-03 1.99

VAGR 5.77E-02 1.95 3.63E-03 1.99
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Table 3 Maximum principle for Test 1: mild anisotropy on Kershaw meshes
Scheme umin (coarse) umax (coarse) umin(fine) umax(fine)

CDG2LEGK1 �2.95E-02 2.016 �5.37E-04 2.000
CDG2LEGK2 0.00 1.997 0.00 1.999
CDG2TETK1 �2.81E-02 2.012 �4.65E-04 2.000
CDG2TETK2 0.00 1.995 0.00 1.999

CEVEDDFV-A 2.28E-02 1.989 3.82E-04 2.000
CEVEDDFV-B 7.16E-02 1.94 4.61E-04 2.00

CEVEFE-DDFV 5.67E-02 1.940 6.52E-04 2.000
CHMFE �0.032 1.94685 �0.008 2.00061
FEM1 1.77E-01 1.786 2.94E-03 1.996
FEM2 3.29E-02 1.941 7.11E-04 1.999

FVMON 0.112 1.942 0.003 1.997
LS-FVM 3.03E-02 1.958 7.14E-04 1.999

MELODIE 1.34E-01 1.833 2.04E-03 1.997
MFD-GEN �2.52E-02 1.973 2.71E-04 1.999

MFD-PLAIN �6.03E-01 2.100 1.65E-04 2.000
MFMFE-NS �1.26E-03 2.01 5.00E-05 2.00
MFMFE-S 4.66E-03 1.97 7.49E-05 2.00
MPFA-O �3.76E-02 2.05 �1.06E-03 2.00
SWPG-1 9.58E-02 1.850 1.71E-03 1.997
SWPG-2 3.12E-02 1.944 7.11E-04 1.999
SWPG-3 2.91E-02 1.955 1.75E-03 1.997
SWPG-4 3.02E-02 1.958 1.75E-03 1.997
SUSHI �2.14E-03 1.91 8.51E-04 2.00
VAG 1.43E-01 1.93 1.07E-03 2.00

VAGR 7.80E-02 1.96 �2.64E-04 2.00
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Table 4 Maximum principle for Test 1: mild anisotropy on Checkerboard meshes
Scheme umin (coarse) umax(coarse) umin(fine) umax(fine)

CDG2K1 0.00 1.901 �5.50E-04 2.000
CDG2K2 �3.34E-02 2.050 0.000 1.999

CDG2LEGK1 �7.94E-02 2.081 �3.06E-04 2.000
CDG2LEGK2 0.00 1.998 0.00 1.999
CDG2TETK2 0.00 2.003 0.00 1.999

CEVEDDFV-A 0.341E-01 1.966 0.134E-03 2.000
CEVEDDFV-B 1.46E-01 1.86 5.01E-04 2.00

CEVEFE-DDFV 8.58E-02 1.903 2.88E-04 2.000
FEM1 3.26E-01 1.671 1.54E-03 1.998

FVMON 0.122 1.905 0.001 2.000
LS-FVM 1.54E-01 1.846 6.36E-04 1.999

MFD-GEN 2.91E-01 1.880 2.15E-03 1.999
MFD-PLAIN 1.27E-01 1.883 �3.52E-03 2.004

SWPG-1 2.35E-01 1.784 6.36E-04 1.999
SWPG-2 1.82E-01 1.812 6.37E-04 1.999
SWPG-3 1.61E-01 1.839 6.36E-04 1.999
SWPG-4 1.55E-01 1.845 6.36E-04 1.999
SUSHI 1.05E-01 1.87 3.83E-04 2.00

VAG �1.95 2.50 �3.06E-02 2.03
VAGR �9.81E-02 2.08E+00 �4.33E-03 2.00

Table 5 Maximum principle for Test 2: heterogeneous anisotropy on Prismatic meshes
Scheme umin (coarse) umax(coarse) umin(fine) umax(fine)

CEVEDDFV-A �.856 1.044 �.862 1.049
CEVEDDFV-B �8.53E-01 9.85E-01 �8.58E-01 1.03

CEVEFE-DDFV �8.55E-01 1.014 �8.60E-01 1.040
FVMON �0.854 1.002 �0.858 1.034
LS-FVM �8.42E-01 0.978 �8.57E-01 1.033

MFD-GEN �0.873 0.832 �0.890 0.963
MPFA-O �9.23E-01 1.07 �8.63E-01 1.05
SUSHI �8.22E-01 9.82E-01 �8.55E-01 1.03
VAG �9.49E-01 1.23 �8.53E-01 1.05

VAGR �8.73E-01 1.10E+00 �8.53E-01 1.04
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Table 6 Maximum principle for Test 3: flow on random meshes
Scheme umin(coarse) umax(coarse) umin(fine) umax(fine)

CDG2LEGK1 �1.143 1.244 �1.009 1.000
CDG2LEGK2 �1.015 1.034 �1.00E+00 1.00
CDG2TETK1 �1.261 1.167 �1.008 1.002
CDG2TETK2 �1.238 1.295 �1.000 1.000

CEVEDDFV-A �.202E+01 1.969 �.101E+01 1.014
CEVEDDFV-B �1.58 1.54 �1.01 1.01

CEVEFE-DDFV �4.25E+01 49.169 �2.67 2.725
FEM1 �3.73E-01 0.313 �9.90E-01 0.989
FEM2 �7.48E-01 0.679 �9.96E-01 0.996

FVMON �0.905 0.759 �0.989 1.001
LS-FVM �7.56E-01 0.711 �9.96E-01 0.996

MELODIE �0.665 0.685 �0.988 0.991
MFD-GEN �1.268 1.430 �1.027 1.021

MFD-PLAIN �1.02E+00 1.045 �1.00 1.000
MFMFE-S �6.20 5.75 �1.06 1.04
MPFA-O �9.79 1.22E+01 �2.61E+01 2.44E+01
SUSHI �7.51E-01 7.58E-01 �9.90E-01 9.89E-01

SWPG-1 �4.34E-01 0.355 �9.90E-01 0.989
SWPG-2 �7.50E-01 0.676 �9.96E-01 0.996
SWPG-3 �7.53E-01 0.684 �9.96E-01 0.996
SWPG-4 �7.59E-01 0.691 �9.85E-01 0.982

VAG �1.31 1.50 �1.00 1.00
VAGR �1.51 1.68E+00 �1.01 1.01
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Table 7 Maximum principle for Test 4: the flow around the well
Scheme umin(coarse) umax(coarse) umin(fine) umax(fine)

CDG2LEGK1 0.00 5.406 0.00 5.410
CDG2LEGK2 0.00 5.408 0.00 5.411
CDG2TETK1 0.00 5.406 0.00 5.410
CDG2TETK2 �5.92E-03 5.414 0.00 5.414

CEVEDDFV-A �.438E-01 5.415 �.198E-02 5.415
CEVEDDFV-B 4.85E-01 5.32 5.80E-02 5.36

CEVEFE-DDFV 3.83E-01 5.317 5.66E-02 5.361
FEM1 3.73E-01 5.317 5.66E-02 5.361
FEM2 4.12E-01 5.317 5.65E-02 5.361

FVMON 0.518 5.318 0.059 5.361
LS-FVM 4.57E-01 5.317 5.75E-02 5.361

MELODIE 0.189 5.360 0.029 5.39
MFD-GEN 5.37E-01 5.317 5.91E-02 5.361

MFD-PLAIN 5.74E-01 5.317 5.91E-02 5.361
MPFA-O 4.36E-01 5.39 �1.49E-03 5.40
SUSHI 4.26E-01 5.32 5.78E-02 5.36

SWPG-1 3.52E-01 5.316 5.55E-02 5.361
SWPG-2 4.13E-01 5.317 5.65E-02 5.361
SWPG-3 4.15E-01 5.317 5.65E-02 5.361
SWPG-4 4.14E-01 5.317 8.99E-02 5.339

VAG 3.89E-01 5.32 5.69E-02 5.36
VAGR 3.89E-01 5.32 5.69E-02 5.36

Table 8 Maximum principle for Test 5: discontinuous anisotropy
Scheme umin(coarse) umax(coarse) umin(fine) umax(fine)

CDG2LEGK1 �12.747 12.747 �100.241 100.241
CDG2LEGK2 �94.815 94.815 �99.987 99.987

CEVEFE-DDFV �6.34E+01 64.462 �1.02E+02 102.394
FEM1 �1.87E-02 0.019 �9.78E+01 97.772

FVMON �246.736 246.736 �99.719 99.719
LS-FVM �1.00E+02 1.00E+02 �9.86E+01 98.562

MFD-GEN �1.66E+02 1.66E+02 �9.95E+01 9.95E+01
MFD-PLAIN �2.51E+02 250.808 �9.89E+01 98.887

SWPG-1 �5.46E+01 54.594 �9.78E+01 97.780
SWPG-2 �1.18E+02 118.325 �9.86E+01 98.563
SWPG-3 �1.05E+02 104.586 �9.86E+01 98.562
SUSHI �2.49E+02 2.49E+02 �9.89E+01 9.89E+01
VAG �7.65E+02 7.65E+02 �9.93E+01 9.93E+01

VAGR �7.39E+02 7.39E+02 �1.00E+02 1.00E+02
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Fig. 3 Accuracy of the schemes for Test Case 1 on tetrahedral meshes. Plot .a/ shows the relative
L2-norm of the error, plot .b/ shows the relative H1-seminorm of the error, plot .c/ the L1-norm
of the numerical gradient, and .d/ the energy norm of the error



3D Benchmark on Discretization Schemes 911

10–2

10–3

101 102 103 104

10–1

100

101

10

0

5

1 2 3 54

15

20

25

10–1

10–2

101 102 103 104

100

101

102

10–1

10–2

101 102 103 104

100

101

102

Test 1, Voronoi meshes.  : nu−>erl2
CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
LS_FVM
MFD−gen
MPFA−O
SUSHI
VAG
VAGR

Test 1, Voronoi meshes.  nu−>ergrad
CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
LS_FVM
MPFA−O
SUSHI
VAG
VAGR

Test 1, Voronoi meshes. index of the mesh−>normg
CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
LS_FVM
MPFA−O
SUSHI
VAG
VAGR

Test 1, Voronoi meshes.  nu−>ener
CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
LS_FVM
MFD−gen
MPFA−O
SUSHI
VAG
VAGR

(a) erl2 (b) ergrad

(c) normg (d) ener

Fig. 4 Accuracy of the schemes for Test Case 1 on Voronoi meshes. Plot .a/ shows the relative
L2-norm of the error, plot .b/ shows the relative H1-seminorm of the error, plot .c/ the L1-norm
of the numerical gradient, and .d/ the energy norm of the error
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Fig. 5 Accuracy of the schemes for Test Case 1 on Kershaw meshes. Plot .a/ shows the relative
L2-norm of the error, plot .b/ shows the relative H1-seminorm of the error, plot .c/ the L1-norm
of the numerical gradient, and .d/ the energy norm of the error
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Fig. 6 Accuracy of the schemes for Test Case 1 on Checkerboard meshes. Plot .a/ shows the
relative L2-norm of the error, plot .b/ shows the relative H1-seminorm of the error, plot .c/ the
L1-norm of the numerical gradient, and .d/ the energy norm of the error
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Fig. 7 Accuracy of the schemes for Test Case 2. Plot .a/ shows the relative L2-norm of the error,
plot .b/ shows the relative H1-seminorm of the error, plot .c/ the L1-norm of the numerical
gradient, and .d/ the energy norm of the error
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Fig. 8 Accuracy of the schemes for Test Case 3. Plot .a/ shows the relative L2-norm of the error,
plot .b/ shows the relative H1-seminorm of the error, plot .c/ the L1-norm of the numerical
gradient, and .d/ the energy norm of the error
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Fig. 9 Accuracy of the schemes for Test Case 4. Plot .a/ shows the relative L2-norm of the error,
plot .b/ shows the relative H1-seminorm of the error, plot .c/ the L1-norm of the numerical
gradient, and .d/ the energy norm of the error
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Fig. 10 Accuracy of the schemes for Test Case 5. Plot .a/ shows the relative L2-norm of the
error, plot .b/ shows the relative H1-seminorm of the error, plot .c/ the L1-norm of the numerical
gradient, and .d/ the energy norm of the error
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Table 9 Matrix condition numbers for the first three meshes in the solution of Test Case 1 using
Tetrahedral meshes.

Scheme Condition number
iD1 iD2 iD3

CDG2-k1 6.96E+03 8.36E+03 1.81E+04
CDG2-k2 2.37E+04 2.80E+04 5.98E+04

CeVe DDFV-A 2.67E+02 3.72E+02 9.15E+02
CeVe DDFV-B 2.75E+02 3.91E+02 9.34E+02
CeVeFE DDFV 9.36E+02 1.31E+03 3.04E+03

FEM-1 2.68E+01 4.79E+01 7.39E+01
FEM-2 2.24E+02 3.66E+02 5.96E+02

FVMON 8.90E+02 9.56E+02 2.09E+03
LS-FVM 2.80E+02 3.91E+02 9.62E+02

MELODIE 1.18E+02 6.04E+01 1.65E+02
MFD-gen 1.34E+03 1.46E+03 3.32E+03

MFD-plain 1.46E+03 2.47E+03 3.87E+03
MPFA-O 3.28E+01 5.01E+01 8.64E+01
SUSHI 8.34E+02 1.32E+03 2.67E+03

SWPG-1 1.29E+04 1.53E+04 3.33E+04
SWPG-2 6.37E+04 7.42E+04 1.60E+05
SWPG-3 1.82E+05 2.13E+05 4.64E+05
SWPG-4 4.15E+05 4.86E+05 1.06E+06

VAG 2.68E+01 4.79E+01 7.39E+01
VAGR 2.68E+01 4.79E+01 7.39E+01

Table 10 Matrix condition numbers for the first three meshes in the solution of Test Case 1 using
Voronoi meshes.

Scheme Condition number
iD1 iD2 iD3

CeVe DDFV-A 9.51E+01 1.24E+02 3.33E+02
CeVe DDFV-B 5.07E+01 9.40E+01 2.05E+02
CeVeFE DDFV 1.05E+03 2.00E+05 1.98E+05

FVMON 1.03E+01 9.97E+00 1.58E+02
MPFA-O 5.78E+01 8.32E+01 –
SUSHI 1.45E+01 1.12E+01 3.07E+01
VAG 6.51E+01 7.95E+02 4.19E+02

VAGR 1.82E+01 3.68E+01 8.36E+01



3D Benchmark on Discretization Schemes 919

Table 11 Matrix condition numbers for the first three meshes in the solution of Test Case 1 using
Kershaw meshes.

Scheme Condition number
iD1 iD2 iD3

CDG2-Legk1 3.06E+04 1.84E+05 1.01E+06
CDG2-Legk2 1.99E+05 1.04E+06 –
CDG2-Tetk1 1.41E+05 6.14E+05 2.62E+06
CDG2-Tetk2 5.22E+05 2.17E+06 –

CeVe DDFV-A 6.67E+02 3.25E+03 1.54E+04
CeVe DDFV-B 7.08E+02 3.85E+03 1.84E+04
CeVeFE DDFV 3.80E+03 1.99E+04 9.77E+04

FEM-1 1.54E+02 1.12E+03 7.50E+03
FEM-2 2.55E+03 1.55E+04 9.58E+04

FVMON 3.31E+02 2.07E+03 8.65E+03
LS-FVM 2.86E+02 1.37E+03 9.76E+03

MELODIE 5.27E+02 2.27E+03 1.28E+04
MFD-gen 2.10E+03 7.53E+03 4.17E+04

MFD-plain 2.65E+03 1.29E+04 7.47E+04
MFMFEM-ns 1.12E+02 9.19E+02 6.88E+03
MFMFEM-s 2.02E+02 1.25E+03 7.77E+03

MPFA-O 8.19E+01 8.12E+02 5.31E+02
SUSHI 1.08E+03 2.51E+03 1.47E+04
VAG 1.80E+02 1.08E+03 7.28E+03

VAGR 1.76E+02 1.19E+03 7.62E+03

Table 12 Matrix condition numbers for the first three meshes in the solution of Test Case 1 using
Checkerboard meshes.

Scheme Condition number
iD1 iD2 iD3

CeVe DDFV-A 1.52E+01 5.20E+01 2.00E+02
CeVe DDFV-B 9.82E+00 3.39E+01 1.29E+02
CeVeFE DDFV 5.72E+01 2.31E+02 9.29E+02

FVMON 8.00E+00 2.62E+01 9.44E+01
MFD-plain 3.06E+01 1.71E+02 8.09E+02

SUSHI 6.96E+00 2.47E+01 9.83E+01
SWPG-1 – 1.50E+02 6.55E+02

VAG 3.41E+00 2.01E+01 1.46E+02
VAGR 2.62E+00 1.83E+01 1.42E+02
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Table 13 Matrix condition numbers for the first three meshes in the solution of Test Case 2 using
Prismatic meshes.

Scheme Condition number
iD1 iD2 iD3

CeVe DDFV-A 2.08E+02 1.03E+03 2.51E+03
CeVe DDFV-B 1.31E+02 7.16E+02 1.79E+03
CeVeFE DDFV 1.17E+03 5.65E+03 1.35E+04

FVMON 7.23E+01 3.49E+02 8.41E+02
LS-FVM 9.77E+01 5.13E+02 1.29E+03
MPFA-O 8.65E+01 4.90E+02 1.27E+03
SUSHI 1.02E+02 5.26E+02 1.30E+03
VAG 7.44E+01 4.48E+02 1.42E+03

VAGR 9.57E+01 5.41E+02 1.42E+03
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Fig. 11 Test 1-Tetrahedral meshes
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Test 1, Voronoi meshes. , Solver:
ISTL−CG ILU(0) : cpu −> erl2
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Fig. 12 Test 1-Voronoi meshes
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Test 1, Kershaw meshes. , Solver:
ISTL−CG ILU(0) : cpu −> erl2
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Fig. 13 Test 1-Kershaw meshes
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Test 1, Checkerboard meshes. , Solver:
ISTL−CG ILU(0) : cpu −> erl2

CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
MFD−plain
SUSHI
SWPG−1
VAG
VAGR

Test 1, Checkerboard meshes. , Solver:
ISTL−CG ILU(0) : mem −> erl2

CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
MFD−plain
SUSHI
SWPG−1
VAG
VAGR

Test 1, Checkerboard meshes. , Solver:
ISTL−BiCGstab Jacobi : cpu −> erl2

CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
MFD−plain
SUSHI
SWPG−1
VAG
VAGR

Test 1, Checkerboard meshes. , Solver:
ISTL−BiCGstab Jacobi : mem −> erl2

CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
MFD−plain
SUSHI
SWPG−1
VAG
VAGR

Test 1, Checkerboard meshes. , Solver:
PETSc−CG ILU(2) : cpu −> erl2

CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
MFD−plain
SUSHI
SWPG−1
VAG
VAGR

Test 1, Checkerboard meshes. , Solver:
PETSc−CG ILU(2) : mem −> erl2

CeVe DDFV−A
CeVe DDFV−B
CeVeFE DDFV
FVMON
MFD−plain
SUSHI
SWPG−1
VAG
VAGR

cpu

er
l2

10–2

10–4

10–3

10–3 10–2 10–1 100 101 103102

10–1

100

101

mem

er
l2

10–2

10–4

10–3

100 101 102 103

10–1

100

101

cpu

er
l2

10–2

10–4

10–3

10–3 10–2 10–1 100 101 103102

10–1

100

101

mem

er
l2

10–2

10–4

10–3

100 101 102 103

10–1

100

101

cpu

er
l2

10–2

10–4

10–3

10–3 10–2 10–1 100 101 103102

10–1

100

101

mem

er
l2

10–2

10–4

10–3

100 101 102

10–1

100

101

(a) ISTL-CG ILU(0): cpu→erl2 (b) ISTL-CG ILU(0):memory→erl2

(c) ISTL-BiCGstab Jacobi: cpu→erl2 (d) ISTL-BiCGstab Jacobi:memory→erl2

(e) PETSc-CG ILU(2): cpu→erl2 (f) PETSc-CG ILU(2): memory→erl2

Fig. 14 Test 1-Checkerboard meshes
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Test 2, Prismatic meshes. , Solver:
ISTL−CG ILU(0) : cpu −> erl2
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Fig. 15 Test 2-Prismatic meshes
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Test 3, Random meshes. , Solver:
ISTL−CG ILU(0) : cpu −> erl2
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Fig. 16 Test 3-Random meshes
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Test 4, Well meshes. , Solver:
ISTL−CG ILU(0) : cpu −> erl2
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Fig. 17 Test 4- Well meshes
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Test 5, Locally refined  meshes. , Solver:
ISTL−CG ILU(0) : cpu −> erl2
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(e) PETSc-CG ILU(2): cpu→erl2 (f) PETSc-CG ILU(2): memory→erl2

Fig. 18 Test 5-Locally refined grid
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Benchmark 3D: a linear finite element solver

Hanen Amor, Marc Bourgeois, and Gregory Mathieu

1 Introduction

In the present paper1, we address some of the benchmark problems defined for the
Finite Volume for Complex Applications conference (FVCA6 [1]). The tests, which
are described in [2], consist in solving the following anisotropic diffusion problem :

� �r:.Kru/ = f on ˝

u = u on �d
(1)

where u is the unknown, ˝ is in most cases a unit cube, K W ˝ ! R
3�3 is the

diffusion tensor, f the source term and u the Dirichlet boundary conditions.
For this benchmark, the computations were performed with MELODIE (Modèle
d’Evaluation à LOng terme des Déchets Irradiants Enterrés) software, which is
devoted to simulate the migration of a plume of radionuclides in a 3-dimensional
geological media.

2 Presentation of MELODIE

The MELODIE [3] software, is developped by IRSN, and constantly upgraded,
to assess the long-term containment capabilities of radioactive waste repositories.
This software is designed to model a disposal site taking into account all the main

1The model of this paper is provided by the benchmark organization. The results of this benchmark
will be detailed and discussed by Florence HUBERT and Raphaële HERBIN in a paper gathering
all the contributions.
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physical and chemical characteristics of the disposal components. The model is
adapted to large scales of time and space required for simulation.
The MELODIE software models water flow and the phenomena involved in the
transport of radionuclides in saturated porous media in 2 dimensions and in 3
dimensions; physical and chemical interactions are represented by a retardation
factor integrated in the computational equations. These equations are discretised
using a so-called FVFE method -Finite Volume Finite Element-, which is based on
a Galerkin method to discretise time and variables, together with a finite volume
method using the Godunov scheme for the convection term. The FVFE method
is used to convert partial differential equations into a finite number of algebraic
equations that match the number of nodes in the mesh used to model the considered
site. It also serves to stabilise the numerical scheme. The present benchmark
adresses only diffusive problems, which are therefore solved by using a standard
P1 finite element method.

3 Numerical results

Numerical results presented in that contribution concern the tests 1, 3 and 4. The
error generated by the P1 method has been evaluated by defining the quantity: e D
u� uh, where u is the analytical solution and uh is the numerical solution. Then the
error can be computed as follows.

3.1 Discrete L2 andH1 norms

The continuousL2 and H1 norms of a function u are given by

kukL2.˝/ D
	Z

˝

u2

1=2

, kukH1.˝/ D kukL2.˝/ C krukL2.˝/

where ˝ is an open bounded in R3. In most of the test cases, the domain ˝ is a
unit cube. To compute those norms, we perform the L2 and H1 semi-norm of the
function u on a tetrahedron T :

kukL2.T / D
	Z

T

u2

1=2

and krukH1.T / D
	Z

T

ru2

1=2

The numerical quadrature used to approximate this integral, are given by the
following formula:

• in the case where the values of the function u are known on the vertices

Z

T

u2dx w 1

4
VT

4X

iD1
u.si /

2
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• in the case where values of the gradient of the function u are known on the centre
of gravity Z

T

ru:rudx w VTru.GT /:ru.GT /

The previous formula are adapted to calculate the relative L2 norm of the error :
erl2, the relativeL2 norm of a gradient of the error : ergrad and the relativeL2 norm
of the energy norm : ener.

3.2 Expected results

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
1 488 6072 7.69E-02 8.29E-02 1.935 1.935 1.791
2 857 11269 2.76E-02 2.83E-02 1.955 1.955 1.796
3 1601 21675 3.07E-02 3.07E-02 1.970 1.969 1.798
4 2997 41839 1.81E-02 1.77E-02 1.984 1.983 1.797
5 5692 81688 1.32E-02 1.37E-02 1.990 1.990 1.798
6 10994 160852 6.19E-03 6.49e-03 1.991 1.991 1.798

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 488 1.35E-02 - 2.32E-01 - 2.29E-01
2 857 7.01E-03 3.531 1.17E-01 1.370 1.17E-01 1.362
3 1601 4.56E-03 2.052 1.14E-01 1.052 1.14E-01 1.082
4 2997 3.01E-03 1.998 1.13E-01 1.155 1.11E-01 1.170
5 5692 1.87E-03 2.219 9.03E-02 1.067 8.90E-02 1.035
6 10994 1.22E-03 1.941 7.05E-02 1.128 6.92E-02 1.148

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 729 9097 1.34E-01 8.76E-02 1.833 1.883 1.834
2 4913 66961 3.12E-02 1.92E-02 1.955 1.970 1.797
3 35937 513313 8.55E-03 6.64E-03 1.988 1.992 1.783
4 274625 4018753 2.04E-03 1.92E-03 1.997 1.998 1.787
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 729 9.41E-02 - 8.88E-01 - 9.05E-01 -
2 4913 5.88E-02 0.737 5.70E-01 0.696 5.710E-01 0.723
3 35937 3.35E-02 0.849 3.49E-01 0.741 3.47E-01 0.750
4 274625 1.52E-02 1.158 1.99E-01 0.823 2.02E-01 0.793

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg
1 125 1333 -0.665 -0.338 0.685 0.363 6.004
2 729 9097 -0.885 -0.784 0.812 0.751 3.867
3 4913 66961 -0.970 -0.943 0.949 0.925 3.666
4 35937 513313 -0.988 -0.982 0.991 0.984 3.613

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 125 8.34E-01 - 9.77E-01 - 9.44E-01 -
2 729 1.97E-01 2.456 4.84E-01 1.193 4.17E-01 1.390
3 4913 5.16E-02 2.107 2.48E-01 1.051 2.10E-01 1.078
4 35937 1.33E-02 2.040 1.22E-01 1.067 1.03E-01 1.066

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg
1 1248 15886 0.189 0.189 5.360 5.360 1653.52
2 2800 37836 0.120 0.119 5.368 5.368 1634.57
3 5889 81531 0.078 0.076 5.345 5.345 1631.27
4 12582 178018 0.060 0.058 5.349 5.349 1628.68
5 25300 363768 0.046 0.045 5.377 5.377 1626.49
6 45668 662730 0.037 0.036 5.380 5.380 1625.64
7 79084 1154172 0.029 0.028 5.39 5.39 1624.98

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1248 3.30E-03 - 1.52E-01 - 1.48E-01 -
2 2800 1.49E-03 2.941 9.83E-02 1.621 9.40E-02 1.703
3 5889 8.99E-04 2.058 6.93E-02 1.409 6.52E-02 1.472
4 12582 6.11E-04 1.522 5.36E-02 1.014 4.93E-02 1.104
5 25300 4.09E-04 1.722 4.26E-02 0.983 3.94E-02 0.960
6 45668 2.69E-04 2.130 3.50E-02 0.997 3.26E-02 0.954
7 79084 2.58E-04 0.224 3.05E-02 0.753 2.84E-02 0.751
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4 Comments

The computations for the post-processing purpose of the relative L2 error norm and
the relativeH1 error semi-norm have been done using the continuous solution and a
numerical quadrature rule presented in the section 3.1. As can be seen, for the test 1
using the Tetrahedral meshes, for the test 3 using the Random meshes and for the test
4 using the Well meshes, the theoretical results are recovered, since a convergence of
order 2 for theL2-norm and a convergence of order 1 for theH1-norm are obtained.
For the test 1 using the Kershaw meshes, the theoretical results are not recovered. In
fact, a convergence of order 1 for the L2-norm and a convergence of order 1/2 for
the H1-norm are obtained. Those decreases in the rates of convergence orders are
due to the characteristics of the Kershaw meshes that present strong anisotropy.
In addition, FVFE method implemented in MELODIE is only available for tetra-
hedrons and conform meshes. In the benchmark, hexahedral meshes are divided in
tetrahedrons without changing the number of vertices. For the tests 2 and 5, that
kind of adaptation is not possible due to the specific shape of the meshes. It is the
reason why those cases were not considered.
In this benchmark, the system obtained after assembling of the discretized equations
on each element is linear. Within MELODIE, this linear system is solved by using a
bi-conjugate gradient method with an incomplete Gauss-type preconditioning. That
method is specifically suitable for resolution of non-symmetrical system. Thereby,
among the solvers proposed in the benchmark, our choice was the Petsc bi-conjugate
gradient (using various preconditioning) complying with the implemented method
in MELODIE.

References

1. website : http://fvca6.fs.cvut.cz/
2. website : http://www.latp.univ-mrs.fr/latp numerique/
3. website : http://www.irsn.fr/FR/Larecherche/outils-scientifiques/Codes-de-calcul/Pages/

Le-logiciel-MELODIE-3133.aspxl

The paper is in final form and no similar paper has been or is being submitted elsewhere.



Benchmark 3D: a version of the DDFV scheme
with cell/vertex unknowns on general meshes

Boris Andreianov, Florence Hubert, and Stella Krell

1 DDFV methods in 2D and in 3D. A 3D CeVe-DDFV scheme

This paper gives numerical results for a 3D extension of the 2D DDFV scheme.
Our scheme is of the same inspiration as the one called CeVe-DDFV ([9]), with a
more straightforward dual mesh construction. We sketch the construction in which,
starting from a given 3D mesh (which can be non conformal and have arbitrary
polygonal faces), one defines a dual mesh and a diamond mesh, reconstructs a
discrete gradient, and proves the discrete duality property. Details can be found
in [1].

DDFV (“Discrete Duality Finite Volume”) scheme was introduced in 2D by
Hermeline in [15] and by Domelevo and Omnès in [13]. To handle anisotropic
problems or nonlinear problems, or in order to work on general distorted meshes,
full gradient reconstruction from point values is a popular strategy. It is well known
that reconstruction of a discrete gradient is facilitated by adding unknowns that are
new with respect to those of standard cell-centered finite volume schemes. The 2D
DDFV method consists in adding new unknowns at the vertices of the initial mesh
(this initial mesh is often called the primal one), and in use of new control volumes
(called dual cells, or co-volumes) around these points. A family of diamond cells is
naturally associated to this construction, each diamond being built on two neighbor
cell centers xK; xL and the two vertices of the edge KjL that separates them. On
a diamond, one can construct a discrete gradient direction per direction (cell-cell
and vertex-vertex), following the idea of [8]. It turns out that this discrete gradient
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is related by a discrete analogue of integraton-by-parts formula, called “discrete
duality”, to the classical discrete finite volume divergence associated with these two
families of meshes. This duality property greatly simplifies the theoretical analysis
of finite volume schemes based on the DDFV construction, see e.g. [2, 5]. This 2D
strategy reveals to be particularly efficient in terms of gradient approximation (see
[7, 14]) and has been extended to a wide class of PDE problems (see [1, 5, 6, 18, 19]
and references therein).

The 3D CeVe-DDFV scheme we present here also keeps unknowns only at the
cell centers and the vertices of the primal mesh, and it uses the primal mesh, a dual
mesh and a diamond mesh; as in the 2D case, a diamond is constructed from two
neighbor cell centers xK; xL and from l vertices of the edge KjL that separates them
(l � 3). The price to pay is that the gradient reconstruction becomes more intricate.
As in 2D, one direction per diamond is reconstructed using the two cell center
unknowns at the nodes xK; xL; two complementary directions of the gradient in
KjL are reconstructed simultaneously, by a suitable interpolation of the vertex values
in each face KjL of the primal mesh. While the case l D 3 (meshes with triangular
faces) offers no choice, in general we have to fix a formula for interpolation that is
consistent with affine functions and which leads to discrete duality (with respect to
appropriately defined dual cells). This was achieved independently in [17] and in
[1, 3, 4], with two different approaches (the above description stems from the point
of view developed in [1, 3, 4]).

Several 3D DDFV constructions exist. The CeVe-DDFV scheme by Pierre et al.
(see [12]) was the pioneering work in 3D; a particular feature of this method was in
the double covering of the domain by the dual mesh. This approach led to a method
that is only slightly different from ours; we refer to the benchmark paper [9] in the
same collection. Next, Hermeline in [16] introduced the important idea to associate
additional unknowns with the face centers of the primal mesh. In the subsequent
work [17] of Hermeline, elimination of these unknowns eventually led to the same
method that the one we describe. Many numerical tests are given in [16,17]. Finally,
Coudière and Hubert in [10] introduced edge unknowns, instead of eliminating face
unknowns. This idea assessed a new strategy of 3D DDFV approximation; we call it
CeVeFE-DDFV because with respect to the primal mesh, cell, vertex and face+edge
unknowns are used. Let us point out the differences with respect to CeVe-DDFV
strategies. In [10], each diamond is constructed on two cell centers xK; xL, on two
vertices xK� ; xL� in the face KjL, and one face center xKjL 2 KjL and one edge center
xK�jL� 2 ŒxK� ; xL� �. Then the gradient is reconstructed per direction (cell-cell, vertex-
vertex and face-edge), as in 2D. The edge and face centers are the centers for a new,
third mesh. The CeVeFE-DDFV method is the object of the benchmark paper [11]
in the same collection.

Let us present the construction of our 3D CeVe-DDFV scheme. The primal mesh
needs not be conformal; there is no restriction on number of faces or face edges. For
simplicity, let us assume that the primal mesh volumes are convex; that their centers
belong to the volumes; and the face centers belong to the faces. These restrictions
can be relaxed, see [1]; but let us stress that the edge points must be the middlepoints.
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Notation. We use a triple T D
�
Mo;M�;D

�
of partitions of˝ into polyhedra.

• Mo denotes the initial mesh1, called primal mesh. We call @Mo the set of all
faces of this mesh that are included in @˝ . These faces are considered as flat
boundary (primal) control volumes. We denote by Mo the union Mo [ @Mo.

– Center: To any (primal) control volume K 2 Mo, we associate a point
xK 2 K.

– Vertex: A generic vertex of Mo is denoted by xK� .
– Neighbors: given K 2 Mo, all control volumes L 2 Mo such that K and L

have a common face (or part of a face) form the set N .K/ of neighbors of K.
– Face: for all L 2 N .K/, by KjL we denote @K \ @L which is a face (or a part of

a face) of the mesh Mo; it is supplied with a face center xKjL 2 KjL.
– Edge: An egde ŒxK� ; xL� � of Mo is defined by two neighbor vertices xK� , xL� ;

it is marked with the center xK�jL� that must be its middlepoint .xK�CxL� /=2.
– Element: An element T D T

K IL
K�IL� is the tetrahedron .xK; xKjL; xK�jL� ; xK� /:

here K is a primal volume ; KjL is a face of K ; and ŒxK� ; xL� � is an edge of
KjL (see Fig. 1). The set of all elements is denoted by T . If xK is a vertice of
T 2 T , then we say that T is associated2 with the volume K, and we write
T � K.

• M� denotes the dual mesh constructed as follows. A generic vertex xK� of Mo is
associated with the polyhedron K� 2M� made of all elements T 2 T that share
the vertex xK� (we write T � K�). If xK� 2 ˝ , we say that K� is a dual control
volume and write K� 2M�; and if xK� 2 @˝ , we say that K� is a boundary dual
control volume and write K� 2 @M�. Thus M� DM� [ @M�.

• D is the diamond mesh. For K 2Mo; L 2N .K/, the union of the convex hull of
xK and KjL with the convex hull of xL and KjL is called diamond, denoted by D

KjL.

For expression of the discrete operators one needs a convention on diamond orien-
tation, subdiamonds and other objects and notation of [1]; we give them via Fig. 1.
Discrete space and discrete operators; the discrete duality feature.

• A discrete function on ˝ is a set wT D
�

wMo
;wM�

�
consisting of two sets of

real values wMo D .wK/K2Mo and wM� D .wK� /K�2M� .

• A discrete function on ˝ is a set wT D
�

wMo
;wM� Iw@Mo

;w@M�
�
	
�

wTIw@T

�
,

wMoD .wK/K2Mo ; wM�D .wK�/K�2M� ; w@MoD .wK/K2@Mo ; w@M�D .wK� /K�2@M� :

• A discrete field on ˝ is a set
�!
F T D

��!
FD

�

D2D

of vectors of R
3.

• We write R
T, R

T, .R3/D, respectively, for the sets of discrete functions/fields.

1This means, Mo is one of the meshes provided by the benchmark organizers.
2Because we have made the assumption that xKjL 2 KjL, the relation T � K simply means that T is
included in K. The same observation applies to the notation T � K�. See [1] for generalizations.
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xK⊕
TK⊕ ;K
K∗

1 ;K∗
3

element

xK∗
3 K

∗
1

xK∗
2

xK∗3

xK∗
1

xK

xK K⊕ xK⊕

xK⊕

xK⊕−→nK ,K⊕

volume
K

xK∗
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∗
1

K K⊕
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∗
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3

xK K⊕

xK∗
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xK K⊕

orientation
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xK∗3
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2

diamond
DK K⊕

subdiamond
SK K⊕
K∗

3 K
∗
1

K⊕

volume

Fig. 1 Element (left). Oriented diamond, subdiamond and related notation, cf. [1] (right)

• Discrete divergence is the operator acting from .R3/D to R
T, given by

divT W �!
F T 7!

	�
divK

�!
F T

�

K2Mo
;
�

divK�
�!
F T

�

K�2M�




DW divT
�!
F T; (1)

where the entries divK
�!
F T, divK�

�!
F T of the discrete function divT

�!
F T on ˝ are

divK
�!
F T D 1

Vol.K/

X

T�K
mT

�!
F T � �!nT ; divK�

�!
F T D 1

Vol.K�/

X

T�K�
m�

T

�!
F T � �!n �T ;

(2)�!nT ;
�!n �

T
being the exterior normal vectors to @K, @K�. Formulae (2) stem from the

standard procedure of finite volume discretization, applied on Mo and on M�.
• Discrete gradient is the operator acting from R

T to .R3/D, given by

�!r T W wT 7!
��!rD wT

�

D2D

DW �!r TwT (3)

where the entry
�!rD wT of the discrete field

�!r TwT corresponding to D D D
K ǰK˚

(see Fig. 1) is reconstructed from the values wKˇ
;wK˚

at the neighbor centers
xKˇ ; xK˚ (they give the projection on �����!xKˇxK˚) and the values .wK�i /

l
iD1 at the l

vertices of the interface K ǰK˚ (they give the projection on the plane K ǰK˚)3 with

3When l D 3, one simply uses the three-point interpolation in the plane K ǰK
˚

to reconstruct this
projection. Clearly, the interpolation is exact for affine functions. In general, the reconstruction (3),
which is exact for affine functions, is based upon the 2D identity given in [3] and [1, Appendix].
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�!rD wT D 1

6Vol.D/

lX

iD1

� h �����!xKˇxK˚ ;
���������!xK ǰK˚xK�i jK

�

iC1
; �����!xK�i xK

�

iC1
i

�����!xKˇxK˚ � �!nKˇ;K˚
.wK˚

�wKˇ
/�!nKˇ;K˚

C 2.wK�
iC1
� wK�i /

h�����!xKˇxK˚ � ���������!xK ǰK˚xK�i jK�iC1

i�

: (4)

• Pick

��

wT; vT



WD 1
3

P
K2Mo Vol.K/ wKvK C 2

3

P
K�2M�

Vol.K�/ wK�vK� for

scalar product on R
T and

���!
F T;

�!
G T

��

WD P
D2D

Vol.D/
�!
FD � �!GD for scalar

product on .R3/D.

And now, one can mimic the identity � R
˝
.div
�!
F /w D R

˝

�!
F ��!rw for wj@˝ D 0:

Proposition 1 (the discrete duality property; see [1, 3], see also [17]). For all
�!
F T 2 .R3/D and all wT 2 R

T with w@T D 0,

��

� divT
�!
F T ; wT



D
���!

F T ;
�!r TwT

��

.

The scheme. In this benchmark, one approximates the linear diffusion problem

�div ŒA.�/�!r u� D f .�/ with Dirichlet boundary condition uj@˝ D Nu.�/, A.�/ being
a heterogeneous anisotropic diffusion tensor and f .�/ being a source term. Let
P

T denote the projection on the DDFV mesh T (i.e. the components of P
Tf are

the mean values of f 2 L1.˝/ per primal and per dual volumes); P
@T is the

projection on the boundary part of the mesh. Let
�!
P

T denote the projection on the
diamond mesh D. For general data, the heterogeneity of the matrix A.�/ is taken

into account by using the diamond-wise projection AT WD �!PTA.�/; similarly, we
use f T D P

Tf .�/ as the discrete source term. The boundary condition is given by
the projection P

@T Nu.�/.
For a fully practical discretization of A.�/ and f .�/ (which are continuous in all

the tests we perform), for every element (recall that diamonds, primal volumes and
dual volumes of a DDFV mesh are unions of elements, see Fig. 1) we take the mean
value of the four vertices of the element. The point values of the exact solution ue
in the centers of the boundary volumes are used as discrete boundary conditions.

Given a DDFV mesh T of ˝ the method writes as:

Find uT s.t. � divT

h
AT
�!rTuT

i
D f T with uT D .uTIP@T Nu/:

Convergence. From the discrete duality (Prop. 1) which is a cornerstone of DDFV
schemes, and from consistency properties of the projection, gradient and divergence
operators (see [2]; cf. [5] for analogous properties in 2D) one easily derives that the
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scheme is well posed for l � 4.4 Given a family .Th/h of CeVe-DDFV meshes,
the associated discrete solutions uTh enjoy a uniform discreteH1 estimate, and they
converge to the exact solution u as the size h of the mesh tends to zero. Convergence
analysis requires mild proportionality assumptions on the meshes Th in use, see [2].

2 Numerical results

In this section, we describe the results obtained on Tests 1–4 of the benchmark.
Notice that, while the method converges for merely L1 uniformly elliptic tensor
A.�/, it is not designed for a smart handling of a piecewise continuous A.�/5.
Therefore, we skip Test 5 that involves piecewise constant A.�/. We refer to
Coudière, Pierre, Rousseau and Turpault [12] and to Hermeline [17] for 3D
CeVe-DDFV constructions efficiently taking into account discontinuities of A.�/.
Choice of the cell and face points. We pick for xK , the isobarycenter of the cell K,
and for xKjL, the isobarycenter of the face KjL.

Measure of errors and convergence orders. To put the discrete and the
exact solutions “at the same level”, we use the projection P

Tue of the exact

solution and the associated discrete gradient reconstruction
�!rT

P
Tue, where

P
T � D �

P
T � I P@T � � . The L2 norms of the errors eT WD uT � P

Tue

and
�!rTeT WD �!rTuT � �!rT

P
Tue are measured in terms of the scalar

products

��

� ; �


on R
T,

��

AT � ; �
��

and

��

� ; �
��

on .R3/D: the relative error

indicators erl2 and ener , ergrad we use are defined, respectively, as
 hh

eT ; eT

ii

hh
PTue ;PTue

ii

!1=2

and as

 nn
AT�!rTeT ;

�!rTeT

oo

nn
AT
�!rTPTue ;

�!rTPTue

oo

!1=2

,

 nn�!rTeT ;
�!rTeT

oo

nn�!rTPTue ;
�!rTPTue

oo

!1=2

.

4The restriction on the number l of face vertices is only needed for justifying a discrete Poincaré
inequality; yet this property is immaterial, e.g., for the associated evolution problem. In practice,
in the below tests values l D 3; 4; 6 were used, and no particular problem for l D 6 is reported.
5 In 2D, a scheme called m-DDFV, specifically designed to handle discontinuous diffusion tensors,
was designed by Boyer and Hubert in [6]. There is a clear difference in convergence orders for the
basic DDFV version [5] and the m-DDFV version [6] (see the 2D benchmark paper [7]).
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�Test 1 Mild anisotropy, ue.x; y; z/ D 1Csin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
1 2187 21287 0.706E-02 0.706E-02 1.992 1.992 0.178E+01
2 4301 44813 0.706E-02 0.706E-02 1.997 1.996 0.179E+01
3 8584 94088 0.278E-02 0.278E-02 1.993 1.993 0.179E+01
4 17102 195074 0.792E-03 0.792E-03 1.997 1.997 0.179E+01
5 34343 405077 0.140E-02 0.140E-02 1.999 1.999 0.180E+01
6 69160 838856 0.140E-02 0.140E-02 1.999 1.999 0.180E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 2187 0.539E-02 - 0.654E-01 - 0.649E-01 -
2 4301 0.331E-02 2.165 0.488E-01 1.297 0.491E-01 1.239
3 8584 0.206E-02 2.069 0.381E-01 1.077 0.383E-01 1.079
4 17102 0.135E-02 1.841 0.301E-01 1.018 0.302E-01 1.026
5 34343 0.846E-03 1.998 0.240E-01 0.973 0.242E-01 0.955
6 69160 0.539E-03 1.934 0.190E-01 1.012 0.191E-01 1.008

�Test 1 Mild anisotropy, ue.x; y; z/ D 1Csin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg
1 87 1433 0.667E-01 0.667E-01 1.904 1.904 0.159E+01
2 235 4393 0.432E-02 0.432E-02 1.997 1.997 0.172E+01
3 527 10777 0.280E-01 0.280E-01 1.990 1.990 0.176E+01
4 1013 21793 0.108E-02 0.108E-02 2.003 1.995 0.177E+01
5 1776 40998 0.113E-01 0.113E-01 2.000 1.996 0.178E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 87 0.484E-01 - 0.204E+00 - 0.374E+00 -
2 235 0.388E-01 0.666 0.173E+00 0.496 0.277E+01 -6.049
3 527 0.231E-01 1.925 0.118E+00 1.402 0.838E+00 4.445
4 1013 0.167E-01 1.484 0.940E-01 1.060 0.299E+01 -5.843
5 1776 0.117E-01 1.937 0.818E-01 0.742 0.291E+01 0.147
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�Test 1 Mild anisotropy, ue.x; y; z/ D 1Csin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 855 13819 2.28E-02 2.28E-02 1.989 1.989 1.730
2 7471 138691 2.52E-03 2.52E-03 1.994 1.994 1.778
3 62559 1237459 1.99E-03 1.99E-03 1.999 1.999 1.794
4 512191 10443763 3.82E-04 3.82E-04 2.000 2.000 1.797

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 855 0.501E-01 - 0.484E+00 - 0.558E+00 -
2 7471 0.156E-01 1.611 0.209E+00 1.160 0.159E+00 1.735
3 62559 0.392E-02 1.954 0.677E-01 1.594 0.395E-01 1.970
4 512191 0.101E-02 1.936 0.223E-01 1.585 0.109E-01 1.835

�Test 1 Mild anisotropy, ue.x; y; z/ D 1Csin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg
1 59 703 0.341E-01 0.341E-01 1.966 1.966 0.167E+01
2 599 9835 0.856E-02 0.856E-02 1.991 1.991 0.178E+01
3 5423 101539 0.214E-02 0.214E-02 1.998 1.998 0.179E+01
4 46175 917395 0.535E-03 0.535E-03 1.999 1.999 0.180E+01
5 381119 7788403 0.134E-03 0.134E-03 2.000 2.000 0.180E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 59 0.396E-01 - 0.136E+00 - 0.116E+00 -
2 599 0.149E-01 1.266 0.928E-01 0.499 0.818E-01 0.449
3 5423 0.400E-02 1.792 0.497E-01 0.849 0.448E-01 0.820
4 46175 0.103E-02 1.905 0.256E-01 0.931 0.232E-01 0.920
5 381119 0.259E-03 1.954 0.130E-01 0.965 0.118E-01 0.961

� Test 2 Heterogeneous anisotropy, min D �0:862; max D 1:0487
ue.x; y; z/ D x3y2zC x sin.2�xz/ sin.2�xy/ sin.2�z/, Prism meshes

i nu nmat umin uemin umax uemax normg
1 3010 64158 -.856E+00 -.856E+00 1.044 1.044 0.170E+01
2 24020 555528 -.859E+00 -.859E+00 1.047 1.047 0.171E+01
3 81030 1924098 -.861E+00 -.861E+00 1.049 1.049 0.171E+01
4 192040 4619868 -.862E+00 -.862E+00 1.049 1.049 0.171E+01
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 3010 0.467E-01 - 0.711E-01 - 0.785E-01 -
2 24020 0.123E-01 1.931 0.224E-01 1.667 0.328E-01 1.262
3 81030 0.554E-02 1.960 0.116E-01 1.634 0.190E-01 1.348
4 192040 0.314E-02 1.973 0.728E-02 1.607 0.127E-01 1.389

� Test 3 Flow with strong anisotropy on random meshes, min D 0; max D 1,
ue.x; y; z/ D sin.�x/ sin .�y/ sin .�z/, Random meshes

i nu nmat umin uemin umax uemax normg
1 91 1063 -.202E+01 -.978E+00 1.969 0.931 0.392E+01
2 855 13819 -.116E+01 -.994E+00 1.206 0.982 0.363E+01
3 7471 138691 -.105E+01 -.995E+00 1.029 0.991 0.362E+01
4 62559 1237459 -.101E+01 -.998E+00 1.014 0.998 0.360E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 91 0.713E+00 - 0.716E+00 - 0.439E+00 -
2 855 0.152E+00 2.068 0.199E+00 1.712 0.130E+00 1.633
3 7471 0.384E-01 1.906 0.854E-01 1.174 0.417E-01 1.568
4 62559 0.119E-01 1.656 0.542E-01 0.640 0.183E-01 1.165

� Test 4 Flow around a well, min D 0; max D 5:415, Well meshes

i nu nmat umin uemin umax uemax normg
1 1482 23942 -.438E-01 -.438E-01 5.415 5.415 0.162E+04
2 3960 70872 -.239E-01 -.239E-01 5.415 5.415 0.162E+04
3 9229 173951 -.132E-01 -.132E-01 5.415 5.415 0.162E+04
4 21156 412240 -.661E-02 -.661E-02 5.415 5.415 0.162E+04
5 44420 882520 -.411E-02 -.411E-02 5.415 5.415 0.162E+04
6 82335 1654893 -.281E-02 -.281E-02 5.415 5.415 0.162E+04
7 145079 2937937 -.198E-02 -.198E-02 5.415 5.415 0.162E+04

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1482 0.564E-02 - 0.473E-01 - 0.817E-01 -
2 3960 0.218E-02 2.897 0.205E-01 2.556 0.487E-01 1.578
3 9229 0.964E-03 2.898 0.108E-01 2.255 0.296E-01 1.770
4 21156 0.645E-03 1.454 0.748E-02 1.344 0.205E-01 1.320
5 44420 0.427E-03 1.664 0.546E-02 1.274 0.144E-01 1.443
6 82335 0.291E-03 1.864 0.396E-02 1.560 0.108E-01 1.391
7 145079 0.205E-03 1.848 0.337E-02 0.858 0.794E-02 1.624
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3 Comments

Let us summarize the observations; footnotes provide comments of theoretical order.

Choice of the solvers. The following results have been performed either with the
direct solvers given by the UMFPACK library, or with the BiCGStab algorithm with
ILU(0) preconditionning delivered in the HSL library. A comparison between ISTL-
CG with ILU(0) preconditionning and PETSC-CG with ILU(2) preconditionning
shows that, whenever ISTL-CG/ILU(0) algorithm converges, much less CPU time
and much less memory is used than for the PETSC-CG/ILU(2) algorithm.

Convergence orders observed6. Even if the orders present serious oscillations
for some cases (e.g., in Test 3 and in Test 1 on Voronoı̈ meshes), orders slightly
below h2 (superconvergence) for the solution in the L2 norm are observed quite
systematically. One exception is Test 4, where an order intermediate between h3=2

and h2 seems to appear; this may be related to the presence of a singularity in the
well center.

Regarding the gradient norm, convergence orders close to h are seen in Test 1 on
tetrahedral, Voronoı̈, checkerboard meshes. On Kershaw meshes in Test 1 and prism
meshes of Test 2, more structured though distorted, an h3=2 convergence order can
be observed. For random meshes of Test 3, orders degrade quickly but the numerical
evidence (four meshes only) seems insufficient. The well meshes of Test 4 appear
as rather structured but having a singularity; the effect of singularity grows as the
mesh becomes finer, and the convergence order falls from h2 to h3=2 and then to h.
Yet from Tests 3 and 4 with stronger anisotropy of A.�/, it becomes clear that more
adequate norm for measuring gradient convergence is the energy norm. In Test 4 we
observe an accurate h3=2 convergence and in Test 3, an order h3=2 can be conjectured.

Violation (and fulfillment) of the maximum principle7. We observe that violation
of discrete maximum principle does not occur systematically (or if it occurs, it
is of imperceptible magnitude, even on coarse meshes). No overshoot/undershoot
is reported on Kershaw, checkerboard and prism meshes for Test 1, nor on the well
meshes of Test 4; a very slight overshoot can be seen in Test 1 on tetrahedral meshes.
On the contrary, random meshes of Test 3, and also the finest ones among the
Voronoı̈ meshes of Test 1, exhibit a perceptible violation of the maximum principle
which is nonetheless reduced as the mesh size diminishes8. Difficulties on these two

6For regular enough A.�/ and ue , order h can be proved for both solution and its gradient in L2.
7In principle, DDFV methods are not designed in order to respect the discrete maximum principle;
and the convergence analysis exploits rather the variational structure, well preserved by the method
(this is one of the benefits from the discrete duality of Prop. 1). Let us point out that for isotropic
problems on primal meshes satisfying the orthogonality condition (e.g., Delaunay tetrahedral
meshes with the choice of circumcenters for the cell centers xK - note that xK may fall out of
K), the discrete maximum principle is easily shown for the CeVe-DDFV scheme under study ([4]).
8In theory, one can prove convergence in Lq for q < 6; nothing guarantees convergence in L1.
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kinds of meshes can be explained by their poor shape regularity (e.g., fine Voronoı̈
meshes in Test 1 present a dramatic contrast of size between neighbor cells).

Influence of the mesh type and quality on convergence orders9. Among the
different mesh properties that could influence the numerical behavior, restrictions on
l appear as immaterial (the best convergence orders are achieved for prism meshes
of Test 2 having up to l D 6 face vertices). While conformity is not needed for the
method, non-conformal meshes bring more distorted cells and diamonds. We have
seen that bad shape conditioning may induce violation of the maximum principle.
In Test 1, presence of neighbor cells with considerable contrast in size (for Voronoı̈
meshes and for non-conformal checkerboard meshes) degrades convergence orders
for the gradient, in contrast to rather gradually distorted Kershaw and prism meshes.
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scheme that the discrete Poincaré inequality cannot be proved for l > 4, see [2, 17].



948 B. Andreianov et al.

11. Y. Coudière, F. Hubert and G. Manzini. Benchmark 3D: CeVeFE-DDFV, a discrete duality
scheme with cell/vertex/face+edge unknowns. This volume, (2011).

12. Y. Coudière, C. Pierre, O. Rousseau, and R. Turpault. A 2d/3d discrete duality finite volume
scheme. Application to ecg simulation. Int. Journal on Finite Volumes, (2009), 6(1).

13. K. Domelevo and P. Omnès. A finite volume method for the Laplace equation on almost
arbitrary two-dimensional grids. M2AN Math. Model. Numer. Anal., (2005), 39(6):1203–1249.

14. R. Herbin and F. Hubert. Benchmark on discretization schemes for anisotropic diffusion
problems on general grids. In R. Eymard and J.-M. Hérard, editors, Finite Volume For Complex
Applications, Problems And Perspectives. 5th International Conference, (2008), 659–692.
London (UK) Wiley.

15. F. Hermeline. A finite volume method for the approximation of diffusion operators on distorted
meshes. J. Comput. Phys., (2000), 160(2):481–499.

16. F. Hermeline. Approximation of 2-d and 3-d diffusion operators with variable full tensor
coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Engrg., (2007), 196(21-24):
2497–2526.

17. F. Hermeline. A finite volume method for approximating 3d diffusion operators on general
meshes. Journal of computational Physics, (2009), 228(16):5763–5786.
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Benchmark 3D: Symmetric Weighted Interior
Penalty Discontinuous Galerkin Scheme

Peter Bastian

1 Weighted Interior Penalty Discontinuous Galerkin Schemes

Consider the stationary diffusion equation with Dirichlet boundary conditions

�r � .Kru/ D f in ˝; (1a)

u D g on @˝: (1b)

with ˝ a domain in R
n, n D 1; 2; 3, and K a uniformly symmetric positive definite

permeability tensor. The weak formulation of (1) consist of finding u 2 ug C V ,
V D H1

0 .˝/, ug an extension of the Dirichlet data such that

.Kru;rv/0;˝ D .f; v/0;˝
where .:; :/0;! denotes the L2-scalar product on a domain !.

Discontinuous Galerkin (DG) methods are a class of numerical schemes that
has been studied extensively in the last two decades, see [8]. We use the weighted
interior penalty discontinuous Galerkin (WIPG) schemes introduced in [6].

Let fThgh>0 denote a family of triangulations of the domain ˝ . An element of
the triangulation is denoted by T , hT is its diameter, jT j its volume and nT its unit
outer normal vector. F is called an “interior face” independent of the dimension if
there are two elements T �.F /; TC.F / 2 Th with T �.F / \ TC.F / D F and F
has nonzero measure. All interior faces are collected in the set F i

h . The intersection
of T 2 Th with the boundary @˝ of non-zero measure is called a boundary face.
All boundary faces are collected in the set F @˝

h and we set F D F i
h [F @˝

h . The
diameter of a face is denoted by hF and its volume by jF j. With each F 2 F we
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associate a unit normal vector nF (depending on position if F is curved) oriented
from T �.F / to TC.F / for an interior face and coinciding with the exterior unit
normal for a boundary face.

The DG approximation space is

Vh D fv 2 L2.˝/ W 8T 2 Th; vjT 2Pg

where P is either PkDfpWp DPk˛k1�k c˛x˛g or Qk D fp W p DPk˛k1�k c˛x˛g
in the standard multiindex notation. On an interior face F a function v 2 Vh is
two-valued and its values v� and vC are the restrictions from T �.F / and TC.F /,
respectively. For F 2 F i

h and v 2 Vh we introduce the jump and the weighted
average

�v�F D v� � vC; fvg! D !�v� C !CvC;

with the weights satisfying !� C !C D 1, !�; !C � 0.
In the WIPG schemes the discrete solution uh 2 Vh satisfies the variational

equation
ah.uh; v/ D lh.v/ 8v 2 Vh

with bilinear and linear forms defined as

ah.u; v/ D
X

T2Th

.Kru;rv/0;T

�
X

F2F i
h

�
.fntFKrug!; �v�/0;F � �.fntFKrvg!; �u�/0;F � �F .�u�; �v�/0;F

�

�
X

F2F@˝
h

�
.ntFKru; v/0;F � �.ntFKrv; u/0;F � �F .u; v/0;F

�
;

lh.u; v/ D
X

T2Th

.f; v/0;T C
X

F2F@˝
h

�
�.ntFKrv; g/0;F C �F .g; v/0;F

�
:

For � D �1 we obtain the symmetric weighted interior penalty Galerkin method
(SWIPG) used below for all tests.

The weights !˙ are defined with respect to the permeability as

!� D ıCKn
ı�Kn C ıCKn

; !C D ı�Kn
ı�Kn C ıCKn

;

with ıK̇n D ntFK˙nF for F 2 F i
h and ıKn D ntFKnF for F 2 F @˝

h .
The choice of the interior penalty parameter �F is crucial, as the scheme should

be as independent of the problem and mesh parameters as possible. We use the
following definition of the penalty parameter:



Benchmark 3D: Symmetric Weighted Interior Penalty Discontinuous Galerkin Scheme 951

8F 2 F i
h; �F D ˛ 2ı�Knı

C
Kn

ı�Kn C ıCKn
k.k C n � 1/ jF j

min.jT �.F /j; jTC.F /j/ ; (2a)

8F 2 F @˝
h ; �F D ˛ ıKn k.k C n � 1/ jF j

jT �.F /j : (2b)

with ˛ a user-defined parameter. This choice is a combination of different papers:
The harmonic average of “normal” permeabilities was introduced and analyzed in
[6], the dependence on the polynomial degree was analyzed in [5] and the choice of
the h-dependence is taken from [7]. The parameter ˛ was chosen as follows:

Test 1 1 1 3 3 3 3 4 5
Mesh tetra kershaw checkerboard rand rand rand rand well locraf
k 1-4 1-4 1-4 1 2 3 4 1-4 1-4
˛ 3.0 2.5 1.0 1000 2000 5000 10000 1000 0.7

Unfortunately, the choice of ˛ is heuristic. It should be subject of future research to
find a formula (2) that better takes into account the element shape as it was done in
[5] for tetrahedral elements.

2 Numerical results

The L2, H1 and energy error are computed by numerical integration of order 12.

� Test 1, Mild anisotropy, Tetrahedral meshes

Table 1, P1

i nu nmat umin uemin umax uemax normg
1 8012 150576 5.32E-02 2.03E-02 1.965 1.989 1.794
2 15592 297376 1.31E-02 6.84E-03 1.974 1.989 1.797
3 30844 593648 1.71E-02 9.13E-03 1.983 1.994 1.797
4 61064 1184192 1.05E-02 5.52E-03 1.992 1.997 1.797
5 121920 2379936 7.19E-03 1.49E-03 1.994 1.997 1.798
6 244208 4791872 3.69E-03 1.83E-03 1.994 1.997 1.798

Table 1, P2

i nu nmat umin uemin umax uemax normg
1 20030 941100 2.11E-02 2.03E-02 1.989 1.989 1.799
2 38980 1858600 6.97E-03 6.84E-03 1.989 1.989 1.799
3 77110 3710300 9.19E-03 9.13E-03 1.993 1.994 1.799
4 152660 7401200 5.56E-03 5.52E-03 1.997 1.997 1.799
5 304800 14874600 1.51E-03 1.49E-03 1.997 1.997 1.799
6 610520 29949200 1.84E-03 1.83E-03 1.997 1.997 1.798
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Table 1, P3

i nu nmat umin uemin umax uemax normg
1 40060 3764400 2.04E-02 2.03E-02 1.989 1.989 1.798
2 77960 7434400 6.83E-03 6.84E-03 1.989 1.989 1.798
3 154220 14841200 9.14E-03 9.13E-03 1.993 1.994 1.798
4 305320 29604800 5.52E-03 5.52E-03 1.997 1.997 1.798
5 609600 59498400 1.49E-03 1.49E-03 1.997 1.997 1.798
6 1221040 119796800 1.83E-03 1.83E-03 1.997 1.997 1.798

Table 1, P4

i nu nmat umin uemin umax uemax normg
1 70105 11528475 2.03E-02 2.03E-02 1.989 1.989 1.798
2 136430 22767850 6.84E-03 6.84E-03 1.989 1.989 1.798
3 269885 45451175 9.13E-03 9.13E-03 1.994 1.994 1.798
4 534310 90664700 5.52E-03 5.52E-03 1.997 1.997 1.798
5 1066800 182213850 1.49E-03 1.49E-03 1.997 1.997 1.798
6 2136820 366877700 1.83E-03 1.83E-03 1.997 1.997 1.798

Table 2, P1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 8012 1.11E-02 — 2.28E-01 — 2.23E-01 —
2 15592 7.02E-03 2.084 1.82E-01 1.015 1.79E-01 1.004
3 30844 4.52E-03 1.934 1.46E-01 0.961 1.43E-01 0.988
4 61064 2.91E-03 1.931 1.16E-01 1.016 1.13E-01 1.022
5 121920 1.87E-03 1.925 9.23E-02 0.993 9.03E-02 0.979
6 244208 1.16E-03 2.068 7.28E-02 1.021 7.11E-02 1.034

Table 2, P2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 20030 8.22E-04 — 2.40E-02 — 2.32E-02 —
2 38980 4.19E-04 3.034 1.54E-02 1.986 1.48E-02 2.033
3 77110 2.08E-04 3.079 9.51E-03 2.123 9.17E-03 2.104
4 152660 1.05E-04 3.016 6.05E-03 1.985 5.84E-03 1.980
5 304800 5.34E-05 2.925 3.85E-03 1.962 3.72E-03 1.960
6 610520 2.66E-05 3.015 2.42E-03 2.015 2.33E-03 2.022

Table 2, P3

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 40060 4.46E-05 — 1.71E-03 — 1.66E-03 —
2 77960 1.78E-05 4.152 8.58E-04 3.118 8.28E-04 3.125
3 154220 7.27E-06 3.928 4.38E-04 2.957 4.21E-04 2.969
4 305320 2.84E-06 4.135 2.17E-04 3.076 2.09E-04 3.074
5 609600 1.14E-06 3.969 1.09E-04 3.004 1.05E-04 3.006
6 1221040 4.43E-07 4.067 5.36E-05 3.052 5.15E-05 3.060

Table 2, P4

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 70105 2.31E-06 — 1.03E-04 — 9.93E-05 —
2 136430 7.36E-07 5.154 4.19E-05 4.068 3.97E-05 4.134
3 269885 2.30E-07 5.118 1.62E-05 4.186 1.54E-05 4.161
4 534310 7.00E-08 5.226 6.35E-06 4.110 6.06E-06 4.097
5 1066800 2.29E-08 4.850 2.59E-06 3.900 2.47E-06 3.896
6 2136820 7.08E-09 5.066 1.01E-06 4.047 9.64E-07 4.061
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� Test 1, Mild anisotropy, Kershaw meshes

Table 1, Q1

i nu nmat umin uemin umax uemax normg
1 4096 204800 9.58E-02 3.03E-02 1.850 1.958 1.771
2 32768 1736704 2.40E-02 1.06E-02 1.953 1.993 1.781
3 262144 14286848 5.39E-03 1.75E-03 1.987 1.997 1.786
4 2097152 115867648 1.71E-03 7.14E-04 1.997 1.999 1.791

Table 1, Q2

i nu nmat umin uemin umax uemax normg
1 13824 2332800 3.12E-02 3.03E-02 1.944 1.958 1.796
2 110592 19782144 1.04E-02 1.06E-02 1.990 1.993 1.796
3 884736 162736128 1.71E-03 1.75E-03 1.997 1.997 1.798
4 7077888 1319804928 7.11E-04 7.14E-04 1.999 1.999 1.798

Table 1, Q3

i nu nmat umin uemin umax uemax normg
1 32768 13107200 2.91E-02 3.03E-02 1.955 1.958 1.797
2 262144 111149056 1.05E-02 1.06E-02 1.992 1.993 1.798
3 2097152 914358272 1.75E-03 1.75E-03 1.997 1.997 1.798

Table 1, Q4

i nu nmat umin uemin umax uemax normg
1 64000 50000000 3.02E-02 3.03E-02 1.958 1.958 1.798
2 512000 424000000 1.06E-02 1.06E-02 1.993 1.993 1.798
3 4096000 -806967296 1.75E-03 1.75E-03 1.997 1.997 1.798

Table 2, Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 4096 6.65E-02 — 5.79E-01 — 5.52E-01 —
2 32768 4.57E-02 0.541 4.26E-01 0.441 4.00E-01 0.466
3 262144 2.53E-02 0.856 2.76E-01 0.627 2.59E-01 0.624
4 2097152 1.07E-02 1.246 1.57E-01 0.813 1.51E-01 0.778

Table 2, Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 13824 2.95E-02 — 2.45E-01 — 2.17E-01 —
2 110592 7.51E-03 1.975 1.04E-01 1.236 9.80E-02 1.145
3 884736 9.75E-04 2.945 3.26E-02 1.675 3.22E-02 1.606
4 7077888 7.54E-05 3.693 8.76E-03 1.895 8.77E-03 1.877

Table 2, Q3

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 32768 5.72E-03 — 6.34E-02 — 5.57E-02 —
2 262144 7.05E-04 3.020 1.58E-02 2.002 1.50E-02 1.895
3 2097152 2.91E-05 4.598 2.45E-03 2.689 2.42E-03 2.629

Table 2, Q4

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 64000 1.61E-03 — 2.09E-02 — 1.82E-02 —
2 512000 5.64E-05 4.837 1.99E-03 3.389 1.89E-03 3.266
3 4096000 1.21E-06 5.540 1.51E-04 3.725 1.49E-04 3.664
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� Test 1, Mild anisotropy, Checkerboard meshes

Table 1, P1

i nu nmat umin uemin umax uemax normg
1 144 3648 2.35E-01 1.54E-01 1.784 1.846 1.550
2 1152 35328 6.71E-02 4.01E-02 1.931 1.960 1.667
3 9216 307200 1.47E-02 1.01E-02 1.985 1.990 1.751
4 73728 2555904 2.56E-03 2.54E-03 1.997 1.997 1.784
5 589824 20840448 6.36E-04 6.36E-04 1.999 1.999 1.795

Table 1, P2

i nu nmat umin uemin umax uemax normg
1 360 22800 1.82E-01 1.54E-01 1.812 1.846 1.750
2 2880 220800 4.52E-02 4.01E-02 1.954 1.960 1.795
3 23040 1920000 1.05E-02 1.01E-02 1.989 1.990 1.799
4 184320 15974400 2.57E-03 2.54E-03 1.997 1.997 1.799
5 1474560 130252800 6.37E-04 6.36E-04 1.999 1.999 1.798

Table 1, P3

i nu nmat umin uemin umax uemax normg
1 720 91200 1.61E-01 1.54E-01 1.839 1.846 1.783
2 5760 883200 4.02E-02 4.01E-02 1.960 1.960 1.798
3 46080 7680000 1.01E-02 1.01E-02 1.990 1.990 1.798
4 368640 63897600 2.54E-03 2.54E-03 1.997 1.997 1.798
5 2949120 521011200 6.36E-04 6.36E-04 1.999 1.999 1.798

Table 1, P4

i nu nmat umin uemin umax uemax normg
1 1260 279300 1.55E-01 1.54E-01 1.845 1.846 1.797
2 10080 2704800 4.01E-02 4.01E-02 1.960 1.960 1.798
3 80640 23520000 1.01E-02 1.01E-02 1.990 1.990 1.798
4 645120 195686400 2.54E-03 2.54E-03 1.997 1.997 1.798
5 5160960 1595596800 6.36E-04 6.36E-04 1.999 1.999 1.798

Table 2, P1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 144 9.89E-02 — 5.97E-01 — 5.71E-01 —
2 1152 3.13E-02 1.658 3.33E-01 0.842 3.35E-01 0.769
3 9216 9.17E-03 1.773 1.68E-01 0.984 1.68E-01 0.998
4 73728 2.51E-03 1.871 8.30E-02 1.022 8.22E-02 1.031
5 589824 6.47E-04 1.954 4.10E-02 1.015 4.05E-02 1.020

Table 2, P2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 360 3.56E-02 — 2.70E-01 — 2.93E-01 —
2 2880 6.55E-03 2.442 8.25E-02 1.713 8.00E-02 1.874
3 23040 7.78E-04 3.075 2.10E-02 1.971 2.04E-02 1.970
4 184320 9.46E-05 3.039 5.26E-03 2.001 5.11E-03 1.998
5 1474560 1.17E-05 3.010 1.31E-03 2.001 1.28E-03 2.000

Table 2, P3

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 720 1.19E-02 — 1.01E-01 — 8.92E-02 —
2 5760 1.02E-03 3.544 1.54E-02 2.712 1.47E-02 2.602
3 46080 7.31E-05 3.803 2.08E-03 2.886 1.95E-03 2.912
4 368640 4.78E-06 3.933 2.67E-04 2.962 2.50E-04 2.968
5 2949120 3.04E-07 3.975 3.37E-05 2.986 3.15E-05 2.988
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Table 2, P4

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1260 2.72E-03 — 2.82E-02 — 3.04E-02 —
2 10080 1.19E-04 4.517 2.18E-03 3.693 2.07E-03 3.874
3 80640 4.29E-06 4.789 1.46E-04 3.903 1.37E-04 3.923
4 645120 1.44E-07 4.900 9.34E-06 3.964 8.68E-06 3.977
5 5160960 4.62E-09 4.958 5.90E-07 3.985 5.46E-07 3.992

� Test 3, Flow on random meshes, Random meshes

Table 1, Q1

i nu nmat umin uemin umax uemax normg
1 512 22528 -4.34E-01 -7.59E-01 0.355 0.691 3.007
2 4096 204800 -8.45E-01 -9.39E-01 0.791 0.923 3.431
3 32768 1736704 -9.58E-01 -9.85E-01 0.946 0.982 3.565
4 262144 14286848 -9.90E-01 -9.96E-01 0.989 0.996 3.588

Table 1, Q2

i nu nmat umin uemin umax uemax normg
1 1728 256608 -7.50E-01 -7.59E-01 0.676 0.691 3.637
2 13824 2332800 -9.40E-01 -9.39E-01 0.924 0.923 3.569
3 110592 19782144 -9.85E-01 -9.85E-01 0.982 0.982 3.597
4 884736 162736128 -9.96E-01 -9.96E-01 0.996 0.996 3.596

Table 1, Q3

i nu nmat umin uemin umax uemax normg
1 4096 1441792 -7.53E-01 -7.59E-01 0.684 0.691 3.655
2 32768 13107200 -9.38E-01 -9.39E-01 0.922 0.923 3.570
3 262144 111149056 -9.85E-01 -9.85E-01 0.982 0.982 3.597
4 2097152 914358272 -9.96E-01 -9.96E-01 0.996 0.996 3.596

Table 1, Q4

i nu nmat umin uemin umax uemax normg
1 8000 5500000 -7.59E-01 -7.59E-01 0.691 0.691 3.655
2 64000 50000000 -9.39E-01 -9.39E-01 0.923 0.923 3.570
3 512000 424000000 -9.85E-01 -9.85E-01 0.982 0.982 3.597

Table 2, Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 512 3.04E-01 — 4.99E-01 — 5.00E-01 —
2 4096 8.38E-02 1.858 2.58E-01 0.952 2.53E-01 0.984
3 32768 2.16E-02 1.958 1.30E-01 0.988 1.25E-01 1.017
4 262144 5.77E-03 1.902 6.72E-02 0.953 6.30E-02 0.989

Table 2, Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1728 4.41E-02 — 1.25E-01 — 1.14E-01 —
2 13824 6.01E-03 2.874 2.98E-02 2.066 2.83E-02 2.014
3 110592 8.26E-04 2.864 7.77E-03 1.941 7.27E-03 1.962
4 884736 1.74E-04 2.248 2.60E-03 1.578 2.16E-03 1.750

Table 2, Q3

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 4096 5.29E-03 — 2.00E-02 — 1.85E-02 —
2 32768 3.86E-04 3.776 2.60E-03 2.943 2.30E-03 3.002
3 262144 6.22E-05 2.634 6.36E-04 2.032 3.72E-04 2.629
4 2097152 3.93E-05 0.661 5.81E-04 0.130 2.65E-04 0.489
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Table 2, Q4

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 8000 5.44E-04 — 2.69E-03 — 2.26E-03 —
2 64000 4.30E-05 3.662 3.02E-04 3.159 1.76E-04 3.684
3 512000 2.15E-05 0.999 2.47E-04 0.291 9.24E-05 0.930

� Test 4, Flow around a well, Well meshes

Table 1, Q1

i nu nmat umin uemin umax uemax normg
1 7120 356736 3.52E-01 4.14E-01 5.316 5.317 1686.482
2 17856 931328 2.23E-01 2.44E-01 5.328 5.328 1652.956
3 40128 2139904 1.46E-01 1.54E-01 5.329 5.329 1637.838
4 89760 4857216 1.13E-01 1.18E-01 5.330 5.330 1632.052
5 185680 10136320 8.72E-02 8.99E-02 5.339 5.339 1628.690
6 341064 18717760 7.06E-02 7.23E-02 5.345 5.345 1626.812
7 597432 32900416 5.55E-02 5.65E-02 5.361 5.361 1625.784

Table 1, Q2

i nu nmat umin uemin umax uemax normg
1 24030 4063446 4.13E-01 4.14E-01 5.317 5.317 1625.412
2 60264 10608408 2.43E-01 2.44E-01 5.328 5.328 1623.883
3 135432 24374844 1.54E-01 1.54E-01 5.329 5.329 1623.603
4 302940 55326726 1.18E-01 1.18E-01 5.330 5.330 1623.529
5 626670 115459020 8.99E-02 8.99E-02 5.339 5.339 1623.506
6 1151091 213206985 7.23E-02 7.23E-02 5.345 5.345 1623.497
7 2016333 374756301 5.65E-02 5.65E-02 5.361 5.361 1623.491

Table 1, Q3

i nu nmat umin uemin umax uemax normg
1 56960 22831104 4.15E-01 4.14E-01 5.317 5.317 1623.772
2 142848 59604992 2.44E-01 2.44E-01 5.328 5.328 1623.611
3 321024 136953856 1.54E-01 1.54E-01 5.329 5.329 1623.546
4 718080 310861824 1.18E-01 1.18E-01 5.330 5.330 1623.514
5 1485440 648724480 8.99E-02 8.99E-02 5.339 5.339 1623.500
6 2728512 1197936640 7.24E-02 7.23E-02 5.345 5.345 1623.493
7 4779456 2105626624 5.65E-02 5.65E-02 5.361 5.361 1623.489

Table 1, Q4

i nu nmat umin uemin umax uemax normg
1 111250 87093750 4.14E-01 4.14E-01 5.317 5.317 1623.709
2 279000 227375000 2.44E-01 2.44E-01 5.328 5.328 1623.607
3 627000 522437500 1.54E-01 1.54E-01 5.329 5.329 1623.546
4 1402500 1185843750 1.18E-01 1.18E-01 5.330 5.330 1623.514
5 2901250 2474687500 8.99E-02 8.99E-02 5.339 5.339 1623.500
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Table 2, Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 7120 6.54E-03 — 2.50E-01 — 2.48E-01 —
2 17856 2.99E-03 2.551 1.70E-01 1.254 1.70E-01 1.239
3 40128 1.47E-03 2.622 1.19E-01 1.318 1.19E-01 1.310
4 89760 9.71E-04 1.555 9.08E-02 1.010 9.09E-02 1.008
5 185680 6.04E-04 1.959 7.07E-02 1.033 7.08E-02 1.031
6 341064 3.68E-04 2.440 5.71E-02 1.056 5.72E-02 1.056
7 597432 2.72E-04 1.629 4.77E-02 0.962 4.78E-02 0.959

Table 2, Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 24030 3.77E-04 — 3.95E-02 — 3.95E-02 —
2 60264 1.17E-04 3.813 1.61E-02 2.932 1.61E-02 2.931
3 135432 4.96E-05 3.180 7.47E-03 2.843 7.48E-03 2.838
4 302940 3.33E-05 1.487 4.40E-03 1.976 4.40E-03 1.978
5 626670 1.86E-05 2.412 2.64E-03 2.099 2.65E-03 2.098
6 1151091 9.19E-06 3.469 1.69E-03 2.197 1.70E-03 2.194
7 2016333 6.09E-06 2.198 1.17E-03 1.966 1.17E-03 1.964

Table 2, Q3

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 56960 4.74E-05 — 8.16E-03 — 8.15E-03 —
2 142848 1.01E-05 5.050 2.25E-03 4.211 2.24E-03 4.210
3 321024 3.23E-06 4.225 7.44E-04 4.094 7.44E-04 4.090
4 718080 1.63E-06 2.552 3.22E-04 3.122 3.22E-04 3.123
5 1485440 7.41E-07 3.242 1.53E-04 3.070 1.53E-04 3.066
6 2728512 2.82E-07 4.766 8.03E-05 3.177 8.04E-05 3.177
7 4779456 2.18E-07 1.377 4.98E-05 2.560 4.98E-05 2.557

Table 2, Q4

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 111250 6.83E-06 — 1.51E-03 — 1.50E-03 —
2 279000 8.10E-07 6.958 2.41E-04 5.976 2.41E-04 5.975
3 627000 2.17E-07 4.874 5.24E-05 5.661 5.23E-05 5.659
4 1402500 9.17E-08 3.217 1.79E-05 4.011 1.78E-05 4.024
5 2901250 3.30E-08 4.213 6.69E-06 4.050 6.53E-06 4.131

� Test 5, Discontinuous permeability, Locally refined meshes

Table 1, Q1

i nu nmat umin uemin umax uemax normg
1 176 7936 -5.46E+01 -1.00E+02 54.594 100.000 52.441
2 1408 71168 -3.09E+01 -3.54E+01 30.857 35.355 79.708
3 11264 600064 -7.05E+01 -7.89E+01 70.515 78.858 89.071
4 90112 4923392 -9.14E+01 -9.43E+01 91.442 94.346 96.089
5 720896 39878656 -9.78E+01 -9.86E+01 97.780 98.562 98.260
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Table 1, Q2

i nu nmat umin uemin umax uemax normg
1 594 90396 -1.18E+02 -1.00E+02 118.325 100.000 144.541
2 4752 810648 -3.83E+01 -3.54E+01 38.300 35.355 108.493
3 38016 6835104 -7.90E+01 -7.89E+01 78.962 78.858 100.680
4 304128 56080512 -9.44E+01 -9.43E+01 94.354 94.346 99.360
5 2433024 454242816 -9.86E+01 -9.86E+01 98.563 98.562 99.089

Table 1, Q3

i nu nmat umin uemin umax uemax normg
1 1408 507904 -1.05E+02 -1.00E+02 104.586 100.000 123.703
2 11264 4554752 -3.55E+01 -3.54E+01 35.484 35.355 100.084
3 90112 38404096 -7.88E+01 -7.89E+01 78.828 78.858 99.078
4 720896 315097088 -9.43E+01 -9.43E+01 94.343 94.346 99.013
5 5767168 2552233984 -9.86E+01 -9.86E+01 98.562 98.562 99.010

Table 2, Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 176 1.31E+00 — 1.12E+00 — 1.29E+00 —
2 1408 2.71E-01 2.277 5.30E-01 1.074 5.89E-01 1.126
3 11264 6.42E-02 2.079 2.46E-01 1.109 2.62E-01 1.169
4 90112 1.61E-02 1.992 1.16E-01 1.080 1.18E-01 1.152
5 720896 4.05E-03 1.993 5.70E-02 1.027 5.71E-02 1.044

Table 2, Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 594 3.58E-01 — 6.29E-01 — 8.35E-01 —
2 4752 6.14E-02 2.543 1.88E-01 1.740 2.53E-01 1.720
3 38016 6.35E-03 3.274 3.82E-02 2.302 4.72E-02 2.426
4 304128 6.54E-04 3.278 8.34E-03 2.196 9.44E-03 2.321
5 2433024 6.72E-05 3.284 1.88E-03 2.148 2.01E-03 2.228

Table 2, Q3

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1408 2.37E-01 — 5.81E-01 — 8.64E-01 —
2 11264 7.67E-03 4.951 3.58E-02 4.023 5.19E-02 4.059
3 90112 3.04E-04 4.656 2.82E-03 3.665 3.51E-03 3.884
4 720896 1.37E-05 4.474 2.35E-04 3.583 2.49E-04 3.816
5 5767168 8.04E-07 4.088 2.50E-05 3.236 2.50E-05 3.316

3 Comments

Tests 1 and 5 were uncritical on all meshes. The penalty parameter can be chosen
small and the corresponding symmetric and positive definite systems are easily
solved. Either Pk or Qk can be chosen, with Qk being slightly more efficient in
terms of error with respect to degrees of freedom. Tests 3 and 4 are much more
difficult with two consequences: First, only Qk did work on these meshes. Secondly,
the global penalty parameter ˛ has to be chosen large in order to obtain optimal
convergence rates. In test 3 it has to be increased with polynomial degree (and
even with these values the convergence rate breaks down on the finest mesh with
k D 4). Large penalty parameters lead to very ill conditioned matrices which take
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a large number of iterations to solve. Note that the standard continuous Galerkin
finite element method has no difficulties at all with tests 3 and 4. All numerical
tests have been performed with the DUNE software framework[1, 2, 4], using the
dune-pdelab discretization framework described in [3].

Acknowledgements I would like to thank Robert Klöfkorn for providing all the meshes in DUNE
grid format and lots of discussions.
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Benchmark 3D: A Mimetic Finite
Difference Method

Peter Bastian, Olaf Ippisch, and Sven Marnach

1 Presentation of the scheme

In the two-dimensional discretisation benchmark session at the FVCA5 conference,
we participated with a Mimetic Finite Difference (MFD) method [7]. In this paper,
we present results for the three-dimensional case using the same method. Since the
previous conference, the equivalence of MFD, Hybrid Finite Volume and Mixed
Finite Volume methods has been demonstrated in [6]. Our outline of the method as
used in our computations follows the exposition in [5].

First, the diffusion problem is restated as a system of two first order PDEs

divv D f in ˝;

v D �Kru in ˝; (1)

u D Nu on �D;

Kru � n D g on �N :

Our aim will be the definition of discrete analogues of the divergence operator div
and the flux operator �Kr. To this end, we first define the spaces of discrete scalar
and vector functions. Let Th denote a conforming triangulation of the domain ˝ .
The elements E 2 Th are assumed to be polyhedra. For details on the requirements
of Th, see [4].

A discrete scalar function u is assumed to be constant on the elements E of the
triangulation. The value of u in the element E is denoted by uE . The dimension of
the space Qh of discrete scalar functions is equal to the number of elements of Th.
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A discrete vector function v is given by assigning a real number veE to each face
e of each element E. These numbers are regarded as the normal components of
the vector function with respect to the outer normal neE on the face e. For a face e
that is shared by elements E1 and E2, we require the compatibility of the normal
components

veE1 D �veE2 : (2)

Thus the dimension of the space Xh of discrete vector functions is equal to the
number of faces of Th.

We now introduce the discrete differential operators. Again, see [4] for the
details. The discrete divergence operator divh W Xh ! Qh is defined to comply
with the divergence theorem on each element,

.divhv/E D 1

jEj
X

e�@E
jej veE; (3)

where the sum is over all faces e of the element E. For the definition of the
discrete flux operator, we introduce additional scalar unknowns on each face e of
the triangulation denoted by ue , and define .�Kr/h W Qh ! Xh by

�
.�Kr/hu

�e
E
D

X

f�@E
W

e;f
E jf j.uE � uf /; (4)

where WE is a symmetric and positive definite matrix defined below. The scalar
unknowns on the faces can be eliminated by compatibility requirement (2) on the
inner faces and by boundary conditions (1) on the outer faces.

Now we can give the whole linear system discretising the linear diffusion
problem. For each element E, we have the equation

divh.�Kr/hu D 1

jEj
X

e�@E
jej

X

f�@E
W

e;f
E jf j.uE � uf / D qE: (5)

The equation for an inner face e shared by the elements E1 and E2 reads

�
.�Kr/hu

�e
E1
C �.�Kr/hu

�e
E2

D
X

f�@E1
W

e;f
E1
jf j.uE1 � uf /C

X

f�@E2
W

e;f
E2
jf j.uE2 � uf / D 0: (6)

For each face e on the Neumann boundary �N , we get

�
.�Kr/hu

�e
E
D

X

f�@E
W

e;f
E jf j.uE � uf / D ge: (7)
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Finally, a face e on the Dirichlet boundary provides us with the trivial equation

ue D Nue: (8)

To obtain a symmetric and positive definite stiffness matrix, we first eliminate the
unknowns on the Dirichlet boundaries. Then, we scale (5) by jEj and (6) as well as
(7) by �jej, see [8].

We finally give the definition of the matrix WE for an element E. Let kE denote
the number of faces of E. Define the kE � 3 matrices R and N by

Re;i D
Z

e

.xi � xE;i /; Ne;i D ei � neE; (9)

where e ranges over the faces of E, i D 1; 2; 3, xi is the i -th coordinate function,
xE is the ”centre” of E and ei is the unit vector in the direction of the i -th axis.
The centre point xE can be chosen on each cell individually (subject to some
restrictions). A good choice is to use the centre of mass, which we used for the
tetrahedral mesh. For the hexahedral meshes, we used the image of the centre of the
unit cube under the usual trilinear coordinate mappings.

We construct a kE �kE matrix WE according to algorithm 1 in [5]. In short, that
means the following:

1. Orthonormalise the columns of the matrix R using the Gram–Schmidt algorithm
and call the resulting matrix QR.

2. Set D D I � QR QRT, where I denotes the kE � kE unit matrix.
3. Define WE by

WE D 1

jEjNKN
T C !D; (10)

where ! is an arbitrary positive real number and K is simply evaluated at the cell
centre xE .

We used the common choice for !

! D trace K
jEj ; (11)

which was suggested in [5].

2 Numerical results

For estimating the L2 error, we compared the approximate solution uE on a cell E
with the average
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uE;exact D 1

jEj
Z

E

u.x/dx

of the exact solution over the cell,

erl22 D
P

E jEj.uE � uE;exact/
2

P
E jEj.uE;exact/2

: (12)

The MFD method provides values for the fluxes on the faces, but does not allow the
direct computation of approximate gradients of the solution. In some cases it would
be possible to get a reconstruction of the gradients in the interior of a cell using
the Piola transformation, but this fails, for example, for cells with hanging nodes on
some faces. To circumvent these problems, we substituted theH1 semi-norm by the
somewhat unnatural “flux norm”

ergrad2 D
P

e jej.ve � veexact/
2

P
e jej.veexact/

2
; (13)

where the exact average flux over the face e is given by

veexact D
1

jej
Z

e

n.x/ � A.x/ru.x/dx

We did not provide any values for the energy norm E. Though it is possible to give
an approximation of the energy norm using the formulation

E D
Z

˝

Kru � ru

D
Z

˝

K�1.�Kru/ � .�Kru/

D
X

E2Th

Z

E

K�1.�Kru/ � .�Kru/

and the scalar product on Xh, this would not provide much information, since E
would coincide with the exact energy norm up to the accuracy of the linear solver
by construction of the method.

All numerical tests have been performed with the DUNE software framework
[1, 3] using the dune-pdelab discretisation framework described in [2].
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
1 6311 46371 2.26E-02 2.03E-02 1.986 1.989 0.000
2 12146 90106 5.50E-03 6.84E-03 1.989 1.989 0.000
3 23859 178079 8.50E-03 9.13E-03 1.994 1.994 0.000
4 46957 352277 5.10E-03 5.52E-03 1.997 1.997 0.000
5 93267 702867 1.91E-03 1.49E-03 1.996 1.997 0.000
6 186040 1407080 1.75E-03 1.83E-03 1.997 1.997 0.000

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 6311 4.55E-03 0.000 1.41E-01 0.000 0.00E+00 0.000
2 12146 2.88E-03 2.102 1.05E-01 1.376 0.00E+00 0.000
3 23859 1.82E-03 2.030 9.73E-02 0.328 0.00E+00 0.000
4 46957 1.20E-03 1.859 7.03E-02 1.440 0.00E+00 0.000
5 93267 7.38E-04 2.120 6.13E-02 0.602 0.00E+00 0.000
6 186040 4.65E-04 2.004 4.75E-02 1.102 0.00E+00 0.000

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 2240 23744 -6.03E-01 3.03E-02 2.100 1.958 0.000
2 17152 189184 -5.83E-03 1.06E-02 2.008 1.993 0.000
3 134144 1510400 -1.11E-03 1.75E-03 2.000 1.997 0.000
4 1060864 12070912 1.65E-04 7.14E-04 2.000 1.999 0.000

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 2240 3.27E-01 0.000 1.19E+01 0.000 0.00E+00 0.000
2 17152 5.28E-02 2.685 3.37E+00 1.859 0.00E+00 0.000
3 134144 8.89E-03 2.600 5.26E-01 2.709 0.00E+00 0.000
4 1060864 2.02E-03 2.146 1.12E-01 2.245 0.00E+00 0.000
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg
1 192 2496 1.27E-01 1.54E-01 1.883 1.846 0.000
2 1488 25248 -1.32E-01 4.01E-02 2.150 1.960 0.000
3 11712 225696 -5.37E-02 1.01E-02 2.053 1.990 0.000
4 92928 1905600 -1.40E-02 2.54E-03 2.014 1.997 0.000
5 740352 15655296 -3.52E-03 6.36E-04 2.004 1.999 0.000

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 192 2.81E-01 0.000 4.00E-01 0.000 0.00E+00 0.000
2 1488 1.19E-01 1.263 2.15E-01 0.906 0.00E+00 0.000
3 11712 3.44E-02 1.801 1.13E-01 0.936 0.00E+00 0.000
4 92928 9.39E-03 1.879 5.71E-02 0.992 0.00E+00 0.000
5 740352 2.46E-03 1.936 2.86E-02 1.001 0.00E+00 0.000

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg
1 304 2992 -1.02E+00 -7.59E-01 1.045 0.691 0.000
2 2240 23744 -9.79E-01 -9.39E-01 1.019 0.923 0.000
3 17152 189184 -1.02E+00 -9.85E-01 1.008 0.982 0.000
4 134144 1510400 -1.00E+00 -9.96E-01 1.000 0.996 0.000

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 304 8.38E-01 0.000 9.62E-01 0.000 0.00E+00 0.000
2 2240 1.58E-01 2.502 3.14E-01 1.679 0.00E+00 0.000
3 17152 3.91E-02 2.060 1.29E-01 1.314 0.00E+00 0.000
4 134144 1.15E-02 1.788 6.61E-02 0.975 0.00E+00 0.000
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� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg
1 3888 41268 5.74E-01 4.14E-01 5.317 5.317 0.000
2 9464 103208 2.96E-01 2.44E-01 5.328 5.328 0.000
3 20902 231574 1.75E-01 1.54E-01 5.329 5.329 0.000
4 46203 517443 1.30E-01 1.18E-01 5.330 5.330 0.000
5 94885 1069705 9.66E-02 8.99E-02 5.339 5.339 0.000
6 173515 1964101 7.67E-02 7.23E-02 5.345 5.345 0.000
7 303058 3439576 5.91E-02 5.65E-02 5.361 5.361 0.000

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 3888 5.53E-03 0.000 2.70E-01 0.000 0.00E+00 0.000
2 9464 1.64E-03 4.090 1.08E-01 3.089 0.00E+00 0.000
3 20902 8.43E-04 2.530 5.04E-02 2.888 0.00E+00 0.000
4 46203 8.27E-04 0.074 2.84E-02 2.173 0.00E+00 0.000
5 94885 6.83E-04 0.796 1.70E-02 2.142 0.00E+00 0.000
6 173515 4.84E-04 1.709 1.12E-02 2.060 0.00E+00 0.000
7 303058 4.07E-04 0.932 7.78E-03 1.965 0.00E+00 0.000

� Test 5 Discontinuous permeability, u.x; y; z/D ai sin.2�x/ sin .2�y/ sin .2�z/,
min D �100; max D 100, Locally refined meshes

i nu nmat umin uemin umax uemax normg
1 115 1231 -2.51E+02 -1.00E+02 250.808 100.000 0.000
2 812 8972 -4.44E+01 -3.54E+01 44.367 35.355 0.000
3 6064 68272 -8.32E+01 -7.89E+01 83.205 78.858 0.000
4 46784 532160 -9.56E+01 -9.43E+01 95.600 94.346 0.000
5 367360 4201216 -9.89E+01 -9.86E+01 98.887 98.562 0.000

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 115 8.77E+00 0.000 2.92E+00 0.000 0.00E+00 0.000
2 812 7.09E-01 3.860 7.88E-01 2.012 0.00E+00 0.000
3 6064 1.41E-01 2.413 3.15E-01 1.367 0.00E+00 0.000
4 46784 3.33E-02 2.116 2.13E-01 0.576 0.00E+00 0.000
5 367360 8.21E-03 2.038 1.55E-01 0.464 0.00E+00 0.000
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Benchmark 3D: A Composite Hexahedral
Mixed Finite Element

Ibtihel Ben Gharbia, Jérôme Jaffré, N. Suresh Kumar, and Jean E. Roberts

1 The Numerical Scheme

The numerical method used here (see [6]) is a mixed finite element method based
on the weak formulation of the problem:

Find .p;u/ 2 L2.˝/ � H.divI˝/ such that
Z

˝

K�1u � v �
Z

˝

p divv D �
Z

�D

Np v � n 8v 2 H.divI˝/ (1)

Z

˝

divv q D
Z

˝

fq 8q 2 L2.˝/:

Straightforward extensions of the Raviart-Thomas-Nédelec mixed finite elements
[3, 5] to hexahedral meshes do not converge. Therefore in [6] a composite mixed
finite element was introduced and analyzed.

Given a discretization Th of ˝ into hexahedra (with planar faces) we solve the
following system:
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Find .ph;uh/ 2 Mh � Wh such that
Z

˝

K�1uh � vh �
Z

˝

phdivvh D �
Z

�D

Npvh � n 8vh 2 Wh; (2)

Z

˝

divvh qh D
Z

˝

fqh 8qh 2Mh;

where Mh � L2.˝/ is the space of piecewise constant functions (just as in
the lowest order Raviart-Thomas-Nedelec spaces for tetrahedra or for rectangular
solids). The space Wh � H.divI˝/ is constructed following ideas of Kuznetsov
and Repin see [4]. It is a space of composite elements satisfying the following 4
conditions (all of which are satisfied by the Raviart-Thomas-Nédelec elements when
the underlying spatial discretization is made up of tetrahedra and/or rectangular
solids):

• Wh � H.divI˝/; i.e. elements of Wh are locally in H.divIT /I 8T 2 Th,
and normal components of elements of Wh are continuous across edges of the
hexahedra in Th.

• normal components of elements of Wh are constant on each face of an element
of Th.

• divWh � Mh; i.e. the divergence of an element of Wh is constant on each
hexahedron of Th.

• an element of Wh is uniquely determined by its flux through the faces of elements
of Th; i.e. Wh has a basis of functions fvF W F 2 Fhg, where Fh is the set of
all faces of hexahedra in Th, not lying on �N , and for F 2 Fh; vF is the unique
function in Wh having normal component with flux across the faceE 2 Fh equal
to ıE;F .

The space Wh is constructed element by element: for an element T 2 Th we
define the space WT of functions on T , and then Wh is defined to be the subspace
ofH.divI˝/ consisting of those functions whose restriction to T is in WT for each
T 2 Th. To construct WT for an element T 2 Th; T is subdivided into 5 tetrahedra
as follows: starting from any vertex V1 of T there are 3 vertices (say V2; V4; and V5)
of T that can be joined to V1 by an edge of T , there are 3 other vertices (say V3; V6;
and V8) that lie on a face with V1 (but not on an edge with V1). The remaining vertex
V7 together with V2; V4; and V5 forms a tetrahedron S0 having no face lying on the
boundary of T . Then T n S0 is made up of 4 tetrahedra S1; S2; S3 and S4; each of
which has 3 faces lying on the surface of T and one face in common with S0I see
Fig. 1.

The collection of tetrahedra TT D fSi W i D 0; 1; � � � ; 4g is a discretization of T
by tetrahedra, and we denote by eWT the Raviart-Thomas-Nédelec space of lowest
order associated with TT . We let fMT denote the set of functions constant on each
of the five tetrahedra in TT , let eWT;0 � eWT denote the set of functions in eWT whose
normal traces vanish on all of @T , and let jT j denote the volume of T . For each face
F of T , letting jF j denote the area of F and letting eWT;F � eWT denote the set of
functions in eWT whose normal traces vanish on all of @T n F and are identically
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Fig. 1 A partition of the
reference hexahedron into 5
tetrahedra: one tetrahedron
lies in the interior of T and is
determined by the vertices
V2; V4; V5; V7: The four other
tetrahedra have each three
faces on the surface of T and
each contains one of the
vertices V1; V3; V6; V8: There
are two possible such
constructions depending on
which vertex is chosen as V1

x

z

y

V1 V2

V3

V4

V5

V7
V8

V6

equal to 1
jF j on F , we define vF to be the second component of the solution of the

problem

Find.qF ; vF / 2fMT � eWT;F such that
Z

T

vF � vh �
Z

T

qF divvh D 0; 8vh 2 eWT;0; (3)

Z

T

divvF qh D 1

jT j
Z

T

qh 8qh 2fMT :

The pure Neumann problem (3) has a solution since the compatibility condition
- that the integral over @T of the Neumann data function be equal to the integral
over T of the source term - is satisfied. The second component vF of the solution
is uniquely determined: in the algebraic system associated with problem (3), the
four equations corresponding to the four exterior tetrahedra, S1; � � � ; S4; determine
vF , the equation associated with S0 is redundant but is not a problem since the
compatibility condition is satisfied. (The four equations associated with the internal
faces, the four faces of S0, imply that qF is constant on all of T , but do not determine
the value of the constant, but this is not needed here.) Then WT � eWT is defined
to be simply the six-dimensional subspace generated by the basis elements fvF W
F is a face of T g. Now defining Wh by

Wh D fv 2 H.divI˝/ W vjT 2 WT ; 8T 2 Thg;

one can easily check that Wh satisfies the four conditions listed above.

Remark 1. We point out that there are two possible choices for TT (and thus for
WT ) depending on whether (in the notation used above) vertices fV2; V4; V5; V7g or
the vertices fV1; V3; V6; V8g are used to form the interior tetrahedron. Also it is not
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always possible to choose the sets TT is such a way that [T2Th
TT forms a finite

element decomposition of ˝ into tetrahedra.

Remark 2. This method is not appropriate for meshes containing deformed cubes
which are not true hexahedra; i.e. for meshes containing deformed cubes with
nonplanar “faces”. In applications nonplanar “faces” arise when a cube is deformed
in such a way that four vertices defining a face of the cube are moved so that they
are no longer planar. However any three of the vertices remain planar so for either
choice of the decomposition into five tetrahedra the nonplanar “face” is divided
into two (planar) triangles so that one obtains a polyhedron (with planar faces) of
from seven to twelve sides depending on how many nonplanar “faces” the original
“hexahedron” had. Thus the new polyhedron is divided into five tetrahedra and one
could generalize the method used here to include this case. However, as mentioned
above it may not be possible to choose the divisions of the hexahedra into five
tetrahedra in such a way that the resulting collection of tetrahedra forms a finite
element mesh; i. e. in such a way that the resulting division of the quadrilateral
interior faces into two triangles is compatible for each pair of adjacent “hexahedra”.
The resulting pair of adjacent polyhedra may then either overlap or leave a void
space between the two polyhedra. A new composite mixed finite element is now
under development to treat the case of nonplanar faces.

Remark 3. One could in a perhaps more natural way divide each of the hexahedra
into 6 tetrahedra (all of equal volume for the reference hexahedron) by adding a
central edge between any single pair of vertices not belonging to a common face.
The six tetrahedra would all have this edge in common and each would have two
internal faces and two external faces. One could form a system similar to (2) for
each of the six faces of T . The dimension of fMT would then be 6 instead of
5 and that of eWT;0 would be 6 instead of 4 as there would be 6 interior faces.
The six equations of the linear system corresponding to one of the six tetrahedra
would each only give a relation between the fluxes through the internal faces of the
tetrahedron, so the second component of the solution would be determined only up
to a (divergence free) flow going around the central edge. One would then need to
impose a condition to make the macro elements rotational free (as are the Raviart-
Thomas-Nédelec elements on tetrahedra and on rectangular solids as well as are
those defined above on hexahedra using a decomposition into five tetrahedra). We
have not further investigated this possibility.

Error estimates

In this paragraph we briefly recall the error estimates obtained in [6]. Following [1]
we define the notion of shape regularity for a family of meshes of hexahedra.

Definition 1. For S a tetrahedron let �S and hS denote respectively the radius of
the inscribed sphere of S and the diameter of S . Then for a hexahedron T , as seen
earlier, there are two possible ways of decomposing T into five tetrahedra. Let �T
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be the smallest of the �S ’s for these 10 tetrahedra, let hT be the diameter of T and
let �T D hT =�T be the shape constant of T . For a mesh Th of hexahedra, the shape
constant of Th is the largest �T for T 2 Th. A family fTh W h 2 H g of meshes
Th made up of hexahedra is said to be shape regular if the shape constants for the
meshes can be uniformly bounded.

In [6] it is shown that if .p;u/ 2 L2.˝/�H.divI˝/ is the solution of problem (1)
and .ph;uh/ 2Mh�Wh is the solution of problem (2) and the family fTh W h 2H g
of meshes Th made up of hexahedra is shape regular then there is a constant C
independent of h such that

kph�pk2L2.˝/Ckuh�uk2H.divI˝/ � C h2
�
jpj2

H1.˝/
C kuk2

H1.˝/
C kdivuk2

H1.˝/

�
;

provided that p and u are sufficiently regular for the righthand side to be defined.

Mixed-hybrid finite elements and solution of the linear problem

As with the Raviart-Thomas-Nédelec elements for tetrahedra and rectangular solids,
the solution .uh; ph/ is sought in a subspace Mh � Wh of L2.˝/ � H.divI˝/
in which the degrees of freedom are the average values of the pressure over the
hexahedra of the grid and the fluxes through the faces of the grid. The resulting
linear system then has exactly the same form as that for the Raviart-Thomas-
Nédelec elements for grids of rectangular solids (when the problem has full tensor
coefficients). As in [2] we can relax the condition that the approximate solution
be sought in a subspace of H.divI˝/ and enforce this condition using Lagrange
multipliers. We then define the approximation space W�h by

W�h D fv 2 .L2.˝//3 W vjT 2 WT ; 8T 2 Thg;

and introduce a space of Lagrange multipliers �h D f	h D f	F gF2Fh
2 RnF g

where nF is the number of faces in Fh. Then the following problem has a unique
solution:

Find .p�
h ;u
�
h ; 	h/ 2Mh �W�h ��h such that

X

T2Th

Z

T

K�1u�h � vh�
X

T2Th

Z

T

p�h divvh�
X

F2Fh

Z

F

	F Œvh � nF � D

�
Z

�D

Npvh � n 8vh 2 W�h ;
X

T2Th

divu�h qh D
Z

˝

fqh 8qh 2 Mh;

X

F2Fh

Z

F

Œu�h � nF ��F D 0; 8�h 2 �h;
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where for F 2 Fh; nF is a unit vector normal to F and for vh 2 W�h ; Œvh � nF �
denotes the jump across F of vh � nF in the direction of nF . As with the Raviart-
Thomas-Nédelec method it is now easy to eliminate first u�

h and then p�h from the
linear system and thus obtain a symmetric positive definite system with 	h as the
only unknown. For F 2 Fh the multiplier 	F enforcing continuity of u�h �nF across
F is in fact an approximation of the trace of the pressure p on F .

Once 	h is found one can recover u�h and p�h through local calculations given by
the first two equations of system (4). One shows easily that u�

h is in fact in Wh and
is equal to uh and that p�h D ph.

2 Numerical experiments

The data are provided by the FVCA6 3D anisotropic benchmark : We have chosen
to do the first test case with mild anisotropy and Kershaw grids.Table 1 gives results
obtained for the 4 Kershaw meshes which were proposed in the benchmark. The
index i, i D 1; 2; 3; 4, denotes the mesh index for the 8� 8� 8, the 16� 16� 16, the
32�32�32, and the 64�64�64Kershaw meshes respectively. As mentioned earlier,
the matrix of the linear system associated with the mixed-hybrid finite element after
elimination of p�h and u�h is symmetric and positive definite, and the unknowns are
the Lagrangian multipliers 	h which are approximations of the averages of the trace
of the scalar variable (pressure) over the faces. From 	h local calculations yield the
cell pressure unknowns of ph and the fluxes across the faces of the velocity uh.

In Table 1 nu, the number of unknowns of the linear system, is the number
of degrees of freedom for 	h which is the number of faces. The number of
matrix nonzeros, nmat, is given in the table for the full matrix (not the upper or
lower halves). umin, uemin, 	min (resp. umax, uemax, 	max) the minimum (resp.
maximum) of ph, p and 	h.

The function ph is constant inside each hexahedral cell, so the L2 error erl2
between p and ph is calculated as

erl2 D

rZ

˝

.p � ph/2
rZ

˝

p2

where the integrals in the numerator are calculated using on each cell an integration
formula exact for polynomials of degree 2 in 3D.

The mixed finite element method calculates also the velocity uh approximating
the vector unknown u D �Krp as a piecewise polynomial vector function. The
usual error calculated with the mixed method is the L2 error for uh in addition to the
L2 error for ph. However in this benchmark the errors for ph in the H1 seminorm
and in the energy norm are asked for. These norms are actually equivalent to the
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Table 1 Results obtained for a composite hexahedral mixed finite element on a sequence of
Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 576 2496 -0.03255 0. 1.94685 2. 1.84064
2 4352 32512 -0.04618 0. 1.99488 2. 1.85063
3 33792 310272 -0.03621 0. 2.00028 2. 1.85242
4 266240 2682880 -0.00837 0. 2.00061 2. 1.84036

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 576 0.063751 1.63849 1.49726
2 4352 0.038971 0.73 0.96309 0.79 0.86755 0.81
3 33792 0.019424 1.02 0.51181 0.92 0.44853 0.97
4 266240 0.009148 1.09 0.25421 1.02 0.21819 1.05

L2 norm of u. Indeed we have jrpj2 D jK�1uj2 and .Krp/ � rp D .K�1u/ � u.
Therefore we calculate the error for the gradient and the error in the energy norm
with the formula

ergrad D

rZ

˝

jK�1.u � uh/j2
rZ

˝

jK�1uj2
; ener D

rZ

˝

.K�1.u� uh// � .u� uh/
rZ

˝

.K�1u/ � u

where again the integrals in the numerator were calculated with an integration
formula exact for polynomials of degree 2 inside each cell.

Similarly the L1 norm of the gradient of ph was calculated as

normgrad D
Z

˝

jK�1uhj:

The rates of convergence ratiol2, ratioener and ratiograd are calculated as
required by the benchmark by comparing the errors erl2, ergrad and ener obtained
on meshes i and i-1 using the formula

ratio(i) D �3 log.error(i)=error(i-1)/

log.nu(i)=nu(i-1)/
:

All errors behave as predicted by the theory and show an asymptotic rate of
convergence of order 1. The exact solution is such that 0 � p � 2 and the calculated
solution has small undershoots which become smaller as the meshes are refined.
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3 Conclusion

In spite of the bad aspect ratios of some of the hexahedra in the Kershaw meshes, the
proposed composite hexahedral mixed finite element shows first order convergence
for the pressure as well as for the velocity, as it was predicted by the analysis of the
method.
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Benchmark 3D: CeVeFE-DDFV, a discrete
duality scheme with cell/vertex/face+edge
unknowns

Yves Coudière, Florence Hubert, and Gianmarco Manzini

1 Presentation of the scheme

The method that we investigate in this contribution was proposed by Y. Coudière
and F. Hubert in [1] as a three-dimensional (3D) extension of the finite volume
scheme previously studied by F. Hermeline in [4] and K. Domelevo and P. Omnès
in [3]. This method belongs to the family of Discrete Duality Finite Volume (DDFV)
methods, which can naturally handle anisotropic or non-linear problems on general
distorted meshes.

In this benchmark paper, we present the results obtained by using the formulation
in [1] and the variant for discontinuous permeabilities that is presented in the
proceeding paper [2].

The DDFV method that we consider herein makes use of three polyhedral meshes
for the solution approximation, denoted by M , N , FE , and the mesh of diamonds
for the solution gradient approximation, denoted by D .

We denote the control volumes of the primal mesh M by K and L, and with
every primal cell we associate an internal point, e.g., xK 2 K. Different choices
are possible, which give rise to different versions of the same scheme, such as the
barycenters or the arithmetic average of the position vector of cell vertices (also
called “iso-barycenters”). For the results shown here, we used the second choice,
but apparently there is no significant difference between the two choices mentioned
above as far as accuracy and convergence behavior are concerned. The vertices, the
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edges, and the faces of mesh M are denoted by xA, E and F, respectively. Also,
we denote the midpoint of E by xE and the barycenter of F by xF. We associate a
degree of freedom (the scheme unknowns) with each one of these points; hence, the
unknown scalar variable takes the form:

uT D �.uK/K2M ; .uA/A2N ; .uE/E2E ; .uF/F2F
�
:

We denote the collections of the boundary items (vertices, edges and faces) by @N ,
@FE and we introduce the set of boundary cells @M which is composed by the
boundary faces here considered as degenerated control volumes. Dirichlet boundary
conditions are easily introduced into the scheme through the set of boundary data

ıuT D ..uK/xK2@M ; .uA/xA2@N ; .uE/xE2@FE ; .uF/xF2@FE / :

The scalar solution field u is approximated by the degrees of freedom .uT ; ıuT /.
The gradient formula is given on each diamond cell D 2 D , which is the convex

hull of the points K; L; xA ; xB; xF; xE, by

rD
ıuuT D 1

3jDj
�
.uL � uK/NKL C .uB � uA/NAB C .uF � uE/NEF

�
(1)

using the normal vectorsNKL D 1
2
.xB�xA/�.xF�xE/,NAB D 1

2
.xF�xE/�.xL�xK/

and NEF D 1
2
.xL � xK/ � .xB � xA/. Gradient formula (1) allows us to define the

numerical flux through each interface of the control volumes of the three meshes M ,
N and FE . Let Q be the linear space of piecewise constant vector fields defined on
the mesh of diamonds D and X be the linear space of triples of piecewise constant
scalar fields defined on the three meshes M , N and FE . Three finite volume
schemes are written by using a discrete divergence operator that maps each vector
field in Q to a triple of scalar functions in X . Formally, we introduce the operator

divT W 
 D .
D/D2D 2 Q 7! .divM 
; divN 
; divFE 
/ 2 X

whose components

divM 
 D .divK
/K; divN 
 D .divA
/A and divFE 
 D f.divE
/E; .divF
/Fg

are given by

jKjdivK
 D
X

D2DK


D �NKL; jAjdivA
 D
X

D2DA


D �NAB; (2)

jEjdivE
 D
X

D2DE


D �NEF; jFjdivF
 D
X

D2DF


D � .�NEF/ : (3)
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In the previous statements, the symbols DK, DA, DE, DF refer to the diamond cells
which overlap the cells labeled by the corresponding subscripted indices K, A, E,
and L.

Since each of the divC
 approximates 1
jCj
R

C
div
 (for C D K; A; E; F), the right

hand side of the discrete problem is given by the piecewise constant projection of
the function f onto the space X , �T f D f.fK/K2M ; .fA/A2N ; .fE; fF/E2E ;F2F g
with fC D 1

jCj
R

C
f .x/dx for any cell C D K 2M or A 2 N or F or E 2 FE .

The CeVeFE-DDFV scheme reads:

� divT .KDrD
ıuuT / D �T f; (4)

where KD D 1
jDj
R

D
K.x/dx is a piecewise constant tensor field on the mesh of the

diamond cells. The scheme in (4) originates a symmetric and positive-definite linear
system of equations (see [1] for a thourough discussion of the other properties). The
case of the discontinuous permeability tensor of test 5 deserves a special treatment
that is thouroughly discussed in [2].

Mesure on the error

To put the discrete and the exact solutions “at the same level”, we use the projection
�T ue of the exact solution and the associated discrete gradient reconstruction
rT �T ue. Approximation errors are evaluated through the following norms:

erl2 D keT kL2=k�T uekL2 with keT k2
L2
D 1

3

X

C2M[N [FE

jCjjeCj2

ergrad D krT eT kL2=krT�T uekL2 with krT eT k2 D
X

D2D
jDjjrDeT j2

ener D .KDrT eT ;rT eT /L2=.K
DrT�T ue;rT �T ue/L2

with .KDrT eT ;rT eT /L2 D
X

D2D
jDj.KDrDeT ;rDeT /

In the case of the discontinuous tensor of test 5, the diamond cell D is divided in
two subdiamond cells, namely, DK and DL. The gradient rDu is constant on DK

(respectively, DL) with value rD
K u (respectively, rD

L u). The quantities krT eT k2
L2

and .KDrT eT ;rT eT /L2 become

krT eT k2
L2
D
X

D2D

�
jDKjjrDK

eT j2 C jDLjjrDL
eT j2�

and

.KDrT eT ;rT eT /L2 D
X

D2D

�
jDK j.KDKrDKe

T ;rDKe
T /C jDLj.KDLrDL e

T ;rDL e
T /

�
:
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2 Numerical results

The following results were obtained by using a BiCG-stab solver with ILU(0)
preconditioner (routine MI26 of HSL implementation).

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
1 7777 100569 6.09E-03 1.05E-02 1.988 1.980 1.790
2 15495 208527 7.48E-03 9.35E-03 1.995 1.994 1.793
3 31139 431667 3.19E-03 5.93E-03 1.993 1.993 1.795
4 62419 885735 1.48E-03 2.98E-03 1.996 1.996 1.796
5 125993 1823199 1.56E-03 2.28E-03 2.000 1.999 1.797
6 254657 3746829 1.93E-03 2.70E-03 1.999 1.998 1.798

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 7777 0.228E-02 - 0.562E-01 - 0.528E-01 -
2 15495 0.147E-02 1.904 0.441E-01 1.051 0.415E-01 1.054
3 31139 0.916E-03 2.036 0.349E-01 1.011 0.327E-01 1.021
4 62419 0.573E-03 2.025 0.276E-01 1.006 0.258E-01 1.022
5 125993 0.374E-03 1.819 0.219E-01 0.994 0.206E-01 0.969
6 254657 0.231E-03 2.067 0.174E-01 0.983 0.163E-01 0.990

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg
1 345 4559 7.93E-02 1.51E-01 1.875 1.844 1.719
2 933 12811 4.79E-02 4.74E-02 1.989 1.982 1.785
3 2075 29291 5.46E-02 5.64E-02 1.987 1.978 1.794
4 3963 56947 3.25E-02 3.23E-02 2.000 1.996 1.795
5 6909 101229 1.28E-02 3.17E-02 2.000 1.996 1.797

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 345 0.274E-01 - 0.179E+00 - 0.162E+00 -
2 933 0.223E-01 0.622 0.149E+00 0.556 0.139E+00 0.458
3 2075 0.119E-01 2.364 0.102E+00 1.409 0.964E-01 1.373
4 3963 0.819E-02 1.724 0.835E-01 0.933 0.782E-01 0.972
5 6909 0.599E-02 1.694 0.691E-01 1.021 0.655E-01 0.953
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 3375 49071 5.67E-02 3.43E-02 1.940 1.974 1.767
2 29791 455895 9.19E-03 7.33E-03 1.988 1.991 1.782
3 250047 3916359 2.42E-03 1.59E-03 1.999 1.998 1.793
4 2048383 32446751 6.52E-04 6.17E-04 2.000 1.999 1.797

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 3375 0.287E-01 - 0.481E+00 - 0.589E+00 -
2 29791 0.113E-01 1.289 0.218E+00 1.088 0.233E+00 1.277
3 250047 0.330E-02 1.730 0.904E-01 1.243 0.953E-01 1.260
4 2048383 0.859E-03 1.922 0.395E-01 1.180 0.422E-01 1.161

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg
1 239 2871 8.58E-02 8.40E-02 1.903 1.916 1.795
2 2543 34927 2.90E-02 2.13E-02 1.971 1.979 1.804
3 23135 336735 4.68E-03 5.35E-03 1.995 1.995 1.800
4 196799 2943487 1.69E-03 1.34E-03 1.998 1.999 1.799
5 1622399 24588351 2.88E-04 3.35E-04 2.000 2.000 1.799

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 239 0.307E-01 - 0.141E+00 - 0.139E+00 -
2 2543 0.120E-01 1.190 0.104E+00 0.384 0.101E+00 0.405
3 23135 0.323E-02 1.786 0.571E-01 0.814 0.550E-01 0.827
4 196799 0.830E-03 1.905 0.298E-01 0.909 0.285E-01 0.920
5 1622399 0.210E-03 1.955 0.154E-01 0.937 0.147E-01 0.945

� Test 2 Heterogeneous anisotropy, u.x; y; z/ D x3y2zC x sin.2�xz/ sin.2�xy/
sin.2�z/, min D �0:862; max D 1:0487, Prism meshes

i nu nmat umin uemin umax uemax normg
1 12179 188089 -8.55E-01 -8.46E-01 1.014 1.009 1.693
2 96759 1545215 -8.55E-01 -8.57E-01 1.026 1.031 1.706
3 325739 5259545 -8.61E-01 -8.59E-01 1.037 1.035 1.708
4 771119 12518433 -8.60E-01 -8.60E-01 1.040 1.041 1.709
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 12179 0.392E-01 - 0.811E-01 - 0.803E-01 -
2 96759 0.109E-01 1.854 0.392E-01 1.054 0.397E-01 1.019
3 325739 0.502E-02 1.917 0.256E-01 1.051 0.261E-01 1.040
4 771119 0.287E-02 1.942 0.190E-01 1.039 0.194E-01 1.034

� Test 3 Flow on random meshes, u.x; y; z/ D sin.�x/ sin .�y/ sin .�z/,
min D 0; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg
1 343 4447 -4.25E+01 -9.78E-01 49.169 0.931 38.139
2 3375 49855 -2.22E+01 -9.94E-01 21.970 0.982 21.514
3 29791 466111 -6.96E+00 -9.95E-01 7.051 0.993 12.536
4 250047 4019647 -2.67E+00 -9.98E-01 2.725 0.998 7.541

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 343 0.147E+03 - 0.238E+02 - 0.162E+01 -
2 3375 0.956E+01 3.589 0.121E+02 0.892 0.888E+00 0.787
3 29791 0.681E+00 3.640 0.632E+01 0.891 0.459E+00 0.909
4 250047 0.447E-01 3.840 0.314E+01 0.988 0.229E+00 0.979

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg
1 5868 86728 3.83E-01 4.13E-01 5.317 5.317 1596.292
2 15776 243104 2.37E-01 2.43E-01 5.328 5.328 1611.158
3 36846 580244 1.54E-01 1.54E-01 5.329 5.329 1617.452
4 84546 1350382 1.17E-01 1.18E-01 5.330 5.330 1620.143
5 177590 2860258 8.96E-02 8.98E-02 5.339 5.339 1621.406
6 329236 5329338 7.22E-02 7.23E-02 5.345 5.345 1622.053
7 580190 9422104 5.66E-02 5.64E-02 5.361 5.361 1622.472

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 5868 0.141E-04 - 0.128E+00 - 0.116E+00 -
2 15776 0.476E-05 3.290 0.877E-01 1.144 0.781E-01 1.212
3 36846 0.208E-05 2.924 0.610E-01 1.283 0.542E-01 1.287
4 84546 0.141E-05 1.411 0.466E-01 0.975 0.408E-01 1.033
5 177590 0.914E-06 1.747 0.362E-01 1.021 0.316E-01 1.023
6 329236 0.609E-06 1.976 0.293E-01 1.026 0.258E-01 0.998
7 580190 0.422E-06 1.941 0.244E-01 0.964 0.214E-01 0.971
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� Test 5 Discontinuous permeability, u.x; y; z/ D sin.�x/ sin .�y/ sin .�z/,
min D 0; max D 1, Locally refined meshes

i nu nmat umin uemin umax uemax normg
1 131 1017 -6.34E+01 -1.00E+02 64.462 100.000 85.763
2 1215 8303 -3.10E+02 -1.00E+02 309.886 100.000 192.379
3 10463 65007 -1.34E+02 -1.00E+02 134.323 100.000 139.345
4 86847 509567 -1.09E+02 -1.00E+02 109.373 100.000 114.251
5 707711 4024287 -1.02E+02 -1.00E+02 102.394 100.000 104.279

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 131 0.218E+01 - 0.450E+00 - 0.406E+00 -
2 1215 0.193E+01 0.159 0.187E+01 -1.917 0.623E+00 -0.578
3 10463 0.862E-01 4.334 0.828E+00 1.134 0.297E+00 1.033
4 86847 0.517E-02 3.989 0.407E+00 1.006 0.147E+00 0.995
5 707711 0.326E-03 3.953 0.203E+00 0.994 0.734E-01 0.994

3 Comments

This finite volume method assigns one degree of freedom to any mesh item (cells,
faces, edges, and vertices). For this reason, the scheme has a large number of degrees
of freedom if compared to other finite volume methods or similar discretization
techniques (such as mimetic finite differences). Nonetheless, the method was
proved very effective both for two and three dimensional problems with strong
anisotropic coefficients and using meshes with strongly distorted cells. Among the
other advantages offered by the method, we mention the coercivity of the method
that eases the convergence analysis and the fact that this finite volume method
generally shows second order of accuracy in all numerical experiments where the
exact solution is sufficiently regular. The results shown in the tables of the previous
section confirm this general behavior.

All linear systems were solved efficiently by standard preconditioned Krylov
methods as BiCG-stab or GMRES. Direct solvers for general asymmetric systems
(UMFPACK) can also be used, but they normally require a huge memory storage,
in particular for the biggest problems. In Table 1-2, we see an example of the
performance of the different solvers offered by the benchmark site when solving
Test 1 on the checkerboard meshes 8 � 8 � 8 and 16 � 16 � 16. The comparison
reveals that PETSc implementation of the CG solver is the fastest one, in particular,
when combined with the diagonal preconditioner (Jacobi). A good performance in
terms of CPU costs is also provided by the ISTL-BiCGstab implementation using
Jacobi or ILU(0) preconditioners. CPU times are usually smaller than those obtained
by using the direct solver UMFPACK, which is also available in the benchmark site.
For example, in the case of 8 � 8 � 8-size mesh we note that UMFPACK requires a
CPU time of 3:180 seconds.
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Table 1 CeVeFe-DDFV method, test 1 using checkerboard mesh, grid resolution 8� 8� 8; CPU
times are measured in seconds

solver precond CPU time # iters Rel. resid.
PETSc-CG Jacobi 0.209 202 6.368e-11
PETSc-CG none 0.243 242 1.715e-10

ISTL-BiCGstab ILU(0) 0.404 53 6.832e-11
ISTL-BiCGstab none 0.563 167 3.656e-11
ISTL-BiCGstab Jacobi 0.680 120 4.415e-11
ISTL-GMRES ILU(0) 0.683 152 4.241e-11

Table 2 CeVeFe-DDFV method, test 1 using checkerboard mesh, grid resolution 16 � 16 � 16;
CPU times are measured in seconds

solver precond CPU time # iters Rel. resid.
PETSc-CG Jacobi 3.946 369 4.248e-11
PETSc-CG none 4.989 471 8.038e-11

ISTL-CG ILU(0) 5.540 166 4.041e-11
ISTL-CG none 7.319 471 8.038e-11

ISTL-BiCGstab ILU(0) 8.681 107 3.873e-11
ISTL-CG Jacobi 10.989 368 4.281e-11
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Benchmark 3D: The Cell-Centered Finite
Volume Method Using Least Squares Vertex
Reconstruction (“Diamond Scheme”)

Yves Coudière and Gianmarco Manzini

1 Presentation of the scheme

We consider, for this contribution, the cell-centered finite volume method based on
least squares vertex reconstruction. This method, which is also popularly known
as “the diamond scheme”, was originally presented for the advection-diffusion
equation in two-dimensions and then extended in 3-D. The discretization of the
diffusive term in 2-D and 3-D is found in in [1, 3–5]. The scalar solution of the
diffusion problem u is numerically approximated by a piecewise constant function
uT on the cellsK of mesh T . The numerical approximation uT is defined as uT .x/ DP

K2T uK�K.x/ (�K.x/ being the characteristic function of cell K) through the
values .uK/K2T . To define the numerical diffusive flux through the interface f of
the mesh, a polyhedral cell is built around this interface. This polyhedral cell, which
has a quadrilateral shape in two dimensions, is named after its shape as “diamond
cell”, which also motivates the name of the method. Specifically, let xK 2 K be
the center of gravity of the cell K of mesh T . The diamond cellD associated to the
interface f between two cellsK andL in T is the convex hullD D hull.f; xK; xL/.
If f is a boundary face, thus defined by f D @K \ @˝ where @˝ is the boundary
of the computational domain˝ , then the diamond cell associated to f is the convex
hull D D hull.f; xK/.

The numerical diffusive flux is built by using a constant approximation of the
solution gradient on each diamond cell. Let .x1; x2; : : : xm/ denote the vertices of
face f , xK and xL the centers of gravity of the cells K and L that share this face,
and D the convex hull of these points. For any function u 2 H1.D/, the Green-
Gauss formula yields the relation

R
D
ru.x/dx D R

@D
u.x/n.x/d�.x/, where n is
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xLNKL

NLiNKi

xi+1

xi

xK

Fig. 1 Geometry of the diamond cell

the unit vector orthogonal to @D and pointing out of D. If the restriction of u to the
face f of @D is an affine function, the boundary integral only depends on the values
of u at the vertices of D. In this case, the Green-Gauss divergence theorem yields

1

jDj
Z

D

ru.x/dx D 1

jDj
Z

@D

u.x/n.x/dx D 1

jDj
X

f2@D

Z

f

u.x/n.x/dx

D 1

3jDj
mX

iD1

�
NKi .u.xi /C u.xiC1/C u.xK//CNLi .u.xi /C u.xiC1/C u.xL//

�

D 1

3jDj
� �

u.xL/ � u.xK/
�
NKL C

mX

iD1

u.xi /Ni
�
;

where NKi and NLi are the vectors orthogonal to the triangular facets
hull.xK; xi ; xiC1/ and hull.xL; xi ; xiC1/, respectively, and having lengths equal
to the measure of the facets; specifically, NKi D 1

2
.xi � xK/ � .xiC1 � xK/ and

NLi D � 12 .xi � xL/ � .xiC1 � xL/, see Fig. 1. The vectors NKL and Ni actually
used during the computations are

NKL D
mX

iD1
NLi D �

mX

iD1
NKi and Ni D NKi CNLi CNKi�1 CNLi�1:

To derive the gradient formula, we consider the right-hand side of the above
equality with the unknown uK and uL replacing u.xK/ and u.xL/ and some values
ui replacing the values u.xi /. These values, u1; u2; : : : um, are linearly interpolated
from the values .uK/K2T as follows. For any vertex xi of the mesh T , we consider
ui DPK2Ti !iKuK where Ti D fK W xi 2 Kg denotes the subset of the mesh cells
which share the vertex xi . The interpolation weights !iK are assumed to verify the
consistency relations [4]:

X

K2Ti
!iK D 1 and

X

K2Ti
!iK.xi � xK/ D 0:
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The interpolation weights !iK are obtained by solving the reconstruction problem
that approximates the cell-averaged data set f.xK; uK/ for K 2 Ti g by the affine
function

Qui .x/ D ˛ C ˇ � .x � xi / for x 2 Vi

on the co-volume Vi D S
K2Ti K and in a least square sense, cf. [2, 4]. The

reconstructed value at vertex xi is now given by taking ui D Qui .xi / D ˛. The
coefficients .˛; ˇ/T are the minimizers of the least squares functional

J .˛; ˇT / D
X

KWxi2K

�
˛ C ˇ � .x � xi /� uK

�2
:

Imposing the zero gradient condition, i.e., r˛;ˇJ .˛; ˇT / D 0, yields a linear
system for the coefficients .˛; ˇ/, whose solution returns the interpolation weights.
The values ui at the vertices xi 2 @˝ on the Dirichlet boundary are constrained
to the boundary data, for instance ui D 0 for a homogeneous condition. Other
kinds of boundary conditions, e.g., Neumann or Robin, can be taken into account
by extending to the 3-D case the technique investigated in [2]. Finally, the scheme
reads as

8K 2 T; �
X

f�@K
�f rDuT �NKL D fK jKj WD

Z

K

f .x/dx;

where �f is an arithmetic average of the diffusion tensor � over the diamond cell
located around face f and NKL is exactly the normal from above.

2 Numerical results

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
0 215 6985 3.02E-02 3.15E-02 1.949 1.948 1.627
1 2003 107331 2.03E-02 1.13E-02 1.989 1.995 1.730
2 3898 227618 6.84E-03 4.21E-03 1.989 1.990 1.750
3 7711 476645 9.13E-03 8.18E-03 1.994 1.995 1.767
4 15266 994892 5.52E-03 4.10E-03 1.997 1.997 1.776
5 30480 2072944 1.49E-03 2.57E-04 1.997 1.999 1.784
6 61052 4292073 1.83E-03 1.20E-03 1.997 1.998 1.789
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

0 215 3.750E-02 - 3.503E-01 - 2.636E-01 -

1 2003 9.173E-03 1.892 1.568E-01 1.081 1.071E-01 1.210

2 3898 5.897E-03 1.991 1.215E-01 1.149 8.159E-02 1.225

3 7711 3.551E-03 2.230 9.410E-02 1.122 6.016E-02 1.339

4 15266 2.255E-03 1.994 7.387E-02 1.063 4.648E-02 1.132

5 30480 1.412E-03 2.032 5.768E-02 1.073 3.565E-02 1.152

6 61052 8.882E-04 2.001 4.502E-02 1.070 2.733E-02 1.147

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg
1 29 257 8.51E-02 -6.18E+00 1.870 7.968 20.435
2 66 660 1.43E-01 2.06E-01 1.854 1.846 1.887
3 130 1410 3.85E-02 7.00E-03 1.925 1.941 1.855
4 228 2620 1.74E-02 2.37E-02 1.914 1.920 2.067
5 356 4424 2.84E-03 -2.18E+00 1.979 3.546 3.274

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 29 2.639E+00 - 3.631E+01 - 9.728E+00 -

2 66 9.077E-02 12.292 9.457E-01 13.307 3.751E-01 11.876

3 130 5.508E-02 2.210 7.434E-01 1.065 3.055E-01 0.907

4 228 6.650E-02 -1.006 1.163E+00 -2.391 3.224E-01 -0.287

5 356 3.674E-01 -11.507 5.071E+00 -9.912 1.287E+00 -9.321

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 512 10648 3.03E-02 8.74E-02 1.958 1.916 1.768
2 4096 97336 1.06E-02 3.00E-02 1.993 1.973 1.700
3 32768 830584 1.75E-03 5.87E-03 1.997 1.991 1.726
4 262144 6859000 7.14E-04 9.88E-04 1.999 1.998 1.765
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 512 6.846E-02 - 6.798E-01 - 4.901E-01 -

2 4096 4.715E-02 0.537 3.403E-01 0.998 2.715E-01 0.851

3 32768 2.866E-02 0.718 1.831E-01 0.894 1.532E-01 0.825

4 262144 1.315E-02 1.123 8.289E-02 1.143 6.942E-02 1.142

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg
1 36 424 1.54E-01 1.33E-01 1.846 1.833 1.588
2 288 4528 4.01E-02 3.47E-02 1.960 1.958 1.721
3 2304 41896 1.01E-02 8.74E-03 1.990 1.990 1.773
4 18432 360280 2.54E-03 1.98E-03 1.997 1.998 1.791
5 147456 2987704 6.36E-04 5.26E-04 1.999 1.999 1.796

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 36 1.356E-01 - 2.488E-01 - 3.406E-01 -

2 288 4.427E-02 1.615 1.471E-01 0.758 1.346E-01 1.339

3 2304 1.191E-02 1.894 7.031E-02 1.065 4.678E-02 1.524

4 18432 3.112E-03 1.936 3.410E-02 1.043 1.687E-02 1.471

5 147456 7.976E-04 1.964 1.695E-02 1.008 7.003E-03 1.268

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

� Test 2 Heterogeneous anisotropy, u.x; y; z/ D x3y2zC x sin.2�xz/ sin.2�xy/
sin.2�z/, min D �0:862; max D 1:0487, Prism meshes

i nu nmat umin uemin umax uemax normg
1 1210 21308 -8.42E-01 -8.57E-01 0.978 0.977 1.481
2 8820 169418 -8.38E-01 -8.41E-01 1.010 1.011 1.638
3 28830 570328 -8.58E-01 -8.60E-01 1.032 1.033 1.676
4 67240 1350038 -8.57E-01 -8.58E-01 1.033 1.034 1.690
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 1210 9.551E-02 - 2.356E-01 - 2.404E-01 -

2 8820 2.403E-02 2.084 8.174E-02 1.598 7.974E-02 1.666

3 28830 1.067E-02 2.057 4.167E-02 1.706 3.947E-02 1.781

4 67240 6.013E-03 2.030 2.562E-02 1.722 2.371E-02 1.805

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D 0; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg
1 64 1000 -7.56E-01 -7.11E-01 0.711 0.525 1.650
2 512 10648 -9.39E-01 -8.32E-01 0.926 0.933 2.674
3 4096 97336 -9.86E-01 -9.77E-01 0.982 0.978 3.330
4 32768 830584 -9.96E-01 -9.92E-01 0.996 0.990 3.527

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 64 5.548E-01 - 7.060E-01 - 7.651E-01 -

2 512 1.427E-01 1.958 3.067E-01 1.202 3.264E-01 1.229

3 4096 2.967E-02 2.266 9.532E-02 1.685 9.569E-02 1.770

4 32768 7.166E-03 2.049 3.253E-02 1.551 2.529E-02 1.919

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg
1 890 18876 4.57E-01 5.26E-01 5.317 5.318 1573.020
2 2232 51800 2.61E-01 2.89E-01 5.329 5.329 1600.780
3 5016 121584 1.62E-01 1.73E-01 5.329 5.329 1613.840
4 11220 280868 1.23E-01 1.29E-01 5.330 5.330 1619.520
5 23210 592448 9.28E-02 9.66E-02 5.339 5.339 1620.960
6 42633 1100865 7.42E-02 7.67E-02 5.345 5.345 1621.200
7 74679 1942619 5.75E-02 5.91E-02 5.361 5.361 1621.930
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 890 9.562E-03 - 8.767E-02 - 5.372E-02 -

2 2232 3.699E-03 3.098 3.903E-02 2.640 2.305E-02 2.761

3 5016 1.676E-03 2.932 1.916E-02 2.636 1.104E-02 2.727

4 11220 1.190E-03 1.275 1.270E-02 1.531 7.205E-03 1.589

5 23210 7.545E-04 1.882 8.919E-03 1.458 5.053E-03 1.463

6 42633 4.601E-04 2.439 6.148E-03 1.835 3.522E-03 1.781

7 74679 3.402E-04 1.616 5.400E-03 0.693 3.174E-03 0.556

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

� Test 5 Discontinuous permeability, u.x; y; z/ D sin.�x/ sin .�y/ sin .�z/,
min D 0; max D 1, Locally refined meshes

i nu nmat umin uemin umax uemax normg
1 22 252 -1.00E+02 -5.24E+01 100.000 52.359 58.097
2 176 3220 -3.54E+01 -2.62E+01 35.355 26.180 43.055
3 1408 31524 -7.89E+01 -7.30E+01 78.858 73.021 76.757
4 11264 277396 -9.43E+01 -9.25E+01 94.346 92.545 92.422
5 90112 2324532 -9.86E+01 -9.81E+01 98.562 98.089 97.247

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 22 9.831E-01 - 7.196E-01 - 3.176E+02 -

2 176 5.072E-01 0.954 7.376E-01 -0.035 8.184E-01 8.600

3 1408 1.376E-01 1.882 3.770E-01 0.968 6.058E-01 0.433

4 11264 3.347E-02 2.039 1.874E-01 1.008 4.685E-01 0.370

5 90112 9.731E-03 1.782 1.159E-01 0.693 3.448E-01 0.442

Name of the solver: BiCG-stab with Jacobi preconditioner (in-house implementa-
tion).

3 Comments

This finite volume method is truly cell-centered and, for this reason, it has a
relatively small number of degrees of freedom with respect to other finite volume
discretizations which introduce face unknowns to approximate the scalar variable.
The coercivity was proved only for simple cases (see [3] for details), so very
few can be said from a theoretical standpoint about the convergence properties of
this scheme and the literature misses a general convergence analysis. Despite this
fact, the resulting finite volume method generally show second order of accuracy
in all numerical experiments where the exact solution is enough regular and on
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Table 1 LS-FVM method, test 1 using Kershaw mesh with grid resolution 32 � 32 � 32; CPU
times are measured in seconds.

solver precond CPU time # iters Rel. resid.
UMFPACK none 28.712 0 7.287e-15

ISTL-BiCGstab Jacobi 36.048 2990 1.126e-10
ISTL-GMRES Jacobi 64.775 9186 3.931e-10

ISTL-BiCGstab none 78.880 11417 3.431e-10
ISTL-BiCGstab ILU(4) 1888.48 2 1.191e-12
ISTL-GMRES ILU(4) 1692.49 4 9.103e-10

“reasonable” meshes. Moreover, it can be easily applied to complex, distorted
meshes and anisotropic permeabilities for which it provides a reliable numerical
approximation. It is also generally robust even if a locking phenomenon for the
convergence has been reported in the literature [6].

The linear system for the cell-centered unknowns that is originated by this
scheme on a general polyhedral mesh leads to an asymmetric sparse matrix.
Therefore, this system can be solved efficiently by standard preconditioned Krylov
methods (BiCG-stab or GMRES) or by direct solvers for general asymmetric
systems (UMFPACK). An example of a typical behavior is reported in Table 1 for a
subset of the combinations solvers and preconditioners available on the benchmark
site. The comparison among these results reveals that the BiCG-stab solver using a
diagonal Jacobi preconditioner seems to be the more efficient choice in most of the
cases. The performance is usually comparable with that offered by the direct solver
(UMFPACK), but the memory storage required by this latter may be from 2 to 60
times greater.
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Benchmark 3D: A Monotone Nonlinear Finite
Volume Method for Diffusion Equations
on Polyhedral Meshes

Alexander Danilov and Yuri Vassilevski

1 Presentation of the scheme

We propose a new monotone FV method based on a nonlinear two-point flux
approximation scheme. The original idea belongs to C. LePotier [2] who proposed
a monotone FV scheme for the discretization of parabolic equations on triangular
meshes, which was extended to steady-state diffusion problems with full anisotropic
tensors on triangulations or scalar diffusion coefficients on shape regular polygonal
meshes [3]. Later a new interpolation-free monotone cell-centered FV method with
nonlinear two-point flux approximation was proposed for full diffusion tensors and
unstructured conformal polygonal 2D meshes [4]. In this paper, we extend the last
approach to the case of 3D conformal polyhedral meshes [1].

Let ˝ be a three-dimensional polyhedral domain with boundary � . We consider
a model diffusion problem for unknown concentration u:

�div.Kru/ D g in ˝

u D gD on �
(1)

where K.x/ D K
T .x/ > 0 is an anisotropic diffusion tensor, and g is a source term.

We consider a conformal polyhedral mesh T composed of shape-regular cells
with planar faces. We assume that each cell is a star-shaped 3D domain with
respect to its barycenter, and each face is a star-shaped 2D domain with respect
to face’s barycenter. Let NT be the number of polyhedral cells and NB be the
number of boundary faces. The tensor function K.x/ is assumed to be smooth for
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the sake of simplicity of presentation; however the original method is designed for
discontinuous tensor function, which may jump across mesh faces as well as may
change orientation of principal directions [1].

We denote by FI , FB disjoint sets of interior and boundary faces, respectively.
The cardinality of set F� is denoted by NF� . Let FT and ET denote the sets of
faces and edges of polyhedron T , respectively.

Let q D �Kru denote the flux which satisfies the mass balance equation:

div q D g in ˝: (2)

We derive a FV scheme with a nonlinear two-point flux approximation. Integrating
equation (2) over a polyhedron T and using the Green’s formula we get:

Z

@T

q � nT ds D
Z

T

g dx; (3)

where nT denotes the external unit normal to @T . Let f denote a face of cell T
and nf be the corresponding normal vector. It will be convenient to assume that
jnf j D jf j where jf j denotes the area of face f . The equation (3) becomes

X

f 2@T
qf � nf D

Z

T

g dx; (4)

where qf is the average flux density for face f .
For each cell T , we assign one degree of freedom,UT , for concentration u. Let U

be the vector of all unknown concentrations. If two cells TC and T� have a common
face f , the two-point flux approximation is as follows:

qhf � nf D MCf UTC �M�f UT� ; (5)

whereMCf andM�f are some coefficients. In a linear FV method, these coefficients
are equal and fixed. In the nonlinear FV method, they may be different and depend
on concentrations in surrounding cells.

For every cell T in T , we define the collocation point xT at the barycenter of
T . For every face f 2 FB , we denote the face barycenter by xf and associate a
collocation point with xf for f 2 FB .

We shall refer to collocation points on faces as the auxiliary collocation points.
They are introduced for mathematical convenience and will not enter the final
algebraic system although will affect system coefficients. In contrast, we shall refer
to the other collocation points as the primary collocation points whose discrete
concentrations form the unknown vector in the algebraic system.

For every cell T we define a set˙T of nearby collocation points. We assume that
for every cell-face pair T 2 T , f 2 FT , there exist three points xf;1, xf;2, and xf;3
in set ˙T such that the following condition holds:
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The co-normal vector `f D K.xf /nf started from xT belongs to the trihedral
corner formed by vectors

tf;1 D xf;1 � xT ; tf;2 D xf;2 � xT ; tf;3 D xf;3 � xT ; (6)

and
1

j`f j`f D
˛f

jtf;1j tf;1 C
ˇf

jtf;2j tf;2 C
�f

jtf;3j tf;3; (7)

where ˛f � 0, ˇf � 0, �f � 0.
Let f be an internal face. We denote by TC and T� the cells that share f and

assume that nf is outward for TC. Let x˙ be the collocation point of T˙. Let U˙ be
the discrete concentrations in T˙.

Let T D TC and Kf D K.xf /. Using the above notations, definition of the
directional derivative,

@u

@`f
j`f j D ru � .Kf nf /;

and assumption (7), we write

qf �nf D �j`f jjf j
Z

f

@u

@`f
ds D �j`f jjf j

Z

f

�
˛f

@u

@tf;1
Cˇf @u

@tf;2
C�f @u

@tf;3

�
ds: (8)

Replacing directional derivatives by finite differences, we get

Z

f

@u

@tf;i
ds D Uf;i � UT

jxf;i � xT j jf j CO.h
2
T /; i D 1; 2; 3; (9)

where hT is the diameter of cell T . Using the finite difference approximations (9),
we transform formula (8) to

qhf � nf D �j`f j
	
˛f

jtf;1j .Uf;1 � UT /C
ˇf

jtf;2j .Uf;2 � UT /C
�f

jtf;3j .Uf;3 � UT /



:

(10)
At the moment, this flux involves four rather than two concentrations. To derive
a two-point flux approximation, we consider the cell T� and derive another
approximation of flux through face f . To distinguish between TC and T�, we add
subscripts ˙ and omit subscript f . Since nf is the internal normal vector for T�,
we have to change sign of the right hand side:

qh˙ � nf D 
j`f j
	
˛˙
jt˙;1j

.U˙;1 � U˙/C
ˇ˙
jt˙;2j

.U˙;2 � U˙/C
�˙
jt˙;3j

.U˙;3 � U˙/



;

(11)

where ˛˙, ˇ˙ and �˙ are given by (7) andU˙;i denote concentrations at points x˙;i
from ˙T

˙
. We define a new discrete flux as a linear combination of qh˙ � nf with
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non-negative weights �˙:

qhf � nf D �C qhC � nf C �� qh� � nf
D �Cj`f j

	
˛C
jtC;1j C

ˇC
jtC;2j C

�C
jtC;3j




UC

���j`f j
	
˛�
jt�;1j C

ˇ�
jt�;2j C

��
jt�;3j




U�

��Cj`f j
	
˛C
jtC;1jUC;1 C

ˇC
jtC;2jUC;2 C

�C
jtC;3jUC;3




C��j`f j
	
˛�
jt�;1jU�;1 C

ˇ�
jt�;2jU�;2 C

��
jt�;3jU�;3




:

(12)

The obvious requirement for the weights is to cancel the terms in the last two rows
of (12) which results in a two-point flux formula. The second requirement is to
approximate the true flux. These requirements lead us to the following system

� ��CdC C ��d� D 0;
�C C �� D 1; (13)

where

d˙ D j`f j
	
˛˙
jt˙;1jU˙;1 C

ˇ˙
jt˙;2jU˙;2 C

�˙
jt˙;3jU˙;3




:

Since coefficients d˙ depend on both geometry and concentration, the weights �˙
do as well. Thus, the resulting two-point flux approximation is nonlinear.

It may happen that concentration UC;i , (U�;i ) i D 1; 2; 3, is defined at the same
collocation point as U� (UC). In this case the terms to be cancelled are changed so
that they do not incorporate U˙. By doing so, for the Laplace operator we recover
the classical linear scheme with the 6-1-1-1-1-1-1 stencil on uniform cubic meshes.

The solution of (13) can be written explicitly. In all cases d˙ � 0 if U � 0. If
d˙ D 0, we set �C D �� D 1

2
. Otherwise,

�C D d�
d� C dC and �� D dC

d� C dC :

This implies that the weights �˙ are non-negative. Substituting this into (12), we
get the two-point flux formula (5) with coefficients

Mḟ D �˙j`f j.˛˙=jt˙;1j C ˇ˙=jt˙;2j C �˙=jt˙;3j/: (14)

Now we consider the case of Dirichlet boundary face f 2 FB where we define

Uf D NgD;f D 1

jf j
Z

f

gD ds: (15)
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It may be convenient to think about f as the ghost cell with zero volume. Let T be
the cell with face f . Replacing UC and U� with UT and Uf , and ˙TC , ˙T� with
˙T , ˙f;T respectively, we get

qhf � nf DMCf UT �M�f Uf ; (16)

where coefficients Mḟ are given by (14).
For every T in T , the cell equation (4) is

X

f 2FT

�.T; f / qhf � nf D
Z

T

f dx; (17)

where �.T; f / D sign.nf � nT .xf //. Substituting two-point flux formula (5) with
non-negative coefficients given by (14) into (17), and using equations (15) and (16)
to eliminate concentrations at boundary faces, we get a nonlinear system of NT

equations
M.U /U D G.U /: (18)

The right hand side vector G.U / is generated by the source and the boundary
data:

GT .U / D
Z

T

g dx C
X

f 2FB\FT

M�f .U / NgD;f ; 8T 2 T : (19)

For data functions g � 0 and gD � 0 the components of vectorG are non-negative.
We use the Picard iterations to solve the nonlinear system (18).

The details of the presented scheme, algorithms, modifications of the scheme for
Neumann boundary conditions and discontinuous diffusion tensor coefficients, as
well as monotonicity analysis of the scheme are presented in [1].

2 Numerical results

We use discrete L2-norm to evaluate discretization errors for the concentration u:

erl2 D

2

6
6
4

X

T2T
.u.xT / � UT /2 jT j
X

T2T
.u.xT //

2 jT j

3

7
7
5

1=2

:

For each cell T we derive the value of ru from the linear reconstruction of the
concentration over T introduced in [5]:

RT .x/ D UT CrUT .x � xT /:
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This reconstruction minimizes the deviation of RT .xk/ from targeted values Uk in
nearby cells. We denote the approximate gradient in cell T as rUT .

We use the following estimate for L1-norm of the euclidean norm of the
approximate gradient:

normgD
X

T2T
jjrUT jj jT j:

The discrete H1 and energy norms of the error are defined as follows:

ergrad D

2

6
6
4

X

T2T
jjru.xT /� rUT jj2jT j
X

T2T
jjru.xT /jj2jT j

3

7
7
5

1=2

ener D

2

6
6
4

X

T2T
K.ru.xT /� rUT / � .ru.xT / � rUT / jT j

X

T2T
Kru.xT / � ru.xT / jT j

3

7
7
5

1=2

The proposed method is designed for non-negative solutions, and may behave
unexpectedly if the values of solution go below zero. Since several test cases have
negative values of exact solution, we added positive constants to exact solutions
to force their positivity. We added C1 in tests 2 and 3, and C100 in test 5. We
subtracted back the positive constants at the end of test runs. We denote minimum
and maximum values for discrete solution as umin and umax respectively, and exact
values of u at the cell centers as uemin and uemax respectively.

We use Picard method to solve the nonlinear system (18). The values nu and nmat
correspond to the number of unknowns and number of non-zero terms in linearized
system.

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
1 2003 9411 0.028 0.020 1.997 1.989 1.790
2 3898 18586 0.014 0.007 1.992 1.989 1.794
3 7711 37103 0.014 0.009 1.997 1.994 1.795
4 15266 74012 0.008 0.006 1.998 1.997 1.797
5 30480 148746 0.004 0.001 1.999 1.997 1.797
6 61052 299492 0.003 0.002 1.998 1.997 1.798
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 2003 5.31e-03 1.30e-01 1.26e-01
2 3898 4.00e-03 1.281 1.07e-01 0.879 1.04e-01 0.858
3 7711 2.44e-03 2.167 8.47e-02 1.039 8.16e-02 1.057
4 15266 1.70e-03 1.592 6.78e-02 0.979 6.52e-02 0.986
5 30480 9.57e-04 2.490 5.36e-02 1.016 5.20e-02 0.986
6 61052 6.42e-04 1.726 4.23e-02 1.026 4.09e-02 1.037

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg
1 29 257 0.011 0.085 1.991 1.870 1.303
2 66 660 0.107 0.143 1.902 1.854 1.614
3 130 1410 0.038 0.038 1.963 1.925 1.609
4 228 2620 0.021 0.017 1.941 1.914 1.685
5 356 4424 0.002 0.003 2.004 1.979 1.686

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 29 7.49e-02 6.70e-01 6.81e-01
2 66 6.16e-02 0.710 4.96e-01 1.099 4.66e-01 1.384
3 130 3.44e-02 2.579 3.65e-01 1.351 3.70e-01 1.023
4 228 2.32e-02 2.098 2.78e-01 1.470 2.72e-01 1.636
5 356 1.73e-02 1.988 2.27e-01 1.364 2.23e-01 1.341

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 512 3200 0.112 0.030 1.942 1.958 1.695
2 4096 27136 0.037 0.011 1.977 1.993 1.763
3 32768 223232 0.011 0.002 1.989 1.997 1.749
4 262144 1810432 0.003 0.001 1.997 1.999 1.761

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 512 6.02e-02 4.53e-01 4.27e-01
2 4096 4.98e-02 0.276 5.55e-01 -0.294 6.25e-01 -0.548
3 32768 3.70e-02 0.428 3.45e-01 0.687 3.74e-01 0.740
4 262144 2.22e-02 0.737 1.83e-01 0.910 1.89e-01 0.988
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg
1 36 228 0.122 0.154 1.905 1.846 1.769
2 288 2208 0.053 0.040 1.966 1.960 1.735
3 2304 19200 0.014 0.010 1.992 1.990 1.772
4 18432 159744 0.005 0.003 1.998 1.997 1.790
5 147456 1302528 0.001 0.001 2.000 1.999 1.796

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 36 7.24e-02 5.48e-01 5.21e-01
2 288 2.83e-02 1.356 2.77e-01 0.988 2.68e-01 0.959
3 2304 7.82e-03 1.854 1.21e-01 1.192 1.17e-01 1.190
4 18432 2.20e-03 1.829 5.48e-02 1.142 5.34e-02 1.139
5 147456 6.49e-04 1.761 2.59e-02 1.085 2.52e-02 1.084

� Test 2 Heterogeneous anisotropy, u.x; y; z/ D x3y2zC x sin.2�xz/ sin.2�xy/
sin.2�z/, min D �0:862; max D 1:0487, Prism meshes

i nu nmat umin uemin umax uemax normg
1 1210 9788 -0.854 -0.842 1.002 0.978 1.579
2 8820 75178 -0.840 -0.838 1.014 1.010 1.669
3 28830 250168 -0.859 -0.858 1.034 1.032 1.689
4 67240 588758 -0.858 -0.857 1.034 1.033 1.698

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1210 6.07e-02 2.11e-01 2.11e-01
2 8820 1.69e-02 1.928 8.51e-02 1.368 8.62e-02 1.352
3 28830 7.96e-03 1.911 4.63e-02 1.543 4.74e-02 1.517
4 67240 4.62e-03 1.933 2.93e-02 1.626 3.02e-02 1.597

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg
1 64 352 -0.905 -0.778 0.759 0.702 2.241
2 512 3200 -0.928 -0.937 0.959 0.930 3.167
3 4096 27136 -1.005 -0.985 0.996 0.982 3.492
4 32768 223232 -0.989 -0.996 1.001 0.996 3.568
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 64 2.83e-01 5.55e-01 5.50e-01
2 512 8.74e-02 1.698 1.81e-01 1.618 1.63e-01 1.756
3 4096 2.71e-02 1.688 7.01e-02 1.366 5.61e-02 1.537
4 32768 7.58e-03 1.839 3.23e-02 1.118 2.39e-02 1.230

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg
1 890 5574 0.518 0.458 5.318 5.317 1484.035
2 2232 14552 0.287 0.262 5.329 5.329 1541.433
3 5016 33436 0.173 0.162 5.329 5.329 1577.828
4 11220 75894 0.129 0.123 5.330 5.330 1596.743
5 23210 158380 0.096 0.093 5.339 5.339 1606.920
6 42633 292465 0.077 0.074 5.345 5.345 1611.935
7 74679 514069 0.059 0.058 5.361 5.361 1615.163

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 890 9.82e-03 1.88e-01 1.86e-01
2 2232 4.07e-03 2.871 1.05e-01 1.892 1.04e-01 1.883
3 5016 1.77e-03 3.081 5.95e-02 2.120 5.90e-02 2.116
4 11220 1.09e-03 1.813 3.86e-02 1.611 3.80e-02 1.642
5 23210 6.44e-04 2.169 2.58e-02 1.656 2.54e-02 1.653
6 42633 4.58e-04 1.680 1.78e-02 1.854 1.73e-02 1.894
7 74679 3.20e-04 1.923 1.37e-02 1.373 1.33e-02 1.409

� Test 5 Discontinuous permeability, u.x; y; z/D ai sin.2�x/ sin .2�y/ sin .2�z/,
min D �100; max D 100, Locally refined meshes

i nu nmat umin uemin umax uemax normg

1 22 124 -246.736 -100.000 246.736 100.000 342.699

2 176 1112 -43.618 -35.355 43.618 35.355 68.108

3 1408 9376 -83.040 -78.858 83.040 78.858 92.094

4 11264 76928 -95.567 -94.346 95.567 94.346 97.550

5 90112 623104 -98.880 -98.562 98.880 98.562 98.676

6 720896 5015552 -99.719 -99.639 99.719 99.639 98.928
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 22 1.47e+00 2.14e+03 6.60e+03

2 176 2.34e-01 2.651 6.29e-01 11.733 1.16e+00 12.475

3 1408 5.30e-02 2.140 2.40e-01 1.390 7.21e-01 0.684

4 11264 1.30e-02 2.034 1.43e-01 0.750 4.99e-01 0.532

5 90112 3.22e-03 2.008 9.78e-02 0.547 3.51e-01 0.507

6 720896 8.04e-04 2.002 6.87e-02 0.510 2.48e-01 0.502

3 Comments

In our experiments the linear systems in Picard method with the non-symmetric
matrices were solved by the Bi-Conjugate Gradient Stabilized (BiCGStab) method
with the ILU0 preconditioner. The nonlinear iterations are terminated when the
relative norm of the residual norm becomes smaller then "non D 10�9. The
convergence tolerance for the linear solver is set to "lin D 10�12. The number
of Picard iterations for different test cases are presented in the table (Test 1 Mild
anisotropy: 1B – Tetrahedral meshes, 1C – Voronoi meshes, 1D – Kershaw meshes,
1I – Checkerboard meshes; Test 2 Heterogeneous anisotropy: 2F – Prism meshes;
Test 3 Flow on random meshes: 3AA – Random meshes; Test 4 Flow around a
well: 4BB – Well meshes; Test 5 Discontinuous permeability: 5H – Locally refined
meshes).

i 1B 1C 1D 1I 2F 3AA 4BB 5H
1 37 10 43 14 23 15 18 14
2 47 13 112 27 35 28 18 12
3 41 14 190 37 41 52 20 12
4 50 17 351 41 45 92 21 11
5 57 19 40 23 11
6 58 24 12
7 24
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Benchmark 3D: the SUSHI Scheme

Robert Eymard, Thierry Gallouët, and Raphaèle Herbin

1 Presentation of the scheme

We present the SUSHI scheme [2] in the case of a general heterogeneous and
anisotropic diffusion problem with homogeneous Dirichlet boundary conditions.
Let ˝ be a bounded open domain of R

d , with d 2 N
?, let f 2 L2.˝/ and let

� be a measurable function from ˝ to the set Md .R/ of d � d matrices, such
that for a.e. x 2 ˝ , �.x/ is symmetric, and such that the set of its eigenvalues
is included in Œ	; 	�, where 0 < 	 � 	. We wish to approximate the function u
solution of

u 2 H1
0 .˝/ and 8v 2 H1

0 .˝/;

Z

˝

�.x/ru.x/ � rv.x/dx D
Z

˝

f .x/v.x/dx;

by the following scheme:

U 2 XD ; 8V 2 XD ;

Z

˝

�.x/rDU.x/ � rDV.x/dx D
Z

˝

f .x/˘DV.x/dx;

where the reconstruction operator˘D and the discrete gradient operator rD acting
on the discrete functional space XD , depending on the discretization D , are now
defined, along with some notations:

1. M is the set of grid cells, that are disjoint open subsets of ˝ such thatS
K2M K D ˝ , F is the set of the faces of the mesh; note that each non-planar

face is decomposed into planar faces without increasing the cost of the method.
We assume that � is constant on all K 2M , and we denote by �K its value in
K; a point xK is chosen in K such that K is star-shaped with respect to xK ;

R. Eymard
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2. the set of discrete unknowns XD is the finite dimensional vector space on R,
containing all real families U D .uK/K2M ;

3. the space step hD 2 .0;C1/ is the maximum diameter of all control volumes;
4. the mapping ˘D W XD ! L2.˝/ is the reconstruction of the approximate

function defined by the value uK in each K 2M ;
5. the mapping rD W XD ! L2.˝/d is the reconstruction of the gradient of the

function, defined below.

The construction of rD involves the following steps.

1. for all exterior faces � 2 Fext, a value u� is given at the barycentre x� of �
2. for each face � 2 Fint and U D .uK/K2M , a value u� , meant to approximate u

at the barycentre x� of � , is computed such that

u� D
X

K2M
˛K� uK C

X

�2Fext

ˇ��u� ; with
X

K2M
˛K� C

X

�2Fext

ˇ�� D 1;

where the coefficients ˛K� and ˇ�� are chosen as explained below. Note that the
interior faces of the mesh cannot be defined as @K \ @L for two neighbouring
control volumes K and L, since there may exist more than one common face
between K and L, in particular, if non-planar faces are split in triangular faces.
Indeed, the definition of rKU below is exact for affine functions only in the case
of planar faces (see the comments on the results in the last section of this paper).

3. Denoting by FK the subset of F containing all the faces of K 2 M and, for
� 2 FK , by nK;� the unit normal vector to � outward to K , one defines

rKU D 1

jKj
X

�2FK

j� j .u� � uK/nK;� ;

and, for all � 2 FK , denoting by dK;� the orthogonal distance between xK and
� 2 FK

rK;�U D rKU C
p
3

dK;�
.u� � uK � rKU � .x� � xK//nK;� ;

4. rDU is given by the constant value rK;�U in the cone with vertex xK and
basis � .

Let us now turn to the computation of ˛K� and ˇ�� . Let K and L be two grid cells
separated by a common face � . Let � be a face of K or L, which is not common to
K and L. We first compute a value w� at some point y� by the following method:

1. if � 2 Fext, then y� D x� and w� D u� ;
2. if � 2 Fint is a common face to grid cells M and N (with one and one only of

them being equal to K or L), then we define

y� D
	NdM;�yN C 	MdN;�yM C dM;�dN;� .��N � ��M /

	NdM;� C 	MdN;� ;
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where, denoting by P.x; �/ the orthogonal projection on � of any point x and
by nMN the unit normal vector, orthogonal to � , oriented fromM to N , we set

yM DP.xM ; �/; 	M D nMN ��MnMN ; �
�
M D �MnMN � 	MnMN ;

yN DP.xN ; �/; 	N D nMN ��NnMN ; �
�
N D �NnMN � 	NnMN I

then the following averaging formula is used to define the values w� as linear
combinations of uM and uN :

w� D 	NdM;�uN C 	MdN;�uM
	NdM;� C 	MdN;� I

3. two faces � 2 FK and � 0 2 FL are then selected so that there exists a unique
function w, affine in K and in L, continuous on � , such that �K.rw/K � nKL D
�L.rw/L�nKL and such that uK D w.xK/, uL D w.xL/, w� D w.y� / and w� 0 D
w.y� 0/; we then set u� D w.x� /, hence defining u� as a linear combination of
uK , uL, w� and w� 0 ; the choice of � and � 0 is done thanks to an invertibility
criterion of the 4 � 4 local linear systems thus obtained.

We refer to [1] for the complete presentation of the mathematical properties of
the scheme, which are obtained for a slightly different choice of the coefficients ˛K�
and ˇ�� from the one presented here. These mathematical properties remain valid in
the case of the coefficients chosen here, which present the advantage of preserving
exact affine solutions even in the heterogeneous case.

2 Numerical results

In this section, denoting by j � j the Euclidean norm, the norms have been computed
by the following formula:

normg D
X

K2M
jKj jrKU j;

erl2 D
  

X

K2M
jKj .uK � u.xK//

2

!

=

 
X

K2M
jKj u.xK/2

!!1=2

;

ergrad D
  

X

K2M
jKj jrKU � ru.xK/j2

!

=

 
X

K2M
jKj jru.xK/j2

!!1=2

;

ener D
  

X

K2M
jKj jrKU � ru.xK/j2�

!

=

 
X

K2M
jKj jru.xK/j2�

!!1=2

;

setting, for any K 2M , j
j2� D �K
 � 
 for all 
 2 R
3.
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg

1 2003 59943 3.21E-02 2.03E-02 1.98E+00 1.99E+00 1.77E+00

2 3898 122098 1.29E-02 6.84E-03 1.98E+00 1.99E+00 1.77E+00

3 7711 249457 1.30E-02 9.13E-03 1.99E+00 1.99E+00 1.78E+00

4 15266 504716 4.66E-03 5.52E-03 1.99E+00 2.00E+00 1.79E+00

5 30480 1029682 4.03E-03 1.49E-03 2.00E+00 2.00E+00 1.79E+00

6 61052 2102030 1.74E-03 1.83E-03 2.00E+00 2.00E+00 1.79E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 2003 8.39E-03 - 1.63E-01 - 1.55E-01 -

2 3898 6.28E-03 1.31E+00 1.32E-01 9.50E-01 1.25E-01 9.41E-01

3 7711 3.98E-03 2.01E+00 1.04E-01 1.03E+00 9.90E-02 1.04E+00

4 15266 2.63E-03 1.83E+00 8.34E-02 9.77E-01 7.87E-02 1.01E+00

5 30480 1.67E-03 1.96E+00 6.59E-02 1.02E+00 6.26E-02 9.92E-01

6 61052 1.04E-03 2.03E+00 5.21E-02 1.02E+00 4.93E-02 1.03E+00

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg

1 29 765 1.11E-01 1.56E-01 1.90E+00 1.86E+00 1.36E+00
2 66 2934 1.29E-01 1.79E-01 1.85E+00 1.81E+00 1.56E+00
3 130 7598 2.67E-02 2.67E-02 1.94E+00 1.93E+00 1.63E+00
4 228 16210 9.62E-03 1.20E-02 1.93E+00 1.91E+00 1.67E+00
5 356 29820 1.02E-02 3.85E-03 2.00E+00 1.97E+00 1.69E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 29 7.37E-02 - 3.97E-01 - 4.01E-01 -

2 66 6.41E-02 5.08E-01 3.12E-01 8.80E-01 2.89E-01 1.19E+00

3 130 4.05E-02 2.03E+00 2.64E-01 7.42E-01 2.48E-01 6.83E-01

4 228 2.81E-02 1.95E+00 2.11E-01 1.20E+00 1.97E-01 1.22E+00

5 356 1.86E-02 2.79E+00 1.85E-01 8.87E-01 1.78E-01 6.86E-01
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg

1 512 21422 -2.14E-03 3.03E-02 1.91E+00 1.96E+00 1.67E+00

2 4096 192664 1.58E-02 1.06E-02 1.96E+00 1.99E+00 1.73E+00

3 32768 1618164 4.90E-03 1.75E-03 1.99E+00 2.00E+00 1.74E+00

4 262144 13109746 8.51E-04 7.14E-04 2.00E+00 2.00E+00 1.76E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 512 7.45E-02 - 4.84E-01 - 4.40E-01 -

2 4096 6.48E-02 2.00E-01 4.43E-01 1.28E-01 3.85E-01 1.92E-01

3 32768 4.32E-02 5.84E-01 3.02E-01 5.50E-01 2.56E-01 5.92E-01

4 262144 2.31E-02 9.02E-01 1.66E-01 8.62E-01 1.40E-01 8.74E-01

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg

1 36 836 1.05E-01 1.54E-01 1.87E+00 1.85E+00 1.60E+00

2 288 15848 3.67E-02 4.01E-02 1.96E+00 1.96E+00 1.71E+00

3 2304 173048 5.91E-03 1.01E-02 1.99E+00 1.99E+00 1.77E+00

4 18432 1560014 1.71E-03 2.54E-03 2.00E+00 2.00E+00 1.79E+00

5 147456 13339482 3.83E-04 6.36E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 36 1.11E-01 - 2.77E-01 - 2.49E-01 -

2 288 3.34E-02 1.74E+00 1.50E-01 8.86E-01 1.40E-01 8.27E-01

3 2304 8.76E-03 1.93E+00 6.88E-02 1.13E+00 6.63E-02 1.08E+00

4 18432 2.33E-03 1.91E+00 3.34E-02 1.04E+00 3.33E-02 9.95E-01

5 147456 5.82E-04 2.00E+00 1.55E-02 1.10E+00 1.54E-02 1.12E+00

� Test 2 Heterogeneous anisotropy, u.x; y; z/D x3y2zCx sin.2�xz/ sin.2�xy/
sin.2�z/, min D �0:862; max D 1:0487, Prism meshes

i nu nmat umin uemin umax uemax normg

1 1210 65648 -8.22E-01 -8.41E-01 9.82E-01 9.84E-01 1.50E+00

2 8820 553442 -8.33E-01 -8.39E-01 1.00E+00 1.01E+00 1.64E+00

3 28830 1935862 -8.55E-01 -8.59E-01 1.03E+00 1.03E+00 1.68E+00

4 67240 4710944 -8.55E-01 -8.57E-01 1.03E+00 1.03E+00 1.69E+00



1010 R. Eymard et al.

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 1210 5.95E-02 - 1.88E-01 - 1.91E-01 -

2 8820 1.85E-02 1.76E+00 6.67E-02 1.56E+00 6.75E-02 1.57E+00

3 28830 8.94E-03 1.85E+00 3.46E-02 1.66E+00 3.50E-02 1.66E+00

4 67240 5.37E-03 1.80E+00 2.23E-02 1.55E+00 2.25E-02 1.56E+00

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg

1 64 2306 -7.51E-01 -7.59E-01 7.58E-01 6.91E-01 1.43E+00

2 512 31576 -8.36E-01 -9.39E-01 8.64E-01 9.23E-01 2.58E+00

3 4096 317246 -9.69E-01 -9.85E-01 9.58E-01 9.82E-01 3.28E+00

4 32768 2819464 -9.90E-01 -9.96E-01 9.89E-01 9.96E-01 3.51E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 64 2.00E-01 - 6.47E-01 - 6.64E-01 -

2 512 1.28E-01 6.48E-01 3.00E-01 1.11E+00 2.98E-01 1.16E+00

3 4096 4.67E-02 1.45E+00 1.06E-01 1.50E+00 1.05E-01 1.50E+00

4 32768 1.32E-02 1.82E+00 3.85E-02 1.46E+00 3.72E-02 1.50E+00

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg

1 890 56952 4.26E-01 4.14E-01 5.32E+00 5.32E+00 1.58E+03

2 2232 164566 2.58E-01 2.44E-01 5.33E+00 5.33E+00 1.58E+03

3 5016 394986 1.61E-01 1.54E-01 5.33E+00 5.33E+00 1.60E+03

4 11220 927684 1.23E-01 1.18E-01 5.33E+00 5.33E+00 1.61E+03

5 23210 1980998 9.28E-02 8.99E-02 5.34E+00 5.34E+00 1.62E+03

6 42633 3702759 7.41E-02 7.23E-02 5.35E+00 5.35E+00 1.62E+03

7 74679 6573107 5.78E-02 5.65E-02 5.36E+00 5.36E+00 1.62E+03

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 890 3.79E-03 - 9.69E-02 - 9.56E-02 -

2 2232 3.07E-03 6.86E-01 5.21E-02 2.03E+00 4.96E-02 2.14E+00

3 5016 1.60E-03 2.42E+00 2.81E-02 2.29E+00 2.66E-02 2.31E+00

4 11220 1.10E-03 1.38E+00 2.10E-02 1.08E+00 1.95E-02 1.16E+00

5 23210 7.77E-04 1.45E+00 1.57E-02 1.19E+00 1.45E-02 1.21E+00

6 42633 4.78E-04 2.39E+00 1.07E-02 1.89E+00 1.01E-02 1.81E+00

7 74679 4.56E-04 2.59E-01 9.98E-03 3.72E-01 9.27E-03 4.42E-01
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� Test 5 Discontinuous permeability, u.x; y; z/ D sin.�x/ sin .�y/ sin .�z/,
min D 0; max D 1, Locally refined meshes

i nu nmat umin uemin umax uemax normg

1 22 358 -2.49E+02 -1.00E+02 2.49E+02 1.00E+02 1.03E+02

2 176 4570 -4.63E+01 -3.54E+01 4.63E+01 3.54E+01 9.21E+01

3 1408 37730 -8.35E+01 -7.89E+01 8.35E+01 7.89E+01 9.64E+01

4 11264 293666 -9.56E+01 -9.43E+01 9.56E+01 9.43E+01 9.85E+01

5 90112 2309882 -9.89E+01 -9.86E+01 9.89E+01 9.86E+01 9.91E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 22 1.55E+00 - 1.02E+01 - 4.09E+01 -

2 176 3.00E-01 2.37E+00 2.42E-01 5.39E+00 2.35E-01 7.44E+00

3 1408 6.57E-02 2.19E+00 6.08E-02 2.00E+00 6.20E-02 1.92E+00

4 11264 1.63E-02 2.01E+00 1.90E-02 1.68E+00 1.69E-02 1.88E+00

5 90112 4.62E-03 1.82E+00 8.18E-03 1.22E+00 5.10E-03 1.73E+00

3 Comments on the results

All the linear solvers could be solved using the conjugate gradient solver of the
PETSC library with ILU(2) preconditioning with tolerance (or reduction factor) set
to 10�10. The following results have been obtained:

1. Using the conjugate gradient solver of the PETSC library, the ILU(0) seems
to be the fastest preconditioning on some cases. For example, using the fourth
Kershaw mesh, for test 1, we obtain the following CPU times: for ILU(2), 178s,
for ILU(1), 60s, for ILU(0), 14s and for Jacobi, 20s. We systematically used
ILU(2) in order to prevent from any possible failure.

2. The computing times, using the conjugate gradient solver of the PETSC library
with ILU(2) preconditioning are the following, for tetrahedral meshes 2 to 6 on
test 1: 1.06, 2.45, 5.73, 6.07 and 23.65s. For the conjugate gradient solver of the
ISTL library, with ILU(0), we obtain 0.05, 0.10, 0.29, 0.73 and 1.83s, which
seems to show that the computing time which can be expected on full scale
studies will be acceptable.

A second remark concerns the treatment of non-planar faces. In the above results,
we used the possibility to decompose the non-planar faces in triangles, in particular
in test3, “Flow on random meshes”, the results which are obtained without using
this possibility are the following:
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i nu nmat umin uemin umax uemax normg

1 64 1774 -9.69E-01 -7.55E-01 8.61E-01 6.98E-01 2.57E+00

2 512 21812 -9.30E-01 -9.39E-01 9.97E-01 9.24E-01 3.22E+00

3 4096 210534 -1.02E+00 -9.85E-01 1.01E+00 9.82E-01 3.51E+00

4 32768 1839254 -1.00E+00 -9.96E-01 1.01E+00 9.96E-01 3.58E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 64 2.96E-01 - 3.89E-01 - 3.54E-01 -

2 512 9.59E-02 1.62E+00 1.87E-01 1.06E+00 1.57E-01 1.17E+00

3 4096 3.89E-02 1.30E+00 1.23E-01 6.00E-01 6.93E-02 1.18E+00

4 32768 1.92E-02 1.02E+00 1.13E-01 1.20E-01 4.94E-02 4.87E-01

They show a clear loss of accuracy of the scheme (the order of convergence being
around 1 and not 2).

Acknowledgements Work supported by Groupement MOMAS and ANR VFSitCom

References
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Benchmark 3D: the VAG scheme

Robert Eymard, Cindy Guichard, and Raphaèle Herbin

1 Presentation of the scheme

Let ˝ be a bounded open domain of R
3, let f 2 L2.˝/ and let � be a measurable

function from˝ to the set M3.R/ of 3� 3 matrices, such that for a.e. x 2 ˝ ,�.x/
is symmetric, and such that the set of its eigenvalues is included in Œ	; 	�, where
0 < 	 � 	. We wish to approximate the function u solution of

u 2 H1
0 .˝/ and 8v 2 H1

0 .˝/;

Z

˝

�.x/ru.x/ � rv.x/dx D
Z

˝

f .x/v.x/dx; (1)

by the approximate gradient scheme [2, 4] which reads:

U 2 XD ; 8V 2 XD ;

Z

˝

�.x/rDU.x/ �rDV.x/dx D
Z

˝

f .x/˘DV.x/dx; (2)

where˘D is a reconstruction operator andrD a discrete gradient operator which act
on the discrete functional space XD , where the index D denotes the discretization;
these operators are defined as defined as follows:
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IFP Energies nouvelles and Université Paris-Est, e-mail: guichard@ifpenergiesnouvelles.fr

R. Herbin
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1. M is the set of control volumes, that are disjoint open subsets of ˝ such thatS
K2M K D ˝, V D Vint [ Vext is the set of vertices of the mesh; any element

K of M is defined by its vertices s 2 VK , its faces � 2 FK ; each face is also
defined by the set of its vertices s 2 V� , using a suitable geometric definition for
the resulting surface in the case of non-planar faces; we assume that� is constant
on all K 2M , and we denote by �K its value in K;

2. the set of discrete unknowns XD is the finite dimensional vector space on R,
containing all real families U D ..uK/K2M ; .us/s2V /, such that us D 0 if s 2
Vext;

3. the mapping˘D W XD ! L2.˝/maps U D ..uK/K2M ; .us/s2V / 2 XD to the
piecewise constant function uD 2 L2.˝/ equal to uK on each cell K 2M ;

4. the mapping rD W XD ! L2.˝/3 is the reconstruction of a gradient from
the values U D ..uK/K2M ; .us/s2V / 2 XD ; different expressions for this
reconstruction are proposed below, which all lead to convergent gradient schemes
in the sense of [2, 4]. Their theoretical analysis is related to that of the SUSHI
scheme [1, 3]. Detailed numerical results are given in this paper only using the
method described in subsection 1.2; the differences obtained using the other
expressions are commented in the last section.

The exterior faces are those of the form @K \ @˝ for any boundary control volume
K , and the interior faces are those of the form @K\@L for two neighbouring control
volumesK and L. For any face � , we define a point x� , which is a barycentre with
non-negative weights ˇ�;s of the elements of the set V� including all the vertices of
the face, and the value u� is defined by

u� D
X

s2V�
ˇ�;sus with

X

s2V�
ˇ�;s D 1:

In the next three subsections, we describe three ways of defining a gradient
operator which satisfies the VAG requirements. The first gradient is constructed
from the Stokes formula on the cells of the mesh (we call it the primal cell
to distinguish it from further constructed cells), and requires a stabilization. The
second gradient and third gradients are constructed on tetrahedral or octahedral
sub–cells of the primal mesh, and are natively stable.

1.1 Stabilised gradient on the primal mesh cells

For a face � 2 F , we denote by � any triangular sub-face with vertices x� , s and s0,
where s and s0 are two consecutive vertices of � . The barycentrex� of each sub-face
� may thus be expressed by the following barycentric combination:

x� D
X

s2V�
ˇ�;ss with

X

s2V�
ˇ�;s D 1;
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where ˇ�;s � 0 for all s 2 V� . We then define ˇ�;s D 0 for all s 2 V n V� . Next,
we reconstruct a value u� at the point x� , by u� DPs2V� ˇ�;sus. Let K 2M be an
element of the mesh. We denote by TK the set of all sub-faces of the faces of K .

We first define, for U D ..uK/K2M ; .us/s2V /, an approximation of the gradient
on cellK:

rKU D 1

jKj
X

�2TK

j� j .u� � uK/nK;� D
X

s2VK
.us � uK/vK;s; (3)

where we denote by

vK;s D 1

jKj
X

�2TK

ˇ�;sj� j nK;� ;

where nK;� is the unit normal vector to � , outward toK , and j� j, jKj are respectively
the area and the volume of � and K . We then define a partition MK;s of K (there is
no need to define this partition precisely), such that jMK;sj D jKj =NK, where NK
is the number of vertices of K and we introduce

RK;sU D us � uK � rKU � .s � xK/:

We then define, for a given � > 0, the constant value rK;sU in MK;s:

rK;sU D rKuC �RK;sU vK;s:

We finally define a piecewise constant gradient by rDU.x/ D rK;sU for a.e. x 2
MK;s . This scheme is denoted by “VAG” in [5].

1.2 Piecewise constant gradient on octahedral sub-cells

For a given face � of a control volumeK and for any vertex s of � , we respectively
denote by s� and sC the preceding and the following vertices of s in the face
� (defining any orientation on �), and we consider the (degenerate) octahedron,
denoted by VK;�;s and depicted in Fig. 1, whose vertices are A1 D xK , A2 D x� ,
A3 D 1

2
.s� C s/, A5 D s, A6 D 1

2
.sC C s/ and A4 D 1

2
.x� C s/ (note that

all these octahedra are disjoint, and that the union of their closure is ˝). The
approximate values ofU at the vertices of VK;�;s are respectively u1 D uK , u2 D u� ,
u3 D 1

2
.us� C us/, u5 D us , u6 D 1

2
.usC C us/ and u4 D 1

2
.u� C us/ (the main

diagonals of VK;�;s are therefore .A1; A4/, .A2; A5/ and .A3; A6/). We then define
the following approximate gradient:

rK;�;sU D
3X

iD1
.uiC3 � ui /

�������!
AiC1AiC4 ^ �������!AiC2AiC5

Det.
�������!
AiC1AiC4;

�������!
AiC2AiC5;

�����!
AiAiC3/

; (4)
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= xσ

s−

A3

A2 = xσA1

A1 A0

A6

A4

A5=s

A2=s

A3=s′

s+ = xK = xK

Fig. 1 The octahedral (left) and tetrahedral (right) cells for the definition of the gradient

setting A7 D A1 and A8 D A2. We finally define a piecewise constant gradient by
rDU.x/ D rK;�;sU for a.e. x 2 VK;�;s . Remark that, denoting for simplicity V
instead of VK;�;s , defining FV as the set of the 8 triangular faces of V and V� as the
set of the 3 vertices of each triangular face � of V , one may check that

rK;�;sU D 1

jV j
X

�2FV

j� jnV;�
�1

3

X

s2V�
us
�
: (5)

We then set define rKU , used in the tables below, by

jKjrKU D
X

�2FK

X

s2V�
jVK;�;sj rK;�;sU:

This scheme is denoted by “VAGR” in [5].

1.3 Piecewise constant gradient on tetrahedral sub–cells

For a given face � of a control volume K and for any pair of consecutive vertices
.s; s0/ of � , we consider the tetrahedron, denoted by VK;�;s;s0 and depicted in Fig. 1,
whose vertices are A0 D xK , A1 D x� , A2 D s and A3 D s0 (note that all these
tetrahedra are disjoint, and that the union of their closure is ˝). The approximate
values of U at the vertices of VK;�;s;s0 are respectively u0 D uK , u1 D u� , u2 D us
and u3 D us0 . We then define the following approximate gradient:

rK;�;s;s0U D
3X

iD1
.ui � u0/

�����!
A0AiC1 ^ �����!A0AiC2

Det.
�����!
A0AiC1;

�����!
A0AiC2;

���!
A0Ai /

; (6)
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where A4 D A1 and A5 D A2. We finally define a piecewise constant gradient by
rDU.x/ D rK;�;s;s0U for a.e. x 2 VK;�;s;s0 . Remark that (5) also holds in this case,
denoting V instead of VK;�;s;s0 .

2 Numerical results

We provide the detailed numerical results obtained, using the scheme VAGR for
computing the discrete gradient. In the numerical implementation, the values uK are
locally eliminated, and the unknowns of the linear solver are the values us . Denoting
by j � j denotes the Euclidean norm, the norms used in the bench tables have been
computed using the following formulae:

normg D
X

K2M
jKj jrKU j;

erl2 D
  

X

K2M
jKj .uK � u.xK//

2

!

=

 
X

K2M
jKj u.xK/2

!!1=2

;

ergrad D
  

X

K2M
jKj jrKU � ru.xK/j2

!

=

 
X

K2M
jKj jru.xK/j2

!!1=2

;

ener D
  

X

K2M
jKj jrKU � ru.xK/j2�

!

=

 
X

K2M
jKj jru.xK/j2�

!!1=2

;

setting, for any K 2M , j
j2� D �K
 � 
 for all 
 2 R
3.

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg

1 488 6072 5.77E-02 2.03E-02 1.95E+00 1.99E+00 1.77E+00

2 857 11269 1.88E-02 6.84E-03 1.97E+00 1.99E+00 1.78E+00

3 1601 21675 2.19E-02 9.13E-03 1.98E+00 1.99E+00 1.79E+00

4 2997 41839 1.13E-02 5.52E-03 1.99E+00 2.00E+00 1.79E+00

5 5692 81688 8.73E-03 1.49E-03 1.99E+00 2.00E+00 1.79E+00

6 10994 160852 3.63E-03 1.83E-03 1.99E+00 2.00E+00 1.80E+00
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 488 1.76E-02 - 2.30E-01 - 2.28E-01 -

2 857 1.02E-02 2.93E+00 1.79E-01 1.35E+00 1.77E-01 1.35E+00

3 1601 6.79E-03 1.94E+00 1.44E-01 1.05E+00 1.42E-01 1.08E+00

4 2997 4.44E-03 2.03E+00 1.13E-01 1.14E+00 1.11E-01 1.17E+00

5 5692 2.79E-03 2.18E+00 9.02E-02 1.06E+00 8.89E-02 1.03E+00

6 10994 1.75E-03 2.13E+00 7.04E-02 1.13E+00 6.92E-02 1.15E+00

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg

1 146 5936 7.54E-02 1.56E-01 2.15E+00 1.86E+00 1.14E+00

2 339 16267 -3.42E-01 1.79E-01 1.95E+00 1.81E+00 1.43E+00

3 684 37194 8.40E-04 2.67E-02 2.02E+00 1.93E+00 1.60E+00

4 1227 71069 -9.54E-02 1.20E-02 2.06E+00 1.91E+00 1.66E+00

5 2023 127883 -1.78E-02 3.85E-03 2.06E+00 1.97E+00 1.70E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 146 1.82E-01 - 3.96E-01 - 4.05E-01 -

2 339 1.87E-01 -8.43E-02 2.49E-01 1.65E+00 2.53E-01 1.68E+00

3 684 9.92E-02 2.70E+00 1.55E-01 2.02E+00 1.62E-01 1.90E+00

4 1227 7.15E-02 1.68E+00 1.19E-01 1.35E+00 1.23E-01 1.42E+00

5 2023 4.74E-02 2.47E+00 9.56E-02 1.33E+00 9.92E-02 1.29E+00

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg

1 729 15625 7.80E-02 3.03E-02 1.96E+00 1.96E+00 1.56E+00

2 4913 117649 1.72E-02 1.06E-02 1.98E+00 1.99E+00 1.68E+00

3 35937 912673 -2.58E-04 1.75E-03 1.99E+00 2.00E+00 1.74E+00

4 274625 7189057 -2.64E-04 7.14E-04 2.00E+00 2.00E+00 1.78E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 729 9.17E-02 - 4.91E-01 - 4.84E-01 -

2 4913 5.53E-02 7.96E-01 3.09E-01 7.28E-01 2.84E-01 8.40E-01

3 35937 2.97E-02 9.38E-01 1.74E-01 8.70E-01 1.54E-01 9.22E-01

4 274625 1.22E-02 1.31E+00 7.40E-02 1.26E+00 6.44E-02 1.29E+00
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg

1 97 2413 -9.81E-02 1.54E-01 2.08E+00 1.85E+00 1.34E+00

2 625 22585 -1.90E-01 4.01E-02 2.19E+00 1.96E+00 1.70E+00

3 4417 188641 -6.12E-02 1.01E-02 2.06E+00 1.99E+00 1.78E+00

4 33025 1529617 -1.70E-02 2.54E-03 2.02E+00 2.00E+00 1.79E+00

5 254977 12295153 -4.33E-03 6.36E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 97 3.25E-01 - 4.37E-01 - 3.97E-01 -

2 625 1.11E-01 1.73E+00 1.50E-01 1.72E+00 1.52E-01 1.54E+00

3 4417 3.01E-02 2.00E+00 5.73E-02 1.47E+00 6.09E-02 1.41E+00

4 33025 7.92E-03 1.99E+00 2.51E-02 1.23E+00 2.77E-02 1.18E+00

5 254977 2.03E-03 2.00E+00 1.18E-02 1.11E+00 1.32E-02 1.08E+00

� Test 2 Heterogeneous anisotropy, u.x; y; z/ D x3y2zC x sin.2�xz/ sin.2�xy/
sin.2�z/, min D �0:862; max D 1:048, Prism meshes

i nu nmat umin uemin umax uemax normg

1 3080 99634 -8.73E-01 -8.41E-01 1.10E+00 9.84E-01 1.53E+00

2 20160 710894 -8.25E-01 -8.39E-01 1.04E+00 1.01E+00 1.66E+00

3 63240 2301754 -8.52E-01 -8.59E-01 1.05E+00 1.03E+00 1.69E+00

4 144320 5340214 -8.53E-01 -8.57E-01 1.04E+00 1.03E+00 1.70E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 3080 1.66E-01 - 1.40E-01 - 1.38E-01 -

2 20160 4.26E-02 2.17E+00 3.71E-02 2.13E+00 3.64E-02 2.13E+00

3 63240 1.93E-02 2.08E+00 1.67E-02 2.10E+00 1.63E-02 2.10E+00

4 144320 1.10E-02 2.05E+00 9.44E-03 2.06E+00 9.25E-03 2.07E+00

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg

1 125 2197 -1.51E+00 -7.55E-01 1.68E+00 6.98E-01 1.53E+00

2 729 15625 -1.13E+00 -9.39E-01 1.21E+00 9.24E-01 2.99E+00

3 4913 117649 -1.08E+00 -9.85E-01 1.06E+00 9.82E-01 3.44E+00

4 35937 912673 -1.01E+00 -9.96E-01 1.01E+00 9.96E-01 3.56E+00
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 125 1.15E+00 - 6.19E-01 - 6.26E-01 -

2 729 2.56E-01 2.56E+00 2.02E-01 1.90E+00 1.81E-01 2.11E+00

3 4913 5.93E-02 2.30E+00 8.04E-02 1.45E+00 5.30E-02 1.93E+00

4 35937 1.49E-02 2.09E+00 3.45E-02 1.28E+00 1.74E-02 1.68E+00

� Test 4 Flow around a well, Well meshes

i nu nmat umin uemin umax uemax normg

1 1248 27072 3.89E-01 4.29E-01 5.32E+00 5.32E+00 1.68E+03

2 2800 65184 2.41E-01 2.50E-01 5.33E+00 5.33E+00 1.65E+03

3 5889 143079 1.55E-01 1.57E-01 5.33E+00 5.33E+00 1.64E+03

4 12582 314964 1.18E-01 1.20E-01 5.33E+00 5.33E+00 1.63E+03

5 25300 645210 9.03E-02 9.09E-02 5.34E+00 5.34E+00 1.63E+03

6 45668 1178094 7.27E-02 7.30E-02 5.34E+00 5.35E+00 1.63E+03

7 79084 2055600 5.69E-02 5.68E-02 5.36E+00 5.36E+00 1.63E+03

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 1248 6.47E-03 - 5.78E-02 - 5.35E-02 -

2 2800 2.71E-03 3.23E+00 2.54E-02 3.05E+00 2.34E-02 3.08E+00

3 5889 1.19E-03 3.31E+00 1.23E-02 2.93E+00 1.15E-02 2.85E+00

4 12582 8.42E-04 1.37E+00 7.59E-03 1.91E+00 7.31E-03 1.79E+00

5 25300 4.47E-04 2.72E+00 5.10E-03 1.71E+00 4.95E-03 1.68E+00

6 45668 2.02E-04 4.03E+00 3.55E-03 1.83E+00 3.47E-03 1.80E+00

7 79084 1.75E-04 7.84E-01 3.26E-03 4.76E-01 3.19E-03 4.56E-01

� Test 5 Discontinuous permeability, u.x; y; z/D˛i sin.2�x/ sin .2�y/ sin .2�z/,
min D 0; max D 1, Locally refined meshes

i nu nmat umin uemin umax uemax normg

1 60 1148 -7.39E+02 -1.00E+02 7.39E+02 1.00E+02 1.24E+01

2 305 6825 -7.82E+01 -3.54E+01 7.82E+01 3.54E+01 5.20E+01

3 1881 46025 -9.90E+01 -7.89E+01 9.90E+01 7.89E+01 8.60E+01

4 13073 335601 -9.99E+01 -9.43E+01 9.99E+01 9.43E+01 9.56E+01

5 97185 2557793 -1.00E+02 -9.86E+01 1.00E+02 9.86E+01 9.80E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 60 6.39E+00 - 1.60E+00 - 8.27E+00 -

2 305 1.19E+00 3.10E+00 5.97E-01 1.82E+00 6.01E-01 4.84E+00

3 1881 2.55E-01 2.55E+00 1.86E-01 1.92E+00 1.80E-01 1.99E+00

4 13073 6.10E-02 2.21E+00 5.96E-02 1.76E+00 4.78E-02 2.05E+00

5 97185 1.52E-02 2.08E+00 2.24E-02 1.46E+00 1.26E-02 2.00E+00
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3 Comments on the results

The results obtained using (3) (VAG) instead of (4) (VAGR) are systematically less
precise, except in the test5 case, where we obtained the following tables:

i nu nmat umin uemin umax uemax normg

1 60 1148 -7.65E+02 -1.00E+02 7.65E+02 1.00E+02 6.76E+01

2 305 6825 -7.73E+01 -3.54E+01 7.73E+01 3.54E+01 4.65E+01

3 1881 46025 -9.02E+01 -7.89E+01 9.02E+01 7.89E+01 8.19E+01

4 13073 335601 -9.72E+01 -9.43E+01 9.72E+01 9.43E+01 9.43E+01

5 97185 2557793 -9.93E+01 -9.86E+01 9.93E+01 9.86E+01 9.77E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 60 6.71E+00 - 7.32E+00 - 2.90E+01 -

2 305 9.53E-01 3.60E+00 6.91E-01 4.36E+00 6.76E-01 6.93E+00

3 1881 1.49E-01 3.05E+00 2.24E-01 1.85E+00 2.20E-01 1.85E+00

4 13073 3.27E-02 2.35E+00 6.17E-02 2.00E+00 5.95E-02 2.03E+00

5 97185 7.98E-03 2.11E+00 1.73E-02 1.90E+00 1.54E-02 2.02E+00

The results using (6) are very similar to those obtained using (4) (VAGR). For both
(3) (VAG) and (4) (VAGR), we have chosen the conjugate gradient solver of the
ISTL library with ILU(0) preconditioning with tolerance (or reduction factor) set to
10�10. The following observations have been made on the computing times, using
(3) (VAG) (we may expect that similar observations could be done with VAGR).

1. On the fourth Kershaw mesh and test 1, we obtain the following CPU times
using the conjugate gradient solver of the PETSC library: with ILU(2), 33s, with
ILU(1), 17s, with ILU(0), 10s, and with Jacobi, 11s, which shows that the ILU(0)
preconditioning seems the fastest one on this case. Note that this computing time
is depending on the unknown orderings. For the bench computations, we used
the recursive domain decomposition ordering, which is the most efficient for
direct solvers, and the respective computing times with PETSC CG+ILU(0) and
with ISTL CG+ILU(0) are 10.3 and 11.2 s. Using the reverse Cuthill - McKee
ordering, we respectively obtain 4.4 s and 15.3 s with PETSC CG+ILU(0) and
ISTL CG+ILU(0).

2. The computing times, for the conjugate gradient solver of the PETSC library with
ILU(1) preconditioning, in the test 1 case on tetrahedral meshes 2 to 5, have been
approximately equal to 0.01, 0.03, 0.04, 0.08, and 0.16 s, showing the possibility
to apply this method on much larger meshes.

Finally, we may not exclude that the systematic choice of computing the L2 error
with respect to the values in the control volumes instead of the vertex values, makes
all these results somewhat pessimistic.
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Benchmark 3D: The Compact Discontinuous
Galerkin 2 Scheme

Robert Klöfkorn

1 The Compact Discontinuous Galerkin 2 Method

In this paper we provide results for the 3d Benchmark on Anisotropic Diffusion
Problems. We consider the Compact Discontinuous Galerkin 2 (CDG2) method
first presented in [3]. In [3] a detailed stability analysis as well as a numerical
investigation showing that the CDG2 method outperforms other DG methods (e.g.
Bassi–Rebay 2, symmetric Interior Penalty, or the original Compact Discontinuous
Galerkin Method, see [1, 3] and references therein) in terms of L2–accuracy versus
computational time. Furthermore, the CDG2 method is a parameter free method in
the sense that all tests have been calculated with the same set of parameters without
specific test case tuning.

In this section we derive the flux and primal formulation of the CDG2 method
for a scalar diffusion equation in R

d , d D 1; 2; 3 of the form

� r � .Kru/ D f in ˝; (1)

u D g on @˝;

where˝ � R
d is a bounded polygonal area, K 2 L1.˝;Rd�d / a positive definite

diffusion matrix, and f 2 L2.˝/.
For a given partition Th D fEg of ˝ into polygons E, we look for an

approximation uh of u such that uh 2 V l
h and

V l
h D fv 2 L1.˝;Rl / W vjE 2 ŒPk.E/�l g for some l 2 N :
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In the following we use the abbreviations Vh D V 1
h and ˙h D V d

h . Let �i be the
family of all interior intersections of elements ECe ; E�e 2 Th with e D E�e \ ECe
and Hausdorff measure Hd�1.e/ > 0. Similarly, we define �D to be the family of
all intersections of elements E with @˝ . We denote � D �i [ �D . For e 2 �i ,
' 2 Vh, and � 2 ˙h we introduce operators ŒŒ'��e D 'jE�e nE�e C 'jECe n

E
C

e
, f'ge D

1
2
.'jE�e C 'jECe /, Œ� �e D �jE�e � nE�e C �jECe � nECe , and ff�gge D 1

2
.�jE�e C �jECe / and

for e � @˝ we set ŒŒ'��e D 'n, f'ge D ', Œ� �e D � � n, and ff�gge D � .
The DG method in flux formulation is derived by introducing an auxiliary

variable � such that

� r � .K�/ D f in ˝ and � D ru in ˝: (2)

Multiplying (2) by arbitrary ' 2 Vh and � 2 ˙h, respectively, integrating over E,
and summing up over allE 2 Th we arrive at the flux formulation of the DG method
on the whole domain˝ DSE2Th

E:

�
Z

˝

K�h � rh' D
Z

˝

'f �
X

e2�

Z

e

b�.uh/ � ŒŒ'��e 8 ' 2 Vh; (3a)

Z

˝

� � �h D �
Z

˝

rh � �uh C
X

e2�

Z

e

Œ��ebu.uh/ 8 � 2 ˙h; (3b)

where rhv 2 ˙h is a function whose restriction to each element E 2 Th is equal
to rv. Furthermore,bu.uh/ and b�.uh/ are numerical fluxes, where the second is an
approximation of the diffusive flux K� , over the boundaries ofE where we allow the
solution to be discontinuous. The method is completely described once the physical
parameters f and K are known and appropriate numerical fluxes have been chosen.
Here, we present the numerical fluxes for the CDG2 method. Other possible choices
can be found in [1, 3]. To describe the numerical fluxes we introduce two kinds of
lifting operators re W ŒL2.� /�d ! ˙h and le W L2.�i/! ˙h with

Z

˝

re.	/ � � D �
Z

e

	 � ff�gge;
Z

˝

le.�/ � � D �
Z

e

�Œ��e ; (4)

for all � 2 ˙h. We extend le for e � @˝ by setting le.�/ 	 0 on @˝ for all
� 2 L2.� /. For convenience we define Le.u/ WD re.ŒŒu��e/ C le.ˇe � ŒŒu��e/ on � .
The parameter ˇe (frequently denoted by C12 in the literature) is called the switch
function and is defined by ˇe D 1

2
nE�e , where E�e 2 fECe ; E�e g is the element

adjacent to e with the smaller volume. For this switch one can show that Le only
has support on either E�e or ECe (see [3] for details). The fluxes for the CDG2
method are

bu.u/ D fuge; b�.u/ D ffKrhuggeC�e
�ffKLe.u/ggeCˇeŒKLe.u/�e

��ıe.u/; (5)
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with ıe.u/ D �e.K/ŒŒu��e � 0, �e > 0, and the switch function ˇe as described
above. Using this switch the method is proven to be stable for any �e � NTh

=2 (cf.
[3]), where NTh

is the maximal number of intersections an element E 2 Th can
have.

Since the computation of �h might be expensive in terms of computation time
as well as memory consumptions one might be interested in deriving a primal
formulation of the form

B.uh; '/ D L.'/ 8 ' 2 Vh; (6)

where any solution uh 2 Vh of equation (6) also solves equation (3) and vice versa.
The derivation of the primal formulation is, for example, described in [1, 3]. The
basic idea is to express � through u via

� D �.u/ WD ruC
X

e2�
re.ŒŒu��e/C le.fu �bu.u/ge/ .5/D ruC

X

e2�
re.ŒŒu��e/:

Using the numerical fluxes and �.u/ (for details see [1, 3]) we arrive at the primal
form

B.uh; '/ WD
Z

˝

Kruh � r' C
X

e2�
�e

Z

˝

KLe.uh/ � Le.'/

�
X

e2�

Z

e

�ffKruhgge � ŒŒ'��e C ffKr'gge � ŒŒuh��e
�

(7a)

�
X

e2�

Z

e

ıe.uh/ � ŒŒ'��e 8 ' 2 Vh ;

L.'/ WD
Z

˝

f ' C
X

e2�D

Z

e

ne �
�
ıe.g/' �K

�
gr' C �eLe.g/'

�� 8 ' 2 Vh
(7b)

Note that by choosing �e D 0 8 e 2 � in (7a) and (7b) we obtain the well
known symmetric Interior Penalty Galerkin (SIPG) method. Finally, we need to
specify �e

�
K
�
. The proof of stability of the CDG2 method given in [3] shows that

for simple K one can choose �e
�
K
� D 0. However, in case K jumps across element

interfaces, this parameter can be used to increase the accuracy of the method. For
all numerical tests presented in this paper we used

�e
�
K
� WD

(
�
�ffKgge

�
=jej if e 2 �i and

ˇ
ˇ�.KCje / ��.K�je/

ˇ
ˇ > 0;

0 otherwise:

with �.K/ D .	max
K /2=	min

K , where 	max
K , 	min

K denote the maximal and minimal
eigenvalues of K, respectively.
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2 Numerical results

The implementation of the CDG2 scheme is based on the discretization framework
DUNE–FEM (see [4]) which is a module of DUNE [2]. Among other things DUNE

provides an interface for implementations of discretization grids.
In the following we present results for Test 1, 3, 4, and 5 of the benchmark. Since

there is no grid implementation of the DUNE grid interface that can handle Voronoi
cells, Test 1 with Voronoi meshes and Test 2 could not be computed.

We use three different versions of the CDG2 method differing in the choice of
the basis functions used to build Vh and ˙h. The first, and most commonly used, is
the CDG2–Pk, k being the polynomial order. On hexahedral meshes we also provide
results of two alternative schemes. First, there is the possibility to use tensor product
Legendre polynomials as basis functions which is denoted by CDG2–Qk. Another
possibility is to split each hexahedron into 6 tetrahedra resulting in a conforming
tetrahedral mesh, if possible. This scheme is denoted CDG2–Pk(tetra). This feature
is implemented in DUNE and could be used in this case without a complicated mesh
generation procedure. An advantage of this approach is that reference mappings will
be linear. A disadvantage is that the number of cells and unknowns are increased by
a factor of 6. We use this scheme only for the tests with complicated meshes, i.e.
Test 1 (Kershaw), Test 3, and Test 4.

Although basis functions up to order 8 are implemented we restrict ourself to
k D 1; 2. While k D 1 allows a direct comparison with Finite Volume schemes,
k D 2 shows the potential of a higher order approach. The integrals in (7a) and (7b)
have been calculated using quadratures of order 2k, 2k C 1 for element and face
integrals, respectively. If the reference mapping of the element is nonlinear then the
quadrature orders have been increased by 2. The calculation of the relativeL2–error
as well as the energy norm is straightforward in the DG context. For the calculation
of the H1–error the auxiliary variable �h given by equation (3b) has been used.
The quadrature order for evaluation of the errors is 2kC 4 (C2 in case of nonlinear
reference mappings). The convergence order of the schemes is kC1 in theL2–norm
and k in the H1–norm.

In the following computations we used �e D 2 for tetrahedral grids and �e D 3

for hexahedral grids, also in the non-conforming cases where �e would be larger
when using the theoretical values presented in Section 1.

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

Table 1,
CDG2–P1

i nu nmat umin uemin umax uemax normg

1 8012 150576 -1.54E-02 0.00E+00 2.017 1.989 1.783
2 15592 297376 -1.22E-02 0.00E+00 2.016 1.988 1.789
3 30844 593648 -7.41E-03 0.00E+00 2.005 1.993 1.792
4 61064 1184192 -3.12E-03 0.00E+00 1.999 1.997 1.794
5 121920 2379936 0.00E+00 0.00E+00 2.002 1.997 1.795
6 244208 4791872 -6.63E-04 0.00E+00 2.002 1.997 1.796
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Table 1,
CDG2–P2

i nu nmat umin uemin umax uemax normg

1 20030 941100 0.00E+00 0.00E+00 1.999 1.989 1.800
2 38980 1858600 0.00E+00 0.00E+00 1.999 1.988 1.799
3 77110 3710300 0.00E+00 0.00E+00 1.999 1.993 1.799
4 152660 7401200 0.00E+00 0.00E+00 1.999 1.997 1.798
5 304800 14874600 0.00E+00 0.00E+00 1.999 1.997 1.798
6 610520 29949200 0.00E+00 0.00E+00 1.999 1.997 1.798

Table 2,
CDG2–P1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 8012 9.01E-03 — 1.75E-01 — 1.94E-01 —
2 15592 5.78E-03 2.001 1.40E-01 0.999 1.56E-01 0.979
3 30844 3.68E-03 1.981 1.12E-01 0.968 1.24E-01 0.998
4 61064 2.38E-03 1.925 8.94E-02 1.004 9.87E-02 1.009
5 121920 1.52E-03 1.943 7.09E-02 1.005 7.86E-02 0.989
6 244208 9.45E-04 2.049 5.61E-02 1.007 6.20E-02 1.021

Table 2,
CDG2–P2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 20030 6.32E-04 — 1.77E-02 — 1.95E-02 —
2 38980 3.24E-04 3.012 1.13E-02 1.996 1.24E-02 2.039
3 77110 1.60E-04 3.095 6.94E-03 2.165 7.71E-03 2.097
4 152660 8.03E-05 3.035 4.40E-03 2.001 4.90E-03 1.994
5 304800 4.10E-05 2.913 2.80E-03 1.958 3.12E-03 1.961
6 610520 2.04E-05 3.022 1.75E-03 2.026 1.95E-03 2.023

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

Table 1,
CDG2–
P1(tetra)

i nu nmat umin uemin umax uemax normg

1 12288 233472 -2.81E-02 0.00E+00 2.012 1.951 1.745
2 98304 1916928 -7.22E-03 0.00E+00 1.996 1.998 1.747
3 786432 15532032 -1.17E-03 0.00E+00 2.000 1.999 1.762
4 6291456 125042688 -4.65E-04 0.00E+00 2.000 1.999 1.780

Table 1,
CDG2–
P2(tetra)

i nu nmat umin uemin umax uemax normg

1 30720 1459200 0.00E+00 0.00E+00 1.995 1.951 1.779
2 245760 11980800 0.00E+00 0.00E+00 1.998 1.998 1.790
3 1966080 97075200 0.00E+00 0.00E+00 1.999 1.999 1.797
4 15728640 781516800 0.00E+00 0.00E+00 1.999 1.999 1.798

Table 1,
CDG2–Q1

i nu nmat umin uemin umax uemax normg

1 4096 204800 -2.95E-02 0.00E+00 2.016 1.958 1.781
2 32768 1736704 -8.49E-03 0.00E+00 1.999 1.992 1.778
3 262144 14286848 -2.86E-04 0.00E+00 2.001 1.996 1.783
4 2097152 115867648 -5.37E-04 0.00E+00 2.000 1.999 1.790

Table 1,
CDG2–Q2

i nu nmat umin uemin umax uemax normg

1 13824 2332800 0.00E+00 0.00E+00 1.997 1.958 1.793
2 110592 19782144 0.00E+00 0.00E+00 1.999 1.992 1.795
3 884736 162736128 0.00E+00 0.00E+00 1.999 1.996 1.798

Table 2,
CDG2–
P1(tetra)

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 12288 8.29E-02 — 6.25E-01 — 6.12E-01 —
2 98304 5.47E-02 0.600 4.28E-01 0.547 4.04E-01 0.601
3 786432 3.07E-02 0.831 2.74E-01 0.643 2.48E-01 0.702
4 6291456 1.34E-02 1.194 1.56E-01 0.809 1.39E-01 0.841
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Table 2,
CDG2–
P2(tetra)

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 30720 3.72E-02 — 2.74E-01 — 2.53E-01 —
2 245760 9.29E-03 2.002 1.06E-01 1.365 1.02E-01 1.310
3 1966080 1.31E-03 2.831 3.12E-02 1.771 3.15E-02 1.695
4 15728640 1.07E-04 3.611 7.98E-03 1.966 8.32E-03 1.919

Table 2,
CDG2–Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 4096 7.09E-02 — 6.08E-01 — 5.88E-01 —
2 32768 4.77E-02 0.574 4.25E-01 0.516 3.97E-01 0.565
3 262144 2.61E-02 0.870 2.74E-01 0.636 2.57E-01 0.630
4 2097152 1.09E-02 1.262 1.56E-01 0.812 1.50E-01 0.774

Table 2,
CDG2–Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 13824 3.06E-02 — 2.44E-01 — 2.15E-01 —
2 110592 7.57E-03 2.012 1.03E-01 1.240 9.73E-02 1.141
3 884736 1.04E-03 2.865 3.22E-02 1.682 3.18E-02 1.615

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

Table 1,
CDG2–P1

i nu nmat umin uemin umax uemax normg

1 144 3648 0.00E+00 0.00E+00 1.901 1.846 1.538
2 1152 35328 -8.80E-03 0.00E+00 2.006 1.959 1.698
3 9216 307200 -6.73E-03 0.00E+00 2.005 1.989 1.765
4 73728 2555904 -1.86E-03 0.00E+00 2.001 1.997 1.788
5 589824 20840448 -5.50E-04 0.00E+00 2.000 1.999 1.795

Table 1,
CDG2–P2

i nu nmat umin uemin umax uemax normg

1 360 22800 -3.34E-02 0.00E+00 2.050 1.846 1.752
2 2880 220800 -7.34E-04 0.00E+00 2.000 1.959 1.794
3 23040 1920000 0.00E+00 0.00E+00 1.999 1.989 1.798
4 184320 15974400 0.00E+00 0.00E+00 1.999 1.997 1.798
5 1474560 130252800 0.00E+00 0.00E+00 1.999 1.999 1.798

Table 1,
CDG2–Q1

i nu nmat umin uemin umax uemax normg

1 288 14592 -7.94E-02 0.00E+00 2.081 1.846 1.581
2 2304 141312 -1.77E-02 0.00E+00 2.017 1.959 1.744
3 18432 1228800 -4.59E-03 0.00E+00 2.004 1.989 1.785
4 147456 10223616 -1.27E-03 0.00E+00 2.001 1.997 1.795
5 1179648 83361792 -3.06E-04 0.00E+00 2.000 1.999 1.797

Table 1,
CDG2–Q2

i nu nmat umin uemin umax uemax normg

1 972 166212 0.00E+00 0.00E+00 1.998 1.846 1.807
2 7776 1609632 0.00E+00 0.00E+00 1.999 1.959 1.800
3 62208 13996800 0.00E+00 0.00E+00 1.999 1.989 1.798
4 497664 116453376 0.00E+00 0.00E+00 1.999 1.997 1.798

Table 2,
CDG2–P1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 144 1.08E-01 — 5.66E-01 — 5.70E-01 —
2 1152 3.70E-02 1.549 3.32E-01 0.770 3.46E-01 0.720
3 9216 1.12E-02 1.719 1.76E-01 0.917 1.79E-01 0.946
4 73728 3.09E-03 1.860 8.95E-02 0.974 9.05E-02 0.987
5 589824 8.01E-04 1.950 4.51E-02 0.990 4.54E-02 0.995
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Table 2,
CDG2–P2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 360 3.93E-02 — 2.88E-01 — 3.07E-01 —
2 2880 7.29E-03 2.432 8.86E-02 1.699 8.56E-02 1.845
3 23040 8.62E-04 3.080 2.24E-02 1.982 2.18E-02 1.974
4 184320 1.05E-04 3.033 5.59E-03 2.004 5.46E-03 1.997
5 1474560 1.31E-05 3.007 1.40E-03 2.001 1.37E-03 1.999

Table 2,
CDG2–Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 288 6.31E-02 — 3.81E-01 — 3.77E-01 —
2 2304 1.83E-02 1.789 1.96E-01 0.960 1.94E-01 0.959
3 18432 4.63E-03 1.980 9.86E-02 0.989 9.82E-02 0.983
4 147456 1.16E-03 1.998 4.96E-02 0.993 4.94E-02 0.991
5 1179648 2.89E-04 2.001 2.49E-02 0.996 2.48E-02 0.995

Table 2,
CDG2–Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 972 7.05E-03 — 7.17E-02 — 7.03E-02 —
2 7776 1.02E-03 2.782 1.87E-02 1.936 1.84E-02 1.935
3 62208 1.36E-04 2.910 4.75E-03 1.981 4.68E-03 1.974
4 497664 1.95E-05 2.803 1.19E-03 1.993 1.18E-03 1.989

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

Table 1,
CDG2–
P1(tetra)

i nu nmat umin uemin umax uemax normg

1 1536 27648 -1.261 -7.43E-01 1.167 8.36E-01 2.757
2 12288 233472 -1.009 -9.35E-01 1.033 9.33E-01 3.198
3 98304 1916928 -1.016 -9.82E-01 1.017 9.84E-01 3.484
4 786432 15532032 -1.008 -9.95E-01 1.002 9.96E-01 3.568

Table 1,
CDG2–
P2(tetra)

i nu nmat umin uemin umax uemax normg

1 3840 172800 -1.238 -7.43E-01 1.295 8.36E-01 3.637
2 30720 1459200 -1.042 -9.35E-01 1.028 9.33E-01 3.577
3 245760 11980800 -1.000 -9.82E-01 1.000 9.84E-01 3.598
4 1966080 97075200 -1.000 -9.95E-01 1.000 9.96E-01 3.596

Table 1,
CDG2–Q1

i nu nmat umin uemin umax uemax normg

1 512 22528 -1.143 -7.59E-01 1.244 6.91E-01 3.016
2 4096 204800 -1.076 -9.39E-01 1.074 9.23E-01 3.432
3 32768 1736704 -1.026 -9.85E-01 1.021 9.82E-01 3.564
4 262144 14286848 -1.009 -9.96E-01 1.000 9.96E-01 3.587

Table 1,
CDG2–Q2

i nu nmat umin uemin umax uemax normg

1 1728 256608 -1.015 -7.59E-01 1.034 6.91E-01 3.635
2 13824 2332800 -1.002 -9.39E-01 9.95E-01 9.23E-01 3.568
3 110592 19782144 -1.000 -9.85E-01 9.99E-01 9.82E-01 3.596
4 884736 162736128 -1.000 -9.96E-01 1.000 9.96E-01 3.595

Table 2,
CDG2–
P1(tetra)

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 1536 3.49E-01 — 5.82E-01 — 5.80E-01 —
2 12288 1.17E-01 1.572 3.43E-01 0.764 3.07E-01 0.920
3 98304 3.48E-02 1.751 2.00E-01 0.777 1.60E-01 0.935
4 786432 9.59E-03 1.861 1.08E-01 0.892 8.12E-02 0.981
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Table 2,
CDG2–
P2(tetra)

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 3840 1.05E-01 — 3.08E-01 — 2.21E-01 —
2 30720 1.66E-02 2.659 9.93E-02 1.632 5.82E-02 1.925
3 245760 2.48E-03 2.739 2.80E-02 1.829 1.54E-02 1.917
4 1966080 3.06E-04 3.021 6.50E-03 2.106 3.90E-03 1.980

Table 2,
CDG2–Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 512 3.05E-01 — 4.98E-01 — 5.00E-01 —
2 4096 8.38E-02 1.862 2.58E-01 0.947 2.53E-01 0.982
3 32768 2.17E-02 1.952 1.30E-01 0.988 1.25E-01 1.015
4 262144 5.86E-03 1.885 6.72E-02 0.954 6.31E-02 0.988

Table 2,
CDG2–Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 1728 4.41E-02 — 1.25E-01 — 1.14E-01 —
2 13824 6.02E-03 2.875 2.97E-02 2.067 2.82E-02 2.012
3 110592 8.07E-04 2.897 7.58E-03 1.971 7.16E-03 1.980
4 884736 1.03E-04 2.968 1.91E-03 1.993 1.78E-03 2.009

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

Table 1,
CDG2–
P1(tetra)

i nu nmat umin uemin umax uemax normg

1 21360 369664 0.00E+00 0.00E+00 5.406 5.358 1633.939
2 53568 941888 0.00E+00 0.00E+00 5.408 5.366 1628.212
3 120384 2168128 0.00E+00 0.00E+00 5.408 5.368 1626.468
4 269280 4963456 0.00E+00 0.00E+00 5.408 5.371 1626.554
5 557040 10433536 0.00E+00 0.00E+00 5.409 5.376 1625.759
6 1023192 19371936 0.00E+00 0.00E+00 5.409 5.379 1624.751
7 1792296 34218592 0.00E+00 0.00E+00 5.410 5.387 1624.488

Table 1,
CDG2–
P2(tetra)

i nu nmat umin uemin umax uemax normg

1 53400 2310400 -5.92E-03 0.00E+00 5.414 5.358 1623.061
2 133920 5886800 -1.61E-03 0.00E+00 5.414 5.366 1622.951
3 300960 13550800 -1.42E-04 0.00E+00 5.414 5.368 1623.127
4 673200 31021600 0.00E+00 0.00E+00 5.414 5.371 1623.224
5 1392600 65209600 0.00E+00 0.00E+00 5.414 5.376 1623.329
6 2557980 121074600 0.00E+00 0.00E+00 5.414 5.379 1623.423
7 4480740 213866200 0.00E+00 0.00E+00 5.414 5.387 1623.472

Table 1,
CDG2–Q1

i nu nmat umin uemin umax uemax normg

1 7120 356736 0.00E+00 0.00E+00 5.406 5.316 1685.638
2 17856 931328 0.00E+00 0.00E+00 5.407 5.328 1653.938
3 40128 2139904 0.00E+00 0.00E+00 5.407 5.328 1639.060
4 89760 4857216 0.00E+00 0.00E+00 5.407 5.330 1633.474
5 185680 10136320 0.00E+00 0.00E+00 5.408 5.339 1629.453
6 341064 18717760 0.00E+00 0.00E+00 5.409 5.345 1627.258
7 597432 32900416 0.00E+00 0.00E+00 5.410 5.360 1626.055

Table 1,
CDG2–Q2

i nu nmat umin uemin umax uemax normg

1 24030 4063446 0.00E+00 0.00E+00 5.408 5.316 1623.988
2 60264 10608408 -5.25E-04 0.00E+00 5.409 5.328 1623.197
3 135432 24374844 0.00E+00 0.00E+00 5.409 5.328 1623.222
4 302940 55326726 0.00E+00 0.00E+00 5.409 5.330 1623.226
5 626670 115459020 0.00E+00 0.00E+00 5.410 5.339 1623.337
6 1151091 213206985 0.00E+00 0.00E+00 5.410 5.345 1623.423
7 2016333 374756301 0.00E+00 0.00E+00 5.411 5.360 1623.446
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Table 2,
CDG2–
P1(tetra)

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 21360 1.83E-03 — 1.69E-01 — 2.07E-01 —
2 53568 1.03E-03 1.878 1.13E-01 1.316 1.41E-01 1.259
3 120384 6.75E-04 1.570 7.87E-02 1.328 9.92E-02 1.302
4 269280 5.63E-04 0.675 6.12E-02 0.938 7.65E-02 0.968
5 557040 4.16E-04 1.253 4.83E-02 0.980 6.02E-02 0.991
6 1023192 2.70E-04 2.119 3.93E-02 1.015 4.91E-02 1.005
7 1792296 2.24E-04 1.014 3.34E-02 0.862 4.15E-02 0.905

Table 2,
CDG2–
P2(tetra)

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 53400 2.46E-04 — 3.53E-02 — 4.46E-02 —
2 133920 9.83E-05 2.993 1.60E-02 2.569 2.06E-02 2.530
3 300960 4.37E-05 3.005 7.94E-03 2.607 1.02E-02 2.606
4 673200 2.91E-05 1.517 4.68E-03 1.973 5.95E-03 1.997
5 1392600 1.72E-05 2.162 2.92E-03 1.944 3.69E-03 1.978
6 2557980 9.30E-06 3.037 1.92E-03 2.075 2.43E-03 2.050
7 4480740 6.79E-06 1.684 1.42E-03 1.598 1.77E-03 1.710

Table 2,
CDG2–Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 7120 6.22E-03 — 2.47E-01 — 2.46E-01 —
2 17856 2.92E-03 2.461 1.70E-01 1.232 1.69E-01 1.220
3 40128 1.45E-03 2.593 1.19E-01 1.312 1.19E-01 1.304
4 89760 9.46E-04 1.595 9.08E-02 1.008 9.09E-02 1.006
5 185680 5.92E-04 1.937 7.07E-02 1.032 7.08E-02 1.030
6 341064 3.63E-04 2.419 5.71E-02 1.055 5.72E-02 1.056
7 597432 2.68E-04 1.610 4.77E-02 0.962 4.78E-02 0.960

Table 2,
CDG2–Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 24030 3.48E-04 — 3.93E-02 — 3.93E-02 —
2 60264 1.07E-04 3.843 1.61E-02 2.912 1.61E-02 2.910
3 135432 4.55E-05 3.175 7.48E-03 2.838 7.49E-03 2.834
4 302940 3.03E-05 1.511 4.40E-03 1.978 4.40E-03 1.977
5 626670 1.70E-05 2.383 2.64E-03 2.101 2.65E-03 2.098
6 1151091 8.46E-06 3.451 1.69E-03 2.194 1.70E-03 2.194
7 2016333 5.65E-06 2.159 1.17E-03 1.968 1.18E-03 1.965

� Test 5 Discontinuous permeability,
u.x; y; z/ D ai sin.2�x/ sin .2�y/ sin .2�z/, min D �100; max D 100, Locally
refined meshes

Table 1,
CDG2–P1

i nu nmat umin uemin umax uemax normg

1 88 1984 -8.502 -100.000 8.502 100.000 10.584
2 704 17792 -52.177 -35.355 52.177 35.355 46.202
3 5632 150016 -83.767 -78.858 83.767 78.858 68.596
4 45056 1230848 -95.672 -94.345 95.672 94.345 80.340
5 360448 9969664 -98.927 -98.562 98.927 98.562 88.092

Table 1,
CDG2–P2

i nu nmat umin uemin umax uemax normg

1 220 12400 -18.447 -100.000 18.447 100.000 48.277
2 1760 111200 -99.735 -35.355 99.735 35.355 92.615
3 14080 937600 -102.184 -78.858 102.184 78.858 99.167
4 112640 7692800 -100.544 -94.345 100.544 94.345 99.221
5 901120 62310400 -100.098 -98.562 100.098 98.562 99.100
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Table 1,
CDG2–Q1

i nu nmat umin uemin umax uemax normg

1 176 7936 -12.747 -100.000 12.747 100.000 8.513
2 1408 71168 -118.320 -35.355 118.320 35.355 79.760
3 11264 600064 -103.899 -78.858 103.899 78.858 94.412
4 90112 4923392 -100.970 -94.345 100.970 94.345 97.877
5 720896 39878656 -100.241 -98.562 100.241 98.562 98.740

Table 1,
CDG2–Q2

i nu nmat umin uemin umax uemax normg

1 594 90396 -94.815 -100.000 94.815 100.000 106.736
2 4752 810648 -100.376 -35.355 100.376 35.355 100.759
3 38016 6835104 -99.836 -78.858 99.836 78.858 99.387
4 304128 56080512 -99.951 -94.345 99.951 94.345 99.084
5 2433024 454242816 -99.987 -98.562 99.987 98.562 99.024

Table 2,
CDG2–P1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 88 9.26E-01 — 9.86E-01 — 1.003 —
2 704 6.95E-01 0.412 8.49E-01 0.216 7.90E-01 0.345
3 5632 2.86E-01 1.283 4.95E-01 0.777 4.30E-01 0.879
4 45056 9.88E-02 1.532 2.84E-01 0.802 2.08E-01 1.045
5 360448 2.99E-02 1.724 1.39E-01 1.034 1.01E-01 1.042

Table 2,
CDG2–P2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 220 7.70E-01 — 8.98E-01 — 7.83E-01 —
2 1760 3.18E-01 1.276 5.07E-01 0.825 4.17E-01 0.909
3 14080 5.14E-02 2.629 1.77E-01 1.519 1.09E-01 1.939
4 112640 5.63E-03 3.191 4.87E-02 1.862 2.56E-02 2.086
5 901120 7.55E-04 2.898 1.57E-02 1.633 6.27E-03 2.031

Table 2,
CDG2–Q1

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 176 9.16E-01 — 1.001 — 1.005 —
2 1408 2.36E-01 1.960 4.57E-01 1.133 4.54E-01 1.146
3 11264 6.32E-02 1.897 2.27E-01 1.007 2.27E-01 1.001
4 90112 1.61E-02 1.970 1.13E-01 1.003 1.13E-01 1.001
5 720896 4.06E-03 1.992 5.67E-02 1.001 5.67E-02 1.000

Table 2,
CDG2–Q2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 594 6.22E-02 — 1.51E-01 — 1.42E-01 —
2 4752 2.89E-02 1.107 9.46E-02 0.670 9.23E-02 0.626
3 38016 3.80E-03 2.925 2.36E-02 2.002 2.32E-02 1.993
4 304128 4.92E-04 2.949 5.83E-03 2.019 5.78E-03 2.002
5 2433024 6.39E-05 2.945 1.45E-03 2.011 1.44E-03 2.002

3 Comments

For all tests the solver reduction tolerance was taken to be 10�10. Test 1 (except
Kershaw) and Test 5 were uncritical for all meshes. The solution was a matter of
minutes rather than hours. Test 3 was the one that was most difficult to solve. Here,
solving took a long time and the only combination of solver and preconditioning
that produced results was GMRES + JACOBI. For all other tests practically any
combination of solver and preconditioning from the solver–bench package produced
good results. The scheme CDG2–Pk(tetra) seems to be a good alternative to the
scheme CDG2–Qk, since the reference mappings are linear and quadratures of lower
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order can be used. Also, the solution of the resulting linear system seemed to be
much easier (hours rather than days). This is payed by a factor of 6 more elements
and, in case of k D 2 by a factor of 3 more DoFs. For CDG2–Q2 we had to skip the
last mesh of Test 1 (checkerboard) due to memory limitations.

Using CDG2–Pk for Test 3 and 4 we were not able to produce satisfying results.
The next table shows the L2–projection of the exact solution of Test 3 onto Vh
using the random mesh series:

Table 2,
CDG2–P2

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 640 1.39E-01 — 3.09E-01 — 3.85E-01 —
2 5120 2.31E-02 2.586 9.51E-02 1.699 1.28E-01 1.591
3 40960 6.30E-03 1.875 4.65E-02 1.033 6.45E-02 0.987
4 327680 2.76E-03 1.189 3.99E-02 0.222 5.26E-02 0.294

As we can see, the space Pk seems not to be suitable to project the solution properly
onto the discrete spaces. The convergence does not show the expected ratiol2
of k C 1.

To conclude, with the CDG2 scheme all test cases (except Test 2, see Section 2
for explanation) could have been computed. The CDG2 provides a higher order
alternative to solve anisotropic diffusion problems in 3d without specific parameter
tuning required by the user. Finally, I would like to thank Peter Bastian for fruitful
discussions about the test cases and for providing the test case implementation
which saved a lot of time.
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Benchmark 3D: Mimetic Finite Difference
Method for Generalized Polyhedral Meshes

Konstantin Lipnikov and Gianmarco Manzini

1 Presentation of the scheme

Let ˝ be a subset of <3 with a Lipschitz continuous boundary. We consider the
mixed (velocity-pressure) formulation of the diffusion problem,

u D �Krp and div u D b in ˝; (1)

subject to Dirichlet boundary conditions on @˝ . Here K is the diffusion tensor and
b is the source function.

Let ˝h be a conformal partition of ˝ into generalized polyhedral elements E.
We assume that each element E is shape-regular and satisfies assumptions (M2)–
(M3) formulated in [1]. Let f denote a face of a generalized polyhedron E and
jf j be its area. Furthermore, let nf .x/ be a unit normal vector to face f at point x.
Direction of nf .x/ is fixed once and for all. Let nE;f .x/ be a unit normal vector
external to E , so that nE;f .x/ � nf .x/ D ˙1. We introduce the average normal to
face f as

enf D 1

jf j
Z

f

nf .x/ dA:

Maximal deviation of the average normalenf from a pointwise normal characterizes
deviation of face f from a planar face. More precisely, we say that a face f is
moderately curved if
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J. Fořt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 101, © Springer-Verlag Berlin Heidelberg 2011

1035

lipnikov@lanl.gov
marco.manzini@imati.cnr.it


1036 K. Lipnikov and G. Manzini

max
x2f knf .x/�enf k � ��jf j

1=2;

where �� is a positive constant independent of the mesh. Otherwise, we say that the
face is strongly curved. For example, for a polyhedral mesh with planar faces, all
faces are classified as moderately curved.

Integrating the second equation in (1) over element E and using the divergence
theorem, we get

X

f 2@E
uhE;f jf j D

Z

E

b dV; uhE;f D
1

jf j
Z

f

u � nE;f .x/ dA: (2)

Thus, it is natural to take average normal components of the velocity u on mesh
faces as discrete unknowns. For a moderately curved face, this is the sole unknown
representing the velocity u on this face. If face f is shared by two elements E and
E 0, we impose the following continuity condition

uhE;f D �uhE0 ;f : (3)

For a strongly curved face, regardless of the number of its vertices, we introduce
two additional velocity degrees of freedom as

uhE;f;i D
1

jf j
Z

f

u � af;i dA; i D 2; 3;

where af;i are two arbitrary chosen unit vectors orthogonal toenf (see Fig. 1).
If this face is shared by two elements E and E 0, we impose the following

continuity conditions
uhE;f;i D uhE0;f;i ; i D 2; 3: (4)

For problems with discontinuous coefficients, it is more natural to define additional
discrete unknowns as tangential components of the gradient rp, rather than

ñ f

a f;2
a f;1

Fig. 1 Local coordinate system asso-
ciated with a curved face

velocity u. Fortunately, in practical applica-
tions, material interfaces are composed of mod-
erately curved faces; therefore, we did not
investigate other definitions of degrees of free-
dom.

Taken into account continuity conditions,
the total number of discrete velocity unknowns
is equal to the number of moderately curved
faces plus three times the number of strongly
curved faces. The threshold �� affects the num-
ber of strongly curved faces. Smaller value of
�� results in a more accurate method at a cost
of solving larger system of equations.
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The scalar (pressure) variable p is represented by its average values over
elements E and faces f . For a moderately curved face f , we introduce

pE D 1

jEj
Z

E

p dV and pE;f D 1

jf j
Z

f

.nf .x/ �enf /p dA; (5)

where jEj denote the volume of elementE. For a strongly curved face, we need two
additional degrees of freedom to match the number of velocity unknowns:

pE;f;i D 1

jf j
Z

f

.nf .x/ � af;i /p dA; i D 2; 3: (6)

The total number of discrete pressure unknowns is equal to the number of elements
plus the number of moderately curved faces plus three times the number of strongly
curved faces.

Let us consider an elementE withm faces f1; : : : ; fm. Without loss of generality,
we assume that only face f1 is classified as strongly curved and the other faces
are planar, as shown in Fig. 1. We assume that there exists a matrix WE and the
following linear relations between the discrete unknowns:

2

6
6
6
6
6
6
6
6
4

uE;f1
uE;f1;2
uE;f1;3
uE;f2
:::

uE;fm

3

7
7
7
7
7
7
7
7
5

DWE

2

6
6
6
6
6
6
6
6
4

jf1j .pE;f1 � pE/
jf1jpE;f1;2
jf1jpE;f1;3

jf2j .pE;f2 � pE/
:::

jfmj .pE;fm � pE/

3

7
7
7
7
7
7
7
7
5

: (7)

The key of the MFD method is in construction of a proper .m C 2/ � .m C 2/

matrix WE . Let KE be a constant tensor approximating tensor K in element E. In
practice, we take KE D K.xE/, where xE is the center of mass of E. We will define
the matrix WE such that equation (7) is exact for any linear function p and the
corresponding constant vector u.

It is trivial for p D 1 with u D .0; 0; 0/T , since the vectors on the left and the
right-hand sides are zero vectors. For p.x; y; z/ D x with u D �KE .1; 0; 0/

T ,
p.x; y; z/ D y with u D �KE .0; 1; 0/

T , and p.x; y; z/ D z with u D
�KE .0; 0; 1/

T , we obtain three matrix equations:

NE;x DWE RE;x; NE;y DWE RE;y and NE;z DWE RE;z: (8)

The left and right hand-side vectors can be calculated using only geometric data for
faces of E which results in relatively simple calculations for an arbitrary-shaped
element.
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We define .m C 2/ � 3 matrices N D ŒNE;x INE;y INE;z� and R D
ŒRE;x IRE;y IRE;z�. It has been proved in [2] that a particular solution to the matrix
equations (8) is

WE;0 D 1

jEjN K
�1
E N

T :

The rank of this matrix is 3 and therefore less than m C 2. To build a positive
definite .m C 2/ � .m C 2/ matrix WE , we have to add a matrix WE;1 such that
WE;1R D 0. In practice, we take

WE;1 D aE
�
I� R

�
R
T
R
��1

R
T
�
; aE D trace.KE/

jEj :

It has been proved in [1] that the matrix WE given by

WE DWE;0 CWE;1 (9)

is positive definite. Moreover, its condition number depends only on the anisotropy
of tensor KE and the shape-regularity of element E.

The mimetic finite difference method is defined by (2), (3), (7), (9), and boundary
conditions. The Dirichlet boundary conditions are incorporated in a straightforward
manner by prescribing values of integrals in (5) and (6) to corresponding pressure
unknowns.

Substituting (7) into (2), (3) and (4), we may easily get an algebraic problem
with a sparse symmetric and positive definite matrix. In practice, we also eliminate
the cell-based pressure unknowns pE . The size of the final problem is equal to the
number of moderately curved faces plus 3 times the number of strongly curved
faces. This number is reported in tables in the next section.

To get a method that is exact for linear solutions, we have to classify all non-
planar faces as strongly curved.

Under assumptions of the mesh shape regularity and the solution regularity, the
second-order convergence estimate for the pressure p in a discrete norm and the
first-order convergence estimate for the velocity u have been proved in [1].

2 Numerical results

The discrete energy norm is calculated using the inner product of the mass
matrices W

�1
E with vectors of discrete velocities uhE;f . Due to the lack of accurate

quadrature rules for generalized polyhedra, we used a mid-point quadrature rule.
The quadrature points were located at the mass centers of elements. In practice, an
error in average pressure values is of greater interest to engineers than an accurate
estimate of the exact L2 error. Instead of the L1 norm of a discrete gradient,
we provide a discrete energy norm, norme. Calculation of the discrete gradient is
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feasible via a post-processing of fluxes; however, such a capability was not available
at the moment of writing this paper.

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg norme

1 4308 28344 2.29E-02 2.03E-02 1.987 1.989 — 1.925

2 8248 55024 2.33E-03 6.84E-03 1.994 1.989 — 1.924

3 16148 108680 7.67E-03 9.13E-03 1.995 1.994 — 1.924

4 31691 214883 3.17E-03 5.52E-03 1.997 1.997 — 1.924

5 62787 428547 2.49E-03 1.49E-03 1.996 1.997 — 1.924

6 124988 857612 1.66E-03 1.83E-03 1.998 1.997 — 1.924

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 4308 5.37E-03 — — 1.22E-01
2 8248 3.67E-03 1.758 — — 9.95E-02 0.942
3 16148 2.26E-03 2.165 — — 7.48E-02 1.274
4 31691 1.53E-03 1.736 — — 6.02E-02 0.966
5 62787 9.55E-04 2.068 — — 4.89E-02 0.912
6 124988 5.96E-04 2.054 — — 3.81E-02 1.088

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg norme

1 172 2964 -1.36E-02 8.51E-02 1.936 1.870 — 1.906

2 402 7788 -9.00E-02 1.43E-01 1.911 1.854 — 2.128

3 811 17205 1.92E-02 3.85E-02 2.039 1.925 — 2.058

4 1452 32446 -2.92E-02 1.74E-02 1.975 1.914 — 2.046

5 2376 57180 -3.24E-02 2.84E-02 2.055 1.979 — 2.026

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 172 9.11E-02 — — 6.96E-01
2 402 1.33E-01 -1.337 — — 6.44E-01 0.274
3 811 8.59E-02 1.869 — — 4.46E-01 1.570
4 1452 6.77E-02 1.226 — — 3.52E-01 1.219
5 2376 5.75E-02 0.995 — — 2.92E-01 1.138
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� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg norme

1 1728 17088 -2.52E-02 3.03E-02 1.973 1.958 — 1.920

2 13056 135936 -5.20E-03 1.06E-02 1.998 1.993 — 1.925

3 101376 1084416 -1.48E-03 1.75E-03 1.998 1.997 — 1.925

4 798720 8663040 2.71E-04 7.14E-04 1.999 1.999 — 1.924

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1728 6.67E-02 — — 1.45E-00
2 13056 3.35E-02 1.022 — — 6.05E-01 1.297
3 101376 1.09E-02 1.643 — — 1.71E-01 1.850
4 798720 2.79E-03 1.981 — — 4.42E-02 1.966

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg norme

1 93 921 2.91E-01 5.17E-01 1.880 1.846 — 2.193

2 636 6588 1.42E-01 1.54E-01 1.968 1.960 — 1.961

3 4656 49584 3.45E-02 4.01E-02 1.992 1.990 — 1.932

4 35520 384192 8.63E-03 1.01E-02 1.998 1.997 — 1.926

5 277248 3023616 2.15E-03 2.54E-03 1.999 1.999 — 1.924

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 93 1.08E-01 — — 4.34E-01
2 636 2.26E-02 2.441 — — 1.13E-01 2.100
3 4656 5.25E-03 2.200 — — 3.49E-02 1.771
4 35520 1.23E-03 2.143 — — 1.14E-02 1.652
5 277248 2.89E-04 2.115 — — 3.83E-03 1.593

� Test 2 Heterogeneous anisotropy, u.x; y; z/ D x3y2zC x sin.2�xz/ sin.2�xy/
sin.2�z/, min D �0:862; max D 1:0487, Prism meshes

i nu nmat umin uemin umax uemax normg norme
1 5331 72291 -0.873 -0.862 0.832 0.831 — 2.794
2 37261 529581 -0.861 -0.861 0.925 0.925 — 2.790
3 119791 1731871 -0.883 -0.883 0.951 0.951 — 2.790
4 276921 4039161 -0.890 -0.890 0.963 0.963 — 2.790
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 5331 4.07E-02 — — 9.23E-02
2 37261 1.10E-02 2.019 — — 2.95E-02 1.760
3 119791 5.02E-03 2.015 — — 1.49E-02 1.755
4 276921 2.85E-03 2.027 — — 9.24E-03 1.711

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg norme
1 240 2160 -1.268 -0.756 1.430 0.712 —
2 1728 17088 -1.184 -0.939 1.397 0.926 —
3 13056 135936 -1.135 -0.986 1.111 0.982 —
4 107118 1223876 -1.027 -0.996 1.021 0.996 —

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 240 9.26E-01 — — 1.53E+00
2 1728 3.34E-01 1.550 — — 8.63E-01 0.870
3 13056 1.06E-01 1.702 — — 4.84E-01 0.858
4 107118 3.14E-02 1.734 — — 2.53E-01 0.925

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg norme

1 3004 29782 5.37E-01 4.57E-01 5.317 5.317 — 2.08E+01

2 7232 74192 2.90E-01 2.62E-01 5.329 5.329 — 2.16E+01

3 15886 166366 1.74E-01 1.62E-01 5.329 5.329 — 2.18E+01

4 34983 371583 1.29E-01 1.23E-01 5.330 5.330 — 2.19E+01

5 71683 768167 9.66E-02 9.28E-02 5.339 5.339 — 2.20E+01

6 130894 1410160 7.67E-02 7.42E-02 5.345 5.345 — 2.20E+01

7 228463 2471077 5.91E-02 5.75E-02 5.361 5.361 — 2.20E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 3004 1.12E-02 — — 1.40E-01
2 7232 4.30E-03 3.269 — — 5.61E-02 3.123
3 15886 1.90E-03 3.114 — — 2.76E-02 2.704
4 34983 1.04E-03 2.290 — — 1.62E-02 2.025
5 71683 6.14E-04 2.204 — — 1.01E-02 1.976
6 130894 4.04E-04 2.086 — — 6.74E-03 2.015
7 228463 2.99E-04 1.621 — — 4.95E-03 1.663
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� Test 5 Discontinuous permeability, u.x; y; z/Dai sin.2�x/ sin .2�y/ sin .2�z/,
min D �100; max D 100, Locally refined meshes

i nu nmat umin uemin umax uemax normg norme

1 93 921 -1.66E+02 -1.00E+02 1.66E+02 1.00E+02 — 1.43E+03

2 636 6588 -5.43E+01 -3.54E+01 5.43E+01 3.54E+01 — 4.81E+02

3 4656 49584 -9.06E+01 -7.89E+01 9.06E+01 7.89E+01 — 4.14E+02

4 35520 384192 -9.79E+01 -9.44E+01 9.79E+01 9.44E+01 — 3.93E+02

5 277248 3023616 -9.95E+01 -9.86E+01 9.95E+01 9.86E+01 — 3.87E+02

6 2190336 23989248 -9.99E+01 -9.96E+01 9.99E+01 9.96E+01 — 3.86E+02

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 93 1.94E+00 — — 3.12E+00

2 636 5.34E-01 2.013 — — 3.07E-01 3.618

3 4656 1.48E-01 1.934 — — 7.56E-02 2.112

4 35520 3.78E-02 2.015 — — 1.89E-02 2.047

5 277248 9.50E-03 2.016 — — 4.79E-03 2.004

6 2190336 2.38E-03 2.009 — — 1.23E-03 1.973

3 Comments

All problems have been solved with a preconditioned conjugate gradient method
applied to a system for face-based pressure unknowns. We used the diagonal of the
stiffness matrix as the preconditioner. Relative reduction of the residual by factor
10�12 required 1382 iterations for the last Kershaw mesh. The other tests require
less than 679 iterations.

The method is superconvergent on all smooth meshes for both primary variables.
We used �� D 10 in Test 3 and �� D 0:1 in Test 4. Our experience shows that the
presented meshes are too coarse to see significant impact of this parameter on the
asymptotic convergence rate.
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Benchmark 3D: CeVe-DDFV, a Discrete Duality
Scheme with Cell/Vertex Unknowns

Yves Coudière and Charles Pierre

1 Presentation of the scheme

1.1 General presentation of DDFV methods

“Discrete Duality” Finite Volumes (DDFV) schemes have been specifically
designed for anisotropic and/or heterogeneous diffusion problems working on
general meshes: distorted, non-conformal and locally refined. They first were
introduced in 2D independently by Hermeline [9, 10] and Domelevo and Omnès
[8], though the key ideas already appear in the work of Nicolaides [14].

As originally defined in [8], a 2D DDFV scheme consists in associating a second
mesh (the dual mesh) to the original (primal) mesh by building dual cells around
each (primal) mesh vertex. Cell and vertex centered scalar data are associated to
this double mesh framework (one data per primal and dual cell), whereas a vector
data consists in one vector per (primal) mesh edge. To a scalar data is associated
a discrete gradient that is a vector data. A gradient reconstruction method is used
to define this discrete gradient: precisely using the diamond method [6]. A discrete
divergence acts on vector data by averaging their normal component on the primal
and dual cell boundaries, which procedure is classical for finite volume methods.
The key feature is a duality property between the discrete gradient and the discrete
divergence operators of Green formula type.
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Extensions of DDFV schemes to 3D [1–3, 11, 12, 15] are of two types.

CV-DDFV. The original 2D double mesh framework is conserved, dual cells are
built around the primal mesh vertices and scalar data consist in a double set of
unknowns associated with the (primal) mesh cells and vertices.
CeVeFE-DDFV. Recently Coudière and Hubert [3, 4] modified the 2D frame-
work by considering a third mesh (triple mesh method), with unknowns associ-
ated with cells, faces, edges and vertices of the primal mesh.

The method considered here is of CV-DDFV type, CV holding for Cell and Vertex
centered. Two versions have been developed so far.

(A) A first 3D construction was introduced by Pierre in [15] for anisotropic and/or
heterogeneous diffusion problems. The dual cells here do not form a mesh in
the classical sense: they recover the domain twice.

(B) A second version, independently introduced by Hermeline [12] and Andreianov
& al. [1, 2] differs from the previous one by the dual cell definition that here
form a partition of ˝ .

For both versions, in presence of heterogeneity, auxiliary (locally eliminated) data
are added relatively to faces, as presented in [5, 12]. In case of complex meshes,
involving face shapes other than triangles or quadrangles, this local elimination
procedure is made difficult enforcing to consider auxiliary data as real unknowns
inside the algorithm, which drastically increases the problem size.

We first emphasize the similarities between (A) and (B). These two versions are
based on the same definition of the discrete gradient. They also induce comparable
discrete duality properties. Indeed, after a careful examination of these duality
properties in [15] and in [2] it turns out that they do involve exactly the same
stiffness and mass matrices. As a result, between these two versions, only the
averaging of the source terms on the dual cells will differ.

In this paper, version (A) will be considered without auxiliary data on the mesh
faces. The fifth test case, including heterogeneity and thus necessitating these
auxiliary unknowns per face center, will not be treated here because of a lack of
time.

1.2 CV- DDFV version (A), discrete duality

Let the domain ˝ � R
3 be a connected open subset, its boundary is assumed to be

polyhedral. Let M be a (general) mesh of ˝ , possibly non conformal, and whose
(primal) cells (resp. faces) are general polyhedral (resp. polygonal). The set of cells,
faces and vertices of M are respectively denoted C , F and V . To any vertex v 2 V
is associated a dual cell v? and to any face f 2 F is associated a diamond cell Df .
Diamond cells form a partition of ˝ , whereas dual cells intersect and recover ˝
exactly twice.
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A vector data is a piecewise constant vector function on the diamond cells.
A scalar data is provided by one scalar per cell and per vertex of M . The space
of vector data is denoted Qh and the space of scalar data Fh. A discrete function
is obtained by supplementing a scalar data with one scalar data per boundary face.
The space of discrete functions is denoted Uh. As developed in Sect. 1.3, uh 2 Uh

will be interpreted as a function defined on the diamond cell boundaries:

@D WD
[

f 2F
@Df ; uh W @D �! R; (1)

that moreover is continuous and piecewise affine on the diamond cell faces.
Two discrete operators will be defined, rh W Uh �! Qh and divh W Qh �! Fh.

that satisfy the discrete duality property (see [15])

Z

˝
rh uh � qhdx D �hhuh; divh qhii C

Z

@˝

uh qh � n ds (2)

for any functions uh 2 Uh and qh 2 Qh, with n the unit normal on @˝ pointing
outside˝ , and the pairing:

hhuh; divh qhii D 1

3

X

c2C
uc divc qhjcj C 1

3

X

v2V
uv divv qhjv?j: (3)

Here, jcj and jv?j are the volumes of the primal and dual cells c and v?, uc and
divc qh are the values associated to the cell c of the two scalar data uh and divh qh,
and similarly uv and divv qh are the values associated to the vertex v of the two scalar
data uh and divh qh.

In (2) the two integrals are well defined. The first integral is an L2 product on
˝ since both qh and rh uh are piecewise constant vector functions on the diamond
cells.The second integral is an L2 product on @˝: qh is piecewise constant on the
boundary faces and its normal component qh � n also, moreover @˝ � @D defined
in (1) and so uh has a restriction to @˝ that is continuous.

1.3 Dual and diamond cells

A center xc (resp. xf ) is associated to each cell c 2 C (resp. f 2 F ).
Diamond cells. Let f 2 F . In case f 6� @˝ then f is the interface between

two cells c1; c2 2 C : f D c1\c2. Denoting xi the center of ci , then Df is the union
of the two pyramids with apex xi and with base f as depicted on Fig. 1. In case
f � @˝ , then f D @˝ \ c for one cell c 2 C . In this case Df is the pyramid with
apex xc and base f . Still in this cases, f can be considered as a degenerated (flat)
pyramid of apex its own center xf and base f . Thus, in all cases, Df is the union
of two pyramids, and its boundary can be partitioned into triangles. The vertices of
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f = ∩

x1

Fig. 1 Left: diamond cell for an internal triangular face f . Right: dual cell construction

these triangles either are: cell centers, vertices or boundary face centers of M . As a
result providing a scalar value to each cell, vertex and boundary face of M defines
a unique continuous piecewise affine function uh W @D 7! R, with @D defined in
(1). This is precisely the lift from the discrete function in Uh presented in Sect. 1.2
into continuous piecewise affine functions on @D in (1).

Dual cells. Let v 2 V and consider a cell c 2 C and a face f 2 F so that v
is a vertex of f and f is a face of c. This configuration is denoted by v � f � c.
To a triple .v; f; c/ so that v � f � c is associated an element Tv;f;c . The dual cell
v? then is defined as v? D S

f;cW v�f�c Tv;f;c : Let us eventually define the element
Tv;f;c , as depicted on Fig. 1. Introduce w1 and w2 the two vertices of f such that
Œv;w1� and Œv;w2� are two edges of f . Then Tv;f;c is the union of the two tetrahedra
vxcxf wi for i D1, 2.
As one can see, for a fixed face f and a fixed cell c such that f � @c, considering
all elements Tv;f;c for all the vertices v of f recovers exactly twice Df \ c. As a
result the dual cells recover the whole domain exactly twice:

P
v2V jv?j D 2j˝j.

1.4 Discrete operators

The discrete divergence is classically defined by averaging the normal component
of qh 2 Qh on the primal and dual cells, for all c 2 C and all v 2 V :

divc qh D 1

jcj
Z

@c

qh � nds; divv qh D 1

jv?j
Z

@v?
qh � nds; (4)
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for n the unit normal on @c (resp. @v?) pointing outside c (resp. v?). This definition is
well posed since the discontinuity set of qh 2 Qh has a zero 2-dimensional measure
intersection with the primal and dual cell boundaries.

The discrete gradient is defined as follows. Let uh 2 Uh, for all f 2 F :

rf uh D 1

jDf j
Z

@Df

uhnds; (5)

where rf uh is the (vector) value of rh uh on Df and for n the unit normal on @Df
pointing outside Df .

In practice, definition (5) can always be reformulated in terms of data differences
as in the 2D case where (see e.g. [7]):

rf uh D .uc1 � uc2/Nf C .uv1 � uv2/Mf ;

f is a mesh interface (edge), c1 and c2 the two cells on each side of f , v1 and v2 the
two vertices of f and Nf , Mf two vectors. We refer to [5,15] for similar expansions
in 3D.

1.5 The scheme

The linear diffusion problem �div.Kru/ D f is considered together with a
Dirichlet boundary condition uj@˝ D g. The tensor K is discretized into Kh by
averaging K on each diamond cells and the source term f is discretized as fh 2 Fh

by averaging f over each primal and dual cells. The problem reads: find uh 2 Uh

such that

8 c 2 C W divc.Kh rh uh/ D fc ; 8 v 2 V ; v 62 @˝ W divv.Kh rh uh/ D fv

(6)

8 v 2 V ; v 2 @˝ W uh.v/ D g.v/ ; 8 f 2 F ; f � @˝ W uh.xf / D g.xf /;
(7)

To solve (6) (7), we split Uh D Uh;0 ˚ B where Uh;0 is the subset of discrete
functions equal to zero on @˝ . Then uh decomposes as uh D u0 C Qu, where Qu 2 B

is uniquely determined by (7). Now u0 2 Uh;0 satisfies � divh.Khrh u0/ D fh C
divh.Kh rh Qu/ WD Qfh for all primal cells and all interior vertices. This is a square
linear system equivalent with: find u0 2 Uh;0 so that for all v 2 Uh;0 we have:

�hhdivh.Kh rh u0/; vii D hh Qfh; vii

With the help of the discrete duality property (2) it is also equivalent with finding
u0 2 Uh;0 so that for all v 2 Uh;0:
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Z

˝

Khrh u0 � rh vdx D hh Qfh; vii:

In practice, introducing the stiffness matrix S associated to the discrete tensor Kh,
this problem is rewritten as the square positive symmetric linear system

SU0 D QF ; (8)

with U0 (resp. QF ) the vector formed by the values of u0 (resp. Qfh) at the cell centers
and interior vertices. The stiffness matrix S has the coefficients Sij D

R
˝

Kh rh wi �
rh wj dx, with wi 2 Uh;0 the base function having value 1 at one cell center or
interior vertex and 0 everywhere else. This matrix is clearly symmetric and positive.

2 Numerical results

The cell centers as well as the face centers are set to their iso-barycenter.
Let us first define the data (source term f and anisotropy tensor K) discretization.

Primal, dual and diamond cells are partitioned using a single set of tetrahedra of
typeE D xcxf v1v2, with c 2 C , f a face of c and v1, v2 two vertices of f forming
one of its edges. To form the scalar data fh, f is averaged on the tetrahedra E
partitioning each primal and dual cells whereas the discrete tensor Kh is obtained
by averaging K on the tetrahedra E partitioning the diamond cells. Averaging is
made by the mean of Gaussian quadrature on each tetrahedra E using a 15 points
quadrature formula of order 5, see e.g. [13]. Assembling the discrete source term fh
and tensor Kh requires one loop on the mesh faces.

The stiffness matrix S in (8) also is assembled using a loop on the mesh faces.
Precisely two base functions wi and wj have a non zero interaction (i.e. Sij DR
˝ Kh rh wi � rh wj dx ¤ 0) in case they are associated to two vertices of a same

diamond Df .
Let us now define the L2, H1 and energy errors reported in the following tables

as erl2, ergrad and ener respectively. Let uh denote the discrete solution of one of
the test case, and u the solution of the associated continuous problem. The discrete
function uh is lifted to a function uh 2 L2.˝/ as follows. Consider a face f , uh
provides a value at each vertex of Df and also at the face center xf in case of a
boundary face. In case of an interior face, a supplementary value uf is computed at
xf as uf D .

Pn
iD1 uvi /=n where the vi are the n vertices of f , which definition is

consistent since xf is the iso-barycenter of f . With these additional values, scalars
are available for every vertices of the tetrahedra E that partition ˝: this defines a
unique function uh by P1 interpolation, which then is continuous piecewise affine
on ˝ . We define:

erl22 D
R
˝
juh � uj2dx
R
˝
juj2dx :
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The discrete vector data rh uh is a piecewise constant vector function on the
diamond cells. Therefore rh uh is an L2 functions on ˝ and the H1 and energy
errors reported in the following tables are defined as:

ergrad2 D
R
˝
j rh uh � ruj2dx
R
˝
jruj2dx ; ener2 D

R
˝
K.rh uh � ru/ � .rh uh � ru/

R
˝
Kru � rudx

:

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg

1 2187 21287 1.34E-02 1.53E-02 1.99E+00 1.99E+00 1.80E+00

2 4301 44813 3.24E-03 6.84E-03 1.99E+00 1.99E+00 1.80E+00

3 8584 94088 8.78E-03 7.44E-03 2.00E+00 1.99E+00 1.80E+00

4 17102 195074 4.74E-03 5.52E-03 2.00E+00 2.00E+00 1.80E+00

5 34343 405077 5.90E-04 1.49E-03 2.00E+00 2.00E+00 1.80E+00

6 69160 838856 1.30E-03 6.19E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 2187 1.39E-02 – 1.85E-01 – 1.80E-01 –

2 4301 8.80E-03 2.04E+00 1.48E-01 1.01E+00 1.44E-01 9.89E-01

3 8584 5.64E-03 1.93E+00 1.18E-01 9.73E-01 1.15E-01 9.97E-01

4 17102 3.61E-03 1.94E+00 9.36E-02 1.01E+00 9.10E-02 1.01E+00

5 34343 2.26E-03 2.01E+00 7.43E-02 9.92E-01 7.24E-02 9.81E-01

6 69160 1.42E-03 2.00E+00 5.87E-02 1.01E+00 5.70E-02 1.02E+00

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Voronoı̈ meshes

i nu nmat umin uemin umax uemax normg

1 87 1433 1.23E-01 1.79E-01 1.91E+00 1.85E+00 1.80E+00

2 235 4393 6.66E-02 2.93E-03 1.87E+00 2.00E+00 1.80E+00

3 527 10777 1.32E-02 9.56E-03 1.93E+00 1.97E+00 1.80E+00

4 1013 21793 -1.76E-03 4.97E-03 1.93E+00 2.00E+00 1.80E+00

5 1776 40998 5.42E-04 4.30E-03 1.98E+00 1.97E+00 1.80E+00
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 87 6.19E-02 – 4.43E-01 – 4.29E-01 –

2 235 3.36E-02 1.85E+00 3.37E-01 8.28E-01 3.29E-01 7.96E-01

3 527 2.10E-02 1.74E+00 2.55E-01 1.03E+00 2.49E-01 1.04E+00

4 1013 1.35E-02 2.03E+00 2.05E-01 1.01E+00 2.01E-01 9.85E-01

5 1776 9.99E-03 1.62E+00 1.75E-01 8.38E-01 1.71E-01 8.47E-01

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg

1 855 13819 7.16E-02 2.88E-02 1.94E+00 1.96E+00 1.80E+00

2 7471 138691 1.26E-02 6.45E-03 1.99E+00 1.99E+00 1.80E+00

3 62559 1237459 1.30E-03 1.75E-03 2.00E+00 2.00E+00 1.80E+00

4 512191 10443763 4.61E-04 5.45E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 855 5.64E-02 – 4.57E-01 – 4.51E-01 –

2 7471 1.71E-02 1.65E+00 1.91E-01 1.20E+00 1.89E-01 1.21E+00

3 62559 3.45E-03 2.26E+00 7.74E-02 1.28E+00 7.67E-02 1.27E+00

4 512191 7.62E-04 2.15E+00 3.47E-02 1.14E+00 3.41E-02 1.16E+00

� Test 1 Mild anisotropy, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��

min D 0; max D 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg

1 59 703 1.46E-01 3.41E-02 1.86E+00 1.97E+00 1.80E+00

2 599 9835 3.87E-02 8.56E-03 1.96E+00 1.99E+00 1.80E+00

3 5423 101539 9.24E-03 2.14E-03 1.99E+00 2.00E+00 1.80E+00

4 46175 917395 2.15E-03 5.35E-04 2.00E+00 2.00E+00 1.80E+00

5 381119 7788403 5.01E-04 1.34E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 59 4.79E-02 – 4.01E-01 – 3.94E-01 –

2 599 1.08E-02 1.93E+00 1.95E-01 9.34E-01 1.92E-01 9.31E-01

3 5423 2.55E-03 1.96E+00 9.58E-02 9.66E-01 9.37E-02 9.73E-01

4 46175 6.27E-04 1.96E+00 4.75E-02 9.83E-01 4.63E-02 9.89E-01

5 381119 1.56E-04 1.98E+00 2.36E-02 9.92E-01 2.30E-02 9.95E-01
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� Test 2 Heterogeneous anisotropy, u.x; y; z/ D x3y2zC x sin.2�xz/
sin.2�xy/ sin.2�z/, min D �0:862; max D 1:0487, Prism meshes

i nu nmat umin uemin umax uemax normg

1 3010 64158 -8.54E-01 -8.41E-01 1.00E+00 1.00E+00 1.71E+00

2 24020 555528 -8.56E-01 -8.59E-01 1.02E+00 1.05E+00 1.71E+00

3 81030 1924098 -8.61E-01 -8.59E-01 1.04E+00 1.04E+00 1.71E+00

4 192040 4619868 -8.59E-01 -8.61E-01 1.04E+00 1.05E+00 1.71E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 3010 5.06E-02 – 2.45E-01 – 2.48E-01 –

2 24020 1.85E-02 1.45E+00 1.26E-01 9.63E-01 1.27E-01 9.66E-01

3 81030 1.46E-02 5.90E-01 8.51E-02 9.63E-01 8.59E-02 9.66E-01

4 192040 1.37E-02 2.08E-01 6.49E-02 9.44E-01 6.53E-02 9.50E-01

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

i nu nmat umin uemin umax uemax normg

1 91 1063 -1.58E+00 -9.78E-01 1.54E+00 9.31E-01 3.65E+00

2 855 13819 -1.08E+00 -9.94E-01 1.12E+00 9.82E-01 3.57E+00

3 7471 138691 -1.04E+00 -9.95E-01 1.01E+00 9.91E-01 3.60E+00

4 62559 1237459 -1.01E+00 -9.98E-01 1.01E+00 9.98E-01 3.60E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 91 3.06E-01 – 5.89E-01 – 5.70E-01 –

2 855 8.29E-02 1.75E+00 3.14E-01 8.56E-01 2.87E-01 9.21E-01

3 7471 2.28E-02 1.79E+00 1.65E-01 8.90E-01 1.46E-01 9.28E-01

4 62559 6.98E-03 1.67E+00 8.96E-02 8.58E-01 7.34E-02 9.68E-01

� Test 4 Flow around a well, Well meshes, min D 0; max D 5:415

i nu nmat umin uemin umax uemax normg

1 1482 23942 4.85E-01 -6.02E-06 5.32E+00 5.42E+00 1.62E+03

2 3960 70872 2.71E-01 -5.68E-06 5.33E+00 5.42E+00 1.62E+03

3 9229 173951 1.66E-01 -5.76E-06 5.33E+00 5.42E+00 1.62E+03

4 21156 412240 1.25E-01 -7.39E-06 5.33E+00 5.42E+00 1.62E+03

5 44420 882520 9.37E-02 -6.93E-06 5.34E+00 5.42E+00 1.62E+03

6 82335 1654893 7.48E-02 -6.94E-06 5.35E+00 5.42E+00 1.62E+03

7 145079 2937937 5.80E-02 -8.05E-06 5.36E+00 5.42E+00 1.62E+03
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 1482 2.92E-03 – 1.79E-01 – 1.78E-01 –

2 3960 1.38E-03 2.29E+00 1.22E-01 1.18E+00 1.21E-01 1.16E+00

3 9229 7.45E-04 2.19E+00 8.57E-02 1.25E+00 8.56E-02 1.24E+00

4 21156 5.53E-04 1.08E+00 6.56E-02 9.71E-01 6.55E-02 9.72E-01

5 44420 3.77E-04 1.55E+00 5.14E-02 9.85E-01 5.13E-02 9.83E-01

6 82335 2.44E-04 2.11E+00 4.18E-02 1.01E+00 4.17E-02 1.01E+00

7 145079 1.83E-04 1.53E+00 3.51E-02 9.27E-01 3.50E-02 9.26E-01

3 Comments

The linear system (8) to be solved is symmetric and positive: a Conjugate Gradient
algorithm has been applied, together with a basic Jacobi preconditioner. The
sparsity pattern of the stiffness matrix is not compact, especially for matrix lines
corresponding to vertex nodes. The stiffness matrix lines corresponding to cell nodes
have 1 C nf C ns nonzero terms with nf and nv the number of faces and vertices
of the considered cell; for a tetrahedra 1 C nf C nv D 9. The maximum principle
is not fulfilled by DDFV schemes. In practice it has been violated only once for test
one on Voronoı̈ meshes and more significantly on test 3. Meanwhile no oscillation
phenomena are observed. Expected order 2 convergence on erl2 is observed for all
tests excepted test 2. Order 1 convergence is observed for ergrad and ener on all
tests.
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Benchmark 3D: A multipoint flux mixed finite
element method on general hexahedra

Mary F. Wheeler, Guangri Xue, and Ivan Yotov

1 Presentation of the scheme

In this paper we discuss a family of numerical schemes for modeling Darcy
flow, the multipoint flux mixed finite element (MFMFE) methods. The MFMFE
methods allow for an accurate and efficient treatment of irregular geometries and
heterogeneities such as faults, layers, and pinchouts that require highly distorted
grids and discontinuous coefficients. The methods can be reduced to cell-centered
discretizations and have convergent pressures and velocities on general hexahedral
and simplicial grids.

The development of the MFMFE methods has been motivated by the multipoint
flux approximation (MPFA) methods [1, 2, 7, 8]. In the MPFA finite volume
framework, sub-edge (sub-face) fluxes are introduced, which allows for local flux
elimination and reduction to a cell-centered scheme. Similar elimination is achieved
in the MFMFE variational framework, by employing appropriate finite element
spaces and special quadrature rules. Our approach is based on the BDM1 [5] or
the BDDF1 [3] spaces with a trapezoidal quadrature rule applied on the reference
element. We refer to [4] for a similar approach on simplicial grids, as well as to
[10, 11] for a related work on quadrilateral grids using a broken Raviart-Thomas
space. Mortar MFMFE methods on non-matching grids have been developed in [14].

We describe the method for a single phase Darcy flow in a domain ˝ � R
3

 D �Kru; r �  D f in ˝; u D 0 on @˝;

Mary F. Wheeler and Guangri Xue
The University of Texas at Austin, USA, e-mail: mfw@ices.utexas.edu, gxue@ices.utexas.edu

Ivan Yotov
University of Pittsburgh, USA, e-mail: yotov@math.pitt.edu

J. Fovrt et al. (eds.), Finite Volumes for Complex Applications VI – Problems &
Perspectives, Springer Proceedings in Mathematics 4,
DOI 10.1007/978-3-642-20671-9 103, © Springer-Verlag Berlin Heidelberg 2011

1055

mfw@ices.utexas.edu
gxue@ices.utexas.edu
yotov@math.pitt.edu


1056 M.F. Wheeler et al.

where  is the Darcy velocity, u is the pressure, and K is a symmetric, uniformly
positive definite tensor representing the rock permeability divided by the fluid
viscosity. Other boundary conditions can also be treated. The weak formulation of
the problem reads: find  2 H.divI˝/ and u 2 L2.˝/, such that

.K�1 ; v/ � .u;r � v/ D 0; 8v 2 H.divI˝/; (1)

.r �  ;w/ D .f;w/; 8w 2 L2.˝/; (2)

where H.divI˝/ WD ˚
v 2 .L2.˝//d W r � v 2 L2.˝/� and .�; �/ denotes the inner

product in L2.˝/.
Multipoint flux mixed finite element (MFMFE) methods have been developed

and analyzed in [9, 13–15] for simplicial, quadrilateral, and hexahedral grids. The
method is defined as follows: find  h 2 Vh and uh 2 Wh such that

.K�1 h; v/Q � .uh;r � v/ D 0; 8v 2 Vh; (3)

.r �  h;w/ D .f;w/; 8w 2 Wh (4)

In the above Vh and Wh are suitable mixed finite element spaces and .�; �/Q is a
special quadrature rule. Appropriate choices allow for a flux variable defined at
a vertex to be expressed by cell-centered pressures surrounding the vertex. This
results in a 27 point pressure stencil on logically rectangular 3D grids.

The quadrature rule (9) can be symmetric or non-symmetric. On smooth
hexahedral grids, both the symmetric and non-symmetric MFMFE methods give
first-order accurate velocities and pressures, as well as second order accurate face
fluxes and pressures at the cell centers [9, 13, 15]. On highly distorted hexahedral
grids with non-planar faces [13], the convergence of the symmetric MFMFE can
deteriorate while the non-symmetric MFMFE still gives a first order accuracy under
a mild assumption on the grids and permeability anisotropy. The non-symmetric
quadrature rule was first proposed in [10] for quadrilateral grids.

Finite element spaces. Let ˝ be a polyhedral domain partitioned into a union of
hexahedral finite elements of characteristic size h. Let us denote the partition by Th

and assume that it is shape-regular and quasi-uniform [6]. The velocity and pressure
finite element spaces on any physical grid-blockE are defined, respectively, via the
Piola transformation

v$ Ov W Ov D 1

JE
DFE Ov ı F�1E ;

and the scalar transformation

w$ Ow W w D Ow ı F�1E ;

where OE is the reference cube or tetrahedron,FE denotes a trilinear mapping from OE
toE,DFE is the Jacobian ofFE , and JE is its determinant. The Piola transformation
preserves the normal components of the vectors. The finite element spaces Vh and
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Wh on Th are given by

Vh D
n
v 2 H.divI˝/ W vjE $ Ov; Ov 2 OV . OE/; 8E 2 Th

o
;

Wh D
n
w 2 L2.˝/ W wjE $ Ow; Ow 2 OW . OE/; 8E 2 Th

o
;

(5)

where OV . OE/ and OW . OE/ are finite element spaces on the reference element OE.
The spaces on the reference cube are defined by enhancing the BDDF1 spaces:

OV . OE/ D BDDF1. OE/C r2curl.0; 0; Ox2 Oz/T C r3curl.0; 0; Ox2 OyOz/T C s2curl. Ox Oy2; 0; 0/T

C s3curl. Ox Oy2Oz; 0; 0/T C t2curl.0; Oy Oz2; 0/T C t3curl.0; Ox OyOz2; 0/T ;
OW . OE/ D P0. OE/;

where the BDDF1. OE/ space is defined as [3]:

BDDF1. OE/ D P1. OE/3 C r0curl.0; 0; Ox OyOz/T C r1curl.0; 0; Ox Oy2/T C s0curl. Ox OyOz; 0; 0/T ;
C s1curl. Oy Oz2; 0; 0/T C t0curl.0; Ox OyOz; 0/T C t1curl.0; Ox2Oz; 0/T :

In above equations, ri ; si ; ti .i D 0; : : : ; 3/ are real constants, Pk denotes polyno-
mials of degree at most k, and . Ox; Oy; Oz/T denotes a point in the reference element.
The enhancement of the BDDF1 space is needed to obtain a space with four degrees
of freedom per face, rather than three in the original formulation. This allows to
associate a degree of freedom with each vertex of the face, which is needed in the
reduction to a cell-centered pressure stencil as described later in this section.

There are four degrees of freedom (DOF) per reference face. The DOF are
chosen to be the normal components at the vertices. This choice of DOF guarantees
continuity of the normal component of the velocity vector across element faces,
which is needed for an H.divI˝/-conforming velocity space as required by (5).

A quadrature rule. The integration on a physical element is performed by mapping
to the reference element and choosing a quadrature rule on OE. Using the Piola
transformation, we write .K�1�; �/ in (1) as

.K�1q; v/E D
	
1

JE
DF T

E K
�1.FE. Ox//DFE Oq; Ov




OE
	 .ME Oq; Ov/ OE;

where

ME D 1

JE
DF T

E K
�1.FE. Ox//DFE: (6)

Define a perturbed fM E as

fM E D 1

JE
DF T

E .Orc; OE/K
�1
E DFE; (7)
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where Orc; OE is the centroid of OE and KE denotes the mean of K on E. In addition,

denote the trapezoidal rule on OE by Trap.�; �/ OE :

Trap. Oq; Ov/ OE 	
j OEj
k

kX

iD1
Oq.Ori / � Ov.Ori /; (8)

where fOri gkiD1 are the vertices of OE.
The symmetric quadrature rule is based on the original ME while the non-

symmetric one is based on the perturbed fM E . The quadrature rule on an elementE
is defined as

.K�1q; v/Q;E 	
(

Trap.ME Oq; Ov/ OE D j
OEj
k

Pk
iD1ME.Ori / Oq.Ori / � Ov.Ori /; symmetric;

Trap.fME Oq; Ov/ OE D j
OEj
k

Pk
iD1fME.Ori / Oq.Ori / � Ov.Ori /; non-symmetric:

(9)
The non-symmetric quadrature rule has certain critical properties on the physical

elements that lead to a convergent method on rough hexahedra [13].

Reduction to a cell-centered pressure system. The choice of trapezoidal quadra-
ture rule implies that on each element, the velocity degrees of freedom associated
with a vertex become decoupled from the rest of the degrees of freedom. As a result,
the assembled velocity mass matrix in (3) has a block-diagonal structure with one
block per grid vertex. The dimension of each block equals the number of velocity
DOF associated with the vertex. Inverting each local block in the mass matrix
in (3) allows for expressing the velocity DOF associated with a vertex in terms
of the pressures at the centers of the elements that share the vertex. Substituting
these expressions into the mass conservation equation (4) leads to a cell-centered
system for the pressures. The stencil is 27 points on logically rectangular hexahedral
grids. The local linear systems and the resulting global pressure system are positive
definite and therefore invertible for the symmetric MFMFE method and, under a
mild restriction on the shape regularity of the grids and/or the anisotropy of the
permeability, for the non-symmetric MFMFE method; see (11) below. The reader is
referred to [9, 13, 15] for further details on the reduction to a cell-centered pressure
system.

Theoretical convergence results. Let W k;1
Th

consist of functions � such that

�jE 2 W k;1.E/ for all E 2 Th. Here k is a multi-index with integer components
and W k;1.E/ denotes the Sobolev space of functions whose derivatives of order k
belong to L1.E/. Let k � kk be the norm in the Hilbert spaceHk.˝/ with functions
whose derivatives of order k belong to L2.˝/. The norm in L2.˝/ is denoted by
k � k. Let X . .&/ Y denote that there exists a constant C , independent of the mesh
size h, such that X � .�/ CY . The notation X Å Y means that both X . Y and
X & Y hold.

The following convergence results have been established for the symmetric
MFMFE method on h2-perturbed parallelepipeds.
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Theorem 1 ([9, 15]). If K�1 2 W 1;1
Th

, then, the velocity  h and pressure uh of the
symmetric MFMFE method (3)–(4) satisfy

k � hk . hk k1; kr � . � h/k . hkr � k1; ku�uhk . h.k k1Ckuk1/:

On h2-perturbed parallelepipeds, the non-symmetric MFMFE method has same
order of accuracy as the symmetric method. In addition, the non-symmetric method
has first order convergence for the velocity and pressure on general quadrilaterals
and for the face flux and pressure on general hexahedra with non-planar faces.

For the analysis of the non-symmetric MFMFE method, we require some
properties of the bilinear form .K�1�; �/Q defined on the space Vh. Note that

.K�1q; v/Q D
X

E2Th

.K�1q; v/Q;E D
X

c2Ch

vTc Mcqc ; (10)

where Ch denotes the set of corner or vertex points in Th, vc WD f.v � ne/.xc/gnceD1,
xc is the coordinate vector of point c, and nc is the number of faces (or edges in 2D)
that share the vertex point c.

Lemma 1 ([13]). Assume that Mc is uniformly positive definite for all c 2 Ch:

hd	T 	 . 	TMc	; 8	 2 R
nc : (11)

Then the bilinear form .K�1�; �/Q is coercive in Vh and induces a norm in Vh
equivalent to the L2-norm:

.K�1v; v/Q Å kvk2; 8 v 2 Vh: (12)

If in addition
	TMT

c Mc	 . h2d	T 	; 8 	 2 R
nc ; (13)

then the following Cauchy-Schwarz type inequality holds:

.K�1q; v/Q . kqkkvk 8q; v 2 Vh; (14)

Conditions (11) and (13) impose mild restrictions on the element geometry and the
anisotropy of the permeability tensorK , see [10, 12].

Theorem 2 ([13]). Let K 2 W 1;1
Th

.˝/ and K�1 2 W 0;1.˝/ . If (11) and (13)
hold, then the velocity h and the pressure uh of the non-symmetric MFMFE method
(3)—(4) satisfy

k˘ �  hk C kQhu � uhk . h.j j1 C kuk2/; (15)

where ˘ is the canonical interpolation operator onto Vh and Qh is the L2-
orthogonal projection ontoWh.
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This result further implies convergence of the computed normal velocity to the true
normal velocity on the element faces. First, define a norm for vectors in˝ based on
the normal components on the faces of Th:

kvk2Fh
WD

X

E2Th

X

e2@E

jEj
jej kv � nek

2
e ; (16)

where jEj is the volume ofE and jej is the area of e. This norm gives an appropriate
scaling of j˝j1=2 for a unit vector.

Theorem 3 ([13]). Let K 2 W 1;1
Th

.˝/ and K�1 2 W 0;1
Th

.˝/. If (11) and (13)
hold, then the velocity  h of the non-symmetric MFMFE method (3)–(4) satisfies

k �  hkFh
. h.k k1 C kuk2/: (17)

2 Numerical results

We note that in all tests we report absolute errors. Both the pressure error ku � uhk
and the velocity error k˘ �  hk are approximated by the trapezoidal quadrature
rule on the reference unit cube. For the velocity face error k � hkFh

and the mean
velocity face error

jjj �  hjjj2Fh
	

X

E2Th

X

e2@E
jEj

	
1

jej
Z

e

 � ne � 1

jej
Z

e

 h � ne

2
;

the face integrals are approximated by the 9-point Gaussian quadrature rule on the
reference face.

�Test 1 Mild anisotropy, u.x; y; z/ D 1Csin.�x/ sin
�
�
�
y C 1

2

��
sin
�
�
�
zC 1

3

��
,

min D 0; max D 2, Kershaw meshes

Symmetric MFMFE
i nu nmat umin uemin umax uemax
1 512 10648 4.66E-03 3.03E-02 1.97E+00 1.96E+00
2 4096 97336 4.23E-03 1.06E-02 1.99E+00 1.99E+00
3 32768 830584 -2.42E-03 1.75E-03 2.00E+00 2.00E+00
4 262144 6859000 7.49E-05 7.14E-04 2.00E+00 2.00E+00
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i nu ku� uhk rate k˘ �  hk rate k �  hkFh rate jjj �  hjjjFh rate Iters

1 512 2.08E-01 – 3.01E+00 – 4.74E+00 – 4.30E+00 – 9

2 4096 1.17E-01 0.83 1.11E+00 1.44 2.17E+00 1.13 1.94E+00 1.15 17

3 32768 5.96E-02 0.97 3.95E-01 1.45 7.44E-01 1.54 6.62E-01 1.55 32

4 262144 2.95E-02 1.01 1.54E-01 1.36 2.43E-01 1.61 2.01E-01 1.72 65

Non-symmetric MFMFE
i nu nmat umin uemin umax uemax
1 512 10648 -1.25E-03 3.03E-02 2.01E+00 1.96E+00
2 4096 97336 -3.35E-03 1.06E-02 2.00E+00 1.99E+00
3 32768 830584 -2.08E-03 1.75E-03 2.00E+00 2.00E+00
4 262144 6859000 5.02E-05 7.14E-04 2.00E+00 2.00E+00

i nu ku� uhk rate k˘ �  hk rate k �  hkFh rate jjj �  hjjjFh rate Iters

1 512 2.20E-01 – 2.81E+00 – 2.52E+00 – 2.14E+00 – 8

2 4096 1.19E-01 0.89 9.15E-01 1.62 1.23E+00 1.03 1.07E+00 1.00 16

3 32768 5.95E-02 1.00 3.06E-01 1.58 4.27E-01 1.53 3.66E-01 1.55 33

4 262144 2.94E-02 1.02 1.18E-01 1.37 1.40E-01 1.61 1.00E-01 1.87 73

� Test 1 Flow on random meshes, u.x; y; z/ D 1C sin.�x/ sin
�
�
�
y C 1

2

��

sin
�
�
�
zC 1

3

��
, min D 0; max D 2, Random meshes

Symmetric MFMFE
i nu nmat umin uemin umax uemax
1 64 1000 -1.43E-02 4.46E-02 1.90E+00 1.82E+00
2 512 10648 2.03E-02 3.17E-02 1.96E+00 1.95E+00
3 4096 97336 -1.07E-03 2.69E-03 1.99E+00 1.99E+00
4 32768 830584 1.14E-03 1.23E-03 2.00E+00 2.00E+00

i nu ku� uhk rate k˘ �  hk rate k �  hkFh rate jjj � hjjjFh rate Iters

1 64 2.54E-01 – 1.15E+00 – 1.01E+00 – 4.26E-01 – 5

2 512 1.25E-01 1.02 6.14E-01 0.91 4.91E-01 1.04 1.79E-01 1.25 6

3 4096 6.29E-02 0.99 3.82E-01 0.68 2.86E-01 0.78 1.00E-01 0.84 7

4 32768 3.15E-02 1.00 2.96E-01 0.37 2.34E-01 0.29 8.84E-02 0.18 8

Non-symmetric MFMFE
i nu nmat umin uemin umax uemax
1 64 1000 -2.17E-02 4.46E-02 1.90E+00 1.82E+00
2 512 10648 1.52E-02 3.17E-02 1.96E+00 1.95E+00
3 4096 97336 -1.42E-03 2.69E-03 1.99E+00 1.99E+00
4 32768 830584 5.59E-04 1.23E-03 2.00E+00 2.00E+00
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i nu ku� uhk rate k˘ �  hk rate k �  hkFh rate jjj � hjjjFh rate Iters

1 64 2.54E-01 – 1.19E+00 – 1.01E+00 – 3.83E-01 – 5

2 512 1.25E-01 1.02 5.54E-01 1.10 4.32E-01 1.23 1.23E-01 1.64 7

3 4096 6.30E-02 0.99 2.78E-01 0.99 2.05E-01 1.08 4.63E-02 1.41 7

4 32768 3.15E-02 1.00 1.39E-01 1.00 1.09E-01 0.91 2.32E-02 1.00 8

� Test 3 Flow on random meshes, u.x; y; z/ D sin.2�x/ sin .2�y/ sin .2�z/,
min D �1; max D 1, Random meshes

Symmetric MFMFE
i nu nmat umin uemin umax uemax
1 64 1000 -6.20E+00 -7.59E-01 5.75E+00 6.91E-01
2 512 10648 -1.93E+00 -9.39E-01 2.05E+00 9.23E-01
3 4096 97336 -1.20E+00 -9.85E-01 1.19E+00 9.82E-01
4 32768 830584 -1.06E+00 -9.96E-01 1.04E+00 9.96E-01

i nu ku� uhk rate k˘ �  hk rate k � hkFh rate jjj �  hjjjFh rate Iters

1 64 1.88E+00 – 1.67E+03 – 1.76E+03 – 1.22E+03 – 17

2 512 4.27E-01 2.14 5.84E+02 1.52 5.31E+02 1.73 3.34E+02 1.87 36

3 4096 1.48E-01 1.53 2.97E+02 0.98 2.32E+02 1.19 1.19E+02 1.49 59

4 32768 6.71E-02 1.14 2.02E+02 0.56 1.59E+02 0.55 7.57E+01 0.65 77

Non-symmetric MFMFE
i nu nmat umin uemin umax uemax
1 64 1000 -1.20E+02 -7.59E-01 3.76E+01 6.91E-01
2 512 10648 -5.01E+02 -9.39E-01 6.34E+02 9.23E-01
3 4096 97336 -3.34E+01 -9.85E-01 4.97E+01 9.82E-01
4 32768 830584 -2.16E+03 -9.96E-01 4.12E+03 9.96E-01

i nu ku � uhk rate k˘ �  hk rate k �  hkFh rate jjj �  hjjjFh rate

1 64 2.94E+01 – 1.07E+05 – 9.36E+04 – 3.45E+04 –
2 512 8.96E+01 < 0 3.45E+05 < 0 2.78E+05 < 0 1.41E+05 < 0

3 4096 5.84E+00 3.39E+04 2.50E+04 1.11E+04
4 32768 3.56E+02 < 0 3.23E+06 < 0 2.53E+06 < 0 1.08E+06 < 0

� Test 5 Discontinuous permeability,
u.x; y; z/ D ai sin.2�x/ sin .2�y/ sin .2�z/, min D �100; max D 100, Locally
refined meshes

The locally refined grids are treated by introducing mortar finite elements on the
subdomain interfaces to approximate the interface pressure and impose weakly
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continuity of flux; for details see [14]. Here we take the mortar grid to be the trace of
the coarser subdomain grid and choose the mortar space to consist of discontinuous
piecewise bilinear functions. It is easy to check that this results in forcing on each
interface element the four fine grid normal velocities to be equal to the coarse grid
normal velocity.

For this test we also report the velocity error k � hk, approximated by 27-point
Gaussian quadrature rule on the reference unit cube, as well as the norm jjj �
˘RT  hjjj defined as follows. For a scalar function �.x1; x2; x3/ in a cubic element
E , let jjj�jjji;E denote an approximation integral of j�j2 using exact integration rule
in xi and midpoint rule in the other directions. Then, for q D .q1; q2; q3/T , let

jjjqjjj2 D
X

E2Th

3X

iD1
jjjqi jjj2i;E:

In the reported error norm,˘RT is the canonical interpolation operator in the lowest
order Raviart-Thomas space.

i nu umin uemin umax uemax
2 176 -4.36E+01 -3.54E+01 4.36E+01 3.54E+01
3 1408 -8.30E+01 -7.89E+01 8.30E+01 7.89E+01
4 11264 -9.56E+01 -9.43E+01 9.56E+01 9.43E+01
5 90112 -9.89E+01 -9.86E+01 9.89E+01 9.86E+01

i ku � uhk rate k˘ �  hk rate k �  hk rate jjj �˘RT hjjj rate CGiter

2 2.28E+01 – 1.77E+03 – 9.49E+02 – 3.38E+02 – 12
3 1.19E+01 0.94 8.80E+02 1.00 4.96E+02 0.94 8.18E+01 2.05 18
4 6.02E+00 0.98 4.38E+02 1.00 2.51E+02 0.98 2.03E+01 2.01 21
5 3.02E+00 1.00 2.19E+02 1.00 1.26E+02 0.99 5.06E+00 2.00 31

3 Comments

In Test 1 and Test 3, the resulting linear algebraic system is solved using the software
HYPRE (high performance preconditioners) developed by researchers at Lawrence
Livermore National Laboratory1. Specifically, we use the generalized minimum
residual (GMRES) method with one V-cycle of algebraic multigrid method as a
preconditioner. The stopping criteria for GMRES is relative residual less than 10�9.
The number of iterations is reported in each table.

1https://computation.llnl.gov/casc/hypre/software.html
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In Test 5, the problem is reduced to an interface problem in terms of mortar
variables. We use the conjugate gradient (CG) method and the stopping criteria is
the relative residual less than 10�9. The number of CG iterations is given in the
table.

In Test 1 Mild anisotropy, both the symmetric and non-symmetric methods are
first order accurate for the pressure and the velocity, as well as superconvergent of
order approachingO.h2/ for the face velocities.

In Test 1 Flow on random meshes, the pressure is first order for both methods.
However, the velocity convergence of the symmetric method deteriorates due to the
element distortion, while the non-symmetric method maintains first order accuracy
in the velocity. These results are consistent with Theorems 1, 2, and 3.

In Test 3 Flow on random meshes, the symmetric method is first order convergent
for the pressure and approximatelyO.h1=2/ convergent for the velocity, as expected
by the theory. For the non-symmetric method, the severe anisotropy in the perme-
ability combined with element distortion leads to near violation of conditions (11)
and (13). As a result, the algebraic system is very ill-conditioned and the method
fails to converge.

In Test 5 Discontinuous permeability, the two methods are identical, since the
elements are cuboids. We observe first order convergence for the pressure and
velocity, as well as second order superconvergence for the error jjj � ˘RT  hjjj,
as predicted by the theory from [14].

The paper is in final form and no similar paper has been or is being submitted elsewhere.
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