Panos M. Pardalos
Steffen Rebennack (Eds.)

Experimental
Algorithms

10th International Symposium, SEA 2011
Kolimpari, Chania, Crete, Greece, May 2011
Proceedings

LNCS 6630

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6630



Panos M. Pardalos Steffen Rebennack (Eds.)

Experimental
Algorithms

10th International Symposium, SEA 2011
Kolimpari, Chania, Crete, Greece, May 5-7, 2011
Proceedings

@ Springer



Volume Editors

Panos M. Pardalos

303 Weil Hall

P.O. Box 116595
Gainesville, FL 32611-6595
E-mail: pardalos@ise.ufl.edu

Steffen Rebennack

Colorado School of Mines

Division of Economics and Business

Engineering Hall 310, 816 15th Street, Golden, CO 80401, USA
E-mail: srebenna@mines.edu

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-20661-0 e-ISBN 978-3-642-20662-7
DOI 10.1007/978-3-642-20662-7

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011925898

CR Subject Classification (1998): F.2, 1.2, H.3-4, F.1,C.2,D.2

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 10th International Symposium on Experimental Algorithms (SEA 2011) was
held in Kolimpari (Chania, Greece), during May 5-7, 2011. Previously known as
the Workshops on Experimental Algorithms (WEA), the WEA/SEA Symposia
are intended to be an international forum for researchers in the area of design,
analysis, and experimental evaluation and engineering of algorithms, as well as
in various aspects of computational optimization and its applications.

Past symposia were held in Ischia (2010), Dortmund (2009), Cape Cod (2008),
Rome (2007), Menorca (2006), Santorini (2005), Rio de Janeiro (2004), Monte
Verita (2003), and Riga (2002).

The present volume contains contributed papers accepted for publication,
and papers based on three invited plenary talks. All papers underwent a strict
refereeing process. From a total of 83 submitted contributed papers, 36 were
selected for this special volume of Lecture Notes in Computer Science (LNCS).
An additional nine contributed papers were accepted for a special issue of the
Springer journal Optimization Letters. Thus, the 2011 International Symposium
on Experimental Algorithms had an acceptance rate of 54%.

We would like to take this opportunity to thank all members of the Program
Committee, the authors who submitted their papers, and the referees for their
hard work. The quality of the aceppted papers was significantly influenced by
constructive critical reviews. High-quality papers are always an important factor
in maintaining and establishing a strong conference program.

We would like to thank Springer for publishing our proceedings in their well-
known book series LNCS and for their support. In addition, we would like to
thank the staff at the Orthodox Academy of Crete (OAC) for their help and
hospitality. The location of OAC, next to the sea with a majestic view of the
beautiful city of Chania, was an inspiration for a scientific gathering such as
SEA 2011!

Finally, we would like to express our sincere thanks to the Steering Committee
for providing us with the opportunity to serve as Program Chairs of SEA 2011
and for the responsibilities of selecting the Program Committee, the conference
program, and publications. We are happy with the excellent topics presented at
the conference and we look forward to SEA 2012.

May 2011 Panos M. Pardalos
Steffen Rebennack



Table of Contents

Experimental Algorithms and Applications

Invited Papers

Approximability of Symmetric Bimatrix Games and Related
Experiments. . .. ... 1
Spyros Kontogiannis and Paul Spirakis

Metaheuristic Optimization: Algorithm Analysis and Open Problems . .. 21
Xin-She Yang
Contributed Papers

Convexity and Optimization of Condense Discrete Functions .......... 33
Emre Tokgoz, Sara Nourazari, and Hillel Kumin

Path Trading: Fast Algorithms, Smoothed Analysis, and Hardness
Results . ..o 43
André Berger, Heiko Réglin, and Ruben van der Zwaan

Hierarchical Delaunay Triangulation for Meshing..................... 54
Shu Ye and Karen Daniels

A Parallel Multi-start Search Algorithm for Dynamic Traveling

Salesman Problem . .......... ... . . . . 65
Weigi Li
Online Dictionary Matching with Variable-Length Gaps............... 76

Tuukka Haapasalo, Panu Silvasti, Seppo Sippu, and
Eljas Soisalon-Soininen

Dynamic Arc-Flags in Road Networks .......... ... .. ... .. .. .... 88
Gianlorenzo D’Angelo, Daniele Frigioni, and Camillo Vitale

Efficient Routing in Road Networks with Turn Costs ................. 100
Robert Geisberger and Christian Vetter

On Minimum Changeover Cost Arborescences ....................... 112
Giulia Galbiati, Stefano Gualandi, and Francesco Maffioli

Localizing Program Logical Errors Using Extraction of Knowledge from
Invariants . ... ..o 124
Mojtaba Daryabari, Behrouz Minaei-Bidgoli, and Hamid Parvin



VIII Table of Contents

Compressed String Dictionaries ... .......... . i 136
Nieves R. Brisaboa, Rodrigo Cdnovas, Francisco Claude,
Miguel A. Martinez-Prieto, and Gonzalo Navarro

Combinatorial Optimization for Weighing Matrices with the Ordering
Messy Genetic Algorithm ....... .. .. 148
Christos Koukouvinos and Dimitris E. Simos

Improved Automated Reaction Mapping . ........................... 157
Tina Kouri and Dinesh Mehta

An Experimental Evaluation of Incremental and Hierarchical k-Median
Algorithms . . ..o 169
Chandrashekhar Nagarajan and David P. Williamson

Engineering the Modulo Network Simplex Heuristic for the Periodic
Timetabling Problem .. ...... .. .. . . . 181
Marc Goerigk and Anita Schobel

Practical Compressed Document Retrieval .......................... 193
Gonzalo Navarro, Simon J. Puglisi, and Daniel Valenzuela

Influence of Pruning Devices on the Solution of Molecular Distance

Geometry Problems . ... 206
Antonio Mucherino, Carlile Lavor, Therese Malliavin, Leo Liberti,
Michael Nilges, and Nelson Maculan

An Experimental Evaluation of Treewidth at Most Four Reductions .... 218
Alexander Hein and Arie M.C.A. Koster

A Hub-Based Labeling Algorithm for Shortest Paths in Road

NetWOrKS ..t 230
Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and
Renato F. Werneck

Hierarchy Decomposition for Faster User Equilibria on Road
NetworKks ..o 242
Dennis Luzen and Peter Sanders

Matching in Bipartite Graph Streams in a Small Number of Passes. .. .. 254
Lasse Kliemann

Beyond Unit Propagation in SAT Solving ........... ... ... ... ...... 267
Michael Kaufmann and Stephan Kottler

Designing Difficult Office Space Allocation Problem Instances with
Mathematical Programming ............. ... i 280
Ozgiir Ulker and Dario Landa-Silva



Table of Contents IX

Speed Dating: An Algorithmic Case Study Involving Matching and
Scheduling . . ... . e 292
Bastian Katz, Ignaz Rutter, Ben Strasser, and Dorothea Wagner

Experimental Evaluation of Algorithms for the Orthogonal Milling
Problem with Turn Costs .......... . 304
Igor R. de Assis and Cid C. de Souza

A Branch-Cut-and-Price Algorithm for the Capacitated Arc Routing
Problem .. ... . 315
Rafael Martinelli, Diego Pecin, Marcus Poggi, and Humberto Longo

A Biased Random Key Genetic Algorithm Approach for Unit

Commitment Problem ......... .. ... .. .. . . . . . . 327
Luis A.C. Roque, Dalila B.M.M. Fontes, and
Fernando A.C.C. Fontes

A Column Generation Approach to Scheduling of Periodic Tasks .. ..... 340
Ernst Althaus, Rouven Naujoks, and Eike Thaden

Fuzzy Clustering the Backward Dynamic Slices of Programs to Identify
the Origins of Failure .. ...... .. .. i 352
Saeed Parsa, Farzaneh Zareie, and Mojtaba Vahidi-Asl

Listing All Maximal Cliques in Large Sparse Real-World Graphs .. ..... 364
David Eppstein and Darren Strash

Customizable Route Planning ........ .. .. ... .. i . 376
Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and
Renato F. Werneck

Efficient Algorithms for Distributed Detection of Holes and Boundaries
in Wireless Networks .. ... o i 388
Dennis Schieferdecker, Markus Vélker, and Dorothea Wagner

Explanations for the Cumulative Constraint: An Experimental Study ... 400
Stefan Heinz and Jens Schulz

GRASP with Path-Relinking for Data Clustering: A Case Study for
Biological Data ........... 410
Rafael M.D. Frinhani, Ricardo M.A. Silva, Geraldo R. Mateus,
Paola Festa, and Mauricio G.C. Resende

An Tterative Refinement Algorithm for the Minimum Branch Vertices
Problem . ... 421
Diego M. Silva, Ricardo M.A. Silva, Geraldo R. Mateus,
José F. Gongalves, Mauricio G.C. Resende, and Paola Festa



X Table of Contents

Generating Time Dependencies in Road Networks . ................ ... 434
Sascha Meinert and Dorothea Wagner

An Empirical Evaluation of Extendible Arrays....................... 447
Stelios Joannou and Rajeev Raman

Author Index . ... ... 459



Approximability of Symmetric Bimatrix Games
and Related Experiments*

Spyros Kontogiannis''? and Paul Spirakis?

! Dept. of Computer Science, University of Ioannina, 45110 Ioannina, Greece
kontog@cs.uoi.gr

2 R.A. Computer Technology Institute, Patras Univ. Campus,
26504 Rio-Patra, Greece
spirakis@cti.gr

Abstract. In this work we present a simple quadratic formulation for
the problem of computing Nash equilibria in symmetric bimatrix games,
inspired by the well-known formulation of Mangasarian and Stone [26].
We exploit our formulation to shed light to the approximability of NE
points. First we observe that any KKT point of this formulation (and
indeed, any quadratic program) is also a stationary point, and vice versa.
We then prove that any KKT point of the proposed formulation (is not
necessarily itself, but) indicates a (< é) —NE point, which is polynomi-
ally tractable, given as input the KKT point. We continue by proposing
an algorithm for constructing an (é + 5) —NE point for any 6 > 0, in
time polynomial in the size of the game and quasi-linear in ;, exploit-
ing Ye’s algorithm for approximating KKT points of QPs [34]. This is
(to our knowledge) the first polynomial time algorithm that constructs
e—NE points for symmetric bimatrix games for any ¢ close to é We ex-
tend our main result to (asymmetric) win lose games, as well as to games
with maximum aggregate payoff either at most 1, or at least g . To achieve
this, we use a generalization of the Brown & von Neumann symmetriza-
tion technique [6] to the case of non-zero-sum games, which we prove
that is approximation preserving. Finally, we present our experimental
analysis of the proposed approximation and other quite interesting ap-
proximations for NE points in symmetric bimatrix games.

Keywords: Bimatrix games, indefinite quadratic optimization, Nash
equilibrium approximation, symmetrization.

1 Introduction

One of the “holy grail quests” of theoretical computer science in the last decade,
is the characterization of the computational complexity for constructing any
Nash equilibrium (NE) in a finite normal form game. There has been a massive
attack on various refinements of the problem (eg, a NE maximizing the payoff

* This work has been partially supported by the ICT Programme of the EU under
contract number 258885 (SPITFIRE).

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 1@ 2011.
© Springer-Verlag Berlin Heidelberg 2011



2 S. Kontogiannis and P. Spirakis

of some player, or its support size), that have lead to NP —hardness results (eg,
[I7I11]). Eventually the unconstrained problem proved to be PPAD —complete
[1215], even for the bimatrix case [8]. Even computing an (n~*%)) —approximate
NE for the bimatrix case is PPAD—complete [9], excluding even the existence
of a FPTAS for the problem, unless PPAD = P. Additionally, it is well known
that the celebrated algorithm of Lemke and Howson [24] may take an exponential
number of steps to terminate [29].

Given the apparent hardness of computing NE in bimatrix games, two main
research trends emerged quite naturally: To discover polynomial-time, constant-
approximation algorithms (or even a PTAS) for the general case, or to identify
general subclasses of games that admit a polynomial-time construction of ex-
act NE, or at least a (F)PTAS. Even if one exchanges the “polynomiality” to
“strict subexponentiality”, there is still much room for research. Indeed, the
first subexponential-time approximation scheme was provided in [25] (see also
[3]), while a new one appeared only recently [33]. A sequence of papers have
provided polynomial-time algorithms for various notions of approximation (eg,
[20013I5IT4U32/22]), the current winners being the gradient-based algorithm of
[32] that provides 0.3393—approximation for the most common notion of e—Nash
equilibria, and [22] that provides an LP-based 0.667—approximation for the more
demanding notion of e—well supported approrimate NE.

As for exact solutions (or even FPTAS) for general subclasses of bimatrix
games, it is well known (due to von Neumann’s minimax theorem [27]) that any
constant-sum bimatrix game is polynomial-time solvable. Trivially, any bimatrix
game with a pure Nash equilibrium is also solvable in polynomial time. Finally,
for the particular case of win-lose bimatrix games, [10] provided a linear-time
(exact) algorithm for games with very sparse payoff matrices and [I] provided
a polynomial-time algorithm when the graph of the game is planar. [I9] intro-
duced a hierarchy of the bimatrix games, according to the rank of the matrix
R + C of the game (R, C), which was called the rank of the game. Then, for
any fized constant k > 0, they present a FPTAS for bimatrix games of rank k.
Note that rank—0 games are zero-sum, while for rank—1 games it was recently
proved [2] that they are also polynomial-time solvable. [21] proposed a subclass of
polynomial-time solvable bimatrix games, called mutually concave games. This
class contains all constant-sum games but is much richer, and is incomparable
to games of fixed rank, since even rank—1 games may not be mutually concave,
and on the other hand one can easily construct mutually concave games which
have full rank. In this work it was proved that these games are equivalent to
the strategically zero-sum games [28]; a novel quadratic formulation for com-
puting NE points in bimatrix games was also proposed which captures the NE
approximability of the marginal distributions of (exact) correlated equilibria.

Our Contribution and Roadmap. In Section 3 we present a simple quadratic
formulation for computing (exact) NE points of symmetric bimatrix games,
which specializes the formulation of Mangasarian and Stone [26] to the sym-
metric case. We then prove that from any given KKT point of our formula-
tion, we can construct in polynomial time a (< é) —NE point (Theorem [I).



Approximability of Symmetric Bimatrix Games and Related Experiments 3

In Section [] we show how to construct approximate NE points with approxima-
tion ratio arbitrarily close to é, in polynomial time (Theorem [2]). We also show
that there exist even better approximate NE points which would be polynomial-
time constructible, given any initial é—KKT point with a Lagrange dual that
is also a §—KKT point, for sufficiently small 6 > 0 (Theorem B]). In Section
we extend our approach to asymmetric win lose games, and games with aggre-
gate payoff either at most 1 or at least g In particular, we first generalize the
symmetrization method of Brown and von Neumann, and we then prove that
it is indeed approximation preserving (Lemma [2]). We exploit this fact to pro-
vide approximate NE points with ratio arbitrarily close to :1,) for these classes of
(asymmetric) games (Theorem H]).

The last part of our paper concerns our experimental study of algorithms
constructing approximate NE points in symmetric games. In Section 6 we explain
all the algorithms that we consider, as well as the random game generator that
we use. In Section [l we summarize our observations on worst-case instances per
approximation algorithm separately, as well as for hybrid approaches that always
return the best approximation from a number of algorithms in each game. We
close our discussion with some concluding remarks in Section Bl

2 Preliminaries

Algebraic Notation. We denote by N,Z,Q,R the sets of naturals, integers,
rationals, and real numbers. The ‘+’ subscript (eg, R, ) implies the nonneg-
ative subset of a set, and a ‘44’ subscript (eg, Z,,) refers to the positive
subset of a set. For any d € Z,, [d] = {1,2,...,d}. We denote by R? (R¢)
the d—dimensional (non-negative) real space. For any real vector z € R?, let
max(z) = max;e[q{|2:|}. For any matrix A € R™*" and any (i, j) € [m] x [n],
A; j is its (i, j)—th element, A; , is its i—th row (as a row vector) and A, ; is its
j—th column (as a column vector). AT is the transpose matrix of A. We denote
by I the identity matrix, by E the “all-ones” matrix and by O the “all-zeros”
matrix (of proper dimensions). For any A4, B € R™*" A-BT = ABT is the mxm
matrix that is produced by their inner product, AoB = [A; ; - By j] (i, j)e[m]x[n] 18
the componentwise product, and AeB = 17 AcB1.

For any ¢ > 0, B(z,e) = {x € R? : [x — z| < ¢} and B(z,¢) = {x € R :
|x —z| < e} are the open and closed ball of radius ¢ around z respectively,
where [-| denotes the Euclidean norm in R%. Ag = {z € R? : 17z = 1} is the
space of d—dimensional probability vectors.

Game Theoretic Notation. For any 2 < m < n, we denote by (R, C) anmxn
bimatrix game, where the first player (aka the row player) has R € R™*™ as its
payoff matrix and the second player (aka the column player) has C' € R™*™ as
its payoff matrix. If it happens that C = R” then we have a symmetric game. If
R,C € Qm*" then we have a rational bimatrix game. The subclass of rational
games in which R, C € (QN][0, 1])™*™ are called normalized bimatrix games.
These are the games of concern in this work, for computational reasons. Finally,
a game in which R,C € {0,1}"*" is called a win-lose game.



4 S. Kontogiannis and P. Spirakis

The row (column) player chooses one of the rows (columns) of the payoff bi-
matrix (R, C) = (R;;, Cij)(i,j)em]x[n] @ her action. For any profile of actions
(,7) € [m] x [n] for the two players, the payoff to the row (column) player is R; ;
(Ci;)- A (mixed in general) strategy for the row (column) player is a probability
distribution x € A,,, (y € A,,), according to which she determines her action, in-
dependently of the opponent’s final choice of action. If all the probability mass of
a strategy is assigned to a particular action of the corresponding player, then we
refer to a pure strategy. The utility of the row (column) player for a profile of
strategies (x,y) is the expected payoff x’ Ry = Zie[m] Zje[n] R; jxiy; (xTCy)
that she gets. For any real number ¢ > 0, a profile of strategies (x,y) € A,, X 4,
is an e—Nash equilibrium (¢—NE in short) of (R, C), iff each player’s strategy
is an approximate best response (within an additive term of €) to the opponent’s
strategy: Vx € A, xRy > x' Ry —e and Vy € A,,,x"'Cy > xTCy —e. We de-
note by NE(e, R, C') the set of all these points of (R, C). We refer to a symmet-
ric profile if both players adopt exactly the same strategy. The e—NE points
corresponding to symmetric profiles are called symmetric e—Nash equilibria
(e—SNE points in short). For any profile (x,y) € A,, x A, the regrets of the
row and the column player in (R, C) are defined as Rr(x,y) = max(Ry)—x’ Ry
and R;;(x,y) = max(CTx) — xT'Cy respectively.

Quadratic Programming. Consider the following quadratic program:
(QP)  minimize {f(z) =c’z+ 2" Dz: Az >b; Cz=d}

where D € R™™ is a symmetric real matrix, A € R™*", C € R¥*" b ¢
R™, d € R¥. We denote by feas(QP) = {z € R" : Az > b; Cz = d} the
set of all feasible points for (QP). Additionally, consider the following (possibly
empty) subsets of feasible points:

— (Globally) Optimal Points: The points with the minimum objective
value: opt(QP) = {z* € feas(QP) :Vz € feas(QP), f(z) > f(z*)}.
— Locally Optimal Points: The points with the minimum objective value in
an open ball around them. Ie:
loc(QP)={z € feas(QP):3e > 0,Vz € feas(QP)N B(z,¢),f(z) > f(z)}.
— 0—KKT Points: V6 > 0, kkt(5, QP) is the set of feasible points z €
feas(QP) for which there exists a vector (A, u) of Lagrange multipliers sat-
isfying the following (approximate) KKT conditions (named after Karush,
Kuhn and Tucker, cf. [23], Theorem 3.3] and [4, Section 3.3.1]) at those points:
Stationarity: Dz +c= AT>\ —+ CT[L

(Approzimate) Complementarity: 0 < )\T . (AZ — b) S 0
Feasibility: A 2 0, Az 2 b, Cz=d
We denote the subset kkt(0, QP) of exact KKT points as kkt(QP).
— 0—Stationary Points: V§ > 0, sta(d, QP) C feas(QP) is the set of points
satisfying (approximately) a stationarity property known as Fermat’s Rule:
sta(§,QP) = {z € feas(QP) :Vz € feas(QP),Vf(z)! - (z—z) > —d}.
We denote the subset sta(0,QP) of exact stationary points as sta(QP).



Approximability of Symmetric Bimatrix Games and Related Experiments 5

A well-known property of quadratic programs with linear constraints is that
kkt(QP) = sta(QP) (cf. [23, Theorems 3.4 & 3.5] and the comment on this issue
between these two theorems). This is a quite interesting property in our case of
NE points in bimatrix games, since it essentially assures that the stationary
points which are targeted by the descent method of Tsaknakis and Spirakis [32]
are indeed the KKT points of the quadratic formulation that we shall propose
shortly (for symmetric games), or the formulation of Mangasarian and Stone [26]
(for general games).

3 Approximability of NE Points via (exact) KKT Points

In this section we provide, for any normalized (rational) matrix S € [0, 1]"*", a
quadratic program (SMS) for which it holds that opt(SM S) = NE(0, S, ST). We
then prove that any KKT point of (SMS) indicates a profile that is a (< é) —NE
of the symmetric game. Additionally, given a KKT point, such a profile can be
constructed in polynomial time.

Two crucial observations for our formulations are the following: (i) Any sym-
metric bimatrix game (A, B) = (S,ST) has at least one SNE point. (ii) Any
symmetric profile assures not only the same payoffs to both players, but also
the same payoff vectors against the opponent (thus, both players have the same
regrets in case of symmetric profiles): VS € [0,1]"*™,Vz € A,,,

common payoffs: ZTBZ = ZTSTZ = ZTSZ = ZTAZ

common payoff vectors: Az = Sz = (ST)TZ = BTZ

The quadratic program that we use is the following adaptation of Mangasarian
and Stone’s program (for another quadratic program whose set of global optima
has a bijective map to the set of NE points of a bimatrix game, see [21]):

minimize f(s,z) = s — 2z Sz =5 — %ZTQZ
subject to: —1s+ Sz <0
- 1Tz+1=0
seR, zeR?

(SMS)

where Q = S+ 57 is a symmetric n x n real matrix. Observe that any probability
distribution z € A, induces the feasible solution (s = max(Sz),z) of (SMS).
Moreover, f(s,z) is an upper bound on the common regret of the two players wrt
the symmetric profile (z,z): f(s,z) > R(z) = max(Sz) — z’ Sz. Therefore, the
objective value of a feasible point in (SMS) is non-negative and may reach zero
only for SNE points of (S, ST). In the sequel, for any probability vector z € A,,
we shall overload notation and use f(z) to denote the value f(max(Sz),z), for
sake of simplicity.

The conditions determining a 6—KKT point (5,z) of (SMS) (for any fixed
0 > 0) along with its Lagrange vector (w € Rﬁ,f € R,u € R?) are the following:



6 S. Kontogiannis and P. Spirakis

(KKTSMS)
T
Stationarity Vf(g, Z) = <7SziSTz) = <7ST$VJ:Z1+1§) (1)
T .
(Approxzimate) Complementarity 0< (vl:) . (ls;Sz) < 1) (2)
Primal Feasibility s € ]R, Sz < 15, 17z = 1,z>0 (3)
Dual Feastbility w 2 0, é S R, u 2 0 (4)

Observe that the Lagrange vector w is a probability distribution (eq. (), which
is an approximate best response of the row player against strategy z of the
column player [2)): The payoff vector Sz of the row player is upper bounded by
15 (eq. @)). Therefore, u’'z + max(Sz) — w’Sz < u’z +5 - w'Sz < 6§ =
Rr(w,z) +ulz <.

It is mentioned at this point that since our objective function has values in
[0,1], which can be actually attained (any SNE point indicates a solution of
(SMS) of zero regret, and in worst case the regret may reach the value of 1 since
the game is normalized), our notion of approximate KKT points is identical to
the one considered in Ye’s work [34]. Therefore, a 6 —KKT point of (SMS) may

be constructed in time (9( ["; log (5) +n* log(n)] - [loglog (5) + log(n)]) . The
next lemma proves a fundamental property of any ezact KKT point of (SMS):
Lemma 1. For any m,n > 2, S € [0,1]™*", every (max(Sz),z) € kkt(SMJS)
and its associated Lagrange vector (w,u,() satisfy the following properties: (i)

¢ = f(z) —2z"Sz. (i) 2f(z) = wlSw — z' Sw — wlu. (iii) 2f(z) + f(w) =

Ri(z,w) —wlu.
Proof. From the stationarity conditions (eq. () the following holds:
—Sz—8T2=—-8Tw+u+1¢
—2782 — 2787z = —27STw+zTu+271¢
. reprer

—wlSz —wlSTz = —wl'STw + wlu Jr!VT]. ¢
~

C = 22782+ 27 STw = f(z) — 2" Sz
(=-—wlSz—z"Sw+wlSw—wlu

. {Cf()zTSz

2f(z) = —927Sz + 2wl Sz = —zTSw+ wlSw — wlu

J\I

Adding f(w) = max(Sw) — w’ Sw to both sides of the last expression, we get:
2f(z) + f(w) = max(Sw) — w’ Sw — 27 Sw + w’ Sw — w'u
= 3min{f(2), f(W)} < 2f(2) + f(W) = Rr(z,w) —w'u

Lemma ] already assures that one of (z,z), (w,w) is a éfSNE point of (S, ST),
since R7(z,w) < 1 (the payoff matrix is normalized) and w’u > 0. We prove



Approximability of Symmetric Bimatrix Games and Related Experiments 7

next that given any (8,z) € kkt(SMS), we can construct an (< 3) —SNE point
in polynomial time.

Theorem 1. For any given (5,z) € kkt(SMS), 3e € [0, }
point of the symmetric (normalized) bimatriz game (S, S
constructible.

) such that an e—SNE
Ty is polynomial-time

Proof. Let (w,u,() be the vector of the corresponding Lagrange multipliers in
(KKTSMS) corresponding to (§,z). They are polynomial-time computable, as
the solution of the Linear Feasibility problem that evolves from(KKTSMS) for
the fixed value of (§ = max(Sz),z). We have already proved in Lemma [T that:

2f(z) + f(w) = max(Sw) — 2" Sw — w'u

Clearly, if f(z) # f(w), then min{f(z), f(w)} < max(SW) 5 " swowhu < ; and
we are done. So, let’s assume that f(z) = f(w) = ;. This in turn implies that:

T

max(Sw) —z’ Sw —w u=1= max(Sw)=1Az'Sw=0Awlu=0

since max(Sw) < 1, z7 Sw > 0, wu > 0. From this we also deduce that:

wlSw = —f(w) + max(Sw) = w!Sw = 3
We now focus on w. If (max(Sw),w) ¢ kkt(SMS), then we may apply Ye's
potential reduction algorithm (or any other polynomial-time algorithm that con-
verges to a KKT point) with this as a starting point, and we shall get an approx-
imate KKT point (max(52),2) having f(2) < f(w) = 5. So, let’s suppose that
(max(Sw), w) € kkt(SMS). Let (W, @, ) be the proper Lagrange multipliers for
this new KKT point. By applying the stationarity conditions for w this time,
we have:
2f(w) + f(W) = max(Sw) — w! Sw —wla =
f(W) = =2 +max(Sw) — w'Sw — W'

1

Again, unless f(W) < 3

that

(in which case we would return w), it must be the case

max(Sw) = L AW/ SW=0AWTta=0

Since (max(Sz),z), (max(Sw),w) € kkt(SMS), we have:

—SZ—STZ—I_—STW:U—&—IE N
(= f(z) — 2" Sz
~w'Sz — 27 Sw —I-XVTS{’E =wlu+ f(z) 2"z =
=0
0<wlu=-w'Sz—2z"SWw — f(z) + 2" Sz =

wlSz — 27 Sz < 7;’ —zTSw <0



8 S. Kontogiannis and P. Spirakis

On the other hand:

_Gw — GT Ta — @ F
Sw—5w+S \;/ u+1§ = —2'Sw— 275w +27ST% = 271 - |
C=f(w)—w'Sw=—1 S \v(/)
= =max(Sz
=0<z"t =3 —max(Sz) + WISz = max(Sz) —z' Sz < } + WSz — 2z’ Sz
- ~ ~
=f(=)=}

= wlSz —27Sz >0

which contradicts the previously stated inequality ; +wlSz—2"Sz < —2z7 Sw.

4 Polynomial Time Construction of (; + 6) —NE Points

The main point of our discussion in the previous section was that we considered
as given an arbitrary exact KKT point of (SMS), from which we could then
construct in polynomial time a (< :1,)) —SNE of the game. Therefore, we cannot
yet claim that in overall this is a polynomial-time algorithm for constructing even
an (:1,)) —NE point for symmetric bimatrix games, since the computation of an
exact KKT point is hard. In order to achieve this, we have to restrict ourselves to
approximate KKT points, which are indeed polynomial-time constructible (eg,

via Ye’s algorithm). The following theorem gives the answer to this question:

Theorem 2. For any rational matriz S € [0,1]"*", and any § > 0, there exists
an algorithm for constructing a (é + 5) —SNE of (S, ST) in time polynomial in
the size of the game and quasi-linear in §.

Proof. The argument is similar to the one of Theorem [l but we now have to
be more careful in handling approximate KKT points. We start by constructing
(using Ye’s algorithm) a §—KKT point of (SMS), (5,2), along with its Lagrange
multipliers (w,u, (). Wlog we can assume that § = max(Sz). Clearly it holds
that w! Sz < max(Sz) < w! Sz+6 = w! Sz—2z" Sz < f(z) < w! Sz—2z" Sz+4.
From the proof of Lemma [l we know that

i. (=wlSz—2275z —ul%z.

ii. 2 (WTSZ — zTSz) =wlSw—z'Sw—ulw+u’lz
We can now prove the analogue of Lemma [liii as follows:

2 (WTSz — zTSz) =wlSw—z'Sw—ulw+u’lz
= 2 (w' Sz — 2" Sz) + max(Sw) — w' Sw = max(Sw) — 27 Sw —u’w + u’'z
~ ~ o~ ~ ~ - ~~
> f(z)—6 =f(w) <

= 3min{f(z), f(w)} < 2f(z) + f(w) < 35 + max(Sw) — 2" Sw —u’'w

From this conclude that one of (z,z), (w,w) is a (1/3 + J) —SNE of (S, ST).

We now show that, for sufficiently small § > 0, if we find a §—KKT point (5, z)
whose Lagrange multiplier induces another §—KKT point (max(Sw), w), then
we can construct a (< 5) —SNE point for (S, 7).



Approximability of Symmetric Bimatrix Games and Related Experiments 9

Theorem 3. For any rational matriz S € [0,1]"*", and any ,, > & > 0, if
we are given a 6—KKT point (max(Sz),z) whose Lagrange multiplier (w,u, ()
induces another 6—KKT point (max(Sw),w), then one of (z,z),(w,w) is a
(< 1) —SNE of (S, ST).

Proof. Assume for sake of contradiction that min{f(z), f(w)} > ;. We already
proved in the previous theorem that

max(Sw) — z7 Sw —ul'w 1

<d+ 3

; < min{f(z), f(w)} <6+ 3

This implies that: max(Sw) —z” Sw —ulw >1 -3¢
Additionally,
3min{f(z), f(w)} < 2f(2) + f(w) = [f(2z) = f(W)| <1436 - [f(2) — f(W)]
= [f(z) = f(w)] <1+ 30 — 3min{f(z), f(w)} <30
That is:

L <min{f(z), f(w)} < min{f(2), f(W)} +|f(2) — f(W)| < L +40

We now exploit the assumption that both (max(Sz),z) and (max(Sw),w) are
0—KKT points. We denote by (W, 1, () the Lagrange multipliers corresponding
to the latter point. We apply the stationarity condition for both of them:

fSLZfSTz+STW =u+1(
C=wlSz—22"Sz —ulz
—wTlSz — 2t Sw+ wl'Sw =w'u+wlSz — 2275z —u’l'z =

wlSz — 2" Sz = wl' SW — 27 SW — WTu — (wl' Sz — 27 Sz) + ul'z

=

Similarly:

5 =wl'Sw — 2wl Sw — aTw =

—2TSw —wlSz+wl'Sz=2zTia+wlSw—2wT Sw— alw =

wlSz — 2" Sz = 2" + W' Sw — 2w! Sw — i''w + 27 Sw + (w! Sz — 27 Sz)

—Sw—STw+STv~v:ﬁ+1§}

Combining the right-hand sides of these two equalities, we have:

5 >wlSw—zTSw—wlut+ulz+a"w
- ~ -~ - -~ - \ - v \v-/

<35 >0 0 <5 <5
=z u+2( TSw — 2WTSW) ivigv_g—l—gTévg—&—Qi TSZ TSZ)
>0 > fw)—5 <1 20 > )5
1

>2f(z)+2f(w)—46—-1> 3745

which is impossible, for any § < 217



10 S. Kontogiannis and P. Spirakis

5 Extension to Asymmetric Games

In this section we shall demonstrate how we can exploit our approximation result
for normalized symmetric bimatrix games, to the asymmetric case. In particular,
we shall show how we can construct in polynomial time (:1,) + 5) —NE points for
any win lose bimatrix game, as well as for any normalized bimatrix game with
maximum aggregate payoff at most 1 or at least g To this direction, we propose
a symmetrization of bimatrix games, which we shall prove to be approximation
preserving for these games. The symmetrization is a straightforward generaliza-
tion of the BvIN-symmetrization of Brown and von Neumann for zero-sum
games [6]. This symmetrization causes a relative blow-up in the action spaces
of the players (as opposed to the well-known GKT-symmetrization of Gale,
Kuhn and Tucker [I6]), but will be shown to essentially preserve approximations
of NE points, which is certainly not the case for the GKT-symmetrization. In
particular, let (R, C) be any m x n bimatrix game. We construct a new, mn X mn
matrix of payoffs S as follows:

V(i,5), (k,£) € [m] x [n], Sijre = Rie + Ch;

We then consider the symmetric game (S, ST). We also consider the following
mapping of strategies z € A, of (S,ST) to a profile of “marginal strategies”
(x,y) of (R, C):

Y(i,7) € [m] X [n], ; = Z Zie N y; = Z Zkj

L€(n] ke[m]

Lemma 2. Fiz any (not necessarily normalized) bimatriz game (R, C), and the
corresponding symmetric game (S, ST) considered by the BuN-symmetrization.
Then, any (z,z) € SNE(e, S, ST) indicates a profile (x,y) € NE(¢, R, C).

Proof. First of all, observe that Vz € A,,,, and its BvN-image (x,y) € A, x 4,

z!' Sz = Z Z Z Z zijzke - (Rije + Chyj)

i€[m] j€[n] ke[m] L€(n]

S (e (e e (S (o

=x"Ry +xTCy

On the other hand, for approximate NE points of the symmetric game we
have:



Approximability of Symmetric Bimatrix Games and Related Experiments 11

z € NE(g,S,5T)

& V(i,5) € [m] x [n], Ypem) Ceepm (Rie + Crj)ane —€ < 2" Sz
< V(i,j) € [m] x [n], Zee[n] Ry Z zngere[m] Cr,j Z 20— < 27 Sz
ke[m] Le(n]
;ge ;C;k
& V(i,7) € [m] x [n], Riny + Cy;Tx —e <xTRy +xTCy
o= V(X,¥) € Ay X A, xTRy +xTCy — e < xRy +x'Cy

By trying all (x,y) and (x,y), it is trivial to observe that (x,y) € NE(e, R, C).

The following theorem is a direct consequence of the above approximation-
preserving symmetrization, and our approximation algorithm for normalized
symmetric bimatrix games.

Theorem 4. There is a polynomial-time algorithm that constructs (é + 6) —NE
points for (i) win-lose bimatriz games, and (i) games (R, C) with max(R+C) <
1 ormax(R+C) > 3.

Proof. For the win-lose case, we may safely exclude games having in the payoff
bimatrix a (1,1)—element, since this would be a trivial pure NE of the game.
Similarly, if a normalized game (R, C) has maximum aggregate payoff max(R +
C) > g, then obviously the pure strategy profile attaining it is a éfNE point of
the game. Therefore, it suffices to prove the claim only for the class of normalized
games with aggregate payoff at most 1. Since max(R 4+ C) < 1, we can be
sure that the payoff matrix S in the BvN-symmetrization is also normalized.
Therefore, we can apply our algorithm for the symmetric case to construct a
point (z,z) € NE (é +4,5, ST), for any fixed § > 0. We have already proved
in the previous lemma that the marginal profile is equally good for the original
game: (x,y) € NE (5 +0,R,C).

6 Presentation of Random Games Generator and
BIMATRIX-NASH Relaxations

Our main platform for the experimental analysis that we conducted was Mat-
lab (2007b, The MathWorks, Natick, MA). We have also used the CVX model-
ing system for disciplined convex programs [18], particularly for the description
(and solution) of some of the relaxations of (SMS), as well as for the description
of the CE polytope and the optimization of linear functions in it. Our main goal
in this experimental study is to focus on the quality of the provided solutions,
given their polynomial-time solvability which is assured either by the (SMS) in-
stance being recognized as convex QP, or by being approximated by the proposed
polynomial-time solvable relaxations, or finally by optimizing linear functions in
the CE-polytope of the game. Therefore, we have conducted extensive experimen-
tal tests looking for worst-case instances for each of the considered relaxations of
the game.



12 S. Kontogiannis and P. Spirakis

We start our discussion by explaining the random game generator. Conse-
quently we present each of the (pure) relaxation techniques that we have imple-
mented. We end this experimental part with the presentation of our experimental
results both on the pure relaxation techniques and on hybrid methods that com-
bine subsets of relaxations and return the best approximation per game. All our
experiments were conducted on random symmetric win-lose bimatrix games. The
focus on symmetric games was for the sake of simplicity. The choice of win-lose
rather than normalized games was due to our observation that harder cases for
our relaxations appear by the former type of games, at least on the sequences of
games produced by our random game generator.

6.1 Pseudo-random Game Generator

Our pseudo-random game generator creates m X n bimatrix games (R, C), in
which each payoff matrix is generated by the randn(m,n) routine of Matlab.
This routine returns an m X n matrix containing pseudo-random values drawn
from the standard normal distribution with mean 0 and standard deviation 1.
The sequence of pseudo-random numbers produced by randn is determined by
the internal state (seed) of the uniform pseudo-random number generator of
Matlab. It uses m - n uniform values from that default stream to generate each
normal value. In order to create independent instances in different runs of the
experiment, we reset the default stream (by renewing randomly the state) at
the beginning of each new execution (as a function of the global clock value at
runtime). Of course, it is also possible to enforce the repetition of exactly the
same fixed state (and consequently, the same stream of uniform values) that
would allow various experimentations to be run on the same (pseudo-random)
set of games. Nevertheless, in this phase we have chosen to create independent
runs, since our main objective is to investigate hard cases for the various ap-
proximation methods.

Our game generator supports the option to normalize or not the produced
game. Normalization means re-scaling of the payoffs so that for each player the
min payoff is exactly 0 and the max payoff is exactly 1.

We can also create win-lose bimatrix games, by discretizing the payoff values
either to 0 (if non-positive) or to 1 (if positive). We may even use a different
discretization threshold, in order to opt for either sparse or dense games, with
respect to ones in the payoff matrices. Finally, our generator supports (option-
ally) the avoidance of win-lose games which can be trivially handled and/or be
simplified. In particular, we have the option to avoid (i) “all-ones” rows in R,
since such a row weakly dominates any other row for the row player and therefore
implies the existence of a pure NE point in the game; (ii) “all-zeros” rows in R,
since such a row is again weakly dominated and cannot disturb an approximate
NE point found in the residual game. For similar reasons, we may choose to
avoid (iii) “all-ones” columns and (iv) “all-zeros” columns in C. We also avoid
the (1,1)—elements in the bimatrix, which is also a trivial pure NE point. We
try to make all these simplifications without affecting significantly the random-
ness of the created game. To this direction, we start by changing (uniformly



Approximability of Symmetric Bimatrix Games and Related Experiments 13

and independently) each (1,1)-element to either a (0,1)— or to a (1,0)—element.
Consequently, we switch one random element of an “all-ones” row in R to 0.
Similarly, we switch the first random element of an “all-zeros” row in R to 1,
provided that this change does not create a new (1, 1)—element. We handle in a
similar fashion the columns of C.

6.2 KKT Relaxation

Our first approach, which is in accordance with the theoretical part of this paper,
is to actually return an arbitrary KKT point of (SMS) as an approximate NE
point of a symmetric bimatrix game (R, RT). For this phase we have used the
quadprog function of Matlab, that attempts to converge to (or even reach) a
local solution, unless the problem is strictly convex. Indeed, we first check the
current instance of (SMS) for convexity, and in the convex case we solve it using
the SeDuMi solver via the CVX environment. In the non-convex case, we call
the quadprog function. In case that it either reaches, or converges to a local
optimum, we return it as an approximate NE point of the game. Otherwise,
we report failure of the method and we do not count the particular game in our
quest for worst-case instances. This is because the previously reported theoretical
results on (KKTSMS) are valid only at KKT points of (SMS). Nevertheless, we
keep in mind the number of (non-convex) games that were not solved by this
method.

6.3 RLT Relaxation

The Reformulation-Linearization-Technique (RLT) is a method that generates
tight LP relaxations of either discrete combinatorial optimization or continuous
(nonconvex) polynomial programming problems. For the particular case of mixed
0-1 linear programs (MILPs) in n binary variables, the RLT generates an n—level
hierarchy which at the n—th level provides an explicit algebraic characterization
of the convex hull of feasible solutions.

The method essentially consists of two steps, the reformulation step in which
additional valid inequalities are generated, and the linearization step in which
each nonlinear monomial in either the objective function or in any of the con-
straints, is replaced by a new (continuous) variable. For continuous (non-convex)
quadratic optimization programs with linear constraints, the reformulation-step
is as follows: For each variable z; that has bound-constraints ¢; < z; < u;, the
non-negative expressions (z; — ¢;) and (u; — x;) are called bound-factors. For
any linear constraint a’x > b (other than the bound constraints) the expres-
sion (a”x —b) is called a constraint-factor. The new constraints are produced
by the reformulation step by requiring the non-negativity of all products of
subsets (say, pairs) of (either bound- or constraint-) factors. Consequently, the
linearization step substitutes any monomial (eg, of degree 2) by new variables.
The same substitution also applies in the possibly non-linear objective func-
tion of the program. The resulting program is indeed an LP relaxation of the
original (continuous) polynomial program. For more details, the reader is de-
ferred to [30, Chapters 7-8]. In this work we have applied the RLT to the SMS,



14 S. Kontogiannis and P. Spirakis

by considering all the possible pairs of bound and constraint factors. In order
to achieve as tight an approximation as possible, we have added to the SMS
the constraints {1 > a > 0; Vj € [n],z; < 1}, exploiting the fact that the
games that we consider are normalized. This set of constraints may be redun-
dant for SMS itself, but it also contributes to the RLT relaxation with quite
useful constraints. The result of this technique is the following RLT-relaxation
(the variables 8 € R, v € R”, W € R™*" are added during the linearization
phase):

minimize & — 3¢ 2 e Bii Wi

s.t. B — Zj(Rimj + de‘)’}/j + Ej Zz R; iR W;e> 0,1, ke [n]
a_Zj R; jx; —’}/k—‘rzj R Wi > 0, i,k € [n]
—x;—x; +W; ;> —1,4,j € [n]
V=2 Rijvi = 0,4,k € [n]
mi_ZjWi,j: 0,7 € [n]
(RLTSMS) Zj r; = 1,
—z;—a+y > —1,1 € [n]
z;—v > 0,i€[n]
B—=>,Rijv= 0,i€ln]
Zi vi—a= 0,
a—pg> 0,

B=>0; 7 =>0,i€n]; Wi;>0,1,j¢€[n]

Observe that some constraints of (SMS) are missing from (RLTSMS). This is
because it is well known (and trivial to show) that all the constraints of (SMS)
are implied by the constraints of (RLTSMS) [30, Proposition 8.1]. We have also
excluded some of the RLT constraints that were clearly implied by the ones pre-
sented in (RLTSMS). We could possibly have avoided more constraints, that are
also induced by the constraints in (RLTSMS). Nevertheless, our primary goal is
to experimentally test the approximability of NE points via the RLT relaxation,
given its polynomiality, and not (at least, not yet) to optimize the computational
time. In order to solve (RLTSMS), we have used the CVX modeling system for
disciplined convex programming [I8§].

6.4 Doubly Positive Semidefinite Programming Relaxation

In this section we exploit the fact that (SMS) could be transformed so that the
objective be linear, by using the substitution W = x - x. Of course, this is
a non-linear equality constraint. In order to tackle the apparent intractability
of this formulation as well, we relax the additional equality constraint to the
non-linear convex constraint: W — x - x7 > O, where the matrix comparisons
are component-wise. This is equivalent to demanding that the matrix

7 {W x}

xT 1



Approximability of Symmetric Bimatrix Games and Related Experiments 15

be positive semidefinite (PSD). Apart from the PSD constraint Z = 0, there
is also an obvious non-negativity constraint: Z > O. This kind of semidefinite
relaxations are called doubly-positive semidefinite (DPSDP) relaxations (eg, [7]).
Their advantage is that linear optimization over the cone of DPSDP matrices
can be performed using techniques for self-dual cones, such as SeDuMi [31]. So,
we have implemented the following DPSDP-relaxation of (SMS), which we then
formulate in the CVX environment and have it solved by the SeDuMi solver:

minimize a—>, Zj R; ;W ;
sta—3 Riju; >0, i€ [n]

ijj = ]-a

(DPSD) Wij—Wji=0, i,j€n]
7 = [Z )1(] =0,
7 <E,
Z >0

6.5 Using Projections of Extreme CE Points

Our final approach for producing approximate NE points is based on an idea
that we presented in [21]. In that work we proved (among other things) that
in the following parameterized non-linear program the set of optimal solutions
completely (and exclusively) describes the Nash equilibrium set of the normalized
bimatrix game (R, C), for any value t € (0, 1):

minimize >, > [tR; j + (1 — )Ci ;]W; j — 1"WTtR+ (1 - t)C)Ww'1
s.t. Vi, k € [mL Eje[n](R’ivj — RkJ)WiJ >0
(KS(t)) Vi L€ [n], Yicpm (Cij — Cie)Wi; 20
2ietm) 2jetn Wi =1
Y(i,7) € [m] x [n], Wi; >0

In particular, it was shown in [21I] that the marginal distributions % = Wi, y=
WT1 of any optimal solution W of (KS(t)) comprise a NE point of (R, C),
and vice versa. Since in the present work we deal with polynomial-time ap-
proximations of NE points in symmetric bimatrix games, in our last attempt
indeed we tried to optimize various linear functions in the feasible space of
(KS(t)). The most prominent linear objective was to minimize the objective
(RoC)eW = 1T (RoCoW)1. That is, we return as approximate NE points the
marginals of an optimal solution to the following linear program (which we again
modeled in CVX):

minimize D2 Ry Ry ilWi
j

(BMXCEV4) 5.8 Vi k€ [m], e (Rig —



16 S. Kontogiannis and P. Spirakis

7 Experimental Results

In this section we summarize the results of our experimental analysis on the
implemented relaxation methods for (SMS).

7.1 Pure Relaxations

First we conducted a series of experiments on each of the pure relaxations that we
have rum 500K random instances of 10x 10 games (without touching the random
games produced by the generator). For each game we accepted the produced
approximate NE point only if the corresponding solver managed to converge
to a solution. Otherwise we excluded the game from the worst-case accounting
and only kept a log of unsolved games. The results of these experiments are
summarized in Table [l

Consequently we ran the same experiments, but this time we demanded from
the random game generator to avoid the appearance of some trivial cases (cf.
Section [6]). Our experimental results in this case are presented in Table

We have also experimented on the distribution of games solved by each game,
as a function of the epsilon-value. To this direction, we have focused on 10 x 10
games, and we have run 10K random (untouched) instances per pure relaxation
method. Our findings are summarized by the graphs presented in Figure [l

It is worth mentioning that by means of approximation the best pure method
is (KKTSMS). It is also noted that avoiding trivial cases in the produced random
games (cf. Subsection [6.I]) has a significant impact mainly on the approxima-
tions of (KKTSMS) and (BMXCEV4). Concerning the number of games that
are solved, the winner is (BMXCEV4) with the other three methods being com-
parable.

Table 1. Experimental results for worst-case approximation among 500K random 10 X
10 symmetric win-lose games

RLTSMS KKTSMS DPSDP BMXCEV4

worst-case epsilon 0.51432 0.22222 0.6 0.49836
# unsolved games 112999 110070 0 405
worst-case round 10950 15484 16690 12139

Table 2. Experimental results for worst-case approximation among 500K random 10 x
10 symmetric win-lose games which avoid (1,1)—elements, (1,*)— and (0, *)—rows,
(*,1)— and (*,0)—columns in the payoff matrix

RLTSMS KKTSMS DPSDP BMXCEV4

worst-case epsilon 0.41835 0.08333 0.51313 0.21203
# unsolved games 11183 32195 0 1553
worst-case round 45062 42043 55555 17923



Approximability of Symmetric Bimatrix Games and Related Experiments 17

Table 3. Experimental results for worst-case approximations of hybrid methods among
500K random 10 x 10 symmetric win-lose games

KKTSMS4+BMXCEV4

worst-case epsilon 0.47881

# unsolved games
worst-case round

KKTSMS+RLT4+BMXCEV4

0.47881
0
1776

KKTSMS+4+RLT+DPSDP

0.54999
0
7737

Table 4. Experimental results for worst-case approximations of hybrid methods among
500K random 10 x 10 symmetric win-lose games which avoid (1,1)—elements, (1, %)—
and (0, x)—rows, (*,1)— and (*,0)—columns in the payoff matrix

KKTSMS+BMXCEV4 KKTSMS+RLT+BMXCEV4 KKTSMS+RLT+DPSDP
worst-case epsilon 0.0.08576 0.088576 0.28847
# unsolved games 0 0
worst-case round 157185 397418 186519
2500 9000 700 2000
(M
8000 1800
600l | ‘
- 2000 - B 7000 3 “ "‘ § 1600
g H 2 H
= H 2 500 “ ‘ % 1400
£ § 6000 £ ‘ “ 5
& 1500 i £ i 1200
2 £ 2 | £ 1000
z 5 ENE 3
Z & 4000 g 300 | ‘ g
2 1000 - z 5 | E 800 ﬁ
3 = g g |
= $ 000 g L\ % aol |
a ¢ & 200 [ g ﬁ |
= g 2000 & | ‘ 2 w
500 A\ ‘ V‘ & woli |
1000 100r I
| | \ 200}
| |
° % 05 % 05 % 0.5 1
epsilon value epsilon value epsilon value epsilon value
(a) RLTSMS (b) KKTSMS (c) DPSDP (d) BMXCEV4

Fig. 1. Distribution of games solved for particular values of approximation, in runs of
10K random 10 x 10 symmetric win-lose games. The games that remain unsolved in
each case accumulate at the epsilon value 1.

7.2 Hybrid Relaxations

We have finally conducted experiments that use a “best-of” approach to pro-
duce approximate NE points in randomly produced symmetric bimatrix games.
The goal of these hybrid approaches is two-fold: To explore whether a com-
bination of methods decreases the approximation ratio even below the ratio
of (KKTSMS) which seems to be the best pure method. But also to mini-
mize the number of unsolved games, which is significant even for (BMXCEV4)



18 S. Kontogiannis and P. Spirakis

which is the winner under this objective. We have run experiments on the
hybrid methods KKTSMS+BMXCEV4, KKTSMS+RLT+BMXCEV4 and
KKTSMS+RLT+DPSDP. The reason for choosing KKTSMS as a common com-
ponent in all these combinations is the significantly smaller execution time of
this method, and also its extremely good behavior in most of the instances that
are solvable by it (cf. Figure [I).

The experimental results of these hybrid approaches are summarized in Ta-
ble Bl (for raw random games) and Table [ (for random games that avoid trivial
situations).

From these experiments it is clear that hybrid methods do not significantly
help (at least in worst case) the approximation ratio of the provided solutions,
but on the other hand we observe that there are no unsolved instances anymore,
since the different approaches do not have ill-conditioned instances in common.
It is also observed that it is actually the KKTSMS and the BMXCEV4 methods
that act complementarily and also assure the best observed behavior. Our runs
on the hybrid KKTSMS+RLT+BMXCEV4 shows that the RLT method does
not really contribute to the quality of the solutions. It is also observed that
the hybrid KKTSMS+RLT+DPSDP has rather poor approximation guarantees,
which implies that some ill-conditioned games for KKTSMS are also hard cases
for the other two methods.

8 Conclusions

In this work we have presented a simple quadratic formulation for the problem
of computing (exact) NE points of symmetric bimatrix games. We then showed
how to construct approximate NE points, with approximation ratio arbitrarily
close to ;’, in polynomial time. We also observed that indeed there exist even
better approximate NE points, which would be polynomial-time constructible
given any initial (exact) KKT point with a Lagrange dual that is also a KKT
point. Indeed, we strongly suspect that there is a polynomial-time construction
even in the case where this demand for a primal-dual pair of KKT points is not
satisfied. Nevertheless, we were not able to formally prove this until now, and
it remains an open question for future investigation. We also showed that our
approach also works for any win lose game, or for any asymmetric game with
maximum aggregate payoff either at most 1, or at least g We are currently
investigating our techniques directly to the general asymmetric case.

Our experimental analysis of various (pure and hybrid) approximation meth-
ods indicates that it is most likely that we can do better than the theoretically
proved bound of é, which almost holds also for the asymmetric case. Of course,
this remains to be proved.

Acknowledgements. The authors wish to thank Christos Papadimitriou for bring-
ing to their attention the BvN-symmetrization method.



Approximability of Symmetric Bimatrix Games and Related Experiments 19

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for find-
ing nash equilibria in planar win-lose games. Journal of Graph Algorithms and
Applications 11(1), 309-319 (2007)

Adsul, B., Garg, J., Mehta, R., Sohoni, M.: Rank-1 bimatrix games: A homeo-
morphism and a polynomial time algorithm. In: Proc. of 43rd ACM Symp. on
Th. of Comp., STOC 2011 (2011)

Althoéfer, I.: On sparse approximations to randomized strategies and convex com-
binations. Linear Algebra and Applications 199, 339-355 (1994)

Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont
(2003)

Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate nash equi-
libria in bimatrix games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS,
vol. 4858, pp. 17-29. Springer, Heidelberg (2007)

Brown, G.W., von Neumann, J.: Solutions of games by differential equations.
Annals of Mathematical Studies 24, 73-79 (1950)

Burer, S.: On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming 120, 479-495 (2009)

Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc.
of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS 2006), pp. 261-272. IEEE
Comp. Soc. Press, Los Alamitos (2006)

Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: Approximation and
smoothed complexity. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci.
(FOCS 2006), pp. 603-612. IEEE Comp. Soc. Press, Los Alamitos (2006)
Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of nash equilibria
for very sparse win-lose bimatrix games. In: Azar, Y., Erlebach, T. (eds.) ESA
2006. LNCS, vol. 4168, pp. 232-243. Springer, Heidelberg (2006)

Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. In: Proc. of
18th Int. Joint Conf. on Art. Intel. (IJCAI 2003), pp. 765-771. Morgan Kaufmann,
San Francisco (2003)

Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of comput-
ing a nash equilibrium. STAM Journal on Computing 39(1), 195-259 (2009)
Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate nash equi-
libria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006.
LNCS, vol. 4286, pp. 297-306. Springer, Heidelberg (2006)

Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate nash
equilibrium. In: Proc. of 8th ACM Conf. on El. Comm. (EC 2007), pp. 355-358
(2007)

Daskalakis, C., Papadimitriou, C.H.: Three player games are hard. Technical Re-
port TR05-139, Electr. Coll. on Comp. Compl., ECCC (2005)

Gale, D., Kuhn, HW., Tucker, A.W.: On symmetric games. Contributions to
Game Theory 1, 81-87 (1950)

Gilboa, 1., Zemel, E.: Nash and correlated equilibria: Some complexity consider-
ations. Games & Econ. Behavior 1, 80-93 (1989)

Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 1.21 (February 2011), http://cvxr.com/cvx

Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games.
Economic Theory 42, 157-173 (2010)


http://cvxr.com/cvx

20

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

S. Kontogiannis and P. Spirakis

Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for ap-
proximating nash equilibria of bimatrix games. In: Spirakis, P.G., Mavronicolas,
M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286-296. Springer,
Heidelberg (2006)

Kontogiannis, S., Spirakis, P.: Exploiting concavity in bimatrix games: New
polynomially tractable subclasses. In: Serna, M., Shaltiel, R., Jansen, K.,
Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302. Springer, Heidelberg (2010),
http://www.cs.uoi.gr/~kontog/pubs/approxiOpaper-full.pdf

Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix
games. ALGORITHMICA 57, 653-667 (2010)

Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational
Inequalities — A Qualitative Study. Nonconvex Optimization and its Applications.
Springer, Heidelberg (2005)

Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. Journal of
the Society for Industrial and Applied Mathematics 12, 413-423 (1964)

Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proc. of 4th ACM Conf. on El. Comm (EC 2003), pp. 36-41. ACM, New York
(2003)

Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic
programming. Journal of Mathematical Analysis and Applications 9(3), 348-355
(1964)

Morgenstern, O., von Neumann, J.: The Theory of Games and Economic Behav-
ior. Princeton University Press, Princeton (1947)

Moulin, H., Vial, J.P.: Strategically zero-sum games: The class of games whose
completely mixed equilibria cannot be improved upon. Int. Journal of Game The-
ory 7(3/4), 201-221 (1978)

Savani, R., von Stengel, B.: Exponentially many steps for finding a nash equilib-
rium in a bimatrix game. In: Proc. of 45th IEEE Symp. on Found. of Comp. Sci.
(FOCS 2004), pp. 258-267 (2004)

Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solv-
ing Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers,
Dordrecht (1998)

Sturm, J.F.: Using SeDuMi 1.02, a matlab toolbox for optimization over symmet-
ric cones. Optimization Methods and Software 11-12, 625-653 (1999)

Tsaknakis, H., Spirakis, P.: An optimization approach for approximate nash equi-
libria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42-56.
Springer, Heidelberg (2007)

Tsaknakis, H., Spirakis, P.: A graph spectral approach for computing approximate
nash equilibria. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 378-390.
Springer, Heidelberg (2010)

Ye, Y.: On the complexity of approximating a kkt point of quadratic program-
ming. Mathematical Programming 80, 195-211 (1998)


http://www.cs.uoi.gr/~kontog/pubs/approx10paper-full.pdf

Metaheuristic Optimization: Algorithm Analysis
and Open Problems

Xin-She Yang

Mathematics and Scientific Computing, National Physical Laboratory,
Teddington, Middlesex TW11 0LW, UK

Abstract. Metaheuristic algorithms are becoming an important part
of modern optimization. A wide range of metaheuristic algorithms have
emerged over the last two decades, and many metaheuristics such as
particle swarm optimization are becoming increasingly popular. Despite
their popularity, mathematical analysis of these algorithms lacks behind.
Convergence analysis still remains unsolved for the majority of meta-
heuristic algorithms, while efficiency analysis is equally challenging. In
this paper, we intend to provide an overview of convergence and efficiency
studies of metaheuristics, and try to provide a framework for analyzing
metaheuristics in terms of convergence and efficiency. This can form a
basis for analyzing other algorithms. We also outline some open questions
as further research topics.

1 Introduction

Optimization is an important subject with many important application, and
algorithms for optimization are diverse with a wide range of successful applica-
tions [I0JII]. Among these optimization algorithms, modern metaheuristics are
becoming increasingly popular, leading to a new branch of optimization, called
metaheuristic optimization. Most metaheuristic algorithms are nature-inspired
[8129132], from simulated annealing [20] to ant colony optimization [§], and from
particle swarm optimization [I7] to cuckoo search [35]. Since the appearance of
swarm intelligence algorithms such as PSO in the 1990s, more than a dozen
new metaheuristic algorithms have been developed and these algorithms have
been applied to almost all areas of optimization, design, scheduling and plan-
ning, data mining, machine intelligence, and many others. Thousands of research
papers and dozens of books have been published [SJ9QITTITI29I32/33].

Despite the rapid development of metaheuristics, their mathematical analysis
remains partly unsolved, and many open problems need urgent attention. This
difficulty is largely due to the fact the interaction of various components in
metaheuristic algorithms are highly nonlinear, complex, and stochastic. Studies
have attempted to carry out convergence analysis [I22], and some important
results concerning PSO were obtained [7]. However, for other metaheuristics
such as firefly algorithms and ant colony optimization, it remains an active,
challenging topic. On the other hand, even we have not proved or cannot prove
their convergence, we still can compare the performance of various algorithms.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 21 2011.
© Springer-Verlag Berlin Heidelberg 2011



22 X.-S. Yang

This has indeed formed a majority of current research in algorithm development
in the research community of optimization and machine intelligence [9I29/33].

In combinatorial optimization, many important developments exist on com-
plexity analysis, run time and convergence analysis [25l22]. For continuous op-
timization, no-free-lunch-theorems do not hold [12]. As a relatively young field,
many open problems still remain in the field of randomized search heuristics [1].
In practice, most assume that metaheuristic algorithms tend to be less complex
for implementation, and in many cases, problem sizes are not directly linked with
the algorithm complexity. However, metaheuristics can often solve very tough
NP-hard optimization, while our understanding of the efficiency and convergence
of metaheuristics lacks far behind.

Apart from the complex interactions among multiple search agents (making
the mathematical analysis intractable), another important issue is the various
randomization techniques used for modern metaheuristics, from simple random-
ization such as uniform distribution to random walks, and to more elaborate
Lévy flights [524133]. There is no unified approach to analyze these mathemat-
ically. In this paper, we intend to review the convergence of two metaheuristic
algorithms including simulated annealing and PSO, followed by the new conver-
gence analysis of the firefly algorithm. Then, we try to formulate a framework for
algorithm analysis in terms of Markov chain Monte Carlo. We also try to analyze
the mathematical and statistical foundations for randomization techniques from
simple random walks to Lévy flights. Finally, we will discuss some of important
open questions as further research topics.

2 Convergence Analysis of Metaheuristics

The formulation and numerical studies of various metaheuristics have been the
main focus of most research studies. Many successful applications have demon-
strated the efficiency of metaheuristics in various context, either through com-
parison with other algorithms and/or applications to well-known problems. In
contrast, the mathematical analysis lacks behind, and convergence analysis has
been carried out for only a minority few algorithms such as simulated anneal-
ing and particle swarm optimization [7J22]. The main approach is often for very
simplified systems using dynamical theory and other ad hoc approaches. Here
in this section, we first review the simulated annealing and its convergence, and
we move onto the population-based algorithms such as PSO. We then take the
recently developed firefly algorithm as a further example to carry out its con-
vergence analysis.

2.1 Simulated Annealing

Simulated annealing (SA) is one of the widely used metaheuristics, and is also
one of the most studies in terms of convergence analysis [420]. The essence of
simulated annealing is a trajectory-based random walk of a single agent, starting
from an initial guess xy. The next move only depends on the current state or
location and the acceptance probability p. This is essentially a Markov chain
whose transition probability from the current state to the next state is given by



Metaheuristic Optimization 23

| 1)
kpT

where kp is Boltzmann’s constant, and 7" is the temperature. Here the energy
change AF can be linked with the change of objective values. A few studies
on the convergence of simulated annealing have paved the way for analysis for
all simulated annealing-based algorithms [4UT5127]. Bertsimas and Tsitsiklis pro-
vided an excellent review of the convergence of SA under various assumptions
[4UT5]. By using the assumptions that SA forms an inhomogeneous Markov chain
with finite states, they proved a probabilistic convergence function P, rather than
almost sure convergence, that

p:exp[f

max P[x;(t) € Si|xo] > :w (2)

where S, is the optimal set, and A and « are positive constants [4]. This is for
the cooling schedule T'(t) = d/In(t), where ¢ is the iteration counter or pseudo
time. These studies largely used Markov chains as the main tool. We will come
back later to a more general framework of Markov chain Monte Carlo (MCMC)
in this paper [12J14].

2.2 PSO and Convergence

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart
in 1995 [I7/I8], based on the swarm behaviour such as fish and bird schooling
in nature. Since then, PSO has generated much wider interests, and forms an
exciting, ever-expanding research subject, called swarm intelligence. PSO has
been applied to almost every area in optimization, computational intelligence,
and design/scheduling applications.

The movement of a swarming particle consists of two major components: a
stochastic component and a deterministic component. Each particle is attracted
toward the position of the current global best g* and its own best location x
in history, while at the same time it has a tendency to move randomly.

Let x; and v; be the position vector and velocity for particle i, respectively.
The new velocity and location updating formulas are determined by

v = vl + aeilg” — af] + fesle; — . (3)

ot —al ol 0
where €; and €5 are two random vectors, and each entry taking the values be-
tween 0 and 1. The parameters a and ( are the learning parameters or acceler-
ation constants, which can typically be taken as, say, a ~ (3 ~ 2.

There are at least two dozen PSO variants which extend the standard PSO
algorithm, and the most noticeable improvement is probably to use inertia func-
tion 6(t) so that v! is replaced by 6(¢)v: where 6 € [0,1] [6]. This is equivalent
to introducing a virtual mass to stabilize the motion of the particles, and thus
the algorithm is expected to converge more quickly.



24 X.-S. Yang

The first convergence analysis of PSO was carried out by Clerc and Kennedy in
2002 [7] using the theory of dynamical systems. Mathematically, if we ignore the
random factors, we can view the system formed by (@) and () as a dynamical
system. If we focus on a single particle ¢ and imagine that there is only one
particle in this system, then the global best g* is the same as its current best
x;. In this case, we have

v =i+ (gt —2)), v=a+p, ()

and
f“ = :cf + pitt (6)

i .

xr

Considering the 1D dynamical system for particle swarm optimization, we can
replace g* by a parameter constant p so that we can see if or not the particle
of interest will converge towards p. By setting u; = p — z(t + 1) and using the
notations for dynamical systems, we have a simple dynamical system

Vip1 = U + YU, U = =g + (1= y)ug, (7)

1 )
Vi1 = AY,, A=(11”7>, Yt:(ui) (8)

The general solution of this dynamical system can be written as Y; = Yj exp[At].
The system behaviour can be characterized by the eigenvalues A of A, and we
have A\; o = 1 — /24 /72 — 47/2. Tt can be seen clearly that v = 4 leads to
a bifurcation. Following a straightforward analysis of this dynamical system, we
can have three cases. For 0 < v < 4, cyclic and/or quasi-cyclic trajectories exist.
In this case, when randomness is gradually reduced, some convergence can be
observed. For v > 4, non-cyclic behaviour can be expected and the distance from
Y: to the center (0,0) is monotonically increasing with ¢. In a special case vy = 4,
some convergence behaviour can be observed. For detailed analysis, please refer
to Clerc and Kennedy [7]. Since p is linked with the global best, as the iterations
continue, it can be expected that all particles will aggregate towards the the
global best.

or

2.3 Firefly Algorithm, Convergence and Chaos

Firefly Algorithm (FA) was developed by Yang [32J34], which was based on
the flashing patterns and behaviour of fireflies. In essence, each firefly will be
attracted to brighter ones, while at the same time, it explores and searches
for prey randomly. In addition, the brightness of a firefly is determined by the
landscape of the objective function.
The movement of a firefly ¢ is attracted to another more attractive (brighter)
firefly j is determined by
£C§+1 =x!+ 506_7”21' (:c§ —xh)+ e (9)

(Rl



Metaheuristic Optimization 25

15
1
0.5
O
05 e
A
0 2 4 6 8 10 s 3

Fig. 1. The chaotic map of the iteration formula (3] in the firefly algorithm and the
transition between from periodic/multiple states to chaos

where the second term is due to the attraction. The third term is randomization
with a being the randomization parameter, and €! is a vector of random num-
bers drawn from a Gaussian distribution or other distributions. Obviously, for
a given firefly, there are often many more attractive fireflies, then we can either
go through all of them via a loop or use the most attractive one. For multiple
modal problems, using a loop while moving toward each brighter one is usually
more effective, though this will lead to a slight increase of algorithm complexity.

Here is fy € [0, 1] is the attractiveness at r = 0, and r;; = ||@; — x;||2 is the £o-
norm or Cartesian distance. For other problems such as scheduling, any measure
that can effectively characterize the quantities of interest in the optimization
problem can be used as the ‘distance’ r.

For most implementations, we can take Sy = 1, = O(1) and v = O(1). It
is worth pointing out that (@) is essentially a random walk biased towards the
brighter fireflies. If 5y = 0, it becomes a simple random walk. Furthermore, the
randomization term can easily be extended to other distributions such as Lévy
flights [16124].

We now can carry out the convergence analysis for the firefly algorithm in a
framework similar to Clerc and Kennedy’s dynamical analysis. For simplicity,
we start from the equation for firefly motion without the randomness term

ot =l 4 Boe (xf — ). (10)

If we focus on a single agent, we can replace mé by the global best g found so
far, and we have

2
@ =a) + foe " (g — i), (11)

where the distance r; can be given by the fo-norm r? = ||g — x!||3. In an even

K3
simpler 1-D case, we can set y; = g — @}, and we have

Yir1 = Yt — 506_7%2%- (12)



26 X.-S. Yang

We can see that v is a scaling parameter which only affects the scales/size of the
firefly movement. In fact, we can let u; = /yy; and we have

Uppq = ug[l — ﬁoefuf]. (13)

These equations can be analyzed easily using the same methodology for studying
the well-known logistic map

Ut+1 = )\Ut(]. — Ut). (14)

The chaotic map is shown in Fig.[Il and the focus on the transition from periodic
multiple states to chaotic behaviour is shown in the same figure.

As we can see from Fig. [[l that convergence can be achieved for 8y < 2. There
is a transition from periodic to chaos at By = 4. This may be surprising, as
the aim of designing a metaheuristic algorithm is to try to find the optimal
solution efficiently and accurately. However, chaotic behaviour is not necessarily
a nuisance; in fact, we can use it to the advantage of the firefly algorithm.
Simple chaotic characteristics from ([[4]) can often be used as an efficient mixing
technique for generating diverse solutions. Statistically, the logistic mapping (I4)
with A = 4 for the initial states in (0,1) corresponds a beta distribution

I'(p+aq) wP—1
I'(p)I'(q)

when p = ¢ = 1/2. Here I'(z) is the Gamma function

B(u,p,q) = (1 7U)q713 (15)

r(z) = /O T et (16)

In the case when z = n is an integer, we have I'(n) = (n — 1)!. In addition,
I'(1/2) = \/m. From the algorithm implementation point of view, we can use
higher attractiveness By during the early stage of iterations so that the fireflies
can explore, even chaotically, the search space more effectively. As the search
continues and convergence approaches, we can reduce the attractiveness 3y grad-
ually, which may increase the overall efficiency of the algorithm. Obviously, more
studies are highly needed to confirm this.

2.4 Markov Chain Monte Carlo

From the above convergence analysis, we know that there is no mathematical
framework in general to provide insights into the working mechanisms, the sta-
bility and convergence of a give algorithm. Despite the increasing popularity
of metaheuristics, mathematical analysis remains fragmental, and many open
problems need urgent attention.

Monte Carlo methods have been applied in many applications [28], including
almost all areas of sciences and engineering. For example, Monte Carlo methods
are widely used in uncertainty and sensitivity analysis [21]. From the statistical
point of view, most metaheuristic algorithms can be viewed in the framework of



Metaheuristic Optimization 27

Markov chains [I4I28]. For example, simulated annealing [20] is a Markov chain,
as the next state or new solution in SA only depends on the current state/solution
and the transition probability. For a given Markov chain with certain ergodicity,
a stability probability distribution and convergence can be achieved.

Now if look at the PSO closely using the framework of Markov chain Monte
Carlo [12/13/14], each particle in PSO essentially forms a Markov chain, though
this Markov chain is biased towards to the current best, as the transition prob-
ability often leads to the acceptance of the move towards the current global
best. Other population-based algorithms can also be viewed in this framework.
In essence, all metaheuristic algorithms with piecewise, interacting paths can be
analyzed in the general framework of Markov chain Monte Carlo. The main
challenge is to realize this and to use the appropriate Markov chain theory
to study metaheuristic algorithms. More fruitful studies will surely emerge in
the future.

3 Search Efficiency and Randomization

Metaheuristics can be considered as an efficient way to produce acceptable so-
lutions by trial and error to a complex problem in a reasonably practical time.
The complexity of the problem of interest makes it impossible to search every
possible solution or combination, the aim is to find good feasible solutions in
an acceptable timescale. There is no guarantee that the best solutions can be
found, and we even do not know whether an algorithm will work and why if it
does work. The idea is to have an efficient but practical algorithm that will work
most the time and is able to produce good quality solutions. Among the found
quality solutions, it is expected some of them are nearly optimal, though there
is no guarantee for such optimality.

The main components of any metaheuristic algorithms are: intensification and
diversification, or exploitation and exploration [533]. Diversification means to
generate diverse solutions so as to explore the search space on the global scale,
while intensification means to focus on the search in a local region by exploiting
the information that a current good solution is found in this region. This is in
combination with with the selection of the best solutions.

As discussed earlier, an important component in swarm intelligence and mod-
ern metaheuristics is randomization, which enables an algorithm to have the
ability to jump out of any local optimum so as to search globally. Randomiza-
tion can also be used for local search around the current best if steps are limited
to a local region. Fine-tuning the randomness and balance of local search and
global search is crucially important in controlling the performance of any meta-
heuristic algorithm.

Randomization techniques can be a very simple method using uniform dis-
tributions, or more complex methods as those used in Monte Carlo simulations
[28]. They can also be more elaborate, from Brownian random walks to Lévy
flights.



28 X.-S. Yang

3.1 Gaussian Random Walks

A random walk is a random process which consists of taking a series of consec-
utive random steps. Mathematically speaking, let uy denotes the sum of each
consecutive random step s;, then uy forms a random walk

N

UN:Zsi:S1+n-+3N:uN71+sN7 (17)
i=1

where s; is a random step drawn from a random distribution. This suggests
that the next state uy will only depend the current existing state uy_1 and
the motion or transition uy from the existing state to the next state. In theory,
as the number of steps N increases, the central limit theorem implies that the
random walk (7)) should approaches a Gaussian distribution. In addition, there
is no reason why each step length should be fixed. In fact, the step size can also
vary according to a known distribution. If the step length obeys the Gaussian
distribution, the random walk becomes the standard Brownian motion [16l33].
From metaheuristic point of view, all paths of search agents form a random
walk, including a particle’s trajectory in simulated annealing, a zig-zag path of
a particle in PSO, or the piecewise path of a firefly in FA. The only difference is
that transition probabilities are different, and change with time and locations.
Under simplest assumptions, we know that a Gaussian distribution is stable.
For a particle starts with an initial location xg, its final location @y after N

time steps is
N

TN = Tp +ZO@S¢> (18)
i=1
where «; > 0 is a parameters controlling the step sizes or scalings. If s; is drawn
from a normal distribution N (u;,0?), then the conditions of stable distributions
lead to a combined Gaussian distribution

N N
Ty~ N, 02), =Y i, 02 =Y ailo? + (e — i)’ (19)
=1 =1

We can see that that the mean location changes with N and the variances
increases as N increases, this makes it possible to reach any areas in the search
space if N is large enough.

A diffusion process can be viewed as a series of Brownian motion, and the
motion obeys the Gaussian distribution. For this reason, standard diffusion is
often referred to as the Gaussian diffusion. As the mean of particle locations is
obviously zero if p; = 0, their variance will increase linearly with ¢. In general, in
the d-dimensional space, the variance of Brownian random walks can be written
as

o?(t) = |vo|*t* + (2dD)t, (20)

where v is the drift velocity of the system. Here D = s2/(27) is the effective
diffusion coefficient which is related to the step length s over a short time interval



Metaheuristic Optimization 29

7 during each jump. If the motion at each step is not Gaussian, then the diffusion
is called non-Gaussian diffusion. If the step length obeys other distribution, we
have to deal with more generalized random walks. A very special case is when
the step length obeys the Lévy distribution, such a random walk is called Lévy
flight or Lévy walk.

3.2 Randomization via Lévy Flights

In nature, animals search for food in a random or quasi-random manner. In
general, the foraging path of an animal is effectively a random walk because the
next move is based on the current location/state and the transition probability to
the next location. Which direction it chooses depends implicitly on a probability
which can be modelled mathematically [3l24]. For example, various studies have
shown that the flight behaviour of many animals and insects has demonstrated
the typical characteristics of Lévy flights [24l26]. Subsequently, such behaviour
has been applied to optimization and optimal search, and preliminary results
show its promising capability [30124].

In general, Lévy distribution is stable, and can be defined in terms of a char-
acteristic function or the following Fourier transform

F(k) = exp[~alk|’], 0<pB<2, (21)

where « is a scale parameter. The inverse of this integral is not easy, as it does
not have nay analytical form, except for a few special cases [16/23]. For the case of
B = 2, we have F (k) = exp|—ak?], whose inverse Fourier transform corresponds
to a Gaussian distribution. Another special case is # = 1, which corresponds to
a Cauchy distribution

For the general case, the inverse integral

1 o
L(s) = / cos(ks) exp[—a|k|®]dk, (22)
T Jo
can be estimated only when s is large. We have

_ aBI(B)sin(xp/2)

L(s) s (23)

Lévy flights are more efficient than Brownian random walks in exploring un-
known, large-scale search space. There are many reasons to explain this efficiency,
and one of them is due to the fact that the variance of Lévy flights takes the
following form

2t ~t37F, 1<pB<2, (24)
which increases much faster than the linear relationship (i.e., 02(t) ~ t) of Brow-
nian random walks.

Studies show that Lévy flights can maximize the efficiency of resource searches
in uncertain environments. In fact, Lévy flights have been observed among forag-
ing patterns of albatrosses and fruit flies [24J26130]. In addition, Lévy flights have
many applications. Many physical phenomena such as the diffusion of fluoren-
scent molecules, cooling behavior and noise could show Lévy-flight characteristics
under the right conditions [26].



30 X.-S. Yang

4 Open Problems

It is no exaggeration to say that metahueristic algorithms have been a great
success in solving various tough optimization problems. Despite this huge suc-
cess, there are many important questions which remain unanswered. We know
how these heuristic algorithms work, and we also partly understand why these
algorithms work. However, it is difficult to analyze mathematically why these
algorithms are so successful, though significant progress has been made in the
last few years [1I22]. However, many open problems still remain.

For all population-based metaheuristics, multiple search agents form multi-
ple interacting Markov chains. At the moment, theoretical development in these
areas are still at early stage. Therefore, the mathematical analysis concerning
of the rate of convergence is very difficult, if not impossible. Apart from the
mathematical analysis on a limited few metaheuristics, convergence of all other
algorithms has not been proved mathematically, at least up to now. Any math-
ematical analysis will thus provide important insight into these algorithms. It
will also be valuable for providing new directions for further important modifi-
cations on these algorithms or even pointing out innovative ways of developing
new algorithms.

For almost all metaheuristics including future new algorithms, an important
issue to be addresses is to provide a balanced trade-off between local intensifica-
tion and global diversification [5]. At present, different algorithm uses different
techniques and mechanism with various parameters to control this, they are far
from optimal. Important questions are: Is there any optimal way to achieve this
balance? If yes, how? If not, what is the best we can achieve?

Furthermore, it is still only partly understood why different components of
heuristics and metaheuristics interact in a coherent and balanced way so that
they produce efficient algorithms which converge under the given conditions. For
example, why does a balanced combination of randomization and a deterministic
component lead to a much more efficient algorithm (than a purely deterministic
and/or a purely random algorithm)? How to measure or test if a balance is
reached?” How to prove that the use of memory can significantly increase the
search efficiency of an algorithm? Under what conditions?

In addition, from the well-known No-Free-Lunch theorems [31], we know that
they have been proved for single objective optimization for finite search domains,
but they do not hold for continuous infinite domains [1I2]. In addition, they re-
main unproved for multiobjective optimization. If they are proved to be true (or
not) for multiobjective optimization, what are the implications for algorithm de-
velopment? Another important question is about the performance comparison.
At the moment, there is no agreed measure for comparing performance of differ-
ent algorithms, though the absolute objective value and the number of function
evaluations are two widely used measures. However, a formal theoretical analysis
is yet to be developed.

Nature provides almost unlimited ways for problem-solving. If we can observe
carefully, we are surely inspired to develop more powerful and efficient new gen-
eration algorithms. Intelligence is a product of biological evolution in nature.



Metaheuristic Optimization 31

Ultimately some intelligent algorithms (or systems) may appear in the future,
so that they can evolve and optimally adapt to solve NP-hard optimization
problems efficiently and intelligently.

Finally, a current trend is to use simplified metaheuristic algorithms to deal
with complex optimization problems. Possibly, there is a need to develop more
complex metaheuristic algorithms which can truly mimic the exact working
mechanism of some natural or biological systems, leading to more powerful next-
generation, self-regulating, self-evolving, and truly intelligent metaheuristics.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, Singapore (2010)

2. Auger, A., Teytaud, O.: Continuous lunches are free plus the design of optimal
optimization algorithms. Algorithmica 57(1), 121-146 (2010)

3. Bell, W.J.: Searching Behaviour: The Behavioural Ecology of Finding Resources.
Chapman & Hall, London (1991)

4. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Science 8, 10-15 (1993)

5. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptural comparison. ACM Comput. Surv. 35, 268-308 (2003)

6. Chatterjee, A., Siarry, P.: Nonlinear inertia variation for dynamic adapation in
particle swarm optimization. Comp. Oper. Research 33, 859-871 (2006)

7. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. Evolutionary Computation 6,
58-73 (2002)

8. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis. Politec-
nico di Milano, Italy (1992)

9. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley,
Chichester (2005)

10. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained
Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990)

11. Floudas, C.A., Pardolos, P.M.: Encyclopedia of Optimization, 2nd edn. Springer,
Heidelberg (2009)

12. Gamerman, D.: Markov Chain Monte Carlo. Chapman & Hall/CRC (1997)

13. Geyer, C.J.: Practical Markov Chain Monte Carlo. Statistical Science 7, 473-511
(1992)

14. Ghate, A., Smith, R.: Adaptive search with stochastic acceptance probabilities for
global optimization. Operations Research Lett. 36, 285-290 (2008)

15. Granville, V., Krivanek, M., Rasson, J.P.: Simulated annealing: A proof of conver-
gence. IEEE Trans. Pattern Anal. Mach. Intel. 16, 652-656 (1994)

16. Gutowski, M.: Lévy flights as an underlying mechanism for global optimization
algorithms. ArXiv Mathematical Physics e-Prints (June 2001)

17. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE In-
ternational Conference on Neural Networks, Piscataway, NJ, pp. 1942-1948 (1995)

18. Kennedy, J., Eberhart, R.C.: Swarm intelligence. Academic Press, London (2001)

19. Holland, J.: Adaptation in Natural and Artificial systems. University of Michigan
Press, Ann Anbor (1975)

20. Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 670-680 (1983)



32

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

34.

35.

X.-S. Yang

Matthews, C., Wright, L., Yang, X.S.: Sensitivity Analysis, Optimization, and Sam-
pling Methodds Applied to Continous Models. National Physical Laboratory Re-
port, UK (2009)

Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer, Heidelberg (2010)
Nolan, J.P.: Stable distributions: models for heavy-tailed data. American Univer-
sity (2009)

Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Com-
putational Physics 226, 1830-1844 (2007)

Rebennack, S., Arulselvan, A., Elefteriadou, L., Pardalos, P.M.: Complexity analy-
sis for maximum flow problems with arc reversals. J. Combin. Optimization 19(2),
200216 (2010)

Reynolds, A.M., Rhodes, C.J.: The Lévy fligth paradigm: random search patterns
and mechanisms. Ecology 90, 877-887 (2009)

Steinhofel, K., Albrecht, A.A., Wong, C.-K.: Convergence analysis of simulated
annealing-based algorithms solving flow shop scheduling problems. In: Bongiovanni,
G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 277-290.
Springer, Heidelberg (2000)

Sobol, I.M.: A Primer for the Monte Carlo Method. CRC Press, Boca Raton (1994)
Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Chichester
(2009)

Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P.,
Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature 381,
413-415 (1996)

Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimisation. IEEE
Transaction on Evolutionary Computation 1, 67-82 (1997)

Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Appli-
cations. John Wiley & Sons, Chichester

Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation.
Int. J. Bio-Inspired Computation 2, 78-84 (2010)

Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math.
Modelling & Num. Optimization 1, 330-343 (2010)



Convexity and Optimization of Condense
Discrete Functions

Emre Tokgdz!, Sara Nourazari?, and Hillel Kumin®

1.3 School of Industrial Engineering, University of Oklahoma,
Norman, OK, 73019, U.S.A.

! Department of Mathematics, University of Oklahoma, Norman, OK, 73019, U.S.A.
2 George Mason University, Department of Systems Engineering and Operations
Research, Fairfax, Virginia, 22030, U.S.A.
{Emre.Tokgoz-1,hkumin}@ou.edu, snouraza@masonlive.gmu.edu

Abstract. A function with one integer variable is defined to be integer
convex by Fox [3] and Denardo [1] if its second forward differences are
positive. In this paper, condense discrete convexity of nonlinear discrete
multivariable functions with their corresponding Hessian matrices is in-
troduced which is a generalization of the integer convexity definition of
Fox [3] and Denardo [1] to higher dimensional space Z". In addition,
optimization results are proven for C' condense discrete convex func-
tions assuming that the given condense discrete convex function is C*.
Yiiceer [17] proves convexity results for a certain class of discrete convex
functions and shows that the restriction of the adaptation of Rosen-
brook’s function from real variables to discrete variables does not yield
a discretely convex function. Here it is shown that the adaptation of
Rosenbrook’s function considered in [17] is a condense discrete convex
function where the set of local minimums is also the the set of global
minimums.

Keywords: Integer programming, mathematical programming, discrete
convex function, real convex function.

1 Introduction

In real convex analysis the convexity of a C? function can be obtained by check-
ing whether or not the corresponding Hessian matrix is positive definite. This
result has important applications to optimization problems for real variable C?
functions. In particular, a C2 function f : R" — R is strictly convex if and only
if the corresponding Hessian matrix is positive definite, and, therefore any local
minimum of f is also the global minimum and vice versa. A Hessian matrix in
real convex analysis also identifies the closed form convexity conditions for the
corresponding C? function in local settings (see [15] for details).

In discrete convex analysis, Denardo [1], Fox [3], and many others in the lit-
erature define a single variable discrete function to be convex if the first forward
differences of the given function are increasing or at least nondecreasing. A mul-
tivariable discrete L-convex function is defined to be the generalization of the

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 33 2011.
© Springer-Verlag Berlin Heidelberg 2011



34 E. Tokgoz, S. Nourazari, and H. Kumin

Lovész extension of submodular set functions in [12] by Murota. L# —convex
functions are defined in [4] by Fujishige and Murota. The concept of M-convex
functions is introduced by Murota in [11] and that of M# convex functions by
Murota-Shioura in [14]. The discrete analogue of Hessian matrices correspond-
ing to multivariable discrete L, L# M, and M# functions are introduced by
Hirai and Murota [5], and Moriguchi and Murota [10]. Important applications
of L, L# M, and M# discrete convex/concave functions appear in network flow
problems (see [13] for details). The convexity properties of nonlinear integer vari-
able, integer valued objective functions are investigated by Favati and Tardella
[2] where algorithmic approaches are also presented. Kiselman ([6],[7] and [8])
defines the convex envelope, canonical extension and lateral convexity of multi-
variable discrete functions where the second difference of a function f: Z" — R
is introduced to define lateral convexity.

Let S be a subspace of a discrete n-dimensional space. A function f: S — R
is defined to be discrete convex by Yiiceer [17] (using Miller’s [9] definition) if
for all z,y € S and a > 0 we have

af(x)+ (1 —-a)f(y) = min f(u)
u€EN(z)

where z = ax + (1 —a)y, N(z) ={u e S : ||lu—z| < 1}, and |Ju|| = max{|u,| :
1 < i < n}. This discrete convex function definition yields nonnegative sec-
ond forward differences in each component, and a symmetric matrix of second
forward cross differences. By imposing additional submodularity conditions on
discrete convex functions, the concept of strong discrete convexity is introduced
n [17]. A strong discrete convex function has a corresponding positive semi-
definite matrix of second forward differences which has practical and compu-
tational implications. D-convex and semistrictly quasi D-convex functions are
introduced in [16] by Ui where D-convex functions have a unified form that
includes discretely convex, integrally convex, M convex, M convex, L convex,
and L convex functions in local settings.

In this paper, we introduce a definition of condense discrete convexity of a
nonlinear real extensible closed form function § : Z™ — R, which is a general-
ization of the integer convexity definition of Fox [3] and Denardo [1] for a one
variable discrete function to nonlinear multivariable discrete variable functions.
A discrete Hessian matrix H consisting of second differences V;;5 (1 <1, < n)
corresponding to a condense discrete convex function 3 : Z™ — R in local set-
tings is introduced, and convexity results are obtained for condense discrete
functions similar to the convexity results obtained in real convex analysis. The
discrete Hessian matrix H is shown to be symmetric, linear, and vanishes when
the condense discrete function is affine.

Yiiceer [17] states that the restriction of any continuous function to a discrete
space does not necessarily yield a discrete convex function where an adaptation
of Rosenbrook’s function is illustrated as an example. In this paper, we show
that the discretization of the Rosenbrook’s function from continuous variables
to integer variables is a condense discrete convex function.



Convexity and Optimization of Condense Discrete Functions 35

To obtain minimization results for a given condense discrete convex function,
we require the given condense discrete convex function to be C!. After defining
the local and global minimum of condense discrete convex functions, we obtain
convexity results for C!' condense discrete convex functions.

2 Convexity and Optimization of Condense Discrete
Functions

In this section, we first introduce the first and second differences of an n-integer
variable function. Second, we introduce the condense discrete convexity of an
n-integer variable function which is a generalization of the integer convexity def-
inition of Denardo [1] and Fox [3] for one variable discrete functions. The second
partial derivative of a C? real convex function f in R™ becomes the second dif-
ference of a condense discrete convex function in Z™ when we change the domain
of f from R™ to Z™ which is the main idea of the condense discrete convexity
concept. Therefore the condense discrete convexity definition is similar to the
real convexity definition where we check whether the given discrete variable func-
tion is C? or not. This has practical applications when we consider C? discrete
functions such as discrete variable polynomials.

2.1 Convexity of Condense Discrete Functions

Similar to the difference operator definition of Kiselman [7], we define the first
difference of an integer variable function f : Z™ — R by

Vif (@) = f(x+e)— f(2),

and the difference of the first difference, namely the second difference of f is
defined by

Vij (f(x))=f(z+eite;)—flrte)—flzte)+ f(a),

where e; represents the integer vectors of unit length at the i*" position of the
function f. We define a condense discrete convex set D to be the set of points
that coincides with a real convex set on the integer lattice which is large enough
to support the second difference of a given condense discrete function. We as-
sume that the union of condense discrete convex sets are discrete convex sets
as well. The following definition of an m-integer variable function holds for a
certain class of discrete functions. The definition of a condense discrete convex
function is based on its quadratic approximation in a condense discrete convex
neighborhood D C Z".

Definition 1. A discrete function f : D — R on a condense discrete convex set
D C Z"™ is defined to be condense discrete convex if its quadratic approximation
éxTAx in the neighborhood D is strictly positive where A is the symmetric coef-
ficient matrix of the quadratic approximation of f. f is called condense discrete



36 E. Tokgoz, S. Nourazari, and H. Kumin

concave if —f is condense discrete convex. A is called the discrete coefficient
matrix of f.

Proposition 1. Let f : D — R be defined on a condense discrete convex set

D C Z™ with its quadratic approximation ;xTAx. The coefficient matrix A

corresponding to f is the symmetric matrix [Vi; (f)],..,, -

Proof. We first prove the symmetry of the matrix [V;; (f)]

Vii [ () =Vi(f(x+ej)— f(x))
=fr+e+e)—flzt+e)—f(z+e)+f(z)
=V;(f(z+e)— f(z))
=V;(Vif(z)) =Vif (z).

Assuming that A is symmetric, for all ¢ and j,

nxn'

1
Vi (f (@) = Vi (<x +e)" Aw+e;) — 2T Ax)

1

:2VL( z +e;) +eTA( +e;) —z” Ax)
1

= 2Vl ( T Az + 2 AeJ + eTAx + eTAeJ - xTAm)
1

— 2Vl ( TAe] + eTAx + eTAe])
1 T

=, ((m—l—ez) Aej —a"Aej+e] Az +e;) — €] Ax)
1

=, (2" Aej +e] Aej — 2" Aej + e Az + €] Ae; — €] Ax)
1

=5 (e?Aej + e?Ae,»)

= a;j

Therefore

Af = aijlsn = Viiflxn - O

Proposition 2. The coefficient matrix Ay of f: D — R given above in propo-
sition 1 satisfies the properties of the discrete Hessian matrix corresponding to
real convex functions. That is, Ay is linear with respect to the condense discrete
functions, symmetric, and vanishes when f is discrete affine.

Proof. Let f1 : S — R and f5 : S — R be condense discrete functions with
the corresponding coefficient matrices Ay, and Ay,, respectively. Then
[Vij (f1 + f2)l s = Afi4 s
= Afl + Afz
= [Vi; (f)lsn + Vi (f2)]0n



Convexity and Optimization of Condense Discrete Functions 37

which also proves the linearity of the second difference operator with respect to
the condense discrete functions. The symmetry condition is proven in proposi-
tion 1.

Considering the condense discrete affine function f,

f(x) = sz‘l‘z‘
im1

the second difference operator vanishes since V; (f) = b; and V;; (f) = 0 for all
1 and j. g
Theorem 1. A function f : D — R is condense discrete convex if and only if

the corresponding discrete Hessian matrix is positive definite in D.

Proof. Consider the discrete function
2

f(x)=aTAsx = Z @i TiT

i,j=1
where a;; € R for all 1 <i,j < 2, and z € Z2. We prove the case for 2 x 2 matrix

and n x n matrix case follows similarly. Suppose Ay is positive definite.

Case 1.1If we let z = (1,0), then

f(x)= aux% + 2a122122 + a22x§ =ay; > 0.
Case 2.If we let z = (0,1), then

f(x)= aux% + 2a122122 + a22x§ = a9y > 0.

To show A¢ > 0 for any x # 0 consider the following cases.
Case 1.If we let z = (z1,0) with x; # 0. Then,

f (x) = a11.’1?% + 2a12w172 + a22$% = a11$% >0< a1 > 0.

Case 2.1If we let * = (z1,22) with 2o # 0. Let 1 = tas for some ¢ € R.
Therefore we have
f(x) = (a11t® + 2a12t + az9) 75

where f (x) > 0 < ¢ (t) = a11t? + 2a1a2t + ase > 0 since x5 # 0. Note that

@' (t) = 2a11t + 2a12 =0
== 12
a1

L,O// (t) = 2@11.
If a17 > 0 then

*\ 7&12 _ 70“%2
pt) > o) =¢ = + ag
a1 a1

1 ail a
1412
= det .
a1 a21 @22



38 E. Tokgoz, S. Nourazari, and H. Kumin

Therefore if a;; > 0 and the determinant given above is positive then ¢ (t) > 0
for all t € R. Conversely, if f (z) > 0 for every = # 0 then ¢ () > 0 for some t,
therefore

¢ (t) > 0= a;; >0, and 4a}, — 4aj1a22 = —4det (Af) < 0,
w(t) >0« a1 >0 and det (Af) > 0.

which completes the proof. g

2.2 Optimization of Condense Discrete Functions

To obtain minimization results for a given condense discrete convex function,
we require the given condense discrete convex function to be C*'. After defining
the local and global minimum point concepts of condense discrete convex func-
tions, we prove optimization results for C! condense discrete convex functions.
Condense discrete concave function maximization results follow similarly.

We let 40le5¢ = Z" where S; is a nonempty sufficiently small condense discrete
i=

convex neighborhood to support quadratic approximation of f, _OF%ISZ- = and
1=

‘ﬂISi # () for all S; where S; have at least one common element for all i € I, I

1€

is a finite index set, and {s;} is a singleton in Z™.

The partial derivative operator of a C'! discrete funtion f : Z™ — R will be
denoted by 9f (z) := ((gcfl, gcfy..., aii) .
Definition 2. The local minimum of a condense discrete C! function f : Z" — R
is the minimal value of f in a local neighborhood 'UISi which is also the smallest
1€

value in a neighborhood N = 4UJ (UI S,») where J is a finite index set. The
JE 1€l

global minimum value of a condense discrete convex function f : Z"™ — R is the
minimum value of f in the entire integer space Z".

We define the set of local minimums of a C'* condense discrete convex function
[ by
U ={p=(p1,.spn) s pi €{[7il,|7l} CZforall i} CZ".
where 9f (7) = 0 holds for v € R™. As the domain is Z", we consider the

solutions in ¥ where p;, = [vi] or p; = |7:] is the solution for multivariable
integer function f.

Lemma 1. Let f : Z® — R be a C! condense discrete convex function in
N C Z". Then there exists a local minimum value in N C Z" such that

fo= Iﬁnelg {f(B)}.

Proof. Let f : N — R be a C" strict condense discrete convex function. There-
fore f has a local minimum value f (o) in some neighborhood S = 'UIS,» by
1€



Convexity and Optimization of Condense Discrete Functions 39

theorem 1. By definition of IV, 4UIS,» C N hence f (zg) is also the local minimum
1€

in the neighborhood N.
It is well known that the local minimum of a C' function f is obtained when
the system of equations

o1 (x) . f(ette)~ fla)
ai)']i t—0 t

is solved simultaneously for all 4,1 < ¢ < n. We first find 0f (z) = 0 which

implies the existence of a ; € R for all i. Noting that the domain is Z", we take

the ceiling and floor of the components of 7; to obtain the minimal point which

consist of integer numbers |v; | or [v;] for all ¢. This gives a local minimum point

B € ¥ and the corresponding value fo = rﬁnelg {f(B)}. ]

=0

The following result for condense discrete convex functions is a result similar to
a result in real convex analysis.

Theorem 2. Let f : Z™ — R be a ! strict condense discrete convex function.
Then the set of local minimums of f form a set of global minimums and vice
versa.

Proof Suppose f : Z™ — R be a C! condense discrete convex function. Let

U S; = Z™ where S; are sufficiently small condense discrete neighborhoods that

i=1
support quadratic approximation of f for all ¢, and ﬂ S; = 0. Let 21 be the set

of local minimum points of f in Z™, and {25 be the set of global minimum points
of fin Z".

Let f : Z" — R be a C' condense discrete convex function and suppose f has
global minimum points in Z" = _(EJOISZ-. Noting that f is nonlinear, there exists a

i=
finite collection of Sh U S,“ where the global minimum points are located. The

solution set of af (“C) = 0 for all j,1 < j < mn, gives the set of local minimums in
S;. Therefore for all x € {25 there exists a set of integer vectors y € {21 such that
m1r121f( x) = f (y) which indicates {25 C {21 since Y S;i C N CZ".

rEfl 1€

0
Now suppose there exists a vector zg in a local neighborhood S = UI S; such
1€l

that xg ¢ 2 (Note that xg is not necessarily an element of 2; since it is a
local minimum in a local setting). z¢ is a local minimum which is not a global
minimum in S, therefore there exist 1 and y; such that f (xg) > f (1) > f (y1)
in N = jgl 2€UISL D S where y; becomes the new local minimum of the
b J
local neighborhood N. Therefore yq is the new local minimum of N where xg is
not a local minimum of N. Suppose ¢ is a local minimum that is not a global
minimum otherwise it would be an element of (2. Continuing to enlarge the
local obtained neighborhoods in this way to the entire space Z", we obtain a set
of points in a local neighborhood D of Z™ where local minimum points z € 4
satisfy f (z) < f (y) for all y € Z™ — D. Therefore x € {25 and hence 2; C (2
which completes the proof. a



40 E. Tokgoz, S. Nourazari, and H. Kumin

Next we consider an adaptation of Rosenbrook’s function suggested by Yiiceer
[17] and show that this function is a condense discrete convex function.

3 An Example

Yiiceer [17] shows that the adaptation of Rosenbrook’s function
1
fky ) =25(2u — k)2 + L2 k)? where k,ju € Z. (1)

is not a discretely convex function when continuous variables are restricted to
the integer lattice. Here, we first prove the condense discrete convexity of the
function given in (1) and then show that the set of local minimums is also the
set of global minimums.

The diagonal elements of the discrete Hessian matrix that corresponds to

f (K, p) are

1
Varf (k) =25 (2u — k —2)* + 4k2750(2u—k—1)2

1 1
—2(1—k)2+25(2u—k)2+4(2—k)2
101
=, >0
Voo f =25(2j +4 — )" — 50 (2j + 2 — i)” + 25(2j — i)’
= 200.

By the symmetry of the discrete Hessian matrix, the off diagonal elements of
the discrete Hessian matrix are

Vief =Vorf =252 +2—i—1)> = 25(2j —i — 1)
—25(2j +2 — )% +25(25 —4)?

= —100.
Therefore

det(H) = 200. 1(2)1 — (100)*

=100.101 — (100)*

= 100.

This indicates that the discrete Hessian matrix is positive definite. There-
fore, the adaptation of the Rosenbrook’s function given in the equality (1)
(see Fig. 1.) is a strict condense discrete convex function.

Now we show that the set of local minimums of the adaptation of the condense
discrete convex Rosenbrook’s function is also the set of global minimums. Clearly,
f is a C' function therefore

OF — —50(2u—k)—2—k)=0
Of (kyu) =0= ¢ 9 2
f (k) { gﬁ =100(2u — k) =0



Convexity and Optimization of Condense Discrete Functions 41

Fig. 1. An adaptation of Rosenbrook function suggested by Yiiceer [13]

where simultaneous solution of this system of two equations indicate k£ = 2 and
g = 1. Therefore the minimal value is f(2,1) = 0. Since Rosenbrook’s function
is a C' condense discrete convex function, the local minimum point set which is
the singleton {(2,1,0)} is also the set of global minimum points.

An example of a function that is real convex but not condense discrete convex
function is g (z,y) = (z —y)? since det (g) = 0.

Acknowledgments. We would like to thank the reviewers for their constructive
and helpful comments.

References

1. Denardo, E.V.: Dynamic Programming. Prentice-Hall, Englewood Cliffs (1982)

2. Favati, P., Tardella, F.: Convexity in Nonlinear Integer Programming. Ricerca Op-
erativa 53, 3-44 (1990)

3. Fox, B.: Discrete optimization via marginal analysis. Management Sci. 13, 210-216
(1966)

4. Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation
theorems. Math. Prog. 88, 129-146 (2000)

5. Hirai, H., Murota, K.: M-convex functions and tree metrics. Japan J. Industrial
Applied Math. 21, 391-403 (2004)

6. Kiselman, C.0O., Christer, O.: Local minima, marginal functions, and separating
hyperplanes in discrete optimization. In: Bhatia, R. (ed.) Abstracts: Short Commu-
nications; Posters. International Congress of Mathematicians, Hyderabad, August
19-27, pp. 572-573 (2010)

7. Kiselman, C.O., Acad, C. R.: Local minima, marginal functions, and separating
hyperplanes in discrete optimization. Sci. Paris, Ser. I, (or Three problems in digital
convexity: local minima, marginal functions, and separating hyperplanes - The case
of two variables, by C.O. Kiselman, Manuscript) (2008)

8. Kiselman, C. O., Samieinia S.: Convexity of marginal functions in the discrete case.
manuscript (2010), http://www2.math.uu.se/~kiselman/papersix.pdf

9. Miller, B.L.: On minimizing nonseparable functions defined on the integers with
an inventory application. STAM J. Appl. Math. 21, 166-185 (1971)


http://www2.math.uu.se/~kiselman/papersix.pdf

42

10.

11.

12.
13.

14.

15.
16.

17.

E. Tokgoz, S. Nourazari, and H. Kumin

Moriguchi, S., Murota, K.: Discrete Hessian matrix for L-convex functions. IECE
Trans. Fundamentals, E88-A (2005)

Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math., 272-311
(1996)

Murota, K.: Discrete convex analysis. Math. Prog. 83, 313-371 (1998)

Murota, K.: Discrete convex analysis. Society for Industrial and Applied Mathe-
matics, Philadelphia (2003)

Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math.
Oper. Res. 24, 95-105 (1999)

Rockafellar, R.T.: Convex Analysis. Princten University Press, Princeton (1970)
Ui, T.: A note on discrete convexity and local optimality. Japan J. Indust. Appl.
Math. 23, 21-29 (2006)

Yiiceer, U.: Discrete convexity: convexity for functions defined on discrete spaces.
Disc. Appl. Math. 119, 297-304 (2002)



Path Trading: Fast Algorithms, Smoothed
Analysis, and Hardness Results

André Berger!, Heiko Roglin?, and Ruben van der Zwaan!

! Maastricht University, The Netherlands
{a.berger,r.vanderzwaan}@maastrichtuniversity.nl
2 University of Bonn, Germany
heiko@roeglin.org

Abstract. The Border Gateway Protocol (BGP) serves as the main
routing protocol of the Internet and ensures network reachability among
autonomous systems (ASes). When traffic is forwarded between the many
ASes on the Internet according to that protocol, each AS selfishly routes
the traffic inside its own network according to some internal protocol
that supports the local objectives of the AS. We consider possibilities of
achieving higher global performance in such systems while maintaining
the objectives and costs of the individual ASes. In particular, we consider
how path trading, i.e. deviations from routing the traffic using individu-
ally optimal protocols, can lead to a better global performance. Shavitt
and Singer (“Limitations and Possibilities of Path Trading between Au-
tonomous Systems”, INFOCOM 2010) were the first to consider the com-
putational complexity of finding such path trading solutions. They show
that the problem is weakly NP-hard and provide a dynamic program to
find path trades between pairs of ASes.

In this paper we improve upon their results, both theoretically and
practically. First, we show that finding path trades between sets of ASes
is also strongly NP-hard. Moreover, we provide an algorithm that finds
all Pareto-optimal path trades for a pair of two ASes. While in principal
the number of Pareto-optimal path trades can be exponential, in our
experiments this number was typically small. We use the framework of
smoothed analysis to give theoretical evidence that this is a general phe-
nomenon, and not only limited to the instances on which we performed
experiments. The computational results show that our algorithm yields
far superior running times and can solve considerably larger instances
than the previous dynamic program.

1 Introduction

The Border Gateway Protocol (BGP) serves as the main routing protocol on the
top level of the Internet and ensures network reachability among autonomous
systems (ASes). When traffic is forwarded from a source to a destination, these
ASes cooperate in order to provide the necessary infrastructure needed to ensure
the desired services. However, ASes do also compete and therefore follow their
individual strategies and policies when it comes to routing the traffic within

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 43}53,| 2011.
© Springer-Verlag Berlin Heidelberg 2011



44 A. Berger, H. Roglin, and R. van der Zwaan

their own network. Such locally preferable routing decisions can be globally
disadvantageous. Particularly, the way how one AS forwards traffic and through
which ingress node another AS may therefore receive the traffic can make a
huge difference in the costs for that other AS. Behaving selfishly usually means
that an AS routes its traffic according to the least expensive route, also known
as hot-potato routing, without regarding the costs of the next AS in the BGP
path. This is supported by strong evidence by Teixeira et al. [17].

Quite a number of protocols have been suggested that require the exchange
of information and coordination in order to overcome global suboptimality while
at the same time improving the costs for each individual AS [6J7/18]. Recently,
Shavitt and Singer [13] considered the case where ASes might be willing to trade
traffic in such a way that the costs for both ASes do not increase w.r.t. the
hot-potato routing, and term this problem path trading. They prove that for two
ASes the problem of deciding whether there is a feasible path trade is weakly
NP-hard. Further, they develop an algorithm based on dynamic programming to
find the “best” trading between a pair. Lastly, they give experimental evidence
that path trading can have benefits to autonomous systems.

In this paper we extend their work in the following way. We show that path
trading is also strongly NP-hard when an arbitrary number of ASes is considered.
This justifies the approach taken by Shavitt and Singer as well as the approach
taken in this paper to concentrate on path trades between pairs of ASes. We pro-
pose a new algorithm for finding path trades between pairs of ASes that is based on
the concept of Pareto efficiency. We have implemented both, our algorithm and
the algorithm of Shavitt and Singer, and tested them on real Internet instances
stemming from [12]. Besides the added advantage that our algorithm obtains all
Pareto-optimal path trades, it is very fast and has low memory consumption. As
the problem is NP-hard, we cannot expect that the algorithm performs well on all
possible inputs. However, in order to support the experimental results we consider
our algorithm in the framework of smoothed analysis, which was introduced in 2001
by Spielman and Teng [I5] to explain why many heuristics with a bad worst-case
performance work well on real-world data sets. We show that even though there
are (artificial) worst-case instances on which the heuristic performs poorly, it has
a polynomial expected running time on instances that are subject to small random
perturbations. After its introduction, smoothed analysis has been applied in many
different contexts (see [16] for a nice survey).

Finding path trades can be viewed as an optimization problem with multiple
objectives that correspond to the costs of the different ASes. A feasible path
trade is then a solution that is in every objective at least as good as the hot-
potato routing. We say that such a path trade dominates the hot-potato routing
if it is strictly better in at least one objective. This brings us to the well-known
concept of Pareto efficiency or Pareto optimality in multiobjective optimization:
A solution is called Pareto-optimal if it is not dominated by any other solution,
that is, a solution is Pareto-optimal if there does not exist another solution that
is at least as good in all criteria and strictly better in at least one criterion. We
call the set of Pareto-optimal solutions Pareto set or Pareto curve for short.



Path Trading: Fast Algorithms, Smoothed Analysis, and Hardness Results 45

Then the question of whether there is a feasible path trade can simply be
formulated as the question whether the hot-potato routing is Pareto-optimal or
not. This immediately suggests the following algorithm to find a feasible path
trade: Enumerate the set of Pareto-optimal solutions, and then either output
that there is no path trade if the hot-potato routing belongs to the Pareto set,
or output a Pareto-optimal solution that dominates the hot-potato routing if it
is not Pareto-optimal. Also, finding the Pareto set gives the flexibility to choose
a solution based on preference. While some solutions might offer great global
gain, these trade-offs might be unreasonable from a fairness perspective.

The aforementioned algorithm only works when the Pareto set is small be-
cause otherwise the computation becomes too time consuming. Our experiments
show that the number of Pareto-optimal path trades is indeed small and that
despite the NP-hardness result by Shavitt and Singer we can solve this problem
efficiently in practice for two ASes.

For path trading between an arbitrary number of ASes, however, there is little
hope for obtaining such a result: We show that our strong NP-hardness result
implies that this problem cannot be solved efficiently even in the framework of
smoothed analysis.

Related Work. The potential benefits of collaboration between neighboring ASes
and the necessary engineering framework were first introduced by Winick et
al. [I§]. They consider the amount of information that needs to be shared be-
tween the ASes in order to perform mutually desirable path trades and how to
limit the effect of path trades between neighboring ASes on the global flow of
traffic. The first heuristics for path trading to improve the hot-potato routing
were evaluated by Majahan et al. [7]. Majahan et al. also developed a routing
protocol that provides evidence that path trading can improve global efficiency
in Internet routing. Other related work in the area of improving the global per-
formance while maintaining the objectives of the different ASes has been done
by Yang et al. [19], Liu and Reddy [6], and by Quoitin and Bonaventure [9].
Since ASes usually compete, one cannot expect them to reveal their complete
network and cost structure when it comes to coordinating the traffic between the
ASes. This aspect is considered in the work by Shrimali et al. [I4], using aspects
from cooperative game theory and the idea of Nash bargaining. Goldenberg et
al. [] develop routing algorithms in a similar context to optimize global cost
and performance in a multihomed user setting, which extends previous work in
that area [1I3U11].

2 Model and Notation

The model is as follows. We have the Internet graph G = (V, E), where every
vertex represents a point/IP-address. Further, there are k& ASes and the vertex
set V is partitioned into mutually disjoint sets Vi,..., Vi, where V; represents
all points in AS i. We denote by E; all edges within AS i, that is, the set of
edges FE is partitioned into Ef,..., E, and the set of edges between different
ASes. The graph G is undirected, and each edge e € E has a length £(e) € R>o.



46 A. Berger, H. Roglin, and R. van der Zwaan

The traffic is modeled by a set of requests R, where each request is a triple
(s,t,c), where s € V and t € V are source and sink nodes, respectively, and
¢ € Ry is the cost of the corresponding request. The BGP protocol associates
with each request a sequence of ASes which specifies the order in which the
request has to be routed through the ASes. Since most of the paper is about the
situation between two ASes, we leave this order implicit. The cost of routing a
request with cost ¢ through edge e is £(e) - c. For simplicity, the costs of routing
a packet between two ASes are assumed to be zero, but each request can be
routed at most once from an AS to the next AS. The input for PATH TRADING
consists of the graph G and requests as described previously. We denote by n
the number of nodes in V.

For a given graph G and a request (s,t,c) we say that a path P is valid if
it connects s to t and visits the ASes in the order that is associated with this
request by the BGP protocol. This means, in particular, that every valid path
goes through every AS at most once. A solution to PATH TRADING is a mapping
that maps each request (s, t,c) € R to a valid path from s to ¢ in graph G. Let us
assume that the requests in R are (s1,t1,¢1),..., (S, tr, ¢) and that the paths
Py, ..., P, have been chosen for these requests. Then AS i incurs costs on all
edges in F;, i.e., it incurs a total cost of

r

Z(cj- Z E(e)). (1)

j=1 e€P,NE;

The hot-potato route of a request (s,t,c) is defined to be the concatenation
of shortest path routes for the ASes it goes through. To be precise, assume that
the BGP protocol associates the route iy, ...,i, with s € V;, and t € V;, with
this request. Then AS i3 sends the request from s to the vertex so € V;, that
is closest to s along the shortest path. Then AS is sends the request from s
to the vertex s3 € Vi, that is closest to s2 along the shortest path, and so on.
The complete hot-potato route for request (s,¢,c) is then the concatenation of
these paths. Note that the hot-potato route is not necessarily unique, and in the
following we will assume that some hot-potato route is chosen for each request.

Consequently, the costs of the hot-potato routing that an AS 7 incurs are equal
to Equation [, where the paths P, ..., P, are the hot-potato paths. We call a
solution to PATH TRADING a path trade and if the costs for all involved ASes
are less or equal to their hot-potato costs, then we call it a feasible path trade.
In the following, let [n] be the set of integers {1,...,n}. For a vector z € R™, let
x; be the i-th component of x.

Due to space limitations the proofs of the complexity results (Theorems/[I] 2] A
and Corollary B]) are deferred to full version of this paper.

3 Complexity Results and Smoothed Analysis

Our first result is about the complexity of PATH TRADING and extends the weak
NP-hardness result of Shavitt and Singer [13]. The proof uses a reduction from
3-PARTITION.



Path Trading: Fast Algorithms, Smoothed Analysis, and Hardness Results 47

Theorem 1. Finding a feasible path trade apart from the hot-potato routing is
strongly NP-hard.

Given the above theorem, in order to develop fast algorithms, we concentrate
on path trading between two ASes, and will now present our algorithm for this
case. As mentioned before, this algorithm is based on the concept of Pareto
efficiency and it enumerates all Pareto-optimal path trades. In the worst case
the number of Pareto-optimal solutions can be exponential, but our experiments
suggest that on real-world data usually only a few solutions are Pareto-optimal.
To give a theoretical explanation for this, we apply the framework of smoothed
analysis. The algorithm is a dynamic program that adds the requests one after
another, keeping track of the Pareto-optimal path trades of those requests that
have already been added.

For a request (s,t,¢), a path P from s to ¢, and ¢ € {1, 2}, we denote by C;(P)
the costs incurred by AS i due to routing the request along path P. To keep
the notation simple, assume in the following discussion w.l.o.g. that s € V; and
t € V. We denote by P(s,t) the set of all Pareto-optimal valid paths from s to ¢.
Remember that a path is valid if it starts at s, terminates at ¢, and does not go
back to Vi after leaving V4 for the first time. Such a path P belongs to P(s,t) if
there does not exist another valid path that induces strictly lower costs for one
AS and not larger costs for the other AS than P. We assume that in the case
that there are multiple paths that induce for both ASes exactly the same costs,
only one of them is contained in P(s,t).

Let P € P(s,t) be some Pareto-optimal path and let v € V; be the boundary
node at which the path leaves AS 1. Then the subpaths from s to v and from
v to t must be shortest paths in AS 1 and AS 2, respectively. Otherwise, P
cannot be Pareto-optimal. Hence, the number of Pareto-optimal paths in P(s, t)
is bounded from above by the number of boundary nodes of AS 1 that connect
to AS 2. For each pair s € V4 and t € V4, the set P(s,t) can be computed in
polynomial time.

Our algorithm first computes the set P; of Pareto-optimal path trades for
only the first request (s1,¢1,c1). This is simply the set P(s1,t1). Based on this,
it computes the set P, of Pareto-optimal path trades for only the first two
requests, and so on. Thus the elements in P; are tuples (Py,..., P;) where each
P; is a valid path for the jth request.

Algorithm 1. Algorithm to compute the Pareto set

P1=P(s1,t1);
for i =2 tor do
P; = {(P1, ceey PZ') | (P1, .. ,PZ‘71) € Pi—1, P; € P(Si,ti)};
Remove all solutions from P; that are dominated by other solutions from P;.
If P; contains multiple solutions that induce for both ASes exactly the same costs,
then remove all but one of them.
end for
Return P,



48 A. Berger, H. Roglin, and R. van der Zwaan

Theorem 2. Fori € [r], the set P; computed by Algorithm 1 is the set of Pareto-
optimal path trades for the first i requests. In particular, the set P, is the set of
Pareto-optimal path trades for all requests. Algorithm 1 can be implemented to
run in time O(nlogn -y ._, |P;| 4+ nr|E|logn).

We start by reviewing a result due to Beier et al. [2] who analyzed the number
of Pareto-optimal solutions in binary optimization problems with two objective
functions. They consider problems whose instances have the following form: the
set of feasible solutions S is a subset of {0,...,F}"™ for some integers F and
n, and there are two objective functions w™ : § — R and w® : § — R that
associate with each solution z € S two weights w(")(z) and w® () that are
both to be minimized. While w®) can be an arbitrary function, it is assumed
that w) is linear of the form w™ (z) = w21 + ... + wWpx,.

In a worst-case analysis, the adversary would be allowed to choose the set
of feasible solutions S, and the two objective functions w(®) and w®. Then
it can easily be seen that there are choices such that the number of Pareto-
optimal solutions is exponential. To make the adversary less powerful and to
rule out pathological instances, we assume that the adversary cannot choose
the coefficients wi,...,w, exactly. Instead he can only specify a probability
distribution for each of them according to which it is chosen independently of
the other coefficients. Without any restriction, this would include deterministic
instances as a special case, but we allow only probability distributions that can be
described by a density function that is upper bounded by some parameter ¢ > 1.

We denote by f; : R>q — [0, ¢] the probability density according to which w;
is chosen, and we assume that the expected value of w; is in [0, 1].

Theorem 3 (Beier et al., [2]). For any choice of feasible solutions S C
{0, ..., F}", any choice of w® and any choice of density functions fi,..., fn,
the expected number of Pareto-optimal solutions is bounded by O(¢n?F?log F).

Now we formulate our problem in terms of Theorem [Bl For this, we assume that
all requests have positive integer costs. Let F' denote an upper bound on the
maximal costs possible on any edge, e.g., F = Z(S’t’c)eR c. Let m = |E| and
assume that the edges in E are ordered arbitrarily. Then each path trade leads
to a cost vector x € {0,..., F'}™ where x; denotes the total cost of all requests
that use the first edge in F/, 2 denotes the total cost of all requests that use the
second edge in F, and so on. If two solutions lead to the same cost vector, then
it suffices to remember one of them, and hence, we can assume that the set of
possible path trades can essentially be described by the set S C {0,..., F}™ of
possible cost vectors. Given such a cost vector « € {0,..., F}™, we can express
the cost w() () of the first AS simply as > cer, t(e)ze. The costs of the second
AS can be defined analogously, and so it looks that Theorem [3] directly applies
when we perturb all edge lengths £(e) of edges e € E; as these edge lengths are
the coefficients in the linear objective function w). However, there is a small
twist. In TheoremBlall coefficients in the linear objective function w®) are chosen
randomly. Our objective function, however, does not contain terms for the edges
e € E5. Or with other words the coefficients are 0 for these edges. If we apply



Path Trading: Fast Algorithms, Smoothed Analysis, and Hardness Results 49

Theorem [ directly, then also these zero coefficients would be perturbed, which
would destroy the combinatorial structure of the problem as then suddenly the
cost of the first AS would depend on what happens on edges e € Fs.

To avoid this side effect, we remodel the feasible region S. As argued before,
each solution leads to a cost vector x € {0, ..., F'}", but now we care only about
the part of the vector for F;. Let us define m’ = |E1| < m. Then each solution
leads to a cost vector x € {0,..., F}’”, that contains only the costs of the first
AS. Now of course different solutions can lead to the same vector z if they differ
only in the way how the traffic is routed in the second AS. However, Theorem [3]
allows completely general objective functions w(®, which we exploit by defining
w® (z) for a vector z € {0,..., F}™ to be the smallest cost for the second AS
that can be achieved with any solution whose cost vector for the first AS results
in z. This formulation implies the following corollary.

Corollary 1. Given a path trading instance in which the edge lengths {(e) for all
e € Ey are randomly chosen according to probability distributions that satisfy the
same restrictions as those in Theorem[3, the expected number of Pareto-optimal
solutions is bounded by O(¢pm?F?log F).

Given that the expected number of Pareto-optimal solutions is small, we still
have to show that Algorithm 1 computes the Pareto curve in expected polynomial
time. This will be established by the following Corollary.

Corollary 2. Algorithm 1 computes the Pareto curve in expected time
O(¢nm?logn - rF?log F).

The reason that we concentrate our efforts on path trading between two ASes
was the hardness result in Theorem [l We can extend this result and also show
that there is no hope for PATH TRADING with an arbitrary number of ASes to
be solvable efficiently in the framework of smoothed analysis.

Theorem 4. There is no smoothed polynomial time algorithm for PATH TRAD-
ING with an arbitrary number of ASes, unless NP C BPP.

4 Evaluation

In this section we present the experimental results about the performance of our
algorithm on the IP-level Internet graph from DIMES [12]. We compare it, in
particular, with the performance of the dynamic program used by Shavitt and
Singer, and we answer the following questions:

— How fast can we compute the Pareto curve? Algorithm 1 is very fast and
scales well.

— How robust are both algorithms? When we add random costs to all requests,
the running time of Algorithm 1 does not increase much. This suggests even
in environments with large costs, Algorithm 1 will perform well. The running
time of the dynamic program directly depends on the costs, and it becomes
quickly infeasible to compute solutions for even small instances.



50 A. Berger, H. Roglin, and R. van der Zwaan

— How many ASes are involved in path trading? In our experiments we see
that for low amount of requests, roughly 60% of all ASes engage in path
trading.

The answers to these questions are, of course, depending on the assumptions
we made. As Shavitt and Singer, we assume that traffic is symmetric, i.e., the
number of requests sent from AS A to AS B is the same as the number of
requests sent from AS B to AS A for every pair of ASes. This assumption is
not necessarily true, but it is common and used, e.g., in [13], [7], and [I4]. One
could imagine that in real networks requests are not evenly spread, but are more
concentrated between popular ASes for example. Still, even for low amounts of
requests there was substantial gain for the ASes involved. This indicates that
even if the traffic between two ASes is asymmetric, they have a good chance of
gaining from path trading as long as there is non-zero traffic in both directions.
Our second assumption is that each request between two ASes has to be routed
between two nodes that are chosen uniformly at random from these ASes. Our
third assumption is that all edges have length 1, i.e., the number of hops is used to
measure the costs of an AS for routing a request. By absence of real data, we feel
that this a reasonable and common assumption. We first perform experiments in
which every request has costs 1 and then repeat the experiments with requests
with randomly chosen costs. These experiments demonstrate that our method is
robust against changes of the costs of the requests. In the following subsection
we present the details of the experimental setup. The algorithm by Shavitt and
Singer is named Algorithm 2. Then we show and discuss the experimental results.

4.1 Experimental Setup

We assume that traffic is symmetric. We used the Internet graph from DIMES
[12], and we assumed that every edge length is one, and all packets have cost
one. So, the costs of a request are the number of hops on the route. The whole
Internet graph from DIMES contains roughly 27 thousand ASes and 3.5 million
nodes. Of all ASes, 1276 ASes and 4348 AS pairs were sufficiently connected:
These pairs had edges between them and more than one boundary node. To
determine participation, we simulated a low number of requests for each suffi-
ciently connected pair, to find out whether a small or a large fraction of ASes
are involved in path trading.

For both algorithms, we need to calculate shortest paths beforehand. Because
of the large number of possible routings, many shortest paths need to be com-
puted. This was all done as part of the preprocessing, and all shortest paths were
stored in a hash-table for fast access for both algorithms. In the following, this
time is not included in the running times of the algorithms.

To measure how many ASes could benefit from path trading, we simulated 5
requests for each of the 4348 sufficiently connected AS pairs in either direction.
For comparing performance and robustness we selected a subset of 15 AS pairs
arbitrarily among the AS pairs that benefited from path trading in the first
experiment where 5 requests were sent in either direction.



Path Trading: Fast Algorithms, Smoothed Analysis, and Hardness Results 51

To get some idea about how robust both algorithms are, we increased the
costs of the requests. For each request (s,t,c) we set ¢ as ¢ = 1+ X, where
X is a random variable, normally distributed with mean 0 and standard de-
viation o. Further, X was capped at 0 from below and at 10 from above for
o € {1,2,3,4,5}. For 0 = 10, X was capped at 0 from below and at 20 from
above. This was done to prevent extremely long running times for the dynamic
program. For o € {15, 20, 25,50}, X was only capped at 0 from below. All num-
bers were rounded to the nearest integer. We simulated 10 requests in either
direction, for each of the pairs.

4.2 Experimental Results

Performance. Table[Ilshows a comparison of the running times of Algorithm 1
and Algorithm 2. The running times are the total of the running time over the 15
selected pairs in seconds. In these ASes, roughly 37% of the costs were saved by
path trading. As can be seen, the running time of Algorithm 2 quickly becomes
very high.

The memory usage is dominated by the number of Pareto optimal solutions,
and each Pareto optimal solution is represented as a tuple of two integers. Fig-
ure 1@ shows a graphical comparison of both algorithms. Not only is Algo-
rithm 1 fast for small amounts of requests, it can handle up to ten times more
requests in the same time as Algorithm 2.

Robustness. We find that the running time of both Algorithm 1 and Algo-
rithm 2 is influenced by larger request costs, but not to the same degree. Fig-
ure 1@ shows the running times of both algorithms. As can be seen, the running
time of Algorithm 2 quickly spirals out of control. Algorithm 1 stays computable,
although the running time does increase. Figure l@ displays the running times
normalized with regard to the running time without perturbations for both Al-
gorithm 1 and 2.

The steep increase of the running time of Algorithm 2 comes at no surprise
as the dynamic program is directly dependent on the costs of the routing, and
not on the number of different choices or the complexity of the network. The
experiments show that our algorithm is significantly more robust against non-
uniform request costs.

Table 1. The performance of Algorithm 1 compared to Algorithm 2

# Requests Algorithm 1 (s) Algorithm 2 (s) Ratio

1 0.02 0.09 1. 4.5
5 0.19 6.04 1: 31.79
10 1.09 84.31 1: 77.35
15 2.38 270.87 1:113.81

19 4.01 519.27 1:129.49



52

Running time (s)

600
500
400
300
200

100

A. Berger, H. Roglin, and R. van der Zwaan

XPxxx x| x[x x [«

s00®

50 100 150 200

# Requests

+ Algorithm 1 x Algorithm 2

Normalized running time

25

20

15

10

0 10 20 30 40 50

Standard deviation of pertubation

* Algorithm 1 x Algorithm 2

60

Fig. 1. @ Running times of both algorithms compared. @ The normalized running
times of both algorithms plotted against magnitude of the perturbations.

Acknowledgements. The authors would like to thank Tobias Brunsch for proof-
reading this manuscript and for his helpful comments.

References

1.

10.

11.

12.

13.

14.

Akella, A., Maggs, B., Seshan, S., Shaikh, A., Sitaraman, R.: A measurement-based
analysis of multihoming. In: SIGCOMM, pp. 353-364 (2003)

. Beier, R., Roglin, H., Vocking, B.: The smoothed number of pareto optimal solu-

tions in bicriteria integer optimization. In: Fischetti, M., Williamson, D.P. (eds.)
IPCO 2007. LNCS, vol. 4513, pp. 53—67. Springer, Heidelberg (2007)

. Dai, R., Stahl, D.O., Whinston, A.B.: The economics of smart routing and quality

of service. In: Stiller, B., Carle, G., Karsten, M., Reichl, P. (eds.) NGC 2003 and
ICQT 2003. LNCS, vol. 2816, pp. 318-331. Springer, Heidelberg (2003)

. Goldenberg, D.K., Qiu, L., Xie, H., Yang, Y.R., Zhang, Y.: Optimizing cost and

performance for multihoming. In: SIGCOMM, pp. 79-82 (2004)

. Knuth, D.: The Art of Computer Programming, 3rd edn. Sorting and Searching,

vol. 3. Addison-Wesley, Reading (1997)

. Liu, Y., Reddy, A.L.N.: Multihoming route control among a group of multihomed

stub networks. Computer Comm. 30(17), 3335-3345 (2007)

. Mahajan, R., Wetherall, D., Anderson, T.: Negotiation-based routing between

neighboring ISPs. In: NSDI, pp. 29-42 (2005)

. Nemhauser, G.L., Ullmann, Z.: Discrete dynamic programming and capital alloca-

tion. Management Science 15(9), 494-505 (1969)

. Quoitin, B., Bonaventure, O.: A cooperative approach to interdomain traffic engi-

neering. In: EuroNGI (2005)

Roglin, H., Teng, S.-H.: Smoothed Analysis of Multiobjective Optimization. In:
FOCS, pp. 681-690 (2009)

Sevcik, P., Bartlett, J.: Improving user experience with route control. Technical
Report NetForecast Report 5062, NetForecast, Inc. (2002)

Shavitt, Y., Shir, E.: DIMES: let the Internet measure itself. ACM SIGCOMM
Computer Communication Review 35(5), 71-74 (2005)

Shavitt, Y., Singer, Y.: Limitations and Possibilities of Path Trading between Au-
tonomous Systems. In: INFOCOM (2010)

Shrimali, G., Akella, A., Mutapcic, A.: Cooperative interdomain traffic engineering
using nash bargaining and decomposition. In: INFOCOM, pp. 330-338 (2007)



Path Trading: Fast Algorithms, Smoothed Analysis, and Hardness Results 53

15. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. Journal of the ACM 51(3), 385-463 (2004)

16. Spielman, D.A.| Teng, S.-H.: Smoothed analysis: an attempt to explain the behav-
ior of algorithms in practice. Communic. of the ACM 52(10), 76-84 (2009)

17. Teixeira, R., Shaikh, A., Griffin, T., Rexford, J.: Dynamics of hot-potato routing
in IP networks. In: SIGMETRICS, pp. 307-319 (2004)

18. Winick, J., Jamin, S.,; Rexford, J.: Traffic engineering between neighboring do-
mains. Technical report (2002)

19. Yang, Y.R., Xie, H., Wang, H., Silberschatz, A., Krishnamurthy, A., Liu, Y., Li,
E.L.: On route selection for interdomain traffic engineering. IEEE Network 19(6),
20-27 (2005)



Hierarchical Delaunay Triangulation for Meshing

Shu Ye and Karen Daniels

Department of Computer Science, University of Massachusetts, Lowell
{sye,kdaniels}@cs.uml.edu

Abstract. This paper discusses an elliptical pad structure and its polygonal
approximation. The elliptical pad is a part of via model structures, which are
important and critical components on today’s multilayered Printed Circuit Board
(PCB) and electrical packaging. To explore meshing characterization of the
elliptical pad helps mesh generation over 3D structures for electromagnetic
modeling (EM) and simulation on PCB and electrical packaging. Because
elliptical structures are often key PCB features, we introduce a hierarchical mesh
construct and show that it has several useful Delaunay quality characteristics.
Then we show experimentally that Computational Geometry Algorithm Library’s
(CGAL) meshing of an elliptical structure at different resolution levels and with
various aspect ratios produces patterns similar to our construct. In particular, our
experiment also shows that the result of meshing is not only constrained Delaunay
triangulation but also Delaunay triangulation.

Keywords: constrained Delaunay triangulation, mesh generation, CGAL.

1 Introduction

In recent years, the interconnect modeling on multilayered PCB and in packaging has
become a bottleneck for successful high-speed circuit design [14]. The signal integrity
issues, such as the signal propagation time, the digital pulse distortion, and the cross-
talk, all affect the quality of the digital signal and can cause integrated circuit gate
misswitching and introduce large bit rate error [12]. Therefore, simple physical
constraints on the routing rules are no longer sufficient. For critical nets, accurate
circuit simulation is needed, which requires accurate EM characterization on
interconnects. The finite element based full-wave EM field solver can be applied to
perform such tasks which, rely heavily on the quality of the finite element mesh
generation [13]. Mesh generation for finite elements has been widely studied (see [4]
for a survey). Techniques for mesh generation have been studied extensively in the
geometric modeling and computational geometry communities [1,4,5]. Geometric and
topological underpinnings of mesh generation are explored in [3]. In some cases (e.g.
[9]), mesh generation is tightly coupled with the EM simulation method.

A via [6, 10] structure is heavily used in today’s PCB and packaging. A via
vertically connects different layers on the PCB. Fig. 1(a) depicts a coupled via
structure. Each via in Fig. 1 consists of several features: 1) a cylindrical drill that
extends through a hole in layer(s), 2) a small cylindrical pad at each end of the drill,
and 3) a trace that extends from each pad to connect the via to the associated layer.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 5464] 2011.
© Springer-Verlag Berlin Heidelberg 2011



Hierarchical Delaunay Triangulation for Meshing 55

Fig. 1(b) shows triangle meshing for single via structure. In this paper we focus on the
2D elliptical pad part of via structures, which is approximated by a polygon for
meshing.

Fig. 1. (a) Coupled “through hole” via structure (b) 2D meshing for single via structure
(Courtesy of Cadence Design Systems)

Our high-level algorithm for generating meshing on structures of PCB and
packaging: projects 3D structures orthogonally onto the x-y plane, generates 2D
triangular meshing based on 2D projected datasets, and finally extrudes 2D triangles
vertically through the PCB/packaging layers to form 3D prism meshing. The approach
applies CGAL’s constrained Delaunay triangulation and inputs triangle element control
criteria to control edge length and the angle of the mesh triangle element in the desired
computational space [2]. This extrusion approach was introduced in [15]. We used it in
[16], for only single (not coupled) serpentine line features.

The remainder of this paper is organized as follows. Section 2 briefly discusses
triangle quality measures since they will be used to evaluate the method used in this
paper. Section 3 discusses the ideas of Delaunay triangulation and constrained
Delaunay triangulation. Section 4 focuses on describing our hierarchical Delaunay
triangulation. Section 5 shows quality measures and mesh size trend for pad
refinement, which is closely related to our proofs in Section 4. The experimental
meshing results with various aspect ratios show that meshing produces not only a
constrained Delaunay triangulation, but also a Delaunay triangulation. Finally,
Section 6 concludes the paper and suggests directions for future work.

2 Quality Measure

The quality of triangulation directly affects the accuracy of the EM computation
accuracy with FEM. This is true especially for full-wave EM modeling [11]. Various
quality measures appear in the literature; see [4] for a survey. Since we focus on
analyzing triangulation characterization on a 2D elliptical structure, we are only
interested in measuring quality in 2D. In 2D we measure:

— number of triangles: this should be as small as possible to reduce FEM
computation time;

— triangle angles: these should be as large as possible to avoid FEM simulation
difficulties;



56 S. Ye and K. Daniels

— a ratio involving triangle area and edge lengths: triangles should be as close to
equilateral as possible.

The ratio we use is based on [7]. The element quality ratio g, for a triangle is:
434

qc = h2+hZ+h2 " (1

where A denotes the area, and h;, h;, and h; are the edge lengths. It is straightforward
to show that g, =1 for an equilateral triangle.

3 Delaunay Triangulation and Constrained Delaunay
Triangulation

Delaunay triangulation [3, 5, 8, 13] provides a good foundation to support high-
quality meshing in our context. We use the 2D Delaunay triangulation. This has the
empty circle property: each triangle’s circumcircle’s interior contains no vertices.
The Delaunay triangulation also maximizes the minimum triangle angle size, which
supports our 2D quality criteria. Because we must include edges of structural features
in the triangulation, we use a constrained Delaunay triangulation. Guaranteed
inclusion of these edges typically implies sacrificing some mesh quality and adding
extra vertices (Steiner points). Following [3], if we denote by E the set of edges of
structural features that we must preserve, let int refer to interior, and let points
x,y € R? be visible from each other in a triangulation of E when xy ¢ E and
int xy Nuv = @, Yuv € E, then (assuming general position), an edge ab, with a and
b both in the triangulation, belongs to the constrained Delaunay triangulation of E if:

(i) ab € E, or;

(i1) a and b are visible from each other and there is a circle passing through a and b
such that each triangulation vertex (not on ab) inside this circle is invisible
from every point x € int ab.

Fig. 2. (a): A constrained triangulation. (b): A constrained Delaunay triangulation. (courtesy of
CGAL documentation [2], but with constrained edges of E thickened).

A constrained Delaunay triangulation satisfies this constrained empty circle property
[2]. Said differently, "it is convenient to think of constrained edges as blocking the view.
Then, a triangulation is constrained Delaunay if and only if the circumscribing circle of
any facet encloses no vertex visible from the interior of the facet" [2]. It is shown in [3]
that, among all constrained triangulations of E, the constrained Delaunay triangulation



Hierarchical Delaunay Triangulation for Meshing 57

maximizes the minimum angle. Fig. 2 above illustrates the constrained empty circle
property of a constrained Delaunay triangulation, where thick segments are the
constrained edges.

CGAL provides easy access to efficient and reliable geometric algorithms in a C++
library. It not only offers data structures and algorithms such as Delaunay triangulation
and mesh generation which we require for our project, but also provides various
geometric functions that we use elsewhere, such as Voronoi diagrams, Boolean
operations on polygons and polyhedra, and shape analysis.

4 Hierarchical Delaunay Triangulation for Mesh Generation

Here we first show that when a circular pad (which is a special case of elliptical
shape) is approximated by either an equilateral triangle or a regular hexagon, then
existence of a Delaunay triangulation containing all the edges of the approximation to
the pad is guaranteed if we allow insertion of Steiner points. In these simple base
cases, there exist constrained Delaunay triangulations that are also Delaunay
triangulations. Referring to Fig. 3, in Fig. 3(a) there is a single equilateral triangle.
This triangle at level 1 of the refinement is trivially Delaunay and its quality
according to Equation 1 is equal to one. In Fig. 3(b), the circle is approximated by a
hexagon; this is level 2 of the hierarchy. If we let the length of a side of the hexagon
equal 1, then we can triangulate the hexagon using 6 equilateral triangles that have a
common vertex at the center of the circle that circumscribes the hexagon. Each of
these 6 triangles has the empty circle property because each of their radii has length
1/+/3. For each such a triangle 7, all remaining triangulation vertices are outside of #’s
circumcircle because their distance from the center of ’s circumcircle exceeds 1/+/3
(because the radius of each adjoining triangle’s circumcircle equals 1/+/3). Due to
this empty circle property, the triangulation is not only constrained (because the
hexagon edges are preserved), but also Delaunay. Because the triangles are all
equilateral, we again have quality of 1 from Equation 1 (in Section 2).

(@

Fig. 3. First 4 levels of hierarchical Delaunay triangulation: (a) equilateral constrained Delaunay
triangle, (b) hexagonal constrained Delaunay triangles, (c) 3" Jevel, and (d) 4™ level

At this point we depart from the circle and show that there exists hierarchical
constrained Delaunay structure for successive refinements of the hexagon. Later we
show that the refinements remain close to the circle. We also demonstrate that a
deformation of so-called “border triangles” onto the circle produces a constrained



58 S. Ye and K. Daniels

triangulation in which border triangles are Delaunay with respect to non-border
triangles (i.e. no non-border triangle’s vertices are interior to a border triangle’s
circumcircle), and all non-border triangles are Delaunay.

To create the refinement, for each triangle in the current refinement, connect
midpoints of each triangle edge, as shown in Fig. 3(c). Each triangle therefore
generates 4 equilateral subtriangles, each of perfect quality. (Note that for an arbitrary
level i ( > 2) of this hierarchical refinement, there are 6 * (4i_2) triangles.) Fig. 3(d)
depicts a fourth level of refinement. One triangle from the third level of refinement
has thick edges to indicate its relationship to its subtriangles. We claim that, at each
level of this hierarchical refinement, all triangles are Delaunay.

Theorem 1: Each level i ( > 2) of the hierarchical refinement is a Delaunay
triangulation of the circular pad’s hexagon.

Proof: In order to establish this, we must show that the interior of each triangle’s
circumcircle is empty of triangle vertices. Let A be a triangle at an arbitrary level i ( >
2) of this hierarchical refinement, and let C(A) be A’s circumcircle. Let the star [3] of
a vertex of A be the union of all equilateral triangles in refinement i of which it is a
vertex. Note that due to the way triangles are subdivided, each star’s outer boundary
(link [3]) is a hexagon (except for triangles touching the border of the hexagon). We
define the star union of a triangle as the union of the stars of its vertices, and a star
vertex is a vertex either inside or on the boundary of the triangle’s star union. All
triangle vertices of the refinement outside of A’s star union are further away from
C(A) than its star vertices. Thus, if we show that none of A’s star vertices are inside
C(A), then A is Delaunay. The vertices of A are on the boundary of C(A), so they are
not interior to C(A). Suppose that the radius of C(A) is 1 unit in length. Then each
edge of A is of length V3 and the altitude of A is 3/2. The distance of the vertices of
A’s star union (excluding its own vertices) that are the closest to C(A)’s center is
greater than 3/2. Thus, all these vertices of A’s star union are further than 1 unit away
from the circle’s center and hence are clearly outside the circle. We conclude
that triangle A is Delaunay. Since A was chosen arbitrarily, the entire triangulation
is Delaunay. And, since the level ( > 2) is also arbitrary, each triangulation level
greater than 2 in the hierarchy is also Delaunay, which completes the proof. ]

Note that, in this type of triangulation, the link of each vertex that is not on a
constrained segment is a regular hexagon; the vertex has degree 6. This will become
relevant to Section 5, where we consider the type of triangulation generated by
CGAL’s 2D constrained Delaunay triangulation.

Since our primary interest is in a constrained Delaunay triangulation which
preserves line segments approximating the boundary of the original pad, we now
consider the maximum distance of the circle’s boundary from the outer boundary of a
level of the hierarchical Delaunay triangulation. At the first level, if we assume that
the radius is one unit, then the maximum distance is 1/2. At all levels beyond the first,
the maximum distance is 1 — (\/§ / 2).

Now consider the following method of converting a level i ( > 2) in the Delaunay
hierarchical triangulation to a constrained (not necessarily Delaunay) triangulation via a
deformation. For this we define the border of the Delaunay hierarchical triangulation to
be the set of triangles touching either the circle itself or the constrained edges of the
level 2 hexagon. For each vertex of the border that is not already on the circle P, project



Hierarchical Delaunay Triangulation for Meshing 59

the vertex outwards onto P in a direction orthogonal to the associated constrained
hexagon edge (see Fig. 4). As there are 6 * (2™1 — 1) moving vertices, this creates a
refinement of the circle containing 6 * (2:1) constrained segments. So, the number of
constrained segments doubles with each successive level of approximation.

Type 1
triangle

Type 2
triangle

Fig. 4. Deformation of hierarchical Delaunay triangulation via orthogonal projection. (a)
Deformation process. (b) Final result of deformation, with two types of border triangles (see
triangle type definitions below).

Is this constrained deformed triangulation also Delaunay, regardless of its
hierarchical level? Not necessarily, but we can offer some observations. We first
claim that all non-border triangles remain Delaunay. This is because the number of
triangle vertices is not increased by the deformation, and each moved vertex moves
further away from every non-border triangle. Thus, no translated vertex can be
interior to a non-border triangle’s circumcircle. The only problematic region is
therefore the deformed border triangles.

Each border triangle is one of two types: 1) triangle containing no constrained
hexagon edge, and 2) triangle containing a constrained hexagon edge. (Note that there
are no triangles with all 3 vertices on the circle.) Let us first consider the type 1
border triangle. It is originally an equilateral triangle which becomes isosceles under
the deformation of its vertex that touches the constrained hexagon edge. Increasing
movement away from the circle’s center and the triangle’s base, orthogonal to a
hexagon edge, creates a family of isosceles triangles and associated circumcircles,
with the circumcircle centers moving away from the original circle’s center in the
same direction as the vertex. Each successive circumcircle goes through the two base
vertices and becomes closer to the base edge as the vertex moves outwards
(see Fig. 5(a)). Thus, it cannot contain any vertices of non-boundary triangles. This
type of triangle is therefore Delaunay with respect to the non-boundary triangles’
vertices.

We would like to show that type 2 triangles are also Delaunay with respect to the
non-boundary triangles’ vertices. For this we refer to Fig. 5(b) and Fig. 6. In the
symmetric case (Fig. 5(b)) in which both vertices move the same amount and inverted
isosceles triangles are created, the circumcircles are all tangent to (and on the side
opposite from) the line through the base vertex, so that the circumcircles cannot
contain any non-border vertices. The extreme case occurs at a triangle containing a



60 S. Ye and K. Daniels

hexagon vertex (see Fig. 6). In the unachievable worst case, the type 2 triangle is a
right triangle. The two vertices of the triangle opposite to the right angle form the
diameter of the new triangle’s circumcircle. The center of this circumcircle is shown
as a star in Fig. 6. While it may be possible for this circumcircle to exit the border
triangle region from below, it is not possible for it to include any non-border triangle
vertices because the circle is bounded on one side by its tangent line s (see Fig. 6).

(a) (b)

Fig. 5. Deformation of border triangles (a) Type 1 selected set of isosceles triangles generated
from equilateral border triangle (bold horizontal edge is constrained hexagon edge), and (b)
Type 2 in the symmetric case of equal movement of vertices

part of constrained
hexagon edge

part of unconstrained
hexagon edge

Fig. 6. Extreme deformation of type 2 border triangle: one vertex is a constrained hexagon edge
endpoint

We therefore have the following result:

Theorem 2: Each border triangle of a hierarchical constrained Delaunay
triangulation, when projected onto circle P orthogonally to the associated constrained
hexagon edge, is Delaunay with respect to the non-border triangles.

Theorem 2 provides us with a constrained triangulation that possesses some
Delaunay characteristics. (Note that we do not provide any Delaunay guarantee about
the relationship between adjacent border triangles.) Theorem 2 applies to the 6 *
(2171 — 1) border triangles of the 6 * (4:~2) triangles at level i (> 2).



Hierarchical Delaunay Triangulation for Meshing 61

Finally, we consider the question of whether the deformed triangulation we have
created is a constrained Delaunay triangulation according to the definition given in
Section 3. In our case, all the constrained edges of the triangulation are on the outer
border (on the circle), so they cannot contribute any “blocking” of visibility. In this
case, the constrained Delaunay question reduces to the actual Delaunay question.
Again, we have no issue with non-border triangles, as they are Delaunay. Future work
may investigate whether or not all border triangles are provably Delaunay. (See
Section 5, where CGAL creates constrained triangulations that are also Delaunay.)

5 Mesh Size Trend for Pad Refinement

Here we examine how CGAL’s 2D constrained Delaunay triangulation algorithm [2],
which adds vertices incrementally, behaves when it performs successive refinements
of an elliptical pad with a circle as a special case. During each CGAL iteration, a
constrained edge is added to the current configuration by first removing edge(s)
intersecting the constrained edge, and then retriangulating the holes created by the
new edge. The constrained Delaunay property is then restored via edge flips [17].

(a) 6 vertices (b) 12 vertices (c) 24 vertices

(d) 48 vertices (e) 96 vertices

Fig. 7. CGAL’s constrained Delaunay triangulation for circular pad refinement, with number of
vertices on the circle

For this experiment we use the following CGAL parameter settings: approximately
20.6 degrees for the minimal angle and 2mm for the upper bound on the length of the
longest edge. Our test cases vary the elliptical aspect ratio from 1 (circle) to 2. Fig. 7
shows doubling of refinement levels, starting at 6 vertices on a circle and ending at
96. Table 1 accompanies Fig. 7 and provides details about CGAL’s refinements. We
compare this behavior to the constrained hierarchical triangulation (with deformation)
of Section 4. Note that for 12 vertices CGAL is making the same type of pattern that
we showed for 6 vertices in Fig. 3(b); there is one central Steiner point. Once CGAL
goes beyond 12 vertices, note that CGAL creates nearly hexagonal structure, with
larger triangles deeper inside the circular pad. Many of the vertices have degree close



62 S. Ye and K. Daniels

to 6. Table 1 reveals average vertex degree close to 6 in several of the refinements.
The average degree of vertices not on the circle is 7.71 for Fig. 7(c), 6.82 for
Fig. 7(d), and 6.57 for Fig. 7(e). This is similar to the hexagonal structure of our
constrained deformed triangulation in Section 4.

Table 1. CGAL’s 2D constrained Delaunay meshing of circular pad refinement

# # # Type 2 # Average | Average Average | Delaunay?
Vertices | Triangles | Border Steiner Steiner Triangle | Non-Type
on Triangles | Points Point Quality 2
Circle Vertex Triangle
Degree Quality
6 4 3 0 N/A .70 1.0 Yes
12 12 12 1 12.0 .76 .76 Yes
24 36 24 7 7.71 .79 .96 Yes
48 102 48 28 6.82 .83 .94 Yes
96 244 96 77 6.57 .82 .89 Yes

Also note CGAL’s creation of an outer layer of triangles that strongly resembles
characteristics of the border defined in Section 4. There are Type 1 triangles which
appear to be nearly isosceles. There are also Type 2 triangles. All of the border
triangles can be classified as one of these two types. The number of triangles is
significantly smaller than the exponential 6 * (4:~2) triangles at level i (> 2) that we
derived in Section 4. In our experiments, the number of CGAL triangles increases
nearly linearly as a function of the number of vertices on the circle. (In [16] we
observed this linear behavior for a complete single via model embedded on a PCB
with rectangular boundary. In [18], a mesh is created whose output size is linear in the
number of input vertices.) Table 1 also shows the number of Type 2 border triangles
in each case. On average, 66% of the triangles are of this type.

The average triangle quality is close to one in all the cases we examined.
Interestingly, in our experiments all of CGAL’s results are Delaunay as well as
constrained Delaunay. Furthermore, average triangle quality is at least .7 for each of
the 5 refinement levels. Quality is higher for non-Type 2 triangles than for Type 2
border triangles (see Table 1): average non-Type 2 triangle quality is .91. Recall that,
for the hierarchical deformed triangulation of Section 4, quality is equal to 1 except
for border triangles. So, this is another similarity between that triangulation and what
CGAL produces. Yet another similarity can be observed by noting that the number of
CGAL’s Type 2 border triangles is equal to the number of constrained segments on
the circular boundary. This means that no constrained segments are subdivided by the
triangulation process. So, there are 6 * (2¢~1) constrained segments at level i ( > 2), as
in the hierarchical deformed triangulation of Section 4.

For the elliptical cases, we tried aspect ratios 1.33, 1.5 and 2. Fig 8 and Table 2
show the results of aspect ratio 2. The results for aspect ratios 1.33 and 1.5 are similar
to those of aspect ratio 1 (circular case described above). For aspect ratio 2, we
observe that once CGAL goes beyond 24 vertices, CGAL creates nearly hexagonal
structure, with larger triangles deeper inside the elliptical pad. Many of the vertices



Hierarchical Delaunay Triangulation for Meshing 63

have degree close to 6. Table 2 shows average vertex degree close to 6 in several of
the refinements. The average degree of vertices not on the circle is 6.96 for Fig. 8(d),
and 6.49 for Fig. 8(e). As with the circular case, again this is similar to the hexagonal
structure of our constrained deformed triangulation in Section 4. Furthermore, note
that in this elliptical case the mesh is Delaunay in addition to constrained Delaunay.

(a) 6 vertices (b) 12 vertices (c) 24 vertices

(d) 48 vertices (e) 96 vertices

Fig. 8. CGAL’s constrained Delaunay triangulation for elliptical pad refinement with aspect
ratio 2, with number of vertices on the circle

Table 2. CGAL’s 2D constrained Delaunay meshing of elliptical pad refinement with aspect
ratio 2

# # # Type 2 # Average | Average Average | Delaunay?
Vertices | Triangles | Border Steiner Steiner Triangle | Non-Type

on Triangles | Points Point Quality 2
Ellipse Vertex Triangle

Degree Quality

6 4 4 0 N/A .89 N/A Yes

12 10 10 0 N/A .67 N/A Yes

24 30 24 4 9.0 76 91 Yes

48 94 48 24 6.96 .82 .93 Yes

96 246 96 77 6.49 .84 91 Yes

6 Conclusion and Future Work

In this paper, we introduce a hierarchical mesh for an elliptical PCB pad structure
with various aspect ratios and show that it has several useful Delaunay quality
characteristics. We show experimentally that CGAL’s meshing of this structure at
different resolutions yields patterns similar to our hierarchical mesh. In the future, we



64

S. Ye and K. Daniels

may 1) investigate whether or not all border triangles are provably Delaunay; 2)
explore the linear meshing size relationship in our application; 3) examine how
hierarchical Delaunay triangulation applies in other features of PCB structures.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Botsch, M., et al.: ACM SIGGRAPH 2007 course 23: Geometric modeling based on

polygonal meshes. Association for Computing Machinery (2007)

CGAL User and Reference Manual, http://www.cgal.org

Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University
Press, Cambridge (2001)

Frey, P.J., George, P.-L.: Mesh Generation: application to finite elements. Oxford and
HERMES Science Publishing, Paris (2000)

Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry,
2nd edn. CRC Press, Boca Raton (2004)

Hall, S.H., Hall, G.W., McCall, J.A.: High-Speed Digital System Design: A Handbook of
Interconnect Theory and Design Practices. John Wiley & Sons, Inc. / A Wiley-Interscience
Publication (2000)

Holzbecher, E., Si, H.: Accuracy Tests for COMSOL - and Delaunay Meshes,
http://cds.comsol.com/access/dl/papers/5436/Holzbecher.pdf
Hwang, C.-T., et al.: Partially Prism-Gridded FDTD Analysis for Layered Structures of
Transversely Curved Boundary. IEEE Transactions of Microwave Theory and
Techniques 48(3), 339-346 (2000)

Lee, S.: Efficient Finite Element Electromagnetic Analysis for High-Frequency/High
Speed Circuits and Multiconductor Transmission Lines. Doctoral Dissertation, University
of Illinois at Urbana-Champaign, Urbana Illinois (2009)

Ramahi, O.M.: Analysis of Conventional and Novel Delay Lines: A Numerical Study.
Journal of Applied Computational Electromagnetic Society 18(3), 181-190 (2003)

Rodger, D., et al.: Finite Element Modelling of Thin Skin Depth Problems using Magnetic
Vector Potential. IEEE Transactions on Magnetics 33(2), 1299-1301 (1997)

Thompson, J.F., Soni, B.K., Weatherill, N.P. (eds.): Handbook of Grid Generation. CRC
Press, Boca Raton (1999)

Tsukerman, I.: A General Accuracy Criterion for Finite Element Approximation. IEEE
Transactions on Magnetics 34(5), 1-4 (1998)

Tummala, R.R.: SOP: What Is It and Why? A New Microsystem-Integration Technology
Paradigm-Moore’s Law for System Integration of Miniaturized Covergent Systems of the
New Decade. IEEE Transactions on Advanced Packaging 27(2), 241-249 (2004)

Ye, S., Daniels, K.: Triangle-based Prism Mesh Generation for Electromagnetic
Simulations. In: Research Note for the 17" International Meshing Roundtable, Pittsburgh,
Pennsylvania, October 12-15 (2008)

Ye, S., Daniels, K.: Triangle-based Prism Mesh Generation on Interconnect Models for
Electromagnetic Simulations. In: 19™ Annual Fall Workshop on Computational Geometry
(sponsored by NSF), Tufts University, Medford, MA, November 13-14 (2009)

Yvinec, M.: Private communication regarding CGAL’s 2D constrained Delaunay
algorithm (November 2009)

Miller, G., Phillips, T., Sheehy, D.: Linear-Sized Meshes. In: Canadian Conference on
Computational Geometry, Montreal, Quebec, August 13-15 (2008)



A Parallel Multi-start Search Algorithm for Dynamic
Traveling Salesman Problem

Weigqi Li

University of Michigan - Flint, 303 E. Kearsley Street, Flint, MI 48501, U.S.A.
weli@umflint.edu

Abstract. This paper introduces a multi-start search approach to dynamic
traveling salesman problem (DTSP). Our experimental problem is stochastic and
dynamic. Our search algorithm is dynamic because it explicitly incorporates
the interaction of change and search over time. The result of our experiment
demonstrates the effectiveness and efficiency of the algorithm. When we use a
matrix to construct the solution attractor from the set of local optima generated by
the multi-start search, the attractor-based search can provide even better result.

Keywords: dynamic TSP, network and graphs, parallel computing.

1 Introduction

Many real-world optimization problems are inherently dynamic. Dynamic optimization
problems (DOP) involve dynamic variables whose values change in time. The purpose
of the optimization algorithm for DOPs is to continuously track and adapt to the
changing problem through time and to find the currently best solution quickly [1],[2].
The simplest way to handle dynamic problems would be to restart the algorithm
after a change has occurred. However, for many DOPs, it is more efficient to develop
an algorithm that makes use of information gathered from search history. This
information may be used to reduce the computational complexity of tracking the
movement of the global optimum.
Due to their adaptive characteristics, evolutionary algorithms (EA) and ant colony
optimization (ACO) approaches have been applied to DOPs in recent years [3]-[10].
EAs are generally capable of reacting to changes of an optimization problem. The
main problem for EAs to solve DOPs is the convergence of population. Once
converged, the EA loses the required diversity to adapt to the changing problem. The
dynamic problem requires the EAs to maintain sufficient diversity for a continuous
adaptation to the changes of the solution landscape. Several strategies have been
developed to address this issue. Some examples of such strategies include maintaining
and reintroducing diversity during the run [11]-[13], memory schemes [14], memory
and diversity hybrid schemes [15],[16], and multi-population schemes [10],[17],[18].
The standard ACO algorithm can adapt to low-frequency change or small change
in problem. Many researches on ACO for dynamic problems focus on how modifying
the amount of pheromone when the change occurs. When changes to the problem are
small, preserving pheromone information is useful, since the solution to the new

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 65 2011.
© Springer-Verlag Berlin Heidelberg 2011



66 W.Li

problem instance is likely to share moves with the old solution. Large changes in the
problem cause the solution to change radically, so preserving pheromone information
may be harmful, since it can mislead the algorithm initially and cause the algorithm to
be stuck in a sub-optimal local point. Therefore, it is important that pheromone is
altered during a change in such a way that useful pheromone information is kept
while obsolete pheromone is reset. Many strategies for modifying pheromone
information have been proposed. The approach used by Gambardella et al [19] was to
reset all elements of the pheromone matrix to their initial values. Stiitzle and Hoos
[20] suggested increasing the pheromone values proportionately to their difference to
the maximum pheromone value. Guntsch and Middendorf [5],[21] discussed several
approaches to modify the pheromone values.

The rapid development in the areas of robot control, dynamic logistic models,
telecommunications and mobile computing systems, in which data flow are considered
to be time-dependent, has caused an increasing interest in the DTSP [1],[22],[23]. Since
Psaraftis [24] first introduced DTSP, a wide variety of algorithms have been proposed
for DTSP. Kang et al. [25] provided a survey on some benchmarking algorithms for
DTSP.

This paper introduces a parallel multi-start search algorithm for DTSP. This
algorithm offers many advantages. It is flexible, adaptable, effective, and easy to
implement. When a change in problem occurs, the approach repairs only the search
trajectories. The search trajectories directly exhibit time-varying processing, allowing
the algorithm to capture the dynamics of both the problem and search. Perhaps the
most important feature of such an algorithm is its ability to implement parallel
computing in its algorithm.

The remainder of this paper is organized as follows. Section 2 briefly describes the
multi-start search in TSP and its solution attractor. Section 3 describes the setting of
the DTSP under consideration. Section 4 explains the parallel multi-start search
procedure for the DTSP. And the final section closes the paper.

2 Multi-start Search and Solution Attractor

Many heuristic search algorithms in practice are based on or derived from a general
technique known as local search [26]. Local search algorithms iteratively explore the
neighborhoods of solution trying to improving the current solution by local changes.
However, the search spaces are limited by the neighborhood definition. Therefore,
local search algorithms are locally convergent.

One way to overcome local optimality is to restart the search procedure from a new
solution once a region has been explored [27]. Multi-start heuristics produce several
solutions (usually local optima), and the best overall is the algorithm’s output. Multi-
start search helps to explore different areas in the solution space, and therefore the
algorithm generates a wide sample of the local optima.

The common opinion about the local optima in a multi-start search is that they
form a “big valley” in the search space, where the local optima occur relatively close
to each other, and to the global optimum [28],[29]. If we start local search from
several different initial points, after letting the search ran for a long time, we should
find that these search trajectories would settle onto a small attractive region.



A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem 67

This small region is called a solution attractor for the local search process in that
problem [30]. The solution attractor of local search process can be defined as a subset
of the solution space that contains the end points of all local search trajectories. In
other words, the solution attractor contains all locally optimal points. Since the
globally optimal point is a special case of local optima, it is expected to be embodied
in the solution attractor.

Fig. 1 presents the procedure for constructing the solution attractor of local search
for a static TSP instance. The procedure is very straightforward: generating M locally
optimal tour, storing them into a matrix E (called hit-frequency matrix), removing
some unfavorable edges in E, and finally finding all tours contained in E.

procedure TSP_Attractor (Q)
begin

repeat
s; = Initial Tour(

’

i )
s; = Local Search (s;);
Update (E(s;));
until Multistart = M;
E = Remove Noise (E)
Exhausted_ Search (E)
0 end

WO o Joy U WM

Fig. 1. The procedure for constructing solution attractor of local search in TSP

In the procedure, Q is a TSP instance. s; is an initial tour generated by the function
Initial_Tour (). The function Local_Search () runs a local search on s; and
output a locally optimal tour s;. The function Update (E) records the edges in s; into
E. After M locally optimal tours are generated, the matrix E keeps the union of the
edges in the set of M local optima. The matrix E can catch rich information about the
attractor for the TSP instance [30].

The solution attractor constructed from a set of locally optimal tours contains some
unfavorable edges (noise). The function Remove_Noise () is used to cluster the
edges in E in an attempt to remove some noise. If we remove the edges that have low
hit frequency, the remaining edges in E are the globally superior edges that constitute
the core of the solution attractor.

Finally, an exhausted-enumeration process Exhausted_Search () searches the
matrix E to identify all solutions in the attractor core. Because the attractor core in E
represents a very small region in solution space and contains very limited number of
solutions, the computational complexity in E is easily manageable for TSP. The
solution attractor in E usually contains the globally optimal tour [30].

Our motivating hypothesis for using the matrix E is that useful information about
the edges of globally optimal tour is typically contained in a suitable diverse
collection of locally optimal tours. In the attractor construction procedure, a local
search is used to find a locally optimal tour. However, a local search (1) lacks
information needed to find all globally superior edges, and (2) lacks the architecture
to use such information. The hit-frequency matrix E is a suitable data structure for
providing such architecture and information. When each search trajectory reaches its
locally optimal point, it leaves its “final footprint” in the matrix E. The matrix E



68 W. Li

provides the architecture that allows individual tours interact along a common
structure and generate the complex global structure.

There are other two propositions that are underlined the application of the hit-
frequency matrix E in the procedure. The first proposition is that the globally superior
edges are hit by a set of locally optimal tours with higher probabilities. Thus, the
solution attractor is mainly formed by these globally superior edges. The second
proposition is that a group of locally optimal tours together contains information about
other locally optimal tours since each locally optimal tour shares some of its edges with
other locally optimal tours. This concept motivates the procedure that takes advantage
of the context where certain partial configuration of a solution often occurs as
components of another solution. The strategy of “seeking the most promising partial
configurations” can help circumvent the combinatorial explosion by manipulating only
the most promising elements of the solution space.

5405 678 3101112131415 1617181920
m__u .=. N B

i =3
15 [] Mesthit edges

Hit Frequency

il 18 .. [m]
2| | Leasthitedges 1z ] H B
i 18 ||

1 ||
000 ononoan _|0r 20 B || ||
56 7

8 9101112131443 16171819 20

34

Elementsin Column 12

(c) (d)

Fig. 2. An example of solution attractor construction

In fact, some researchers have utilized these properties in a set of locally optimal
solutions to design their heuristic algorithms. For example, path relinking has been
suggested as an approach to integrate intensification and diversification strategies in
heuristic search. The path relinking approach generates new solutions by exploring



A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem 69

trajectories that connect high-quality solutions, by starting from one of these solutions
and generating a path in the neighborhood space that leads toward the other solutions
[31]-[34]. Applegate et al. [35] propose a tour-merging procedure that attempts to
produce the best possible combination of tours by restricting to the edges that are
present in at least one tour in the collection. Taking the union of the edges sets of the
tours, they assemble the graph represented in the tours. They apply their methods on
several TSPLIB instances and found the optimal tours in most trails.

Fig. 2 uses a 20-city TSP instance as an example to explain the attractor
construction procedure. We started M = 100 initial tours. Because these initial tours
are randomly produced, the edges should have an equal probability to be hit by these
initial tours. The darkened elements in the matrix in Fig. 2(a) represent the union of
the edges in these initial tours.

After applying 2-opt search technique to each of the initial tours, we obtain 100
locally optimal tours. The darkened elements in Fig. 2(b) represent the union of the
edges hit by these 100 locally optimal tours. Fig. 2(c) illustrates the clustering process
for the column 18 in E. We keep the most-hit cluster and remove other clusters. The
darkened elements in Fig. 2(d) are the most-hit edges, representing the core of the
solution attractor. We can see that, through this process, the search space is
significantly reduced to a small region. Now we can use an exhausted-enumeration
algorithm to find all solutions in the attractor core. In our example, the function
Exhausted_Search () found 32 solutions in the attractor core.

3 The Dynamic Traveling Salesman Problem

DTSP is a TSP determined by a dynamic cost matrix C as follows:
C(t) = {C,'j (t)}n(z)xn(t) (1)

where c;(?) is the travelling cost from city i to city j at the real-world time #; n(?) is the
number of cities at time ¢. In DTSP, the number of cities can increase or decrease and
the travelling costs between cities can change. The algorithmic problem has to be re-
solved quickly after each change.

Many real-world dynamic problems are most naturally viewed in terms of
stochastic dynamics. The dynamism implies that stochastic elements are introduced.
The information on the problem is not completely known a priori, but instead is
revealed to the decision maker progressively with time. Therefore, it becomes
necessary to make the problem stochastic. This paper considers a random dynamic
TSP. We starts with a 700-city instance with a randomly generated cost matrix C, in
which each element c(i, j) = c(j, i) is assigned a random integer number in the range
[1, 1000]. Then the problem changes in the fashion shown in Fig. 3. The changes in
the problem include three cases: An cities are removed, An cities are added, and the
travelling costs for Aw edges are changed. An is randomly generated in the range of
[10, 150] and Aw in the range of [10, 250]. After a change is made, the problem waits
for At seconds until next change. At is a random number in the range of [5, 30]. The
problem changes with time is in such a way that future instances are not known. In
other words, the nature (dimensional and non-dimensional) of change, the magnitude
of change, and the frequency of change occurs randomly in certain ranges. This
setting of the problem is quite useful for routing in ad-hoc networks.



70 W. Li

If the rraber is 1 If the rraber iz 0
Generate a randorn rreber 0 or 1
17 f l
Crenerate a random number An in range [10, 150]. Crenerate a random murmher Aw in
Thex generate another randorn muraber 0 or 1, range [10, 250].
If the nareber iz O If the narber is 1
¥
Removedn cities at Inzertan cities at Randornly change eost walue in
randoraly selected randoraly selected range [1, 1000] at randordy
postions postions selected position for Aw edges

Let the search algonthen run for Af seconds, ‘

i

=I Generate a randor AF in range [5, 30 |<_

Fig. 3. Dynamic setting of the TSP

4 The Multi-start Search Procedure

When an optimization problem is in a dynamic and uncertain environment, the
algorithmic challenge is to design speed-up techniques which work in a fully-dynamic
scenario and do not require a time-consuming pre-processing. Fig. 4 sketches the search
system for the DTSP. This system bears intrinsic parallelism in its features. Based on a
common dynamic cost matrix C, this search system starts M separate search trajectories
in parallel. Each of the search trajectories can store its result into a common hit-
frequency matrix E any time during the search. A separate search processor uses an
exhausted search technique to find the solutions in the matrix E. This system can work
in real-time. Both flexibility and adaptability are built into the search system. The
spread-out search trajectories can adapt to changes and keep useful search information
easily. It introduces diversity without disrupting the ongoing search progress greatly.

Fig. 5 presents the attractor-based search procedure. This procedure exploits the
parallelism within the algorithm. In the procedure, C is a dynamic cost matrix. Its
size, the values in its elements, and the time of changes are all parameters subject to
stochasticity within the problem described in Fig. 3. The changes in C include three
cases: a city is removed, a city is added, and a cost element c(i, j) is changed. In the
first case, the study randomly selects a position (column) in C and removes the
column and the corresponding row in C. In the second case, this study randomly
selects a position, inserts a column and a corresponding row in C, and then assigns
random cost values in ¢(i,j) in the added column and row. In the third case, an element
c(i,j) is randomly selected and its value is replaced by a new random value.



A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem 71

M search processors

Local search
. trajectory 1
dynamic cost matrix C . .
¥ hit-frequency matrix £
IB e
U Localsearch | | search processor
aunEn trajectory 2
SEEE
HEIERE R Exhausted
A . search
5 — .
.
Local search
trajectory M

Fig. 4. Schematic structure of the search system for the DTSP

1 procedure DTSP_Search (C)

2 begin

3 start M separate local searches;
4 repeat

5 continue search;

6 if (Change Flag = on)

7 (

8 repair tours in search trajectories;
9 repair matrix E;

10 )

11 if (Update Flag = on)

12 Update (E) ;

14 if (Solution Flag = on)

16 Exhausted Search (E) ;

18 until Stop Criteria

20 end

Fig. 5. Parallel multi-start attractor-based search procedure for DTSP

The procedure starts M initial points in the solution space. The M search
trajectories are conducted in parallel. In a multi-processor system, the M local search
can be computed separately in M separate processors. When a city is removed or
inserted, the tours in current search trajectories will cease to be valid. We have two
ways to deal with this issue. One way is to restart the M search trajectories for the
new problem instance; another way is to repair the tours in the current search
trajectories. In the case of repairing, a city is removed from a tour by connecting its
respective predecessor and successor; whereas a city is inserted into a tour by
connecting it with two cities in a proper position and removing the connection
between those two cities.

In our procedure, each time when the size of the cost matrix C changes, the proce-
dure sends a Change_Flag signal to all search trajectories. All search trajectories will
repair their tours. The size of the matrix E will also be adjusted correspondingly. And
then the search trajectories continue their local search based on the new cost matrix C.
The main advantage of this method is that the algorithm keeps its diversity necessary for
efficiently exploring the search space and consequently its ability to adapt to a change in
the problem when such a change occurs.



72 W.Li

The Update_Flag is a parameter that is used to control when we want the search
trajectories to store their current tours into the matrix E. Before being updated, all
elements in the matrix E are reset to zero. Since the whole information of matrix E
depends only on the current solutions in the M search trajectories, it is no need to
apply any particular mechanism for modifying the values in the matrix when a change
in the problem occurs.

When a decision maker needs a solution for the current problem, he sends an
Information_Flag signal to the algorithm. The algorithm triggers the Exhausted
Search processor to search the matrix E and output the best solution.

Due to lack of parallel computing platform, we simulated the parallel multi-start
search in a single-processor PC system (Intel Pentium processor, 1300MHz, 512mb
RAM). When a change in the cost matrix C is made and a Ar is generated, we
compute local search for each of M search trajectories sequentially, each spending At
seconds. We store the tours in the M search trajectories into the matrix E. Then the
solutions in E are searched by an exhausted search algorithm. The procedure then
makes the next change in the cost matrix C. The procedure was implemented using
MATLAB 5.

The desire to speed up the search process is particular relevant in the dynamic
domain where the time to relocate the global optimum can be severely restricted by
the frequency of change. The running-time constraint implies that the search is best
done by using efficient local improvement heuristics like k-interchange. In our
experiments, we use the 2-opt search technique in local search.

We conducted several experiments to study the search behavior of the algorithm.
One experiment reported here is to study the performance of the simple multi-start
search and the attractor-based search in our DTSP. We use the offline performance
measure defined as follows:

I =% 2)

where g, is the value of optimal solution at time #, #, is the value of the best solution
found by the procedure at time #, and /, is the index value of g, and h,.

We started M = 400 search trajectories and ran each of search trajectories for 10
seconds. Then we made the first change in the matrix C. After five changes in C were
made, we start recording the search behavior of the algorithm for next 20 changes in
C. Each time when a change in C was complete, we did the following steps:

1) Record the type (0 — changing values in Aw edges; 1 — removing An cities; 2 —
inserting An cities) and size (An or Aw) of the change.

2) Use the attractor-construction procedure described in Fig. 1 to find the optimal
solution for the new cost matrix C, and then calculating its value g,.

3) If the size of the matrix C was changed, repair the tours in the M search
trajectories and adjust the size of matrix E.

4) Find the best tour in the M search trajectories based on the new matrix C,
calculate its value A, and then calculate the index value L, gjeciory_pefore-

5) Store the tours in the M search trajectories into the matrix E, find the best tour in
E, calculate its value h,, and then calculate the index value L acior_pefore-

6) Generate the search time Ar and run each of search trajectories for At seconds.



A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem 73

7) Find the best tour in the M search trajectories, calculate its value &, and then
calculate the index value I, gjecrory_afier-

8) Store the tours in the M search trajectories into the matrix E, find the best tour in
E, calculate its value h,, and then calculate the index value Luacior_afier-

9) Make the next change in the matrix C.

Table 1. Performance indexes before and after search during the 2—change period

Change Change Size L L
Type (nor w) t Before After Before After
1 46 6 0.62 0.88 0.68 0.92
2 73 12 0.38 0.87 0.42 0.97
1 93 21 0.49 0.89 0.52 0.98
0 177 17 0.77 0.96 0.79 1

2 101 9 0.38 0.79 0.41 0.92
0 210 28 0.68 0.91 0.72 1

2 129 13 0.37 0.76 0.39 0.89
0 39 7 0.71 0.91 0.82 0.97
2 89 16 0.53 0.88 0.56 0.97
1 78 8 0.61 0.85 0.64 0.88
0 142 22 0.65 0.93 0.67 1

2 131 11 0.34 0.76 0.36 0.91
1 67 15 0.59 0.88 0.62 1

1 105 25 0.48 0.94 0.54 1

0 147 18 0.83 0.94 0.92 1

2 135 14 0.31 0.87 0.36 0.94
1 74 29 0.75 0.94 0.87 1

0 247 19 0.83 0.95 0.89 1

1 108 10 0.54 0.84 0.58 0.97
2 72 0.49 0.91 0.54 1

These steps calculate two performance indexes: Iy, is the performance measure
before search and /,,, measures the performance after the procedure spent At seconds
for search. The experiment compares two results: I,gjccrory 1 the index value for the
best solution in the M search trajectories, and 1,41 18 the value for the best solution
in the attractor represented by the matrix E.

Table 1 lists the collected data. The first row of the table, for example, shows that
46 cities (An) were removed from the problem. After repairing the search trajectories
and before searching, the index for the best tour in the M search trajectories
Lirajectory_before) Was 0.62 and the index for the best tour in the matrix E (Lysractor pefore)
was 0.68. After searching for 6 seconds (Af), the index value for the best tour in the M
search trajectories (Lygjeciory_afier) Was improved to 0.88 and the value for the best tour
in E (Lystracior_afer) Was improved to 0.92.

The results show that both the simple multi-start search and the attractor-based
search can quickly react to the changes in the problem, and the attractor-based
approach outperforms the simple multi-start search.

5 Conclusion

This paper introduces a simple and effective approach to DTSP. In our experiment,
the dynamism is within the problem, the search model, and the application of the



74

W.Li

model. Our problem is stochastic and dynamic. Our search model is dynamic because
it explicitly incorporates the interaction of change and search over time, and our
application is dynamic because underlying search model is repeated used as a change
occurs. The result of our experiment demonstrates the effectiveness and efficiency of
the algorithm. Both our benchmarking problem and attractor-based model are realistic
that can be easily applied to real-world applications.

References

10.

11.

12.

13.

14.

. Corne, D.W., Oates, M.J., Smith, G.D.: Telecommunications Optimization: Heuristic and

Adaptive Techniques. John Wiley & Sons, Chichester (2000)

Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and Dynamic Networks and Routing. In:
Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing,
Handbooks in Operations Research and Management Science, vol. 8, pp. 141-296.
Elsevier, Amsterdam (1995)

. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht

(2002)

Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP: Ants Caught in a Traffic
Jam. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS,
vol. 2463, pp. 88-99. Springer, Heidelberg (2002)

Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algorithms
Applied to Dynamic TSP. In: Boers, EJ.W., Gottlieb, J., Lanzi, P.L., Smith, R.E.,
Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvolASP 2001, EvoWorkshops 2001,
EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037,
pp. 213-222. Springer, Heidelberg (2001)

Morrison, R.W.: Designing Evolutionary for Dynamic Environments. Springer, Berlin
(2001)

Tfaili, W., Siarry, P.: A New Charged ant Colony Algorithm for Continuous Dynamic
Optimization. Applied Mathematics and Computation 197, 604-613 (2008)

Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere
Verlag, Berlin (2003)

Yang, S., Ong, Y.-S., Jin, Y.: Evolutionary Computation in Dynamic and Uncertain
Environments. Springer, Berlin (2007)

Younes, A., Areibi, S., Calamai, P., Basir, O.: Adapting Genetic Algorithms for
Combinatorial Optimization Problems in Dynamic Environments. In: Kosinski, W. (ed.)
Advances in Evolutionary Algorithms, InTech, Croatia, pp. 207-230 (2008)

Morrison, R.W., De Jong, K.A.: Triggered Hypermutation Revisited. In: Proceedings of
2000 Congress on Evolutionary Computation, pp. 1025-1032 (2000)

Tinos, R., Yang, S.: A Self-organizing Random Immigrants Genetic Algorithm for
Dynamic Optimization Problems. Genetic Programming and Evolvable Machines 8(3),
255-286 (2007)

Wineberg, M., Oppacher, F.: Enhancing the GA’s Ability to Cope with Dynamic
Environments. In: Proceedings of Genetic and Evolutionary Computation Conference,
GEC 2005, pp. 3-10 (2000)

Yang, S., Yao, X.: Population-based Incremental Learning with Associative Memory for
Dynamic Environments. IEEE Transactions on Evolutionary Computation 12(5), 542-561
(2008)



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.
33.

34.

35.

A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem 75

Simdes, A., Costa, E.: An Immune System-based Genetic Algorithm to Deal with
Dynamic Environments: Diversity and Memory. In: Proceedings of International
Conference on Neural Networks and Genetic Algorithms, pp. 168—174 (2003)

Yang, S.: Genetic Algorithms with Memory and Elitism Based Immigrants in Dynamic
Environments. Evolutionary Computation 16(3), 385-416 (2008)

Branke, J., Kaussler, T., Schmidt, C., Schmeck, H.: A Multi-population Approach to
Dynamic Optimization Problems. In: Proceedings of 4™ International Conference on
Adaptive Computing in Design and Manufacturing, pp. 299-308. Springer, Berlin (2000)
Ursem, R.K.: Multinational GA: Optimization Techniques in Dynamic Environments. In:
Proceedings of the 2™ Genetic and Evolutionary Computation Conferences, pp. 19-26.
Morgan Kaufman, San Francisco (2000)

Gambardella, L.-M., Taillard, E.D., Dorigo, M.: Ant Colonies for the Quadratic
Assignment Problem. Journal of the Operational Research Society 50, 167-176 (1999)
Stiitzle, T., Hoos, H.: Improvements on the Ant System: Introducing MAX(MIN) Ant
System. In: Proceedings of the International Conference on Artificial Neutral Networks
and Genetic Algorithms, pp. 245-249. Springer, Berlin (1997)

Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Optimization
Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS,
vol. 2463, pp. 111-122. Springer, Heidelberg (2002)

Burkard, R.E., Deineko, V.G., Dal, R.V.: Well-solvable Special Cases of the Travelling
Salesman Problem: a survey. SIAM Rev. 40(3), 496-546 (1998)

Li, C, Yang, M., Kang, L.: A New Approach to Solving Dynamic Travelling Salesman
Problems. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen,
G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236-243. Springer, Heidelberg
(2006)

Psaraftis, H.N.: Dynamic vehicle routing. In: Golen, B.L., Assad, A.A. (eds.) Vehicle
Routing: Methods and Studies, pp. 223-248. Elsevier, Amsterdam (1988)

Kang, L., Zhou, A., McKay, B., Li, Y., Kang, Z.: Benchmarking Algorithms for Dynamic
Travelling Salesman Problem. In: Congress on Evolutionary Computation CEC 2004, pp.
1286-1292 (2004)

Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University
Press, Princeton (2003)

Marti, R., Moreno-Vega, J.M., Duarte, A.: Advanced Multi-start Methods. In: Gendreau,
M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 265-281. Springer, Berlin (2010)
Boese, K.D., Kahng, A.B., Muddu, S.: A New Adaptive Multi-start Technique for
Combinatorial Global Optimization. Oper. Res. Lett. 16, 101-113 (1994)

Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473-490
(1998)

Li, W.: Seeking Global Edges for Travelling Salesman Problem in Multi-start Search. J.
Global Optimization. Online First Articles (2011)

Glover, F.: Ejection Chains, Reference Structures and Alternating Path Methods for
Traveling Salesman Problems. Discrete Applied Math. 65, 223-253 (1996)

Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)

Laguna, M., Marti, R.: GRASP and Path Relinking for a 2-player Straight Line Crossing
Minimization. INFORMS J. Comput. 11(1), 44-52 (1999)

Resende, M.G.C., Mart, R., Gallego, M., Duarte, A.: GRASP and Path Relinking for the
Max-min Diversity Problem. Comput. And Oper. Res. 37(3), 498-508 (2010)

Applegate, D.L., Bixby, R.E., Chvital, V., Cook, W.J.: The Traveling Salesman Problem:
A Computational Study. Princeton University Press, Princeton (2006)



Online Dictionary Matching with
Variable-Length Gaps

Tuukka Haapasalo', Panu Silvasti', Seppo Sippu?, and Eljas Soisalon-Soininen’
1 Aalto University School of Science
{thaapasa,psilvast,ess}@cs.hut.fi
2 University of Helsinki
sippu@cs.helsinki.fi

Abstract. The string-matching problem with wildcards is considered
in the context of online matching of multiple patterns. Our patterns are
strings of characters in the input alphabet and of variable-length gaps,
where the width of a gap may vary between two integer bounds or from
an integer lower bound to infinity. Our algorithm is based on locating
“keywords” of the patterns in the input text, that is, maximal substrings
of the patterns that contain only input characters. Matches of prefixes
of patterns are collected from the keyword matches, and when a prefix
constituting a complete pattern is found, a match is reported. In collect-
ing these partial matches we avoid locating those keyword occurrences
that cannot participate in any prefix of a pattern found thus far. Our
experiments show that our algorithm scales up well, when the number
of patterns increases.

1 Introduction

String-pattern matching with wildcards has been considered in various contexts
and for various types of wildcards in the pattern and sometimes also in the
text [2-11],[13-17]. The simplest approach is to use the single-character wildcard,
denoted “.” in grep patterns, to denote a character that can be used in any
position of the string pattern and matches any character of the input alphabet
X [4, 18, [15]. Generalizations of this are the various ways in which “variable-
length gaps” in the patterns are allowed [2-4, 18,11, 113,114, [16]. Typically, a lower
and upper bound is given on the number of single-character wildcards allowed
between two alphabet characters in a pattern, such as “.{l,h}” in grep patterns.
A special case is that any number of wildcards is allowed, called the arbitrary-
length wildcard, denoted “.*” in grep, that matches any string in X* |10, [13].

The above-mentioned solutions, except the ones by Kucherov and Rusinowitch
[10] and by Zhang et al. |[L7], are for the single-pattern problem, that is, the text
is matched against a single pattern. These algorithms [10, [17] are exceptions,
because they take as input—besides the text—a set of patterns, but they are
restricted to handle arbitrary-length wildcards only, and, moreover, they only
find the first occurrence of any of the patterns.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 76{87,| 2011.
© Springer-Verlag Berlin Heidelberg 2011



Online Dictionary Matching with Variable-Length Gaps 7

In this article we present a new algorithm that finds all occurrences of all
patterns in a given pattern set, a “dictionary”, in an online fashion. The patterns
are strings over characters in the input alphabet 3’ and over variable-length gaps,
where the gaps can be specified as “.” (single-character wildcard), “.{l,h}” (gap
of length [ to h), or “.*” (gap of length 0 to o).

Our online algorithm performs a single left-to-right scan of the text and re-
ports each pattern occurrence once its end position is reached, but at most one
occurrence for each pattern at each character position. Each matched occurrence
is identified by the pattern and its last element position in the document [2].
Because of the variable-length gaps, there can be more than one, actually an
exponential number of occurrences of the same pattern at the same element po-
sition, but we avoid this possible explosion by recognizing only one occurrence
in such situations.

We use the classic Aho—Corasick pattern-matching automaton (PMA) [1] con-
structed from the set of all keywords that appear in the patterns. A similar
approach for solving the single-pattern matching problem was previously used
by Pinter [15] allowing single-character wildcards in the pattern and by Bille et
al. [2] allowing variable-length gaps with fixed lower and upper bounds.

Our new algorithm matches sequences of keywords that form prefixes of pat-
terns with prescribed gaps between them. We thus record partial matches of the
patterns in the form of matches of prefixes of patterns, and when a matched
prefix extends up to the last keyword of the pattern, we have a true match. An
important feature in our algorithm is that we use a dynamic output function for
the PMA constructed from the keywords.

The problem definition is given Sec.[2] and our algorithm is presented in detail
in Sec. Bl The complexity is analyzed in Sec. [, based on the estimation of the
number of pattern prefix occurrences in terms of the properties of the pattern
set only. Experimental results, including comparisons with grep and nrgrep, are
reported in Sec.

2 Patterns with Gaps and Wildcards

Assume that we are given a string T of length |T'| = n (called the text) over a
character alphabet X', whose size is assumed to be bounded, and a finite set D
(called a dictionary) of nonempty strings (called patterns) P; over characters in
input alphabet X' and over variable-length gaps. Here the gaps are specified as
“{l,h}”, denoting a gap of length I to h, where [ and h are natural numbers
with I < h or [ is a natural number and h = co. The gap “.{1,1}” can also be
denoted as “.” (the single-character wildcard or the don’t-care character), and
the gap “.{0,00}” as “.*” (the arbitrary-length wildcard).

Patterns are decomposed into keywords and gaps: the keywords are maximal
substrings in X of patterns. If the pattern ends at a gap, then we assume
that the last keyword of the pattern is the empty string e. Each pattern is
considered to begin with a gap, which thus may be e. For example, the pattern
“.*ab.{1,3}c.*.d..” consists of four gaps, namely “.*” “.{1,3}", “.*.” (ie.,
“{1,00}”), and “..” (i.e., “.{2,2}”), and of four keywords, namely ab, c, 4,



78 T. Haapasalo et al.

and €. This pattern matches with, say, the input text eeeabeecedeee, while the
pattern “ab.{1,3}c.*.d..” does not.

Our task is to determine all occurrences of all patterns P; € D in text T'. Like
Bille et al. |2], we report a pattern occurrence by a pair of a pattern number
and the character position in T of the last character of the occurrence. Because
variable-length gaps are allowed, the same pattern may have many occurrences
that end at the same character position; all these occurrences are reported as a
single occurrence.

We number the patterns and their gaps and keywords consecutively, so that
the ith pattern P; can be represented as

P, = gap(i, 1)keyword(i, 1) . .. gap(i, m;) keyword(i, m;),

where gap(i, j) denotes the jth gap and keyword(i, j) denotes the jth keyword
of pattern P;.

For pattern P;, we denote by mingap(i,j) and mazgap(i,j), respectively,
the minimum and maximum lengths of strings in X* that can be matched by
gap(i, 7). The length of the jth keyword of pattern P; is denoted by length(i, 7).
We also assume that #keywords(i) gives m;, the number of keywords in pattern
P;. For example, if the pattern “.*ab.{1,3}c.*.d..” is the ith pattern, we have

Hkeywords(i) = 4

mingap(i, 1) = 0, mazgap(i, 1) = oo, length(i, 1) = 2
mingap(i,2) = 1, mazgap(i,2) = 3, length(i,2) =
mingap(i, 3) = 1, mazgap(i,3) = oo, length(i, 3)
mingap(i,4) = 2, mazgap(i,4) = 2, length(i,4) =

3 The Matching Algorithm

For the set of all keywords in the patterns, we construct an Aho—Corasick
pattern-matching automaton with a dynamically changing output function. This
function is represented by sets current-output(q) containing output tuples of the
form (i, 4,b, e), where q = state(keyword(i, j)), the state reached from the initial
state upon reading the jth keyword of pattern P;, and b and e are the earliest and
latest character positions in text T' at which some partial match of pattern P;
up to and including the jth keyword can possibly be found. The latest possible
character position e may be oo, meaning the end of the text.

The current character position, i.e., the number of characters scanned from the
input text is maintained in a global variable character-count. Tuples (i, j, b, €) are
inserted into current-output(q) only at the point when the variable character-
count has reached the value b, so that tuples (i,j,b,e) are stored and often
denoted as triples (i, j,e). The function state(keyword(, j)), defined from pairs
(i, 7) to state numbers g, is implemented as an array of #D elements, where each
element is an array of #keywords(i) elements, each containing a state number.

The operating cycle of the PMA is given as Alg. [l The procedure call scan-
next(character) returns the next character from the input text. The functions



Online Dictionary Matching with Variable-Length Gaps 79

goto and fail are the goto and fail functions of the standard Aho—Corasick PMA,
so that goto(state(y), a) = state(ya), where ya is a prefix of some keyword and a
is in X, and that fail(state(uv)) = state(v), where uv is a prefix of some keyword
and v is the longest proper suffix of uv such that v is also a prefix of some
keyword.

Algorithm 1. Operating cycle of the PMA with dynamic output sets

initialize-output()

state «— initial-state

character-count «— 0

scan-next(character)

while character was found do
character-count «— character-count + 1
distribute-output()
while goto(state, character) = fail do

state «— fail(state)

end while
state «— goto(state, character)
traverse-output-path(state)
scan-next(character)

end while

The function output-fail(q) used in the procedure traverse-output-path (Alg. H)
to traverse the output path for state ¢ is defined by: output-fail(q) = fow'lk(q)7
where k is the greatest integer less than or equal to the length of string(q) such
that for all m = 1,..., k — 1, string(fail™ (q)) is not a keyword. Here string(q) is
the unique string y with state(y) = ¢, and fail™ denotes the fail function applied
m times. Thus, the output path for state ¢ includes, besides ¢, those states ¢’
in the fail path from ¢ for which string(q’) is a keyword; for such states ¢’ the
dynamically changing current output can sometimes be nonempty.

The initial current output tuples, as well as all subsequently generated output
tuples, are inserted through a set called pending-output to sets current-output(q).
Let

mazdist = max{mingap(i, j) + length(i,j) | i > 1,5 > 1}.

The set pending-output is implemented as an array of maxdist elements such
that for any character position b in the input text the element

pending-output(b mod mazdist)

contains an unordered set of tuples (i, j, €), called pending output tuples. The first
pending output tuples (7,1, e), with e = mazgap(i, 1) + length(i, 1), are inserted,
before starting the first operating cycle, into pending-output(b mod maxdist),
where b = mingap(i, 1) + length(i, 1) (see Alg.[2l). At the beginning of the oper-
ating cycle, when character-count has reached b, all tuples (i, j, e) from the set
pending-output(b mod mazdist) are distributed into the sets current-output(q),
q = state(keyword(i, j) (see Alg. B).



80 T. Haapasalo et al.

When visiting state ¢, the set current-output(q) of the PMA is checked for
possible matches of keywords in the procedure call traverse-output-path(q) (see
Alg. H)). If this set contains a tuple (4, j,e), where character-count < e, then a
match of the jth keyword of pattern P; is obtained. Now if the jth keyword is
the last one in pattern P;, then a match of the entire pattern P; is obtained.
Otherwise, an output tuple (i,7 + 1,€’) for the (5 + 1)st keyword of pattern P;
is inserted into the set pending-output(b’ mod mazxdist), where

b = character-count + mingap(i, j + 1) + length(i, j + 1), and
e' = character-count + mazgap(i, j + 1) + length(i, j + 1).

Here €' = oo if mazgap(i,j + 1) = oo.

Algorithm 2. Procedure initialize-output()
for all b=0,..., mazdist — 1 do
pending-output(b) «— 0
end for
for all patterns P; do
b «— mingap(i,1) + length(i, 1)
e — mazgap(i, 1) + length(i, 1)
insert (4,1, e) into the set pending-output(b mod maxdist)
end for
for all states ¢ do
current-output(q) «— 0
end for

Algorithm 3. Procedure distribute-output()
b < character-count
for all (7,7, e) € pending-output(b mod mazdist) do
q — state(keyword(i, 7))
insert (4, j, e) into the list current-output(q)
end for
pending-output(b mod mazdist) —

The collection of the sets current-output(q), for states ¢, is implemented as
an array indexed by state numbers ¢, where each element current-output(q) is
an unordered doubly-linked list of elements (i, j, ), each representing a current
output tuple (i,7,b,e) for some character position b < character-count. The
doubly-linked structure makes it easy to delete outdated elements, that is, ele-
ments with e < character-count, and insert new elements from pending-output.

We also note that for each pair (7, ) (representing a single keyword occurrence
in the dictionary) it is sufficient to store only one output tuple (i, j,e), namely
the one with the greatest e determined thus far. To accomplish this we maintain
an array of vectors, one for each pattern P;, where the vector for P; is indexed
by j and the entry for (4, ) contains a pointer to the tuple (i, j, ) in the doubly-
linked list. We assume that the insertion into current-output(q) in Alg. [ first



Online Dictionary Matching with Variable-Length Gaps 81

Algorithm 4. Procedure traverse-output-path(state)
q < state
traversed « false
while not traversed do
for all elements (i, 7, ) in the list current-output(q) do
if e < character-count then
delete (4, j,e) from the list current-output(q)
else if j = #keywords(i) then
report a match of pattern P; at position character-count in text T
else
b «— character-count + mingap(i, j + 1) + length(i, j + 1)
e’ « character-count + mazxgap(i,j + 1) + length(i,j + 1)
insert (i,7 + 1, ¢') into pending-output(b’ mod mazdist)
end if
end for
if g = initial-state then
traversed < true
else
q — output-fail(q)
end if
end while

checks from this array of vectors whether or not a tuple (7, j, ') already exists,
and if so, replaces ¢’ with the greater of e and e’'.

4 Complexity

The main concern in the complexity analysis is the question of how many steps
are performed for each scanned input character. For each new character the
procedure traverse-output-path (Alg.H) is executed, and thus we need to analyze
how many times the outer while loop and the inner for loop are then performed
within a traverse-output-path call. The number of iterations of the while loop
is the length of the output path for the current state g. The maximum length of
this path is the maximum number of different keywords that all are suffixes of
string(q) for a given state ¢, which implies the bound for the maximal number
of performed iterations.

Additionally, within each iteration of the while loop the for loop is per-
formed for all triples (4, j,e) that belong to current-output(q). Because for any
pair (i,7) at most one output tuple (i, j,e) exists in current-output(q) for ¢ =
state(keyword(i, j)) at any time, this implies that the number of iterations per-
formed in the for loop for state g is bounded by the number of different oc-
currences of keywords equal to keyword(i, j) = string(q). However, not all these
occurrences have been inserted into current-output(q), but only those for which
all preceding keyword occurrences of the pattern have been recognized.

For any two strings w; and ws composed of keywords and gaps as defined in
Sec. 2 we define that w; is a suffix of wy, if there are instances w} and wh of
wy and wy, respectively, such that w) is a suffix of w). The instance of string w



82 T. Haapasalo et al.

is defined such that each gap in w is replaced by any string in X* such that the
gap rules are obeyed. For keyword instance (i, j) we define set S; ; to contain all
keyword instances (i’,j') where the prefix of pattern P, ending with keyword
instance (', j') is a suffix of the prefix of pattern P; ending with keyword instance
(i, ).

For any two tuples (i1, j1, e1) and (i2, j2, €2) in current-output(q), either the pat-
tern prefix ending with (i1, j1) is a suffix of the pattern prefix ending with (iz, j2),
or vice versa. Thus we can conclude that the number of iterations performed in the
for loop for ¢ is at most max{|S; ;| | (¢,4,e) € current-output(q)}. This implies
further that the number of operations per input character induced by the proce-
dure traverse-output-path is bounded above by the maximum size, denoted k, of
the sets .S; ;, where (i, j) is any keyword instance in the dictionary D. It is clear
from the matching algorithm that all other work done also has the time bound
O(kn), where n is the length of the input text. An upper bound for k is the num-
ber of keyword instances in the dictionary, but k is usually much less.

A better upper bound for k, instead of simply taking the number of keyword
instances in D, is obtained as follows. For keyword set W denote by poce(W) the
number of occurrences of keywords in W in the dictionary D. Further denote
by closure(w), for a single keyword w, the set of keywords in D that contains
w and all suffixes of w that are also keywords. Then max{pocc(closure(w)) |
w is a keyword in D} is an upper bound of k.

The preprocessing time, that is, the time spent on the construction of the
PMA with its associated functions and arrays, is linear in the size of dictionary
D (i.e., the sum of the sizes of the patterns in D).

In terms of the occurrences of pattern prefixes in the text it is easy to derive,
for processing the text, the time complexity bound O(Kn+ occ(pattern-prefizes)),
where K denotes the maximum number of suffixes of a keyword that are also
keywords, and occ(pattern-prefizes) denotes the number of occurrences in the
text of pattern prefixes ending with a keyword.

5 Experimental Results

We have implemented a slightly modified version of the algorithm of Sec. 3 in
C++. The modifications are concerned with minor details of the organization
of the current and pending output sets and with the deletion of expired output
tuples. We observe that after seeing the jth keyword of pattern P; that is followed
by a gap of unlimited length, we may also consider as expired all output tuples
(i,7',e) with j' < j. Also, we did not use the array of vectors indexed by pairs
(7,4) and containing pointers to output tuples (i,7,e) (see the end of Sec. B,
but allowed the current output set for state(keyword(i, j)) to contain many tuples
(i,7,€).

We have run tests with a 1.2 MB input text file (the text of the book Moby
Dick by H. Melville) using pattern files with varying number of patterns and
varying number of segments delimited by an unlimited gap “.*”. Let m be the
length of a pattern and s the number of segments in it. We generated the pat-
terns by taking from the input text s pieces of length m/s that are relatively



Online Dictionary Matching with Variable-Length Gaps 83

close to each other (so that the entire pattern is taken from an 8m-character
substring of the input), and by catenating these pieces together by appending a
“.*” gap in between them. In addition, we replaced a portion of the characters in
the segments with wildcards, and we converted some wildcard substrings to ran-
domly chosen (but matching) limited variable-length gaps. Each formed pattern
thus matches at least once. Partial examples of generated patterns include:

.omple.. .irc.* f...l.nc....n.* r.shed.to...e.* .s ..e eager
i.ot.{2,19}e.e.{0,6}.%.{0,2}cia..y.Capta.*.{1,4}ge .{2,22}eyo

We used patterns with an average length of 80 characters when the patterns
did not contain limited variable-length gaps, and 100 characters when they did
(five gaps on average). The length of the variable-length gaps we used was not
very high, varying on average from close to zero to around ten or twenty. (We
expect the speed of our algorithm to be independent of the (minimum) length
of a gap (mingap), while the difference of the maximum and minimum lengths
of a gap does matter; mingaps only affect the size of the array pending-output.)
Finally, we made 75 % of the patterns non-matching by appending a character
that does not appear in the input text, at the end of the pattern; although
further tests revealed that this does not affect the run time of our algorithm
much. Each matching pattern usually has only one occurrence in the input text.
We generated workloads with 1, 3, and 5 segments; with a total of 1, 10, 20,
100, 500, and 1000 patterns in each workload. The workloads were generated
additively, so that the smaller workloads are subsets of the larger workloads.

We used the following programs in our test runs (cf. Fig. [d): (1) D-PMA, our
dynamic pattern-matching algorithm; (2) FFT, the wildcard matcher based on
fast Fourier transform [5] (this can only be used when the patterns do not contain
arbitrary- or variable-length gaps); (3) Grep, the standard Linux command-line
tool grep; we use the extended regular expression syntax with the -E parameter
so that variable-length gaps can be expressed; (4) NR-~Grep, the nrgrep Linux
command-line tool by Navarro [12] (which can only handle fixed-length and
arbitrary-length gaps).

Fig.Mlshows the results of three of the test runs. The values are averages of six
test runs with a standard deviation of mostly less than a percent when there are
more than 20 patterns; with only a few patterns there is some small variance. The
figures and further tests confirmed that grep performs much worse for variable-
length gaps than for fixed-length gaps. On the contrary, our D-PMA algorithm
has about the same performance with and without variable-length gaps.

The variants single run and repeated runs refer to how the programs were
run. With repeated runs, each pattern of the workload was processed separately,
running the program once for each pattern. This is the only way to make grep
and nrgrep find occurrences individually for every pattern; in this case grep
and nrgrep solve the filtering problem for the dictionary, that is, find the first
occurrences for each pattern, if any.

With single run, all the patterns of a workload were fed to the program at
once. With grep, we gave the patterns in a file with the -f parameter, and
with nrgrep, we catenated the patterns together, inserting the union operator



84 T. Haapasalo et al.

1000 1

100

10 ¢

0.1

0.01¢

—+— D-PMA (single run)
—X— D-PMA (repeated runs)
—M— Grep (single run)

—&— Grep (repeated runs)
—®— NR-Grep (single run)
—A— NR-Grep (repeated runs)
—A— FFT

0.001 —
1 10 100 1000
(a) Patterns with only fixed-length gaps
1000 | R
L D-PMA (single run) —+— 1
D-PMA (repeated runs) —<—
L Grep (single run) —8— ,
100 I- Grep (repeated runs) —&—

10 -

0.01

10

100

1000

(b) Patterns with limited fixed- and variable-length gaps

Fig. 1. Matching times in seconds for dictionaries of increasing numbers of patterns.
(NR-Grep cannot handle limited variable-length gaps).



Online Dictionary Matching with Variable-Length Gaps 85

10000 r T
I —t— D-PMA (single run)
—>*— D-PMA (repeated runs)
| —— Grep (single run)

1000 - —&— Grep (repeated runs)

100

10 -

0.01 . L . |
1 10 100 1000

(c) Patterns with fixed- and variable-length gaps, and four unlimited gaps

Fig. 1. Continued
“” in between the pattern instances, and enclosing the patterns themselves
in parentheses. In this case both grep and nrgrep only solve the language-
recognition problem for the dictionary, that is, determine whether some pattern
in the dictionary has a match; they thus stop processing the input as soon as the
first match has been found. This can be seen from Figs. 1(b) and 1(c): searching
for 100 patterns is faster than searching for 20 patterns, because then the first
match of some pattern is found earlier.

All our tests were run on a computer with a 64-bit 2.40 GHz Intel Core 2 Quad
Q6600 processor, 4 GB of main memory, and 8 MB of on-chip cache, running
Fedora 14 Linux 2.6.35. The test programs were compiled with the GNU C++
compiler (g++) 4.5.1.

When run with a single run, both grep and nrgrep fail when there are too
many patterns to process: grep could not complete any workload with 1000
patterns (out of memory); and nrgrep could not complete any workload with
more than 20 patterns, but rather failed due to a possible overflow bug. Further-
more, nrgrep could not be run with the test workloads that included limited
variable-length gaps, because nrgrep does not support them.

The results clearly show that our algorithm outperforms grep and also nrgrep,
except when nrgrep was applied repeatedly (offline) for patterns with fixed-
length gaps only. In that case nrgrep was about three times faster than our al-
gorithm. Our algorithm scales very well to the number of patterns, for instance,
for 500 patterns the online single run was ten times faster than 500 individual



86 T. Haapasalo et al.

runs. Moreover, we emphasize that our algorithm solves the genuine dictionary-
matching problem, finding all occurrences for all the patterns, while grep and
nrgrep do not. In addition, our algorithm can process multiple patterns effi-
ciently in an online fashion, with a single pass over the input text, making it the
only viable option if the input is given in a data stream that cannot be stored for
reprocessing. In solving the filtering problem, our algorithm was slightly faster
than when solving the dictionary-matching problem with the same pattern set
and input text.

6 Conclusion

We have presented a new algorithm for string matching when patterns may con-
tain variable-length gaps and all occurrences of a (possibly large) set of patterns
are to be located. Moreover, our assumption is that pattern occurrences should
be found online in a given input text, so that they are reported once their end
positions have been recognized during a single scan of the text. Our solution is
an extension of the Aho—Corasick algorithm [1], using the same approach as Pin-
ter [15] or Bille et al. [2] in the sense that keywords, the maximal strings with-
out wildcards occurring in the patterns, are matched using the Aho—Corasick
pattern-matching automaton (PMA) for multiple-pattern matching.

An important feature in our algorithm is that we avoid locating keyword oc-
currences that at the current character position cannot take part in any complete
pattern occurrence. The idea is to dynamically update the output function of
the Aho—Corasick PMA. Whenever we have recognized a pattern prefix up to
the end of a keyword, output tuples for the next keyword of the pattern will be
inserted. In this way we get an algorithm whose complexity is not dominated by
the number of all keyword occurrences in the patterns. This claim is confirmed
by our experiments, which show that our algorithm outperforms grep and scales
very well to the number of patterns in the dictionary.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic
search. Commun. of the ACM 18, 333-340 (1975)

2. Bille, P., Li Gortz, 1., Vildhgj, H.W., Wind, D.K.: String matching with
variable length gaps. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS,
vol. 6393, pp. 385-394. Springer, Heidelberg (2010)

3. Bille, P., Thorup, M.: Regular expression matching with multi-strings and
intervals. In: Proc. of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010), pp. 1297-1308 (2010)

4. Chen, G., Wu, X., Zhu, X., Arslan, A.N., He, Y.: Efficient string matching
with wildcards and length constraints. Knowl. Inf. Syst. 10, 399-419 (2006)

5. Clifford, P.; Clifford, R.: Simple deterministic wildcard matching. Inform.
Process. Letters 101, 53-54 (2007)



10.

11.

12.

13.

14.

15.

16.

17.

Online Dictionary Matching with Variable-Length Gaps 87

Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing
with errors and don’t cares. In: Proc. of the 36th Annual ACM Symposium
on Theory of Computing, pp. 90-100 (2004)

Fischer, M., Paterson, M.: String matching and other products. In: Proc. of
the 7th STAM-AMS Complexity of Computation, pp. 113-125 (1974)

He, D., Wu, X., Zhu, X.: SAIL-APPROX: an efficient on-line algorithm
for approximate pattern matching with wildcards and length constraints.
In: Proc. of the IEEE Internat. Conf. on Bioinformatics and Biomedicine,
BIBM 2007, pp. 151-158 (2007)

Kalai, A.: Efficient pattern-matching with don’t cares. In: Proc. of the 13th
Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 655-656 (2002)
Kucherov, G., Rusinowitch, M.: Matching a set of strings with variable
length don’t cares. Theor. Comput. Sci. 178, 129-154 (1997)

Morgante, M., Policriti, A., Vitacolonna, N., Zuccolo, A.: Structured motifs
search. J. Comput. Biol. 12, 1065-1082 (2005)

Navarro, G.: NR-grep: a fast and flexible pattern-matching tool. Soft. Pract.
Exper. 31, 1265-1312 (2001)

Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings. Cambridge
University Press, Cambridge (2002)

Navarro, G., Raffinot, M.: Fast and simple character classes and bounded
gaps pattern matching, with applications to protein searching. J. Comput.
Biol. 10, 903-923 (2003)

Pinter, R.Y.: Efficient string matching. Combinatorial Algorithms on Words.
NATO Advanced Science Institute Series F: Computer and System Sciences,
vol. 12, pp. 11-29 (1985)

Rahman, M.S., Iliopoulos, C.S., Lee, 1., Mohamed, M., Smyth, W.F.: Finding
patterns with variable length gaps or don’t cares. In: Chen, D.Z., Lee, D.T.
(eds.) COCOON 2006. LNCS, vol. 4112, pp. 146-155. Springer, Heidelberg
(2006)

Zhang, M., Zhang, Y., Hu, L.: A faster algorithm for matching a set of
patterns with variable length don’t cares. Inform. Process. Letters 110, 216
220 (2010)



Dynamic Arc-Flags in Road Networks

Gianlorenzo D’Angelo, Daniele Frigioni, and Camillo Vitale

Department of Electrical and Information Engineering, University of L’Aquila,
Via Gronchi, 18, I-67100, I’Aquila, Italy
{gianlorenzo.dangelo,daniele.frigioni}@univaq.it,
camillo.vitale@gmail.com

Abstract. In this work we introduce a new data structure, named Road-
Signs, which allows us to efficiently update the Arc-Flags of a graph in a
dynamic scenario. Road-Signs can be used to compute Arc-Flags, can be
efficiently updated and do not require large space consumption for many
real-world graphs like, e.g., graphs arising from road networks. In detail,
we define an algorithm to preprocess Road-Signs and an algorithm to
update them each time that a weight increase operation occurs on an edge
of the network. We also experimentally analyze the proposed algorithms
in real-world road networks showing that they yields a significant speed-
up in the updating phase of Arc-Flags, at the cost of a very small space
and time overhead in the preprocessing phase.

1 Introduction

Great research efforts have been done over the last decade to accelerate Dijkstra’s
algorithm on typical instances of transportation networks, such as road or railway
networks (see [3] and [4] for recent overviews). This is motivated by the fact that
transportation networks tend in general to be huge yielding unsustainable times
to compute shortest paths. These research efforts have lead to the development
of a number of so called speed-up techniques, whose aim is to compute additional
data in a preprocessing phase in order to accelerate the shortest paths queries
during an on-line phase. However, most of the speed-up techniques developed in
the literature do not work well in dynamic scenarios, when edge weights changes
occur to the network due to traffic jams or delays of trains. In other words, the
correctness of these speed-up techniques relies on the fact that the network does
not change between two queries. Unfortunately, such situations arise frequently
in practice. In order to keep the shortest paths queries correct, the preprocessed
data needs to be updated. The easiest way is to recompute the preprocessed
data from scratch after each change to the network. This is in general infeasible
since even the fastest methods need too much time.

Related Works. Geometric Containers [I7], was the first technique studied in a
dynamic scenario [I8]. The key idea is to allow suboptimal containers after a
few updates. However, this approach yields quite a loss in query performance.
The same holds for the dynamic variant of Arc-Flags proposed in [I], where,

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 88[09] 2011.
© Springer-Verlag Berlin Heidelberg 2011



Dynamic Arc-Flags in Road Networks 89

after a number of updates, the query performances get worse yielding only a low
speed-up over Dijkstra’s algorithm. In [I5], ideas from highway hierarchies [14]
and overlay graphs [16] are combined yielding very good query times in dynamic
road networks. In [2], a theoretical approach to correctly update overlay graphs
has been proposed, but the proposed algorithms have not been shown to have
good practical performances in real-world networks. The ALT algorithm, intro-
duced in [§] works considerably well in dynamic scenarios where edge weights can
increase their value that is, when delays or traffic jams increase travel times. Also
in this case, query performances get worse if too many edges weights change [5].
Summarizing, all above techniques work in a dynamic scenario as long as the
number of updates is small. As soon as the number of updates is greater than a
certain value, it is better to repeat the preprocessing from scratch.

Contribution. In this paper we introduce a new data structure, named Road-
Signs, which allows us to efficiently update the Arc-Flags of a graph in a dynamic
scenario. Road-Signs can be used to compute Arc-Flags, they can be efficiently
updated and do not require large space consumption for many real-world graphs
like, e.g., graphs arising from road networks. In detail, we define an algorithm to
preprocess Road-Signs and an algorithm to update them each time that a weight
increase operation occurs on an edge of the graph. As the updating algorithm
is able to correctly update Arc-Flags, there is no loss in query performance. To
our knowledge, the only dynamic technique known in the literature with no loss
in query performance is that in [I5].

We experimentally analyze the proposed algorithms in real-world road net-
works showing that, in comparison to the recomputation from-scratch of Arc-
Flags, they yield a significant speed-up in the updating phase of Arc-Flags, at
the cost of a little space and time overhead in the preprocessing phase. In detail,
we experimentally show that our algorithm updates the Arc-Flags at least 62
times faster than the recomputation from scratch in average, considering the
graph where the new algorithm performs worse. Moreover it performs better
when the network is big, hence it can be effectively used in real-world scenarios.
In order to compute and store the Road-Signs, we need an overhead in the pre-
processing phase and in the space occupancy. However, we experimentally show
that such an overhead is very small compared to the speed-up gained in the up-
dating phase. In fact, considering the graph where the new algorithm performs
worse, the preprocessing requires about 2.45 and 2.88 times the time and the
space required by Arc-Flags, respectively.

2 Preliminaries

A road network is modelled by a weighted directed graph G = (V, E, w), called
road graph, where nodes in V represent road crossings, edges in E represent road
segments between two crossings and the weight function w : E — R™ represents
an estimate of the travel time needed for traversing road segments. Given G, we
denote as G = (V, E) the reverse graph of G where E = {(v,u) | (u,v) € E}.
A minimal travel time route between two crossings S and T in a road network



90 G. D’Angelo, D. Frigioni, and C. Vitale

corresponds to a shortest path from the node s representing S and the node ¢
representing 7' in the corresponding road graph. The total weight of a shortest
path between nodes s and ¢ is called distance and it is denoted as d(s,t). A
partition of V is a family R = {R1, Ra,..., R} of subsets of V called regions,
such that each node v € V is contained in exactly one region. Given v € Ry, v
is a boundary node of Ry, if there exists an edge (u,v) € E such that u & Ry.

Minimal routes in road networks can be computed by shortest paths algorithm
such as Dijkstra’s algorithm [6]. In order to perform an s-t query, the algorithm
grows a shortest path tree starting from the source node s and greedily visits the
graph. The algorithm stops as soon as it visits the target node t. A simple vari-
ation of Dijkstra’s algorithm is bidirectional Dijkstra which grows two shortest
path trees starting from both nodes s and t. In detail, the algorithm performs a
visit of G starting from s and a visit of G starting from ¢. The algorithm stops
as soon the two visits meet at some node in the graph.

A widely used approach to speed up the computation of shortest paths is
Arc-Flags [911], which consists of two phases: a preprocessing phase which is
performed off-line and a query phase which is performed on-line. The preprocess-
ing phase of Arc-Flags first computes a partition R = {R1, Ra,..., R} of V and
then associates a label to each edge (u,v) in E. A label contains, for each region
Ry € R, a flag Ak (u,v) which is true if and only if a shortest path in G towards
a node in Ry, starts with (u,v). The set of flags of an edge (u,v) is called Arc-
Flags label of (u,v). The preprocessing phase associates also Arc-Flags labels to
edges in the reverse graph G. The query phase consists of a modified version of
bidirectional Dijkstra’s algorithm: the forward search only considers those edges
for which the flag of the target node’s region is true, while the backward search
only follows those edges having a true flag for the source node’s region. The main
advantage of Arc-Flags is its easy query algorithm combined with an excellent
query performance. However, preprocessing is very time-consuming. This is due
to the fact that the preprocessing phase grows a full shortest path tree from each
boundary node of each region yielding a huge preprocessing time. This results
in a practical inapplicability of Arc-Flags in dynamic scenarios where, in order
to keep correctness of queries, the preprocessing phase has to be performed from
scratch after each edge weight modification.

3 Dynamic Arc-Flags

Given a road graph G = (V, E,w) and a partition R = {Ry, Ra,..., R} of V in
regions, we consider the problem of updating the Arc-Flags of G in a dynamic
scenario where a sequence of weight-increase operations C' = (c1, ¢o, ..., cp) oc-
cur on G. We denote as G; = (V,E,w;) the graph obtained after i weight
increase operations, 0 < i < h, Gg = G. Each operation ¢; increases the weight
of one edge e; = (z;,y;) of an amount v; > 0, i.e. w;(e;) = w;—1(e;) + v and
w;(e) = w;—1(e), for each edge e # ¢; in E.

Since Arc-Flags of G are computed by considering shortest paths trees rooted
at each boundary node induced by R, a possible approach for dynamic Arc-Flags



Dynamic Arc-Flags in Road Networks 91

is to maintain these trees by using e.g. the dynamic algorithm in [7]. As the
number of boundary nodes in large graphs is high, this approach is impractical.

In what follows, for sake of simplicity, we consider only Arc-Flags on the graph
G as the inferred properties do not change for the reverse graph G. Moreover,
we assume that there exists a unique shortest path for any pair of nodes in
G. The extension of the data structure and algorithms to the case of multiple
shortest paths is straightforward as it is enough to break ties arbitrarily during
the preprocessing and updating phases. The experimental study given in the
next section considers such extension.

This section is organized as follows. First, we introduce the new data structure,
which we call Road-Signs (denoted as S) and we show how to compute Road-
Signs during the preprocessing phase of Arc-Flags. Then, we give an algorithm
that uses Road-Signs in order to update the Arc-Flags. Finally, as Road-Signs
result to be space expensive, we give a method to store them in a compact way,
by obtaining a technique which is efficient for any kind of sparse graphs as, for
instance, the road graphs used in the experimental study of the next section.

Data structure. Given an edge (u,v) € E and a region R € R, the Road-Sign
Sk(u,v) of (u,v) to Ry, is the subset of boundary nodes b of Ry, such that there
exists a shortest path from u to b that contains (u,v). The Road-Signs of (u,v)
are represented as a boolean vector, whose size is the overall number of boundary
nodes in the network, where the i-th element is true if the i-th boundary node is
contained in Si(u, v), for some region Ry. Hence, such a data structure requires
O(|E| - |B|) memory, where B is the set of boundary nodes of G induced by R.

The Road-Signs of G can be easily computed by using the preprocessing phase
of Arc-Flags, which builds a shortest path tree from each boundary node on G.
Given an edge (u,v) and a region Ry, Ag(u,v) is set to true if and only if (u,v)
is an edge in at least one of the shortest path trees grown for the boundary
nodes of Ry. Therefore, such a procedure can be easily generalized to compute
also Road-Signs. In fact, it is enough to add the boundary node b to Si(u,v) if
(u,v) is an edge in the tree grown for b.

Updating algorithm. Our algorithm to update Arc-Flags is based on the following
Proposition, which gives us a straightforward method to compute the Arc-Flags
of a graph given the Road-Signs of that graph.

Proposition 1. Given G = (V, E,w), a partition R = {R1, Ra,..., R} of V,
an edge (u,v) € E and a region Ry, € R, the following conditions hold:

— if u,v € Ry, then Ag(u,v) = true;
— if Sk(u,v) # 0, then Ax(u,v) = true;
— if w or v is not in Ry and Sk(u,v) = 0, then Ag(u,v) = false.

In what follows, we hence give an algorithm to update Road-Signs. Let us con-
sider a weight increase operation ¢; on edge (z;,y;). The algorithm, denoted
as DYNAMICROADSIGNS, is based on the fact that if the shortest paths from a
node u to a region Ry do not contain the edge (z;,y;), then the Road-Signs



92 G. D’Angelo, D. Frigioni, and C. Vitale

Phase 1: DETECTAFFECTEDNODES(G;—1, ¢;, Ry)
Input : Graph G;_1, operation ¢; on edge (x;,y;) and region Ry € R
Output: Sets By(u), for each u € V

1 foreach u € V do

2 By (u) := 0;

3 Bk(l'z) = Sk(mi,yi);

4 Q.push(zi,y:);

5 repeat

6 (u,v) = Q.pop();

7 Boia := Bk(u);

8 By (u) := Bi(u) U (Bi(v) N Sk(u,v));

9 if Bk (u) \ Bold 7é @ then
10 foreach z € V such that (z,u) € E do
11 Q.push(z,u);

12 until Q # 0;

Fig. 1. First phase of algorithm DYNAMICROADSIGNS

to Ry of the edges outgoing from u do not change as a consequence of c;.
Therefore, DYNAMICROADSIGNSworks in two phases: the first phase, named
DETECTAFFECTEDNODES, detects the set of nodes u such that a shortest path
from w to b changes as a consequence of ¢; (i.e. a shortest path from u to b con-
tains edge (z;,y;)), where b is a boundary node in some region Ry s. t. u & Ry;
the second phase, named UPDATEROADSIGNS, updates Sj(u, v) for each region
Ry, and edge (u,v) where u is one of the nodes detected in the first phase.
DETECTAFFECTEDNODES consists of a modified breadth first search of the
reverse graph G, for each region R}, which starts from node z; and prunes when
a node with no shortest paths to region Ry containing (z;,y;) is extracted. In
this search, a node can be visited at most once for each boundary node of Ry.
The output of this phase is a set Bj(u), for each region Ry € R and for each
node u € V, which contains the boundary nodes b of region Ry such that a
shortest path from w to b contains edge (x;,y;). Note that, only edges (u,v)
such that By (u) # () for some region Ry, € R could change some of their Road-
Signs and Arc-Flags towards region Ry, while edges (u,v) such that By(u) = 0
for each R; € R do not change neither their Road-Signs nor their Arc-Flags.
The pseudo-code of DETECTAFFECTEDNODES for a region Ry € R is given in
Fig. 0, where @ is the queue of the modified breadth first search. Operation
Q.push(z,y) inserts node z into @ and stores also the predecessor y of x in
the visit. Operation Q.pop() extracts a pair (z,y) where z is a node and y is
the predecessor of x in the visit at the time when z is pushed into Q. At lines
IH3 By(u) is initialized as Sk (z;,y;) for u = x; and as the empty set for any
other node. At lines @I, the graph search of G is performed, starting from
node z;. When a node u is extracted for the first time from @, By (u) is set to
By (v) N Si(u,v) at line B where v is the predecessor of u in the visit at the
time when u is pushed into Q. If a node u is extracted more than once from



Dynamic Arc-Flags in Road Networks 93

Phase 2: UPDATEROADSIGNS(Gi—1, ¢i, Rk, Bk)

Input : Graph G;_1, modification ¢; on edge (x;,y:), region Rx € R, and sets
By (u), for each u € V

Output: Updated Road-Signs

1 foreach b € Si(z;,y:) do

2 BinaryHeap.Clear();

3 foreach u : b € Bi(u) do

4 DJu, b] := oo

5 foreach v such that (u,v) € E and b ¢ Bi(v) do

6 Compute the distance from v to b and store it in D[v, ];
7 Dlu, b] := min{w(u,v) + D[v,b] | (u,v) € E and b € B (v)};
8 if D[u,b] # oo then

9 find the node z such that (u,z) € E and b € Si(u, 2);
10 Sk(u, z) = Sk(u, z) \ {b};
11 2" := argmin{w(u,v) + Dv,b] | (u,v) € E and b &€ By (v)};
12 Sk(u, 2") == Sk(u,2") U {b};
13 BinaryHeap. Push(u, D[u, b]);
14 while BinaryHeap # 0 do
15 (v, D[v, b]) :==BinaryHeap.Pop Min();
16 foreach u such that (u,v) € E and b € Bi(u) do
17 if w(u,v) + D[v,b] < D[u, b] then

18 DJu, b] := Dlv, b] + w(u,v);

19 BinaryHeap.node(u).Decrease(u, D[u, b]);
20 find the node z such that (u, z) € F and b € Si(u, 2);
21 Sk(u, z) = Sk(u, z) \ {b};
22 Sk(u,v) 1= Sk(u,v) U {b};

Fig. 2. Second phase of algorithm DYNAMICROADSIGNS

Q (that is, if u reaches Ry using different paths for different boundary nodes of
Ry), Bi(u) is updated to By (u)U (B (v) N Sk (u,v)) at line  Finally, only nodes
z such that (z,u) € E and some boundary nodes have been added to By (u) at
line @ (i.e. Br(v) N Sk(u,v) # B) are inserted in @ (lines OHIT)). In this way a
boundary node b of region Ry, is inserted in By (u) if and only if b is contained
in all the Road-Signs in some path from u to x; in G and hence, if and only if
there exists a shortest path from u to b containing (x;, y;).

In the second phase, UPDATEROADSIGNS computes the shortest paths from
a node u such that Bi(u) # 0 to any boundary node in Bj(u), for a given
region Ry € R, and it updates the Road-Signs accordingly. Such shortest paths
are computed as follows. First, for each node u such that b € By(u), for a
certain boundary node b € Si(z;,y;), a shortest path from u to b passing only
through neighbors of u whose shortest path to b do not contain (x;,y;), i.e. only
nodes v such that (u,v) € E and b ¢ By (v), are considered. Then, the paths
passing through the remaining neighbors of u are considered. The pseudo-code of



94 G. D’Angelo, D. Frigioni, and C. Vitale

UPDATEROADSIGNS is given in Fig. Pl The procedure uses a binary heap which
is filled during the first computation of shortest paths (Lines BHI3)) and it is used
during the second computation (Lines [4H2Z) to extract the nodes in a greedy
order, mimicking Dijkstra’s algorithm. The cycle at Lines [IH22] considers only
boundary nodes b belonging to the Road-Sign of edge (x;,y;). In the cycle at
lines BHI3] the shortest paths from u to b through nodes v such that (u,v) € E,
b € Bi(u) and b ¢ By(v), are considered. In detail, at lines [BHbl the shortest
paths from each node v to b are computed and the distances are stored in a data
structure called D[v,b]. Note that, this step can be done by using Arc-Flags.
At line [7 the estimated distance D[u,b] from w to b is computed. At lines [QHI2]
the Road-Signs are updated according to the new distance: first (line @) the
node z such that (u,z) € E and b € Sk(u, z) is found (note that there is only
a single node satisfying this condition as we are assuming that there is only
one shortest path for each pair of nodes); then (line [[T)) b is removed from the
Road-Sign of (u, z) and it is added to the Road-Sign of (u, z’) (line [2), where
z' is the neighbor of u giving the new estimated distance (line []). Finally, at
line 3] node u is pushed in the binary heap with priority given by the computed
estimated distance. At Lines the shortest paths from u to b through nodes
v such that (u,v) € E, b € Bi(u), and b € By(v), are considered. In detail, nodes
v are extracted at line[[Hin a greedy order, based on the distance to b. Then, for
each node u such that (u,v) € E and b € By(u) (lines [6H22)) a relaxation step
is performed at lines [[THIR] followed by a decrease operation in the binary heap
(line [[9)) and the related update of the Road-Signs at lines 20H22l Each time
that the Road-Signs are updated, the related Arc-Flags are updated according
to Proposition[Il In detail, given an update on Ry (u, v) for certain region R € R
and edge (u,v), then Ag(u,v) is set to true if u,v € Ry or Sk(u,v) # 0, and it is
set to false otherwise. For simplicity, this step is not reported in the pseudo-code
and it is indeed performed at lines [I0, M2 2], and 2 of UPDATEROADSIGNS.

Algorithm  DYNAMICROADSIGNS  comsists in  calling  procedures
DETECTAFFECTEDNODES and UPDATEROADSIGNS, for each region Ry € R.
The next theorem states the correctness of DYNAMICROADSIGNS. Due to space
limitations, the proof is given in the full paper.

Theorem 1. Given G = (V, E,w) and a partition R = {R1, Ra,..., R} of V,
for each (u,v) € E and R, € R, DYNAMICROADSIGNS correctly updates Sy (u, v)
and A (u,v) after a weight increase operation on an edge of G.

Compacting Road Signs. Storing Road-Signs is very space consuming. Here, we
give a simple method to reduce the memory space needed to store data structure
S. Given a region Ry and a node u € Ry, let us denote as B(Ry) the set of
boundary nodes of Ry. By the definition of Road-Signs and the assumption that
there exists only one shortest path between u and any boundary node b, the
following two observation hold: (i) B(Rk) = U, mer Sk(w,v); (i) Sk(u,v1) N
Sk(u,ve) = 0, for each vy # vg such that (u,v1) € E and (u,v2) € E. It
follows that we can derive the Road-Sign of an edge (u,v), for an arbitrary v
by the Road-Signs of other edges (u,v’) € E, v/ # v, as Sg(u,v) = B(Ry) \



Dynamic Arc-Flags in Road Networks 95

Utu,o1ye 0720 Sk(u;v'). In this way, we do not store the Road-Sign of edge (u, v)
and we simply compute it when it is needed, by using the above formula. As we
can apply this method for each node u € V, we avoid to store |V| Road-Signs
and hence the compacted data structure requires O((|E|—|V|)-|B|) space, where
Road-Signs are represented as |E| — |V| bit-vectors. Since in sparse graphs, like
e.g. road networks |E| = |V| the space requirement of Road-Signs is very small,
as it is experimentally confirmed in the next section.

4 Experimental Study

In this section, we first compare the performances of DYNAMICROADSIGNS
against the recomputation from scratch of Arc-Flags. Then, we analyze the pre-
processing performances by comparing the time and space required to compute
Arc-Flags against the time and space required to compute Arc-Flags and Road-
Signs. The best query performances for Arc-Flags are achieved when partitions
are computed by using arc-separator algorithms [12]. In this paper we used
arc-separators obtained by the METIS library [10] and the implementation of
Arc-Flags of [I].

Our experiments are performed on a workstation equipped with a 2.66 GHz
processor (Intel Core2 Duo E6700 Box) and 8Gb of main memory. The program
has been compiled with GNU g++ compiler 4.3.5 under Linux (Kernel 2.6.36).

We cousider two road graphs available from PTV [I3] representing the Nether-
lands and Luxembourg road networks, denoted as NED and LUX, respectively.
In each graph, edges are classified into four categories according to their speed
limits: motorways (MOT), national roads (NAT), regional roads (REG) and urban
streets (URB). The main characteristics of the graphs are reported in Table [Il
Due to the space requirements of Arc-Flags, we were unable to perform experi-
ments on bigger networks.

Evaluation of the wupdating phase. To evaluate the performances of
DyYNAMICROADSIGNS, we execute, for each graph considered and for each road
category, random sequences of 50 weight-increase operations. That is, given a
graph and a road category, we perform 50 weight-increase operations on edges
belonging to the given category. The weight-increase amount for each operation
is chosen uniformly at random in [600, 1200], i.e., between 10 and 20 minutes. As
performance indicator, we choose the time used by the algorithm to complete
a single update during the execution of a sequence. We measure as speed-up

Table 1. Tested road graphs. The first column indicates the graph; the second and the
third columns show the number of nodes and edges in the graph, respectively; the last
four columns show the percentage of edges into categories: motorways (MOT), national
roads (NAT), regional roads (REG), and urban streets (URB).

graph n. of nodes n. of edges %MOT %NAT %REG Y%URB
NED 892 027 2278824 04 0.6 5.1 939
LUX 30647 75576 0.6 1.9 14.8 82.7



96 G. D’Angelo, D. Frigioni, and C. Vitale

le+05 ¢ . ; ; : le+08 T T T T
I 1le+07 E * * E
le+04 ¢ 1 1et06 ]
le+03 F 1 let05 | ]
I le+04 | 3
le+02 [ 1 1le4+03 E é ; 1
le+01 [ ] let02 F % % ;
r le+01 [ E
le+00 L L L L L le+00 L L L L L
MOT NAT REG URB MOT NAT REG URB

Fig. 3. Speed-up factors for the road network of the Netherlands, without (left) and
with (right) outliers. For each road category, we represent minimum value, first quartile,
medial value, third quartile, and maximum value.

le+04 F T T T T le4-06 F T T T T
I o I s b
le+03 [ q let05F
i le+04 | . ]
le+02 4 1le+03 [ ]
le+01 | ] le+02 ¢ .
I le+01 E % .
1et+00 | 1 1e+00 | ]
le-01 L - - - - le-01 E - - - -
MOT NAT REG URB MOT NAT REG URB

Fig. 4. Speed-up factors for the road network of Luxembourg. Without (left) and with
(right) outliers. For each road category, we represent minimum value, first quartile,
medial value, third quartile, and maximum value.

factor the ratio between the time required by the recomputation from scratch of
Arc-Flags and that required by DYNAMICROADSIGNS. The results are reported
in Fig. Bl Fig. @ and Table 2

Fig. Bl shows two box-plot diagrams representing the values of the speed-up
factors obtained for the road network of Netherlands, for each road category. In
detail, the diagram on the left side does not represent outlier values while the dia-
gram on the right side do. These outlier values occur when DYNAMICROADSIGNS
performs much better than Arc-Flags because the number of Road-Signs changed
is very small. Here, we consider a test as outlier if the overall number of boundary
nodes involved in the computation is less than 15 i.e. | Uyev r,er Br(u)| < 15.
Even without considering outliers, the speed-up gained by DYNAMICROADSIGNS
is high in most of the cases, reaching the value of 10 000 in some cases. It is worth
noting that it reaches the highest values when update operations occur on urban
edges while it is smaller when they occur on motorway edges. This is due to the
fact that, when an update operation occurs on urban edges, the number of short-
est paths that change as a consequence of such operation is small compared to
the case that an update operation occurs on motorways edges. This implies that



Dynamic Arc-Flags in Road Networks 97

Table 2. Average update times and speed-up factors. The first column indicates
the graph; the second column indicates the road category where the weight changes
occur; the third and fourth columns show the average computational time in seconds
for Arc-Flags and for DYNAMICROADSIGNS, respectively; the fifth column shows the
ratio between the values reported in the third and the fourth columns, that is the
ratio of average computational times; the last column shows the average speed-up
factor of DYNAMICROADSIGNS against Arc-Flags, that is the average ratio between the
computational times.

graph cat. avg.time Arc- avg. time ratio avg. speed-up
Flags DyNAMICROADSIGNS

MOT 2418.09 246.73 9.80 51.30
NAT 2397.14 74.71 32.08 169.82

NED o6 949072 2413.99 97 91 92.82 86.73 25.99 A70.48 425.32
URB 2416.22 7.63 316.67 1053.03
MOT 8.25 2.96 2.79 11.70
NAT 8.24 3.05 2.70 47.07

LUX Lo .32 8.28 1.46 2.04 5.70 4.06 78.06 62.87
URB 8.32 0.54 15.41 119.39

Table 3. Preprocessing time. The first column shows the graph; the second one shows
the number of regions; the third one shows the preprocessing time required for com-
puting only Arc-Flags; the fourth column shows the preprocessing time required for
computing both Arc-Flags and Road-Signs; and the last column shows the ratio be-
tween the values reported in the fourth and the third column.

graph n. of regions prep. time AF (sec.) prep. time AF 4+ RS (sec.) ratio
NED 128 2455.21 4934.10 2.01
LUX 64 8.29 20.33 245

DyYNAMICROADSIGNS, which selects the nodes that change such shortest paths
and focus the computation only on such nodes, performs better than the re-
computation from-scratch of the shortest paths from any boundary node. Fig. @l
is similar to Fig. Bl but it is referred to the road network of Luxembourg. The
properties highlighted for NED hold also for LUX. We note that, for NED, the
speed-up factors achieved are higher than that achieved for LUX. This can be
explained by the different sizes of the networks. In fact, when an edge update
operation occurs, it affects only a part of the graph, hence only a subset of the
edges in the graph need to update their Arc-Flags or Road-Signs. In most of the
cases this part is small compared to the size of the network and, with high prob-
ability, it corresponds to the subnetwork close to the edge increased or closely
linked to it. In other words, it is unlike that a traffic jam in a certain part of the
network affects the shortest paths of another part which is far or not linked to
the first one. Clearly, this fact is more evident when the road network is big and
this explains the different performances between NED and LUX. Moreover, this
allows us to state that DYNAMICROADSIGNS would perform better if applied in
networks bigger than those used in this paper, as continental networks.



98 G. D’Angelo, D. Frigioni, and C. Vitale

Table 4. Preprocessing space requirements. The first column shows the graph; the
second one shows the number of regions; the third one shows the space required for
storing Arc-Flags; the fourth one shows space required for storing both Arc-Flags and
Road-Signs by using the compact storage; and the last column shows the ratio between
the values reported in the fourth and the third column.

graph n. of regions space AF (B) space AF and RS (B) ratio
NED 128 36461 184 64612836 1.77
LUX 64 604 608 1744531 2.88

As a further measure of the performances of DYNAMICROADSIGNS against
the recomputation from-scratch of Arc-Flags, we report the average com-
putational time and speed-up factors in Table 2 It is evident here that
DYNAMICROADSIGNS outperforms the recomputation from-scratch by far and
that it requires reasonable computational time which makes Road-Signs a tech-
nique suitable to be used in practice.

Evaluation of the preprocessing phase. Regarding the preprocessing phase, in
Tables [3l and @ we report the computational time and the space occupancy re-
quired by Arc-Flags and DYNAMICROADSIGNS. Table [} shows that, for comput-
ing Road-Signs along with Arc-Flags, we need about 2 times the computational
time required for computing only Arc-Flags, which is a very small overhead com-
pared to the speed-up gained in the updating phase. The same observation can
be done regarding the space occupancy. In fact, Table @l shows that the space re-
quired for storing both Road-Signs and Arc-Flags is between 1.77 and 2.88 that
required to store only Arc-Flags. It is worth noting that without the compact
storage of data structure S described in the previous section, S would require
12.78 and 4.13 times more space for NED and LUX, respectively.

5 Conclusions

We proposed a technique to correctly update Arc-Flags in dynamic graphs. In
particular, we introduced the Road-Sign data structure, which can be used to
compute Arc-Flags, can be efficiently updated and does not require large space
consumption. Therefore, we gave two algorithms to compute the Road-Signs in
the preprocessing phase and to update them each time that a weight increasing
occurs. We experimentally analyzed the proposed algorithms and data structures
in road networks showing that they yields a significant speed-up in the updating
phase, at the cost of a small space and time overhead in the preprocessing phase.

The proposed algorithms are able to cope only with weight increase operations
which is the most important case in road networks where the main goal is to
handle traffic jams. However, when a weight decrease operation occurs (e.g. when
a the traffic jams is over) a recomputation from scratch is needed. Therefore,
an interesting open problem is to find efficient algorithms to update Road-Signs
after weight decrease operations.



Dynamic Arc-Flags in Road Networks 99

References

10.
11.

12.

13.
14.

15.

16.

17.

18.

. Berrettini, E., D’Angelo, G., Delling, D.: Arc-flags in dynamic graphs. In: 9th

Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS 2009). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
Germany (2009)

. Bruera, F., Cicerone, S., D’Angelo, G., Stefano, G.D., Frigioni, D.: Dynamic multi-

level overlay graphs for shortest paths. Mathematics in Computer Science 1(4),
709-736 (2008)

. Delling, D., Hoffmann, R., Kandyba, M., Schulze, A.: Chapter 9. Case Studies. In:

Miiller-Hannemann, M., Schirra, S. (eds.) Algorithm Engineering. LNCS, vol. 5971,
pp. 389-445. Springer, Heidelberg (2010)

. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning

Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117-139. Springer, Heidelberg (2009)

. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: Deme-

trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52—65. Springer, Heidelberg (2007)

. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische

Mathematik 1, 269-271 (1959)

. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for

maintaining shortest paths trees. Journal of Algorithms 34(2), 251-281 (2000)

. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets

Graph Theory. In: 16th Annual ACM—-SIAM Symposium on Discrete Algorithms
(SODA 2005), pp. 156-165 (2005)

. Hilger, M., Kohler, E., M&hring, R.H., Schilling, H.: Fast Point-to-Point Short-

est Path Computations with Arc-Flags. In: Shortest Path Computations: Ninth
DIMACS Challenge. DIMACS Book, vol. 24 (2009)

Karypis, G.: METIS - A Family of Multilevel Partitioning Algorithms (2007)
Lauther, U.: An extremely fast, exact algorithm for finding shortest paths. Static
Networks with Geographical Background 22, 219-230 (2004)

Moéhring, R.H., Schilling, H., Schiitz, B., Wagner, D., Willhalm, T.: Partitioning
Graphs to Speedup Dijkstra’s Algorithm. ACM J. Exp. Algorithmics 11, 2.8 (2006)
PTV AG - Planung Transport Verkehr (2008), http://www.ptv.de

Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804-816. Springer, Heidelberg (2006)
Sanders, P., Schultes, D.: Dynamic Highway-Node Routing. In: Demetrescu, C.
(ed.) WEA 2007. LNCS, vol. 4525, pp. 66-79. Springer, Heidelberg (2007)
Schulz, F., Wagner, D., Zaroliagis, C.: Using Multi-Level Graphs for Timetable
Information in Railway Systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002.
LNCS, vol. 2409, pp. 43-59. Springer, Heidelberg (2002)

Wagner, D.,; Willhalm, T.: Geometric Speed-Up Techniques for Finding Shortest
Paths in Large Sparse Graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 776-787. Springer, Heidelberg (2003)

Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers for Efficient
Shortest-Path Computation. ACM J. Exp. Algorithmics 10, 1.3 (2005)


http://www.ptv.de

Efficient Routing in Road Networks
with Turn Costs

Robert Geisberger and Christian Vetter

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{geisberger,christian.vetter}@kit.edu

Abstract. We present an efficient algorithm for shortest path computa-
tion in road networks with turn costs. Each junction is modeled as a node,
and each road segment as an edge in a weighted graph. Turn costs are
stored in tables that are assigned to nodes. By reusing turn cost tables for
identical junctions, we improve the space efficiency. Preprocessing based
on an augmented node contraction allows fast shortest path queries. Com-
pared to an edge-based graph, we reduce preprocessing time by a factor
of 3.4 and space by a factor of 2.4 without change in query time.

Keywords: route planning, banned turn, turn cost, algorithm engineer-
ing.

1 Introduction

Route planning in road networks is usually solved by computing shortest paths
in a suitably modeled graph. Each edge of the graph has an assigned weight
representing, for example, the travel time. There exists a plethora of speed-up
techniques to compute shortest paths in such weighted graphs [I]. The most
simple model maps junctions to nodes and road segments to edges. However,
this model does not consider turn costs. Turn costs are important to create a
more realistic cost model and to respect banned turns.

To incorporate turn costs, usually a pseudo-dual of the simple model is used
[203], modeling road segments as nodes and turns between two consecutive road
segments as edges. Thus the edges in the simple model become nodes in the
pseudo-dual. Therefore, we will refer to the result of the simple model as node-
based graph and to the pseudo-dual as edge-based graph. The advantage of the
edge-based graph is that no changes to the speed-up techniques are required
to compute shortest paths, as only edges carry a weight. The drawback is a
significant blowup in the number of nodes compared to the node-based graph.
To avoid this blowup, we will extend the node-based graph by assigning turn
cost tables to the nodes, i.e., junctions, and show how to efficiently perform
precomputation for a major speed-up technique. We further reduce the space
consumption by identifying junctions that can share the same turn cost table.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 100{111] 2011.
© Springer-Verlag Berlin Heidelberg 2011



Efficient Routing in Road Networks with Turn Costs 101

1.1 Related Work

There is only little work on speed-up techniques with respect to turn costs. The
main reason is that incorporating them is seen as redundant due to the usage of
an edge-based graph [2J3].

Speed-up techniques for routing in road networks can be divided into hierar-
chical approaches, goal-directed approaches and combinations of both. Delling
et al. [I] provide a recent overview of them. In this paper, we focus on the
technique of node contraction [4J56]. It is used by the most successful speed-up
techniques known today [6/7U8]. The idea is to remove unimportant nodes and
to add shortcut edges (shortcuts) to preserve shortest path distances. Then, a
bidirectional Dijkstra finds shortest paths, but never needs to relax edges leading
to less important nodes. Contraction hierarchies (CH) [6] is the most successful
hierarchical speed-up technique using node contraction; it contracts in principle
one node at a time. Node contraction can be further combined with goal-directed
approaches to improve the overall performance [7]. The performance of CH on
edge-based graphs has been studied by Volker [9].

2 Preliminaries

We have a graph G = (V, E) with edge weight function ¢ : E — R, and turn
cost function ¢* : Ex E — Ry U{cc}. An edge e = (v, w) has source node v and
target node w. A turn with cost co is banned. A path P = (eq, ..., ex) must not
contain banned turns. The weight is ¢(P) = Y% ¢(e;) + 27— ¢t (es, ei11). The
problem is to compute a path with smallest weight between e; and ey, that is a
shortest path. Note that source and target of the path are edges and not nodes.

To compute shortest paths with an algorithm that cannot handle a turn cost
function, the edge-based graph [3] G' = (V' E’) is used with V' = E and E' =
{(e,€') | e, e’ € E, target node of e is source node of ¢’ and c*(e,e’) < co}. We
define the edge weight by ¢ : (e,e’) — c(e’) + c'(e, €’). Note that the cost of a
path P = (e1,...,ex) in the edge-based graph misses the cost c(ey) of the first
edge. Nevertheless, as each path between e; and e, misses this, shortest path
computations are still correct.

To compute a shortest path in the edge-based graph, any shortest path al-
gorithm for non-negative edge weights can be used. E. g., Dijkstra’s algorithm

@ ®2 4

Fig. 1. Graph (unit distance) that restricts the turn 1 — 2 — 6. Therefore, the shortest
path 1 — 2 — 3 — 4 — 2 — 6 visits node 2 twice.



102 R. Geisberger and C. Vetter

computes shortest paths from a single source node to all other nodes by settling
nodes in non-decreasing order of shortest path distance. However, on a node-
based graph with turn cost function, settling nodes is no longer sufficient, see
Figure[ll Instead, we need to settle edges, i.e., nodes in the edge-based graph. Ini-
tially, for source edge e the tentative distance d(e1) is set to c(eq), all other ten-
tative distances are set to infinity. In each iteration the unsettled edge e = (v, w)
with smallest tentative distance is settled. Then, for each edge ¢’ with source w,
the tentative distance §(e’) is updated with min (6(e’),d(e) + c*(e, €') + c(€’)).
This resulting edge-based Dijkstra successfully computes shortest paths. By stor-
ing parent pointers, shortest paths can be reconstructed in the end.

3 Turn Cost Model

We take into account two kinds of turn costs: a limited turning speed inducing
a turn cost and a fixed cost added under certain circumstances. Banned turns
have infinite turn cost.

3.1 Fixed Cost

We add a fixed turning cost when turning left or right. In addition to this a fixed
cost is applied when crossing a junction with traffic lights.

3.2 Turning Speed

Tangential acceleration. We can use the turn radius and a limit on the tan-
gential acceleration a to compute a limit on the turning speed v: max, =
v/max, * radius. Given a lower limit on the resolution d,,;, of the underlying
data we estimate the resolution § the turn is modeled with: When turning from
edge e into edge €’ the respective edge length are [ and I’. Then, ¢ is estimated
as the minimum of [, I’ and 8,,,;,. We compute the turn radius from the angle o
between the edges: radius = tan(a/2) * §/2.

Traffic. When turning into less important road categories we restrict the max-
imum velocity to simulate the need to look out for traffic. We differentiate be-
tween left and right turns, e.g. it might not be necessary to look out for incoming
traffic when turning right. Furthermore, we limit the maximum turning speed
when pedestrians could cross the street.

Turn costs. We can derive turn costs from the turn speed limit max,. Consider a
turn between edges e and e’. When computing ¢(e) and c(e’) we assumed we could
traverse these edges at full speed v and v'. When executing the turn between
them, we now have to take into account the deceleration and acceleration process.
While traversing edge e we assume deceleration agec from v down to max, at
the latest point possible and while traversing edge e’ we assume immediate start
of acceleration auc. from max, to v’. The turn cost we apply is the difference



Efficient Routing in Road Networks with Turn Costs 103

between this time and the projected travel time on the edges without acceleration
and deceleration. The resulting turn cost is c*(e, €’) = (v — max,)?/(2 * agec) +
(v —max,)?/(2 * aacc). Of course, this is only correct as long as the edge is long
enough to fully accelerate and decelerate.

4 Node Contraction

Node contraction without turn costs was introduced in an earlier paper [6]. The
basic idea behind the contraction of a node v is to add shortcuts between the
neighbors of v to preserve shortest path distances. In a graph without turn costs,
this is done by checking for each incoming edge (u,v) from remaining neighbor
u and for each outgoing edge (v, w) to remaining neighbor w, whether the path
(u,v,w) is the only shortest path between w and w. If this is the case, then a
shorteut (u, w) representing this path needs to be added. This is usually decided
using a node-based Dijkstra search (local search) starting from node w. The
neighbors u and w are more important than node v, as they are not contracted
so far. A query algorithm that reaches node u or w never needs to relax an edge
to the less important node v, as the shortcut can be used. The query is bidirected
and meets at the most important node of a shortest path. This shortest path
P’ = (e, ea,...,e,) found by the query can contain shortcuts. To obtain the
path P in the original graph, consisting only of original edges, each shortcut e’
needs to be replaced by the path (e}, ..., e}) it represents.

4.1 With Turn Costs

Turn restrictions complicate node contraction. As we showed in Section 2], we
need an edge-based query instead of a node-based one. Therefore, we have to
preserve shortest path distances between edges, and not nodes. An important
observation is that it is sufficient to preserve shortest path distances only between
original edges. This can be exploited during the contraction of node v if the
incoming edge (u,v) and/or the outgoing edge (v, w) is a shortcut. Assume that
(u,u') is the first original edge of the path represented by (u,v) and (w',w) is
the last original edge of the path represented by (v, w). We do not need to add a
shortcut for {(u, v), (v, w)) if it does not represent a shortest path between (u, u')
and (w',w) in the original graph. The weight of the shortcut is the sum of the
weights of the original edges plus the turn costs between the original edges.

We introduce the following notation: A shortcut (v — u’,w’ — w) is a short-
cut between nodes u and w, the first original edge is (u, u’) and the last original
edge is (w', w). If two nodes are connected by an arrow, e.g., u — u/, then this
always represents an original edge (u,u’). A node-triplet connected by arrows,
e.g., u” — u — v, always represents a turn between the original edges (u”, u)
and (u,u') with cost c*(v” — u — u').

Local search using original edges. Now that we have established the basic idea
of node contraction in the presence of turn costs, we will provide more details.



104 R. Geisberger and C. Vetter

An observation is that we cannot avoid parallel edges and loops between nodes
in general, if they have different first or last original edge. Therefore, we can
only uniquely identify an edge by its endpoints and the first and last original
edge. Loops at a node v make the discovery of potentially necessary shortcuts
more complicated, as given an incoming edge (v — w/,v" — v) and outgoing
edge (v — v’ w' — w), the potential shortcut (v — u',w’ — w) may not
represent ((u — u’,v" — v), (v — v”,w’ — w)) but has to include one or more
loops at v in between. This can happen, e.g., in Figure [ if nodes 2, 3 and 4
are contracted, then there has to be a shortcut between nodes 1 and 6 including
a loop. Therefore, we use the local search to not only to decide on the necessity
of a shortcut, but also to find them. The local search from incoming edge (u —
u’',v" — v) computes tentative distances §(-) for original edges only. Initially,
for each remaining edge (v — u',2’ — x) with first original edge u — /,
0(' — z) := c(u — v',2’ — z), and all other distances are set to infinity. To
settle an original edge ' — x, for each edge ¢’ = (z — z”,y’ — y) with source
x, the tentative distance 0(y’ — y) is updated with min (6(y’ — y),0(z' —
z)+ct (2’ -z — 2”)+c(e’)). A shorteut (u — v/, w’ — w) is added iff the path
computed to w’ — w only consists of the incoming edge from u, the outgoing
edge to w and zero or more loops at v in between. Otherwise a witness is found
of smaller or equal weight. The weight of the shortcut is §(w’ — w).

4.2 Optimizations

The algorithm described so far preserves shortest path distances between all
remaining uncontracted nodes. However, as our query already fixes the first and
last original edge of the shortest path, we can further reduce the number of
shortcuts. It would be sufficient to only add a shortcut (v — u/,w’ — w) if
there are two original edges, a source edge (u”,u) and a target edge (w,w”)
such that ((u”,u), (v — v/, w’ — w), (w,w”)) would be only shortest path in the
remaining graph together with (u”,u) and (w,w”) but without node v. This
allows to avoid a lot of unnecessary and ‘unnatural’ shortcuts. E.g., a query
starts from a southbound edge of a highway but the journey should go north.
Naturally, one would leave at the first exit, usually the target of the edge, and
reenter the highway northbound. Our improvement allows to avoid shortcuts
representing such changes of direction.

Aggressive local search. We can use the above observation to enhance the local
search in a straightforward manner. Instead of executing a local search from
the original edge (u,u'), we perform a local search separately from each original
incoming edge (u”, w). Then, we check for each original edge (w, w’) whether the
shortcut is necessary. While this approach can reduce the number of shortcuts,
it increases the number of local searches, and therefore the preprocessing time.

Turn replacement. To avoid performing a large amount of local queries we try to
combine the searches from all the original edges incoming to u into one search. We
cannot start from all these original edges simultaneously while still computing



Efficient Routing in Road Networks with Turn Costs 105

just a single distance per original edge. It is better to start from all original edges
outgoing from u simultaneously. We initialize the local search as in Section A1l
Furthermore, we consider all other remaining edges (u — uj, 2’ — x) outgoing
from u. However, as we now replace a turn v” — v — v’ by a turn v” — u — u},
an outgoing turn replacement difference 7 (u — u',u}) 1= max,» (ct(u” — U —
uh) —c*(u” — u — u')) needs to be added to account for the different turn costs,
see Figure 2l Note that we consider the worst increase in the turn cost over all
incoming original edges of u. So (2’ — z) 1= 7 (u — u/,uh)+c(u — uh, 2’ — z).
The local search settles original edges as before, but has a different criterion to
add shortcuts. We add a shortcut (v — ', w’ — w) with weight 6(w" — w) iff the
path computed to w’ — w only counsists of the incoming edge (u — u’,v" — v),
the outgoing edge to (v — v, w’ — w) and zero or more loops at v in between,
and none of the other edges incoming to w offers a witness. Consider a path
computed to an original edge w), — w incoming to node w. If we consider
this path instead of the one computed to w’ — w, we would replace the turn
w — w — w” by the turn w) — w — w”. A incoming turn replacement
difference T (wh, w' — w) 1= max,~ (c*(wh — w — w”) — (W — w — w")) is
required to account for the different turn costs. We do not need to add a shortcut
if 7 (wh,w' — w) + §(wh — w) < §(w' — w).

>

, -
Uz
¢ At

Fig. 2. If a witness uses turn uv”/ — « — u} instead of u” — u — u’, we have to account
. " / 1" ’
for the turn cost difference c'(u” — u — ub) — (v’ — u — o)

Loop avoidance. Even with the turn replacement approach of the previous para-
graph, there can still be a lot of unnecessary loop shortcuts. E. g., in Figure [T},
assume that nodes 1 and 6 are not present. After the contraction of nodes 3 and
4, there would be a loop shortcut at node 2 although it is never necessary. We
only need to add a loop shortcut, if it has smaller cost than a direct turn. That
is, considering a loop shortcut (u — ', v’ — w) at node u, if there are neighbors
uby and w4 such that ct(uh — u — ') +c(u — v/, v’ — u) + " — u—ul) <
ct(uhy — u — ul).

Limited local searches. Without turn costs, local searches only find witnesses to
avoid shortcuts. Therefore, they can be arbitrarily pruned, as long as the com-
puted distances are upper bounds on the shortest path distances [6]. That en-
sures that all necessary, and maybe some superfluous shortcuts are added. But
with turn costs, a local search also needs to find the necessary shortcuts. There-
fore, we cannot prune the search for those. We limit local searches by the number
of settled original edges. Once we settled a certain number, we only settle original
edges whose path from the source is a prefix of a potential shortcut. Furthermore,
if all reached but unsettled original edges cannot result in a potential shortcut, we
prune the whole search.



106 R. Geisberger and C. Vetter

5 Preprocessing

To support turn costs, the CH preprocessing [6] only needs to use the enhanced
node contraction described in Section [l The preprocessing performs a contrac-
tion of all nodes in a certain order. The original graph together with all shortcuts
is the result of the preprocessing. The order in which the nodes are contracted is
deduced from a node priority consisting of: (a) The edge quotient, i.e., the quo-
tient between the amount of shortcuts added and the amount of edge removed
from the remaining graph. (b) The original edge quotient, i.e., the quotient be-
tween the number of original edges represented by the shortcuts and the number
of original edges represented by the edges removed from the remaining graph.
(¢) The hierarchy depth, i.e., an upper bound on the amount of hops that can be
performed in the resulting hierarchy. Initially, we set depth(u) = 0 and when a
node v is contracted, we set depth(u) = max(depth(u),depth(v)-+1) for all neigh-
bors u. We weight (a) with 8, (b) with 4 and (c¢) with 1 in a linear combination
to compute the node priorities. Nodes with higher priority are more important
and get contracted later. The nodes are contracted in parallel by computing
independent node sets with a 2-neighborhood [10].

6 Query

The query computes a shortest path between two original edges, a source s — s’
and a target t' — t. It consists of two Dijkstra-like searches that settle original
edges (cf. Section B)) one in forward direction starting at s — s’, and one in
backward direction starting at ¢ — ¢. The only restriction is that it never relaxes
edges leading to less important nodes. Both search scopes meet at the most
important node z of a shortest path. E. g., the forward search computes a path
to 2/ — z, and the backward search computes a path to z — z”. As usually
z' # 2", when we settle an original edge #' — x in forward direction, we need to
check whether the backward search reached any outgoing edge x — x’, and vice
versa. Such a path with smallest weight among all meeting nodes is a shortest
path.

Stall-on-demand. As our search does not relax all edges, it is possible that an
original edge 2’ — x is settled with suboptimal distance. In this case, we can
prune the search at this edge, since the computed path cannot be part of a
shortest path. To detect some of the suboptimally reached edges, the stall-on-
demand technique [5] can be used, but extended to the scenario with turn costs:
The edge 2’ — =z is settled suboptimally if there is an edge (y — ¢/, 2’ — ) and
an original edge y” — y such that §(y" — y)+c* (v -y —y)+cly — v, 2" —
z) < (2’ — x).

Path unpacking. To unpack the shortcuts into original edges, we can store the
middle node whose contraction added the shortcut. Then, we can recursively
unpack shortcuts [6]. Note that if there are loops at the middle node, they may
be part of the shortcut. A local search that only relaxes original edges incident
to the middle node can identify them.



Efficient Routing in Road Networks with Turn Costs 107

7 Turn Cost Tables

We can store the turn cost function ¢* : E x E — Ry U {co} efficiently using a
single table per node. Each adjacent incoming and outgoing edge gets assigned
a local identifier that is used to access the table. To avoid assigning bidirectional
edges two identifiers we take care to assign them the same one in both directions.
This can easily be achieved by assigning the bidirectional edges the smallest
identifiers.

To look up the correct turn costs in the presence of shortcuts we need to store
additional information with each shortcut: A shortcut (v — ', w’ — w) has to
store the identifier of (u,u’) at u and the identifier of (w’, w) at w.

Storing these identifiers does not generate much overhead as their value is
limited by the degree of the adjacent node.

7.1 Redundancy

Since the turn cost tables model the topology of road junction they tend to be
similar. In fact many tables model exactly the same set of turn costs. We can
take advantage of this by replacing those instances with a single table. To further
decrease the amount of tables stored we can rearrange the local identifiers of a
table to match another table. Of course, we have to take care to always assign
bidirectional edges the smallest identifiers.

Given a reference table t and a table ¢’ we check whether ¢’ can be represented
by t by trying all possible permutations of identifiers. Bidirectional identifiers
are only permuted amongst themselves. Because the amount of possible per-
mutations increases exponentially with the table size we limit the number of
permutations tested. Most junctions only feature a limited amount of adjacent
edges and are not affected by this pruning. Nevertheless, it is necessary as the
data set may contain erroneous junctions with large turn cost tables.

To avoid checking a reference table against all other tables we compute hash
values h(t) for each table ¢. h(t) has the property that if h(t) # h(t') neither
t can be represented by ¢’ nor t' by t. We compute h(t) as follows: First, we
sort each row of the table, then sorting the rows lexicographically. Finally, we
compute a hash value from the resulting sequence of values.

We use this hash values to greedily choose an unmatched table and match as
many other tables to it as possible.

8 Experiments

Environment. The experimental evaluation was done on a machine with four
AMD Opteron 8350 processors (Quad-Core) clocked at 2 GHz with 64 GiB of
RAM and 2 MiB of Cache running SuSE Linux 11.1 (kernel 2.6.27). The program
was compiled by the GNU C++ compiler 4.3.2 using optimization level 3.



108 R. Geisberger and C. Vetter

Instances. We use three road networks derived from the publicly available data
of OpenStreetMap, see Table[Il Travel times where computed using the MoNav
Motorcar Profile [I1]. Using the node-based model with turn cost tables requires
about 30% less space than the edge-based model. That is despite the fact that in
the node-based model, we need more space per node and edge: Per node, we need
to store an additional pointer to the turn cost table (4 Bytes), and an offset to
compute a global identifier from the identifier of an original edge (u,u’) local to
anode u (4 Bytes). Per edge, we need to additionally store the local identifier of
the first and last original edge (2 x 1 Byte rounded to 4 Byte due to alignment).

Table 1. Input instances. In the edge-based model, a node requires 4 Bytes (pointer
in edge array), and an edge requires 8 Bytes (target node + weight + flags). In the
node-based model, a node requires additional 8 Bytes (pointer to turn cost table +
offset to address original edges), and an edge requires additional 4 Bytes (first and last
original edge). An entry in a turn cost table requires 1 Byte.

nodes edges turn cost tables
[x10°] [MiB] [x10°%] [MiB] [x10%] % [MiB]
Netherlands node-based 0.8 9.4 1.9 222 799.9% 0.8
edge-based 19 74 5.2 39.7 - - -
node-based 3.6 41.3 85 97.1 26774% 3.1
edge-based 8.5 324 23.1 176.3 - - -
node-based 15.0 171.1 35.1 401.3 834 5.6% 9.5

edge-based 35.1 133.8 95.3 727.0 - - -

graph model

Germany

Europe

Redundant turn cost tables. Already for the Netherlands, only one table per ten
nodes needs to be stored. The best ratio is for the largest graph, Europe, with
one table per 18 nodes. This was to be expected as most unique junctions types
are already present in the smaller graphs. Identifying the redundant tables is
fast, even for Europe, it took only 20 seconds.

Node Contraction. Preprocessing is done in parallel on all 16 cores of our ma-
chine. We compare the node contraction in the node-based and the edge-based
model in Table Pl In the node-based model, we distinguish between the basic
contraction without the optimizations of Section 2] the aggressive contraction
mentioned in Section 2] and the contraction using turn replacement (TR) and
loop avoidance (LA). Clearly, TR+LA is the best contraction method. The ba-
sic contraction requires about a factor 3—4 times more preprocessing time, about
5-7 times more space, and results in 3-4 times slower queries. It misses a lot of
witnesses which leads to denser remaining graphs, so that its preprocessing is
even slower than the aggressive contraction’s. The aggressive contraction finds
potentially more witnesses as TR+LA, but shows no significant improvement,
neither in preprocessing space nor query performance. For Europe, its perfor-
mance even slightly decreases, potentially due to the limited local searches and
because a different node order is computed. Furthermore, its preprocessing is
about a factor 3 slower, because we execute several local searches per neighbor
with an edge incoming to the contracted node.



Efficient Routing in Road Networks with Turn Costs 109

Table 2. Performance of contraction hierarchies (TR = turn replacement, LA = loop
avoidance)

preprocessing query
graph model  contraction time  space time settled
[s] [MiB] % [us] edges
basic 66 31.9 144% 1177 713

node-based aggressive 57 7.0 32% 319 367
TR + LA 19 7.0 32% 315 363

edge-based  regular 63 46.6 117% 348 358
basic 250 124.2 128% 2339 1158

node-based aggressive 244 17.3 18% 735 594

Netherlands

Germany TR+LA 73 17.3 18% 737 597
edge-based  regular 253 183.9 104% 751 535
basic 1534 592.2 148% 4075 1414
node-based aggressive 1318 117.4 29% 1175 731
Europe

TR + LA 392 116.1 29% 1107 651
edge-based regular 1308 817.1 112% 1061 651

We will compare the contraction in the edge-based model only to the con-
traction in the node-based model using TR+LA. Its preprocessing is about 3.4
times faster than in the edge-based model. One reason is that there are about
2.3 fewer nodes need to be contracted, and TR+LA, compared to the aggres-
sive contraction, needs only one local search per incoming edge. We argue that
the additional speed-up comes from the fact that contracting junctions instead
of road segments works better. Note that there is a fundamental difference in
contracting a node in the node-based and edge-based model: Adding a shortcut
in the node-based model would map to an additional node in the edge-based
model. We observe that the total space required including preprocessed data is
about a factor 2.4 larger for the edge-based model.

Furthermore, in the node-based model, bidirected road segments can be stored
more efficiently by using forward/backward flags. In comparison, assume that
you have a bidirected edge in the original edge-based graph. This implies that the
edge represents two U-turns between (u,v) and (v, u), see Figure Bl Therefore,
bidirected road segments cannot be stored efficiently in the edge-based model.

Fig. 3. A bidirected edge in the original edge-based graph between two original edges
(u,v') and (v,v’) in the node-based graph. Because a turn from (u,u’) to (v,v’') is
possible, u’ = v, and because a turn from (v,v’) to (u,u’) is possible, v' = u. Therefore,
both turns are U-turns.



110 R. Geisberger and C. Vetter

Query. Query performance is averaged over 10 000 shortest path distance queries
run sequentially on a single core of our machine. Source and target edge have
been selected uniformly at random. The resulting distances were compared to
a plain edge-based Dijkstra for correctness. Interestingly, the best query times
that can be achieved in both models are almost the same. One reason might be
that both queries settle original edges. For the smaller graphs the query time is
even a bit faster in the node-based model, because most of the turn cost tables
fit into cache, thus causing almost no overhead.

9 Conclusions

Our work shows the advantages of the node-based model over the edge-based
one. The node-based model stores tables containing the turn costs. By identifying
redundant turn cost tables, we can decrease the space required to store them by
one order of magnitude. Still, our query has to settle original edges so that we
need to store a local identifier per edge and an offset to obtain a global identifier
per node. Therefore, a query in the original node-based graph is the same as in
the original edge-based graph, but storing the graph requires 30% less space.

Our preprocessing based on node contraction works better in the node-based
model in terms of preprocessing time (factor ~ 3.4) and space (factor ~ 2.4)
without affecting the query time. To augment the node-based contraction to turn
cost tables, we had to augment the local searches to not only identify witnesses,
but also shortcuts, because parallel and loop shortcuts can be necessary. To
restrict the node contraction to one local search per incoming edge (factor ~ 3
faster) without missing too many witnesses, we developed the techniques of turn
replacement and loop avoidance.

9.1 Future Work

We want to integrate the turn cost tables into an existing mobile implementation
of contraction hierarchies [12]. To further reduce the space requirements of the
turn cost tables, we can approximate their entries. This not only reduces the
number of different turn cost tables we need to store, but also the bits required
to store a table entry.

Acknowledgement. The authors would like to thank Dennis Luxen for his valu-
able comments and suggestions.

References

1. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning
Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117-139. Springer, Heidelberg (2009)

2. Caldwell, T.: On Finding Minimum Routes in a Network With Turn Penalties.
Communications of the ACM 4(2) (1961)



10.

11.
12.

Efficient Routing in Road Networks with Turn Costs 111

. Winter, S.: Modeling Costs of Turns in Route Planning. Geolnformatica 6(4), 345—

361 (2002)

. Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries.

In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568-579.
Springer, Heidelberg (2005)

. Schultes, D., Sanders, P.: Dynamic Highway-Node Routing. In: Demetrescu, C.

(ed.) WEA 2007. LNCS, vol. 4525, pp. 66-79. Springer, Heidelberg (2007)

. Geisberger, R., Sanders, P.,; Schultes, D., Delling, D.: Contraction Hierarchies:

Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 319-333. Springer, Heidelberg (2008)

. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:

Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Al-
gorithm. ACM Journal of Experimental Algorithmics 15(2.3), 1-31 (2010); Special
Section devoted to WEA 2008

. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling

Algorithm for Shortest Paths on Road Networks. In: Pardalos, P.M., Rebennack,
S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 231-242. Springer, Heidelberg (2011)

. Volker, L.: Route Planning in Road Networks with Turn Costs, Student Research

Project (2008),
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf
Vetter, C.: Parallel Time-Dependent Contraction Hierarchies, Student Research
Project (2009), http://algo2.iti.kit.edu/download/vetter_sa.pdf.

Vetter, C.: MoNav (2011), http://code.google.com/p/monav/

Vetter, C.: Fast and Exact Mobile Navigation with OpenStreetMap Data. Master’s
thesis, Karlsruhe Institute of Technology (2010)


http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf
http://algo2.iti.kit.edu/download/vetter_sa.pdf
http://code.google.com/p/monav/

On Minimum Changeover Cost Arborescences

Giulia Galbiati', Stefano Gualandi?, and Francesco Maffioli®

! Dipartimento di Informatica e Sistemistica, Universita degli Studi di Pavia
2 Dipartimento di Matematica, Universita degli Studi di Pavia
{giulia.galbiati,stefano.gualandi}@unipv.it
3 Politecnico di Milano, Dipartimento di Elettronica e Informazione
maffioli@elet.polimi.it

Abstract. We are given a digraph G = (N, A), where each arc is col-
ored with one among k given colors. We look for a spanning arborescence
T of G rooted (wlog) at node 1 and having minimum changeover cost.
We call this the Minimum Changeover Cost Arborescence problem. To
the authors’ knowledge, it is a new problem. The concept of changeover
costs is similar to the one, already considered in the literature, of reload
costs, but the latter depend also on the amount of commodity flowing
in the arcs and through the nodes, whereas this is not the case for the
changeover costs. Here, given any node j # 1, if a is the color of the
single arc entering node j in arborescence 7', and b is the color of an
arc (if any) leaving node j, then these two arcs contribute to the total
changeover cost of T' by the quantity du», an entry of a k-dimensional
square matrix D. We first prove that our problem is NPO-complete and
very hard to approximate. Then we present Integer Programming formu-
lations together with a combinatorial lower bound, a greedy heuristic and
an exact solution approach. Finally, we report extensive computational
results and exhibit a set of challenging instances.

1 Introduction

The problem that we consider in this paper and that we call Minimum Change-
over Cost Arborescence, is formulated on a digraph G = (N, A) having n nodes
and m arcs, where each arc comes with a color (or label) out of a set C of k
colors. The problem looks for a spanning arborescence T rooted at a specific
node, say node 1 (wlog), and having minimum changeover cost, a cost that we
now describe. We assume that G contains at least one spanning arborescence
having node 1 as root, i.e., a cycle-free spanning subgraph containing a directed
path from node 1 to all other nodes of GG. Let T" be any such arborescence;
obviously T has only one arc entering each node except node 1. Consider any
node j of T different from the root. A cost at j is paid for each outgoing arc
and depends on the colors of this arc and of the one entering j. Such costs are
given via a k * k matrix D of non-negative rationals: the entry d, ; specifies the
cost to be paid at node j for one of the outgoing arcs (if any) colored b, when
the incoming arc of j is colored a. We define the changeover cost at j, denoted
by d(j), as the sum of the costs at j paid for each of its outgoing arcs. We call

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 112 2011.
© Springer-Verlag Berlin Heidelberg 2011



On Minimum Changeover Cost Arborescences 113

the changeover cost of T, denoted by d(T'), the sum of the changeover cost d(j),
over all nodes j different from 1.

Similar problems have recently received some attentions in the literature |1-
5], where the entries of our matrix D are called reload costs. However in all these
problems the objective functions depend on the amount of commodity flowing in
the arcs or edges of the given graph, whereas this is not the case for the problem
that we consider. In the seminal work [I] and in [2] the problem of finding
a spanning tree with minimum reload cost diameter is thoroughly analyzed;
in [3] the problem of finding a spanning tree which minimizes the sum of the
reload costs of all paths between all pairs of nodes is discussed. The problems
of minimum reload cost path-trees, tours, flows are studied in [|4], whereas the
minimum reload s — t-path, trail and walk problems are analyzed in [5].

The motivation for introducing changeover costs comes from the need to model
in a real network the fixed costs for installing, in each node, devices to support
the changes of carrier, modeled here with changes of color.

The Minimum Changeover Cost Arborescence (MINCCA for short) is thor-
oughly analyzed in this paper, both from a theoretical and a computational
point of view. In Section 2l we show that it is NPO-complete and very hard to
approximate. We present in Section Bl some Integer Programming formulations
and in Section [ a greedy algorithm. The last section show an exact solution
approach, extensive computational results and a set of challenging instances.

2 Complexity

In this section we prove that MINCCA is NPO PB-complete and hard to
approximate, even in the very restrictive formulation given in Theorem [l below.
This result is obtained by exhibiting a reduction from another NPO PB-complete
problem, namely problem MINIMUM ONES, which is defined as follows. Given a
set Z = {z1,..., zn} of n boolean variables and a collection C' = {cy, ..., ¢;n} of m
disjunctive clauses of at most 3 literals, the problem looks for a subset Z’ C Z
having minimum cardinality and such that the truth assignment for Z that sets
to true the variables in Z’ satisfies all clauses in C. The trivial solution, returned
when the collection of clauses is unsatisfiable, is set Z.

In [6] it is shown that MINIMUM ONESs is NPO PB-complete, and in [7] that
it is not approximable within |Z|*~¢ for any € > 0.

We now present the reduction that we will use in the proof of Theorem [l
Given any instance I of MINIMUM ONES we construct the corresponding instance
I' of MINCCA as follows (see Figure 1 for an example). Graph G = (N, A) has
the vertex set N that contains a vertex ag = 1, the vertices a;, b;, c;,d;, for
each ¢ = 1,...,n, and the vertices ci,...,c,, corresponding to the elements of
C. Moreover N contains, for each i = 1,...,n, many couples of vertices z],z],
with j having values from 1 to the maximum number of times that either z; or
z; appear in the clauses of C. The arc set A of G contains all arcs (a;, ai+1),
for i = 0,...,n — 1, all arcs (a;, b;), (ai,c;), (biydi), (ciyds), (di,2}), (di, 2}), for

i
i =1,..,n, and all arcs (2/,2/7") and (27,27""), for the increasing values of j,



114 G. Galbiati, S. Gualandi, and F. Malffioli

starting from 1. Moreover there is an arc from z to z and vice versa, for each
involved 7 and j. Finally A contains an arc from z] (resp zl) to vertex cy if the
Jj-th occurrence of variable z; (resp. z;) in the clauses of C, if it exists, appears
in clause c;. The colors for the arcs of G are taken from the set {r,g,uv,b}.
Color r is assigned to all arcs (a;, ai+1), (a4, b;), and (a;, cl) color g to all arcs
(bi,dy), (diy2}), (27,2]7") and all arcs from some vertex 27 to some vertex cy;
symmetrically color v is assigned to all arcs (c;,d;), (di,2}), (zi,zi“) and all
arcs from some vertex z{ to some vertex cy; finally all arcs from z] to z{ and
vice versa are colored with color b. The matrix D of costs is defined so that
d(r,g) = 1, d(b,g) = d(b,v) = d(g,v) = d(v,g) = M, with M > n? being
a suitable big integer, and all other costs equal to 0. If we let n’ denote the
number of nodes of G, it is not difficult to see that n’ < 3n3, for some constant
B, with § > 1 and independent from the number n of boolean variables. For this

purpose it is enough to convince ourselves that the following inequalities hold:
, 2n 7 9 3
n<l4+6n+7m<1+6n+7 3 :1+6n—|—3(2n —n)(2n —2) < fn”.

It is also not difficult to see that opt(I) < opt(I’) since to any solution of I’ of
cost t < M there corresponds a solution to I having the same cost ¢; if, on the
other hand, opt(I') > M then opt(I) < n < opt(I’). Notice that the equality
opt(I) = opt(I') holds iff I is a satisfiable instance, since to any non trivial
solution of I there corresponds a solution to I’ having the same cost, whereas
to a trivial solution of I there corresponds a solution to I’ having a cost greater
than M.
Now we can prove the following theorem.

Theorem 1. Problem MINCCA is NPO-complete. Moreover, there exists a real
constant a, 0 < o < 1, such that the problem is not approximable within oma/nl—f,
for any € > 0, even if formulated on graphs having bounded in and out degrees,
costs satisfying the triangle inequality and 4 colors on the arcs.

Proof. We use the reduction described in this section. Obviously the graph con-
structed from an instance I of MINIMUM ONES is a graph G = (N, A) that has
maximum in-degree and out-degree equal to 3, costs that satisfy the triangle
inequality (see |4] for a definition) and uses k = 4 colors. Moreover we know
that the number n’ of its nodes satisfies the inequality n’ < An?, with 8 > 1.
We show now that, if we let a = \3}[3, then MINCCA is not approximable

within av/n/1=¢, for any € > 0. Suppose on the contrary that there exists an
€ > 0 and that MINCCA is approximable within av/n’'=¢. The algorithm that
we now describe could then be used to approximate MINIMUM ONES within
n'=¢, contrary to the result in [7].

The algorithm, given an instance I of MINIMUM ONES, would construct the
corresponding instance I’ of MINCCA and then find an approximate solution
for it, i.e. a spanning arborescence T having a changeover cost d(T) satisfying

the inequality < aV/n/1=¢. If d(T) > M the algorithm would return the

d(T)
opt(I')



On Minimum Changeover Cost Arborescences 115

— = _ _ _ TR
ZIVZZVZ4 ZlVZZVZ3 22VZ3VZ4 ZZVZ3VZ4 Z2 Z3MZ4

Fig.1. The graph G = (N, A) corresponding to an instance I of MINIMUM ONES
having as collection of clauses the set C' = {21V 22V 24,21 V 22 V 23,22 V 23 V 24,22 V
23V 24,22V 23V Z4}

trivial solution, otherwise, if d(T) < M, the algorithm would use T to construct
and return a solution Z’ for instance I having |Z'| = d(T).

Let us verify that this algorithm approximates MINIMUM ONES within n'—¢.
If I is not satisfiable this algorithm obviously returns the trivial solution and,
following [d] (pag. 254), the behavior of an approximation algorithm is not mea-
sured in this case. If T is satisfiable it follows easily that opt(I’) < n; it must
also be that d(T) < M, otherwise the inequality d(T) < opt(I')av/n/1=% <
opt(I")ay/Bn3 < opt(I') n < n? would contradict the inequality n> < M < d(T).
Hence in this case the algorithm uses T' to construct and return a solution Z’
having |Z'| = d(T') and, as observed at the end of the reduction, in this case we
know that opt(I) = opt(I’). Hence we can derive the following inequalities

2 AT _ R
= < aVn1-¢ < a{/(Bn3)1-¢ < pl=c
opt(I)  opt(I') — avn - a\/(ﬂn ) =0
which concludes the proof. a

3 Formulations

The MINCCA problem has the same feasible region of the Minimum Weight
Rooted Arborescence problem: The set of spanning arborescences. The latter



116 G. Galbiati, S. Gualandi, and F. Malffioli

problem is solvable in polynomial time [9]. It can be solved in polynomial time
also by Linear Programming, since we know its convex hull. For any node i of G,
with 67 (7) and §~ (i) we denote the set of outgoing arcs and the set of incoming
arcs, respectively.

Proposition 1. (Schrijver [10], pg. 897) Let G = (N, A) be a digraph, r a ver-
tex in N such that G contains a spanning arborescence rooted at r. Then the
r-arborecence polytope of G is determined by:

x|x >0, Z re>1 VX CN withr € X, Z ze=1 VYie N\ {r}
e+ (X) e€s— (i)

Therefore, to formulate MINCCA as an Integer Program we can use the same
polyhedral description of the feasible region. However, since we have a quadratic
objective function, the continuous relaxation is no longer integral.

The MINCCA problem has the following Bilinear Integer Program:

min Z Z Z de(a),e(b)TaTh (1)

1€EN\{r} a€d— (i) bedt (1)

s.t. Z Ty > 1, VX C N,r € X, (2)
a€8t(X)

> me=1, Vie N\{r}, (3)
ecd (i)

zq € {0,1}, Va € A. (4)

The objective function () takes into account the changeover cost occurring at
each node ¢ except the root node r. If both the incoming arc a (with color ¢(a))
and the outgoing arc b (with color ¢(b)) are part of the arborescence, that is the
corresponding variables x, and x, are equal to 1, we pay for the cost de(q),c(v)-
The constraints (2)) are the well-known r-cut inequalities, which force every
proper subset of N that contains the root node r to have at least one outgoing
arc. They are exponential in number, but they can be separated in polynomial
time by solving a r-min-cut problem.

The objective function () can be linearized in a standard way by introducing
binary variables z,; instead of the bilinear term z,x3, and the linking constraints:

Zab = Ta+Tp — 1, 2Zab < Ta,  Zab < Tp- (5)

3.1 Combinatorial Lower and Upper Bounds

A simple lower bound to (I)—(@) can be derived by applying the technique used by
Gilmore and Lawler to derive their well-known lower bound on the Quadratic
Assignment Problem [11]. For a review of their technique in a more general
setting, see [12].



On Minimum Changeover Cost Arborescences 117

Let p. be the smallest possible contribution to the objective function () of
arc e = (i, ), if this arc is part of the optimal solution, that is:

Pe =Pij) = DM de(p).c(e) (6)
Computing p. takes time O(n) or O(d;), where d; is the in-degree of vertex i.
Once we have collected the values of p. for every e € A, we can solve the
Minimum Cost Arborescence problem (with root node r = 1), where the arc
costs are set to p. in time O(m + nlogn) [13]. The cost of the optimal solution
of this Minimum Cost Arborescence problem provides a lower bound on the
optimal value of MINCCA , whereas the changeover cost of such solution yields
an upper bound.

3.2 A Stronger Linearization

The continuous relaxation of the basic linearization of ()~ ) given by variables
zap and by the linking constraints (B provides rather loose lower bounds. A
stronger linearization can be obtained by applying some of the techniques pre-
sented in [12] and [14]. We have evaluated one of these techniques, where each
constraint of the form a”x < b is multiplied on both sides by a variables ;.
Since for {0, 1} variables we have that 27 = x;, the constraint becomes:

Z AjT;7T; S (b — CLi)fﬂi,

J#i
and by using the existing z;; variables (and eventually introducing missing vari-
ables), we get its linearized version:

Zajzij < (b — az)mz
i

If we apply this technique to constraints (2), we do not get stronger relaxations,
since the constraints have the form a” 2 > b, and all coefficients are equal to one.
Hence, we would get > i TiTi 2 0, that is, a redundant constraint.
This technique is more effective when applied to @) and to the following
redundant constraint:
Z xqe =n—1. (7)

acA

If we apply this technique to (@), we get the quadratic constraints

Z Taxp = (n —2)xp, VbE A,
a€A,a#b

and by using the z,; variables, their linearized version:

Z Zab = (n—2)xp, VbE A. (8)
a€A,ab



118 G. Galbiati, S. Gualandi, and F. Malffioli

If the variables z,;, were already introduced to linearize ({l) they can be reused.
Otherwise new variables z,;, need to be introduced, along with their correspond-
ing linking constraints given in (&l).

Similarly, by applying this technique to (3]), we obtain the linearized version:

Y za=0, Vie N\{r},vbes (). 9)
a€d—(i),a#b

4 Heuristic Algorithm

Let digraph G = (N, A) be as described in the Introduction and let A; C A
be the set of arcs having the same i-th color, out of the set C' = {1,...,k} of
colors. For each ¢ € C consider the digraph G; = (N, 4;) and let (N;,T;) be a
largest (non-spanning) arborescence of G; rooted at node 1, that is a largest set
of nodes IV; reachable from node 1 in GG;. Denote the cardinality of N; by o;. We
describe now a constructive greedy heuristic for the MINCCA problem.

Algorithm 1. MINCCA Greedy Heuristic
1: for i:=1 to k do compute o;;
2: let j be such that o; = max{o1,...,0k};
3: T :=Ty;
4: while (|T|#n—1) do

5: delete from A all arcs in A\ T entering nodes already reached from 1 in (N, T);

6: forall h:=1,...,k do

7 let Ay be the set of arcs in A\ T colored h;

8: find in (N, T U Ap) the (not necessarily spanning) arborescence (N, Ty)
rooted at node 1, that has minimum changeover cost d, among those
having maximum cardinality;

%: eh 1= g,y

10: end do
11: let j be such that ¢; = min{ci,...,ck};
12: T:=1Tjy;

13: end while
14: return (N, T);

In order to prove that this algorithm is polynomial we only need to show that
the very particular case of MINCCA in line 8 is polynomially solvable. In fact,
let G’ be the subgraph of (N,T U A},) induced by the subset N’ C N of nodes
reachable from node 1. Consider any arc a of G’ of color h having its tail in a
node already reached from 1, with incoming arc b of T', and set the cost of this
arc equal to de() . Set the cost of all other arcs of G’ to zero. The minimum
cost spanning arborescence of G’ rooted in node 1 gives T},.

Improvements to the solution returned by the algorithm can be obtained by
applying standard Local Search procedures.



On Minimum Changeover Cost Arborescences 119
5 Computational Results

The lower bounds presented in Section Bl and the greedy heuristic described in
Section (] are evaluated using a wide collection of instances. These instances are
generated using the data in the SteinLib, which is a collection of Steiner tree
problems on graphs (http://steinlib.zib.de/). In particular, we have used
the data sets named B, I080, es10fst, and es20fst. Since the library contains
undirected graphs, we first introduced for each edge {i,j} two arcs (¢,7) and
(j,1). Each new arc gets a color randomly drawn from {1,...,k}, where the
number k of colors ranges in the set {2,3,5,7}. We consider two types of costs:
uniform costs, i.e., all costs equal to 1 whenever there is a change of color, and
non-uniform costs, randomly drawn from {1,...,10}.

We implemented all the algorithms in C++, using the g++ 4.3 compiler
and the CPLEX12.2 callable library. Constraints (2)) are separated using the
MinCut algorithm by Hao and Orlin |15], and implemented as a CPLEX lazy
cut callback. Constraints ([8) and (@) are defined as lazy constraints and they are
handled by CPLEX. The tests are run on a standard desktop with 2Gb of RAM
and a 1686 CPU at 1.8GHz. All instances used for the experiments are available
at http://www-dimat.unipv.it/~gualandi/Resources.html.

5.1 Lower Bounds on Small Instances

The first set of results allow us to compare the strength of the three lower bounds
presented in Section Bl Let LB; be the simple combinatorial lower bound (@),
LBs be the one obtained solving the continuous relaxation (Il)-(&l), and LBs
be the one obtained with the continuos relaxation ([Il)-(]) plus the linearized
quadratic constraints (§) and (@)).

Table [l shows the bounds obtained on 10 small instances. These instances
show that there is not a strict dominance between the three lower bounds. How-
ever, as we would expect, L B3 dominates LBs. Interestingly, in four instances
(i.e., instances ex-0, ex-1, ex-3, and ex-7), the continuous relaxation used for
L B3 gives an integral solution that hence equals the optimum.

Table 1. Comparison of lower bounds on small instances

Instance n m k Opt LBy LBy LBs
ex-0 7 11 6 17 13 15.5 17
ex-1 7 12 6 2 2 1.5 2
ex-2 7 20 6 6 0 3 3.3
ex-3 7 10 6 11 9 10 11
ex-4 7 14 6 11 3 7.3 7.5
ex-5 7 12 6 15 11 10 13
ex-6 7 12 6 12 7 10 11.7
ex-T 7 13 6 11 10 9.5 11
ex-8 7 15 6 3 3 2 2.5
ex-9 7 16 6 7 3 3.5 4


http://steinlib.zib.de/
http://www-dimat.unipv.it/~gualandi/Resources.html

120 G.

Istance
es10fst10
es10fst11
es10fst12
es10fst13
es10fst14
es10fst15
es20fst10
es20fst11
es20fst12
es20fst13
es20fst14
es20fst15

Galbiati, S. Gualandi, and F. Malffioli

n
18
14
13
18
24
16
49
33
33
35
36
37

Averages:

Istance
es20fst10

es20fst11

es20fst12

es20fst13

es20fst14

es20fst15

n
49

33

33

35

36

37

Averages:

Table 2. Instances with uniform costs and 5 colors

m Opt UG Gap UB; Gap LB; Gap LBy Trp, LB3 Trp,
42 12 14 0.17 14 0.17 8 033 33 03 33 1.0
26 11 11 0.00 11 0.00 11 0.00 50 0.1 5.0 0.1
24 8 8 0.00 8 0.00 6 025 30 0.1 3.0 0.1
42 9 11 0.22 9 0.00 6 033 1.8 03 1.8 0.6
64 11 15 036 13 0.18 10 0.09 3.7 1.2 3.7 4.3
36 9 9000 11 0.22 7022 50 02 50 04
134 28 33 0.18 48 0.45 19 0.32 3.7 19.8 3.7 96.6
72 28 28 0.00 32 0.14 26 0.07 86 26 86 7.1
72 22 25 014 32 028 18 0.18 6.3 2.7 6.3 4.9
80 20 22 0.10 34 0.55 16 0.20 6.0 29 6.0 9.7
88 18 22 0.22 35 0.59 13 0.28 25 45 25 254
86 22 22 0.00 36 0.64 16 0.27 6.8 52 6.8 17.0
0.12 0.27 0.21 3.3 13.9

Table 3. Instance with random costs and k colors
m k Opt UG Gap UBl Gap LB1 Gap LB2 TLBZ TLB3
134 2 51 96 0.88 112 1.20 34 0.33 22.0 35.7 61.4
3 78 119 0.63 101 0.38 19 0.74 2.0 25.1 40.8
5 110 159 0.45 124 0.13 64 0.42 16.8 17.6 154.8
7 124 192 0.55 152 0.23 75 0.40 16.8 21.6 128.7
72 2 8 94 0.11 111 0.31 76 0.11 34.0 2.6 6.6
3 42 46 0.10 60 0.43 25 0.40 14.0 2.8 3.7
5 122 147 0.20 137 0.12 100 0.18 36.0 2.5 54
7 96 111 0.16 101 0.05 72 0.25 31.3 2.6 5.1
72 2 78 78 0.00 86 0.10 44 0.44 9.0 3.5 35
3 55 78 042 85 0.55 28 0.49 17.7 2.5 34
5 95 111 0.17 102 0.07 61 0.36 33.3 3.2 5.3
7 8 89 0.03 92 0.07 60 0.30 20.2 2.2 4.6
80 2 62 67 0.08 66 0.06 32 048 13.0 5.0 5.3
3 102 102 0.00 103 0.01 69 0.32 0.0 3.3 87
5 92 96 0.04 108 0.17 45 0.51 22.3 3.1 7.6
7 107 119 0.11 109 0.02 74 0.31 39.8 4.1 6.7
88 2 40 58 045 67 0.68 22 045 0.0 4.2 15.2
3 54 66 022 65 020 25 0.54 7.5 6.6 14.7
5 78 114 0.46 103 0.32 47 0.40 10.3 5.1 22.6
7 103 135 0.31 142 0.38 53 0.49 15.2 5.8 20.9
8 2 55 69 025 83 0.51 19 065 0.0 59 6.5
3 56 60 0.07 67 020 27 0.52 11.0 5.0 19.3
5 110 114 0.04 126 0.15 77 0.30 36.0 6.0 12.2
7 112 152 0.36 115 0.03 86 0.23 24.7 5.8 154
0.25 0.26 0.40 7.57 24.1

Gap
0.72
0.55
0.63
0.80
0.67
0.44
0.87
0.69
0.71
0.70
0.86
0.69
0.69

Gap
0.57
0.97
0.85
0.86
0.60
0.67
0.70
0.67
0.88
0.68
0.65
0.77
0.79
1.00
0.76
0.63
1.00
0.86
0.87
0.85
1.00
0.80
0.67
0.78
0.79



On Minimum Changeover Cost Arborescences 121

5.2 Lower Bounds on Medium Size Instances

On bigger instances the strength of the three lower bounds changes, and the
combinatorial lower bound dominates the other two: it provides tighter lower
bounds, while requiring a negligible computation time.

Tables 2] and Bl show, in addition to the three lower bounds, the upper bound
found with the greedy heuristic (UG) and the upper bound given by the ar-
borescence found while computing the combinatorial lower bound (UB;). For
each instance, the tables report the number of nodes, arcs and colors, and the
optimum solution ”Opt”. When we do not know the optimum values, as for in-
stance for the es20fst10 instances, they appear in italics. For LBy and L B3 we
report the computational time in seconds, called Trp, and 17 p,, respectively.
In the following, for each bound b we define its gap from the optimum as the
ratio 197t~

Table I%I shows the results on instances with uniform costs and 5 colors. The
combinatorial lower bound LB is always better than the LP relaxation bounds
LBy and LBjs; the average gap for LB; is 0.21%, while the average gap for
LBy and LBj3 is 0.69%. Differently from the case of small instances, here LBs
and L Bs have always the same value, contradicting what we would expect from
previous work [12, [14]; however the computational time to obtain LBj is much
lower than the one to obtain L B3, that is, 17, is, on average, 3.3 sec. while T g,
is 13.9 sec.. Notice finally that, for this class of instances, the greedy heuristic
finds upper bounds that have an average gap of 12%.

TableBlshows the results on instances derived from the es20fst data set, using
a various number of colors and costs randomly drawn in the set {1,...,10}. These

Table 4. Results of the branch-and-cut algorithm: Easy instances

Istance n m Opt Cuts Nodes Time Cuts Nodes Time
es20fst11 33 72 122 188 723 12 147 667 35
42 115 277 7 80 348 15

85 374 1252 19 435 1048 55
96 103 741 10 113 790 37
es20fst12 33 72 55 86 191 6 112 227 15
78 63 327 62 354 34
95 105 414 122 415 27
86 57 772 55 708 39
es20fst13 35 80 102 58 280 60 732 63
92 42 244 7 48 392 39
62 112 843 16 118 920 64
107 42 665 12 52 597 74
es20fst14 36 88 78 94 1395 35 104 1464 252
40 86 850 35 88 692 186
54 98 1376 41 92 737 119
es20fstl5 37 86 110 242 2233 45 330 2073 174
55 549 3344 71 592 5246 509
Averages: 142 937 20 154 1024 102



122 G. Galbiati, S. Gualandi, and F. Malffioli

results show, unfortunately, that on these instances both the lower and upper
bounds are weak. The upper bounds obtained while computing the combinatorial
lower bound are sometimes better than those obtained with the greedy heuristic.

5.3 Branch-and-Cut

Finally, we present the results obtained with an exact branch-and-cut algorithm
that embeds the combinatorial lower bound and the greedy heuristic; we compare

these results using the two linearizations proposed in Section 3.

Table 5. Results of the branch-and-cut algorithm: Hard instances

Istance
es20fst10

s20fst14
es20fst15

Instance
b01

b02

b03

b04

b05

b06

b07

b08

b09

b10

b1l

b12

b13

b14

b15

b16

b17

b18
1080-001
1080-002
1080-003
1080-004
1080-005
Averages:

n
49

36
37

m  Opt
134 152
116

96

101

88 103
86 56
112

Cuts
239
223

96
321
155
586
629

Nodes
5168
4465
1650
3572
4264
4177
5978

Table 6. Challenging instances with uniform costs

n
50
50
50
50
50
50
75
75
5
75
75
75

100

100

100

100

100

100
80
80
80
80
80

m  Best
126 28
126 30
126 28
200 24
200 18
200 20
188 53
188 51
188 47
300 36
300 39
300 35
250 62
250 59
250 68
400 42
400 46
400 54
240 47
240 49
240 43
240 48
240 41

UG
35
31
35
26
21
23
53
55
50
36
39
35
65
59
68
42
46
54
47
49
43
48
41

UB,
34
34
36
35
31
31
54
56
47
46
52
44
62
70
71
63
63
66
59
58
46
51
56

Time Cuts Nodes

- 23 183

- 23 183

- 113 267

- 55 163

93 155 3186

99 556 5312

118 645 5931
LB Gap LBy Gap
18 036 11.7 0.58
20 0.33 8.8 0.71
15 0.46 5.3 0.81
6 0.75 1.6 0.93
5 0.72 3.1 0.83
4 0.80 1.0 0.95
31 042 134 0.75
31 039 13.8 0.73
29 038 135 0.71
8 0.78 3.5 0.90
8 0.79 1.3  0.97
5 0.86 1.2 0.97
31 050 221 0.64
33 044 18.7 0.68
36 047 19.2 0.72
6 0.86 0.3 0.99
7 0.85 1.2 0.97
7 0.87 2.3  0.96
28 040 152 0.68
20  0.59 8.0 0.84
24 0.44 7.3 0.83
22 054 10.1 0.79
13 0.68 6.0 0.85
0.60 0.82

Time

TrB,
21
15
19
66
68
65
83
59
75

212
177
179
168
150
154
1143
350
436
159
173
131
139
228



On Minimum Changeover Cost Arborescences 123

Tables [ and Bl report the results for the es20fst data set. Table Ml considers
only those instances that both linearizations where able to solve within a time
limit of 1000 seconds (in order to avoid censored data in the averages). Table
shows the results for the instances in which at least one of the two versions
reached the time limit. As we would expect after the results shown in Tables
and 3], the branch-and-cut algorithm based on the standard linearization is much
faster than the linearization obtained through a quadratic reformulation.

To conclude, Table [@ presents the results obtained on two other data sets,
namely, the B data set and the I080 data set. Though these data sets are easy
for Steiner tree problems, they are demanding for the MINCCA problem. The
column ”Best” reports the best upper bounds we were able to compute with our
branch-and-cut algorithm, with a timeout of 1000 seconds. We propose these
instances as challenging instances of the MINCCA problem.

References

1. Wirth, H., Steffan, J.: Reload cost problems: minimum diameter spaning tree.
Discrete Applied Mathematics 113, 73-85 (2001)

2. Galbiati, G.: The complexity of a minimum reload cost diameter problem. Discrete
Applied Mathematics 156, 3494-3497 (2008)

3. Gamvros, 1., Gouveia, L., Raghavan, S.: Reload cost trees and network design. In:
Proc. International Network Optimization Conference, paper n.117 (2007)

4. Amaldi, E., Galbiati, G., Maffioli, F.: On minimum reload cost. Networks (to ap-
pear)

5. Gourves, L., Lyra, A., Martinhon, C., Monnot, J.: The minimum reload s-t path,
trail and walk problems. In: Nielsen, M., Kuéera, A., Miltersen, P.B., Palamidessi,
C., Tama, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 621-632.
Springer, Heidelberg (2009)

6. Kann, V.: Polynomially bounded minimization problems that are hard to approx-
imate. Nordic J. Comp. 1, 317-331 (1994)

7. Jonsson, P.: Near-optimal nonapproximability results for some NPO PB-complete
problems. Inform. Process. Lett. 68, 249-253 (1997)

8. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Heidelberg (1999)

9. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Stand. (B) 71, 233-240 (1967)

10. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer, Hei-
delberg (2003)

11. Lawler, E.: The quadratic assignment problem. Manag. Sci. 9(4), 586-599 (1963)

12. Caprara, A.: Constrained 0-1 quadratic programming: Basic approaches and ex-
tensions. European Journal of Operational Research 187, 1494-1503 (2008)

13. Gabow, H., Galil, Z., Spencer, T., Tarjan, R.: Efficient algorithms for finding min-
imum spanning trees in undirected and directed graphs. Combinatorica 6(2), 109—
122 (1986)

14. Buchheim, C., Liers, F., Oswald, M.: Speeding up ip-based algorithms for con-
strained quadratic 0-1 optimization. Math. Progr. (B) 124(1-2), 513-535 (2010)

15. Hao, J., Orlin, J.: A faster algorithm for finding the minimum cut in a graph.
In: Proc. of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pp. 165-174
(1992)



Localizing Program Logical Errors Using Extraction of
Knowledge from Invariants

Mojtaba Daryabari, Behrouz Minaei-Bidgoli, and Hamid Parvin

School of Computer Engineering, Iran University of Science and Technology (IUST),
Tehran, Iran
{daryabari,b_minaei,parvin}@iust.ac.ir

Abstract. Program logical error localization and program testing are two of the
most important sections in software engineering. Programmers or companies
that produce programs will lose their credit and profit effectively if one of their
programs delivered to a customer has any drawback. Nowadays there are many
methods to test a program. This paper suggests a framework to localize the
program logical errors by extraction of knowledge from invariants using a
clustering technique.

Keywords: Daikon, Invariant, Dynamic Invariant Detection, Variable Relations,
Program point, Software engineering, Verification.

1 Introduction

Program error localization is one of the most important fields in program production
and software engineering. Programmers or companies that produce programs will lose
their credit and profit effectively if one of their programs delivered to a customer has
any drawback. While there are many methods to test a program, it is the lack of an
appropriate method for localizing a program logical errors using extraction of
knowledge from invariants (Catal, 2011). This paper will offer a framework to
localize the program logical errors before its release. This method is based on
extracting the knowledge from program invariants called Logical Error localizator
Based on Program Invariants (LELBPI).

Invariants are a set of rules that govern among the values of variables in the
programs in such a way that they remain unchanged in the light of different values of
the input variables in the consecutive runnings of a program. There are three types of
invariant generally: pre-condition, loop-invariant and post-condition. However post-
conditions are considered as a kind of invariants. In this paper, where it is addressed
invariant, it only implies to the invariant of post-condition type.

This paper suggests a framework to localize program logical errors with the use of a
series of tools such as Daikon which derives program invariants (Ernst et al. 2000).
There are many tools to extract program invariants that use static or dynamic methods.
The some invariant-extractor methods will be explained in following section.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 124 201 1.
© Springer-Verlag Berlin Heidelberg 2011



Localizing Program Logical Errors Using Extraction of Knowledge from Invariants 125

Briefly, the used method is to first collect a repository of the evaluated programs.
Then using their reliabilities of the invariants assigned by an expert the programs are
clustered. The clustering is done regarding to their invariants likeness. For example,
all types of a sorting program including bubble sort, merge sort, insertion sort and etc
and their invariants stand in the same cluster. LELBPI checks its tested program
invariants with all sets of cluster invariants that are available in its repository. After
that LELBPI calculates their similarity measures with the clusters and selects cluster
with maximum similarity. If difference number with one set of the clusters invariants
in the repository is zero then the program will be true else it will be a new one or
belongs to another of the pre-defined clusters; besides it has some error(s) that must
be eliminated.

2 Invariants

Invariants in programs are formulas or rules that are emerged from source code of
program and remain unique and unchanged with respect to running of program with
different input parameters. For instance, in a sort program that its job is to sort array
of integers, the first item in the array must be bigger than the second item and the
second item must be bigger than the third, etc. Invariants have significant impact on
software testing. Daikon is the suitable software for dynamic invariant detection
developed until now in comparing other dynamic invariant detection methods.
however this method has some problems and weaknesses and thus, many studies have
been carried out with the aim of improving Daikon performance which have resulted
in several different versions of Daikon up to now (Ernst et al. 2000), (Perkins and
Ernst 2004). For instance latest version of Daikon includes some new techniques for
equal variables, dynamically constant variables, variable hierarchy and suppression of
weaker invariants (Perkins and Ernst 2004).

Invariants in programs are sets of rules that govern among the values of variables
and remain unchanged in the light of different values of the input variables in
consecutive runnings of the program. Invariants are very useful in testing software
behavior, based on which a programmer can conclude that if its program behavior is
true (Kataoka et al. 2001), (Nimmer and Ernst 2002). For instance, if a programmer,
considering invariants, realizes that the value of a variable is unwillingly always
constant, s/he may conclude that its codes have some bugs.

Also, invariants are useful in comparing two programs by programmers and can help
them check their validity. For instance, when a person writes a program for sorting a
series of data, s/he can conclude that his program are correct or has some bugs by
comparing his program invariants against the invariants of a famous reliable sort
program; such as Merge Sort. Here, the presupposition is that in two sets (a) invariants
detected in the program and (b) invariants detected in the merge sort program, must be
almost the same. Additionally, invariants are useful in documentation and introduction
of a program attributes; i.e. in cases where there are no documents and explanations on a
specific program and a person wants to recognize its attributes for correcting or
expanding program, invariants will be very helpful to attain this goal, especially if the
program is big and has huge and unstructured code.



126 M. Daryabari, B. Minaei-Bidgoli, and H. Parvin

There are two ways for invariant detection that are called static and dynamic. In the
static way, invariants are detected with the use of techniques based on compiler issues
(for example, extraction of data flow graphs of the program source code). Dynamic
way, on the other hand, detects invariants with the help of several program runnings
by different input parameter values and based on the values of variables and relations
between them. Dynamic methods will be explained in more detail in next section
(Ernst et al. 2006).

Every method has some advantages and disadvantages which will be debated in
this paper. There are some tools as Key & ESC for java language and LClint for C
language for static invariant detection (Evans et al. 1994), (Schmitt and Benjamin
2007). In static detection, the biggest problem is the difficulty with which a
programmer can discover the invariants. Tracing of codes and detection of rules
between variable values are a difficult job especially if the programmer wants to
consider such cases as pointers, polymorphisms and so on.

In dynamic methods, the biggest problem is that they are careless and time-
consuming and, more importantly, do not provide very reliable answers.

3 Related Works

3.1 Background

There are many machine learning based and statistical based approaches to fault
prediction. Software fault prediction models have been studies since 1990s until now
(Catal, 2011). According to recent studies, the probability of detection (71%) of fault
prediction models may be higher than probability of detection of software reviewer
(60%) if a robust model is built (Menzies et al., 2007).

Software fault prediction approaches are much more cost-effective to detect
software faults compared to software reviews. Although benefits of software fault
prediction are listed as follows (Catal and Diri, 2009):

. Reaching a highly dependable system

. Improving test process by focusing on fault-prone modules

. Selection of best design from design alternative using object-oriented metrics
. Identifying refactoring candidates that are prediction as fault-prone

. Improving quality by improving test process

3.2 Daikon Algorithm

Daikon first runs program with several different input parameters. Then it instruments
program and finally in every running of the program saves variable values on a file
called data trace file. Daikon continues its work with extracting the values of
variables from data trace files and by use of a series of predefined relations discovers
the invariants and saves them. Daikon discovers unary, binary and ternary invariants.
Unary invariants are invariants defined on one variable; for instance, X>a presents
variable X is bigger than a constant value. For another example X (mod b)=a shows



Localizing Program Logical Errors Using Extraction of Knowledge from Invariants 127

X mod b=a. X>Y, X=Y+c are also samples of binary invariants and Y=aX+bZ is a
sample of ternary invariant considered in Daikon in which X, Y, Z are variables and a
& b are constant values.

Daikon will check invariants on the next run of the program on the data trace file
and will throw them out from list of true invariants if it is not true on current values of
variables. Daikon continues this procedure several times while concluding proper
reliability of invariants (Ernst et al. 2006).

4 Suggested Framework

Since the similar programs with the same functionalities have more or less the same
invariants, so invariants can be considered as behaviors of the programs. Although it
is highly probable that there is a program with job similar to job of another program
plus an auxiliary job, these two programs are not considered as the same programs.
This is due to high rate differences in their invariants. In other words, if the two
programs just do the same job, their invariants are almost the same. Suggested
framework is explained in this section. Informally, the LELBPI is shown in Fig 1.

Feed
—  Back T ey
¥ -
‘ Lable
»I]" ‘ ~——Program b i
: 4 5 Source Code— .i y
Diata Base & L
Programmer

Leaner Machine

Fig. 1. Suggested framework for LELBPI

Fig 1 depicts that program invariants detected by Daikon software are sent to
LELBPI and machine processes them and give a feedback to programmer. Then a
label indicating the validation of LELBPI prediction is returned to it. It is notable that
the rules included in the Data Base of the learner machine must be in the general
forms. For example to show that an array is sorted, the corresponding rule is similar to
"array_name sorted by >=" (denoted by rule I); besides the invariants similar to
"array_name[l]<= array_name[2]" (denoted by rule 2) is eliminated provided that
the rule 1 is available. Details of framework are illustrated in activity diagram which
is shown in Fig 2.

First, program invariants are sent to LELBPI then invariants are compared with all
of clusters agent and select cluster with minimum difference. If all of cluster agents
are far away then it will be asked from programmer that "This program is unknown, is



128 M. Daryabari, B. Minaei-Bidgoli, and H. Parvin

it new and reliable?" If user answers that it is ok and s/he is sure that program is true,
nevertheless invariants will insert to database which locates in LELBPI and updates
its clusters.

While entered invariants by user is resemble with some cluster, matter of cluster
which has minimum difference will be shown to user and if user confirms it, provided
that difference number is zero (or be less than a pre-defined threshold) then tested
program invariants insert to database which locates in machine learner and updates
machine learner clusters, else if difference number is more than zero (or be greater
than the pre-defined threshold) then just sends an alarm to user which program has
some logical error(s).

Compare
W

Nt Exist

Program is new
and true?

Satisfy with
L User is differency

atisfy?

Satisfy without 6
differency

Fig. 2. Error localizator framework activity diagram

While presented cluster to user dissatisfies programmer then LELBPI selects the
next minimum cluster and sends its matter to user. If all similar clusters presented to
user can not satisfy programmer then asks of user again that "This program is
unknown, is this program new and reliable?" Again if user answers that it is ok and
s/he is sure that program is true, nevertheless invariants will insert to database located
in LELBPI and updates its clusters.

It is clear that learner machine database is empty initially and it will gradually be
filled by adding true and reliable programs manually by user feedbacks. The greater
the number of record in database, the more accurate and valid results of suggested
framework.

4.1 Variable Matching

Suppose that the agent of cluster that must be compared with the tested program
invariants had two integer variables denoted by i and j. Also assume that entered



Localizing Program Logical Errors Using Extraction of Knowledge from Invariants 129

invariable to learner machine had two different integer variable denoted by m, n.
Before than compare invariants, LELBPI must match either i—m and j—n or vice
versa. Algorithm that is used in LELBPI matches all possible permutations of i, j to
m, n and amount of difference on each combination will be computed and software
will select combination which has minimum difference in compare with other
combination. More detailed explanation is offered in section five.

For decreasing runtime, LELBPI standardizes variable names before than invariants
of true program are added to database, it means that all variables with the same data
type rename to one series of standard and recorded name. For example all integer
variables in all programs are renamed to int_a, int_b... sequentially and all integer arrays
in programs are renamed to array_int_a, array_int_b... sequentially, and for each
invariant set, the numbers of variables in all data types are buffered. Machine can
permute variables with higher speed.

S Scalability

For justifying this method is commodious, run time of this method is estimated on this
section. Informally runt time can be characterized as:

Max (f ,r)

Time=O (Inv + K X XmXg),
Min (f ,r)

where Inv is run time of extracting tested program invariants, K is cluster number, f is
maximum of number of variables in one type in tested program, r is maximum of
number of variables in one type in agent of clusters, m is maximum of invariants
number in agent of clusters, and finally g is maximum of invariants number in tested
program invariants.

Pay attention that f and r is limited because as is said in section 3.1, before than
adding invariants in database variables are standardized. So, run time is commodious
and acceptable.

6 The Experimental Result

For validating this framework, software is implemented and their results are shown in
this section. Invariants of six true programs including bubble sort, merge sort,
insertion sort, shell sort, compute sum of array elements and search into array are
added to software database initially. Predominate algorithms are shown in below.

The results of pre-mentioned algorithms with this supposition that every used array
in programs have random values collected in Table 1. It is necessary to note that all of
invariants in this paper are gotten from Daikon software.

In Table 1 "a sorted by <=" means that afi]<=a[i+1]. Also "a=orig (a [])" means
that "a" array elements remain unmodified in exit of program.

With respect to invariants in Table 1, two clusters are created and programs are
grouped in those which these clusters are sort and search. Agent of sort cluster is "a
sorted by <=" and agent of search cluster is "a=orig (a [])".



130 M. Daryabari, B. Minaei-Bidgoli, and H. Parvin

Void bubbleSort(int numbers|], int array_size)
{

int i, j, temp;

for (i=0;i <= (array_size - 1); i++)

{
for (j = 1; j<= (array_size - 1); j++)
{
if (numbers[j-1] > numbers[j])
temp = numbers][j-1];
numbers[j-1] = numbers[j];
numbers|j] = temp;
}
}
}

void insertion_sort(int a[], int length)
{
inti;
for (i=0; i <length; i++)
{
//Insert a[i] into the sorted sublist
int j, v =al[i];
for (j=i-1;j>=0; j-)

if (a[j] <=v)
break;
\ afj +1] =aljl;
alj+1]=v;
}
}

Void shell_sort(int a[], int length)
{

double extend_ciura_multiplier = 2.3;
int interval_idx = 0;
int interval = ciura_intervals[0];
if (length > interval)
while(length > interval)

interval_idx--;

}
else
while(length < interval)
interval_idx++;
}
while (interval > 1)
interval_idx++;
if (interval_idx >=0)
{

interval = ciura_intervals[interval_idx];

else

}
shell_sort_pass(a, length, interval);
}
}

int ciura_intervals[] = {701, 301, 132, 57, 23, 10, 4, 1};

interval = (int)(interval*extend_ciura_multiplier);

interval = ciura_intervals[interval_idx];

interval = (int)(interval/extend_ciura_multiplier);




Localizing Program Logical Errors Using Extraction of Knowledge from Invariants

131

int sum(int a[])

float sum = 0;
for (int i=0; i<size; i++)
{
sum = sum + ali];
}
return sum;

}

int search(int a[], int item)

Int index;
for (int i=0; i<size; i++)
{
if a[i]=item
{
=i
¥
}
return j;

}

void merge(int m, int n, int A[], int B[], int

CID
{
int i, j, k;
i=0;
i=0;
k=0;

while (i <m && j <n)

if (A[i] <= B[j])
{

C[k] = Alil;
it+;
}
else
CIK] = B[j];
jtts
}
k++;
}
if (i <m)
{
for (int p =i; p <m; p++)
C[k] = Alp];
kt+;
}
}
else
{
for (int p = j; p <n; p++)
C[k] = B[pl;
kt+;

}
}

void shell_sort_pass(int a[], int length,
int interval)
{
int i;
for (i=0; i < length; i++)
{
int j, v = a[i];
for (j=i-interval; j >= 0; j-= nterval)

if (aljl <=v)
break;
a[j + interval] = a[j];
}
a[j + interval] = v;

}




132 M. Daryabari, B. Minaei-Bidgoli, and H. Parvin

Now consider below code which is bubble sort that programmer don’t check last
element of array. As you know, it is a common error in programming. This code has
an array that its name is b and two integer value with names m, n.

Table 1. Programs and their invariants

Invariants for Algorithm 1 that are calculated by Daikon software with this
supposition that length of array is six is shown at below:

1. m= Length(b)-1
2. n= Length(b)-1
3. b[0]<=b[1]

4. b[l]<=b[2]

5. b[2]<=b[3]

6. b[3]<=b[4]

Number of differences in invariants of every cluster agent and these invariants are
shown in Table 2.

Here, machine just compares invariants which exist on variables in cluster agent. It
is because tested program may do anything as well as agent function. So if tested
program have any invariants on those variables that are absent in set of variables in
comparing agent of cluster then these invariants can't be considered as differences.
Also because invariants of an agent include intersection of invariants of all programs



Localizing Program Logical Errors Using Extraction of Knowledge from Invariants 133

in the cluster, some invariants may be in invariants of programs while they are not in
the invariant of its cluster agent. However invariants on variables in cluster agent
must be strictly in tested program invariants.

void bubbleSort(int b[], int array_size)

{
int m, n, temp;
for (mzo;fré(a%_size -1); m++)
{
for (n = 1; n <= (array_size-1); nt++)
{
if (b[n-1] >=b[n])
{
temp = b[n-1];
b[n-1] = b[n];
b[n] = temp;
}

Algorithm 1. Faulty varsion of bubble sort

Table 2 presents that tested program stands in sort cluster and it have sort matter.
Now tested program will be compared with all of program invariants in sort cluster.
Results of these comparisons are collected in Table 3.

Table 2. Compare Invariants

Cluster Variable Matching Differences
Name
Sort b[]=a[] 3
Search b[]=a[] 10

It is clear from Table 3 that tested program has minimum difference from bubble
sort in condition that m variable be assigned to i variable and n be assigned to j. It is
clear that it is a valid result. Terminal result is: program matter is sorting and has
some logical errors because number of differences is not zero.



134 M. Daryabari, B. Minaei-Bidgoli, and H. Parvin

Table 3. Compare tested program invariants with program invariants in sort cluster

7 Conclusion and Further Works

Daikon is a method to discover likely invariants by dynamic methods. Also Daikon's
team has been doing many researches about invariants application. They also do some
researches to test software base on run program with several different input
parameters and extract and check invariants on every run of program. In this paper a
new framework based on Daikon, is proposed to incrementally detect errors of
different programs. In this framework, one cluster is produced per invariants of each
program type. This framework is gradually reinforced.



Localizing Program Logical Errors Using Extraction of Knowledge from Invariants 135

For future direction of research one can do some filtering on programs in every
cluster can reduce comparing effectively. For example as one of filtering, machine can
just compare programs which have same variable data type for example have three
integer values and two array data types. Another action that can be done is that machine
as well as true program invariants can learn from false program invariants and machine
learns that programmer where and how have fault in program commonly.

References

1. Catal, C., Diri, B.: Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem. Information Sciences 179(8),
1040-1058 (2009)

2. Catal, C.: Software fault prediction: A literature review and current trends. Expert Systems
with Applications 38, 4626-4636 (2011)

3. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Trans. Software Eng. and Methodology (1998a)

4. Cook, J.E., Wolf, A.L.: Event-Based Detection of Concurrency. In: Proc. ACM SIGSOFT
Symp. (1998b)

5. Dwyer, M.B., Clarke, L.A.: Data Flow Analysis for Verifying Properties of Concurrent
Programs. In: Proc. Second ACM SIGSOFT Symp. (1994)

6. Ernst, M.D., Griswold, W.G., Kataoka, Y., Notkin, D.: Dynamically Discovering Program
Invariants Involving Collections. Technical Report UW-CSE-99-11-02 (2000)

7. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao,
C.: The Daikon System for Dynamic Detection of Likely Invariants. Science of Computer
Programming (2006)

8. Evans, D., Guttag, J., Horing, J., Tan, Y.M.: LCLint:A Tool for Using Specification to
Check Code. In: Proc. Second ACM SIGSOFT Symp. (1994)

9. Kataoka, Y., Ernst, M.D., Griswold, W.G., Notkin, D.: Automated Support for Program
Refactoring Using Invariants. In: Proc. Int’l Conf. Software Maintenance (2001)

10. Lencevicius, R., Ho Elzle, U., Singh, A.K.: Query-Based Debugging of Object-Oriented
Programs. In: Proc. Conf. Object-Oriented Programming, Systems, Languages, and
Applications (1997)

11. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. IEEE Transactions on Software Engineering 33(1), 2—13 (2007)

12. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1998)

13. Moraglio, A., Kim, Y.H., Yoon, Y., Moon, B.R., Poli, R.: Generalized cycle crossover for
graph partitioning. In: GECCO (2006)

14. Nimmer, J.W., Ernst, M.D.: Automatic Generation of Program Specifications. In: Proc.
Int’l Symp. Software Testing and Analysis (2002)

15. Perkins, J.H., Ernst, M.D.: Efficient Incremental Algorithms for Dynamic Detection of
Likely Invariants. In: Proc. ACM SIGSOFT Symp. (2004)

16. Schmitt, H., Weil, B.: Inferring Invariants by Static Analysis in KeY (2007)



Compressed String Dictionaries

Nieves R. Brisaboa''*, Rodrigo Cdnovas®**, Francisco Claude?***,

Miguel A. Martinez-Prieto®***t and Gonzalo Navarro?**

! Database Lab, Universidade da Corufia, Spain
2 Department of Computer Science, University of Chile, Chile
3 School of Computer Science, University of Waterloo, Canada
4 Department of Computer Science, Universidad de Valladolid, Spain

Abstract. The problem of storing a set of strings — a string dictionary
— in compact form appears naturally in many cases. While classically it
has represented a small part of the whole data to be processed (e.g., for
Natural Language processing or for indexing text collections), recent ap-
plications in Web engines, RDF graphs, Bioinformatics, and many others,
handle very large string dictionaries, whose size is a significant fraction
of the whole data. Thus efficient approaches to compress them are neces-
sary. In this paper we empirically compare time and space performance
of some existing alternatives, as well as new ones we propose. We show
that space reductions of up to 20% of the original size of the strings is
possible while supporting dictionary searches within a few microseconds,
and up to 10% within a few tens or hundreds of microseconds.

1 Introduction

String dictionaries arise naturally in a large number of applications. We associate
them classically to Natural Language (NL) processing: finding the lexicon of a
text corpus is the first step in analyzing it [25]. They also arise, together with
inverted indexes, when indexing text collections formed by NL [2I33].

In those NL applications, there has not been much concern about the size of
the dictionary. This is because, in classical NL collections, the dictionary grows
sublinearly with the text size: Heaps’ law [19] establishes that in a text of length
n, the dictionary size is O(n?), for some 0 < # < 1 depending on the type of
text. This S value is usually in the range 0.4-0.6 [2], and thus the dictionary of
terabyte-size collections should occupy just a few megabytes and would easily
fit in the main memory of a commodity PC.

Heaps’ law, however, does not model well the reality of Web search en-
gines. Web collections are much less “clean” than text collections whose con-
tent quality is carefully controlled. Dictionaries of Web crawls easily exceed

* Funded by Ministry of Science and Innovation of Spain (PGE and FEDER)
TIN2009-14560-C03-02 and Xunta de Galicia ref. 09TICO60E.
** Funded by Millennium Institute for Cell Dynamics and Biotechnology (ICDB),
Grant ICM P05-001-F, Mideplan, Chile.
*** Funded by the David R. Cheriton scholarships program.
f Funded by Ministry of Science and Innovation of Spain, TIN2009-14009-C02-02.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 136{147] 2011.
© Springer-Verlag Berlin Heidelberg 2011



Compressed String Dictionaries 137

the gigabytes, due to typos and unique identifiers that are taken as “words”,
but also for “regular words” from multiple languages. The Clue Web09 dataset
(http://boston.lti.cs.cmu.edu/Data/clueweb09; thanks to Leonid Boystov)
is a real example which comprises close to 200 million different words obtained
from 1 billion web pages on 10 languages. This results in a large dictionary of
far more than 1GB.

Web graphs are another application where the size of the URL names, clas-
sically neglected, is becoming very relevant with the advances of the techniques
that compress the graph topology. The nodes of a Web graph are typically the
pages of a crawl, and the edges are the hyperlinks. Typically there are 15 to 30
links per page. Compressing Web graphs has been an area of intense study, as it
permits caching larger graphs in main memory, for tasks like Web mining, Web
spam detection, finding communities of interest, etc. [21/9]. URL names are used
to improve the mining quality [34U27].

In an uncompressed graph, 15 to 30 links per page would require 60 to 120
bytes if represented as a 4-byte integer. This posed a more serious memory
problem compared to the name of the URL itself once some simple compression
procedure was applied to those names (such as Front-Coding, see Section [2I).
For example, Broder et al. [5] reports 27.2 bits per edge (bpe) and 80 bits per
node (bpn). This means that each node takes around 400-800 bits to represent
its links, compared to just 80 bits used for storing its URL. In the same way, an
Internet Archive graph of 115M nodes and 1.47 billion edges required [31] 13.92
bpe plus around 50 bpn, so 200-400 bits are used to encode the links and only 50
for the URL. In both cases, the space required to encode the URLs was just 10%-
25% of that required to encode the links. However, the advances in compressing
the edges have been impressive in recent years, achieving compression ratios
around 1-2 bits per edge [3II]. At this rate, the edges leaving a node require on
average 2 to 8 bytes, compared to which the name of the URL certainly becomes
an important part of the overall space.

Another application is Bioinformatics. Popular alignment software like BLAST
[18] indexes all the different substrings of length ¢ of a text, storing the positions
where they occur in the sequence database. For DNA sequences ¢ = 11,12 is
common, whereas for proteins they use ¢ = 3,4. Over a DNA alphabet of size 4,
or a protein alphabet of size 20, this amounts to up to 200 million characters.
Using a larger ¢ would certainly allow one improve the quality in searching for
conserved regions, but this is infeasible for memory constraints.

The emergent Linked Data Project (http://linkeddata.org) focuses on the
publication of RDF (http://www.w3.org/TR/rdf-syntax-grammar) data and
their connection between different data sources in the “Web of Data”. This
movement results in huge and heterogeneous RDF datasets from diverse fields.

The dictionary is an essential component in the logical division of an RDF
database [I0]. However, its effective representation has not been studied in depth.
Our experience with the tool HDT-It! (http://code.google.com/p/hdt-it)
shows that the dictionary for dataset DBpedia-en (http://downloads.dbpedia.
org/3.5.1/en) takes about 80% of the total size.



138 N.R. Brisaboa et al.

Finally, Internet routing poses another interesting problem on dictionary
strings. Domain name servers map domain names to IP addresses, and routers
map [P addresses to physical addresses. They may handle large dictionaries of
domain names or IP addresses, and serve many requests per second.

This short tour over various example applications shows that handling very
large string dictionaries is an important and pervasive problem. Curiously, we
have not seen much research on compressing them, perhaps because a few years
ago the space of these dictionaries was not a serious problem, and at most Front-
Coding was sufficient. In this paper we study Front-Coding and other solutions
we propose for compressing large string dictionaries, so that two basic operations
are supported: (1) given a string, return its position in the dictionary or tell it
is not in the dictionary; (2) given a position, retrieve its string content.

Our study over various application scenarios spots a number of known and
novel alternatives that dominate different niches of the space/time tradeoff map.
The least space-consuming variants perform efficiently while compressing the
dictionary to 9%—22% of its original size, depending on the type of dictionary.

2 Basic Concepts and Related Work

Rank and select on bitmaps. Let B[1,n] be a 0, 1 string (bitmap) of length n and
assume there are m ones in the sequence. We define ranky(B, i) as the number
of occurrences of bit b in BJ[l,4] and selecty(B, i) as the position of the i-th
occurrence of b in B.

In this paper we will use two different succinct data structures (implemen-
tations available at http://libcds.recoded.cl) that answer rank and select
queries. The first one, that we will refer to as RG [16], uses (1 + z)n bits to
represent B. It supports rank using two random accesses to memory plus 4/z
contiguous (i.e., cached) accesses. Select requires and additional binary search.

The second data structure, that we will call RRR [29], is a compressed bitmap
that uses in practice about log () 4 (% 4+)n bits (our logarithms are in base 2),
answering rank within two random accesses plus 3 + 8/x accesses to contiguous
memory, and select with an extra binary search. In practice this compresses the
bitmap when m < 0.2 n.

Huffman and Hu-Tucker codes. For compressing sequences, statistical methods
assign shorter codes (i.e., bit streams) to more frequent symbols. Huffman coding
[20] is the optimal code (i.e., it achieves the minimum length of encoded data)
that is uniquely decodable. In this paper we use canonical Huffman codes [26],
which have various advantages.

Hu-Tucker codes [22] are optimum among those that maintain the lexico-
graphical order of the symbols. Two sequences encoded using Hu-Tucker can
be lexicographically compared bytewise directly in encoded form. We use both
codes in this paper, in some cases padding them (with zeros) to the next byte
in order to simplify alignment and bytewise comparisons.



Compressed String Dictionaries 139

Hashing. Hashing [8] is a folklore method to store a dictionary of any kind. A
hash function transforms the elements into indexes in a hash table, where the
corresponding value is to be inserted or sought. A collision arises when two
different elements are mapped to the same array cell. In this paper we use closed
hashing: If the cell where an element is to be found is occupied, one successively
probes other cells until finding a free cell (insertions and unsuccessful searches)
or until finding the element (successful searches).

We will consider two policies to determine the next cells to probe when a
collision is detected at cell z. Double hashing computes another hash function y
that depends on the key and probes = + y, « 4+ 2y, etc. modulo the table size.
Linear probing is a simpler policy. It tries the successive cells of the hash table,
x+ 1, x 4+ 2, etc. modulo the table size.

The load factor is the fraction of occupied cells, and it influences space usage
and time performance. Using good hash functions, insertions and unsuccessful
searches require on average 1/(1 — a)) probes with double hashing, whereas suc-
cessful searches require In(1/(1 — «))/« probes. Linear probing requires more
probes on average: (1 + 1/(1 — «)?)/2 for insertions and unsuccessful searches,
and (1 +1/(1 — «))/2 for successful searches. Despite its poorer complexities,
we consider also linear probing because it has advantages on some compressed
representations we try.

Front-coding. Front-coding [33] is the folklore compression technique for lexico-
graphically sorted dictionaries. It is based on the fact that consecutive entries
are likely to share a common prefix. Each entry in the dictionary is be differ-
entially encoded with respect to the preceding one. Two values are stored: an
integer that encodes the length of their common prefix, and the remaining suffix
of the current entry.

To allow searches, Front-Coding partitions the dictionary into buckets, where
the first element is explicitly stored and the rest are differentially encoded. This
allows the dictionary to be efficiently searched using a two-step process: first, a
binary search on the first entry of the buckets locates the candidate bucket, and
second a sequential scan of this candidate bucket rebuilds each element on the
fly and compares it with the query. The bucket size yields a time/space tradeoff.

Front-coding has been sucessfully used in many applications. We emphasize
its use in WebGraph (http://webgraph.dsi.unimi.it) to encode URL dictio-
naries from Web graphs.

Compressed text self-indexes. A compressed text self-index takes advantage of
the compressibility of a text T[1, N] to represent it in space close to that of the
compressed text, while supporting random access and search operations. More
precisely, a self-index supports at least operations extract(i, j), which returns
T1i, j], and locate(p), which returns the positions in 7" where pattern p occurs.
There are several self-indexes [28/T1]. For this paper we are interested in par-
ticular in the FM-index family [T2JTI3], which is based on the Burrows- Wheeler
transform (BWT) [6]. FM-indexes achieve the best compression among self-
indexes and are very fast to determine whether p occurs in 7. Many self-indexes
are implemented in the PizzaChili site (http://pizzachili.dcc.uchile.cl).



140 N.R. Brisaboa et al.

The BWT of T'[1, N], T*"*[1, N], is a permutation of its symbols. If the suffizes
T[i, N] of T are sorted lexicographically, then T°“*[j] is the character preceding
the jth smallest suffix. We use the BWT properties in this paper to represent a
dictionary as the FM-index of a text T'.

FM-indexes support two basic operations on 7°%*. One is the LF-step, which
moves from T°%*[j] that corresponds to the suffix T'[i, N] to T°"*['] that cor-
responds to the suffix T[i — 1, N] (or T[N, N] if i = 1), that is j° = LF(j).
The second is the backward step, which moves from the lexicographical inter-
val T""![sp, ep] of all the suffixes of T that start with string  to the interval
TP[sp’, ep'] of all the suffixes that start with cx, for a character c.

Grammar-based compression. Grammar-based compresson is about finding a
small grammar that generates a given text [7]. These methods exploit repetitions
in the text to derive good grammar rules, so they are particularly suitable for
texts containing many identical substrings. Finding the smallest grammar for a
given text is NP-hard [7], so grammar-based compressors look for good heuristics.
We use Re-Pair [23] as a concrete compressor, as it runs in linear time and yields
good results in practice.

Re-Pair finds the most-repeated pair xy in the text and replaces all its ocur-
rences by a new symbol R. This adds a new rule R — zy to the grammar. The
process iterates until all remaining pairs are unique in the text. Then Re-Pair
outputs the set of r rules and the compressed text, C. We use a public implemen-
tation (http://www.dcc.uchile.cl/gnavarro/software) for the compressor;
each value (elements of a rule and symbols in C) is stored in log(c + r) bits.

Variable-length and direct-access codes. Brisaboa et al. [4] introduce a symbol
reordering technique called directly addressable variable-length codes (DACS).
Given a concatenated sequence of variable-length codes, DACs reorder the target
symbols so that direct access to any code is possible. The overhead is at most
one bit per target symbol, which is not too much if the target alphabet is large.

All the first symbols of the codes are concatenated in a first array A;. A
bitmap B; stores one bit per code in A;, marking with a 1 the codes of length
more than 1. The second symbols of the codes of length more than one are
concatenated in a second array As, with Bs marking which are longer than two,
and so on. To extract the ith code, one finds its first symbol in A; [¢]. If By[i] = 0,
we are done. Otherwise we continue in Ag[rank;(Bi,%)], and so on.

A variable-length coding we use in this paper (albeit not in combination with
DAGCs) is Vbyte [32]. It is used to represent numbers of distinct magnitudes,
where most are small. Vbyte partitions the bits into 7-bit chunks and reserves
the last bit of each byte to signal whether the number continues or not.

Tries and the XBW. A trie is an edge-labeled tree where each path from the
root to a leaf represents a string. Strings that share a common prefix share a
corresponding common path from the root.

A trie can represent a dictionary in a natural way. Searching for a string in
the dictionary corresponds to following the labeled edges according to the string



Compressed String Dictionaries 141

characters. The number of the leaf would correspond to the id of the string (if
the leaf exists), and it usually matches with the rank of that string in the set.

The main problem in practice is that tries tend to use much space; even when
the space is linear, the constants are not negligible. To overcome this limita-
tion, Ferragina et al. [15] proposed a compressed representation for trees that
supports navigational operations, and subpath searching, using rank and select
data structures for sequences. The representation, called XBW, corresponds to
an extension of the BWT to trees.

3 Compressed Dictionary Representations

We describe now various approches for representing a dictionary within com-
pressed space while solving two operations on it. The first operation, locate(p),
gives a unique nonnegative identifier for the string p, if it appears in the dic-
tionary; otherwise it returns —1. The second operation, extract(i), returns the
string with identifier ¢ in the dictionary, if it exists; otherwise returns NULL.

3.1 Hashing and Compression

We explore several combinations of hashing and compression. We Huffman-
encode each string and the codes are concatenated in byte-aligned form. We
insert the (byte-)offsets of the encoded strings in a hash table. The hash func-
tion operates over the encoded strings (seen as a sequence of bytes, that is, we
compare them bytewise). This lowers the time to compute the function and to
compare search keys (as the string is shorter). For searching we first Huffman-
encode the search string and pad its bits to an integral number of bytes.

Our main hash function is a modified Bernstein’s hasHl. The second function
for double hashing is the “rotating hash” proposed by Knuth [22] Sec. 6.4]@.

We concatenate the strings in the same order they are finally stored in the
hash table. This improves locality of reference for linear probing, and gives other
benefits, as seen later (in particular we easily know the length in bytes of each
encoded string). We consider three variants to represent the hash table, and
combine each of them with linear probing (Ip) or double hashing (dh).

The first variant, Hash, stores the hash table in classical form, as an array
H{[1,m] pointing to the byte offset of the encoded strings. To answer locate(p) we
proceed as usual, returning the offset of H where the answer was found, or —1
if not. To answer extract(i), we simply decompress the string pointed from Hi].
Then with load factor & = n/m (n being the number of strings in the dictionary),
the structure requires m integers in addition to the Huffman-compressed strings.

The second variant, HashB, stores H[1, m] in compact form, that is, removing
the empty cells, in an array M[1, n]. It also stores an RG-encoded bitmap B[1, m)]

! http://www.burtleburtle.net/bob/hash/doobs.html. We initialize h as a large
prime and replace the 33 by 2'° 4 1, taking modulo the table size at each iteration.

2 Precisely, the variant at http://burtleburtle.net/bob/hash/examhash.html. We
also initialize h as a large prime.



142 N.R. Brisaboa et al.

that marks with a 1 the nonempty cells of H. Then H[i] is empty if B[i] = 0,
and if it is nonempty then its value is H[i] = M{rank,(B,1)]. Now locate(p)
returns positions in M, so our identifiers become contiguous in the range [1, n],
which is desirable. For extract(i) we simply decompress the string pointed from
MTi]. The space of this representation is n integers plus (1 + z)m bits, where
z is the parameter of bitmap representation RG. The n integers require nlog N
bits, where N is the total byte length of the encoded strings.

The price is in time, as each new probe requires an additional rank on B.
However, with linear probing, rank needs to be computed only once, as the
successive cells are also successive in M. We only need to access the bits of B to
determine where is the next empty cell.

The third variant, HashBB, also stores M and B instead of H, but M is re-
placed by a second bitmap. Note that since we have reordered the codes according
to where they appear in H (or M), the values in these arrays are increasing. Thus
instead of M we store a second bitmap Y1, N], where a 1 marks the beginning
of the codes. Then M[i] = select;(Y,4). Bitmap Y is encoded in compressed
form (RRR). Now the nlog N bits of M are reduced to log (]Z) + (/5 +2)N bits,
which is smaller unless the encoded strings are long.

The price is, again, in time. Each access to M requires a select operation. Note
that linear probing does not save us from successive select operations, despite
the involved string being contiguous, because we have no way to know where a
code ends and the next starts.

3.2 Front-Coding and Compression

We consider two variants of Front-Coding. Plain Front-Coding implements the
original technique by using Vbyte to encode the length of the common prefix.
The remaining suffix is terminated with a zero-byte. Only bytewise operations
are needed to search. The block sizes are measured in number of strings, so
extract(i) determines the appropriate block with a simple division, and then
scans the block to find the corresponding string.

Hu-Tucker Front-Coding is similar, but all the strings and Vbyte codes are
encoded together using a single Hu-Tucker code. The bucket starts with the Hu-
Tucker code of the first string, which is padded to the next byte boundary and
preceded by the byte length of the encoded string, in Vbyte form. This prelude
enables binary searching the first strings without decompressing them. The rest
of the bucket is Hu-Tucker-compressed and bit-aligned, and is sequentially de-
compressed when scanning the bucket, both for locating and for extracting. We
use a pointer-based Hu-Tucker tree implementation.

3.3 FM-Index Based Representation

We use two FM-indexes from PizzaChili. They represent the BWT using a
wavelet tree [I7], whose bitmaps are represented using RG (version SSA v3.1) or
RRR (version SSA RRR). The former corresponds to the “succinct suffix array”
[13], which achieves zero-order compression of T', and the second to the “implicit



Compressed String Dictionaries 143

compression boosting” idea [24], which reaches higher-order compression. Both
FM-index implementations support functions LF and BW S, as well as obtain-
ing T*"*[j] given j, in time O(log o), where o is the alphabet size of T. We use
the indexes with no extra sampling because we need only limited functionality.

We concatenate all the strings in lexicographic order, terminating each one
with a special character, $, that is lexicographically smaller than all the symbols
in T (in practice $ is the ASCII code zero, which is the natural string terminator).
We also add $ at the beginning of the sequence. Thus we can speak of the ith
string in lexicographical or positional order, indistinctly.

Note that, when the suffixes of T' are sorted lexicographically, the first cor-
responds to the final $, and the next n correspond to the $s that precede each
dictionary string. Thus T°**[1] is the final character of the nth dictionary string,
and T*"*[; 4 2] is the final character of the ith string, for 1 < i < n. Therefore
extract(i) can be carried out by starting at the corresponding position of T%¢
and using LF-steps until reaching a $. The T°“![j] characters traversed spell out
the desired dictionary string in reverse order.

To answer locate(p) we just need to determine whether $p$ occurs in T'. Thus
we start with (sp, ep) = (1,n+1) and use |p|+ 1 backward steps until finding the
lexicographical interval (sp’, ep’) of the suffixes that start with $p$. If p exists in
the dictionary and is the ith string, then sp’ = ep’ = 7 + 1 and we simply return
i; otherwise sp’ > ep’ holds at some point in the process and we return —1.

3.4 Re-pair Based Representation

We concatenate all the dictionary strings in lexicographic order and apply Re-
Pair compression to the concatenation. However, we avoid forming rules that
contain the string terminator. This ensures that each string is encoded with an
integral number of symbols in C and thus decompression is fast.

Locating is done via binary search, where each dictionary string to compare
must be decompressed first. We decompress the string only up to the point
where the lexicographical comparison can be decided. For extraction we simply
decompress the desired string.

For both operations we need direct access to the first symbol of the ith string
in C. Each compressed string can be seen as a variable-length sequence of symbols
in C, where they are concatenated. Thus we use the DAC representation on those
sequences. This gives fast direct access to the ith string, at the price of 1.25 bits
per symbol: we use RG representation with 25% overhead.

3.5 XBW Trie Representation

If the trie has N nodes, the XBW consists of a sequence S,[1, N + n] of labels
(each leaf is identified with a label $ leading to it) plus a bitmap Sjas¢[1, N + n]
with n bits set. We represent S, using wavelet trees and, as for the FM-Index,
represent their bitmaps (and Sj,s:) using RG or RRR.

For locating, we use operation GetChildren [I5] to find the leaf. Then we map
the leaf x to an identifier in the range [1, n] with rankg(S, x). For extracting, we
start from the leaf and use GetParent [I5] to obtain all the string characters.



144 N.R. Brisaboa et al.
4 Experimental Results

We consider four dictionaries that are representative of relevant applications:

Words comprises all the different words with at least 3 ocurrences in the
ClueWeb09 dataset It contains 25,609,784 words and occupies 256.36 MB.
DNA all substrings of 12 nucleotides found in S. Paradoxus, known as the

para datasetd]. It contains 9,202,863 subsequences and occupies 114.09 MB.
URLSs corresponds to a 2002 crawl of the .uk domain from the WebGraph
framework. It contains 18,520,486 URLs and occupies 1.34 GB.
URISs contains all different URIs used in the DBpedia-en RDF dataset (blank
nodes and literals excluded). It contains 30,176,012 URIs and takes 1.52 GB.

We use an Intel Core2 Duo processor at 3.16 GHz, with 8 GB of main memory
and 6 MB of cache, running Linux kernel 2:6:24-28. We ran locate experiments for
successful and unsuccessful searches. For the former we chose 10,000 dictionary
strings at random. For the latter we chose other 1,000 strings at random and
excluded them from the indexing. For extract we queried 10,000 random numbers
between 1 and n. Each data point is the average user time over 10 repetitions.

Figure[llshows our results. Most methods are drawn as a line that corresponds
to their main space/time tuning parameter. On the left we show locate time
for successful searches; the plots for unsuccessful searches are very similar and
omitted for lack of space. On the right we show extraction times. Time is shown
in microseconds and space as a percentage of the space required by concatenating
the plain strings. Since, despite the advantages of linear probing in this scenario,
double hashing was always better, we only plot the latter.

Front-Coding with Hu-Tucker compression shows to be an excellent choice
in all cases, achieving good time performance and the least space usage (only
beaten by XBW and, on URLSs, by Re-Pair). The folklore Front-Coding, without
compression, is almost everywhere dominated by the compressed variant.

The least space is always achieved by XBW+ RRR, yet the time it achieves is
significantly higher than the other approaches. The next best space, on URLs, is
achieved by Re-Pair, which is much faster than XBW but still noticeably slower
than compressed Front-Coding. On the shorter-string dictionaries (Words and
DNA), Re-Pair does not compress well and compressed Front-Coding achieves
the second-best space (with much better time than XBW variants).

HashBB performs better in space than HashB when the strings are short,
otherwise the bitmap becomes too long. It is never, however, clearly the best
alternative. HashB and Hash excell in time with short strings when much space
is used (nearly 100%), yet HashB is never much better than Hash.

For extracting, the map is dominated by Front-Coding, in plain or compressed
form (the plain folklore variant is more relevant in this case). Still Re-Pair
achieves less space on URLs, and XBW always requires the minimum space
but the highest times.

3 http://www.sanger.ac.uk/Teams/Tean71/durbin/sgrp



Compressed String Dictionaries 145

Words Words
X x
i 100 X E
100 | W 4 !
[ XBW+RRR ¥
/+RRR :
4 foof
. iam o x?wm
§ XBWRCY, Eindex RRR 8 1 Mindex RG
g i - € 10| Hu-Tucker BFMinde 4
g i BFMindex RG € %
H i oa 3 L |k
2 ' FrontCoding 2 § rontCoding
£ Hu-Tucker | E |
° L 4
g " % g HashBB (dh)
g H *RePair H ~
3 -
-
fa HashB (dh)
HashBB (dh)
HashB (@n)§ Hash (dh)
f . . . . 01 . . . .
o 50 100 150 200 o 50 100 150 200
total space (% of original) total space (% of original)
DNA DNA
T T T T T T T T T T T T T T T
100f | E
xBWtKRR
x %
00 {HuTucker %me .
o ¥ . FMindex RRR
7 XBWHRRR 2 i
§ ; § 0F 4 1
g & g h & _FMindex RG
g % g |
E XBWHRG £ x Ba
° X % FMindex RRR 2 §
2 i e £ ¥
= i = X FrontCoding
Kl % B FMindex RG 3 \
§ 1or t - £ *, w HashBB (dh)
= % *RePair @ 1 Hu-Tucker-.._| RePair Hash (dh) B
i FrontCoding - » o B o
% HashBB (dh) HashB (dh)
HashB (dh
@™g Hash (dh)
f . . . . i . 01 . . . . . . .
o 20 40 60 80 100 120 140 160 o 20 40 60 80 100 120 140 160
total space (% of original) total space (% of original)
URLs URLs
1000 S T T T T 1000 F - T T T T =
XBW+RRR | o P
| 4 n
| e Fg(x%m.ﬁe
¥ XxBwW:RG i “w. FMindex RRR
[ Aindex RRR __
| .., FMindex RRR F
; - X Mindex RG
100 | Hu-Tucker @ e 4
o Tookor B Ftngex G
§ H 8 FrontCoding
8 100 f f e g
s i 3
E H £
e % PR
£ i 2 X
K x FrontCoding H Repair s -
g g x
8 RePairx | £ Yot (any HashBB (an)
X | HashBB (dh)
¥ T
b ¥
10 4
HashB (dhf®se..a ss
. . . . . 04 . . . . .
0 20 40 60 80 100 0 20 40 60 80 100
total space (% of original) total space (% of original)
URIs URIs
¥ T T T T 1000 F T T T T T 3
.y x
XBW+RRR® | . |
% XBwiRG XBW+RAR ¥ xBy:AG
HuTucker | - i L Eindeg RRR
i FMindex RRI H
* " Ffindey 100 | X @, FMindex RG !
; i a
- | FMindexRG 7 Hu-Tuckes,
8 ; {1 8 i
g 10 % 8 L | FromCoding
g i g 3
£ i =
° i s 10f 1
£ H g %,
° i 5 .
3 RePair xk g RePair ¥ Hash (gn)vrer<TLOSEE (dh)
g ¢ H Y Hash (dn)
X te
rontCoding 1 b 1
10
Hosh® GV iy
. . . . . 01 . . . . .
o 20 40 60 80 100 9 20 40 60

80 100
total space (% of original)

total space (% of original)

Fig.1. Locate times (left) and extract times (right) for the different methods as a
function of their space consumption



146 N.R. Brisaboa et al.
5 Final Remarks

Prefix search, that is, finding the dictionary strings that start with a given pat-
tern, is easily supported by the methods we have explored, except hashing. Other
variants that can likewise be supported are of interest for Internet routing tables,
e.g., find the dictionary string that is the longest prefix of the pattern.

Despite the FM-index and the XBW being the slowest solutions, they support
other searches of interest, such as finding the dictionary strings that contain a
substring, or that have a given prefix and a given suffix [T4/T5]. They also support
approximate searches [30].

We have reordered the strings at our convenience, but sometimes the or-
der must be fixed. Hashing is easily adapted to any order (except the variant
HashBB), but others would need an explicit permutation that would significantly
increase the space. The FM-index and the XBW can use the LF-step mechanism
to trade space for time and store just a sample permutation.

References

1. Apostolico, A., Drovandi, G.: Graph compression by BFS. Algorithms 2, 1031-1044
(2009)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
Reading (1999)

3. Boldi, P., Vigna, S.: The Webgraph framework i: Compression techniques. In: Proc.
WWW, pp. 595-602 (2004)

4. Brisaboa, N., Ladra, S., Navarro, G.: Directly addressable variable-length codes.
In: Karlgren, J., Tarhio, J., Hyyro, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
122-130. Springer, Heidelberg (2009)

5. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the Web. Comput. Netw. 33, 309-320
(2000)

6. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Technical report, Digital Equipment Corporation (1994)

7. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554~
2576 (2005)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hill (2001)

9. Donato, D., Laura, L., Leonardi, S., Meyer, U., Millozzi, S., Sibeyn, J.: Algorithms
and experiments for the Webgraph. J. Graph Algor. App. 10(2), 219-236 (2006)

10. Fernandez, J.D., Martinez-Prieto, M.A., Gutierrez, C.: Compact representation of
large RDF data sets for publishing and exchange. In: Patel-Schneider, P.F., Pan,
Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC
2010, Part I. LNCS, vol. 6496, pp. 193-208. Springer, Heidelberg (2010)

11. Ferragina, P., Gonzélez, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. ACM JEA 13, article 12 (2009)

12. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. FOCS, pp. 390-398 (2000)



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Compressed String Dictionaries 147

Ferragina, P., Manzini, G., Mékinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. 3(2), article 20 (2007)
Ferragina, P., Venturini, R.: The compressed permuterm index. ACM Trans. Alg.
7(1), article 10 (2010)

Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proc. FOCS, pp. 184-196 (2005)
Gonziélez, R., Grabowski, S., Makinen, V., Navarro, G.: Practical implementation
of rank and select queries. Posters WEA | pp. 27-38 (2005)

Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. SODA, pp. 841-850 (2003)

Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge Univ. Press, Cambridge (2007)

Heaps, H.S.: Information Retrieval: Computational and Theoretical Aspects. Aca-
demic Press, London (1978)

Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. of the Institute of Radio Engineers 40(9), 1098-1101 (1952)

Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The Web
as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee,
D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp.
1-17. Springer, Heidelberg (1999)

Knuth, D.E.: The Art of Computer Programming, volume 3: Sorting and Searching.
Addison Wesley, Reading (2007)

Larsson, N.J., Moffat, J.A.: Offline dictionary-based compression. Proc. of the
IEEE 88, 1722-1732 (2000)

Mékinen, V., Navarro, G.: Implicit compression boosting with applications to self-
indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp.
229-241. Springer, Heidelberg (2007)

Manning, C.D., Schiitze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

Moffat, A., Katajainen, J.: In-place calculation of minimum-redundancy codes. In:
Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955,
pp. 393-402. Springer, Heidelberg (1995)

Nagwani, N.: Clustering based URL normalization technique for Web mining. In:
Proc. ACE, pp. 349-351 (2010)

Navarro, G., Mikinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
article 2 (2007)

Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc. SODA, pp. 233-242 (2002)
Russo, L., Navarro, G., Oliveira, A., Morales, P.: Approximate string matching
with compressed indexes. Algorithms 2(3), 1105-1136 (2009)

Suel, T., Yuan, J.: Compressing the graph structure of the Web. In: Proc. DCC,
pp. 213-222 (2001)

Williams, H., Zobel, J.: Compressing integers for fast file access. The Computer
Journal 42, 193-201 (1999)

Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann, San Francisco (1999)

Yin, M., Goh, D., Lim, E.-P., Sun, A.: Discovery of concept entities from Web sites
using web unit mining. Intl. J. of Web Inf. Sys. 1(3), 123-135 (2005)



Combinatorial Optimization for
Weighing Matrices with the
Ordering Messy Genetic Algorithm

Christos Koukouvinos and Dimitris E. Simos

Department of Mathematics, National Technical University of Athens,
Zografou 15773, Athens, Greece
{ckoukouv,dsimos}@math.ntua.gr

Abstract. In this paper, we demonstrate that the search for weighing
matrices constructed from two circulants can be viewed as a permutation
problem. To solve it a set of two competent genetic algorithms (CGAs)
are used to locate common integers in two sorted arrays. The motivation
to deal with the messy genetic algorithm (mGA) is given from the pio-
neering results of Goldberg, regarding the ability of the mGA to put tight
genes together in a solution which points directly to structural patterns
in weighing matrices. In order to take into advantage a recent forma-
lism on the support of two sequences with zero autocorrelation we use
an adaptation of the ordering messy GA (OmeGA) where we combine
the fast mGA with random keys to represent permutations of the two
sequences under investigation. This transformation of the weighing ma-
trices problem to an instance of a combinatorial optimization problem
seems to be promising since we illustrate that our framework is capable
to solve open cases for weighing matrices as these are listed in the second
edition of the Handbook of Combinatorial Designs.

Keywords: Weighing matrices, messy genetic algorithm, ordering messy
genetic algorithm, competent metaheuristics, optimization.

1 Introduction

A square n x n matrix with elements from {—1,0,1} such that WW7T = wl,,,
where W7 stands for the transpose matrix of W, will be called a weighing
matrix of order n and weight w, denoted by W (n,w). Authoritative information
for weighing matrices can be found in [23] and [24].

In this paper we focus our attention on weighing matrices constructed from
two circulants. The following “plug-in” method for constructing weighing matri-
ces is described in the Theorem below, see [4].

Theorem 1. If there exist two circulant matrices A, B of order n, with entries
from {0, %1}, satisfying AAT + BBT = wl,, and w is an integer, then there
exists a W(2n,w), given as

A B A BR
W(2n,w) = <—BTAT> or W(?n,w)(_BR A>

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 148 2011.
© Springer-Verlag Berlin Heidelberg 2011



Combinatorial Optimization for Weighing Matrices with the OmeGA 149

where R is the square matriz of order n with ri; = 1ifi+j—1=n and 0
otherwise.

We adopt the following definitions from [22].

Definition 1. Let A = [a1,aq,...,a,] be a sequence of length n. The periodic
autocorrelation function, PAF of A, PAF4(s) is defined as:

PAF4(s) :Zaiaiﬂ, s=0,1,...,n—1.
i=1

where 1 + s is taken modulo n, when i + s > n.

Definition 2. Two sequences, A = [a1,- -, ayn] and B = [by,---,by], of length
n are said to have zero PAF, if PAFA(s) + PAFp(s) =0 fors=1,...,n—1.

In order to find suitable circulant submatrices that satisfy the additive property
in Theorem [Il we use an important result that comes from sequences with zero
periodic autocorrelation function (PAF), as outlined in [24].

Remark 1. If there are two sequences A and B of length n with entries from
{0,£1} and total weight w with zero periodic autocorrelation function, then
these sequences can be used as the first rows of circulant matrices which can be
used in the construction of Theorem [ to form a weighing matrix of order 2n
and weight w.

These double circulant sequences will be denoted by DC'(n,w) if they have zero
PAF, i.e. if they satisfy the zero PAF condition given in Definition Bl Sequences
of the previous form, are also called periodic complementary sequences.

1.1 Applications of Periodic Complementary Sequences

DC(n,w) are used to construct sequences with desirable properties for radar
applications, as described in [30]. Moreover, these sequences intervene in coded
aperture imaging ([3]) and higher-dimensional signal processing applications
such as time-frequency-coding ([5]) or spatial correlation, [10]. Sequences of the
above type are also of greatest importance, when constructing weighing matri-
ces whose significance has exhibited in other fields, such as quantum information
processing [2].

Last we would like to mention that such sequences, are interesting objects to
study for themselves [24], [29] .

2 Recent Progress for Searching Weighing Matrices

Lemma 11 of [24] describes in a compact form the progress made till 1999,
for searching weighing matrices constructed from two circulants. A necessary
condition for the existence of W(2n,w) constructed from two circulants, dictates
that the Diophantine equation a? + b?> = w has solutions. Hence, we keep focus



150 C. Koukouvinos and D.E. Simos

on the permissible odd values of n, i.e. values of n such that the Diophantine
equation a? + b? = w has solutions.

Computational optimization algorithms and techniques for searching weighing
matrices has recently been studied in [I5],[16],[17],[I8],[19]. In these works, the
authors restrained their interest for weighing matrices of large weight.

The pursuit of resolving unknown cases of W (2n,2n — «) weighing matrices
constructed from two circulants, where the weight w = 2n — a is expressed as
a function of the order n, via discovering structural patterns for the location
of the « zeros in the two arrays [a1,...,a,| and [b1,...,b,] has met a recent
boost by several researchers. Important results of this technique can be found in
[15],[16],[17]. The problem of searching for weighing matrices was also phrased
as a Combinatorial Optimization problem, as shown in [I8],[19].

In this paper, we follow our approach given in [18], where we expressed the
structural patterns through linkage learning techniques in order to employ com-
petent genetic algorithms and to construct a number of new weighing matrices
constructed from two circulants. In particular, we enhance our prior adapta-
tion of fast messy genetic algorithm (fmGA) [I8], by employing random keys for
representing chromosomes. This technique has the advantage that the fmGA is
transformed easily to a permutation solving GA, the so called ordering messy
GA (OmeGA), [I4]. To the best of our knowledge this is the first time that this
variant of fmGA is applied successfully in the search for weighing matrices.

3 Messy Genetic Algorithms for Weighing Matrices

Since the pioneering results of Holland and De Jong on genetic algorithms, a
lot of researchers have taken serious effort to design sophisticated (competent)
algorithms for combinatorial optimization problems, see for example [II] and
[12]. For a general overview of evolutionary algorithms, we refer to [26],[27]. The
motivation to originally deal with the messy genetic algorithm (mGA) was given
from the pioneering results of Goldberg [6], regarding the ability of the mGA
to put tight genes together in a solution, e.g. (0000 % ). This ability of the
mGA points directly to the structural patterns mentioned earlier, which in our
framework was explored from a combinatorial optimization point of view.

Though, the implementation details and the formulation of the weighing ma-
trices problem in a encoding suitable for mGA appeared in [18], we shall try
to outline the basic concepts of our algorithm in a compact form. We used an
adaptation of an improved version of the mGA, the fast mGA, as given in [§] in
order to avoid initialization bottlenecks.

Recall that the permissible entries for the two circulant submatrices, that form
a weighing matrix, arise from the set {—1,0,1}. Representing genes as ordinary
integer values, genetic algorithms for combinatorial problems typically utilize an
integer encoding for the chromosomes. Therefore, we have used GA operators
that have been developed to maintain feasibility in terms of gene duplication in
the population when using integer encoding [28].

The major advantage of the mGA is to consider solutions of variable length.
For example, in the following messy encoding we manufactured, the solutions



Combinatorial Optimization for Weighing Matrices with the OmeGA 151

((1,1,0),(2,1,-1),(2,2,0)) and ((1,1,1), (1,2,1), (2,1,1), (2,2, —1), (2,2,0)) are
both valid for a 4-bit problem suitable to search for weighing matrices of order
4. The first solution is decoded as [0, ] and [—1, 0], since the encoding (1,1,0)
simply means in the first sequence, the first entry is zero. In particular, the
messy genes are represented by tuples which define their position (locus) and
value (allele). We used an additional index to clarify the sequence used,

messy gene g : (sequence index, position, value) (1)

There must be no confusion for the underspecification in the first solution (no
2nd bit in the first sequence) and the overspecification in the latter (two different
2nd bits in the second sequence).

Goldberg [6], proposes a gene expression operator that employs a first-come-
first-served rule on a left-to-right scan to handle overspecification. Thus, in the
second solution this left-to-right scan drops the second instance (2,2, 0), obtain-
ing the valid two sequences [1, 1] and [1, —1] that in the sequel form the weighing
matrix. In the case of underspecification, the unspecified genes are filled in using
a competitive template, which is a fully specified chromosome from which any
missing genes are directly inherited. For example, using as competitive template
the messy encoding ((1,1,1),(1,1,-1),(2,1,—1),(2,2,0)) the first solution in-
herit a —1 in the 2nd bit of its first sequence, i.e. [0, —1] and [—1,0]. Obviously,
genes that are already specified in the solution do not take into account the
competitive template.

This case, is of particular interest since it provides us with the ability to guide
the algorithm to a particular partition of the solution space. We have chosen to
use as competitive templates, structural patterns that have proven to be success-
ful in the past, thus providing our algorithm with a linkage learning technique
similar to the one explored in [7]. Division of evolutionary processing in the mGA
comes in two phases: primordial and juxtapositional. For an overview of these
two phases we refer to [6],[7]. Allowing variable-length chromosomes, overspeci-
fied, or underspecified solutions means that the usual simple crossover operator
used will no longer work. In the context of mGA the crossover is replaced with
two simpler operators, splice and cut which we have used as they are described
in [6].

For example, starting with the two solutions ((1,1,0),(2,2,1),(1,2,—1)) and
((1,1,1),(2,1,0)) splice operator would yield the single solution ((1, 1,0), (2,2,1),
(1,2,-1),(1,1,1),(2,1,0)). Also applied the cut operator to the solution ((1, 1, 0),
(2,2,1),(1,2,-1),(1,1,1),(2,1,0)); supposing that a cut at location 2 was indi-
cated, the two solutions ((1,1,0),(2,2,1)) and ((1,2,-1),(1,1,1),(2,1,0)) would
be obtained.

Finally, we enriched the fast messy GA with two techniques, thresholding and
tie-breaking, to overcome the problem of cross-competition of common messy
genes and to successfully address the problem of non uniform building block
(BB) size that occurred in some cases, respectively.



152 C. Koukouvinos and D.E. Simos

4 An Added Level of Sophistication for Searching
Weighing Matrices: OmeGA

In the previous Section, we have presented the formulation of the fmGA for
weighing matrices assuming that it operates on ternary strings corresponding
to the ternary DC pairs. To specialize the algorithm for a new formalism for
sequences with zero (periodic) autocorrelation function [25] we have to choose a
suitable representation.

The ordering messy genetic algorithm (OmeGA) [I4] is a fast messy genetic
algorithm (fmGA), specialized for permutation problems. It represents the chro-
mosomes by vectors of real numbers, the so-called random keys introduced by
Bean [I]. In a number of experiments it is shown that OmeGA significantly
outperforms the simple GA in solving ordering deceptive problems [13].

4.1 Design of the OmeGA

This Section overviews a new formalism for the computation of the PAF of a
DC(n,w) [25], and explains the concept of random keys and the random key-
based simple GA (RKGA), [1]. An important variant of the later algorithm is the
biased random key-based simple GA (BRKGA), [9]. The success of our proposed
framework for OmeGA is based in the following rules:

e All mechanisms of the fmGA are applied
e The alleles are (long) integer numbers
e The alleles are treated as random keys to encode permutations

Multisets for sequences with zero PAF can be naturally defined by using
the formalism given in [25] for sequences with zero NPAF, using the symmetric
relation, PAF4(s) = NPAF,(s)+ NPAF4s(n—s), s =1,2,...,n—1 where the
non-periodic autocorrelation function (NPAF) of a sequence A = [a1, ag, . . ., ay)
of length n is defined as Na(s) = > 1" a;ai4s , 5 =0,1,...,n — 1. We formally
define the positive and negative support of the sequence A as POS(A) = {i :
a; >0]i=1,...,n} and NEG(A) ={j :a; <0]j=1,...,n}. The main
idea is to work with the support of a sequence and bundle together the indices
of entries with the same sign.

Following [31] we are concerned with multisets denoted by square brackets
([]), defined on the fixed group Z,, of order n, in which repeated elements are
counted multiply. If 77 and T» are two lists then by T} W75 we denote the result of
appending the elements of T} to T (with multiplicities retained). If the resulting
list is sorted after appending, the operation is denoted by T1&T>. We define the
occurrences counting function [T]. for a multiset T and an element from the
domain of elements of S as [T|c = |{z € T|z = e}|. For example, let T be the
multiset T' = [1,1,2,2,2,4]; then [T]; = 2,[T]2 = 3,[T]s =0 and [T]s = 1. It
follows that [T1 W Ts]. = [T1]e + [T2]e. For prior usage of multisets in the study
of sequences with zero autocorrelation function we refer to [25],[31], while for
related operations on them see [21].



Combinatorial Optimization for Weighing Matrices with the OmeGA 153

Then we define the signed and cross-differences as DX’I =lz—-—y:z >
y and x,y € POS(A)], Dy, = [z —y:2 >y and 2,y € NEG(A)] and Djl =
[ —y:2>yandz € POS(A),y € NEG(A)], D}, =[r—y:x>yandz €
NEG(A),y € POS(A)], respectively. Also we define C’zl = Djl W DF ;. Then
we can prove the following lemma which acts as a criterion to decide if two
sequences form a DC(n, w).

Lemma 1. Let A, B be two sequences of length n and weight w with entries
from {0,%1}. Let also D be (DJAf’Z&JDz’Z)&J(Dg’Q WDy ,) and C be Cy ,WCh
Then, the following are equivalent:

(i) A,Bis DC(n,w)
(it) [D]s = [C]s for s €{1,2,...n—1}

where, D'~A'72 = {DI*L\'71,D2\'71 (mod n)}, Dy, = {D;\J’D;\,l (mod n)} and
Cfp = {Czp Cil (mod n)}.

Proof. We have that A,B form a DC(n,w) < PAF4(s) + PAFgp(s) =0, s =
1,...n — 1. We are interested in finding how many pairs of (a;,a;+s) in the
support have distance s and how many such pairs will result to a positive or
negative value in the PAF4(s) + PAFg(s), for a fixed s. There is a distinct
number of such cases that can contribute a “1”7 or “—1” in the PAF4(s) +
PAFg(s). In particular, when s € DJAf’Q U Dg,z ors € Dy,UDp,a “17 is
contributed to the PAF4(s) + PAFg(s) since a;a;4s = 1 for a; = a;45 = 1

or a; = a;1s = —1, respectively. Moreover, when s € C’A 5 U C’B 5 a “=17
is contributed to the PAF4(s) + PAFg(s), since a;a;1s = 1. Formally, for
s€{1,2,...n— 1} we have:
PAFa(s) + PAFp(s) = ([D} o)s + [Dao)s — [Chs)s) + ([Df 5] + [Dp,als — [ngls)
= (D3 ] + (Do ls + (D 5s + [Dp ols) = ([Chols +[C0]6)
[DA D7 ols + [Df 5 W Dy 5l = [Ch, WOl
= [D]s — [ ]s
Thus
PAF4(s)4+ PAFp(s) =0< [D]; — [C]s =0 < [D]s = [Cls. O

Remark 2. For an immediate validation of Lemma [ in terms of a computer
implementation, it is more convenient to consider the resulting lists C' and D to
be sorted, i.e. D = (D} , & D;\Q)&(DE,? WDp,) and C = C ,&Ch ,.

Using random keys for representation as outlined in [I] enable us to use
(long) integer numbers, corresponding to the support of the sequences under
investigation, as sort keys to decode these sequences. Hence, we achieve a more
compact description of the support of a sequence. We represent a permutation



154 C. Koukouvinos and D.E. Simos

of length £ as an integer vector r = (71,79, ...,7¢) where r € [~n,n]’. By sorting
the random keys in

ordering messy gene ¢ : (sequence index, position, random key) (2)

such that
To(1) STe2) < - < To(p)

holds, where ¢ : {1,...,£} — {1,..., ¢} is the corresponding mapping function
arranging the keys in ascending order, the permutation is decoded as follows:

(@(1),6(2), -, 6(0))

For the weighing matrices problem we have that ¢ = w since the integers repre-
sent the support of the candidate DC(n,w).

The choice of the objective function (OF) arises naturally as the minimum
number of random keys that have to be changed to transform one permutation
into another. Clearly, when this value is equal to zero we have that the candidate
sequences form a DC(n,w) due to the computation of the PAF expressed by
signed difference sets as outlined in Lemma [I] via Remark Pl Caution is needed
not to confuse that the support of a sequence is a set, whilst the computation
of the PAF of a sequence (expressed by its support) is a multiset.

The first results of the execution of the OmeGA for searching weighing matri-
ces seems to be promising, and we present here the following DC(61, 72) which
can be used to form a W (122, 72) in Theorem [ which is listed as open in Table
6 of [24].

~=000+00-~0+-=—+===+==-0+000~++000000---0++00+00~+—++-+-0+000-
~=000-00--0-=—+=+++=++0-000+--000000++-0--00+00—+—++-+-0+000-

Acknowledgments

The authors are thankful to the anonymous reviewers for their useful comments
and suggestions that lead to an improvement of the presentation of the paper.
The research of the second author was financially supported by a scholarship
awarded by the Secretariat of the Research Committee of National Technical
University of Athens.

References

1. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. on Computing 6, 154-160 (1994)

2. van Dam, W.: Quantum algorithms for weighing matrices and quadratic residues.
Algorithmica 34, 413-428 (2002)

3. Fenimore, E., Cannon, T.: Coded aperture imaging with uniformly redundant
array. Appl. Optics 17, 337-347 (1978)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Combinatorial Optimization for Weighing Matrices with the OmeGA 155

Geramita, A.V., Seberry, J.: Orthogonal Designs. Quadratic Forms and Hadamard
Matrices. Lecture Notes in Pure and Applied Mathematics, vol. 45. Marcel Dekker,
Inc., New York (1979)

Golomb, S., Taylor, H.: Two-dimensional synchronization patterns for minimum
ambiguity. IEEE Trans. Inform. Theory 28, 600-604 (1982)

Goldberg, D.E., Deb, K., Korb, B.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 5, 493-530 (1989)

Goldberg, D.E., Deb, K., Korb, B.: Messy genetic algorithms revisited: Studies in
mixed size and scale. Complex Systems 4, 415-444 (1990)

Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, Accurate Optimiza-
tion of Difficult Problems Using Fast Messy Genetic Algorithms. In: Proceedings
of the Fifth International Conference on Genetic Algorithms, pp. 56-64. Morgan
Kaufmann Publishers Inc., San Francisco (1993)

Goncalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for
combinatorial optimization (to appear in Journal of Heuristics)

Hersheya, J., Yarlagadda, R.: Two-dimensional synchronisation. Electron. Lett. 19,
801-803 (1983)

Holland, J.H.: Adaptation in Natural and Artificial Systems. An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Uni-
versity of Michigan Press, Ann Arbor (1975)

De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Doctoral Thesis, CCS Department. University of Michigan, Ann Arbor, MI (1975)
Kargupta, H., Deb, K., Goldberg, D.E.: Ordering Genetic Algorithms and Decep-
tion. In: Méanner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature
PPSN II, pp. 47-56. Elsevier Science Publishers B.V. (1992)

Knjazew, D.: OmeGA: A Competent Genetic Algorithm for Solving Permutation
and Scheduling Problems. Kluwer, Norwell (2002)

Kotsireas, I.S., Koukouvinos, C., Seberry, J.: Weighing matrices and string sorting.
Annals of Combinatorics 13, 305-313 (2009)

Kotsireas, 1.S., Koukouvinos, C., Pardalos, P.M.: An efficient string sorting
algorithm for weighing matrices of small weight. Optimization Letters 4, 29-36
(2010)

Kotsireas, 1.S., Koukouvinos, C., Pardalos, P.M.: A modified power spectral density
test applied to weighing matrices with small weight (to appear in J. Comb. Optim.)
Kotsireas, 1.S., Koukouvinos, C., Pardalos, P.M., Simos, D.E.: Competent genetic
algorithms for weighing matrices (submitted for publication)

Kotsireas, I.S., Koukouvinos, C., Pardalos, P.M., Shylo, O.: Periodic comple-
mentary binary sequences and combinatorial optimization algorithms. J. Comb.
Optim. 20, 63-75 (2010)

Kharaghani, H., Koukouvinos, C.: Complementary, Base and Turyn Sequences. In:
Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn.,
pp. 317-321. Chapman and Hall/CRC Press, Boca Raton, Fla (2006)

Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical
Algorithms of Addison- Wesley Series in Computer Science and Information Pro-
cessing, vol. 2. Addison-Wesley Publishing Co., Mass. (1998)

Koukouvinos, C.: Sequences with Zero Autocorrelation. In: Colbourn, C.J., Dinitz,
J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 452-456. CRC Press,
Boca Raton (1996)

Koukouvinos, C., Seberry, J.: Weighing matrices and their applications. J. Statist.
Plann. Inference 62, 91-101 (1997)



156

24.

25.

26.

27.

28.

29.

30.

31.

C. Koukouvinos and D.E. Simos

Koukouvinos, C., Seberry, J.: New weighing matrices and orthogonal designs
constructed using two sequences with zero autocorrelation function - a review.
J. Statist. Plann. Inference 81, 153-182 (1999)

Koukouvinos, C., Simos, D.E.: On the computation of the non-periodic autocor-
relation function of two ternary sequences and its related complexity analysis (to
appear in J. Appl. Math. & Informatics)

Pardalos, P.M., Du, D.-Z. (eds.): Handbook of Combinatorial Optimization. Com-
binatorial Optimization, vol. 2. Kluwer Academic Publishers, Springer Netherlands
(1998)

Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of Applied Optimization.
Oxford University Press, Inc., 198 Madison Avenue, USA (2002)

Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Physica-Verlag, Heidelberg (2006)

Seberry, J., Yamada, M.: Hadamard Matrices, Sequences and Block Designs. In:
Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of
Surveys, pp. 431-560. John Wiley & Sons, New York (1992)

Weathers, G., Holiday, E.M.: Group-complementary array coding for radar clutter
rejection. IEEE Transaction on Aerospace and Electronic Systems 19, 369-379
(1983)

Wallis, J.S.: On supplementary difference sets. Aequationes Math. 8, 242-257
(1972)



Improved Automated Reaction Mapping

Tina Kouri and Dinesh Mehta*

Colorado School of Mines
{tkouri,dmehta}@mines.edu

Abstract. Automated reaction mapping is an important tool
in cheminformatics where it may be used to classify reactions or vali-
date reaction mechanisms. The reaction mapping problem is known to
be NP-Complete and may be formulated as an optimization problem. In
this paper we present three algorithms that continue to obtain optimal
solutions to this problem, but with significantly improved runtimes over
the previous CCV algorithm. Our algorithmic improvements include (a)
the use of a fast (but not 100% accurate) canonical labeling algorithm,
(b) name reuse (i.e., storing intermediate results rather than recomput-
ing), and (c) an incremental approach to canonical name computation.
Experimental results on chemical reaction databases demonstrate our
2-CCV NR FDN algorithm usually performs over ten times faster than
previous fastest automated reaction mapping algorithms.

Keywords: Applied Algorithms, Automated Reaction Mapping,
Cheminformatics.

1 Introduction

Computational simulations of chemistry are used by the chemical engineering
community to solve a variety of problems and give insight to many problems,
such as the analysis of combustion reactions. Automated reaction mapping is an
important tool in cheminformatics where it may be used to classify reactions or
validate large suites of reactions, called mechanisms. Improvements in comput-
ing power have made it possible to produce reaction mechanisms that contain
hundreds of species and thousands of reactions. The size of reaction mechanisms
is expected to continue to grow in order to provide more details about the chem-
istry they are modeling since are used in technical applications which require
accurate and reliable simulations. Mechanism generation algorithms create all
theoretically likely reactions which results in very large and unorganized mech-
anisms which must be reduced [T2J34l5]. The mechanism reduction algorithms
are computationally expensive and may take days to complete [67USIOTOTTIT2].
Prior to running a mechanism reduction algorithm a kineticist should sort the re-
actions, based on each reaction’s classification, to verify that all of the important

* Research of the authors was funded in part by the National Science Foundation
under Grant No. CNS—0931748. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect those of the National Science Foundation.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 157@ 2011.
© Springer-Verlag Berlin Heidelberg 2011



158 T. Kouri and D. Mehta

W <—=> O—® ©©—®m
Fig. 1. A simple chemical reaction: H2O2 < OH + OH

reactions and reaction classes are included. The kineticist may be required to run
the mechanism generation algorithm and check the output multiple times prior
to reducing the mechanism. Since the kineticist may have to run the automated
reaction mapping algorithms multiple times when generating a new mechanism,
it is essential that these algorithms are efficient.

A reaction may be represented as a collection of reactant and product graphs
where a set of reactant graphs is transformed into a set of product graphs.
The reaction-mapping problem may be formulated as that of finding a mapping
from the atoms of the reactant graphs to the atoms of the product graphs that
minimizes the number of bonds broken or formed [I3]. For example, consider the
reaction HoOy < OH + OH shown in Fig. [[l The optimal mapping will break
the OO bond in the Hy0O> reactant in order to form the two OH products.
The general automated reaction mapping problem is known to be NP-Complete
[13014].

In this paper we present three algorithms that improve the runtime of the
Constructive Count Vector (CCV) algorithm presented by [I3/15], while main-
taining solution optimality. The authors of [I3I5] have proven their algorithms
result in an optimal solution and our improvements do not affect optimality. The
improvements proposed are based on (a) the use of a fast (but not 100% accurate)
canonical labeling algorithm, (b) name reuse (i.e., storing intermediate results
rather than recomputing), and (c¢) an incremental approach to canonical name
computation. The three algorithms are Two Stage Constructive Count Vector
(2-CCV), Two Stage Constructive Count Vector with Name Reuse (2-CCV NR),
and Two Stage Constructive Count Vector with Name Reuse and Fast Degree
Neighborhood Naming (2-CCV NR FDN). The improved algorithms find the
optimal solution over ten times faster than CCV.

Section 2 presents background information and discusses related work. Sec-
tion 3 presents our three algorithms for automated reaction mapping. Section 4
presents the experimental results obtained by testing our three algorithms on a
variety of reaction mechanisms. Section 5 concludes the paper.

2 Background

2.1 Graph Isomorphism

A key step in automated reaction mapping is determining if two graphs are
isomorphic. Two graphs, G; and Gs, are isomorphic if there is a bijection of
vertices of G and the vertices of Gz, f : V (G1) — V (G2), such that two
vertices, u and v, are adjacent in Gy if and only if f (u) is adjacent to f (v) in
G'2. No efficient algorithm has been found to determine if two general graphs are
isomorphic [I6]. The problem of finding a canonical name for a graph is closely



Improved Automated Reaction Mapping 159

related to the graph isomorphism problem. A canonical name of a graph is a
unique label given to all isomorphic graphs. If a canonical name can be found
for two graphs, the graphs can easily be checked for isomorphism by comparing
the canonical names [I7].

Chemical Graph Isomorphism and Canonical Labeling. Algorithms have
been designed specifically for solving the chemical graph isomorphism problem.
These chemical graph isomorphism algorithms have an exponential worst-case
time complexity, but in practice are much faster.

One of the first canonical naming algorithms for chemical graphs was pro-
posed by H.L. Morgan and is based on node connectivity and the creation of
unambiguous strings which describe a molecule [I8]. One of the most well known
and fastest algorithms for determining chemical graph isomorphism is Nauty [19]
which is based on finding the automorphism groups of a graph [20]. Another well
known canonical naming algorithm for chemical graph isomorphism is Signature
[21]. The algorithm finds a canonical name using extended valence sequences.
Extended valence sequences are defined as a canonical representation of the
topological environment of the considered atom up to a predefined height.

Random Graph Isomorphism and Canonical Labeling. Fast isomorphism
testing algorithms have been developed for random graphs. These algorithms
typically run in polynomial time, but have some probability of failure. In [22],
the authors present a simple canonical labeling algorithm for random graphs
based on vertex degree distributions. In [23], the authors present a linear time
algorithm (O(V + E), where V is the number of vertices and E is the number of
edges) for the canonical labeling of a graph which is invariant under isomorphism.

2.2 Previous Automated Reaction Mapping Algorithms

Akutsu’s Algorithm. In [I4], the author provides two main algorithms for
solving the automated reaction mapping problem by limiting the problem to a
specific form of reactions: XA + Y B < XB + Y A. The first algorithm limits
compounds to trees and has a worst-case time complexity of O (n“’). The second
algorithm does not limit the compounds to trees and has a worst-case time
complexity of O (n3) Note that n is the maximum number of vertices of the
compounds in the reaction.

Felix and Valiene’s Algorithm. In [24], the authors reduce the automated
reaction problem to a series of chemical substructure searches between the reac-
tant and product graphs. This approach limits their automated reaction mapping
algorithms to specific reaction classes. The authors identify four main classes of
reactions which include combination reactions (A + B < AB), decomposition
reactions (AB < A + B), displacement reactions (A + BC < AC + B), and
exchange reactions (AB + CD < AD + CB,).

Subgraph Isomorphism Based Algorithms. In [2526], algorithms for au-
tomated reaction mapping are presented which are based on maximum com-
mon subgraph. The maximum common subgraph heuristic approaches are not



160 T. Kouri and D. Mehta

ideal since these solutions have no guarantee of finding the correct mapping [25]
and the maximum common subgraph problem is known to be NP-hard [27]. It
may also be difficult to find mapping rules consistent with multiple reaction
formulas [14].

Maximum Common Edge Subgraph Based Algorithms. In [28/29], the
authors extend a branch and bound algorithm called RASCAL. The algorithms
are based on the maximum common edge subgraph problem. In the maximum
common edge subgraph problem, the edges are mapped as opposed to vertices in
the maximum common subgraph based approach. Since the maximum common
edge subgraph problem is similar to the maximum common subgraph problem, it
will have the same problems as any maximum common subgraph based approach.

Crabtree’s Algorithms. In [I315], the authors present five algorithms for
automated reaction mapping which work for any valid chemical reaction. The
first algorithm is a fast greedy heuristic which is not guaranteed to find an opti-
mal solution. The second algorithm is an exponential-time exhaustive algorithm
which is guaranteed to find the optimal solution. The remaining three algorithms
use the chemical information of the reaction to intelligently generate bit patterns
which represent bonds to be cut on the reactant and product graphs. These three
algorithms produce an optimal solution.

The fastest algorithm presented in [I3I15] which produces an optimal solution
is the Constructive Count Vector (CCV) algorithm. The algorithm is based on
a theorem which states that an identity chemical reaction has the same number
of bonds with each bond symbol on each side of the equation. Note that in an
identity chemical reaction the set of reactant molecules is isomorphic to the set of
product molecules. A bond symbol refers to the atoms connected by each bond.
For example a bond which connects a carbon and a hydrogen atom would have
a CH bond symbol. The algorithm uses a count vector to determine the number
of bonds, by symbol, on each side of the equation which should be cut. The
algorithm then uses the count vector to create a bit pattern for each candidate
equation. A bit pattern has one bit for each bond in the original equation where
a bit set to ‘0’ indicates the bond should remain and a bit set to ‘1’ indicates
the bond should be broken. After a candidate equation is created Nauty is used
to look for isomorphic reactant and product species and therefore determine if
the equation is mapped.

As an example, we will use reaction 318 from GRI-Mech [30]:

CHs + CyHy & Cs3H- (1)

The reaction is shown in Fig. [2l Note that the label on each bond in the figure
indicates its index in the generated CCV bit pattern.

The count vector for the reactants is given by (CC,CH) = (1,7) and the
count vector for the products is given by (CC,CH) = (2,7). Therefore a count
vector for the reactants and for the products which will produce a balanced bond
equation while breaking the minimum number of bonds is given by (CC,CH) =
(0,0) and (CC,CH) = (1,0), respectively. There are two product CC bonds (at



Improved Automated Reaction Mapping 161

— s s
(W) (H ) (H) () () | 1-1)
A - M o
1 4 h\[ 1[]‘[ 13 14
TNO Y 3 NS NT D S VL 8 o\ 8 15
0 ey 2y 13 e 21 e 1 P 8 eI
) e O a0 T L e 7 o 0 e M R 9 (H/ o e e U e

-
ra

[ =
-
(@)

—

Fig. 2. GRI-Mech Reaction 318

indices 8 and 9) so there are two bit patterns which must be tested. Since neither
bit pattern produces an identity chemical reaction, the CCV algorithm adds a
single bond to the count vector on the reactant and product sides. The resulting
reactant count vectors are (1,0) and (0,1). The resulting product count vectors
are (2,0) and (1,1). These count vectors result in 99 bit patterns which must
be tested and 24 of those bit patterns result in an identity chemical reaction.
The CCV algorithm is able to stop after finding the first mapping or find all
mappings of minimum cost.

The worst-case complexity of CCV is O(F(l,r,b)CN(n)), where CN(n) rep-
resents the time complexity of the canonical naming algorithm used, n represents
the number of atoms in the reaction, [ represents the bond symbol vector for the
reactants, r represents the bond symbol vector for the products, and F(I,r,b)
represents the number of bit patterns with b bonds that result in balanced bond
symbols.

The CCV algorithm is novel because it is guaranteed to find the optimal
solution and it does not have the limitations that previous algorithms have placed
on the problem. Other reaction mapping algorithms are not guaranteed to find
the best mapping or they will not work for all classes of reactions. Since the
CCV algorithm is the fastest algorithm presented in [I3JI5] and CCV provides
an optimal solution for a general, well-defined optimization problem we will be
using CCV as our point of comparison.

3 Improved Automated Reaction Mapping

3.1 Fast Canonical Labeling Using Degree Neighborhoods

In the following algorithms we will name molecules using a fast chemical graph
canonical naming algorithm that is not 100% accurate. The algorithm presented
is similar to the random graph canonical naming algorithms presented in [22123].

The main idea of the Degree Neighborhood (DN) algorithm is to assign each
atom a name based on its symbol and degree and the symbol and degree of each
of its neighbors. The names of each atom are then used to assign the name to
the molecule. The DN algorithm is able to assign one name to a collection of
molecules at the same time which allows us to give a single canonical name to
all of the reactant or all of the product molecules.

For example, consider the C'H30 molecule in Fig. We label each atom,
using its symbol and degree, Fig. We then add to each atom’s name, the
symbol and degree of its neighbors lexicographically, Fig. Now that each



162 T. Kouri and D. Mehta

) H1) qHNCD
O—0—© G @3@{1@@£@>—@@
(a) (b) (c)

Fig. 3. Degree Neighborhood Canonical Labeling

atom is named, we lexicographically sort the atom names to create the name for
the molecule. The resulting molecule name is therefore

[CAlHLHH1O))[HA[CA[[H[CA)[[H1][C4) [01][C4))

Each atom is named according to its own symbol and degree in addition
to its lexicographically sorted degree neighborhood which guarantees two iso-
morphic molecules have the same canonical name. There is no guarantee two
non-isomorphic molecules do not have the same name. Experimentally we have
found that DN correctly distinguishes between isomorphic and non-isomorphic
molecules over 99% of the time.

3.2 Two Stage Constructive Count Vector

CCV only generates bit patterns that correspond to potential mappings which
have balanced bond symbols. For each bit pattern that is generated, the algo-
rithm creates a new equation, names the reactant and product molecules using
Nauty and then checks if it is an identity chemical reaction. Our first optimiza-
tion, named Two Stage Constructive Count Vector (2-CCV), prevents using
Nauty unless we suspect resulting equation is an identity chemical reaction. The
2-CCV algorithm names each new equation in 2 stages. The first stage naming
is done by the DN algorithm and the second stage naming is done by Nauty,
which is only invoked if DN returns a match.

As an example, we will use the same reaction as before (Fig. 2)). The initial
name of the reactant molecules is:
[[C3|[C3H1H1]|[[C3|[C3H1H1]|[[C3|[H1H1H1]][[H1][C3]][[H1][C3]]
([HY)[C3))[[H[C3))[HL[C3) [H L) C3)|[[H1)[C3]):

The initial name of the product molecules is:
[[C3][C4C4HI]|[[C4][C3H1H1H1]|[|[CA][C3H1H1H1]|[[H1][C3]]

([HA][CA) [H][CAY[[H 1] [C4][[H 1) [C4]) [[H 1) [CA]) [ 1) [C4]).

Consider the case from the previous example (Fig. B) where the bit pattern
breaks the bond labeled 8. The name computed for the reactants will not change
and the new name for the product molecules is:
[[C2][CAH1))[[C3|[H1H1H1]|[[C4][C3H1H1H1]|[[H1][C2]][[H1][C3]]
([HA][C3)[[H1][C3)[[H 1) [C4]][[H 1) [CA]) [ [C4]).

Clearly the reactant and product names are not the same so we do not need
to check this bit pattern using Nauty.



Improved Automated Reaction Mapping 163

The 2-CCV approach reduces the number of times the algorithm utilizes
Nauty, the more expensive chemical graph canonical labeling algorithm. It is
also easier to check a potential mapping during the first stage mapping since all
of the reactant or product molecules are named together. The first stage map-
ping can be checked using a single string comparison rather than matching each
reactant molecule with a product molecule.

The asymptotic worst-case complexity of 2-CCV is

O((F(l,r,b) = (m + p)) DN (n) + (m + p)(DN (n) + CN(n))
=O((F(l,7,b) = (m +p))DN(n) + (m + p)(CN(n))

where CN(n), F(l,r,b), I, r, and b were previously defined and DN (n) repre-
sents the time complexity of the degree neighborhood algorithm, m represents
the number of optimal mappings and p represents the probability the degree
neighborhood algorithm results in an error. Notice that the worst-case complex-
ity of 2-CCV is worse than the worst-case complexity of CCV since it is possible
to check each candidate using both DN and Nauty, but 2-CCV performs sig-
nificantly better than CCV because p is very small in practice. Note that the
worst-case complexity of the degree neighborhood algorithm is O(nlgn).

3.3 Two Stage Constructive Count Vector with Name Reuse

A second optimization was added to store the canonical names which are com-
puted for each candidate mapping. The main idea is that the same reactants
and products get generated multiple times during the algorithm. Rather than
recomputing the names, we store and reuse them. The Two Stage Construc-
tive Count Vector with Name Reuse (2-CCV NR) creates a hash map for the
reactants and hash map for the products for each stage to store the canonical
names since many of the candidate mappings generated break the same reactant
or product bonds. Although 2-CCV NR is faster in practice than 2-CCV, the
worst-case complexity is the same for both algorithms.

As an example, we will use the same reaction as before (Fig. 2]). During
the second iteration we will test breaking the C'C' reactant bond 14 times for
various combinations of breaking C'C' and CH product bonds. After storing the
reactant’s name when testing the first candidate we will look up the reactant’s
name for the remaining 13 candidates.

3.4 Two Stage Constructive Count Vector with Name Reuse and
Fast Degree Neighborhood Naming

The final optimization, Two Stage Constructive Count Vector with Name Reuse
and Fast Degree Neighborhood Naming (2-CCV NR FDN), generates the DN
name for a new candidate by updating the DN name from a previously com-
puted candidate rather than computing it from scratch. When a bond is bro-
ken it affects the names of the atoms connected by the bond and their neigh-
bors. Note that chemical graphs have bounded valence so the number of neigh-



164 T. Kouri and D. Mehta

Vol £ £ Yoy £ /U

{2 He) (g {1) ¢He @

T[ 4 ;[ 1[]‘[ l]j 14
O B e T f\a.f“\,»f)?.f'\ N LD B E NS E B
HOP——{C 1}=—H HS5——C 44— H H4——C0 1= F——H8a
I\ vy E_/ S L E_J E x_g’ | L/') . E/ \C/ E ry JI

(MR /o
i _
™ 5
o

Fig. 4. GRI-Mech Reaction 318 with Node Indices

bors each atom has is limited. The names of the remaining atoms remain un-
changed. We generate the name for a new candidate bit pattern from a previ-
ously computed bit pattern which broke one less bond. Note that each set of
count vectors breaks one more reactant and one more product bond than the
previous set of count vectors. For example, in reaction 318 from GRI-Mech [30]
the first set of count vectors break 0 reactant bonds and 1 product bond. The
second set of count vectors break 1 reactant bond and 2 product bonds.

In order to use DN name updates, we store an array of atom names in the
stage 1 hash maps rather than the DN name for all of the molecules. Each atom
of the reactants and products has an index which quickly matches an atom to
its stored name. For example, the indices for reaction 318 from GRI-Mech are
shown in Fig. @l Once all of the atom names have been updated, they can be
lexicographically sorted to produce the canonical name for all of the molecules.

The first step in updating the DN name comes from updating the names of
the atoms connected by the broken bond. The affected atoms must have their
degree reduced by one since they now have one less neighbor. In addition the
affected atoms must be removed from each other’s neighbor’s list. Note that both
of these changes are completed using string manipulations.

The second step in updating the DN names comes from updating the names
of the atoms which are neighbors to the atoms connected by the broken bond.
Without loss of generality, assume the broken bond affected atoms a; and a;,
where i # j. We look at each bond that is connected to atom a;. If a bond (e.g.,
the bond connects a; and aj) has not been previously broken (i.e., its bit in
the candidate bit pattern is set to ‘0’) then the algorithm updates the neighbor
list for atom ax. The neighbor list is updated by replacing the first occurrence
of a;’s old symbol and degree with a;’s new symbol and degree. The process is
repeated for atom a;. Note that these node name changes are completed using
string manipulations.

As an example we will use the product molecule from GRI-Mech Reaction
318 (Fig. Hl). We start with the array of node canonical labels for the molecule,
given by the array: 0: [C4][C3H1H1H1], 1: [C3|[C4C4H]1], 2: [C4][C3H1H1H]1],
3: [H1)[C4], 4: [H1][C4], 5: [H1][C4], 6: [H1][C3], 7: [H1][C4], 8: [H1][C4], 9:
[H1][C4].

Suppose we want to break the bond with index 8 which connects the atoms
with index 0 and index 1. The algorithm will retrieve each node’s canonical label
and update it. The atom at index 0 was previously named [C4][C3H1H1H]1].
The portion of the label which contains its symbol and degree will change from
C4 to C3 since the atom now has one less neighbor. The portion of the label



Improved Automated Reaction Mapping 165

which contains the neighbor list must remove the reference to the atom at index
1. Therefore the substring C'3 will be removed from the neighbor list. The new
canonical name for the atom at index 0 is [C3][H1H1H1]. Similarly the new
canonical name for the atom at index 1 is [C2][C4H1]. Now we must update
the neighbors of the atom at index 1. The first neighbor is the atom at index 3
which has the name of [H1][C4]. The algorithm replaces C4 in the neighbor list
with C3 resulting in the new name of [H1][C'3]. Similarly the atoms at index 4
and index 5 are renamed [H1][C3] and the atom at index 6 is renamed [H1][C2].

Although the worst-case complexity of 2-CCV NR FDN remains the same as
2-CCV NR, in practice 2-CCV NR FDN performs much faster. The 2-CCV NR
FDN algorithm reduces the time it takes to compute the DN canonical name of
the reactants and products during stage 1. In addition, 2-CCV NR FDN does
not have to generate the candidate equation unless, from stage 1, we suspect the
equation is mapped.

4 Experimental Results

The experiments were carried out on a computer running Windows Vista Home
Premium with a 2.66 GHz Intel Core 2 Quad Processor and 4 GB of RAM.
The code was written in Java and developed with JDK 1.4. The time statistics
provided are for relative comparison purposes only since Java uses automatic
garbage collection that is not controlled by the programmer. Note that for all of
the databases we used the Nauty [19] chemical graph canonical naming algorithm
to test for isomorphism. Although we tested the code on a variety of mechanisms
only a few are included due to space considerations. The results are summarized
in Table [l where the column labeled ‘single’ refers to finding a single mapping
of minimum cost and the column labeled ‘all’ refers to finding all mappings of
minimum cost.

Note that CCV is guaranteed to find an optimal solution when mapping a
reaction. For each of the databases tested, we verified our algorithms produced
the same output as CCV.

The Colorado School of Mines (CSM) oxidation and pyrolysis mechanisms
were derived from published oxidation and pyrolysis mechanisms [31I32]. The
CSM oxidation mechanism contains 3544 reactions and the CSM pyrolysis mech-
anism contains 1707 reactions. Notice that the 2-CCV NR FDN algorithm is over

Table 1. Runtime Results

CSM Oxidation CSM Pyrolysis LLNL
Single  All  Single All Single  All

(sec)  (sec) (sec) (sec)  (sec)  (sec)
CCV 305.6  1078.7 277.3 1053.7 16122.9 40616.3
2-CCV 177.8 627.1 162.8  588.8 9758.7 23730.4
2-CCV NR 118.1 404.1 108.7  378.9 6125.6 15401.5

2-CCV NR FDN 22.1 659 15.4 57.8 1160.5 3215.1



166 T. Kouri and D. Mehta

18 times faster than the CCV algorithm for the CSM pyrolysis mechanism re-
gardless of whether we are finding a single mapping or all mappings of minimum
cost. The 2-CCV NR FDN algorithm is over 13 times faster than the CCV al-
gorithm for the CSM oxidation mechanism when finding a single mapping of
minimum cost and over 16 times faster than the CCV algorithm when finding
all mappings of minimum cost.

The database provided by Lawrence Livermore National Laboratory (LLNL)
[33] models combustion and ignition phenomena for normal heptane. The connec-
tivity data for the molecules was added by students in the Chemical Engineering
department at Colorado School of Mines for an early version of the database that
contained errors [13]. Using the provided information we were able to map over
4000 reactions from the LLNL database. Notice that the 2-CCV NR FDN al-
gorithm runs over 12 times faster than CCV regardless of whether we finding a
single mapping or all mappings of minimum cost.

5 Conclusion

In conclusion, this paper presented three algorithms to solve the automated re-
action mapping problem that are based on (a) the use of a fast (but not 100%
accurate) canonical labeling algorithm, (b) name reuse (i.e., storing intermediate
results rather than recomputing), and (c¢) an incremental approach to canoni-
cal name computation. The algorithms presented in this paper are significantly
faster in practice than previous reaction mapping algorithms. The time to map
the reactions from the LLNL database [33] previously took over 11 hours using
CCV, but using 2-CCV NR FDN it now takes less than 1 hour to complete.
Improved automated reaction mapping algorithms are essential for the growing
needs of the cheminformatics and bioinformatics community.

References

1. Muharam, Y., Warnatz, J.: Kinetic Modelling of the Oxidation of Large Aliphatic
Hydrocarbons Using an Automatic Mechanism Generation. Phys. Chem. Chem.
Phys. 9, 4218-4229 (2007)

2. Matheu, D., Grenda, J.: A Systematically Generated, Pressure-Dependent Mech-
anism for High-Conversion Ethane Pyrolysis. 1. Pathways to the Minor Products.
J. Phys. Chem. 109, 5332-5342 (2005)

3. Cartensen, H., Dean, A.M.: Rate Constant Rules for the Automated Generation
of Gas-Phase Reaction Mechanisms. J. Phys. Chem. 113, 367-380 (2009)

4. Nemeth, A., Vidoczy, T., Heberger, K., Kuti, Z., Wagner, J.: MECHGEN: Com-
puter Aided Generation and Reduction of Reaction Mechanisms. J. Chem. Inf.
Comput. Sci. 42, 208-214 (2002)

5. Buda, F., Bounaceur, R., Warth, V., Glaude, P.A., Fournet, R., Battin-Leclerc, F.:
Progress Toward a Unified Detailed Kinetic Model for the Autoignition of Alkanes
from C4 to C10 Between 600 and 1200 K. Combust. Flame. 142, 170-186 (2005)

6. Straube, R., Flockerzi, D., Muller, S.C., Hauser, J.B.: Reduction of Chemical
Reaction Networks Using Quasi-Integrals. J. Phys. Chem. 109, 441-450 (2005)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Improved Automated Reaction Mapping 167

. Pepiot-Desjardins, P., Pitsch, H.: An Efficient Error-propagation-based Reduction

Method for Large Chemical Kinetic Mechanisms. Combust. Flame. 154, 67-81
(2008)

. Liang, L., Stevens, J., Raman, S., Farrell, J.: The Use of Dynamic Adaptive Chem-

istry in Combustion Simulation of Gasoline Surrogate Fuels. Combust. Flame. 156,
1493-1502 (2009)

. Nagy, T., Turanyi, T.: Reduction of Very Large Reaction Mechanisms Using Meth-

ods Based on Simulation Error Minimization. Combust. Flame. 156, 417-428 (2009)
Sun, W., Chen, Z., Gou, X., Yiguang, J.: A Path Flux Analysis Method for the
Reduction of Detailed Chemical Kinetic Mechanisms. Combust. Flame. 157, 1298-
1307 (2010)

Shi, Y., Ge, H., Brakora, J., Reitz, R.: Automatic Chemistry Mechanism Reduction
of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCA Methods with
Error Control. Energy & Fuels 24, 1646-1654 (2010)

Kovacs, T., Zsely, 1., Kramarics, A., Turanyi, T.: Kinetic Analysis of Mechanisms
of Complex Pyrolytic Reactions. J. Anal. Appl. Pyrolysis. 79, 252-258 (2007)
Crabtree, J.D.; Mehta, D.P.: Automated Reaction Mapping. J. Exp. Algorith-
mics. 13, 1.15-1.29 (2009)

Akutsu, T.: Efficient Extraction of Mapping Rules of Atoms from Enzymatic
Reaction Data. J. Comput. Biol. 11, 449-462 (2004)

Crabtree, J., Mehta, D., Kouri, T.: An Open-Source Java Platform for Automated
Reaction Mapping. J. Chem. Inf. Model. 50(9), 1751-1756 (2010)

Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica. Cambridge University Press, New York
(2003)

Babai, L., Luks, E.: Canonical labeling of graphs. In: STOC 1983: Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171-183.
ACM, New York (1983)

Morgan, H.L.: The Generation of a Unique Machine Description for Chemical
Structures - A Technique Developed at Chemical Abstracts Service. J. Chem.
Doc. 5(2), 107-113 (1965)

B. McKay. No automorphisms, yes? (2004), http://cs.anu.edu.au/~bdm/nauty/
McKay, B.: Practical Graph Isomorphism. Congr. Numer. 30, 45-87 (1981)
Faulon, J.-L., Collins, M.J., Carr, R.D.: The Signature Molecular Descriptor.
4. Canonizing Molecules Using Extended Valence Sequences. J. Chem. Inf.
Model. 44(2), 427-436 (2004)

Babai, L., Erdos, P., Selkow, S.: Random Graph Isomorphism. Siam J. Com-
put. 9(3), 628-635 (1980)

Czajka, T., Panduranga, G.: Improved Random Graph Isomorphism. Journal of
Discrete Algorithms 6, 85-92 (2008)

Felix, L., Valiente, G.: Efficient Validation of Metabolic Pathway Databases. In:
Proc. 6th Int. Symp. Computational Biology and Genome Informatics, pp. 1209—
1212 (2005)

Arita, M.: Metabolic Reconstruction Using Shortest Paths. Simulation Practice
and Theory 8(2), 109-125 (2000)

Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a Chemical Struc-
ture Comparison Method for Integrated Analysis of Chemical and Genomic Infor-
mation in the Metabolic Pathways. J. Am. Chem. Soc. 125(1), 11853-11865 (2003)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1990)


http://cs.anu.edu.au/~bdm/nauty/

168

28.

29.

30.
31.

32.

33.

T. Kouri and D. Mehta

Korner, R., Apostolakis, J.: Automatic Determination of Reaction Mappings and
Reaction Center Information. 1. The Imaginary Transition State Energy Approach.
Journal of Chemical Information and Modeling 48(6), 1181-1189 (2008)
Apostolakis, J., Sacher, O., Korner, R., Gasteiger, J.: Automatic Determination
of Reaction Mappings and Reaction Center Information. 2. Validation on a Bio-
chemical Reaction Database. Journal of Chemical Information and Modeling 48(6),
1190-1198 (2008)

Gas Research Institute. Gri-mech 3.0, http://www.me.berkeley.edu/gri-mech/
Naik, C.V., Dean, A.M.: Detailed Kinetic Modeling of Ethane Oxidation. Combust.
Flame. 145, 16-37 (2006)

Randolf, K.L., Dean, A.M.: Hydrocarbon Fuel Effects in Solid-oxide Fuel Cell
Operation: An Experimental and Modeling Study of n-hexane Pyrolysis. Phys.
Chem. Chem. Phys. 9, 4245-4258 (2007)

Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling
study of n-heptane oxidation. Combust. Flame. 114(1-2), 149-177 (1998)


http://www.me.berkeley.edu/gri-mech/

An Experimental Evaluation of Incremental and
Hierarchical k-Median Algorithms*

Chandrashekhar Nagarajan! and David P. Williamson?
! Yahoo! Inc., Sunnyvale, CA, 94089, USA
cnb4@yahoo-inc.com
2 Cornell University, Ithaca, NY, 14853, USA
dpw@cs.cornell.edu

Abstract. In this paper, we consider different incremental and hierar-
chical k-median algorithms with provable performance guarantees and
compare their running times and quality of output solutions on different
benchmark k-median datasets. We determine that the quality of solutions
output by these algorithms for all the datasets is much better than their
performance guarantees suggest. Since some of the incremental k-median
algorithms require approximate solutions for the k-median problem, we
also compare some of the existing k-median algorithms’ running times
and quality of solutions obtained on these datasets.

1 Introduction

A company is building facilities in order to supply its customers. Because of
limited capital, it can only build a few at this time, but intends to expand in
the future in order to improve its customer service. Its plan for expansion is
a sequence of facilities that it will build in order as it has funds. Can it plan
its future expansion in such a way that if it opens the first k facilities in its
sequence, this solution is close in value to that of an optimal solution that opens
any choice of k facilities? The company’s problem is the incremental k-median
problem, and was originally proposed by Mettu and Plaxton [10].

The standard k-median problem has been the object of intense study in the
algorithms community in recent years. Given the locations of a set of facilities
and a set of clients in a metric space, and a parameter k, the k-median problem
asks to find a set of k facilities to open such that the sum of the distances of the
clients to the nearest open facility is minimized. Since the metric k-median prob-
lem is NP-hard [§], many researchers have focused on obtaining approximation
algorithms for it. An a-approximation algorithm for a minimization problem
runs in polynomial time and outputs a solution whose cost is at most a times
the cost of the optimal solution. The factor « is sometimes called the approzi-
mation factor or performance guarantee of the algorithm. A solution for which
the cost is at most a times the optimal cost is sometimes called a-approzimate.
The best approximation algorithm known for this problem has a performance

* Supported in part by NSF grant CCF 0514528.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 169 2011.
© Springer-Verlag Berlin Heidelberg 2011



170 C. Nagarajan and D.P. Williamson

guarantee of 3 + € and is due to Arya, Garg, Khandekar, Meyerson, Munagala
and Pandit [2]; it is based on a local search heuristic.

In the incremental k-median problem, we are given the input of the k-median
problem without the parameter k and must produce a sequence of the facilities.
For each k, consider the ratio of the cost of opening the first k facilities in the
ordering to the cost of an optimal k-median solution. The goal of the problem
is to find an ordering that minimizes the maximum of this ratio over all values
of k. An algorithm for the problem is said to be a-competitive if the maximum
of the ratio over all k£ is no more than «. This value « is called the competitive
ratio of the algorithm. Mettu and Plaxton [I0] gave a 29.86-competitive algo-
rithm for the incremental k-median problem. Later Lin, Nagarajan, Rajaraman
and Williamson [9] gave deterministic 16-competitive and randomized 10.88-
competitive algorithms for the incremental k-median problenﬂ. Their algorithms
use either a k-median approximation algorithm or a Lagrangean Multiplier Pre-
serving (LMP) facility location algorithm as a black box.

We also consider algorithms for the hierarchical k-median problem. In hi-
erarchical clustering, we give clusterings with k clusters for all values of k£ by
starting with each point in its own cluster and repeatedly merging selected pairs
of clusters until all points are in a single cluster. We also consider a variation
of this problem in which each cluster has a point designated as its center, and
when we merge two clusters together to form a single cluster, one of the two
centers becomes the center of the new cluster. Given some objective function
on a k-clustering, again we would like to ensure that for any k, the cost of our
k-clustering obtained in this way is not too far away from the cost of an opti-
mal k-clustering. For the hierarchical k-median problem, the objective function
for the k-clustering is its k-median cost; that is, the sum of the distances of
each point to its cluster center. Plaxton [11] gave a 238.88-competitive algo-
rithm for the problem. Lin et al. [9] later gave deterministic 40.42-competitive
and randomized 20.06-competitive algorithms for the problem. Their algorithms
again use either a k-median approximation algorithm or a LMP facility location
algorithm as a black box.

In this paper, we consider the performance of these incremental and hierar-
chical k-median algorithms on different k-median benchmark datasets and com-
pare their running times and quality of output solutions. Since the algorithms
of Lin et al. require a k-median approximation algorithm or a LMP facility lo-
cation algorithm as a black box, we also compare the performance of some of
the existing k-median and LMP facility location algorithms. In particular, we
implement five different k-median and LMP facility location algorithms. The
first one is the single swap local search algorithm by Arya et al. [2], which
gives 5-approximate solutions. We also consider the linear program (LP) round-
ing algorithm of Charikar, Guha, Tardos and Shmoys [4] which rounds the LP
optimum to get 8-approximate solutions. Jain, Mahdian, Markakis, Saberi and
Vazirani [7] give a greedy dual-fitting Lagrangean Multiplier Preserving (LMP)

! Some of the results of Lin et al. were obtained independently by Chrobak, Kenyon,
Noga, and Young [5].



An Experimental Evaluation of Incremental 171

Facility Location (FL) algorithm which gives 2-approximate k-median solutions
for some values of k. We also consider the standard k-median linear program
and solve it optimally using CPLEX. The optimal solution can be fractional
but still gives a good lower bound for the k-median problem. We also solve the
k-median integer program optimally using CPLEX even though the algorithm is
not polynomial time. These linear and integer programs give us bounds on the
quality of the solutions of the other algorithms.

Given these algorithms, we implement several variants of the Lin et al. al-
gorithms for the incremental k-median problem. We implement their algorithm
using the Arya et al. local search algorithm for k-median, the Charikar et al. LP
rounding algorithm for k-median, and the Jain et al. greedy algorithm which is
an LMP algorithm for facility location. Additionally, we implement the original
algorithm of Mettu and Plaxton for the incremental k-median problem. We are
able to use the linear and integer programming solutions to bound the quality
of the results we obtain.

We also implement several variants of the Lin et al. algorithms for hierarchical
k-median problem. Again, we implement their algorithm using the Arya et al.
local search algorithm for k-median, the Charikar et al. LP rounding algorithm,
and the Jain et al. greedy algorithm. Additionally, we implement Plaxton’s al-
gorithm for the hierarchical k-median problem. Plaxton’s algorithm requires an
incremental k-median algorithm as a black box, and originally used the algorithm
of Mettu and Plaxton as a subroutine. We implement this variant of Plaxton’s
algorithm, and also a variant that uses Lin et al.’s algorithm given the Arya et
al. local search algorithm.

We test our algorithms on 43 different k-median instances drawn from the
literature. In particular, we use forty instances from the OR Library [3], two
instances from Galvao and ReVelle [6], and one instance from Alp, Erkut, and
Drezner [I].

From the results we obtained we determine that all these algorithms perform
much better in terms of quality of solution than their respective
competitive/approximation ratios suggest. In particular, while we know of no
polynomial-time algorithm with a competitive ratio better than 10 for the in-
cremental and hierarchical median k-median problems, we typically obtained
results which were within 10% of the k-median LP relaxation for incremental
problems and 20% of the k-median LP relaxation for hierarchical k-median prob-
lems. We find this quite surprising in view of the strong constraints required on
the structure of solutions for the incremental and hierarchical problems.

The algorithms of Mettu and Plaxton for incremental k-median and Plaxton
for hierarchical k-median produce solutions that are not as good as those of
Lin et al.; however, our implementation of the Mettu-Plaxton algorithm is sig-
nificantly faster than our implementations of the Lin et al. algorithms, at least
in part because the Lin et al. algorithms require approximate solutions of the
k-median problem for all values of k.

Our paper is structured as follows. In Section [2, we sketch various algorithms
we implemented. In Section [, we discuss the datasets we used. In Section M we



172 C. Nagarajan and D.P. Williamson

give the experimental results we obtained. In Section Bl we give our conclusions
as well as some open problems prompted by our work. For space reasons, detailed
statements of the algorithms and complete tables of results are omitted, and will
appear in the full version of the paperE

2 Algorithms

In this section, we discuss the various algorithms we implemented for the k-
median, incremental k-median, and hierarchical k-median problems respectively.

2.1 The k-Median Problem

In this section we consider five different algorithms for the k-median problem:
the single swap local search algorithm by Arya et al. [2]; the linear program (LP)
rounding algorithm of Charikar et al. [4] which rounds the LP optimum to get
an integer solution which is no more than 8 times the cost of the optimal LP
solution; the Jain et al. [7] greedy dual-fitting Lagrangean Multiplier Preserving
(LMP) Facility Location (FL) algorithm, which gives 2-approximate k-median
solutions for some values of k; the standard k-median linear program, which
we solve optimally using CPLEX; and the k-median integer program, which we
also solve optimally using CPLEX even though the algorithm is not polynomial
time. The optimal solution to the linear program can be fractional but still gives
a good lower bound for the k-median problem. We now discuss each of these
algorithms in turn. For space reasons, we cannot give full descriptions.

Local Search Algorithm of Arya et al. We consider the Arya et al.’s ([2])
single swap local search algorithm which computes a 5-approximate solution.
The local search algorithm proceeds by starting with an arbitrary solution and
repeatedly doing wvalid swaps on the current solution till no more valid swaps
exist. A swap closes a facility in the current solution and opens a facility that
was previously closed. A swap is considered valid if the cost of the new solution
after swapping is less than the cost of the solution before swapping.

Arya et al. proved that the local search algorithm can be made to run in time
polynomial in the input size by considering a swap as valid only if it improves
the cost of the solution by a certain factor. However, for simplicity, we consider
any cost-improving swap as a valid swap. We run this local search algorithm
for each cardinality k. After this procedure we have locally optimal solutions for
each value of k.

We do not implement the multi-swap (swaps involving more than one facil-
ities) local search algorithm by Arya et al. because of its high running time
even though it gives better approximation guarantee of 3 4+ €. We use the locally
optimal solution of cardinality k — 1 as a starting solution for the local search

2 A more complete abstract of the paper, including full explanations of the
algorithms, and full tables of results and running times, can be found at
http://www.orie.cornell.edu/~dpw/incexp.pdf



An Experimental Evaluation of Incremental 173

iteration for cardinality k. Since this solution is already a good solution for car-
dinality k£ we reduce the running times of the subsequent iterations. On average
this improves the running times of local search by about 40%.

LP rounding algorithm of Charikar et al. We consider the LP rounding al-
gorithm of Charikar et al. [4] which takes as input the fractional optimal solution
of the standard LP relaxation (k — P) of the k-median problem and produces
an integer solution that is no more than 8 times the cost of LP optimum.

The algorithm is as follows. It starts with the optimal LP fractional solution
for a particular value of k. First, the algorithm simplifies the problem instance by
consolidating nearby clients and combining their demands such that the clients
with nonzero demands are far from each other the resulting problem instance.
It then simplifies the structure of the optimal fraction solution by consolidating
nearby fractional facilities. The resulting solution has nonzero fractional value
only on facilities with nonzero demands and the LP variables for the facilities
are no less than ; The algorithm then modifies this solution to a solution where
the LP variables for the facilities take values of only 0, é and 1. It then opens no
more than k of these facilities, selecting them based on their distance to other
facilities with positive LP value.

Greedy LMP FL Algorithm of Jain et al. Jain et al. [7] give a LMP
greedy dual-fitting algorithm for the facility location problem. In this algorithm,
we maintain a dual value v; for every client which is its total contribution to
getting connected to a open facility. Some part of this dual v; pays for the j’s
connection cost and the remainder is paid toward facility opening costs. We
increase the duals of the clients uniformly and open a facility when a facility has
enough contribution from the clients to match the facility opening cost. We say
a client is connected to a facility if the connection cost is paid for by its dual
value. We stop increasing the dual for a client if it is connected to a open facility.
Since this facility location algorithm is a LMP 2-approximation algorithm for
the facility location (FL) problem, we can obtain something called a bounded
envelope for the k-median problem as described in Lin et al. [9]. The bounded
envelope gives 2-approximate solutions for the k-median problem for some values
of k as well as a corresponding piecewise linear lower bound on the values of k-
median solutions for all values of k, where the breakpoints of the lower bounds
occur at values of k for which we have 2-approximate solutions. Lin et al. give a
procedure for computing the bounded envelope given the LMP FL algorithm.

Solving Linear Program using CPLEX. We solve the linear programming
relaxation (k — P) of the standard k-median problem using the CPLEX solver.

To speed up the running time of the linear program solver, we tried to give the
optimal solution of (K — 1) run as an initial starting solution to the iteration
of cardinality k for all values of k. But there was no significant improvement of
the running times of the linear programs on average.



174 C. Nagarajan and D.P. Williamson

Solving Integer Program using CPLEX. We solve the integer program
(k—1IP) optimally using the CPLEX solver; (k—IP) is the same as (k— P) except
that we require the decision variables to be 0-1. The CPLEX solver provides a
way to give a good initial guess to the solver so that it can prune many low
quality solutions. We give the optimal integer solution with k — 1 facilities as an
initial guess for the CPLEX integer program iteration with cardinality k. As the
optimal solution for the k-median problem for a smaller value of cardinality is
a feasible solution for the k-median problem with larger cardinality, the initial
guess is feasible. Even though this makes the solver find the optimal integral
solution faster in some cases, it does not work in all cases and on average the
improvement in running time is not significant.

2.2 Incremental k-Median

In this section we briefly explain the Mettu and Plaxton’s incremental k-median
algorithm and Lin et al.’s incremental k-median algorithm.

Mettu and Plaxton’s Algorithm. Mettu and Plaxton’s [10] incremental k-
median algorithm uses a hierarchical greedy approach to choose the next facility
in the incremental order to be opened. The basic idea behind this approach
is as follows. Rather than selecting the next point in the ordering based on a
single greedy criterion, they greedily choose a region and then recursively choose
smaller regions till they arrive at a single facility which then becomes the next
facility to open. Thus the choice of the next facility is influenced by a sequence
of greedy criteria addressing successive finer levels of granularity.

Lin et al.’s incremental k-median algorithm. We implement the incre-
mental algorithm ALTINCAPPROX of Lin et al. [9] for the incremental k-median
problem on these datasets. We use Arya et al.’s local search algorithm with sin-
gle swaps and the LP rounding technique of Charikar et al. to generate good
k-median solutions for all possible k for each of these datasets. We bucket these
solutions into buckets of geometrically increasing cost. We take the costliest so-
lution from each bucket. We then consider each of these solutions in order of
decreasing number of medians, and use each such solution to find another so-
lution with the same number of medians that is contained with the next larger
solution. This gives us a sequence of k-median solutions such that any smaller
solution is a subset of any larger solution. This sequence of solutions gives a
natural ordering of the facilities.

We also implement the incremental algorithm BOUNDEDINCAPPROX of Lin et
al. [9] using the k-median bounded envelope obtained by running the Jain et al.
algorithm on the datasets. By using the 2-approximate solutions obtained from
this algorithm for some values of k, we can apply the procedure given above to
obtain an ordering of the facilities.

2.3 Hierarchical k-Median

We test the hierarchical k-median algorithms of Lin et al. [9] against the previ-
ously known hierarchical k-median algorithm by Plaxton [11].



An Experimental Evaluation of Incremental 175

Plaxton’s Algorithm. Plaxton’s algorithm takes in an incremental k-median
solution as input and finds a parent function for each facility this incremental
ordering. A hierarchical k-median solution obtained from an ordering can be
considered as solutions obtained by repeatedly closing the last open facility in
ordering and assigning its clients to an earlier facility. This mapping is exactly
captured by the parent function in the Plaxton’s algorithm. A parent function
for an ordering maps every facility in the order to a facility that is earlier in the
ordering. The parent of a facility is the facility that its clients will get assigned
to when the facility is closed.

Plaxton’s parent function is assigned as follows: Given an incremental k-
median solution to the problem, a parent is assigned to every facility in the
reverse order of the incremental solution. The parent of a facility f is deter-
mined by the earliest facility in the ordering that is either the closest facility
or satisfies a certain equation. The equation essentially finds a facility whose
distance to f is no more than the average distance of f’s clients to f.

We run the Plaxton’s parent function algorithm on the incremental k-median
solutions given by running the Mettu and Plaxton’s algorithm and ALTINCAP-
PROX algorithm using Arya et al.’s local search solutions on the datasets.

Lin et al.’s hierarchical k-median algorithm. We run the generic algo-
rithm ALTINCAPPROX of Lin et al. [J] for the hierarchical k-median problem
on the datasets using different k-median algorithms as black box. We use Arya
et al.’s local search algorithm and Charikar et al.’s LP rounding algorithm to
generate good k-median solutions. We also implement the incremental algorithm
BOUNDEDINCAPPROX of Lin et al. [9] using the k-median bounded envelope
obtained by running Jain et al. algorithm on the datasets. As in the incremen-
tal k-median algorithm of Lin et al. we must find approximate solutions to the
k-median problem, which we then put in buckets of geometrically increasing
cost, then take the costliest solution from each bucket. We consider these so-
lutions in order of decreasing size, and use each solution to find a k-clustering
that is consistent with a hierarchical clustering on the larger solutions already
considered.

3 Datasets

In our experiments we use these following datasets for the comparison of k-
median, incremental k-median and the hierarchical k-median algorithms.

1. OR Library: These 40 datasets of the uncapacitated k-median problems are
part of the OR Library [3], which is a collection of test datasets for a variety
of OR problems created by J. E. Beasley. These 40 test problems are named
pmedl, pmed2, ..., pmed40 and their sizes range from n = 100 to 900. As
noted in [3], we apply Floyd’s algorithm on the adjacency cost matrix in
order to obtain the complete cost matrix.



176 C. Nagarajan and D.P. Williamson

2. Galvao: This set of instances (Galvdo100 and Galvio150) is obtained from
the work of Galvao and ReVelle [6]. Even though the sizes of these datasets
are small (n = 100 and n = 150), the integrality gaps for some values of k
(number of medians) are larger than traditional datasets.

3. Alberta: This dataset is generated from a 316-node network using all popula-
tion centers in Alberta (see Alp, Erkut and Drezner [I]) where the distances
are computed using the shortest path metric on the actual road network of
Alberta.

4 Experimental Results

4.1 The k-Median Problem

In this section we compare the performance in terms of running times and quality
of solutions of five different algorithms on the datasets described: CPLEX solver
for the k-median linear program, CPLEX solver for k-median integer program,
Arya et al.’s single swap local search algorithm, Charikar et al.’s LP rounding
algorithm and the bounded envelope of Jain et al.’s greedy algorithm. All ex-
periments were done on machines with Intel Core 2 2.40GHz processor with 2
gigabytes of physical memory. The linear programs and integer programs on the
data sets are solved using CPLEX Version 10.1.0. The Arya et al.’s single swap
local search algorithm and Jain et al. algorithm are solved using MATLAB ver-
sion 7.0. The tolerance for the bounded envelope that we use for the termination
of binary search is 0.01 (see Lin et al. [9] for the bounded envelope procedure).
For space reasons, we cannot present the full table of results; however, Figures [Tl
and [2] show how the costs of the k-median solutions from the integer optimum,
Arya et al.’s local search algorithm, Charikar et al.’s LP rounding algorithm and
the Jain et al.’s greedy algorithm compare to the linear program for different
values of k for two sample datasets pmed40 and Galvao150. This performance
was typical.

Even though the Arya et al.’s algorithm’s performance guarantee is 5, in prac-
tice the local search algorithm performs much better than that. The local opti-
mums are within 1% from the linear program optimum on average. Charikar’s
et al.’s LP rounding algorithm performs even better as most of the LP solutions
are already integral or very close to being integral except for some small values
of k. Note that the Jain et al.’s greedy LMP FL algorithm gives only a bounded
envelope and does not give k-median solutions for all values of k. Here we can see
that the LP rounding algorithm and the local search algorithm perform better
than Jain et al.’s algorithm.

In terms of running time, the LP solver runs faster than the local search and
greedy algorithm for all datasets. Also the IP solver takes a lot more time to
solve all the instances of k for bigger datasets.

4.2 Incremental k-Median

In this section we compare the performances of four different incremental k-
median algorithms on the selected datasets: Mettu and Plaxton’s incremental



An Experimental Evaluation of Incremental 177

Data Set: pmed40 Data Set: Galvao150

= = = Local vs LP OPT - = = IPOPTvs LP OPT
O GreedyvLP OPT ++++ Local vs LP OPT
LP Rounding v LP OPT| 1.3 O GreedyvLP OPT

—— LP Rounding v LP OPT

1.05 K
o
00000 o -7
s eem et
| BN & TS ot - WA ) ! P
0 100 200 300 400 500 600 700 800 900 100 150
Index (k) Index (k)

Fig. 1. Quality of solutions of k-median Fig. 2. Quality of solutions of k-median
algorithms (dataset pmed40) algorithms (dataset Galvdol50)

k-median algorithm (MPInc), Lin et al.’s ALTINCAPPROX algorithm with so-
lutions from the Arya et al.’s single swap local search algorithm (LInc) and
Charikar et al.’s LP rounding (LPR) and Lin et al.’s BOUNDEDINCAPPROX al-
gorithm with the bounded envelope obtained from the Jain et al.’s greedy LMP
FL algorithm (GInc).

Our experiments show that Lin et al.’s algorithms perform much better than
the Mettu and Plaxton’s algorithm on the datasets. This inference is reinforced
by Figures Bl Ml Bl and [6 which show that the ratios of the costs of solutions
obtained from Lin et al.’s incremental algorithms to the LP optimum are always
better than the corresponding ratios of Mettu and Plaxton’s algorithm for a sam-
ple of datasets (pmedl0, pmed25, pmed40 and Galvao150). The Mettu-Plaxton
algorithm runs much faster than Lin et al.’s algorithms; these use a k-median
algorithm or a bounded envelope algorithm as a blackbox, which make them
very slow. However the quality of the incremental solutions obtained from Lin
et al.’s algorithm is much better than that of the Mettu-Plaxton algorithm.

Data Set: pmed10 Data Set: pmed25

1.8 T 1.8 T T
= = =Local IncvLP OPT = = =Local IncvLP OPT
17 N ++++ Bdd Env Inc vs LP OPT 17 nln‘, ++++ Bdd Env Inc vs LP OPT
- = M&PvLP OPT . - = M&PvLP OPT
P ! " —1p R;’undmg Inc v LP OPT) I b, —1p R;’undmg Inc v LP OPT)
16 " H . 1ef .
ooy e i1 Vs
1508, . ' I 1
8 14 ::' N g ] i.\.
T ] & 14n \
L " o i
u N g
13 . |3I Y
" ’ bt N
12 ‘—"“ 12 g
ve "-\
11 e ‘o, 14 \
-~ Ly NN (IR
Wemzmm T m - ] J== = IR
0 50 100 150 200 0 100 200 300 400 500
Index (k) Index (k)
Fig.3. Quality of solutions of incre- Fig.4. Quality of solutions of incre-
mental k-median algorithms (dataset mental k-median algorithms (dataset

pmed10) pmed25)



178 C. Nagarajan and D.P. Williamson

Data Set: pmed40

= = =Local IncvLP OPT
++++ Bdd Env Inc vs LP OPT
== M&PvLP OPT
LP Rounding Inc v LP OPT

Ratios
IS

y
0 100 200 300 400 500 600 700 800 900
Index (k)

Fig.5. Quality of solutions of incre-
mental k-median algorithms (dataset
pmed40)

Data Set: Galvao150

noy = = = Local Inc v LP OPT
1t <+ Bdd Env Inc vs LP OPT
Y ='='M&P vLP OPT
LP Rounding Inc v LP OPT]

Index (k)

Fig. 6. Quality of solutions of incre-
mental k-median algorithms (dataset
Galvao150)

4.3 Hierarchical k-Median

In this section we compare the performance of Plaxton’s hierarchical k-median al-
gorithm against Lin et al.’s ALTINCAPPROX hierarchical k-median algorithm on
the datasets. Note that Plaxton’s algorithm takes in any incremental k-median
solution as input and outputs a parent function which defines the hierarchical so-
lution. We give the incremental k-median solutions from our runs of ALTINCAP-
PROX and the Mettu-Plaxton algorithms as input to the Plaxton’s hierarchical
algorithm (PHLI and PHMP) and compare them against Lin et al.’s hierarchical
k-median algorithms’ solutions (HL, HG and LPRH) for different datasets.

Figures [1 8 @ and 00 show how the costs of the hierarchical k-median so-
lutions for different algorithms compare against the optimal linear program so-
lutions for different values of k for sample datasets pmedl0, pmed25, pmed40
and Galvao150. The algorithms we consider are ALTINCAPPROX algorithm (us-
ing Arya et al.’s local search k-median solutions (HL) and Charikar et al.’s LP
rounding solutions (LPRH)), BOUNDEDINCAPPROX algorithm (using bounded
envelope from Jain et al.’s greedy algorithm) (HG), Plaxton’s hierarchical k-
median algorithm on the incremental solutions of ALTINCAPPROX algorithm
(PHLI) and Plaxton’s algorithm on Mettu and Plaxton’s incremental k-median
solutions (PHMP).

The hierarchical solutions obtained by ALTINCAPPROX algorithms are better
than other algorithms. The ratios for the PHMP algorithm are not as good as
for the other algorithms since PHMP uses the incremental k-median solutions
of Mettu and Plaxton as input which are not as good as other incremental
algorithms in terms of quality. Lin et al.’s hierarchical algorithm (HL) which
computes hierarchical solutions directly from k-median solutions performs better
than the Plaxton’s hierarchical algorithm even when the incremental solutions
from ALTINCAPPROX are given as input.



An Experimental Evaluation of Incremental 179

Data Set: pmed10 Data Set: pmed25

= = =HLVLPOPT
©- HGVLPOPT

= = =HLVLPOPT
©+ HG v LPOPT

- = PHLIvLPOPT
——— PHMP v LPOPT
- LPRHVLPOPT

== PHLIvLPOPT 22
——— PHMP v LPOPT
* LPRHvLPOPT

150

B L

] fa CI -—-\._‘_;‘_',_-._“A_;;_,‘ bt
0 50 100 150 200
Index (k) Index (k)

500

Fig.7. Quality of solutions of hier-
archical k-median algorithms (dataset
pmed10)

Data Set: pmed40

25

= = =HLvLPOPT
+v+ HG v LPOPT
== PHLIvLPOPT
——— PHMP v LPOPT
+  LPRHvLPOPT

Ratios

oo~

0 100 200 300 400 500 600 700 800 900
Index (k)

Fig.9. Quality of solutions of hier-
archical k-median algorithms (dataset
pmed40)

Fig.8. Quality of solutions of hier-
archical k-median algorithms (dataset
pmed25)

Data Set: Galvao150

= = =HLvLPOPT
+++ HG v LPOPT
== PHLIvLPOPT
——— PHMP v LPOPT
+  LPRHvLPOPT

Index (k)

Fig.10. Quality of solutions of hier-
archical k-median algorithms (dataset
Galvao150)

5 Conclusions

We evaluate different k-median, incremental k-median and hierarchical k-median
algorithms on different datasets and show our results here. For the k-median
problem, Charikar et al.’s LP rounding algorithm performs better and faster on
average than other k-median algorithms like Arya et al.’s local search algorithm.
We also notice that in many real-life datasets the optimal LP solution for the
k-median problems for most values of k are integers which also makes the LP
rounding techniques much better in terms of the quality of the solutions.

The quality of incremental solutions, when ALTINCAPPROX algorithm is run
on the k-median solutions of Arya et al.’s local search algorithm and Charikar
et al.’s LP rounding algorithm, are much better than the incremental solutions
of Mettu and Plaxton’s algorithm. Even though the LP rounding algorithm per-
forms poorly for some small values of k, Lin et al.’s incremental and hierarchical
algorithms skips many of these poor solutions while bucketing the solutions



180 C. Nagarajan and D.P. Williamson

geometrically and this makes the corresponding incremental solutions compa-
rable in quality to the incremental solutions obtained from Arya et al.’s local
search k-median solutions.

Mettu and Plaxton’s incremental k-median algorithm is much faster than the
other incremental k-median algorithms we implement. However one important
point to note here is that we find good k-median solutions for all values of k
both in Arya et al.’s local search algorithm and Charikar et al.’s LP rounding
algorithm. Most of these solutions are not used at all by the Lin et al. algorithms
since it uses only one solution from each of the geometrically increasing buckets.
It would be useful if we would somehow be able to find a sequence of k-median
solutions that are geometrically increasing in cost in a faster way; this could lead
to significant improvements in the running times of the Lin et al. algorithms.

References

1. Alp, O., Erkut, E., Drezner, D.: An efficient genetic algorithm for the p-median
problem. Annals of Operations Research 122, 21-42 (22) (2003)

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. STAM Journal on
Computing 33, 544-562 (2004)

3. Beasley, J.E.: A note on solving large p-median problems. European Journal of
Operational Research 21, 270-273 (1985)

4. Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem (extended abstract). In: Proceedings of the
31th Annual ACM Symposium on Theory of Computing, pp. 1-10 (1999)

5. Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Incremental medians via online
bidding. Algorithmica 50, 455-478 (2008)

6. Galvao, R.D., ReVelle, C.: A Lagrangean heuristic for the maximal covering loca-
tion problem. European Journal of Operational Research 88(1), 114-123 (1996)

7. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual-fitting with factor-revealing LP. Journal
of the ACM 50, 795-824 (2003)

8. Kariv, O., Hakimi, S.L.: An algorithm approach to network location problems ii.
the p-medians. STAM Journal of Applied Mathematics 37, 539-560 (1979)

9. Lin, G., Nagarajan, C., Rajaraman, R., Williamson, D.P.: A general approach for
incremental approximation and hierarchical clustering. SIAM Journal on Comput-
ing 39, 3633-3669 (2010)

10. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal on
Computing 32, 816-832 (2003)

11. Plaxton, C.G.: Approximation algorithms for hierarchical location problems. Jour-
nal of Computer and System Sciences 72, 425-443 (2006)



Engineering the Modulo Network Simplex
Heuristic for the Periodic Timetabling Problem*

Marc Goerigk and Anita Schobel

Institut fiir Numerische und Angewandte Mathematik
Georg-August-Universitat Gottingen, Germany

Abstract. The Periodic Event Scheduling Problem (PESP), in which
events have to be scheduled repeatedly over a given period, is a complex
and well-known discrete problem with numerous real-world applications.
One of them is to find periodic timetables which is economically impor-
tant, but difficult to handle mathematically, since even finding a feasible
solution to this problem is known to be NP-hard. On the other hand,
there are recent achievements like the computation of the timetable of
the Dutch railway system that impressively demonstrate the applicability
and practicability of the mathematical model. In this paper we propose
different approaches to improve the modulo network simplex algorithm
[8], which is a powerful heuristic for the PESP problem, by exploiting im-
proved search methods in the modulo simplex tableau and larger classes
of cuts to escape from the many local optima. Numerical experiments on
railway instances show that our algorithms are able to handle problems
of the size of the German intercity railway network.

1 Introduction

The Periodic Event Scheduling Problem (PESP) as introduced in [I2] models
periodically reoccurring events that have to be scheduled according to given fea-
sible time spans. Its general modeling power made it the model of choice for the
computation of periodic timetables in public transport, see e.g. [BIY7I3I0]. Re-
cently, also connections to Graphical Diophantine Equations have been explored
[2] in the case of multiple periods.

The applicability of the model to real-world problems has been impressively
demonstrated by two recent milestones. In 2005, the new timetable for the un-
derground railway of Berlin was introduced [4], being the first mathematically
optimized railway timetable in practice. And in 2006 the largest Dutch railway
company, the Nederlandse Spoorwegen, introduced a completely new timetable,
with an estimated profit of 40 million Euro annually [I].

The most common approach to solving PESP problems is by mixed-integer
programming techniques [6]. However, these approaches suffer from high com-
putation times. In [§] a heuristic approach, the modulo network simplex method,

* Partially supported by grant SCHO 1140/3-1 within the DFG programme Algorithm
Engineering.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 181 2011.
© Springer-Verlag Berlin Heidelberg 2011



182 M. Goerigk and A. Schébel

is presented, which is based on the classic network simplex method. To the best
of our knowledge, this heuristic is currently the most powerful method to solve
large instances.

The purpose of this paper is to improve the modulo network simplex method’s
performance for practical timetabling instances. We will show that by engineer-
ing the concept of the original method, we are able to compute solutions with
both smaller runtimes and better objective values.

2 PESP and Periodic Timetabling

A periodic event 1 is a countably infinite set of events i, p € Z, with occurrence
times

t(ip) = t(@) +p-T

for a given period T, see [12]. A span constraint consists of an interval [I;;, u;;] C
R for a pair of events (¢, j). The span constraint is satisfied if

(t(7) = (i) mod T € [lij, usj-

The PESP problem is given as follows: For a given finite set of events with a
period T and a finite set of span constraints, find a time ¢(¢) for each periodic
event ¢ such that all span constraints are satisfied. It is shown [12] that PESP is
NP-hard by transformation from the Hamiltonian Circuit Problem.

Based on the PESP, the periodic timetabling problem can be formulated by in-
troducing Event-Activity-Networks (EAN) to model the time-dependent behav-
ior of the various vehicles considered [9]. EANs are directed graphs G = (€, .A)
with nodes

&= gurr ) <c:dep

that represent arrival and departure events of every train line at every station,
and edges
A= Adrive ) Await U Achange U Ahead

representing either driving, waiting and changing activities or the necessary se-
curity headway between vehicles sharing the same infrastructure. The events
are periodic since all arrivals and departures are repeated in every period, and
for each of the activities a span constraint is given which contains the minimal
and the maximal duration of the activity. The minimal duration guarantees a
certain level of robustness while the maximal duration controls the quality of
the timetable. Figure [l shows a small part of an EAN in which two trains share
track capacities of the same station and are therefore connected by a headway
activity. The orientation of such a headway activity is of no importance when
the span constraint is chosen properly.

The goal is to find a timetable assigning a time m; := ¢(i) mod T € R to
each of the events i € & for a given period T such that the span constraints
are satisfied, i.e., (m; — m;) mod T' € [l;;,u;;] for each activity (¢,5) € A. The
objective in the timetabling problem is not only to search for a feasible solution,



Engineering the Modulo Network Simplex Heuristic 183

Fig. 1. Detail of an Event-Activity-Network

but instead for an optimal one, namely we minimize the total passenger traveling
time given as
Z (71']'771'7;) modelij.
(i,5)eA

Instead of the event times m;,¢ € £, one can equivalently determine the slack
yij = mj — m — l;; for any edge (i,5) € A with lower bound l;;. Generally
speaking, the slack of an activity is the amount of time spent additionally to
its minimum duration. Using this concept, an alternative formulation (used by
the modulo network simplex) has been suggested in [7]. Let 7 = (€, A1) be
a spanning tree with its corresponding fundamental cycle matrix I', then the
periodic timetabling problem can be formulated as follows.

(PTT) min Z WijYij
(i,§)eA
st I'(y+1)=Tz
0 <wij <wuig— 1l V(i,j) € A
vij ERV(i,j) € A
zij ELV(i,j) € A\ AT,

where y = (yi)(,j)ea and I = (i) (i jyca- For details and correctness we refer
to [73]. As the variables z;; model the periodic character of the problem, they
will be referred to as modulo parameters.

Note that the modulo parameters are the reason why this problem is NP-hard.
For fixed variables z;; the timetabling problem is called aperiodic and is the dual
of a minimum cost flow problem that can be solved efficiently using the network
simplex method.

3 The Modulo Network Simplex Method

In this section we briefly describe the method of [§]. Its main idea is to encode a
solution as a spanning tree 7; U7, by setting the modulo parameters of the tree



184 M. Goerigk and A. Schébel

edges to 0 and the duration of these activities either to their respective lower or
upper bound.

Definition 1. [§]/ A spanning tree structure (7;,7,) is a spanning tree T =
T, UT, with an edge partition such that y;; is set to 0 on all edges (i,7) € T; and
set to ui; — lij for all edges (i,7) € Ty,.

A spanning tree structure uniquely determines a periodic timetable by calculat-
ing the slack y;; for the missing edges (i,5) ¢ 7 such that the cycle condition
I'(y +1) =Tz of (PTT) holds. On the other hand, it is shown in [7] that

(ﬂ—) € Q := conv.hull ({(Tf) |l” < T — T +TZZJ < Uij5 2 € Zm;’fr c Rn})
z z

is an extreme point of @ if and only if it is a solution that is given by a spanning
tree structure. Thus it is sufficient to investigate only these solutions.

The modulo network simplex works as follows: As it is the case in the classic
network simplex method, a given feasible spanning tree solution is gradually
improved by exchanging tree and non-tree edges that lie in the same fundamental
cycle, i.e., the cycle that consists of the non-tree edge and its unique path in the
spanning tree. This is done with the help of a simplex-like tableau.

©® &,[1,10] ®

(a) Timetabling instance. (b) Spanning tree structure
with slack and timetable.

Fig. 2. A timetabling instance with a feasible spanning tree structure

Ezample 1. In Figure P(a) a problem instance is given with period T' = 10 and
in 2Ib) a feasible spanning tree structure, where 7 = 7;. The corresponding
modulo simplex tableau can be seen in Table 3] (a). It contains the fundamental
cycles that are induced by the non-tree arcs ey, e5 and eg.

The objective value w'y is calculated by Y- jyor Wijyij + 2 jyer, Wij(Uij —
l;;). Let y¥ be the slack vector after pivoting edges e; and e;. By writing
[y]r :=y mod T for short and denoting by b;; the tableau entry for the edges e;
and e;, the change in the objective value when pivoting a non-tree edge e; and
a tree edge e; to 7; is



Engineering the Modulo Network Simplex Heuristic 185

€1 €2 €3 €4 €5 €g Yy w
€4 1 1 111 0 O 0|4
es -1 -1 0]0 1 0 2 15
es |0 -1 110 0 1 3 |1
W'y | | 113 ]

Fig. 3. The modulo simplex tableau associated with Figure 2I(b)

wtyz] _ wty

br; i
= Z Wi [yk - bkj yl} + wj [;J + yj] + Z WrYk — Z Wk Yk
) ij AT j T

ke A\(TU{i} K keT, k€A
buj Yi
Z W ({yk b‘J' yz] yk> + wj (L} +yj:| yj> — Wili,
ke A\(TU{i}) YodT 4 T

while the change when pivoting to T3, is calculated analogously.

Every non-zero entry of the left part of the table stands for a possible basis
exchange of a non-tree-arc with a tree-arc that lies on its induced fundamental
cycle. However, due to the modulo parameters, reduced costs as in the classic
network simplex cannot simply be read off in the tableau. In consequence, the
resulting change of every entry of the simplex tableau has to be calculated which
results in a time-consuming complexity of ¢- (m —n+1)-(n—1)-(m—n+1)=
O(m?n + n?), where m = |A| and n = |€|. Furthermore, as the problem is not
convex, many local optima exist, which is the reason why methods of global
optimization should be added.

In order to do so, we use the following correspondence between the pivoting
operation in the modulo network simplex method and cuts, i.e., sets {(¢,7) € A :
i€& and j € EPU{(i,5) € A:i €& and j € &} for a partition E;WE = £.
Every edge e of a spanning tree canonically induces a fundamental cut by taking
the two connected components that appear when removing e. Pivoting a tree and
a non-tree edge as it is done in the modulo network simplex method can therefore
be interpreted as shifting slack from the edges of the corresponding fundamental
cut to the non-tree edge. Thus, the modulo network simplex searches iteratively
for improving fundamental cuts.

Notation. Let a cut ¢ be given by its node partition E1UE, and let § € R.
We say that we apply the cut ¢ with 6, if the slack y;; is increased by o for
all edges (i,7) with i € &1, j € & and decreased by § for all edges (i,7) with
1 € &, j €& Moreover, when the resulting modulo paramters are fixed and a
new spanning tree structure is computed, the cut is called globally improving, if
the objective value decreases.

To overcome local optima, any other class of cuts can be chosen, which will
force the full recomputation of the corresponding simplex-tableau. In that case,



186 M. Goerigk and A. Schébel

outer loop
inner loop
No improving pivot operation. No cut'found.
Input: : H : H
2 a ' Calculate modulo : Calculate new costs ' Search for a H Output:
Timetabling instance f simplex tablea ; for all pivot operations H feasible improving cut Periodic Ti bl
[Feasible spanning tree structure| piex - H pivot operations. H 1ble improving eut : eriodic Timetable

Whilé, best feasible pivo} operation is improving Cut found.

Apply fundamental cut.

Update tableau. Ly i

Fig. 4. Schematic process of the modulo network simplex

modulo parameters will have to be fixed and the dual min-cost balanced flow
problem be solved in order to obtain a new spanning tree structure.

Figure [ summarizes the main steps of the algorithm. The inner loop and
outer loop shown will be used for our improvements in the next section.

4 Improving the Modulo Simplex

We proceed in two steps. On the one hand, we will improve the runtime of the
algorithm by proposing alternative schemes for choosing a basis exchange pair
in the inner loop, i.e., the fundamental cut. This is done in Section £l On the
other hand, in order to improve the quality of the solution, we will investigate
several further cut possibilities that force the recomputation of the spanning tree
structure used in the outer loop and hence overcome local optima, see Section 4.2

4.1 Improving Runtimes: The Inner Loop

The time needed for investigating a single column of the simplex tableau grows
quadratically in its number of non-zero entries. This is due to two reasons: The
number of non-zeros determines the number of multiplications that have to be
carried out for calculating the change of the objective function value, but also
determines the number of possible basis exchanges that have to be tested. Since
timetabling instances typically have sparse columns in the simplex tableau, we
present two different algorithms that take advantage of this fact.

To illustrate this observation, we randomly created 100 simplex tableaus for
a railway instance and counted the number of non-zeros for each column. The
resulting distribution showed that about 10% of all columns contained more than
80% of all non-zero entries.

In terms of runtimes, these are the least effective columns to check. Thus, by
neglecting only 10% of all tree-edges, the largest part of computation time is
saved. This is exploited by the following two algorithms:

Modus ”First Quality”: Search the columns of the modulo simplex tableau for
an improving pivot operation beginning from the one with fewest non-zeros. As
big improvements are possible in the beginning of the loop, but only small ones



Engineering the Modulo Network Simplex Heuristic 187

at the end, a dynamically updated criterion is used which stops the procedure
if the change in the objective value is considered satisfactory.

Modus ”Percentage”: Search only the p% of the columns, namely those with the
fewest non-zero entries, for an improving pivot operation and apply the best pivot
operation change found. Some randomly created simplex tableaus can be used to
determine how large the search space should be and hence to fit the parameter p
to the particular timetabling instance. Choosing p is an easy possibility to decide
on the time the algorithm may use for the inner loop.

Both approaches avoid searching the whole simplex tableau while neglecting
as few pivot possibilities as possible.

4.2 Improving Quality: The Outer Loop

To escape a local minimum of the outer loop, we investigate four classes of non-
fundamental cuts. The first one, single node cuts, has been suggested in [8] while
the other three are new.

Single Node Cuts. The time 7; of a single event ¢ is delayed by § € Z, i.e., the
slack y;; of in-going edges (j, %) is increased by J, while slack of outgoing edges
(i,7) is decreased.

In [8], a single node cut is applied, if

> wij(yij — 0) + > wjilysi +0) <0, (1)

(i,j)EA:i€E1,EES (4,))EA:i€E,JEES

where & = {i}, & = £\ {i} for a node ¢ € £. This is based on the obervation
that whenever the local condition () holds, the cut is globally improving. We
will call cuts fulfilling () locally improving. However, as a given spanning tree
structure is optimal with respect to the induced modulo parameters, a necessary
condition for a single node cut to be locally improving is that it changes at least
one modulo parameter. This is unlikely to happen, taken into consideration that
the slack y;; of at least one of the adjacent edges is set to be 0 or u;; — I, as
the solution is induced by a spanning tree structure.

Waiting Edge Cuts. To improve the probability of finding a single node cut
that is feasible, i.e., respects the time constraints 0 < y;; < wug; — l;; for all
(i,j) € A, we counsider cuts which are induced by an edge (¢,7) with a small
feasible time span w;; — l;;. By doing so, the slack of the edge (i, ;) does not
need to be changed, thus increasing the probability that the cut is feasible. Here
we use another characteristic of timetabling instances, namely that activities
with small time spans w;; — l;; are usually the activities of Awais. We hence
denote the class of cuts that are induced by a partition

{Za]} U g\{l,j} fOI‘ (Za]) S Await

as waiting edge cuts.



188 M. Goerigk and A. Schébel

Random Node Cuts. () is only a sufficient condition, i.e., cuts may still be glob-
ally improving, when they are not locally improving. In our method of random
node cuts we apply feasible single node cuts, neglecting if () holds or not, i.e.,
whether they improve locally. Hence we force the inner loop of the modulo net-
work simplex algorithm to start again, even at the cost of a possible temporary
higher objective value.

Multi Node Cuts. The next approach investigates the class of cuts which are
created by iteratively expanding single node cuts. Let a cut ¢ that is induced
by the partition V;WUV, and a single node cut ¢; for node ¢ € V5 be given in a
directed graph G(V, E). Then we call the cut that is induced by (V3 U {i}) and
(Va\ {i}) the exclusive union of these cuts and denote it by ¢ @ ¢;. The following
lemma shows that all cuts can be written by using single node cuts.

Lemma 1. Let a cut ¢ in a graph G(V, E) be given by its node partition V1UVs.
Then ¢ can be written as the exclusive union of single node cuts: @ievl c; =c.

Proof.

First, let e € ¢. Then there holds either e = (i,7) or e = (j,¢) with ¢ € V4 and

j € V4. As there is a single node cut for node 4, namely ¢;, but by construction

none for node j, e is contained in the exclusive union of the single node cuts.
Now let e € @¢;. By construction of the single node cuts again either source

or target of the edge is in Vi, while the other node is in V5. Therefore, e € ¢. [

As a direct consequence, the change of a timetabling solution by applying any
cut with a ¢ is equivalent to the successive application of single node cuts with
this same ¢. In fact, both approaches of defining a cut by its node partition or
by its single node cuts are equivalent, as the following theorem states.

Theorem 1. Let G(V, E) be a connected graph and ¢ = ®;cjc; a nonempty cut,
given by single node cuts and induced by the partition ViUVy. Then I =V (or
I = V4 if the orientation of the cut is neglected).

Proof. — First, let V3 C I. Assume that there are adjacent nodes i,j € I with
i € Viund j ¢ V5. Then (i,5) ¢ @®icrci, but (i,5) € ¢ - therefore, such
adjacent nodes cannot exist. As ¢ is nonempty, I = V cannot hold. As G
is connected, there is a node ¢ € I\ V; that is adjacent to a node j ¢ I.
Therefore the edge (4, ) would be contained in @;¢r¢;, but not in c.

— Now, let I C V3. Then there holds @;erc; = @cy\1¢j up to orientation and
this case is reducible to V2 € J with J = V' \ I, which has already been
considered.

— Finally, let ITNVy # 0, INVa # ( and I no superset of Vi or V5. To have
¢ = @iercy, for every edge (i,7) with ¢ € V] and j € Vo w.l.o.g. there has to
hold i € T and j ¢ I. From the assumptions, there is i € VoNI and j € Vo \ 1.
As the graph is connected, there is a path from i to j. ¢ cannot be adjacent
to a node in Vj, as then ¢ € I could not hold. There fore there is an edge
(z,y) with x € VoN I and y € Vo \ I, that is contained in @®;erc;, but not in
c. ]



Engineering the Modulo Network Simplex Heuristic 189

We will call a cut that is given by the node partition V1WV5, connected, if both
subgraphs G1(V1, Ev,) and G2 (Va, Ey,) are connected. We can state the follow-
ing criterion for the connectivity of a cut.

Corollary 1. A cut ¢ = @ierc; in a graph G(V, E), where each of the ¢; is a
single node cut, is connected if and only if the subgraphs that are induced by I
and V' \ I are connected.

Similar to connected components in graphs, we can define connected components
of cuts. Let a cut ¢ induced by the node partition V31UV, and a subcut ¢’ C ¢,
induced by V/WVy with Vi C V; and Vo C V3, be given. ¢ is called connected
component of ¢, if ¢’ is connected and there is no cut ¢’ with ¢/ C ¢” C ¢, that
is connected as well. We can easily conclude the following property:

Theorem 2. Connected components of a cut are pairwise disjoint.

Proof.
Let ¢! and ¢? be connected components of a cut ¢ with ¢! Ne? # ). Then ¢/ :=clU
c? is connected and ¢! C ¢ C ¢. By the definition of connected components, ¢!

and ¢? cannot share a common edge. (]

Therefore, if a cut is applied to a timetabling solution, then the objective value
changes according to the sum of changes on every single edge. As connected
components are disjoint, the objective value changes according to the sum of
changes in every component.

Corollary 2. In a timetabling solution the change of the objective value by ap-
plying a cut ¢ with § € [0,T — 1] equals the sum of changes of the connected
components.

This means that the search for a locally improving cut in an Event-Activity-
Network can be restricted to connected cuts. This result is exploited by a greedy
search algorithm, which successively enlarges a set of nodes starting from a
randomly chosen single node ¢ until the induced cut is locally improving. The
algorithm therefore restricts its search space to connected cuts. We refer to the
resulting cuts as multi node cuts.

5 Experiments

In this section the performance of the proposed improvement techniques is eval-
uated. For our experiments we used close to real-world instances of the LinTim
toolbox [11]]. All calculations were carried out on machines with 64 Bit Dual Core
AMD Opteron Processors running at 2000 MHz with 12 GB working memory.
The average need for RAM was only at about 50 MB. Table [Tl gives an overview
about the sizes of the five instances we considered.

To find a feasible spanning tree structure we applied a constraint propagation
approach that is able to find a feasible solution within some minutes of compu-
tation time. The modulo parameters found are then fixed and the dual problem



190 M. Goerigk and A. Schébel

Table 1. Instance sizes

Instance Events Activities
Small 3533 5575
Medium 1 3664 6378
Medium 2 3668 6556
Large 1 4184 7061
Large 2 4873 7898

Table 2. Objective value improvement in percent with respect to initial solution using
steepest descent. The best result per row is written in bold font.

Instance  Single Node Waiting Edge Random  Multi Node

Cuts Cuts Cuts Cuts
Small 17 18 21 28
Medium 1 24 20 24 29
Medium 2 17 17 20 29
Large 1 23 23 27 34
Large 2 20 15 26 32

is solved with the help of the classic network simplex method. The resulting
underlying spanning tree structure of the network simplex is then used as input
for the modulo network simplex.

We evaluate the possible combinations between search methods for the inner
and the outer loop of Figure din the following ways:

1. For the inner loop, we use the steepest descent method. This is the original
choice of the modulo network simplex. To escape local optima in the outer
loop, we either use single node cuts, waiting edge cuts, random cuts or multi
node cuts.

2. We fix the usage of single node cuts as the search method of the outer loop,
as in the original method. For the inner loop, we use steepest descent, modus
percentage and modus first quality.

For the first set of experiments, Table [2] gives an overview about the relative
improvement of the initial solution. In the case of single node, multi node and
waiting edge cuts, the search was performed until no more feasible and improving
cut was found. This cannot be applied to random cuts - we hence restricted the
number of random node cuts to three.

On average, using single node cuts improves the objective value of the initial
solution by 20.2%, while the usage of multi node cuts yields an average improve-
ment of 30.4%. For every single instance, the multi node cuts performed best,
with a difference of up to 12%. Waiting edge cuts perform similar to single node
cuts. In spite of their simplicity, random cuts yield surprisingly good results.

Concerning the second set of experiments, Table [l compares the runtimes in
seconds. Modus first quality and modus percentage outperform steepest descent
on every instance.



Engineering the Modulo Network Simplex Heuristic 191

Table 3. Runtimes in seconds using single node cuts. The best result per row is written
in bold font.

Instance Steepest Modus Modus

Descent  First Quality Percentage
Small 1747 956 895
Medium 1 4223 1661 1727
Medium 2 3385 1531 1660
Large 1 4878 2409 1464
Large 2 6685 3575 3233

Table 4. Objective value improvement in percent with respect to initial solution using
single node cuts. The best result per row is written in bold font.

Instance Steepest Modus Modus

Descent  First Quality  Percentage
Small 17 20 21
Medium 1 24 22 25
Medium 2 17 19 19
Large 1 23 26 22
Large 2 20 26 29

The results show that the runtimes are improved by up to 70% in the case
of Large 1, with average runtimes of 4184 seconds for steepest descent, 2026
seconds for modus first quality and only 1799 seconds for modus percentage.

Of course, achieving small runtimes with high objective values would be a
Pyrrhic victory - in fact, the "fastest algorithm” would be to do nothing, i.e.,
not to improve the given solution at all. We therefore show the respective solution
quality in Table @l

It can be seen that the modi percentage and first quality significantly improve
the calculation times compared to the method from [§], while being competitive
in quality.

6 Conclusion

We have analyzed a powerful method for solving the PESP in the case of
timetabling instances. Specific problem properties have been exploited and used
to improve the runtime per iteration as well as avoid getting stuck in a local min-
imum. The superiority of some of the possible combinations of these approaches
was demonstrated on timetabling instances.

Further research includes using the modulo network simplex method for ro-
bustness purposes. Basically, reducing the average slack results in timetables
that have shorter traveling times for passengers, but also less buffer times and
thus are more sensitive to disruptions. When using the neighborhood search



192 M. Goerigk and A. Schébel

as a "black box” model for other objective functions like a preferable distribution
of buffer times, we will be able to use the presented methods to create solutions
that can cope better with unavoidable disruptions.

References

1. Kroon, L., Huisman, D., Abbink, E., Fioole, P., Fischetti, M., Marti, G., Schri-
jver, A., Steenbeek, A., Ybema, R.: The new dutch timetable: The OR revolution.
Interfaces 39, 6-17 (2009)

2. Galli, L., Stiller, S.: Strong formulations for the multi-module PESP and a
quadratic algorithm for graphical diophantine equation systems. In: de Berg, M.,
Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 338-349. Springer, Heidelberg
(2010)

3. Liebchen, C.: Periodic Timetable Optimization in Public Transport. PhD thesis,
Technische Universitét Berlin (2006)

4. Liebchen, C.: The first optimized railway timetable in practice. Transportation
Science 42(4), 420-435 (2008)

5. Liebchen, C., Mohring, R.: The modeling power of the periodic event schedul-
ing problem: railway timetables — and beyond. In: Geraets, F., Kroon, L.G.,
Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004.
LNCS, vol. 4359, pp. 3-40. Springer, Heidelberg (2007)

6. Liebchen, C., Proksch, M., Wagner, F.H.: Performances of algorithms for periodic
timetable optimization. In: Computer-aided Systems in Public Transport, pp. 151—
180. Springer, Heidelberg (2008)

7. Nachtigall, K.: Periodic Network Optimization and Fixed Interval Timetables.
Habilitationsschrift, Deutsches Zentrum fiir Luft- und Raumfahrt Braunschweig
(1998)

8. Nachtigall, K., Opitz, J.: Solving periodic timetable optimisation problems by
modulo simplex calculations. In: Proc. ATMOS (2008)

9. Odijk, M.: A constraint generation algorithm for the construction of periodic
railway timetables. Transportation Research (B) 30, 455-464 (1996)

10. Peeters, L.: Cyclic Railway Timetable Optimization. PhD thesis, Erasmus Univer-
sity of Rotterdam (2003)

11. Schachtebeck, M., Schobel, A.: Lintim — a toolbox for the experimental evaluation
of the interaction of different planning stages in public transportation. Technical
report, ARRIVAL Report 206 (2009)

12. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.
SIAM J. Disc. Math., 550-581 (1989)



Practical Compressed Document Retrieval*

Gonzalo Navarro', Simon J. Puglisi?, and Daniel Valenzuela'

! Dept. of Computer Science, University of Chile,
{gnavarro,dvalenzu}@dcc.uchile.cl
2 School of Computer Science and Information Technology
Royal Melbourne Institute of Technology,
simon.puglisi@rmit.edu.au

Abstract. Recent research on document retrieval for general texts has
established the virtues of explicitly representing the so-called document
array, which stores the document each pointer of the suffix array belongs
to. While it makes document retrieval faster, this array occupies a sig-
nificative amount of redundant space and is not easily compressible. In
this paper we present the first practical proposal to compress the docu-
ment array. We show that the resulting structure is significatively smaller
than the uncompressed counterpart, and than alternatives to the docu-
ment array proposed in the literature. We also compare various known
algorithms for document listing and top-k retrieval, and find that the
most useful combinations of algorithms run over our new compressed
document arrays.

1 Introduction

Document retrieval queries aim at finding the documents of a text collection
most relevant to a given query, where relevance is usually defined on frequency
grounds. Such queries have been classically privative of Natural Language col-
lections and handled with inverted indexes. In the last decade, however, there
have been various research efforts towards generalizing them to arbitrary text
collections, where the texts can correspond to ADN or protein sequences, text in
Oriental languages (some of which cannot be easily split into words), program
code, and symbolic sequences in general. See Gagie et al. [7] for a recent survey.
Muthukrishnan [I6] established important milestones in this area. He pro-
posed, among other less popular ones, the following fundamental document re-
trieval queries, which form the basis of more sophisticated retrieval activities:

— Document listing: List the ndoc distinct documents where a pattern p ap-
pears as a substring.

— Frequency computation: Same as above but also compute the number of times
p appears within each returned document.

— Top-k retrieval: Find the k documents where p appears most often.

* Partially funded by the Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile; by Fondecyt Grant 1-110066, Chile;
and by the Australian Research Council.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 193 2011.
© Springer-Verlag Berlin Heidelberg 2011



194 G. Navarro, S.J. Puglisi, and D. Valenzuela

Assume the text collection is formed by n documents, which are strings over
alphabet [1, 0], and let us call T'[1, N] their concatenation. Classical text indexes
[1UT4] can find all the occ occurrences of pattern p in T in time O(|p| + occ)
and then filter the ndoc distinct documents. This solves document listing, but
occ can be much larger than ndoc. Muthukrishnan [16] showed how to solve the
document listing query in O(|p| + ndoc) time, which is essentially optimal.

A serious concern on this solution is space, however. It requires O(N 1g N) bits,
much more than the Nlgo bits required by the text itself. Part of this space
is used by a suffix tree [I], which can be easily replaced by one of the many
compressed suffix arrays (CSAs) of the literature [I7/4]. Such CSAs represent a
suffix array [I4] plus the text, all within compressed space |[CSA| < Nlgo.

The other part of the space owes to a so-called document array. Much research
has been carried out around the problem of representing it in compact form
[22120/TTIRI3]. The current situation is that one either has to spend N lgn bits
for representing the document array using a wavelet tree [10], or one can simulate
it using just o(IN) bits on top of |CSA|. The second choice is clearly preferable
both in theory and in practice for document listing.

However, document listing is just the most elementary activity. In order to
rank documents by importance to the query, frequency computation and top-k
retrieval are essential, and in this case the situation is very different. The wavelet
tree representation directly computes frequencies and supports heuristics for top-
k queries. The alternative simulation requires now the space for the global CSA
and the CSA of each individual document. This turns out to be slower and
require much more space in practice than the wavelet-tree based solution [3].

Therefore, the current status is that, if we wish not only to carry out document
listing, but also to report frequencies, or to do top-k retrieval, the best alternative
in practice is to store a wavelet tree representing the document array, which
requires N lgn bits. This is possibly much more than the (at most) N lgo bits
required by a CSA (which by itself represents T" and offers classical indexed text
searches). The known techniques to compress wavelet trees [10] do not work for
the document array.

In this paper we introduce the first compressed representation of wavelet trees
that is useful for the document array. The representation uses grammar compres-
sion (precisely, RePair [12]) to exploit repetitions in the array. Such repetitions
arise as a consequence of the compressibility of the text collection [97]. Our
experiments over various collections show that our technique obtains significant
space reductions, up to 40% of the original wavelet tree sizes. In exchange, op-
eration times are higher. Yet we confirm that the time (and space) is still better
than the alternative of not using wavelet trees for the problem of document
listing with frequencies. We also study the wavelet trees in combination with
various techniques for top-k retrieval [IT3], where our compressed wavelet trees
offer a very attractive space/time tradeoff.

Our representation might have independent interest, as it is the first in
grammar-compressing a sequence while supporting symbol rank and select op-
erations on it. Those operations are useful in a wealth of applications.



Practical Compressed Document Retrieval 195

2 Related Work

Muthukrishnan’s solution [16] made use of the so-called document array. A suffix
array A[l, N] points to all the suffixes of T'[1, N] in lexicographic order [I4]. All
the occurrences of any p in T are pointed from an interval A[sp, ep], which can
be found in time O(|p|lg N) (or O(|p|) with the help of the suffix tree [I]). The
document array D[1, N] is such that D[i] tells the document suffix A[i] belongs
in T. So the document listing problem is solved by first finding [sp, ep] using
A, and then listing the distinct values in D[sp, ep]. To do this in O(ndoc) time,
Muthukrishnan uses a second array C[1, N], which at C[i] stores the last j < ¢
such that D[j] = D[i]. C' must also answer range minimum queries (RMQs),
telling in constant time the position of the minimum in a range of C' cells.

In order to reduce space, the suffix tree or array can be replaced by a com-
pressed suffix array (CSA) [I7/4], which stores both A and T in compressed
space, for example within |[CSA| = (1 + !)Ho(T) + o(nlgo) bits [19] or |[CSA| =
nH(T) + o(nlgo) bits [BI10], where Hy(T) < lgo is the empirical k-th order
entropy of T' [I7]. CSAs find [sp, ep] in time as good as search(p) = O(|p|lg N)
[19] or even search(p) = O(|p|lgo) [BI0]. They compute any Afi] or A~1[i]
value in time t4, for example t4 = O(log® N) [19] or t4 = O(log'** N)) [BII0).
They can also reproduce any text substring.

The document array D, however, requires N lgn bits, which is significant and
totally redundant: one can infer D[i] from A[i] and some information on the
limits of the documents in T'. Array C is even more space-consuming, N lg N
bits, and equally redundant. The RMQ data structure [6] adds 2N + o(N) bits.
This extra space limits the applicability of the solution to document retrieval.

There have been various approaches to reduce the space of Muthukrishnan’s
solution. Mékinen and Véliméki [22] used a wavelet tree [10] to represent D.
While the wavelet tree takes essentially the same space of the plain representa-
tion, N lgn+o(N lgn) bits, it can emulate array C, which is thus not represented.
The time for document listing becomes O(search(p) + ndoclgn). The wavelet
tree also allowed them to compute the frequency of p within any document, in
time O(lgn). The RMQ data structure was still necessary.

Gagie et al. [8] showed that the wavelet tree was powerful enough to get
rid of the whole Muthukrishnan’s algorithm. The wavelet tree alone, through a
so-called range quantile operation, was able to deliver the distinct elements in
Disp, ep], with their frequencies, in O(lgn) time per delivered item.

Culpepper et al. [3] explored different heuristics to solve the top-k problem
using this very same wavelet tree. They found out that their so-called “greedy”
heuristic was able to find the top-k documents much faster than listing them all
and choosing the most frequent ones. They also showed that the structure was
competitive with inverted indexes on Natural Language text collections.

A parallel development started with Sadakane [20]. He proposed to store
a bitmap B[1, N] marking with a 1 the positions in T where the documents
started. B was enhanced with rank operations: rank(B, i) tells the number of
1s in BI1,i]. Hence D[i] = rank(B, A[i]) could be computed with very little
extra space on top of the CSA: A compressed representation of B requires just



196 G. Navarro, S.J. Puglisi, and D. Valenzuela

nlg N 4+ O(n) + o(N) bits and supports rank in constant time [I8]. To emu-
late Muthukrishnan’s algorithm, Sadakane showed that access to C' is not really
needed, just RMQ queries on C. He designed an RMQ structure using 4N +o(N)
bits that does not need to access C. The time to list each document is O(t4).
Both in theory and in practice, this solution is competitive in time and uses
much less space than those based on wavelet trees, yet it only solves document
listing. Hon et al. [II] showed how to reduce the extra space to just o(N) by
sparsifying the RMQ structure, yet the time raises to O(t4 1g' ™€ N).

For computing frequencies, Sadakane [20] proposed to store a CSA for each
document d of the collection. By computing A and A~! a constant number of
times over the global CSA and that of document d, it is possible to compute
frequencies on document d. An extra, symmetric, RMQ data structure must be
stored for this sake. Thus the space is 2|CSA| + O(N) bits, which may compare
favorably to the |CSA| + Nlgn + o(Nlgn) bits needed by wavelet trees. The
time for computing a frequency is O(t4), which again may compare favorably
with wavelet tree’s O(lg n). In practice, however, Culpepper et al. [3] found that
many small CSAs posed a much higher space overhead than that of the global
CSA, so the structure was much larger than the wavelet tree. The speed was
also slower than that offered by wavelet trees. We confirm in this paper that the
solution is still slower than our slower-and-smaller compressed wavelet trees.

Hon et al. [I1] showed that the second RMQ data structure introduced by
Sadakane is unnecessary if one accepts an O(lg N) slowdown factor. In the light
of the results of Culpepper et al. [3], this is unlikely to change matters in practice,
because a reduction in 2N bits is insignificant but the slowdown is not. The key
contribution of Hon et al., however, is an algorithm for top-k retrieval with time
guarantees (which the heuristics of Culpepper et al. do not offer). Hon et al.
build a sparse suffix tree on the collection, so that top-k queries over an interval
of multiples of g = k - b, for a parameter b, are precomputed. Thus to solve for
any interval [sp, ep], only O(kb) elements at the extremes must be accessed, their
frequency counted, and possibly inserted into the precomputed result. The extra
space is O((N/b)1g N lgn) bits on top of a solution for computing frequencies.
By choosing b = ©(Ig*"¢ N), this space is o(n) and the time for top-k queries is
O(kta lg3te N ). Any of the discussed solutions for computing frequencies can be
used, and thus wavelet trees are of interest as a building block of this solution.
There is no comparison in the literature, however, between this technique and
the heuristics of Culpepper et al. [3], which as explained work on wavelet trees.

Thus, the best performance in practice is given by the wavelet tree of D, but
its space is still high. The only clue at compressing it was given by Gagie et al. [7],
who noted that D contains almost the same repetitions of the differential suffix
array [9], and thus a grammar-based compression would reduce its size when
the text is compressible. The practical impact of this theoretical result had not
been verified, however. Moreover, the situation is more complicated because we
do not need to represent D, but the wavelet tree of D, in order to support the
various document retrieval tasks. The main point of this paper is to implement a
grammar-compressed wavelet tree for D and evaluate its practical performance.



Practical Compressed Document Retrieval 197

3 Bitmaps and Wavelet Trees

Given a bitmap B[1, N], we define, for b € {0, 1}, operation ranky(B,i) as the
number of occurrences of bit b in B[1,1], and selecty(B, j) as the position in B
of the jth occurrence of bit b.

Both operations can be solved in constant time by spending o(/N) bits on top
of B [15], or by representing B in compressed form [I8]: Let m be the number
of 1s in B, then the total space is m1lg ¥ + O(m) + o(N).

A wavelet tree [10] represents a sequence S[1, N] over an alphabet [1, p]. At
the root it stores a bitmap B[l, N] so that B[i] = 0 iff S[i] < p/2. The left
child of the root represents the subsequence of S formed by the symbols < p/2;
the other symbols form a subsequence at the right child. Those children are
processed recursively over their alphabet ranges, until reaching the leaves. The
wavelet tree has O(p) nodes and height [lg p]. Its bitmaps add up N[lgp] bits.

By using rank and select on the bitmaps, the wavelet tree gives access to
any S[i] in time O(lg p), thus it constitutes an alternative representation of S
within about the same size, N lg p+ o(IV lg p) bits. Other wavelet tree traversals
compute also symbol rank and select on S, where the argument b can be any
¢ € [1, p], also in time O(lg p). As explained, the wavelet tree is also useful for
other types of queries of interest (in particular) to document retrieval [SJ3].

If the compressed bitmap representation is used [I8], then the space of the
wavelet tree becomes the zero-order entropy of S, NHy(S) + o(N log o) [10]. In
our case, however, the zero-order entropy of the document array is likely to be
lg n bits per symbol, unless the document sizes are very different. There is no
relation to the compressibility of the text itself.

4 Grammar Compression of Bitmaps

We describe a grammar-based compression of bitmaps B[1, N] that supports
rank and select operations on the compressed representation. We focus on Re-
Pair [12] compressor. It successively finds the most frequent pair of symbols in
the text, yz, and replaces it by a new symbol z (which can be involved in further
pairings), adding a new grammar rule x — yz. When all the pairs are unique,
RePair terminates and delivers the remaining sequence, C, and the set of rules,
R. We use a variant that generates a balanced grammar [2], of height O(lg N).

For providing random access we use sampling. Let ¢(c) = 1 for terminals c,
and for nonterminals let £(z) be the length of the string of terminals x expands
to (that is, £(z) = £(y) + {(2) if # — yz € R). Now let L(i) = 1+ 3i—; £(Cj])
the starting position in B of the symbol C[i] when expanded.

We sample B at regular intervals s. For each position BJi - s| we store P[i] =
(p,0,1), where p is the position in C of the symbol whose expansion will contain
Bli - s], that is, p = max{j, L(j) < i-s}. The second component is the offset
within that symbol, o = i-s— L(p), and the third is the rank up to that symbol,
r = ranki (B, L(p) —1). Finally, we store, for the nonterminals z, the length £(x)
and the number of 1s, r(z), of the string of terminals they expand to.



198 G. Navarro, S.J. Puglisi, and D. Valenzuela

To answer ranki(B,i), we compute j = |i/s| and P[j] = (p,0,r). We then
start from C[p] with position [ = L(p) = ¢ — o and rank r. From position p we
advance in C until [ > 7. Each symbol of C can be processed in constant time
while [ and r are updated, since we know ¢(x) and r(x) for any symbol z. Finally
we arrive at a position p’ > p so that [ = L(p') <i < L(p' +1) =1+ £(C[p']). At
this point we complete our computation by recursively expanding C[p'] = x. Let
x — yz € R, then if | + £(y) < i we expand y; otherwise we increase [ by £(y), r
by r(y), and expand z. As the grammar is balanced the total time is O(s+1g N).

For select we obtain the same complexity by first binary searching P to find
the right interval and then traversing sequentially the block, until exceeding the
desired number of Os or 1s, and finally expanding the last symbol of C.

Let R = |R| be the number of rules in the grammar and C' = |C| the length
of the final array. Then a RePair compressor would require O((R+ C') g R) bits.
Our representation requires O(R1g N + Clg R + (N/s)lg N), and the time for
the operations is O(s+1g N). The minimum interesting value for s is g N, where
we achieve space O((R+ C)lg N + N) bits and O(lg N) time for the operations.
We can reduce the O(N) extra space to o(N) by increasing s, which impacts
query times and makes them superlogarithmic.

The scheme can be extended to sequences S[1, N] over a small alphabet [1, p].
The only difference is that the nonterminals z must store r.(z) for each ¢ € [1, p].
Similarly we must store p rank values at each sampled position. This raises the
overall space to O(Rplg N + ClgR + (Np/s)lg N). The time stays the same.

In practice. There are several ways to represent R in compressed form. We
choose one [9] that allows for random access to the rules. It represents R in the
form of a directed acyclic graph (DAG) as a sequence Sr and a bitmap Sg.
A node is identified as a position in S, where a 1 denotes and internal node
and a 0 a leaf. The two children of Sp[i] = 1 are written next to ¢, thus we
obtain all the subtree by traversing Sg[i...] until we have seen more Os than 1s.
The Os in Sp are associated to positions in Sy (that is, Sg[i] = 0 is associated
to Sgr[ranky(Sp,i)]). Those leaf symbols are either terminals or nonterminals.
Nonterminals are actually positions in Sp that must be recursively expanded.
This DAG representation takes, in good cases, as little as 50% of the space
required by a plain array representation of R [9].

In order to reduce the O(Rlgn) space required to store ¢(z) and r(z) for
nonterminals x, we store the data only for some of them and obtain the others
via expanding the nonterminals. Given a parameter §, we guarantee that no
nonterminal in C requires expanding at depth more than ¢ to determine its
length and number of 1s. That is, we expand each C[i] until depth § or until
reaching an already sampled nonterminal. Those nonterminals at depth § are
then sampled. We set up a bitmap Bs where each sampled nonterminal has a 1,
and store ¢(z) and r(z) of marked nonterminal x at an array E[rank(Bs,x)].

We use a RePair implementation by ourselves (available at www.dcc.uchile.
cl/gnavarro/software). It has a variant that, although does not guarantee
balancedness, has always produced a grammar of very small height in our exper-
iments. The variant that ensures balancedness harms compression in practice.



Practical Compressed Document Retrieval 199

5 Grammar Compression of Wavelet Trees

Given now a sequence S[1, N] over alphabet [1,n], we build the wavelet tree of
S and represent its bitmaps using the compressed format of Section @l Consider
a RePair representation (R, C) of S, where the sizes of the components is R and
C' as before. Now take the top-level bitmap B of the wavelet tree. Bitmap B
can be regarded as the result of mapping the alphabet of S onto two symbols,
0 and 1. Thus, a grammar (R',C’) where the terminals are mapped accordingly,
generates B. Since the number of rules in R’ is still R and that of C' is C,
the representation of B requires O(RIg N + C'lg R + (N/s)1g N) bits (this is of
course pessimistic; many more repetitions could arise due to the mapping).

The bitmaps stored at the left and right children of the root correspond to
a partition of S into two subsequences S; and S;. Given the grammar that
represents .S, we can obtain the one that represents S; and Se by removing all
the terminals in the right sides that do not belong to the proper subalphabet,
and removing rules with right hands of length 0 or 1. Thus at worst the left and
right side bitmaps can also be represented within O(R1g N + C'lg R) bits each,
plus O((N/s)1g N) for the whole level. Added over the n wavelet tree nodes, the
overall space is no more than n times that of the RePair compression of S. The
time for the operations raises to O((s +1g N)lgn).

Although this does not look alphabet-friendy, and actually the upper bounds
are no better than applying the method of Section @ on a large alphabet (p = n),
the analysis is a (very) pessimistic upper bound. Still one can expect that the
repetitions exploited by RePair get cut by half as we descend one level of the
wavelet tree, so that after descending some levels no repetition structure can be
identified and RePair compression becomes ineffective.

In practice. As n is large, we use a wavelet tree design that concatenates all the
bitmaps of the same wavelet tree level [2]. We use one set of rules R per level.

As the repetitions that could be present in S get shorter when we move deeper
in the wavelet tree, we evaluate at each level whether our RePair-based compres-
sion is actually better than an entropy-compressed representation [I8] or even a
plain one, and choose the one with smallest space. Moreover, as rank and select
operations are significantly slower on our RePair-compressed representation, we
use a parameter 0 < o < 1 so that we prefer RePair compression only when its
size is « times that of the alternatives, or less.

6 Experimental Results

In this section we compare various practical alternatives to document listing and
top-k document retrieval. We have chosen four collections of different nature,
such as English, Chinese, biological, and symbolic sequences. We show the bpc
of its global CSA divided by lgo to give an idea of its compressibility ratio.

ClueChin: A 2.3 MB sample of ClueWeb09 (http://boston.1ti.cs.cmu.edu/
Data/clueweb09), formed by 23 Web pages in Chinese. Ratio: 5.34/7.99=0.68.



200 G. Navarro, S.J. Puglisi, and D. Valenzuela

ClueWiki: A 141 MB sample of ClueWeb09, formed by 3,334 Web pages from
the English Wikipedia. Ratio: 4.74/6.98=0.68.

KGS: A 75 MB collection of 18,838 sgf-formatted Go game records from year
2009 (http://www.u-go.net/gamerecords). Ratio: 4.48/6.93=0.65.

Proteins: A 60 MB collection formed by 143,244 sequences of Human and
Mouse proteins (http://www.ebi.ac.uk/swissprot). Ratio: 6.02/6.57=
0.92.

Our tests were run on a Intel Core2 Duo machine, 3Ghz, with 8GB RAM and
6MB cache. Our code was compiled using g++ with full optimization.

As the CSA search for the interval [sp,ep] corresponding to a pattern p is
common to all the approaches, we do not consider the time for this search
(which never exceeds 0.02 milliseconds per query) nor the space for that global
CSA (shown for each collection in the previous itemization), but only the extra
space/time to support document retrieval once [sp, ep] has been determined. We
give the space usage in bits per text character (bpc), and measure user times.

Sadakane’s representation [20] builds a separate CSA for each document.
For this sake we use a very competitive variant [I3I2] available at PizzaChili
(http://pizzachili.dcc.uchile.cl/indexes/SSA). It uses a plain and fast
representation for bitmap B (from http://libcds.recoded.cl), and an effi-
cient implementation for the two RMQs (from http://www.uni-ulm.de/in/
theo /research/sdsl). For the space we charge only 2N bits for each RMQ
structure and zero for B, to account for possible future space reductions.

Our grammar compressed wavelet trees offer a space/time tradeoff depending
on the «a value, which can be the same for all levels, or decreasing for the deeper
levels (where one visits more nodes and thus being slower has a higher impact).
Another space/time tradeoff is obtained with the sampling parameter s. We only
show one alternative with o = 1 and one best-performing alternative with a < 1.

As explained, alternative solutions [20/TT] for the basic document listing prob-
lem are hardly improvable. They require very little extra space and are likely to
perform similarly to wavelet trees in time. Our experiments focus on document
listing with frequencies, and in top-k retrieval.

6.1 Document Listing with Frequencies

Previous work [3] has demonstrated that the quantile approach [§] is clearly
preferable, in space and time, over previous ones based on wavelet trees [22].
Therefore we carry out the quantile algorithm over a plain wavelet tree repre-
sentation (WT-Plain), over one where the bitmaps are statistically compressed
[18] (WT-RRR), and over our RePair-compressed ones. As explained, we show
a variant with a = 1 (WT-RP, which at each level chooses the lowest space
between RePair, plain, or statistically compressed bitmap), and the best per-
forming policy we tried for choosing o < 1 values (WT-RP alpha).

We also compare Sadakane’s approach [20] (SADA) on collection ClueChin.
The construction times over the o