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Preface

The 10th International Symposium on Experimental Algorithms (SEA 2011) was
held in Kolimpari (Chania, Greece), during May 5–7, 2011. Previously known as
the Workshops on Experimental Algorithms (WEA), the WEA/SEA Symposia
are intended to be an international forum for researchers in the area of design,
analysis, and experimental evaluation and engineering of algorithms, as well as
in various aspects of computational optimization and its applications.

Past symposia were held in Ischia (2010), Dortmund (2009), Cape Cod (2008),
Rome (2007), Menorca (2006), Santorini (2005), Rio de Janeiro (2004), Monte
Verita (2003), and Riga (2002).

The present volume contains contributed papers accepted for publication,
and papers based on three invited plenary talks. All papers underwent a strict
refereeing process. From a total of 83 submitted contributed papers, 36 were
selected for this special volume of Lecture Notes in Computer Science (LNCS).
An additional nine contributed papers were accepted for a special issue of the
Springer journal Optimization Letters. Thus, the 2011 International Symposium
on Experimental Algorithms had an acceptance rate of 54%.

We would like to take this opportunity to thank all members of the Program
Committee, the authors who submitted their papers, and the referees for their
hard work. The quality of the aceppted papers was significantly influenced by
constructive critical reviews. High-quality papers are always an important factor
in maintaining and establishing a strong conference program.

We would like to thank Springer for publishing our proceedings in their well-
known book series LNCS and for their support. In addition, we would like to
thank the staff at the Orthodox Academy of Crete (OAC) for their help and
hospitality. The location of OAC, next to the sea with a majestic view of the
beautiful city of Chania, was an inspiration for a scientific gathering such as
SEA 2011!

Finally, we would like to express our sincere thanks to the Steering Committee
for providing us with the opportunity to serve as Program Chairs of SEA 2011
and for the responsibilities of selecting the Program Committee, the conference
program, and publications. We are happy with the excellent topics presented at
the conference and we look forward to SEA 2012.

May 2011 Panos M. Pardalos
Steffen Rebennack
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Approximability of Symmetric Bimatrix Games

and Related Experiments�

Spyros Kontogiannis1,2 and Paul Spirakis2

1 Dept. of Computer Science, University of Ioannina, 45110 Ioannina, Greece
kontog@cs.uoi.gr

2 R.A. Computer Technology Institute, Patras Univ. Campus,
26504 Rio-Patra, Greece

spirakis@cti.gr

Abstract. In this work we present a simple quadratic formulation for
the problem of computing Nash equilibria in symmetric bimatrix games,
inspired by the well-known formulation of Mangasarian and Stone [26].
We exploit our formulation to shed light to the approximability of NE
points. First we observe that any KKT point of this formulation (and
indeed, any quadratic program) is also a stationary point, and vice versa.
We then prove that any KKT point of the proposed formulation (is not
necessarily itself, but) indicates a

(
< 1

3

)−NE point, which is polynomi-
ally tractable, given as input the KKT point. We continue by proposing
an algorithm for constructing an

(
1
3

+ δ
)−NE point for any δ > 0, in

time polynomial in the size of the game and quasi-linear in 1
δ
, exploit-

ing Ye’s algorithm for approximating KKT points of QPs [34]. This is
(to our knowledge) the first polynomial time algorithm that constructs
ε−NE points for symmetric bimatrix games for any ε close to 1

3
. We ex-

tend our main result to (asymmetric) win lose games, as well as to games
with maximum aggregate payoff either at most 1, or at least 5

3
. To achieve

this, we use a generalization of the Brown & von Neumann symmetriza-
tion technique [6] to the case of non-zero-sum games, which we prove
that is approximation preserving. Finally, we present our experimental
analysis of the proposed approximation and other quite interesting ap-
proximations for NE points in symmetric bimatrix games.

Keywords: Bimatrix games, indefinite quadratic optimization, Nash
equilibrium approximation, symmetrization.

1 Introduction

One of the “holy grail quests” of theoretical computer science in the last decade,
is the characterization of the computational complexity for constructing any
Nash equilibrium (NE) in a finite normal form game. There has been a massive
attack on various refinements of the problem (eg, a NE maximizing the payoff
� This work has been partially supported by the ICT Programme of the EU under

contract number 258885 (SPITFIRE).

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 1–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 S. Kontogiannis and P. Spirakis

of some player, or its support size), that have lead to NP−hardness results (eg,
[17,11]). Eventually the unconstrained problem proved to be PPAD−complete
[12,15], even for the bimatrix case [8]. Even computing an

(
n−Θ(1)

)
−approximate

NE for the bimatrix case is PPAD−complete [9], excluding even the existence
of a FPTAS for the problem, unless PPAD = P. Additionally, it is well known
that the celebrated algorithm of Lemke and Howson [24] may take an exponential
number of steps to terminate [29].

Given the apparent hardness of computing NE in bimatrix games, two main
research trends emerged quite naturally: To discover polynomial-time, constant-
approximation algorithms (or even a PTAS) for the general case, or to identify
general subclasses of games that admit a polynomial-time construction of ex-
act NE, or at least a (F)PTAS. Even if one exchanges the “polynomiality” to
“strict subexponentiality”, there is still much room for research. Indeed, the
first subexponential-time approximation scheme was provided in [25] (see also
[3]), while a new one appeared only recently [33]. A sequence of papers have
provided polynomial-time algorithms for various notions of approximation (eg,
[20,13,5,14,32,22]), the current winners being the gradient-based algorithm of
[32] that provides 0.3393−approximation for the most common notion of ε−Nash
equilibria, and [22] that provides an LP-based 0.667−approximation for the more
demanding notion of ε−well supported approximate NE.

As for exact solutions (or even FPTAS) for general subclasses of bimatrix
games, it is well known (due to von Neumann’s minimax theorem [27]) that any
constant-sum bimatrix game is polynomial-time solvable. Trivially, any bimatrix
game with a pure Nash equilibrium is also solvable in polynomial time. Finally,
for the particular case of win-lose bimatrix games, [10] provided a linear-time
(exact) algorithm for games with very sparse payoff matrices and [1] provided
a polynomial-time algorithm when the graph of the game is planar. [19] intro-
duced a hierarchy of the bimatrix games, according to the rank of the matrix
R + C of the game 〈R, C〉, which was called the rank of the game. Then, for
any fixed constant k ≥ 0, they present a FPTAS for bimatrix games of rank k.
Note that rank−0 games are zero-sum, while for rank−1 games it was recently
proved [2] that they are also polynomial-time solvable. [21] proposed a subclass of
polynomial-time solvable bimatrix games, called mutually concave games. This
class contains all constant-sum games but is much richer, and is incomparable
to games of fixed rank, since even rank−1 games may not be mutually concave,
and on the other hand one can easily construct mutually concave games which
have full rank. In this work it was proved that these games are equivalent to
the strategically zero-sum games [28]; a novel quadratic formulation for com-
puting NE points in bimatrix games was also proposed which captures the NE
approximability of the marginal distributions of (exact) correlated equilibria.

Our Contribution and Roadmap. In Section 3 we present a simple quadratic
formulation for computing (exact) NE points of symmetric bimatrix games,
which specializes the formulation of Mangasarian and Stone [26] to the sym-
metric case. We then prove that from any given KKT point of our formula-
tion, we can construct in polynomial time a

(
< 1

3

)
−NE point (Theorem 1).
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In Section 4 we show how to construct approximate NE points with approxima-
tion ratio arbitrarily close to 1

3 , in polynomial time (Theorem 2). We also show
that there exist even better approximate NE points which would be polynomial-
time constructible, given any initial δ−KKT point with a Lagrange dual that
is also a δ−KKT point, for sufficiently small δ > 0 (Theorem 3). In Section 5
we extend our approach to asymmetric win lose games, and games with aggre-
gate payoff either at most 1 or at least 5

3 . In particular, we first generalize the
symmetrization method of Brown and von Neumann, and we then prove that
it is indeed approximation preserving (Lemma 2). We exploit this fact to pro-
vide approximate NE points with ratio arbitrarily close to 1

3 for these classes of
(asymmetric) games (Theorem 4).

The last part of our paper concerns our experimental study of algorithms
constructing approximate NE points in symmetric games. In Section 6 we explain
all the algorithms that we consider, as well as the random game generator that
we use. In Section 7 we summarize our observations on worst-case instances per
approximation algorithm separately, as well as for hybrid approaches that always
return the best approximation from a number of algorithms in each game. We
close our discussion with some concluding remarks in Section 8.

2 Preliminaries

Algebraic Notation. We denote by N, Z, Q, R the sets of naturals, integers,
rationals, and real numbers. The ‘+’ subscript (eg, R+) implies the nonneg-
ative subset of a set, and a ‘++’ subscript (eg, Z++) refers to the positive
subset of a set. For any d ∈ Z++, [d] = {1, 2, . . . , d}. We denote by Rd (Rd

+)
the d−dimensional (non-negative) real space. For any real vector z ∈ Rd, let
max(z) ≡ maxi∈[d]{|zi|}. For any matrix A ∈ Rm×n, and any (i, j) ∈ [m] × [n],
Ai,j is its (i, j)−th element, Ai,� is its i−th row (as a row vector) and A�,j is its
j−th column (as a column vector). AT is the transpose matrix of A. We denote
by I the identity matrix, by E the “all-ones” matrix and by O the “all-zeros”
matrix (of proper dimensions). For any A, B ∈ Rm×n, A·BT = ABT is the m×m
matrix that is produced by their inner product, A◦B = [Ai,j ·Bi,j ](i,j)∈[m]×[n] is
the componentwise product, and A•B = 1T A◦B1.

For any ε > 0, B(z, ε) ≡ {x ∈ Rd : ||x − z|| < ε} and B̄(z, ε) ≡ {x ∈ Rd :
||x − z|| ≤ ε} are the open and closed ball of radius ε around z respectively,
where ||·|| denotes the Euclidean norm in Rd. Δd = {z ∈ Rd

+ : 1T z = 1} is the
space of d−dimensional probability vectors.

Game Theoretic Notation. For any 2 ≤ m ≤ n, we denote by 〈R, C〉 an m×n
bimatrix game, where the first player (aka the row player) has R ∈ Rm×n as its
payoff matrix and the second player (aka the column player) has C ∈ Rm×n as
its payoff matrix. If it happens that C = RT then we have a symmetric game. If
R, C ∈ Qm×n then we have a rational bimatrix game. The subclass of rational
games in which R, C ∈ (Q∩[0, 1])m×n are called normalized bimatrix games.
These are the games of concern in this work, for computational reasons. Finally,
a game in which R, C ∈ {0, 1}m×n is called a win-lose game.
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The row (column) player chooses one of the rows (columns) of the payoff bi-
matrix (R, C) = (Ri,j , Ci,j)(i,j)∈[m]×[n] as her action. For any profile of actions
(i, j) ∈ [m]× [n] for the two players, the payoff to the row (column) player is Ri,j

(Ci,j). A (mixed in general) strategy for the row (column) player is a probability
distribution x ∈ Δm (y ∈ Δn), according to which she determines her action, in-
dependently of the opponent’s final choice of action. If all the probability mass of
a strategy is assigned to a particular action of the corresponding player, then we
refer to a pure strategy. The utility of the row (column) player for a profile of
strategies (x,y) is the expected payoff xT Ry =

∑
i∈[m]

∑
j∈[n] Ri,jxiyj (xT Cy)

that she gets. For any real number ε ≥ 0, a profile of strategies (x,y) ∈ Δm×Δn

is an ε−Nash equilibrium (ε−NE in short) of 〈R, C〉, iff each player’s strategy
is an approximate best response (within an additive term of ε) to the opponent’s
strategy: ∀x ∈ Δm,xT Ry ≥ xT Ry−ε and ∀y ∈ Δn,xT Cy ≥ xT Cy−ε. We de-
note by NE(ε, R, C) the set of all these points of 〈R, C〉. We refer to a symmet-
ric profile if both players adopt exactly the same strategy. The ε−NE points
corresponding to symmetric profiles are called symmetric ε−Nash equilibria
(ε−SNE points in short). For any profile (x,y) ∈ Δm × Δn, the regrets of the
row and the column player in 〈R, C〉 are defined as RI(x,y) = max(Ry)−xT Ry
and RII(x,y) = max(CT x) − xT Cy respectively.

Quadratic Programming. Consider the following quadratic program:

(QP) minimize
{
f(z) = cT z + 1

2z
T Dz : Az ≥ b; Cz = d

}
where D ∈ Rn×n is a symmetric real matrix, A ∈ Rm×n, C ∈ Rk×n, b ∈
Rm, d ∈ Rk. We denote by feas(QP ) = {z ∈ Rn : Az ≥ b; Cz = d} the
set of all feasible points for (QP). Additionally, consider the following (possibly
empty) subsets of feasible points:

– (Globally) Optimal Points: The points with the minimum objective
value: opt(QP ) = {z∗ ∈ feas(QP ) : ∀z ∈ feas(QP ), f(z) ≥ f(z∗)} .

– Locally Optimal Points: The points with the minimum objective value in
an open ball around them. Ie:

loc(QP )= {z ∈ feas(QP ):∃ε > 0, ∀z ∈ feas(QP ) ∩ B(z, ε),f(z) ≥ f(z)} .
– δ−KKT Points: ∀δ ≥ 0, kkt(δ, QP ) is the set of feasible points z ∈

feas(QP ) for which there exists a vector (λ, μ) of Lagrange multipliers sat-
isfying the following (approximate) KKT conditions (named after Karush,
Kuhn and Tucker, cf. [23, Theorem 3.3] and [4, Section 3.3.1]) at those points:

Stationarity: Dz + c = AT λ + CT μ

(Approximate) Complementarity: 0 ≤ λ
T · (Az − b) ≤ δ

Feasibility: λ ≥ 0, Az ≥ b, Cz = d
We denote the subset kkt(0, QP ) of exact KKT points as kkt(QP ).

– δ−Stationary Points: ∀δ ≥ 0, sta(δ, QP ) ⊆ feas(QP ) is the set of points
satisfying (approximately) a stationarity property known as Fermat’s Rule:

sta(δ, QP ) = {z ∈ feas(QP ) : ∀z ∈ feas(QP ),∇f(z)T · (z − z) ≥ −δ}.
We denote the subset sta(0, QP ) of exact stationary points as sta(QP ).



Approximability of Symmetric Bimatrix Games and Related Experiments 5

A well-known property of quadratic programs with linear constraints is that
kkt(QP ) = sta(QP ) (cf. [23, Theorems 3.4 & 3.5] and the comment on this issue
between these two theorems). This is a quite interesting property in our case of
NE points in bimatrix games, since it essentially assures that the stationary
points which are targeted by the descent method of Tsaknakis and Spirakis [32]
are indeed the KKT points of the quadratic formulation that we shall propose
shortly (for symmetric games), or the formulation of Mangasarian and Stone [26]
(for general games).

3 Approximability of NE Points via (exact) KKT Points

In this section we provide, for any normalized (rational) matrix S ∈ [0, 1]n×n, a
quadratic program (SMS) for which it holds that opt(SMS) = NE(0, S, ST ). We
then prove that any KKT point of (SMS) indicates a profile that is a

(
< 1

3

)
−NE

of the symmetric game. Additionally, given a KKT point, such a profile can be
constructed in polynomial time.

Two crucial observations for our formulations are the following: (i) Any sym-
metric bimatrix game 〈A, B〉 = 〈S, ST 〉 has at least one SNE point. (ii) Any
symmetric profile assures not only the same payoffs to both players, but also
the same payoff vectors against the opponent (thus, both players have the same
regrets in case of symmetric profiles): ∀S ∈ [0, 1]n×n, ∀z ∈ Δn,

common payoffs: zT Bz = zT ST z = zT Sz = zT Az

common payoff vectors: Az = Sz = (ST )T z = BT z

The quadratic program that we use is the following adaptation of Mangasarian
and Stone’s program (for another quadratic program whose set of global optima
has a bijective map to the set of NE points of a bimatrix game, see [21]):

(SMS)

minimize f(s, z) = s − zT Sz = s − 1
2z

T Qz
subject to: −1s + Sz ≤ 0

− 1T z +1 = 0
s ∈ R, z ∈ Rn

+

where Q = S+ST is a symmetric n×n real matrix. Observe that any probability
distribution z ∈ Δn induces the feasible solution (s = max(Sz), z) of (SMS).
Moreover, f(s, z) is an upper bound on the common regret of the two players wrt
the symmetric profile (z, z): f(s, z) ≥ R(z) = max(Sz) − zT Sz. Therefore, the
objective value of a feasible point in (SMS) is non-negative and may reach zero
only for SNE points of 〈S, ST 〉. In the sequel, for any probability vector z ∈ Δn,
we shall overload notation and use f(z) to denote the value f(max(Sz), z), for
sake of simplicity.

The conditions determining a δ−KKT point (s̄, z) of (SMS) (for any fixed
δ ≥ 0) along with its Lagrange vector (w ∈ Rn

+, ζ̄ ∈ R,u ∈ Rn
+) are the following:
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(KKTSMS)

Stationarity ∇f(s̄, z) =
(

1
−Sz−ST z

)
=

(
1T w

−ST w+u+1ζ̄

)
(1)

(Approximate) Complementarity 0 ≤
(
w
u

)T ·
(
1s̄−Sz

z

)
≤ δ (2)

Primal Feasibility s̄ ∈ R, Sz ≤ 1s̄, 1T z = 1, z ≥ 0 (3)

Dual Feasibility w ≥ 0, ζ̄ ∈ R, u ≥ 0 (4)

Observe that the Lagrange vector w is a probability distribution (eq. (1)), which
is an approximate best response of the row player against strategy z of the
column player (2): The payoff vector Sz of the row player is upper bounded by
1s̄ (eq. (3)). Therefore, uT z + max(Sz) − wT Sz ≤ uT z + s̄ − wT Sz ≤ δ ⇒
RI(w, z) + uT z ≤ δ.

It is mentioned at this point that since our objective function has values in
[0, 1], which can be actually attained (any SNE point indicates a solution of
(SMS) of zero regret, and in worst case the regret may reach the value of 1 since
the game is normalized), our notion of approximate KKT points is identical to
the one considered in Ye’s work [34]. Therefore, a δ−KKT point of (SMS) may
be constructed in time O

([
n6

δ log
(

1
δ

)
+ n4 log(n)

]
·
[
log log

(
1
δ

)
+ log(n)

])
. The

next lemma proves a fundamental property of any exact KKT point of (SMS):

Lemma 1. For any m, n ≥ 2, S ∈ [0, 1]m×n, every (max(Sz), z) ∈ kkt(SMS)
and its associated Lagrange vector (w,u, ζ̄) satisfy the following properties: (i)
ζ̄ = f(z) − zT Sz. (ii) 2f(z) = wT Sw − zT Sw − wTu. (iii) 2f(z) + f(w) =
RI(z,w) − wTu.

Proof. From the stationarity conditions (eq. (1)) the following holds:

−Sz − ST z = −STw + u + 1ζ̄

⇒

⎧⎪⎨
⎪⎩

−zT Sz − zT ST z = −zT STw + zTu︸︷︷︸
=0

+ zT 1︸︷︷︸
=1

ζ̄

−wT Sz − wT ST z = −wT STw + wTu + wT1︸︷︷︸
=1

ζ̄

⇒
{

ζ̄ = −2zT Sz + zT STw = f(z) − zT Sz
ζ̄ = −wT Sz − zT Sw + wT Sw − wTu

⇒
{

ζ̄ = f(z) − zT Sz
2f(z) = −2zT Sz + 2wT Sz = −zT Sw + wT Sw − wTu

Adding f(w) = max(Sw) − wT Sw to both sides of the last expression, we get:

2f(z) + f(w) = max(Sw) − wT Sw − zT Sw + wT Sw − wTu

⇒ 3 min{f(z), f(w)} ≤ 2f(z) + f(w) = RI(z,w) − wT u

Lemma 1 already assures that one of (z, z), (w,w) is a 1
3−SNE point of 〈S, ST 〉,

since RI(z,w) ≤ 1 (the payoff matrix is normalized) and wTu ≥ 0. We prove
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next that given any (s̄, z) ∈ kkt(SMS), we can construct an
(
< 1

3

)
−SNE point

in polynomial time.

Theorem 1. For any given (s̄, z) ∈ kkt(SMS), ∃ε ∈
[
0, 1

3

)
such that an ε−SNE

point of the symmetric (normalized) bimatrix game 〈S, ST 〉 is polynomial-time
constructible.

Proof. Let (w,u, ζ̄) be the vector of the corresponding Lagrange multipliers in
(KKTSMS) corresponding to (s̄, z). They are polynomial-time computable, as
the solution of the Linear Feasibility problem that evolves from(KKTSMS) for
the fixed value of (s̄ = max(Sz), z). We have already proved in Lemma 1 that:

2f(z) + f(w) = max(Sw) − zT Sw − wTu

Clearly, if f(z) �= f(w), then min{f(z), f(w)} < max(Sw)−zT Sw−wT u
3 ≤ 1

3 and
we are done. So, let’s assume that f(z) = f(w) = 1

3 . This in turn implies that:

max(Sw) − zT Sw − wT u = 1 ⇒ max(Sw) = 1 ∧ zT Sw = 0 ∧ wT u = 0

since max(Sw) ≤ 1, zT Sw ≥ 0, wTu ≥ 0. From this we also deduce that:

wT Sw = −f(w) + max(Sw) ⇒ wT Sw = 2
3

We now focus on w. If (max(Sw),w) /∈ kkt(SMS), then we may apply Ye’s
potential reduction algorithm (or any other polynomial-time algorithm that con-
verges to a KKT point) with this as a starting point, and we shall get an approx-
imate KKT point (max(Sẑ), ẑ) having f(ẑ) < f(w) = 1

3 . So, let’s suppose that
(max(Sw),w) ∈ kkt(SMS). Let (w̃, ũ, ζ̃) be the proper Lagrange multipliers for
this new KKT point. By applying the stationarity conditions for w this time,
we have:

2f(w) + f(w̃) = max(Sw̃) − wT Sw̃ − w̃T ũ ⇒
f(w̃) = − 2

3 + max(Sw̃) − wT Sw̃ − w̃T ũ

Again, unless f(w̃) < 1
3 (in which case we would return w̃), it must be the case

that
max(Sw̃) = 1 ∧ wT Sw̃ = 0 ∧ w̃T ũ = 0

Since (max(Sz), z), (max(Sw),w) ∈ kkt(SMS), we have:

−Sz − ST z + STw = u + 1ζ̄
ζ̄ = f(z) − zT Sz

}
⇒

−w̃T Sz − zT Sw̃ + wT Sw̃︸ ︷︷ ︸
=0

= w̃Tu + f(z) − zT Sz ⇒

0 ≤ w̃Tu = −w̃T Sz − zT Sw̃ − f(z) + zT Sz ⇒
w̃T Sz − zT Sz ≤ − 1

3 − zT Sw̃ < 0
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On the other hand:

−Sw − STw + ST w̃ = ũ + 1ζ̃

ζ̃ = f(w) − wT Sw = − 1
3

}
⇒ − zT Sw︸ ︷︷ ︸

=0

− zT STw︸ ︷︷ ︸
=max(Sz)

+zT ST w̃ = zT ũ − 1
3

⇒ 0 ≤ zT ũ = 1
3 − max(Sz) + w̃T Sz ⇒ max(Sz) − zT Sz︸ ︷︷ ︸

=f(z)= 1
3

≤ 1
3 + w̃Sz − zT Sz

⇒ w̃T Sz − zT Sz ≥ 0

which contradicts the previously stated inequality 1
3 + w̃T Sz−zT Sz ≤ −zT Sw̃.

4 Polynomial Time Construction of
(

1
3

+ δ
) −NE Points

The main point of our discussion in the previous section was that we considered
as given an arbitrary exact KKT point of (SMS), from which we could then
construct in polynomial time a

(
< 1

3

)
−SNE of the game. Therefore, we cannot

yet claim that in overall this is a polynomial-time algorithm for constructing even
an

(
1
3

)
−NE point for symmetric bimatrix games, since the computation of an

exact KKT point is hard. In order to achieve this, we have to restrict ourselves to
approximate KKT points, which are indeed polynomial-time constructible (eg,
via Ye’s algorithm). The following theorem gives the answer to this question:

Theorem 2. For any rational matrix S ∈ [0, 1]n×n, and any δ > 0, there exists
an algorithm for constructing a

(
1
3 + δ

)
−SNE of 〈S, ST 〉 in time polynomial in

the size of the game and quasi-linear in δ.

Proof. The argument is similar to the one of Theorem 1, but we now have to
be more careful in handling approximate KKT points. We start by constructing
(using Ye’s algorithm) a δ−KKT point of (SMS), (s̄, z), along with its Lagrange
multipliers (w,u, ζ̄). Wlog we can assume that s̄ = max(Sz). Clearly it holds
that wT Sz ≤ max(Sz) ≤ wT Sz+δ ⇒ wT Sz−zT Sz ≤ f(z) ≤ wT Sz−zT Sz+δ.
From the proof of Lemma 1 we know that

i. ζ̄ = wT Sz − 2zT Sz − uT z.
ii. 2

(
wT Sz − zT Sz

)
= wT Sw − zT Sw − uT w + uT z.

We can now prove the analogue of Lemma 1.iii as follows:

2
(
wT Sz − zT Sz

)
= wT Sw − zT Sw − uT w + uT z

⇒ 2
(
wT Sz − zT Sz

)
︸ ︷︷ ︸

≥f(z)−δ

+ max(Sw) − wT Sw︸ ︷︷ ︸
=f(w)

= max(Sw) − zT Sw − uT w + uT z︸︷︷︸
≤δ

⇒ 3 min{f(z), f(w)} ≤ 2f(z) + f(w) ≤ 3δ + max(Sw) − zT Sw − uTw

From this conclude that one of (z, z), (w,w) is a (1/3 + δ)−SNE of 〈S, ST 〉.

We now show that, for sufficiently small δ > 0, if we find a δ−KKT point (s̄, z)
whose Lagrange multiplier induces another δ−KKT point (max(Sw),w), then
we can construct a

(
< 1

3

)
−SNE point for 〈S, ST 〉.



Approximability of Symmetric Bimatrix Games and Related Experiments 9

Theorem 3. For any rational matrix S ∈ [0, 1]n×n, and any 1
27 > δ > 0, if

we are given a δ−KKT point (max(Sz), z) whose Lagrange multiplier (w,u, ζ̄)
induces another δ−KKT point (max(Sw),w), then one of (z, z), (w,w) is a(
< 1

3

)
−SNE of 〈S, ST 〉.

Proof. Assume for sake of contradiction that min{f(z), f(w)} ≥ 1
3 . We already

proved in the previous theorem that

1
3

≤ min{f(z), f(w)} ≤ δ +
max(Sw) − zT Sw − uT w

3
≤ δ +

1
3

This implies that: max(Sw) − zT Sw − uTw ≥ 1 − 3δ

Additionally,

3 min{f(z), f(w)} ≤ 2f(z) + f(w) − |f(z) − f(w)| ≤ 1 + 3δ − |f(z) − f(w)|
⇒ |f(z) − f(w)| ≤ 1 + 3δ − 3 min{f(z), f(w)} ≤ 3δ

That is:

1
3 ≤ min{f(z), f(w)} ≤ min{f(z), f(w)} + |f(z) − f(w)| ≤ 1

3 + 4δ

We now exploit the assumption that both (max(Sz), z) and (max(Sw),w) are
δ−KKT points. We denote by (w̃, ũ, ζ̃) the Lagrange multipliers corresponding
to the latter point. We apply the stationarity condition for both of them:

−Sz − ST z + STw = u + 1ζ̄
ζ̄ = wT Sz − 2zT Sz − uT z

}
⇒

−w̃T Sz − zT Sw̃ + wT Sw̃ = w̃T u + wT Sz − 2zT Sz − uT z ⇒
w̃T Sz − zT Sz = wT Sw̃ − zT Sw̃ − w̃Tu − (wT Sz − zT Sz) + uT z

Similarly:

−Sw − STw + ST w̃ = ũ + 1ζ̃

ζ̃ = w̃T Sw − 2wT Sw − ũT w

}
⇒

−zT Sw − wT Sz + w̃T Sz = zT ũ + w̃T Sw − 2wT Sw − ũTw ⇒
w̃T Sz − zT Sz = zT ũ + w̃T Sw − 2wT Sw − ũT w + zT Sw + (wT Sz − zT Sz)

Combining the right-hand sides of these two equalities, we have:

5δ ≥ wT Sw̃︸ ︷︷ ︸
≤3δ

− zT Sw̃︸ ︷︷ ︸
≥0

− w̃Tu︸ ︷︷ ︸
≥0

+uT z︸︷︷︸
≤δ

+ ũTw︸ ︷︷ ︸
≤δ

= zT ũ︸︷︷︸
≥0

+2 (w̃T Sw − 2wT Sw)︸ ︷︷ ︸
≥f(w)−δ

− w̃T Sw︸ ︷︷ ︸
≤1

+ zT Sw︸ ︷︷ ︸
≥0

+2 (wT Sz − zT Sz)︸ ︷︷ ︸
≥f(z)−δ

≥ 2f(z) + 2f(w) − 4δ − 1 ≥ 1
3
− 4δ

which is impossible, for any δ < 1
27 .
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5 Extension to Asymmetric Games

In this section we shall demonstrate how we can exploit our approximation result
for normalized symmetric bimatrix games, to the asymmetric case. In particular,
we shall show how we can construct in polynomial time

(
1
3 + δ

)
−NE points for

any win lose bimatrix game, as well as for any normalized bimatrix game with
maximum aggregate payoff at most 1 or at least 5

3 . To this direction, we propose
a symmetrization of bimatrix games, which we shall prove to be approximation
preserving for these games. The symmetrization is a straightforward generaliza-
tion of the BvN-symmetrization of Brown and von Neumann for zero-sum
games [6]. This symmetrization causes a relative blow-up in the action spaces
of the players (as opposed to the well-known GKT-symmetrization of Gale,
Kuhn and Tucker [16]), but will be shown to essentially preserve approximations
of NE points, which is certainly not the case for the GKT-symmetrization. In
particular, let 〈R, C〉 be any m×n bimatrix game. We construct a new, mn×mn
matrix of payoffs S as follows:

∀(i, j), (k, �) ∈ [m] × [n], Sij,k� = Ri� + Ckj

We then consider the symmetric game 〈S, ST 〉. We also consider the following
mapping of strategies z ∈ Δmn of 〈S, ST 〉 to a profile of “marginal strategies”
(x,y) of 〈R, C〉:

∀(i, j) ∈ [m] × [n], xi =
∑
�∈[n]

zi� ∧ yj =
∑

k∈[m]

zkj

Lemma 2. Fix any (not necessarily normalized) bimatrix game 〈R, C〉, and the
corresponding symmetric game 〈S, ST 〉 considered by the BvN-symmetrization.
Then, any (z, z) ∈ SNE(ε, S, ST ) indicates a profile (x,y) ∈ NE(ε, R, C).

Proof. First of all, observe that ∀z ∈ Δmn and its BvN-image (x,y) ∈ Δm×Δn,

zT Sz =
∑

i∈[m]

∑
j∈[n]

∑
k∈[m]

∑
�∈[n]

zijzk� · (Ri,� + Ck,j)

=
∑

i

∑
�

Ri,�

∑
k

∑
j

zijzk� +
∑

k

∑
j

Ck,j

∑
i

∑
�

zijzk�

=
∑

i

∑
�

Ri,�

(∑
k

zk�

) ⎛
⎝∑

j

zij

⎞
⎠ +

∑
k

∑
j

Ck,j

(∑
i

zij

)(∑
�

zk�

)

= xT Ry + xT Cy

On the other hand, for approximate NE points of the symmetric game we
have:
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z ∈ NE(ε, S, ST )
⇔ ∀(i, j) ∈ [m] × [n],

∑
k∈[m]

∑
�∈[n](Ri,� + Ck,j)zk� − ε ≤ zT Sz

⇔ ∀(i, j) ∈ [m] × [n],
∑

�∈[n] Ri,�

∑
k∈[m]

zk�

︸ ︷︷ ︸
=ȳ�

+
∑

k∈[m] Ck,j

∑
�∈[n]

zk�

︸ ︷︷ ︸
=x̄k

−ε ≤ zT Sz

⇔ ∀(i, j) ∈ [m] × [n], Ri,�y + C�,j
Tx − ε ≤ xT Ry + xT Cy

⇔ ∀(x,y) ∈ Δm × Δn, xT Ry + xT Cy − ε ≤ xT Ry + xT Cy

By trying all (x,y) and (x,y), it is trivial to observe that (x,y) ∈ NE(ε, R, C).

The following theorem is a direct consequence of the above approximation-
preserving symmetrization, and our approximation algorithm for normalized
symmetric bimatrix games.

Theorem 4. There is a polynomial-time algorithm that constructs
(

1
3 + δ

)
−NE

points for (i) win-lose bimatrix games, and (ii) games 〈R, C〉 with max(R+C) ≤
1 or max(R + C) ≥ 5

3 .

Proof. For the win-lose case, we may safely exclude games having in the payoff
bimatrix a (1, 1)−element, since this would be a trivial pure NE of the game.
Similarly, if a normalized game 〈R, C〉 has maximum aggregate payoff max(R +
C) ≥ 5

3 , then obviously the pure strategy profile attaining it is a 1
3−NE point of

the game. Therefore, it suffices to prove the claim only for the class of normalized
games with aggregate payoff at most 1. Since max(R + C) ≤ 1, we can be
sure that the payoff matrix S in the BvN-symmetrization is also normalized.
Therefore, we can apply our algorithm for the symmetric case to construct a
point (z, z) ∈ NE

(
1
3 + δ, S, ST

)
, for any fixed δ > 0. We have already proved

in the previous lemma that the marginal profile is equally good for the original
game: (x,y) ∈ NE

(
1
3 + δ, R, C

)
.

6 Presentation of Random Games Generator and
BIMATRIX-NASH Relaxations

Our main platform for the experimental analysis that we conducted was Mat-
lab (2007b, The MathWorks, Natick, MA). We have also used the CVX model-
ing system for disciplined convex programs [18], particularly for the description
(and solution) of some of the relaxations of (SMS), as well as for the description
of the CE polytope and the optimization of linear functions in it. Our main goal
in this experimental study is to focus on the quality of the provided solutions,
given their polynomial-time solvability which is assured either by the (SMS) in-
stance being recognized as convex QP, or by being approximated by the proposed
polynomial-time solvable relaxations, or finally by optimizing linear functions in
the CE-polytope of the game. Therefore, we have conducted extensive experimen-
tal tests looking for worst-case instances for each of the considered relaxations of
the game.
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We start our discussion by explaining the random game generator. Conse-
quently we present each of the (pure) relaxation techniques that we have imple-
mented. We end this experimental part with the presentation of our experimental
results both on the pure relaxation techniques and on hybrid methods that com-
bine subsets of relaxations and return the best approximation per game. All our
experiments were conducted on random symmetric win-lose bimatrix games. The
focus on symmetric games was for the sake of simplicity. The choice of win-lose
rather than normalized games was due to our observation that harder cases for
our relaxations appear by the former type of games, at least on the sequences of
games produced by our random game generator.

6.1 Pseudo-random Game Generator

Our pseudo-random game generator creates m × n bimatrix games 〈R, C〉, in
which each payoff matrix is generated by the randn(m,n) routine of Matlab.
This routine returns an m × n matrix containing pseudo-random values drawn
from the standard normal distribution with mean 0 and standard deviation 1.
The sequence of pseudo-random numbers produced by randn is determined by
the internal state (seed) of the uniform pseudo-random number generator of
Matlab. It uses m · n uniform values from that default stream to generate each
normal value. In order to create independent instances in different runs of the
experiment, we reset the default stream (by renewing randomly the state) at
the beginning of each new execution (as a function of the global clock value at
runtime). Of course, it is also possible to enforce the repetition of exactly the
same fixed state (and consequently, the same stream of uniform values) that
would allow various experimentations to be run on the same (pseudo-random)
set of games. Nevertheless, in this phase we have chosen to create independent
runs, since our main objective is to investigate hard cases for the various ap-
proximation methods.

Our game generator supports the option to normalize or not the produced
game. Normalization means re-scaling of the payoffs so that for each player the
min payoff is exactly 0 and the max payoff is exactly 1.

We can also create win-lose bimatrix games, by discretizing the payoff values
either to 0 (if non-positive) or to 1 (if positive). We may even use a different
discretization threshold, in order to opt for either sparse or dense games, with
respect to ones in the payoff matrices. Finally, our generator supports (option-
ally) the avoidance of win-lose games which can be trivially handled and/or be
simplified. In particular, we have the option to avoid (i) “all-ones” rows in R,
since such a row weakly dominates any other row for the row player and therefore
implies the existence of a pure NE point in the game; (ii) “all-zeros” rows in R,
since such a row is again weakly dominated and cannot disturb an approximate
NE point found in the residual game. For similar reasons, we may choose to
avoid (iii) “all-ones” columns and (iv) “all-zeros” columns in C. We also avoid
the (1, 1)−elements in the bimatrix, which is also a trivial pure NE point. We
try to make all these simplifications without affecting significantly the random-
ness of the created game. To this direction, we start by changing (uniformly
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and independently) each (1,1)-element to either a (0, 1)− or to a (1, 0)−element.
Consequently, we switch one random element of an “all-ones” row in R to 0.
Similarly, we switch the first random element of an “all-zeros” row in R to 1,
provided that this change does not create a new (1, 1)−element. We handle in a
similar fashion the columns of C.

6.2 KKT Relaxation

Our first approach, which is in accordance with the theoretical part of this paper,
is to actually return an arbitrary KKT point of (SMS) as an approximate NE
point of a symmetric bimatrix game 〈R, RT 〉. For this phase we have used the
quadprog function of Matlab, that attempts to converge to (or even reach) a
local solution, unless the problem is strictly convex. Indeed, we first check the
current instance of (SMS) for convexity, and in the convex case we solve it using
the SeDuMi solver via the CVX environment. In the non-convex case, we call
the quadprog function. In case that it either reaches, or converges to a local
optimum, we return it as an approximate NE point of the game. Otherwise,
we report failure of the method and we do not count the particular game in our
quest for worst-case instances. This is because the previously reported theoretical
results on (KKTSMS) are valid only at KKT points of (SMS). Nevertheless, we
keep in mind the number of (non-convex) games that were not solved by this
method.

6.3 RLT Relaxation

The Reformulation-Linearization-Technique (RLT) is a method that generates
tight LP relaxations of either discrete combinatorial optimization or continuous
(nonconvex) polynomial programming problems. For the particular case of mixed
0-1 linear programs (MILPs) in n binary variables, the RLT generates an n−level
hierarchy which at the n−th level provides an explicit algebraic characterization
of the convex hull of feasible solutions.

The method essentially consists of two steps, the reformulation step in which
additional valid inequalities are generated, and the linearization step in which
each nonlinear monomial in either the objective function or in any of the con-
straints, is replaced by a new (continuous) variable. For continuous (non-convex)
quadratic optimization programs with linear constraints, the reformulation-step
is as follows: For each variable xj that has bound-constraints �j ≤ xj ≤ uj , the
non-negative expressions (xj − �j) and (uj − xj) are called bound-factors. For
any linear constraint aTx ≥ b (other than the bound constraints) the expres-
sion (aT x− b) is called a constraint-factor. The new constraints are produced
by the reformulation step by requiring the non-negativity of all products of
subsets (say, pairs) of (either bound- or constraint-) factors. Consequently, the
linearization step substitutes any monomial (eg, of degree 2) by new variables.
The same substitution also applies in the possibly non-linear objective func-
tion of the program. The resulting program is indeed an LP relaxation of the
original (continuous) polynomial program. For more details, the reader is de-
ferred to [30, Chapters 7-8]. In this work we have applied the RLT to the SMS,
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by considering all the possible pairs of bound and constraint factors. In order
to achieve as tight an approximation as possible, we have added to the SMS
the constraints {1 ≥ α ≥ 0; ∀j ∈ [n], xj ≤ 1}, exploiting the fact that the
games that we consider are normalized. This set of constraints may be redun-
dant for SMS itself, but it also contributes to the RLT relaxation with quite
useful constraints. The result of this technique is the following RLT-relaxation
(the variables β ∈ R, γ ∈ Rn, W ∈ Rn×n are added during the linearization
phase):

(RLTSMS)

minimize α −
∑

i∈[n]

∑
j∈[n] Ri,jWi,j

s.t. β −
∑

j(Ri,j + Rk,j)γj +
∑

j

∑
� Ri,jRk,�Wj,� ≥ 0, i, k ∈ [n]

α −
∑

j Ri,jxj − γk +
∑

j Ri,jWj,k ≥ 0, i, k ∈ [n]
−xi − xj + Wi,j ≥ −1, i, j ∈ [n]
γk −

∑
j Ri,jγj ≥ 0, i, k ∈ [n]

xi −
∑

j Wi,j = 0, i ∈ [n]∑
j xj = 1,

−xi − α + γi ≥ −1, i ∈ [n]
xi − γi ≥ 0, i ∈ [n]

β −
∑

j Ri,jγj ≥ 0, i ∈ [n]∑
i γi − α = 0,

α − β ≥ 0,

β ≥ 0; γi ≥ 0, i ∈ [n]; Wi,j ≥ 0, i, j ∈ [n]

Observe that some constraints of (SMS) are missing from (RLTSMS). This is
because it is well known (and trivial to show) that all the constraints of (SMS)
are implied by the constraints of (RLTSMS) [30, Proposition 8.1]. We have also
excluded some of the RLT constraints that were clearly implied by the ones pre-
sented in (RLTSMS). We could possibly have avoided more constraints, that are
also induced by the constraints in (RLTSMS). Nevertheless, our primary goal is
to experimentally test the approximability of NE points via the RLT relaxation,
given its polynomiality, and not (at least, not yet) to optimize the computational
time. In order to solve (RLTSMS), we have used the CVX modeling system for
disciplined convex programming [18].

6.4 Doubly Positive Semidefinite Programming Relaxation

In this section we exploit the fact that (SMS) could be transformed so that the
objective be linear, by using the substitution W = x · xT . Of course, this is
a non-linear equality constraint. In order to tackle the apparent intractability
of this formulation as well, we relax the additional equality constraint to the
non-linear convex constraint: W − x · xT ≥ O, where the matrix comparisons
are component-wise. This is equivalent to demanding that the matrix

Z =
[

W x
xT 1

]
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be positive semidefinite (PSD). Apart from the PSD constraint Z � 0, there
is also an obvious non-negativity constraint: Z ≥ O. This kind of semidefinite
relaxations are called doubly-positive semidefinite (DPSDP) relaxations (eg, [7]).
Their advantage is that linear optimization over the cone of DPSDP matrices
can be performed using techniques for self-dual cones, such as SeDuMi [31]. So,
we have implemented the following DPSDP-relaxation of (SMS), which we then
formulate in the CVX environment and have it solved by the SeDuMi solver:

(DPSD)

minimize α −
∑

i

∑
j Ri,jWi,j

s.t α −
∑

j Ri,jxj ≥ 0, i ∈ [n]∑
j xj = 1,

Wi,j − Wj,i = 0, i, j ∈ [n]

Z ≡
[

W x
xT 1

]
� 0,

Z ≤ E,

Z ≥ O

6.5 Using Projections of Extreme CE Points

Our final approach for producing approximate NE points is based on an idea
that we presented in [21]. In that work we proved (among other things) that
in the following parameterized non-linear program the set of optimal solutions
completely (and exclusively) describes the Nash equilibrium set of the normalized
bimatrix game 〈R, C〉, for any value t ∈ (0, 1):

(KS(t))

minimize
∑

i

∑
j [tRi,j + (1 − t)Ci,j ]Wi,j − 1T WT [tR + (1 − t)C]WT1

s.t. ∀i, k ∈ [m],
∑

j∈[n](Ri,j − Rk,j)Wi,j ≥ 0
∀j, � ∈ [n],

∑
i∈[m](Ci,j − Ci,�)Wi,j ≥ 0∑

i∈[m]

∑
j∈[n] Wi,j = 1

∀(i, j) ∈ [m] × [n], Wi,j ≥ 0

In particular, it was shown in [21] that the marginal distributions x̂ = Ŵ1, ŷ =
ŴT1 of any optimal solution Ŵ of (KS(t)) comprise a NE point of 〈R, C〉,
and vice versa. Since in the present work we deal with polynomial-time ap-
proximations of NE points in symmetric bimatrix games, in our last attempt
indeed we tried to optimize various linear functions in the feasible space of
(KS(t)). The most prominent linear objective was to minimize the objective
(R◦C)•W = 1T (R◦C◦W )1 . That is, we return as approximate NE points the
marginals of an optimal solution to the following linear program (which we again
modeled in CVX):

(BMXCEV4)

minimize
∑

i

∑
j [Ri,j · Rj,i]Wi,j

s.t. ∀i, k ∈ [m],
∑

j∈[n](Ri,j − Rk,j)Wi,j ≥ 0∑
i∈[m]

∑
j∈[n] Wi,j = 1

∀(i, j) ∈ [m] × [n], Wi,j ≥ 0
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7 Experimental Results

In this section we summarize the results of our experimental analysis on the
implemented relaxation methods for (SMS).

7.1 Pure Relaxations

First we conducted a series of experiments on each of the pure relaxations that we
have rum 500K random instances of 10×10 games (without touching the random
games produced by the generator). For each game we accepted the produced
approximate NE point only if the corresponding solver managed to converge
to a solution. Otherwise we excluded the game from the worst-case accounting
and only kept a log of unsolved games. The results of these experiments are
summarized in Table 1.

Consequently we ran the same experiments, but this time we demanded from
the random game generator to avoid the appearance of some trivial cases (cf.
Section 6.1). Our experimental results in this case are presented in Table 2.

We have also experimented on the distribution of games solved by each game,
as a function of the epsilon-value. To this direction, we have focused on 10 × 10
games, and we have run 10K random (untouched) instances per pure relaxation
method. Our findings are summarized by the graphs presented in Figure 1.

It is worth mentioning that by means of approximation the best pure method
is (KKTSMS). It is also noted that avoiding trivial cases in the produced random
games (cf. Subsection 6.1) has a significant impact mainly on the approxima-
tions of (KKTSMS) and (BMXCEV4). Concerning the number of games that
are solved, the winner is (BMXCEV4) with the other three methods being com-
parable.

Table 1. Experimental results for worst-case approximation among 500K random 10×
10 symmetric win-lose games

RLTSMS KKTSMS DPSDP BMXCEV4

worst-case epsilon 0.51432 0.22222 0.6 0.49836

# unsolved games 112999 110070 0 405

worst-case round 10950 15484 16690 12139

Table 2. Experimental results for worst-case approximation among 500K random 10×
10 symmetric win-lose games which avoid (1, 1)−elements, (1, ∗)− and (0, ∗)−rows,
(∗, 1)− and (∗, 0)−columns in the payoff matrix

RLTSMS KKTSMS DPSDP BMXCEV4

worst-case epsilon 0.41835 0.08333 0.51313 0.21203

# unsolved games 11183 32195 0 1553

worst-case round 45062 42043 55555 17923
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Table 3. Experimental results for worst-case approximations of hybrid methods among
500K random 10 × 10 symmetric win-lose games

KKTSMS+BMXCEV4 KKTSMS+RLT+BMXCEV4 KKTSMS+RLT+DPSDP

worst-case epsilon 0.47881 0.47881 0.54999

# unsolved games 0 0 0

worst-case round 652 1776 7737

Table 4. Experimental results for worst-case approximations of hybrid methods among
500K random 10 × 10 symmetric win-lose games which avoid (1, 1)−elements, (1, ∗)−
and (0, ∗)−rows, (∗, 1)− and (∗, 0)−columns in the payoff matrix

KKTSMS+BMXCEV4 KKTSMS+RLT+BMXCEV4 KKTSMS+RLT+DPSDP

worst-case epsilon 0.0.08576 0.088576 0.28847

# unsolved games 0 0 0

worst-case round 157185 397418 186519
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Fig. 1. Distribution of games solved for particular values of approximation, in runs of
10K random 10 × 10 symmetric win-lose games. The games that remain unsolved in
each case accumulate at the epsilon value 1.

7.2 Hybrid Relaxations

We have finally conducted experiments that use a “best-of” approach to pro-
duce approximate NE points in randomly produced symmetric bimatrix games.
The goal of these hybrid approaches is two-fold: To explore whether a com-
bination of methods decreases the approximation ratio even below the ratio
of (KKTSMS) which seems to be the best pure method. But also to mini-
mize the number of unsolved games, which is significant even for (BMXCEV4)
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which is the winner under this objective. We have run experiments on the
hybrid methods KKTSMS+BMXCEV4, KKTSMS+RLT+BMXCEV4 and
KKTSMS+RLT+DPSDP. The reason for choosing KKTSMS as a common com-
ponent in all these combinations is the significantly smaller execution time of
this method, and also its extremely good behavior in most of the instances that
are solvable by it (cf. Figure 1).

The experimental results of these hybrid approaches are summarized in Ta-
ble 3 (for raw random games) and Table 4 (for random games that avoid trivial
situations).

From these experiments it is clear that hybrid methods do not significantly
help (at least in worst case) the approximation ratio of the provided solutions,
but on the other hand we observe that there are no unsolved instances anymore,
since the different approaches do not have ill-conditioned instances in common.
It is also observed that it is actually the KKTSMS and the BMXCEV4 methods
that act complementarily and also assure the best observed behavior. Our runs
on the hybrid KKTSMS+RLT+BMXCEV4 shows that the RLT method does
not really contribute to the quality of the solutions. It is also observed that
the hybrid KKTSMS+RLT+DPSDP has rather poor approximation guarantees,
which implies that some ill-conditioned games for KKTSMS are also hard cases
for the other two methods.

8 Conclusions

In this work we have presented a simple quadratic formulation for the problem
of computing (exact) NE points of symmetric bimatrix games. We then showed
how to construct approximate NE points, with approximation ratio arbitrarily
close to 1

3 , in polynomial time. We also observed that indeed there exist even
better approximate NE points, which would be polynomial-time constructible
given any initial (exact) KKT point with a Lagrange dual that is also a KKT
point. Indeed, we strongly suspect that there is a polynomial-time construction
even in the case where this demand for a primal-dual pair of KKT points is not
satisfied. Nevertheless, we were not able to formally prove this until now, and
it remains an open question for future investigation. We also showed that our
approach also works for any win lose game, or for any asymmetric game with
maximum aggregate payoff either at most 1, or at least 5

3 . We are currently
investigating our techniques directly to the general asymmetric case.

Our experimental analysis of various (pure and hybrid) approximation meth-
ods indicates that it is most likely that we can do better than the theoretically
proved bound of 1

3 , which almost holds also for the asymmetric case. Of course,
this remains to be proved.

Acknowledgements. The authors wish to thank Christos Papadimitriou for bring-
ing to their attention the BvN-symmetrization method.
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Abstract. Metaheuristic algorithms are becoming an important part
of modern optimization. A wide range of metaheuristic algorithms have
emerged over the last two decades, and many metaheuristics such as
particle swarm optimization are becoming increasingly popular. Despite
their popularity, mathematical analysis of these algorithms lacks behind.
Convergence analysis still remains unsolved for the majority of meta-
heuristic algorithms, while efficiency analysis is equally challenging. In
this paper, we intend to provide an overview of convergence and efficiency
studies of metaheuristics, and try to provide a framework for analyzing
metaheuristics in terms of convergence and efficiency. This can form a
basis for analyzing other algorithms. We also outline some open questions
as further research topics.

1 Introduction

Optimization is an important subject with many important application, and
algorithms for optimization are diverse with a wide range of successful applica-
tions [10,11]. Among these optimization algorithms, modern metaheuristics are
becoming increasingly popular, leading to a new branch of optimization, called
metaheuristic optimization. Most metaheuristic algorithms are nature-inspired
[8,29,32], from simulated annealing [20] to ant colony optimization [8], and from
particle swarm optimization [17] to cuckoo search [35]. Since the appearance of
swarm intelligence algorithms such as PSO in the 1990s, more than a dozen
new metaheuristic algorithms have been developed and these algorithms have
been applied to almost all areas of optimization, design, scheduling and plan-
ning, data mining, machine intelligence, and many others. Thousands of research
papers and dozens of books have been published [8,9,11,19,29,32,33].

Despite the rapid development of metaheuristics, their mathematical analysis
remains partly unsolved, and many open problems need urgent attention. This
difficulty is largely due to the fact the interaction of various components in
metaheuristic algorithms are highly nonlinear, complex, and stochastic. Studies
have attempted to carry out convergence analysis [1,22], and some important
results concerning PSO were obtained [7]. However, for other metaheuristics
such as firefly algorithms and ant colony optimization, it remains an active,
challenging topic. On the other hand, even we have not proved or cannot prove
their convergence, we still can compare the performance of various algorithms.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 21–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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This has indeed formed a majority of current research in algorithm development
in the research community of optimization and machine intelligence [9,29,33].

In combinatorial optimization, many important developments exist on com-
plexity analysis, run time and convergence analysis [25,22]. For continuous op-
timization, no-free-lunch-theorems do not hold [1,2]. As a relatively young field,
many open problems still remain in the field of randomized search heuristics [1].
In practice, most assume that metaheuristic algorithms tend to be less complex
for implementation, and in many cases, problem sizes are not directly linked with
the algorithm complexity. However, metaheuristics can often solve very tough
NP-hard optimization, while our understanding of the efficiency and convergence
of metaheuristics lacks far behind.

Apart from the complex interactions among multiple search agents (making
the mathematical analysis intractable), another important issue is the various
randomization techniques used for modern metaheuristics, from simple random-
ization such as uniform distribution to random walks, and to more elaborate
Lévy flights [5,24,33]. There is no unified approach to analyze these mathemat-
ically. In this paper, we intend to review the convergence of two metaheuristic
algorithms including simulated annealing and PSO, followed by the new conver-
gence analysis of the firefly algorithm. Then, we try to formulate a framework for
algorithm analysis in terms of Markov chain Monte Carlo. We also try to analyze
the mathematical and statistical foundations for randomization techniques from
simple random walks to Lévy flights. Finally, we will discuss some of important
open questions as further research topics.

2 Convergence Analysis of Metaheuristics

The formulation and numerical studies of various metaheuristics have been the
main focus of most research studies. Many successful applications have demon-
strated the efficiency of metaheuristics in various context, either through com-
parison with other algorithms and/or applications to well-known problems. In
contrast, the mathematical analysis lacks behind, and convergence analysis has
been carried out for only a minority few algorithms such as simulated anneal-
ing and particle swarm optimization [7,22]. The main approach is often for very
simplified systems using dynamical theory and other ad hoc approaches. Here
in this section, we first review the simulated annealing and its convergence, and
we move onto the population-based algorithms such as PSO. We then take the
recently developed firefly algorithm as a further example to carry out its con-
vergence analysis.

2.1 Simulated Annealing

Simulated annealing (SA) is one of the widely used metaheuristics, and is also
one of the most studies in terms of convergence analysis [4,20]. The essence of
simulated annealing is a trajectory-based random walk of a single agent, starting
from an initial guess x0. The next move only depends on the current state or
location and the acceptance probability p. This is essentially a Markov chain
whose transition probability from the current state to the next state is given by
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p = exp
[
− ΔE

kBT

]
, (1)

where kB is Boltzmann’s constant, and T is the temperature. Here the energy
change ΔE can be linked with the change of objective values. A few studies
on the convergence of simulated annealing have paved the way for analysis for
all simulated annealing-based algorithms [4,15,27]. Bertsimas and Tsitsiklis pro-
vided an excellent review of the convergence of SA under various assumptions
[4,15]. By using the assumptions that SA forms an inhomogeneous Markov chain
with finite states, they proved a probabilistic convergence function P , rather than
almost sure convergence, that

maxP
[
xi(t) ∈ S∗

∣∣∣x0

]
≥ A

tα
, (2)

where S∗ is the optimal set, and A and α are positive constants [4]. This is for
the cooling schedule T (t) = d/ ln(t), where t is the iteration counter or pseudo
time. These studies largely used Markov chains as the main tool. We will come
back later to a more general framework of Markov chain Monte Carlo (MCMC)
in this paper [12,14].

2.2 PSO and Convergence

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart
in 1995 [17,18], based on the swarm behaviour such as fish and bird schooling
in nature. Since then, PSO has generated much wider interests, and forms an
exciting, ever-expanding research subject, called swarm intelligence. PSO has
been applied to almost every area in optimization, computational intelligence,
and design/scheduling applications.

The movement of a swarming particle consists of two major components: a
stochastic component and a deterministic component. Each particle is attracted
toward the position of the current global best g∗ and its own best location x∗

i

in history, while at the same time it has a tendency to move randomly.
Let xi and vi be the position vector and velocity for particle i, respectively.

The new velocity and location updating formulas are determined by

vt+1
i = vt

i + αε1[g∗ − xt
i] + βε2[x∗

i − xt
i]. (3)

xt+1
i = xt

i + vt+1
i , (4)

where ε1 and ε2 are two random vectors, and each entry taking the values be-
tween 0 and 1. The parameters α and β are the learning parameters or acceler-
ation constants, which can typically be taken as, say, α ≈ β ≈ 2.

There are at least two dozen PSO variants which extend the standard PSO
algorithm, and the most noticeable improvement is probably to use inertia func-
tion θ(t) so that vt

i is replaced by θ(t)vt
i where θ ∈ [0, 1] [6]. This is equivalent

to introducing a virtual mass to stabilize the motion of the particles, and thus
the algorithm is expected to converge more quickly.
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The first convergence analysis of PSO was carried out by Clerc and Kennedy in
2002 [7] using the theory of dynamical systems. Mathematically, if we ignore the
random factors, we can view the system formed by (3) and (4) as a dynamical
system. If we focus on a single particle i and imagine that there is only one
particle in this system, then the global best g∗ is the same as its current best
x∗

i . In this case, we have

vt+1
i = vt

i + γ(g∗ − xt
i), γ = α + β, (5)

and
xt+1

i = xt
i + vt+1

i . (6)

Considering the 1D dynamical system for particle swarm optimization, we can
replace g∗ by a parameter constant p so that we can see if or not the particle
of interest will converge towards p. By setting ut = p − x(t + 1) and using the
notations for dynamical systems, we have a simple dynamical system

vt+1 = vt + γut, ut+1 = −vt + (1 − γ)ut, (7)

or

Yt+1 = AYt, A =
(

1 γ
−1 1 − γ

)
, Yt =

(
vt

ut

)
. (8)

The general solution of this dynamical system can be written as Yt = Y0 exp[At].
The system behaviour can be characterized by the eigenvalues λ of A, and we
have λ1,2 = 1 − γ/2 ±

√
γ2 − 4γ/2. It can be seen clearly that γ = 4 leads to

a bifurcation. Following a straightforward analysis of this dynamical system, we
can have three cases. For 0 < γ < 4, cyclic and/or quasi-cyclic trajectories exist.
In this case, when randomness is gradually reduced, some convergence can be
observed. For γ > 4, non-cyclic behaviour can be expected and the distance from
Yt to the center (0, 0) is monotonically increasing with t. In a special case γ = 4,
some convergence behaviour can be observed. For detailed analysis, please refer
to Clerc and Kennedy [7]. Since p is linked with the global best, as the iterations
continue, it can be expected that all particles will aggregate towards the the
global best.

2.3 Firefly Algorithm, Convergence and Chaos

Firefly Algorithm (FA) was developed by Yang [32,34], which was based on
the flashing patterns and behaviour of fireflies. In essence, each firefly will be
attracted to brighter ones, while at the same time, it explores and searches
for prey randomly. In addition, the brightness of a firefly is determined by the
landscape of the objective function.

The movement of a firefly i is attracted to another more attractive (brighter)
firefly j is determined by

xt+1
i = xt

i + β0e
−γr2

ij (xt
j − xt

i) + α εt
i, (9)
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Fig. 1. The chaotic map of the iteration formula (13) in the firefly algorithm and the
transition between from periodic/multiple states to chaos

where the second term is due to the attraction. The third term is randomization
with α being the randomization parameter, and εt

i is a vector of random num-
bers drawn from a Gaussian distribution or other distributions. Obviously, for
a given firefly, there are often many more attractive fireflies, then we can either
go through all of them via a loop or use the most attractive one. For multiple
modal problems, using a loop while moving toward each brighter one is usually
more effective, though this will lead to a slight increase of algorithm complexity.

Here is β0 ∈ [0, 1] is the attractiveness at r = 0, and rij = ||xi−xj ||2 is the �2-
norm or Cartesian distance. For other problems such as scheduling, any measure
that can effectively characterize the quantities of interest in the optimization
problem can be used as the ‘distance’ r.

For most implementations, we can take β0 = 1, α = O(1) and γ = O(1). It
is worth pointing out that (9) is essentially a random walk biased towards the
brighter fireflies. If β0 = 0, it becomes a simple random walk. Furthermore, the
randomization term can easily be extended to other distributions such as Lévy
flights [16,24].

We now can carry out the convergence analysis for the firefly algorithm in a
framework similar to Clerc and Kennedy’s dynamical analysis. For simplicity,
we start from the equation for firefly motion without the randomness term

xt+1
i = xt

i + β0e
−γr2

ij(xt
j − xt

i). (10)

If we focus on a single agent, we can replace xt
j by the global best g found so

far, and we have

xt+1
i = xt

i + β0e
−γr2

i (g − xt
i), (11)

where the distance ri can be given by the �2-norm r2
i = ||g − xt

i||22. In an even
simpler 1-D case, we can set yt = g − xt

i, and we have

yt+1 = yt − β0e
−γy2

t yt. (12)
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We can see that γ is a scaling parameter which only affects the scales/size of the
firefly movement. In fact, we can let ut =

√
γyt and we have

ut+1 = ut[1 − β0e
−u2

t ]. (13)

These equations can be analyzed easily using the same methodology for studying
the well-known logistic map

ut+1 = λut(1 − ut). (14)

The chaotic map is shown in Fig. 1, and the focus on the transition from periodic
multiple states to chaotic behaviour is shown in the same figure.

As we can see from Fig. 1 that convergence can be achieved for β0 < 2. There
is a transition from periodic to chaos at β0 ≈ 4. This may be surprising, as
the aim of designing a metaheuristic algorithm is to try to find the optimal
solution efficiently and accurately. However, chaotic behaviour is not necessarily
a nuisance; in fact, we can use it to the advantage of the firefly algorithm.
Simple chaotic characteristics from (14) can often be used as an efficient mixing
technique for generating diverse solutions. Statistically, the logistic mapping (14)
with λ = 4 for the initial states in (0,1) corresponds a beta distribution

B(u, p, q) =
Γ (p + q)
Γ (p)Γ (q)

up−1(1 − u)q−1, (15)

when p = q = 1/2. Here Γ (z) is the Gamma function

Γ (z) =
∫ ∞

0

tz−1e−tdt. (16)

In the case when z = n is an integer, we have Γ (n) = (n − 1)!. In addition,
Γ (1/2) =

√
π. From the algorithm implementation point of view, we can use

higher attractiveness β0 during the early stage of iterations so that the fireflies
can explore, even chaotically, the search space more effectively. As the search
continues and convergence approaches, we can reduce the attractiveness β0 grad-
ually, which may increase the overall efficiency of the algorithm. Obviously, more
studies are highly needed to confirm this.

2.4 Markov Chain Monte Carlo

From the above convergence analysis, we know that there is no mathematical
framework in general to provide insights into the working mechanisms, the sta-
bility and convergence of a give algorithm. Despite the increasing popularity
of metaheuristics, mathematical analysis remains fragmental, and many open
problems need urgent attention.

Monte Carlo methods have been applied in many applications [28], including
almost all areas of sciences and engineering. For example, Monte Carlo methods
are widely used in uncertainty and sensitivity analysis [21]. From the statistical
point of view, most metaheuristic algorithms can be viewed in the framework of
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Markov chains [14,28]. For example, simulated annealing [20] is a Markov chain,
as the next state or new solution in SA only depends on the current state/solution
and the transition probability. For a given Markov chain with certain ergodicity,
a stability probability distribution and convergence can be achieved.

Now if look at the PSO closely using the framework of Markov chain Monte
Carlo [12,13,14], each particle in PSO essentially forms a Markov chain, though
this Markov chain is biased towards to the current best, as the transition prob-
ability often leads to the acceptance of the move towards the current global
best. Other population-based algorithms can also be viewed in this framework.
In essence, all metaheuristic algorithms with piecewise, interacting paths can be
analyzed in the general framework of Markov chain Monte Carlo. The main
challenge is to realize this and to use the appropriate Markov chain theory
to study metaheuristic algorithms. More fruitful studies will surely emerge in
the future.

3 Search Efficiency and Randomization

Metaheuristics can be considered as an efficient way to produce acceptable so-
lutions by trial and error to a complex problem in a reasonably practical time.
The complexity of the problem of interest makes it impossible to search every
possible solution or combination, the aim is to find good feasible solutions in
an acceptable timescale. There is no guarantee that the best solutions can be
found, and we even do not know whether an algorithm will work and why if it
does work. The idea is to have an efficient but practical algorithm that will work
most the time and is able to produce good quality solutions. Among the found
quality solutions, it is expected some of them are nearly optimal, though there
is no guarantee for such optimality.

The main components of any metaheuristic algorithms are: intensification and
diversification, or exploitation and exploration [5,33]. Diversification means to
generate diverse solutions so as to explore the search space on the global scale,
while intensification means to focus on the search in a local region by exploiting
the information that a current good solution is found in this region. This is in
combination with with the selection of the best solutions.

As discussed earlier, an important component in swarm intelligence and mod-
ern metaheuristics is randomization, which enables an algorithm to have the
ability to jump out of any local optimum so as to search globally. Randomiza-
tion can also be used for local search around the current best if steps are limited
to a local region. Fine-tuning the randomness and balance of local search and
global search is crucially important in controlling the performance of any meta-
heuristic algorithm.

Randomization techniques can be a very simple method using uniform dis-
tributions, or more complex methods as those used in Monte Carlo simulations
[28]. They can also be more elaborate, from Brownian random walks to Lévy
flights.
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3.1 Gaussian Random Walks

A random walk is a random process which consists of taking a series of consec-
utive random steps. Mathematically speaking, let uN denotes the sum of each
consecutive random step si, then uN forms a random walk

uN =
N∑

i=1

si = s1 + ... + sN = uN−1 + sN , (17)

where si is a random step drawn from a random distribution. This suggests
that the next state uN will only depend the current existing state uN−1 and
the motion or transition uN from the existing state to the next state. In theory,
as the number of steps N increases, the central limit theorem implies that the
random walk (17) should approaches a Gaussian distribution. In addition, there
is no reason why each step length should be fixed. In fact, the step size can also
vary according to a known distribution. If the step length obeys the Gaussian
distribution, the random walk becomes the standard Brownian motion [16,33].

From metaheuristic point of view, all paths of search agents form a random
walk, including a particle’s trajectory in simulated annealing, a zig-zag path of
a particle in PSO, or the piecewise path of a firefly in FA. The only difference is
that transition probabilities are different, and change with time and locations.

Under simplest assumptions, we know that a Gaussian distribution is stable.
For a particle starts with an initial location x0, its final location xN after N
time steps is

xN = x0 +
N∑

i=1

αisi, (18)

where αi > 0 is a parameters controlling the step sizes or scalings. If si is drawn
from a normal distribution N(μi, σ

2
i ), then the conditions of stable distributions

lead to a combined Gaussian distribution

xN ∼ N(μ∗, σ
2
∗), μ∗ =

N∑
i=1

αiμi, σ2
∗ =

N∑
i=1

αi[σ2
i + (μ∗ − μi)2]. (19)

We can see that that the mean location changes with N and the variances
increases as N increases, this makes it possible to reach any areas in the search
space if N is large enough.

A diffusion process can be viewed as a series of Brownian motion, and the
motion obeys the Gaussian distribution. For this reason, standard diffusion is
often referred to as the Gaussian diffusion. As the mean of particle locations is
obviously zero if μi = 0, their variance will increase linearly with t. In general, in
the d-dimensional space, the variance of Brownian random walks can be written
as

σ2(t) = |v0|2t2 + (2dD)t, (20)

where v0 is the drift velocity of the system. Here D = s2/(2τ) is the effective
diffusion coefficient which is related to the step length s over a short time interval
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τ during each jump. If the motion at each step is not Gaussian, then the diffusion
is called non-Gaussian diffusion. If the step length obeys other distribution, we
have to deal with more generalized random walks. A very special case is when
the step length obeys the Lévy distribution, such a random walk is called Lévy
flight or Lévy walk.

3.2 Randomization via Lévy Flights

In nature, animals search for food in a random or quasi-random manner. In
general, the foraging path of an animal is effectively a random walk because the
next move is based on the current location/state and the transition probability to
the next location. Which direction it chooses depends implicitly on a probability
which can be modelled mathematically [3,24]. For example, various studies have
shown that the flight behaviour of many animals and insects has demonstrated
the typical characteristics of Lévy flights [24,26]. Subsequently, such behaviour
has been applied to optimization and optimal search, and preliminary results
show its promising capability [30,24].

In general, Lévy distribution is stable, and can be defined in terms of a char-
acteristic function or the following Fourier transform

F (k) = exp[−α|k|β], 0 < β ≤ 2, (21)

where α is a scale parameter. The inverse of this integral is not easy, as it does
not have nay analytical form, except for a few special cases [16,23]. For the case of
β = 2, we have F (k) = exp[−αk2], whose inverse Fourier transform corresponds
to a Gaussian distribution. Another special case is β = 1, which corresponds to
a Cauchy distribution

For the general case, the inverse integral

L(s) =
1
π

∫ ∞

0

cos(ks) exp[−α|k|β ]dk, (22)

can be estimated only when s is large. We have

L(s) → α β Γ (β) sin(πβ/2)
π|s|1+β

, s → ∞. (23)

Lévy flights are more efficient than Brownian random walks in exploring un-
known, large-scale search space. There are many reasons to explain this efficiency,
and one of them is due to the fact that the variance of Lévy flights takes the
following form

σ2(t) ∼ t3−β , 1 ≤ β ≤ 2, (24)
which increases much faster than the linear relationship (i.e., σ2(t) ∼ t) of Brow-
nian random walks.

Studies show that Lévy flights can maximize the efficiency of resource searches
in uncertain environments. In fact, Lévy flights have been observed among forag-
ing patterns of albatrosses and fruit flies [24,26,30]. In addition, Lévy flights have
many applications. Many physical phenomena such as the diffusion of fluoren-
scent molecules, cooling behavior and noise could show Lévy-flight characteristics
under the right conditions [26].



30 X.-S. Yang

4 Open Problems

It is no exaggeration to say that metahueristic algorithms have been a great
success in solving various tough optimization problems. Despite this huge suc-
cess, there are many important questions which remain unanswered. We know
how these heuristic algorithms work, and we also partly understand why these
algorithms work. However, it is difficult to analyze mathematically why these
algorithms are so successful, though significant progress has been made in the
last few years [1,22]. However, many open problems still remain.

For all population-based metaheuristics, multiple search agents form multi-
ple interacting Markov chains. At the moment, theoretical development in these
areas are still at early stage. Therefore, the mathematical analysis concerning
of the rate of convergence is very difficult, if not impossible. Apart from the
mathematical analysis on a limited few metaheuristics, convergence of all other
algorithms has not been proved mathematically, at least up to now. Any math-
ematical analysis will thus provide important insight into these algorithms. It
will also be valuable for providing new directions for further important modifi-
cations on these algorithms or even pointing out innovative ways of developing
new algorithms.

For almost all metaheuristics including future new algorithms, an important
issue to be addresses is to provide a balanced trade-off between local intensifica-
tion and global diversification [5]. At present, different algorithm uses different
techniques and mechanism with various parameters to control this, they are far
from optimal. Important questions are: Is there any optimal way to achieve this
balance? If yes, how? If not, what is the best we can achieve?

Furthermore, it is still only partly understood why different components of
heuristics and metaheuristics interact in a coherent and balanced way so that
they produce efficient algorithms which converge under the given conditions. For
example, why does a balanced combination of randomization and a deterministic
component lead to a much more efficient algorithm (than a purely deterministic
and/or a purely random algorithm)? How to measure or test if a balance is
reached? How to prove that the use of memory can significantly increase the
search efficiency of an algorithm? Under what conditions?

In addition, from the well-known No-Free-Lunch theorems [31], we know that
they have been proved for single objective optimization for finite search domains,
but they do not hold for continuous infinite domains [1,2]. In addition, they re-
main unproved for multiobjective optimization. If they are proved to be true (or
not) for multiobjective optimization, what are the implications for algorithm de-
velopment? Another important question is about the performance comparison.
At the moment, there is no agreed measure for comparing performance of differ-
ent algorithms, though the absolute objective value and the number of function
evaluations are two widely used measures. However, a formal theoretical analysis
is yet to be developed.

Nature provides almost unlimited ways for problem-solving. If we can observe
carefully, we are surely inspired to develop more powerful and efficient new gen-
eration algorithms. Intelligence is a product of biological evolution in nature.
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Ultimately some intelligent algorithms (or systems) may appear in the future,
so that they can evolve and optimally adapt to solve NP-hard optimization
problems efficiently and intelligently.

Finally, a current trend is to use simplified metaheuristic algorithms to deal
with complex optimization problems. Possibly, there is a need to develop more
complex metaheuristic algorithms which can truly mimic the exact working
mechanism of some natural or biological systems, leading to more powerful next-
generation, self-regulating, self-evolving, and truly intelligent metaheuristics.
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Abstract. A function with one integer variable is defined to be integer
convex by Fox [3] and Denardo [1] if its second forward differences are
positive. In this paper, condense discrete convexity of nonlinear discrete
multivariable functions with their corresponding Hessian matrices is in-
troduced which is a generalization of the integer convexity definition of
Fox [3] and Denardo [1] to higher dimensional space Zn. In addition,
optimization results are proven for C1 condense discrete convex func-
tions assuming that the given condense discrete convex function is C1.
Yüceer [17] proves convexity results for a certain class of discrete convex
functions and shows that the restriction of the adaptation of Rosen-
brook’s function from real variables to discrete variables does not yield
a discretely convex function. Here it is shown that the adaptation of
Rosenbrook’s function considered in [17] is a condense discrete convex
function where the set of local minimums is also the the set of global
minimums.

Keywords: Integer programming, mathematical programming, discrete
convex function, real convex function.

1 Introduction

In real convex analysis the convexity of a C2 function can be obtained by check-
ing whether or not the corresponding Hessian matrix is positive definite. This
result has important applications to optimization problems for real variable C2

functions. In particular, a C2 function f : Rn → R is strictly convex if and only
if the corresponding Hessian matrix is positive definite, and, therefore any local
minimum of f is also the global minimum and vice versa. A Hessian matrix in
real convex analysis also identifies the closed form convexity conditions for the
corresponding C2 function in local settings (see [15] for details).

In discrete convex analysis, Denardo [1], Fox [3], and many others in the lit-
erature define a single variable discrete function to be convex if the first forward
differences of the given function are increasing or at least nondecreasing. A mul-
tivariable discrete L-convex function is defined to be the generalization of the
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Lovász extension of submodular set functions in [12] by Murota. L#−convex
functions are defined in [4] by Fujishige and Murota. The concept of M -convex
functions is introduced by Murota in [11] and that of M# convex functions by
Murota-Shioura in [14] . The discrete analogue of Hessian matrices correspond-
ing to multivariable discrete L, L#, M, and M# functions are introduced by
Hirai and Murota [5], and Moriguchi and Murota [10] . Important applications
of L, L#, M, and M# discrete convex/concave functions appear in network flow
problems (see [13] for details). The convexity properties of nonlinear integer vari-
able, integer valued objective functions are investigated by Favati and Tardella
[2] where algorithmic approaches are also presented. Kiselman ([6] , [7] and [8])
defines the convex envelope, canonical extension and lateral convexity of multi-
variable discrete functions where the second difference of a function f : Zn → R
is introduced to define lateral convexity.

Let S be a subspace of a discrete n-dimensional space. A function f : S → R
is defined to be discrete convex by Yüceer [17] (using Miller’s [9] definition) if
for all x, y ∈ S and α > 0 we have

αf(x) + (1 − α)f(y) ≥ min
u∈N(z)

f(u)

where z = αx + (1 − α)y, N(z) = {u ∈ S : ‖u − z‖ < 1}, and ‖u‖ = max{|ui| :
1 ≤ i ≤ n}. This discrete convex function definition yields nonnegative sec-
ond forward differences in each component, and a symmetric matrix of second
forward cross differences. By imposing additional submodularity conditions on
discrete convex functions, the concept of strong discrete convexity is introduced
in [17]. A strong discrete convex function has a corresponding positive semi-
definite matrix of second forward differences which has practical and compu-
tational implications. D-convex and semistrictly quasi D-convex functions are
introduced in [16] by Ui where D-convex functions have a unified form that
includes discretely convex, integrally convex, M convex, M 
 convex, L convex,
and L
 convex functions in local settings.

In this paper, we introduce a definition of condense discrete convexity of a
nonlinear real extensible closed form function β : Zn → R, which is a general-
ization of the integer convexity definition of Fox [3] and Denardo [1] for a one
variable discrete function to nonlinear multivariable discrete variable functions.
A discrete Hessian matrix H consisting of second differences ∇ijβ (1 ≤ i, j ≤ n)
corresponding to a condense discrete convex function β : Zn → R in local set-
tings is introduced, and convexity results are obtained for condense discrete
functions similar to the convexity results obtained in real convex analysis. The
discrete Hessian matrix H is shown to be symmetric, linear, and vanishes when
the condense discrete function is affine.

Yüceer [17] states that the restriction of any continuous function to a discrete
space does not necessarily yield a discrete convex function where an adaptation
of Rosenbrook’s function is illustrated as an example. In this paper, we show
that the discretization of the Rosenbrook’s function from continuous variables
to integer variables is a condense discrete convex function.
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To obtain minimization results for a given condense discrete convex function,
we require the given condense discrete convex function to be C1. After defining
the local and global minimum of condense discrete convex functions, we obtain
convexity results for C1 condense discrete convex functions.

2 Convexity and Optimization of Condense Discrete
Functions

In this section, we first introduce the first and second differences of an n-integer
variable function. Second, we introduce the condense discrete convexity of an
n-integer variable function which is a generalization of the integer convexity def-
inition of Denardo [1] and Fox [3] for one variable discrete functions. The second
partial derivative of a C2 real convex function f in Rn becomes the second dif-
ference of a condense discrete convex function in Zn when we change the domain
of f from Rn to Zn which is the main idea of the condense discrete convexity
concept. Therefore the condense discrete convexity definition is similar to the
real convexity definition where we check whether the given discrete variable func-
tion is C2 or not. This has practical applications when we consider C2 discrete
functions such as discrete variable polynomials.

2.1 Convexity of Condense Discrete Functions

Similar to the difference operator definition of Kiselman [7], we define the first
difference of an integer variable function f : Zn → R by

∇if (x) = f (x + ei) − f (x) ,

and the difference of the first difference, namely the second difference of f is
defined by

∇ij (f (x)) = f (x + ei + ej) − f (x + ei) − f (x + ej) + f (x) ,

where ei represents the integer vectors of unit length at the ith position of the
function f . We define a condense discrete convex set D to be the set of points
that coincides with a real convex set on the integer lattice which is large enough
to support the second difference of a given condense discrete function. We as-
sume that the union of condense discrete convex sets are discrete convex sets
as well. The following definition of an n-integer variable function holds for a
certain class of discrete functions. The definition of a condense discrete convex
function is based on its quadratic approximation in a condense discrete convex
neighborhood D ⊂ Zn.

Definition 1. A discrete function f : D → R on a condense discrete convex set
D ⊂ Zn is defined to be condense discrete convex if its quadratic approximation
1
2xT Ax in the neighborhood D is strictly positive where A is the symmetric coef-
ficient matrix of the quadratic approximation of f . f is called condense discrete
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concave if −f is condense discrete convex. A is called the discrete coefficient
matrix of f.

Proposition 1. Let f : D → R be defined on a condense discrete convex set
D ⊂ Zn with its quadratic approximation 1

2xT Ax. The coefficient matrix A
corresponding to f is the symmetric matrix [∇ij (f)]n×n .

Proof. We first prove the symmetry of the matrix [∇ij (f)]n×n.

∇ijf (x) = ∇i (f (x + ej) − f (x))
= f (x + ei + ej) − f (x + ei) − f (x + ej) + f (x)
= ∇j (f (x + ei) − f (x))
= ∇j (∇if (x)) = ∇jif (x) .

Assuming that A is symmetric, for all i and j,

∇ij (f (x)) =
1
2
∇i

(
(x + ej)

T
A (x + ej) − xT Ax

)
=

1
2
∇i

(
xT A (x + ej) + eT

j A (x + ej) − xT Ax
)

=
1
2
∇i

(
xT Ax + xT Aej + eT

j Ax + eT
j Aej − xT Ax

)
=

1
2
∇i

(
xT Aej + eT

j Ax + eT
j Aej

)
=

1
2

(
(x + ei)

T
Aej − xT Aej + eT

j A (x + ei) − eT
j Ax

)
=

1
2

(
xT Aej + eT

i Aej − xT Aej + eT
j Ax + eT

j Aei − eT
j Ax

)
=

1
2

(
eT

i Aej + eT
j Aei

)
= aij .

Therefore

Af = [aij ]n×n = [∇ijf ]n×n . ��

Proposition 2. The coefficient matrix Af of f : D → R given above in propo-
sition 1 satisfies the properties of the discrete Hessian matrix corresponding to
real convex functions. That is, Af is linear with respect to the condense discrete
functions, symmetric, and vanishes when f is discrete affine.

Proof. Let f1 : S1 → R and f2 : S2 → R be condense discrete functions with
the corresponding coefficient matrices Af1 and Af2 , respectively. Then

[∇ij (f1 + f2)]n×n = Af1+f2

= Af1 + Af2

= [∇ij (f1)]n×n + [∇ij (f2)]n×n
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which also proves the linearity of the second difference operator with respect to
the condense discrete functions. The symmetry condition is proven in proposi-
tion 1.

Considering the condense discrete affine function f,

f (x) =
n∑

i=1

bixi

the second difference operator vanishes since ∇i (f) = bi and ∇ij (f) = 0 for all
i and j. ��
Theorem 1. A function f : D → R is condense discrete convex if and only if
the corresponding discrete Hessian matrix is positive definite in D.

Proof. Consider the discrete function

f (x) = xT Afx =
2∑

i,j=1

aijxixj

where aij ∈ R for all 1 ≤ i, j ≤ 2, and x ∈ Z2. We prove the case for 2×2 matrix
and n × n matrix case follows similarly. Suppose Af is positive definite.

Case 1. If we let x = (1, 0) , then

f (x) = a11x
2
1 + 2a12x1x2 + a22x

2
2 = a11 > 0.

Case 2. If we let x = (0, 1) , then

f (x) = a11x
2
1 + 2a12x1x2 + a22x

2
2 = a22 > 0.

To show Af > 0 for any x �= 0 consider the following cases.

Case 1. If we let x = (x1, 0) with x1 �= 0. Then,

f (x) = a11x
2
1 + 2a12x1x2 + a22x

2
2 = a11x

2
1 > 0 ⇔ a11 > 0.

Case 2. If we let x = (x1, x2) with x2 �= 0. Let x1 = tx2 for some t ∈ R.
Therefore we have

f (x) =
(
a11t

2 + 2a12t + a22

)
x2

2

where f (x) > 0 ⇔ ϕ (t) = a11t
2 + 2a12t + a22 > 0 since x2 �= 0. Note that

ϕ′ (t) = 2a11t + 2a12 = 0

⇒ t∗ = −a12

a11

ϕ′′ (t) = 2a11.

If a11 > 0 then

ϕ (t) ≥ ϕ (t∗) = ϕ

(
−a12

a11

)
=

−a2
12

a11
+ a22

=
1

a11
det

[
a11 a12

a21 a22

]
.
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Therefore if a11 > 0 and the determinant given above is positive then ϕ (t) > 0
for all t ∈ R. Conversely, if f (x) > 0 for every x �= 0 then ϕ (t) > 0 for some t,
therefore

ϕ (t) > 0 ⇒ a11 > 0, and 4a2
12 − 4a11a22 = −4 det (Af ) < 0,

ϕ (t) > 0 ⇔ a11 > 0 and det (Af ) > 0.

which completes the proof. ��

2.2 Optimization of Condense Discrete Functions

To obtain minimization results for a given condense discrete convex function,
we require the given condense discrete convex function to be C1. After defining
the local and global minimum point concepts of condense discrete convex func-
tions, we prove optimization results for C1 condense discrete convex functions.
Condense discrete concave function maximization results follow similarly.

We let
∞
∪

i=1
Si = Zn where Si is a nonempty sufficiently small condense discrete

convex neighborhood to support quadratic approximation of f,
∞
∩

i=1
Si = ∅ and

∩
i∈I

Si �= ∅ for all Si where Si have at least one common element for all i ∈ I, I

is a finite index set, and {si} is a singleton in Zn.

The partial derivative operator of a C1 discrete funtion f : Zn → R will be
denoted by ∂f (x) :=

(
∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xn

)
.

Definition 2. The local minimum of a condense discrete C1 function f : Zn → R
is the minimal value of f in a local neighborhood ∪

i∈I
Si which is also the smallest

value in a neighborhood N = ∪
j∈J

(
∪

i∈Ij

Si

)
where J is a finite index set. The

global minimum value of a condense discrete convex function f : Zn → R is the
minimum value of f in the entire integer space Zn.

We define the set of local minimums of a C1 condense discrete convex function
f by

Ψ = {ρ = (ρ1, ..., ρn) : ρi ∈ {�γi� , �γi } ⊂ Z for all i} ⊂ Zn.

where ∂f (γ) = 0 holds for γ ∈ Rn. As the domain is Zn, we consider the
solutions in Ψ where ρi = �γi� or ρi = �γi is the solution for multivariable
integer function f.

Lemma 1. Let f : Zn → R be a C1 condense discrete convex function in
N ⊂ Zn. Then there exists a local minimum value in N ⊂ Zn such that

f0 = min
β∈Ψ

{f (β)} .

Proof. Let f : N → R be a C1 strict condense discrete convex function. There-
fore f has a local minimum value f (x0) in some neighborhood S = ∪

i∈I
Si by
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theorem 1. By definition of N, ∪
i∈I

Si ⊆ N hence f (x0) is also the local minimum

in the neighborhood N.
It is well known that the local minimum of a C1 function f is obtained when

the system of equations

∂f (x)
∂xi

= lim
t→0

f (x + tei) − f (x)
t

= 0

is solved simultaneously for all i, 1 ≤ i ≤ n. We first find ∂f (x) = 0 which
implies the existence of a γi ∈ R for all i. Noting that the domain is Zn, we take
the ceiling and floor of the components of γi to obtain the minimal point which
consist of integer numbers �γi or �γi� for all i. This gives a local minimum point
β ∈ Ψ and the corresponding value f0 = min

β∈Ψ
{f (β)} . ��

The following result for condense discrete convex functions is a result similar to
a result in real convex analysis.

Theorem 2. Let f : Zn → R be a C1 strict condense discrete convex function.
Then the set of local minimums of f form a set of global minimums and vice
versa.

Proof. Suppose f : Zn → R be a C1 condense discrete convex function. Let
∞
∪

i=1
Si = Zn where Si are sufficiently small condense discrete neighborhoods that

support quadratic approximation of f for all i, and
∞
∩

i=1
Si = ∅. Let Ω1 be the set

of local minimum points of f in Zn, and Ω2 be the set of global minimum points
of f in Zn.

Let f : Zn → R be a C1 condense discrete convex function and suppose f has
global minimum points in Zn =

∞
∪

i=1
Si. Noting that f is nonlinear, there exists a

finite collection of Si, ∪
i∈I0

Si, where the global minimum points are located. The

solution set of ∂f(x)
∂xj

= 0 for all j, 1 ≤ j ≤ n, gives the set of local minimums in
Si. Therefore for all x ∈ Ω2 there exists a set of integer vectors y ∈ Ω1 such that
min
x∈Ω1

f (x) = f (y) which indicates Ω2 ⊂ Ω1 since ∪
i∈I0

Si ⊂ N ⊂ Zn.

Now suppose there exists a vector x0 in a local neighborhood S = ∪
i∈I1

Si such

that x0 /∈ Ω2 (Note that x0 is not necessarily an element of Ω1 since it is a
local minimum in a local setting). x0 is a local minimum which is not a global
minimum in S, therefore there exist x1 and y1 such that f (x0) > f (x1) > f (y1)

in N = ∪
j∈J

(
∪

i∈Ij

Si

)
⊃ S where y1 becomes the new local minimum of the

local neighborhood N. Therefore y0 is the new local minimum of N where x0 is
not a local minimum of N . Suppose y0 is a local minimum that is not a global
minimum otherwise it would be an element of Ω2. Continuing to enlarge the
local obtained neighborhoods in this way to the entire space Zn, we obtain a set
of points in a local neighborhood D of Zn where local minimum points x ∈ Ω1

satisfy f (x) < f (y) for all y ∈ Zn − D. Therefore x ∈ Ω2 and hence Ω1 ⊂ Ω2

which completes the proof. ��
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Next we consider an adaptation of Rosenbrook’s function suggested by Yüceer
[17] and show that this function is a condense discrete convex function.

3 An Example

Yüceer [17] shows that the adaptation of Rosenbrook’s function

f(k, μ) = 25(2μ − k)2 +
1
4
(2 − k)2 where k, μ ∈ Z. (1)

is not a discretely convex function when continuous variables are restricted to
the integer lattice. Here, we first prove the condense discrete convexity of the
function given in (1) and then show that the set of local minimums is also the
set of global minimums.

The diagonal elements of the discrete Hessian matrix that corresponds to
f (k, μ) are

∇11f (k, μ) = 25 (2μ − k − 2)2 +
1
4
k2 − 50 (2μ − k − 1)2

− 1
2

(1 − k)2 + 25 (2μ − k)2 +
1
4

(2 − k)2

=
101
2

> 0.

∇22f = 25 (2j + 4 − i)2 − 50 (2j + 2 − i)2 + 25(2j − i)2

= 200.

By the symmetry of the discrete Hessian matrix, the off diagonal elements of
the discrete Hessian matrix are

∇12f = ∇21f = 25(2j + 2 − i − 1)2 − 25(2j − i − 1)2

− 25(2j + 2 − i)2 + 25(2j − i)2

= −100.

Therefore

det(H) = 200.
101
2

− (100)2

= 100.101 − (100)2

= 100.

This indicates that the discrete Hessian matrix is positive definite. There-
fore, the adaptation of the Rosenbrook’s function given in the equality (1)
(see Fig. 1.) is a strict condense discrete convex function.

Now we show that the set of local minimums of the adaptation of the condense
discrete convex Rosenbrook’s function is also the set of global minimums. Clearly,
f is a C1 function therefore

∂f (k, μ) = 0 ⇒
{

∂f
∂k = −50(2μ − k) − 1

2 (2 − k) = 0
∂f
∂μ = 100(2μ− k) = 0
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Fig. 1. An adaptation of Rosenbrook function suggested by Yüceer [13]

where simultaneous solution of this system of two equations indicate k = 2 and
μ = 1. Therefore the minimal value is f(2, 1) = 0. Since Rosenbrook’s function
is a C1 condense discrete convex function, the local minimum point set which is
the singleton {(2, 1, 0)} is also the set of global minimum points.

An example of a function that is real convex but not condense discrete convex
function is g (x, y) = (x − y)2 since det (g) = 0.

Acknowledgments. We would like to thank the reviewers for their constructive
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Abstract. The Border Gateway Protocol (BGP) serves as the main
routing protocol of the Internet and ensures network reachability among
autonomous systems (ASes). When traffic is forwarded between the many
ASes on the Internet according to that protocol, each AS selfishly routes
the traffic inside its own network according to some internal protocol
that supports the local objectives of the AS. We consider possibilities of
achieving higher global performance in such systems while maintaining
the objectives and costs of the individual ASes. In particular, we consider
how path trading, i.e. deviations from routing the traffic using individu-
ally optimal protocols, can lead to a better global performance. Shavitt
and Singer (“Limitations and Possibilities of Path Trading between Au-
tonomous Systems”, INFOCOM 2010) were the first to consider the com-
putational complexity of finding such path trading solutions. They show
that the problem is weakly NP-hard and provide a dynamic program to
find path trades between pairs of ASes.

In this paper we improve upon their results, both theoretically and
practically. First, we show that finding path trades between sets of ASes
is also strongly NP-hard. Moreover, we provide an algorithm that finds
all Pareto-optimal path trades for a pair of two ASes. While in principal
the number of Pareto-optimal path trades can be exponential, in our
experiments this number was typically small. We use the framework of
smoothed analysis to give theoretical evidence that this is a general phe-
nomenon, and not only limited to the instances on which we performed
experiments. The computational results show that our algorithm yields
far superior running times and can solve considerably larger instances
than the previous dynamic program.

1 Introduction

The Border Gateway Protocol (BGP) serves as the main routing protocol on the
top level of the Internet and ensures network reachability among autonomous
systems (ASes). When traffic is forwarded from a source to a destination, these
ASes cooperate in order to provide the necessary infrastructure needed to ensure
the desired services. However, ASes do also compete and therefore follow their
individual strategies and policies when it comes to routing the traffic within

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 43–53, 2011.
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their own network. Such locally preferable routing decisions can be globally
disadvantageous. Particularly, the way how one AS forwards traffic and through
which ingress node another AS may therefore receive the traffic can make a
huge difference in the costs for that other AS. Behaving selfishly usually means
that an AS routes its traffic according to the least expensive route, also known
as hot-potato routing, without regarding the costs of the next AS in the BGP
path. This is supported by strong evidence by Teixeira et al. [17].

Quite a number of protocols have been suggested that require the exchange
of information and coordination in order to overcome global suboptimality while
at the same time improving the costs for each individual AS [6,7,18]. Recently,
Shavitt and Singer [13] considered the case where ASes might be willing to trade
traffic in such a way that the costs for both ASes do not increase w.r.t. the
hot-potato routing, and term this problem path trading. They prove that for two
ASes the problem of deciding whether there is a feasible path trade is weakly
NP-hard. Further, they develop an algorithm based on dynamic programming to
find the “best” trading between a pair. Lastly, they give experimental evidence
that path trading can have benefits to autonomous systems.

In this paper we extend their work in the following way. We show that path
trading is also strongly NP-hard when an arbitrary number of ASes is considered.
This justifies the approach taken by Shavitt and Singer as well as the approach
taken in this paper to concentrate on path trades between pairs of ASes. We pro-
pose a new algorithm for finding path trades between pairs of ASes that is based on
the concept of Pareto efficiency. We have implemented both, our algorithm and
the algorithm of Shavitt and Singer, and tested them on real Internet instances
stemming from [12]. Besides the added advantage that our algorithm obtains all
Pareto-optimal path trades, it is very fast and has low memory consumption. As
the problem is NP-hard, we cannot expect that the algorithm performs well on all
possible inputs. However, in order to support the experimental results we consider
our algorithm in the frameworkof smoothed analysis, which was introduced in 2001
by Spielman and Teng [15] to explain why many heuristics with a bad worst-case
performance work well on real-world data sets. We show that even though there
are (artificial) worst-case instances on which the heuristic performs poorly, it has
a polynomial expected running time on instances that are subject to small random
perturbations.After its introduction, smoothed analysis has been applied in many
different contexts (see [16] for a nice survey).

Finding path trades can be viewed as an optimization problem with multiple
objectives that correspond to the costs of the different ASes. A feasible path
trade is then a solution that is in every objective at least as good as the hot-
potato routing. We say that such a path trade dominates the hot-potato routing
if it is strictly better in at least one objective. This brings us to the well-known
concept of Pareto efficiency or Pareto optimality in multiobjective optimization:
A solution is called Pareto-optimal if it is not dominated by any other solution,
that is, a solution is Pareto-optimal if there does not exist another solution that
is at least as good in all criteria and strictly better in at least one criterion. We
call the set of Pareto-optimal solutions Pareto set or Pareto curve for short.
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Then the question of whether there is a feasible path trade can simply be
formulated as the question whether the hot-potato routing is Pareto-optimal or
not. This immediately suggests the following algorithm to find a feasible path
trade: Enumerate the set of Pareto-optimal solutions, and then either output
that there is no path trade if the hot-potato routing belongs to the Pareto set,
or output a Pareto-optimal solution that dominates the hot-potato routing if it
is not Pareto-optimal. Also, finding the Pareto set gives the flexibility to choose
a solution based on preference. While some solutions might offer great global
gain, these trade-offs might be unreasonable from a fairness perspective.

The aforementioned algorithm only works when the Pareto set is small be-
cause otherwise the computation becomes too time consuming. Our experiments
show that the number of Pareto-optimal path trades is indeed small and that
despite the NP-hardness result by Shavitt and Singer we can solve this problem
efficiently in practice for two ASes.

For path trading between an arbitrary number of ASes, however, there is little
hope for obtaining such a result: We show that our strong NP-hardness result
implies that this problem cannot be solved efficiently even in the framework of
smoothed analysis.

Related Work. The potential benefits of collaboration between neighboring ASes
and the necessary engineering framework were first introduced by Winick et
al. [18]. They consider the amount of information that needs to be shared be-
tween the ASes in order to perform mutually desirable path trades and how to
limit the effect of path trades between neighboring ASes on the global flow of
traffic. The first heuristics for path trading to improve the hot-potato routing
were evaluated by Majahan et al. [7]. Majahan et al. also developed a routing
protocol that provides evidence that path trading can improve global efficiency
in Internet routing. Other related work in the area of improving the global per-
formance while maintaining the objectives of the different ASes has been done
by Yang et al. [19], Liu and Reddy [6], and by Quoitin and Bonaventure [9].
Since ASes usually compete, one cannot expect them to reveal their complete
network and cost structure when it comes to coordinating the traffic between the
ASes. This aspect is considered in the work by Shrimali et al. [14], using aspects
from cooperative game theory and the idea of Nash bargaining. Goldenberg et
al. [4] develop routing algorithms in a similar context to optimize global cost
and performance in a multihomed user setting, which extends previous work in
that area [1,3,11].

2 Model and Notation

The model is as follows. We have the Internet graph G = (V, E), where every
vertex represents a point/IP-address. Further, there are k ASes and the vertex
set V is partitioned into mutually disjoint sets V1, . . . , Vk, where Vi represents
all points in AS i. We denote by Ei all edges within AS i, that is, the set of
edges E is partitioned into E1, . . . , Ek, and the set of edges between different
ASes. The graph G is undirected, and each edge e ∈ E has a length �(e) ∈ R≥0.
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The traffic is modeled by a set of requests R, where each request is a triple
(s, t, c), where s ∈ V and t ∈ V are source and sink nodes, respectively, and
c ∈ R≥0 is the cost of the corresponding request. The BGP protocol associates
with each request a sequence of ASes which specifies the order in which the
request has to be routed through the ASes. Since most of the paper is about the
situation between two ASes, we leave this order implicit. The cost of routing a
request with cost c through edge e is �(e) · c. For simplicity, the costs of routing
a packet between two ASes are assumed to be zero, but each request can be
routed at most once from an AS to the next AS. The input for Path Trading

consists of the graph G and requests as described previously. We denote by n
the number of nodes in V .

For a given graph G and a request (s, t, c) we say that a path P is valid if
it connects s to t and visits the ASes in the order that is associated with this
request by the BGP protocol. This means, in particular, that every valid path
goes through every AS at most once. A solution to Path Trading is a mapping
that maps each request (s, t, c) ∈ R to a valid path from s to t in graph G. Let us
assume that the requests in R are (s1, t1, c1), . . . , (sr, tr, cr) and that the paths
P1, . . . , Pr have been chosen for these requests. Then AS i incurs costs on all
edges in Ei, i.e., it incurs a total cost of

r∑
j=1

(
cj ·

∑
e∈Pj∩Ei

�(e)
)
. (1)

The hot-potato route of a request (s, t, c) is defined to be the concatenation
of shortest path routes for the ASes it goes through. To be precise, assume that
the BGP protocol associates the route i1, . . . , im with s ∈ Vi1 and t ∈ Vim with
this request. Then AS i1 sends the request from s to the vertex s2 ∈ Vi2 that
is closest to s along the shortest path. Then AS i2 sends the request from s2

to the vertex s3 ∈ Vi3 that is closest to s2 along the shortest path, and so on.
The complete hot-potato route for request (s, t, c) is then the concatenation of
these paths. Note that the hot-potato route is not necessarily unique, and in the
following we will assume that some hot-potato route is chosen for each request.

Consequently, the costs of the hot-potato routing that an AS i incurs are equal
to Equation 1, where the paths P1, . . . , Pr are the hot-potato paths. We call a
solution to Path Trading a path trade and if the costs for all involved ASes
are less or equal to their hot-potato costs, then we call it a feasible path trade.
In the following, let [n] be the set of integers {1, ..., n}. For a vector x ∈ Rn, let
xi be the i-th component of x.

Due to space limitations the proofs of the complexity results (Theorems 1, 2, 4
and Corollary 2) are deferred to full version of this paper.

3 Complexity Results and Smoothed Analysis

Our first result is about the complexity of Path Trading and extends the weak
NP-hardness result of Shavitt and Singer [13]. The proof uses a reduction from
3-Partition.
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Theorem 1. Finding a feasible path trade apart from the hot-potato routing is
strongly NP-hard.

Given the above theorem, in order to develop fast algorithms, we concentrate
on path trading between two ASes, and will now present our algorithm for this
case. As mentioned before, this algorithm is based on the concept of Pareto
efficiency and it enumerates all Pareto-optimal path trades. In the worst case
the number of Pareto-optimal solutions can be exponential, but our experiments
suggest that on real-world data usually only a few solutions are Pareto-optimal.
To give a theoretical explanation for this, we apply the framework of smoothed
analysis. The algorithm is a dynamic program that adds the requests one after
another, keeping track of the Pareto-optimal path trades of those requests that
have already been added.

For a request (s, t, c), a path P from s to t, and i ∈ {1, 2}, we denote by Ci(P )
the costs incurred by AS i due to routing the request along path P . To keep
the notation simple, assume in the following discussion w.l.o.g. that s ∈ V1 and
t ∈ V2. We denote by P(s, t) the set of all Pareto-optimal valid paths from s to t.
Remember that a path is valid if it starts at s, terminates at t, and does not go
back to V1 after leaving V1 for the first time. Such a path P belongs to P(s, t) if
there does not exist another valid path that induces strictly lower costs for one
AS and not larger costs for the other AS than P . We assume that in the case
that there are multiple paths that induce for both ASes exactly the same costs,
only one of them is contained in P(s, t).

Let P ∈ P(s, t) be some Pareto-optimal path and let v ∈ V1 be the boundary
node at which the path leaves AS 1. Then the subpaths from s to v and from
v to t must be shortest paths in AS 1 and AS 2, respectively. Otherwise, P
cannot be Pareto-optimal. Hence, the number of Pareto-optimal paths in P(s, t)
is bounded from above by the number of boundary nodes of AS 1 that connect
to AS 2. For each pair s ∈ V1 and t ∈ V2, the set P(s, t) can be computed in
polynomial time.

Our algorithm first computes the set P1 of Pareto-optimal path trades for
only the first request (s1, t1, c1). This is simply the set P(s1, t1). Based on this,
it computes the set P2 of Pareto-optimal path trades for only the first two
requests, and so on. Thus the elements in Pi are tuples (P1, . . . , Pi) where each
Pj is a valid path for the jth request.

Algorithm 1. Algorithm to compute the Pareto set

P1 = P(s1, t1);
for i = 2 to r do

Pi = {(P1, . . . , Pi) | (P1, . . . , Pi−1) ∈ Pi−1, Pi ∈ P(si, ti)};
Remove all solutions from Pi that are dominated by other solutions from Pi.
If Pi contains multiple solutions that induce for both ASes exactly the same costs,
then remove all but one of them.

end for
Return Pr



48 A. Berger, H. Röglin, and R. van der Zwaan

Theorem 2. For i ∈ [r], the set Pi computed by Algorithm 1 is the set of Pareto-
optimal path trades for the first i requests. In particular, the set Pr is the set of
Pareto-optimal path trades for all requests. Algorithm 1 can be implemented to
run in time O(n log n ·

∑r
i=1 |Pi| + nr|E| log n).

We start by reviewing a result due to Beier et al. [2] who analyzed the number
of Pareto-optimal solutions in binary optimization problems with two objective
functions. They consider problems whose instances have the following form: the
set of feasible solutions S is a subset of {0, . . . , F}n for some integers F and
n, and there are two objective functions w(1) : S → R and w(2) : S → R that
associate with each solution x ∈ S two weights w(1)(x) and w(2)(x) that are
both to be minimized. While w(2) can be an arbitrary function, it is assumed
that w(1) is linear of the form w(1)(x) = w1x1 + ... + wnxn.

In a worst-case analysis, the adversary would be allowed to choose the set
of feasible solutions S, and the two objective functions w(1) and w(2). Then
it can easily be seen that there are choices such that the number of Pareto-
optimal solutions is exponential. To make the adversary less powerful and to
rule out pathological instances, we assume that the adversary cannot choose
the coefficients w1, . . . , wn exactly. Instead he can only specify a probability
distribution for each of them according to which it is chosen independently of
the other coefficients. Without any restriction, this would include deterministic
instances as a special case, but we allow only probability distributions that can be
described by a density function that is upper bounded by some parameter φ ≥ 1.

We denote by fi : R≥0 → [0, φ] the probability density according to which wi

is chosen, and we assume that the expected value of wi is in [0, 1].

Theorem 3 (Beier et al., [2]). For any choice of feasible solutions S ⊆
{0, ..., F}n, any choice of w(2) and any choice of density functions f1, . . . , fn,
the expected number of Pareto-optimal solutions is bounded by O(φn2F 2 log F ).

Now we formulate our problem in terms of Theorem 3. For this, we assume that
all requests have positive integer costs. Let F denote an upper bound on the
maximal costs possible on any edge, e.g., F =

∑
(s,t,c)∈R c. Let m = |E| and

assume that the edges in E are ordered arbitrarily. Then each path trade leads
to a cost vector x ∈ {0, . . . , F}m where x1 denotes the total cost of all requests
that use the first edge in E, x2 denotes the total cost of all requests that use the
second edge in E, and so on. If two solutions lead to the same cost vector, then
it suffices to remember one of them, and hence, we can assume that the set of
possible path trades can essentially be described by the set S ⊆ {0, . . . , F}m of
possible cost vectors. Given such a cost vector x ∈ {0, . . . , F}m, we can express
the cost w(1)(x) of the first AS simply as

∑
e∈E1

�(e)xe. The costs of the second
AS can be defined analogously, and so it looks that Theorem 3 directly applies
when we perturb all edge lengths �(e) of edges e ∈ E1 as these edge lengths are
the coefficients in the linear objective function w(1). However, there is a small
twist. In Theorem 3 all coefficients in the linear objective function w(1) are chosen
randomly. Our objective function, however, does not contain terms for the edges
e ∈ E2. Or with other words the coefficients are 0 for these edges. If we apply
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Theorem 3 directly, then also these zero coefficients would be perturbed, which
would destroy the combinatorial structure of the problem as then suddenly the
cost of the first AS would depend on what happens on edges e ∈ E2.

To avoid this side effect, we remodel the feasible region S. As argued before,
each solution leads to a cost vector x ∈ {0, . . . , F}m, but now we care only about
the part of the vector for E1. Let us define m′ = |E1| ≤ m. Then each solution
leads to a cost vector x ∈ {0, . . . , F}m′

that contains only the costs of the first
AS. Now of course different solutions can lead to the same vector x if they differ
only in the way how the traffic is routed in the second AS. However, Theorem 3
allows completely general objective functions w(2), which we exploit by defining
w(2)(x) for a vector x ∈ {0, . . . , F}m′

to be the smallest cost for the second AS
that can be achieved with any solution whose cost vector for the first AS results
in x. This formulation implies the following corollary.

Corollary 1. Given a path trading instance in which the edge lengths �(e) for all
e ∈ E1 are randomly chosen according to probability distributions that satisfy the
same restrictions as those in Theorem 3, the expected number of Pareto-optimal
solutions is bounded by O(φm2F 2 log F ).

Given that the expected number of Pareto-optimal solutions is small, we still
have to show that Algorithm 1 computes the Pareto curve in expected polynomial
time. This will be established by the following Corollary.

Corollary 2. Algorithm 1 computes the Pareto curve in expected time
O(φnm2 log n · rF 2 log F ).

The reason that we concentrate our efforts on path trading between two ASes
was the hardness result in Theorem 1. We can extend this result and also show
that there is no hope for Path Trading with an arbitrary number of ASes to
be solvable efficiently in the framework of smoothed analysis.

Theorem 4. There is no smoothed polynomial time algorithm for Path Trad-

ing with an arbitrary number of ASes, unless NP ⊆ BPP .

4 Evaluation

In this section we present the experimental results about the performance of our
algorithm on the IP-level Internet graph from DIMES [12]. We compare it, in
particular, with the performance of the dynamic program used by Shavitt and
Singer, and we answer the following questions:

– How fast can we compute the Pareto curve? Algorithm 1 is very fast and
scales well.

– How robust are both algorithms? When we add random costs to all requests,
the running time of Algorithm 1 does not increase much. This suggests even
in environments with large costs, Algorithm 1 will perform well. The running
time of the dynamic program directly depends on the costs, and it becomes
quickly infeasible to compute solutions for even small instances.
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– How many ASes are involved in path trading? In our experiments we see
that for low amount of requests, roughly 60% of all ASes engage in path
trading.

The answers to these questions are, of course, depending on the assumptions
we made. As Shavitt and Singer, we assume that traffic is symmetric, i.e., the
number of requests sent from AS A to AS B is the same as the number of
requests sent from AS B to AS A for every pair of ASes. This assumption is
not necessarily true, but it is common and used, e.g., in [13], [7], and [14]. One
could imagine that in real networks requests are not evenly spread, but are more
concentrated between popular ASes for example. Still, even for low amounts of
requests there was substantial gain for the ASes involved. This indicates that
even if the traffic between two ASes is asymmetric, they have a good chance of
gaining from path trading as long as there is non-zero traffic in both directions.
Our second assumption is that each request between two ASes has to be routed
between two nodes that are chosen uniformly at random from these ASes. Our
third assumption is that all edges have length 1, i.e., the number of hops is used to
measure the costs of an AS for routing a request. By absence of real data, we feel
that this a reasonable and common assumption. We first perform experiments in
which every request has costs 1 and then repeat the experiments with requests
with randomly chosen costs. These experiments demonstrate that our method is
robust against changes of the costs of the requests. In the following subsection
we present the details of the experimental setup. The algorithm by Shavitt and
Singer is named Algorithm 2. Then we show and discuss the experimental results.

4.1 Experimental Setup

We assume that traffic is symmetric. We used the Internet graph from DIMES
[12], and we assumed that every edge length is one, and all packets have cost
one. So, the costs of a request are the number of hops on the route. The whole
Internet graph from DIMES contains roughly 27 thousand ASes and 3.5 million
nodes. Of all ASes, 1276 ASes and 4348 AS pairs were sufficiently connected:
These pairs had edges between them and more than one boundary node. To
determine participation, we simulated a low number of requests for each suffi-
ciently connected pair, to find out whether a small or a large fraction of ASes
are involved in path trading.

For both algorithms, we need to calculate shortest paths beforehand. Because
of the large number of possible routings, many shortest paths need to be com-
puted. This was all done as part of the preprocessing, and all shortest paths were
stored in a hash-table for fast access for both algorithms. In the following, this
time is not included in the running times of the algorithms.

To measure how many ASes could benefit from path trading, we simulated 5
requests for each of the 4348 sufficiently connected AS pairs in either direction.
For comparing performance and robustness we selected a subset of 15 AS pairs
arbitrarily among the AS pairs that benefited from path trading in the first
experiment where 5 requests were sent in either direction.
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To get some idea about how robust both algorithms are, we increased the
costs of the requests. For each request (s, t, c) we set c as c = 1 + X , where
X is a random variable, normally distributed with mean 0 and standard de-
viation σ. Further, X was capped at 0 from below and at 10 from above for
σ ∈ {1, 2, 3, 4, 5}. For σ = 10, X was capped at 0 from below and at 20 from
above. This was done to prevent extremely long running times for the dynamic
program. For σ ∈ {15, 20, 25, 50}, X was only capped at 0 from below. All num-
bers were rounded to the nearest integer. We simulated 10 requests in either
direction, for each of the pairs.

4.2 Experimental Results

Performance. Table 1 shows a comparison of the running times of Algorithm 1
and Algorithm 2. The running times are the total of the running time over the 15
selected pairs in seconds. In these ASes, roughly 37% of the costs were saved by
path trading. As can be seen, the running time of Algorithm 2 quickly becomes
very high.

The memory usage is dominated by the number of Pareto optimal solutions,
and each Pareto optimal solution is represented as a tuple of two integers. Fig-
ure 1(a) shows a graphical comparison of both algorithms. Not only is Algo-
rithm 1 fast for small amounts of requests, it can handle up to ten times more
requests in the same time as Algorithm 2.

Robustness. We find that the running time of both Algorithm 1 and Algo-
rithm 2 is influenced by larger request costs, but not to the same degree. Fig-
ure 1(a) shows the running times of both algorithms. As can be seen, the running
time of Algorithm 2 quickly spirals out of control. Algorithm 1 stays computable,
although the running time does increase. Figure 1(b) displays the running times
normalized with regard to the running time without perturbations for both Al-
gorithm 1 and 2.

The steep increase of the running time of Algorithm 2 comes at no surprise
as the dynamic program is directly dependent on the costs of the routing, and
not on the number of different choices or the complexity of the network. The
experiments show that our algorithm is significantly more robust against non-
uniform request costs.

Table 1. The performance of Algorithm 1 compared to Algorithm 2

# Requests Algorithm 1 (s) Algorithm 2 (s) Ratio

1 0.02 0.09 1: 4.5
5 0.19 6.04 1: 31.79
10 1.09 84.31 1: 77.35
15 2.38 270.87 1:113.81
19 4.01 519.27 1:129.49



52 A. Berger, H. Röglin, and R. van der Zwaan

Fig. 1. (a) Running times of both algorithms compared. (b) The normalized running
times of both algorithms plotted against magnitude of the perturbations.
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Abstract. This paper discusses an elliptical pad structure and its polygonal 
approximation. The elliptical pad is a part of via model structures, which are 
important and critical components on today’s multilayered Printed Circuit Board 
(PCB) and electrical packaging. To explore meshing characterization of the 
elliptical pad helps mesh generation over 3D structures for electromagnetic 
modeling (EM) and simulation on PCB and electrical packaging. Because 
elliptical structures are often key PCB features, we introduce a hierarchical mesh 
construct and show that it has several useful Delaunay quality characteristics. 
Then we show experimentally that Computational Geometry Algorithm Library’s 
(CGAL) meshing of an elliptical structure at different resolution levels and with 
various aspect ratios produces patterns similar to our construct. In particular, our 
experiment also shows that the result of meshing is not only constrained Delaunay 
triangulation but also Delaunay triangulation. 

Keywords: constrained Delaunay triangulation, mesh generation, CGAL. 

1   Introduction 

In recent years, the interconnect modeling on multilayered PCB and in packaging has 
become a bottleneck for successful high-speed circuit design [14]. The signal integrity 
issues, such as the signal propagation time, the digital pulse distortion, and the cross-
talk, all affect the quality of the digital signal and can cause integrated circuit gate 
misswitching and introduce large bit rate error [12]. Therefore, simple physical 
constraints on the routing rules are no longer sufficient. For critical nets, accurate 
circuit simulation is needed, which requires accurate EM characterization on 
interconnects. The finite element based full-wave EM field solver can be applied to 
perform such tasks which, rely heavily on the quality of the finite element mesh 
generation [13]. Mesh generation for finite elements has been widely studied (see [4] 
for a survey). Techniques for mesh generation have been studied extensively in the 
geometric modeling and computational geometry communities [1,4,5]. Geometric and 
topological underpinnings of mesh generation are explored in [3]. In some cases (e.g. 
[9]), mesh generation is tightly coupled with the EM simulation method. 

A via [6, 10] structure is heavily used in today’s PCB and packaging. A via 
vertically connects different layers on the PCB. Fig. 1(a) depicts a coupled via 
structure. Each via in Fig. 1 consists of several features: 1) a cylindrical drill that 
extends through a hole in layer(s), 2) a small cylindrical pad at each end of the drill, 
and 3) a trace that extends from each pad to connect the via to the associated layer. 
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Fig. 1(b) shows triangle meshing for single via structure. In this paper we focus on the 
2D elliptical pad part of via structures, which is approximated by a polygon for 
meshing.  

 

Fig. 1. (a) Coupled “through hole” via structure (b) 2D meshing for single via structure 
(Courtesy of Cadence Design Systems) 

Our high-level algorithm for generating meshing on structures of PCB and 
packaging: projects 3D structures orthogonally onto the x-y plane, generates 2D 
triangular meshing based on 2D projected datasets, and finally extrudes 2D triangles 
vertically through the PCB/packaging layers to form 3D prism meshing. The approach 
applies CGAL’s constrained Delaunay triangulation and inputs triangle element control 
criteria to control edge length and the angle of the mesh triangle element in the desired 
computational space [2]. This extrusion approach was introduced in [15]. We used it in 
[16], for only single (not coupled) serpentine line features.   

The remainder of this paper is organized as follows. Section 2 briefly discusses 
triangle quality measures since they will be used to evaluate the method used in this 
paper. Section 3 discusses the ideas of Delaunay triangulation and constrained 
Delaunay triangulation. Section 4 focuses on describing our hierarchical Delaunay 
triangulation. Section 5 shows quality measures and mesh size trend for pad 
refinement, which is closely related to our proofs in Section 4. The experimental 
meshing results with various aspect ratios show that meshing produces not only a 
constrained Delaunay triangulation, but also a Delaunay triangulation. Finally, 
Section 6 concludes the paper and suggests directions for future work. 

2   Quality Measure 

The quality of triangulation directly affects the accuracy of the EM computation 
accuracy with FEM. This is true especially for full-wave EM modeling [11].  Various 
quality measures appear in the literature; see [4] for a survey. Since we focus on 
analyzing triangulation characterization on a 2D elliptical structure, we are only 
interested in measuring quality in 2D.  In 2D we measure: 

─ number of triangles: this should be as small as possible to reduce FEM 
computation time; 

─ triangle angles: these should be as large as possible to avoid FEM simulation 
difficulties; 
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─ a ratio involving triangle area and edge lengths: triangles should be as close to 
equilateral as possible. 

The ratio we use is based on [7].  The element quality ratio qt for a triangle is: 

    √  .                                                    (1) 

where A denotes the area, and h1, h2, and h3  are the edge lengths.  It is straightforward 
to show that qt =1 for an equilateral triangle. 

3   Delaunay Triangulation and Constrained Delaunay 
Triangulation 

Delaunay triangulation [3, 5, 8, 13] provides a good foundation to support high-
quality meshing in our context. We use the 2D Delaunay triangulation. This has the 
empty circle property: each triangle’s circumcircle’s interior contains no vertices.  
The Delaunay triangulation also maximizes the minimum triangle angle size, which 
supports our 2D quality criteria.  Because we must include edges of structural features 
in the triangulation, we use a constrained Delaunay triangulation. Guaranteed 
inclusion of these edges typically implies sacrificing some mesh quality and adding 
extra vertices (Steiner points).  Following [3], if we denote by E the set of edges of 
structural features that we must preserve, let int refer to interior, and let points ,  be visible from each other in a triangulation of E when  and  , , then (assuming general position), an edge ab, with a and 
b both in the triangulation, belongs to the constrained Delaunay triangulation of E if:  

(i) , or; 
(ii) a and b are visible from each other and there is a circle passing through a and b 

such that each triangulation vertex  (not on ab)  inside this circle is invisible 
from every point  . 

 

Fig. 2. (a): A constrained triangulation. (b): A constrained Delaunay triangulation. (courtesy of 
CGAL documentation [2], but with constrained edges of E thickened). 

A constrained Delaunay triangulation satisfies this constrained empty circle property 
[2]. Said differently, "it is convenient to think of constrained edges as blocking the view. 
Then, a triangulation is constrained Delaunay if and only if the circumscribing circle of 
any facet encloses no vertex visible from the interior of the facet" [2]. It is shown in [3] 
that, among all constrained triangulations of E, the constrained Delaunay triangulation 
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maximizes the minimum angle. Fig. 2 above illustrates the constrained empty circle 
property of a constrained Delaunay triangulation, where thick segments are the 
constrained edges. 

CGAL provides easy access to efficient and reliable geometric algorithms in a C++ 
library. It not only offers data structures and algorithms such as Delaunay triangulation 
and mesh generation which we require for our project, but also provides various 
geometric functions that we use elsewhere, such as Voronoi diagrams, Boolean 
operations on polygons and polyhedra, and shape analysis.  

4   Hierarchical Delaunay Triangulation for Mesh Generation 

Here we first show that when a circular pad (which is a special case of elliptical 
shape) is approximated by either an equilateral triangle or a regular hexagon, then 
existence of a Delaunay triangulation containing all the edges of the approximation to 
the pad is guaranteed if we allow insertion of Steiner points.  In these simple base 
cases, there exist constrained Delaunay triangulations that are also Delaunay 
triangulations.  Referring to Fig. 3, in Fig. 3(a) there is a single equilateral triangle.  
This triangle at level 1 of the refinement is trivially Delaunay and its quality 
according to Equation 1 is equal to one.  In Fig. 3(b), the circle is approximated by a 
hexagon; this is level 2 of the hierarchy.  If we let the length of a side of the hexagon 
equal 1, then we can triangulate the hexagon using 6 equilateral triangles that have a 
common vertex at the center of the circle that circumscribes the hexagon.  Each of 
these 6 triangles has the empty circle property because each of their radii has length 1/√3.  For each such a triangle t, all remaining triangulation vertices are outside of t’s 
circumcircle because their distance from the center of t’s circumcircle exceeds 1/√3 
(because the radius of each adjoining triangle’s circumcircle equals 1/√3).  Due to 
this empty circle property, the triangulation is not only constrained (because the 
hexagon edges are preserved), but also Delaunay.  Because the triangles are all 
equilateral, we again have quality of 1 from Equation 1 (in Section 2). 

 

 

                 (a)                                 (b)                                 (c)                                  (d)  

Fig. 3. First 4 levels of hierarchical Delaunay triangulation: (a) equilateral constrained Delaunay 
triangle, (b) hexagonal constrained Delaunay triangles, (c) 3rd level, and (d) 4th level 

At this point we depart from the circle and show that there exists hierarchical 
constrained Delaunay structure for successive refinements of the hexagon.  Later we 
show that the refinements remain close to the circle. We also demonstrate that a 
deformation of so-called “border triangles” onto the circle produces a constrained 
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triangulation in which border triangles are Delaunay with respect to non-border 
triangles (i.e. no non-border triangle’s vertices are interior to a border triangle’s 
circumcircle), and all non-border triangles are Delaunay.   

To create the refinement, for each triangle in the current refinement, connect 
midpoints of each triangle edge, as shown in Fig. 3(c). Each triangle therefore 
generates 4 equilateral subtriangles, each of perfect quality. (Note that for an arbitrary 
level i ( > 2) of this hierarchical refinement, there are 6 4  triangles.) Fig. 3(d) 
depicts a fourth level of refinement.  One triangle from the third level of refinement 
has thick edges to indicate its relationship to its subtriangles. We claim that, at each 
level of this hierarchical refinement, all triangles are Delaunay. 

Theorem 1: Each level i ( > 2) of the hierarchical refinement is a Delaunay 
triangulation of the circular pad’s hexagon. 

Proof: In order to establish this, we must show that the interior of each triangle’s 
circumcircle is empty of triangle vertices.  Let A be a triangle at an arbitrary level i ( > 
2) of this hierarchical refinement, and let C(A) be A’s circumcircle. Let the star [3] of 
a vertex of A be the union of all equilateral triangles in refinement i of which it is a 
vertex. Note that due to the way triangles are subdivided, each star’s outer boundary 
(link [3]) is a hexagon (except for triangles touching the border of the hexagon).  We 
define the star union of a triangle as the union of the stars of its vertices, and a star 
vertex is a vertex either inside or on the boundary of the triangle’s star union.  All 
triangle vertices of the refinement outside of A’s star union are further away from 
C(A) than its star vertices.  Thus, if we show that none of A’s star vertices are inside 
C(A), then A is Delaunay.  The vertices of A are on the boundary of C(A), so they are 
not interior to C(A).  Suppose that the radius of C(A) is 1 unit in length.  Then each 
edge of A is of length √3 and the altitude of A is 3/2.  The distance of the vertices of 
A’s star union (excluding its own vertices) that are the closest to C(A)’s center is 
greater than 3/2.  Thus, all these vertices of A’s star union are further than 1 unit away 
from the circle’s center and hence are clearly outside the circle. We conclude  
that triangle A is Delaunay.  Since A was chosen arbitrarily, the entire triangulation  
is Delaunay. And, since the level ( > 2) is also arbitrary, each triangulation level 
greater than 2 in the hierarchy is also Delaunay, which completes the proof.                

Note that, in this type of triangulation, the link of each vertex that is not on a 
constrained segment is a regular hexagon; the vertex has degree 6.  This will become 
relevant to Section 5, where we consider the type of triangulation generated by 
CGAL’s 2D constrained Delaunay triangulation. 

Since our primary interest is in a constrained Delaunay triangulation which 
preserves line segments approximating the boundary of the original pad, we now 
consider the maximum distance of the circle’s boundary from the outer boundary of a 
level of the hierarchical Delaunay triangulation.  At the first level, if we assume that 
the radius is one unit, then the maximum distance is 1/2. At all levels beyond the first, 
the maximum distance is 1 √3/2 .  

Now consider the following method of converting a level i ( > 2) in the Delaunay 
hierarchical triangulation to a constrained (not necessarily Delaunay) triangulation via a 
deformation. For this we define the border of the Delaunay hierarchical triangulation to 
be the set of triangles touching either the circle itself or the constrained edges of the 
level 2 hexagon. For each vertex of the border that is not already on the circle P, project 
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the vertex outwards onto P in a direction orthogonal to the associated constrained 
hexagon edge (see Fig. 4). As there are 6 2 1  moving vertices, this creates a 
refinement of the circle containing 6 2  constrained segments. So, the number of 
constrained segments doubles with each successive level of approximation. 

 

 

 

 

 (b) (a) 

Type 1 
triangle 

Type 2 
triangle

 

Fig. 4. Deformation of hierarchical Delaunay triangulation via orthogonal projection. (a) 
Deformation process. (b) Final result of deformation, with two types of border triangles (see 
triangle type definitions below). 

Is this constrained deformed triangulation also Delaunay, regardless of its 
hierarchical level? Not necessarily, but we can offer some observations. We first 
claim that all non-border triangles remain Delaunay. This is because the number of 
triangle vertices is not increased by the deformation, and each moved vertex moves 
further away from every non-border triangle. Thus, no translated vertex can be 
interior to a non-border triangle’s circumcircle. The only problematic region is 
therefore the deformed border triangles.   

Each border triangle is one of two types: 1) triangle containing no constrained 
hexagon edge, and 2) triangle containing a constrained hexagon edge. (Note that there 
are no triangles with all 3 vertices on the circle.) Let us first consider the type 1 
border triangle. It is originally an equilateral triangle which becomes isosceles under 
the deformation of its vertex that touches the constrained hexagon edge.  Increasing 
movement away from the circle’s center and the triangle’s base, orthogonal to a 
hexagon edge, creates a family of isosceles triangles and associated circumcircles, 
with the circumcircle centers moving away from the original circle’s center in the 
same direction as the vertex.  Each successive circumcircle goes through the two base 
vertices and becomes closer to the base edge as the vertex moves outwards  
(see Fig. 5(a)).  Thus, it cannot contain any vertices of non-boundary triangles.  This 
type of triangle is therefore Delaunay with respect to the non-boundary triangles’ 
vertices. 

We would like to show that type 2 triangles are also Delaunay with respect to the 
non-boundary triangles’ vertices. For this we refer to Fig. 5(b) and Fig. 6. In the 
symmetric case (Fig. 5(b)) in which both vertices move the same amount and inverted 
isosceles triangles are created, the circumcircles are all tangent to (and on the side 
opposite from) the line through the base vertex, so that the circumcircles cannot 
contain any non-border vertices. The extreme case occurs at a triangle containing a 
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hexagon vertex (see Fig. 6). In the unachievable worst case, the type 2 triangle is a 
right triangle. The two vertices of the triangle opposite to the right angle form the 
diameter of the new triangle’s circumcircle. The center of this circumcircle is shown 
as a star in Fig. 6. While it may be possible for this circumcircle to exit the border 
triangle region from below, it is not possible for it to include any non-border triangle 
vertices because the circle is bounded on one side by its tangent line s (see Fig. 6).   

 

 
    Type 2 

     Type 1 

(a) (b)  

Fig. 5. Deformation of border triangles (a) Type 1 selected set of isosceles triangles generated 
from equilateral border triangle (bold horizontal edge is constrained hexagon edge), and (b) 
Type 2 in the symmetric case of equal movement of vertices 

 

part of unconstrained 
hexagon edge 

part of constrained 
hexagon edge

s 

 

Fig. 6. Extreme deformation of type 2 border triangle: one vertex is a constrained hexagon edge 
endpoint 

We therefore have the following result: 

Theorem 2: Each border triangle of a hierarchical constrained Delaunay 
triangulation, when projected onto circle P orthogonally to the associated constrained 
hexagon edge, is Delaunay with respect to the non-border triangles.  

Theorem 2 provides us with a constrained triangulation that possesses some 
Delaunay characteristics. (Note that we do not provide any Delaunay guarantee about 
the relationship between adjacent border triangles.) Theorem 2 applies to the 62 1  border triangles of the 6 4  triangles at level i  (> 2). 
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Finally, we consider the question of whether the deformed triangulation we have 
created is a constrained Delaunay triangulation according to the definition given in 
Section 3. In our case, all the constrained edges of the triangulation are on the outer 
border (on the circle), so they cannot contribute any “blocking” of visibility. In this 
case, the constrained Delaunay question reduces to the actual Delaunay question.  
Again, we have no issue with non-border triangles, as they are Delaunay. Future work 
may investigate whether or not all border triangles are provably Delaunay. (See 
Section 5, where CGAL creates constrained triangulations that are also Delaunay.) 

5   Mesh Size Trend for Pad Refinement 

Here we examine how CGAL’s 2D constrained Delaunay triangulation algorithm [2], 
which adds vertices incrementally, behaves when it performs successive refinements 
of an elliptical pad with a circle as a special case. During each CGAL iteration, a 
constrained edge is added to the current configuration by first removing edge(s) 
intersecting the constrained edge, and then retriangulating the holes created by the 
new edge.  The constrained Delaunay property is then restored via edge flips [17]. 

 
(a) 6 vertices 

 
(b) 12 vertices 

 

 
(c) 24 vertices 

 
(d)  48 vertices 

 
(e)  96 vertices  

Fig. 7. CGAL’s constrained Delaunay triangulation for circular pad refinement, with number of 
vertices on the circle 

For this experiment we use the following CGAL parameter settings: approximately 
20.6 degrees for the minimal angle and 2mm for the upper bound on the length of the 
longest edge. Our test cases vary the elliptical aspect ratio from 1 (circle) to 2. Fig. 7 
shows doubling of refinement levels, starting at 6 vertices on a circle and ending at 
96.  Table 1 accompanies Fig. 7 and provides details about CGAL’s refinements. We 
compare this behavior to the constrained hierarchical triangulation (with deformation) 
of Section 4.  Note that for 12 vertices CGAL is making the same type of pattern that 
we showed for 6 vertices in Fig. 3(b); there is one central Steiner point.  Once CGAL 
goes beyond 12 vertices, note that CGAL creates nearly hexagonal structure, with 
larger triangles deeper inside the circular pad.  Many of the vertices have degree close 
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to 6. Table 1 reveals average vertex degree close to 6 in several of the refinements.  
The average degree of vertices not on the circle is 7.71 for Fig. 7(c), 6.82 for  
Fig. 7(d), and 6.57 for Fig. 7(e). This is similar to the hexagonal structure of our 
constrained deformed triangulation in Section 4. 

Table 1. CGAL’s 2D constrained Delaunay meshing of circular pad refinement 

 
. 

# 
Vertices 

on 
Circle 

 
# 

Triangles 

 
# Type 2 
Border 

Triangles 

 
# 

Steiner 
Points 

 
Average 
Steiner 
Point 

Vertex 
Degree 

 
Average 
Triangle 
Quality 

 
Average 

Non-Type 
2      

Triangle 
Quality 

 
Delaunay? 

6 4 3 0 N/A .70 1.0 Yes 
12 12 12 1 12.0 .76 .76 Yes 
24 36 24 7 7.71 .79 .96 Yes 
48 102 48 28 6.82 .83 .94 Yes 
96 244 96 77 6.57 .82 .89 Yes 

 

Also note CGAL’s creation of an outer layer of triangles that strongly resembles 
characteristics of the border defined in Section 4. There are Type 1 triangles which 
appear to be nearly isosceles. There are also Type 2 triangles. All of the border 
triangles can be classified as one of these two types. The number of triangles is 
significantly smaller than the exponential 6 4  triangles at level i  (> 2) that we 
derived in Section 4. In our experiments, the number of CGAL triangles increases 
nearly linearly as a function of the number of vertices on the circle. (In [16] we 
observed this linear behavior for a complete single via model embedded on a PCB 
with rectangular boundary. In [18], a mesh is created whose output size is linear in the 
number of input vertices.) Table 1 also shows the number of Type 2 border triangles 
in each case.  On average, 66% of the triangles are of this type. 

The average triangle quality is close to one in all the cases we examined.  
Interestingly, in our experiments all of CGAL’s results are Delaunay as well as 
constrained Delaunay. Furthermore, average triangle quality is at least .7 for each of 
the 5 refinement levels. Quality is higher for non-Type 2 triangles than for Type 2 
border triangles (see Table 1): average non-Type 2 triangle quality is .91.  Recall that, 
for the hierarchical deformed triangulation of Section 4, quality is equal to 1 except 
for border triangles.  So, this is another similarity between that triangulation and what 
CGAL produces.  Yet another similarity can be observed by noting that the number of 
CGAL’s Type 2 border triangles is equal to the number of constrained segments on 
the circular boundary.  This means that no constrained segments are subdivided by the 
triangulation process. So, there are 6 2  constrained segments at level i ( > 2), as 
in the hierarchical deformed triangulation of Section 4. 

For the elliptical cases, we tried aspect ratios 1.33, 1.5 and 2. Fig 8 and Table 2 
show the results of aspect ratio 2. The results for aspect ratios 1.33 and 1.5 are similar 
to those of aspect ratio 1 (circular case described above). For aspect ratio 2, we 
observe that once CGAL goes beyond 24 vertices, CGAL creates nearly hexagonal 
structure, with larger triangles deeper inside the elliptical pad.  Many of the vertices 
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have degree close to 6. Table 2 shows average vertex degree close to 6 in several of 
the refinements.  The average degree of vertices not on the circle is 6.96 for Fig. 8(d), 
and 6.49 for Fig. 8(e).  As with the circular case, again this is similar to the hexagonal 
structure of our constrained deformed triangulation in Section 4. Furthermore, note 
that in this elliptical case the mesh is Delaunay in addition to constrained Delaunay. 

 
(a) 6 vertices 

 
(b) 12 vertices 

 

 
(c) 24 vertices 

 
(d)  48 vertices 

 
(e)  96 vertices  

Fig. 8. CGAL’s constrained Delaunay triangulation for elliptical pad refinement with aspect 
ratio 2, with number of vertices on the circle 

Table 2. CGAL’s 2D constrained Delaunay meshing of elliptical pad refinement with aspect 
ratio 2 

 
. 

# 
Vertices 

on 
Ellipse 

 
# 

Triangles 

 
# Type 2 
Border 

Triangles 

 
# 

Steiner 
Points 

 
Average 
Steiner 
Point 

Vertex 
Degree 

 
Average 
Triangle 
Quality 

 
Average 

Non-Type 
2      

Triangle 
Quality 

 
Delaunay? 

6 4 4 0 N/A .89 N/A Yes 
12 10 10 0 N/A .67 N/A Yes 
24 30 24 4 9.0 .76 .91 Yes 
48 94 48 24 6.96 .82 .93 Yes 
96 246 96 77 6.49 .84 .91 Yes 

 

6   Conclusion and Future Work 

In this paper, we introduce a hierarchical mesh for an elliptical PCB pad structure 
with various aspect ratios and show that it has several useful Delaunay quality 
characteristics.  We show experimentally that CGAL’s meshing of this structure at 
different resolutions yields patterns similar to our hierarchical mesh.  In the future, we 
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may 1) investigate whether or not all border triangles are provably Delaunay; 2) 
explore the linear meshing size relationship in our application; 3) examine how 
hierarchical Delaunay triangulation applies in other features of PCB structures.  
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A Parallel Multi-start Search Algorithm for Dynamic 
Traveling Salesman Problem 
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Abstract. This paper introduces a multi-start search approach to dynamic 
traveling salesman problem (DTSP). Our experimental problem is stochastic and 
dynamic. Our search algorithm is dynamic because it explicitly incorporates  
the interaction of change and search over time. The result of our experiment 
demonstrates the effectiveness and efficiency of the algorithm. When we use a 
matrix to construct the solution attractor from the set of local optima generated by 
the multi-start search, the attractor-based search can provide even better result.  

Keywords: dynamic TSP, network and graphs, parallel computing. 

1   Introduction 

Many real-world optimization problems are inherently dynamic. Dynamic optimization 
problems (DOP) involve dynamic variables whose values change in time. The purpose 
of the optimization algorithm for DOPs is to continuously track and adapt to the 
changing problem through time and to find the currently best solution quickly [1],[2].   

The simplest way to handle dynamic problems would be to restart the algorithm 
after a change has occurred. However, for many DOPs, it is more efficient to develop 
an algorithm that makes use of information gathered from search history. This 
information may be used to reduce the computational complexity of tracking the 
movement of the global optimum. 

Due to their adaptive characteristics, evolutionary algorithms (EA) and ant colony 
optimization (ACO) approaches have been applied to DOPs in recent years [3]-[10]. 

EAs are generally capable of reacting to changes of an optimization problem. The 
main problem for EAs to solve DOPs is the convergence of population. Once 
converged, the EA loses the required diversity to adapt to the changing problem. The 
dynamic problem requires the EAs to maintain sufficient diversity for a continuous 
adaptation to the changes of the solution landscape. Several strategies have been 
developed to address this issue. Some examples of such strategies include maintaining 
and reintroducing diversity during the run [11]-[13], memory schemes [14], memory 
and diversity hybrid schemes [15],[16], and multi-population schemes [10],[17],[18]. 

The standard ACO algorithm can adapt to low-frequency change or small change 
in problem. Many researches on ACO for dynamic problems focus on how modifying 
the amount of pheromone when the change occurs. When changes to the problem are 
small, preserving pheromone information is useful, since the solution to the new 
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problem instance is likely to share moves with the old solution. Large changes in the 
problem cause the solution to change radically, so preserving pheromone information 
may be harmful, since it can mislead the algorithm initially and cause the algorithm to 
be stuck in a sub-optimal local point. Therefore, it is important that pheromone is 
altered during a change in such a way that useful pheromone information is kept 
while obsolete pheromone is reset. Many strategies for modifying pheromone 
information have been proposed. The approach used by Gambardella et al [19] was to 
reset all elements of the pheromone matrix to their initial values. Stützle and Hoos 
[20] suggested increasing the pheromone values proportionately to their difference to 
the maximum pheromone value. Guntsch and Middendorf [5],[21] discussed several 
approaches to modify the pheromone values.  

The rapid development in the areas of robot control, dynamic logistic models, 
telecommunications and mobile computing systems, in which data flow are considered 
to be time-dependent, has caused an increasing interest in the DTSP [1],[22],[23]. Since 
Psaraftis [24] first introduced DTSP, a wide variety of algorithms have been proposed 
for DTSP. Kang et al. [25] provided a survey on some benchmarking algorithms for 
DTSP. 

This paper introduces a parallel multi-start search algorithm for DTSP. This 
algorithm offers many advantages. It is flexible, adaptable, effective, and easy to 
implement. When a change in problem occurs, the approach repairs only the search 
trajectories. The search trajectories directly exhibit time-varying processing, allowing 
the algorithm to capture the dynamics of both the problem and search. Perhaps the 
most important feature of such an algorithm is its ability to implement parallel 
computing in its algorithm.  

The remainder of this paper is organized as follows. Section 2 briefly describes the 
multi-start search in TSP and its solution attractor. Section 3 describes the setting of 
the DTSP under consideration. Section 4 explains the parallel multi-start search 
procedure for the DTSP. And the final section closes the paper.  

2   Multi-start Search and Solution Attractor 

Many heuristic search algorithms in practice are based on or derived from a general 
technique known as local search [26]. Local search algorithms iteratively explore the 
neighborhoods of solution trying to improving the current solution by local changes. 
However, the search spaces are limited by the neighborhood definition. Therefore, 
local search algorithms are locally convergent.    

One way to overcome local optimality is to restart the search procedure from a new 
solution once a region has been explored [27]. Multi-start heuristics produce several 
solutions (usually local optima), and the best overall is the algorithm’s output. Multi-
start search helps to explore different areas in the solution space, and therefore the 
algorithm generates a wide sample of the local optima.  

The common opinion about the local optima in a multi-start search is that they 
form a “big valley” in the search space, where the local optima occur relatively close 
to each other, and to the global optimum [28],[29]. If we start local search from 
several different initial points, after letting the search ran for a long time, we should 
find that these search trajectories would settle onto a small attractive region.  
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This small region is called a solution attractor for the local search process in that 
problem [30]. The solution attractor of local search process can be defined as a subset 
of the solution space that contains the end points of all local search trajectories. In 
other words, the solution attractor contains all locally optimal points. Since the 
globally optimal point is a special case of local optima, it is expected to be embodied 
in the solution attractor.  

Fig. 1 presents the procedure for constructing the solution attractor of local search 
for a static TSP instance. The procedure is very straightforward: generating M locally 
optimal tour, storing them into a matrix E (called hit-frequency matrix), removing 
some unfavorable edges in E, and finally finding all tours contained in E.  

1    procedure TSP_Attractor(Q)
2 begin
3 repeat
4 si = Initial_Tour(); 
5 sj = Local_Search(si);
6        Update(E(sj));
7 until Multistart = M;
8 E = Remove_Noise(E)
9      Exhausted_Search(E)
10 end

 

Fig. 1. The procedure for constructing solution attractor of local search in TSP 

In the procedure, Q is a TSP instance. si is an initial tour generated by the function 
Initial_Tour(). The function Local_Search() runs a local search on si and 
output a locally optimal tour sj. The function Update(E) records the edges in sj into 
E. After M locally optimal tours are generated, the matrix E keeps the union of the 
edges in the set of M local optima. The matrix E can catch rich information about the 
attractor for the TSP instance [30].  

The solution attractor constructed from a set of locally optimal tours contains some 
unfavorable edges (noise). The function Remove_Noise() is used to cluster the 
edges in E in an attempt to remove some noise. If we remove the edges that have low 
hit frequency, the remaining edges in E are the globally superior edges that constitute 
the core of the solution attractor.  

Finally, an exhausted-enumeration process Exhausted_Search() searches the 
matrix E to identify all solutions in the attractor core. Because the attractor core in E 
represents a very small region in solution space and contains very limited number of 
solutions, the computational complexity in E is easily manageable for TSP. The 
solution attractor in E usually contains the globally optimal tour [30].  

Our motivating hypothesis for using the matrix E is that useful information about 
the edges of globally optimal tour is typically contained in a suitable diverse 
collection of locally optimal tours. In the attractor construction procedure, a local 
search is used to find a locally optimal tour. However, a local search (1) lacks 
information needed to find all globally superior edges, and (2) lacks the architecture 
to use such information. The hit-frequency matrix E is a suitable data structure for 
providing such architecture and information. When each search trajectory reaches its 
locally optimal point, it leaves its “final footprint” in the matrix E. The matrix E 
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provides the architecture that allows individual tours interact along a common 
structure and generate the complex global structure. 

There are other two propositions that are underlined the application of the hit-
frequency matrix E in the procedure. The first proposition is that the globally superior 
edges are hit by a set of locally optimal tours with higher probabilities. Thus, the 
solution attractor is mainly formed by these globally superior edges. The second 
proposition is that a group of locally optimal tours together contains information about 
other locally optimal tours since each locally optimal tour shares some of its edges with 
other locally optimal tours. This concept motivates the procedure that takes advantage 
of the context where certain partial configuration of a solution often occurs as 
components of another solution. The strategy of “seeking the most promising partial 
configurations” can help circumvent the combinatorial explosion by manipulating only 
the most promising elements of the solution space.  

 

Fig. 2. An example of solution attractor construction 

In fact, some researchers have utilized these properties in a set of locally optimal 
solutions to design their heuristic algorithms. For example, path relinking has been 
suggested as an approach to integrate intensification and diversification strategies in 
heuristic search. The path relinking approach generates new solutions by exploring 
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trajectories that connect high-quality solutions, by starting from one of these solutions 
and generating a path in the neighborhood space that leads toward the other solutions 
[31]-[34]. Applegate et al. [35] propose a tour-merging procedure that attempts to 
produce the best possible combination of tours by restricting to the edges that are 
present in at least one tour in the collection. Taking the union of the edges sets of the 
tours, they assemble the graph represented in the tours. They apply their methods on 
several TSPLIB instances and found the optimal tours in most trails.  

Fig. 2 uses a 20-city TSP instance as an example to explain the attractor 
construction procedure. We started M = 100 initial tours. Because these initial tours 
are randomly produced, the edges should have an equal probability to be hit by these 
initial tours. The darkened elements in the matrix in Fig. 2(a) represent the union of 
the edges in these initial tours.  

After applying 2-opt search technique to each of the initial tours, we obtain 100 
locally optimal tours. The darkened elements in Fig. 2(b) represent the union of the 
edges hit by these 100 locally optimal tours. Fig. 2(c) illustrates the clustering process 
for the column 18 in E. We keep the most-hit cluster and remove other clusters. The 
darkened elements in Fig. 2(d) are the most-hit edges, representing the core of the 
solution attractor. We can see that, through this process, the search space is 
significantly reduced to a small region. Now we can use an exhausted-enumeration 
algorithm to find all solutions in the attractor core. In our example, the function 
Exhausted_Search() found 32 solutions in the attractor core.  

3   The Dynamic Traveling Salesman Problem 

DTSP is a TSP determined by a dynamic cost matrix C as follows: 

)()()}({)( tntnij tctC ×=  (1) 

where cij(t) is the travelling cost from city i to city j at the real-world time t; n(t) is the 
number of cities at time t. In DTSP, the number of cities can increase or decrease and 
the travelling costs between cities can change. The algorithmic problem has to be re-
solved quickly after each change. 

Many real-world dynamic problems are most naturally viewed in terms of 
stochastic dynamics. The dynamism implies that stochastic elements are introduced. 
The information on the problem is not completely known a priori, but instead is 
revealed to the decision maker progressively with time. Therefore, it becomes 
necessary to make the problem stochastic. This paper considers a random dynamic 
TSP. We starts with a 700-city instance with a randomly generated cost matrix C, in 
which each element c(i, j) = c(j, i) is assigned a random integer number in the range 
[1, 1000]. Then the problem changes in the fashion shown in Fig. 3. The changes in 
the problem include three cases: Δn cities are removed, Δn cities are added, and the 
travelling costs for Δw edges are changed. Δn is randomly generated in the range of 
[10, 150] and Δw in the range of [10, 250]. After a change is made, the problem waits 
for Δt seconds until next change. Δt is a random number in the range of [5, 30]. The 
problem changes with time is in such a way that future instances are not known. In 
other words, the nature (dimensional and non-dimensional) of change, the magnitude 
of change, and the frequency of change occurs randomly in certain ranges. This 
setting of the problem is quite useful for routing in ad-hoc networks.  
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Fig. 3. Dynamic setting of the TSP 

4   The Multi-start Search Procedure 

When an optimization problem is in a dynamic and uncertain environment, the 
algorithmic challenge is to design speed-up techniques which work in a fully-dynamic 
scenario and do not require a time-consuming pre-processing. Fig. 4 sketches the search 
system for the DTSP. This system bears intrinsic parallelism in its features. Based on a 
common dynamic cost matrix C, this search system starts M separate search trajectories 
in parallel. Each of the search trajectories can store its result into a common hit-
frequency matrix E any time during the search. A separate search processor uses an 
exhausted search technique to find the solutions in the matrix E. This system can work 
in real-time. Both flexibility and adaptability are built into the search system. The 
spread-out search trajectories can adapt to changes and keep useful search information 
easily. It introduces diversity without disrupting the ongoing search progress greatly. 

Fig. 5 presents the attractor-based search procedure. This procedure exploits the 
parallelism within the algorithm. In the procedure, C is a dynamic cost matrix. Its 
size, the values in its elements, and the time of changes are all parameters subject to 
stochasticity within the problem described in Fig. 3. The changes in C include three 
cases: a city is removed, a city is added, and a cost element c(i, j) is changed. In the 
first case, the study randomly selects a position (column) in C and removes the 
column and the corresponding row in C. In the second case, this study randomly 
selects a position, inserts a column and a corresponding row in C, and then assigns 
random cost values in c(i,j) in the added column and row. In the third case, an element 
c(i,j) is randomly selected and its value is replaced by a new random value.  
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Fig. 4. Schematic structure of the search system for the DTSP 

1   procedure DTSP_Search(C)
2 begin
3 M separate local searches;start
4 repeat
5       continue search; 
6       if (Change_Flag = on) 
7          ( 
8           repair tours in search trajectories; 
9           repair matrix E;
10          ) 
11      if (Update_Flag = on) 
12          Update(E);
14      if (Solution_Flag = on) 
16          Exhausted_Search(E);
18 until Stop_Criteria 
20 end

 

Fig. 5. Parallel multi-start attractor-based search procedure for DTSP 

The procedure starts M initial points in the solution space. The M search 
trajectories are conducted in parallel. In a multi-processor system, the M local search 
can be computed separately in M separate processors. When a city is removed or 
inserted, the tours in current search trajectories will cease to be valid. We have two 
ways to deal with this issue. One way is to restart the M search trajectories for the 
new problem instance; another way is to repair the tours in the current search 
trajectories. In the case of repairing, a city is removed from a tour by connecting its 
respective predecessor and successor; whereas a city is inserted into a tour by 
connecting it with two cities in a proper position and removing the connection 
between those two cities.  

In our procedure, each time when the size of the cost matrix C changes, the proce- 
dure sends a Change_Flag signal to all search trajectories. All search trajectories will 
repair their tours. The size of the matrix E will also be adjusted correspondingly. And 
then the search trajectories continue their local search based on the new cost matrix C. 
The main advantage of this method is that the algorithm keeps its diversity necessary for 
efficiently exploring the search space and consequently its ability to adapt to a change in 
the problem when such a change occurs. 
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The Update_Flag is a parameter that is used to control when we want the search 
trajectories to store their current tours into the matrix E. Before being updated, all 
elements in the matrix E are reset to zero. Since the whole information of matrix E 
depends only on the current solutions in the M search trajectories, it is no need to 
apply any particular mechanism for modifying the values in the matrix when a change 
in the problem occurs. 

When a decision maker needs a solution for the current problem, he sends an 
Information_Flag signal to the algorithm. The algorithm triggers the Exhausted 
Search processor to search the matrix E and output the best solution. 

Due to lack of parallel computing platform, we simulated the parallel multi-start 
search in a single-processor PC system (Intel Pentium processor, 1300MHz, 512mb 
RAM). When a change in the cost matrix C is made and a Δt is generated, we 
compute local search for each of M search trajectories sequentially, each spending Δt 
seconds. We store the tours in the M search trajectories into the matrix E. Then the 
solutions in E are searched by an exhausted search algorithm. The procedure then 
makes the next change in the cost matrix C. The procedure was implemented using 
MATLAB 5.  

The desire to speed up the search process is particular relevant in the dynamic 
domain where the time to relocate the global optimum can be severely restricted by 
the frequency of change. The running-time constraint implies that the search is best 
done by using efficient local improvement heuristics like k-interchange. In our 
experiments, we use the 2-opt search technique in local search.  

We conducted several experiments to study the search behavior of the algorithm. 
One experiment reported here is to study the performance of the simple multi-start 
search and the attractor-based search in our DTSP. We use the offline performance 
measure defined as follows: 

t

t

h
g

tI =  (2) 

where gt is the value of optimal solution at time t, ht is the value of the best solution 
found by the procedure at time t, and It is the index value of gt and ht.  

We started M = 400 search trajectories and ran each of search trajectories for 10 
seconds. Then we made the first change in the matrix C. After five changes in C were 
made, we start recording the search behavior of the algorithm for next 20 changes in 
C. Each time when a change in C was complete, we did the following steps: 

1) Record the type (0 – changing values in Δw edges; 1 – removing Δn cities; 2 – 
inserting Δn cities) and size (Δn or Δw) of the change. 

2) Use the attractor-construction procedure described in Fig. 1 to find the optimal 
solution for the new cost matrix C, and then calculating its value gt. 

3) If the size of the matrix C was changed, repair the tours in the M search 
trajectories and adjust the size of matrix E. 

4) Find the best tour in the M search trajectories based on the new matrix C, 
calculate its value ht, and then calculate the index value Itrajectory_before.  

5) Store the tours in the M search trajectories into the matrix E, find the best tour in 
E, calculate its value ht, and then calculate the index value Iattractor_before.  

6) Generate the search time Δt and run each of search trajectories for Δt seconds. 



 A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem 73 

7) Find the best tour in the M search trajectories, calculate its value ht, and then 
calculate the index value Itrajectory_after.  

8) Store the tours in the M search trajectories into the matrix E, find the best tour in 
E, calculate its value ht, and then calculate the index value Iattractor_after.  

9) Make the next change in the matrix C. 

Table 1. Performance indexes before and after search during the 2—change period 

Itrajectory IattractorChange 
Type 

Change Size 
( n or w) 

 
t Before After Before After 

1 
2 
1 
0 
2 
0 
2 
0 
2 
1 
0 
2 
1 
1 
0 
2 
1 
0 
1 
2 

46 
73 
93 
177 
101 
210 
129 
39 
89 
78 
142 
131 
67 
105 
147 
135 
74 
247 
108 
72 

6 
12 
21 
17 
9 
28 
13 
7 
16 
8 
22 
11 
15 
25 
18 
14 
29 
19 
10 

0.62 
0.38 
0.49 
0.77 
0.38 
0.68 
0.37 
0.71 
0.53 
0.61 
0.65 
0.34 
0.59 
0.48 
0.83 
0.31 
0.75 
0.83 
0.54 
0.49 

0.88 
0.87 
0.89 
0.96 
0.79 
0.91 
0.76 
0.91 
0.88 
0.85 
0.93 
0.76 
0.88 
0.94 
0.94 
0.87 
0.94 
0.95 
0.84 
0.91 

0.68 
0.42 
0.52 
0.79 
0.41 
0.72 
0.39 
0.82 
0.56 
0.64 
0.67 
0.36 
0.62 
0.54 
0.92 
0.36 
0.87 
0.89 
0.58 
0.54 

0.92 
0.97 
0.98 
1 
0.92 
1 
0.89 
0.97 
0.97 
0.88 
1 
0.91 
1 
1 
1 
0.94 
1 
1 
0.97 
1  

These steps calculate two performance indexes: Ibefore is the performance measure 
before search and Iafter measures the performance after the procedure spent Δt seconds 
for search. The experiment compares two results: Itrajectory is the index value for the 
best solution in the M search trajectories, and Iattractor is the value for the best solution 
in the attractor represented by the matrix E.  

Table 1 lists the collected data. The first row of the table, for example, shows that 
46 cities (Δn) were removed from the problem. After repairing the search trajectories 
and before searching, the index for the best tour in the M search trajectories 
(Itrajectory_before) was 0.62 and the index for the best tour in the matrix E (Iattractor_before) 
was 0.68. After searching for 6 seconds (Δt), the index value for the best tour in the M 
search trajectories (Itrajectory_after) was improved to 0.88 and the value for the best tour 
in E (Iattractor_after) was improved to 0.92.  

The results show that both the simple multi-start search and the attractor-based 
search can quickly react to the changes in the problem, and the attractor-based 
approach outperforms the simple multi-start search.  

5   Conclusion 

This paper introduces a simple and effective approach to DTSP. In our experiment, 
the dynamism is within the problem, the search model, and the application of the 
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model. Our problem is stochastic and dynamic. Our search model is dynamic because 
it explicitly incorporates the interaction of change and search over time, and our 
application is dynamic because underlying search model is repeated used as a change 
occurs. The result of our experiment demonstrates the effectiveness and efficiency of 
the algorithm. Both our benchmarking problem and attractor-based model are realistic 
that can be easily applied to real-world applications.  
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Abstract. The string-matching problem with wildcards is considered
in the context of online matching of multiple patterns. Our patterns are
strings of characters in the input alphabet and of variable-length gaps,
where the width of a gap may vary between two integer bounds or from
an integer lower bound to infinity. Our algorithm is based on locating
“keywords” of the patterns in the input text, that is, maximal substrings
of the patterns that contain only input characters. Matches of prefixes
of patterns are collected from the keyword matches, and when a prefix
constituting a complete pattern is found, a match is reported. In collect-
ing these partial matches we avoid locating those keyword occurrences
that cannot participate in any prefix of a pattern found thus far. Our
experiments show that our algorithm scales up well, when the number
of patterns increases.

1 Introduction

String-pattern matching with wildcards has been considered in various contexts
and for various types of wildcards in the pattern and sometimes also in the
text [2–11, 13–17]. The simplest approach is to use the single-character wildcard,
denoted “.” in grep patterns, to denote a character that can be used in any
position of the string pattern and matches any character of the input alphabet
Σ [4, 8, 15]. Generalizations of this are the various ways in which “variable-
length gaps” in the patterns are allowed [2–4, 8, 11, 13, 14, 16]. Typically, a lower
and upper bound is given on the number of single-character wildcards allowed
between two alphabet characters in a pattern, such as “.{l,h}” in grep patterns.
A special case is that any number of wildcards is allowed, called the arbitrary-
length wildcard, denoted “.*” in grep, that matches any string in Σ∗ [10, 13].

The above-mentioned solutions, except the ones by Kucherov and Rusinowitch
[10] and by Zhang et al. [17], are for the single-pattern problem, that is, the text
is matched against a single pattern. These algorithms [10, 17] are exceptions,
because they take as input—besides the text—a set of patterns, but they are
restricted to handle arbitrary-length wildcards only, and, moreover, they only
find the first occurrence of any of the patterns.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 76–87, 2011.
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In this article we present a new algorithm that finds all occurrences of all
patterns in a given pattern set, a “dictionary”, in an online fashion. The patterns
are strings over characters in the input alphabet Σ and over variable-length gaps,
where the gaps can be specified as “.” (single-character wildcard), “.{l,h}” (gap
of length l to h), or “.*” (gap of length 0 to ∞).

Our online algorithm performs a single left-to-right scan of the text and re-
ports each pattern occurrence once its end position is reached, but at most one
occurrence for each pattern at each character position. Each matched occurrence
is identified by the pattern and its last element position in the document [2].
Because of the variable-length gaps, there can be more than one, actually an
exponential number of occurrences of the same pattern at the same element po-
sition, but we avoid this possible explosion by recognizing only one occurrence
in such situations.

We use the classic Aho–Corasick pattern-matching automaton (PMA) [1] con-
structed from the set of all keywords that appear in the patterns. A similar
approach for solving the single-pattern matching problem was previously used
by Pinter [15] allowing single-character wildcards in the pattern and by Bille et
al. [2] allowing variable-length gaps with fixed lower and upper bounds.

Our new algorithm matches sequences of keywords that form prefixes of pat-
terns with prescribed gaps between them. We thus record partial matches of the
patterns in the form of matches of prefixes of patterns, and when a matched
prefix extends up to the last keyword of the pattern, we have a true match. An
important feature in our algorithm is that we use a dynamic output function for
the PMA constructed from the keywords.

The problem definition is given Sec. 2, and our algorithm is presented in detail
in Sec. 3. The complexity is analyzed in Sec. 4, based on the estimation of the
number of pattern prefix occurrences in terms of the properties of the pattern
set only. Experimental results, including comparisons with grep and nrgrep, are
reported in Sec. 5.

2 Patterns with Gaps and Wildcards

Assume that we are given a string T of length |T | = n (called the text) over a
character alphabet Σ, whose size is assumed to be bounded, and a finite set D
(called a dictionary) of nonempty strings (called patterns) Pi over characters in
input alphabet Σ and over variable-length gaps. Here the gaps are specified as
“.{l,h}”, denoting a gap of length l to h, where l and h are natural numbers
with l ≤ h or l is a natural number and h = ∞. The gap “.{1,1}” can also be
denoted as “.” (the single-character wildcard or the don’t-care character), and
the gap “.{0,∞}” as “.*” (the arbitrary-length wildcard).

Patterns are decomposed into keywords and gaps: the keywords are maximal
substrings in Σ+ of patterns. If the pattern ends at a gap, then we assume
that the last keyword of the pattern is the empty string ε. Each pattern is
considered to begin with a gap, which thus may be ε. For example, the pattern
“.*ab.{1,3}c.*.d..” consists of four gaps, namely “.*”, “.{1,3}”, “.*.” (i.e.,
“.{1,∞}”), and “..” (i.e., “.{2,2}”), and of four keywords, namely ab, c, d,
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and ε. This pattern matches with, say, the input text eeeabeecedeee, while the
pattern “ab.{1,3}c.*.d..” does not.

Our task is to determine all occurrences of all patterns Pi ∈ D in text T . Like
Bille et al. [2], we report a pattern occurrence by a pair of a pattern number
and the character position in T of the last character of the occurrence. Because
variable-length gaps are allowed, the same pattern may have many occurrences
that end at the same character position; all these occurrences are reported as a
single occurrence.

We number the patterns and their gaps and keywords consecutively, so that
the ith pattern Pi can be represented as

Pi = gap(i, 1)keyword(i, 1) . . . gap(i, mi)keyword(i, mi),

where gap(i, j) denotes the jth gap and keyword(i, j) denotes the jth keyword
of pattern Pi.

For pattern Pi, we denote by mingap(i, j) and maxgap(i, j), respectively,
the minimum and maximum lengths of strings in Σ∗ that can be matched by
gap(i, j). The length of the jth keyword of pattern Pi is denoted by length(i, j).
We also assume that #keywords(i) gives mi, the number of keywords in pattern
Pi. For example, if the pattern “.*ab.{1,3}c.*.d..” is the ith pattern, we have

#keywords(i) = 4,
mingap(i, 1) = 0, maxgap(i, 1) = ∞, length(i, 1) = 2,
mingap(i, 2) = 1, maxgap(i, 2) = 3, length(i, 2) = 1,
mingap(i, 3) = 1, maxgap(i, 3) = ∞, length(i, 3) = 1,
mingap(i, 4) = 2, maxgap(i, 4) = 2, length(i, 4) = 0.

3 The Matching Algorithm

For the set of all keywords in the patterns, we construct an Aho–Corasick
pattern-matching automaton with a dynamically changing output function. This
function is represented by sets current-output(q) containing output tuples of the
form (i, j, b, e), where q = state(keyword(i, j)), the state reached from the initial
state upon reading the jth keyword of pattern Pi, and b and e are the earliest and
latest character positions in text T at which some partial match of pattern Pi

up to and including the jth keyword can possibly be found. The latest possible
character position e may be ∞, meaning the end of the text.

The current character position, i.e., the number of characters scanned from the
input text is maintained in a global variable character-count. Tuples (i, j, b, e) are
inserted into current-output(q) only at the point when the variable character-
count has reached the value b, so that tuples (i, j, b, e) are stored and often
denoted as triples (i, j, e). The function state(keyword(i, j)), defined from pairs
(i, j) to state numbers q, is implemented as an array of #D elements, where each
element is an array of #keywords(i) elements, each containing a state number.

The operating cycle of the PMA is given as Alg. 1. The procedure call scan-
next(character) returns the next character from the input text. The functions



Online Dictionary Matching with Variable-Length Gaps 79

goto and fail are the goto and fail functions of the standard Aho–Corasick PMA,
so that goto(state(y), a) = state(ya), where ya is a prefix of some keyword and a
is in Σ, and that fail(state(uv)) = state(v), where uv is a prefix of some keyword
and v is the longest proper suffix of uv such that v is also a prefix of some
keyword.

Algorithm 1. Operating cycle of the PMA with dynamic output sets
initialize-output()
state ← initial-state
character-count ← 0
scan-next(character)
while character was found do

character-count ← character-count + 1
distribute-output()
while goto(state, character) = fail do

state ← fail(state)
end while
state ← goto(state, character)
traverse-output-path(state)
scan-next(character)

end while

The function output-fail(q) used in the procedure traverse-output-path (Alg. 4)
to traverse the output path for state q is defined by: output-fail(q) = failk(q),
where k is the greatest integer less than or equal to the length of string(q) such
that for all m = 1, . . . , k − 1, string(failm(q)) is not a keyword. Here string(q) is
the unique string y with state(y) = q, and failm denotes the fail function applied
m times. Thus, the output path for state q includes, besides q, those states q′

in the fail path from q for which string(q′) is a keyword; for such states q′ the
dynamically changing current output can sometimes be nonempty.

The initial current output tuples, as well as all subsequently generated output
tuples, are inserted through a set called pending-output to sets current-output(q).
Let

maxdist = max{mingap(i, j) + length(i, j) | i ≥ 1, j ≥ 1}.
The set pending-output is implemented as an array of maxdist elements such
that for any character position b in the input text the element

pending-output(b mod maxdist)

contains an unordered set of tuples (i, j, e), called pending output tuples. The first
pending output tuples (i, 1, e), with e = maxgap(i, 1) + length(i, 1), are inserted,
before starting the first operating cycle, into pending-output(b mod maxdist),
where b = mingap(i, 1) + length(i, 1) (see Alg. 2). At the beginning of the oper-
ating cycle, when character-count has reached b, all tuples (i, j, e) from the set
pending-output(b mod maxdist) are distributed into the sets current-output(q),
q = state(keyword(i, j) (see Alg. 3).
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When visiting state q, the set current-output(q) of the PMA is checked for
possible matches of keywords in the procedure call traverse-output-path(q) (see
Alg. 4). If this set contains a tuple (i, j, e), where character-count ≤ e, then a
match of the jth keyword of pattern Pi is obtained. Now if the jth keyword is
the last one in pattern Pi, then a match of the entire pattern Pi is obtained.
Otherwise, an output tuple (i, j + 1, e′) for the (j + 1)st keyword of pattern Pi

is inserted into the set pending-output(b′ mod maxdist), where

b′ = character-count + mingap(i, j + 1) + length(i, j + 1), and
e′ = character-count + maxgap(i, j + 1) + length(i, j + 1).

Here e′ = ∞ if maxgap(i, j + 1) = ∞.

Algorithm 2. Procedure initialize-output()
for all b = 0, . . . ,maxdist − 1 do

pending-output(b) ← ∅
end for
for all patterns Pi do

b ← mingap(i, 1) + length(i, 1)
e ← maxgap(i, 1) + length(i, 1)
insert (i, 1, e) into the set pending-output(b mod maxdist)

end for
for all states q do

current-output(q) ← ∅
end for

Algorithm 3. Procedure distribute-output()
b ← character-count
for all (i, j, e) ∈ pending-output(b mod maxdist) do

q ← state(keyword(i, j))
insert (i, j, e) into the list current-output(q)

end for
pending-output(b mod maxdist) ← ∅

The collection of the sets current-output(q), for states q, is implemented as
an array indexed by state numbers q, where each element current-output(q) is
an unordered doubly-linked list of elements (i, j, e), each representing a current
output tuple (i, j, b, e) for some character position b ≤ character-count. The
doubly-linked structure makes it easy to delete outdated elements, that is, ele-
ments with e < character-count, and insert new elements from pending-output.

We also note that for each pair (i, j) (representing a single keyword occurrence
in the dictionary) it is sufficient to store only one output tuple (i, j, e), namely
the one with the greatest e determined thus far. To accomplish this we maintain
an array of vectors, one for each pattern Pi, where the vector for Pi is indexed
by j and the entry for (i, j) contains a pointer to the tuple (i, j, e) in the doubly-
linked list. We assume that the insertion into current-output(q) in Alg. 3 first
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Algorithm 4. Procedure traverse-output-path(state)
q ← state
traversed ← false
while not traversed do

for all elements (i, j, e) in the list current-output(q) do
if e < character-count then

delete (i, j, e) from the list current-output(q)
else if j = #keywords(i) then

report a match of pattern Pi at position character-count in text T
else

b′ ← character-count + mingap(i, j + 1) + length(i, j + 1)
e′ ← character-count + maxgap(i, j + 1) + length(i, j + 1)
insert (i, j + 1, e′) into pending-output(b′ mod maxdist)

end if
end for
if q = initial-state then

traversed ← true
else

q ← output-fail(q)
end if

end while

checks from this array of vectors whether or not a tuple (i, j, e′) already exists,
and if so, replaces e′ with the greater of e and e′.

4 Complexity

The main concern in the complexity analysis is the question of how many steps
are performed for each scanned input character. For each new character the
procedure traverse-output-path (Alg. 4) is executed, and thus we need to analyze
how many times the outer while loop and the inner for loop are then performed
within a traverse-output-path call. The number of iterations of the while loop
is the length of the output path for the current state q. The maximum length of
this path is the maximum number of different keywords that all are suffixes of
string(q) for a given state q, which implies the bound for the maximal number
of performed iterations.

Additionally, within each iteration of the while loop the for loop is per-
formed for all triples (i, j, e) that belong to current-output(q). Because for any
pair (i, j) at most one output tuple (i, j, e) exists in current-output(q) for q =
state(keyword(i, j)) at any time, this implies that the number of iterations per-
formed in the for loop for state q is bounded by the number of different oc-
currences of keywords equal to keyword(i, j) = string(q). However, not all these
occurrences have been inserted into current-output(q), but only those for which
all preceding keyword occurrences of the pattern have been recognized.

For any two strings w1 and w2 composed of keywords and gaps as defined in
Sec. 2, we define that w1 is a suffix of w2, if there are instances w′

1 and w′
2 of

w1 and w2, respectively, such that w′
1 is a suffix of w′

2. The instance of string w
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is defined such that each gap in w is replaced by any string in Σ∗ such that the
gap rules are obeyed. For keyword instance (i, j) we define set Si,j to contain all
keyword instances (i′, j′) where the prefix of pattern Pi′ ending with keyword
instance (i′, j′) is a suffix of the prefix of pattern Pi ending with keyword instance
(i, j).

For any two tuples (i1, j1, e1) and (i2, j2, e2) in current-output(q), either the pat-
tern prefix ending with (i1, j1) is a suffix of the pattern prefix ending with (i2, j2),
or vice versa. Thus we can conclude that the number of iterations performed in the
for loop for q is at most max{|Si,j | | (i, j, e) ∈ current-output(q)}. This implies
further that the number of operations per input character induced by the proce-
dure traverse-output-path is bounded above by the maximum size, denoted k, of
the sets Si,j , where (i, j) is any keyword instance in the dictionary D. It is clear
from the matching algorithm that all other work done also has the time bound
O(kn), where n is the length of the input text. An upper bound for k is the num-
ber of keyword instances in the dictionary, but k is usually much less.

A better upper bound for k, instead of simply taking the number of keyword
instances in D, is obtained as follows. For keyword set W denote by pocc(W ) the
number of occurrences of keywords in W in the dictionary D. Further denote
by closure(w), for a single keyword w, the set of keywords in D that contains
w and all suffixes of w that are also keywords. Then max{pocc(closure(w)) |
w is a keyword in D} is an upper bound of k.

The preprocessing time, that is, the time spent on the construction of the
PMA with its associated functions and arrays, is linear in the size of dictionary
D (i.e., the sum of the sizes of the patterns in D).

In terms of the occurrences of pattern prefixes in the text it is easy to derive,
for processing the text, the time complexity bound O(Kn+occ(pattern-prefixes)),
where K denotes the maximum number of suffixes of a keyword that are also
keywords, and occ(pattern-prefixes) denotes the number of occurrences in the
text of pattern prefixes ending with a keyword.

5 Experimental Results

We have implemented a slightly modified version of the algorithm of Sec. 3 in
C++. The modifications are concerned with minor details of the organization
of the current and pending output sets and with the deletion of expired output
tuples. We observe that after seeing the jth keyword of pattern Pi that is followed
by a gap of unlimited length, we may also consider as expired all output tuples
(i, j′, e) with j′ < j. Also, we did not use the array of vectors indexed by pairs
(i, j) and containing pointers to output tuples (i, j, e) (see the end of Sec. 3),
but allowed the current output set for state(keyword(i, j)) to contain many tuples
(i, j, e).

We have run tests with a 1.2 MB input text file (the text of the book Moby
Dick by H. Melville) using pattern files with varying number of patterns and
varying number of segments delimited by an unlimited gap “.*”. Let m be the
length of a pattern and s the number of segments in it. We generated the pat-
terns by taking from the input text s pieces of length m/s that are relatively
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close to each other (so that the entire pattern is taken from an 8m-character
substring of the input), and by catenating these pieces together by appending a
“.*” gap in between them. In addition, we replaced a portion of the characters in
the segments with wildcards, and we converted some wildcard substrings to ran-
domly chosen (but matching) limited variable-length gaps. Each formed pattern
thus matches at least once. Partial examples of generated patterns include:

.omple.. .irc.* f...l.nc....n.* r.shed.to...e.* .s ..e eager
i.ot.{2,19}e.e.{0,6}.*.{0,2}cia..y.Capta.*.{1,4}ge .{2,22}eyo

We used patterns with an average length of 80 characters when the patterns
did not contain limited variable-length gaps, and 100 characters when they did
(five gaps on average). The length of the variable-length gaps we used was not
very high, varying on average from close to zero to around ten or twenty. (We
expect the speed of our algorithm to be independent of the (minimum) length
of a gap (mingap), while the difference of the maximum and minimum lengths
of a gap does matter; mingaps only affect the size of the array pending-output.)
Finally, we made 75 % of the patterns non-matching by appending a character
that does not appear in the input text, at the end of the pattern; although
further tests revealed that this does not affect the run time of our algorithm
much. Each matching pattern usually has only one occurrence in the input text.
We generated workloads with 1, 3, and 5 segments; with a total of 1, 10, 20,
100, 500, and 1000 patterns in each workload. The workloads were generated
additively, so that the smaller workloads are subsets of the larger workloads.

We used the following programs in our test runs (cf. Fig. 1): (1) D-PMA, our
dynamic pattern-matching algorithm; (2) FFT, the wildcard matcher based on
fast Fourier transform [5] (this can only be used when the patterns do not contain
arbitrary- or variable-length gaps); (3) Grep, the standard Linux command-line
tool grep; we use the extended regular expression syntax with the -E parameter
so that variable-length gaps can be expressed; (4) NR-Grep, the nrgrep Linux
command-line tool by Navarro [12] (which can only handle fixed-length and
arbitrary-length gaps).

Fig. 1 shows the results of three of the test runs. The values are averages of six
test runs with a standard deviation of mostly less than a percent when there are
more than 20 patterns; with only a few patterns there is some small variance. The
figures and further tests confirmed that grep performs much worse for variable-
length gaps than for fixed-length gaps. On the contrary, our D-PMA algorithm
has about the same performance with and without variable-length gaps.

The variants single run and repeated runs refer to how the programs were
run. With repeated runs, each pattern of the workload was processed separately,
running the program once for each pattern. This is the only way to make grep
and nrgrep find occurrences individually for every pattern; in this case grep
and nrgrep solve the filtering problem for the dictionary, that is, find the first
occurrences for each pattern, if any.

With single run, all the patterns of a workload were fed to the program at
once. With grep, we gave the patterns in a file with the -f parameter, and
with nrgrep, we catenated the patterns together, inserting the union operator
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(a) Patterns with only fixed-length gaps

(b) Patterns with limited fixed- and variable-length gaps

Fig. 1. Matching times in seconds for dictionaries of increasing numbers of patterns.
(NR-Grep cannot handle limited variable-length gaps).
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(c) Patterns with fixed- and variable-length gaps, and four unlimited gaps

Fig. 1. Continued

“|” in between the pattern instances, and enclosing the patterns themselves
in parentheses. In this case both grep and nrgrep only solve the language-
recognition problem for the dictionary, that is, determine whether some pattern
in the dictionary has a match; they thus stop processing the input as soon as the
first match has been found. This can be seen from Figs. 1(b) and 1(c): searching
for 100 patterns is faster than searching for 20 patterns, because then the first
match of some pattern is found earlier.

All our tests were run on a computer with a 64-bit 2.40 GHz Intel Core 2 Quad
Q6600 processor, 4 GB of main memory, and 8 MB of on-chip cache, running
Fedora 14 Linux 2.6.35. The test programs were compiled with the GNU C++
compiler (g++) 4.5.1.

When run with a single run, both grep and nrgrep fail when there are too
many patterns to process: grep could not complete any workload with 1000
patterns (out of memory); and nrgrep could not complete any workload with
more than 20 patterns, but rather failed due to a possible overflow bug. Further-
more, nrgrep could not be run with the test workloads that included limited
variable-length gaps, because nrgrep does not support them.

The results clearly show that our algorithm outperforms grep and also nrgrep,
except when nrgrep was applied repeatedly (offline) for patterns with fixed-
length gaps only. In that case nrgrep was about three times faster than our al-
gorithm. Our algorithm scales very well to the number of patterns, for instance,
for 500 patterns the online single run was ten times faster than 500 individual



86 T. Haapasalo et al.

runs. Moreover, we emphasize that our algorithm solves the genuine dictionary-
matching problem, finding all occurrences for all the patterns, while grep and
nrgrep do not. In addition, our algorithm can process multiple patterns effi-
ciently in an online fashion, with a single pass over the input text, making it the
only viable option if the input is given in a data stream that cannot be stored for
reprocessing. In solving the filtering problem, our algorithm was slightly faster
than when solving the dictionary-matching problem with the same pattern set
and input text.

6 Conclusion

We have presented a new algorithm for string matching when patterns may con-
tain variable-length gaps and all occurrences of a (possibly large) set of patterns
are to be located. Moreover, our assumption is that pattern occurrences should
be found online in a given input text, so that they are reported once their end
positions have been recognized during a single scan of the text. Our solution is
an extension of the Aho–Corasick algorithm [1], using the same approach as Pin-
ter [15] or Bille et al. [2] in the sense that keywords, the maximal strings with-
out wildcards occurring in the patterns, are matched using the Aho–Corasick
pattern-matching automaton (PMA) for multiple-pattern matching.

An important feature in our algorithm is that we avoid locating keyword oc-
currences that at the current character position cannot take part in any complete
pattern occurrence. The idea is to dynamically update the output function of
the Aho–Corasick PMA. Whenever we have recognized a pattern prefix up to
the end of a keyword, output tuples for the next keyword of the pattern will be
inserted. In this way we get an algorithm whose complexity is not dominated by
the number of all keyword occurrences in the patterns. This claim is confirmed
by our experiments, which show that our algorithm outperforms grep and scales
very well to the number of patterns in the dictionary.
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Abstract. In this work we introduce a new data structure, named Road-
Signs, which allows us to efficiently update the Arc-Flags of a graph in a
dynamic scenario. Road-Signs can be used to compute Arc-Flags, can be
efficiently updated and do not require large space consumption for many
real-world graphs like, e.g., graphs arising from road networks. In detail,
we define an algorithm to preprocess Road-Signs and an algorithm to
update them each time that a weight increase operation occurs on an edge
of the network. We also experimentally analyze the proposed algorithms
in real-world road networks showing that they yields a significant speed-
up in the updating phase of Arc-Flags, at the cost of a very small space
and time overhead in the preprocessing phase.

1 Introduction

Great research efforts have been done over the last decade to accelerate Dijkstra’s
algorithm on typical instances of transportation networks, such as road or railway
networks (see [3] and [4] for recent overviews). This is motivated by the fact that
transportation networks tend in general to be huge yielding unsustainable times
to compute shortest paths. These research efforts have lead to the development
of a number of so called speed-up techniques, whose aim is to compute additional
data in a preprocessing phase in order to accelerate the shortest paths queries
during an on-line phase. However, most of the speed-up techniques developed in
the literature do not work well in dynamic scenarios, when edge weights changes
occur to the network due to traffic jams or delays of trains. In other words, the
correctness of these speed-up techniques relies on the fact that the network does
not change between two queries. Unfortunately, such situations arise frequently
in practice. In order to keep the shortest paths queries correct, the preprocessed
data needs to be updated. The easiest way is to recompute the preprocessed
data from scratch after each change to the network. This is in general infeasible
since even the fastest methods need too much time.

Related Works. Geometric Containers [17], was the first technique studied in a
dynamic scenario [18]. The key idea is to allow suboptimal containers after a
few updates. However, this approach yields quite a loss in query performance.
The same holds for the dynamic variant of Arc-Flags proposed in [1], where,
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after a number of updates, the query performances get worse yielding only a low
speed-up over Dijkstra’s algorithm. In [15], ideas from highway hierarchies [14]
and overlay graphs [16] are combined yielding very good query times in dynamic
road networks. In [2], a theoretical approach to correctly update overlay graphs
has been proposed, but the proposed algorithms have not been shown to have
good practical performances in real-world networks. The ALT algorithm, intro-
duced in [8] works considerably well in dynamic scenarios where edge weights can
increase their value that is, when delays or traffic jams increase travel times. Also
in this case, query performances get worse if too many edges weights change [5].
Summarizing, all above techniques work in a dynamic scenario as long as the
number of updates is small. As soon as the number of updates is greater than a
certain value, it is better to repeat the preprocessing from scratch.

Contribution. In this paper we introduce a new data structure, named Road-
Signs, which allows us to efficiently update the Arc-Flags of a graph in a dynamic
scenario. Road-Signs can be used to compute Arc-Flags, they can be efficiently
updated and do not require large space consumption for many real-world graphs
like, e.g., graphs arising from road networks. In detail, we define an algorithm to
preprocess Road-Signs and an algorithm to update them each time that a weight
increase operation occurs on an edge of the graph. As the updating algorithm
is able to correctly update Arc-Flags, there is no loss in query performance. To
our knowledge, the only dynamic technique known in the literature with no loss
in query performance is that in [15].

We experimentally analyze the proposed algorithms in real-world road net-
works showing that, in comparison to the recomputation from-scratch of Arc-
Flags, they yield a significant speed-up in the updating phase of Arc-Flags, at
the cost of a little space and time overhead in the preprocessing phase. In detail,
we experimentally show that our algorithm updates the Arc-Flags at least 62
times faster than the recomputation from scratch in average, considering the
graph where the new algorithm performs worse. Moreover it performs better
when the network is big, hence it can be effectively used in real-world scenarios.
In order to compute and store the Road-Signs, we need an overhead in the pre-
processing phase and in the space occupancy. However, we experimentally show
that such an overhead is very small compared to the speed-up gained in the up-
dating phase. In fact, considering the graph where the new algorithm performs
worse, the preprocessing requires about 2.45 and 2.88 times the time and the
space required by Arc-Flags, respectively.

2 Preliminaries

A road network is modelled by a weighted directed graph G = (V, E, w), called
road graph, where nodes in V represent road crossings, edges in E represent road
segments between two crossings and the weight function w : E → R+ represents
an estimate of the travel time needed for traversing road segments. Given G, we
denote as Ḡ = (V, Ē) the reverse graph of G where Ē = {(v, u) | (u, v) ∈ E}.
A minimal travel time route between two crossings S and T in a road network
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corresponds to a shortest path from the node s representing S and the node t
representing T in the corresponding road graph. The total weight of a shortest
path between nodes s and t is called distance and it is denoted as d(s, t). A
partition of V is a family R = {R1, R2, . . . , Rr} of subsets of V called regions,
such that each node v ∈ V is contained in exactly one region. Given v ∈ Rk, v
is a boundary node of Rk if there exists an edge (u, v) ∈ E such that u �∈ Rk.

Minimal routes in road networks can be computed by shortest paths algorithm
such as Dijkstra’s algorithm [6]. In order to perform an s-t query, the algorithm
grows a shortest path tree starting from the source node s and greedily visits the
graph. The algorithm stops as soon as it visits the target node t. A simple vari-
ation of Dijkstra’s algorithm is bidirectional Dijkstra which grows two shortest
path trees starting from both nodes s and t. In detail, the algorithm performs a
visit of G starting from s and a visit of Ḡ starting from t. The algorithm stops
as soon the two visits meet at some node in the graph.

A widely used approach to speed up the computation of shortest paths is
Arc-Flags [9,11], which consists of two phases: a preprocessing phase which is
performed off-line and a query phase which is performed on-line. The preprocess-
ing phase of Arc-Flags first computes a partition R = {R1, R2, . . . , Rr} of V and
then associates a label to each edge (u, v) in E. A label contains, for each region
Rk ∈ R, a flag Ak(u, v) which is true if and only if a shortest path in G towards
a node in Rk starts with (u, v). The set of flags of an edge (u, v) is called Arc-
Flags label of (u, v). The preprocessing phase associates also Arc-Flags labels to
edges in the reverse graph Ḡ. The query phase consists of a modified version of
bidirectional Dijkstra’s algorithm: the forward search only considers those edges
for which the flag of the target node’s region is true, while the backward search
only follows those edges having a true flag for the source node’s region. The main
advantage of Arc-Flags is its easy query algorithm combined with an excellent
query performance. However, preprocessing is very time-consuming. This is due
to the fact that the preprocessing phase grows a full shortest path tree from each
boundary node of each region yielding a huge preprocessing time. This results
in a practical inapplicability of Arc-Flags in dynamic scenarios where, in order
to keep correctness of queries, the preprocessing phase has to be performed from
scratch after each edge weight modification.

3 Dynamic Arc-Flags

Given a road graph G = (V, E, w) and a partition R = {R1, R2, . . . , Rr} of V in
regions, we consider the problem of updating the Arc-Flags of G in a dynamic
scenario where a sequence of weight-increase operations C = (c1, c2, . . . , ch) oc-
cur on G. We denote as Gi = (V, E, wi) the graph obtained after i weight
increase operations, 0 ≤ i ≤ h, G0 ≡ G. Each operation ci increases the weight
of one edge ei = (xi, yi) of an amount γi > 0, i.e. wi(ei) = wi−1(ei) + γi and
wi(e) = wi−1(e), for each edge e �= ei in E.

Since Arc-Flags of G are computed by considering shortest paths trees rooted
at each boundary node induced by R, a possible approach for dynamic Arc-Flags
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is to maintain these trees by using e.g. the dynamic algorithm in [7]. As the
number of boundary nodes in large graphs is high, this approach is impractical.

In what follows, for sake of simplicity, we consider only Arc-Flags on the graph
G as the inferred properties do not change for the reverse graph Ḡ. Moreover,
we assume that there exists a unique shortest path for any pair of nodes in
G. The extension of the data structure and algorithms to the case of multiple
shortest paths is straightforward as it is enough to break ties arbitrarily during
the preprocessing and updating phases. The experimental study given in the
next section considers such extension.

This section is organized as follows. First, we introduce the new data structure,
which we call Road-Signs (denoted as S) and we show how to compute Road-
Signs during the preprocessing phase of Arc-Flags. Then, we give an algorithm
that uses Road-Signs in order to update the Arc-Flags. Finally, as Road-Signs
result to be space expensive, we give a method to store them in a compact way,
by obtaining a technique which is efficient for any kind of sparse graphs as, for
instance, the road graphs used in the experimental study of the next section.

Data structure. Given an edge (u, v) ∈ E and a region Rk ∈ R, the Road-Sign
Sk(u, v) of (u, v) to Rk is the subset of boundary nodes b of Rk, such that there
exists a shortest path from u to b that contains (u, v). The Road-Signs of (u, v)
are represented as a boolean vector, whose size is the overall number of boundary
nodes in the network, where the i-th element is true if the i-th boundary node is
contained in Sk(u, v), for some region Rk. Hence, such a data structure requires
O(|E| · |B|) memory, where B is the set of boundary nodes of G induced by R.

The Road-Signs of G can be easily computed by using the preprocessing phase
of Arc-Flags, which builds a shortest path tree from each boundary node on Ḡ.
Given an edge (u, v) and a region Rk, Ak(u, v) is set to true if and only if (u, v)
is an edge in at least one of the shortest path trees grown for the boundary
nodes of Rk. Therefore, such a procedure can be easily generalized to compute
also Road-Signs. In fact, it is enough to add the boundary node b to Sk(u, v) if
(u, v) is an edge in the tree grown for b.

Updating algorithm. Our algorithm to update Arc-Flags is based on the following
Proposition, which gives us a straightforward method to compute the Arc-Flags
of a graph given the Road-Signs of that graph.

Proposition 1. Given G = (V, E, w), a partition R = {R1, R2, . . . , Rr} of V ,
an edge (u, v) ∈ E and a region Rk ∈ R, the following conditions hold:

– if u, v ∈ Rk, then Ak(u, v) = true;
– if Sk(u, v) �= ∅, then Ak(u, v) = true;
– if u or v is not in Rk and Sk(u, v) = ∅, then Ak(u, v) = false.

In what follows, we hence give an algorithm to update Road-Signs. Let us con-
sider a weight increase operation ci on edge (xi, yi). The algorithm, denoted
as DynamicRoadSigns, is based on the fact that if the shortest paths from a
node u to a region Rk do not contain the edge (xi, yi), then the Road-Signs
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Phase 1: DetectAffectedNodes(Gi−1, ci, Rk)
Input : Graph Gi−1, operation ci on edge (xi, yi) and region Rk ∈ R
Output: Sets Bk(u), for each u ∈ V

1 foreach u ∈ V do
2 Bk(u) := ∅;
3 Bk(xi) := Sk(xi, yi);
4 Q.push(xi, yi);
5 repeat
6 (u, v) = Q.pop();
7 Bold := Bk(u);
8 Bk(u) := Bk(u) ∪ (Bk(v) ∩ Sk(u, v));
9 if Bk(u) \ Bold �= ∅ then

10 foreach z ∈ V such that (z, u) ∈ E do
11 Q.push(z, u);

12 until Q �= ∅;

Fig. 1. First phase of algorithm DynamicRoadSigns

to Rk of the edges outgoing from u do not change as a consequence of ci.
Therefore, DynamicRoadSignsworks in two phases: the first phase, named
DetectAffectedNodes, detects the set of nodes u such that a shortest path
from u to b changes as a consequence of ci (i.e. a shortest path from u to b con-
tains edge (xi, yi)), where b is a boundary node in some region Rk s. t. u �∈ Rk;
the second phase, named UpdateRoadSigns, updates Sk(u, v) for each region
Rk and edge (u, v) where u is one of the nodes detected in the first phase.

DetectAffectedNodes consists of a modified breadth first search of the
reverse graph Ḡ, for each region Rk, which starts from node xi and prunes when
a node with no shortest paths to region Rk containing (xi, yi) is extracted. In
this search, a node can be visited at most once for each boundary node of Rk.
The output of this phase is a set Bk(u), for each region Rk ∈ R and for each
node u ∈ V , which contains the boundary nodes b of region Rk such that a
shortest path from u to b contains edge (xi, yi). Note that, only edges (u, v)
such that Bk(u) �= ∅ for some region Rk ∈ R could change some of their Road-
Signs and Arc-Flags towards region Rk, while edges (u, v) such that Bk(u) = ∅
for each Rk ∈ R do not change neither their Road-Signs nor their Arc-Flags.
The pseudo-code of DetectAffectedNodes for a region Rk ∈ R is given in
Fig. 1, where Q is the queue of the modified breadth first search. Operation
Q.push(x, y) inserts node x into Q and stores also the predecessor y of x in
the visit. Operation Q.pop() extracts a pair (x, y) where x is a node and y is
the predecessor of x in the visit at the time when x is pushed into Q. At lines
1–3, Bk(u) is initialized as Sk(xi, yi) for u = xi and as the empty set for any
other node. At lines 4–12, the graph search of Ḡ is performed, starting from
node xi. When a node u is extracted for the first time from Q, Bk(u) is set to
Bk(v) ∩ Sk(u, v) at line 8, where v is the predecessor of u in the visit at the
time when u is pushed into Q. If a node u is extracted more than once from



Dynamic Arc-Flags in Road Networks 93

Phase 2: UpdateRoadSigns(Gi−1, ci, Rk, Bk)
Input : Graph Gi−1, modification ci on edge (xi, yi), region Rk ∈ R, and sets

Bk(u), for each u ∈ V
Output: Updated Road-Signs

1 foreach b ∈ Sk(xi, yi) do
2 BinaryHeap.Clear();
3 foreach u : b ∈ Bk(u) do
4 D[u, b] := ∞;
5 foreach v such that (u, v) ∈ E and b �∈ Bk(v) do
6 Compute the distance from v to b and store it in D[v, b];

7 D[u, b] := min{w(u, v) + D[v, b] | (u, v) ∈ E and b �∈ Bk(v)};
8 if D[u, b] �= ∞ then
9 find the node z such that (u, z) ∈ E and b ∈ Sk(u, z);

10 Sk(u, z) := Sk(u, z) \ {b};
11 z′ := argmin{w(u, v) + D[v, b] | (u, v) ∈ E and b �∈ Bk(v)};
12 Sk(u, z′) := Sk(u, z′) ∪ {b};
13 BinaryHeap.Push(u, D[u, b]);

14 while BinaryHeap �= ∅ do
15 (v, D[v, b]) :=BinaryHeap.Pop Min();
16 foreach u such that (u, v) ∈ E and b ∈ Bk(u) do
17 if w(u, v) + D[v, b] < D[u, b] then
18 D[u, b] := D[v, b] + w(u, v);
19 BinaryHeap.node(u).Decrease(u, D[u, b]);
20 find the node z such that (u, z) ∈ E and b ∈ Sk(u, z);
21 Sk(u, z) := Sk(u, z) \ {b};
22 Sk(u, v) := Sk(u, v) ∪ {b};

Fig. 2. Second phase of algorithm DynamicRoadSigns

Q (that is, if u reaches Rk using different paths for different boundary nodes of
Rk), Bk(u) is updated to Bk(u)∪(Bk(v) ∩ Sk(u, v)) at line 8 Finally, only nodes
z such that (z, u) ∈ E and some boundary nodes have been added to Bk(u) at
line 8 (i.e. Bk(v) ∩ Sk(u, v) �= ∅) are inserted in Q (lines 9–11). In this way a
boundary node b of region Rk is inserted in Bk(u) if and only if b is contained
in all the Road-Signs in some path from u to xi in G and hence, if and only if
there exists a shortest path from u to b containing (xi, yi).

In the second phase, UpdateRoadSigns computes the shortest paths from
a node u such that Bk(u) �= ∅ to any boundary node in Bk(u), for a given
region Rk ∈ R, and it updates the Road-Signs accordingly. Such shortest paths
are computed as follows. First, for each node u such that b ∈ Bk(u), for a
certain boundary node b ∈ Sk(xi, yi), a shortest path from u to b passing only
through neighbors of u whose shortest path to b do not contain (xi, yi), i.e. only
nodes v such that (u, v) ∈ E and b �∈ Bk(v), are considered. Then, the paths
passing through the remaining neighbors of u are considered. The pseudo-code of



94 G. D’Angelo, D. Frigioni, and C. Vitale

UpdateRoadSigns is given in Fig. 2. The procedure uses a binary heap which
is filled during the first computation of shortest paths (Lines 3–13) and it is used
during the second computation (Lines 14–22) to extract the nodes in a greedy
order, mimicking Dijkstra’s algorithm. The cycle at Lines 1–22 considers only
boundary nodes b belonging to the Road-Sign of edge (xi, yi). In the cycle at
lines 3–13 the shortest paths from u to b through nodes v such that (u, v) ∈ E,
b ∈ Bk(u) and b �∈ Bk(v), are considered. In detail, at lines 5–6 the shortest
paths from each node v to b are computed and the distances are stored in a data
structure called D[v, b]. Note that, this step can be done by using Arc-Flags.
At line 7 the estimated distance D[u, b] from u to b is computed. At lines 9–12
the Road-Signs are updated according to the new distance: first (line 9) the
node z such that (u, z) ∈ E and b ∈ Sk(u, z) is found (note that there is only
a single node satisfying this condition as we are assuming that there is only
one shortest path for each pair of nodes); then (line 10) b is removed from the
Road-Sign of (u, z) and it is added to the Road-Sign of (u, z′) (line 12), where
z′ is the neighbor of u giving the new estimated distance (line 11). Finally, at
line 13, node u is pushed in the binary heap with priority given by the computed
estimated distance. At Lines 14–22 the shortest paths from u to b through nodes
v such that (u, v) ∈ E, b ∈ Bk(u), and b ∈ Bk(v), are considered. In detail, nodes
v are extracted at line 15 in a greedy order, based on the distance to b. Then, for
each node u such that (u, v) ∈ E and b ∈ Bk(u) (lines 16–22) a relaxation step
is performed at lines 17–18, followed by a decrease operation in the binary heap
(line 19) and the related update of the Road-Signs at lines 20–22. Each time
that the Road-Signs are updated, the related Arc-Flags are updated according
to Proposition 1. In detail, given an update on Rk(u, v) for certain region Rk ∈ R
and edge (u, v), then Ak(u, v) is set to true if u, v ∈ Rk or Sk(u, v) �= ∅, and it is
set to false otherwise. For simplicity, this step is not reported in the pseudo-code
and it is indeed performed at lines 10, 12, 21, and 22 of UpdateRoadSigns.

Algorithm DynamicRoadSigns consists in calling procedures
DetectAffectedNodes and UpdateRoadSigns, for each region Rk ∈ R.
The next theorem states the correctness of DynamicRoadSigns. Due to space
limitations, the proof is given in the full paper.

Theorem 1. Given G = (V, E, w) and a partition R = {R1, R2, . . . , Rr} of V ,
for each (u, v) ∈ E and Rk ∈ R, DynamicRoadSigns correctly updates Sk(u, v)
and Ak(u, v) after a weight increase operation on an edge of G.

Compacting Road Signs. Storing Road-Signs is very space consuming. Here, we
give a simple method to reduce the memory space needed to store data structure
S. Given a region Rk and a node u �∈ Rk, let us denote as B(Rk) the set of
boundary nodes of Rk. By the definition of Road-Signs and the assumption that
there exists only one shortest path between u and any boundary node b, the
following two observation hold: (i) B(Rk) =

⋃
(u,v)∈E Sk(u, v); (ii) Sk(u, v1) ∩

Sk(u, v2) = ∅, for each v1 �= v2 such that (u, v1) ∈ E and (u, v2) ∈ E. It
follows that we can derive the Road-Sign of an edge (u, v), for an arbitrary v
by the Road-Signs of other edges (u, v′) ∈ E, v′ �= v, as Sk(u, v) = B(Rk) \
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⋃
(u,v′)∈E,v′ �=v Sk(u, v′). In this way, we do not store the Road-Sign of edge (u, v)

and we simply compute it when it is needed, by using the above formula. As we
can apply this method for each node u ∈ V , we avoid to store |V | Road-Signs
and hence the compacted data structure requires O((|E|−|V |)·|B|) space, where
Road-Signs are represented as |E| − |V | bit-vectors. Since in sparse graphs, like
e.g. road networks |E| ≈ |V | the space requirement of Road-Signs is very small,
as it is experimentally confirmed in the next section.

4 Experimental Study

In this section, we first compare the performances of DynamicRoadSigns

against the recomputation from scratch of Arc-Flags. Then, we analyze the pre-
processing performances by comparing the time and space required to compute
Arc-Flags against the time and space required to compute Arc-Flags and Road-
Signs. The best query performances for Arc-Flags are achieved when partitions
are computed by using arc-separator algorithms [12]. In this paper we used
arc-separators obtained by the METIS library [10] and the implementation of
Arc-Flags of [1].

Our experiments are performed on a workstation equipped with a 2.66 GHz
processor (Intel Core2 Duo E6700 Box) and 8Gb of main memory. The program
has been compiled with GNU g++ compiler 4.3.5 under Linux (Kernel 2.6.36).

We consider two road graphs available from PTV [13] representing the Nether-
lands and Luxembourg road networks, denoted as ned and lux, respectively.
In each graph, edges are classified into four categories according to their speed
limits: motorways (mot), national roads (nat), regional roads (reg) and urban
streets (urb). The main characteristics of the graphs are reported in Table 1.
Due to the space requirements of Arc-Flags, we were unable to perform experi-
ments on bigger networks.

Evaluation of the updating phase. To evaluate the performances of
DynamicRoadSigns, we execute, for each graph considered and for each road
category, random sequences of 50 weight-increase operations. That is, given a
graph and a road category, we perform 50 weight-increase operations on edges
belonging to the given category. The weight-increase amount for each operation
is chosen uniformly at random in [600, 1200], i.e., between 10 and 20 minutes. As
performance indicator, we choose the time used by the algorithm to complete
a single update during the execution of a sequence. We measure as speed-up

Table 1. Tested road graphs. The first column indicates the graph; the second and the
third columns show the number of nodes and edges in the graph, respectively; the last
four columns show the percentage of edges into categories: motorways (mot), national
roads (nat), regional roads (reg), and urban streets (urb).

graph n. of nodes n. of edges %mot %nat %reg %urb

ned 892 027 2 278 824 0.4 0.6 5.1 93.9
lux 30 647 75 576 0.6 1.9 14.8 82.7
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Fig. 3. Speed-up factors for the road network of the Netherlands, without (left) and
with (right) outliers. For each road category, we represent minimum value, first quartile,
medial value, third quartile, and maximum value.
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Fig. 4. Speed-up factors for the road network of Luxembourg. Without (left) and with
(right) outliers. For each road category, we represent minimum value, first quartile,
medial value, third quartile, and maximum value.

factor the ratio between the time required by the recomputation from scratch of
Arc-Flags and that required by DynamicRoadSigns. The results are reported
in Fig. 3, Fig. 4, and Table 2.

Fig. 3 shows two box-plot diagrams representing the values of the speed-up
factors obtained for the road network of Netherlands, for each road category. In
detail, the diagram on the left side does not represent outlier values while the dia-
gram on the right side do. These outlier values occur when DynamicRoadSigns

performs much better than Arc-Flags because the number of Road-Signs changed
is very small. Here, we consider a test as outlier if the overall number of boundary
nodes involved in the computation is less than 15 i.e. | ∪u∈V,Rk∈R Bk(u)| ≤ 15.
Even without considering outliers, the speed-up gained by DynamicRoadSigns

is high in most of the cases, reaching the value of 10 000 in some cases. It is worth
noting that it reaches the highest values when update operations occur on urban
edges while it is smaller when they occur on motorway edges. This is due to the
fact that, when an update operation occurs on urban edges, the number of short-
est paths that change as a consequence of such operation is small compared to
the case that an update operation occurs on motorways edges. This implies that
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Table 2. Average update times and speed-up factors. The first column indicates
the graph; the second column indicates the road category where the weight changes
occur; the third and fourth columns show the average computational time in seconds
for Arc-Flags and for DynamicRoadSigns, respectively; the fifth column shows the
ratio between the values reported in the third and the fourth columns, that is the
ratio of average computational times; the last column shows the average speed-up
factor of DynamicRoadSigns against Arc-Flags, that is the average ratio between the
computational times.

graph cat. avg. time Arc-
Flags

avg. time
DynamicRoadSigns

ratio avg. speed-up

ned

mot 2 418.09

2 413.99

246.73

92.82

9.80

25.99

51.30

425.32
nat 2 397.14 74.71 32.08 169.82
reg 2 420.72 27.91 86.73 470.48
urb 2 416.22 7.63 316.67 1053.03

lux

mot 8.25

8.28

2.96

2.04

2.79

4.06

11.70

62.87
nat 8.24 3.05 2.70 47.07
reg 8.32 1.46 5.70 78.06
urb 8.32 0.54 15.41 119.39

Table 3. Preprocessing time. The first column shows the graph; the second one shows
the number of regions; the third one shows the preprocessing time required for com-
puting only Arc-Flags; the fourth column shows the preprocessing time required for
computing both Arc-Flags and Road-Signs; and the last column shows the ratio be-
tween the values reported in the fourth and the third column.

graph n. of regions prep. time AF (sec.) prep. time AF + RS (sec.) ratio

ned 128 2 455.21 4 934.10 2.01
lux 64 8.29 20.33 2.45

DynamicRoadSigns, which selects the nodes that change such shortest paths
and focus the computation only on such nodes, performs better than the re-
computation from-scratch of the shortest paths from any boundary node. Fig. 4
is similar to Fig. 3 but it is referred to the road network of Luxembourg. The
properties highlighted for ned hold also for lux. We note that, for ned, the
speed-up factors achieved are higher than that achieved for lux. This can be
explained by the different sizes of the networks. In fact, when an edge update
operation occurs, it affects only a part of the graph, hence only a subset of the
edges in the graph need to update their Arc-Flags or Road-Signs. In most of the
cases this part is small compared to the size of the network and, with high prob-
ability, it corresponds to the subnetwork close to the edge increased or closely
linked to it. In other words, it is unlike that a traffic jam in a certain part of the
network affects the shortest paths of another part which is far or not linked to
the first one. Clearly, this fact is more evident when the road network is big and
this explains the different performances between ned and lux. Moreover, this
allows us to state that DynamicRoadSigns would perform better if applied in
networks bigger than those used in this paper, as continental networks.
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Table 4. Preprocessing space requirements. The first column shows the graph; the
second one shows the number of regions; the third one shows the space required for
storing Arc-Flags; the fourth one shows space required for storing both Arc-Flags and
Road-Signs by using the compact storage; and the last column shows the ratio between
the values reported in the fourth and the third column.

graph n. of regions space AF (B) space AF and RS (B) ratio

ned 128 36 461 184 64 612 836 1.77
lux 64 604 608 1 744 531 2.88

As a further measure of the performances of DynamicRoadSigns against
the recomputation from-scratch of Arc-Flags, we report the average com-
putational time and speed-up factors in Table 2. It is evident here that
DynamicRoadSigns outperforms the recomputation from-scratch by far and
that it requires reasonable computational time which makes Road-Signs a tech-
nique suitable to be used in practice.

Evaluation of the preprocessing phase. Regarding the preprocessing phase, in
Tables 3 and 4 we report the computational time and the space occupancy re-
quired by Arc-Flags and DynamicRoadSigns. Table 3 shows that, for comput-
ing Road-Signs along with Arc-Flags, we need about 2 times the computational
time required for computing only Arc-Flags, which is a very small overhead com-
pared to the speed-up gained in the updating phase. The same observation can
be done regarding the space occupancy. In fact, Table 4 shows that the space re-
quired for storing both Road-Signs and Arc-Flags is between 1.77 and 2.88 that
required to store only Arc-Flags. It is worth noting that without the compact
storage of data structure S described in the previous section, S would require
12.78 and 4.13 times more space for ned and lux, respectively.

5 Conclusions

We proposed a technique to correctly update Arc-Flags in dynamic graphs. In
particular, we introduced the Road-Sign data structure, which can be used to
compute Arc-Flags, can be efficiently updated and does not require large space
consumption. Therefore, we gave two algorithms to compute the Road-Signs in
the preprocessing phase and to update them each time that a weight increasing
occurs. We experimentally analyzed the proposed algorithms and data structures
in road networks showing that they yields a significant speed-up in the updating
phase, at the cost of a small space and time overhead in the preprocessing phase.

The proposed algorithms are able to cope only with weight increase operations
which is the most important case in road networks where the main goal is to
handle traffic jams. However, when a weight decrease operation occurs (e.g. when
a the traffic jams is over) a recomputation from scratch is needed. Therefore,
an interesting open problem is to find efficient algorithms to update Road-Signs
after weight decrease operations.
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Abstract. We present an efficient algorithm for shortest path computa-
tion in road networks with turn costs. Each junction is modeled as a node,
and each road segment as an edge in a weighted graph. Turn costs are
stored in tables that are assigned to nodes. By reusing turn cost tables for
identical junctions, we improve the space efficiency. Preprocessing based
on an augmented node contraction allows fast shortest path queries. Com-
pared to an edge-based graph, we reduce preprocessing time by a factor
of 3.4 and space by a factor of 2.4 without change in query time.

Keywords: route planning, banned turn, turn cost, algorithm engineer-
ing.

1 Introduction

Route planning in road networks is usually solved by computing shortest paths
in a suitably modeled graph. Each edge of the graph has an assigned weight
representing, for example, the travel time. There exists a plethora of speed-up
techniques to compute shortest paths in such weighted graphs [1]. The most
simple model maps junctions to nodes and road segments to edges. However,
this model does not consider turn costs. Turn costs are important to create a
more realistic cost model and to respect banned turns.

To incorporate turn costs, usually a pseudo-dual of the simple model is used
[2,3], modeling road segments as nodes and turns between two consecutive road
segments as edges. Thus the edges in the simple model become nodes in the
pseudo-dual. Therefore, we will refer to the result of the simple model as node-
based graph and to the pseudo-dual as edge-based graph. The advantage of the
edge-based graph is that no changes to the speed-up techniques are required
to compute shortest paths, as only edges carry a weight. The drawback is a
significant blowup in the number of nodes compared to the node-based graph.
To avoid this blowup, we will extend the node-based graph by assigning turn
cost tables to the nodes, i.e., junctions, and show how to efficiently perform
precomputation for a major speed-up technique. We further reduce the space
consumption by identifying junctions that can share the same turn cost table.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 100–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Efficient Routing in Road Networks with Turn Costs 101

1.1 Related Work

There is only little work on speed-up techniques with respect to turn costs. The
main reason is that incorporating them is seen as redundant due to the usage of
an edge-based graph [2,3].

Speed-up techniques for routing in road networks can be divided into hierar-
chical approaches, goal-directed approaches and combinations of both. Delling
et al. [1] provide a recent overview of them. In this paper, we focus on the
technique of node contraction [4,5,6]. It is used by the most successful speed-up
techniques known today [6,7,8]. The idea is to remove unimportant nodes and
to add shortcut edges (shortcuts) to preserve shortest path distances. Then, a
bidirectional Dijkstra finds shortest paths, but never needs to relax edges leading
to less important nodes. Contraction hierarchies (CH) [6] is the most successful
hierarchical speed-up technique using node contraction; it contracts in principle
one node at a time. Node contraction can be further combined with goal-directed
approaches to improve the overall performance [7]. The performance of CH on
edge-based graphs has been studied by Volker [9].

2 Preliminaries

We have a graph G = (V, E) with edge weight function c : E → R+ and turn
cost function ct : E ×E → R+ ∪{∞}. An edge e = (v, w) has source node v and
target node w. A turn with cost ∞ is banned. A path P = 〈e1, . . . , ek〉 must not
contain banned turns. The weight is c(P ) =

∑k
i=1 c(ei) +

∑k−1
i=1 ct(ei, ei+1). The

problem is to compute a path with smallest weight between e1 and ek, that is a
shortest path. Note that source and target of the path are edges and not nodes.

To compute shortest paths with an algorithm that cannot handle a turn cost
function, the edge-based graph [3] G′ = (V ′, E′) is used with V ′ = E and E′ =
{(e, e′) | e, e′ ∈ E, target node of e is source node of e′ and ct(e, e′) < ∞}. We
define the edge weight by c′ : (e, e′) "→ c(e′) + ct(e, e′). Note that the cost of a
path P = 〈e1, . . . , ek〉 in the edge-based graph misses the cost c(e1) of the first
edge. Nevertheless, as each path between e1 and ek misses this, shortest path
computations are still correct.

To compute a shortest path in the edge-based graph, any shortest path al-
gorithm for non-negative edge weights can be used. E. g., Dijkstra’s algorithm

1

2

3

46

Fig. 1. Graph (unit distance) that restricts the turn 1 → 2 → 6. Therefore, the shortest
path 1 → 2 → 3 → 4 → 2 → 6 visits node 2 twice.
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computes shortest paths from a single source node to all other nodes by settling
nodes in non-decreasing order of shortest path distance. However, on a node-
based graph with turn cost function, settling nodes is no longer sufficient, see
Figure 1. Instead, we need to settle edges, i.e., nodes in the edge-based graph. Ini-
tially, for source edge e1 the tentative distance δ(e1) is set to c(e1), all other ten-
tative distances are set to infinity. In each iteration the unsettled edge e = (v, w)
with smallest tentative distance is settled. Then, for each edge e′ with source w,
the tentative distance δ(e′) is updated with min

(
δ(e′), δ(e) + ct(e, e′) + c(e′)

)
.

This resulting edge-based Dijkstra successfully computes shortest paths. By stor-
ing parent pointers, shortest paths can be reconstructed in the end.

3 Turn Cost Model

We take into account two kinds of turn costs: a limited turning speed inducing
a turn cost and a fixed cost added under certain circumstances. Banned turns
have infinite turn cost.

3.1 Fixed Cost

We add a fixed turning cost when turning left or right. In addition to this a fixed
cost is applied when crossing a junction with traffic lights.

3.2 Turning Speed

Tangential acceleration. We can use the turn radius and a limit on the tan-
gential acceleration a to compute a limit on the turning speed v: maxv =√

maxa ∗ radius. Given a lower limit on the resolution δmin of the underlying
data we estimate the resolution δ the turn is modeled with: When turning from
edge e into edge e′ the respective edge length are l and l′. Then, δ is estimated
as the minimum of l, l′ and δmin. We compute the turn radius from the angle α
between the edges: radius = tan(α/2) ∗ δ/2.

Traffic. When turning into less important road categories we restrict the max-
imum velocity to simulate the need to look out for traffic. We differentiate be-
tween left and right turns, e.g. it might not be necessary to look out for incoming
traffic when turning right. Furthermore, we limit the maximum turning speed
when pedestrians could cross the street.

Turn costs. We can derive turn costs from the turn speed limit maxv. Consider a
turn between edges e and e′. When computing c(e) and c(e′) we assumed we could
traverse these edges at full speed v and v′. When executing the turn between
them, we now have to take into account the deceleration and acceleration process.
While traversing edge e we assume deceleration adec from v down to maxv at
the latest point possible and while traversing edge e′ we assume immediate start
of acceleration aacc from maxv to v′. The turn cost we apply is the difference
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between this time and the projected travel time on the edges without acceleration
and deceleration. The resulting turn cost is ct(e, e′) = (v − maxv)2/(2 ∗ adec) +
(v′ −maxv)2/(2 ∗ aacc). Of course, this is only correct as long as the edge is long
enough to fully accelerate and decelerate.

4 Node Contraction

Node contraction without turn costs was introduced in an earlier paper [6]. The
basic idea behind the contraction of a node v is to add shortcuts between the
neighbors of v to preserve shortest path distances. In a graph without turn costs,
this is done by checking for each incoming edge (u, v) from remaining neighbor
u and for each outgoing edge (v, w) to remaining neighbor w, whether the path
〈u, v, w〉 is the only shortest path between u and w. If this is the case, then a
shortcut (u, w) representing this path needs to be added. This is usually decided
using a node-based Dijkstra search (local search) starting from node u. The
neighbors u and w are more important than node v, as they are not contracted
so far. A query algorithm that reaches node u or w never needs to relax an edge
to the less important node v, as the shortcut can be used. The query is bidirected
and meets at the most important node of a shortest path. This shortest path
P ′ = 〈e1, e2, . . . , ek〉 found by the query can contain shortcuts. To obtain the
path P in the original graph, consisting only of original edges, each shortcut e′

needs to be replaced by the path 〈e′1, . . . , e′�〉 it represents.

4.1 With Turn Costs

Turn restrictions complicate node contraction. As we showed in Section 2, we
need an edge-based query instead of a node-based one. Therefore, we have to
preserve shortest path distances between edges, and not nodes. An important
observation is that it is sufficient to preserve shortest path distances only between
original edges. This can be exploited during the contraction of node v if the
incoming edge (u, v) and/or the outgoing edge (v, w) is a shortcut. Assume that
(u, u′) is the first original edge of the path represented by (u, v) and (w′, w) is
the last original edge of the path represented by (v, w). We do not need to add a
shortcut for 〈(u, v), (v, w)〉 if it does not represent a shortest path between (u, u′)
and (w′, w) in the original graph. The weight of the shortcut is the sum of the
weights of the original edges plus the turn costs between the original edges.

We introduce the following notation: A shortcut (u → u′, w′ → w) is a short-
cut between nodes u and w, the first original edge is (u, u′) and the last original
edge is (w′, w). If two nodes are connected by an arrow, e. g., u → u′, then this
always represents an original edge (u, u′). A node-triplet connected by arrows,
e. g., u′′ → u → u′, always represents a turn between the original edges (u′′, u)
and (u, u′) with cost ct(u′′ → u → u′).

Local search using original edges. Now that we have established the basic idea
of node contraction in the presence of turn costs, we will provide more details.
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An observation is that we cannot avoid parallel edges and loops between nodes
in general, if they have different first or last original edge. Therefore, we can
only uniquely identify an edge by its endpoints and the first and last original
edge. Loops at a node v make the discovery of potentially necessary shortcuts
more complicated, as given an incoming edge (u → u′, v′ → v) and outgoing
edge (v → v′′, w′ → w), the potential shortcut (u → u′, w′ → w) may not
represent 〈(u → u′, v′ → v), (v → v′′, w′ → w)〉 but has to include one or more
loops at v in between. This can happen, e. g., in Figure 1, if nodes 2, 3 and 4
are contracted, then there has to be a shortcut between nodes 1 and 6 including
a loop. Therefore, we use the local search to not only to decide on the necessity
of a shortcut, but also to find them. The local search from incoming edge (u →
u′, v′ → v) computes tentative distances δ(·) for original edges only. Initially,
for each remaining edge (u → u′, x′ → x) with first original edge u → u′,
δ(x′ → x) := c(u → u′, x′ → x), and all other distances are set to infinity. To
settle an original edge x′ → x, for each edge e′ = (x → x′′, y′ → y) with source
x, the tentative distance δ(y′ → y) is updated with min

(
δ(y′ → y), δ(x′ →

x)+ ct(x′ → x → x′′)+ c(e′)
)
. A shortcut (u → u′, w′ → w) is added iff the path

computed to w′ → w only consists of the incoming edge from u, the outgoing
edge to w and zero or more loops at v in between. Otherwise a witness is found
of smaller or equal weight. The weight of the shortcut is δ(w′ → w).

4.2 Optimizations

The algorithm described so far preserves shortest path distances between all
remaining uncontracted nodes. However, as our query already fixes the first and
last original edge of the shortest path, we can further reduce the number of
shortcuts. It would be sufficient to only add a shortcut (u → u′, w′ → w) if
there are two original edges, a source edge (u′′, u) and a target edge (w, w′′)
such that 〈(u′′, u), (u → u′, w′ → w), (w, w′′)〉 would be only shortest path in the
remaining graph together with (u′′, u) and (w, w′′) but without node v. This
allows to avoid a lot of unnecessary and ‘unnatural’ shortcuts. E. g., a query
starts from a southbound edge of a highway but the journey should go north.
Naturally, one would leave at the first exit, usually the target of the edge, and
reenter the highway northbound. Our improvement allows to avoid shortcuts
representing such changes of direction.

Aggressive local search. We can use the above observation to enhance the local
search in a straightforward manner. Instead of executing a local search from
the original edge (u, u′), we perform a local search separately from each original
incoming edge (u′′, u). Then, we check for each original edge (w, w′′) whether the
shortcut is necessary. While this approach can reduce the number of shortcuts,
it increases the number of local searches, and therefore the preprocessing time.

Turn replacement. To avoid performing a large amount of local queries we try to
combine the searches from all the original edges incoming to u into one search. We
cannot start from all these original edges simultaneously while still computing
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just a single distance per original edge. It is better to start from all original edges
outgoing from u simultaneously. We initialize the local search as in Section 4.1.
Furthermore, we consider all other remaining edges (u → u′

2, x
′ → x) outgoing

from u. However, as we now replace a turn u′′ → u → u′ by a turn u′′ → u → u′
2,

an outgoing turn replacement difference −→r (u → u′, u′
2) := maxu′′

(
ct(u′′ → u →

u′
2)−ct(u′′ → u → u′)

)
needs to be added to account for the different turn costs,

see Figure 2. Note that we consider the worst increase in the turn cost over all
incoming original edges of u. So δ(x′ → x) := −→r (u → u′, u′

2)+c(u → u′
2, x

′ → x).
The local search settles original edges as before, but has a different criterion to
add shortcuts. We add a shortcut (u → u′, w′ → w) with weight δ(w′ → w) iff the
path computed to w′ → w only consists of the incoming edge (u → u′, v′ → v),
the outgoing edge to (v′′ → v, w′ → w) and zero or more loops at v in between,
and none of the other edges incoming to w offers a witness. Consider a path
computed to an original edge w′

2 → w incoming to node w. If we consider
this path instead of the one computed to w′ → w, we would replace the turn
w′ → w → w′′ by the turn w′

2 → w → w′′. A incoming turn replacement
difference ←−r (w′

2, w
′ → w) := maxw′′

(
ct(w′

2 → w → w′′) − ct(w′ → w → w′′)
)

is
required to account for the different turn costs. We do not need to add a shortcut
if ←−r (w′

2, w
′ → w) + δ(w′

2 → w) < δ(w′ → w).

uu′′ vu′

u′
2

Fig. 2. If a witness uses turn u′′ → u → u′
2 instead of u′′ → u → u′, we have to account

for the turn cost difference ct(u′′ → u → u′
2) − ct(u′′ → u → u′)

Loop avoidance. Even with the turn replacement approach of the previous para-
graph, there can still be a lot of unnecessary loop shortcuts. E. g., in Figure 1,
assume that nodes 1 and 6 are not present. After the contraction of nodes 3 and
4, there would be a loop shortcut at node 2 although it is never necessary. We
only need to add a loop shortcut, if it has smaller cost than a direct turn. That
is, considering a loop shortcut (u → u′, u′′ → u) at node u, if there are neighbors
u′

2 and u′′
2 such that ct(u′

2 → u → u′)+ c(u → u′, u′′ → u)+ ct(u′′ → u → u′′
2) <

ct(u′
2 → u → u′′

2).

Limited local searches. Without turn costs, local searches only find witnesses to
avoid shortcuts. Therefore, they can be arbitrarily pruned, as long as the com-
puted distances are upper bounds on the shortest path distances [6]. That en-
sures that all necessary, and maybe some superfluous shortcuts are added. But
with turn costs, a local search also needs to find the necessary shortcuts. There-
fore, we cannot prune the search for those. We limit local searches by the number
of settled original edges. Once we settled a certain number, we only settle original
edges whose path from the source is a prefix of a potential shortcut. Furthermore,
if all reached but unsettled original edges cannot result in a potential shortcut, we
prune the whole search.
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5 Preprocessing

To support turn costs, the CH preprocessing [6] only needs to use the enhanced
node contraction described in Section 4. The preprocessing performs a contrac-
tion of all nodes in a certain order. The original graph together with all shortcuts
is the result of the preprocessing. The order in which the nodes are contracted is
deduced from a node priority consisting of: (a) The edge quotient, i.e., the quo-
tient between the amount of shortcuts added and the amount of edge removed
from the remaining graph. (b) The original edge quotient, i.e., the quotient be-
tween the number of original edges represented by the shortcuts and the number
of original edges represented by the edges removed from the remaining graph.
(c) The hierarchy depth, i.e., an upper bound on the amount of hops that can be
performed in the resulting hierarchy. Initially, we set depth(u) = 0 and when a
node v is contracted, we set depth(u) = max(depth(u),depth(v)+1) for all neigh-
bors u. We weight (a) with 8, (b) with 4 and (c) with 1 in a linear combination
to compute the node priorities. Nodes with higher priority are more important
and get contracted later. The nodes are contracted in parallel by computing
independent node sets with a 2-neighborhood [10].

6 Query

The query computes a shortest path between two original edges, a source s → s′

and a target t′ → t. It consists of two Dijkstra-like searches that settle original
edges (cf. Section 2) one in forward direction starting at s → s′, and one in
backward direction starting at t′ → t. The only restriction is that it never relaxes
edges leading to less important nodes. Both search scopes meet at the most
important node z of a shortest path. E. g., the forward search computes a path
to z′ → z, and the backward search computes a path to z → z′′. As usually
z′ �= z′′, when we settle an original edge x′ → x in forward direction, we need to
check whether the backward search reached any outgoing edge x → x′′, and vice
versa. Such a path with smallest weight among all meeting nodes is a shortest
path.

Stall-on-demand. As our search does not relax all edges, it is possible that an
original edge x′ → x is settled with suboptimal distance. In this case, we can
prune the search at this edge, since the computed path cannot be part of a
shortest path. To detect some of the suboptimally reached edges, the stall-on-
demand technique [5] can be used, but extended to the scenario with turn costs:
The edge x′ → x is settled suboptimally if there is an edge (y → y′, x′ → x) and
an original edge y′′ → y such that δ(y′′ → y)+ ct(y′′ → y → y′)+ c(y → y′, x′ →
x) < δ(x′ → x).

Path unpacking. To unpack the shortcuts into original edges, we can store the
middle node whose contraction added the shortcut. Then, we can recursively
unpack shortcuts [6]. Note that if there are loops at the middle node, they may
be part of the shortcut. A local search that only relaxes original edges incident
to the middle node can identify them.
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7 Turn Cost Tables

We can store the turn cost function ct : E × E → R+ ∪ {∞} efficiently using a
single table per node. Each adjacent incoming and outgoing edge gets assigned
a local identifier that is used to access the table. To avoid assigning bidirectional
edges two identifiers we take care to assign them the same one in both directions.
This can easily be achieved by assigning the bidirectional edges the smallest
identifiers.

To look up the correct turn costs in the presence of shortcuts we need to store
additional information with each shortcut: A shortcut (u → u′, w′ → w) has to
store the identifier of (u, u′) at u and the identifier of (w′, w) at w.

Storing these identifiers does not generate much overhead as their value is
limited by the degree of the adjacent node.

7.1 Redundancy

Since the turn cost tables model the topology of road junction they tend to be
similar. In fact many tables model exactly the same set of turn costs. We can
take advantage of this by replacing those instances with a single table. To further
decrease the amount of tables stored we can rearrange the local identifiers of a
table to match another table. Of course, we have to take care to always assign
bidirectional edges the smallest identifiers.

Given a reference table t and a table t′ we check whether t′ can be represented
by t by trying all possible permutations of identifiers. Bidirectional identifiers
are only permuted amongst themselves. Because the amount of possible per-
mutations increases exponentially with the table size we limit the number of
permutations tested. Most junctions only feature a limited amount of adjacent
edges and are not affected by this pruning. Nevertheless, it is necessary as the
data set may contain erroneous junctions with large turn cost tables.

To avoid checking a reference table against all other tables we compute hash
values h(t) for each table t. h(t) has the property that if h(t) �= h(t′) neither
t can be represented by t′ nor t′ by t. We compute h(t) as follows: First, we
sort each row of the table, then sorting the rows lexicographically. Finally, we
compute a hash value from the resulting sequence of values.

We use this hash values to greedily choose an unmatched table and match as
many other tables to it as possible.

8 Experiments

Environment. The experimental evaluation was done on a machine with four
AMD Opteron 8350 processors (Quad-Core) clocked at 2 GHz with 64 GiB of
RAM and 2 MiB of Cache running SuSE Linux 11.1 (kernel 2.6.27). The program
was compiled by the GNU C++ compiler 4.3.2 using optimization level 3.
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Instances. We use three road networks derived from the publicly available data
of OpenStreetMap, see Table 1. Travel times where computed using the MoNav
Motorcar Profile [11]. Using the node-based model with turn cost tables requires
about 30% less space than the edge-based model. That is despite the fact that in
the node-based model, we need more space per node and edge: Per node, we need
to store an additional pointer to the turn cost table (4 Bytes), and an offset to
compute a global identifier from the identifier of an original edge (u, u′) local to
a node u (4 Bytes). Per edge, we need to additionally store the local identifier of
the first and last original edge (2× 1 Byte rounded to 4 Byte due to alignment).

Table 1. Input instances. In the edge-based model, a node requires 4 Bytes (pointer
in edge array), and an edge requires 8 Bytes (target node + weight + flags). In the
node-based model, a node requires additional 8 Bytes (pointer to turn cost table +
offset to address original edges), and an edge requires additional 4 Bytes (first and last
original edge). An entry in a turn cost table requires 1 Byte.

graph model
nodes edges turn cost tables

[×106] [MiB] [×106] [MiB] [×103] % [MiB]

Netherlands
node-based 0.8 9.4 1.9 22.2 79 9.9% 0.8
edge-based 1.9 7.4 5.2 39.7 - - -

Germany
node-based 3.6 41.3 8.5 97.1 267 7.4% 3.1
edge-based 8.5 32.4 23.1 176.3 - - -

Europe
node-based 15.0 171.1 35.1 401.3 834 5.6% 9.5
edge-based 35.1 133.8 95.3 727.0 - - -

Redundant turn cost tables. Already for the Netherlands, only one table per ten
nodes needs to be stored. The best ratio is for the largest graph, Europe, with
one table per 18 nodes. This was to be expected as most unique junctions types
are already present in the smaller graphs. Identifying the redundant tables is
fast, even for Europe, it took only 20 seconds.

Node Contraction. Preprocessing is done in parallel on all 16 cores of our ma-
chine. We compare the node contraction in the node-based and the edge-based
model in Table 2. In the node-based model, we distinguish between the basic
contraction without the optimizations of Section 4.2, the aggressive contraction
mentioned in Section 4.2, and the contraction using turn replacement (TR) and
loop avoidance (LA). Clearly, TR+LA is the best contraction method. The ba-
sic contraction requires about a factor 3–4 times more preprocessing time, about
5–7 times more space, and results in 3–4 times slower queries. It misses a lot of
witnesses which leads to denser remaining graphs, so that its preprocessing is
even slower than the aggressive contraction’s. The aggressive contraction finds
potentially more witnesses as TR+LA, but shows no significant improvement,
neither in preprocessing space nor query performance. For Europe, its perfor-
mance even slightly decreases, potentially due to the limited local searches and
because a different node order is computed. Furthermore, its preprocessing is
about a factor 3 slower, because we execute several local searches per neighbor
with an edge incoming to the contracted node.
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Table 2. Performance of contraction hierarchies (TR = turn replacement, LA = loop
avoidance)

graph model contraction
preprocessing query

time space time settled
[s] [MiB] % [μs] edges

Netherlands
node-based

basic 66 31.9 144% 1 177 713
aggressive 57 7.0 32% 319 367
TR + LA 19 7.0 32% 315 363

edge-based regular 63 46.6 117% 348 358

Germany
node-based

basic 250 124.2 128% 2 339 1 158
aggressive 244 17.3 18% 735 594
TR + LA 73 17.3 18% 737 597

edge-based regular 253 183.9 104% 751 535

Europe
node-based

basic 1 534 592.2 148% 4 075 1 414
aggressive 1 318 117.4 29% 1 175 731
TR + LA 392 116.1 29% 1 107 651

edge-based regular 1308 817.1 112% 1061 651

We will compare the contraction in the edge-based model only to the con-
traction in the node-based model using TR+LA. Its preprocessing is about 3.4
times faster than in the edge-based model. One reason is that there are about
2.3 fewer nodes need to be contracted, and TR+LA, compared to the aggres-
sive contraction, needs only one local search per incoming edge. We argue that
the additional speed-up comes from the fact that contracting junctions instead
of road segments works better. Note that there is a fundamental difference in
contracting a node in the node-based and edge-based model: Adding a shortcut
in the node-based model would map to an additional node in the edge-based
model. We observe that the total space required including preprocessed data is
about a factor 2.4 larger for the edge-based model.

Furthermore, in the node-based model, bidirected road segments can be stored
more efficiently by using forward/backward flags. In comparison, assume that
you have a bidirected edge in the original edge-based graph. This implies that the
edge represents two U-turns between (u, v) and (v, u), see Figure 3. Therefore,
bidirected road segments cannot be stored efficiently in the edge-based model.

u → u′

v′ ← v

u′ = vv′ = u

Fig. 3. A bidirected edge in the original edge-based graph between two original edges
(u, u′) and (v, v′) in the node-based graph. Because a turn from (u, u′) to (v, v′) is
possible, u′ = v, and because a turn from (v, v′) to (u, u′) is possible, v′ = u. Therefore,
both turns are U-turns.
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Query. Query performance is averaged over 10 000 shortest path distance queries
run sequentially on a single core of our machine. Source and target edge have
been selected uniformly at random. The resulting distances were compared to
a plain edge-based Dijkstra for correctness. Interestingly, the best query times
that can be achieved in both models are almost the same. One reason might be
that both queries settle original edges. For the smaller graphs the query time is
even a bit faster in the node-based model, because most of the turn cost tables
fit into cache, thus causing almost no overhead.

9 Conclusions

Our work shows the advantages of the node-based model over the edge-based
one. The node-based model stores tables containing the turn costs. By identifying
redundant turn cost tables, we can decrease the space required to store them by
one order of magnitude. Still, our query has to settle original edges so that we
need to store a local identifier per edge and an offset to obtain a global identifier
per node. Therefore, a query in the original node-based graph is the same as in
the original edge-based graph, but storing the graph requires 30% less space.

Our preprocessing based on node contraction works better in the node-based
model in terms of preprocessing time (factor ≈ 3.4) and space (factor ≈ 2.4)
without affecting the query time. To augment the node-based contraction to turn
cost tables, we had to augment the local searches to not only identify witnesses,
but also shortcuts, because parallel and loop shortcuts can be necessary. To
restrict the node contraction to one local search per incoming edge (factor ≈ 3
faster) without missing too many witnesses, we developed the techniques of turn
replacement and loop avoidance.

9.1 Future Work

We want to integrate the turn cost tables into an existing mobile implementation
of contraction hierarchies [12]. To further reduce the space requirements of the
turn cost tables, we can approximate their entries. This not only reduces the
number of different turn cost tables we need to store, but also the bits required
to store a table entry.
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2 Dipartimento di Matematica, Università degli Studi di Pavia
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Abstract. We are given a digraph G = (N, A), where each arc is col-
ored with one among k given colors. We look for a spanning arborescence
T of G rooted (wlog) at node 1 and having minimum changeover cost.
We call this the Minimum Changeover Cost Arborescence problem. To
the authors’ knowledge, it is a new problem. The concept of changeover
costs is similar to the one, already considered in the literature, of reload
costs, but the latter depend also on the amount of commodity flowing
in the arcs and through the nodes, whereas this is not the case for the
changeover costs. Here, given any node j �= 1, if a is the color of the
single arc entering node j in arborescence T , and b is the color of an
arc (if any) leaving node j, then these two arcs contribute to the total
changeover cost of T by the quantity dab, an entry of a k-dimensional
square matrix D. We first prove that our problem is NPO-complete and
very hard to approximate. Then we present Integer Programming formu-
lations together with a combinatorial lower bound, a greedy heuristic and
an exact solution approach. Finally, we report extensive computational
results and exhibit a set of challenging instances.

1 Introduction

The problem that we consider in this paper and that we call Minimum Change-
over Cost Arborescence, is formulated on a digraph G = (N, A) having n nodes
and m arcs, where each arc comes with a color (or label) out of a set C of k
colors. The problem looks for a spanning arborescence T rooted at a specific
node, say node 1 (wlog), and having minimum changeover cost, a cost that we
now describe. We assume that G contains at least one spanning arborescence
having node 1 as root, i.e., a cycle-free spanning subgraph containing a directed
path from node 1 to all other nodes of G. Let T be any such arborescence;
obviously T has only one arc entering each node except node 1. Consider any
node j of T different from the root. A cost at j is paid for each outgoing arc
and depends on the colors of this arc and of the one entering j. Such costs are
given via a k ∗ k matrix D of non-negative rationals: the entry da,b specifies the
cost to be paid at node j for one of the outgoing arcs (if any) colored b, when
the incoming arc of j is colored a. We define the changeover cost at j, denoted
by d(j), as the sum of the costs at j paid for each of its outgoing arcs. We call

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 112–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the changeover cost of T , denoted by d(T ), the sum of the changeover cost d(j),
over all nodes j different from 1.

Similar problems have recently received some attentions in the literature [1–
5], where the entries of our matrix D are called reload costs. However in all these
problems the objective functions depend on the amount of commodity flowing in
the arcs or edges of the given graph, whereas this is not the case for the problem
that we consider. In the seminal work [1] and in [2] the problem of finding
a spanning tree with minimum reload cost diameter is thoroughly analyzed;
in [3] the problem of finding a spanning tree which minimizes the sum of the
reload costs of all paths between all pairs of nodes is discussed. The problems
of minimum reload cost path-trees, tours, flows are studied in [4], whereas the
minimum reload s − t-path, trail and walk problems are analyzed in [5].

The motivation for introducing changeover costs comes from the need to model
in a real network the fixed costs for installing, in each node, devices to support
the changes of carrier, modeled here with changes of color.

The Minimum Changeover Cost Arborescence (MinCCA for short) is thor-
oughly analyzed in this paper, both from a theoretical and a computational
point of view. In Section 2 we show that it is NPO-complete and very hard to
approximate. We present in Section 3 some Integer Programming formulations
and in Section 4 a greedy algorithm. The last section show an exact solution
approach, extensive computational results and a set of challenging instances.

2 Complexity

In this section we prove that MinCCA is NPO PB-complete and hard to
approximate, even in the very restrictive formulation given in Theorem 1 below.
This result is obtained by exhibiting a reduction from another NPO PB-complete
problem, namely problem Minimum Ones, which is defined as follows. Given a
set Z = {z1, ..., zn} of n boolean variables and a collection C = {c1, ..., cm} of m
disjunctive clauses of at most 3 literals, the problem looks for a subset Z ′ ⊆ Z
having minimum cardinality and such that the truth assignment for Z that sets
to true the variables in Z ′ satisfies all clauses in C. The trivial solution, returned
when the collection of clauses is unsatisfiable, is set Z.

In [6] it is shown that Minimum Ones is NPO PB-complete, and in [7] that
it is not approximable within |Z|1−ε for any ε > 0.

We now present the reduction that we will use in the proof of Theorem 1.
Given any instance I of Minimum Ones we construct the corresponding instance
I ′ of MinCCA as follows (see Figure 1 for an example). Graph G = (N, A) has
the vertex set N that contains a vertex a0 = 1, the vertices ai, bi, ci, di, for
each i = 1, ..., n, and the vertices c1, ..., cm corresponding to the elements of
C. Moreover N contains, for each i = 1, ..., n, many couples of vertices zj

i , z
j
i ,

with j having values from 1 to the maximum number of times that either zi or
zi appear in the clauses of C. The arc set A of G contains all arcs (ai, ai+1),
for i = 0, ..., n − 1, all arcs (ai, bi), (ai, ci), (bi, di), (ci, di), (di, z

1
i ), (di, z

1
i ), for

i = 1, ..., n, and all arcs (zj
i , z

j+1
i ) and (zj

i , z
j+1
i ), for the increasing values of j,
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starting from 1. Moreover there is an arc from zj
i to zj

i and vice versa, for each
involved i and j. Finally A contains an arc from zj

i (resp. zj
i ) to vertex ck if the

j-th occurrence of variable zi (resp. zi) in the clauses of C, if it exists, appears
in clause ck. The colors for the arcs of G are taken from the set {r, g, v, b}.
Color r is assigned to all arcs (ai, ai+1), (ai, bi), and (ai, ci); color g to all arcs
(bi, di), (di, z

1
i ), (zj

i , z
j+1
i ) and all arcs from some vertex zj

i to some vertex ck;
symmetrically color v is assigned to all arcs (ci, di), (di, z

1
i ), (zj

i , z
j+1
i ) and all

arcs from some vertex zj
i to some vertex ck; finally all arcs from zj

i to zj
i and

vice versa are colored with color b. The matrix D of costs is defined so that
d(r, g) = 1, d(b, g) = d(b, v) = d(g, v) = d(v, g) = M , with M > n2 being
a suitable big integer, and all other costs equal to 0. If we let n′ denote the
number of nodes of G, it is not difficult to see that n′ ≤ βn3, for some constant
β, with β > 1 and independent from the number n of boolean variables. For this
purpose it is enough to convince ourselves that the following inequalities hold:

n′ ≤ 1 + 6n + 7m ≤ 1 + 6n + 7
(

2n
3

)
= 1 + 6n +

7
3
(2n2 − n)(2n − 2) ≤ βn3.

It is also not difficult to see that opt(I) ≤ opt(I ′) since to any solution of I ′ of
cost t < M there corresponds a solution to I having the same cost t; if, on the
other hand, opt(I ′) ≥ M then opt(I) ≤ n < opt(I ′). Notice that the equality
opt(I) = opt(I ′) holds iff I is a satisfiable instance, since to any non trivial
solution of I there corresponds a solution to I ′ having the same cost, whereas
to a trivial solution of I there corresponds a solution to I ′ having a cost greater
than M .

Now we can prove the following theorem.

Theorem 1. Problem MinCCA is NPO-complete. Moreover, there exists a real
constant α, 0 < α < 1, such that the problem is not approximable within α

3
√

n1−ε,
for any ε > 0, even if formulated on graphs having bounded in and out degrees,
costs satisfying the triangle inequality and 4 colors on the arcs.

Proof. We use the reduction described in this section. Obviously the graph con-
structed from an instance I of Minimum Ones is a graph G = (N, A) that has
maximum in-degree and out-degree equal to 3, costs that satisfy the triangle
inequality (see [4] for a definition) and uses k = 4 colors. Moreover we know
that the number n′ of its nodes satisfies the inequality n′ ≤ βn3, with β > 1.

We show now that, if we let α = 1
3√β

, then MinCCA is not approximable

within α
3
√

n′1−ε, for any ε > 0. Suppose on the contrary that there exists an
ε̄ > 0 and that MinCCA is approximable within α

3
√

n′1−ε̄. The algorithm that
we now describe could then be used to approximate Minimum Ones within
n1−ε̄, contrary to the result in [7].

The algorithm, given an instance I of Minimum Ones, would construct the
corresponding instance I ′ of MinCCA and then find an approximate solution
for it, i.e. a spanning arborescence T having a changeover cost d(T ) satisfying
the inequality d(T )

opt(I′) ≤ α
3
√

n′1−ε̄. If d(T ) ≥ M the algorithm would return the
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Fig. 1. The graph G = (N, A) corresponding to an instance I of Minimum Ones

having as collection of clauses the set C = {z1 ∨ z2 ∨ z4, z1 ∨ z2 ∨ z3, z2 ∨ z3 ∨ z4, z2 ∨
z3 ∨ z4, z2 ∨ z3 ∨ z4}

trivial solution, otherwise, if d(T ) < M , the algorithm would use T to construct
and return a solution Z ′ for instance I having |Z ′| = d(T ).

Let us verify that this algorithm approximates Minimum Ones within n1−ε̄.
If I is not satisfiable this algorithm obviously returns the trivial solution and,
following [8] (pag. 254), the behavior of an approximation algorithm is not mea-
sured in this case. If I is satisfiable it follows easily that opt(I ′) ≤ n; it must
also be that d(T ) < M , otherwise the inequality d(T ) ≤ opt(I ′)α 3

√
n′1−ε̄ ≤

opt(I ′)α 3
√

βn3 ≤ opt(I ′) n ≤ n2 would contradict the inequality n2 < M ≤ d(T ).
Hence in this case the algorithm uses T to construct and return a solution Z ′

having |Z ′| = d(T ) and, as observed at the end of the reduction, in this case we
know that opt(I) = opt(I ′). Hence we can derive the following inequalities

|Z ′|
opt(I)

=
d(T )

opt(I ′)
≤ α

3
√

n′1−ε̄ ≤ α 3
√

(βn3)1−ε̄ ≤ n1−ε̄

which concludes the proof. ��

3 Formulations

The MinCCA problem has the same feasible region of the Minimum Weight
Rooted Arborescence problem: The set of spanning arborescences. The latter
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problem is solvable in polynomial time [9]. It can be solved in polynomial time
also by Linear Programming, since we know its convex hull. For any node i of G,
with δ+(i) and δ−(i) we denote the set of outgoing arcs and the set of incoming
arcs, respectively.

Proposition 1. (Schrijver [10], pg. 897) Let G = (N, A) be a digraph, r a ver-
tex in N such that G contains a spanning arborescence rooted at r. Then the
r-arborecence polytope of G is determined by:⎧⎨
⎩x | x ≥ 0,

∑
e∈δ+(X)

xe ≥ 1 ∀X ⊂ N with r ∈ X,
∑

e∈δ−(i)

xe = 1 ∀i ∈ N \ {r}

⎫⎬
⎭ .

Therefore, to formulate MinCCA as an Integer Program we can use the same
polyhedral description of the feasible region. However, since we have a quadratic
objective function, the continuous relaxation is no longer integral.

The MinCCA problem has the following Bilinear Integer Program:

min
∑

i∈N\{r}

∑
a∈δ−(i)

∑
b∈δ+(i)

dc(a),c(b)xaxb (1)

s.t.
∑

a∈δ+(X)

xa ≥ 1, ∀X ⊂ N, r ∈ X, (2)

∑
e∈δ−(i)

xe = 1, ∀i ∈ N \ {r}, (3)

xa ∈ {0, 1}, ∀a ∈ A. (4)

The objective function (1) takes into account the changeover cost occurring at
each node i except the root node r. If both the incoming arc a (with color c(a))
and the outgoing arc b (with color c(b)) are part of the arborescence, that is the
corresponding variables xa and xb are equal to 1, we pay for the cost dc(a),c(b).
The constraints (2) are the well–known r-cut inequalities, which force every
proper subset of N that contains the root node r to have at least one outgoing
arc. They are exponential in number, but they can be separated in polynomial
time by solving a r-min-cut problem.

The objective function (1) can be linearized in a standard way by introducing
binary variables zab instead of the bilinear term xaxb, and the linking constraints:

zab ≥ xa + xb − 1, zab ≤ xa, zab ≤ xb. (5)

3.1 Combinatorial Lower and Upper Bounds

A simple lower bound to (1)–(4) can be derived by applying the technique used by
Gilmore and Lawler to derive their well–known lower bound on the Quadratic
Assignment Problem [11]. For a review of their technique in a more general
setting, see [12].
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Let pe be the smallest possible contribution to the objective function (1) of
arc e = (i, j), if this arc is part of the optimal solution, that is:

pe = p(i,j) = min
f∈δ−(i)

dc(f),c(e) (6)

Computing pe takes time O(n) or O(di), where di is the in-degree of vertex i.
Once we have collected the values of pe for every e ∈ A, we can solve the

Minimum Cost Arborescence problem (with root node r = 1), where the arc
costs are set to pe in time O(m + n log n) [13]. The cost of the optimal solution
of this Minimum Cost Arborescence problem provides a lower bound on the
optimal value of MinCCA, whereas the changeover cost of such solution yields
an upper bound.

3.2 A Stronger Linearization

The continuous relaxation of the basic linearization of (1)–(4) given by variables
zab and by the linking constraints (5) provides rather loose lower bounds. A
stronger linearization can be obtained by applying some of the techniques pre-
sented in [12] and [14]. We have evaluated one of these techniques, where each
constraint of the form aT x ≤ b is multiplied on both sides by a variables xi.
Since for {0, 1} variables we have that x2

i = xi, the constraint becomes:∑
j �=i

ajxjxi ≤ (b − ai)xi,

and by using the existing zij variables (and eventually introducing missing vari-
ables), we get its linearized version:∑

j �=i

ajzij ≤ (b − ai)xi.

If we apply this technique to constraints (2), we do not get stronger relaxations,
since the constraints have the form aT x ≥ b, and all coefficients are equal to one.
Hence, we would get

∑
j �=i xjxi ≥ 0, that is, a redundant constraint.

This technique is more effective when applied to (3) and to the following
redundant constraint: ∑

a∈A

xa = n − 1. (7)

If we apply this technique to (7), we get the quadratic constraints∑
a∈A,a�=b

xaxb = (n − 2)xb, ∀b ∈ A,

and by using the zab variables, their linearized version:∑
a∈A,a�=b

zab = (n − 2)xb, ∀b ∈ A. (8)
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If the variables zab were already introduced to linearize (1) they can be reused.
Otherwise new variables zab need to be introduced, along with their correspond-
ing linking constraints given in (5).

Similarly, by applying this technique to (3), we obtain the linearized version:

∑
a∈δ−(i),a�=b

zab = 0, ∀i ∈ N \ {r}, ∀b ∈ δ−(i). (9)

4 Heuristic Algorithm

Let digraph G = (N, A) be as described in the Introduction and let Ai ⊂ A
be the set of arcs having the same i-th color, out of the set C = {1, . . . , k} of
colors. For each i ∈ C consider the digraph Gi = (N, Ai) and let (Ni, Ti) be a
largest (non-spanning) arborescence of Gi rooted at node 1, that is a largest set
of nodes Ni reachable from node 1 in Gi. Denote the cardinality of Ni by σi. We
describe now a constructive greedy heuristic for the MinCCA problem.

Algorithm 1. MinCCA Greedy Heuristic
1: for i:=1 to k do compute σi;
2: let j be such that σj = max{σ1, . . . , σk};
3: T := Tj ;
4: while (|T | �= n − 1) do
5: delete from A all arcs in A\T entering nodes already reached from 1 in (N, T );
6: forall h := 1, . . . , k do
7: let Ah be the set of arcs in A \ T colored h;
8: find in (N, T ∪ Ah) the (not necessarily spanning) arborescence (N, Th)

rooted at node 1, that has minimum changeover cost dh among those
having maximum cardinality;

9: ch := dh
|Th|−|T | ;

10: end do
11: let j be such that cj = min{c1, . . . , ck};
12: T := Tj ;
13: end while
14: return (N, T );

In order to prove that this algorithm is polynomial we only need to show that
the very particular case of MinCCA in line 8 is polynomially solvable. In fact,
let G′ be the subgraph of (N, T ∪ Ah) induced by the subset N ′ ⊆ N of nodes
reachable from node 1. Consider any arc a of G′ of color h having its tail in a
node already reached from 1, with incoming arc b of T , and set the cost of this
arc equal to dc(b),h. Set the cost of all other arcs of G′ to zero. The minimum
cost spanning arborescence of G′ rooted in node 1 gives Th.

Improvements to the solution returned by the algorithm can be obtained by
applying standard Local Search procedures.
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5 Computational Results

The lower bounds presented in Section 3 and the greedy heuristic described in
Section 4 are evaluated using a wide collection of instances. These instances are
generated using the data in the SteinLib, which is a collection of Steiner tree
problems on graphs (http://steinlib.zib.de/). In particular, we have used
the data sets named B, I080, es10fst, and es20fst. Since the library contains
undirected graphs, we first introduced for each edge {i, j} two arcs (i, j) and
(j, i). Each new arc gets a color randomly drawn from {1, . . . , k}, where the
number k of colors ranges in the set {2, 3, 5, 7}. We consider two types of costs:
uniform costs, i.e., all costs equal to 1 whenever there is a change of color, and
non-uniform costs, randomly drawn from {1, . . . , 10}.

We implemented all the algorithms in C++, using the g++ 4.3 compiler
and the CPLEX12.2 callable library. Constraints (2) are separated using the
MinCut algorithm by Hao and Orlin [15], and implemented as a CPLEX lazy
cut callback. Constraints (8) and (9) are defined as lazy constraints and they are
handled by CPLEX. The tests are run on a standard desktop with 2Gb of RAM
and a i686 CPU at 1.8GHz. All instances used for the experiments are available
at http://www-dimat.unipv.it/~gualandi/Resources.html.

5.1 Lower Bounds on Small Instances

The first set of results allow us to compare the strength of the three lower bounds
presented in Section 3. Let LB1 be the simple combinatorial lower bound (6),
LB2 be the one obtained solving the continuous relaxation (1)–(5), and LB3

be the one obtained with the continuos relaxation (1)–(5) plus the linearized
quadratic constraints (8) and (9).

Table 1 shows the bounds obtained on 10 small instances. These instances
show that there is not a strict dominance between the three lower bounds. How-
ever, as we would expect, LB3 dominates LB2. Interestingly, in four instances
(i.e., instances ex-0, ex-1, ex-3, and ex-7), the continuous relaxation used for
LB3 gives an integral solution that hence equals the optimum.

Table 1. Comparison of lower bounds on small instances

Instance n m k Opt LB1 LB2 LB3

ex-0 7 11 6 17 13 15.5 17
ex-1 7 12 6 2 2 1.5 2
ex-2 7 20 6 6 0 3 3.3
ex-3 7 10 6 11 9 10 11
ex-4 7 14 6 11 3 7.3 7.5
ex-5 7 12 6 15 11 10 13
ex-6 7 12 6 12 7 10 11.7
ex-7 7 13 6 11 10 9.5 11
ex-8 7 15 6 3 3 2 2.5
ex-9 7 16 6 7 3 3.5 4

http://steinlib.zib.de/
http://www-dimat.unipv.it/~gualandi/Resources.html
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Table 2. Instances with uniform costs and 5 colors

Istance n m Opt UG Gap UB1 Gap LB1 Gap LB2 TLB2 LB3 TLB3 Gap

es10fst10 18 42 12 14 0.17 14 0.17 8 0.33 3.3 0.3 3.3 1.0 0.72
es10fst11 14 26 11 11 0.00 11 0.00 11 0.00 5.0 0.1 5.0 0.1 0.55
es10fst12 13 24 8 8 0.00 8 0.00 6 0.25 3.0 0.1 3.0 0.1 0.63
es10fst13 18 42 9 11 0.22 9 0.00 6 0.33 1.8 0.3 1.8 0.6 0.80
es10fst14 24 64 11 15 0.36 13 0.18 10 0.09 3.7 1.2 3.7 4.3 0.67
es10fst15 16 36 9 9 0.00 11 0.22 7 0.22 5.0 0.2 5.0 0.4 0.44

es20fst10 49 134 28 33 0.18 48 0.45 19 0.32 3.7 19.8 3.7 96.6 0.87
es20fst11 33 72 28 28 0.00 32 0.14 26 0.07 8.6 2.6 8.6 7.1 0.69
es20fst12 33 72 22 25 0.14 32 0.28 18 0.18 6.3 2.7 6.3 4.9 0.71
es20fst13 35 80 20 22 0.10 34 0.55 16 0.20 6.0 2.9 6.0 9.7 0.70
es20fst14 36 88 18 22 0.22 35 0.59 13 0.28 2.5 4.5 2.5 25.4 0.86
es20fst15 37 86 22 22 0.00 36 0.64 16 0.27 6.8 5.2 6.8 17.0 0.69

Averages: 0.12 0.27 0.21 3.3 13.9 0.69

Table 3. Instance with random costs and k colors

Istance n m k Opt UG Gap UB1 Gap LB1 Gap LB2 TLB2 TLB3 Gap

es20fst10 49 134 2 51 96 0.88 112 1.20 34 0.33 22.0 35.7 61.4 0.57
3 73 119 0.63 101 0.38 19 0.74 2.0 25.1 40.8 0.97
5 110 159 0.45 124 0.13 64 0.42 16.8 17.6 154.8 0.85
7 124 192 0.55 152 0.23 75 0.40 16.8 21.6 128.7 0.86

es20fst11 33 72 2 85 94 0.11 111 0.31 76 0.11 34.0 2.6 6.6 0.60
3 42 46 0.10 60 0.43 25 0.40 14.0 2.8 3.7 0.67
5 122 147 0.20 137 0.12 100 0.18 36.0 2.5 5.4 0.70
7 96 111 0.16 101 0.05 72 0.25 31.3 2.6 5.1 0.67

es20fst12 33 72 2 78 78 0.00 86 0.10 44 0.44 9.0 3.5 3.5 0.88
3 55 78 0.42 85 0.55 28 0.49 17.7 2.5 3.4 0.68
5 95 111 0.17 102 0.07 61 0.36 33.3 3.2 5.3 0.65
7 86 89 0.03 92 0.07 60 0.30 20.2 2.2 4.6 0.77

es20fst13 35 80 2 62 67 0.08 66 0.06 32 0.48 13.0 5.0 5.3 0.79
3 102 102 0.00 103 0.01 69 0.32 0.0 3.3 8.7 1.00
5 92 96 0.04 108 0.17 45 0.51 22.3 3.1 7.6 0.76
7 107 119 0.11 109 0.02 74 0.31 39.8 4.1 6.7 0.63

es20fst14 36 88 2 40 58 0.45 67 0.68 22 0.45 0.0 4.2 15.2 1.00
3 54 66 0.22 65 0.20 25 0.54 7.5 6.6 14.7 0.86
5 78 114 0.46 103 0.32 47 0.40 10.3 5.1 22.6 0.87
7 103 135 0.31 142 0.38 53 0.49 15.2 5.8 20.9 0.85

es20fst15 37 86 2 55 69 0.25 83 0.51 19 0.65 0.0 5.9 6.5 1.00
3 56 60 0.07 67 0.20 27 0.52 11.0 5.0 19.3 0.80
5 110 114 0.04 126 0.15 77 0.30 36.0 6.0 12.2 0.67
7 112 152 0.36 115 0.03 86 0.23 24.7 5.8 15.4 0.78

Averages: 0.25 0.26 0.40 7.57 24.1 0.79
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5.2 Lower Bounds on Medium Size Instances

On bigger instances the strength of the three lower bounds changes, and the
combinatorial lower bound dominates the other two: it provides tighter lower
bounds, while requiring a negligible computation time.

Tables 2 and 3 show, in addition to the three lower bounds, the upper bound
found with the greedy heuristic (UG) and the upper bound given by the ar-
borescence found while computing the combinatorial lower bound (UB1). For
each instance, the tables report the number of nodes, arcs and colors, and the
optimum solution ”Opt”. When we do not know the optimum values, as for in-
stance for the es20fst10 instances, they appear in italics. For LB2 and LB3 we
report the computational time in seconds, called TLB2 and TLB3 , respectively.
In the following, for each bound b we define its gap from the optimum as the
ratio |Opt−b|

Opt .
Table 2 shows the results on instances with uniform costs and 5 colors. The

combinatorial lower bound LB1 is always better than the LP relaxation bounds
LB2 and LB3; the average gap for LB1 is 0.21%, while the average gap for
LB2 and LB3 is 0.69%. Differently from the case of small instances, here LB2

and LB3 have always the same value, contradicting what we would expect from
previous work [12, 14]; however the computational time to obtain LB2 is much
lower than the one to obtain LB3, that is, TLB2 is, on average, 3.3 sec. while TLB3

is 13.9 sec.. Notice finally that, for this class of instances, the greedy heuristic
finds upper bounds that have an average gap of 12%.

Table 3 shows the results on instances derived from the es20fst data set, using
a various number of colors and costs randomly drawn in the set {1, . . . , 10}. These

Table 4. Results of the branch-and-cut algorithm: Easy instances

Istance n m Opt Cuts Nodes Time Cuts Nodes Time

es20fst11 33 72 122 188 723 12 147 667 35
42 115 277 7 80 348 15
85 374 1252 19 435 1048 55
96 103 741 10 113 790 37

es20fst12 33 72 55 86 191 6 112 227 15
78 63 327 7 62 354 34
95 105 414 8 122 415 27
86 57 772 9 55 708 39

es20fst13 35 80 102 58 280 8 60 732 63
92 42 244 7 48 392 39
62 112 843 16 118 920 64

107 42 665 12 52 597 74

es20fst14 36 88 78 94 1395 35 104 1464 252
40 86 850 35 88 692 186
54 98 1376 41 92 737 119

es20fst15 37 86 110 242 2233 45 330 2073 174
55 549 3344 71 592 5246 509

Averages: 142 937 20 154 1024 102
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results show, unfortunately, that on these instances both the lower and upper
bounds are weak. The upper bounds obtained while computing the combinatorial
lower bound are sometimes better than those obtained with the greedy heuristic.

5.3 Branch-and-Cut

Finally, we present the results obtained with an exact branch-and-cut algorithm
that embeds the combinatorial lower bound and the greedy heuristic; we compare
these results using the two linearizations proposed in Section 3.

Table 5. Results of the branch-and-cut algorithm: Hard instances

Istance n m Opt Cuts Nodes Time Cuts Nodes Time

es20fst10 49 134 152 239 5168 - 23 183 -
116 223 4465 - 23 183 -
96 96 1650 - 113 267 -

101 321 3572 - 55 163 -

s20fst14 36 88 103 155 4264 93 155 3186 -

es20fst15 37 86 56 586 4177 99 556 5312 -
112 629 5978 118 645 5931 -

Table 6. Challenging instances with uniform costs

Instance n m Best UG UB1 LB1 Gap LB2 Gap TLB2

b01 50 126 28 35 34 18 0.36 11.7 0.58 21
b02 50 126 30 31 34 20 0.33 8.8 0.71 15
b03 50 126 28 35 36 15 0.46 5.3 0.81 19
b04 50 200 24 26 35 6 0.75 1.6 0.93 66
b05 50 200 18 21 31 5 0.72 3.1 0.83 68
b06 50 200 20 23 31 4 0.80 1.0 0.95 65
b07 75 188 53 53 54 31 0.42 13.4 0.75 83
b08 75 188 51 55 56 31 0.39 13.8 0.73 59
b09 75 188 47 50 47 29 0.38 13.5 0.71 75
b10 75 300 36 36 46 8 0.78 3.5 0.90 212
b11 75 300 39 39 52 8 0.79 1.3 0.97 177
b12 75 300 35 35 44 5 0.86 1.2 0.97 179
b13 100 250 62 65 62 31 0.50 22.1 0.64 168
b14 100 250 59 59 70 33 0.44 18.7 0.68 150
b15 100 250 68 68 71 36 0.47 19.2 0.72 154
b16 100 400 42 42 63 6 0.86 0.3 0.99 1143
b17 100 400 46 46 63 7 0.85 1.2 0.97 350
b18 100 400 54 54 66 7 0.87 2.3 0.96 436

I080-001 80 240 47 47 59 28 0.40 15.2 0.68 159
I080-002 80 240 49 49 58 20 0.59 8.0 0.84 173
I080-003 80 240 43 43 46 24 0.44 7.3 0.83 131
I080-004 80 240 48 48 51 22 0.54 10.1 0.79 139
I080-005 80 240 41 41 56 13 0.68 6.0 0.85 228

Averages: 0.60 0.82
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Tables 4 and 5 report the results for the es20fst data set. Table 4 considers
only those instances that both linearizations where able to solve within a time
limit of 1000 seconds (in order to avoid censored data in the averages). Table
5 shows the results for the instances in which at least one of the two versions
reached the time limit. As we would expect after the results shown in Tables 2
and 3, the branch-and-cut algorithm based on the standard linearization is much
faster than the linearization obtained through a quadratic reformulation.

To conclude, Table 6 presents the results obtained on two other data sets,
namely, the B data set and the I080 data set. Though these data sets are easy
for Steiner tree problems, they are demanding for the MinCCA problem. The
column ”Best” reports the best upper bounds we were able to compute with our
branch-and-cut algorithm, with a timeout of 1000 seconds. We propose these
instances as challenging instances of the MinCCA problem.
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Abstract. Program logical error localization and program testing are two of the 
most important sections in software engineering. Programmers or companies 
that produce programs will lose their credit and profit effectively if one of their 
programs delivered to a customer has any drawback. Nowadays there are many 
methods to test a program. This paper suggests a framework to localize the 
program logical errors by extraction of knowledge from invariants using a 
clustering technique.  
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1   Introduction 

Program error localization is one of the most important fields in program production 
and software engineering. Programmers or companies that produce programs will lose 
their credit and profit effectively if one of their programs delivered to a customer has 
any drawback. While there are many methods to test a program, it is the lack of an 
appropriate method for localizing a program logical errors using extraction of 
knowledge from invariants (Catal, 2011). This paper will offer a framework to 
localize the program logical errors before its release. This method is based on 
extracting the knowledge from program invariants called Logical Error localizator 
Based on Program Invariants (LELBPI). 

Invariants are a set of rules that govern among the values of variables in the 
programs in such a way that they remain unchanged in the light of different values of 
the input variables in the consecutive runnings of a program. There are three types of 
invariant generally: pre-condition, loop-invariant and post-condition. However post-
conditions are considered as a kind of invariants. In this paper, where it is addressed 
invariant, it only implies to the invariant of post-condition type.  

This paper suggests a framework to localize program logical errors with the use of a 
series of tools such as Daikon which derives program invariants (Ernst et al. 2000). 
There are many tools to extract program invariants that use static or dynamic methods. 
The some invariant-extractor methods will be explained in following section. 
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Briefly, the used method is to first collect a repository of the evaluated programs. 
Then using their reliabilities of the invariants assigned by an expert the programs are 
clustered. The clustering is done regarding to their invariants likeness. For example, 
all types of a sorting program including bubble sort, merge sort, insertion sort and etc 
and their invariants stand in the same cluster. LELBPI checks its tested program 
invariants with all sets of cluster invariants that are available in its repository. After 
that LELBPI calculates their similarity measures with the clusters and selects cluster 
with maximum similarity. If difference number with one set of the clusters invariants 
in the repository is zero then the program will be true else it will be a new one or 
belongs to another of the pre-defined clusters; besides it has some error(s) that must 
be eliminated. 

2   Invariants 

Invariants in programs are formulas or rules that are emerged from source code of 
program and remain unique and unchanged with respect to running of program with 
different input parameters. For instance, in a sort program that its job is to sort array 
of integers, the first item in the array must be bigger than the second item and the 
second item must be bigger than the third, etc. Invariants have significant impact on 
software testing. Daikon is the suitable software for dynamic invariant detection 
developed until now in comparing other dynamic invariant detection methods. 
however this method has some problems and weaknesses and thus, many studies have 
been carried out with the aim of improving Daikon performance which have resulted 
in several different versions of Daikon up to now (Ernst et al. 2000), (Perkins and 
Ernst 2004). For instance latest version of Daikon includes some new techniques for 
equal variables, dynamically constant variables, variable hierarchy and suppression of 
weaker invariants (Perkins and Ernst 2004). 

Invariants in programs are sets of rules that govern among the values of variables 
and remain unchanged in the light of different values of the input variables in 
consecutive runnings of the program. Invariants are very useful in testing software 
behavior, based on which a programmer can conclude that if its program behavior is 
true (Kataoka et al. 2001), (Nimmer and Ernst 2002). For instance, if a programmer, 
considering invariants, realizes that the value of a variable is unwillingly always 
constant, s/he may conclude that its codes have some bugs. 

Also, invariants are useful in comparing two programs by programmers and can help 
them check their validity. For instance, when a person writes a program for sorting a 
series of data, s/he can conclude that his program are correct or has some bugs by 
comparing his program invariants against the invariants of a famous reliable sort 
program; such as Merge Sort. Here, the presupposition is that in two sets (a) invariants 
detected in the program and (b) invariants detected in the merge sort program, must be 
almost the same. Additionally, invariants are useful in documentation and introduction 
of a program attributes; i.e. in cases where there are no documents and explanations on a 
specific program and a person wants to recognize its attributes for correcting or 
expanding program, invariants will be very helpful to attain this goal, especially if the 
program is big and has huge and unstructured code. 
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There are two ways for invariant detection that are called static and dynamic. In the 
static way, invariants are detected with the use of techniques based on compiler issues 
(for example, extraction of data flow graphs of the program source code). Dynamic 
way, on the other hand, detects invariants with the help of several program runnings 
by different input parameter values and based on the values of variables and relations 
between them. Dynamic methods will be explained in more detail in next section 
(Ernst et al. 2006). 

Every method has some advantages and disadvantages which will be debated in 
this paper. There are some tools as Key & ESC for java language and LClint for C 
language for static invariant detection (Evans et al. 1994), (Schmitt and Benjamin 
2007). In static detection, the biggest problem is the difficulty with which a 
programmer can discover the invariants. Tracing of codes and detection of rules 
between variable values are a difficult job especially if the programmer wants to 
consider such cases as pointers, polymorphisms and so on. 

In dynamic methods, the biggest problem is that they are careless and time-
consuming and, more importantly, do not provide very reliable answers.  

3   Related Works 

3.1   Background 

There are many machine learning based and statistical based approaches to fault 
prediction. Software fault prediction models have been studies since 1990s until now 
(Catal, 2011). According to recent studies, the probability of detection (71%) of fault 
prediction models may be higher than probability of detection of software reviewer 
(60%) if a robust model is built (Menzies et al., 2007). 

Software fault prediction approaches are much more cost-effective to detect 
software faults compared to software reviews. Although benefits of software fault 
prediction are listed as follows (Catal and Diri, 2009): 

• Reaching a highly dependable system 
• Improving test process by focusing on fault-prone modules 
• Selection of best design from design alternative using object-oriented metrics 
• Identifying refactoring candidates that are prediction as fault-prone 
• Improving quality by improving test process 

3.2   Daikon Algorithm 

Daikon first runs program with several different input parameters. Then it instruments 
program and finally in every running of the program saves variable values on a file 
called data trace file. Daikon continues its work with extracting the values of 
variables from data trace files and by use of a series of predefined relations discovers 
the invariants and saves them. Daikon discovers unary, binary and ternary invariants. 
Unary invariants are invariants defined on one variable; for instance, X>a presents 
variable X is bigger than a constant value. For another example X  (mod b)=a shows 
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X mod b=a. X>Y, X=Y+c are also samples of binary invariants and Y=aX+bZ is a 
sample of ternary invariant considered in Daikon in which X, Y, Z are variables and a 
& b are constant values. 

Daikon will check invariants on the next run of the program on the data trace file 
and will throw them out from list of true invariants if it is not true on current values of 
variables. Daikon continues this procedure several times while concluding proper 
reliability of invariants (Ernst et al. 2006). 

4   Suggested Framework 

Since the similar programs with the same functionalities have more or less the same 
invariants, so invariants can be considered as behaviors of the programs. Although it 
is highly probable that there is a program with job similar to job of another program 
plus an auxiliary job, these two programs are not considered as the same programs. 
This is due to high rate differences in their invariants. In other words, if the two 
programs just do the same job, their invariants are almost the same. Suggested 
framework is explained in this section. Informally, the LELBPI is shown in Fig 1. 

 

Fig. 1. Suggested framework for LELBPI 

Fig 1 depicts that program invariants detected by Daikon software are sent to 
LELBPI and machine processes them and give a feedback to programmer. Then a 
label indicating the validation of LELBPI prediction is returned to it. It is notable that 
the rules included in the Data Base of the learner machine must be in the general 
forms. For example to show that an array is sorted, the corresponding rule is similar to 
"array_name sorted by >=" (denoted by rule 1); besides the invariants similar to 
"array_name[1]<= array_name[2]" (denoted by rule 2) is eliminated provided that 
the rule 1 is available. Details of framework are illustrated in activity diagram which 
is shown in Fig 2.  

First, program invariants are sent to LELBPI then invariants are compared with all 
of clusters agent and select cluster with minimum difference. If all of cluster agents 
are far away then it will be asked from programmer that "This program is unknown, is 
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it new and reliable?" If user answers that it is ok and s/he is sure that program is true, 
nevertheless invariants will insert to database which locates in LELBPI and updates 
its clusters. 

While entered invariants by user is resemble with some cluster, matter of cluster 
which has minimum difference will be shown to user and if user confirms it, provided 
that difference number is zero (or be less than a pre-defined threshold) then tested 
program invariants insert to database which locates in machine learner and updates 
machine learner clusters, else if difference number is more than zero (or be greater 
than the pre-defined threshold) then just sends an alarm to user which program has 
some logical error(s). 

 

Fig. 2. Error localizator framework activity diagram 

While presented cluster to user dissatisfies programmer then LELBPI selects the 
next minimum cluster and sends its matter to user. If all similar clusters presented to 
user can not satisfy programmer then asks of user again that "This program is 
unknown, is this program new and reliable?" Again if user answers that it is ok and 
s/he is sure that program is true, nevertheless invariants will insert to database located 
in LELBPI and updates its clusters. 

It is clear that learner machine database is empty initially and it will gradually be 
filled by adding true and reliable programs manually by user feedbacks. The greater 
the number of record in database, the more accurate and valid results of suggested 
framework. 

4.1   Variable Matching 

Suppose that the agent of cluster that must be compared with the tested program 
invariants had two integer variables denoted by i and j. Also assume that entered 
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invariable to learner machine had two different integer variable denoted by m, n. 
Before than compare invariants, LELBPI must match either i→m and j→n or vice 
versa. Algorithm that is used in LELBPI matches all possible permutations of i, j to 
m, n and amount of difference on each combination will be computed and software 
will select combination which has minimum difference in compare with other 
combination. More detailed explanation is offered in section five. 

For decreasing runtime, LELBPI standardizes variable names before than invariants 
of true program are added to database, it means that all variables with the same data 
type rename to one series of standard and recorded name. For example all integer 
variables in all programs are renamed to int_a, int_b... sequentially and all integer arrays 
in programs are renamed to array_int_a, array_int_b… sequentially, and for each 
invariant set, the numbers of variables in all data types are buffered. Machine can 
permute variables with higher speed. 

5   Scalability 

For justifying this method is commodious, run time of this method is estimated on this 
section. Informally runt time can be characterized as:    

Time=O (
( , )

( , )

M ax f r

M in f r
Inv K m g

⎛ ⎞+ × × ×⎜ ⎟
⎝ ⎠

), 

where Inv is run time of extracting tested program invariants, K is cluster number, f is 
maximum of number of variables in one type in tested program, r is maximum of 
number of variables in one type in agent of clusters, m is maximum of invariants 
number in agent of clusters, and finally g is maximum of invariants number in tested 
program invariants. 

Pay attention that f and r is limited because as is said in section 3.1, before than 
adding invariants in database variables are standardized. So, run time is commodious 
and acceptable. 

6   The Experimental Result 

For validating this framework, software is implemented and their results are shown in 
this section. Invariants of six true programs including bubble sort, merge sort, 
insertion sort, shell sort, compute sum of array elements and search into array are 
added to software database initially. Predominate algorithms are shown in below. 

The results of pre-mentioned algorithms with this supposition that every used array 
in programs have random values collected in Table 1. It is necessary to note that all of 
invariants in this paper are gotten from Daikon software. 

In Table 1 "a sorted by <=" means that a[i]<=a[i+1]. Also "a=orig (a [])" means 
that "a" array elements remain unmodified in exit of program. 

With respect to invariants in Table 1, two clusters are created and programs are 
grouped in those which these clusters are sort and search. Agent of sort cluster is "a 
sorted by <=" and agent of search cluster is "a=orig (a [])". 
 



130 M. Daryabari, B. Minaei-Bidgoli, and H. Parvin 

 

Void  bubbleSort(int numbers[], int array_size) 
{ 
   int i, j, temp;
   - 
       { 
          fo - 
             { 
                 if (numbers[j-1] > numbers[j]) 
                   { 
                      temp = numbers[j-
                      numbers[j-
                      numbers[j] = temp; 
                  } 
             } 
       } 
}

void insertion_sort(int a[], int length) 
{
  int i; 
  
     { 
       //Insert a[i] into the sorted sublist
       int j, v = a[i];
       for (j = i - --)
          {  
             if (a[j] <= v)  
                 break; 
            
         } 
       
    }
} 

Void shell_sort(int a[], int length) 
  { 
     int 
     
     
     
     if (length > interval) 
        { 
          while(length > interval) 
            { 
              interval_idx--; 
              interval = (int)(interval*extend_ciura_multiplier); 
           } 
       }  
     else 
       { 
          while(length < interval) 
            { 
               interval_idx++; 
               interval = ciura_intervals[interval_idx]; 
           } 
       } 
  while (interval > 1) 
     { 
       interval_idx++; 
       if (interval_idx >= 0) 
          { 
             interval = ciura_intervals[interval_idx]; 
          }  
       else 
          { 
            interval = (int)(interval/extend_ciura_multiplier); 
         } 
       shell_sort_pass(a, length, interval); 
    } 
}
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int search(int a[], int item) 
{ 
    Int index;
    i++)  
       {
           if a[i]=item 
               { 
                    j=i 
               }
       } 
    return j; 
} 

int sum(int a[]) 
 { 

    
    
        { 
           sum = sum + a[i]; 
        } 
    return sum; 
 } 

void merge(int m, int n, int A[], int B[], int 
C[])  

{ 
      int i, j, k; 
      
      
      
      while (i < m && j < n)  
         { 
            if (A[i] <= B[j])  
                 { 
                    C[k] = A[i]; 
                    i++; 
                 } 
            else 
                 { 
                    C[k] = B[j]; 
                    j++; 
                 } 
            k++; 
         } 
      if (i < m) 
         { 
            for (int p = i; p < m; p++) 
               { 
                  C[k] = A[p]; 
                  k++; 
               } 
         } 
      else 
         { 
            for (int p = j; p < n; p++) 
               { 
                  C[k] = B[p]; 
                  k++; 
              } 
        } 
 } 

void shell_sort_pass(int a[], int length, 
int interval)  

{ 
   int i; 
   
     { 
       int j, v = a[i]; 
       for (j=i-interval; -= nterval)  
           { 
             if (a[j] <= v)  
                    break; 
             a[j + interval] = a[j]; 
           } 
       a[j + interval] = v; 
     } 
} 
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Now consider below code which is bubble sort that programmer don’t check last 
element of array. As you know, it is a common error in programming. This code has 
an array that its name is b and two integer value with names m, n. 

Table 1. Programs and their invariants 

Invariants Program Name Row 

1. a sorted by >= 
2. i= Length(a) 
3. J=Length(a)-1

Bubble Sort 1

1. a sorted by >= 
2. i= Length(a)-1

Insertion sort2

1. a sorted by >= 
2. interval=1

Shell Sort3

1. a sored by >= 
2. b sorted by >= 
3. c sorted by >= 
4. i < k 
5. j <k 
6. k= Length(c) 
7. a=orig(a[]) 
8. b=orig(b[])

Merge Sort

4

1. a =orig(a[]) 
2. i= Length(a)-1

Sum of array 
elements

5

1. a=orig(a[]) 
2. i<= Length(a)-1

Search array6

 

Invariants for Algorithm 1 that are calculated by Daikon software with this 
supposition that length of array is six is shown at below: 

1. m= Length(b)-1 

2. n= Length(b)-1 

3. b[0]<=b[1] 

4. b[1]<=b[2] 

5. b[2]<=b[3] 

6. b[3]<=b[4] 
 

Number of differences in invariants of every cluster agent and these invariants are 
shown in Table 2. 

Here, machine just compares invariants which exist on variables in cluster agent. It 
is because tested program may do anything as well as agent function. So if tested 
program have any invariants on those variables that are absent in set of variables in 
comparing agent of cluster then these invariants can't be considered as differences. 
Also because invariants of an agent include intersection of invariants of all programs 
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in the cluster, some invariants may be in invariants of programs while they are not in 
the invariant of its cluster agent. However invariants on variables in cluster agent 
must be strictly in tested program invariants.  

 

void  bubbleSort(int b[], int array_size) 
 { 
    int m, n, temp;

- 
         { 

-
               { 
                   if (b[n-1] >= b[n]) 
                       { 
                          temp = b[n-
                          b[n-
                          b[n] = temp; 
                       } 
              } 
         } 
 } 

 

Algorithm 1. Faulty varsion of bubble sort 

Table 2 presents that tested program stands in sort cluster and it have sort matter. 
Now tested program will be compared with all of program invariants in sort cluster. 
Results of these comparisons are collected in Table 3. 

Table 2. Compare Invariants 

Differences Variable MatchingCluster 
Name 

3 b[]=a[] Sort 
10 b[]=a[] Search  

It is clear from Table 3 that tested program has minimum difference from bubble 
sort in condition that m variable be assigned to i variable and n be assigned to j. It is 
clear that it is a valid result. Terminal result is: program matter is sorting and has 
some logical errors because number of differences is not zero. 
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Table 3. Compare tested program invariants with program invariants in sort cluster 

DifferencesVariables Matching Program Name Row

1 b[]=a[] 
m=i
n=j

Bubble Sort1

3b[]=a[]
m=j 
n=i

Bubble Sort2

2b[]=a[]
m=i

Insertion Sort 3

3b[]=a[]
n=i

Insertion Sort4

10b[]=a[] or b[]=b[] 
m=k 
n=i 

Merge Sort5

10b[]=a[] or b[]=b[] 
m=k 
n=j 

Merge Sort6

10b[]=a[] or b[]=b[] 
m=i 
n=j  

Merge Sort7

10b[]=a[] or b[]=b[] 
m=j 
n=i 

Merge Sort8

4b[]=c[] 
m=i
n=k 

Merge Sort9

4b[]=c[] 
m=j 
n=k 

Merge Sort10

4b[]=c[] 
m=k 
n=i 

Merge Sort11

4b[]=c[] 
m=k 
n=j 

Merge Sort12

4b[]=c[] 
m=i 
n=j  

Merge Sort13

4b[]=c[] 
m=j 
n=i 

Merge Sort14

 

7   Conclusion and Further Works 

Daikon is a method to discover likely invariants by dynamic methods. Also Daikon's 
team has been doing many researches about invariants application. They also do some 
researches to test software base on run program with several different input 
parameters and extract and check invariants on every run of program. In this paper a 
new framework based on Daikon, is proposed to incrementally detect errors of 
different programs. In this framework, one cluster is produced per invariants of each 
program type. This framework is gradually reinforced. 
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For future direction of research one can do some filtering on programs in every 
cluster can reduce comparing effectively. For example as one of filtering, machine can 
just compare programs which have same variable data type for example have three 
integer values and two array data types. Another action that can be done is that machine 
as well as true program invariants can learn from false program invariants and machine 
learns that programmer where and how have fault in program commonly. 
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Abstract. The problem of storing a set of strings – a string dictionary
– in compact form appears naturally in many cases. While classically it
has represented a small part of the whole data to be processed (e.g., for
Natural Language processing or for indexing text collections), recent ap-
plications in Web engines, RDF graphs, Bioinformatics, and many others,
handle very large string dictionaries, whose size is a significant fraction
of the whole data. Thus efficient approaches to compress them are neces-
sary. In this paper we empirically compare time and space performance
of some existing alternatives, as well as new ones we propose. We show
that space reductions of up to 20% of the original size of the strings is
possible while supporting dictionary searches within a few microseconds,
and up to 10% within a few tens or hundreds of microseconds.

1 Introduction

String dictionaries arise naturally in a large number of applications. We associate
them classically to Natural Language (NL) processing: finding the lexicon of a
text corpus is the first step in analyzing it [25]. They also arise, together with
inverted indexes, when indexing text collections formed by NL [2,33].

In those NL applications, there has not been much concern about the size of
the dictionary. This is because, in classical NL collections, the dictionary grows
sublinearly with the text size: Heaps’ law [19] establishes that in a text of length
n, the dictionary size is O(nβ), for some 0 < β < 1 depending on the type of
text. This β value is usually in the range 0.4–0.6 [2], and thus the dictionary of
terabyte-size collections should occupy just a few megabytes and would easily
fit in the main memory of a commodity PC.

Heaps’ law, however, does not model well the reality of Web search en-
gines. Web collections are much less “clean” than text collections whose con-
tent quality is carefully controlled. Dictionaries of Web crawls easily exceed

� Funded by Ministry of Science and Innovation of Spain (PGE and FEDER)
TIN2009-14560-C03-02 and Xunta de Galicia ref. 09TIC060E.

�� Funded by Millennium Institute for Cell Dynamics and Biotechnology (ICDB),
Grant ICM P05-001-F, Mideplan, Chile.

��� Funded by the David R. Cheriton scholarships program.
† Funded by Ministry of Science and Innovation of Spain, TIN2009-14009-C02-02.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 136–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Compressed String Dictionaries 137

the gigabytes, due to typos and unique identifiers that are taken as “words”,
but also for “regular words” from multiple languages. The ClueWeb09 dataset
(http://boston.lti.cs.cmu.edu/Data/clueweb09; thanks to Leonid Boystov)
is a real example which comprises close to 200 million different words obtained
from 1 billion web pages on 10 languages. This results in a large dictionary of
far more than 1GB.

Web graphs are another application where the size of the URL names, clas-
sically neglected, is becoming very relevant with the advances of the techniques
that compress the graph topology. The nodes of a Web graph are typically the
pages of a crawl, and the edges are the hyperlinks. Typically there are 15 to 30
links per page. Compressing Web graphs has been an area of intense study, as it
permits caching larger graphs in main memory, for tasks like Web mining, Web
spam detection, finding communities of interest, etc. [21,9]. URL names are used
to improve the mining quality [34,27].

In an uncompressed graph, 15 to 30 links per page would require 60 to 120
bytes if represented as a 4-byte integer. This posed a more serious memory
problem compared to the name of the URL itself once some simple compression
procedure was applied to those names (such as Front-Coding, see Section 2).
For example, Broder et al. [5] reports 27.2 bits per edge (bpe) and 80 bits per
node (bpn). This means that each node takes around 400–800 bits to represent
its links, compared to just 80 bits used for storing its URL. In the same way, an
Internet Archive graph of 115M nodes and 1.47 billion edges required [31] 13.92
bpe plus around 50 bpn, so 200–400 bits are used to encode the links and only 50
for the URL. In both cases, the space required to encode the URLs was just 10%-
25% of that required to encode the links. However, the advances in compressing
the edges have been impressive in recent years, achieving compression ratios
around 1–2 bits per edge [3,1]. At this rate, the edges leaving a node require on
average 2 to 8 bytes, compared to which the name of the URL certainly becomes
an important part of the overall space.

Another application is Bioinformatics. Popular alignment software like BLAST
[18] indexes all the different substrings of length q of a text, storing the positions
where they occur in the sequence database. For DNA sequences q = 11, 12 is
common, whereas for proteins they use q = 3, 4. Over a DNA alphabet of size 4,
or a protein alphabet of size 20, this amounts to up to 200 million characters.
Using a larger q would certainly allow one improve the quality in searching for
conserved regions, but this is infeasible for memory constraints.

The emergent Linked Data Project (http://linkeddata.org) focuses on the
publication of RDF (http://www.w3.org/TR/rdf-syntax-grammar) data and
their connection between different data sources in the “Web of Data”. This
movement results in huge and heterogeneous RDF datasets from diverse fields.

The dictionary is an essential component in the logical division of an RDF
database [10]. However, its effective representation has not been studied in depth.
Our experience with the tool HDT-It! (http://code.google.com/p/hdt-it)
shows that the dictionary for dataset DBpedia-en (http://downloads.dbpedia.
org/3.5.1/en) takes about 80% of the total size.
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Finally, Internet routing poses another interesting problem on dictionary
strings. Domain name servers map domain names to IP addresses, and routers
map IP addresses to physical addresses. They may handle large dictionaries of
domain names or IP addresses, and serve many requests per second.

This short tour over various example applications shows that handling very
large string dictionaries is an important and pervasive problem. Curiously, we
have not seen much research on compressing them, perhaps because a few years
ago the space of these dictionaries was not a serious problem, and at most Front-
Coding was sufficient. In this paper we study Front-Coding and other solutions
we propose for compressing large string dictionaries, so that two basic operations
are supported: (1) given a string, return its position in the dictionary or tell it
is not in the dictionary; (2) given a position, retrieve its string content.

Our study over various application scenarios spots a number of known and
novel alternatives that dominate different niches of the space/time tradeoff map.
The least space-consuming variants perform efficiently while compressing the
dictionary to 9%–22% of its original size, depending on the type of dictionary.

2 Basic Concepts and Related Work

Rank and select on bitmaps. Let B[1, n] be a 0, 1 string (bitmap) of length n and
assume there are m ones in the sequence. We define rankb(B, i) as the number
of occurrences of bit b in B[1, i] and selectb(B, i) as the position of the i-th
occurrence of b in B.

In this paper we will use two different succinct data structures (implemen-
tations available at http://libcds.recoded.cl) that answer rank and select
queries. The first one, that we will refer to as RG [16], uses (1 + x)n bits to
represent B. It supports rank using two random accesses to memory plus 4/x
contiguous (i.e., cached) accesses. Select requires and additional binary search.

The second data structure, that we will call RRR [29], is a compressed bitmap
that uses in practice about log

(
n
m

)
+( 4

15 +x)n bits (our logarithms are in base 2),
answering rank within two random accesses plus 3 + 8/x accesses to contiguous
memory, and select with an extra binary search. In practice this compresses the
bitmap when m < 0.2 n.

Huffman and Hu-Tucker codes. For compressing sequences, statistical methods
assign shorter codes (i.e., bit streams) to more frequent symbols. Huffman coding
[20] is the optimal code (i.e., it achieves the minimum length of encoded data)
that is uniquely decodable. In this paper we use canonical Huffman codes [26],
which have various advantages.

Hu-Tucker codes [22] are optimum among those that maintain the lexico-
graphical order of the symbols. Two sequences encoded using Hu-Tucker can
be lexicographically compared bytewise directly in encoded form. We use both
codes in this paper, in some cases padding them (with zeros) to the next byte
in order to simplify alignment and bytewise comparisons.
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Hashing. Hashing [8] is a folklore method to store a dictionary of any kind. A
hash function transforms the elements into indexes in a hash table, where the
corresponding value is to be inserted or sought. A collision arises when two
different elements are mapped to the same array cell. In this paper we use closed
hashing: If the cell where an element is to be found is occupied, one successively
probes other cells until finding a free cell (insertions and unsuccessful searches)
or until finding the element (successful searches).

We will consider two policies to determine the next cells to probe when a
collision is detected at cell x. Double hashing computes another hash function y
that depends on the key and probes x + y, x + 2y, etc. modulo the table size.
Linear probing is a simpler policy. It tries the successive cells of the hash table,
x + 1, x + 2, etc. modulo the table size.

The load factor is the fraction of occupied cells, and it influences space usage
and time performance. Using good hash functions, insertions and unsuccessful
searches require on average 1/(1− α) probes with double hashing, whereas suc-
cessful searches require ln(1/(1 − α))/α probes. Linear probing requires more
probes on average: (1 + 1/(1 − α)2)/2 for insertions and unsuccessful searches,
and (1 + 1/(1 − α))/2 for successful searches. Despite its poorer complexities,
we consider also linear probing because it has advantages on some compressed
representations we try.

Front-coding. Front-coding [33] is the folklore compression technique for lexico-
graphically sorted dictionaries. It is based on the fact that consecutive entries
are likely to share a common prefix. Each entry in the dictionary is be differ-
entially encoded with respect to the preceding one. Two values are stored: an
integer that encodes the length of their common prefix, and the remaining suffix
of the current entry.

To allow searches, Front-Coding partitions the dictionary into buckets, where
the first element is explicitly stored and the rest are differentially encoded. This
allows the dictionary to be efficiently searched using a two-step process: first, a
binary search on the first entry of the buckets locates the candidate bucket, and
second a sequential scan of this candidate bucket rebuilds each element on the
fly and compares it with the query. The bucket size yields a time/space tradeoff.

Front-coding has been sucessfully used in many applications. We emphasize
its use in WebGraph (http://webgraph.dsi.unimi.it) to encode URL dictio-
naries from Web graphs.

Compressed text self-indexes. A compressed text self-index takes advantage of
the compressibility of a text T [1, N ] to represent it in space close to that of the
compressed text, while supporting random access and search operations. More
precisely, a self-index supports at least operations extract(i, j), which returns
T [i, j], and locate(p), which returns the positions in T where pattern p occurs.

There are several self-indexes [28,11]. For this paper we are interested in par-
ticular in the FM-index family [12,13], which is based on the Burrows-Wheeler
transform (BWT) [6]. FM-indexes achieve the best compression among self-
indexes and are very fast to determine whether p occurs in T . Many self-indexes
are implemented in the PizzaChili site (http://pizzachili.dcc.uchile.cl).
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The BWT of T [1, N ], T bwt[1, N ], is a permutation of its symbols. If the suffixes
T [i, N ] of T are sorted lexicographically, then T bwt[j] is the character preceding
the jth smallest suffix. We use the BWT properties in this paper to represent a
dictionary as the FM-index of a text T .

FM-indexes support two basic operations on T bwt. One is the LF-step, which
moves from T bwt[j] that corresponds to the suffix T [i, N ] to T bwt[j′] that cor-
responds to the suffix T [i − 1, N ] (or T [N, N ] if i = 1), that is j′ = LF (j).
The second is the backward step, which moves from the lexicographical inter-
val T bwt[sp, ep] of all the suffixes of T that start with string x to the interval
T bwt[sp′, ep′] of all the suffixes that start with cx, for a character c.

Grammar-based compression. Grammar-based compresson is about finding a
small grammar that generates a given text [7]. These methods exploit repetitions
in the text to derive good grammar rules, so they are particularly suitable for
texts containing many identical substrings. Finding the smallest grammar for a
given text is NP-hard [7], so grammar-based compressors look for good heuristics.
We use Re-Pair [23] as a concrete compressor, as it runs in linear time and yields
good results in practice.

Re-Pair finds the most-repeated pair xy in the text and replaces all its ocur-
rences by a new symbol R. This adds a new rule R → xy to the grammar. The
process iterates until all remaining pairs are unique in the text. Then Re-Pair
outputs the set of r rules and the compressed text, C. We use a public implemen-
tation (http://www.dcc.uchile.cl/gnavarro/software) for the compressor;
each value (elements of a rule and symbols in C) is stored in log(σ + r) bits.

Variable-length and direct-access codes. Brisaboa et al. [4] introduce a symbol
reordering technique called directly addressable variable-length codes (DACs).
Given a concatenated sequence of variable-length codes, DACs reorder the target
symbols so that direct access to any code is possible. The overhead is at most
one bit per target symbol, which is not too much if the target alphabet is large.

All the first symbols of the codes are concatenated in a first array A1. A
bitmap B1 stores one bit per code in A1, marking with a 1 the codes of length
more than 1. The second symbols of the codes of length more than one are
concatenated in a second array A2, with B2 marking which are longer than two,
and so on. To extract the ith code, one finds its first symbol in A1[i]. If B1[i] = 0,
we are done. Otherwise we continue in A2[rank1(B1, i)], and so on.

A variable-length coding we use in this paper (albeit not in combination with
DACs) is Vbyte [32]. It is used to represent numbers of distinct magnitudes,
where most are small. Vbyte partitions the bits into 7-bit chunks and reserves
the last bit of each byte to signal whether the number continues or not.

Tries and the XBW. A trie is an edge-labeled tree where each path from the
root to a leaf represents a string. Strings that share a common prefix share a
corresponding common path from the root.

A trie can represent a dictionary in a natural way. Searching for a string in
the dictionary corresponds to following the labeled edges according to the string
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characters. The number of the leaf would correspond to the id of the string (if
the leaf exists), and it usually matches with the rank of that string in the set.

The main problem in practice is that tries tend to use much space; even when
the space is linear, the constants are not negligible. To overcome this limita-
tion, Ferragina et al. [15] proposed a compressed representation for trees that
supports navigational operations, and subpath searching, using rank and select
data structures for sequences. The representation, called XBW, corresponds to
an extension of the BWT to trees.

3 Compressed Dictionary Representations

We describe now various approches for representing a dictionary within com-
pressed space while solving two operations on it. The first operation, locate(p),
gives a unique nonnegative identifier for the string p, if it appears in the dic-
tionary; otherwise it returns −1. The second operation, extract(i), returns the
string with identifier i in the dictionary, if it exists; otherwise returns NULL.

3.1 Hashing and Compression

We explore several combinations of hashing and compression. We Huffman-
encode each string and the codes are concatenated in byte-aligned form. We
insert the (byte-)offsets of the encoded strings in a hash table. The hash func-
tion operates over the encoded strings (seen as a sequence of bytes, that is, we
compare them bytewise). This lowers the time to compute the function and to
compare search keys (as the string is shorter). For searching we first Huffman-
encode the search string and pad its bits to an integral number of bytes.

Our main hash function is a modified Bernstein’s hash1. The second function
for double hashing is the “rotating hash” proposed by Knuth [22, Sec. 6.4]2.

We concatenate the strings in the same order they are finally stored in the
hash table. This improves locality of reference for linear probing, and gives other
benefits, as seen later (in particular we easily know the length in bytes of each
encoded string). We consider three variants to represent the hash table, and
combine each of them with linear probing (lp) or double hashing (dh).

The first variant, Hash, stores the hash table in classical form, as an array
H [1, m] pointing to the byte offset of the encoded strings. To answer locate(p) we
proceed as usual, returning the offset of H where the answer was found, or −1
if not. To answer extract(i), we simply decompress the string pointed from H [i].
Then with load factor α = n/m (n being the number of strings in the dictionary),
the structure requires m integers in addition to the Huffman-compressed strings.

The second variant, HashB, stores H [1, m] in compact form, that is, removing
the empty cells, in an array M [1, n]. It also stores an RG-encoded bitmap B[1, m]
1 http://www.burtleburtle.net/bob/hash/doobs.html. We initialize h as a large

prime and replace the 33 by 215 + 1, taking modulo the table size at each iteration.
2 Precisely, the variant at http://burtleburtle.net/bob/hash/examhash.html. We

also initialize h as a large prime.
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that marks with a 1 the nonempty cells of H . Then H [i] is empty if B[i] = 0,
and if it is nonempty then its value is H [i] = M [rank1(B, i)]. Now locate(p)
returns positions in M , so our identifiers become contiguous in the range [1, n],
which is desirable. For extract(i) we simply decompress the string pointed from
M [i]. The space of this representation is n integers plus (1 + x)m bits, where
x is the parameter of bitmap representation RG. The n integers require n log N
bits, where N is the total byte length of the encoded strings.

The price is in time, as each new probe requires an additional rank on B.
However, with linear probing, rank needs to be computed only once, as the
successive cells are also successive in M . We only need to access the bits of B to
determine where is the next empty cell.

The third variant, HashBB, also stores M and B instead of H , but M is re-
placed by a second bitmap. Note that since we have reordered the codes according
to where they appear in H (or M), the values in these arrays are increasing. Thus
instead of M we store a second bitmap Y [1, N ], where a 1 marks the beginning
of the codes. Then M [i] = select1(Y, i). Bitmap Y is encoded in compressed
form (RRR). Now the n logN bits of M are reduced to log

(
N
n

)
+( 4

15 +x)N bits,
which is smaller unless the encoded strings are long.

The price is, again, in time. Each access to M requires a select operation. Note
that linear probing does not save us from successive select operations, despite
the involved string being contiguous, because we have no way to know where a
code ends and the next starts.

3.2 Front-Coding and Compression

We consider two variants of Front-Coding. Plain Front-Coding implements the
original technique by using Vbyte to encode the length of the common prefix.
The remaining suffix is terminated with a zero-byte. Only bytewise operations
are needed to search. The block sizes are measured in number of strings, so
extract(i) determines the appropriate block with a simple division, and then
scans the block to find the corresponding string.

Hu-Tucker Front-Coding is similar, but all the strings and Vbyte codes are
encoded together using a single Hu-Tucker code. The bucket starts with the Hu-
Tucker code of the first string, which is padded to the next byte boundary and
preceded by the byte length of the encoded string, in Vbyte form. This prelude
enables binary searching the first strings without decompressing them. The rest
of the bucket is Hu-Tucker-compressed and bit-aligned, and is sequentially de-
compressed when scanning the bucket, both for locating and for extracting. We
use a pointer-based Hu-Tucker tree implementation.

3.3 FM-Index Based Representation

We use two FM-indexes from PizzaChili. They represent the BWT using a
wavelet tree [17], whose bitmaps are represented using RG (version SSA v3.1) or
RRR (version SSA RRR). The former corresponds to the “succinct suffix array”
[13], which achieves zero-order compression of T , and the second to the “implicit
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compression boosting” idea [24], which reaches higher-order compression. Both
FM-index implementations support functions LF and BWS, as well as obtain-
ing T bwt[j] given j, in time O(log σ), where σ is the alphabet size of T . We use
the indexes with no extra sampling because we need only limited functionality.

We concatenate all the strings in lexicographic order, terminating each one
with a special character, $, that is lexicographically smaller than all the symbols
in T (in practice $ is the ASCII code zero, which is the natural string terminator).
We also add $ at the beginning of the sequence. Thus we can speak of the ith
string in lexicographical or positional order, indistinctly.

Note that, when the suffixes of T are sorted lexicographically, the first cor-
responds to the final $, and the next n correspond to the $s that precede each
dictionary string. Thus T bwt[1] is the final character of the nth dictionary string,
and T bwt[i + 2] is the final character of the ith string, for 1 ≤ i < n. Therefore
extract(i) can be carried out by starting at the corresponding position of T bwt

and using LF-steps until reaching a $. The T bwt[j] characters traversed spell out
the desired dictionary string in reverse order.

To answer locate(p) we just need to determine whether $p$ occurs in T . Thus
we start with (sp, ep) = (1, n+1) and use |p|+1 backward steps until finding the
lexicographical interval (sp′, ep′) of the suffixes that start with $p$. If p exists in
the dictionary and is the ith string, then sp′ = ep′ = i + 1 and we simply return
i; otherwise sp′ > ep′ holds at some point in the process and we return −1.

3.4 Re-pair Based Representation

We concatenate all the dictionary strings in lexicographic order and apply Re-
Pair compression to the concatenation. However, we avoid forming rules that
contain the string terminator. This ensures that each string is encoded with an
integral number of symbols in C and thus decompression is fast.

Locating is done via binary search, where each dictionary string to compare
must be decompressed first. We decompress the string only up to the point
where the lexicographical comparison can be decided. For extraction we simply
decompress the desired string.

For both operations we need direct access to the first symbol of the ith string
in C. Each compressed string can be seen as a variable-length sequence of symbols
in C, where they are concatenated. Thus we use the DAC representation on those
sequences. This gives fast direct access to the ith string, at the price of 1.25 bits
per symbol: we use RG representation with 25% overhead.

3.5 XBW Trie Representation

If the trie has N nodes, the XBW consists of a sequence Sα[1, N + n] of labels
(each leaf is identified with a label $ leading to it) plus a bitmap Slast[1, N + n]
with n bits set. We represent Sα using wavelet trees and, as for the FM-Index,
represent their bitmaps (and Slast) using RG or RRR.

For locating, we use operation GetChildren [15] to find the leaf. Then we map
the leaf x to an identifier in the range [1, n] with rank$(S, x). For extracting, we
start from the leaf and use GetParent [15] to obtain all the string characters.



144 N.R. Brisaboa et al.

4 Experimental Results

We consider four dictionaries that are representative of relevant applications:

Words comprises all the different words with at least 3 ocurrences in the
ClueWeb09 dataset It contains 25,609,784 words and occupies 256.36 MB.

DNA all substrings of 12 nucleotides found in S. Paradoxus, known as the
para dataset3. It contains 9,202,863 subsequences and occupies 114.09 MB.

URLs corresponds to a 2002 crawl of the .uk domain from the WebGraph
framework. It contains 18,520,486 URLs and occupies 1.34 GB.

URIs contains all different URIs used in the DBpedia-en RDF dataset (blank
nodes and literals excluded). It contains 30,176,012 URIs and takes 1.52 GB.

We use an Intel Core2 Duo processor at 3.16 GHz, with 8 GB of main memory
and 6 MB of cache, running Linux kernel 2:6:24-28. We ran locate experiments for
successful and unsuccessful searches. For the former we chose 10,000 dictionary
strings at random. For the latter we chose other 1,000 strings at random and
excluded them from the indexing. For extract we queried 10,000 random numbers
between 1 and n. Each data point is the average user time over 10 repetitions.

Figure 1 shows our results. Most methods are drawn as a line that corresponds
to their main space/time tuning parameter. On the left we show locate time
for successful searches; the plots for unsuccessful searches are very similar and
omitted for lack of space. On the right we show extraction times. Time is shown
in microseconds and space as a percentage of the space required by concatenating
the plain strings. Since, despite the advantages of linear probing in this scenario,
double hashing was always better, we only plot the latter.

Front-Coding with Hu-Tucker compression shows to be an excellent choice
in all cases, achieving good time performance and the least space usage (only
beaten by XBW and, on URLs, by Re-Pair). The folklore Front-Coding, without
compression, is almost everywhere dominated by the compressed variant.

The least space is always achieved by XBW+RRR, yet the time it achieves is
significantly higher than the other approaches. The next best space, on URLs, is
achieved by Re-Pair, which is much faster than XBW but still noticeably slower
than compressed Front-Coding. On the shorter-string dictionaries (Words and
DNA), Re-Pair does not compress well and compressed Front-Coding achieves
the second-best space (with much better time than XBW variants).

HashBB performs better in space than HashB when the strings are short,
otherwise the bitmap becomes too long. It is never, however, clearly the best
alternative. HashB and Hash excell in time with short strings when much space
is used (nearly 100%), yet HashB is never much better than Hash.

For extracting, the map is dominated by Front-Coding, in plain or compressed
form (the plain folklore variant is more relevant in this case). Still Re-Pair
achieves less space on URLs, and XBW always requires the minimum space
but the highest times.

3 http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
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Fig. 1. Locate times (left) and extract times (right) for the different methods as a
function of their space consumption
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5 Final Remarks

Prefix search, that is, finding the dictionary strings that start with a given pat-
tern, is easily supported by the methods we have explored, except hashing. Other
variants that can likewise be supported are of interest for Internet routing tables,
e.g., find the dictionary string that is the longest prefix of the pattern.

Despite the FM-index and the XBW being the slowest solutions, they support
other searches of interest, such as finding the dictionary strings that contain a
substring, or that have a given prefix and a given suffix [14,15]. They also support
approximate searches [30].

We have reordered the strings at our convenience, but sometimes the or-
der must be fixed. Hashing is easily adapted to any order (except the variant
HashBB), but others would need an explicit permutation that would significantly
increase the space. The FM-index and the XBW can use the LF-step mechanism
to trade space for time and store just a sample permutation.
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Abstract. In this paper, we demonstrate that the search for weighing
matrices constructed from two circulants can be viewed as a permutation
problem. To solve it a set of two competent genetic algorithms (CGAs)
are used to locate common integers in two sorted arrays. The motivation
to deal with the messy genetic algorithm (mGA) is given from the pio-
neering results of Goldberg, regarding the ability of the mGA to put tight
genes together in a solution which points directly to structural patterns
in weighing matrices. In order to take into advantage a recent forma-
lism on the support of two sequences with zero autocorrelation we use
an adaptation of the ordering messy GA (OmeGA) where we combine
the fast mGA with random keys to represent permutations of the two
sequences under investigation. This transformation of the weighing ma-
trices problem to an instance of a combinatorial optimization problem
seems to be promising since we illustrate that our framework is capable
to solve open cases for weighing matrices as these are listed in the second
edition of the Handbook of Combinatorial Designs.

Keywords: Weighing matrices, messy genetic algorithm, ordering messy
genetic algorithm, competent metaheuristics, optimization.

1 Introduction

A square n × n matrix with elements from {−1, 0, 1} such that WWT = wIn,
where WT stands for the transpose matrix of W , will be called a weighing
matrix of order n and weight w, denoted by W (n, w). Authoritative information
for weighing matrices can be found in [23] and [24].

In this paper we focus our attention on weighing matrices constructed from
two circulants. The following “plug-in” method for constructing weighing matri-
ces is described in the Theorem below, see [4].

Theorem 1. If there exist two circulant matrices A, B of order n, with entries
from {0,±1}, satisfying AAT + BBT = wIn and w is an integer, then there
exists a W (2n, w), given as

W (2n, w) =
(

A B
−BT AT

)
or W (2n, w) =

(
A BR

−BR A

)

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 148–156, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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where R is the square matrix of order n with rij = 1 if i + j − 1 = n and 0
otherwise.

We adopt the following definitions from [22].

Definition 1. Let A = [a1, a2, . . . , an] be a sequence of length n. The periodic
autocorrelation function, PAF of A, PAFA(s) is defined as:

PAFA(s) =
n∑

i=1

aiai+s , s = 0, 1, . . . , n − 1.

where i + s is taken modulo n, when i + s > n.

Definition 2. Two sequences, A = [a1, · · · , an] and B = [b1, · · · , bn], of length
n are said to have zero PAF, if PAFA(s) + PAFB(s) = 0 for s = 1, . . . , n − 1.

In order to find suitable circulant submatrices that satisfy the additive property
in Theorem 1 we use an important result that comes from sequences with zero
periodic autocorrelation function (PAF), as outlined in [24].

Remark 1. If there are two sequences A and B of length n with entries from
{0,±1} and total weight w with zero periodic autocorrelation function, then
these sequences can be used as the first rows of circulant matrices which can be
used in the construction of Theorem 1 to form a weighing matrix of order 2n
and weight w.

These double circulant sequences will be denoted by DC(n, w) if they have zero
PAF, i.e. if they satisfy the zero PAF condition given in Definition 2. Sequences
of the previous form, are also called periodic complementary sequences.

1.1 Applications of Periodic Complementary Sequences

DC(n, w) are used to construct sequences with desirable properties for radar
applications, as described in [30]. Moreover, these sequences intervene in coded
aperture imaging ([3]) and higher-dimensional signal processing applications
such as time-frequency-coding ([5]) or spatial correlation, [10]. Sequences of the
above type are also of greatest importance, when constructing weighing matri-
ces whose significance has exhibited in other fields, such as quantum information
processing [2].

Last we would like to mention that such sequences, are interesting objects to
study for themselves [24], [29] .

2 Recent Progress for Searching Weighing Matrices

Lemma 11 of [24] describes in a compact form the progress made till 1999,
for searching weighing matrices constructed from two circulants. A necessary
condition for the existence of W (2n, w) constructed from two circulants, dictates
that the Diophantine equation a2 + b2 = w has solutions. Hence, we keep focus
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on the permissible odd values of n, i.e. values of n such that the Diophantine
equation a2 + b2 = w has solutions.

Computational optimization algorithms and techniques for searching weighing
matrices has recently been studied in [15],[16],[17],[18],[19]. In these works, the
authors restrained their interest for weighing matrices of large weight.

The pursuit of resolving unknown cases of W (2n, 2n − α) weighing matrices
constructed from two circulants, where the weight w = 2n − α is expressed as
a function of the order n, via discovering structural patterns for the location
of the α zeros in the two arrays [a1, . . . , an] and [b1, . . . , bn] has met a recent
boost by several researchers. Important results of this technique can be found in
[15],[16],[17]. The problem of searching for weighing matrices was also phrased
as a Combinatorial Optimization problem, as shown in [18],[19].

In this paper, we follow our approach given in [18], where we expressed the
structural patterns through linkage learning techniques in order to employ com-
petent genetic algorithms and to construct a number of new weighing matrices
constructed from two circulants. In particular, we enhance our prior adapta-
tion of fast messy genetic algorithm (fmGA) [18], by employing random keys for
representing chromosomes. This technique has the advantage that the fmGA is
transformed easily to a permutation solving GA, the so called ordering messy
GA (OmeGA), [14]. To the best of our knowledge this is the first time that this
variant of fmGA is applied successfully in the search for weighing matrices.

3 Messy Genetic Algorithms for Weighing Matrices

Since the pioneering results of Holland and De Jong on genetic algorithms, a
lot of researchers have taken serious effort to design sophisticated (competent)
algorithms for combinatorial optimization problems, see for example [11] and
[12]. For a general overview of evolutionary algorithms, we refer to [26],[27]. The
motivation to originally deal with the messy genetic algorithm (mGA) was given
from the pioneering results of Goldberg [6], regarding the ability of the mGA
to put tight genes together in a solution, e.g. (0000 ∗ ∗). This ability of the
mGA points directly to the structural patterns mentioned earlier, which in our
framework was explored from a combinatorial optimization point of view.

Though, the implementation details and the formulation of the weighing ma-
trices problem in a encoding suitable for mGA appeared in [18], we shall try
to outline the basic concepts of our algorithm in a compact form. We used an
adaptation of an improved version of the mGA, the fast mGA, as given in [8] in
order to avoid initialization bottlenecks.

Recall that the permissible entries for the two circulant submatrices, that form
a weighing matrix, arise from the set {−1, 0, 1}. Representing genes as ordinary
integer values, genetic algorithms for combinatorial problems typically utilize an
integer encoding for the chromosomes. Therefore, we have used GA operators
that have been developed to maintain feasibility in terms of gene duplication in
the population when using integer encoding [28].

The major advantage of the mGA is to consider solutions of variable length.
For example, in the following messy encoding we manufactured, the solutions
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((1, 1, 0), (2, 1,−1), (2, 2, 0)) and ((1, 1, 1), (1, 2, 1), (2, 1, 1), (2, 2,−1), (2, 2, 0)) are
both valid for a 4-bit problem suitable to search for weighing matrices of order
4. The first solution is decoded as [0, ∗] and [−1, 0], since the encoding (1, 1, 0)
simply means in the first sequence, the first entry is zero. In particular, the
messy genes are represented by tuples which define their position (locus) and
value (allele). We used an additional index to clarify the sequence used,

messy gene g : (sequence index, position, value) (1)

There must be no confusion for the underspecification in the first solution (no
2nd bit in the first sequence) and the overspecification in the latter (two different
2nd bits in the second sequence).

Goldberg [6], proposes a gene expression operator that employs a first-come-
first-served rule on a left-to-right scan to handle overspecification. Thus, in the
second solution this left-to-right scan drops the second instance (2, 2, 0), obtain-
ing the valid two sequences [1, 1] and [1,−1] that in the sequel form the weighing
matrix. In the case of underspecification, the unspecified genes are filled in using
a competitive template, which is a fully specified chromosome from which any
missing genes are directly inherited. For example, using as competitive template
the messy encoding ((1, 1, 1), (1, 1,−1), (2, 1,−1), (2, 2, 0)) the first solution in-
herit a −1 in the 2nd bit of its first sequence, i.e. [0,−1] and [−1, 0]. Obviously,
genes that are already specified in the solution do not take into account the
competitive template.

This case, is of particular interest since it provides us with the ability to guide
the algorithm to a particular partition of the solution space. We have chosen to
use as competitive templates, structural patterns that have proven to be success-
ful in the past, thus providing our algorithm with a linkage learning technique
similar to the one explored in [7]. Division of evolutionary processing in the mGA
comes in two phases: primordial and juxtapositional. For an overview of these
two phases we refer to [6],[7]. Allowing variable-length chromosomes, overspeci-
fied, or underspecified solutions means that the usual simple crossover operator
used will no longer work. In the context of mGA the crossover is replaced with
two simpler operators, splice and cut which we have used as they are described
in [6].

For example, starting with the two solutions ((1, 1, 0), (2, 2, 1), (1, 2,−1)) and
((1, 1, 1), (2, 1, 0)) splice operator would yield the single solution ((1, 1, 0), (2, 2, 1),
(1, 2,−1), (1, 1, 1), (2, 1, 0)). Also applied the cut operator to the solution ((1, 1, 0),
(2, 2, 1), (1, 2,−1), (1, 1, 1), (2, 1, 0)); supposing that a cut at location 2 was indi-
cated, the two solutions ((1, 1, 0), (2, 2, 1)) and ((1, 2,−1), (1, 1, 1), (2, 1, 0)) would
be obtained.

Finally, we enriched the fast messy GA with two techniques, thresholding and
tie-breaking, to overcome the problem of cross-competition of common messy
genes and to successfully address the problem of non uniform building block
(BB) size that occurred in some cases, respectively.
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4 An Added Level of Sophistication for Searching
Weighing Matrices: OmeGA

In the previous Section, we have presented the formulation of the fmGA for
weighing matrices assuming that it operates on ternary strings corresponding
to the ternary DC pairs. To specialize the algorithm for a new formalism for
sequences with zero (periodic) autocorrelation function [25] we have to choose a
suitable representation.

The ordering messy genetic algorithm (OmeGA) [14] is a fast messy genetic
algorithm (fmGA), specialized for permutation problems. It represents the chro-
mosomes by vectors of real numbers, the so-called random keys introduced by
Bean [1]. In a number of experiments it is shown that OmeGA significantly
outperforms the simple GA in solving ordering deceptive problems [13].

4.1 Design of the OmeGA

This Section overviews a new formalism for the computation of the PAF of a
DC(n, w) [25], and explains the concept of random keys and the random key-
based simple GA (RKGA), [1]. An important variant of the later algorithm is the
biased random key-based simple GA (BRKGA), [9]. The success of our proposed
framework for OmeGA is based in the following rules:

• All mechanisms of the fmGA are applied
• The alleles are (long) integer numbers
• The alleles are treated as random keys to encode permutations

Multisets for sequences with zero PAF can be naturally defined by using
the formalism given in [25] for sequences with zero NPAF, using the symmetric
relation, PAFA(s) = NPAFA(s)+NPAFA(n−s), s = 1, 2, . . . , n−1 where the
non-periodic autocorrelation function (NPAF) of a sequence A = [a1, a2, . . . , an]
of length n is defined as NA(s) =

∑n−s
i=1 aiai+s , s = 0, 1, . . . , n − 1. We formally

define the positive and negative support of the sequence A as POS(A) = {i :
ai > 0 | i = 1, . . . , n} and NEG(A) = {j : aj < 0 | j = 1, . . . , n}. The main
idea is to work with the support of a sequence and bundle together the indices
of entries with the same sign.

Following [31] we are concerned with multisets denoted by square brackets
([ ]), defined on the fixed group Zn of order n, in which repeated elements are
counted multiply. If T1 and T2 are two lists then by T1%T2 we denote the result of
appending the elements of T1 to T2 (with multiplicities retained). If the resulting
list is sorted after appending, the operation is denoted by T1&T2. We define the
occurrences counting function [T ]e for a multiset T and an element from the
domain of elements of S as [T ]e = |{x ∈ T |x = e}|. For example, let T be the
multiset T = [1, 1, 2, 2, 2, 4]; then [T ]1 = 2, [T ]2 = 3, [T ]3 = 0 and [T ]4 = 1. It
follows that [T1 % T2]e = [T1]e + [T2]e. For prior usage of multisets in the study
of sequences with zero autocorrelation function we refer to [25],[31], while for
related operations on them see [21].
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Then we define the signed and cross-differences as D+
A,1 = [x − y : x >

y and x, y ∈ POS(A)], D−
A,1 = [x − y : x > y and x, y ∈ NEG(A)] and D±

A,1 =
[x − y : x > y and x ∈ POS(A), y ∈ NEG(A)], D∓

A,1 = [x − y : x > y and x ∈
NEG(A), y ∈ POS(A)], respectively. Also we define C⇒

A,1 = D±
A,1 % D∓

A,1. Then
we can prove the following lemma which acts as a criterion to decide if two
sequences form a DC(n, w).

Lemma 1. Let A, B be two sequences of length n and weight w with entries
from {0,±1}. Let also D be (D+

A,2%D−
A,2)%(D+

B,2 %D−
B,2) and C be C�

A,2%C�
B,2.

Then, the following are equivalent:

(i) A,B is DC(n, w)
(ii) [D]s = [C]s for s ∈ {1, 2, . . . n − 1}

where, D+
A,2 = {D+

A,1, D
+
A,1 (mod n)}, D−

A,2 = {D−
A,1, D

−
A,1 (mod n)} and

C�
A,2 = {C⇒

A,1, C
⇒
A,1 (mod n)}.

Proof. We have that A,B form a DC(n, w) ⇔ PAFA(s) + PAFB(s) = 0, s =
1, . . . n − 1. We are interested in finding how many pairs of (ai, ai+s) in the
support have distance s and how many such pairs will result to a positive or
negative value in the PAFA(s) + PAFB(s), for a fixed s. There is a distinct
number of such cases that can contribute a “1” or “−1” in the PAFA(s) +
PAFB(s). In particular, when s ∈ D+

A,2 ∪ D+
B,2 or s ∈ D−

A,2 ∪ D−
B,2 a “1” is

contributed to the PAFA(s) + PAFB(s) since aiai+s = 1 for ai = ai+s = 1
or ai = ai+s = −1, respectively. Moreover, when s ∈ C�

A,2 ∪ C�
B,2 a “−1”

is contributed to the PAFA(s) + PAFB(s), since aiai+s = −1. Formally, for
s ∈ {1, 2, . . . n − 1} we have:

PAFA(s) + PAFB(s) = ([D+
A,2]s + [D−

A,2]s − [C�
A,2]s) + ([D+

B,2]s + [D−
B,2]s − [C�

B,2]s)

= ([D+
A,2]s + [D−

A,2]s + [D+
B,2]s + [D−

B,2]s) − ([C�
A,2]s + [C�

B,2]s)

= [D+
A,2 � D−

A,2]s + [D+
B,2 � D−

B,2]s − [C�
A,2 � C�

B,2]s
= [D]s − [C]s

Thus

PAFA(s) + PAFB(s) = 0 ⇔ [D]s − [C]s = 0 ⇔ [D]s = [C]s. ��

Remark 2. For an immediate validation of Lemma 1 in terms of a computer
implementation, it is more convenient to consider the resulting lists C and D to
be sorted, i.e. D = (D+

A,2 % D−
A,2)&(D+

B,2 % D−
B,2) and C = C�

A,2&C�
B,2.

Using random keys for representation as outlined in [1] enable us to use
(long) integer numbers, corresponding to the support of the sequences under
investigation, as sort keys to decode these sequences. Hence, we achieve a more
compact description of the support of a sequence. We represent a permutation
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of length � as an integer vector r = (r1, r2, . . . , r�) where r ∈ [−n, n]�. By sorting
the random keys in

ordering messy gene g : (sequence index, position, random key) (2)

such that
rφ(1) ≤ rφ(2) ≤ . . . ≤ rφ(�)

holds, where φ : {1, . . . , �} −→ {1, . . . , �} is the corresponding mapping function
arranging the keys in ascending order, the permutation is decoded as follows:

(φ(1), φ(2), . . . , φ(�))

For the weighing matrices problem we have that � = w since the integers repre-
sent the support of the candidate DC(n, w).

The choice of the objective function (OF) arises naturally as the minimum
number of random keys that have to be changed to transform one permutation
into another. Clearly, when this value is equal to zero we have that the candidate
sequences form a DC(n, w) due to the computation of the PAF expressed by
signed difference sets as outlined in Lemma 1 via Remark 2. Caution is needed
not to confuse that the support of a sequence is a set, whilst the computation
of the PAF of a sequence (expressed by its support) is a multiset.

The first results of the execution of the OmeGA for searching weighing matri-
ces seems to be promising, and we present here the following DC(61, 72) which
can be used to form a W (122, 72) in Theorem 1, which is listed as open in Table
6 of [24].

--000+00--0+---+---+--0+000-++000000---0++00+00-+-++-+-0+000-
--000-00--0---+-+++-++0-000+--000000++-0--00+00-+-++-+-0+000-
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Abstract. Automated reaction mapping is an important tool
in cheminformatics where it may be used to classify reactions or vali-
date reaction mechanisms. The reaction mapping problem is known to
be NP-Complete and may be formulated as an optimization problem. In
this paper we present three algorithms that continue to obtain optimal
solutions to this problem, but with significantly improved runtimes over
the previous CCV algorithm. Our algorithmic improvements include (a)
the use of a fast (but not 100% accurate) canonical labeling algorithm,
(b) name reuse (i.e., storing intermediate results rather than recomput-
ing), and (c) an incremental approach to canonical name computation.
Experimental results on chemical reaction databases demonstrate our
2-CCV NR FDN algorithm usually performs over ten times faster than
previous fastest automated reaction mapping algorithms.

Keywords: Applied Algorithms, Automated Reaction Mapping,
Cheminformatics.

1 Introduction

Computational simulations of chemistry are used by the chemical engineering
community to solve a variety of problems and give insight to many problems,
such as the analysis of combustion reactions. Automated reaction mapping is an
important tool in cheminformatics where it may be used to classify reactions or
validate large suites of reactions, called mechanisms. Improvements in comput-
ing power have made it possible to produce reaction mechanisms that contain
hundreds of species and thousands of reactions. The size of reaction mechanisms
is expected to continue to grow in order to provide more details about the chem-
istry they are modeling since are used in technical applications which require
accurate and reliable simulations. Mechanism generation algorithms create all
theoretically likely reactions which results in very large and unorganized mech-
anisms which must be reduced [1,2,3,4,5]. The mechanism reduction algorithms
are computationally expensive and may take days to complete [6,7,8,9,10,11,12].
Prior to running a mechanism reduction algorithm a kineticist should sort the re-
actions, based on each reaction’s classification, to verify that all of the important
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Fig. 1. A simple chemical reaction: H2O2 ⇔ OH + OH

reactions and reaction classes are included. The kineticist may be required to run
the mechanism generation algorithm and check the output multiple times prior
to reducing the mechanism. Since the kineticist may have to run the automated
reaction mapping algorithms multiple times when generating a new mechanism,
it is essential that these algorithms are efficient.

A reaction may be represented as a collection of reactant and product graphs
where a set of reactant graphs is transformed into a set of product graphs.
The reaction-mapping problem may be formulated as that of finding a mapping
from the atoms of the reactant graphs to the atoms of the product graphs that
minimizes the number of bonds broken or formed [13]. For example, consider the
reaction H2O2 ⇔ OH + OH shown in Fig. 1. The optimal mapping will break
the OO bond in the H2O2 reactant in order to form the two OH products.
The general automated reaction mapping problem is known to be NP-Complete
[13,14].

In this paper we present three algorithms that improve the runtime of the
Constructive Count Vector (CCV) algorithm presented by [13,15], while main-
taining solution optimality. The authors of [13,15] have proven their algorithms
result in an optimal solution and our improvements do not affect optimality. The
improvements proposed are based on (a) the use of a fast (but not 100% accurate)
canonical labeling algorithm, (b) name reuse (i.e., storing intermediate results
rather than recomputing), and (c) an incremental approach to canonical name
computation. The three algorithms are Two Stage Constructive Count Vector
(2-CCV), Two Stage Constructive Count Vector with Name Reuse (2-CCV NR),
and Two Stage Constructive Count Vector with Name Reuse and Fast Degree
Neighborhood Naming (2-CCV NR FDN). The improved algorithms find the
optimal solution over ten times faster than CCV.

Section 2 presents background information and discusses related work. Sec-
tion 3 presents our three algorithms for automated reaction mapping. Section 4
presents the experimental results obtained by testing our three algorithms on a
variety of reaction mechanisms. Section 5 concludes the paper.

2 Background

2.1 Graph Isomorphism

A key step in automated reaction mapping is determining if two graphs are
isomorphic. Two graphs, G1 and G2, are isomorphic if there is a bijection of
vertices of G1 and the vertices of G2, f : V (G1) → V (G2), such that two
vertices, u and v, are adjacent in G1 if and only if f (u) is adjacent to f (v) in
G2. No efficient algorithm has been found to determine if two general graphs are
isomorphic [16]. The problem of finding a canonical name for a graph is closely
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related to the graph isomorphism problem. A canonical name of a graph is a
unique label given to all isomorphic graphs. If a canonical name can be found
for two graphs, the graphs can easily be checked for isomorphism by comparing
the canonical names [17].

Chemical Graph Isomorphism and Canonical Labeling. Algorithms have
been designed specifically for solving the chemical graph isomorphism problem.
These chemical graph isomorphism algorithms have an exponential worst-case
time complexity, but in practice are much faster.

One of the first canonical naming algorithms for chemical graphs was pro-
posed by H.L. Morgan and is based on node connectivity and the creation of
unambiguous strings which describe a molecule [18]. One of the most well known
and fastest algorithms for determining chemical graph isomorphism is Nauty [19]
which is based on finding the automorphism groups of a graph [20]. Another well
known canonical naming algorithm for chemical graph isomorphism is Signature
[21]. The algorithm finds a canonical name using extended valence sequences.
Extended valence sequences are defined as a canonical representation of the
topological environment of the considered atom up to a predefined height.

Random Graph Isomorphism and Canonical Labeling. Fast isomorphism
testing algorithms have been developed for random graphs. These algorithms
typically run in polynomial time, but have some probability of failure. In [22],
the authors present a simple canonical labeling algorithm for random graphs
based on vertex degree distributions. In [23], the authors present a linear time
algorithm (O(V +E), where V is the number of vertices and E is the number of
edges) for the canonical labeling of a graph which is invariant under isomorphism.

2.2 Previous Automated Reaction Mapping Algorithms

Akutsu’s Algorithm. In [14], the author provides two main algorithms for
solving the automated reaction mapping problem by limiting the problem to a
specific form of reactions: XA + Y B ⇔ XB + Y A. The first algorithm limits
compounds to trees and has a worst-case time complexity of O

(
n1.5

)
. The second

algorithm does not limit the compounds to trees and has a worst-case time
complexity of O

(
n3

)
. Note that n is the maximum number of vertices of the

compounds in the reaction.

Felix and Valiene’s Algorithm. In [24], the authors reduce the automated
reaction problem to a series of chemical substructure searches between the reac-
tant and product graphs. This approach limits their automated reaction mapping
algorithms to specific reaction classes. The authors identify four main classes of
reactions which include combination reactions (A + B ⇔ AB), decomposition
reactions (AB ⇔ A + B), displacement reactions (A + BC ⇔ AC + B), and
exchange reactions (AB + CD ⇔ AD + CB).

Subgraph Isomorphism Based Algorithms. In [25,26], algorithms for au-
tomated reaction mapping are presented which are based on maximum com-
mon subgraph. The maximum common subgraph heuristic approaches are not
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ideal since these solutions have no guarantee of finding the correct mapping [25]
and the maximum common subgraph problem is known to be NP-hard [27]. It
may also be difficult to find mapping rules consistent with multiple reaction
formulas [14].

Maximum Common Edge Subgraph Based Algorithms. In [28,29], the
authors extend a branch and bound algorithm called RASCAL. The algorithms
are based on the maximum common edge subgraph problem. In the maximum
common edge subgraph problem, the edges are mapped as opposed to vertices in
the maximum common subgraph based approach. Since the maximum common
edge subgraph problem is similar to the maximum common subgraph problem, it
will have the same problems as any maximum common subgraph based approach.

Crabtree’s Algorithms. In [13,15], the authors present five algorithms for
automated reaction mapping which work for any valid chemical reaction. The
first algorithm is a fast greedy heuristic which is not guaranteed to find an opti-
mal solution. The second algorithm is an exponential-time exhaustive algorithm
which is guaranteed to find the optimal solution. The remaining three algorithms
use the chemical information of the reaction to intelligently generate bit patterns
which represent bonds to be cut on the reactant and product graphs. These three
algorithms produce an optimal solution.

The fastest algorithm presented in [13,15] which produces an optimal solution
is the Constructive Count Vector (CCV) algorithm. The algorithm is based on
a theorem which states that an identity chemical reaction has the same number
of bonds with each bond symbol on each side of the equation. Note that in an
identity chemical reaction the set of reactant molecules is isomorphic to the set of
product molecules. A bond symbol refers to the atoms connected by each bond.
For example a bond which connects a carbon and a hydrogen atom would have
a CH bond symbol. The algorithm uses a count vector to determine the number
of bonds, by symbol, on each side of the equation which should be cut. The
algorithm then uses the count vector to create a bit pattern for each candidate
equation. A bit pattern has one bit for each bond in the original equation where
a bit set to ‘0’ indicates the bond should remain and a bit set to ‘1’ indicates
the bond should be broken. After a candidate equation is created Nauty is used
to look for isomorphic reactant and product species and therefore determine if
the equation is mapped.

As an example, we will use reaction 318 from GRI-Mech [30]:

CH3 + C2H4 ⇔ C3H7 (1)

The reaction is shown in Fig. 2. Note that the label on each bond in the figure
indicates its index in the generated CCV bit pattern.

The count vector for the reactants is given by (CC, CH) = (1, 7) and the
count vector for the products is given by (CC, CH) = (2, 7). Therefore a count
vector for the reactants and for the products which will produce a balanced bond
equation while breaking the minimum number of bonds is given by (CC, CH) =
(0, 0) and (CC, CH) = (1, 0), respectively. There are two product CC bonds (at
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Fig. 2. GRI-Mech Reaction 318

indices 8 and 9) so there are two bit patterns which must be tested. Since neither
bit pattern produces an identity chemical reaction, the CCV algorithm adds a
single bond to the count vector on the reactant and product sides. The resulting
reactant count vectors are (1,0) and (0,1). The resulting product count vectors
are (2,0) and (1,1). These count vectors result in 99 bit patterns which must
be tested and 24 of those bit patterns result in an identity chemical reaction.
The CCV algorithm is able to stop after finding the first mapping or find all
mappings of minimum cost.

The worst-case complexity of CCV is O(F (l, r, b)CN(n)), where CN(n) rep-
resents the time complexity of the canonical naming algorithm used, n represents
the number of atoms in the reaction, l represents the bond symbol vector for the
reactants, r represents the bond symbol vector for the products, and F (l, r, b)
represents the number of bit patterns with b bonds that result in balanced bond
symbols.

The CCV algorithm is novel because it is guaranteed to find the optimal
solution and it does not have the limitations that previous algorithms have placed
on the problem. Other reaction mapping algorithms are not guaranteed to find
the best mapping or they will not work for all classes of reactions. Since the
CCV algorithm is the fastest algorithm presented in [13,15] and CCV provides
an optimal solution for a general, well-defined optimization problem we will be
using CCV as our point of comparison.

3 Improved Automated Reaction Mapping

3.1 Fast Canonical Labeling Using Degree Neighborhoods

In the following algorithms we will name molecules using a fast chemical graph
canonical naming algorithm that is not 100% accurate. The algorithm presented
is similar to the random graph canonical naming algorithms presented in [22,23].

The main idea of the Degree Neighborhood (DN) algorithm is to assign each
atom a name based on its symbol and degree and the symbol and degree of each
of its neighbors. The names of each atom are then used to assign the name to
the molecule. The DN algorithm is able to assign one name to a collection of
molecules at the same time which allows us to give a single canonical name to
all of the reactant or all of the product molecules.

For example, consider the CH3O molecule in Fig. 3(a). We label each atom,
using its symbol and degree, Fig. 3(b). We then add to each atom’s name, the
symbol and degree of its neighbors lexicographically, Fig. 3(c). Now that each
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(a) (b) (c)

Fig. 3. Degree Neighborhood Canonical Labeling

atom is named, we lexicographically sort the atom names to create the name for
the molecule. The resulting molecule name is therefore

[[C4][H1H1H1O1]][[H1][C4]][[H1][C4]][[H1][C4]][[O1][C4]].
Each atom is named according to its own symbol and degree in addition

to its lexicographically sorted degree neighborhood which guarantees two iso-
morphic molecules have the same canonical name. There is no guarantee two
non-isomorphic molecules do not have the same name. Experimentally we have
found that DN correctly distinguishes between isomorphic and non-isomorphic
molecules over 99% of the time.

3.2 Two Stage Constructive Count Vector

CCV only generates bit patterns that correspond to potential mappings which
have balanced bond symbols. For each bit pattern that is generated, the algo-
rithm creates a new equation, names the reactant and product molecules using
Nauty and then checks if it is an identity chemical reaction. Our first optimiza-
tion, named Two Stage Constructive Count Vector (2-CCV), prevents using
Nauty unless we suspect resulting equation is an identity chemical reaction. The
2-CCV algorithm names each new equation in 2 stages. The first stage naming
is done by the DN algorithm and the second stage naming is done by Nauty,
which is only invoked if DN returns a match.

As an example, we will use the same reaction as before (Fig. 2). The initial
name of the reactant molecules is:
[[C3][C3H1H1]][[C3][C3H1H1]][[C3][H1H1H1]][[H1][C3]][[H1][C3]]
[[H1][C3]][[H1][C3]][[H1][C3]][[H1][C3]][[H1][C3]].

The initial name of the product molecules is:
[[C3][C4C4H1]][[C4][C3H1H1H1]][[C4][C3H1H1H1]][[H1][C3]]
[[H1][C4]][[H1][C4]][[H1][C4]][[H1][C4]][[H1][C4]][[H1][C4]].

Consider the case from the previous example (Fig. 2) where the bit pattern
breaks the bond labeled 8. The name computed for the reactants will not change
and the new name for the product molecules is:
[[C2][C4H1]][[C3][H1H1H1]][[C4][C3H1H1H1]][[H1][C2]][[H1][C3]]
[[H1][C3]][[H1][C3]][[H1][C4]][[H1][C4]][[H1][C4]].

Clearly the reactant and product names are not the same so we do not need
to check this bit pattern using Nauty.
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The 2-CCV approach reduces the number of times the algorithm utilizes
Nauty, the more expensive chemical graph canonical labeling algorithm. It is
also easier to check a potential mapping during the first stage mapping since all
of the reactant or product molecules are named together. The first stage map-
ping can be checked using a single string comparison rather than matching each
reactant molecule with a product molecule.

The asymptotic worst-case complexity of 2-CCV is

O((F (l, r, b) − (m + p))DN(n) + (m + p)(DN(n) + CN(n))
=O((F (l, r, b) − (m + p))DN(n) + (m + p)(CN(n))

where CN(n), F (l, r, b), l, r, and b were previously defined and DN(n) repre-
sents the time complexity of the degree neighborhood algorithm, m represents
the number of optimal mappings and p represents the probability the degree
neighborhood algorithm results in an error. Notice that the worst-case complex-
ity of 2-CCV is worse than the worst-case complexity of CCV since it is possible
to check each candidate using both DN and Nauty, but 2-CCV performs sig-
nificantly better than CCV because p is very small in practice. Note that the
worst-case complexity of the degree neighborhood algorithm is O(n lg n).

3.3 Two Stage Constructive Count Vector with Name Reuse

A second optimization was added to store the canonical names which are com-
puted for each candidate mapping. The main idea is that the same reactants
and products get generated multiple times during the algorithm. Rather than
recomputing the names, we store and reuse them. The Two Stage Construc-
tive Count Vector with Name Reuse (2-CCV NR) creates a hash map for the
reactants and hash map for the products for each stage to store the canonical
names since many of the candidate mappings generated break the same reactant
or product bonds. Although 2-CCV NR is faster in practice than 2-CCV, the
worst-case complexity is the same for both algorithms.

As an example, we will use the same reaction as before (Fig. 2). During
the second iteration we will test breaking the CC reactant bond 14 times for
various combinations of breaking CC and CH product bonds. After storing the
reactant’s name when testing the first candidate we will look up the reactant’s
name for the remaining 13 candidates.

3.4 Two Stage Constructive Count Vector with Name Reuse and
Fast Degree Neighborhood Naming

The final optimization, Two Stage Constructive Count Vector with Name Reuse
and Fast Degree Neighborhood Naming (2-CCV NR FDN), generates the DN
name for a new candidate by updating the DN name from a previously com-
puted candidate rather than computing it from scratch. When a bond is bro-
ken it affects the names of the atoms connected by the bond and their neigh-
bors. Note that chemical graphs have bounded valence so the number of neigh-
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Fig. 4. GRI-Mech Reaction 318 with Node Indices

bors each atom has is limited. The names of the remaining atoms remain un-
changed. We generate the name for a new candidate bit pattern from a previ-
ously computed bit pattern which broke one less bond. Note that each set of
count vectors breaks one more reactant and one more product bond than the
previous set of count vectors. For example, in reaction 318 from GRI-Mech [30]
the first set of count vectors break 0 reactant bonds and 1 product bond. The
second set of count vectors break 1 reactant bond and 2 product bonds.

In order to use DN name updates, we store an array of atom names in the
stage 1 hash maps rather than the DN name for all of the molecules. Each atom
of the reactants and products has an index which quickly matches an atom to
its stored name. For example, the indices for reaction 318 from GRI-Mech are
shown in Fig. 4. Once all of the atom names have been updated, they can be
lexicographically sorted to produce the canonical name for all of the molecules.

The first step in updating the DN name comes from updating the names of
the atoms connected by the broken bond. The affected atoms must have their
degree reduced by one since they now have one less neighbor. In addition the
affected atoms must be removed from each other’s neighbor’s list. Note that both
of these changes are completed using string manipulations.

The second step in updating the DN names comes from updating the names
of the atoms which are neighbors to the atoms connected by the broken bond.
Without loss of generality, assume the broken bond affected atoms ai and aj ,
where i �= j. We look at each bond that is connected to atom ai. If a bond (e.g.,
the bond connects ai and ak) has not been previously broken (i.e., its bit in
the candidate bit pattern is set to ‘0’) then the algorithm updates the neighbor
list for atom ak. The neighbor list is updated by replacing the first occurrence
of ai’s old symbol and degree with ai’s new symbol and degree. The process is
repeated for atom aj . Note that these node name changes are completed using
string manipulations.

As an example we will use the product molecule from GRI-Mech Reaction
318 (Fig. 4). We start with the array of node canonical labels for the molecule,
given by the array: 0: [C4][C3H1H1H1], 1: [C3][C4C4H1], 2: [C4][C3H1H1H1],
3: [H1][C4], 4: [H1][C4], 5: [H1][C4], 6: [H1][C3], 7: [H1][C4], 8: [H1][C4], 9:
[H1][C4].

Suppose we want to break the bond with index 8 which connects the atoms
with index 0 and index 1. The algorithm will retrieve each node’s canonical label
and update it. The atom at index 0 was previously named [C4][C3H1H1H1].
The portion of the label which contains its symbol and degree will change from
C4 to C3 since the atom now has one less neighbor. The portion of the label
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which contains the neighbor list must remove the reference to the atom at index
1. Therefore the substring C3 will be removed from the neighbor list. The new
canonical name for the atom at index 0 is [C3][H1H1H1]. Similarly the new
canonical name for the atom at index 1 is [C2][C4H1]. Now we must update
the neighbors of the atom at index 1. The first neighbor is the atom at index 3
which has the name of [H1][C4]. The algorithm replaces C4 in the neighbor list
with C3 resulting in the new name of [H1][C3]. Similarly the atoms at index 4
and index 5 are renamed [H1][C3] and the atom at index 6 is renamed [H1][C2].

Although the worst-case complexity of 2-CCV NR FDN remains the same as
2-CCV NR, in practice 2-CCV NR FDN performs much faster. The 2-CCV NR
FDN algorithm reduces the time it takes to compute the DN canonical name of
the reactants and products during stage 1. In addition, 2-CCV NR FDN does
not have to generate the candidate equation unless, from stage 1, we suspect the
equation is mapped.

4 Experimental Results

The experiments were carried out on a computer running Windows Vista Home
Premium with a 2.66 GHz Intel Core 2 Quad Processor and 4 GB of RAM.
The code was written in Java and developed with JDK 1.4. The time statistics
provided are for relative comparison purposes only since Java uses automatic
garbage collection that is not controlled by the programmer. Note that for all of
the databases we used the Nauty [19] chemical graph canonical naming algorithm
to test for isomorphism. Although we tested the code on a variety of mechanisms
only a few are included due to space considerations. The results are summarized
in Table 1, where the column labeled ‘single’ refers to finding a single mapping
of minimum cost and the column labeled ‘all’ refers to finding all mappings of
minimum cost.

Note that CCV is guaranteed to find an optimal solution when mapping a
reaction. For each of the databases tested, we verified our algorithms produced
the same output as CCV.

The Colorado School of Mines (CSM) oxidation and pyrolysis mechanisms
were derived from published oxidation and pyrolysis mechanisms [31,32]. The
CSM oxidation mechanism contains 3544 reactions and the CSM pyrolysis mech-
anism contains 1707 reactions. Notice that the 2-CCV NR FDN algorithm is over

Table 1. Runtime Results

CSM Oxidation CSM Pyrolysis LLNL

Single All Single All Single All
(sec) (sec) (sec) (sec) (sec) (sec)

CCV 305.6 1078.7 277.3 1053.7 16122.9 40616.3
2-CCV 177.8 627.1 162.8 588.8 9758.7 23730.4
2-CCV NR 118.1 404.1 108.7 378.9 6125.6 15401.5
2-CCV NR FDN 22.1 65.9 15.4 57.8 1160.5 3215.1
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18 times faster than the CCV algorithm for the CSM pyrolysis mechanism re-
gardless of whether we are finding a single mapping or all mappings of minimum
cost. The 2-CCV NR FDN algorithm is over 13 times faster than the CCV al-
gorithm for the CSM oxidation mechanism when finding a single mapping of
minimum cost and over 16 times faster than the CCV algorithm when finding
all mappings of minimum cost.

The database provided by Lawrence Livermore National Laboratory (LLNL)
[33] models combustion and ignition phenomena for normal heptane. The connec-
tivity data for the molecules was added by students in the Chemical Engineering
department at Colorado School of Mines for an early version of the database that
contained errors [13]. Using the provided information we were able to map over
4000 reactions from the LLNL database. Notice that the 2-CCV NR FDN al-
gorithm runs over 12 times faster than CCV regardless of whether we finding a
single mapping or all mappings of minimum cost.

5 Conclusion

In conclusion, this paper presented three algorithms to solve the automated re-
action mapping problem that are based on (a) the use of a fast (but not 100%
accurate) canonical labeling algorithm, (b) name reuse (i.e., storing intermediate
results rather than recomputing), and (c) an incremental approach to canoni-
cal name computation. The algorithms presented in this paper are significantly
faster in practice than previous reaction mapping algorithms. The time to map
the reactions from the LLNL database [33] previously took over 11 hours using
CCV, but using 2-CCV NR FDN it now takes less than 1 hour to complete.
Improved automated reaction mapping algorithms are essential for the growing
needs of the cheminformatics and bioinformatics community.
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Abstract. In this paper, we consider different incremental and hierar-
chical k-median algorithms with provable performance guarantees and
compare their running times and quality of output solutions on different
benchmark k-median datasets. We determine that the quality of solutions
output by these algorithms for all the datasets is much better than their
performance guarantees suggest. Since some of the incremental k-median
algorithms require approximate solutions for the k-median problem, we
also compare some of the existing k-median algorithms’ running times
and quality of solutions obtained on these datasets.

1 Introduction

A company is building facilities in order to supply its customers. Because of
limited capital, it can only build a few at this time, but intends to expand in
the future in order to improve its customer service. Its plan for expansion is
a sequence of facilities that it will build in order as it has funds. Can it plan
its future expansion in such a way that if it opens the first k facilities in its
sequence, this solution is close in value to that of an optimal solution that opens
any choice of k facilities? The company’s problem is the incremental k-median
problem, and was originally proposed by Mettu and Plaxton [10].

The standard k-median problem has been the object of intense study in the
algorithms community in recent years. Given the locations of a set of facilities
and a set of clients in a metric space, and a parameter k, the k-median problem
asks to find a set of k facilities to open such that the sum of the distances of the
clients to the nearest open facility is minimized. Since the metric k-median prob-
lem is NP-hard [8], many researchers have focused on obtaining approximation
algorithms for it. An α-approximation algorithm for a minimization problem
runs in polynomial time and outputs a solution whose cost is at most α times
the cost of the optimal solution. The factor α is sometimes called the approxi-
mation factor or performance guarantee of the algorithm. A solution for which
the cost is at most α times the optimal cost is sometimes called α-approximate.
The best approximation algorithm known for this problem has a performance
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guarantee of 3 + ε and is due to Arya, Garg, Khandekar, Meyerson, Munagala
and Pandit [2]; it is based on a local search heuristic.

In the incremental k-median problem, we are given the input of the k-median
problem without the parameter k and must produce a sequence of the facilities.
For each k, consider the ratio of the cost of opening the first k facilities in the
ordering to the cost of an optimal k-median solution. The goal of the problem
is to find an ordering that minimizes the maximum of this ratio over all values
of k. An algorithm for the problem is said to be α-competitive if the maximum
of the ratio over all k is no more than α. This value α is called the competitive
ratio of the algorithm. Mettu and Plaxton [10] gave a 29.86-competitive algo-
rithm for the incremental k-median problem. Later Lin, Nagarajan, Rajaraman
and Williamson [9] gave deterministic 16-competitive and randomized 10.88-
competitive algorithms for the incremental k-median problem1. Their algorithms
use either a k-median approximation algorithm or a Lagrangean Multiplier Pre-
serving (LMP) facility location algorithm as a black box.

We also consider algorithms for the hierarchical k-median problem. In hi-
erarchical clustering, we give clusterings with k clusters for all values of k by
starting with each point in its own cluster and repeatedly merging selected pairs
of clusters until all points are in a single cluster. We also consider a variation
of this problem in which each cluster has a point designated as its center, and
when we merge two clusters together to form a single cluster, one of the two
centers becomes the center of the new cluster. Given some objective function
on a k-clustering, again we would like to ensure that for any k, the cost of our
k-clustering obtained in this way is not too far away from the cost of an opti-
mal k-clustering. For the hierarchical k-median problem, the objective function
for the k-clustering is its k-median cost; that is, the sum of the distances of
each point to its cluster center. Plaxton [11] gave a 238.88-competitive algo-
rithm for the problem. Lin et al. [9] later gave deterministic 40.42-competitive
and randomized 20.06-competitive algorithms for the problem. Their algorithms
again use either a k-median approximation algorithm or a LMP facility location
algorithm as a black box.

In this paper, we consider the performance of these incremental and hierar-
chical k-median algorithms on different k-median benchmark datasets and com-
pare their running times and quality of output solutions. Since the algorithms
of Lin et al. require a k-median approximation algorithm or a LMP facility lo-
cation algorithm as a black box, we also compare the performance of some of
the existing k-median and LMP facility location algorithms. In particular, we
implement five different k-median and LMP facility location algorithms. The
first one is the single swap local search algorithm by Arya et al. [2], which
gives 5-approximate solutions. We also consider the linear program (LP) round-
ing algorithm of Charikar, Guha, Tardos and Shmoys [4] which rounds the LP
optimum to get 8-approximate solutions. Jain, Mahdian, Markakis, Saberi and
Vazirani [7] give a greedy dual-fitting Lagrangean Multiplier Preserving (LMP)

1 Some of the results of Lin et al. were obtained independently by Chrobak, Kenyon,
Noga, and Young [5].
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Facility Location (FL) algorithm which gives 2-approximate k-median solutions
for some values of k. We also consider the standard k-median linear program
and solve it optimally using CPLEX. The optimal solution can be fractional
but still gives a good lower bound for the k-median problem. We also solve the
k-median integer program optimally using CPLEX even though the algorithm is
not polynomial time. These linear and integer programs give us bounds on the
quality of the solutions of the other algorithms.

Given these algorithms, we implement several variants of the Lin et al. al-
gorithms for the incremental k-median problem. We implement their algorithm
using the Arya et al. local search algorithm for k-median, the Charikar et al. LP
rounding algorithm for k-median, and the Jain et al. greedy algorithm which is
an LMP algorithm for facility location. Additionally, we implement the original
algorithm of Mettu and Plaxton for the incremental k-median problem. We are
able to use the linear and integer programming solutions to bound the quality
of the results we obtain.

We also implement several variants of the Lin et al. algorithms for hierarchical
k-median problem. Again, we implement their algorithm using the Arya et al.
local search algorithm for k-median, the Charikar et al. LP rounding algorithm,
and the Jain et al. greedy algorithm. Additionally, we implement Plaxton’s al-
gorithm for the hierarchical k-median problem. Plaxton’s algorithm requires an
incremental k-median algorithm as a black box, and originally used the algorithm
of Mettu and Plaxton as a subroutine. We implement this variant of Plaxton’s
algorithm, and also a variant that uses Lin et al.’s algorithm given the Arya et
al. local search algorithm.

We test our algorithms on 43 different k-median instances drawn from the
literature. In particular, we use forty instances from the OR Library [3], two
instances from Galvão and ReVelle [6], and one instance from Alp, Erkut, and
Drezner [1].

From the results we obtained we determine that all these algorithms perform
much better in terms of quality of solution than their respective
competitive/approximation ratios suggest. In particular, while we know of no
polynomial-time algorithm with a competitive ratio better than 10 for the in-
cremental and hierarchical median k-median problems, we typically obtained
results which were within 10% of the k-median LP relaxation for incremental
problems and 20% of the k-median LP relaxation for hierarchical k-median prob-
lems. We find this quite surprising in view of the strong constraints required on
the structure of solutions for the incremental and hierarchical problems.

The algorithms of Mettu and Plaxton for incremental k-median and Plaxton
for hierarchical k-median produce solutions that are not as good as those of
Lin et al.; however, our implementation of the Mettu-Plaxton algorithm is sig-
nificantly faster than our implementations of the Lin et al. algorithms, at least
in part because the Lin et al. algorithms require approximate solutions of the
k-median problem for all values of k.

Our paper is structured as follows. In Section 2, we sketch various algorithms
we implemented. In Section 3, we discuss the datasets we used. In Section 4, we
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give the experimental results we obtained. In Section 5, we give our conclusions
as well as some open problems prompted by our work. For space reasons, detailed
statements of the algorithms and complete tables of results are omitted, and will
appear in the full version of the paper.2

2 Algorithms

In this section, we discuss the various algorithms we implemented for the k-
median, incremental k-median, and hierarchical k-median problems respectively.

2.1 The k-Median Problem

In this section we consider five different algorithms for the k-median problem:
the single swap local search algorithm by Arya et al. [2]; the linear program (LP)
rounding algorithm of Charikar et al. [4] which rounds the LP optimum to get
an integer solution which is no more than 8 times the cost of the optimal LP
solution; the Jain et al. [7] greedy dual-fitting Lagrangean Multiplier Preserving
(LMP) Facility Location (FL) algorithm, which gives 2-approximate k-median
solutions for some values of k; the standard k-median linear program, which
we solve optimally using CPLEX; and the k-median integer program, which we
also solve optimally using CPLEX even though the algorithm is not polynomial
time. The optimal solution to the linear program can be fractional but still gives
a good lower bound for the k-median problem. We now discuss each of these
algorithms in turn. For space reasons, we cannot give full descriptions.

Local Search Algorithm of Arya et al. We consider the Arya et al.’s ([2])
single swap local search algorithm which computes a 5-approximate solution.
The local search algorithm proceeds by starting with an arbitrary solution and
repeatedly doing valid swaps on the current solution till no more valid swaps
exist. A swap closes a facility in the current solution and opens a facility that
was previously closed. A swap is considered valid if the cost of the new solution
after swapping is less than the cost of the solution before swapping.

Arya et al. proved that the local search algorithm can be made to run in time
polynomial in the input size by considering a swap as valid only if it improves
the cost of the solution by a certain factor. However, for simplicity, we consider
any cost-improving swap as a valid swap. We run this local search algorithm
for each cardinality k. After this procedure we have locally optimal solutions for
each value of k.

We do not implement the multi-swap (swaps involving more than one facil-
ities) local search algorithm by Arya et al. because of its high running time
even though it gives better approximation guarantee of 3+ ε. We use the locally
optimal solution of cardinality k − 1 as a starting solution for the local search

2 A more complete abstract of the paper, including full explanations of the
algorithms, and full tables of results and running times, can be found at
http://www.orie.cornell.edu/∼dpw/incexp.pdf
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iteration for cardinality k. Since this solution is already a good solution for car-
dinality k we reduce the running times of the subsequent iterations. On average
this improves the running times of local search by about 40%.

LP rounding algorithm of Charikar et al. We consider the LP rounding al-
gorithm of Charikar et al. [4] which takes as input the fractional optimal solution
of the standard LP relaxation (k − P ) of the k-median problem and produces
an integer solution that is no more than 8 times the cost of LP optimum.

The algorithm is as follows. It starts with the optimal LP fractional solution
for a particular value of k. First, the algorithm simplifies the problem instance by
consolidating nearby clients and combining their demands such that the clients
with nonzero demands are far from each other the resulting problem instance.
It then simplifies the structure of the optimal fraction solution by consolidating
nearby fractional facilities. The resulting solution has nonzero fractional value
only on facilities with nonzero demands and the LP variables for the facilities
are no less than 1

2 . The algorithm then modifies this solution to a solution where
the LP variables for the facilities take values of only 0, 1

2 and 1. It then opens no
more than k of these facilities, selecting them based on their distance to other
facilities with positive LP value.

Greedy LMP FL Algorithm of Jain et al. Jain et al. [7] give a LMP
greedy dual-fitting algorithm for the facility location problem. In this algorithm,
we maintain a dual value vj for every client which is its total contribution to
getting connected to a open facility. Some part of this dual vj pays for the j’s
connection cost and the remainder is paid toward facility opening costs. We
increase the duals of the clients uniformly and open a facility when a facility has
enough contribution from the clients to match the facility opening cost. We say
a client is connected to a facility if the connection cost is paid for by its dual
value. We stop increasing the dual for a client if it is connected to a open facility.

Since this facility location algorithm is a LMP 2-approximation algorithm for
the facility location (FL) problem, we can obtain something called a bounded
envelope for the k-median problem as described in Lin et al. [9]. The bounded
envelope gives 2-approximate solutions for the k-median problem for some values
of k as well as a corresponding piecewise linear lower bound on the values of k-
median solutions for all values of k, where the breakpoints of the lower bounds
occur at values of k for which we have 2-approximate solutions. Lin et al. give a
procedure for computing the bounded envelope given the LMP FL algorithm.

Solving Linear Program using CPLEX. We solve the linear programming
relaxation (k − P ) of the standard k-median problem using the CPLEX solver.

To speed up the running time of the linear program solver, we tried to give the
optimal solution of (k − 1)th run as an initial starting solution to the iteration
of cardinality k for all values of k. But there was no significant improvement of
the running times of the linear programs on average.
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Solving Integer Program using CPLEX. We solve the integer program
(k−IP ) optimally using the CPLEX solver; (k−IP ) is the same as (k−P ) except
that we require the decision variables to be 0-1. The CPLEX solver provides a
way to give a good initial guess to the solver so that it can prune many low
quality solutions. We give the optimal integer solution with k− 1 facilities as an
initial guess for the CPLEX integer program iteration with cardinality k. As the
optimal solution for the k-median problem for a smaller value of cardinality is
a feasible solution for the k-median problem with larger cardinality, the initial
guess is feasible. Even though this makes the solver find the optimal integral
solution faster in some cases, it does not work in all cases and on average the
improvement in running time is not significant.

2.2 Incremental k-Median

In this section we briefly explain the Mettu and Plaxton’s incremental k-median
algorithm and Lin et al.’s incremental k-median algorithm.

Mettu and Plaxton’s Algorithm. Mettu and Plaxton’s [10] incremental k-
median algorithm uses a hierarchical greedy approach to choose the next facility
in the incremental order to be opened. The basic idea behind this approach
is as follows. Rather than selecting the next point in the ordering based on a
single greedy criterion, they greedily choose a region and then recursively choose
smaller regions till they arrive at a single facility which then becomes the next
facility to open. Thus the choice of the next facility is influenced by a sequence
of greedy criteria addressing successive finer levels of granularity.

Lin et al.’s incremental k-median algorithm. We implement the incre-
mental algorithm AltIncApprox of Lin et al. [9] for the incremental k-median
problem on these datasets. We use Arya et al.’s local search algorithm with sin-
gle swaps and the LP rounding technique of Charikar et al. to generate good
k-median solutions for all possible k for each of these datasets. We bucket these
solutions into buckets of geometrically increasing cost. We take the costliest so-
lution from each bucket. We then consider each of these solutions in order of
decreasing number of medians, and use each such solution to find another so-
lution with the same number of medians that is contained with the next larger
solution. This gives us a sequence of k-median solutions such that any smaller
solution is a subset of any larger solution. This sequence of solutions gives a
natural ordering of the facilities.

We also implement the incremental algorithm BoundedIncApprox of Lin et
al. [9] using the k-median bounded envelope obtained by running the Jain et al.
algorithm on the datasets. By using the 2-approximate solutions obtained from
this algorithm for some values of k, we can apply the procedure given above to
obtain an ordering of the facilities.

2.3 Hierarchical k-Median

We test the hierarchical k-median algorithms of Lin et al. [9] against the previ-
ously known hierarchical k-median algorithm by Plaxton [11].
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Plaxton’s Algorithm. Plaxton’s algorithm takes in an incremental k-median
solution as input and finds a parent function for each facility this incremental
ordering. A hierarchical k-median solution obtained from an ordering can be
considered as solutions obtained by repeatedly closing the last open facility in
ordering and assigning its clients to an earlier facility. This mapping is exactly
captured by the parent function in the Plaxton’s algorithm. A parent function
for an ordering maps every facility in the order to a facility that is earlier in the
ordering. The parent of a facility is the facility that its clients will get assigned
to when the facility is closed.

Plaxton’s parent function is assigned as follows: Given an incremental k-
median solution to the problem, a parent is assigned to every facility in the
reverse order of the incremental solution. The parent of a facility f is deter-
mined by the earliest facility in the ordering that is either the closest facility
or satisfies a certain equation. The equation essentially finds a facility whose
distance to f is no more than the average distance of f ’s clients to f .

We run the Plaxton’s parent function algorithm on the incremental k-median
solutions given by running the Mettu and Plaxton’s algorithm and AltIncAp-

prox algorithm using Arya et al.’s local search solutions on the datasets.

Lin et al.’s hierarchical k-median algorithm. We run the generic algo-
rithm AltIncApprox of Lin et al. [9] for the hierarchical k-median problem
on the datasets using different k-median algorithms as black box. We use Arya
et al.’s local search algorithm and Charikar et al.’s LP rounding algorithm to
generate good k-median solutions. We also implement the incremental algorithm
BoundedIncApprox of Lin et al. [9] using the k-median bounded envelope
obtained by running Jain et al. algorithm on the datasets. As in the incremen-
tal k-median algorithm of Lin et al. we must find approximate solutions to the
k-median problem, which we then put in buckets of geometrically increasing
cost, then take the costliest solution from each bucket. We consider these so-
lutions in order of decreasing size, and use each solution to find a k-clustering
that is consistent with a hierarchical clustering on the larger solutions already
considered.

3 Datasets

In our experiments we use these following datasets for the comparison of k-
median, incremental k-median and the hierarchical k-median algorithms.

1. OR Library: These 40 datasets of the uncapacitated k-median problems are
part of the OR Library [3], which is a collection of test datasets for a variety
of OR problems created by J. E. Beasley. These 40 test problems are named
pmed1, pmed2, . . ., pmed40 and their sizes range from n = 100 to 900. As
noted in [3], we apply Floyd’s algorithm on the adjacency cost matrix in
order to obtain the complete cost matrix.
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2. Galvão: This set of instances (Galvão100 and Galvão150) is obtained from
the work of Galvão and ReVelle [6]. Even though the sizes of these datasets
are small (n = 100 and n = 150), the integrality gaps for some values of k
(number of medians) are larger than traditional datasets.

3. Alberta: This dataset is generated from a 316-node network using all popula-
tion centers in Alberta (see Alp, Erkut and Drezner [1]) where the distances
are computed using the shortest path metric on the actual road network of
Alberta.

4 Experimental Results

4.1 The k-Median Problem

In this section we compare the performance in terms of running times and quality
of solutions of five different algorithms on the datasets described: CPLEX solver
for the k-median linear program, CPLEX solver for k-median integer program,
Arya et al.’s single swap local search algorithm, Charikar et al.’s LP rounding
algorithm and the bounded envelope of Jain et al.’s greedy algorithm. All ex-
periments were done on machines with Intel Core 2 2.40GHz processor with 2
gigabytes of physical memory. The linear programs and integer programs on the
data sets are solved using CPLEX Version 10.1.0. The Arya et al.’s single swap
local search algorithm and Jain et al. algorithm are solved using MATLAB ver-
sion 7.0. The tolerance for the bounded envelope that we use for the termination
of binary search is 0.01 (see Lin et al. [9] for the bounded envelope procedure).
For space reasons, we cannot present the full table of results; however, Figures 1
and 2 show how the costs of the k-median solutions from the integer optimum,
Arya et al.’s local search algorithm, Charikar et al.’s LP rounding algorithm and
the Jain et al.’s greedy algorithm compare to the linear program for different
values of k for two sample datasets pmed40 and Galvão150. This performance
was typical.

Even though the Arya et al.’s algorithm’s performance guarantee is 5, in prac-
tice the local search algorithm performs much better than that. The local opti-
mums are within 1% from the linear program optimum on average. Charikar’s
et al.’s LP rounding algorithm performs even better as most of the LP solutions
are already integral or very close to being integral except for some small values
of k. Note that the Jain et al.’s greedy LMP FL algorithm gives only a bounded
envelope and does not give k-median solutions for all values of k. Here we can see
that the LP rounding algorithm and the local search algorithm perform better
than Jain et al.’s algorithm.

In terms of running time, the LP solver runs faster than the local search and
greedy algorithm for all datasets. Also the IP solver takes a lot more time to
solve all the instances of k for bigger datasets.

4.2 Incremental k-Median

In this section we compare the performances of four different incremental k-
median algorithms on the selected datasets: Mettu and Plaxton’s incremental
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k-median algorithm (MPInc), Lin et al.’s AltIncApprox algorithm with so-
lutions from the Arya et al.’s single swap local search algorithm (LInc) and
Charikar et al.’s LP rounding (LPR) and Lin et al.’s BoundedIncApprox al-
gorithm with the bounded envelope obtained from the Jain et al.’s greedy LMP
FL algorithm (GInc).

Our experiments show that Lin et al.’s algorithms perform much better than
the Mettu and Plaxton’s algorithm on the datasets. This inference is reinforced
by Figures 3, 4, 5, and 6 which show that the ratios of the costs of solutions
obtained from Lin et al.’s incremental algorithms to the LP optimum are always
better than the corresponding ratios of Mettu and Plaxton’s algorithm for a sam-
ple of datasets (pmed10, pmed25, pmed40 and Galvão150). The Mettu-Plaxton
algorithm runs much faster than Lin et al.’s algorithms; these use a k-median
algorithm or a bounded envelope algorithm as a blackbox, which make them
very slow. However the quality of the incremental solutions obtained from Lin
et al.’s algorithm is much better than that of the Mettu-Plaxton algorithm.
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4.3 Hierarchical k-Median

In this section we compare the performance of Plaxton’s hierarchical k-median al-
gorithm against Lin et al.’s AltIncApprox hierarchical k-median algorithm on
the datasets. Note that Plaxton’s algorithm takes in any incremental k-median
solution as input and outputs a parent function which defines the hierarchical so-
lution. We give the incremental k-median solutions from our runs of AltIncAp-

prox and the Mettu-Plaxton algorithms as input to the Plaxton’s hierarchical
algorithm (PHLI and PHMP) and compare them against Lin et al.’s hierarchical
k-median algorithms’ solutions (HL, HG and LPRH) for different datasets.

Figures 7, 8, 9, and 10 show how the costs of the hierarchical k-median so-
lutions for different algorithms compare against the optimal linear program so-
lutions for different values of k for sample datasets pmed10, pmed25, pmed40
and Galvão150. The algorithms we consider are AltIncApprox algorithm (us-
ing Arya et al.’s local search k-median solutions (HL) and Charikar et al.’s LP
rounding solutions (LPRH)), BoundedIncApprox algorithm (using bounded
envelope from Jain et al.’s greedy algorithm) (HG), Plaxton’s hierarchical k-
median algorithm on the incremental solutions of AltIncApprox algorithm
(PHLI) and Plaxton’s algorithm on Mettu and Plaxton’s incremental k-median
solutions (PHMP).

The hierarchical solutions obtained by AltIncApprox algorithms are better
than other algorithms. The ratios for the PHMP algorithm are not as good as
for the other algorithms since PHMP uses the incremental k-median solutions
of Mettu and Plaxton as input which are not as good as other incremental
algorithms in terms of quality. Lin et al.’s hierarchical algorithm (HL) which
computes hierarchical solutions directly from k-median solutions performs better
than the Plaxton’s hierarchical algorithm even when the incremental solutions
from AltIncApprox are given as input.
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5 Conclusions

We evaluate different k-median, incremental k-median and hierarchical k-median
algorithms on different datasets and show our results here. For the k-median
problem, Charikar et al.’s LP rounding algorithm performs better and faster on
average than other k-median algorithms like Arya et al.’s local search algorithm.
We also notice that in many real-life datasets the optimal LP solution for the
k-median problems for most values of k are integers which also makes the LP
rounding techniques much better in terms of the quality of the solutions.

The quality of incremental solutions, when AltIncApprox algorithm is run
on the k-median solutions of Arya et al.’s local search algorithm and Charikar
et al.’s LP rounding algorithm, are much better than the incremental solutions
of Mettu and Plaxton’s algorithm. Even though the LP rounding algorithm per-
forms poorly for some small values of k, Lin et al.’s incremental and hierarchical
algorithms skips many of these poor solutions while bucketing the solutions
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geometrically and this makes the corresponding incremental solutions compa-
rable in quality to the incremental solutions obtained from Arya et al.’s local
search k-median solutions.

Mettu and Plaxton’s incremental k-median algorithm is much faster than the
other incremental k-median algorithms we implement. However one important
point to note here is that we find good k-median solutions for all values of k
both in Arya et al.’s local search algorithm and Charikar et al.’s LP rounding
algorithm. Most of these solutions are not used at all by the Lin et al. algorithms
since it uses only one solution from each of the geometrically increasing buckets.
It would be useful if we would somehow be able to find a sequence of k-median
solutions that are geometrically increasing in cost in a faster way; this could lead
to significant improvements in the running times of the Lin et al. algorithms.
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Abstract. The Periodic Event Scheduling Problem (PESP), in which
events have to be scheduled repeatedly over a given period, is a complex
and well-known discrete problem with numerous real-world applications.
One of them is to find periodic timetables which is economically impor-
tant, but difficult to handle mathematically, since even finding a feasible
solution to this problem is known to be NP-hard. On the other hand,
there are recent achievements like the computation of the timetable of
the Dutch railway system that impressively demonstrate the applicability
and practicability of the mathematical model. In this paper we propose
different approaches to improve the modulo network simplex algorithm
[8], which is a powerful heuristic for the PESP problem, by exploiting im-
proved search methods in the modulo simplex tableau and larger classes
of cuts to escape from the many local optima. Numerical experiments on
railway instances show that our algorithms are able to handle problems
of the size of the German intercity railway network.

1 Introduction

The Periodic Event Scheduling Problem (PESP) as introduced in [12] models
periodically reoccurring events that have to be scheduled according to given fea-
sible time spans. Its general modeling power made it the model of choice for the
computation of periodic timetables in public transport, see e.g. [5,9,7,3,10]. Re-
cently, also connections to Graphical Diophantine Equations have been explored
[2] in the case of multiple periods.

The applicability of the model to real-world problems has been impressively
demonstrated by two recent milestones. In 2005, the new timetable for the un-
derground railway of Berlin was introduced [4], being the first mathematically
optimized railway timetable in practice. And in 2006 the largest Dutch railway
company, the Nederlandse Spoorwegen, introduced a completely new timetable,
with an estimated profit of 40 million Euro annually [1].

The most common approach to solving PESP problems is by mixed-integer
programming techniques [6]. However, these approaches suffer from high com-
putation times. In [8] a heuristic approach, the modulo network simplex method,
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is presented, which is based on the classic network simplex method. To the best
of our knowledge, this heuristic is currently the most powerful method to solve
large instances.

The purpose of this paper is to improve the modulo network simplex method’s
performance for practical timetabling instances. We will show that by engineer-
ing the concept of the original method, we are able to compute solutions with
both smaller runtimes and better objective values.

2 PESP and Periodic Timetabling

A periodic event i is a countably infinite set of events ip, p ∈ Z, with occurrence
times

t(ip) = t(i) + p · T

for a given period T , see [12]. A span constraint consists of an interval [lij , uij ] ⊂
R for a pair of events (i, j). The span constraint is satisfied if

(t(j) − t(i)) mod T ∈ [lij , uij ].

The PESP problem is given as follows: For a given finite set of events with a
period T and a finite set of span constraints, find a time t(i) for each periodic
event i such that all span constraints are satisfied. It is shown [12] that PESP is
NP-hard by transformation from the Hamiltonian Circuit Problem.

Based on the PESP, the periodic timetabling problem can be formulated by in-
troducing Event-Activity-Networks (EAN) to model the time-dependent behav-
ior of the various vehicles considered [9]. EANs are directed graphs G = (E ,A)
with nodes

E = Earr ∪ Edep

that represent arrival and departure events of every train line at every station,
and edges

A = Adrive ∪ Await ∪ Achange ∪ Ahead

representing either driving, waiting and changing activities or the necessary se-
curity headway between vehicles sharing the same infrastructure. The events
are periodic since all arrivals and departures are repeated in every period, and
for each of the activities a span constraint is given which contains the minimal
and the maximal duration of the activity. The minimal duration guarantees a
certain level of robustness while the maximal duration controls the quality of
the timetable. Figure 1 shows a small part of an EAN in which two trains share
track capacities of the same station and are therefore connected by a headway
activity. The orientation of such a headway activity is of no importance when
the span constraint is chosen properly.

The goal is to find a timetable assigning a time πi := t(i) mod T ∈ R to
each of the events i ∈ E for a given period T such that the span constraints
are satisfied, i.e., (πj − πi) mod T ∈ [lij , uij ] for each activity (i, j) ∈ A. The
objective in the timetabling problem is not only to search for a feasible solution,
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Fig. 1. Detail of an Event-Activity-Network

but instead for an optimal one, namely we minimize the total passenger traveling
time given as ∑

(i,j)∈A
(πj − πi) mod T − lij .

Instead of the event times πi, i ∈ E , one can equivalently determine the slack
yij = πj − πi − lij for any edge (i, j) ∈ A with lower bound lij . Generally
speaking, the slack of an activity is the amount of time spent additionally to
its minimum duration. Using this concept, an alternative formulation (used by
the modulo network simplex) has been suggested in [7]. Let T = (E ,AT ) be
a spanning tree with its corresponding fundamental cycle matrix Γ , then the
periodic timetabling problem can be formulated as follows.

(PTT) min
∑

(i,j)∈A
ωijyij

s.t Γ (y + l) = Tz

0 ≤ yij ≤ uij − lij ∀(i, j) ∈ A
yij ∈ R ∀(i, j) ∈ A
zij ∈ Z ∀(i, j) ∈ A \ AT ,

where y = (yij)(i,j)∈A and l = (lij)(i,j)∈A. For details and correctness we refer
to [7,3]. As the variables zij model the periodic character of the problem, they
will be referred to as modulo parameters.

Note that the modulo parameters are the reason why this problem is NP-hard.
For fixed variables zij the timetabling problem is called aperiodic and is the dual
of a minimum cost flow problem that can be solved efficiently using the network
simplex method.

3 The Modulo Network Simplex Method

In this section we briefly describe the method of [8]. Its main idea is to encode a
solution as a spanning tree Tl ∪Tu by setting the modulo parameters of the tree
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edges to 0 and the duration of these activities either to their respective lower or
upper bound.

Definition 1. [8] A spanning tree structure (Tl, Tu) is a spanning tree T =
Tl ∪Tu with an edge partition such that yij is set to 0 on all edges (i, j) ∈ Tl and
set to uij − lij for all edges (i, j) ∈ Tu.

A spanning tree structure uniquely determines a periodic timetable by calculat-
ing the slack yij for the missing edges (i, j) /∈ T such that the cycle condition
Γ (y + l) = Tz of (PTT) holds. On the other hand, it is shown in [7] that(π

z

)
∈ Q := conv.hull

({(π

z

)
|lij ≤ πj − πi + Tzij ≤ uij ; z ∈ Zm; π ∈ Rn

})
is an extreme point of Q if and only if it is a solution that is given by a spanning
tree structure. Thus it is sufficient to investigate only these solutions.

The modulo network simplex works as follows: As it is the case in the classic
network simplex method, a given feasible spanning tree solution is gradually
improved by exchanging tree and non-tree edges that lie in the same fundamental
cycle, i.e., the cycle that consists of the non-tree edge and its unique path in the
spanning tree. This is done with the help of a simplex-like tableau.

(a) Timetabling instance. (b) Spanning tree structure
with slack and timetable.

Fig. 2. A timetabling instance with a feasible spanning tree structure

Example 1. In Figure 2(a) a problem instance is given with period T = 10 and
in 2(b) a feasible spanning tree structure, where T = Tl. The corresponding
modulo simplex tableau can be seen in Table 3 (a). It contains the fundamental
cycles that are induced by the non-tree arcs e4, e5 and e6.

The objective value wty is calculated by
∑

(i,j)/∈T wijyij +
∑

(i,j)∈Tu
wij(uij −

lij). Let yij be the slack vector after pivoting edges ei and ej . By writing
[y]T := y mod T for short and denoting by bij the tableau entry for the edges ei

and ej, the change in the objective value when pivoting a non-tree edge ei and
a tree edge ej to Tl is
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Fig. 3. The modulo simplex tableau associated with Figure 2(b)

ωtyij − ωty

=
∑

k∈A\(T ∪{i})
ωk

[
yk − bkj

bij
yi

]
T

+ ωj

[
yi

bij
+ yj

]
T

+
∑
k∈Tu

ωkyk −
∑
k∈A

ωkyk

=
∑

k∈A\(T ∪{i})
ωk

([
yk − bkj

bij
yi

]
T

− yk

)
+ ωj

([
yi

bij
+ yj

]
T

− yj

)
− ωiyi,

while the change when pivoting to Tu is calculated analogously.
Every non-zero entry of the left part of the table stands for a possible basis

exchange of a non-tree-arc with a tree-arc that lies on its induced fundamental
cycle. However, due to the modulo parameters, reduced costs as in the classic
network simplex cannot simply be read off in the tableau. In consequence, the
resulting change of every entry of the simplex tableau has to be calculated which
results in a time-consuming complexity of c · (m−n + 1) · (n− 1) · (m−n +1) =
O(m2n + n3), where m = |A| and n = |E|. Furthermore, as the problem is not
convex, many local optima exist, which is the reason why methods of global
optimization should be added.

In order to do so, we use the following correspondence between the pivoting
operation in the modulo network simplex method and cuts, i.e., sets {(i, j) ∈ A :
i ∈ E1 and j ∈ E2} ∪ {(i, j) ∈ A : i ∈ E2 and j ∈ E1} for a partition E1 ·∪E2 = E .
Every edge e of a spanning tree canonically induces a fundamental cut by taking
the two connected components that appear when removing e. Pivoting a tree and
a non-tree edge as it is done in the modulo network simplex method can therefore
be interpreted as shifting slack from the edges of the corresponding fundamental
cut to the non-tree edge. Thus, the modulo network simplex searches iteratively
for improving fundamental cuts.

Notation. Let a cut c be given by its node partition E1 ·∪E2, and let δ ∈ R.
We say that we apply the cut c with δ, if the slack yij is increased by δ for
all edges (i, j) with i ∈ E1, j ∈ E2 and decreased by δ for all edges (i, j) with
i ∈ E2, j ∈ E1. Moreover, when the resulting modulo paramters are fixed and a
new spanning tree structure is computed, the cut is called globally improving, if
the objective value decreases.

To overcome local optima, any other class of cuts can be chosen, which will
force the full recomputation of the corresponding simplex-tableau. In that case,
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Fig. 4. Schematic process of the modulo network simplex

modulo parameters will have to be fixed and the dual min-cost balanced flow
problem be solved in order to obtain a new spanning tree structure.

Figure 4 summarizes the main steps of the algorithm. The inner loop and
outer loop shown will be used for our improvements in the next section.

4 Improving the Modulo Simplex

We proceed in two steps. On the one hand, we will improve the runtime of the
algorithm by proposing alternative schemes for choosing a basis exchange pair
in the inner loop, i.e., the fundamental cut. This is done in Section 4.1. On the
other hand, in order to improve the quality of the solution, we will investigate
several further cut possibilities that force the recomputation of the spanning tree
structure used in the outer loop and hence overcome local optima, see Section 4.2.

4.1 Improving Runtimes: The Inner Loop

The time needed for investigating a single column of the simplex tableau grows
quadratically in its number of non-zero entries. This is due to two reasons: The
number of non-zeros determines the number of multiplications that have to be
carried out for calculating the change of the objective function value, but also
determines the number of possible basis exchanges that have to be tested. Since
timetabling instances typically have sparse columns in the simplex tableau, we
present two different algorithms that take advantage of this fact.

To illustrate this observation, we randomly created 100 simplex tableaus for
a railway instance and counted the number of non-zeros for each column. The
resulting distribution showed that about 10% of all columns contained more than
80% of all non-zero entries.

In terms of runtimes, these are the least effective columns to check. Thus, by
neglecting only 10% of all tree-edges, the largest part of computation time is
saved. This is exploited by the following two algorithms:

Modus ”First Quality”: Search the columns of the modulo simplex tableau for
an improving pivot operation beginning from the one with fewest non-zeros. As
big improvements are possible in the beginning of the loop, but only small ones
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at the end, a dynamically updated criterion is used which stops the procedure
if the change in the objective value is considered satisfactory.

Modus ”Percentage”: Search only the p% of the columns, namely those with the
fewest non-zero entries, for an improving pivot operation and apply the best pivot
operation change found. Some randomly created simplex tableaus can be used to
determine how large the search space should be and hence to fit the parameter p
to the particular timetabling instance. Choosing p is an easy possibility to decide
on the time the algorithm may use for the inner loop.

Both approaches avoid searching the whole simplex tableau while neglecting
as few pivot possibilities as possible.

4.2 Improving Quality: The Outer Loop

To escape a local minimum of the outer loop, we investigate four classes of non-
fundamental cuts. The first one, single node cuts, has been suggested in [8] while
the other three are new.

Single Node Cuts. The time πi of a single event i is delayed by δ ∈ Z, i.e., the
slack yji of in-going edges (j, i) is increased by δ, while slack of outgoing edges
(i, j) is decreased.

In [8], a single node cut is applied, if∑
(i,j)∈A : i∈E1,j∈E2

ωij(yij − δ) +
∑

(j,i)∈A : i∈E1,j∈E2

ωji(yji + δ) < 0, (1)

where E1 = {i}, E2 = E \ {i} for a node i ∈ E . This is based on the obervation
that whenever the local condition (1) holds, the cut is globally improving. We
will call cuts fulfilling (1) locally improving. However, as a given spanning tree
structure is optimal with respect to the induced modulo parameters, a necessary
condition for a single node cut to be locally improving is that it changes at least
one modulo parameter. This is unlikely to happen, taken into consideration that
the slack yij of at least one of the adjacent edges is set to be 0 or uij − lij , as
the solution is induced by a spanning tree structure.

Waiting Edge Cuts. To improve the probability of finding a single node cut
that is feasible, i.e., respects the time constraints 0 ≤ yij ≤ uij − lij for all
(i, j) ∈ A, we consider cuts which are induced by an edge (i, j) with a small
feasible time span uij − lij . By doing so, the slack of the edge (i, j) does not
need to be changed, thus increasing the probability that the cut is feasible. Here
we use another characteristic of timetabling instances, namely that activities
with small time spans uij − lij are usually the activities of Await. We hence
denote the class of cuts that are induced by a partition

{i, j} ·∪ E \ {i, j} for (i, j) ∈ Await

as waiting edge cuts.
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Random Node Cuts. (1) is only a sufficient condition, i.e., cuts may still be glob-
ally improving, when they are not locally improving. In our method of random
node cuts we apply feasible single node cuts, neglecting if (1) holds or not, i.e.,
whether they improve locally. Hence we force the inner loop of the modulo net-
work simplex algorithm to start again, even at the cost of a possible temporary
higher objective value.

Multi Node Cuts. The next approach investigates the class of cuts which are
created by iteratively expanding single node cuts. Let a cut c that is induced
by the partition V1 ·∪V2 and a single node cut ci for node i ∈ V2 be given in a
directed graph G(V, E). Then we call the cut that is induced by (V1 ∪ {i}) and
(V2 \ {i}) the exclusive union of these cuts and denote it by c⊕ ci. The following
lemma shows that all cuts can be written by using single node cuts.

Lemma 1. Let a cut c in a graph G(V, E) be given by its node partition V1 ·∪V2.
Then c can be written as the exclusive union of single node cuts:

⊕
i∈V1

ci = c.

Proof.
First, let e ∈ c. Then there holds either e = (i, j) or e = (j, i) with i ∈ V1 and
j ∈ V2. As there is a single node cut for node i, namely ci, but by construction
none for node j, e is contained in the exclusive union of the single node cuts.

Now let e ∈ ⊕ci. By construction of the single node cuts again either source
or target of the edge is in V1, while the other node is in V2. Therefore, e ∈ c. �

As a direct consequence, the change of a timetabling solution by applying any
cut with a δ is equivalent to the successive application of single node cuts with
this same δ. In fact, both approaches of defining a cut by its node partition or
by its single node cuts are equivalent, as the following theorem states.

Theorem 1. Let G(V, E) be a connected graph and c = ⊕i∈Ici a nonempty cut,
given by single node cuts and induced by the partition V1 ·∪V2. Then I = V1 (or
I = V2 if the orientation of the cut is neglected).

Proof. – First, let V1 � I. Assume that there are adjacent nodes i, j ∈ I with
i ∈ V1 und j /∈ V1. Then (i, j) /∈ ⊕i∈Ici, but (i, j) ∈ c - therefore, such
adjacent nodes cannot exist. As c is nonempty, I = V cannot hold. As G
is connected, there is a node i ∈ I \ V1 that is adjacent to a node j /∈ I.
Therefore the edge (i, j) would be contained in ⊕i∈Ici, but not in c.

– Now, let I � V1. Then there holds ⊕i∈Ici = ⊕j∈V \Icj up to orientation and
this case is reducible to V2 � J with J = V \ I, which has already been
considered.

– Finally, let I ∩ V1 �= ∅, I ∩ V2 �= ∅ and I no superset of V1 or V2. To have
c = ⊕i∈Ici, for every edge (i, j) with i ∈ V1 and j ∈ V2 w.l.o.g. there has to
hold i ∈ I and j /∈ I. From the assumptions, there is i ∈ V2∩I and j ∈ V2 \I.
As the graph is connected, there is a path from i to j. i cannot be adjacent
to a node in V1, as then i ∈ I could not hold. There fore there is an edge
(x, y) with x ∈ V2 ∩ I and y ∈ V2 \ I, that is contained in ⊕i∈Ici, but not in
c. �
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We will call a cut that is given by the node partition V1 ·∪V2 connected, if both
subgraphs G1(V1, EV1) and G2(V2, EV2) are connected. We can state the follow-
ing criterion for the connectivity of a cut.

Corollary 1. A cut c = ⊕i∈Ici in a graph G(V, E), where each of the ci is a
single node cut, is connected if and only if the subgraphs that are induced by I
and V \ I are connected.

Similar to connected components in graphs, we can define connected components
of cuts. Let a cut c induced by the node partition V1 ·∪V2 and a subcut c′ ⊂ c,
induced by V ′

1 ·∪V ′
2 with V ′

1 ⊂ V1 and V2 ⊂ V ′
2 , be given. c′ is called connected

component of c, if c′ is connected and there is no cut c′′ with c′ � c′′ ⊂ c, that
is connected as well. We can easily conclude the following property:

Theorem 2. Connected components of a cut are pairwise disjoint.

Proof.
Let c1 and c2 be connected components of a cut c with c1∩c2 �= ∅. Then c′ := c1∪
c2 is connected and c1 � c′ ⊂ c. By the definition of connected components, c1

and c2 cannot share a common edge. �

Therefore, if a cut is applied to a timetabling solution, then the objective value
changes according to the sum of changes on every single edge. As connected
components are disjoint, the objective value changes according to the sum of
changes in every component.

Corollary 2. In a timetabling solution the change of the objective value by ap-
plying a cut c with δ ∈ [0, T − 1] equals the sum of changes of the connected
components.

This means that the search for a locally improving cut in an Event-Activity-
Network can be restricted to connected cuts. This result is exploited by a greedy
search algorithm, which successively enlarges a set of nodes starting from a
randomly chosen single node i until the induced cut is locally improving. The
algorithm therefore restricts its search space to connected cuts. We refer to the
resulting cuts as multi node cuts.

5 Experiments

In this section the performance of the proposed improvement techniques is eval-
uated. For our experiments we used close to real-world instances of the LinTim
toolbox [11]. All calculations were carried out on machines with 64 Bit Dual Core
AMD Opteron Processors running at 2000 MHz with 12 GB working memory.
The average need for RAM was only at about 50 MB. Table 1 gives an overview
about the sizes of the five instances we considered.

To find a feasible spanning tree structure we applied a constraint propagation
approach that is able to find a feasible solution within some minutes of compu-
tation time. The modulo parameters found are then fixed and the dual problem
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Table 1. Instance sizes

Instance Events Activities

Small 3533 5575
Medium 1 3664 6378
Medium 2 3668 6556
Large 1 4184 7061
Large 2 4873 7898

Table 2. Objective value improvement in percent with respect to initial solution using
steepest descent. The best result per row is written in bold font.

Instance Single Node Waiting Edge Random Multi Node
Cuts Cuts Cuts Cuts

Small 17 18 21 28
Medium 1 24 20 24 29
Medium 2 17 17 20 29
Large 1 23 23 27 34
Large 2 20 15 26 32

is solved with the help of the classic network simplex method. The resulting
underlying spanning tree structure of the network simplex is then used as input
for the modulo network simplex.

We evaluate the possible combinations between search methods for the inner
and the outer loop of Figure 4 in the following ways:

1. For the inner loop, we use the steepest descent method. This is the original
choice of the modulo network simplex. To escape local optima in the outer
loop, we either use single node cuts, waiting edge cuts, random cuts or multi
node cuts.

2. We fix the usage of single node cuts as the search method of the outer loop,
as in the original method. For the inner loop, we use steepest descent, modus
percentage and modus first quality.

For the first set of experiments, Table 2 gives an overview about the relative
improvement of the initial solution. In the case of single node, multi node and
waiting edge cuts, the search was performed until no more feasible and improving
cut was found. This cannot be applied to random cuts - we hence restricted the
number of random node cuts to three.

On average, using single node cuts improves the objective value of the initial
solution by 20.2%, while the usage of multi node cuts yields an average improve-
ment of 30.4%. For every single instance, the multi node cuts performed best,
with a difference of up to 12%. Waiting edge cuts perform similar to single node
cuts. In spite of their simplicity, random cuts yield surprisingly good results.

Concerning the second set of experiments, Table 3 compares the runtimes in
seconds. Modus first quality and modus percentage outperform steepest descent
on every instance.
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Table 3. Runtimes in seconds using single node cuts. The best result per row is written
in bold font.

Instance Steepest Modus Modus
Descent First Quality Percentage

Small 1747 956 895
Medium 1 4223 1661 1727
Medium 2 3385 1531 1660
Large 1 4878 2409 1464
Large 2 6685 3575 3233

Table 4. Objective value improvement in percent with respect to initial solution using
single node cuts. The best result per row is written in bold font.

Instance Steepest Modus Modus
Descent First Quality Percentage

Small 17 20 21
Medium 1 24 22 25
Medium 2 17 19 19
Large 1 23 26 22
Large 2 20 26 29

The results show that the runtimes are improved by up to 70% in the case
of Large 1, with average runtimes of 4184 seconds for steepest descent, 2026
seconds for modus first quality and only 1799 seconds for modus percentage.

Of course, achieving small runtimes with high objective values would be a
Pyrrhic victory - in fact, the ”fastest algorithm” would be to do nothing, i.e.,
not to improve the given solution at all. We therefore show the respective solution
quality in Table 4.

It can be seen that the modi percentage and first quality significantly improve
the calculation times compared to the method from [8], while being competitive
in quality.

6 Conclusion

We have analyzed a powerful method for solving the PESP in the case of
timetabling instances. Specific problem properties have been exploited and used
to improve the runtime per iteration as well as avoid getting stuck in a local min-
imum. The superiority of some of the possible combinations of these approaches
was demonstrated on timetabling instances.

Further research includes using the modulo network simplex method for ro-
bustness purposes. Basically, reducing the average slack results in timetables
that have shorter traveling times for passengers, but also less buffer times and
thus are more sensitive to disruptions. When using the neighborhood search
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as a ”black box” model for other objective functions like a preferable distribution
of buffer times, we will be able to use the presented methods to create solutions
that can cope better with unavoidable disruptions.
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Abstract. Recent research on document retrieval for general texts has
established the virtues of explicitly representing the so-called document
array, which stores the document each pointer of the suffix array belongs
to. While it makes document retrieval faster, this array occupies a sig-
nificative amount of redundant space and is not easily compressible. In
this paper we present the first practical proposal to compress the docu-
ment array. We show that the resulting structure is significatively smaller
than the uncompressed counterpart, and than alternatives to the docu-
ment array proposed in the literature. We also compare various known
algorithms for document listing and top-k retrieval, and find that the
most useful combinations of algorithms run over our new compressed
document arrays.

1 Introduction

Document retrieval queries aim at finding the documents of a text collection
most relevant to a given query, where relevance is usually defined on frequency
grounds. Such queries have been classically privative of Natural Language col-
lections and handled with inverted indexes. In the last decade, however, there
have been various research efforts towards generalizing them to arbitrary text
collections, where the texts can correspond to ADN or protein sequences, text in
Oriental languages (some of which cannot be easily split into words), program
code, and symbolic sequences in general. See Gagie et al. [7] for a recent survey.

Muthukrishnan [16] established important milestones in this area. He pro-
posed, among other less popular ones, the following fundamental document re-
trieval queries, which form the basis of more sophisticated retrieval activities:

– Document listing: List the ndoc distinct documents where a pattern p ap-
pears as a substring.

– Frequency computation: Same as above but also compute the number of times
p appears within each returned document.

– Top-k retrieval: Find the k documents where p appears most often.
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Assume the text collection is formed by n documents, which are strings over
alphabet [1, σ], and let us call T [1, N ] their concatenation. Classical text indexes
[1,14] can find all the occ occurrences of pattern p in T in time O(|p| + occ)
and then filter the ndoc distinct documents. This solves document listing, but
occ can be much larger than ndoc. Muthukrishnan [16] showed how to solve the
document listing query in O(|p| + ndoc) time, which is essentially optimal.

A serious concern on this solution is space, however. It requires O(N lg N) bits,
much more than the N lg σ bits required by the text itself. Part of this space
is used by a suffix tree [1], which can be easily replaced by one of the many
compressed suffix arrays (CSAs) of the literature [17,4]. Such CSAs represent a
suffix array [14] plus the text, all within compressed space |CSA| ≤ N lg σ.

The other part of the space owes to a so-called document array. Much research
has been carried out around the problem of representing it in compact form
[22,20,11,8,3]. The current situation is that one either has to spend N lg n bits
for representing the document array using a wavelet tree [10], or one can simulate
it using just o(N) bits on top of |CSA|. The second choice is clearly preferable
both in theory and in practice for document listing.

However, document listing is just the most elementary activity. In order to
rank documents by importance to the query, frequency computation and top-k
retrieval are essential, and in this case the situation is very different. The wavelet
tree representation directly computes frequencies and supports heuristics for top-
k queries. The alternative simulation requires now the space for the global CSA
and the CSA of each individual document. This turns out to be slower and
require much more space in practice than the wavelet-tree based solution [3].

Therefore, the current status is that, if we wish not only to carry out document
listing, but also to report frequencies, or to do top-k retrieval, the best alternative
in practice is to store a wavelet tree representing the document array, which
requires N lg n bits. This is possibly much more than the (at most) N lg σ bits
required by a CSA (which by itself represents T and offers classical indexed text
searches). The known techniques to compress wavelet trees [10] do not work for
the document array.

In this paper we introduce the first compressed representation of wavelet trees
that is useful for the document array. The representation uses grammar compres-
sion (precisely, RePair [12]) to exploit repetitions in the array. Such repetitions
arise as a consequence of the compressibility of the text collection [9,7]. Our
experiments over various collections show that our technique obtains significant
space reductions, up to 40% of the original wavelet tree sizes. In exchange, op-
eration times are higher. Yet we confirm that the time (and space) is still better
than the alternative of not using wavelet trees for the problem of document
listing with frequencies. We also study the wavelet trees in combination with
various techniques for top-k retrieval [11,3], where our compressed wavelet trees
offer a very attractive space/time tradeoff.

Our representation might have independent interest, as it is the first in
grammar-compressing a sequence while supporting symbol rank and select op-
erations on it. Those operations are useful in a wealth of applications.
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2 Related Work

Muthukrishnan’s solution [16] made use of the so-called document array. A suffix
array A[1, N ] points to all the suffixes of T [1, N ] in lexicographic order [14]. All
the occurrences of any p in T are pointed from an interval A[sp, ep], which can
be found in time O(|p| lg N) (or O(|p|) with the help of the suffix tree [1]). The
document array D[1, N ] is such that D[i] tells the document suffix A[i] belongs
in T . So the document listing problem is solved by first finding [sp, ep] using
A, and then listing the distinct values in D[sp, ep]. To do this in O(ndoc) time,
Muthukrishnan uses a second array C[1, N ], which at C[i] stores the last j < i
such that D[j] = D[i]. C must also answer range minimum queries (RMQs),
telling in constant time the position of the minimum in a range of C cells.

In order to reduce space, the suffix tree or array can be replaced by a com-
pressed suffix array (CSA) [17,4], which stores both A and T in compressed
space, for example within |CSA| = (1 + 1

ε )H0(T ) + o(n lg σ) bits [19] or |CSA| =
nHk(T ) + o(n lg σ) bits [5,10], where Hk(T ) ≤ lg σ is the empirical k-th order
entropy of T [17]. CSAs find [sp, ep] in time as good as search(p) = O(|p| lg N)
[19] or even search(p) = O(|p| lg σ) [5,10]. They compute any A[i] or A−1[i]
value in time tA, for example tA = O(logε N) [19] or tA = O(log1+ε N) [5,10].
They can also reproduce any text substring.

The document array D, however, requires N lg n bits, which is significant and
totally redundant: one can infer D[i] from A[i] and some information on the
limits of the documents in T . Array C is even more space-consuming, N lg N
bits, and equally redundant. The RMQ data structure [6] adds 2N + o(N) bits.
This extra space limits the applicability of the solution to document retrieval.

There have been various approaches to reduce the space of Muthukrishnan’s
solution. Mäkinen and Välimäki [22] used a wavelet tree [10] to represent D.
While the wavelet tree takes essentially the same space of the plain representa-
tion, N lg n+o(N lg n) bits, it can emulate array C, which is thus not represented.
The time for document listing becomes O(search(p) + ndoc lg n). The wavelet
tree also allowed them to compute the frequency of p within any document, in
time O(lg n). The RMQ data structure was still necessary.

Gagie et al. [8] showed that the wavelet tree was powerful enough to get
rid of the whole Muthukrishnan’s algorithm. The wavelet tree alone, through a
so-called range quantile operation, was able to deliver the distinct elements in
D[sp, ep], with their frequencies, in O(lg n) time per delivered item.

Culpepper et al. [3] explored different heuristics to solve the top-k problem
using this very same wavelet tree. They found out that their so-called “greedy”
heuristic was able to find the top-k documents much faster than listing them all
and choosing the most frequent ones. They also showed that the structure was
competitive with inverted indexes on Natural Language text collections.

A parallel development started with Sadakane [20]. He proposed to store
a bitmap B[1, N ] marking with a 1 the positions in T where the documents
started. B was enhanced with rank operations: rank(B, i) tells the number of
1s in B[1, i]. Hence D[i] = rank(B, A[i]) could be computed with very little
extra space on top of the CSA: A compressed representation of B requires just
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n lg N
n + O(n) + o(N) bits and supports rank in constant time [18]. To emu-

late Muthukrishnan’s algorithm, Sadakane showed that access to C is not really
needed, just RMQ queries on C. He designed an RMQ structure using 4N +o(N)
bits that does not need to access C. The time to list each document is O(tA).
Both in theory and in practice, this solution is competitive in time and uses
much less space than those based on wavelet trees, yet it only solves document
listing. Hon et al. [11] showed how to reduce the extra space to just o(N) by
sparsifying the RMQ structure, yet the time raises to O(tA lg1+ε N).

For computing frequencies, Sadakane [20] proposed to store a CSA for each
document d of the collection. By computing A and A−1 a constant number of
times over the global CSA and that of document d, it is possible to compute
frequencies on document d. An extra, symmetric, RMQ data structure must be
stored for this sake. Thus the space is 2|CSA| + O(N) bits, which may compare
favorably to the |CSA| + N lg n + o(N lg n) bits needed by wavelet trees. The
time for computing a frequency is O(tA), which again may compare favorably
with wavelet tree’s O(lg n). In practice, however, Culpepper et al. [3] found that
many small CSAs posed a much higher space overhead than that of the global
CSA, so the structure was much larger than the wavelet tree. The speed was
also slower than that offered by wavelet trees. We confirm in this paper that the
solution is still slower than our slower-and-smaller compressed wavelet trees.

Hon et al. [11] showed that the second RMQ data structure introduced by
Sadakane is unnecessary if one accepts an O(lg N) slowdown factor. In the light
of the results of Culpepper et al. [3], this is unlikely to change matters in practice,
because a reduction in 2N bits is insignificant but the slowdown is not. The key
contribution of Hon et al., however, is an algorithm for top-k retrieval with time
guarantees (which the heuristics of Culpepper et al. do not offer). Hon et al.
build a sparse suffix tree on the collection, so that top-k queries over an interval
of multiples of g = k · b, for a parameter b, are precomputed. Thus to solve for
any interval [sp, ep], only O(kb) elements at the extremes must be accessed, their
frequency counted, and possibly inserted into the precomputed result. The extra
space is O((N/b) lg N lg n) bits on top of a solution for computing frequencies.
By choosing b = Θ(lg2+ε N), this space is o(n) and the time for top-k queries is
O(k tA lg3+ε N). Any of the discussed solutions for computing frequencies can be
used, and thus wavelet trees are of interest as a building block of this solution.
There is no comparison in the literature, however, between this technique and
the heuristics of Culpepper et al. [3], which as explained work on wavelet trees.

Thus, the best performance in practice is given by the wavelet tree of D, but
its space is still high. The only clue at compressing it was given by Gagie et al. [7],
who noted that D contains almost the same repetitions of the differential suffix
array [9], and thus a grammar-based compression would reduce its size when
the text is compressible. The practical impact of this theoretical result had not
been verified, however. Moreover, the situation is more complicated because we
do not need to represent D, but the wavelet tree of D, in order to support the
various document retrieval tasks. The main point of this paper is to implement a
grammar-compressed wavelet tree for D and evaluate its practical performance.



Practical Compressed Document Retrieval 197

3 Bitmaps and Wavelet Trees

Given a bitmap B[1, N ], we define, for b ∈ {0, 1}, operation rankb(B, i) as the
number of occurrences of bit b in B[1, i], and selectb(B, j) as the position in B
of the jth occurrence of bit b.

Both operations can be solved in constant time by spending o(N) bits on top
of B [15], or by representing B in compressed form [18]: Let m be the number
of 1s in B, then the total space is m lg N

m + O(m) + o(N).
A wavelet tree [10] represents a sequence S[1, N ] over an alphabet [1, ρ]. At

the root it stores a bitmap B[1, N ] so that B[i] = 0 iff S[i] ≤ ρ/2. The left
child of the root represents the subsequence of S formed by the symbols ≤ ρ/2;
the other symbols form a subsequence at the right child. Those children are
processed recursively over their alphabet ranges, until reaching the leaves. The
wavelet tree has O(ρ) nodes and height �lg ρ�. Its bitmaps add up N�lg ρ� bits.

By using rank and select on the bitmaps, the wavelet tree gives access to
any S[i] in time O(lg ρ), thus it constitutes an alternative representation of S
within about the same size, N lg ρ+ o(N lg ρ) bits. Other wavelet tree traversals
compute also symbol rank and select on S, where the argument b can be any
c ∈ [1, ρ], also in time O(lg ρ). As explained, the wavelet tree is also useful for
other types of queries of interest (in particular) to document retrieval [8,3].

If the compressed bitmap representation is used [18], then the space of the
wavelet tree becomes the zero-order entropy of S, NH0(S) + o(N log σ) [10]. In
our case, however, the zero-order entropy of the document array is likely to be
lg n bits per symbol, unless the document sizes are very different. There is no
relation to the compressibility of the text itself.

4 Grammar Compression of Bitmaps

We describe a grammar-based compression of bitmaps B[1, N ] that supports
rank and select operations on the compressed representation. We focus on Re-
Pair [12] compressor. It successively finds the most frequent pair of symbols in
the text, yz, and replaces it by a new symbol x (which can be involved in further
pairings), adding a new grammar rule x → yz. When all the pairs are unique,
RePair terminates and delivers the remaining sequence, C, and the set of rules,
R. We use a variant that generates a balanced grammar [21], of height O(lg N).

For providing random access we use sampling. Let �(c) = 1 for terminals c,
and for nonterminals let �(x) be the length of the string of terminals x expands
to (that is, �(x) = �(y) + �(z) if x → yz ∈ R). Now let L(i) = 1 +

∑i−1
j=1 �(C[j])

the starting position in B of the symbol C[i] when expanded.
We sample B at regular intervals s. For each position B[i · s] we store P [i] =

(p, o, r), where p is the position in C of the symbol whose expansion will contain
B[i · s], that is, p = max{j, L(j) ≤ i · s}. The second component is the offset
within that symbol, o = i · s−L(p), and the third is the rank up to that symbol,
r = rank1(B, L(p)−1). Finally, we store, for the nonterminals x, the length �(x)
and the number of 1s, r(x), of the string of terminals they expand to.
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To answer rank1(B, i), we compute j = �i/s and P [j] = (p, o, r). We then
start from C[p] with position l = L(p) = i − o and rank r. From position p we
advance in C until l > i. Each symbol of C can be processed in constant time
while l and r are updated, since we know �(x) and r(x) for any symbol x. Finally
we arrive at a position p′ ≥ p so that l = L(p′) ≤ i < L(p′ + 1) = l + �(C[p′]). At
this point we complete our computation by recursively expanding C[p′] = x. Let
x → yz ∈ R, then if l + �(y) ≤ i we expand y; otherwise we increase l by �(y), r
by r(y), and expand z. As the grammar is balanced the total time is O(s+lg N).

For select we obtain the same complexity by first binary searching P to find
the right interval and then traversing sequentially the block, until exceeding the
desired number of 0s or 1s, and finally expanding the last symbol of C.

Let R = |R| be the number of rules in the grammar and C = |C| the length
of the final array. Then a RePair compressor would require O((R+C) lg R) bits.
Our representation requires O(R lg N + C lg R + (N/s) lg N), and the time for
the operations is O(s+lg N). The minimum interesting value for s is lg N , where
we achieve space O((R +C) lg N +N) bits and O(lg N) time for the operations.
We can reduce the O(N) extra space to o(N) by increasing s, which impacts
query times and makes them superlogarithmic.

The scheme can be extended to sequences S[1, N ] over a small alphabet [1, ρ].
The only difference is that the nonterminals x must store rc(x) for each c ∈ [1, ρ].
Similarly we must store ρ rank values at each sampled position. This raises the
overall space to O(Rρ lg N + C lg R + (Nρ/s) lg N). The time stays the same.

In practice. There are several ways to represent R in compressed form. We
choose one [9] that allows for random access to the rules. It represents R in the
form of a directed acyclic graph (DAG) as a sequence SR and a bitmap SB.
A node is identified as a position in SB, where a 1 denotes and internal node
and a 0 a leaf. The two children of SB[i] = 1 are written next to i, thus we
obtain all the subtree by traversing SB[i . . .] until we have seen more 0s than 1s.
The 0s in SB are associated to positions in SR (that is, SB[i] = 0 is associated
to SR[rank0(SB, i)]). Those leaf symbols are either terminals or nonterminals.
Nonterminals are actually positions in SB that must be recursively expanded.
This DAG representation takes, in good cases, as little as 50% of the space
required by a plain array representation of R [9].

In order to reduce the O(R lg n) space required to store �(x) and r(x) for
nonterminals x, we store the data only for some of them and obtain the others
via expanding the nonterminals. Given a parameter δ, we guarantee that no
nonterminal in C requires expanding at depth more than δ to determine its
length and number of 1s. That is, we expand each C[i] until depth δ or until
reaching an already sampled nonterminal. Those nonterminals at depth δ are
then sampled. We set up a bitmap Bδ where each sampled nonterminal has a 1,
and store �(x) and r(x) of marked nonterminal x at an array E[rank1(Bδ, x)].

We use a RePair implementation by ourselves (available at www.dcc.uchile.
cl/gnavarro/software). It has a variant that, although does not guarantee
balancedness, has always produced a grammar of very small height in our exper-
iments. The variant that ensures balancedness harms compression in practice.
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5 Grammar Compression of Wavelet Trees

Given now a sequence S[1, N ] over alphabet [1, n], we build the wavelet tree of
S and represent its bitmaps using the compressed format of Section 4. Consider
a RePair representation (R, C) of S, where the sizes of the components is R and
C as before. Now take the top-level bitmap B of the wavelet tree. Bitmap B
can be regarded as the result of mapping the alphabet of S onto two symbols,
0 and 1. Thus, a grammar (R′, C′) where the terminals are mapped accordingly,
generates B. Since the number of rules in R′ is still R and that of C′ is C,
the representation of B requires O(R lg N + C lg R + (N/s) lg N) bits (this is of
course pessimistic; many more repetitions could arise due to the mapping).

The bitmaps stored at the left and right children of the root correspond to
a partition of S into two subsequences S1 and S2. Given the grammar that
represents S, we can obtain the one that represents S1 and S2 by removing all
the terminals in the right sides that do not belong to the proper subalphabet,
and removing rules with right hands of length 0 or 1. Thus at worst the left and
right side bitmaps can also be represented within O(R lg N + C lg R) bits each,
plus O((N/s) lg N) for the whole level. Added over the n wavelet tree nodes, the
overall space is no more than n times that of the RePair compression of S. The
time for the operations raises to O((s + lg N) lg n).

Although this does not look alphabet-friendy, and actually the upper bounds
are no better than applying the method of Section 4 on a large alphabet (ρ = n),
the analysis is a (very) pessimistic upper bound. Still one can expect that the
repetitions exploited by RePair get cut by half as we descend one level of the
wavelet tree, so that after descending some levels no repetition structure can be
identified and RePair compression becomes ineffective.

In practice. As n is large, we use a wavelet tree design that concatenates all the
bitmaps of the same wavelet tree level [2]. We use one set of rules R per level.

As the repetitions that could be present in S get shorter when we move deeper
in the wavelet tree, we evaluate at each level whether our RePair-based compres-
sion is actually better than an entropy-compressed representation [18] or even a
plain one, and choose the one with smallest space. Moreover, as rank and select
operations are significantly slower on our RePair-compressed representation, we
use a parameter 0 < α ≤ 1 so that we prefer RePair compression only when its
size is α times that of the alternatives, or less.

6 Experimental Results

In this section we compare various practical alternatives to document listing and
top-k document retrieval. We have chosen four collections of different nature,
such as English, Chinese, biological, and symbolic sequences. We show the bpc
of its global CSA divided by lg σ to give an idea of its compressibility ratio.

ClueChin: A 2.3 MB sample of ClueWeb09 (http://boston.lti.cs.cmu.edu/
Data/clueweb09), formed by 23 Web pages in Chinese. Ratio: 5.34/7.99=0.68.
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ClueWiki: A 141 MB sample of ClueWeb09, formed by 3,334 Web pages from
the English Wikipedia. Ratio: 4.74/6.98=0.68.

KGS: A 75 MB collection of 18,838 sgf-formatted Go game records from year
2009 (http://www.u-go.net/gamerecords). Ratio: 4.48/6.93=0.65.

Proteins: A 60 MB collection formed by 143,244 sequences of Human and
Mouse proteins (http://www.ebi.ac.uk/swissprot). Ratio: 6.02/6.57=
0.92.

Our tests were run on a Intel Core2 Duo machine, 3Ghz, with 8GB RAM and
6MB cache. Our code was compiled using g++ with full optimization.

As the CSA search for the interval [sp, ep] corresponding to a pattern p is
common to all the approaches, we do not consider the time for this search
(which never exceeds 0.02 milliseconds per query) nor the space for that global
CSA (shown for each collection in the previous itemization), but only the extra
space/time to support document retrieval once [sp, ep] has been determined. We
give the space usage in bits per text character (bpc), and measure user times.

Sadakane’s representation [20] builds a separate CSA for each document.
For this sake we use a very competitive variant [13,2] available at PizzaChili
(http://pizzachili.dcc.uchile.cl/indexes/SSA). It uses a plain and fast
representation for bitmap B (from http://libcds.recoded.cl), and an effi-
cient implementation for the two RMQs (from http://www.uni-ulm.de/in/
theo /research/sdsl). For the space we charge only 2N bits for each RMQ
structure and zero for B, to account for possible future space reductions.

Our grammar compressed wavelet trees offer a space/time tradeoff depending
on the α value, which can be the same for all levels, or decreasing for the deeper
levels (where one visits more nodes and thus being slower has a higher impact).
Another space/time tradeoff is obtained with the sampling parameter s. We only
show one alternative with α = 1 and one best-performing alternative with α < 1.

As explained, alternative solutions [20,11] for the basic document listing prob-
lem are hardly improvable. They require very little extra space and are likely to
perform similarly to wavelet trees in time. Our experiments focus on document
listing with frequencies, and in top-k retrieval.

6.1 Document Listing with Frequencies

Previous work [3] has demonstrated that the quantile approach [8] is clearly
preferable, in space and time, over previous ones based on wavelet trees [22].
Therefore we carry out the quantile algorithm over a plain wavelet tree repre-
sentation (WT-Plain), over one where the bitmaps are statistically compressed
[18] (WT-RRR), and over our RePair-compressed ones. As explained, we show
a variant with α = 1 (WT-RP, which at each level chooses the lowest space
between RePair, plain, or statistically compressed bitmap), and the best per-
forming policy we tried for choosing α < 1 values (WT-RP alpha).

We also compare Sadakane’s approach [20] (SADA) on collection ClueChin.
The construction times over the other collections, with many more documents,
was extremely high. This tiny collection will be sufficient to expose the practi-
cality problems of this approach.
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Fig. 1. Experiments for document listing with term frequencies

We chose 10,000 random intervals of the form [sp, ep], considering values for
ep − sp from 1, 000 to 10, 000, and listed the distinct documents in the interval
with their frequencies. The relative positions of the curves were the same for
every ep−sp value, so for lack of space we show just the plots for ep−sp = 10, 000.

Fig. 1 shows the results. Even on ClueChin, with just 23 documents, the space
overhead of indexing them separately makes Sadakane’s approach impractical
(even with the generous assumptions on extra bitmaps and RMQs). It is also
slower. For this reason we do not compare Hon et al.’s variant [11], that achieves
|CSA| + o(n) extra space, because it will be much slower and the reduction on
space (by 4N bits), would be insufficient to make it competitive.

The results are different depending on the type of collections, but in general
our compressed representation is able to reduce the space of the plain wavelet
tree by a wide margin. The compressed size is 40% to 75% of the original size.
The exception is Proteins, where the text is mostly incompressible and this
translates into the incompressibility of the document array.

While the WT-RP is significantly slower than WT-Plain (up to 20 times slower
in the most extreme case), the WT-Alpha versions provide useful tradeoffs. They
achieve compression ratios of 50% to 80% and significantly reduce time gaps, to 7
times slower in the most extreme case. The answer time over the interval [sp, ep]
of length 10,000 is around 10-20 milliseconds (msecs). We note that our slowest
version is still 10 times faster than SADA. It is also much faster than listing all
the documents individually (e.g., 500 times faster on ClueChin).
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6.2 Top-k Retrieval

Culpepper et al. [3] present and test two heuristics for top-k retrieval, which run
on wavelet trees. The one called greedy is always superior, so we test that one in
this paper, over our different wavelet tree representations.

We also compare Hon et al.’s structure [11]. Short of implementing it, we
(quite) optimistically simulate its performance by charging zero time and zero
space to some parts of the data structure and search process. We combine it
only with the most promising wavelet tree in each plot.

Recall that the method divides the suffix array A into blocks of fixed length
g. After finding the suffix array interval A[sp, ep] corresponding to a pattern, the
part of the search corresponding to the blocks fully contained in [sp, ep] is solved
with a sampled suffix tree (which we have not implemented and will assume costs
zero space and time). The other two subintervals from sp to the start of the next
block, and from the end of the last block to ep, are solved by brute force, that
is, extracting all the distinct documents and computing their frequency in the
whole interval A[sp, ep]. This part will be actually executed in different ways.
Finally, the candidates obtained by brute force and those given by the suffix tree
are ranked and merged (which we will not do and will assume costs zero).

Various alternatives to extract the values of D and compute their frequency
are considered. WT-RP-HON and WT-RP-alpha HON use the corresponding
wavelet tree variants for this task. In case the interval [sp, ep] contains no blocks,
they switch to Culpepper et al.’s method. On ClueChin we tried other variants
related to Sadakane’s solution [20]. SADA-HON uses Sadakane’s structure just as
in the document listing experiment. HON does not use the two RMQ structures,
but instead maps the start of the interval [sp, ep] to the local CSA using A and
A−1, and then binary searches the end of the local interval by mapping each
probe back to the global CSA [11]. Finally, Search-HON simply searches for p in
the local CSA in order to determine its frequency.

Fig. 2 shows the results. We selected 1,000 substrings at random positions,
of length 3 and 6, and retrieved the top-k documents for each, for k = 1 and
10. Longer patterns produce shorter [sp, ep] intervals. The relative space and
time performance comparisons are similar to those of document listing with
frequencies. Most times are around a few tens of msecs per query.

With respect to Hon et al.’s method, Search-HON and HON are very simi-
lar in time, much slower and 4N bits smaller than SADA-HON. Yet, none of
those variants of the original formulation [11] is competitive in practice. What
is much more interesting is their combination with a wavelet tree. While it is
slightly inferior to Culpepper et al.’s greedy heuristic on collections ClueChin
and ClueWiki, on the other two Hon et al.’s method speeds up the heuristic by
a factor of up to 1.5–6.5 for k = 1 and 2.2–2.5 for k = 10. While this is a space-
and time-optimistic simulation of Hon et al.’s method, it should be quite tight.

Final remarks. We have shown that the wavelet tree is the best data structure
to compute frequencies and support top-k algorithms, and reduced its size by up
to 40% while answering within tens of msecs. Also, theoretical top-k proposals
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[11] are shown to be worth implementing. Yet, even our smaller indexes (except
on the tiny ClueChin) are even bigger than the CSAs of the collections (7-17 vs
4.5-6.0 bpc), thus there is much room for improvement in document retrieval. We
are still far from the asymptotic space optimality achieved for pattern matching.
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Abstract. The Molecular Distance Geometry Problem (MDGP) is the
problem of finding the conformation of a molecule from inter-atomic dis-
tances. In some recent work, we proposed the interval Branch & Prune
(iBP) algorithm for solving instances of the MDGP related to protein
backbones. This algorithm is based on an artificial ordering given to the
atoms of the protein backbones which allows the discretization of the
problem, and hence the applicability of the iBP algorithm. This algo-
rithm explores a discrete search domain having the structure of a tree and
prunes its infeasible branches by employing suitable pruning devices. In
this work, we use information derived from Nuclear Magnetic Resonance
(NMR) to conceive and add new pruning devices to the iBP algorithm,
and we study their influence on the performances of the algorithm.

1 Introduction

Proteins are important molecules formed by chains of smaller molecules called
amino acids. Several experimental techniques, as Nuclear Magnetic Resonance
(NMR), are able to provide some information on interatomic distances in protein
molecules which can be exploited for obtaining the three-dimensional conforma-
tion of the protein. As the protein conformation often enables to give good
clues about the protein function, the conformation determination is of funda-
mental importance. The problem of finding the protein conformation from a list
of inter-atomic distances is known in the scientific literature as the Molecular
Distance Geometry Problem (MDGP) [4]. By nature, the MDGP is a constraint
satisfaction problem, but its solution is usually attempted by employing global
optimization techniques [10]. It usually requires a search in a continuous space
which is a subset of R3n, where n is the number of atoms forming the molecule.
It has been proved that the MDGP is an NP-hard problem [16].
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Since 2006 we have been working on a combinatorial reformulation of the
MDGP. Under suitable assumptions, we are able to discretize the problem and
to reduce the search on a discrete search domain. Even though the problem is still
NP-hard after the discretization [3], it can be efficiently solved by employing a
Branch & Prune (BP) algorithm [9]. It is important to remark that this algorithm
is able to find all solutions to the problem, differently from other algorithms
based on continuous formulations and/or heuristics [10,15].

We refer to this combinatorial reformulation of the MDGP as Discretizable
MDGP (DMDGP) [3]. Let G = (V, E, d) be a weighted undirected graph repre-
senting an instance of the problem: each vertex in V corresponds to an atom,
and there is an edge in E between two vertices if and only if the distance between
the corresponding atoms is known (the distance value is given by the associated
weight d). In order to have the combinatorial reformulation, we need two assump-
tions to be satisfied for a given ordering on the vertices in V . By Assumption 1,
the edge set E must contain all cliques on quadruplets of consecutive vertices,
that is,

∀i ∈ {4, . . . , n} ∀j, k ∈ {i − 3, . . . , i} ({j, k} ∈ E)

and, by Assumption 2, the following strict triangular inequality

∀i = 2, . . . , n − 1, di−1,i+1 < di−1,i + di,i+1,

must hold.
Assumption 1 ensures that the distances between each possible pair of atoms

in any quadruplet of consecutive atoms are known. Moreover, if Assumption 2
holds, there cannot be triplets of consecutive atoms that are perfectly aligned.
Supposing that positions for the atoms are searched by following the same or-
dering given to the vertices of V , there exist at most two possible positions in
which each atom can be placed if these two assumptions are satisfied. This leads
to the definition of a discrete search domain, which has the structure of a tree.
This tree can be constructed in the practice by exploiting distances that must
be known by Assumption 1. Moreover, the considered instance can also contain
other distances, that we can use for pruning branches of the tree in order to
focus our searches on its feasible branches only. This is the main idea behind the
BP algorithm [9].

The basic version of this algorithm has however two main limitations. First of
all, exact distances should be available in order to construct the discrete search
domain, whereas real-life NMR data are usually noisy, so that lower and upper
bounds on the distances are actually known. Moreover, given any atom of the
protein, there must be at least 3 distances concerning this atom, otherwise As-
sumption 1 cannot be satisfied. This property is quite difficult to be satisfied by
NMR instances, because the number of available distances is usually not suffi-
cient, and only distances related to particular atoms, mainly pairs of hydrogens,
are actually available. Therefore, even though the BP algorithm is extremely
efficient in its basic version, it is unfortunately mainly suitable for simulated
instances of the DMDGP, and not for NMR instances.
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We recently overcame these two issues by introducing a hand-craft ordering for
the atoms of the protein backbones, and by proposing an extension of the BP algo-
rithm which is based on such an ordering.This ordering allows us to discretize a full
class of MDGPs, the one which is related to protein backbones, even if only noisy
distances between pairs of hydrogens are available. This is possible because all dis-
tances used in the construction of the discrete search domain can be computed a
priori by information on the chemical composition of the protein backbones. The
distances obtained by NMR are only used for pruning purposes. We shall refer to
this extension of the BP algorithm as interval BP (iBP) [6].

The iBP algorithm is able to consider NMR instances related to protein back-
bones. However, in our previous publications [5,6], we only presented computa-
tional experiments where simulated data were considered. Indeed, when we firstly
tried to solve NMR instances by iBP, we found out that the available informa-
tion on the distances was not sufficient for efficiently pruning the search domain.
For this reason, we decided to conceive new pruning devices, with the aim of
identifying sooner during the search infeasible parts of the search domain. These
new pruning devices are all based on other information (rather than distances)
that NMR experiments can provide. We also analyze the influence of each newly
added pruning device on the performances of the iBP algorithm.

The rest of the paper is organized as follows. In Section 2, we give a brief
description of the iBP algorithm and of the artificial ordering for the protein
backbones which allows the discretization of the problem. New pruning devices
are presented in details in Section 3, and computational experiments on NMR
instances are given in Section 4. Conclusions are drawn in Section 5.

2 The Interval Branch and Prune

In order to solve DMDGPs where interval data are considered, we recently
defined an artificial ordering for the atoms of the protein backbones. In this
section, we describe this particular artificial ordering and we discuss the iBP al-
gorithm, that is based on this ordering. For more details, the interested reader is
referred to [5,6].

Let us start by assigning the following ordering to the atoms of the first amino
acid of the considered protein:

r1
PB = {N1, H1, H0, C1

α, N1, H1
α, C1

α, C1}.

Note that the superscripts indicate the amino acid to which each atom belongs.
One of the hydrogens bound to N1 (in general, there is only one hydrogen) is
indicated by the symbol H0. The carbon C1

α and the nitrogen N1 appear twice
in the sequence. This is done in order to reduce the relative distances between
pairs of atoms in the ordering, and also in order to consider the distances between
copies of the same atom (that must be equal to 0). The other carbon of the first
amino acid, the atom C1, is considered, in this case, only once. Let us now assign
the following ordering to the atoms of the second amino acid:

r2
PB = {N2, C2

α, H2, N2, C2
α, H2

α, C2, C2
α}.
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Fig. 1. The hand-craft artificial ordering rPB

This sequence of atoms is used for building a bridge between the first amino
acid, and the third one, from which a generic ordering is considered. In fact, the
ordering defined on the second amino acid is quite similar to the generic one.
Atoms are considered more than once, and, in particular, the carbon C2

α appears
in the sequence 3 times. This is the ordering for the generic amino acid (from
the third to last but one):

ri
PB = {N i, Ci−1, Ci

α, Hi, N i, Ci
α, Hi

α, Ci, Ci
α}.

The nitrogen N i is considered twice, the carbon Ci
α is considered 3 times, and the

carbon Ci−1 belonging to the previous amino acid is repeated among the atoms
of the amino acid i. In total, for each amino acid, we have 4 copies of atoms that
already appeared somewhere else in the sequence. Note that hydrogen atoms are
never duplicated. Since the last amino acid contains a few atoms more, this is
the ordering that we consider:

rp
PB = {Np, Cp−1, Cp

α, Hp, Np, Cp
α, Hα, Cp, Cp

α, Op, Cp, Op+1}.

Note that this is the only case in which oxygen atoms appear. The two oxygens
Op and Op+1 present in the last residue rp

PB correspond to the two oxygens of
the C-terminal carboxyl group COO− of the protein.

Let us indicate by the symbol rPB the defined artificial ordering on the whole
protein backbone:

rPB = {r1
PB , r2

PB, . . . , ri
PB , . . . , rp

PB}.

Fig. 1 shows the hand-craft ordering for a small protein backbone formed by 3
amino acids. It is constructed so that, for each atom v ∈ V , the three edges
(v − 3, v), (v − 2, v) and (v − 1, v) are always contained in E. The corresponding
distances are obtained from known bond lengths and bond angles, that only
depend from the kind of bound atoms. The two edges (v − 2, v) and (v − 1, v)
are always associated to exact distances, whereas only the edge (v − 3, v) may
be associated to an interval distance. In particular, there are three different



210 A. Mucherino et al.

Algorithm 1. The iBP algorithm
1: iBP(j, r, d, D)
2: if (rj is a duplicated atom) then
3: iBP(j + 1, r, d, D);
4: else
5: if (d(rj − 3, rj) is exact) then
6: b = 2;
7: else
8: b = 2D;
9: end if

10: for k ∈ {1, . . . , b} do
11: compute the k-th atomic position xk

rj
for the rj-th atom;

12: check the feasibility of position xk
rj

using pruning devices;

13: if (xk
rj

is feasible) then
14: if (j = |r|) then
15: a solution x is found, print it;
16: else
17: iBP(j + 1, r, d, D);
18: end if
19: end if
20: end for
21: end if

possibilities. If d(v−3, v) = 0, then v represents a duplicated atom, and therefore
the only feasible coordinates for v are the same of its previous copy. If d(v−3, v)
is an exact distance, the standard discretization process can be applied, and two
possible positions for v can be computed. Finally, if d(v − 3, v) is represented
by an interval, we discretize the interval and take D sample distances from it.
For each sample distance, we apply the standard discretization process. In this
case, 2× D possible atomic positions can be computed for v. As a consequence,
the discrete search domain is a tree, which is not necessarily binary (this would
require that all distances d(v − 3, v) are exact) [5].

Algorithm 1 is a sketch of the interval BP (iBP) [6]. It essentially requires 4
input arguments: the index j (in the ordering given to V ) of the current atom
to be placed, the artificial ordering r, the set of distances d (which can be either
exact or represented by intervals), and the number D of sample distances used
for discretizing interval distances. The main focus of this paper is on line 12 of
Algorithm 1: the pruning devices that are used for discovering infeasible atomic
positions.

3 Pruning Devices

Pruning devices can be used in the iBP algorithm for pruning away infeasible
branches of the discrete search domain. In this work, we study the influence
of pruning devices on the performances of the algorithm. Each of such prun-
ing devices is based on a different kind of information which can be obtained
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through NMR experiments. The Direct Distance Feasibility (DDF) device (see
Section 3.1) considers the available lower and upper bounds on the distances
between hydrogen atoms. The Torsion Angle Feasibility (TAF) device (see Sec-
tion 3.2) considers instead the lower and upper bounds on the protein backbone
torsion angles. Finally, the Secondary Structure Feasibility (SSF) device (see Sec-
tion 3.3) is based on the so-called chemical shift index of spin nuclei of the atoms
Cα and Hα of each amino acid. Indeed, as shown in [11,18], these indices are
strongly related to the secondary structures to which each amino acid belongs.
The technique described in [17], for example, is able to compute torsion angle
restraints in secondary structures from chemical shift indices, with a precision
of about 10◦.

3.1 Direct Distance Feasibility (DDF)

NMR experiments are able to provide a list of lower and upper bounds on some
distances between pairs of hydrogen atoms of the molecule. The Direct Distance
Feasibility (DDF) pruning device is based on the idea of pruning atomic positions
for which these lower and upper bounds are not satisfied. DDF has been widely
used in our previous publications: even though it represents a very basic test, and
it is easy to implement, DDF allows us to discard large parts of the discrete search
domain very efficiently on sets of artificial instances [5,7,8,12,14]. However, when
we tried to consider real NMR data, we noticed that the range defined by these
lower and upper bounds is so large that DDF is not able anymore to sufficiently
prune branches of the tree. This causes the multiplication of the solutions found
by iBP, where some infeasible solutions are also contained. This is the reason
why we needed to add new pruning devices in order to consider NMR instances.

3.2 Torsion Angle Feasibility (TAF)

Along with the list of lower and upper bounds on the distances, NMR experi-
ments can also provide information on the torsion angles of protein backbones.
Three different torsion angles can be defined along the backbone main chain
N − Cα − C − N − . . . :

φ ≡ {C, N, Cα, C},
ψ ≡ {N, Cα, C, N},
ω ≡ {Cα, C, N, Cα}.

The angle φ, for example, is the angle defined by the two planes {C, N, Cα}
and {N, Cα, C}. The torsion angle ω is usually very close to π, because there
is a peptide bond that does not allow this subset of atoms to take any other
configuration. The other two angles φ and ψ, instead, can vary in larger ranges.

Even if the iBP algorithm is not based on the torsion angle representation
of the protein backbone, but rather on an atomic representation, the torsion
angles φ and ψ can be easily computed every time the four atoms needed for
their computation are available. As soon as the value for one of these angles is
obtained, we can check if it satisfies the known lower and upper bounds pro-
vided by NMR: the last positioned atom can be pruned if the computed angle
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does not satisfy this constraint. We shall call this pruning device Torsion Angle
Feasibility (TAF). Note that it is useless to consider the torsion angle ω because,
by construction, our artificial backbone always satisfies the constraint ω = π.

3.3 Secondary Structure Feasibility (SSF)

Subsets of atoms of a protein can fold in local structures which are very typical
in proteins. Such local structures are referred to as secondary structures, and
they are mainly represented by α-helices and β-sheets. In both cases, these sec-
ondary structures are stabilized through hydrogen bonds between pairs of amino
acids. More precisely, given a pair (ai, aj) of amino acids belonging to the same
secondary structure, there is a hydrogen bond between the hydrogen H (the one
bound to N) of amino acid ai and the oxygen O (bound to C) of amino acid aj .
This hydrogen bond forces the involved atoms, and in particular the hydrogen
H of ai and the oxygen O of aj , to be very close to each other.

As a consequence, the torsion angles φ and ψ are constrained to vary in
predefined ranges when the corresponding amino acids fold in α-helix or β-
sheet. The bounds on the torsion angles can therefore be refined by using this
information. Moreover, in the case of α-helices, it is known that the amino acid
aj is always ai+4. Therefore, the two atoms which need to be closer than a
certain threshold are known a priori: a new distance (between the hydrogen H
of ai and the oxygen O of ai+4) can be added to the list of known distances. The
possibility to add this new distance for each amino acid in α-helices reflects the
strong regularity of this secondary structure; β-sheets are instead less regular:
for each ai, we do not know a priori the corresponding aj .

In order to reject conformations which do not satisfy the restrictions given
by the protein secondary structures, we use the chemical shift index described
above to predict the subset of amino acids that are supposed to fold in α-helix
or in β-sheet. As mentioned above, the technique described in [17] is able to
find good estimates of the torsion angles related to amino acids having a given
chemical shift index. However, since we do not need in general tight bounds on
the torsion angles, we just consider intervals that are centered in −60◦ for both
φ and ψ (typical values for α-helices), or centered in 135◦ and −120◦ (typical
values for φ and ψ, respectively, in β-sheets) [1].

The Secondary Structure Feasibility (SSF) pruning device is therefore based
on the idea of refining bounds for the torsion angles and/or adding new distances
to the considered instance. This is done by exploiting information obtained by
NMR on the chemical shift index of each amino acid. When the secondary struc-
ture is an α-helix, the oxygen O bound to the carbon C is needed for verifying
the hydrogen bond distance. Note that this oxygen is not included in our artifi-
cial ordering (see Fig. 1). However, we can easily compute its coordinates when
the positions for the atom C (which is bound to O), for the atom N (which is
bound to C) and for the atom H (which is bound to N) are known. Because of
the presence of a peptide bond (the same which forces the torsion angle ω to be
equal to π), the four atoms O, C, N and H lie on the same plane. Bond lengths
are known, and, since bond angles are also known, the distance between O and
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Fig. 2. Distances and angles that allow to compute the distance between the oxygen
O bound to C and the hydrogen H bound to N . The angle β can be computed from

known information regarding the triangle ÔCN . α is instead a bond angle. The distance

between O and H can be computed by solving the triangle ÔNH , where the angle in
N is α + β. Note that the four atoms must lie on the same plane. The same procedure
can also be applied for the other possible configuration, when the torsion angle is 0.

N , as well as the distance between C and H , can be computed. Finally, Fig. 2
shows how to compute the distance between O and H . By exploiting all these
distances and the coordinates for the atoms C, N and H , the coordinates for O
can be uniquely computed.

The coordinates of the oxygen O can be computed by intersecting three spheres
which are centered in the three atoms C, N and H , and having as radii the cor-
responding distances from O. This intersection of spheres can be computed by
solving two linear systems: this same idea is also exploited in a generalization of
the DMDGP presented in [13], and the interested reader can find many details
about this procedure in the reference paper. We just remark that the procedure
can provide in general two possible sets of coordinates for the oxygen O. Because of
numerical errors, this may happen even if only one position for O is actually feasi-
ble. In our implementation, the pruning device SSF is applied only if the computed
coordinates of O are not affected by numerical errors.

4 Computational Experiments

The iBP algorithm has been implemented in C programming language and com-
piled by the GNU C compiler v.4.1.2 with the -O3 flag. We performed the ex-
periments presented in this section on an Intel Core 2 CPU 6400 @ 2.13 GHz
with 4GB RAM, running Linux.

For the first time since we started to work on this topic, we are able to present
computational experiments where real data from NMR are managed by using
an algorithm based on a discrete search. The data related to protein conforma-
tions having different features (number of amino acids, secondary structures)
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Table 1. Experiments on NMR instances. #DDF, #TAF and #SSF provide the num-
ber of times each pruning device found and discarded an infeasible atomic position.
The symbol “–” indicates that the corresponding pruning device was not used in the
experiment.

instance name naa n D iBP calls #DDF #TAF #SSF CPU time

2jmy 15 134 15 4724652 2356670 - - 39
2jmy 15 134 15 10482 5244 2695 - 1
2jmy 15 134 15 31986247 15206046 - 6189223 248
2jmy 15 134 15 33709275 16017742 1069321 5156934 298

2ppz 36 323 20 98807 48586 - - 1
2ppz 36 323 20 91466 43568 41600 - 2
2ppz 36 323 20 414926692 142727215 - 70158539 10263
2ppz 36 323 20 58296108 18941155 10111249 615926 1471

2jwu 56 503 22 6528633 6715391 - - 117
2jwu 56 503 22 11159985 28183553 1029437 - 396
2jwu 56 503 22 20119294 14742376 - 1601915 432
2jwu 56 503 22 44795676 19494850 9450743 5313997 1363

have been downloaded from the Protein Data Bank (PDB) [2], along with the
corresponding conformations already obtained by other methods. For each in-
stance, we study the influence of the implemented pruning devices on the iBP
algorithm. We point out that, in general, NMR instances may not contain the
necessary information for applying all three pruning devices. Distances are al-
ways available, and therefore the pruning device DDF can always be considered.
Bounds on torsion angles and chemical shift indices might be omitted. In the
following, we consider instances where all necessary information is supposed to
be available.

Table 1 shows the results of our experiments for a selected subset of instances.
The instance name is the PDB code of the molecule. 2jmy is a small peptide com-
pletely folded in α-helix. 2ppz is a protein containing only α-helices as secondary
structure, whereas 2jwu contains both secondary structures. All considered in-
stances contain information on distances and torsion angles. Only distances re-
garding the hydrogens H and Hα of each amino acid have been considered: all
others (mainly related to the amino acid side chains) have been discarded. The
information regarding the secondary structures have been obtained from the
conformations downloaded from the PDB (we plan to include a procedure to au-
tomatically interpreting the chemical shift index associated to each amino acid
in future versions of iBP, see for example [17]). In the table, naa is the number of
amino acids forming the protein, whereas n is the length of the artificial ordering
rPB (hence, it consists of the number of atoms in the protein backbone, includ-
ing duplicated atoms). The number D of sample distances which are considered
for discretizing intervals is also specified for each experiment. The behavior of
the iBP algorithm is evaluated through the number of times the algorithm re-
cursively calls itself before finding the first solution, and through the number
of times each pruning device is able to identify and prune an infeasible atomic
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position. If this information is absent (the symbol “–” is used in the table), it
means that the pruning device was not applied in the given experiment. For each
protein, we performed 4 experiments, where the following combinations of prun-
ing devices were considered: DDF, DDF+TAF, DDF+SSF, DDF+TAF+SSF.
The iBP algorithm is stopped as soon as the first solution is found. For each
experiment, we provide the CPU time in seconds.

We consider the number of iBP calls as a valid measure of the influence of
the newly added pruning devices. When the number of iBP calls decreases, the
added pruning devices were able to discard infeasible atomic positions that DDF
was not able to recognize, and lead the search towards feasible positions sooner.
In this case, the CPU time decreases. Moreover, when the number of iBP calls
instead increases, atomic positions previously considered as feasible are declared
infeasible by the new pruning devices, and therefore the search is focused on
different parts of the search domain. In this case, the CPU time may increase,
but there is a gain on the quality of the obtained solution.

Both situations can be seen in Table 1. For the helix 2jmy, the number of
iBP calls decreases of two orders of magnitude when the pruning device TAF is
added to the standard DDF. Indeed, #DDF decreases, because TAF was able
to recognize infeasible atomic positions earlier during the search and was able to
prune larger parts of the search domain. This also happens when TAF is added
to DDF alone or DDF+SSF in the experiments related to the protein 2ppz.
Otherwise, the second situation is more common in these experiments: when a
new pruning device is added, the number of atomic positions pruned by these
devices while working in cooperation increases. Therefore, they are able to lead
the search towards better solutions, i.e. towards solutions where the constraints
related to all pruning devices are satisfied.

We remark that only one solution to the problem is computed in these ex-
periments. At this stage of our work, we cannot analyze yet the influence of the
pruning devices on the whole set of solutions, because the considered pruning
devices, even if they are used all together, are not able to keep under control the
combinatorial explosion due to the recursive calls to iBP. For the same reason,
we cannot judge yet on bio-related aspects of the found solutions in comparison
to the employed pruning devices. We plan to do so in the future by including
the amino acid side chains in our artificial backbone.

5 Conclusions

The iBP algorithm for the MDGP is the first algorithm implementing a discrete
search which is able to manage interval data. It can be currently applied to
MDGPs related to protein backbones, for which we identified a particular arti-
ficial ordering for their atoms that allows us to discretize the problem. In this
work, we studied the influence of pruning devices on a set of NMR instances,
i.e. instances where real data from NMR are contained. The pruning devices are
based on different information that can be obtained through NMR experiments:
a list of bounds on the distances between pairs of atoms of the molecule, a list of
bounds on the torsion angles of the protein backbones, and finally information
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regarding the protein secondary structures. The presented experiments showed
that the newly added pruning devices are actually able to prune away large parts
of the discrete search domain, so that the search can be focused on feasible parts
of the domain. Next step is to consider information regarding the amino acid
side chains. This could allow us to identify only a few feasible solutions for each
considered instance.
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Abstract. We analyze the computational effectiveness of the graph re-
ductions proposed by Sanders [12, 13] to recognize graphs of treewidth
at most four. We show that graphs of treewidth at most four can be
recognized extremely fast by this infinite set of reductions. For graphs of
larger treewidth, however, the added value of the specific reductions for
treewidth four fades away with the width.

1 Introduction

Graphs of bounded treewidth are of particular importance for the development
of polynomial time algorithms for, in general, NP-complete combinatorial op-
timization problems. Hence, there exists a theoretical and practical interest in
determining the treewidth of a graph (cf. [5,6]) as well as characterizing graphs
of low treewidth (cf. [2]), although computing the treewidth of a given graph is
an NP-complete problem [1].

Connected graphs of treewidth one are exactly trees, whereas graphs of
treewidth two correspond to series-parallel graphs [8]. If k is a constant, lin-
ear time algorithms exist to check whether or not the treewidth is at most k.
Bodlaender’s algorithm [3] was experimentally evaluated in [11] and it was con-
cluded to be computationally intractable for k as small as four.

Graphs of treewidth at most four can be recognized by sets of reductions.
Graphs of treewidth at most three can be reduced to the null graph by six re-
ductions derived in [2]. These reductions can also be used to preprocess graphs
of larger treewidth as was, along with further preprocessing rules, shown and
experimentally evaluated in [7]. In [12, 13], a linear time algorithm to recognize
graphs of treewidth at most four is presented, consisting of an infinite set of
reductions. In contrast to the reductions for treewidth at most three, no exper-
imental evaluation has been performed yet.

The purpose of this paper is twofold. On the one hand, we report on the first
implementation of the linear time algorithm to recognize graphs of treewidth
at most four. We show that this algorithm is computationally tractable and
evaluate the frequencies the reductions apply. On the other hand, we show that
the reductions for treewidth at most four provide an additional preprocessing
possibility for graphs of larger treewidth.
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This paper is organized as follows. In Section 2 all preliminaries are discussed,
starting with the definition of treewidth, and ending with the linear time algo-
rithm for treewidth at most four. Next, in Section 3 the reductions are analyzed
for randomly generated graphs of treewidth at most four, whereas in Section 4
their effectiviness for preprocessing graphs of larger treewidth is studied. The
paper is closed with some concluding remarks. This paper is based on [10].

2 Preliminaries

Let G = (V, E) be an undirected graph consisting of a set of vertices V and a
set of edges E. By NG(v) we denote the set of neighbors of v in graph G. Kn

and Wn denote resp. a complete graph and a wheel on n vertices.
Several equivalent notions for treewidth have been studied over time, in par-

ticular tree decompositions, partial k trees and elimination orderings. Here, we
restrict to the latter two. A graph is a k-tree if recursively removing a ver-
tex with a clique of k vertices as neighbors results in a Kk. A partial-k-tree is
a subgraph of a k-tree. The smallest k for which G is a partial-k-tree is the
treewidth τ(G) of G. An elimination ordering of a graph G = (V, E) is a bijec-
tion f : V → {1, 2, . . . , n}. An elimination ordering f is perfect, if for all v ∈ V ,
the set of its higher numbered neighbors {w | {v, w} ∈ E ∧ f(w) > f(v)}
forms a clique. A graph G has treewidth at most k if and only if there exists a
supergraph H ⊇ G having a perfect elimination ordering f and at most k higher
numbered neighbors for every vertex. In this case, f is called a k-elimination
sequence of G.

A reduction is formally described by a replacement of a specific subgraph by
another (smaller) subgraph: A structure S is a pair (G(S), (u1, . . . , uj)) where
G is a graph and u1, . . . , uj are distinct vertices of G, called the vertices of
attachment of S or short anchors. A graph has a structure S if G(S) is a subgraph
of G and NG(S)(v) = NG(v) for all non-anchors v ∈ G(S) (i.e., only non-anchors
might be connected to the rest of G).

A reduction R is a pair of structures, SR and TR, with the same anchors and
|V (SR)| > |V (TR)|. For graphs G, H and reduction R, the graph G is reduced
to H by R if G has SR, H has TR and H is obtained from G by replacing SR

by TR. For each reduction R the partial order H ≤R G implies that there is a
sequence of graphs such that H = G1, G2, . . . , Gk = G such that for 0 < i ≤ k
Gi is reduced to Gi−1 by R.

A reduction R is TWk-safe if for all graphs G and H with H ≤R G, τ(G) ≤ k
if and only if τ(H) ≤ k. A set of reductions Q is TWk-complete if for all graphs
G τ(G) ≤ k if and only if G can be reduced to the null graph by reductions in
Q. Note that R is TWk+1-safe if R is TWk-safe.

2.1 Reductions for Graphs of Treewidth at Most Three

In [2] a set of six reductions for recognizing graphs of treewidth at most three
have been derived, see Table 1 and Figure 1 where black vertices are anchors.
Reduction zero (or islet) is TW0-safe, reduction one (or twig) is TW1-safe and
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Table 1. Description of the reductions for treewidth at most three

R structure SR structure TR

zero let v ∈ V of degree zero remove v
one let v ∈ V of degree one remove v
series let v ∈ V with NG(v) = {u, w} add uw to E; remove v
triangle let v ∈ V with NG(v) = {x, y, z} such

that xy ∈ E
add xz and yz to E; remove v

buddy let v, w ∈ V with NG(v) = NG(w) =
{x, y, z}

add xy, xz, yz to E; remove v, w

cube let d ∈ V with neighbors {a, b, c} only
connected with {u, v, w} as in Figure 1

add uv, uw, vw to E; remove
a, b, c, d

�

w

u v

b c

d

a

w

u v

Fig. 1. Reduction cube

together TW1-complete. Reduction series is TW2-safe and together with zero
and one TW2-complete. The reductions triangle, buddy, and cube are TW3-safe
and all six together are TW3-complete.

2.2 Reductions for Graphs of Treewidth at Most Four

In addition to the reductions for treewidth at most three, Sanders [12,13] derived
an (infinite) set of reductions for treewidth at most four. Reductions Y O, H7,
TO, Y I, L1, L2, L3, and L4 are described best by Figure 2. In the four so-called
Y-Δ reductions Y 0, H7, TO, and Y I, a vertex of degree three (a Y) is replaced
by a triangle on its neigbhors (a Δ). Also in the so-called ladder reductions L1
to L4, one (or two) vertices of degree three are replaced by (a) triangle(s).

All above reductions are not sufficient to characterize graphs of treewidth at
most four. To obtain a complete set of reductions, Sanders [12,13] introduced 60
simple leaf structures (structures possible at the leaves of a tree decomposition)
and four infinite families of leaf structures. Figure 3 shows the central leaf struc-
tures (all other structures are slight extensions; a complete list can be found
in [10, 13]), whereas Figure 4 shows the families of leaf structures, consisting of
a repetition of the middle part with four different startings and two different
endings. Structures Sbuddy and Scube can be seen as the union of two resp. three
LS1 leaf structures (where anchors are identified).

The remaining reductions are defined by particular unions of leaf structures:
A superstructure S is a structure (G(S), (u1, . . . , uj)) with j ≤ 4 and a center
vertex x �∈ A := {u1, . . . , uj}. The graph G(S) is the union of the graphs of a
finite set L of leaf structures, such that for each M ∈ L, the set BM of anchors
satisfies x ∈ BM ⊂ A ∪ {x}. Scube is a superstructure with d as center vertex.
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Fig. 2. Reductions YO, H7, TO, YI, L1, L2, L3, and L4
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Fig. 3. Central leaf structures
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Fig. 4. Infinite classes of leaf structures
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Hence, cube is not necessary in the set of TW4-complete reductions. Sbuddy,
however, does not have a center.

To define the TW4-complete set of reductions, Sanders [12,13] introduced the
Star-O (SO) reduction: SSO = (W5, (a, b, c, d)) and TSO = (K4, (a, b, c, d)). The
set CM (clique-minor) consists of all reductions R with SR a superstructure, TR

a complete graph on the anchors of SR, and either G(TR) is a minor of G(SR)
or there is a minor J of G such that H ≤SO J . Sanders proves that the set
CS4 := {zero, one, series, triangle, buddy, Y O, H7, TO, Y I, L1, L2, L3, L4} ∪
CM is TW4-complete. Note that this set has an infinite number of members.

2.3 Linear Time Algorithm for Graphs of Treewidth at Most Four

To obtain a linear time algorithm to recognize graphs of treewidth at most four,
Sanders [12, 13] had to guarantee that the center vertex of a CM -reduction has
degree at most a constant, e.g., 20. Therefore, an alternative set of TW4-safe
reductions, Triple, is defined by all reductions R with TR = (K4, (a, b, c, d))
and G(SR) is the union of three leaf structures having a subset of {a, b, c, d} as
anchors, none of which is LS0, and no two of which are LS1 with the same set
of anchors. Finally, BCM is the set of reductions R with R ∈ CM but SR does
not contain buddy or a reduction in Triple. By this modification, the center of
each R ∈ BCM has degree at most 20 and together with Triple we still have a
TW4-complete set of reductions.

Theorem 1 (Sanders [12, 13]). Given a graph G, there exists a linear time
algorithm that determines a 4-elimination sequence (i.e., τ(G) ≤ 4) or returns
a reduced graph H with τ(G) = τ(H) ≥ 5.

Space limitations prohibit a detailed description of the algorithm. Sanders de-
signed a subroutine to check whether a vertex is the center of a CM reduction.
It either determines that the vertex cannot be the center of a CM reduction or
finds a buddy, BCM, or Triple. Since the center check for each vertex requires
already linear time, this subroutine can only take constant time. The key here
is that the center has a degree of at most 20.

Sanders shows that a vertex can be contained in at most four leaf structures
as internal vertex. The main routine keeps track of this. It works with a stack of
vertices to be checked. Each time a reduction is applied, the information on leaf
structures must be updated for the anchors only and these anchors have to be
added to the stack. Since each reduction has at most four anchors, the stack is
empty after at most 5n pops. After a pop, first, the easy reductions from Table 1
and Figure 2 are checked. If no reduction is found, the subroutine is called. For
further details on the algorithm, we refer to [12, 13, 10].

3 Evaluation of Treewidth at Most Four Reductions

The linear time algorithm for recognizing graphs of treewidth at most four has
been implemented in C++ and tested for randomly generated partial-4-trees.
The partial-4-trees have been generated by randomly removing a percentage p
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(a) n = 1, 000, #G = 10, 000

(b) n = 10, 000, #G = 1, 000

Fig. 5. Average success rate of the reductions (first Y-axis) and CPU time in seconds
(second Y-axis) for partial-4-trees with p of the edges removed at random
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of the edges in a 4-tree. Considered values for p are 2/3, 1/2, 1/3, 1/4, 1/6,
and (for reference) 0. A total of 10, 000 resp. 1, 000 random partial-4-trees with
n = 1, 000 resp. n = 10, 000 have been generated. The computations have been
carried out on a notebook with a 2.5 GHz CPU and 4 Gb RAM. Detailed results
are listed in Table 2 and summarized in Figure 5.

First of all note that, for p = 0 the reductions zero, one, and series are
applied exactly once per graph. These are the last three reductions before the
null graph is obtained. For larger values of p the frequencies increase (rapidly)
as the partial-4-trees become more and more loosely connected.

The opposite behavour is true for the BCM and Triple reductions. These
are more frequently applied for dense graphs. As those reductions result in a
removal of several vertices, the total number of reductions decreases if the density
increases. Reductions triangle and buddy seem to play an important role in all
cases (except for p = 0 where buddy cannot be applied by construction). All
other reductions are hardly ever applied.

The line #vertices/R in Table 2 reports the average number of vertices re-
moved per reduction. Note that zero, one, and series remove a single vertex.
Hence, with increasing p the number of vertices per reduction decreases.

Finally, the computation times show that (i) the reductions can be applied
very effectively to recognize graphs of treewidth four, (ii) the time increases with
the density of the graph, and (iii) the time is indeed linear with the size of the
graph. Note that, Röhrig [11] has reported computational intractability of the
linear time algorithm of Bodlaender [3] as soon as k ≥ 4 (an actual comparison
of running times was not possible as both the original author and we were not
able to rerun the implementation of [11]).

4 Preprocessing of General Graphs

The described reductions can also be applied to graphs of treewidth larger than
four. In such cases, the graph will be reduced to a non-null graph with same
treewidth. In this section, we study the added value of the TW4-safe reductions,
compared to the TW3-safe reductions for graphs of larger treewidth.

First, we generated, similar to Section 3, partial-k-trees for k = 5, k = 7, and
k = 10. For each k and p a total of 10, 000 randomly generated partial-k-trees with
n = 1, 000 vertices have been generated. Figure 6 and Table 3 show the average
success rate of the reductions for various p values. The results show that for k = 5
and a high number p of removed edges, the TW3-safe reductions significantly re-
duce the size of the graph. The success rate of BCM can still be observed, whereas
buddy and Triple are rather rarely successful. For k = 7 and k = 10 the rates
decrease rapidly, where high p values cause loosely connected parts that are pre-
processed by zero, one, series, and triangle. The probability that a BCM (buddy,
Triple) reduction can be applied is fading away as k increases. Like for k = 4,
the other reductions (Y O–L4) are even less frequently applied. Since the major-
ity of reductions remove only one vertex, the average number of vertices removed
per reduction is close to one. The line #vertices left shows the average size of the
remaining graph. Computation times are again very small.
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Fig. 6. Average success rates of the reductions for partial-k-trees with p of the edges
removed randomly (10, 000 randomly generated partial-k-trees with n = 1, 000)

Fig. 7. Average success rates (first y-axis) and remaining graph size (second y-axis)
for 4-trees with e new edges (1, 000 randomly generated graphs with n = 1, 000)

Alternatively, one can added edges to a 4-tree. By adding a single edge,
the treewidth will increase (but not more than one). We randomly added e =
0, 1, 2, 5, 10, 20, 30, 40, 50 edges to randomly generated 4-trees with n = 1000.
Except for e = 0, only BCM and Triple were applied successfully. Figure 7 shows
the average number of reductions by these rules and the average remaining num-
ber of vertices. As expected, the number of reductions decreases if e increases.
Already for a single edge, graphs of about 50 vertices remain after reduction
(note that the graphs have 3991 edges in total). With 50 extra edges, more than
half of the vertices cannot be removed anymore.
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Table 4. Preprocessing by TWk-safe and reductions for selected probabilistic networks
(1st block), frequency assignment (2nd block), coloring (3rd block), and TSP (4th
block) graphs (all other rules did not have any effect)

original TW3 TW4
instance |V | |E| |V | |E| zero one series triangle BCM |V | |E| reduced time (s)

alarm 37 65 5 10 1 7 15 12 1 0 0 100.0% 0.00
diabetes 413 819 212 492 1 2 100 146 47 0 0 100.0% 0.24
fungiuk 15 36 10 22 1 2 3 4 2 0 0 100.0% 0.00
mildew 35 80 12 27 1 1 4 23 2 0 0 100.0% 0.00
pignet2 3,032 7,264 1,051 3,835 0 51 1,322 608 1 1,049 3,830 65.4% 0.60
celar06 100 350 74 313 0 7 7 12 2 69 299 31.0% 0.01
celar07 200 817 153 747 0 12 26 20 3 134 704 33.0% 0.02
celar08 458 1,655 302 1,427 9 29 55 76 14 251 1,295 45.2% 0.06
anna 138 986 68 363 0 28 22 20 1 65 354 52.9% 0.01
david 87 812 63 361 0 11 5 8 0 63 361 27.6% 0.01
homer 561 3,258 177 1,125 11 237 86 53 3 168 1,100 70.1% 0.06
huck 74 602 53 269 2 9 5 5 1 51 262 31.1% 0.00
d198 198 571 189 552 0 0 0 9 1 185 542 6.6% 0.02
d493 493 1,467 488 1,452 0 0 0 5 0 488 1,452 1.0% 0.06
d657 657 1,958 650 1,938 0 0 0 7 1 647 1,930 1.5% 0.09
d1291 1,291 3,845 1,290 3,843 0 0 0 1 0 1,290 3,843 0.1% 0.16
rl1304 1,304 3,879 1,286 3,826 0 0 0 18 20 1,225 3,663 6.1% 0.21
rl1323 1,323 3,950 1,306 3,900 0 0 0 17 18 1,252 3,754 5.4% 0.20
rl1889 1,889 5,631 1,851 5,519 0 0 0 38 62 1,665 5,017 11.9% 0.31
rl5915 5,915 17,728 5,842 17,510 0 0 0 73 106 5,523 16,642 6.6% 0.88
rl5934 5,934 17,770 5,866 17,571 0 0 0 68 99 5,569 16,770 6.2% 0.90

In earlier preprocessing studies [7, 9] the TW3-safe reductions have been ap-
plied to particular graphs of applications like TSP, coloring, frequency assign-
ment, and probabilistic networks. Typically, such graphs behave different from
randomly generated graphs. To avoid a distortion of the results, we have, in
contrast to [7], not applied generalizations of the six TW3-safe reductions like
simplicial and almost simplicial to reduce graphs of treewidth at least four fur-
ther. In Table 4 a (biased) selection of those graphs is listed. For each instance,
we report |V | and |E| in the original and after application of the TWk-safe re-
ductions for k = 3, 4. In addition, for k = 4, the number of applied reductions is
reported as well as the percentage of vertices removed, and CPU time.

Without exception, the reductions Y O, H7, TO, Y I, L1, L2, L3, and L4 as well
as buddy and Triple cannot be applied. Occassionaly, BCM could be applied, in
particular for frequency assignment graphs and probabilistic networks. Four of
the five selected probabilistic networks have treewidth four and are reduced to
the null graph. Most impressive, by the new reductions 212 vertices of diabetes
are removed. Except for TSP graphs, the reductions one, series, and triangle are
most effective. The TSP graphs are Delaunay triangulations of TSP instances
and therefore do not have vertices of low degree. The reductions triangle and,
less frequently, BCM reduce the number of vertices in the selected TSP graphs
between 0.1% and 11.9%.

5 Conclusions

In this paper, we reported on a computational evaluation of the linear time
algoirthm to recognize graphs of treewidth at most four by Sanders [12, 13].
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The algorithm is based on an infinite set of TW4-safe reductions that reduce
G to the null graph if and only if the graph has treewidth at most four. These
reductions can also be applied as preprocessing step for graphs of treewidth
at least five. Our computational experiments for partial-k-trees and particular
application graphs show that the linear time algorithm is remarkable fast to
recognize graphs of treewidth at most four. For graphs of treewidth close to
four, the TW4-specific reductions account for an additional, but typically small,
reduction of the graph size. The fast majority of the reductions are the well-
known TW3-safe reductions.

Based on these results, a further extension of the theory to a TWk-complete
set of reductions for k ≥ 5 seems to be not rewarding. Instead, the derivation
of further general reductions like simplicial and almost simplicial and/or safe
separators [4] seems to be more promising.
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Abstract. Abraham et al. [SODA 2010] have recently presented a the-
oretical analysis of several practical point-to-point shortest path algo-
rithms based on modeling road networks as graphs with low highway
dimension. They also analyze a labeling algorithm. While no practical
implementation of this algorithm existed, it has the best time bounds.
This paper describes an implementation of the labeling algorithm that
is faster than any existing method on continental road networks.

1 Introduction

Motivated by computing driving directions, the problem of finding point-to-
point shortest paths in road networks has received significant attention in recent
years. Even though Dijkstra’s algorithm [11] solves it in almost linear time [15],
continent-sized road networks require something faster. Preprocessing makes
sublinear-time algorithms possible; see [5] for a survey of existing methods.

In particular, goal-directed methods, such as arc flags (AF) [16], direct the
search towards the target. Hierarchical methods, such as contraction hierarchies
(CH) [14], sparsify the search space by visiting only important vertices when far
from the source or target. Transit node routing (TNR) [3,4] reduces long-range
queries to a few table lookups, using the fact that on road networks a small set
of vertices is enough to hit all long shortest paths out of a region. TNR+AF [5]
(combining TNR, CH, and arc flags) is the fastest algorithm for random queries,
six orders of magnitude faster than Dijkstra. For local and mid-range queries,
CH and High-Performance Multi-Level Routing (HPML) [9] are the fastest.

Although algorithms such as these are known to work well in practice, a
theoretical analysis has been given only recently, by Abraham et al. [2]. The
method with the best time bounds is a labeling algorithm. Labeling algorithms
have been studied before in more theoretical settings [6,12,21].

The preprocessing stage of the labeling algorithm computes, for each vertex
v, a forward label Lf (v) and a reverse label Lr(v). Each consists of a set of
vertices w, together with their respective distances from (in Lf (v)) or to (in
Lr(v)) v. A labeling is valid if it has the cover property: for every pair of vertices
s and t, Lf (s)∩Lr(t) contains a vertex u on a shortest path from s to t. An s–t
query finds the vertex u ∈ Lf (s)∩Lr(t) that minimizes dist(s, u)+dist(u, t) and

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 230–241, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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returns the corresponding path. Intuitively, a label for v is a set of hubs to which
v has a direct connection, and any two vertices s and t share at least one hub on
the shortest s–t path. Although efficient in theory, the algorithm as described by
Abraham et al. [2] is impractical for continent-sized road networks: preprocessing
would be too slow, and the worst-case memory usage is prohibitive.

Motivated by theory, we develop HL (Hub-based Labeling algorithm), a prac-
tical implementation of the labeling algorithm for road networks. We start from
the fact that the sets of vertices visited by the forward and reverse searches of
hierarchical algorithms (such as CH) contain the corresponding labels. Similar
observations have been made implicitly for graphs of bounded tree-width [12]
and road networks [17,14]; we make it explicit and take advantage of it. We
then propose several techniques to make our method truly practical. First, we
show how to obtain much smaller labels by efficiently pruning the CH search
space and applying ideas from the theoretical preprocessing algorithm [2]. Sec-
ond, we describe how to compress each label. Finally, we show how to implement
preprocessing and queries efficiently.

Our main contribution is to show that the labeling algorithm is practical.
In fact, our experiments show that HL is currently the fastest algorithm for
the problem. When optimized for speed, it answers a random query in as much
time as five random accesses to main memory. This is faster than TNR+AF by a
factor of more than three, and than HPML by more than an order of magnitude.
For local queries, HL is about three times faster than HPML and an order of
magnitude faster than TNR+AF. Using compression, we obtain a version of HL
with a memory footprint that is comparable to the other two algorithms, but is
still faster for all types of queries.

This paper is organized as follows. Section 2 reviews relevant previous work
and describes our experimental setup. Section 3 presents the basic version of HL.
Section 4 describes several improvements that make it truly practical. Section 5
compares HL with other algorithms experimentally. We conclude in Section 6.
The full version of this paper [1] contains details omitted due to space limitations.

2 Preliminaries

The preprocessing stage of a point-to-point shortest path algorithm takes a graph
G = (V, A) as input, with |V | = n, |A| = m, and length �(a) > 0 for each arc a.
The length of a path P in G is the sum of its arc lengths. The query stage takes a
source s and a target t as input and returns the distance dist(s, t) between them.

Dijkstra’s algorithm. The standard solution to this problem is Dijkstra’s algo-
rithm [11], which processes vertices in increasing order of distance from s. For
every vertex v, it maintains the length d(v) of the shortest s–v path found so
far, as well as the predecessor p(v) of v on the path. Initially d(s) = 0, d(v) = ∞
for all other vertices, and p(v) = null for all v. At each step, a vertex v with
minimum d(v) value is extracted from a priority queue and scanned : for each arc
(v, w) ∈ A, if d(v) + �(v, w) < d(w), we set d(w) = d(v) + �(v, w) and p(v) = w.
The algorithm terminates when the target t is extracted.
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Contraction hierarchies. Preprocessing enables much faster exact queries on road
networks. The contraction hierarchies (CH) algorithm [14], in particular, is based
on the notion of shortcuts [19]. The shortcut operation deletes (temporarily) a
vertex v from the graph; then, for any neighbors u, w such that (u, v) · (v, w)
is the only shortest path between u and w, it adds a shortcut arc (u, w) with
�(u, w) = �(u, v) + �(v, w), thus preserving the shortest path information.

The CH preprocessing routine defines a total order among the vertices and
shortcuts them sequentially in this order, until a single vertex remains. It outputs
a graph G+ = (V, A∪A+) (where A+ is the set of shortcut arcs created), as well
as the vertex order itself. We denote the position of a vertex v in the order by
rank(v). Define G↑ = (V, A↑) by A↑ = {(v, w) ∈ A ∪ A+ : rank(v) < rank(w)}.
Similarly, A↓ = {(v, w) ∈ A ∪ A+ : rank(v) > rank(w)} and G↓ = (V, A ∪ A↓).

During an s–t query, the forward CH search runs Dijkstra from s in G↑, and
the reverse CH search runs reverse Dijkstra from t in G↓. For every v ∈ V ,
these searches lead to upper bounds ds(v) and dt(v) on distances from s to v
and from v to t. For some vertices, these estimates may be greater than the
actual distances (and even infinite for unvisited vertices). However, as shown by
Geisberger et al. [14], the maximum-rank vertex u on the shortest s–t path is
guaranteed to be visited, and v = u will minimize ds(v) + dt(v) = dist(s, t).

Queries are correct regardless of the contraction order, but query times and the
number of shortcuts added may vary greatly. For best results, on-line heuristics
are used to select which vertex to shortcut next [14]. Our implementation [7] sets
the priority of a vertex u to 2ED(u)+CN (u)+H(u)+5L(u), where ED(u) is the
difference between the number of arcs added and removed (if u were shortcut),
CN(u) is the number of previously contracted neighbors, H(u) is the number
of arcs represented by the shortcuts added, and L(u) is the level u would be
assigned to. We define L(u) as L(v) + 1, where v is the highest-level vertex
among all lower-ranked neighbors of u in G+; if there is no such v, L(u) = 0.

Labeling algorithm. The preprocessing of the theoretical labeling algorithm of
Abraham et al. [2] is based on shortest path covers (SPCs). Intuitively, an (r, k)-
SPC S is a set of vertices that (1) hits every shortest path of length between r
and 2r and (2) is sparse, in the sense that every ball of radius 2r has at most k
elements from S. For a fixed parameter h (the highway dimension of the graph),
(r, h)-SPCs exist for all r, and the greedy algorithm finds an O(r, O(h log n))-
SPC. The value of h is believed to be small for road networks.

The preprocessing routine computes greedy SPCs Ci for r = 2i, 0 ≤ i ≤ log D,
where D is the graph diameter. For each v, it takes as a label the union over i
of Ci intersected with the ball of radius 2 · 2i around v. As stated, the algorithm
is impractical for continent-sized road networks. Greedy SPCs require many all-
pairs shortest paths computations, which would take months. Furthermore, the
theoretical bound on the label size (O(k log n log D)) could be in the thousands,
leading to unrealistic space requirements and uncompetitive queries.

Experimental setup. Since we use actual measurements to justify our design
decisions, we describe our experimental setup in advance. We implemented our
algorithm in C++ and compiled it with Microsoft Visual C++ 2010. We ran our
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tests on a machine with two Intel Xeon X5680 processors and 96GB of DDR3-
1333 RAM, running Windows 2008R2 Server. Each CPU has 6 cores clocked at
3.33 GHz, 6 x 64 kB L1, 6 x 256 kB L2, and 12MB L3 cache. Preprocessing is
parallelized (with OpenMP), but queries are sequential and pinned to one core.

In most experiments we report the (parallel) preprocessing time (excluding
the CH preprocessing) and total space consumption in GB. For most of the
paper, we evaluate queries by running 100 000 000 s–t queries (with s and t
picked uniformly at random in advance) and reporting the average time. We
focus on computing the length of shortest paths; for full path descriptions, one
could apply the expansion techniques used for TNR [4], for example.

We use two input graphs taken from the 9th DIMACS Implementation Chal-
lenge [10]. The Europe instance, representing Western Europe, has 18 million
vertices and 44 million arcs. The USA road network has 24 million vertices and
58 million arcs. In both cases, arc costs are 32-bit integers representing travel
times. Unless otherwise mentioned, we use the Europe instance as default.

3 HL Overview

Preprocessing. Geisberger et al. [14] suggest implementing many-to-many queries
by precomputing and storing the sets of vertices of the forward CH searches for
a set of sources and of the reverse CH searches for a set of targets, along with
the corresponding distance estimates. A query from a source to a target is done
by intersecting the corresponding sets. They have not pursued this approach
for point-to-point queries, probably because it looked impractical. Indeed, our
sampling-based estimates for Europe show that one would need about 154GB to
store all labels (whose average size is 536). The time estimates are encouraging,
however: 321 seconds to compute all labels and 3 μs for queries. To make the
algorithm truly practical, however, we need several additional ingredients.

In particular, the sets visited by CH are not strict labels: a bound d(w) stored
within a label for v may actually be greater than dist(v, w). As Section 4 will
show, we can efficiently prune each label by eliminating entries with wrong
distance estimates. A simple heuristic (based on stall-on-demand [14]) reduces
the label size to about 133, which is already much more practical. As Section 4
will show, we can go further and remove all vertices whose distance estimates
are not tight, making the labels strict. By combining this with ideas from the
theoretical algorithm [2], we achieve labels with fewer than 85 entries on average.

Query. We now consider how to represent labels to allow efficient queries. We
describe the Lf labels; the Lr labels are symmetric. A forward label Lf (v) is
represented as the concatenation of three elements: (1) a 32-bit integer Nv rep-
resenting the number of vertices in the label; (2) a zero-based array Iv with the
(32-bit) IDs of all vertices in the label, in ascending order; and (3) an array Dv

with the (32-bit) distances from v to each vertex in the label. Note that vertices
appear in the same order in Iv and Dv: Dv[i] = dist(v, Iv [i]).

Given s and t, the query algorithm must pick, among all vertices w ∈ Lf(s)∩
Lr(t), the one minimizing ds(w)+dt(w) = dist(s, w)+dist(w, t). Because the Iv
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arrays are sorted, this can be done with a single sweep through the labels, similar
to mergesort. We maintain array indices is and it (initially zero) and a tentative
distance μ (initially infinite). At each step we compare Is[is] and It[it]. If these
IDs are equal, we found a new w in the intersection of the labels, so we compute
a new tentative distance Ds[is] + Dt[it], update μ if necessary, then increment
both is and it. If the IDs differ, we increment either is (if Is[is] < It[it]) or it (if
Is[is] > It[it]). We stop when either is = Ns or it = Nt, and return μ.

Low-level details. Implementation details are important because the fastest ver-
sion of our query is less than five times slower than a random memory access.

A key aspect of the algorithm is that it accesses each array sequentially,
thus minimizing the number of cache misses. Avoiding cache misses is also the
motivation for having Iv and Dv as separate arrays: while we must access almost
all IDs in a label, distances are only needed when IDs match. We also align each
label to a cache line, which has 64 bytes in our machine.

Another practical improvement is to use the highest-ranked vertex as a sen-
tinel by assigning ID n to it. Because this vertex must belong to all labels, it will
lead to a match in every query; it therefore suffices to test for termination only
after a match. In addition, we store the distance to the sentinel at the beginning
of the label; this enables us to obtain a quick upper bound on the s–t distance.

We forced procedure inlining whenever appropriate (a function call takes
about 150 ns, roughly the time of 3 memory accesses), and prefetch data to
the L1 cache whenever appropriate. Finally, we use pointer arithmetic (instead
of maintaining indices) to traverse the labels during queries.

4 Efficient HL Implementation

This section introduces techniques that make HL efficient by reducing the av-
erage label size, speeding up long-distance queries, and using compression. We
also describe several lower-level improvements.

4.1 Label Pruning

We can use a fast heuristic modification (similar to stall-on-demand [20]) to the
CH search to identify most vertices with incorrect distance bounds. Suppose we
are performing a forward CH search (the reverse case is similar) from v and
we are about to scan w, with distance bound d(w). We examine all incoming
arcs (u, w) ∈ A↓. If d(w) > d(u) + �(u, w), then d(w) is provably incorrect. We
can safely remove w from the label, and we do not scan its outgoing arcs. This
technique significantly decreases the average label size (to 133.0) and query time
(to 937ns).

We use bootstrapping (i.e., HL itself) to prune the labels further. We compute
labels in descending level order. Suppose we have just computed the partially
pruned label Lf (v). We know that d(v) = 0 and that all other vertices w in
Lf(v) have higher level than v, which means Lr(w) must have already been
computed. We can therefore compute dist(v, w) by running a v–w HL query,
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using Lf(v) itself and the precomputed label Lr(w). We remove w from Lf (v) if
d(w) > dist(v, w). Bootstrapping reduces the average label size to 109.6 (30.6GB
in total), and improves average queries to 812ns. Preprocessing is slightly slower,
at 580 s. The resulting labeling algorithm is strict and practical, but substantial
further improvements are possible.

Note that, without bootstrapping, labels can be trivially computed in parallel,
since they are independent. Bootstrapping requires greater care. We can process
vertices of the same level in parallel, but must synchronize after each level, since
computing the label of a level-i vertex requires access to labels at higher levels.
Fortunately, road networks have only about 150 levels [7].

4.2 Label Ordering

We can assign new internal IDs to the vertices to change the order in which they
appear in the labels; this may speed up queries or improve compression rates.

For most vertices, keeping the original input order seems to be a good idea.
Rearranging vertices by rank or level (either ascending or descending) actually
increases query times on Europe from 812ns to more than 1100ns. This happens
because nearby vertices in the graph tend to have similar original IDs. During an
s–t query, a large portion of the corresponding labels represents vertices in small
regions around s and t; it is often the case that all vertex IDs in one region are
larger than all IDs in the other. As a result, the query algorithm may reach the
end of one label (thus stopping the search) while visiting a fraction of the other.
Rearranging vertices destroys this locality and decreases query performance.

For faster queries, it is often better to keep the input order for all but the
topmost (highest-ranked) k vertices, which are assigned internal IDs from 0 to
k − 1. In particular, the top k input order (in which the input order among the
top k vertices is preserved), achieves query times of 769ns with k = 256. The top
k level order (which sorts the top k vertices by level), is slightly worse: query
times are about the same as keeping the original input order (for k = 256).
Unless otherwise stated, we use the top 256 input order.

As already mentioned, one optimization we apply to all label orderings is to
assign ID n = |V | to the highest-ranked vertex, which is used as a sentinel.

4.3 Shortest Path Covers

The CH preprocessing algorithm tends to contract the least important vertices
(those on few shortest paths) first, and the more important vertices (those on
more shortest paths) later. The heuristic used to choose the next vertex to con-
tract works poorly near the end of preprocessing, when it must order important
vertices relative to one another. This has been observed before [14]: a variant of
TNR based on CH yielded worse locality filters than previous versions. We use
shortest path covers to improve the ordering of important vertices. We do this
near the end of CH preprocessing, when most vertices have been contracted, the
graph is small, and the greedy SPC algorithm becomes feasible.

More precisely, we start by running the CH preprocessing with our original
selection rule, but pause it as soon as the remaining graph Gt has only t vertices
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left (we use t = 25 000). We then run a greedy algorithm to find a set C of good
cover vertices, i.e., vertices that hit a large fraction of all shortest paths of Gt,
with |C| < t (we use |C| = 2048). Starting with C = ∅, at each step we add to
C the vertex v that hits the most uncovered (by C) shortest paths in Gt. After
C is computed, we continue the CH preprocessing, but forbid the contraction
of the vertices in C until they are the only ones left. This ensures the top |C|
vertices of the hierarchy will be exactly those in C, which are then contracted in
reverse greedy order (i.e., the first vertex found by the greedy algorithm is the
last one remaining).

Setting t = 25 000 and |C| = 2048 decreases the average label size on Europe
by about 20%, from 109.62 to 84.74. Query times are reduced accordingly, from
769ns to 594ns. Given our emphasis on query times, we use the SPC-augmented
preprocessing with these parameters as default. The time to build the hierarchy
increases from 3 minutes to 151 minutes, however. If this is an issue, a good
compromise is to use t = 10 000 and |C| = 512: preprocessing takes only 25
minutes, but queries are almost as fast (598 ns) and labels almost as small (85.79
entries) as with the original parameters.

4.4 Label Compression

Even after reducing the average label size from 536 to 85, we still need 23.9GB
to store all labels if we represent every vertex ID and distance as a separate
32-bit integer. For low-ID vertices, we can use an 8/24 compression scheme: we
represent each of the first 256 vertices as a single 32-bit word, with 8 bits allo-
cated to the ID and 24 bits to the distance. (This could obviously be generalized
for different numbers of bits.) For effectiveness, it pays to reorder vertices so that
the important ones (which appear in most labels) have the lowest IDs. With top
256 input ordering, the space usage decreases from 23.9GB to 20.1GB. Because
of better locality, queries also improve, from 594 ns to 572ns.

Another compression technique we considered exploits the fact that the for-
ward (or reverse) CH trees of two nearby vertices in a road network are different
near the roots, but are often the same when sufficiently away from them, where
the most important vertices appear. By reordering vertices in reverse rank order,
for example, the labels of nearby vertices will often share long common prefixes,
with the same sets of vertices (but usually different distances). Our compression
scheme computes a dictionary of the common label prefixes and reuses them.

Given a parameter k, the k-prefix compression scheme decomposes each for-
ward label Lf(v) (reverse labels are similar) into a prefix Pk(v) (with the vertices
with internal ID lower than k) and a suffix Sk(v) (with the remaining vertices).

Take the forward (pruned) CH search tree Tv from v: Sk(v) induces a subtree
containing v (unless Sk(v) is empty), and Pk(v) induces a forest F . The base b(w)
of a vertex w ∈ Pk(v) is the parent of the root of w’s tree in F ; by definition,
b(w) ∈ Sk(v). (If Sk(v) is empty, let b(v) = v.) Each prefix Pk(v) is represented
as a list of triples (w, δ(w), π(w)), where δ(w) is the distance between b(w) and
w, and π(w) is the position of b(w) in Sk(v). Two prefixes are equal only if they
consist of the exact same triples. We build a dictionary (an array) consisting of
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all distinct prefixes. Each triple uses 64 consecutive bits: 32 for the ID, 24 for
δ(·), and 8 for π(·). A forward label Lf (v) has three elements: the position of
its prefix Pk(v) in the dictionary, the number of vertices in the suffix Sk(v), and
Sk(v) itself (represented as before). To save space, labels are not cache-aligned.

During a query from v, suppose w is in Pk(v). We have dist(b(w), w) = δ(w)
and we know the position π(w) of b(w) in Sk(v), where dist(v, b(w)) is stored
explicitly. We can therefore compute dist(v, w) = dist(v, b(w)) + dist(b(w), w).

On Europe, this approach reduces the space usage from 20.1GB to 8.0GB
(with k = 216), for the price of a slightly longer preprocessing (502 s instead of
489 s). At 1172ns, queries become about twice as slow.

To save even more, we use a flexible prefix compression scheme. Instead of us-
ing the same threshold k for all labels, it may split each label L in two arbitrarily.
As before, common prefixes are represented once and shared among labels. De-
ciding which prefixes to keep is no longer straightforward. To minimize the total
space usage, including all n suffixes and the (up to n) prefixes we actually keep,
we model this as a facility location [18] problem. Each label is a customer that
must be represented (served) by a suitable prefix (facility). The opening cost of
a facility is the size of the corresponding prefix. The cost of serving a customer
L by a prefix P is the size of the corresponding suffix (|L| − |P |). Each label L
is served by the available prefix that minimizes the service cost. We use local
search [18] to find a good heuristic solution.

The flexible approach reduces the space usage to 5.6GB with the same query
time (1170 ns), but the preprocessing time increases from 502 s to 2002 s.

4.5 Partition Oracle

We now describe an acceleration technique for long-range HL queries. If the
source and the target are far apart, the HL searches tend to meet at very impor-
tant (high-rank) vertices. If we rearrange the labels such that more important
vertices appear before less important ones, long-range queries can stop traversing
the labels when sufficiently unimportant vertices are reached.

During preprocessing, we first find a good partition of the graph into cells of
bounded size, while trying to minimize the total number b of boundary vertices.

Second, we perform CH preprocessing as usual, but delay the contraction of
boundary vertices until the contracted graph has at most 2b vertices. Let B+

be the set of all vertices with rank at least as high as that of the lowest-ranked
boundary vertex. This set includes all boundary vertices and has size |B+| ≤ 2b.

Third, we compute labels in normal fashion, but we also store at the beginning
of a label for v the ID of the cell v belongs to.

Fourth, for every pair (Ci, Cj) of cells, we run HL queries between each vertex
in B+∩Ci and each vertex in B+∩Cj , and keep track of the internal ID of their
meeting vertex. Let mij be the maximum such ID over all queries made for this
pair of cells. We then build a k × k matrix, with entry (i, j) corresponding to
mij and represented with 32 bits. Building the matrix requires up to 4b2 queries
and concludes the preprocessing stage.
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An s–t query (with s ∈ Ca and t ∈ Cb) looks at vertices in increasing order of
internal ID (as usual), but now it stops as soon as it reaches (in either label) a
vertex with internal ID higher than mab—we know no query from Ca to Cb meets
at a vertex higher than mab. Although this strategy needs one extra memory
access to retrieve mab, long-range queries only look at a fraction of each label.

In practice, we use the PUNCH algorithm [8] to partition Europe into cells
with up to U = 20 000 vertices. It takes less than 3 minutes to find the partition,
and 4 minutes to compute the oracle (matrix). Building the contraction hierarchy
(with 2048/25K SPCs) takes about 2.5 hours. We use a top 2048 level order and
8/24 compression. Using the oracle reduces average query times from 572 ns to
357ns. Local queries get slightly worse, mainly due to the different label ordering.

4.6 Index-Free Labels

To perform an s–t query, HL must bring two labels, Lf (s) and Lr(t), from
memory. To locate these labels in memory, it must access the entries for s and t
in an index array. When applying all the speed-oriented optimizations described
above, these two accesses can be a significant fraction of the query time.

We can eliminate the index array as follows. We reserve c bytes in each label
array (forward and reverse) for each label. We store the first c bytes of Lf(v) at
position v ·c in the forward label array (the reverse case is similar); the remaining
entries—if any—are stored in a third array (the escape array). Each label (in
the label array) also stores an index to the escape array. An s–t query starts
reading the label arrays directly (with no index), and continues reading from
the escape array if necessary. This approach increases the memory footprint of
HL (since it allocates too much space for short labels), but accelerates queries
that do not access the escape array. The choice of c determines the trade-off
between memory and query times.

On Europe with the oracle, queries are fastest (276 ns, from 357ns) with
c = 512. The total space increases very little (20.1GB to 21.3GB), since almost
two-thirds of the labels are split. The oracle ensures we rarely have to access the
escape array. Indeed, using c = 1024 (when only 0.2% of the labels are split)
requires much more space (34.4GB) but query times are similar (280 ns). With
no oracle, query times vary from 650ns (c = 512) to 479ns (c = 1024).

5 Experimental Results

We consider three variants of HL. The prefix variant is optimized for space:
it uses the flexible prefix compression scheme (with inverse rank order), an in-
dex, and the oracle. The global variant is optimized for random and long-range
queries: it uses the oracle (with top 2048 level order), no index, and 8/24 com-
pression. The local version is optimized for fast short- and mid-range queries,
which are more common in practice; it uses an index but no oracle, 8/24 com-
pression, and top 256 input order.

Table 1 compares preprocessing and random queries for all three HL variants
and five previously known fast algorithms. The first is CH [14]. The second,
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CHASE, is a combination of CH and arc flags [5]. The third algorithm is High-
Performance Multi-Level Routing (HPML) [9]: its preprocessing uses separators
to build a large number of small auxiliary graphs, and each query composes some
of them appropriately to create an acyclic search graph. The fourth algorithm
is transit node routing [3,4]. Long-range TNR queries consist basically of table
lookups of distances between important (transit) nodes; for short-range queries,
it uses CH. Finally, we consider TNR+AF [5], a combination of TNR and arc
flags that reduces the average number of table lookups to less than four. Since
these algorithms were tested on an older AMD machine [5,9], Table 1 shows scaled
running times, obtained by dividing the best published times by 1.915, the factor
by which our Xeon CPU is faster (based on our calibration experiments).

The table includes a (hypothetical) implementation of a Table Lookup algo-
rithm: it precomputes all pairs of distances, reducing queries to a single lookup.
Preprocessing would be fast enough on a GPU [7], but space usage is prohibitive.
We use a random memory access as an estimate of its query time.

To analyze local queries, Figure 1 plots median query times against Dijkstra
rank [19]. For a search from s, the Dijkstra rank of v is i if v is the i-th vertex
scanned when Dijkstra’s algorithm is run from s. For HL, we run 10 000 queries
per rank. All times for non-HL algorithms are taken from [5,9] and scaled.

Although practical, HL preprocessing is slower than existing algorithms, con-
sidering they could be easily parallelized. TNR, in particular, is at least an order
of magnitude faster in this regard (and can be improved even further [13]). This
gap in preprocessing time between HL and other methods can be much smaller
if slightly slower queries are acceptable, but our emphasis is on query times.

All variants of HL have faster queries than previous techniques. For ran-
dom queries, HL global is about 3.5 times faster than TNR+AF and 6 times
faster than TNR. Figure 1 shows that TNR is slower on short- or mid-range
queries, taking 4 μs to 10μs; HL local is an order of magnitude faster. This should
also hold for TNR+AF, since arc flags only accelerate long-range TNR queries.

Table 1. Results on random queries. HL preprocessing is parallelized (others are not)
with the times for building the hierarchy and computing the labels reported separately.
Table Lookup preprocessing excludes copying distances from GPU to main memory.

Europe USA

preprocessing space query preprocessing space query
method time [h:m] [GB] [ns] time [h:m] [GB] [ns]

CH [5] 0:13 0.4 93 995 0:14 0.5 67 885
CHASE [5] 0:52 0.6 9 034 1:59 0.7 9 922
HPML [9] ≈12:00 3.0 9 817 ≈12:00 5.1 10 078
TNR [5] 0:58 3.7 1 775 0:47 5.4 1 566
TNR+AF [5] 2:00 5.7 992 1:22 6.3 888

HL prefix 2:31 + 0:45 5.7 527 2:17 + 0:40 6.4 542
HL local 2:31 + 0:08 20.1 572 2:17 + 0:07 22.7 627
HL global 2:31 + 0:14 21.3 276 2:17 + 0:18 25.4 266

Table Lookup > 11:03 1 208 358.7 56 > 22:44 2 293 902.1 56
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Fig. 1. Median query times on Europe for various ranges

(Unfortunately, there are no published values for short- and mid-range TNR+AF
queries.) Although HL performs more operations than TNR+AF, better locality
leads to fewer accesses to the main memory, which explains why it is faster. For
short-range queries, the fastest previous algorithm (HPML) is four times slower
than HL local and almost three times slower than HL global. (The published
implementation of HPML [9] cannot handle some short-range queries, though it
could easily be composed with CH.) In fact, HL global is only five times slower
than Table Lookup (i.e., one random memory access) on average. For short- and
mid-range queries, HL local is about 13 times slower than a random access.

Finally, we note that HL prefix needs a quarter of the space of HL global,
but is only twice as slow, which is fast enough to outperform previous methods.

6 Concluding Remarks

We presented Hub Labels (HL), a labeling algorithm to compute exact point-to-
point shortest paths in road networks. HL combines elements from a theoretical
algorithm with contraction hierarchies. With careful engineering, HL is signifi-
cantly faster than the best previous approaches for queries of all ranges. Some
of our techniques may help accelerate other methods as well; in particular, a
variant of our partition oracle could be used as a locality filter for TNR.

Our results show that road networks admit smaller labelings than the bounds
of [2] suggest. It would be interesting to prove better bounds. Finding better
SPCs or CH orderings, or faster algorithms to compute them, could improve
HL even further by reducing the average label size. In particular, one would
like a fast algorithm to approximate the smallest labeling (the method in [6] is
impractical for large networks). Reducing the space usage of HL is also desirable,
as are extensions to time-dependent and other augmented networks.
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Abstract. The road traffic of an entire day for a certain region can be understood
as a flow with sources and sinks on the road network. Traffic has the tendency
to evade regularly clogged roads and other bottlenecks, especially with modern
on-board navigation devices that are able to interpret traffic information. Assum-
ing perfect knowledge for all drivers, one might suspect traffic to shape itself in
a way such that all used routes between any two points on the road network have
equal latency. Although these traffic patterns do not or very seldom occur in real
life, they are a handy tool to predict the general traffic situation. For small net-
works, these patterns can be easily computed, but road networks that model entire
countries are still a hurdle, because Dijkstra’s algorithm does not scale. Thus the
known techniques have only been applied to either small networks or small ex-
tracts of a much larger network. We solve this problem for country sized road
networks by combining a gradient descent method to the problem with current
research on fast route planning by exploiting the special properties of a rout-
ing algorithm called Contraction Hierarchies. The computation of the gradient
needs a large number of shortest paths computations on the same weighted graph,
which means that the expense for preprocessing can be amortized if the number
of shortest paths computations is sufficiently large. This leads to dramatic over-
all speedup compared to running Dijkstra for each demand pair. Also, our study
shows the robustness of Contraction Hierarchies on road networks at equilibrium
state.

1 Introduction

Traffic is often seen as a mere stream of cars. Consider the following picture. On a
typical day of work traffic flows from the suburbs into inner cities in the morning and
back from it in the evening. Or on national holidays a stream of cars and buses flows
perhaps to resort towns or recreation areas close to the metropolitan areas. Naturally,
some roads are more crowded than others since traffic is not equally distributed over
the road network. As a matter of fact, traffic has a natural tendency to shift itself to
alternatives if it is more convenient for a driver to take another route. Drivers seek to
minimize travel time (or any other metric) and can be understood to act as selfish agents.
They switch to better routes if they become aware of it. Assuming all drivers have full
knowledge one is interested in how the traffic distributes itself over the road network.
This problem is known as the traffic assignment problem and is a major application
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in the field of transportation planning. Visually speaking, it is the process that finds
edge latencies in a road network that are the result of many individuals competing for
transportation. We assume travelers to take least cost or (under some metric) shortest
paths between their origins and destinations. The problem at hand has been the subject
of research since the early 1950s. Wardrop’s [31] first principle states the properties for
a so-called user equilibrium state, which resembles the natural tendency of traffic to
take a way of least resistance.

Definition 1 (Wardrop’s User Equilibrium). A set of flows along the edges of a road
network is said to be in a user equilibrium state (UE) when the two conditions of the
following definition are met.

1. If two or more paths between the origin s and the destination t are actually traveled,
then the cost of each path between s and t actually used must be the same.

2. There does not exist any path between s and t that is of less cost and unused.

Finding a traffic pattern for which the above conditions hold is called traffic assignment
problem (TAP). Solutions to this problem have a wide range of applications, for exam-
ple in transportation management or in traveler information systems. Also, the real-time
computation of equilibria states can be used as traffic forecasts and for traffic steering.
Basic traffic jam avoidance is a feature of nowadays navigation devices. Unfortunately,
this feature is not as developed as it is advertised.

Consider the following example. A traffic jam is reported for a certain highway and
drivers on that highway are advised to leave their route by switching to an alternate road
nearby. Since many drivers leave the highway, the road nearby is also clogged. This is
not just an academic example, but happens every day. Germany’s biggest automobile
club ADAC reports in a large scale study [29] that most towns close to a highway
suffer from increased pass-through traffic because of jam evaders. Routing on a road
network that is at equilibrium is said to be a good estimate of routes that make not only
economical sense but also are perceived as good alternatives to a clogged route. Today’s
jam evading features of navigation devices is limited. ADAC also reports a field study
[6] that shows the inferiority of current approaches for traffic jam evasion. Not only the
current traffic situation has to be considered to give better guidance around traffic jams,
but also how the traffic will evolve.

Travelers on a road network are said to be non-cooperating. The state of the equilib-
rium is the aggregate result of individual decisions and therefore the name user equilib-
rium. It is generally assumed that under equilibrium conditions all used routes for the
same origin destination pair have same costs, e.g. equal travel time. Also, unused routes
between any origin destination pair have higher costs than used ones. Travelers are free
to switch routes if there is a better one than the current. The traffic distributes itself in a
way that no traveler can lower its path cost unilaterally by switching to a cheaper path.
This is the case at equilibrium, because by definition there is simply no such path. Note
that this equilibrium state can also be modeled as a Nash Equilibrium [25].

A general behavioral assumption in the field of transportation science is that each
traveler or vehicle in a road network will take a path that has least cost (or is at least
perceived as such). It is further assumed that travel time is the most significant utility for
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route choice. We recognize the over-simplification of this model, but direct the reader
to the literature on empirical research of route choice, i.e [23].

The remainder of this paper is organized as follows. First, we look at the relevant
literature in Section 2. We introduce the basic algorithms and data structures that we use
and explain how they solve the problem at hand in Section 3. Section 4 explains how
our approach can be tightly integrated into Contraction Hierarchies, which is a well-
known speedup technique to Dijkstra’s algorithm. Second, we present an experimental
evaluation in Section 5 that shows the performance of our approach. The method is
applied to a graph that models the entire road network of Belgium and Germany. Section
6 summarizes the results and presents future directions of research.

2 Related Work

The TAP has been studied for more than 50 years. The first mathematical formulation
is generally attributed to Beckman et al. [4]. It was first given in 1956 and models the
TAP as an optimization problem.

The method of choice to solve this problem is the Frank-Wolfe algorithm [18], which
is also known as the convex combinations algorithm. It was originally invented to solve
quadratic programming problems. Over the years it has been applied to the traffic as-
signment problem, mainly because of its rather simple structure. Occurrences in the
literature go back to the late 1960s [7,19]. The major advantage of the Frank-Wolfe
algorithm (besides its simplicity) is its low memory consumption. For example, it does
not save any information on computed routes. It only counts the volume of traffic on
each individual street segment. This was considered a major advantage in the early days
of computation, because of limited memory capabilities. The algorithm alternates be-
tween an assignment phase of the traffic demand and a minimization step to numerically
approximate edge flows.

The textbook of Sheffi [26] gives an overview of the first three decades of research
between 1950 and 1980. Most of the solution techniques described are still in use by
practitioners today. Usually they are applied to road networks of small and medium
size up to several hundred or a few thousand edges and often only on sparse subsets of
highway networks which are much smaller than the full road network.

There are several publications that focus on speeding up convergence of solving the
traffic assignment problem by modifying the way traffic flow is distributed during the
computation. Gentile [14] proposes an algorithm that seeks a deterministic equilibrium
for the local route choice of users directed toward a same destination at every node. Bar-
Gera [1] presents an algorithm to compute the UE by paired alternative segments. If flow
between two nodes splits into separate sub-paths then flow is shifted proportionally.

A completely different model to solve the traffic assignment problem is to apply
game theory. Rosenthal [24] was the first to consider the problem by a game theoretic
approach. A so-called congestion game is defined by a set of players that compete for
one or more shared resources. It is said to be symmetric if all players chose among the
same set of strategies. Fabrikant et al. [12] show that any symmetric congestion game
can be solved in polynomial time. Relating to our case the players are travelers that
compete for roads and seek to minimize travel expenses. Edge latencies, i.e. the time
time it takes to traverse a road segment, are defined to be nonnegative, continuous and
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nondecreasing functions of the amount of travelers on that edge. Consider building up a
given traffic flow on a road from zero flow, one infinitesimal flow path at a time. The po-
tential function is obtained by integrating the latency experienced by each infinitesimal
flow path, using edge latencies that were in effect at the moment it was routed. This po-
tential can be easily optimized to a (local) minimum by allowing players to switch their
strategy, which is a shortest route in this case. These switches are called selfish steps.
Consider a move of one of the players to a better route. Any local optimum corresponds
to the conditions stated in Definition 1. It is easy to see that the potential is lowered
and that it can be brought to a minimum by subsequent switches until no switch to an
improved route for any player is possible.

Kirschner et al. [17] apply book keeping heuristics to avoid many path computations
and subsequently speed up the rate of convergence on networks with less than a few
thousand nodes and edges. For an excellent survey over the literature for congestion
games and algorithmic game theory in general see the textbook of Nisan et al. [20]
and especially Roughgarden’s seminal work on the Price of Anarchy in routing games
[25]. Note that the game theoretic approach prohibits any precomputation fixed set of
edge costs, because edge weights change with every move. A single selfish step might
change the edge weights enough to invalidate the preprocessed data structures and pre-
processing the network for a single query is out of the question.

The application of the Frank-Wolfe algorithm and also the game theoretic solution
need a method of path finding. Plain solutions spend virtually all of the computational
effort in path finding. Unfortunately, Dijkstra’s algorithm does not scale well on large
road networks with millions of nodes and edges. For large scale applications [21] this
is simply unacceptable. Therefore speedup techniques for point-to-point queries with
Dijkstra’s classic algorithm have been the focus of numerous publications before. For
surveys on the literature and combinations of several methods see [11,3].

Contraction Hierarchies (CH) [13] is a very successful speedup technique that has
the advantage of combining a simple algorithmic concept and very good speedups. CH
performs precomputation on a directed graph G = (V, E), with edge weight function
c : E → R+. All nodes are ordered by importance and the CH is constructed by con-
tracting the nodes in the above order. Contracting a node u means removing u from the
graph without changing shortest path distances between the remaining (more impor-
tant) nodes. Contracted nodes are bypassed and replaced by so-called shortcut edges.
Given a pair of of adjacent edges (v, u) and (u, w), the shortest path P between v and
w avoiding u is computed. Only if the length of P is longer than the length of the
path 〈v, u, w〉, a shortcut edge between v and w is necessary with the combined weight
c(v, u) + c(u, w). The resulting graph can be queried by a bidirectional Dijkstra to find
shortest paths. We refer the interested reader to the publication of Geisberger et al. [13]
for an in-depth explanation of the node ordering and proofs of correctness. There have
also been reports on combinations of several distinct speedup techniques [3].

To the best of our knowledge there is no publication that reports on directly exploit-
ing special properties of any speedup technique to augment traffic assignment com-
putations. Also, we are not aware of equilibria computations for large networks with
significantly more than a few hundred or thousand street segments [15,1,14].
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3 Problem Formulation

We model a road network as a graph G = (V, E). V is a set of nodes and E ∈ V × V
is a set of directed edges or less formally the set of street segments. Each edge carries a
certain amount of traffic that we call flow. Each edge e is labeled with an edge weight
that is the result of the flow fe on e and edge cost function Ce. Given |V | nodes in
a network, let nodes 1, . . . , p ≤ |V | be a subset of nodes which are either origin or
destination of a so-called demand set.

Generally, we view the nodes of the graph as the places where traffic passes-by,
enters or leaves the system. We define the set of demands D as a set of triples (i, j, k),
where i, j ∈ V and k ∈ N. The nodes i and j indicate origin and destination nodes and
k the number of units that demand to flow between these nodes. Flow on a certain road
segment is said to be the ratio of the current and maximum number of vehicles on that
segment at a given average speed.

Optimization Problem. In [26] it has been shown that the traffic assignment problem
can be solved as a minimization problem. The objective function of the underlying opti-
mization problem is based on total edge flows and the resulting edge weights. Consider
ω to be the flow on an edge. The function is defined by the sum over the change of all
edge weights

min(z) =
∑
e∈E

∫ fe

0

Ce(ω) dω

with the constraint, that the sum over all observed flows between any two nodes equals
the total demand between those nodes. This minimization problem can be solved by
applying the Frank-Wolfe algorithm [18,26]. In each step of the algorithm the approxi-
mation of the solution is replaced by a new approximation that is obtained by gradient
descent towards the optimum.

Initialization and Iterative Improvement. The initialization is an all-or-nothing assign-
ment of the demand set where each demand is assigned to the edges of the shortest
paths using free flow speed on the edges. In other words, travelers choose the routes that
would be best if they were the only travelers on the road network. These free flow usages
are counted and edge weights reevaluated w.r.t. the flow on the edges and these edge
weights are taken as the initial solution X0. In each iteration a subsequent assignment
Y i is computed and combined with the previous solution to get a better approximation.

More formally, the n-th iteration starts with an update of edge weights by evaluating
Ce(fe) for each edge. Note that the edge flow vector Fn = (fn

1 , . . . fn
|E|) is the result

of the previous iteration. Next, an all-or-nothing assignment distributes the so-called
auxiliary flow Y n = (yn

1 , . . . yn
|E|) on the network. The new approximation

Xn+1 = Xn + αn · (Y n − Xn)

is obtained by computing a scaling factor αn that is feasible in the current iteration.
Note that computing Y n is straight-forward and Xn is known from previous iteration.
We solve

αn = min
0≤α≤1

∑
e

∫ fn
e +α(yn

e −fn
e )

0

Ce(ω)dω
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at each iteration. Since we know the derivative of the function, we can solve that step
with a search strategy to find the minimum. This is also known as line search.

The search for αn is solved approximately with a certain error threshold by applying
the bisection method of Bolzano, which approximates the zero of a continuous function
by binary search. For any given interval [a, b] and c = (b + a)/2 we examine if our
solution is either in [a, c] or [c, b] and decent recursively until we have reached a certain
accuracy. The method is particularly easy to implement.

The series of solutions X i, i > 0, is known to converge to the solution of the traffic
assignment problem. Again, we refer the reader to the textbook of Sheffi [26] for in-
depth explanations and for the correctness of the method.

Edge Cost Functions. If the travel time between any two nodes was a constant inde-
pendent of the flow in between then we could solve the problem easily. It would suffice
to compute the shortest path for each element of the demand set. Of course, this view
neglects reality and the effect that flow, or in other words dense traffic, has to the aver-
age speed on a road segment. The denser the traffic gets the more careful drivers have
to be not to cause an accident by running into a decelerating car in front. Likewise the
denser the traffic the more cars are affected by one’s own driving maneuvers [28].

To model the situation more realistically the edge cost function has to be increas-
ing, contiguous and non-linear. Several good edge cost functions have been proposed.
A simplified function is the Bureau of Public Roads [8] function (BPR). This function
was derived from empiric observation and takes length, speed limit and capacity as pa-
rameters. Although it is easy to compute its curves are not asymptotic to any maximum
capacity value, which is in stark contrast to reality. To overcome this shortage Davidson
[9] proposed a function family that is based on queuing theory. It is defined as

te = t0e ·
[
1 + J · xe

ce − xe

]

where t0e denotes the travel time at 0 usage, ce the capacity of the street segment and xe

the current usage. J is a tuning parameter to control the shape of the curve.
Other classes of road functions have been proposed, e.g. the class of conical volume-

delay functions [27]. For an earlier survey on edge cost functions see [5]. But on the
other hand the Davidson function models basic relationships between usage and result-
ing travel times and it is easy to compute. We set J to 0.25 throughout this paper, which
is a common value among practitioners.

Convergence Criterion. Convergence can be based on a number of criteria. Clearly, one
would like to stop once the edge weights do not change any more between iterations.
The easiest choice is to stop after a fixed number of iterations, but this entirely neglects
solution quality. A natural choice would be to use the change of the objective function
as convergence test. This might be misleading, since the lengths of individual paths
might differ significantly while the sum of of the lengths is relatively stable. Therefore,
the stopping criterion is based on how much the path length for each demand differs
between two iterations.

max
d∈D

abs

(
μn(d) − μn−1(d)

μn−1(d)

)
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where D is the set of demands and μn(d) is the length (cost) of the path in iteration n
for demand d. This stopping criterion indicates the quality of the approximation of the
equilibrium much better from a behavioral point of view than a simple sum of all edge
weights. Furthermore it ensures that the computation is only stopped once the weights
of all edges have settled down.

A naive implementation of the optimization algorithm is technically easy and
straight-forward with any algorithm that computes shortest path, i.e. Dijkstra’s Algo-
rithm. A more efficient approach will be explained in the next Section.

4 Integration into Contraction Hierarchies

The Frank-Wolfe algorithm needs a number of shortest path computations on the same
weighted graph. Consider a shortest path that is computed by the bidirectional CH query
on the search data structure consists of shortcuts. Although the length of any shortest
path is optimal, it has to be unpacked to get the edges of the original graph. Usually,
unpacking is done by a recursive method. The edges of the packed path are pushed onto
a stack and while the stack is non-empty an edge is popped. If it is a shortcut then the
two edges building that shortcut are pushed onto the stack. Otherwise the popped edge
is inserted into the resulting unpacked path. The recursive unpacking runs fast in time
linear to the length of the unpacked path. When compared to a plain Dijkstra algorithm
using a CH black box with path unpacking is still several orders of magnitude faster.
We can do better with the following method, which has a running time independent of
the size of the demand set. The method is not recursive and relies only on the number
of shortcuts in the hierarchy.

If paths are unpacked at each time they get computed then the heavily traversed edges
would be touched many, many times to increase usage counters. We modify the CH
path computation to do a hierarchy decomposition in which each shortcut is unpacked
only once in a certain order. At first, we do not unpack the paths at all, but count the
flows on edges without unpacking shortcuts. To do so, each original and shortcut edge
is equipped with a counter to record the number of times it is part of a shortest path.
This number is counted during the path computation. It can be done easily, since each
path consists of a few shortcuts only. Since we do not need to keep track of the routes
actually chosen by travelers, we just count the number of times each individual edge
is used. After all paths have been computed the hierarchy is decomposed by unpack-
ing all shortcuts and assigning the load of the shortcut to edges that lie underneath. See
Figure 1 for an illustration of the process of hierarchy decomposition. The only
prerequisite to the correctness of this approach is to decompose the shortcuts in the
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Fig. 1. Flow f is distributed through dashed edges to all underlying edges of a shortcut
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opposite order in which they were created during construction of the hierarchy. It is
obvious from the order of decomposition (and from the fact that the CH data structure
is a directed acyclic graph) that no shortcut needs to be unpacked more than once and
no edge usage is lost. The order of shortcut creation is easy to record during prepro-
cessing and takes up a negligible amount of space only. The reverse order of insertion
defines the order of the decomposition. Note that the order can also be determined by a
topological search.

There exist speedup techniques to Dijkstra’s algorithm that support dynamic updates.
But they are not feasible options here, because the number of edge weight changes
is too high. Our resulting algorithm performs very well as we will see in Section 5.
The additional space overhead for shortcut order and edge usage counters is more than
bearable on a current desktop computer.

5 Experimental Evaluation

We implemented our algorithm and data structures in C++ using GCC v4.3.2 compiler
and full optimizations. All tests were done on a single core of an AMD Opteron 8350
CPU running at 2.0 GHz. The machine is equipped with 64 GB of RAM running Linux
kernel version 2.6.27. The evaluation was done on road networks of Belgium and Ger-
many. The Belgian network consists of 463 514 nodes and 1 093 454 edges whereas the
German network consists of 4 378 446 nodes and 9 574 254 million edges. Both have
been made available by PTV AG1 for scientific use. We stick to travel time as edge cost
metric throughout this paper. For each road segment length and the respective out of
13 road categories are available. Free flow speeds have been derived from category and
length of an edge. Capacity is implied by the category of the edge, which is an over-
simplification, but unavoidable because of lack of data. Travel times were computed
according to the Project OSRM car speed profile [22].

We pregenerate randomized lists of origin destination pairs, also called the set of
demands or demands for short, for the test cases of Section 5. To the best of our knowl-
edge we are not aware of any high resolution trip generation algorithms coming from
transportation science that covers entire countries. A simple trip generation model is
presented that generates traffic demand that is realistic enough to show the validity of
the technical approach.

During a personal conversation with an ADAC representative we were told that the
distances actually traveled are geometrically distributed with an expected distance of
40 kilometers. We conjecture that the population density correlates strongly with the
density of a road network. We choose the starting points uniformly and at random from
the set of all nodes. Since we know the distribution, we draw a geometrically distributed
distance. A ball is grown around each starting node s using a unidirectional Dijkstra
Search and when an edge is relaxed we check the distance its end node has from the
source. If the distance of the end node is equal or more than the travel distance that was
drawn before, we accept the node as the target t of s and insert the triple (s, t, 1) into
the demand set. Each demand is given equal weight.

1 http://www.ptv.de

http://www.ptv.de
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Fig. 2. Experimental results for the Belgian (left) and German (right) road network
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Fig. 3. Running times for Belgian network

We pregenerated lists of 105, 106 and 107 demands for the network of Belgium and
Germany and in addition also a list of 108 demands for Germany to reflect the larger
size of the road network. We computed the user equilibria for all demand sets on the
respective graphs. The line search approximation parameter was set to 10−10 and the
dampening factor J of the Davidson edge cost function was set to 0.25.

See Figure 2, 3 and 4 for the numerical results of the experiments. The stopping value
is quickly approached in each of the experiments. We observe that the stopping value
of a maximum error of less than 0.001% is approached for each of the demand sets in
a similar way while the average error drops significantly with larger demand set sizes.
The larger the graph and the demand set the more evident this phenomenon gets. The
larger the numbers of queries the less important preprocessing and the road network
size gets, which can be seen in Figures 3 and 4. We observe that the preprocessing
dominates the query phase so strongly on the Belgian test set with 105 demands that
they are not visible in the plot at all. Likewise, the preprocessing time for the 108 case
on the German data set is not visible. We conclude that preprocessing times are more
than bearable for sufficiently large demand sets.
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Fig. 4. Running times for German network

The traffic assignment changes the edge weights of the underlying graph. This is
a direct consequence of Wardrop’s User Equilibrium from Definition 1. Hence under
equilibrium state all used routes for a certain origin-destination pair have equal travel
times. This flattens the natural hierarchy of the road network that is exploited during the
contraction phase. Thus the preprocessing takes longer, because it is harder to decide if
a certain shortcut is needed or not. Less shortcut edges can be omitted from the search
data structure, because for many shortcuts there is now a shortest path that actually lies
on it. Likewise, the query times rise. The effect is most obvious in the first two iterations
when the most changes occur in the edge weight. We observe CH to be robust on road
networks at equilibrium state.

Note we also implemented a simpler iterated all-or-nothing assignment. The method
starts with a feasible flow on the network. Then edge costs are recalculated for the flow,
which is observed on each edge. The flow is reassigned to the changed network and
the process is reiterated until a specified number of iterations is completed. We did
not observe any convergence with this technique even for large numbers of iterations.
In contrast, we observed oscillation of route choice and quickly deemed the approach
infeasible. Likewise, an incremental loading where a subset of the demands is assigned
proved infeasible as well. Again, convergence did not occur.
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6 Conclusions

We presented an application of CH as a building block for a large scale optimization
problem. Our algorithm exploits the special properties of the search data structure of
CH which enables us to solve the problem with better efficiency than pure path compu-
tation with unpacking of each computed path. We showed the feasibility of large scale
traffic assignment on graphs that cover entire countries and observe the robustness of
CH. Query times could benefit from incorporating incorporating further algorithmic
techniques. For example, a combination of CH and Arc-Flags [3] can now be prepro-
cessed within a few minutes [10] and delivers single-digit query times. Also, Christian
Vetter has already implemented a parallel CH variant [30] that could be adapted for hi-
erarchy decomposition. We are working to extend our research to time-dependent road
networks, multiple cost functions and also distributed computation. CH have already
been adapted to time-dependent road networks [2] and there has been a distributed im-
plementation recently [16] that could be used to speed up the preprocessing phase even
further. Finding the right modeling of the time-dependent traffic assignment problem is
an interesting question on its own.
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Abstract. We consider the maximum-cardinality matching problem in
bipartite graphs. The input graph G = (V,E) is not available for random
access, but only as a stream, and random-access memory is limited to
storing Θ(n) edges at a time, n = |V |. The number of passes over the in-
put stream required to achieve the desired approximation is an important
measure. It was shown by Eggert et al. (2009, 2011) that a 1+1/k approxi-
mation can be computed in O(k5) passes, independently of the input size.
In this work, we present a new algorithm with the same approximation
guarantee of 1 + 1/k, but show experimentally that it requires two orders
of magnitude fewer passes. The proven bound on the number of passes
is O(kn). This bound depends on the input size, and so in principle is
inferior to O(k5). But we emphasize that in experiments, we do not find
any correlation between theoretical bounds and actual performance: for
all algorithms the number of passes observed in experiments is far below
the corresponding theoretical bound. The most interesting insight comes
from an experimental comparison of the previous and the new algorithm:
e.g., for k = 9, the new one never needed more than 94 passes, even for
instances with up to 2× 106 vertices, whereas the previous one went up
to more than 32 000 passes. Our main new technique is aimed at making
the most out of each pass: we maintain a complex structure, using trees,
for building augmenting paths.

Keywords: bipartite graph matching, massive graphs, semi-streaming
algorithms, approximation schemes.

1 Introduction

Streaming and Matching – Previous Work. Let G = (V = A ·∪B, E) be a bipar-
tite, undirected graph with n := |V | vertices and |E| edges. We aim to find a
matching of large cardinality in G, i.e., a large subset of the edges M ⊆ E such
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that e ∩ e′ = ∅ for all e, e′ ∈ M with e �= e′. A matching with maximum cardi-
nality is called an optimal matching or a maximum matching. It is well known
that this problem can be solved to optimality in polynomial time.

Assume now that the graph is stored in such a way that we cannot do the
usual queries efficiently, like asking whether two vertices v and w are adjacent
or requesting the neighborhood of a particular vertex. The only access to the
graph is by doing a pass. A pass means that each edge is presented to us exactly
once and in arbitrary order. In other words, the graph is stored on a device
that only allows sequential access. There is also a fast random-access memory
available, but it is of size Θ(n logn) bits, i.e., we can store Θ(n) edges at a
time, not more. When |E| = Ω(n2), then this is not enough to store the whole
graph. This is called the semi-streaming model [8]. The “streaming” term refers
to the way the graph is presented. The “semi” attribute refers to the amount of
random access memory available; in the “streaming model”, memory is limited
to Θ(log n), which is too restrictive for many graph problems [4].

Clearly, we can realize a sort of “random access” to the graph on the basis of
a streaming setting: to determine whether v and w are adjacent, do a pass and
note whether {v, w} occurs or not. We can also collect the neighborhood of a
certain vertex in one pass. However, operating in such a manner can lead to a
huge number of passes and hence be inefficient. The common requirement is that
the number of passes is independent of the problem size, i.e., independent of n
and |E| (but it may depend on approximation parameters). Unfortunately, many
algorithms are designed around adjacency and neighborhood queries, including
very simple ones like BFS and DFS, which are used in many matching algorithms.
Also minimum-degree heuristics (see, e.g., [6]) for matching require neighborhood
information: after we have added {v, w} to the matching, the degrees of all
neighbors of v and w have to be decremented.

Many matching algorithms work by finding and eliminating augmenting paths.
Repeatedly finding and eliminating augmenting paths will, in O(n) steps, lead
to an optimal matching. An augmenting path can be found by performing a
variant of BFS starting at the free vertices (i.e., vertices not contained in any
edge of the current matching) of one of the partitions of the bipartite graph.
A more sophisticated approach finds a set of pairwise vertex-disjoint (shortly:
disjoint) paths and then eliminates them all together. This is the basic idea for
the algorithm by Hopcroft and Karp [5] running in O(n2.5) time. Unfortunately,
with neither approach we can guarantee an appropriate bound on the number of
passes required, when in a streaming situation. McGregor [7] suggested resorting
to approximation and using a blend of BFS and DFS in order to find sets of dis-
joint augmenting paths up to a certain length, depending on the approximation
parameter. He presented a randomized approximation scheme for the matching
problem in general graphs: given a parameter k ∈ �, with a small error prob-
ability it finds a 1 + 1/k approximation1 using a number of passes independent
1 IfM is a matching andM∗ is an optimal matching, thenM is a 1+ε approximation

if |M∗| ≤ (1 + ε) |M |. Sometimes, we specify approximation in percent: M being a
ρ approximation with ρ ∈ [0, 1] means that |M | ≥ ρ |M∗|. For example, in our case,
k = 9 means a 90% approximation.
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of the input size. However, the dependence on the approximation parameter k
is rather strong, namely Ω(k)Ω(k), even when restricting to the bipartite case.
In [3], Eggert, Kliemann, and Srivastav gave a deterministic algorithm for the
bipartite case requiring only O(k8) passes. Recently, Eggert, Kliemann, Mun-
stermann, and Srivastav improved that to O(k5) passes [2]. The basic idea of all
those approaches is to grow multiple disjoint alternating paths at the same time.
In [2], as an edge e goes by in the stream, it is attempted to use it to extend any
of the alternating paths constructed so far, provided certain conditions are met,
either forming a longer alternating path or completing it to an augmenting one.
Backtracking is used to “revive” paths that currently fail to grow any further.
A scheme called position limiting is used to limit the ways the edges may be
appended to the alternating paths; details will be explained later. Position lim-
iting is important to establish the desired bound on the number of passes, but
at the same time it is so designed that it does not get in the way of achieving
the required approximation.

Main Results. We present a new approximation scheme for maximum match-
ing in bipartite graph streams. The algorithm has a guaranteed approximation
of 1 + 1/k (Thm. 1) and requires at most O(kn) passes (Thm. 2). In principle,
this theoretical bound is inferior to the O(kO(1))-type bounds known for the pre-
vious algorithm, since it depends on the input size via n; but for smaller n this
bound is better (e.g., for the O(k5) version, n ≤ 3 × 106 is “small” enough). A
main contribution of this work is that experimentally our new algorithm outper-
forms the previously known one by two orders of magnitude, while already the
latter stays far below its theoretical O(k5) bound. For example for k = 9, the
previous algorithm exhibits a number of passes up to about 32 000 per instance.
This is far below the theoretical O(kO(1))-type bound, which is at least 14× 106.
However, the breakthrough lies in the pass requirement that we observe for our
new algorithm: for k = 9 and up to n = 2 000 000 it never required more than
94 passes, with an appropriate choice of further parameters even no more than
65 passes. In our opinion, this work crosses the borderline between theory and
practice towards really practically efficient streaming algorithms.

2 Our Algorithmic Innovation

Tree Structure. The basic challenge for streaming algorithms is: how to make
the most out of a pass? When the task is to find augmenting paths, one usually
maintains some structure incorporating alternating paths. Then the question
more precisely reads: what kind of structure provides a high number of extension
points where we can append new edges to it or which help to restructure it, as
new information becomes available? In [3,2] we took a path-based approach. We
grew multiple alternating paths in parallel, and the end of each path provided
an extension point. In this new work, we present a tree-based approach. Trees
are rooted at free vertices and each path starting at the root is alternating. All
vertices with an even distance to the root act as extension points. This requires
some further considerations: we have to adapt the position limiting scheme and
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the stopping criterion. We prove the same approximation guarantee for the tree-
based algorithm (Thm. 1) as we have for the path-based one. Regarding the
number of passes, we only give a bound depending (linearly) on the size of the
input; this is due to the new position limiting scheme. There is a simple work-
around for this potential drawback: we can let the path-based algorithm run in
parallel along the tree-based one, feeding both algorithms with the same edges as
they go by in the stream. As soon as one of the algorithms terminates, we have a
guaranteed approximation. This combined algorithm inherits the bound on the
number of passes from the path-based one, which is independent of the input
size. We did not implement this combination; given the experimental results this
did not appear necessary.

Parameters. We make an extension that applies to both the path-based and
tree-based algorithm. Our approximation technique is based on considering aug-
menting paths only up to a certain length, and to terminate when only a certain
number of those remains. The length and the termination criterion both depend
on the approximation parameter k. We introduce an additional parameter γ that
is used to control a trade-off between path length and termination criterion. For
the path-based algorithm, γ influences the worst-case bound on the number of
passes: it ranges between O(k7) and O(k5). Experiments show that for some
instance classes, the O(k7) version requires substantially fewer passes than the
O(k5) one. This accentuates the importance of not only considering theoretical
bounds. However, it should be noted that the path-based algorithm is by far
outperformed by the tree-based one, independently of γ.

In addition to γ, another parameter s ≥ 1, which we call the stretch, is
introduced. It is related to the allowable length of the constructed augmenting
paths and offers another trade-off control. For the path-based algorithm, only
s = 1 makes sense, but larger values are meaningful for the tree-based one.

The following two sections, 3 and 4, describe the theoretical foundation of our
approximation technique and explain the path-based algorithm from [2]. They
also introduce the γ and s parameters. In Sect. 5, we present the new tree-
based algorithm and in Sect. 6 the experimental setup and detailed discussion
of results.

3 Approximation Technique

A DAP algorithm is one that finds, given a matching M , a set of disjoint aug-
menting paths. For λ ∈ �, we call a path a λ path if it is of length at most 2λ+1;
the length of a path being the number of its edges. For λ1, λ2 ∈ �, λ1 ≤ λ2, a
set Y of paths is called a (λ1, λ2) DAP set if:
1. All paths in Y are augmenting λ2 paths.
2. Any two paths in Y are vertex-disjoint.
3. We cannot add another augmenting λ1 path to Y without violating condi-

tion 2.
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We call s := λ2
λ1

the stretch, since it specifies how far paths may stretch beyond λ1.
Given δ ∈ [0, 1], a DAP algorithm is called a (λ1, λ2, δ) DAP approximation algo-
rithm if it always delivers a result A of disjoint augmenting λ2 paths such that
there exists a (λ1, λ2) DAP set Y so that |Y| ≤ |A|+ δ |M |. Let δinn, δout ∈ [0, 1]
and DAP be a (λ1, λ2, δinn) DAP approximation algorithm. All our algorithms
utilize the loop shown in Algorithm 1. When this loop terminates, clearly there
exists a (λ1, λ2) DAP set Y with |Y| ≤ |A| + δinn |M | ≤ δout |M | + δinn |M | =
(δinn + δout) |M |, where M denotes the matching before the last augmentation.
Let k ∈ � and k ≤ λ1 ≤ λ2 and

δ(λ1, λ2) := λ1 − k + 1
2kλ1 (λ2 + 2)

> 0 . (1)

Algorithm 1. Outer Loop
M := any inclusion-maximal matching;1
repeat2
c := |M |;3
A := DAP(M);4
augment M using A;5

until |A| ≤ δout c ;6

Following the pattern of [2, Lem. 4.1 and 4.2] we can prove:

Lemma 1. Let M be an inclusion-maximal matching. Let Y be a (λ1, λ2) DAP
set such that |Y| ≤ 2δ |M | with δ = δ(λ1, λ2). Then M is a 1+1/k approximation.

The lemma yields the 1 + 1/k approximation guarantee for Algorithm 1 when
δinn = δout = δ(λ1, λ2). What are desirable values for λ1 and λ2? The DAP
approximation algorithms presented in later sections (the path-based and the
tree-based one) can work with any allowable setting for λ1 and λ2, so we have
some freedom of choice. We assume that constructing longer paths is more ex-
pensive, so we would like to have those values small and in particular λ1 = λ2.
(We will later encounter situations where it is conceivable that higher λ2 is ben-
eficial.) On the other hand, we would like to have δ large in order to terminate
quickly. The function λ 
→ δ(λ, λ) climbs until λ = k − 1 +

√
k2 − 1 ≤ 2k − 1

and falls after that. Since we only use integral values for λ1, the largest value to
consider is λ1 = λ2 = 2k− 1. The smallest one is λ1 = λ2 = k. We parameterize
the range in between by defining

λ(γ) := k (1 + γ)� − 1 for each γ ∈ [1/k, 1] . (2)
Consider the setting λ1 := λ2 := λ(γ) and δinn := δout := δ(λ1, λ2). Then
increasing γ increases path length, but also increases δinn and δout, which means
that we are content with a less good approximation from the DAP algorithm
and also relax the stopping condition of the outer loop. So γ controls a trade-off
between path length and stopping criterion.



Matching in Bipartite Graph Streams 259

4 Path-Based DAP Approximation

We briefly describe how we find a (λ1, λ2, δinn) DAP approximation with λ1 = λ2
in [2]; please consult that text for details. Fix an inclusion-maximal matchingM .
A vertex v is called covered if v ∈ e ∈M for some e, and free otherwise. We call
an edge e ∈ E a matching edge if e ∈M , and free otherwise. Denote free(A) and
free(B) the free vertices of partitions A and B, respectively. If v ∈ V is not free,
denote its mate byMv, i.e., the unique vertex so that {v,Mv} ∈M . We construct
disjoint alternating paths starting at vertices of free(A), the constructed paths,
and we index them by their starting vertices: (P (α))α∈free(A). When we find
augmenting paths, they are stored in a set A and their vertices marked as used;
a vertex not being used is called remaining. Denote remain(X) the remaining
vertices in a set X ⊆ V . Suppose P (α) = (α, e1, b1,m1, a1, . . . ,mt, at) is a path
with free vertex α ∈ free(A), vertices a1, . . . , at ∈ A and b1, . . . , bt ∈ B, free
edges e1, . . . , et ∈ E and matching edges m1, . . . ,mt ∈ M . Then we say that
matching edge mi has position i, i ∈ [t]. Each matching edge m has a position
limit �(m), initialized to �(m) := λ1 + 1. We perform position limiting, i.e., a
matching edge m will only be inserted into a constructed path if its new position
is strictly smaller than its position limit. When a matching edge is inserted, its
position limit is decremented to its position in the constructed path.

After each pass, we backtrack conditionally: each constructed path that was
not modified during that preceding pass has its last two edges removed. When
the number of constructed paths of positive length falls on or below δinn |M |,
we terminate and deliver all augmenting paths found so far. Position limiting is
important for proving the bound 2λ1δ

−1
inn +1 on the number of passes of this DAP

algorithm [2, Lem. 7.1]. By the stopping criterion of the outer loop, it is invoked
at most δ−1

out+1 times [2, Thm. 7.2]. Hence, with (2), we have the following bound
on the number of passes conducted in total: (δ−1

out + 1) (2λ1δ
−1
inn + 1) = O(γ−2 k5).

Let us specify γ by γ̃ ∈ [0, 1] via the relation γ = k−γ̃ . Then for γ̃ = 0 the bound
is O(k5), for γ̃ = 1/2 it is O(k6), and for γ̃ = 1 it is O(k7). We compare these
three values for γ̃ in experiments.

5 Tree-Based DAP Approximation

An alternating tree is a pair consisting of a tree T that is a subgraph of G,
and a vertex r ∈ V (T ), called its root, so that each path from r to any other
vertex of T is an alternating path. For v ∈ V (T ) the subtree induced by all
vertices reachable from r via v is called the subtree below v and denoted T [v]. An
alternating forest consists of one or more alternating trees being pairwise vertex-
disjoint. Our tree-based DAP algorithm maintains an alternating forest with
trees indexed by vertices. We write T (v) = (V (v), E(v)) for the tree indexed
with v ∈ V ; we ensure that it is either empty or rooted at v. The forest F is
F = {T (v); v ∈ remain(V )}. We only deal with trees from F . We call a tree
properly rooted if its root is a free vertex. A properly rooted tree T (α) together
with an edge {a, β} with β being free and a ∈ V (T ) at an even distance from α,
yield an augmenting path.
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We initialize by setting T (α) := ({α} , ∅) for each α ∈ free(A) and T (v) :=
(∅, ∅) for each v ∈ V \ free(A). So we have empty trees and one-vertex trees
with a free vertex of A. Position limits are initialized �(m) := λ1 + 1 for each
m ∈M as usual. If (α, e1, b1,m1, a1, . . . ,mt, at) is a path in the properly rooted
tree T (α), then we say that matching edge mi, i ∈ [t], has position i. Results
(i.e., the augmenting paths found) will be stored into a set A, that is initialized
to A := ∅.

Trees grow over time, and there may also emerge non-properly rooted trees.
When a free edge {a, b} between two remaining vertices goes by in the stream
with b being covered, the algorithm checks whether to extend any of the trees.
Conditions are: the tree has to be properly rooted, say T (α), it must contain a,
and i < �({b,Mb}), where i is the position that the matching edge {b,Mb} would
take in T (α). If all those conditions are met, an extension step occurs: the two
edges {a, b} and {b,Mb} are added to T (α), and, if {b,Mb} is already part of a
tree T (b′), then T (b′)[b] is removed from T (b′) and connected to T (α) via {a, b}.
The tree T (b′) is not required to be properly rooted, but it may be. Bipartiteness
ensures that Mb ∈ V (T (b′)[b]). Position limits for all inserted or migrated edges
are updated to reflect their new positions.

When a free edge {a, β} with a, β ∈ remain(V ) goes by in the stream with
β being free, then we check whether we can build an augmenting path. If there
is a properly rooted tree T (α) with a ∈ V (α), the path P in T (α) from α to
β is augmenting. In that case, a completion step occurs: we store P into the
result set A, and mark all vertices on P as used. Also, we adjust our forest as
follows. For each a ∈ V (P ) ∩A and each of its neighbors in T (α) and not in P ,
i.e., for each b ∈ NT (α)(a) \ V (P ), we set T (b) := T (α)[b]. In other words, we
“cut” P out of T (α) and make each of the resulting subtrees that “fall off” a
new tree of its own. None of those is properly rooted, and also they are rooted
at vertices of partition B, not A as the properly rooted ones. However, they –
or parts of them – can subsequently be connected to remaining properly rooted
trees by an extension step as described above. One last and crucial feature of
the completion step is position limit release: we release position limits to λ1 + 1
on edges of the new (non-properly rooted) trees. This is important for the proof
of the approximation guarantee in Lem. 2. We do not explicitly backtrack; yet,
position limit release can be considered a form of backtracking.

Position limit release requires further considerations. In an extension step, al-
though position limits at first are not higher than λ1+1, edges can be included in
a tree at positions beyond λ1. Assume m = {b,Mb} is inserted at position i < λ1
into a properly rooted tree T (α) and subsequently, more edges are inserted be-
hind m. Then an augmenting path is found in T (α) not incorporating m, hence
the position limit of m is released. Later m can be inserted at a position j with
i < j ≤ λ1 in another properly rooted tree T (α′). When m carries a sufficiently
deep subtree with it, then T (α′) could grow beyond λ1, even though j ≤ λ1.
Here, the second length parameter λ2 comes into play. When the migrated sub-
tree is too deep, we trim its branches just so that it can be migrated without
making the destination tree reach beyond λ2. The trimmed-off branches become
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non-properly rooted trees of their own. We control a trade-off this way: higher
λ2 means fewer trimming and hence fewer destruction of previously built struc-
ture. But higher λ2 reduces δ(λ1, λ2) and so may prolong termination. Choosing
λ2 := λ1 is possible.

After each pass, it is checked whether it is time to terminate and return the
result A. We terminate when any of the following two conditions is met:
(T1) During the last pass, no extension or completion occurred. In other words,

the forest did not change. (It then would not change during further passes.)
(T2) The number of properly rooted trees (which is also the number of remaining

free vertices of A) is on or below δinn |M |.
Lemma 2. The algorithm described in this section is a (λ1, λ2, δinn) DAP ap-
proximation algorithm.

Proof (Sketch). When the algorithm terminates via condition (T2), it could have,
by carrying on, found at most δinn |M | additional augmenting paths. We show
that when we restrict to termination condition (T1), we have a (λ1, λ2, 0) DAP ap-
proximation algorithm. To this end, it only remains to show that we cannot add
an augmenting λ1 path to A without hitting at least one of the paths already in-
cluded. Suppose there is an augmenting path (α, e1, b1,m1, a1, e2, b2,m2, a2, . . . ,
at, et+1, β) with t ≤ λ1, α ∈ free(A) and β ∈ free(B) that is disjoint to all paths
in A. We can show by induction that when the algorithm terminates, then at is
in a properly rooted tree T ; this part of the proof depends crucially on position
limit release. This claim helps establishing a contradiction: first, by the stopping
criterion, at was there for the whole pass, since an extension step would have
made termination impossible. But then the algorithm would have pulled out an
augmenting path from T when et+1 = {at, β} came along in the stream during
the last pass and so it would not have been allowed to terminate. ��
Following from Lem. 1 and 2 we have:

Theorem 1. Algorithm 1 with the tree-based DAP approximation algorithm de-
scribed in this section gives a 1 + 1/k approximation, if δinn = δout = δ(λ1, λ2).

As for the number of passes, at this time we only have a bound depending on
the problem size. The main hindrance for an independent bound is position limit
release, as can be seen by a comparison with the techniques in [2, Lem. 7.1].

Theorem 2. Algorithm 1 with the tree-based DAP approximation algorithm de-
scribed in this section requires at most λ1n

4 + 1 ≤ kn2 + 1 passes.

Proof (Sketch). Consider an invocation of the DAP algorithm for a matching M .
For each m ∈M denote dist(m) the minimum position of m over all alternating
paths that start at a free vertex of A and use only remaining vertices (regardless
whether the path can be realized by the algorithm as part of a tree). If there
is no such path, we put dist(m) := ∞. All matching edges m that are eligible
to be inserted into a (properly rooted) tree of our forest have dist(m) ≤ λ1. It
can be seen easily by induction that while no further augmenting path is found,
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Table 1. Results for path-based (indicated by “p” in the left column) and tree-based
(“t”) algorithms. Parameters are λ1 = λ(γ) as per (2), γ = k−γ̃ , and stretch s = λ2

λ1
.

Numbers state the maximum and rounded mean number of passes, respectively, that
were observed for the different choices of parameters and instance classes. We have
relatively small instances: n = 40 000, 41 000, . . . , 50 000. Density is limited by Dmax =
1/10. Number of edges ranges up to about |E| = 62× 106.

maximum mean

γ̃ s rand degm hilo rbg rope rand degm hilo rbg rope
p 0 1 11 886 14 180 7 032 4 723 2 689 107 145 3 337 257 378
p 1/2 1 7 817 31 491 7 971 4 383 3 843 80 127 2 071 500 541
p 1 1 7 121 32 844 9 106 5 687 5 126 74 166 2 033 844 790

t 0 1 6 9 75 41 79 3 3 51 5 22
t 0 2 6 9 74 52 94 3 3 51 5 26
t 1/2 1 6 9 59 37 63 3 3 38 5 20
t 1/2 2 6 9 59 44 70 3 3 38 5 22
t 1 1 6 9 54 38 61 3 3 35 5 20
t 1 2 6 9 55 40 67 3 3 36 6 21

after at most λ1 passes, for each m with dist(m) ≤ λ1, we have �(m) = dist(m).
Thus, after at most λ1 passes, a new augmenting path is found or the algorithm
terminates due to lack of action, i.e., by termination condition (T1). Since the
initial matching is already a 50% approximation, the former can happen at most
|M∗|

2 ≤ n4 times over all executions of the DAP algorithm, with M∗ denoting an
optimal matching. ��

6 Experiments

Setup. We use randomly generated instances with various structure:
rand: Random bipartite graph; each edge occurs with probability p ∈ [0, 1].
degm: The degrees in one partition are a linear function of the vertex index.

A parameter p ∈ [0, 1] is used to scale degrees.
hilo, rbg, rope: Vertices in both partitions are divided into l groups of equal size

and connected based on that according to different schemes. For details on
hilo and rbg (the latter also known as fewg or manyg), we refer to [9,1,6]. In
rope [9,1], the construction results in a layered graph, where the odd layers
are perfect matchings, and the even layers are random bipartite graphs with
parameter p ∈ [0, 1]. Such a graph has a unique perfect matching.

Instances are kept completely in RAM, so the streaming situation is only sim-
ulated. For Tab. 2, we impose a hard limit of 1 × 109 edges, meaning about
7.5 GiB (each vertex is stored as a 32 bit unsigned integer). A series is specified
by a density limit and a set of values for n. For each n of a series and for each
class, we generate 256 instances on n vertices. For hilo, rbg, and rope, parameter
l is chosen randomly from the set of divisors of |A| = n/2. For all classes, a param-
eter controlling the (expected) number of edges (e.g., p for rand) is being moved
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Table 2. Using trees and a good setting determined in previous series, namely γ̃ = 1
and s = 1. We treat larger instances: n = 100 000, 200 000, . . . , 1 000 000. Density is
limited by Dmax = 1/10. Development for growing n is shown. Number of edges ranges
up to about |E| = 1× 109, which takes about 7.5 GiB of space.

maximum mean

n rand degm hilo rbg rope rand degm hilo rbg rope
100 000 3 8 53 30 62 2.5 3.2 35.0 5.1 19.8
200 000 3 7 56 31 63 2.5 2.8 37.6 4.7 19.1
300 000 3 7 55 29 64 2.5 2.9 38.6 3.9 18.2
400 000 3 8 56 33 63 2.5 2.9 36.3 5.3 15.6
500 000 3 7 58 34 64 2.5 3.0 36.7 4.4 19.4
600 000 3 9 58 30 64 2.5 3.5 38.4 3.3 18.1
700 000 6 9 56 35 62 2.5 3.6 37.4 3.9 18.5
800 000 3 8 58 31 63 2.5 3.5 37.9 3.1 16.2
900 000 7 8 61 32 62 2.6 3.3 37.0 3.7 14.5

1 000 000 6 9 60 34 65 2.5 3.1 33.4 4.6 18.2

through a range such that we start with very few (expected) edges and go up to
(or close to) the maximum number of edges possible, given the hard limit, the
limit Dmax on the density (allowing some overstepping due to randomness), and
any limit resulting from structural properties (e.g., number of groups l). This
way we produce instances of different densities. For rand and degm, we use 16
different densities and generate 16 instances each. For hilo, rbg, and rope, we use
64 random choices of l and for each 4 different densities. This amounts to 256
instances per n and class. In total, we treated more than 60 000 instances. After
an instance is generated, its edges are brought into random order. Then each
algorithm is run on it once, and then again with partitions A and B swapped.
During one run of an algorithm, the order of edges in the stream is kept fix.

Results. Result details are given in Tables 1, 2, and 3. We only consider numbers
of passes and completely neglect running times. The approximation parameter
is fixed to k = 9, which means a guaranteed 90% approximation. We limit the
graph density D = |E|

|A| |B| to 1/10 or lower, since preliminary tests had shown that
usually the tree-based algorithm already exhibits its worst number of passes
there. The density limit saves computation time, since each single pass takes
fewer time when there are fewer edges. We give maximum and mean numbers
of passes, while we focus the discussion on the maximum.

Table 1 compares the path-based and tree-based algorithms. The tree-based
outperforms the path-based by a large margin, in the worst and the average
case. For no setting of γ̃ or s, the tree-based algorithm needed more than 94
passes, whereas the path-based one ranges up to more than 32 000 passes. This
also means that the main improvement stems from using trees instead of paths,
and not from the trade-off parameters. For the path-based algorithm, there are
considerable differences for different values of γ̃. There is no best setting for γ̃,
but it depends on the instance class: compare in particular the rand and rbg or
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Table 3. The same algorithm and parameters as in Tab. 2, but larger number of
vertices and lower density limit, namely Dmax = 1× 10−4. Development for growing n
is shown. Number of edges ranges up to about |E| = 100× 106.

maximum mean

n rand degm hilo rbg rope rand degm hilo rbg rope
1 000 000 48 43 62 41 48 5.5 8.8 29.6 4.5 17.7
1 100 000 47 49 60 42 50 5.1 8.6 29.6 4.4 17.0
1 200 000 45 51 60 33 52 4.4 8.4 29.0 5.2 14.5
1 300 000 31 30 59 41 47 3.9 8.7 30.0 3.9 15.5
1 400 000 32 35 61 35 51 4.5 7.6 28.5 4.6 14.9
1 500 000 28 29 57 33 51 3.9 8.5 28.7 4.5 15.5
1 600 000 25 27 58 34 52 4.1 6.9 26.7 4.5 15.9
1 700 000 28 42 60 35 52 3.6 7.7 28.8 4.6 16.2
1 800 000 31 29 60 35 54 4.1 6.8 28.1 3.2 15.2
1 900 000 23 26 56 34 50 3.2 6.3 27.7 4.6 14.0
2 000 000 32 21 60 35 49 3.4 6.4 28.9 4.5 15.7

rope classes. For the hilo class, the maximum and the mean number of passes
move in opposite directions when changing γ̃. For the tree-based algorithm, γ̃ = 1
and s = 1 is a good setting, with maximum number of passes not exceeding 61.
For the tree-based algorithm, the highest number of passes is attained for γ̃ = 0,
namely 79 for s = 1 and 94 for s = 2.

Tables 2 and 3 consider the tree-based algorithm for larger instances. In par-
ticular they address the concern that the maximum number of passes could grow
with the number n of vertices. There is a slight upward tendency for some classes,
e.g., for hilo in Tab. 2. The maximum number of passes in the range n = 100 000
to n = 1 000 000 is attained for each n by rope in Tab. 2. The smallest value
is 62 and the largest 65. From this perspective, the increase is below 5% while
the number of vertices grows by factor 10. For even larger n and smaller density,
Tab. 3, the maximum is 62. Additionally, we conducted two series with density
limits 1×10−3 and 1×10−4, respectively, and up to n = 1×106. The maximum
observed in those series was 60.

7 Conclusion and Future Work

The tree-based algorithm outperforms the path-based one by a large margin. Its
theoretical pass bound depends on n, but experiments give rise to the hypothesis
that there in fact is at most a minor dependence. Future work will put this
hypothesis to a test, in particular we will consider larger instances.

As an algorithmic addition, one could use multiple matchings in parallel. This
follows the same guiding question: how to make the most out of each pass? We
initialize a number of matchings in a randomized manner. Then we work on all
of those at once: when an edge comes along in the stream, it might not be usable
to extend all of the forests, but maybe some of them.
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Concerning running time, we have preliminary results that in certain cases,
our tree-based algorithm outperforms random-access algorithms – even if the in-
stance completely fits into random-access memory. This may be due to streaming
algorithms making better use of memory caches. This will be addressed in detail
in future work.
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Beyond Unit Propagation in SAT Solving�
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Abstract. The tremendous improvement in SAT solving has made SAT
solvers a core engine for many real world applications. Though still be-
ing a branch-and-bound approach purposive engineering of the original
algorithm has enhanced state-of-the-art solvers to tackle huge and dif-
ficult SAT instances. The bulk of solving time is spent on iteratively
propagating variable assignments that are implied by decisions.

In this paper we present two approaches on how to extend the broadly
applied Unit Propagation technique where a variable assignment is im-
plied iff a clause has all but one of its literals assigned to false. We
propose efficient ways to utilize more reasoning in the main component
of current SAT solvers so as to be less dependent on felicitous branching
decisions.

1 Introduction

Satisfiability checking (SAT) is one of the well known NP-hard problems [15]
in both theoretical and practical computer science. There are several real-world
applications that are actually tackled by modelling parts of these problems as
SAT instances like hardware and software verification [34], planning [23], and
bioinformatics [28].

The collaboration of theoretical research and algorithm engineering has man-
aged to design and realise highly optimised SAT solvers. Different types of solvers
have been engineered for different types of SAT instances (i.e. real-world, ran-
dom, handmade). Solvers for real-world applications which are the objective of
the presented work compensate the little effort spent for decision making by
very fast search and propagation of decisions [12]. Though this often works for
a wide range of instances solvers are highly sensitive to an initial random seed
(affecting about 1-2% of decisions [19,10]) and minor changes of parameters.

The fundamental Unit Propagation technique where a variable assignment is
implied iff a clause has all but one of its literals assigned to false has now been
highly optimised and nearly exploited for further speed-ups, so solver engineering
has recently taken the line to improve at other stages of solving, e.g. to emphasise
more resolution [9,11] and enhanced analysis of conflicting assignments [3,20,31].

However, with this work we are heading for further improvements of propaga-
tion from a different point of view. Our motivation is to increase the number of
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implications that follow from one decision. As shown in [35,26] many industrial
SAT instances may only require a very small set of variables that are chosen as
decision variables. The difficulty is to find such a set of variables. However, an
increase of the average number of implications that are caused by one decision
will go along with an even smaller set of variables that have to be chosen as de-
cision variables. Moreover, a smaller number of decisions and a greater number
of implications reduces the dependency on felicitous branching decisions.

Our main idea is to consider a clause C for propagation even if it has more
than one literal unassigned. The set of unassigned literals in clause C might
have a common implication li. If so, li can be propagated even though C is not
unit. In this process we use all binary clauses of a formula to check for common
implications of literals. In the next section we give basic definitions and sketch
the state-of-the-art of SAT solving. Section 3 explains two approaches on how
to realise extended propagation. In section 4 the two approaches are evaluated.
Section 5 finally concludes this work.

2 Basic Definitions and State of the Art

Practical SAT solving is mostly about Boolean formulae in conjunctive normal
form (CNF). A formula F in CNF consists of a set of Boolean variables VF and
a set of clauses CF that are connected as conjunctions. A clause C ∈ CF is a
disjunction of |C| literals, whereas each literal l is either a variable v ∈ VF or its
negation (l = v). A partial assignment τV : V "→ {false, true} is a function that
assigns Boolean values to all variables of V ⊆ VF . If V = VF then τV is said
to be a complete assignment for F . A formula F is Satisfiable iff there exists an
assignment τV with V ⊆ VF that fulfills all clauses in CF . A clause is fulfilled
if at least one of its literals is true. A literal l of variable v is true if l = v and
τV (v) = true or if l = v and τV (v) = false. We write τV (l) = false/true for
short. A clause C is unit if |C| = 1 and binary if |C| = 2.

SAT solvers can generally be categorized into two distinct types, namely com-
plete and incomplete solvers. Given a formula F in CNF both kinds of solvers
may compute a satisfying assignment for F . However, complete solvers can also
prove Unsatisfiability for formulae that cannot be satisfied by any assignment to
the variables in VF .

Incomplete solvers are mostly local search approaches [32] which have shown
to be especially successful for satisfiable random SAT instances [1]. Complete
solvers are based on the DPLL algorithm [18,17] that may be classified as branch
and bound algorithm. State-of-the-art solvers are predominantly variants of con-
flict driven solving with clause learning (CDCL) that is an extension of the
original DPLL algorithm [29]. Algorithm 1 sketches the CDCL approach.

For simplicity we assume the formula F to be simplified in the way that no
unit clauses are contained. As long as there are still unassigned variables (line 5)
a branching choice is made in line 6. More details about the common branching
heuristic ’VSIDS’ can be found in [30,19]. In the following line 7 all implications
(i.e. implied variable assignments) of the chosen decision literal are computed by
the so-called Boolean Constraint Propagation (BCP). In subsection 2.1 BCP will
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Algorithm 1. Sketch of the CDCL approach

Require Formula F in CNF without unit clauses ;1

Function CDCL(F )2

A ← ∅ /* τA is current partial assignment */3

VU ← vars(F ) /* set of unassigned variables */4

5 while VU �= ∅ do5

6 l ← choose-next-decision(VU ) ;6

7 A′ ← BCP(l) ;7

8 if A′ in conflict with A then8

9 L ← analyze-conflict(A, A′) ;9

10 if L = ∅ then return ’Unsatisfiable’;10

F ← F ∪ L;11

A ← backjump(L) ;12

else13

14 A ← A ∪ A′;14

VU ← VU \ {vars(A)};15

return ’Satisfiable’ /* assignment A satisfies F */16

be explained in more detail. If an assignment to a variable w ∈ V is implied that
contradicts its current state (e.g. w is already b ∈ {false, true} but is implied
to be b ) a conflict is found (line 8).

If there is no conflict the partial assignment can be adapted (line 14) and the
loop continues. Otherwise the function analyze-conflict computes a new clause
L that expresses the current conflict as a single condition. L contains only lit-
erals which are false by the current partial assignment A and the implications
of decision l. If L is empty the formula F is unsatisfiable. Otherwise L will
be (temporarily) added to F . The solver jumps back to a previous partial as-
signment such that (at least) one literal in L becomes unassigned. More details
about clause learning and backjumping can be found in [30,36,7]. If the main
loop terminates an assignment is found that satisfies all clauses in F .

2.1 Boolean Constraint Propagation

The main ingredient of any conflict driven SAT solver is clearly a fast implemen-
tation of Boolean Constraint Propagation (BCP). For the bulk of SAT instances
more than 80% of the runtime is spent on Unit Propagation [30,25]. On the other
hand relatively little computational effort is spent on choosing decision variables.
This constitutes ongoing research to improve the speed of BCP [30,10,14].

For CDCL based SAT solvers BCP exactly corresponds to Unit Propagation.
If all but one literals of a clause Cj ∈ CF are false under an assignment τV (the
clause is unit under τV ) the remaining literal has to become true. More precisely:
Let Cj ∈ C = {l1,∨l2 . . . ∨ lk} and τV (li) = false ∀ 2 ≤ i ≤ k. Thus Cj is unit
under τV and τV (l1) ← true is implied. Unit propagation applies this rule until
no more implications can be derived.
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In order to analyse a conflict (line 9 of Algorithm 1) a CDCL solver maintains
a so-called reason for each assigned variable. This reason can either be empty for
decision variables or it stores the clause which forced the variable to be assigned
by Unit Propagation. In the example the variable of l1 has reason Cj .

2.2 Related Work

The application of more and advanced reasoning in SAT solving has been studied
in several different contexts [33,5]. The so-called Look-ahead solvers [27,8,21,12]
aim to improve the quality of branching decisions and thus to guide the solvers
search. One of the basic ideas is to propagate both assignments of a variable x
before a decision on x is finally made. In doing so further reductions may be
applied to the formula [27,8,22]. Look-ahead solvers are particularly successful
for handmade and unsatisfiable random instances[1]. Our approach differs in this
respect that Unit Propagation itself is extended rather than the decision process.

Recent work [3,31,20] improves on the quality of clause learning. In [31] the
authors focus on particular missed implications that are not caught by Unit
Propagation. Conflict analysis is modified to learn some additional clauses in
order to improve the quality of subsequent propagation. Our approach aims to
tackle the missed implications already at each propagation step.

Our extension of Unit Propagation is eminently based on the set of binary
clauses in a formula. In [6,4,13,33] special treatments of binary clauses are pro-
posed. Bacchus introduces the concept of Hyper-binary resolution in combination
with the computation of the complete binary closure. Applying this approach
at each level of the SAT search captures the implications generated with our
approach. However, this turns out to be too time consuming for today’s SAT
instances. In [13], a similar idea was used but only as a preprocessor for SAT
formulae.

3 Enhancing BCP

In this work we aim to improve Boolean Constraint Propagation (BCP) in terms
of the number of implications that can be derived from one decision. This is
contrary to a common focus in research on how to improve the speed of Unit
Propagation [30,14]. In this section we introduce two ideas on how to extend
classical BCP. An evaluation and comparison of both implementations are given
in section 4. We use basic concepts from graph theory and algorithms e.g. [16].

3.1 General Observations on Clauses and Implications

In classical Unit Propagation any clause Cj ∈ C can imply the value for at most
one variable. As described above this applies if all but one literals of Cj are
falsified by a partial assignment of the variables. However, it may happen that
Cj does not have to become unit until the value of a variable can be implied.
This goes along with the fact that Cj may directly imply values for more than
one variable.
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C1 = {l1 ∨ l6}
C2 = {l2 ∨ l6}
C3 = {l3 ∨ l7}
C4 = {l6 ∨ l7}

(a) (b)

Fig. 1. Implication graph induced by binary clauses

Consider the following example: Given a clause C5 = {l1 ∨ l2 ∨ l3 ∨ l4 ∨ l5}
and a partial assignment τV such that τV (l5) = τV (l4) = false. Apparently Unit
Propagation can not be applied for clause C5 since there is more than one literal
unassigned in C5. Assume there are also the binary clauses shown in Figure 1 (a).
Note that binary clauses constitute a special constraint in CNF: Any binary clause
can be understood as two implications. By applying the idea of Unit Propagation
one can claim that if one of the two literals is false the value of the other vari-
able is implied. This constitutes an implication graph as this is used in [2] to solve
2-CNF formulae. Each variable vi ∈ V of the formula is represented by two ver-
tices li, li in the graph, one for the state of v being true (li) and the second for
the state of v being false (li). Each binary clause {li ∨ lj} causes two directed
edges (li → lj), (lj → li) as shown in Figure 1 (b). This kind of graph was also
used in [6] to compute Hyper-Binary Resolution in a SAT preprocessor. Examine
clause C5 again. We know that one of the literals l1, l2 or l3 has to fulfill C5 since
the others are false under τV . Considering the implication graph all three liter-
als l1, l2, l3 imply literal l7 since there is a chain of implications (a path) from all
three to l7. Detecting such cases allows for further implications that are beyond
Unit Propagation. However, BCP is a highly critical part in CDCL solving and
therefore requires fast execution. In the next two subsections we present two ideas
on how to realise the extended propagation more or less efficiently.

3.2 A Matrix Based Approach

To extend Boolean Constraint Propagation as described above the algorithm has
to determine if for a given clause all unassigned variables have some common
implication. This is equal to a reachability problem in the implication graph.
Additional computation like breadth–first search during BCP is beyond ques-
tion. Clearly, an adjacency matrix of vertices (i.e. literals) could allow for fastest
computation. However, industrial SAT instances range up to 10 million vari-
ables which makes a quadratic matrix evidently infeasible. To cope with a high
number of literals by allowing random matrix access we formulate the following
observation:

Observation 1. Given a directed acyclic graph G = (V, E), two vertices a, b ∈
V reach a common vertex iff there exists at least one sink s ∈ V and two paths
(a ⇀ s), (b ⇀ s). A sink is any vertex without outgoing edges.
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inner vertices
sinks↓ 1 2 3 4 5 6 7

1 x x x x x

2 x x x x x x

3 x x x x x x

← (a) uncompressed

inner
sinks↓ 1 2

1 x

2 x x

3 x x

(b) compressed →

Fig. 2. Sink matrix of one component. Inner vertices are drawn as dark octagons, sinks
are drawn bright ellipses. In (b) the compression of the matrix by reduction of epigone
vertices is given. Epigone vertices have transparent fill colours.

We denote the set of all sinks in G by σ ⊆ V . With Observation 1 reachability
information is only required for pairs of vertices a, b ∈ V where one vertex is a
sink (b ∈ σ) and the other is an inner vertex (a ∈ V \ σ). Although Observa-
tion 1 is evident this already reduces the size of a reachability matrix drastically
in practice (cf. Section 4). Moreover, in our application the implication graph
often decomposes into several (disconnected) components γj ∈ V . Hence, the
functionality of the adjacency matrix can be achieved by holding several inde-
pendent nj × sj - matrices, with j being the index, sj the number of sinks and
nj the number of inner vertices of the j-th component γj . An example of a
reachability matrix is given in Figure 2(a). Note that the indices of sinks and
inner nodes are consistently assigned within each component. The observation
requires an acyclic directed graph. The removal of strongly connected compo-
nents (SCC) can be combined with equivalence reasoning. Literals belonging to
the same SCC are identical and can be replaced by one representing literal as
in [6,9]. Thus, by computing SCCs the algorithm detects equivalent literals and
furthermore, achieves the requirements of Observation 1.

First and foremost the aim of the matrices is to predict whether or not a
set V ′ ⊂ V of vertices reaches a common vertex. It is not important at first
place to exactly know the sink that can be reached when starting from V ′.
Moreover, the matrices are only consulted to provide answers into one direction:
”Do some vertices have a common successor?”, but not the other way around:
”Is a sink reached by some particular inner vertices?”. This allows for further
lossless compression of a reachability matrix by Observation 2.

Observation 2. Let N(v) be the adjacent vertices of v ∈ V . If any inner vertex
v ∈ V \ σ reaches exactly the same sinks as one of its successors w ∈ N(v) then
v can adopt the reachability information of w. We call v an epigone of w.

In particular with Observation 2 any epigone v of w can be reduced: if w is a
sink then v becomes a sink with the same sink ID as w. Otherwise v becomes an
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inner vertex sharing the same column as w in the reachability matrix. In Figure
2 the compression of a reachability matrix is shown in an example.

The reachability matrices can further be compressed by omitting leading and
ending blank entries in each column. Two additional integers can give the range
for each column. We only apply this for a column if the overhead of the additional
integers does not exceed the saving of memory.

Maintenance of reachability matrices. Before the initialisation of the solver the
vertex of each literal li is assigned to its own component γ(li). Whenever a binary
clause {li ∨ lj} is added the two components γ(li), γ(lj) (resp.γ(li), γ(lj)) of the
related vertices are merged if they are different (γ(li) �= γ(lj) resp. γ(li) �= γ(lj)).
A merge can be done in constant time by holding a first and last vertex for each
component. The affected components are marked ”dirty”. Dirty components are
updated intermittently. Therefore (new) SCCs are removed as described above.
Subsequently a new matrix is computed which requires one depth–first search
execution on this component. Note that components may also be split when
vertices are removed from the graph. This is the case whenever a unit clause has
been learnt.

Utilizing matrices in BCP. During usual BCP each clause has two watched
literals [30]. Whenever a literal l becomes false all clauses being watched by l
are traversed to check whether a clause becomes unit. If for a clause C ∈ C
another unassigned or true literal ln ∈ C can be found, ln takes over to watch C,
otherwise C became unit under the current assignment and Unit Propagation
applies as described in 2.1.

At this point we extend the usual Unit Propagation: For a touched clause that
is not yet fulfilled by the current partial assignment we check whether the re-
maining unassigned literals belong to the same component. For early detection of
conflicts Unit Propagation is finished first until those clauses are finally checked
for extended BCP. If the corresponding reachability matrix indicates that the
free literals of one clause have a common successor a breadth–first search is ap-
plied to compute the topmost common successors. Note that the matrix may
still be misleading since it may happen that all common successors are already
assigned.

3.3 A Convenient Alternative

The reachability matrix approach constitutes a feasible way to enhance the
broadly used Unit Propagation in SAT solving. However, the maintenance of
components and their matrices requires quite some computational effort. More-
over, the compression factor varies for different instances. In this subsection we
present an alternative method that approximates the reachability matrix in a
practical sense but considerably outperforms the previous approach.

The idea is to cache reachability information on the fly while usual Unit Propa-
gation is performed. Whenever a variable vi is assigned a value b ∈ {true, false},
we first propagate all unit implications that are caused by binary clauses. In this
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(a) Unit Propagation of binary clauses (b) sink tags set during Unit Propagation

Fig. 3. The left graph shows the implications of usual Unit Propagation of binary
clauses when assigning literal 1. During propagation the sink-tag 1 can be set in the
implication graph for all literals having opposite polarity to the literals reached by
propagation.

Algorithm 2. Assignment of a variable value and caching of sink-tags

Require Literal l that has to become true, current partial assignment A ;1

Function assign(l)2

Q ← {l} /* initialise queue */3

T ← l /* initialise sink-tag */4

while Q �= ∅ do5

k ← dequeue(Q) /* remove one element of the queue */6

set-sink-tag(k, T ) /* set sink-tag for opposite literal */7

A ← A ∪ k /* assign literal k */8

foreach j ∈ N(k) : j /∈ Q do enqueue(Q, j) /* enqueue neighbors */9

step, values are assigned to exactly those variables vj whose vertices lj or lj are
successors of li if b = true resp. li if b = false in the implication graph.

Due to the way how edges are created in the implication graph we know that
whenever there exists a path from vertex li to lj there is also a path from lj
to vertex li (see section 2). Hence, when Unit Propagation starts from vertex
li we initialise a sink-tag with opposite polarity li. For each vertex lj that is
reached we mark the opposite vertex lj with the current sink-tag. By doing so all
vertices that have a path to vertex li are marked with the corresponding sink-tag.
Figure 3 illustrates this approach and Algorithm 2 sketches the procedure. The
idea of sink-tags extends the concept of binary dominators introduced by Biere
for hyper-binary resolution [11,6]. However, binary dominators are attached to
variables instead of literals.

Clearly, the sink-tag approach only caches one possible target that can be
reached by a vertex. Furthermore, the target does not necessarily have to be
a real sink. Thus, this approach does not require the removal or detection of
strongly connected components. In Figure 3 the propagation of 1 assigns sink-tag
1 to the vertices shown in the right graph. When asking for a common successor
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of vertices 6 and 7 (at a later point in solving) the sink-tag would indicate and
even name the correct answer. However, when asking for a common successor of
vertices 7 and 8 the sink-tag approach would miss the common successor unless
sink-tags are changed by Unit Propagation starting from 2 or 4.

Utilizing sink-tags in BCP Sink-tags can be utilized in a way similar to compo-
nents and reachability matrices. However, sink-tags represent and replace both -
components and bits in a reachability matrix: When a clause is touched during
Unit Propagation we additionally check whether all unassigned literals have the
same sink-tag. At this point we differentiate two approaches:

optimistic: The state of the sink-tag literal is not considered. If the sink-tag
literal is true the algorithm still applies breadth–first search to find common
successors of the unassigned literals.
pessimistic: The breadth–first search for common successors of the unas-
signed literals is only applied if the sink-tag literal is unassigned. With this
approach one could alternatively just take the sink-tag as one successor and
may be ignore any others. However, this dismisses valuable information.

Note that a sink-tag literal li of an unassigned variable v can never be false
since due to binary implications li would have implied an assignment to v.

3.4 A Suitable Side Effect

With both approaches it may happen that given a clause C1 = {l1∨l2∨l3∨l4∨l5}
and an assignment τV with τV (l4) = τV (l5) = false the remaining literals have
one common successor. This common successor may be equal to one of the literals
themselves. E.g. l1 and l2 may both imply l3. Hence, by C1 and the binary
implications (represented in the graph) the clause C2 = {l3 ∨ l4 ∨ l5} can be
resolved. Now C2 is a subset of C1 and therefore constitutes a harder constraint
than C1. In general it is said that C2 subsumes C1. Since C2 is also valid we can
simply remove the literals l1 and l2 from C1 and thus prune the search space.
The recognition of such subsumptions comes without any extra computational
effort. Figure 4 in the next section indicates that these subsumptions are found
quite frequently.

4 Experiments

In this section we present some results of our experiments for the different ap-
proaches. We used our solver SArTagnan1 for all tests. It is implemented in
C++ and extends the solver SApperloT that participated in the SAT competi-
tion 2009 [1,24]. Our focus and analysis is not primarily on runtime but mainly
on the improvement of Boolean Constraint Propagation in terms of more impli-
cations. The tests are performed on 500 industrial SAT benchmarks from the
1 For the SAT Race 2010 SArTagnan was configured to utilise the sink-tag approach

in 5 of 8 solving threads. However, for the tests the solver run in sequential mode.
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Fig. 4. Comparing different issues of both approaches (upper table). Unit Propagation
versus Extended Propagation (lower table).

Matrix Opt.Tags Pess. Tags
avg max avg max avg max

ext. Prop / Decisions [%] 63.24 1581.93 33.71 1340.64 6.72 226.46
Self Subsumptions [abs] 14038.14 496460 701.54 18340 640.21 28780
Self Subsumptions [%] 9.61 70.97 5.04 96.72 8.14 100
Implied Binaries 16816.36 235042 9100.49 152728 219.17 6238
Implied Units 101.48 2722 146.71 4386 0.53 247

Unit Prop Matrix Opt.Tags Pess. Tags
avg max avg max avg max avg max

Decisions 976988.0 13099898 550958.7 11454167 835644.2 11636689 925507.49 14192787
Props./Dec. 1145.25 18483.05 1236.46 16809.06 1158.34 16883.87 1175.09 23923.48

SAT competitions and SAT races 2007, 2008 and 2009 [1]. Trivial instances were
removed. On average the number of variables per instance is about 115500. Each
solver version was given a timeout of 1200 seconds for each instance. Since in
both presented approaches the extended propagation is only applied when Unit
Propagation has finished we can claim that each variable assigned by extended
propagation replaces one decision.

The first line of the upper table in Figure 4 gives a good overview on how
many decisions are saved by the different approaches. Apparently the reachability
matrix approach outperforms the sink-tag approaches. With the matrix approach
the number of variable assignments that are implied by extended propagation
are 63 percent of the number of decisions. For both sink-tag approaches the
percentage decreases drastically. However, this extended propagation is done
without any additional computation.

The second and third line of the upper table of Figure 4 compare the number
of subsumptions during extended propagation (cf. Sect. 3.4). The last two lines
indicate the number of binary and unit clauses that are created by extended
propagation. For the matrix approach there are some more interesting issues.
For each instance we measured the biggest matrix that was created for a com-
ponent. On average this biggest matrix required 870.64 MB without applying
Observation 2. The technique behind Observation 2 achieves a large reduction
to an average size of 502.47 MB.

Since we are aiming for the reduction of the total number of decisions the lower
table of Figure 4 compares the total number of decisions and the implication
per decision. Clearly, pure Unit Propagation requires much more decisions than
extended propagation using the matrix approach. For the sink-tag approaches
the difference decreases but can still be identified.

Even though the matrix approach clearly outperforms the other approaches
in terms of quality it has its drawback in the costly maintenance of compo-
nents and matrices. In Figure 5 extended propagation and Unit Propagation are
compared regarding their runtimes. Given the same amount of time the matrix
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Fig. 5. Each plotted curve represents the performance of one solver on the set of hard
benchmarks. One point (x, y) indicates that x instances were solved within y seconds.

approach clearly solves the least number of instances. Due to the cheap com-
putation of sink-tags the alternative approaches perform much better. However
the optimistic sink-tag approach cannot compete to highly optimised standard
CDCL. For the pessimistic approach it pays off to only apply extended propaga-
tion when a valid common successor definitely exists (i.e. unassigned variables
that have a common sink-tag li that is also unassigned have at least one common
and valid implication li). It clearly solves more instances than standard CDCL
with pure Unit Propagation.

Our results also indicate that there is no significant difference between satis-
fiable and unsatisfiable instances for the different techniques. The set of bench-
marks can be classified into 38 families of instances. For only 4 families (≈ 11
percent) the performance of the matrix technique is significantly worse than
CDCL which underlines the potential of our new approaches.

5 Conclusion

Our goal was to reduce the number of branching decisions and to improve the
quality of propagation of variable values in SAT solving. In this paper we have
presented two approaches on how to extend the broadly used Unit Propagation.
The first approach of maintaining reachability matrices shows how the quality of
propagation can be improved. The second approach constitutes an inexpensive
approximation to the matrix approach. Although not reaching the same quality
as the former it clearly outperforms not only the other approaches but also the
highly optimised standard CDCL with pure Unit Propagation.

The matrix and the sink-tag approach both consider implications given by bi-
nary clauses. However, this can be called static since clauses that become binary
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under a partial assignment are not considered. Such clauses would add temporary
edges to the implication graph. However, this would require a permanent update
of the graph and the matrix. For future research it would be interesting to analyse
a more dynamic approach that is not limited to static binary clauses. This will
probably further improve extended propagation but it is open how to realise this
efficiently.
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Abstract. Office space allocation (OSA) refers to the assignment of
room space to a set of entities (people, machines, roles, etc.), with the
goal of optimising the space utilisation while satisfying a set of addi-
tional constraints. In this paper, a mathematical programming approach
is developed to model and generate test instances for this difficult and
important combinatorial optimisation problem. Systematic experimen-
tation is then carried out to study the difficulty of the generated test
instances when the parameters for adjusting space misuse (overuse and
underuse) and constraint violations are subject to variation. The results
show that the difficulty of solving OSA problem instances can be greatly
affected by the value of these parameters.

Keywords: Office Space Allocation Problem, Integer Programming,
Mathematical Modelling, Data Instance Generation, Proof of Optimality.

1 Introduction

We develop a mathematical programming approach to design difficult test in-
stances for the Office Space Allocation (OSA) problem, which is commonly
encountered in universities, companies and government institutions. In simple
terms, the OSA problem is the task of allocating office spaces (rooms, hall-
ways, etc.) to entities (peoples, machines, roles, etc.) subject to additional con-
straints. OSA is related to the multiple knapsack [15] and generalised assignment
problems [6]. In OSA, the primary goal is to maximise the space utilisation
by reducing the misuse of rooms. Misuse of rooms refers to underusing space
(under-utilisation of rooms) or overusing space (over-crowding of rooms). Usu-
ally, overuse is considered more undesirable than underuse of space. Additional
constraints (e.g. people grouping conditions) can arise in different organisations
when allocating office space. Any of such constraints can be hard (satisfied all
the time) or soft (desirable but not necessary).

Office space allocation is usually a continuous process due to the constant
changes in an organisational environment (departure/arrival of new personnel,
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maintenance/renovation of existing office space, restructuring in organisations
etc). This process can involve many conflicting objectives and constraints diffi-
cult to tackle when using manual approaches. An automated allocation system
can deal with such conflicting objectives and constraints better than a human
decision expert especially if the size of the problem grows. An automated sys-
tem can also provide alternative solutions for different scenarios more quickly.
Then, instead of tackling the complex optimisation problem directly, the decision
maker can focus on fine tuning the automatically generated allocation based on
organisational preferences and requirements.

In this study, the office space allocation problem as described in Landa-
Silva [13] is investigated and extended. A 0/1 integer programming model is
developed and then Gurobi [10], a commercial integer linear programming (ILP)
solver, is applied to solve it. Based on this model, we develop a test instance
generator to further investigate the difficulty of the OSA problem through sys-
tematic experimentation. The paper is organised as follows: Section 2 outlines
previous research on office space allocation. Section 3 presents the mathematical
model proposed for OSA while Section 4 describes the test instance generator.
Section 5 presents and discusses the results from our experimental study. Finally,
Section 6 summarises our contributions and proposes future research directions.

2 Outline of Previous Related Work

One of the earliest works on the optimisation of office space utilisation is that of
Ritzman et al. [17], who developed a linear programming model for the distribu-
tion of academic offices at the Ohio State University. Benjamin et al. [1] used a
linear goal programming model for planning and improving the utilisation of the
layout of floor space in a manufacturing laboratory at the University of Missouri
Rolla. Giannikos et al. [8] developed a goal programming approach to automate
the distribution of offices among staff in an academic institution.

Burke and Varley [5] reported on a questionnaire on the space allocation
process in 38 British universities. The emphasis was on the scope of the problem,
computing tools to solve it and the constraints in each university. Burke et al.
[3] applied hill climbing, simulated annealing [11] and a genetic algorithm [9]
to solve the allocation (task of creating a complete solution from scratch) and
reorganisation (task of reallocating entities in a given solution) variants of the
problem. The authors used allocation, relocation, and swap operators for moving
entities between rooms. Burke et al. [2] later investigated a hybridisation of their
previous approaches under a population based framework. The initial solutions
were created using a hill climbing operator and then improved using simulated
annealing with adaptive cooling schedule. Burke et al. [4] applied multi-objective
optimisation [7] to the OSA problem comparing weighted aggregation to Pareto
dominance for tackling two objectives: the total space misuse (under/over usage
of rooms) and the sum of (soft) constraint violations. They found that these
two objectives were conflicting in nature. Later, Landa-Silva and Burke [12]
developed an asynchronous cooperative local search method in which local search
threads in a population co-operate with each other asynchronously to improve
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the overall solution quality. Based on their experiments, the soft constraint ‘group
by’ was regarded as the most difficult one to satisfy (high number of violations).

Pereira et al. [16] applied a greedy local search and tabu search algorithm to
tackle an OSA problem where the goals are to minimise the distance between
employees in the same organisation, minimise the office space misallocation and
maximise the office space allocation. They reported that tabu search performed
better on their OSA problem instances. Lopes and Girimonte [14] analysed a
variant of the OSA problem (similar to the one described in [12]) arising in
the European Space Agency (ESA). They implemented four types of meta-
heuristics: hill climbing, simulated annealing, tabu search and the hybrid meta-
heuristic in [2]. To improve the performance of these algorithms, variations to
the local search, and new constraints management algorithms were designed by
the authors.

3 Mathematical Programming Model

An earlier version of the following model was presented in [18]. The set of rooms
is denoted by R and the set of entities is denoted by E. The size of entity e is
Se and the capacity of room r is Cr. There is a matrix X of |R| × |E| binary
decision variables where each xer = 1 if entity e is allocated to room r, otherwise
xer = 0. Let A be the adjacency list of |R| adjacency vectors each one denoted
by Ar and holding the list of rooms adjacent to room r. Similarly, let N be the
nearby list of |R| nearby vectors each one denoted by Nr and holding the list
of rooms near to room r. The adjacency vector Ar for a room r is usually quite
smaller compared to the nearby vector Nr, i.e. more rooms are considered to be
‘near’ to room r than considered to be ‘adjacent’ to the same room.

There are ten requirements or constraints handled here. Most of these con-
straints can be set as hard (must be satisfied) or soft (desirable to satisfy) in
our formulation. In other words, when a constraint is set as soft, minimising
its violation becomes an objective in the problem formulation. The exception
here is the ‘All allocated’ constraint (all entities must be allocated) which is
always enforced. The next subsections present these alternative formulations in
the constraint set and in the objective function. For each constraint type (de-
fined below), HCal, HCna, HCsr, HCnsr, HCnsh, HCad, HCgr, HCaw, HCcp

denote the corresponding constraint as hard while SCal, SCna, SCsr, SCnsr,
SCnsh, SCad, SCgr, SCaw, SCcp denote the corresponding constraint as soft.
Note that each soft constraint is associated with a binary indicator variable ycst

which is set to 1 if the respective soft constraint is violated. Some constraint
types require additional binary variables (ycst

r ) over r ∈ R.

3.1 Modeling Hard Constraints

All allocated: each entity e ∈ E must be allocated to exactly one room r ∈ R.∑
r∈R

xer = 1 ∀e ∈ E (1)
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Allocation: entity e to be placed into room r. ((e, r) ∈ HCal).

xer = 1 (2)

Non allocation: entity e not to be placed into room r. ((e, r) ∈ HCna).

xer = 0 (3)

Same room: entities e1 and e2 to be placed into same room. ((e1, e2) ∈ HCsr).

xe1r = 1 ↔ xe2r = 1 ∀r ∈ R i.e.

xe1r − xe2r = 0 ∀r ∈ R (4)

Not in same room: entities e1 and e2 to be placed into different rooms.
((e1, e2) ∈ HCnsr).

xe1r = 1 ← xe2r = 0 ∀r ∈ R i.e.

xe1r + xe2r ≤ 1 ∀r ∈ R (5)

Not sharing: entity e not to share a room with any other entity. ((e) ∈ HCnsh).

xer = 1 →
∑

f∈E−e

xfr = 0 ∀r ∈ R i.e.

∑
f∈E−e

xfr ≤ (|E| − 1) − (|E| − 1)xer ∀r ∈ R (6)

Adjacency: entities e1 and e2 placed into adjacent rooms. ((e1, e2) ∈ HCad).

xe1r = 1 →
∑

s∈Ar

xe2s = 1 ∀r ∈ R i.e.

xe1r ≤
∑

s∈Ar

xe2s ≤ 1 ∀r ∈ R (7)

Group by: entities in a group placed near to the group head f . ((e, f) ∈ HCgr).

xer = 1 →
∑

s∈Nr

xfs = 1 ∀r ∈ R i.e.

xer ≤
∑

s∈Nr

xfs ≤ 1 ∀r ∈ R (8)

Away from: entities e1 and e2 to be placed in rooms away from each other.
((e1, e2) ∈ HCaw).

xe1r = 1 →
∑

s∈Nr

xe2s = 0 ∀r ∈ R i.e
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0 ≤
∑

s∈Nr

xe2s ≤ 1 − xe1r ∀r ∈ R (9)

Capacity: Room r must not be overused. ((r) ∈ HCcp).∑
e∈E

Sexer ≤ Cr (10)

3.2 Modeling Constraints as Objectives

Allocation: indicator variable yal(i) is set if SCal(i) is not satisfied.

yal(i) = 1 − xer (11)

Non allocation: indicator variable yna(i) is set if SCna(i) is not satisfied.

yna(i) = xer (12)

Same room: indicator variable ysr(i) is set if SCsr(i) is not satisfied.

2ysr
r (i) − 1 ≤ xe1r − xe2r ≤ 1 − ε + εysr

r (i) ∀r ∈ R (13)

ysr(i) =
∑
r∈R

ysr
r (i) (14)

Not in same room: indicator variable ynsr(i) is set if SCnsr(i) is not satisfied.

(1 + ε) − (1 + ε)ynsr
r (i) ≤ xe1r + xe2r ≤ 2 − ynsr

r (i) ∀r ∈ R (15)

ynsr(i) =
∑
r∈R

(1 − ynsr
r (i)) (16)

Not sharing: indicator variable ynsh(i) is set if SCnsh(i) is not satisfied.

(|E| − 1)(2 − xer − ynsh
r (i)) ≥

∑
f∈E−e

xfr ∀r ∈ R (17)

∑
f∈E−e

xfr ≥ (|E| − 1)(1 − xer) + ε − (|E| − 1 + ε)ynsh
r (i) ∀r ∈ R (18)

ynsh(i) =
∑
r∈R

(1 − ynsh
r (i)) (19)

Adjacency: indicator variable yad(i) is set if SCad(i) is not satisfied.

yad
r (i) + xe1r − 1 ≤

∑
s∈Ar

xe2s ≤ xe1r − ε + (1 + ε)yad
r (i) ∀r ∈ R (20)
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yad(i) =
∑
r∈R

(1 − yad
r (i)) (21)

Group by: indicator variable ygr(i) is set if SCgr(i) is not satisfied.

ygr
r (i) + xer − 1 ≤

∑
s∈Nr

xfs ≤ xer − ε + (1 + ε)ygr
r (i) ∀r ∈ R (22)

ygr(i) =
∑
r∈R

(1 − ygr
r (i)) (23)

Away from: indicator variable yaw(i) is set if SCaw(i) is not satisfied.

1 − xe1r + ε − (1 + ε)yaw
r (i) ≤

∑
s∈Nr

xe2s ≤ 2 − xe1r − yaw
r (i) ∀r ∈ R (24)

yaw(i) =
∑
r∈R

(1 − yaw
r (i)) (25)

Capacity: indicator variable ycp(i) is set if SCcp(i) is not satisfied.

∑
e∈E

Sexer + (Cr + ε)(1 − ycp(i) ≥ Cr + ε (26)

∑
e∈E

Sexer + (
∑
e∈E

Se − Cr)(1 − ycp(i) ≤
∑
e∈E

Se (27)

3.3 Objective Function

The objective function is the weighted sum of the space misuse (underuse + 2 ·
overuse) and the soft constraints violation penalty. The penalties associated to
each soft constraint type are: wal, wna, wsr, wnsr, wnsh, wad, wgr, waw, and wcp.
The objective function Z to minimise is given by:

Z =
∑
r∈R

max

(
Cr −

∑
e∈E

xerSe , 2
∑
e∈E

xerSe − Cr

)
+ wal

|SCal|∑
i=1

yal(i) (28)

+ wna

|SCna|∑
i=1

yna(i) + wsr

|SCsr|∑
i=1

ysr(i) + wnsr

|SCnsr|∑
i=1

ynsr(i) + wnsh

|SCnsh|∑
i=1

ynsh(i)

+ wad

|SCad|∑
i=1

yad(i) + wgr

|SCgr|∑
i=1

ygr(i) + waw

|SCaw|∑
i=1

yaw(i) + wcp

|SCcp|∑
i=1

ycp(i)
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4 Test Instance Generator for OSA

We have access to some real-world data for the OSA problem but in order to
systematically investigate this problem, we developed a test instance generator
based on the mathematical programming approach. The generator currently
supports the nine types of constraints described in the previous section, and
the generation of entities, rooms, and floor layout. An outline of the generator
is shown in Algorithm 1. The generator algorithm starts with the creation of
entities, groups (set of entities) and initial sets of hard and soft constraints.
Then it creates or modifies the floor layout and/or the room sizes by means of
a constructive heuristic. The generator tries to ‘plant’ a core solution into the
instance by allocating entities into rooms according to the initial constraint sets.
In order to experimentally investigate the difficulty of the created test instances,
four parameters directly related to space misuse (overuse/underuse) and to soft
constraint violations were devised. These parameters are:

Algorithm 1. OSA Test Instance Generator Algorithm
Input: input file of parameters.
Output: data instance.

— Create Groups, Entities, Floor Layout and Constraints.
— Placement of entities according to the hard constraints.
— Calculate space that is minimally required for each room.
— Placement of entities according to the soft constraints.
— Room size adjustments via (positive or negative) slack amounts.
— Post processing

1. Slack Space Rate: After all the entities are allocated to rooms, this parameter
determines whether the room size will be modified. This parameter adjusts
the amount of space misuse.

2. Negative Slack Amount: Is the amount by which room capacity is reduced
and is determined by a percentage of the total sizes of the entities already
allocated to rooms. This parameter adjusts the amount of space overuse.

3. Positive Slack Amount: Is the amount by which room capacity is increased
and is determined by a percentage of the total sizes of the entities already
allocated to rooms. This parameter adjusts the amount of space underuse.

4. Violation Rate: When allocating entities to rooms as indicated by the soft
constraints, there might be some violations of constraints, i.e. conflicts. A
soft constraint is removed from the constraint set with this rate if such a
conflict occurs. This parameter adjusts the violation of soft constraints.

5 Experiments and Results

Six real-world benchmark instances (called Nott) taken from [13] were used for
experimentation here. Additional experiments were carried using test instances
created with our generator as well.
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Table 1. Constraint penalties for the best results obtained for each problem instance
of the Nott Dataset

Nott1 Nott1* Nott1b Nott1c Nott1d Nott1e Wolver

Allocation 40.00 20.00 0.00 40.00 0.00 0.00 0.00
Same Room 0.00 0.00 80.00 0.00 0.00 0.00 0.00
Not Sharing 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adjacency 10.00 10.00 0.00 10.00 0.00 0.00 0.00
Group by 11.18 22.36 11.18 11.18 11.18 0.00 0.00

Away From 20.00 30.00 0.00 20.00 0.00 40.00 0.00

Constraint Penalty 81.18 82.36 91.18 81.18 11.18 40.00 0.00

Overuse 130.80 106.40 64.20 182.90 164.70 13.80 486.04
Underuse 134.20 122.00 87.90 41.65 26.85 123.90 148.15

Usage Penalty 265.00 228.40 152.10 224.55 191.55 137.70 634.19

Total Penalty 346.18 310.76 243.28 305.73 202.73 177.70 634.19
Lower Bound 201.86 273.16 131.45 305.73 202.73 177.70 634.19

Percentage Gap %41.70 %12.10 %46.00 %0.00 %0.00 %0.00 %0.00

To solve the 0/1 IP formulation, Gurobi 3.0.1 [10] was used on a PC with a
Core 2 Duo E8400 3Ghz processor and 2GB of RAM. Each problem instance was
given 30 minutes of solver runtime. The following penalties were used for each
soft constraint violation: wal = 20, wna = 10, wsr = 10, wnsr = 10, wnsh = 50,
wad=10, wgr = 11.18 for the Nott instances, wgr = 10 for the generated test
instances, waw = 10, and wcp = 10.

Table 1 summarises the best results obtained after a run of 30 minutes on each
problem instance (from Nott1 to Wolver). Note that these dataset instances
do not contain non-allocation, not in same room, or capacity constraints, the
other six constraint types are present in these real-world instances. The penalties
for each constraint violation are given in rows 2-7 of the table. Two different
experiments were run on the largest problem instance Nott1. It was observed
during experiments that minimising same room constraint violations is the most
difficult, especially for the Nott1b instance (value of 80.00). So, we conducted
an additional experiment for tackling the same room constraint in the Nott1
instance (largest one). In Nott1 column, same room constraints were all set
as soft, whereas in column Nott1*, same room constraints were all set as hard.
Notice that this latter setup achieved a lower usage penalty by roughly 35 square
meters. We can see that in all these instances, the constraint penalty turned out
to be significantly lower than the usage penalty. For all these real-world instances,
our model and solution approach produced the best results in the literature so
far [18,12]. Table 1 also shows that for instances Nott1c, Nott1d, Nott1e and
Wolver we obtained optimal results while instances Nott1 and Nott1b remain
very challenging.

Our next experiments focused on studying the difficulty of the generated test
instances by changing the four generator parameters described in Section 4:
slack space rate (S), positive slack amount (P ), negative slack amount (N) and
violation rate (V ). The term ‘difficulty’ in this paper refers to the difficulty of
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Fig. 1. The effect of changing S and V on the percentage and absolute gaps

the optimality proof for the ILP solver (i.e. the gap or difference between the
best found solution and the best found lower-bound on the optimal solution).
The aim of this experimentation was to check if incrementing the above four
parameters had any effect on this gap and hence the optimality proof difficulty
of the test instances. In generating all our test instances, the generator used the
same entity set (with 150 entities), same initial hard constraint set, and same
initial soft constraint set (subject to modifications of the V parameter). The S,
P , and N parameters were varied to adjust the size of the rooms (92 rooms in
each instance) to obtain various amounts of space misuse (underuse/overuse).
We created two different datasets. In the SV e150 dataset, the slack space rate
(S) and violation rate (V ) were varied between 0.0 to 1.0 with 0.2 increments (i.e.
36 test instances). In the PNe150 dataset, the positive slack amount (P ) and
negative slack amount (N) were varied between 0.00 to 0.25 with 0.05 increments
(i.e. 36 more instances).

Table 2(a) shows results for the SV e150 dataset. Columns S and V repre-
sent the amount of slack space and violation rates respectively. Columns C, B
and % represent the objective value achieved, the lower bound on the objective
value and the percentage gap between the objective value and the lower bound
respectively. The positive slack (P) and negative slack (N) amounts were fixed
at 0.10 for this experiment. It was observed that although increasing S and V
individually increases the percentage gaps, this increase tends to stabilize (and
in fact decreases) after certain levels of S and V . It was observed that the per-
centage gaps tend to peak around S = 0.4 and V = 0.8. The absolute gaps (the
raw difference between the bound and obtained objective value) exhibit a some-
how expected smooth increase with larger S and V values. Table 2(b) shows
results for the PNe150 dataset. The effect of changing the positive slack (P )
and negative slack (N) amounts on the achieved objective values, lower bounds
and percentage gaps obtained is observed in this table. The slack rate (S) and
violation rate (V) were fixed at 0.5. Figures 1 and 2 illustrate graphically the
effect of S, V , P and N in our experimental results.

The percentage gaps obtained in our experiments serve as an evidence that
our generator is able to create difficult test instances. i.e. with significant high
percentage gaps between the achieved objective values and the lower bounds
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Table 2. The objective values, the lower bounds and the percentage gaps obtained
when solving the SV e150 and PNe150 generated instances under different values for
parameters S, V, P and N

(a) Changing Slack Space Rate (S) and
Violation Rate (V )

S V C B %

0.00 0.00 0.00 0.00 0.0%
0.00 0.20 32.00 21.10 34.0%
0.00 0.40 57.00 37.30 34.5%
0.00 0.60 95.50 46.20 51.6%
0.00 0.80 171.00 55.90 67.3%
0.00 1.00 193.00 67.40 65.1%

0.20 0.00 28.10 24.40 13.2%
0.20 0.20 52.90 43.20 18.3%
0.20 0.40 86.60 51.40 40.6%
0.20 0.60 122.80 62.20 49.3%
0.20 0.80 212.70 72.10 66.1%
0.20 1.00 210.30 86.20 59.0%

0.40 0.00 82.80 62.00 25.1%
0.40 0.20 116.30 63.70 45.2%
0.40 0.40 155.10 77.20 50.3%
0.40 0.60 188.80 84.70 55.1%
0.40 0.80 208.70 94.10 54.9%
0.40 1.00 271.50 107.80 60.3%

0.60 0.00 109.70 87.10 20.6%
0.60 0.20 129.70 107.00 17.5%
0.60 0.40 168.20 121.90 27.5%
0.60 0.60 205.20 129.50 36.9%
0.60 0.80 289.10 138.80 52.0%
0.60 1.00 278.70 147.60 47.1%

0.80 0.00 124.70 76.80 38.4%
0.80 0.20 160.30 89.20 44.4%
0.80 0.40 173.60 101.90 41.3%
0.80 0.60 195.90 114.70 41.5%
0.80 0.80 267.80 122.20 54.4%
0.80 1.00 276.10 134.80 51.2%

1.00 0.00 169.10 111.00 34.4%
1.00 0.20 194.20 124.10 36.1%
1.00 0.40 221.40 141.40 36.1%
1.00 0.60 243.40 149.90 38.4%
1.00 0.80 340.40 157.50 53.7%
1.00 1.00 345.30 165.90 51.9%

(b) Changing Positive Slack (P ) and
Negative Slack (N) Amounts

P N C B %

0.00 0.00 73.00 38.59 47.13%
0.00 0.05 119.40 72.70 39.11%
0.00 0.10 145.20 114.29 21.28%
0.00 0.15 186.00 156.88 15.65%
0.00 0.20 210.20 209.90 0.14%
0.00 0.25 250.80 244.74 2.42%

0.05 0.00 119.90 44.90 62.55%
0.05 0.05 130.80 61.06 53.32%
0.05 0.10 141.40 95.47 32.48%
0.05 0.15 185.00 136.33 26.31%
0.05 0.20 202.40 202.40 0.00%
0.05 0.25 232.70 232.70 0.00%

0.10 0.00 130.40 57.67 55.78%
0.10 0.05 134.00 70.09 47.70%
0.10 0.10 162.60 78.64 51.64%
0.10 0.15 176.30 118.26 32.92%
0.10 0.20 205.00 146.51 28.53%
0.10 0.25 240.60 188.26 21.76%

0.15 0.00 96.00 81.50 15.10%
0.15 0.05 105.40 83.25 21.01%
0.15 0.10 124.50 79.35 36.27%
0.15 0.15 183.50 90.22 50.83%
0.15 0.20 192.90 126.09 34.63%
0.15 0.25 229.50 160.13 30.23%

0.20 0.00 108.60 108.60 0.00%
0.20 0.05 135.40 95.37 29.56%
0.20 0.10 129.90 95.47 26.51%
0.20 0.15 167.20 90.65 45.78%
0.20 0.20 177.20 102.75 42.02%
0.20 0.25 219.50 134.46 38.74%

0.25 0.00 126.00 116.21 7.77%
0.25 0.05 180.30 110.82 38.54%
0.25 0.10 132.90 113.27 14.77%
0.25 0.15 192.40 96.33 49.93%
0.25 0.20 195.30 100.71 48.43%
0.25 0.25 233.00 115.48 50.44%

provided by the solver. One interesting observation is that the difficulty of the
test instances is not necessarily affected by increasing or decreasing P and N
independently. The percentage gaps were usually highest when P and N were
set equal or close to each other. Also, the percentage gaps were usually lower
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Fig. 2. The effect of changing P and N on the percentage and absolute gaps

when the absolute value gap between P and N was increased and the gaps
were minimal when N −P was the highest. The absolute value gap between the
objective value and the bounds exhibited a similar pattern to the percentage gap
case. This can be attributed to the fact that when N is increased, the resulting
test instance has a lot of rooms with less available space than required (high
overuse) but not enough rooms with extra capacity to compensate the lack of
space if P is kept low. At this setting, the solver is expected to immediately
allocate any extra space it can find and the remaining time when solving the
instance is concentrated on minimizing the overuse. However, when P and N are
kept close to each other, there are enough rooms with both overuse and underuse
to compensate for each other, hence the solver has to make choices to minimize
overuse, underuse and constraint violations, spending more computation time as
a result.

6 Conclusions

In this work, a 0/1 IP formulation was proposed to model various hard and
soft constraints in the office space allocation (OSA) problem. This model was
implemented in the Gurobi solver and we improved the best results obtained so
far for the existing Nott dataset. A test instance generator was also described
here and further experiments were carried out on new test instances generated.
Our experiments focused on studying the effect that four different parameters
of the generator, which affect the space misuse (underuse/overuse) and the soft
constraint violations, have on the percentage and absolute gaps between the
achieved objective value and the lower-bound on the optimal solution found by
the solver. It was observed that an important factor affecting the optimality proof
difficulty of the test instances, was the difference between negative slack (N) and
positive slack (P ) amounts, which adjust the overuse and underuse of rooms
respectively in the generated test instances. Although raising the slack space
rate (S) and violation rate (V ) increased the percentage gaps, their effect was
less prominent than the effect of N and P . Future research will concentrate on a
detailed study of the effect of these four parameters on the overuse, underuse and
constraint violation penalties. We also intend to develop more effective solution
techniques to tackle the most difficult instances like Nott1b and Nott1.
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Abstract. In this paper we formalize and solve the speed dating problem. This
problem arises in the context of speed dating events, where several people come
together to date each other for a short time. For larger events of this type it is not
possible to have each possible pair of persons meet. Instead, based on forms filled
out by the participants, the organizer of such an event decides in advance, which
pairs of people should meet and also schedules the times of their dates. Moreover,
since people pay for participating in such events, aside from the overall quality
of the dates, it is important to find a fair schedule, where people from the same
group (e.g., all women) have a comparable number of dates.

We model the organizer’s problem for speed dating, study its complexity and
design efficient algorithms for solving it. Finally, we present an experimental
evaluation and show that our algorithms are indeed able to solve realistic problem
instances within a reasonable time frame.

1 Introduction

A speed dating event is an event, where people that wish to find a partner, come and
date each other for a short period of time. When such events came up they were usually
small enough that during one evening every potential pair could have a date. Due to
the increasing size of such events this is no longer feasible and the organizer has to
schedule in advance who meets whom, and when. The schedule is usually set up in
rounds such that in each round each person dates at most one other person. Sometimes
it is not possible that everybody has a date in every round, for example the ratio of
men to women usually is around 3:2, and hence some men need to skip a round now
and then.

To come up with potential matches, the organizer asks the participants to fill out
forms about their ideal partner before the event. Based on this information he estimates
a certain quality for each date. Certain dates have such a poor quality that they would
only upset the participants and therefore should in no case take place. One approach to
solving the speed dating problem would now be to select a set of dates, such that the
total quality of all dates is maximized and no person has more dates than the number
of rounds. This allows to limit the number of rounds and thus guarantees a fixed time
frame for the whole event.
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c© Springer-Verlag Berlin Heidelberg 2011



Speed Dating: An Algorithmic Case Study Involving Matching and Scheduling 293

There are a few problems to consider when choosing the set of pairs that meet each
other and an according schedule. First of all, in each round every person can be involved
in at most one date, i.e., for each round, the set of dates forms a matching of the people.
Some persons may be more attractive than others. When maximizing the total quality
of all dates, they would probably get a lot of dates, possibly at the cost of other peo-
ple. Since all people participating in a speed dating event pay for the registration, it is
crucial to find a fair distribution of dates. However, a completely fair distribution is not
always feasible. For example there generally are more men than women participating
in such events. The only way to deal with this problem is to make some men skip some
of the rounds. Again these should be fairly distributed among all men. If there are n
men and m women with n > m, σ rounds yield a total of mσ dates. Hence every man
should get roughly m/n ·σ dates. As σ ·m may not be divisible by n it would be rea-
sonable to require for every man at least �m/n ·σ and at most �m/n ·σ� dates. We will
however introduce more flexible bounds that allow an upper and lower bound for each
vertex individually. In this way more elaborate constraints can be modeled, such as VIP
persons who pay more and are less likely to skip rounds. Finally, it is important that a
solution can be computed quickly as the organizer of such events may wish to perform
the computation of the schedule as close to the start of the actual event as possible, in
order to accomodate for late registrations or people that register but do not show up.

So far we have only described bipartite speed dating, where the people are divided
into two groups (men and women) and all dates take place between people from dif-
ferent groups. We also consider the general speed dating problem, where we do not
make this distinction between men and women and allow arbitrary dates to take place.
This more general setting could also be applied in other settings, for example at scien-
tific meetings in Dagstuhl people are usually randomly assigned to tables for dinner. To
facilitate an efficient communication among researchers, it may be desirable to deter-
mine this assignment based on a network representing common research topics, instead.
Note that the bipartite speed dating problem is a special case of the general speed dating
problem, where the dates between persons of the same gender are rated very badly. We
will see later that these two problems behave quite differently in terms of computational
complexity.

Outline and Contribution. We introduce the problem of scheduling meetings of pairs
in a group of people, as they arise for example in speed dating events. Based on the
already identified criteria total quality and fairness, we derive a precise problem for-
mulation for the speed dating problem. We show that the general problem is NP-hard
and give a polynomial-time algorithm for the bipartite case. We further show that the
general case admits a polynomial-time algorithm that simultaneously approximates the
total quality and the fairness violation. Finally, we demonstrate the effectiveness and
efficiency of our algorithms with an experimental evaluation that compares the perfor-
mances of our algorithms with a greedy solution on a variety of problem instances,
among them randomly generated instances and real-world instances of social networks.

The paper is organized as follows. First, we formalize the speed dating problem and
study its complexity in Section 2. In Section 3 we give a polynomial-time algorithm for
the bipartite case and modify it into an approximation algorithm for the general case in
Section 4. We present our experimental evaluation and our conclusions in Section 5.
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2 Preliminaries

In this section we formalize the speed dating problem, arrive at a formal problem state-
ment, and consider its complexity status. Along the way we introduce notations that we
use throughout this paper.

The input to the general speed dating problem consists of a tuple (G,q, �,h,σ), where
G = (V,E) is an undirected graph with weights q : E −→ N \ {0} and two functions
�,h : V −→ N0 specifying lower and upper bounds for the number of dates for each ver-
tex such that �(v) ≤ h(v) ≤ deg(v) holds for all v ∈V , as well as a number of rounds σ .

A feasible solution to the speed dating problem can be encoded as a subgraph G′ =
(V,E ′) of G with the property that �(v) ≤ degG′(v) ≤ h(v) for all v ∈ V along with
a proper coloring of the edges that uses at most σ colors. A proper coloring of the
edges is such that any two edges sharing a vertex have distinct colors. The quality of a
feasible solution can be measured by the total weight of its edges, i.e., q(G′) = q(E ′) =
∑e∈E ′ q(e). For a solution G′ of the speed dating problem we also write dates(v) instead
of degG′(v) to denote the number of dates a vertex v participates in.

The main problem with this approach is that, depending on the structure of the in-
put graph G, a feasible solution may not even exist as it may not be possible to find a
solution with dates(v) ≥ �(v) for all v ∈ V . We therefore relax this lower bound on the
number of dates and consider any solution G′ that is properly σ -edge colored and satis-
fies dates(v) ≤ h(v) for all v ∈ V . We measure the quality of such a solution in terms of
the quality as introduced before and by its fairness violation δ (G′). The fairness viola-
tion δ (v) of a single vertex v is the amount to which its lower bound is violated or 0 if it
is satisfied, i.e., δ (v) = max{�(v)−dates(v),0}. The overall fairness violation of a so-
lution is the maximum fairness violation among all vertices, i.e., δ (G′) = maxv∈V δ (v).

In a nutshell, the fairness violation δ describes the degree of fairness of a given solu-
tion and the quality q describes the overall quality of the selected dates. Since customer
satisfaction is a priority, we focus on minimizing the fairness violation first and on opti-
mizing the quality of the dates as a second priority. We are now ready to formally state
the speed dating problem.

Given an instance (G,q, �,h,σ), the problem SPEEDDATING asks to find a solu-
tion G′ that minimizes the fairness violation δ (G′) and among all such solutions has the
maximum quality q(G′). The bipartite speed dating problem is defined analogously, ex-
cept that the graph G is bipartite. In the following we will assume that maxv∈V h(v) ≤ σ
as it never makes sense to allow more dates than rounds for any person. Unfortunately,
the general problem is NP-complete.

Theorem 1. SPEEDDATING is NP-complete, even if σ = 3.

The proof is by reduction from EDGECOLORING, we omit it due to space constraints.
Although this problem is NP-hard in its general form, solving the speed dating problem
is not completely hopeless since EDGECOLORING admits solutions for quite some in-
teresting cases. First of all, for bipartite graphs Δ colors always suffice and a solution
can be computed efficiently [2]. Second, every graph can be colored with at most Δ +1
colors [7] and such a coloring can be computed efficiently [6].
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3 Bipartite Speed Dating

In this section we design an algorithm for the bipartite case of SPEEDDATING. The
key observation here is that any edge set E ′ satisfying the upper bound on the number
of dates for each vertex forms a bipartite graph with maximum degree at most σ , and
therefore it can always be colored with σ colors. Hence, the coloring subproblem is
trivially solvable and does not impose any additional constraints on the subgraph that
needs to be selected. This simplifies the problem to finding a subgraph of G that max-
imizes the total weight among all solutions that minimize the fairness violation. Our
algorithm therefore works in three phases.

1. Determine the minimum value δ such that an edge set E ′ with �(v)−δ ≤ dates(v)≤
h(v) for all v ∈ V exists, using a binary search.

2. Determine the maximum weight edge set E ′ of G with �(v)− δ ≤ dates(v) ≤ h(v)
for all v ∈V for the fixed value of δ determined in the previous phase.

3. Color the edge set determined in the second phase with at most ΔG′ colors.

We will now describe the phases. Note that due to the properties of the bipartite edge
coloring problem, Phase 3 is completely independent from the previous two phases.
This independence is however not given between Phases 1 and 2. In fact, Phase 1 will
make use of the algorithm developed in Phase 2 to check whether a solution exists for
a given fixed δ .

Phase 1: Determining the minimum fairness violation. Given a fixed fairness viola-
tion δ , the speed dating problem can be transformed into an equivalent instance, where
the lower bounds on the number of dates are strict, i.e., �(v) ≤ dates(v) must hold for
each node v by setting �(v) ← max{0, �(v)− δ}. After this transformation, finding an
uncolored edge set boils down to the weighted degree-constrained edge-subset problem
(WDCES).

Problem 1 (WDCES). Given a graph G = (V,E) with edge weights w : E −→ N\ {0},
lower and upper node capacities �(v),h(v) : V −→ N with �(v) ≤ h(v) ≤ deg(v), deter-
mine an edge set E ′ ⊆ E of maximum weight such that �(v)≤ dates(v) ≤ h(v) holds for
all nodes.

This problem is also known as weighted b-matching with unit edge capacities and has
been previously studied by Gabow [3]. In the description of Phase 2 we will describe a
simple MINCOSTFLOW based algorithm for solving this problem in the bipartite case.
In Phase 1 we essentially discard the weights and simply wish to determine whether
any feasible solution exists. We use this to determine the minimum value of the fairness
violation δ by a binary search. The optimum value of δ is in {0, . . . ,maxh(v)}. If, for a
fixed δ , the resulting WDCES problem does not admit a feasible solution, then smaller
values of δ are also infeasible. Similarly, feasible solutions remain feasible for higher
values of δ . Hence, binary search can be used to determine the smallest value δ for
which the instance becomes feasible. This takes O(logn) feasibility tests.
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Phase 2: Determining a Maximum Weight Subgraph. This phase consists of solving
the WDCES problem that is obtained from an instance of bipartite SPEEDDATING by
fixing the fairness violation to a certain value δ . To this end, we model the problem as
a min cost flow problem (MINCOSTFLOW) as follows.

Let G = (V,E) be an instance of WDCES with weight function w and lower and
upper bounds for the nodes � and h, stemming from fixing the fairness violation of a
bipartite speed dating instance to a certain value δ . We construct an instance of min cost
flow as follows. Recall that G is bipartite and hence V = V1 ∪V2 with V1 ∩V2 = /0 and all
edges in E have endpoints in both sets. The flow network N has vertices V1 ∪V2 ∪{s, t},
where s will act as a super source and t as a super sink. For each edge uv ∈ E with
u ∈ V1 and v ∈ V2 we add the arc (u,v) to N and set its lower capacity �N(u,v) = 0
and its upper capacity hN(u,v) = 1, and its cost c(u,v) = −q(uv). We call these arcs
main arcs, all other arcs will be helper arcs. For each vertex u ∈V1 we add an arc (s,u)
with lower capacity �N(s,u) = �(u) and upper capacity hN(s,u) = h(u). Similarly, for
all vertices v ∈V2 we add arcs (v,t) again with lower capacity �N(v, t) = �(v) and upper
capacity hN(v,t) = h(v). All helper arcs have cost 0.

We set the desired flow value p that should flow from s to t to |E|. Further, we
introduce an arc from s to t with �N(s, t) = 0, hN(s, t) = p and c(s, t) = 0. This ensures
that enough flow can be routed through the network to possibly select all edges in E ,
and on the other hand that superfluous flow can be piped along the (s, t)-arc with no
cost. The transformed graph contains n+2 nodes and n+m+1 edges and thus its size is
linear in the size of G. For a flow φ we denote its cost by c(φ) = ∑(u,v)∈N φ(u,v) ·c(u,v).

We show that solving the min cost flow problem yields an optimal solution to the
WDCES problem, we omit the proof due to space constraints.

Lemma 1. Let G = (V1 ∪V2,E) be a bipartite instance of the WDCES problem and
let N be the flow network constructed as above and let φ be an optimal solution of N
that is integral. Then the edge set E ′ = {uv ∈ E | u ∈ V1,v ∈ V2,φ(u,v) = 1} is an
optimal solution of the WDCES problem.

Using an algorithm by Goldberg and Tarjan [5], this MINCOSTFLOW problem can be
solved in time O(nm log2 n) (note that the maximum absolute cost of our instance is
1), thus the running time for Phase 2 is in O(nm log2 n). Further, in Phase 1 we do
not require an optimal solution, instead we simply check whether a feasible solution
exists using a MaxFlow algorithm with a running time of O(nm logn) [4]. The final step
consists of edge-coloring the bipartite graph resulting from the previous phase, which
requires O(m logn) time, using the algorithm by Cole and Hopcroft [2]. The following
theorem summarizes our findings.

Theorem 2. Let (G,q, �,h,σ) be an instance of bipartite SPEEDDATING such that G
has n vertices and m edges. An optimal solution can be computed in O(nm log2 n) time.

4 General Speed Dating

As we have seen in the previous section, the bipartite speed dating problem admits a
polynomial-time algorithm. The crucial observation was that for bipartite graphs the
third phase, consisting of coloring the graph with at most σ colors, can be carried out



Speed Dating: An Algorithmic Case Study Involving Matching and Scheduling 297

independently from the result of the previous two phases. In the general case an optimal
solution to the first two phases is an edge set E ′ that in general no longer induces a
bipartite graph and therefore may not admit a coloring using only σ colors. Hence,
even if we find a solution to the WDCES problem of Phase 2 (the above reduction to
a flow problem relied on bipartiteness), the problem arising in the third phase is not
necessarily solvable.

Suppose that G′ is any subgraph determined in the first two phases. Although G′ can-
not necessarily be colored with σ colors and it is NP-complete to find out whether this
is the case, by Vizing’s theorem [7], we know that G′ can be colored with at most σ +1
colors; we obtain a schedule that has one round too much. To remedy this, we intro-
duce a new phase that simply removes the color class with the smallest total weight. In
summary our algorithm works as follows.

1. Determine the minimum value δ such that an edge set E ′ with �(v)−δ ≤ dates(v)≤
h(v) for all v ∈ V exists, using a binary search.

2. Determine the maximum weight edge set E ′ of G with �(v)− δ ≤ dates(v) ≤ h(v)
for all v ∈V for the fixed value of δ determined in the previous phase.

3. Color the edge set determined in the second phase with at most σ + 1 colors.
4. If the previous phase uses σ + 1 colors remove the edges of the lightest color.

Phase 1 works in the same way as in the bipartite case. Phase 2 can be reduced as
in the bipartite case to WDCES. The reduction to MINCOSTFLOW however breaks,
because the graph is not necessarily bipartite. To solve general WDCES we make
use of an exact polynomial-time algorithm developed by Gabow [3], which runs in
time O(n2σ2Δ 3 logn). We avoid an additional factor of logn for Phase 1 by neglect-
ing the weights during the binary search, which, using the same reduction, allows for a
faster algorithm with running time O(nmΔ + n2Δ 2). Phase 3 can be solved using Viz-
ing’s algorithm with running time O(nm) [6]. Phase 4 sums up the weights of the edges
of each color and removes the edges of the lightest color if necessary, which requires
O(n + m) time. The total running time for the algorithm therefore is O(n2σ2Δ 3 logn).
We now show that the algorithm gives provable performance guarantees on the quality
of the solutions.

If Phase 3 succeeds with coloring the resulting graph using at most σ colors, Phase 4
does not remove any edges and since the first two phases are solved optimally, the
algorithm calculates an optimal solution in this case. For the sake of deriving worst
case performance guarantees we therefore assume that this is not the case and that in
Phase 4 all edges of the lightest color are removed. We have the following lemma.

Lemma 2. Let (G,q, �,h,σ) be an instance of SPEEDDATING. Let GOPT = (V,EOPT)
be an optimal solution and let G′ = (V,E ′) be the solution computed by the above
algorithm. Then δ (G′) ≤ δ (GOPT)+ 1 and q(G′) ≤ σ

σ+1 q(GOPT).

Proof. Let E0 be the edge set that was computed in Phase 2 of the algorithm during the
execution that resulted in G′. We denote by G0 the graph (V,E0).
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We first bound the fairness violation. Since E0 is an optimal solution to Phases 1
and 2, we have δ (G0) ≤ δ (GOPT). Moreover, since E ′ results from E0 by removing a
matching we have δ (G′) ≤ δ (G0)+1. Together with the previous inequality this yields
δ (G′) ≤ δ (GOPT)+ 1.

For the overall quality consider again that E0 is an optimal solution to the first two
phases and hence q(G0) ≥ q(GOPT). Recall that G′ results from G0 by removing the
edges of the lightest color, denote them by Elight. By the pigeon-hole principle we have
q(Elight) ≤ q(E0)/(σ + 1). For the overall quality of G′ we thus get q(G′) = q(G0)−
q(Elight) ≥ q(G0)− q(G0)

σ+1 = σ
σ+1 q(G0) ≥ σ

σ+1 q(GOPT). This concludes the proof of the
lemma. ��

The following theorem summarizes the results of this section.

Theorem 3. Let (G,q, �,h,σ) be an instance of SPEEDDATING. Let GOPT be an opti-
mal solution. A solution G′ with δ (G′)≤ δ (GOPT)+1 and q(G′)≥ σ/(σ +1) ·q(GOPT)
can be computed in O(n2σ2Δ 3 logn) time.

Note that for realistic values of σ , e.g., σ = 12, we have σ/(σ + 1) ≥ 0.92, i.e., the
solution quality is at least 92% of the optimum. While the algorithm is favorable in
terms of fairness and quality, its worst-case time complexity is quite high. We therefore
also propose a greedy algorithms for the general speed dating problem, which may be
advantageous in terms of running time.

We note that the running times of the algorithm for the bipartite case as well as of
the approximation algorithm can be improved to O(nσ min{m logn,n2}) using a more
sophisticated reduction by Gabow [3]. However, this algorithm is very complicated, as
it requires to modify a weighted maximum matching algorithm to dynamically manip-
ulate the graph it is working on during the execution. We therefore chose to present the
running times that more closely match the complexity of the implementations we are
going to evaluate.

A Greedy Strategy for General Speed Dating. Let (G,q, �,h,σ) with G = (V,E) be
an instance of SPEEDDATING. The algorithm GREEDY maintains a set S of edges that
are colored with σ colors. In the course of the algorithm edges are only added to S
and never removed. Moreover, every edge is colored upon insertion with one of the
σ colors such that the graph (V,S) is properly σ -edge-colored and no edge in S ever
changes its color. To pick the next edge, the algorithm picks the edge uv with the highest
valuation k(uv), where k is some formula computing the value of an edge. We use
k(uv) = wmax max{δS(u),δS(v)}+ q(uv), where wmax = maxe∈E q(e), i.e., it priorizes
edges that are incident to a vertex whose fairness constraints are strongly violated in
the current solution, the quality is a second criterion. The algorithm iteratively finds
the edge with the highest value k(uv) and either adds it to S, if this is possible, i.e.,
if datesS(u) ≤ h(u)− 1 and datesS(v) ≤ h(v)− 1 and the endpoints u and v have a
common unused color, which then becomes the color of uv. If uv cannot be added, it is
discarded and removed from E . The algorithm stops when E = /0. The algorithm can be
implemented to run in O(mΔ logm) time.
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5 Evaluation

We implemented the algorithms described above in C++. Our implementations use the
LEMON 1.2 library1, which provides efficient implementations of MINCOSTFLOW

and weighted maximum matching algorithms. All our experiments were run on one
core of a computer with an Intel Q6600 processor with 4MB cache and 2GB RAM. As
compiler we used g++ version 4.4.1 with compiler flags -DNDEBUG and -O3.

Problem Instances. We evaluate our algorithms on a variety of problem instances. We
use four types of instances. The first two are produced by random generators that pro-
duce randomly filled-out forms and build graphs based on the similarity of these forms.
Additionally, we evaluate our algorithms on social networks. The reason for this is that
instances to SPEEDDATING are graphs that model the probability that people like each
other. It is to be expected that such graphs do not strongly deviate from graphs modeling
that people actually know or like each other, i.e., social networks. We therefore use the
small world generator by Brandes et al. [1] to produce instances. Additionally, we use
twelve instances of a real-world social network, stemming from the email network of
the Faculty of Informatics at the Karlsruhe Institute of Technology.

In all cases, we set the number of rounds σ to 12. Assuming that each date lasts ten
minutes, this implies that the whole event lasts at least two hours, which appears to be a
realistic total duration. In the general case we always set �(p)= h(p)= min{12,deg(p)}
for all persons p in the instance. For the bipartite case we choose the genders randomly
with a change of 40% for being a woman. Let N be the number of men and M the num-
ber of women. We set �(w) = h(w) = min{12,deg(w)} for all women w. For all men m
we set �(m) = �σM/N and h(m) = �σM/N� to evenly distribute the dates.

For the generation of the edges and their weights, recall that each participant fills out
a form about himself and his ideal partner before the speed dating event. Our random
instance generators are based on randomly generating the contents of such forms and
then computing for each possible pairing of two persons x and y a score for the edge xy,
based on their forms. If the score of an edge xy is non-positive, we discard the pairing
so that the resulting graph is not necessarily complete. For the bipartite case, we restrict
the considered pairings to pairs of a man and a woman.

The first generator models the forms using random vectors of size 30, each entry
drawn uniformly at random from {0/5, . . . ,5/5}. The score of a pair xy is based on the
Euclidean distance of their corresponding vectors vx and vy. We compute the weight of
the edge xy as

⌊
(
√

30/2−
∣∣vx − vy

∣∣
2)

⌋
and discard it, if it is not positive. Note that the

weight is positive about 50% of the time.
The second generator tries to model more complex forms. For each person we gener-

ated a random form composed of 30 questions about what traits the ideal partner should
have. For each question q every person p answers on a scale of 0 to 5 how well she
fulfills these traits (hasq(p)) and how the partner should fulfill it (wantsq(p)). Further
each person must indicate for each question the level of importance on a scale of 0 to 5
(impq(p)). Again, we assume that all choices are uniformly distributed.

1 Available at http://lemon.cs.elte.hu/trac/lemon

http://lemon.cs.elte.hu/trac/lemon
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Fig. 1. Comparison of the running times of the exact algorithm and the greedy algorithm for gen-
erators 1 and 2 on bipartite instance (left) and comparison of the running times for the approxima-
tion algorithm and the greedy heuristic on instances of the general speed dating problem (right).

We define a function that estimates whether x likes y as likes(x,y) = α ·∑30
q=1 impq(x)

− ∑30
q=1

∣∣hasq(y)−wantsq(x)
∣∣ · impq(x). The first term acts as a threshold telling how

demanding the person x is. The second term evaluates how close y is to the profile x
would like to have for his partner, weighted by the importance that x gives to each of
the traits. Since the score function we use should be symmetric, we set score(xy) =
likes(x,y)+ likes(y,x).

The constant α is a tuning parameter that affects the density of the resulting graph.
For α = 2 the generator produces almost complete graphs, for α = 3 the graphs are
extremely sparse. We choose α = 2.3 for our experiments, as this generates plausible,
relatively dense graphs.

As instances from social networks, we use graphs generated according to the small
world model, generated by the generator of Brandes et al. [1]. The parameters we use
for the generator are the following. We generate instances with 200 nodes and set the
rewiring probability p = 0.2. The minimum degree k ranges from 10 to 100 in steps
of 2. For each value of k we use five random samples to even out random influences.
The edge weights are integers, chosen uniformly at random in the range from 1 to 20.

Finally, we use real-world social networks stemming from the email network of the
Faculty of Informatics at the Karlsruhe Institute of Technology. For each month from
September 2006 to August 2007 the corresponding graph contains all people of the
network and every pair is connected by an edge whose weight is the number of emails
they exchanged.

Experiments. We first present the results on instances produced by our form based
generators. In our plots we indicate which generator was used by either gen1 or gen2.
For the bipartite speed dating problem, we generate instances with n persons, where
n ranges from 100 to 1000 in steps of size 10. The approximation algorithm is much
slower, due to the different reduction that is necessary in Phase 2. We therefore take
only instances of sizes 10 up to 200, again in steps of size 10. To remedy outliers, we
average the results over ten samples of each size in both cases. We also run the greedy
algorithm on all the instances.

Figure 1 shows the running times of our algorithms both in the bipartite and in
the general case. Surprisingly, in the bipartite case, the greedy algorithm is constantly
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Fig. 2. Solution quality of the solutions produced by the exact solver and the greedy algorithm
for bipartite instances generated by gen1 and gen2

slower than our exact solution algorithm although it has a far better worst case com-
plexity. This is probably due to the fact that we did not take a lot of care of micro-
optimizing the inner loops of the greedy algorithm whereas the inner working of the
MINCOSTFLOW solver provided in the LEMON library are carefully tuned. All four
curves suggest a quadratic growth in the number of people. As there are quadratically
many potential dates this is linear in the size of the input.

For the general case, the situation is quite different. While for moderate sizes of
around 100 people, an approximate solution can still be computed in less than two min-
utes, this quickly grows to roughly 10 minutes for events with 200 people. Expectedly,
the greedy algorithm grossly outperforms the approximation algorithm in terms of run-
ning time and solves all instances within less than 0.1 seconds. As we will see later,
the running time of the approximation algorithm is much better for sparser instances.
Nevertheless, even for dense graphs the approximation algorithm needs less than ten
minutes in the worse case tested, which is still within the acceptable bounds given by
the problem motivation.

Next, we compare the solution quality of our algorithms. We plot the δ values of
all solutions. Since the absolute quality value does not really have a means of inter-
pretation, we only show the relative difference of the greedy solution and the solution
computed by the exact and the approximate algorithm, respectively. A value of 3% in-
dicates that the weight of the solution computed by the greedy algorithm is 3% higher
than the solution computed by the exact algorithm (for bipartite instances) or the ap-
proximation algorithm (for general instances). A negative percentage indicates that the
weight of the solution computed by the greedy algorithm is smaller.

Fig. 2 shows the performance of the greedy algorithm on bipartite instances with
respect to quality. For the fairness violation δ , note that except for the very small in-
stances, the greedy algorithm misses the optimal δ value usually by 1 or 2. Considering
that there are only 12 rounds and that minimizing the fairness violation is our main
optimization criterion, being off by 2 units is rather bad. In terms of overall quality, the
greedy algorithm performs quite well and is never off the true value by more than 5%,
which is acceptable as it is unlikely that participants would notice this.
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Fig. 4. Comparison of the greedy and approximation algorithm on small world graphs of varying
density

Fig. 3 shows the corresponding evaluation for the general case. The greedy algorithm
performs quite well, for instances of the first generator it misses the optimal value by
only 1 for smaller instances and finds an optimal value for larger instances. For the sec-
ond generator, the approximation algorithm does not find optimal solutions and starting
from a certain size, always finds solutions with fairness violation 1. Since this fairness
violation stems from discarding some edges and the graphs are rather dense, it is not
unlikely that the optimal fairness violation may be 0. The greedy algorithm performs
comparably, is slightly worse for small instances and achieves the same fairness vi-
olation as the approximation for most larger instance sizes. Interestingly, the greedy
algorithm outperforms the approximation algorithm for instances from gen2 in terms of
quality by up to 5%.

Figure 4 shows the results of the experiments on small world graphs. Note that for
this experiment the number of vertices is fixed to 200 and the average degree varies from
4 to 100. The approximation algorithm performs consistently better than the greedy
algorithm. Only for very dense graph does the greedy algorithm find solutions with the
same δ but with less weight. Moreover, the running time of the approximation algorithm
is consistently below one second. Finally, the results on the email networks are shown
in Table 1. Again the approximation algorithm is favorable in terms of δ but slightly
worse than greedy in terms of total quality. Moreover, this shows that the approximation
algorithm is extremely fast on sparse instances.
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Table 1. Performance of our algorithms on instances stemming from the email network at the
Karlsruhe Institute of Technology. For time and δ , the first value is for the approximation algo-
rithm, the second for the greedy algorithm. The quality column shows the difference between the
greedy and the approximate solution, relative to the approximate solution quality.

month n m time [s] δ q [%]
1 59 2994 1.86 0.12 3 4 +2.1
2 431 1898 0.37 0.04 2 5 +2.8
3 444 1729 0.31 0.04 2 3 +3.7
4 432 1660 0.32 0.04 2 4 +5.1
5 450 1846 0.43 0.06 3 3 +0.2
6 430 1815 0.44 0.03 3 4 +0.9

month n m time [s] δ q [%]
7 440 1906 0.47 0.06 3 4 +2.1
8 405 1563 0.24 0.05 2 3 +2.8
9 432 1633 0.28 0.04 2 3 +0.7

10 558 2180 0.67 0.07 3 4 +0.2
11 504 1994 0.42 0.06 2 4 +5.5
12 881 3427 4.71 0.16 3 5 +7.1

Conclusion. Our experimental evaluation shows that for the bipartite speed dating prob-
lem, our exact polynomial-time algorithm is the preferred solution. It produces exact
results, is very fast and solves even problem instances with 1000 people within a few
seconds and therefore is the method of choice for these instances. For the general speed
dating problem the situation is not that clear. The approximation algorithm takes a few
minutes to find solutions for large, dense instances and the quality of solutions found
by the greedy algorithm is in many cases comparable in this case. To maintain the the-
oretical guarantees the best solution for this case seems to be to run both algorithms
and to pick the better solution. If execution time is crucial, the greedy algorithm is the
algorithm of choice for these instances as it is very fast and likely to produce solutions
of high quality. For sparser instances the approximation algorithm is both fast and gives
better results than greedy.

Acknowledgments. We thank Robert Görke for helpful discussions and providing us
with the email networks we used for evaluation.
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Abstract. This paper studies the Orthogonal Milling with Turn Costs.
An exact algorithm is proposed based on an Integer Programming for-
mulation of the problem. To our knowledge, this is the first exact algo-
rithm ever proposed for the problem. Besides, a simple heuristic is also
presented and an unprecedented experimentation involving these two al-
gorithms and an existing approximation algorithm is carried out. We
report and analyze the results obtained in these tests. Our benchmark
instances are made public to allow for future comparisons.

Keywords: orthogonal milling with turn costs, exact algorithms, ap-
proximation algorithms, heuristics, experimental evaluation.

1 Introduction

In this paper we make an experimental evaluation of algorithms for the orthogo-
nal discrete milling problem (odmp). Before giving a formal definition of odmp,
we describe a simple application of it.

Consider a garden in which a gardener has to mow the lawn. Assume that the
area of the garden is defined by an orthogonal polygon and has some reflection
pools inside whose forms are also given by orthogonal polygons. Suppose a lawn
mower is available whose area is defined by a square of size �. The mower can
only move parallel to the axis of the edges of the polygon that limits the garden.
Moreover, assume that the length of all edges of the orthogonal polygons are
positive integer multiples of �.

To accomplish his task, the gardener needs to find a path along which to move
the lawn mower in order that the sweep of the mower covers the entire region,
removing all the lawn, but never going outside the boundaries of the garden or
through the reflecting pools. Though moving in a straight line is easy, a turn is
a more laborious operation. So, it is natural for the gardener to look for a path
that minimizes the number of right turns (notice that in this context, a U -turn
is considered as being two right turns).
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Applications of this problem (or variants of it) abound. According to [1], they
can be found in many fields, including numerically controlled (NC) machining
applications, automatic inspection, spray painting/coating operations, robotic
exploration and arc routing.

Later in this paper we will see that the odmp can be modeled as a graph
optimization problem. In fact, it belongs to a broader class of problems entitled
“Minimum-Turn Cycle Cover in Planar Grid Graphs”, or mtcc for short, and
listed as the 53rd problem in the list of “The Open Problems Project” [2]. There it
is said that the motivation to study such problems is that “minimizing turns is a
natural geometric measure; understanding its algorithmic behavior is of general
interest.”

The present paper aims to contribute in this vein. To this end, we develop
both exact and heuristic algorithms for the odmp. Experiments with the im-
plementations of the algorithms are conducted to assess the efficiency of both
algorithms. We also implemented the best known approximation algorithm avail-
able to date [3] for the odmp and compare the three methods with respect to
the values of the solutions they obtain.

Our contributions. Despite the relevance of the odmp and the recognition of
the need to have more algorithmic insights about the problem [2], to the best of
our knowledge, this is the first time an exact algorithm is proposed to solve it.
Besides, no heuristics have been proposed so far and no public benchmark exists
with instances allowing researchers to compare their algorithms. This paper helps
filling all these gaps and is the starting point for future developments, especially
those related to exact solutions based on integer programming models and to
heuristics.

Organization of the text. The odmp is formalized in the next section, where
we briefly review the literature. In section 3 we discuss how to formulate the
odmp as an integer programming (IP) model and how to compute such model.
In section 4 we give the main steps of the approximation algorithm we used
in our experiments, while section 5 is devoted to the presentation of a simple
heuristic we developed for the odmp. The computational tests and the analysis
of the results obtained are the topic of section 6. Finally, in section 7, we draw
some conclusions and discuss future research directions.

2 Problem Description and Literature Overview

Consider the lawn mowing problem defined in the previous section. Let P de-
note the (bounded) orthogonal polygon representing the garden and Q be the
unit square corresponding to the lawn mower or cutter. Moreover, let H =
{H1, H2, . . . , Hp} be the set of orthogonal polygons associated to the reflection
pools and named holes. The region determined by P \H is called the pocket. For
simplicity, assume that the left/uppermost vertices of P and Q coincide.

A feasible solution for odmp is a closed curve, not necessarily simple, traversed
by Q whose Minkowski cover is equivalent to the pocket. The curve is limited to
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(a) odmp instance (b) Grid graph

Fig. 1. Example instance of odmp and the corresponding grid graph

have axis-parallel edges and, hence, all its turns are either orthogonal (90◦) or
U -turns (180◦). Orthogonal turns have cost 1 while U -turns are assigned with
cost 2.

Under the conditions described above, the region can be considered to be the
(connected) union of n pixels, i.e., axis-parallel unit squares with vertices having
integer coordinates. In this case, a feasible solution can be viewed as a curve
where the turns occur at points with coordinates of the form (k + 1)/2 for some
integer k.

Now, let V be the set of points of the pocket with such coordinates. These
points correspond to the centroids of all pixels and, by placing the cutter in one
such point, the associated pixel is covered. Define E to be the set of all axis-
parallel segments joining pairs of points in V and not intersecting other points
of this set. Then, G = (V, E) is a grid graph, named the subdivision graph, and
a feasible solution to odmp can be cast as Hamiltonian walk of G. In this walk,
one can add a cost of 1 each time the walk goes from a “vertical” edge to a
“horizontal” one or vice versa, a cost of 2 if the same edge is traversed in a
row, and, otherwise, no cost is incurred if subsequent edges are both in the same
direction. The total cost of the walk is the sum of all these costs. It is clear that
to solve the odmp one has to find the cheapest walk in G.

Figure 1 illustrates these concepts. In (a) it is depicted an instance of odmp.
The cutter Q, identified by the gray square, and the squares having dashed sides
comprise the set of all pixels which forms a planar subdivision of the pocket.
The corresponding grid graph G is shown Figure 1 (b).

In [1] the odmp is shown to be NP-hard. That paper also contains several
references on theoretical results known for several sorts of mtcc problems and is
an excellent starting point for those interested in this topic. Among the relevant
references for the odmp, we highlight those related to arc routing problems since
some of them are akin to the exact approach proposed here.

Many exact and heuristic algorithms for arc routing problems with turn costs
are based on reductions of the original problem to some variant of the Symmet-
ric or Asymmetric Traveling Salesman Problem (stsp or atsp, cf [4]). For the
purpose of the discussion that follows, let G′ be the graph obtained from one
such transformation.
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Typically, the resulting routing problem requires the computation of an opti-
mal cycle in G′, which may be constrained to be Hamiltonian or to visit a given
subset of vertices (cf [5]). The modeling we describe in section 3 differ from these
approaches in that each vertex of G′ belongs to at least two predefined subsets
of vertices and the cycle that is sought has to visit at least one vertex in each of
these subsets. The next section is devoted to the development of an IP model for
odmp resulting in the design of a branch-and-cut algorithm to solve it exactly.

3 An Exact Algorithm for the odmp

Let G = (V, E) be a subdivision graph corresponding to an instance of odmp,
where |V | = n. We define G′ = (V ′, A) as the directed graph where, for each edge
e = {i, j} of G, there are two vertices ij and ji in V ′, one for each orientation
of e. Besides, there is an arc between two vertices ij and xy in G′ if and only
if j = x, meaning that an arc in G′ represents a turn in G. We call G′ the turn
graph of G.

Now, for i ∈ V , let Ci be the set of vertices of G′ associated with edges of
G incident in i, i.e., the set Ci contains all vertices in V ′ of the form xi and
ix. The sets Ci are called the clusters of G′. Finally, we assume that, for each
arc (u, v) ∈ A, it is assigned a cost cuv relative to the turn formed by the two
corresponding edges in G.

It is easy to see that a milling tour of G corresponds to a closed walk in G′

that visits each cluster Cu at least once. Hence, finding a minimum cost milling
tour in G is equivalent to find one such closed walk in G′ having minimum cost.

With the definitions above, we are able to describe the integer programming
model for the odmp in terms of G′. For each arc (u, v) of G′, the integer variables
xuv count the number of times the arc is traversed in the solution and, for each
vertex u ∈ V ′, the binary variable yu is set to one if and only if the vertex u is
in the solution. Thus, the model is given by:

min
∑

(u,v)∈A

cuvxuv

s.t
∑

(u,v)∈A

xuv =
∑

(v,u)∈A

xvu ∀ u ∈ V ′, (1)

∑
u∈Ci

yu ≥ 1 ∀ i ∈ V, (2)

∑
u∈U,v/∈U

xuv ≥ yw ∀ U ⊂ V ′ : ∃ i ∈ V : U ∩ Ci = ∅, w ∈ U,

(3)

xuv ≤ nyu ∀ u ∈ V ′, ∀ (u, v) ∈ A, (4)
xuv ∈ Z, yw ∈ B ∀ (u, v) ∈ A, w ∈ V ′.

By restriction (1) the number of times the tour enters a vertex is equal to the
number of times it leaves that same vertex. Constraint (2) says that each set Cu
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must be visited at least once by the tour. Constraints (3) are needed to avoid
disjoint subtours. Constraint (4) limits the number of times an arc can be in a
solution. Since in any optimal walk an arc (u, v) is traversed only if the cutter is
moving towards an unvisited cluster and there are exactly n clusters, we impose
that an arc is traversed at most n times. We are still investigating if we can
reduce this upper bound. In any case, in our experiments no arc was traversed
more than once in an optimal solution.

The number of constraints of type (3), called subtour elimination, is exponen-
tial in n. Thus, except for very small values of n, it is not practical to add them
all to the formulation a priori. Instead, we use them as cutting planes. To do
so, the associated separation problem has to be solved. The standard technique
in such cases involves the computation of minimum cuts in graphs. Let (x�, y�)
be a solution of the relaxed problem and S = {u : yu > 0}. This solution vio-
lates a subtour elimination constraint if and only if, for some i ∈ V and w ∈ S,
there exists U ⊆ V ′ \Ci such that

∑
u∈U,v/∈U x�

uv < y�
w. Thus, to decide whether

or not there exists a violated subtour elimination relative to some choice of i
and w, one has to find a minimum cut separating w from the cluster Ci, with
arc weights computed from the values of the variables of the optimal solution
of the linear relaxation. Therefore, a subtour elimination constraint violated by
(x�, y�) can be found polynomial time by solving one minimum cut problem for
each pair (w, Ci) where w ∈ S, i ∈ V . Due to the equivalence between separation
and optimization [6], this ensures that the optima of the linear relaxations at
each node of the enumeration tree can be computed in polynomial time.

From the discussion above, it is immediate to devise a branch-and-cut al-
gorithm for the odmp. Experiments with this exact algorithm are reported in
section 6.

As a final remark, we just observe that the reader familiar with IP formula-
tions for arc routing problems may have noticed that our model for the odmp

resembles those for the generalized atsp, denoted here by gatsp (see [7] and
references cited there). However, a closer inspection of the two problems shows
that they differ in some crucial aspects, among which, we highlight the following
two: (i) in the odmp the clusters (subsets of vertices) do not form a partition of
the vertex set; and (ii) a feasible solution (tour) of the odmp is allowed to visit
a vertex more than once.

4 An Approximation Algorithm for the odmp

In this section we give a summary of the approximate algorithm proposed in [3]
for the odmp and denoted here by APX. Prior to that, a few definitions are
required.

A maximal vertical or horizontal segment joining the centroids of two pixels is
called a strip if the area that is covered when the cutter walks along this segment
is entirely inside the pocket. A strip cover is a set of strips such that the union
of their Minkowski covers (relative to the cutter) is equal to the pocket. A rook
placed in a pixel p is said to attack a pixel p′ if there exists a horizontal or vertical
line segment in the pocket having the centroids of these pixel as extremities. A
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rook placement is a set of rooks placed such that no two rooks attack each other.
With these definitions, we are ready to state a fundamental result supporting
the approximation algorithm.

Theorem 1. For orthogonal discrete milling a minimum-sized strip cover and
a maximum-sized rook placement have equal size.

Proof. Let B = (V1, V2, E) be a bipartite graph where V1 are the horizontal strips
and V2 the vertical ones. There is an edge {v1, v2} ∈ E for v1 ∈ V1 and v2 ∈ V2

if the strips have a pixel in common. It is easily seen that a maximum matching
M in B corresponds to a maximum rook placement and a minimum vertex
cover K corresponds to a minimum strip cover. Hence, by the König-Egerváry
theorem (cf, [8]) M and K have the same cardinality. �

The first step of the approximate algorithm is to find a minimum strip cover
which, from Theorem 1, can be done in polynomial time in the number of pixels
(n) by a bipartite matching algorithm (cf, [8]). The next step involves connecting
the strips of the minimum strip cover to form a cycle cover of the subdivision
graph G. To do that, we construct an auxiliary complete graph H = (VH , EH)
where VH is the set of endpoints of the strips in the strip cover. It is worth noting
that we use different copies of endpoints representing the same subregion. The
weight of an edge {u, v} of EH is the length of the shortest path from u to v
measured relative to turn costs. The following two steps of the approximation
algorithm involve the computation of a minimum weight perfect matching in H ,
and the subsequent construction of the cycle cover by joining the strips with
paths represented by the edges of the matching. It is important to note that
when computing the shortest path we must consider the direction, vertical or
horizontal, where the path starts: if it is the same of the strip of which the vertex
is an endpoint we add one to the cost and zero otherwise.

We note that a simple way to find the shortest path between two pixels u and
v is to use the turn graph. Let G′ = (V ′, E′) be the turn graph of a subdivision
graph G = (V, E) and Ci ∀ i ∈ V be the clusters of G′. The cost, with respect
to turns, of the shortest path between u, v ∈ V is the cost of the shortest path
between Cu and Cv.

The final step of the algorithm merges the cycles to find a complete milling
tour. Merging cycles can be done in a way that adds at most two turns per
merge. We say that two cycles intersect if they have a common pixel and are
adjacent if they do not intersect and have at least two adjacent pixels. Let
T1 = (u0, . . . , ur) and T2 = (v0, . . . , vs) be two cycles that intersect, ui = vj a
common pixel, ui−1, ui+1 the neighbors in T1, vj−1, vj+1 the neighbors in T2.
The cycle T = (u0, . . . , ui−1, vj , vj+1, . . . , vs, v0, . . . , vj−1, ui, ui+1, . . . , ur) cover
every pixel of T1 and T2 and adds at most two turns.

Consider now the case of two adjacent cycles T1 = (u0, . . . , ur) and T2 =
(v0, . . . , vs). Let ui and vj be adjacent pixels and, without loss of generality,
assume that vj is the leftmost pixel and is below ui. This situation can be
reduced to that of intersecting cycles. For this, we extend the cycle T2 to include
ui to obtain the new cycle T ′

2 = (v0, . . . , vj−1, vj , ui, vj , vj+1, vs). Now T1 and
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T ′
2 intersect at ui and we can repeat the same operation as before to generate a

cycle T covering T1 and T2 and having at most two extra turns.
Using the cycle merging procedures above we can convert a cycle cover with c

cycles and t turns in a milling tour with t+2(c−1) turns. The resulting algorithm
has an approximation factor of 3.75. The proof of this and other related results,
along with approximation algorithms for several variations of the general discrete
milling problem, can be found in [3].

5 An Heuristic for odmp

Another common approach when solving NP-hard problems is to give up on the-
oretical performance guarantees and try to design algorithms that produce good
results in practice, the so-called heuristics. In this section we present a simple but
effective heuristic HEUR for the odmp. We call it the Gardener’s algorithm since it
somehow mimics the human greedy strategy to tackle the problem.

The input of our heuristic is the subdivision polygon and one of its a pixel
that is located at the boundary of the pocket representing the position where the
cutter starts, named the origin. Generically, let us denote by p the pixel where
the cutter is located at the beginning of an iteration of the algorithm. From this
pixel, we calculate the movement of the cutter which visits the largest number
of uncovered pixels (there are at most four possible movements, two for each
direction). We execute this movement always ending at a previously uncovered
pixel. If there is no such movement, i.e., they all lead to already covered pixels,
then the cutter moves from p to the nearest (relative to turn costs) uncovered
pixel or to the origin, in case all the pixels have been covered.

Figure 2 shows some steps of the execution of HEUR in an instance. In (a) is
depicted the pixel p, corresponding to the cutter’s initial location, and the two
possible moves. The algorithm moves the cutter rightward because the number
of uncovered pixels is five compared to four if the cutter goes downward. In (b),
it is indicated the partial tour after the first movement has been completed and
the pixel p representing the new position of the cutter. Figure 2 (c) shows the
situation after the fifth movement of the cutter. It illustrates the case where there
is no horizontal or vertical movement that can reach an uncovered pixel. When
this happens, the cutter’s next move goes from its current location to the nearest
uncovered pixel (p′) which, in this example, corresponds to a path of cost one.

To improve the performance of the heuristic we borrowed some techniques
of the grasp metaheuristic [9], namely, multi-start and randomization. In our
implementation, the multi-start strategy is enforced by fixing the number of
iterations. As for the randomization of the algorithm, it was introduced in two
steps: the choice of the movement at each iteration and the choice of the pixel
to go when no movement is able to reach an uncovered pixel. In both situations,
the selection is made from a restricted list of elements. In the first case, the
size of the list is limited to two and the elements are sorted in monotonically
decreasing order of uncovered pixels. In the second case, the list contains the
�0.01n� nearest uncovered pixels, where n is the total number of regions. The
randomization is based on the uniform distribution.



Milling Problem with Turn Costs 311

(a) The origin pixel p
and the possible moves

(b) Solution after the
first move and new p

(c) Current pixel p and
nearest uncovered p′

Fig. 2. Examples of movements of the cutter in HEUR

Fig. 3. Example of orthogonal U-turns that can be joined to reduce the cost in two

It is important to note that HEUR does not contain a local-search step as it
is the case in the standard grasp metaheuristic. This issue is currently being
investigated. The difficulty is to find a suitable perturbation of the current solu-
tion in order to define a neighborhood that can be explored efficiently. For the
odmp, a generic perturbation can be thought as an operation that breaks the
current tour, by removing some of its edges, and subsequently obtains a new
tour by joining the resulting pieces via the addition of other edges. Ideally, the
cost of the new solution should be smaller than that of the starting one. There
are simple cases where this can be done easily, for instance, when there are or-
thogonal U -turns in adjacent pixels, as shown in figure 3. Despite its simplicity,
the perturbation suggested by this example is not appropriate for the definition
of a neighborhood for the problem. This is so because adjacent U -turns do not
appear very often in reasonably good solutions of odmp instances. Most impor-
tantly, the set of solutions that can be generated by repeatedly applying this
operation is very limited and may not contain an optimal one.

6 Experimental Results

The algorithms described in the previous sections were tested on instances gener-
ated randomly according to the following procedure. Initially a square with side
of (integer) length s is generated together with its subdivision graph G = (V, E).
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Then, two routines are applied in a row to generate the instance. In the first one,
a random spanning tree of G is found and the edges of the tree are marked while
all the remaining edges in G are set as unmarked. We now iterate once over each
unmarked edge removing it from G with probability α if it is not incident to a
vertex of degree two, in which case the edge becomes marked. The reason to dis-
card the presence of vertices of degree one is that any feasible solution would be
forced to make a U -turn at this vertex. Besides, it is easy to see that any instance
having a degree one vertex can be transformed into an equivalent instance whose
vertices have degree at least 2. Notice that, to this point, the number of vertices
in G remains unchanged. Next we describe the second routine that allows us to
eliminate vertices from G.

Given the subdivision graph G = (V, E) and parameter 0 ≤ β ≤ 1, we build
a list of candidate vertices randomly chosen with size β|V |. This list is iterated
once and the vertex is removed from G if and only if it is not an articulation
point.

A total of a thousand instances were evaluated in our tests. In the analysis
that follows, they are grouped by number of vertices and the group names use the
format [m:M]|A, meaning that the group contains A instances where the number
of vertices ranges from m to M”. In total, 706 were tested and solved to optimal-
ity with the EXACT algorithm. The input and solution files of each instance in this
benchmark can be downloaded at http://www.ic.unicamp.br/∼cid/Problem-
instances/Milling.

All tests have been executed in a machine with an Intel Core2 Quad Q9550 @
2.83GHz processor and 8GB RAM. The EXACT algorithm was implemented with
IBM ILOG CPLEX 12.1. In the current implementation CPLEX is also used in
the separation routine due to its extensions to solve network flow problems. The
APX algorithm uses the Blossom V [10] implementation of minimum cost perfect
matching algorithm. All tests ran within a time limit of 1800s, and the number
of iterations of HEUR was set to 2048, unless stated otherwise.

The main questions we tried to address with these experiments were (i) How
tight is the approximation factor of APX in practice? (ii) What is the behavior of
the heuristic HEUR relative to the optimum? and (iii) How the heuristic compares
to the approximation algorithm? When comparing two algorithms A and B, we
use the relative gap defined as zA−zB

zB
, where zA, zB are the objective values of

algorithms A and B, respectively. In table 1 we compare algorithms APX and
HEUR with EXACT for the set of instances with known optimum. One can notice
how far is the APX relative gap from the theoretical value of 2.75 and the way
that HEUR seems to be more sensible to variations in instance size when compared
with APX. The standard deviation is quite high for the approximation algorithm
while the heuristic approach seem to be more robust. Nevertheless, in both cases
the maximum has deviated a lot from the average case.

Next we investigate how HEUR behaves as the maximum number of iterations
changes. Table 2 shows the relative gap with relation to EXACT for the optimal
instances, and this parameter is set to: 1024, 2048, 4096 and 8192. From these
results, two observations are possible relative to the relation between the number
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Table 1. Comparing HEUR and APX with EXACT for all instances whose the optimal
value is known

Group Rel. Gap APX max Rel. Gap HEUR max

[13:16]|193 0.215 ± 0.225 0.750 0.000 ± 0.000 0.000
[21:29]|218 0.193 ± 0.149 0.667 0.004 ± 0.024 0.167
[30:39]|127 0.233 ± 0.136 0.571 0.016 ± 0.042 0.182
[40:49]|97 0.263 ± 0.138 0.700 0.043 ± 0.052 0.200
[50:59]|47 0.274 ± 0.137 0.667 0.102 ± 0.071 0.300
[60:69]|16 0.232 ± 0.163 0.500 0.119 ± 0.083 0.286
[70:76]|8 0.280 ± 0.092 0.455 0.160 ± 0.054 0.273

Table 2. Relative Gap of HEUR w.r.t EXACT for different values of iterations

Group 1024 iter max 2048 iter max 4096 iter max 8192 iter max

[13:16]|193 0.000 ± 0.000 0.000 0.000 ± 0.000 0.000 0.000 ± 0.000 0.000 0.000 ± 0.000 0.000
[21:29]|218 0.006 ± 0.029 0.167 0.005 ± 0.026 0.167 0.005 ± 0.026 0.167 0.004 ± 0.024 0.167
[30:39]|127 0.021 ± 0.047 0.182 0.014 ± 0.039 0.167 0.011 ± 0.034 0.167 0.009 ± 0.032 0.167
[40:49]|97 0.058 ± 0.058 0.250 0.041 ± 0.050 0.154 0.031 ± 0.046 0.154 0.022 ± 0.041 0.125
[50:59]|47 0.123 ± 0.068 0.250 0.102 ± 0.067 0.250 0.082 ± 0.060 0.250 0.068 ± 0.062 0.250
[50:59]|47 0.136 ± 0.075 0.300 0.131 ± 0.070 0.300 0.097 ± 0.050 0.167 0.079 ± 0.055 0.167
[60:69]|16 0.154 ± 0.070 0.273 0.134 ± 0.077 0.273 0.122 ± 0.074 0.273 0.110 ± 0.054 0.182

Table 3. Five hardest instances for APX

Instance Num. of Vertices Obj. APX Gap. HEUR @ 16384 iter Gap. HEUR @ 100000 iter

T0 96 54 0.08 0.08
T1 307 130 -0.21 -0.23
T2 353 142 -0.07 -0.04
T3 180 108 0.05 0.08
T4 478 262 -0.22 -0.20

of iterations executed by the algorithm and the size of an instance. First, one can
see that the number of iterations should be increased as the number of vertices
increases. Secondly, as expected, at a certain point, despite the increment on the
number of iterations, the improvement observed in quality is negligible.

The importance of determining a good compromise value for the total number
of iterations in HEUR is further justified when we focus on bigger instances. Table 3
shows detailed information about five instances not included in the previous
tests. Their number of vertices are orders of magnitude bigger and no reasonable
solution has been found using EXACT (which, of course, was unable to solve
them to optimality). We can see that increasing the number of iterations by 10
(and, consequently, the computation time by the same amount) a minute gain
is observed in the quality of the solution produced.

In terms of execution time we have that HEUR and APX have similar times, with
the latter outperforming the former for small instances. Clearly, the execution
time of APX is dominated by calculation of the minimum weight perfect matching
between strips endpoints. On the other side HEUR depends linearly on the number
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of iterations. Of course, EXACT has the biggest execution time of all three, and it
is expected to yield results in reasonable time, only for instances having up to
70 vertices.

7 Conclusion and Future Directions

This paper proposes a branch-and-cut algorithm to solve the odmp exactly. The
algorithm is based on an integer programming model and was able to solve
instances of moderate size. There is plenty of room for improvements in the
algorithm since a polyhedral investigation of the formulation is yet to be done.
On the heuristic side, the possibilities for new developments are even larger since
our experimental results showed that the non-exact algorithms of sections 4 and
5 yield solutions with large duality gaps. In this particular, we emphasize that
the Gardener’s algorithm presented in section 5 has no local search phase. Thus,
finding efficient neighborhoods may lead to solutions of much higher quality.
Both issues mentioned above are currently being investigated.
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Abstract. Arc routing problems are among the most challenging combi-
natorial optimization problems. We tackle the Capacitated Arc Routing
Problem where demands are spread over a subset of the edges of a given
graph, called the required edge set. Costs for traversing edges, demands
on the required ones and the capacity of the available identical vehicles
at a vertex depot are given. Routes that collect all the demands at min-
imum cost are sought. In this work, we devise a Branch-Cut-and-Price
algorithm for the Capacitated Arc Routing problem using a column gen-
eration which generates non-elementary routes (usually called q-routes)
and exact separation of odd edge cutset and capacity cuts. Computa-
tional experiments report one new optimal and twelve new lower bounds.

Keywords: Arc Routing, Branch-Cut-and-Price, Integer Programming.

1 Introduction

The Capacitated Arc Routing Problem (CARP) is a problem which has several
applications in the real life. One can think of this problem as a garbage collec-
tion problem. Suppose a company is responsible for collecting the garbage of a
neighborhood. This company has a set of identical vehicles available in its base
and knows a priori the amount of garbage generated on each street. As a com-
pany, its objective is to minimize the operational costs. So, the company needs to
define the route for each vehicle which gives the lowest distance traveled. These
routes must begin and end at the company’s base, none of the vehicles can have
its capacity violated, the garbage of a given street may be collected only by a
single vehicle and all the garbage must be collected. Other possible applications
for this problem are street sweeping, winter gritting, electric meter reading and
airline scheduling [35].

This problem is strongly NP-Hard as shown by Golden and Wong in 1981 [16],
where it was also proposed. Since then, several works were made with different ap-
proaches. We can cite some specific primal heuristics like Augment-Merge [16,15],
Path-Scanning [15], Parallel-Insert [8], Construct-Strike [32] and Augment-Insert

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 315–326, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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[33]. There are several heuristics for obtaining lower bounds, like Matching [16],
Node Scanning [3], Matching-Node Scanning [31], Node Duplication [19], Hierar-
chical Relaxations [2] and Multiple Cuts Node Duplication [36].

For the last years, most of the approximate results for the CARP were found
using metaheuristics. All kinds of metaheuristics have already been proposed
for the CARP, some of them are Simulated Annealing [12], the CARPET Tabu
Search [18], Genetic Algorithm [22], Memetic Algorithm [23], Ant Colony [10],
Guided Local Search [6] and Deterministic Tabu Search [7].

As being a hard problem, it is very difficult to solve the CARP to optimality.
The works which tried to achieve this usually use integer programming. The first
integer programming formulation was proposed by Golden and Wong [16] and
since then some other formulations were proposed by Belenguer and Benavent [4]
and Letchford [26], who also proposed valid inequalities for the problem. These
integer formulations were solved using techniques such Branch-and-Bound [20],
Cutting Plane [5,1], Column Generation [17,25] and Branch-and-Cut [24].

The objective of this work is to devise a Branch-Cut-and-Price algorithm
for the CARP using a column generation algorithm with columns associated to
non-elementary routes (also called q-routes) where 2-cycles are eliminated and
exactly separating the odd edge cutset and capacity cuts. As far as we know, no
Branch-Cut-and-Price algorithm which generates routes on the original graph
was tailored for this problem. However, a Branch-Cut-and-Price was applied to
the CARP by a transformation from the Capacitated Vehicle Routing Problem
(CVRP) [29].

This work is divided in six sections. On section 2, we present mathematical
formulations for the problem. On section 3, we detail the column generation
with the non-elementary route pricing. On section 4, the Branch-Cut-and-Price
is devised. On section 5, we show the computational experiments. On section 6,
we conclude our work and point out future directions.

2 Mathematical Formulations

The CARP can be defined as follows. Consider a connected undirected graph
G = (V, E), with vertex set V and edge set E, costs c : E → ZZ+

0 , demands
d : E → ZZ+

0 , a set I containing k identical vehicles with capacity Q and a
distinguished depot vertex labeled 0. Define ER = {e ∈ E|de > 0} as the set
of required edges. Let F be a set of closed routes which start and end at the
depot, where the edges in a route can be either serviced or deadheaded (when the
vehicle traverses the edge without servicing it). The set F is a feasible CARP
solution if:

– Each required edge is serviced by exactly one route in F and
– The sum of demands of the serviced edges in each route F does not exceed

the vehicle capacity.

We want to find a solution minimizing the sum of the costs of the routes. It
corresponds to minimize the sum of the deadheaded edges’ cost in the routes.
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2.1 Two-Index Formulation

The most intuitive formulation for the CARP is to create a binary variable, xk
e ,

for each required edge and each vehicle, an integer variable, zk
e , for each dead-

headed edge and each vehicle and use them in flow constraints. This formulation,
known as two-index formulation [25], can be written as follows.

MIN
∑
p∈I

( ∑
e∈ER

cex
p
e +

∑
e∈E

cez
p
e

)
(1)

s.t.
∑
p∈I

xp
e = 1 ∀e ∈ ER (2)

∑
e∈ER

dex
p
e ≤ Q ∀p ∈ I (3)

∑
e∈δR(S)

xp
e +

∑
e∈δ(S)

zp
e ≥ 2xp

f ∀S ⊆ V \{0}, f ∈ ER(S), p ∈ I (4)

∑
e∈δR(S)

xp
e +

∑
e∈δ(S)

zp
e ≡ 0 mod (2) ∀S ⊆ V \{0}, p ∈ I (5)

xp
e ∈ {0, 1} ∀e ∈ ER, p ∈ I (6)
zp

e ∈ ZZ+
0 ∀e ∈ E, p ∈ I . (7)

The objective function (1) minimizes the cost of each edge, being serviced or
deadheaded. Constraints (2) assure that all required edges are serviced. Con-
straints (3) limit the total demand serviced by each vehicle to the capacity Q.
Given S a vertex set, ER(S) = {(i, j) ∈ ER|i ∈ S, j ∈ S}, δ(S) = {(i, j) ∈ E|i ∈
S, j /∈ S} and δR(S) = {(i, j) ∈ ER|i ∈ S, j /∈ S}, constraints (4) assure that
every route is connected and constraints (5) force every route in the solution to
induce an Eulerian graph.

This formulation can be used to generate complete solutions for the CARP,
but there is an exponential number of constraints (5). The separation of these
constraints turns this formulation prohibitive when one is trying to solve large
instances of the problem.

2.2 One-Index Formulation

A relaxation for the CARP is given by the one-index formulation, defined in
[5]. This formulation considers only the deadheaded edges and aggregates every
vehicle in just one variable. So, there is an integer variable ze, which indicates
the number of times an edge e is deadheaded by any vehicle. This formulation
uses valid inequalities as constraints, since none of the two-index formulation’s
constraints can be used with these variables.

Valid inequalities (cuts) are added to formulations in order to improve the
solution. Two families of cuts are widely used in almost any formulation for the
CARP. The first one was created knowing that it is easy to show that every
cutset S must have an even degree on any feasible solution. Because of that, for
any cutset S containing an odd number of required edges, i.e. odd |δR(S)|, at
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least one edge e ∈ δ(S) will be deadheaded. These are called Odd Edge Cutset
constraints: ∑

e∈δ(S)

ze ≥ 1 ∀S ⊆ V \{0}, |δR(S)| odd . (8)

The second family of cuts comes from the knowledge of a lower bound for the
number of vehicles needed to service the required edges of a cutset, called k(S).
This lower bound can be obtained solving a Bin Packing for each cutset S, but
since this problem is NP-Hard [14], it is better to obtain an approximation for
this value. A very good approximation is obtained dividing the sum of demands
of each required edge e ∈ ER(S) ∪ δR(S) by the vehicle capacity, as shown in
equation (9).

k(S) =

⎡
⎢⎢⎢⎢

∑
e∈ER(S)∪δR(S)

de

Q

⎤
⎥⎥⎥⎥ . (9)

Knowing that at least 2k(S) vehicles must cross any cutset S, we can conclude
that at least 2k(S) − |δR(S)| edges from the cutset will be deadheaded in any
feasible solution. These are the Capacity constraints:∑

e∈δ(S)

ze ≥ 2k(S) − |δR(S)| ∀S ⊆ V \{0} . (10)

As the left hand side of both (8) and (10) constraints are the same, we can
put them together in just one constraint with the right hand side shown in (11).

α(S) =
{

max{2k(S) − |δR(S)|, 1} if |δR(S)| is odd,
max{2k(S) − |δR(S)|, 0} if |δR(S)| is even. . (11)

With everything defined, we can state the one-index formulation:

MIN
∑
e∈E

ceze (12)

s.t.
∑

e∈δ(S)

ze ≥ α(S) ∀S ⊆ V \{0} (13)

ze ∈ ZZ+
0 ∀e ∈ E . (14)

The objective function (12) minimizes the deadheadeds cost. In order to obtain
the total cost, one must sum this value with the required edges costs. Constraints
(13) are the odd edge cutset and capacity constraints together.

This formulation is a relaxation for the CARP because it does not give a
complete solution for the problem and sometimes the solution found does not
correspond to any feasible solution. But in practice, it gives very good lower
bounds. The difficulty which arises here is how to generate the cuts (8) and
(10). We will discuss this later.
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2.3 Set Partitioning Approach

Another way to formulate the problem is, given a set of every possible route Ω,
create a binary variable λr for every route r ∈ Ω and use them within a set
partitioning formulation. Let the binary constant ae

r be 1 if route r services the
required edge e, 0 otherwise, and the integer constant be

r be the number of times
edge e is deadheaded in route r. The set partitioning formulation for the CARP
is as follows.

MIN
∑
r∈Ω

crλr (15)

s.t.
∑

r∈Ω

λr = k (16)∑
r∈Ω

ae
rλr = 1 ∀e ∈ ER (17)

λr ∈ {0, 1} ∀r ∈ Ω . (18)

The objective function (15) minimizes the total cost of the used routes. Con-
straints (16) limit the number of routes used to the number of available vehicles
and constraints (17) assure each required edge is serviced by only one route.

This formulation is obtained doing a Dantzig-Wolfe decomposition on con-
straints (3), (4) and (5) from the two-index formulation. The decomposition of
these constraints defines the λr variables as routes. This is the reason why there
is no vehicle index on the variables. Remark that this decomposition does not
enforces the routes to be elementary.

Knowing how many times a route r traverses an edge e as deadheaded, we
can create a direct mapping between the λr variables and the ze variables from
the one-index formulation, as shown in (19). This is enough to use the one-index
constraints (13) to improve this formulation.∑

r∈Ω

be
rλr = ze ∀e ∈ E . (19)

As the former two formulations, this one also has a problem. The number of
possible routes is exponentially large, making it hard to generate all of them. To
tackle this difficulty, we use a column generation algorithm.

3 Column Generation

Column generation is a technique for solving a linear program which has a pro-
hibitive number of variables (columns). The algorithm starts with a small set of
columns and solves the linear program (called here restricted master) to opti-
mality. After that, the algorithm ‘prices’ the columns trying to find one with a
reduced cost suitable to improve the solution. It then repeats the whole operation
until no improving column is found.
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In order to generate columns for the set partitioning formulation, first we
have to define the reduced cost of a route. Given the dual variables γ, βe and
πS , associated with constraints (16), (17) and (13), the reduced cost of a route
r is:

c̃r = cr − γ −
∑

e∈ER

ae
rβe −

∑
S⊆V \{0}

∑
e∈δ(S)

be
rπS (20)

= −γ +
∑

e∈ER

ae
r (ce − βe) +

∑
e∈E

be
r

⎛
⎝ce −

∑
S⊆V \{0}:e∈δ(S)

πS

⎞
⎠ . (21)

The objective of the pricing subproblem is to find a route r (not necessar-
ily elementary) with the smallest reduced cost c̃r. This corresponds to solve a
Shortest Path Problem with Resource Constraints (SPPRC), problem which can
be solved in pseudopolynomial time with dynamic programming [9].

Our basic algorithm starts with a dynamic programming matrix T (e, c, v),
which indicates the reduced cost of the path from the depot to required edge e,
with capacity c, ending at vertex v. It means that, for each edge e and capacity
c, we have to store the value for both endpoints of e. Let c̃e = ce − βe and
g̃e = ce −

∑
S⊆V \{0}:e∈δ(S)

πS be the reduced costs associated with the required

and deadheaded edges, respectively, e = (w, v) and f = (i, j). We initialize every
cell with +∞ and use the following recurrence to fill the dynamic programming
matrix, which gives a complexity of O(|ER|2Q):{

T (e, c, v) = minf∈ER{T (f, c − de, i) + c̃e + g̃iw, T (f, c − de, j) + c̃e + g̃jw}
T (e, de, v) = c̃e + g̃0w − γ

.

(22)
In order to improve the lower bounds, we use a cycle elimination scheme,

which forbids repeating edges within a given size. A 2-cycle elimination forbids
cycles of size one (e − e) and size two (e − f − e). To do 1-cycle elimination,
the algorithm avoids updating a required edge from the same edge. For 2-cycle
elimination, it stores the two bests reduced costs from different edges in each cell
of the dynamic programming matrix. To eliminate cycles greater than 2 is more
complicated and was not used in this work. A complete description of k-cycle
elimination can be found in [21].

Ideally, one would like to consider only elementary routes. With this modifi-
cation the pricing subproblem turns into an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC), where the resource is the vehicle’s capac-
ity Q. This problem is strongly NP-Hard [11], but one can eventually solve it
exactly when the graph is sparse [25].

4 Branch-Cut-and-Price

Since the column generation algorithm solves the linear relaxation of the set par-
titioning formulation, another technique is needed in order to obtain an integer
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solution. In this work, we use Branch-and-Bound, a widely known technique,
which enumerates all possible solutions through a search tree, discarding the
branches with solutions greater than a known upper bound for the instance.
This technique, when used together with column generation and cut separation
is called Branch-Cut-and-Price (BCP).

The BCP algorithm starts on the root node of the search tree. The column
generation algorithm is executed and a lower bound for the solution is found. If
the solution is not integral, it applies a cut separation routine and re-execute the
column generation algorithm. When no cuts are found, it branches. A variable
with a continuous value is chosen and two branches are created, following a
defined branching rule, and the nodes of these branches are put in a queue.
There are some policies which can be used to choose the next node to explore.
In our BCP algorithm, we put the nodes in a heap and always choose the one
with the lowest value (lower bound). The whole procedure is then repeated for
each node. The algorithm stops when the difference between the lower bound
and the best integer solution found (upper bound) is less than one.

4.1 Branching Rule

The most intuitive branching rule is, given variable λr from the set partitioning
formulation with a continuous solution λ̄r ∈ [0, 1], to create two branches, the
first one with λr = 0 and other with λr = 1. But this cannot be done due to the
column generation algorithm. If a route r is fixed to zero, the pricing subproblem
will find this route again on the next iteration and will return it to the restricted
master.

There are some ways to cope with this difficulty. But instead of that, we pre-
fer to branch on the deadheaded edges variables. When we need to branch, we
obtain the values of the ze variables using equation (19), search for the variable
whose value z̄e is closer to 0.5 and then create two branches, one with ze ≤ �z̄e 
and other with ze ≥ �z̄e�. Mapping these to λr variables, we get:

∑
r∈Ω

be
rλr ≤ �z̄e (23)

∑
r∈Ω

be
rλr ≥ �z̄e� . (24)

These inequalities generate new bounds constraints on the restricted master
problem:

lbe ≤
∑
r∈Ω

be
rλr ≤ ube ∀e ∈ E . (25)

Note that when an integer solution is found, it is integer just on ze variables
and it may not be integer on λr. For this reason, this integer solution may be
lower than the optimal solution and may also be infeasible – it behaves like the
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one-index formulation. Nevertheless, these integer solutions give very good lower
bounds for the problem [5].

4.2 Pricing

With the introduction of the bounds constraints, the pricing subproblem does
not change, but the reduced cost of a route (21) must consider the dual values
associated with these constraints. Given ρe, the dual variable associated with
constraints (25), the new equation for the reduced cost of a route is:

c̃r = −γ +
∑

e∈ER

ae
r (ce − βe) +

∑
e∈E

be
r

⎛
⎝ce − ρe −

∑
S⊆V \{0}:e∈δ(S)

πS

⎞
⎠ . (26)

4.3 Strong Branching

In order to obtain better lower bounds faster, the BCP algorithm does strong
branching. When a branching variable needs to be chosen, it selects n candidates
to branch (here n = 3), usually the first n closest to 0.5. Then, it runs the column
generation algorithm for both branches of every candidate and, given leftc and
rightc, the values of left and right branches of candidate c, it chooses the one with
largest min{leftc, rightc}. In the case of a tie, it chooses the one with largest
max{leftc, rightc}. If it finds a candidate with at least one branch infeasible,
this one is chosen immediately.

4.4 Cut Generation

Our BCP algorithm pre-generates cuts before starting to solve the root node
of the search tree. We use the one-index formulation and separate (8) and (10)
cuts using the algorithms described in [30] and [1] respectively. The first one
runs several maximum flows, which can be done in polynomial time. The second
one is more difficult and is solved using mixed integer programming. This cut
generation runs iteratively until no new cut is found. After that, we gather the
cuts and start to solve the root node of the BCP.

During the BCP algorithm, for each node open on the search tree, we run the
separation algorithm for the (8) cuts. Only when an integer solution is found, we
run the separation algorithm for the (10) cuts. It would be prohibitively costly
to run this separation on every node of the BCP.

5 Computational Experiments

All algorithms were implemented in C++, using Windows Vista Business 32-bits,
Visual C++ 2008 Express Edition and IBM Cplex 12.2. Tests were conducted on
an Intel Core 2 Duo 2.8 GHz, using just one core, with 4GB RAM. We applied
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our algorithms to the instances of the dataset eglese, which was originally used
in [27] and [28]. These instances were constructed using as underlying graph
regions of the road network of the county of Lancashire (UK). They used cost
and demands proportional to the length of the edges and most of the instances
have non-required edges. From the classic sets of instances (kshs, gdb, val and
eglese), this one is the only one which still has open instances.

Results are shown in table 1. Column UB lists the best known upper bounds,
reported by Santos et al. [34] and Fu et al. [13]. Column LB lists the best known
lower bounds, reported by Longo et al. [29] and Brandão and Eglese [7]. This
latter work is a primal work and reported some lower bounds which we could
not find in any paper, even in the ones referred by them. These lower bounds
have been widely used, with rare exceptions, for instance in Santos et al. [34].
The next 3 columns show results for the cut generation done before solving the
root node. Columns Cost, Cuts and Time show the solution cost, the number of
cuts sent to BCP and the solution time in seconds. The next 5 columns show
results for the BCP algorithm. Columns Root, Cost, Cuts, Nodes and Time show
the solution cost at the root node, the BCP solution cost, the number of cuts
generated, the nodes opened and the total time in seconds.

In order to run our BCP algorithm for all instances, we set the time limit of 6
hours (21600 seconds). At this point, the algorithm is stopped and the solution
reported is the best found so far. All continuous values, costs or times, were
rounded up to the next integer.

The improving lower bounds found are shown in bold font and optimal values
are underlined. The BCP algorithm found 3 optimal values, e1-a and e3-a were
already known and s1-b is a new optimal value.

6 Conclusions and Future Research

We have created the first Branch-Cut-and-Price algorithm for the Capacitated
Arc Routing Problem which generates routes on the original graph. The algo-
rithm could find one optimal value and twelve new lower bounds for the eglese
instances in reasonable time.

As future research, there are some techniques that may be further explored.
We can cite some examples. A column generation algorithm which generates only
elementary routes can be tested with the Branch-Cut-and-Price. An enumeration
routine which generates all routes between the lower and upper bound can be
used to find the optimum on some instances. Besides that, some techniques may
be used to speed up the Branch-Cut-and-Price algorithm, like active reduced
cost fixing.
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Abstract. A Biased Random Key Genetic Algorithm (BRKGA) is proposed to
find solutions for the unit commitment problem. In this problem, one wishes to
schedule energy production on a given set of thermal generation units in order to
meet energy demands at minimum cost, while satisfying a set of technological
and spinning reserve constraints. In the BRKGA, solutions are encoded by using
random keys, which are represented as vectors of real numbers in the interval
[0,1]. The GA proposed is a variant of the random key genetic algorithm, since
bias is introduced in the parent selection procedure, as well as in the crossover
strategy. Tests have been performed on benchmark large-scale power systems
of up to 100 units for a 24 hours period. The results obtained have shown the
proposed methodology to be an effective and efficient tool for finding solutions
to large-scale unit commitment problems. Furthermore, from the comparisons
made it can be concluded that the results produced improve upon some of the
best known solutions.

Keywords: Unit Commitment, Genetic Algorithm, Optimization, Electrical
Power Generation.

1 Introduction

The Unit Commitment (UC) is a complex optimization problem well known in the
power industry and adequate solutions for it have potential large economic benefits
that could result from the improvement in unit scheduling. Therefore, the UC problem
plays a key role in planning and operating power systems. The thermal UC problem
involves scheduling the turn-on and turn-off of the thermal generating units, as well
as the dispatch for each on-line unit that minimizes the operating cost for a specific
time generation horizon. In addition, there are multiple technological constraints, as
well as system demand and spinning reserve constraints that must be satisfied. Due to
its combinatorial nature, multi-period characteristics, and nonlinearities, this problem
is highly computational demanding and, thus, it is a hard optimization task solving the
UC problem, specially for real-sized systems.

The methodology proposed to find solutions for this problem is a Genetic Algorithm
where the solutions are encoded using random keys. A Biased Random Key Genetic
Algorithm (BRKGA) is proposed to find the on/off state of the generating units for
every time period as well as the amount of production of each unit at each time period.

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 327–339, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In the past, several traditional heuristic approaches based on exact methods have
been used such as dynamic programming, mixed-integer programming and benders de-
composition, see e.g. [14,6,15]. However, more recently most of the developed meth-
ods are metaheuristics, evolutionary algorithms, and hybrids of the them, see e.g.
[2,25,11,7,22,4,26,1]. These latter types have, in general lead to better results than the
ones obtained with the traditional heuristics. The most used metaheuristic methods are
simulated annealing (SA) [19,22], evolutionary programming (EP) [12,18], memetic al-
gorithm (MA)[25], particle swarm optimization (PSO) [23,28] and genetic algorithms
(GA), see e.g. [13,24]. Comprehensive and detailed surveys can be found in [16,20,17].

In this paper we focus on applying Genetic Algorithms (GAs) to find good quality
solutions for the UC problem. The majority of the reported GA implementations to ad-
dress the UC problem are based on the binary encoding. However, studies have shown
that other encoding schemes such as real valued random keys [3] can be efficient when
accompanied with suitable GA operators, specially for problems where the relative or-
der of tasks is important. In the proposed algorithm a solution is encoded as a vector
of N real random keys in the interval [0,1], where N is the number of generation units.
The Biased Random Key Genetic Algorithm (BRKGA) proposed in this paper is based
on the framework provided by Resende and Gonçalves in [9]. BRKGAs are a variation
of the Random key Genetic Algorithms (RKGAs), first introduced by Bean [3]. The
bias is introduced at two different stages of the GA. On the one hand, when parents are
selected we get a higher change of good solutions being chosen, since one of the par-
ents is always taken from a subset including the best solutions. On the other hand, the
crossover strategy is more likely to choose alleles from the best parent to be inherited
by offspring. The work [9] provides a tutorial on the implementation and use of biased
random key genetic algorithms for solving combinatorial optimization problems and
many successful applications are reported in the references therein.

This paper is organized as follows. In Section 2, the UC problem is described and
formulated, while in Section 3 the solution methodology proposed is explained. Section
4 describes the set of benchmark systems used in the computational experiments and
reports on the results obtained. Finally, in Section 5 some conclusions are drawn.

2 UC Problem Formulation

In the UC problem one needs to determine at each time period the turn-on and turn-off
times of the power generation units, as well as the generation output subject to opera-
tional constraints, while satisfying load demands at minimum cost. Therefore, we have
two types of decision variables. The binary variables, which indicate the status of each
unit at each time period and the real variables, which provide the information on the
amount of energy produced by each unit at each time period. The choices made must
satisfy two sets of constraints: the demand constraints (regarding the load requirements
and the spinning reserve requirements) and the technical constraints (regarding gen-
eration unit constraints). The costs are made up two components: the fuel costs, i.e.
production costs, and the start-up costs.
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Let us now introduce the parameters and variables notation.

Decision Variables:
Yt,j: Thermal generation of unit j at time period t, in [MW ];
ut,j: Status of unit j at time period t (1 if the unit is on; 0 other-
wise);
Auxiliary Variables:

Ton/off
j (t): Time periods for which unit j has been continuously

on-line/off-line until time period t, in [hours];
Parameters:
T: Number of time periods (hours) of the scheduling time horizon; t: Time period index;
N: Number of generation units; j: Generation unit index;
Rt: System spinning reserve requirements at time period t, in
[MW ];

Dt: Load demand at time period t, in [MW ];

Yminj : Minimum generation limit of unit j, in [MW ]; Ymaxj: Maximum generation limit of unit j, in [MW ];
Nb: Number of the base units; Ton/off

min,j : Minimum uptime/downtime of unit j, in [hours];
Tc,j: Cold start time of unit j, in [hours]; SH/C,j: Hot/Cold start-up cost of unit j, in [$];
Δdn/up

j : Maximum allowed output level decrease/increase in con-
secutive periods for unit j, in [MW ];

2.1 Objective Function

As already said, there are two cost components: generation costs and start-up costs.
The generation costs, i.e. the fuel costs, are conventionally given by a quadratic cost
function as in equation (1), while the start-up costs, that depend on the number of time
periods during which the unit has been off, are given as in equation (2).

Fj(Yt, j) = a j · (Yt, j)2 + b j ·Yt, j + c j, (1)

where a j,b j,c j are the cost coefficients of unit j.

St, j =

{
SH, j if T o f f

min, j ≤ T o f f
j (t) ≤ T o f f

min, j + Tc, j

SC, j if T o f f
j (t) > T o f f

min, j + Tc, j
, (2)

where SH, j and SC, j are the hot and cold start-up costs of unit j, respectively.
Therefore, the cost incurred with an optimal scheduling is given by the minimization

of the total costs for the whole planning period, as in equation (3).

Minimize
T

∑
t=1

(
N

∑
j=1

{
Fj(Yt, j) ·ut, j + St, j · (1−ut−1, j) ·ut, j

})
. (3)

2.2 Constraints

The constraints can be divided into two sets: the demand constraints and the technical
constraints. Regarding the first set of constraints it can be further divided into load
requirements and spinning reserve requirements, which can be written as follows:

1) Power Balance Constraints
The total power generated must meet the load demand, for each time period.

N

∑
j=1

Yt, j ·ut, j ≥ Dt , t ∈ {1,2, ...,T} . (4)
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2) Spinning Reserve Constraints
The spinning reserve is the total amount of real power generation available from on-line
units net of their current production level.

N

∑
j=1

Y max j ·ut, j ≥ Rt + Dt , t ∈ {1,2, ...,T} . (5)

The second set of constrains includes unit output range, minimum number of time peri-
ods that the unit must be in each status (on-line and off-line), and the maximum output
variation allowed for each unit.

3) Unit Output Range Constraints
Each unit has a maximum and minimum production capacity.

Y min j ·ut, j ≤ Yt, j ≤ Y max j ·ut, j, for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (6)

4) Ramp rate Constraints
Due to the thermal stress limitations and mechanical characteristics the output variation,
levels of each online unit in two consecutive periods are restricted by ramp rate limits.

−Δdn
j ≤ Yt, j −Yt−1, j ≤ Δup

j , for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (7)

5) Minimum Uptime/Downtime Constraints
The unit cannot be turned on or off instantaneously once it is committed or uncommit-
ted. The minimum uptime/downtime constraints indicate that there will be a minimum
time before it is shut-down or started-up, respectively.

T on
j (t) ≥ T on

min, j and T o f f
j (t) ≥ T o f f

min, j, for t ∈ {1,2, ...,T}and j ∈ {1,2, ...,N} . (8)

3 Methodology

Genetic Algorithms are a global optimization technique based on natural genetics and
evolution mechanisms such as survival of the fittest law, genetic recombination and se-
lection [10,8]. GAs provide great modeling flexibility and can easily be implemented
to search for solutions of combinatorial optimization problems. Several GAs have been
proposed for the unit commitment problem, see e.g. [13,5,24,2,27,7,1], the main dif-
ferences being the representation scheme, the decoding procedure, and the solution
evaluation procedure (i.e. fitness function).

Many GA operators have been used; the most common being copy, crossover, and
mutation. Copy consists of simply copying the best solutions from the previous genera-
tion into the next one, with the intention of preserving the chromosomes corresponding
to best solutions in the population. Crossover produces one or more offspring by com-
bining the genes of solutions chosen to act as their parents. The mutation operator ran-
domly changes one or more genes of a given chromosome in order to introduce some
extra variability into the population and thus, prevent premature convergence.

The GA proposed here, i.e. the BRKGA, uses the framework proposed by Gonçalves
and Resende in [9]. The algorithm evolves a population of chromosomes that are used
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to assign priorities to the generation units. These chromosomes are vectors, of size N
(number of units), of real numbers in the interval [0,1] (called random keys). A new
population is obtained by joining three subsets of solutions as follows: the first subset
is obtained by copying the best solutions of the current population; the second subset is
obtained by using a (biased) parameterized uniform crossover; the remaining solutions,
termed mutants, are randomly generated as was the case for the initial population. The
BRKGA framework is illustrated in Figure 1, which has been adapted from [9].

Specific to our problem are the decoding procedure, as well as the fitness computa-
tion. The decoding procedure, that is how solutions are constructed once a population
of chromosomes is given, is performed in two main steps, as it can be seen in Figure 2.
Firstly, a solution satisfying the load demand, for each period is obtained. In this solu-
tion, the units production is proportional to their priority, which is given by the random
key value. Then, these solutions are checked for constraints satisfaction.

3.1 Decoding Procedure

Given a vector of numbers in the interval [0,1] , say RK = (r1,r2, ...,rN) , percent vec-

tors V ′ =
(

v′1,v
′
2, ...,v

′
Nb

)
, V = (v1,v2, ...,vN) and rank vector O = (o1,o2, ...,oN) are

computed. Each element v j is computed as v j = r j

∑N
i ri

, j = 1,2, ...,N and v′j is given

by v′j = r j

∑
Nb
i ri

, j = 1,2, ...,Nb , where Nb is the number of base units, while each oi is

defined taking into account the descending order of the RK value.
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Then an output generation matrix Y is obtained, where each element Yt, j gives the
production level of unit j = oi, i = 1, ...,N for time period t and is computed as the
product of the percentage vectors V ′ or V by the periods demand Dt , as illustrated in
the following pseudocode:

Algorithm 1. Initial matrix generation output

i = 1
d = Dt

while i ≤ N and d > 0 do
j = oi
if j ≤ Nb then

if Dt +Rt ≤ ∑Nb
k=1Y maxk then

Yt, j = v′j.Dt

d = d −Yt, j

else {Dt +Rt > ∑Nb
k=1Y maxk}

Yt, j = Y max j
d = d −Yt, j

end if
else { j > Nb }

if Dt +Rt ≤ ∑Nb
k=1Y maxk then

Yt, j = 0

else {Dt +Rt > ∑Nb
k=1Y maxk}

if d > Y max j then
Yt, j = v j.Dt

d = d −Yt, j
else {d < Y max j}

Yt, j = d
d = 0

end if
end if

end if
Next i

end while

The production level of unit j for each time period t however, may not be admissible
and therefore, the solution obtained may be unfeasible. Hence, the decoding procedure
also incorporates a repair mechanism. This mechanism forces constraints satisfaction.

The repair mechanism starts by forcing the output level of each unit to be in its output
range, as given in equation (9).

Yt, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y max j if Yt, j > Ymax j

Yt, j if Ymin j ≤ Yt, j ≤ Y max j

Y min j if χ ·Ymin j ≤ Yt, j < Ymin j

0 otherwise,

(9)

where χ ∈ [0,1] is a scaling factor.
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At the same time that the ramp constrains are ensured for a specific time period t, new
output limits (Y max

t, j and Y min
t, j upper and lower limits, respectively) must be imposed, for

the following period t + 1, since their value depends on the output level of the current
period t. Equations (10) and (11) show how this is done.

Yt, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y max
t, j if Yt, j ≥ Y max

t, j

Yt, j if Y min
t, j < Yt, j < Y max

t, j

Y min
t, j if µ ·Ymin

t, j ≤ Yt, j ≤ Y min
t, j

0 otherwise

(10)

where Y max
1, j = Y max j, Y min

1, j = Ymin j and

Y max
t, j = min

{
Ymax j,Yt−1, j + Δup

j

}
,Y min

t, j = max
{

Y min j,Yt−1, j −Δdn
j

}
. (11)

After ensuring the unit output range constraints and the ramp rate constraints, it is still
needed to guarantee that minimum up/down time constraints are satisfied. The adjust-
ment of the unit status can be obtained using the repair mechanism illustrated in Figure
3. As it can be seen, for two consecutive periods the unit status can only be changed if

the T on/o f f
min is already satisfied, for a previously turned on or off unit, respectively.

For each period, it may happen that the spinning reserve requirement is not satisfied.
If the number of on-line units is not enough, some off-line units will be turned on, one
at the time, until the cumulative capacity matches or is larger than Dt + Rt as shown in
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Figure 4. In doing so, units are considered in descending order of priority, i.e. random
key value. After ensuring the spinning reserve satisfaction, it may happen that we end up
with excessive spinning reserve. Since this is not desirable due to additional operational
costs involved, we tried to decommit some units. Then units are considered for turning
off-line, in ascending order of priority until their cumulative capacity reaches, Dt + Rt.

At the end of this procedure we have found the u and Y matrices specifying which
units are being operated at each time period and how much its one is producing. How-
ever, it may happen that the production matches, is larger than, or lesser than the de-
mand. In order to compute the total cost of the current solution we first must find how
much each unit is producing.

If there is excessive production, the on-line units production is decreased to its min-
imum allowed value, one at the time, until either all are set to the minimum production
or the production reaches the load demand value. In doing so, units are considered
in descending order of priority, i.e. random key value. It should be notice that by re-
ducing production at time period t the production limits at time period t + 1 change,
and the new values must be respected. Therefore, the minimum allowed production is

given by max
{

Y min
t, j ,Yt+1, j −Δup

j

}
. This is repeated no more than N times. If there is

lack of production, the on-line units production is increased to its maximum allowed
value, one at the time, until either all are set to the maximum production or the pro-
duction reaches the load demand value. In doing so, units are considered in ascending
order of priority, i.e. random key value. It should be noticed that by increasing pro-
duction at time period t the production limits at time period t + 1 change, and the
new values must be respected. Therefore, the maximum allowed production is given

by min
{

Y max
t, j ,Yt+1, j + Δdn

j

}
. Again, this is repeated no more than N times. Once these

repairing stages have been performed, the solutions obtained are feasible and the re-
spective total cost is computed.

3.2 GA Configuration

The current population of solutions is evolved by the GA operators onto a new popula-
tion as follows:

– 20% of the best solutions (elite set) of the current population are copied;
– 20% of the new population is obtained by introducing mutants, that is by randomly

generating new sequences of random keys, which are then decoded to obtain mu-
tant solutions. Since they are generated using the same distribution as the original
population, no genetic material of the current population is brought in;

– Finally, the remaining 60% of the population is obtained by biased reproduction,
which is accomplished by having both a biased selection and a biased crossover.

The selection is biased since, one of the parents is randomly selected from the elite set
of solutions (of the current population), while the other is randomly selected from the
remainder solutions. This way, elite solutions are given a higher chance of mating, and
therefore of passing on their characteristics to future populations. Genes are chosen by
using a biased uniform crossover, that is, for each gene a biased coin is tossed to decide
on which parent the gene is taken from. This way, the offspring inherits the genes from
the elite parent with higher probability (0.7 in our case).
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4 Numerical Results

A set of benchmark systems has been used for the evaluation of the proposed algorithm.
Each of the problems in the set considers a scheduling period of 24 hours. The set of
systems comprises six systems with 10 up to 100 units. A base case with 10 units was
initially defined, and the others have been obtained by considering copies of these units.
The base 10 units system and corresponding 24 hours load demand are given in [13]. To
generate the 20 units problem, the 10 original units have been duplicated and the load
demand doubled. An analogous procedure was used to obtain the problems with 40, 60,
80, and 100 units. In all cases, the spinning reserve requirements were set to 10% of the
load demand.

Several computational experiments were made in order to choose the parameter val-
ues. The BRKGA was implemented with biased crossover probability as main control
parameter. The parameter ranges used in our experiments were 0.5 ≤ Pc ≤ 0.8 with step
size 0.1 which gives 4 possible values for biased crossover probability. The results ob-
tained have shown no major differences. Nevertheless, the results reported here refer to
the best obtained ones, for which the number of generations was set to 10N, the popu-
lation size was set to min{2N,60}, the biased crossover probability was set to 0.7, and
the scaling factor χ = 0.4. Due to the stochastic nature of the BRKGA, each problem
was solved 20 times. We compare the results obtained with the best results reported
in literature. In tables 1, 2, and 3, we compare the best, average, and worst results ob-
tained, for each of the six problems, with the best of each available in literature. As it
can be seen, for two out of the six problems solved our best results improve upon the
best known results, while for the other four it is within 0.02% and 0.18% of the best
known solutions. Moreover when our algorithm is not the best, it is the second best.

For each type of solution presented (best, average, and worst) we compare each sin-
gle result with the best respective one (given in bold) that we were able to find in the
literature. The results used have been taken from a number of works as follows: SA
[22], LRGA [5], SM[25], GA [21], EP[12] and IPSO[28].

Another important feature of the proposed algorithm is that, as it can be seen in
Table 4, the variability of the results is very small. The difference between the worst
and best solutions found for each problem is always below 0.3%, while if the best and
the average solutions are compared this difference is never larger than 0.11%. This
allows for inferring the robustness of the solution since the gaps between the best and

Table 1. Comparison between best results obtained by the BRKGA and the best ones reported in
literature

Size GA SA LRGA EP IPSO BRKGA Ratio BRKGA rank
10 563977 565828 564800 564551 563954 563977 100 2nd
20 1125516 1126251 1122622 1125494 1125279 1124470 100.16 2nd
40 2249715 2250063 2242178 2249093 2248163 2246287 100.18 2nd
60 3375065 – 3371079 3371611 3370979 3368542 99.93 1st
80 4505614 4498076 4501844 4498479 4495032 4493658 99.97 1st
100 5626514 5617876 5613127 5623885 5619284 5614522 100.02 2nd
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Table 2. Comparison between average results obtained by the BRKGA and the best averages
reported in literature

Size SA SM BRKGA Ratio BRKGA rank
10 565988 566787 563996 99.65 1st
20 1127955 1128213 1124753 99.72 1st
40 2252125 2249589 2247534 99.91 1st
60 – 3394830 3372104 99.33 1st
80 4501156 4494378 4495632 100.03 2nd
100 5624301 5616699 5616734 100.00 2nd

Table 3. Comparison between worst results obtained by the BRKGA and the best worst ones
reported in literature

Size GA SA SM EP IPSO BRKGA Ratio BRKGA rank
10 565606 566260 567022 566231 564579 564028 99.90 1st
20 1128790 1129112 1128403 1129793 1127643 1125671 99.83 1st
40 2256824 2254539 2249589 2256085 2252117 2248510 99.95 1st
60 3382886 – 3408275 3381012 3379125 3379915 100.02 2nd
80 4527847 4503987 4494439 4512739 4508943 4499207 100.11 2nd
100 5646529 5628506 5616900 5639148 5633021 5619581 100.05 2nd

Table 4. Analysis of the variability of the results and execution time

Size Best Average Worst Av−Best
Best % Worst−Best

Best % St. deviation(%) Av.Time(s)
10 563977 563996 564028 0.003 0.09 0.003 5.1
20 1124470 1124753 1125671 0.03 0.11 0.03 19.8
40 2246287 2247534 2248510 0.06 0.1 0.08 86.6
60 3368542 3372104 3379915 0.11 0.3 0.12 198.0
80 4493658 4495632 4499207 0.04 0.12 0.06 343.8
100 5614522 5616734 5619581 0.04 0.09 0.05 534.3

the worst solutions are very small. Furthermore our worst solutions, when worse than
the best worst solutions reported are always within 0.11% of the latter, see Table 3. This
is very important since the industry is reluctant to use methods with high variability as
this may lead to poor solutions being used.

The BRKGA has been implemented on Matlab and executed on a Pentium IV Core
Duo personal computer T 5200, 1.60GHz and 2.0GB RAM. In table 4 we can see the
scaling of the execution time with the system size for the proposed BRKGA. Regarding
the computational time no exact comparisons may be done since the values are obtained
on different hardware, and on the other hand, some authors only report their computa-
tional times graphically, as is the case in [28]1. However, in Figure 5 it can easily be
seen that ours are about the same magnitude of the best execution times as in SA [22].

1 The computational times of the IPSO in Figure 5 are estimated from the results reported graph-
ically.
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5 Conclusion

A methodology based on a Biased Random Key Genetic Algorithm, following the ideas
presented in [9], for finding solutions to the unit commitment problem has been pre-
sented. In the solution methodology proposed real valued random keys are used to en-
code solutions, since they have been proven to perform well in problems where the
relative order of tasks is important.

The proposed algorithm was applied to systems with 10, 20, 40, 60, 80, and 100 units
with a scheduling horizon of 24 hours. The numerical results have shown the proposed
method to improve upon current state of the art, since only for three problems it was
not capable of finding better solutions. Furthermore, the results show a further very
important feature, lower variability. It should be notice that the difference between the
worst and best solutions is always below 0.30%, while the difference between the best
and the average solutions is always below 0.11%. This is very important since methods
to be used in industrial applications are required to be robust, therefore preventing the
use of very low quality solutions.
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Abstract. We present an algorithm based on column generation for a
real time scheduling problem, in which all tasks appear regularly after
a given period. Furthermore, the tasks exchange messages, which have
to be transferred over a bus, if the tasks involved are executed on dif-
ferent ECUs. Experiments show that for large instances our preliminary
implementation is faster than the previous approach based on an integer
linear programming formulation using a state-of-the-art solver.

1 Introduction

We consider the scheduling problem arising in the manufacturing of embed-
ded systems. Besides a set T = {t1, t2, . . . , tl} of tasks specified by their worst-
case execution time, deadline and period, we are given a set of messages M =
{m1, . . . , mx} with a single source task, a set of destination tasks, a transmission
time and a deadline. Furthermore we are given a set ECU of identical electronic
control units with a certain amount of memory connected over a certain data
bus architecture.

We will later discuss several variants of our scheduling problem. Here, we will
discuss a specific variant for which we define the feasibility of a schedule.

We assume that the tasks arrive with a fixed rate given as their period. For
each task its deadline is smaller or equal to its period which also applies to
messages. Each task has to be assigned to exactly one ECU. An ECU can execute
exactly one task at a time and uses preemptive fixed-priority scheduling. We
assume that we are given deadline monotonic priorities, which was proven to be
optimal in our setting (see [3]). A set of tasks is feasible for an ECU, if there is no
task whose worst case response time is larger than its deadline. The well-known
fix-point equation proposed by Joseph and Pandya in [6] is used to determine
the worst case response time. Furthermore, the total memory requirements of
the tasks should not exceed the memory of the ECU.

Once the tasks are assigned to ECUs, each message of which at least one
target is assigned to another ECU than the source task has to be sent over the
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bus. We assume that all messages for which all targets are on the same ECU as
the source meet the deadlines without imposing any restriction. One common
bus system is the so called token ring (TAN), in which a token is given to the
ECUs in a round robin fashion. Once an ECU has the token, it can send all
messages in its outgoing buffer. The worst case delay of a message is attained, if
the ECU has just passed the token when the message arrives. In this case, the
ECU has to wait for a whole round trip of the token. The delay required for this
round trip is called the token rotation time (TRT). The worst possible TRT is
attained, if all other messages are send before the message itself, i.e. the sum of
the transmission times of all messages that are sent over the bus. Additionally,
we assume some fixed delay for passing the token.

Despite the fact that variations of the problem described so far have been
subject to scientific research for more than two decades now, it is still of major
importance in several industrial sectors, e.g. in aerospace, automotive, automa-
tion industries.

The work that is most closely related to ours is the one of Eisenbrand-et al [5],
where the authors formulate the problem as an integer linear program which is
solved by a standard ILP-solver. We improve upon their work by performing
a Dantzig-Wolfe decomposition of their ILP formulation (introducing a column
generation approach for several variants of the problem), giving a better running
time on large instances.

2 Previous Work

There have been lots of publications in the past tackling the problem of allo-
cating software tasks to processors processors with consideration of scheduling
properties. Early works focused on mapping software modules on array or multi
processors optimizing communication as in [4] where heuristic algorithms are
used. In [9] the problem of finding schedulable deployments is tackled allow-
ing one or more tasks on each ECU (scheduled by a preemptive priority-based
scheduler). Here the author used simulated annealing to find semi-optimal so-
lutions. In [2] the author compares several heuristic methods for deployment
synthesis but does not discuss exact analysis in detail due the excessive number
of combinational solution candidates existing in the design space.

Approaches to find exact solutions have been proposed in [8] (based on SAT
solving with binary search on the objective value) and [5] (based on MILP op-
timization). Both papers focus on the minimization of timing properties on the
communication channel. In this paper the second approach is extended using a
well-known technique called column generation with the intention to reduce the
time required for optimization.

Column generation is a widely used approach to solve hard problems which
are decomposed into several local problems that have to be combined to a global
optimal solution. In the context of scheduling, the local problem is to assign a
subset of the tasks to a particular machine. Hence, column generation is a very
natural choice of scheduling problems and several column generation approaches
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were already proposed in the literature (see [1] for an overview). The pricing
problem is typically to find a set of tasks with maximal profit that fits to a
machine, which can often be solved with pseudopolynomial algorithms. In our
setting, the problem is rather complicated, as the schedulability of a specific set
of tasks is harder to decide because of the periodic appearance of the tasks with
different periods. Furthermore, a schedule of the tasks impose a set of messages
that have to be routed over a bus and hence a schedule for the messages has to
be computed. Depending on the bus architecture, this can be relatively easy or
hard to compute.

3 A Column Generation Approach

In this section we will describe our column generation approach for solving the
previously defined scheduling problem. We start by formulating the problem as
an integer linear program. Given a set ECU := {E1, E2, . . . , En} of ECUs, we
call a subset p of the set of tasks T a task-assignment pattern for an Ej ∈ ECU
if the tasks in p can be scheduled on Ej and we denote by Pj the set of all
assignment patterns for Ej . For the ILP formulation we associate with each
pattern p ∈ Pj a binary variable xj,p indicating whether the pattern is used for
the schedule or not. We demand that exactly one pattern is used per ECU, i.e.

∀ Ej ∈ ECU :
∑

p∈Pj

xj,p = 1

Furthermore, each task has to be assigned to exactly one ECU, i.e.

∀ t ∈ T :
∑

Ej∈ECU

∑
p∈Pj : t∈p

xj,p = 1

Given that M denotes the set of all messages, for m ∈ M we denote by ms

the source-task of the message m and by mT be the set of target-tasks of m.
Furthermore, for each message, we are given a deadline d(m) and a transmission-
time tt(m). Similarly to the sets Pj we define the set Q. We call a q ⊆ M a
message-pattern if—given that the messages sent over the bus are exactly the
ones in q—all message deadlines are satisfied with respect to some bus protocol.
The set Q is then defined as the set of all message-patterns. A message m is sent
over the bus, if at least one of its targets is executed on an ECU different than
its source task. As in the case of the task-assignment patterns, we introduce
a decision variable zq for each q ∈ Q. We demand that we use exactly one
pattern, i.e. ∑

q∈Q
zq = 1

Furthermore, we introduce indicator variables ym with ym being 1 if and only if
message m is sent over the bus. Thus, ym is 0 if and only if all targets of m are
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scheduled on the same ECU as the source task which can be established by the
constraints

∀ m ∈ M : ym =
∑

Ej∈ECU

∑
p∈Pj : ms∈p ∧ mT \p�=∅

xj,p

Finally, with the constraints

∀ m ∈ M : ym ≤
∑

q∈Q : m∈q

zq

we ensure that the chosen message-pattern contains all messages that have to
be transmitted over the bus. Thus, our scheduling problem can be formulated
as follows

min
∑

Ej∈ECU

∑
p∈Pj

c(j, p) · xj,p (1)

st:
∑

Ej∈ECU

∑
p∈Pj

xj,p · pl = 1 ∀ tl ∈ T (2)

∑
p∈Pj

xj,p = 1 ∀ ej ∈ E (3)

ym =
∑

Ej∈ECU

∑
p∈Pj : ms∈p ∧ mT \p�=∅

xi,p ∀ m ∈ M (4)

ym ≤
∑

q∈Q : m∈q

zq ∀ m ∈ M (5)

∑
q∈Q

zq = 1 (6)

xj,p ∈ Pj (7)
zq ∈ Q (8)
ym ∈ {0, 1} (9)

Note that in equation 3 pl is the l-th component of the pattern vector p. In
this ILP c(j, p) denotes the cost associated with a task-pattern variable xj,p,
which depends on the objective function under consideration. We will discuss
possible cost functions in Section 3.3 and their impact on the pattern costs.

The main idea for solving this program is to apply a branch and bound ap-
proach. For the bounds we will solve the LP-Relaxations of the ILPs occurring
in the branching process. Since these ILPs have an exponential number of vari-
ables, we will solve them by a column generation approach. In Section 3.2 we
will describe our branch and bound step and in Section 3.1 our column gener-
ation approach in more detail. In Sections 3.3, 3.4 and 3.5, we discuss several
objective functions and the formulations for the sets Pj and Q and show how
the corresponding pricing problems can be solved.
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3.1 Solving the Relaxation

By relaxing the integrality constraints of the variables xj,p we have that xj,p ≥ 0
since the constraints xj,p ≤ 1 are implied by the constraints (2). Following
the column generation approach, we start by considering the so-called master
problem containing at first only a small subset of variables, i.e. all message
variables ym. Since we do not know in general whether our problem is feasible
or not, we make it artificially feasible by adding a special ECU, called the super
ECU ES which is capable of scheduling all tasks and by allowing only one pattern
pt with pt = T for ES . In order to be able to detect whether the original problem
is feasible or not, we assign the pattern variable xES ,pt a cost that is larger
than any optimal solution not using ES , so that we can easily decide upon this
question by inspecting the objective value. Since this choice for c(ES , pt) depends
on the considered objective function, we postpone its discussion to Section 3.3.
Notice that using the super ECU, no message is sent and hence the LP is feasible
if it contains an arbitrary message-pattern variable zM .

Now we solve the master problem by the simplex method and check by solv-
ing the so-called pricing problem whether there is a non-basic variable xj,p or
zq with negative reduced cost. If such a variable exists, we know—apart from
degeneracies—that the optimal solution found for the master problem is not
optimal for the original problem and that we have to add this variable to the
master problem and to repeat this step. Otherwise, the solution must also be
optimal for the original problem and we are done.

We can partition this search for a variable into several subproblems, namely
into the search for a variable xj,p for a given ECU Ej and for a variable zq.
Let us start the discussion with the first problem. The column axj,p in the co-
efficient matrix of the ILP-relaxation corresponding to a pattern variable xj,p

can be written as (p, Ij , M(p), 0|M|, 0) where Ij is a vector in {0, 1}|ECU| with
exactly one 1 at position j and where M(p) contains a 1 for message m, if p
implies that m has to be sent over the bus. Thus, by writing d for the vector of
dual variables corresponding to the task constraints (2), d′ corresponding to the
messages constraints (4) and γ corresponding to the constraint (3) of machine j
in the master-LP, the pricing problem reads as follows:

min c(j, p) − dT p − d′T x − γ (10)
subject to: xm ≥ pms − pt ∀ m ∈ M, t ∈ mT (11)

p ∈ Pj (12)

p ∈ {0, 1}|T | (13)

The constraints (11) force xm to be one, if the source task of the message
m is used in the pattern and at least one of the target tasks of m is not used
in the pattern. Similarly, we can derive the pricing problem for a variable zq.
In this case, the corresponding column in the coefficient matrix is given by
(0|T |, 0|E|, 0|M|, q, 1). With dual variables d′′ for the constraints (5) and γ′ for
(6) the pricing problem reads as follows:
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min − d′′T q − γ′ (14)
subject to: q ∈ Q (15)

We describe the formulations of the constraints (12) and (15) in Section 3.4 and
3.5. For our experiments (see Section 4) we have chosen the so-called TAN-bus
architecture which we will explain in more detail in Section 3.5.

3.2 Branch and Bound

The solution of the LP-Relaxation gives us a lower bound on the optimal objec-
tive value of the ILP. That is, if the cost of the relaxation is not smaller than the
best solution found so far, we can backtrack. Note that if the cost function maps
to integral values—as in the case of minimizing the number of used ECUs—we
can strengthen this test by rounding the objective value of the LP relaxation up.

Otherwise, we branch by identifying a task t that is mapped on different ECUs
and by creating two problems, namely one in which the task is assigned to some
specific ECU Ej and one in which it is forbidden to map t on Ej . Fixing or
forbidding tasks on certain ECUs translates to fixed pattern variables in the
pricing problems, and hence the type of the pricing problem doesn’t change.

Note that so far we only obtain upper bounds on the objective value if we
find an integral solution in the bounding step. In Section 3.6 we will show how
to obtain good upper bounds by solving the problem heuristically in the first
place.

3.3 The Objective Functions

There are many ways to define what an optimal scheduling in our setting is.
First, we will describe our algorithm in the context of minimizing the number of
used ECUs. Then we will alter our algorithm to cope with an objective function
proposed by Eisenbrand et al [5].

If we want to minimize the number of ECUs used by a scheduling, we can
set for each pattern variable xj,p, c(j, p) = 1 except for the super ECU where
we have to set c(ES , pt) = |ECU | + 1 to ensure that no solution feasible for the
original problem will use the pattern variable xES ,pt .

Let us now discuss the modifications necessary to incorporate the objective
function of finding a near-equal Processor utilization proposed by Eisenbrand et
al. Here, the utilization of a pattern p is given by

u(p) :=
∑
ti∈T

pi · r(t)

where r(t) := w(t)/τ(t). Recall that w(t) is the worst case execution time of task
t and τ(t) is its period. Note that besides trivial input instances, there must be
an optimal solution such that all ECU are used. Thus, we can define the average
utilization of the task system T to be

u(T ) :=
1

|ECU |
∑
t∈T

r(t)
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We can now ask for an assignment of tasks to the ECUs via patterns pj such
that each ECU is assigned exactly one pattern minimizing the function∑

ej∈ECU

|u(pj) − u(T )|

where pj is the pattern assigned to ECU Ej . To incorporate this objective func-
tion into our approach we have to assign each pattern variable xj,p the cost
c(j, p) := |u(p)−u(T )|. A solution to the ILP then solves our problem under the
new objective function.

Other objective functions are e.g. minimizing the utilization of the bus or
keeping one ECU as free as possible to be able to add further tasks on it later.

3.4 Scheduling Periodic Tasks

For the discussion of the scheduling properties (including the periodicity of the
problem) of all tasks in the system on their respective target ECUs as determined
by choosing patterns from Pj and the corresponding formulation as an integer
linear program we refer to [5] as our formulation used in our implementation is a
straightforward adaption of their results. Important variants include the special
cases when the deadline is always equal to the period, so-called implicit deadlines
and when there are only a small number of different periods. Furthermore, the
period can have a jitter, i.e. the tasks appear in fixed periods but can be delayed
by some amount.

3.5 The TAN-Bus

Recall that for each message m in M , ms denotes the source-task of m and that
mT denotes the set of its target-tasks. A message is sent over the bus, if at least
one of its targets is executed on another ECU as its source. For each message,
we are given a deadline d(m) and a transmission-time tt(m).

First we discuss how one can check the feasibility of a given schedule. For
a task t let E(t) be the ECU on which t is scheduled. Let S = {m ∈ M |
{E(ms)} �= E(mT )}, where E(mT ) = ∪t∈mT E(t), be the set of all messages
that have to be sent over the bus. The so-called token rotation time is then
computed as

TRT = |E| +
∑
m∈S

tt(m)

It is then required that d(m) ≤ TRT for all m ∈ S.
Thus, we can formulate the constraint q ∈ Q as

∀ m ∈ M : M(1 − qm) + d(m) ≥
∑

m∈M

tt(m) · qm (16)

where M ≥
∑

m∈M tt(m)−d(m). Note that therefore, the pricing problem for the
variables zq is actually a knapsack problem which can be solved very efficiently
in a combinatorial way.
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An other important type for the bus is the so called CAN-bus, which uses
priority routing, i.e. the message with the highest priority is routed first. De-
ciding whether a set of messages can be send results in a problem similar to
the schedulability problem described above. Comparison between TAN-bus and
CAN-bus requires further investigation and is out-of-scope of this paper.

3.6 Improvements

In this section we will describe several ideas to increase the performance of our
algorithm. We will introduce a technique that allows us to find lower bounds in
the bounding step without having to solve the master-LP.

A Lagrangian Bound. We want so solve minAx=bc
T x with a very large set

of variables. We always have a subset of the variables in the LP and iteratively
add variables. The question is whether we can obtain bounds on the LP before
having priced in all variables. This can be helpful to cut off a subproblem early.

A bound can be computed as follows. Let x′ and y′ be the primal and dual
solution of the current LP, where x′

v = 0 for all variables that are not in the
current LP. We can compute a bound on the difference of the optimal LP solution
for all variables and the current LP solution as follows. minAx=bc

T x − cT x′ =
minAx=b(cT − y′A)x + y′b − cT x′ = minAx=b(cT − y′A)x = minAx=bc

T
Rx for

cT
R = cT − y′A being the vector of reduced costs. In our setting Ax = b consists

of the constraints (2), (3), (4), (5), (6), (7). We have min(2),(3),(4),(5),(6),(7)c
T
Rx ≥

min(3),(6),(7)c
T
Rx. In this systems, the variables for the single ECUs and for

the bus are independent, i.e. there is no constraint with non-zero coefficients
for variables xi,p and xj,p′ for i �= j from two different ECUs or non-zeros for a
variable xi,p and a variable zq. Hence, the value of this LP is

∑
j minp∈PjcR(p)+

minq∈QcR(q). This is the sum of the objective function values of the pricing
problems that have to be solved.

Heuristic Solutions. We compute upper bounds on the objective value by
computing heuristical solutions in the following way. We start by solving the
master-LP and obtain a possibly fractional solution. From this solution we pick
the task-pattern xj,p with the highest fractional value and schedule the tasks
in p on ECU Ej . Then we eliminate all task-pattern variables which are not
compatible with scheduling tasks p on Ej . From the remaining set of pattern
variables we again pick the variable with the highest factional value and repeat
this procedure until there are no pattern variables left. On this altered problem
with an increased set of predeployed tasks we apply our exact algorithm. If the
problem turns out to be feasible we have found an integral solution for our
problem which can serve as a heuristic solution for our original problem.

Further Improvements. To decrease the number of iterations of the pric-
ing procedure to solve the master-LP, we do not add only one variable to the
master-LP, but all variables with negative reduced costs we found in our pricing
algorithm.
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Notice that the pricing problems according to some given ECU have the same
feasible set and differ only in the objective functions. We could observe that it
is often the case that functions do not change from one iteration to the other.
Therefore, we use a caching mechanism to avoid solving the same pricing prob-
lems over and over again.

Furthermore, we noticed that there are many iterations due to the fact that
only those constraints of type (4) have non-negative dual values that can’t be
used in a pattern that seems to be reasonable. In the first iterations these are
none, because using the super-ECU is the only feasible solution of the master-LP.
Therefore we added a small epsilon to all dual values of the message-constraints,
forcing the message-pattern variables to be maximal sets.

4 Experiments

The evaluation of our approach is performed using the following setup. As we
adopted concepts from Eisenbrand et al. (see [5]) and extended them, but had no
access to the original implementation we partially reimplemented their approach.
The constraints for mapping each task to exactly one processor, the response
time calculation for each task and the deadline constraints were taken from the
paper as is. As communication media we currently only support Token Ring.
Both optimization objectives "Near-Equal Processor Utilization" and "Minimiz-
ing Number of ECUs" have been reused directly. To have tighter constraints
we rely on deadline-monotonic priority assignment, too. Other LP optimizations
from [5] have not been adopted.

We aimed to get on the one hand results comparable to former work and on
the other hand a large set of random examples.

4.1 Generation of Random Examples

The main parameters for the example generator are the overall number of tasks
and the fraction of undeployed tasks. We distinguish predeployed tasks (those
tasks have been assigned to an ECU a priori and may not be redeployed) and
undeployed tasks (which have not been deployed to any ECU yet). The procedure
to build a feasible example is as follows. First the required number of tasks is
randomly generated. We assume that all tasks are activated periodically (there
is no activation jitter). Signals are generated which connect a sender task with
one or more receiver tasks in a tree-like fashion. The result is a set of task/signal
trees. Periods of tasks are randomly created for all tasks which are not receiving
any signals (root nodes). All other tasks transitively inherit the period of their
root node tasks (this applies to signals, too). As for now, each task’s deadline is
chosen to be equal to its period (applies to signals, too).

In the next step as many ECUs are generated as are required to deploy all task
and guarantee a utilization of each ECU of less or equal to 69%. After deploying
each task by choosing priorities deadline-monotonic way, according to the Liu
and Layland criterion [7] each ECU is schedulable afterwards. Now we perform
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a scheduling analysis to calculate for each task (signal) its worst case response
time (worst case transmission time). Without violating the schedulability we can
now change the deadline D of each task on a ECU iteratively such that it is in
the following interval:

Dnew
i ∈

[
Dmin

i , τ(i)
]
, where (17)

Dmin
i = max

{
ri, max

j∈hp(i)

{
Dnew

j

}}
(18)

In these equations Dnew
i is the to-be-defined deadline of task i, τ(i) is its

period. The hp(i) contains the indices of all higher priority tasks on the same
ECU as task i. The new deadline is chosen randomly but with a tendency to be
close to the minimal value, which makes the problem harder to solve later on.
Note that we preserve the order of task priorities on each ECU by restricting
the new deadlines in a way, that they will never violate the deadline-monotonic
premise. The set of signals is determined which have to be deployed on the bus
because at least on receiver task is on a different ECU than the sender task.
The sum of the transmission times of these signals is used as a deadline for all
signals in the system. The resulting system will be tighter in terms of scheduling
analysis but still be feasible. In the next step a number of tasks depending on the
parameter fraction of undeployed tasks are randomly chosen and removed from
their ECUs. This results in an allocation problem with at least one solution.

4.2 Evaluation

The academic reference model and each generated example were tested with
the reimplemented approach by Eisenbrand et al and our new approach (called
CGS) using the two supported optimization objectives. All experiments were run
on one of two compute servers each equipped with four Quad-Core processors
(AMD Opteron

TM
8378 at 2,4 GHz) and 128 GB RAM. Both implementations

were using the commercial LP solver Gurobi Optimizer 4.0. All runtimes are
given in consumed CPU time (kernel+user time) of the optimization process.

Table 1 compares the runtimes of our CGS approach and the Eisenbrand
approach on the Tindell example. Note the immense runtimes for optimizing
the Near-Equal Utilization objective. In our randomly generated examples this
could not be reproduced presumably because the bounds of the Tindell example
are very tight and therefore optimization is harder.

For the generated examples a timeout of 60min was chosen after which the
optimization processes are terminated. We generated and analyzed 773 different

Table 1. Results for Academic Example by Tindell et. al in [9]

Type/Runtime CGS Eisenbrand

Minimize number of ECUs (E) 53 s 126 s
Near-Equal Utilization (U) 205 min 1402 min
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Table 2. Results for Generated Examples (type: E=Minimize number of ECUs;
U=Near-Equal Utilization)

Nr #Tasks #Undepl. type Obj.
Value

Runtime
CGS (s)

Runtime
Eis. (s)

1 10 1 E 2 0.03 0.02
2 10 1 U 2 0.03 0.02
3 40 4 U 0.09 0.41 1.7
4 40 4 U 0.09 1.23 1.08
5 100 10 E 13 15.19 28.07
6 120 12 E 18 8.8 60.34
7 100 30 U 0.18 2611.59 329.58
8 30 21 U 0.0002 1121.7 2069.54

examples with number of tasks varying from 10 to 200 and fraction of undeployed
tasks between 10% and 90%. For most combinations of these parameters we
generated up to 10 examples to increase diversity. For each model we performed
optimization types towards both supported objectives with our approach and
the Eisenbrand approach for reference. Overall 2234 analyses were performed.
In 691 cases the analyses timed out after 60 minutes.

For 545 variants of the input parameters (number of tasks, fraction of unde-
ployed tasks, optimization type) both approaches found feasible solutions. Due
to the huge amount of results we show only exemplary data in Table 2. For
small systems with up to 40 tasks, CGS rarely outperforms the reference ap-
proach (only 10 times out of 325). However times are for most records very close
together (difference smaller than 0.1s) making their delta insignificant.

In the range of 40 to 100 tasks CGS gains ground. There are still 174 examples
where the Eisenbrand approach is better, but in 30 cases CGS wins. Lines 3 and
4 show that times are still very close together. In the test field of 100 tasks and
more, CGS performs better than the reference approach: In 49 cases CGS is
significantly faster compared to 41 cases where it is slower. In some rare cases
CGS seems to produce long runtimes for the optimization of the Near-Equal
Utilization of ECUs as seen in line 7. This has to be further investigated but
does not seem to be a common behavior. The Eisenbrand approach suffers from
those corner cases, too, as can be seen in line 8.

Increasing the number of tasks comes with increasing complexity for the op-
timization. Therefore in the range of 100 to 200 tasks, 418 analyses out of 768
timed out. We can not conclude from these results that our approach scales bet-
ter with respect to the size of the input models than the reference of Eisenbrand.
However the results encourage further work in our current direction.

5 Conclusion

We have presented a column generation approach for a scheduling problem with
periodic appearance of tasks combined with messages that have to be transfered
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over a bus if one of the targets of the message is scheduled on a different ECU
than its source.

Our current implementation is faster for large instances than an existing ap-
proach based on an integer programming formulation although the pricing prob-
lems are currently solved using adapted versions of this formulation.

In future work, we will investigate on combinatorial algorithms for the pricing
problems considering some variants of the basic problem that are important
in practical applications, e.g. in most real life instances only a small number of
different periods occur and the deadline of the tasks are often equal to the period.
We believe that using combinatorial algorithms to solve the pricing problems will
greatly improve on the running times.

Acknowledgment. This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,
www.avacs.org).

References

1. Akker, M., Hoogeveen, H., Velde, S.: Applying column generation to machine
scheduling. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Gen-
eration, pp. 303–330. Springer, US (2005)

2. Altenbernd, P.: Timing Analysis, Scheduling, and Allocation of Periodic Hard Real-
Time Tasks. Ph.D. thesis, University of Paderborn (1996)

3. Baruah, S., Goossens, J.: Scheduling Real-time Tasks: Algorithms and Complexity.
In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis, pp.
207–233. Chapman Hall/ CRC Press (2004)

4. Bollinger, S.W., Midkiff, S.F.: Heuristic technique for processor and link assignment
in multicomputers. IEEE Trans. Comput. 40, 325–333 (1991)

5. Eisenbrand, F., Damm, W., Metzner, A., Shmonin, G., Wilhelm, R., Winkel, S.:
Mapping Task-Graphs on Distributed ECU Networks: Efficient Algorithms for Fea-
sibility and Optimality. In: Proceedings of the 12th IEEE Conference on Embedded
and Real-Time Computing Systems and Applications. IEEE Computer Society, Los
Alamitos (2006)

6. Joseph, M., Pandya, P.K.: Finding response times in a real-time system. The Com-
puter Journal 29, 390–395 (1986)

7. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM 20, 46–61 (1973)

8. Metzner, A., Fränzle, M., Herde, C., Stierand, I.: An optimal approach to the
task allocation problem on hierarchical architectures. In: Proceedings of the 20th
International Conference on Parallel and Distributed Processing, IPDPS 2006, p.
178 (2006)

9. Tindell, K., Burns, A., Wellings, A.: Allocating hard real time tasks (an nphard
problem made easy). Journal of Real-Time Systems 4, 145–165 (1992)

www.avacs.org


P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 352–363, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Fuzzy Clustering the Backward Dynamic Slices of 
Programs to Identify the Origins of Failure  

Saeed Parsa, Farzaneh Zareie, and Mojtaba Vahidi-Asl 

Department of Software Engineering, Iran University of Science and Technology,  
Tehran, Iran 

{parsa,m_vahidi_asl}@iust.ac.ir, 
farzaneh_zareie@comp.iust.ac.ir 

Abstract. In this paper a new technique for identifying the origins of program 
failure is presented. To achieve this, the outstanding features of both statistical 
debugging and dynamic slicing techniques are combined. The proposed   
Fuzzy-Slice technique, computes the full backward dynamic slice of variables 
used in output statement of a given program in several failing and passing 
executions. According to the statements presented in the slice of an execution, 
each run could be converted into an execution point within Euclidean space, 
namely execution space. Using fuzzy clustering technique, different program 
execution paths are identified and the fault relevant statements are ranked 
according to their presence in different clusters. The novel scoring method for 
identifying fault relevant statements considers the observation of a statement in 
all execution paths. The promising results on Siemens test suite reveal the high 
accuracy and precision of the proposed Fuzzy-Slice technique. 

Keywords: Software Debugging, Fuzzy Clustering, Backward Dynamic 
Slicing, Failure.  

1   Introduction 

No software company could claim that its software products are perfect and bug-free. 
Even with best-effort of in-house testing teams, software products still ship with 
undetected latent bugs [15]. A majority of these bugs are encountered in the hands of 
end users and therefore establishing a distributed crash report feedback systems may 
help the software companies to take advantage of user community as invaluable 
volunteer testers [6]. The feedback reports (including failure and successful execution 
results) collected from a huge number of users could be further analyzed by 
debuggers to find the cause(s) of program failure [9].   

However, the manual analysis of collected data using traditional software 
debugging techniques is an arduous and inaccurate activity which requires time, 
effort, and a good understanding of the source code. This has motivated researches to 
develop automated debugging techniques during past few years [5][6][9][16]. 
Nevertheless, due to the diverse nature of software faults and complex structure of 
underlying programs, the process of automating fault localization is not trivial and 
straightforward.  
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Although, different techniques and methods have been introduced for software 
fault localization, there has been an increasing interest in fault localization using 
statistical methods and program slicing techniques [15]. Program slicing technique 
first proposed by Weiser [3] computes the static slice of a reference to a given 
variable at a specific program point. The result is a set of statements statically 
affecting the value of that variable. To find a software fault, a static slice for variables 
in a failing output is calculated and presented to the programmer to find and fix the 
causes of failure. Because of conservative nature of static slicing which considers all 
static dependences, static slices might be very large as the size of a program grows. 
As a result, it requires a huge effort of human debugger to inspect the given slice 
manually in order to detect the real failure cause [2]. To resolve the problem with 
static slicing technique, dynamic slicing [1] has been proposed which computes all 
executed statements having influence on a specific execution point. In contrast with 
static slicing which extracts statements with potentially effect on a given variable, a 
dynamic slice contains a smaller subset of static slice which have an actual effect on 
the same variable in a particular execution [1][2][4]. Given a wrong output value, a 
backward dynamic slice of the value might contain the failure cause that is 
responsible for producing the failing result [2]. Although, variants of dynamic slicing 
techniques have been presented in recent years to narrow down the slice size [7][10], 
they still suffer from some major limitations. Except [10] they have no capability to 
rank the statements based on their likelihood of being faulty. Therefore, the debugger 
should examine all statements included in the slice with an equal chance of being 
faulty. Generally, slicing techniques require only a single failing run for their analysis 
which seems to be a great advantage when there is no more failing executions 
available; therefore, they can only identify a fault related to that single failure and 
they are incapable to detect other unknown faults existed in the program. 
Furthermore, the computed slice might be too large including too much irrelevant 
information in addition to the fact that some type of faults (e.g. missing code) cannot 
be captured by a dynamic slice.  

Since statistical debugging techniques rely on larger number of failing and passing 
executions they can overcome the limitations of slicing techniques [5][6]. They 
contrast the runtime behavior of correct and incorrect runs to locate faults [9][16]. 
Typically, the runtime behavior is determined by evaluating simple Boolean 
expressions called predicates (e.g. directions of branches, the results of function calls, 
assignment statements) at various program points [9]. To achieve this, an extra code is 
inserted before each predicate resulted in an instrumented program. The predicate 
evaluations are gathered from different users which have executed the instrumented 
programs [6]. A main privilege of statistical techniques is their ability to rank 
predicates according to their relevance to the faulty code [5]. Another important 
characteristic of these techniques is their ability to identify faults whose presence may 
not be known due to considering various failing and passing runs in their analysis 
[10]. However, these techniques require a large number of passing and failing runs in 
order to build an appropriate statistical model. Furthermore, due to lightweight 
instrumentation they may lose their capability to identify the cause of failure if the 
fault is not located in the predicates [15]. In these cases, they only report those 
predicates which are highly affected by the fault and the debugger should examine the 
code manually to find the origin of failure. 
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To resolve the problem, is this paper a combination of statistical debugging and 
backward dynamic slicing techniques is performed. The aim is to consider a minimum 
number of passing and failing runs on one hand and find the cause of failure with less 
amount of manual code inspection, on the other hand. To achieve this, we require a 
mechanism that considers different failing execution paths in the program, due to the 
fact that for a single bug in the program there might be many failing paths which 
traverse through the faulty statement and result in a failure. The mechanism could 
convert each execution to an appropriate vector (i.e. execution point) in an execution 
space and apply an adequate clustering technique on vectors obtained from different 
failing and passing runs. It is clear that executions in each cluster may share large 
number of executed statements which result in similar execution paths. However, by 
using naïve clustering techniques we cannot measure the total belongingness of a 
particular run in terms of its executed statements (included/not-included in the slice) 
to different execution paths. The purpose is to find out whether a specific statement is 
observed in different execution paths and contrast its behavior in failing versus 
passing runs to identify fault relevant statements.  

The proposed Fuzzy-Slice technique in this paper, computes the full backward 
dynamic slice of each execution of a given program. It, then converts each execution 
into an execution point within Euclidean space, namely execution space. Using fuzzy 
clustering technique [11], different execution paths are identified and the fault 
relevant statements are ranked according to their presence in different clusters by 
contrasting failing versus passing runs. The novel scoring method for identifying fault 
relevant statements considers the observation of a statement in all execution paths. To 
achieve this, for each eligible statement it computes the likelihood of being faulty and 
the likelihood of being correct and assigns the statement an appropriate score 
according to the computed likelihood ratios. The high scored statements are then 
assigned to each cluster and reported to the user as fault suspicious statements. In 
summary the following contributions have been made in this paper: 

1. The program executions are converted into vectors in Euclidean space 
according to their backward dynamic slices. 

2. A fuzzy clustering technique is applied to specify different execution paths in 
the program.  

3. A novel scoring technique for ranking fault relevant statements have been 
introduced.    

The remaining part of this paper is organized as follows. In section 2, an overview of 
the method including some definitions is described. The experiments and results are 
shown in section 3. Finally concluding remarks are mentioned in section 4.  

2   The Fuzzy-Slice Method 

In this section the proposed Fuzzy-Slice method is described in detail. This section is 
divided into 2 parts. In 2.1 some basic definitions are presented and in 2.2 a 
description of the proposed method is provided.  
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2.1   Basic Definitions 

In order to combine the idea of backward dynamic slicing technique and statistical 
debugging, we assume that for each single failure in the program, at least one failing 
run and a number of passing runs exist. To illustrate the details of the proposed 
Fuzzy-Slice technique, some basic definitions should be described at first place. 
 

Definition 1. The Dynamic Control Flow Graph for the execution e of program P, 
DCFGP e , is a directed graph containing all executed program statements in the 
execution e where an edge from node m to node n depicts that statement n is control 
dependent to statement m.  
 

Definition 2. The Dynamic Backward Slice for statement s  in the execution e  of 
program P, DBSP e ( s ), is a set of all statements that affect the value of s  because of 
having data or control dependence with s .  

2.2   The Method Overview 

The Fuzzy-Slice technique contains two main phases, namely clustering runs 
according to their similarity and assigning scores to the selected statements. The 
proposed Fuzzy-Slice method is performed as the following steps: 

1) Computing full backward dynamic slice for the failure output of the given 
program for existing passing and failing test cases.  

2) Determining the execution paths using fuzzy clustering method 
3) Computing the conditional probability of being faulty and being correct for   

each eligible program statement 
4) Computing the total score of each program statement for each fuzzy cluster 

and assigning the descending sorted lists of statements to each fuzzy cluster 
5) Giving priorities to fuzzy clusters    

Each step will be described briefly in the following sub-sections. 

2.2.1   Constructing the Execution Points 
As mentioned earlier, we assume that we have a number of failing and passing test 
cases. Imagine that program P has an output op where it produces incorrect values for 
some specific test cases. For such op the backward dynamic slice is computed for 
failing and passing test cases. The dynamic slice of variable(s) at op includes all those 
executed statements which actually affect the value of the variable(s) at that point 
during a particular execution. In other words, a statement belongs to DBSP e (op) of a 
variable reference at op in execution e of program P, if there is a chain of dynamic 
data and/or control dependences from the statement to the variable reference at op. 
With two categories of failing and passing test cases (i.e. input parameters) and the 
computed backward slices for all existing failing and passing test cases, the aim is to 
rank the statements presented in the slices based on their relevancy to the program 
failure. Assume ( )A ll

PBDS op  contains the union of all slices computed with the 

existing passing and failing test cases. Therefore, ( )A ll
PBDS op , contains statements 

which has been observed in at least one backward dynamic slice in program P for 
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output instance, op. Now, we can define our Euclidian execution space where each 
specific test case has its corresponding execution point in the space. 

Definition 3. Given ( )All
PBDS op , a set of all distinct statements extracted from failing 

and passing backward dynamic slices for program P, we define Prog-Space(P) as 
Euclidean space of  N-tuples (y1, y2,…,yN) where each tuple represents a dimension 
(also called feature) in the space. Each yi stands for one and only one specific element 
in ( )A ll

PB DS op  and can only have 3 values (-1, 0, 1). In other words, each statement in 
( )A ll

PB D S op  constructs a dimension in Prog-Space(P).  For execution e  of program 
P, the value of dimension s corresponding to the statement S in the execution e  
considering op as incorrect output instance is computed as follows:  

 

1)  if S ∈ DBSP e (op)  →  value(s) = 1 
2)  if S ∉ DBSP e ( op) and S ∈ DCFGP e  →  value(s) = 0 
3)  if S ∉ DCFGP e  →  value(s) = -1 

With this structure, each program execution is presented as an execution vector (i.e. 
execution point in the space) according to its executed (included/not included in the 
slice) and unexecuted statements in that particular run.  

2.2.2   Clustering the Execution Points 
Now, for each execution, there exist an execution point in the Euclidean space and the 
aim is to cluster those points based on their distance in order to identify different 
execution paths (i.e. corresponding to different clusters in the space). However the 
nature of execution points is such that an execution point is not necessarily belong to 
only one particular cluster without having relations with other clusters. In other 
words, an execution point in cluster c1 may have some common elements with 
execution points in cluster c2. Therefore, instead of naïve clustering technique, it is 
preferred to apply fuzzy clustering method [11] which is described briefly in the 
following sub section.  

Fuzzy Clustering. In Conventional clustering, a given observation is included in 
exclusive clusters. Therefore, it is obvious to determinate whether an object belongs 
to a particular cluster or not and it is not really important to consider the dependence 
of an object in a cluster with other existing clusters. However, in some situations we 
require a method that takes into account all possible relations (i.e. similarities) 
between objects. The fuzzy clustering seems to be applicable in such situations. In 
fuzzy clustering we face with two factors: membership and membership weight. 
Suppose that X=(x1, x2,…,xn) be a given object set of size n, the fuzzy cluster for the 
given set is defined as follows: 

: [0,1],k Xμ → 1, 2 , .. . , .k K=      (1)

In other words, assuming that we have K fuzzy clusters, all elements in the object 
set are given a value between zero to one which shows the amount that an object 
belongs to a specific cluster. The weight of belonging degree of object i to cluster k is 
denoted as: 
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( ),ik k iu xμ=  1, 2 , ..., ,i n= 1, 2 , ..., .k k=  (2) 

The defined iku  meets the following condition:  

1

[0,1], , ; 1.
K

ik ik
k

u i k u
=

∈ ∀ =∑
 

(3) 

A well known fuzzy clustering method is FCM (Fuzzy C-Means clustering) which 
tries to minimize loss function known as the weighted within-class sum of squares. 
The minimization objective function with the fuzziness ratio m for given cluster k is 
computed as follows: 

2

1 1

( ) ( ) ( ) ( , ), (1, )
n n

m m
ik jk i j

i j

J U u u d x x m
= =

= ∈ ∞∑∑
 

(4) 

Where d2(xi,xj) is the Euclidean distance between two objects xi and xj. The classifier 
uses an iterative process to minimize the given objective function. In each iteration, it 
computes the belonging degrees for objects and K new centers of clusters. 

2.2.3   Using Fuzzy Clustering to Identify Execution Paths 
As mentioned earlier, conventional clustering techniques cannot consider the 
complete relation of execution paths to each other. In other words, with naïve 
clustering technique we cannot show how much an execution point corresponding to 
particular program run in a cluster has similar executed/non-executed statements with 
program executions in other clusters. The reasoning on which this claim has been 
based is shown as an example in Figure 1 where execution points are shown with 
small balls and the centroids are depicted by red balls.  

                                                                     
             C1                                        
 
 
 
 
             C1                                      C2

d
1

d ′

 

Fig. 1. An example which shows the reason of using Fuzzy Clustering. Although two black 
points belong to different clusters, they may share common features. 

As shown in the Figure, the distance between black and grey execution points in 
C1 cluster, d, is more than the distance between two black balls, d ′ , in two different 
clusters C1 and C2. By naive clustering, the similarity between the two black points is 
not considered while they may share a large number of common statements. 
Therefore, the semi-similar execution paths cannot be identified, appropriately. Using 
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FCM clustering method, to each execution point a vector of weights (i.e. belonging 
degrees) is assigned which shows how much an execution point belongs to different 
execution paths. Each element i of the vector is related to the weight of the object (i.e. 
execution point) in the associated cluster (i.e. execution path). Since execution points 
are computed based on dynamic slice of each execution and the points are clustered 
by fuzzy clustering, we call the technique Fuzzy-Slice.  

2.2.4   Computing the Likelihood of Being Faulty/Correct for Statements 
The next step is computing the likelihood of being faulty (LBF) and the likelihood of 
being correct (LBC) for each statement that is known as a dimension in the execution 
space. For each cluster we want to estimate the amount that a particular statement has 
been executed in failing and passing runs. For each existing cluster k, the introduced 

k
sLBC  considers the value of the given statement s in each passing execution (i.e 

passing execution point) in terms of the belonging weight of that point to the cluster. 
Therefore, for each statement we first compute the value of its corresponding 
dimension in each passing execution point in addition to the belonging weight of the 
passing point to the given cluster. 

If there are K fuzzy clusters, the likelihood of being faulty for the statement s in 
cluster k is computed using equation (5): 

,Kk ∈∀ N=The number of passing execution points, 1

( ( )) ( )
N

n k n
k n
s

E value s E
LBC

N

μ
=

×
=
∑

 (5) 

In a similar way, the likelihood of being faulty for s  is computed using equation (6): 

,Kk∈∀ M =The number of failing execution points, 1

( ( )) ( )
M

m k m
k m

s

E value s E
LBF

M

μ
=

×
=
∑

 (6) 

Where nE  in (5) and mE  in (6) denote the execution points corresponding to failing 
test case n and passing test case m, respectively.   

2.2.5   Assigning Fault Relevance Score to Each Statement 
As mentioned earlier, for each statement s in given cluster k we compute two different 
ratios: likelihood of being faulty (LBF) and likelihood of being correct (LBC) 
according to the membership weight of failing and passing execution points to the 
corresponding fuzzy cluster, respectively. 

It is evident that a given statement with more LBF and less LBC is more likely to 
be fault relevant and vice versa. Therefore, the fault relevance score (score in brief) 
of statement s in cluster k is proportional to LBF over LBC of the statement which 
could be stated as follows: 

s

s

k
k
s k

LBF
score

LBC
∝  (7) 
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We can rewrite (7) as the following relation: 

k
s

k
sk

LBC

LBF
cscore

s
×= , c is a constant (8) 

According to the fact that some statements have similar manner in failing and 
passing executions, they cannot provide useful information. Hence, we imagine c as 
the difference between correct and faulty likelihood of the statement s as: 

k
s

k
s LBCLBFc −= . (9)

Therefore, statements which have been observed equally in failing and passing 
executions are given less score and vise versa.   Relation (8) now becomes: 

k

k
kk

s
k
s

s

s

s LBC

LBF
LBCLBFscore ×−= )(  (10) 

Now we have got an appropriate metric to measure the fault relevance of each 
statement. The statements are sorted in descending order according to their score in 
each cluster. First statements with negative LBF are eliminated from the list (they 
have no predictive power). After prioritizing clusters (described in next section) for 
highest ranked cluster, we investigate whether the statement with the highest score in 
that cluster is fault relevant. If it is the cause of failure, we report it to the user. 
Otherwise, we go to the second ranked cluster to examine the highest score statement 
in that cluster and so on. The process continues until we find the cause of failure or all 
the clusters are searched with their highest scored statements. In the latter situation, in 
a hierarchical process the second statement of clusters according to their priority is 
examined and so on. With this level based strategy, we try not to lose any suspicious 
statement related to a particular execution path (i.e. cluster)  

2.2.6   Prioritizing Clusters for Searching the Failure Cause 
An important issue in seeking fault is the order of clusters for which we assign 
statements. We compute the priority of each cluster according to the percentage of its 
failed runs. So if we have K clusters, we compute the priority of each as shown blow: 

1

, , ( )
N

k k n
n

k K N T he N um ber of Failed T est C ases priority Eμ
=

∀ ∈ = = ∑  (11)

3   Experimental Results 

In this section we compare our work with three outstanding statistical bug localization 
methods. These techniques are: Tarantula [16], Cooperative Bug isolation [9] and 
SOBER [5]. Since, slicing techniques do not rank statements we can not assess our 
work with them. The experiment has been done on Siemens test suite and the obtained 
results show the success of Fuzzy-Slice in comparison to the named methods. 
Siemens test suite contains seven middle-sized programs: Print-tokens, Print-tokens2, 
Tot-info, Replace, Schedule, Schedule2 and Tcas [5]. Each program has a number of 
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faulty versions (i.e. more than 130 versions in total) where in each version at least one 
semantic fault has been injected. There is a standard test pool including passing and 
failing test cases for each program. Siemens has been provided by Software 
Repository Infrastructure (SIR) [12].  

To compute backward dynamic slices we used the dynamic slicing framework 
introduced in [10]. The framework instruments a program and executes a gcc 
compiler to generate binaries and collects the program dynamic data to produce its 
dynamic dependence graph. The framework contains two main tools: Valgrind [14] 
and Diablo[13]. The instrumentation is done by Valgrind memory debugger and 
profiler that also identifies the data dependence among statement execution instances.  
The Diablo tool is capable to produce control flow graph (i.e. the control dependence 
among statements) from the generated binaries. Finally we used WET tool [10] to 
compute backward dynamic slices from an incorrect output value. Since WET does 
not support floating points, we inevitably exclude tot-info from the experiment.  

The important criterion to evaluate a debugging technique is the percentage of code 
that should be scrutinized manually to reach the main cause of failure. In the rest of 
this section we talk about how the named methods work and show the result of our 
experiment in compare with each method.  

3.1   Comparison with Tarantula 

TARANTULA is a statistical method in bug localization scope [16]. For each 
statement s , a score namely color is assigned which is based on the number of times 
the statement is observed in passing over all test cases. The color shows whether the 
statement is healthy (i.e. no fault relevant). The resulted color follows the relation in 
equation (12). 

 

( ) % ( )
C olor s

% ( ) % ( )

passed s

passed s fa iled s
∝

+
 

(12)

The experimental results on Siemens suite show that Tarantula has detected 68 
faults (47%) with less than 10 percentage of manually code inspection where the 
proposed method has detected 89 faults (74%) with this amount of code inspection. 
The result of this comparison is presented in Figure 2. 
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Fig. 2. The result of Tarantula and the proposed method on Siemens suite 
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3.2   Comparison with Cooperative Bug Isolation 

In bug isolation technique proposed by Liblit [9], two conditional probabilities for 
each predicate p in the program are computed: 

                             Context(p)=Probability(program fails| p is evaluated)                               (13) 
Failure(p)=Probability(program fails| p is evaluated as True)  

Liblit ranks the statements according to the difference between the two conditional 
probabilities. More difference, results in higher fault relevance score. Liblit has 
detected about 53 faults (32%) with less than 10 percentage of manually code 
inspection. A comparison with our method is presented in Figure 3. 

3.3   Comparison with Sober 

The Liblit’s approach fails to work when a predicate has been evaluated as True in all 
executions. To resolve the drawback, SOBER [5] considers the execution of each 
predicate as a Bernoulli trial with head probability θ. It computes two distributions: 
f(θ|passing executions) and f(θ|failing executions). It uses these two distributions to 
present the evaluation bias of predicate p in each passing and failing executions. 
Evaluation bias for predicate p, depicted by nt/nt+nf describes the number of times a 
predicate is evaluated as True to the number of times it has been observed (i.e. True 
or False) in a specific passing or failing execution. The technique in SOBER, applies 
a null hypothesis based on the equality of variance and median for both failing and 
passing runs. In cases that there is a high difference between f(θ|passing executions) 
and f(θ|failing executions) it ranks the predicate as a high bug relevant one. A 
comparison between SOBER and our method is presented in Figure 4. 
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Fig. 3. The result of Bug Isolation (Liblit)
and Fuzzy-Slice on Siemens suite 

Fig. 4. Comparison of the proposed method 
with SOBER 

3.4   Comparison with Sober, Bug Isolation and Tarantula 

Figure 5 shows the comparison of our method with the 3 called methods. As shown in 
the figure, our method can find 100 bugs in the Siemens test suite (without tot-info) 
while 18 bugs (18%) among them was located with less than 1% code inspection.   
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Fig. 5. Comparison of the proposed method with SOBER, Liblit and Tarantula 

4   Concluding Remarks and Future Works 

In this paper, a new technique for program fault localization is presented. Fuzzy-Slice 
technique combines the features of full dynamic slicing and statistical methods to 
locate wider ranges of faults with less amount of code inspection by user. In contrast 
to statistical fault localization techniques which rely on large number of passing and 
failing runs, our proposed technique uses fewer numbers of passing runs. The 
presented execution space helps us to present each execution of a program as a vector 
in terms of executed statements and computed slices. The Fuzzy clustering method 
helps to detect different execution paths in the program which results in an effective 
scoring method. The scoring method takes advantage of fuzzy clusters to rank 
statements according to their likelihood of being faulty. 

For future works, the scalability of the method will be studied and improved. 
Furthermore, we will seek to find an effective filtering method to reduce the 
dimension of the program space. For future work, we also study the capability of the 
proposed method on multiple bug programs.  

References 

[1] Agrawal, H., Horgan, J.: Dynamic program slicing. In: ACM SIGPLAN Conference on 
Programming Language Design and Implementation (PLDI), pp. 246–256 (1990) 

[2] Agrawal, H., DeMillo, R., Spafford, E.: Debugging with dynamic slicing and 
backtracking. Software Practice and Experience (SP&E) 23(6), 589–616 (1993) 

[3] Weiser, M.: Program slicing. IEEE Transactions on Software Engineering (TSE) SE-
10(4), 352–357 (1982) 

[4] Zhang, X., Gupta, R., Zhang, Y.: Precise dynamic slicing algorithms. In: IEEE/ACM 
International Conference on SoftwareEngineering (ICSE), Portland, Oregon, pp. 319–329 
(May 2003) 

[5] Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.: SOBER: Statistical model-based bug 
localization. In: Proceedings of the 10th European Software Engineering Conference and 
13th ACMSIGSOFT International Symposium on Foundations of Software Engineering, 
pp. 286–295. ACM Press, New York (2005) 



 Fuzzy Clustering the Backward Dynamic Slices of Programs 363 

[6] Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program 
sampling. In: Proceedings of the ACM SIGPLAN Conference on Programming Language 
Design and Implementation, pp. 141–154. ACM Press, New York (2003) 

[7] Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated predicate switching. 
In: Proceedings of the International Conference on Software Engineering, Shanghai, 
China, May 2006, pp. 272–281. ACM Press, New York (2006) 

[8] Liblit, B., Naik, M., Zheng, A., Aiken, A., Jordan, M.: Scalable Statistical Bug Isolation. 
In: Proc. ACM SIGPLAN 2005 Int’l Conf. Programming Language Design and 
Implementation (PLDI 2005), pp. 15–26 (2005) 

[9] Zhang, X., Gupta, N., Gupta, R.: Pruning dynamic slices with confidence. In: ACM 
SIGPLAN Conference on Programming Language Design and Implementation, pp. 169–
180 (June 2006) 

[10] Sato-Ilic, M., Jain, L.C.: Innovations in Fuzzy Clustering: Theory and Applications. 
Springer, Heidelberg (2006) 

[11] http://www.cse.unl.edu/_galileo/sir 
[12] http://www.elis.ugent.be/diablo/ 
[13] http://valgrind.org/ 
[14] Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann, 

San Francisco (2006) 
[15] Jones, J., Harrold, M.: Empirical Evaluation of the Tarantula Automatic Fault-

Localization Technique. In: Proc. 20th IEEE/ACM Int’l Conf. Automated Software Eng., 
ASE 2005, pp. 273–282 (2005) 
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David Eppstein and Darren Strash

Department of Computer Science, University of California, Irvine, USA

Abstract. We implement a new algorithm for listing all maximal cliques in
sparse graphs due to Eppstein, Löffler, and Strash (ISAAC 2010) and analyze its
performance on a large corpus of real-world graphs. Our analysis shows that this
algorithm is the first to offer a practical solution to listing all maximal cliques in
large sparse graphs. All other theoretically-fast algorithms for sparse graphs have
been shown to be significantly slower than the algorithm of Tomita et al. (The-
oretical Computer Science, 2006) in practice. However, the algorithm of Tomita
et al. uses an adjacency matrix, which requires too much space for large sparse
graphs. Our new algorithm opens the door for fast analysis of large sparse graphs
whose adjacency matrix will not fit into working memory.

Keywords: maximal clique listing, Bron–Kerbosch algorithm, sparse graphs,
d-degenerate graphs.

1 Introduction

Clique finding procedures arise in the solutions to a wide variety of important appli-
cation problems. The problem of finding cliques was first studied in social network
analysis, as a way of finding closely-interacting communities of agents in a social
network [19]. In bioinformatics, clique finding procedures have been used to find fre-
quently occurring patterns in protein structures [17,26,27], to predict the structures of
proteins from their molecular sequences [43], and to find similarities in shapes that may
indicate functional relationships between proteins [14]. Other applications of clique
finding problems include information retrieval [5], computer vision [20], computational
topology [50], and e-commerce [49].

For many applications, we do not want to report one large clique, but all maximal
cliques. Any algorithm which solves this problem must take exponential time in the
worst-case because graphs can contain an exponential number of cliques [37]. However,
graphs with this worst-case behavior are not typically encountered in practice. More
than likely, the types of graphs that we will encounter are sparse [16]. Therefore, the
feasibility of clique listing algorithms lies in their ability to appropriately handle sparse
input graphs. Indeed, it has long been known that certain sparse graph families, such as
planar graphs and graphs with low arboricity, contain only a linear number of cliques,
and that all maximal cliques in these graphs can be listed in linear time [10,11]. In
addition, there are also several methods to list all cliques in time polynomial in the
number of cliques reported [46], which can be done faster if parameterized on a sparsity
measure such as maximum degree [36].

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 364–375, 2011.
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Many different clique-finding algorithms have been implemented, and an algorithm
of Tomita et al. [45], based on the much earlier Bron–Kerbosch algorithm [8], has been
shown through many experiments to be faster by orders of magnitude in practice than
others. An unfortunate drawback of the algorithm of Tomita et al., however, is that both
its theoretical analysis and implementation rely on the use of an adjacency matrix rep-
resentation of the input graph. For this reason, their algorithm has limited applicability
for large sparse graphs, whose adjacency matrix may not fit into working memory. We
therefore seek to have the best of both worlds: we would ideally like an algorithm that
rivals the speed of the Tomita et al. result, while having linear storage cost.

Recently, together with Maarten Löffler, the authors developed and published a new
algorithm for listing maximal cliques, particularly optimized for the case that the in-
put graph is sparse [13]. This new algorithm combines features of both the algorithm
of Tomita et al. and the earlier Bron–Kerbosch algorithm on which it was based, and
maintains through its recursive calls a dynamic graph data structure representing the
adjacencies between the vertices that remain relevant within each call. When analyzed
using parameterized complexity in terms of the degeneracy of the input graph (a mea-
sure of its sparsity) its running time is near-optimal in terms of the worst-case number
of cliques that a graph with the same sparsity could have. However, the previous work
of the authors with Löffler did not include any implementation or experimental results
showing the algorithm to be good in practice as well as in theory.

1.1 Our Results

We implement the algorithm of Eppstein, Löffler, and Strash for listing all maximal
cliques in sparse graphs [13]. Using a corpus of many large real-world graphs, together
with synthetic data including the Moon–Moser graphs as well as random graphs, we
compare the performance of our implementation with the algorithm of Tomita et al.
We also implement for comparison, a modified version of the Tomita et al. algorithm
that uses adjacency lists in place of adjacency matrices, and a simplified version of the
Eppstein–Löffler–Strash algorithm that represents its subproblems as lists of vertices
instead of as dynamic graphs. Our results show that, for large sparse graphs, the new
algorithm is as fast or faster than Tomita et al., and sometimes faster by very large fac-
tors. For graphs that are not as sparse, the new algorithm is sometimes slower than the
algorithm of Tomita et al., but remains within a small constant factor of its performance.

2 Preliminaries

We work with an undirected graph G = (V,E) with n vertices and m edges. For a vertex
v, let Γ (v) be its neighborhood {w | (v,w) ∈ E}, and similarly for a subset W ⊂ V let
Γ (W ) be the set

⋂
w∈W Γ (w), the common neighborhood of all vertices in W .

2.1 Degeneracy

Definition 1 (degeneracy). The degeneracy of a graph G is the smallest number d such
that every subgraph of G contains a vertex of degree at most d.
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proc Tomita(P, R, X)

1: if P∪X = /0 then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P∪X to maximize |P∩Γ (u)|
5: for each vertex v ∈ P\Γ (u) do
6: Tomita(P∩Γ (v), R∪{v}, X ∩Γ (v))
7: P ← P \{v}
8: X ← X ∪{v}
9: end for

Fig. 1. The Bron–Kerbosch algorithm with the pivoting strategy of Tomita et al.

Every graph with degeneracy d has a degeneracy ordering, a linear ordering of the
vertices such that each vertex has at most d neighbors later than it in the ordering.
The degeneracy of a given graph and a degeneracy ordering of the graph can both be
computed in linear time [6].

2.2 The Algorithm of Tomita et al.

The algorithm of Tomita et al. [45] is an implementation of Bron and Kerbosch’s algo-
rithm [8], using a heuristic called pivoting [26,9]. The Bron–Kerbosch algorithm is a
simple recursive algorithm that maintains three sets of vertices: a partial clique R, a set
of candidates for clique expansion P, and a set of forbidden vertices X . In each recursive
call, a vertex v from P is added to the partial clique R, and the sets of candidates for
expansion and forbidden vertices are restricted to include only neighbors of v. If P∪X
becomes empty, the algorithm reports R as a maximal clique, but if P becomes empty
while X is nonempty, the algorithm backtracks without reporting a clique.

In the basic version of the algorithm, |P| recursive calls are made, one for each vertex
in P. The pivoting heuristic reduces the number of recursive calls by choosing a vertex u
in P∪X called a pivot. All maximal cliques must contain a non-neighbor of u (counting
u itself as a non-neighbor), and therefore, the recursive calls can be restricted to the
intersection of P with the non-neighbors.

The algorithm of Tomita et al. chooses the pivot so that u has the maximum number
of neighbors in P, and therefore the minimum number of non-neighbors, among all
possible pivots. Computing both the pivot and the vertex sets for the recursive calls can
be done in time O(|P| ·(|P|+ |X |)) within each call to the algorithm, using an adjacency
matrix to quickly test the adjacency of pairs of vertices. This pivoting strategy, together
with this adjacency-matrix-based method for computing the pivots, leads to a worst-
case time bound of O(3n/3) for listing all maximal cliques [45].

2.3 The Algorithm of Eppstein, Löffler, and Strash

Eppstein, Löffler, and Strash [13] provide a different variant of the Bron–Kerbosch
algorithm that obtains near-optimal worst-case time bounds for graphs with low degen-
eracy. They first compute a degeneracy ordering of the graph; the outermost call in the
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proc Degeneracy(V , E)

1: for each vertex vi in a degeneracy ordering v0, v1, v2, . . . of (V,E) do
2: P ← Γ (vi)∩{vi+1, . . . ,vn−1}
3: X ← Γ (vi)∩{v0, . . . ,vi−1}
4: Tomita(P, {vi}, X)
5: end for

Fig. 2. The algorithm of Eppstein, Löffler, and Strash

recursive algorithm selects the vertices v to be used in each recursive call, in this order,
without pivoting. Then for each vertex v in the order, a call is made to the algorithm
of Tomita et al. [45] to compute all cliques containing v and v’s later neighbors, while
avoiding v’s earlier neighbors. The degeneracy ordering limits the size of P within these
recursive calls to be at most d, the degeneracy of the graph.

A simple strategy for determining the pivots in each call to the algorithm of Tomita et
al., used as a subroutine within this algorithm, would be to loop over all possible pivots
in X ∪P and, for each one, loop over its later neighbors in the degeneracy ordering to
determine how many of them are in P. The same strategy can also be used to perform
the neighbor intersection required for recursive calls. With the pivot selection and set
intersection algorithms implemented in this way, the algorithm would have running
time O(d2n3d/3), a factor of d larger than the worst-case output size, which is O(d(n−
d)3n/3).

However, Eppstein et al. provide a refinement of this algorithm that stores, at each
level of the recursion, the subgraph of G with vertices in P ∪ X and edges having
at least one endpoint in P. Using this subgraph, they reduce the pivot computation
time to |P|(|X |+ |P|), and the neighborhood intersection for each recursive call to
time |P|2(|X |+ |P|), which reduces the total running time to O(dn3d/3). This running
time matches the worst-case output size of the problem whenever d ≤ n − Ω(n). As
described by Eppstein et al., storing the subgraphs at each level of the recursion may
require as much as O(dm) space. But as we show in Section 3.1, it is possible to achieve
the same optimal running time with space overhead O(n + m).

2.4 Tomita et al. with Adjacency Lists

In our experiments, we were only able to run the algorithm of Tomita et al. [45] on
graphs of small to moderate size, due to its use of the adjacency matrix representation.
In order to have a basis for comparison with this algorithm on larger graphs, we also
implemented a simple variant of the algorithm which stores the input graph in an adja-
cency list representation, and which performs the pivot computation by iterating over
all vertices in P∪X and testing all neighbors for membership in P. When a vertex v is
added to R for a recursive call, we can intersect the neighborhood of r with P and X by
iterating over its neighbors in the same way.

Let Δ be the maximum degree of the given input graph; then the pivot computa-
tion takes time (OΔ(|X |+ |P|)). Additionally, preparing subsets for all recursive calls
takes time O(|P|Δ). Fitting these facts into the analysis of Tomita et al. gives us a
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O(Δ(n − Δ)3Δ/3) time algorithm. Δ may be significantly larger than the degeneracy,
so this algorithm’s theoretical time bounds are not as good as those of Tomita et al. or
Eppstein et al.; nevertheless, the simplicity of this algorithm makes it competitive with
the others for many problem instances.

3 Implementation and Experiments

We implemented the algorithm of Tomita et al. using the adjacency matrix representa-
tion, and the simple adjacency list representation for comparison. We also implemented
three variants of the algorithm of Eppstein, Löffler, and Strash: one with no data struc-
turing, using the fact that vertices have few later neighbors in the degeneracy ordering,
an implementation of the dynamic graph data structure that only uses O(m + n) extra
space total, and an alternative implementation of the data structure based on bit vectors.
The bit vector implementation executed no faster than the data structure implemen-
tation, so we omit its experimental timings and any discussion of its implementation
details.

3.1 Implementation Details

We maintain the sets of vertices P and X in a single array, which is passed between
recursive calls. Initially, the array contains the elements of X followed by the elements
of P. We keep a reverse lookup table, so that we can look up the index of a vertex
in constant time. With this lookup table, we can tell whether a vertex is in P or X in
constant time, by testing that its index is in the appropriate subarray. When a vertex
v is added to R in preparation for a recursive call, we reorder the array. Vertices in
Γ (v)∩X are moved to the end of the X subarray, and vertices in Γ (v)∩P are moved
to the beginning of the P subarray (see Figure 3). We then make a recursive call on
the subarray containing the vertices Γ (v)∩ (X ∪P). After the recursive call, we move
v to X by swapping it to the beginning of the P subarray and moving the boundary so
that v is in the X subarray. Of course, moving vertices between sets will affect P and X
in higher recursive calls. Therefore, in a given recursive call, we maintain a list of the
vertices that are moved from P to X , and move these vertices back to P when the call
ends.

Fig. 3. When a vertex v is added to the partial clique R, its neighbors in P and X (highlighted in
this example) are moved toward the dividing line in preparation for the next recursive call
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Fig. 4. For each vertex in P∪X , we keep an array containing neighbors in P. We update these
arrays whenever a vertex is moved from P to R, and whenever we need to intersect a neighborhood
with P and X for a recursive call.

The pivot computation data structure is stored as set of arrays, one for each potential
pivot vertex u in P∪X , containing the neighbors of u in P. Whenever P changes, we
reorder the elements in these arrays so that neighbors in P are stored first (see Figure 4).
Computing the pivot is as simple as iterating through each array until we encounter a
neighbor that is not in P. This reordering procedure allows us to maintain one set of
arrays throughout all recursive calls, requiring linear space total. Making a new copy of
this data structure for each recursive call would require space O(dm).

3.2 Results

We implemented all algorithms in the C programming language, and ran experiments
on a Linux workstation running the 32-bit version of Ubuntu 10.10, with a 2.53 GHz
Intel Core i5 M460 processor (with three cache levels of 128KB, 512KB, and 3,072KB
respectively) and 2.6GB of memory. We compiled our code with version 4.4.5 of the
gcc compiler with the -O2 optimization flag.

In our tables of results, “tomita” is the algorithm of Tomita et al., “maxdegree” is the
simple implementation of Tomita et al.’s algorithm for adjacency lists, and “hybrid” and
“degen” are the implementations of Eppstein, Löffler, and Strash with no data structure
and with the linear space data structure, respectively. We provide the elapsed running
running times (in seconds) for each of these algorithms; an asterisk indicates that the
algorithm was unable to run on that problem instance due to time or space limitations.
In addition, we list the number of vertices n, edges m, the degeneracy d, and the number
of maximal cliques μ .

Our primary experimental data consisted of four publicly-available databases of real-
world networks, including non-electronic and electronic social networks as well as net-
works from bioinformatics applications.

– A data base curated by Mark Newman [40] (Table 1) which consists primarily of
social networks; it also includes word co-occurrence data and a biological neural
network. Many of its graphs were too small for us to time our algorithms accurately,
but our algorithm was faster than that of Tomita et al. on all four of the largest
graphs; in one case it was faster by a factor of approximately 130.



370 D. Eppstein and D. Strash

– The BioGRID data [44] (Table 2) consists of several protein-protein interaction
networks with from one to several thousand vertices, and varying sparsities. Our
algorithm was significantly faster than that of Tomita et al. on the worm and fruitfly
networks, and matched or came close to its performance on all the other networks,
even the relatively dense yeast network.

– We also tested six large social and bibliographic networks that appeared in the Pajek
data set but were not in the other data sets [7] (Table 3). Our algorithm was consis-
tently faster on these networks. Due to their large size, the algorithm of Tomita et
al. was unable to run on two of these networks; nevertheless, our algorithm found
all cliques quickly in these graphs.

– We also tested a representative sample of graphs from the Stanford Large Network
Dataset Collection [32] (Table 4). These included road networks, a co-purchasing
network from Amazon.com data, social networks, email networks, a citation net-
work, and two Web graphs. Nearly all of these input graphs were too large for the
Tomita et al. algorithm to fit into memory. For graphs which are extremely sparse,
it is no surprise that the maxdegree algorithm was faster than our algorithm, but
our algorithm was consistently fast on each of these data sets, whereas the maxde-
gree algorithm was orders of magnitude slower than our algorithm on the large
soc-wiki-Talk network.

Table 1. Experimental results for Mark Newman’s data sets [40]

graph n m d μ tomita maxdegree hybrid degen
zachary [48] 34 78 4 39 < 0.01 < 0.01 < 0.01 < 0.01
dolphins [35] 62 159 4 84 < 0.01 < 0.01 < 0.01 < 0.01
power [47] 4,941 6,594 5 5,687 0.29 < 0.01 0.01 0.01
polbooks [28] 105 441 6 199 < 0.01 < 0.01 < 0.01 < 0.01
adjnoun [29] 112 425 6 303 < 0.01 < 0.01 < 0.01 < 0.01
football [15] 115 613 8 281 < 0.01 < 0.01 < 0.01 < 0.01
lesmis [25] 77 254 9 59 < 0.01 < 0.01 < 0.01 < 0.01
celegensneural [47] 297 1,248 9 856 < 0.01 < 0.01 < 0.01 < 0.01
netscience [39] 1,589 2,742 19 741 0.02 < 0.01 < 0.01 < 0.01
internet [40] 22,963 48,421 25 39,275 6.68 0.28 0.11 0.11
condmat-2005 [38] 40,421 175,693 29 34,274 39.65 0.22 0.32 0.35
polblogs [4] 1,490 16,715 36 49,884 0.08 0.28 0.18 0.12
astro-ph [38] 16,706 121,251 56 15,794 3.44 0.19 0.22 0.23

Table 2. Experimental results for BioGRID data sets (PPI Networks)[44]

graph n m d μ tomita maxdegree hybrid degen
mouse 1,455 1,636 6 1,523 0.01 < 0.01 < 0.01 < 0.01
worm 3,518 3,518 10 5,652 0.14 0.01 0.01 0.01
plant 1,745 3,098 12 2,302 0.02 < 0.01 < 0.01 < 0.01
fruitfly 7,282 24,894 12 21,995 0.62 0.03 0.03 0.04
human 9,527 31,182 12 23,863 1.06 0.03 0.05 0.05
fission-yeast 2,031 12,637 34 28,520 0.06 0.12 0.09 0.07
yeast 6,008 156,945 64 738,613 1.74 11.37 4.22 2.17
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Table 3. Experimental results for Pajek data sets [7]

graph n m d μ tomita maxdegree hybrid degen
foldoc [21] 13,356 91,471 12 39,590 2.16 0.11 0.14 0.13
eatRS [23] 23,219 304,937 34 298,164 7.62 1.52 1.55 1.03
hep-th [3] 27,240 341,923 37 446,852 12.56 3.40 2.40 1.70
patents [18] 240,547 560,943 24 482,538 * 0.56 1.22 1.65
days-all [12] 13,308 148,035 73 2,173,772 5.83 62.86 9.94 5.18
ND-www [1] 325,729 1,090,108 155 495,947 * 1.80 1.81 2.12

Table 4. Experimental results for Stanford data sets [32]

graph n m d μ tomita maxdegree hybrid degen
roadNet-CA [34] 1,965,206 2,766,607 3 2,537,996 * 2.00 5.34 5.81
roadNet-PA [34] 1,088,092 1,541,898 3 1,413,391 * 1.09 2.95 3.21
roadNet-TX [34] 1,379,917 1,921,660 3 1,763,318 * 1.35 3.72 4.00
amazon0601 [30] 403,394 2,443,408 10 1,023,572 * 3.59 5.01 6.03
email-EuAll [31] 265,214 364,481 37 265,214 * 4.93 1.25 1.33
email-Enron [24] 36,692 183,831 43 226,859 31.96 2.78 1.30 0.90
web-Google [2] 875,713 4,322,051 44 1,417,580 * 9.01 8.43 9.70
soc-wiki-Vote [33] 7,115 100,762 53 459,002 0.96 4.21 2.10 1.14
soc-slashdot0902 [34] 82,168 504,230 55 890,041 * 7.81 4.20 2.58
cit-Patents [18] 3,774,768 16,518,947 64 14,787,032 * 28.56 49.22 58.64
soc-Epinions1 [42] 75,888 405,740 67 1,775,074 * 27.87 9.24 4.78
soc-wiki-Talk [33] 2,394,385 4,659,565 131 86,333,306 * > 18,000 542.28 216.00
web-berkstan [34] 685,231 6,649,470 201 3,405,813 * 76.90 31.81 20.87

Table 5. Experimental results for Moon–Moser [37] and DIMACS benchmark graphs [22]

Graphs n m d μ tomita maxdegee hybrid degen
M-M-30 30 405 27 59,049 0.04 0.04 0.06 0.04
M-M-45 45 945 42 14,348,907 7.50 15.11 20.36 10.21
M-M-48 48 1080 45 43,046,721 22.52 48.37 63.07 30.22
M-M-51 51 1224 48 129,140,163 67.28 150.02 198.06 91.80
MANN a9 45 918 27 590,887 0.44 0.88 0.90 0.53
brock 200 2 200 9876 84 431,586 0.55 2.95 2.61 1.22
c-fat200-5 200 8473 83 7 0.01 0.01 0.01 0.01
c-fat500-10 500 46627 185 8 0.04 0.04 0.09 0.12
hamming6-2 64 1824 57 1,281,402 1.36 4.22 4.15 2.28
hamming6-4 64 704 22 464 < 0.01 < 0.01 < 0.01 < 0.01
johnson8-4-4 70 1855 53 114,690 0.13 0.35 0.40 0.24
johnson16-2-4 120 5460 91 2,027,025 5.97 27.05 31.04 12.17
keller4 171 9435 102 10,284,321 5.98 24.97 26.09 11.53
p hat300-1 300 10933 49 58,176 0.07 0.29 0.25 0.15
p hat300-2 300 21928 98 79,917,408 91.31 869.34 371.72 163.16
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As a reference point, we also ran our experimental comparisons using the two sets
of graphs that Tomita et al. used in their experiments. First, Tomita et al. used a data
set from a DIMACS challenge, a collection of graphs that were intended as difficult
examples for clique-finding algorithms, and that have been algorithmically generated
(Table 5). And second, they generated graphs randomly with varying edge densities;
in order to replicate their results we generated another set of random graphs with the
same parameters (Table 6). The algorithm of Eppstein, Löffler, and Strash runs about
2 to 3 times slower than that of Tomita et al. on many of these graphs; this confirms
that the algorithm is still competitive on graphs that are not sparse, in contrast to the

Table 6. Experimental results on random graphs

Graphs d μ tomita maxdegree hybrid degen
n p

100

0.6 51 59,898 0.08 0.26 0.25 0.14
0.7 59 439,928 0.50 2.04 1.85 0.99
0.8 70 5,776,276 6.29 28.00 24.86 11.74
0.9 81 240,998,654 249.15 1136.15 1028.84 425.85

300

0.1 21 3,663 < 0.01 0.01 0.01 < 0.01
0.2 47 18,911 0.02 0.07 0.08 0.05
0.3 74 86,179 0.10 0.44 0.49 0.24
0.4 101 555,724 0.70 4.24 3.97 1.67
0.5 130 4,151,668 5.59 42.37 36.35 13.05
0.6 162 72,454,791 101.35 958.74 755.86 227.00

500

0.1 39 15,311 0.02 0.03 0.06 0.04
0.2 81 98,875 0.11 0.46 0.61 0.27
0.3 127 701,292 0.86 5.90 6.10 2.29
0.5 225 103,686,974 151.67 1888.20 1521.90 375.23

700

0.1 56 38,139 0.04 0.10 0.19 0.09
0.2 117 321,245 0.37 2.01 2.69 1.00
0.3 184 3,107,208 4.06 36.13 38.12 11.47

1,000
0.1 82 99,561 0.11 0.34 0.70 0.28
0.2 172 1,190,899 1.45 10.35 14.48 4.33
0.3 266 15,671,489 21.96 262.64 280.58 66.05

2,000 0.1 170 750,991 1.05 5.18 11.77 3.13

3,000 0.1 263 2,886,628 4.23 27.51 68.52 13.62

10,000

0.001 7 49,716 1.19 0.04 0.07 0.07
0.003 21 141,865 1.30 0.11 0.36 0.26
0.005 38 215,477 1.47 0.25 1.03 0.51
0.01 80 349,244 2.20 1.01 5.71 1.66
0.03 262 3,733,699 9.96 20.66 133.94 20.67
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competitors in Tomita et al.’s paper which ran 10 to 160 times slower on these input
graphs. The largest of the random graphs in the second data set were generated with
edge probabilities that made them significantly sparser than the rest of the set; for those
graphs our algorithm outperformed that of Tomita et al by a factor that was as large
as 30 on the sparsest of the graphs. The maxdegree algorithm was even faster than our
algorithm in these cases, but it was significantly slower on other data.

4 Conclusion

We have shown that the algorithm of Eppstein, Löffler, and Strash is a practical algo-
rithm for large sparse graphs. This algorithm is highly competitive with the algorithm
of Tomita et al. on sparse graphs, and within a small constant factor on other graphs.
The advantage of this algorithm is that it requires only linear space for storing the graph
and all data structures. It does not suffer from the drawback of requiring an adjacency
matrix, which may not fit into memory. Its closest competitor in this respect, the Tomita
et al. algorithm modified to use adjacency lists, is sometimes faster by a small factor
but is also sometimes slower by a large factor. Thus, the algorithm of Eppstein et al. is
a fast and reliable choice for listing maximal cliques, especially when the input graphs
are large and sparse.

For future work, it would be interesting to compare our results with those of
other popular clique listing algorithms. We attempted to include results from Patric
Östergård’s popular Cliquer program [41] in our tables; however, at the time of writing,
its newly implemented functionality for listing all maximal cliques returns incorrect
results.
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Abstract. We present an algorithm to compute shortest paths on
continental road networks with arbitrary metrics (cost functions). The
approach supports turn costs, enables real-time queries, and can incor-
porate a new metric in a few seconds—fast enough to support real-time
traffic updates and personalized optimization functions. The amount of
metric-specific data is a small fraction of the graph itself, which allows
us to maintain several metrics in memory simultaneously.

1 Introduction

The past decade has seen a great deal of research on finding point-to-point short-
est paths on road networks [7]. Although Dijkstra’s algorithm [10] runs in almost
linear time with very little overhead, it still takes a few seconds on continental-
sized graphs. Practical algorithms use a two-stage approach: preprocessing takes
a few minutes (or even hours) and produces a (linear) amount of auxiliary data,
which is then used to perform queries in real time. Most previous research fo-
cused on the most natural metric, driving times. Real-world systems, however,
often support other natural metrics as well, such as shortest distance, walking,
biking, avoid U-turns, avoid/prefer freeways, or avoid left turns.

We consider the customizable route planning problem, whose goal is to per-
form real-time queries on road networks with arbitrary metrics. Such algorithms
can be used in two scenarios: they may keep several active metrics at once (to
answer queries for any of them), or new metrics can be generated on the fly.
A system with these properties has obvious attractions. It supports real-time
traffic updates and other dynamic scenarios, allows easy customization by han-
dling any combination of standard metrics, and can even provide personalized
driving directions (for example, for a truck with height and weight restrictions).
To implement such a system, we need an algorithm that allows real-time queries,
has fast customization (a few seconds), and keeps very little data for each met-
ric. Most importantly, it must be robust : all three properties must hold for any
metric. No existing algorithm meets these requirements.

To achieve these goals, we distinguish between two features of road networks.
The topology is a set of static properties of each road segment or turn, such as
� This work was done while the third author was at Microsoft Research Silicon Valley.
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physical length, road category, speed limits, and turn types. The metric encodes
the actual cost of traversing a road segment or taking a turn. It can often be
described compactly, as a function that maps (in constant time) the properties
of an edge/turn into a cost. We assume the topology is shared by the metrics
and rarely changes, while metrics may change quite often and even coexist.

To exploit this separation, we consider algorithms for customizable route plan-
ning with three stages. The first, metric-independent preprocessing, may be rela-
tively slow, since it is run infrequently. It takes only the graph topology as input,
and may produce a fair amount of auxiliary data (comparable to the input size).
The second stage, metric customization, is run once for each metric, and must
be much quicker (a few seconds) and produce little data—a small fraction of the
original graph. Finally, the query stage uses the outputs of the first two stages
and must be fast enough for real-time applications.

In Section 2 we explore the design space by analyzing the applicability of ex-
isting algorithms to this setting. We note that methods with a strong hierarchical
component, the fastest in many situations, are too sensitive to metric changes.
We focus on separator-based methods, which are more robust but have often
been neglected in recent research, since published results made them seem un-
competitive: the highest speedups over Dijkstra observed were lower than 60 [17],
compared to thousands or millions with other methods.

Section 3 revisits and thoroughly reengineers a separator-based algorithm. By
applying existing acceleration techniques, recent advances in graph partitioning,
and some engineering effort, we can answer queries on continental road networks
in about a millisecond, with much less customization time (a few seconds) and
space (a few tens of megabytes) than existing acceleration techniques.

Another contribution of our paper is a careful treatment of turn costs (Sec-
tion 4). It has been widely believed that any algorithm can be easily augmented
to handle these efficiently, but we note that some methods actually have a sig-
nificant performance penalty, especially if turns are represented space-efficiently.
In contrast, we can handle turns naturally, with little effect on performance.

We stress that our algorithms are not meant to be the fastest on any partic-
ular metric. For “nice” metrics, our queries are somewhat slower than the best
hierarchical methods. However, our queries are robust and suitable for real-time
applications with arbitrary metrics, including those for which the hierarchical
methods fail. Our method can quickly process new metrics, and the metric-
specific information is small enough to keep several metrics in memory at once.

2 Previous Techniques

There has been previous work on variants of the route planning problem that deal
with multiple metrics in a nontrivial way. The preprocessing of SHARC [3] can be
modified to handle multiple (known) metrics at once. In the flexible routing prob-
lem [11], one must answer queries on linear combinations of a small set of metrics
(typically two) known in advance. Queries in the constrained routing problem [23]
must avoid entire classes of edges. In multi-criteria optimization [8], one must find
Pareto-optimal paths among multiple metrics. ALT [14] and CH [12] can adapt
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to small changes in a benign base metric without rerunning preprocessing in full.
All these approaches must know the base metrics in advance, and for good per-
formance the metrics must be few, well-behaved, and similar to one another. In
practice, even seemingly small changes to the metric (such as higher U-turn costs)
render some approaches impractical. In contrast, we must process metrics as they
come, and assume nothing about them.

We now discuss the properties of existing point-to-point algorithms to deter-
mine how well they fit our design goals. Some of the most successful existing
methods—such as reach-based routing [15], contraction hierarchies (CH) [12],
SHARC [3], transit node routing [2], and hub labels [1]—rely on the strong hi-
erarchy of road networks with travel times: the fastest paths between faraway
regions of the graph tend to use the same major roads.

For metrics with strong hierarchies, such as travel times, CH has many of the
features we want. During preprocessing, CH heuristically sorts the vertices in
increasing order of importance, and shortcuts them in this order. (To shortcut v,
we temporarily remove it from the graph and add arcs as necessary to preserve
the distances between its neighbors.) Queries run bidirectional Dijkstra, but
only follow arcs or shortcuts to more important vertices. If a metric changes
only slightly, one can keep the order and recompute the shortcuts in about a
minute [12]. Unfortunately, an order that works for one metric may not work for
a substantially different one (e.g., travel times and distances, or a major traffic
jam). Furthermore, queries are much slower on metrics with less-pronounced
hierarchies [4]. More crucially, the preprocessing stage can become impractical
(in terms of space and time) for bad metrics, as Section 4 will show.

In contrast, techniques based on goal direction, such as PCD [21], ALT [14],
and arc flags [16], produce the same amount of auxiliary data for any metric.
Queries are not robust, however: they can be as slow as Dijkstra for bad metrics.
Even for travel times, PCD and ALT are not competitive with other methods.

A third approach is based on graph separators [17,18,19,25]. During pre-
processing, one computes a multilevel partition of the graph to create a se-
ries of interconnected overlay graphs. A query starts at the lowest (local) level
and moves to higher (global) levels as it progresses. These techniques predate
hierarchy-based methods, but their query times are widely regarded as uncom-
petitive in practice, and they have not been tested on continental-sized road
networks. (The exceptions are recent extended variants [6,22] that achieve great
query times by adding many more edges during preprocessing, which is costly in
time and space.) Because preprocessing and query times are essentially metric-
independent, separator-based methods are the most natural fit for our problem.

3 Our Approach

We will first describe a basic algorithm, then consider several techniques to make
it more practical, using experimental results to guide our design. Our code is
written in C++ (with OpenMP for parallelization) and compiled with Microsoft
Visual C++ 2010. We use 4-heaps as priority queues. Experiments were run
on a commodity workstation with an Intel Core-i7 920 (four cores clocked at
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2.67GHz and 6GB of DDR3-1066 RAM) running Windows Server 2008R2. Our
standard benchmark instance is the European road network, with 18 million
vertices and 42 million arcs, made available by PTV AG for the 9th DIMACS
Implementation Challenge [9]. Vertex IDs and arc costs are both 32-bit integers.

We must minimize metric customization time, metric-dependent space (ex-
cluding the original graph), and query time, while keep metric-independent time
and space reasonable. We evaluate our algorithms on 10 000 s–t queries with s
and t picked uniformly at random. We focus on finding shortest path costs ; Sec-
tion 4 shows how to retrieve the actual paths. We report results for travel times
and travel distances, but by design our algorithms work well for any metric.

Basic Algorithm. Our metric-independent preprocessing stage partitions the
graph into connected cells with at most U (an input parameter) vertices each,
with as few boundary arcs (arcs with endpoints in different cells) as possible.

The metric customization stage builds a graph H containing all boundary
vertices (those with at least one neighbor in another cell) and boundary arcs of
G. It also contains a clique for each cell C: for every pair (v, w) of boundary
vertices in C, we create an arc (v, w) whose cost is the same as the shortest
path (restricted to C) between v and w (or infinite if w is not reachable from
v). We do so by running Dijkstra from each boundary vertex. Note that H is an
overlay [24]: the distance between any two vertices in H is the same as in G.

Finally, to perform a query between s and t, we run a bidirectional version of
Dijkstra’s algorithm on the graph consisting of the union of H , Cs, and Ct. (Here
Cv denotes the subgraph of G induced by the vertices in the cell containing v.)

As already mentioned, this is the basic strategy of separator-based methods.
In particular, HiTi [19] uses edge-based separators and cliques to represent each
cell. Unfortunately, HiTi has not been tested on large road networks; experiments
were limited to small grids, and the original proof of concept does not appear to
have been optimized using modern algorithm engineering techniques.

Our first improvement over HiTi and similar algorithms is to use PUNCH [5]
to partition the graph. Recently developed to deal with road networks, it rou-
tinely finds solutions with half as many boundary edges (or fewer), compared to
the general-purpose partitioners (such as METIS [20]) commonly used by previ-
ous algorithms. Better partitions reduce customization time and space, leading
to faster queries. For our experiments, we used relatively long runs of PUNCH,
taking about an hour. Our results would not change much if we used the basic
version of PUNCH, which is only about 5% worse but runs in mere minutes.

We use parallelism: queries run forward and reverse searches on two CPU
cores, and customization uses all four (each cell is processed independently).

Sparsification. Using full cliques in the overlay graph may seem wasteful,
particularly for well-behaved metrics. At the cost of making its topology metric-
dependent, we consider various techniques to reduce the overlay graph.

The first approach is edge reduction [24], which eliminates clique arcs that
are not shortest paths. After computing all cliques, we run Dijkstra from each
vertex v in H , stopping as soon as all neighbors of v (in H) are scanned. Note
that these searches are usually quick, since they only visit the overlay.
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A more aggressive technique is to preserve some internal cell vertices [6,17,25].
If B = {v1, v2, . . ., vk} is the set of boundary vertices of a cell, let Ti be
the shortest path tree (restricted to the cell) rooted at vi, and let T ′

i be the
subtree of Ti consisting of the vertices with descendants in B. We take the
union C = ∪k

i=1T
′
i of these subtrees, and shortcut all internal vertices with two

neighbors or fewer. Note that this skeleton graph is technically not an overlay,
but it preserves distances between all boundary vertices, which is what we need.

Finally, we tried a lightweight contraction scheme. Starting from the skeleton
graph, we greedily shortcut low-degree internal vertices, stopping when no such
operation is possible without increasing the number of edges by more than one.

Fig. 1 (left) compares all four overlays (cliques, reduced cliques, skeleton, and
CH-skeleton) on travel times and travel distances. Each plot relates the total
query time and the amount of metric-independent data for different values of
U (the cell size). Unsurprisingly, all overlays need more space as the number of
cells increases (i.e., as U decreases). Query times, however, are minimized when
the effort spent on each level is balanced, which happens for U ≈ 215.

To analyze preprocessing times (not depicted in the plots), take U = 215

(with travel times) as an example. Finding full cliques takes only 40.8 s, but
edge reduction (45.8 s) or building the skeleton graph (45.1 s) are almost as
cheap. CH-skeleton, at 79.4 s, is significantly more expensive, but still practical.
Most methods get faster as U gets smaller: full cliques take less than 5 s with
U = 256. The exception is CH-skeleton: when U is very small, the combined size
of all skeletons is quite large, and processing them takes minutes.
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Fig. 1. Effect of sparsification (left) and goal direction (right) for travel times (top)
and distances (bottom). The i-th point from the left indicates U = 220−i.
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In terms of query times and metric-dependent space, however, CH-skeleton
dominates pure skeleton graphs. Decreasing the number of edges (from 1.2M
with reduced cliques to 0.8M with skeletons, for U = 215 with travel times) may
not be enough to offset an increase in the number of vertices (from 34K to 280K),
to which Dijkstra-based algorithms are more sensitive. This also explains why
reduced cliques yield the fastest queries, with full cliques not far behind.

All overlays have worse performance when we switch from travel times to
distances (with less pronounced hierarchies), except full cliques. Since edge re-
duction is relatively fast, we use reduced cliques as the default overlay.

Goal-direction. For even faster queries, we can apply more sophisticated
techniques (than bidirectional Dijkstra) to search the overlay graph. While in
principle any method could be used, our model restricts us to those with metric-
independent preprocessing times. We tested PCD and ALT.

To use PCD (Precomputed Cluster Distances) [21] with our basic algorithm,
we do the following. Let k be the number of cells found during the metric indepen-
dent preprocessing (k ≈ n/U). During metric customization, we run Dijkstra’s
algorithm k times on the overlay graph to compute a k × k matrix with the dis-
tances between all cells. Queries then use the matrix to guide the bidirectional
search by pruning vertices that are far from the shortest path. Note that, unlike
“pure” PCD, we use the overlay graph during customization and queries.

Another technique is core ALT (CALT) [4]. Queries start with bidirectional
Dijkstra searches restricted to the source and target cells. Their boundary ver-
tices are then used as starting points for an ALT (A∗ search/ landmarks/triangle
inequality) query on the overlay graph. The ALT preprocessing runs Dijkstra
O(L) times to pick L vertices as landmarks, and stores distances between these
landmarks and all vertices in the overlay. Queries use these distances and the
triangle inequality to guide the search towards the goal. A complication of core-
based approaches [15,4] is the need to pick nearby overlay vertices as proxies for
the source or target to get their distance bounds. Hence, queries use four CPU
cores: two pick the proxies, while two conduct the actual bidirectional search.

Fig. 1 (right) shows the query times and the metric-dependent space consump-
tion for the basic algorithm, CALT (with 32 avoid landmarks [15]), and PCD,
with reduced cliques as overlay graphs. With some increase in space, both goal-
direction techniques yield significantly faster queries (around one millisecond).
PCD, however, needs much smaller cells, and thus more space and customization
time (about a minute for U = 214) than ALT (less than 3 s). Both methods are
more effective for travel times than travel distances.

Multiple Levels. To accelerate queries, we can use multiple levels of overlay
graphs, a common technique for partition-based approaches, including HiTi [19].
We need nested partitions of G, in which every boundary edge at level i is also
a boundary edge at level i − 1, for i > 1. The level-0 partition is the original
graph, with each vertex as a cell. For the i-th level partition, we create a graph
Hi as before: it includes all boundary arcs, plus an overlay linking the boundary
vertices within a cell. Note that Hi can be computed using only Hi−1. We use
PUNCH to create multilevel partitions, in top-down fashion.
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Fig. 2. Performance of 2-level CALT with travel times (left) and distances (right). For
each line, U1 is fixed and U0 varies; the i-th point from the right indicates U0 = 27+i.

An s–t query runs bidirectional Dijkstra on a restricted graph Gst. An arc
(v, w) from Hi will be in Gst if both v and w are in the same cell as s or t at
level i + 1. Goal-direction can still be used on the top level.

Fig. 2 shows the performance of the multilevel algorithm with two overlay
levels (with reduced cliques) and ALT on the top level. We report query times
and metric-dependent space for multiple values of U0 and U1, the maximum cell
sizes on the bottom and top levels. A comparison with Fig. 1 reveals that using
two levels enables much faster queries for the same space. For travel times, a
query takes 1 ms with about 40MB (with U0 = 211 and U1 = 216). Here it takes
16 s to compute the bottom overlay, 5 s to compute the top overlay, and only
0.5 s to process landmarks. With 60MB, queries take as little as 0.5ms.

Streamlined Implementation. Although sparsification techniques save space
and goal direction accelerates queries, the improvements are moderate and come
at the expense of preprocessing time, implementation complexity, and metric-
independence (the overlay topology is only metric-independent with full cliques).
Furthermore, the time and space requirements of the simple clique implemen-
tation can be improved by representing each cell of the partition as a matrix,
making the performance difference even smaller. The matrix contains the 32-
bit distances among its entry and exit vertices (these are the vertices with at
least one incoming or outgoing boundary arc, respectively; most boundary ver-
tices are both). We also need arrays to associate rows (and columns) with the
corresponding vertex IDs, but these are small and shared by all metrics.

We thus created a matrix-based streamlined implementation that is about
twice as fast as the adjacency-based clique implementation. It does not use edge
reduction, since it no longer saves space, slows down customization, and its
effectiveness depends on the metric. (Skipping infinite matrix entries would make
queries only slightly faster.) Similarly, we excluded CALT from the streamlined
representation, since its queries are complicated and have high variance [4].

Customization times are typically dominated by building the overlay of the
lowest level, since it works on the underlying graph directly (higher levels work
on the much smaller cliques of the level below). As we have observed, smaller
cells tend to lead to faster preprocessing. Therefore, as an optimization, the
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Table 1. Performance of various algorithms for travel times and distances

travel times travel distances
customizing queries customizing queries

time space vertex time time space vertex time
algorithm [cell sizes] [s] [MB] scans [ms] [s] [MB] scans [ms]

CALT [211:216] 21.3 37.1 5292 0.92 17.2 48.9 5739 1.26
MLD-1 [214] 4.9 10.1 45420 5.81 4.8 10.1 47417 6.12
MLD-2 [212:218] 5.0 18.8 12683 1.82 5.0 18.8 13071 1.83
MLD-3 [210:215:220] 5.2 32.7 6099 0.91 5.1 32.7 6344 0.98
MLD-4 [28:212:216:220] 4.7 59.5 3828 0.72 4.7 59.5 4033 0.79

CH economical 178.4 151.3 383 0.12 1256.9 182.5 1382 1.33
CH generous 355.6 122.8 376 0.10 1987.4 165.8 1354 1.29

streamlined implementation includes a phantom level (with U = 32) to accelerate
customization, but throws it away for queries, keeping space usage unaffected.
For MLD-1 and MLD-2, we use a second phantom level with U = 256 as well.

Table 1 compares our streamlined multilevel implementation (called MLD,
with up to 4 levels) with the original 2-level implementation of CALT. For each
algorithm, we report the cell size bounds in each level. (Because CALT acceler-
ates the top level, it uses different cell sizes than MLD-2.) We also consider two
versions of CH: the first (economical) minimizes preprocessing times, and the
second (generous) the number of shortcuts. For CH, we report the total space
required to store the shortcuts (8 bytes per arc, excluding the original graph).
For all algorithms, preprocessing uses four cores and queries use at least two.

We do not permute vertices after CH preprocessing (as is customary to im-
prove query locality), since this prevents different metrics from sharing the same
graph. Even so, with travel times, CH queries are one order of magnitude faster
than our algorithm. For travel distances, MLD-3 and MLD-4 are faster than CH,
but only slightly. For practical purposes, all variants have fast enough queries.

The main attraction of our approach is efficient metric customization. We
require much less space: for example, MLD-2 needs about 20MB, which is less
than 5% of the original graph and an order of magnitude less than CH. Most
notably, customization times are small. We need only 5 seconds to deal with
a new metric, which is fast enough to enable personalized driving directions.
This is two orders of magnitude faster than CH, even for a well-behaved metric.
Phantom levels help here: without them, MLD-1 would need about 20 s.

Note that CH customization can be faster if the processing order is fixed in
advance [12]. The economical variant can rebuild the hierarchy (sequentially)
in 54 s for travel times and 178 s for distances (still slower than our method).
Unfortunately, using the order for one metric to rebuild another is only efficient
if they are very similar [11]. Also note that one can save space by storing only
the upper part of the hierarchy [7], at the expense of query times.

Table 1 shows that we can easily deal with real-time traffic: if all edge costs
change (due to a traffic update), we can handle new queries after only 5 seconds.
We can also support local updates quite efficiently. If a single edge cost changes,
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we must recompute at most one cell on each level, and MLD-4 takes less than
a millisecond to do so. This is another reason for not using edge reduction or
CALT: with either technique, changes in one cell may propagate beyond it.

4 Turns

So far, we have considered a simplified (but standard [7]) representation of road
networks, with each intersection corresponding to a single vertex. This is not very
realistic, since it does not account for turn costs (or restrictions, a special case).
Of course, any algorithm can handle turns simply by working on an expanded
graph. A traditional [7] representation is arc-based : each vertex represents one
exit point of an intersection, and each arc is a road segment followed by a turn.

This is wasteful. We propose a compact representation in which each intersec-
tion becomes a single vertex with some associated information. If a vertex u has
p incoming and q outgoing arcs, we associate a p × q turn table Tu to it, where
Tu[i, j] represents the turn from the ith incoming arc into the jth outgoing arc1.
In addition, we store with each arc (v, w) its tail order (its position among v’s
outgoing arcs) and its head order (its position among w’s incoming arcs). These
orders may be arbitrary. Since degrees are small, 4 bits for each suffice.

In practice, many vertices share the same turn table. The total number of
such intersection types is modest—in the thousands rather than millions. For
example, many degree-four vertices in the United States have four-way stop
signs. Each distinct turn table is thus stored only once, and each vertex keeps a
pointer to the appropriate type, with little overhead.

Dijkstra’s algorithm, however, becomes more complicated. In particular, it
may now visit each vertex (intersection) multiple times, once for each entry point.
It essentially simulates an execution on the arc-based expanded representation,
which increases its running time on Europe from 3 s to about 12 s. With a stalling
technique, we can reduce the time to around 7 s. When scanning one entry point
of an intersection, we can set bounds for its other entry points, which are not
scanned unless their own distance labels are smaller than the bounds. These
bounds depend on the turn table, and can be computed during customization.

To support the compact representation, MLD needs two minor changes. First,
it uses turn-aware Dijkstra on the lowest level (but not on higher ones). Second,
matrices in each cell now represent paths between incoming and outgoing bound-
ary arcs (and not boundary vertices, as before). The difference is subtle. With
turns, the distance from a boundary vertex v to an exit point depends on whether
we enter the cell from arc (u, v) or arc (w, v), so each arc needs its own entry in
the matrix. Since most boundary vertices have only one incoming (and outgoing)
boundary arc, the matrices are only slightly larger.

We are not aware of publicly-available realistic turn data, so we augment our
standard benchmark instance. For every vertex v, we add a turn between each
incoming and each outgoing arc. A turn from (u, v) to (v, w) is either a U-turn

1 In our customizable setting, each entry should represent just a turn type (such as
“left turn with stop sign”), since its cost may vary with different metrics.
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Table 2. Performance of various algorithms on Europe with varying U-turn costs

U-turn: 1 s U-turn: 100 s
customizing queries customizing queries

time space vertex time time space vertex time
algorithm [s] [MB] scans [ms] [s] [MB] scans [ms]

MLD-1 [214] 5.9 10.5 44832 9.96 7.5 10.5 62746 12.43
MLD-2 [212:218] 6.3 19.2 12413 3.07 8.4 19.2 16849 3.55
MLD-3 [210:215:220] 7.3 33.5 5812 1.56 9.2 33.5 6896 1.88
MLD-4 [28:212:216:220] 5.8 61.7 3556 1.18 7.5 61.7 3813 1.28

CH expanded 3407.4 880.6 550 0.18 5799.2 931.1 597 0.21
CH compact 846.0 132.5 905 0.19 23774.8 304.0 5585 2.11

(if u = w) or a standard turn (if u �= w), and each of these two types has a cost.
We have not tried to further distinguish between turn types, since any automated
method would not reflect real-life turns. However, adding U-turn costs is enough
to reproduce the key issue we found on realistic (proprietary) data.

Table 2 compares some algorithms on Europe augmented with turns. We
consider two metrics, with U-turn costs set to 1 s or 100 s. The metrics are
otherwise identical: arc costs represent travel times and standard turns have
zero cost. We tested four variants of MLD (with one to four levels) and two
versions of CH (generous): CH expanded is the standard algorithm run on the
arc-based expanded graph, while CH compact is modified to run on the compact
representation. Column vertex scans counts the number of heap extractions.

Small U-turn costs do not change the shortest path structure of the graph
much. Indeed, CH compact still works quite well: preprocessing is only three
times slower (than reported in Table 1), the number of shortcuts created is
about the same, and queries take marginally longer. Using higher U-turn costs
(as in a system that avoids U-turns), however, makes preprocessing much less
practical. Customization takes more than 6 hours, and space more than doubles.
Intuitively, nontrivial U-turn costs are harder to handle because they increase
the importance of certain vertices; for example, driving around the block may
become a shortest path. Query times also increase, but are still practical. (Note
that recent independent work [13] shows that additional tuning can make com-
pact CH somewhat more resilient: changing U-turn costs from zero to 100 s
increases customization time by a factor of only two. Unfortunately, forbidding
U-turns altogether still slows it down by an extra factor of 6).

With the expanded representation, CH preprocessing is much costlier when
U-turns are cheap (since it runs on a larger graph), but is much less sensitive to
an increase in the U-turn cost; queries are much faster as well. The difference
in behavior is justified. While the compact representation forces CH to assign
the same “importance” (order) to different entry points of an intersection, the
expanded representation lets it separate them appropriately.

MLD is much less sensitive to turn costs. Compared to Table 1, we observe
that preprocessing space is essentially the same (as expected). Preprocessing
and query times increase slightly, mainly due to the lower level: high U-turn
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costs decrease the effectiveness of the stalling technique on the turn-enhanced
graph.

In the most realistic setting, with nontrivial U-turn costs, customization takes
less than 10 seconds on our commodity workstation. This is more than enough
to handle frequent traffic updates, for example. If even more speed is required,
one could simply use more cores: speedups are almost perfect. On a server with
two 6-core Xeon 5680 CPUs running at 3.33GHz, MLD-4 takes only 2.4 seconds,
which is faster than just running sequential Dijkstra on this input.

Path Unpacking. So far, we have reported the time to compute only the
distance between two points. Following the parent pointers of the meeting vertex
of forward and backward searches, we may obtain a path containing shortcuts. To
unpack a level-i shortcut, we run bidirectional Dijkstra on level i−1 (and recurse
as necessary). Using all 4 cores, unpacking less than doubles query times, with
no additional customization space. (In contrast, standard CH unpacking stores
the “middle” vertex of every shortcut, increasing the metric-dependent space by
50%.) For even faster unpacking, one can store a bit with each arc at level i
indicating whether it appears in a shortcut at level i + 1. This makes unpacking
4 times faster for MLD-2, but has little effect on MLD-3 and MLD-4.

5 Conclusion

Recent advances in graph partitioning motivated us to reexamine the separator-
based multilevel approach to the shortest path problem. With careful engineer-
ing, we drastically improved query speedups relative to Dijkstra from less than
60 [17] to more than 3000. With turn costs, the speedup increases even more,
to 7000. This makes real-time queries possible. Furthermore, by explicitly sepa-
rating metric customization from graph partitioning, we enable new metrics to
be processed in a few seconds. The result is a flexible and practical solution to
many real-life variants of the problem. It should be straightforward to adapt it
to augmented scenarios, such as mobile or time-dependent implementations. (In
particular, a unidirectional version of MLD is also practical.) Since partitions
have a direct effect on performance, we would like to improve them further,
perhaps by explicitly taking the size of the overlay graph into account.
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Abstract. We propose two novel algorithms for distributed and location-
free boundary recognition in wireless sensor networks. Both approaches
enable a node to decide autonomously whether it is a boundary node,
based solely on connectivity information of a small neighborhood. This
makes our algorithms highly applicable for dynamic networks where nodes
can move or become inoperative.

We compare our algorithms qualitatively and quantitatively with sev-
eral previous approaches. In extensive simulations, we consider various
models and scenarios. Although our algorithms use less information than
most other approaches, they produce significantly better results. They
are very robust against variations in node degree and do not rely on
simplified assumptions of the communication model. Moreover, they are
much easier to implement on real sensor nodes than most existing ap-
proaches.

1 Introduction

Wireless sensor networks have become a prominent research topic in recent years.
Their unique structure and limitations provide new and fascinating challenges.
A sensor network consists of a union of small nodes that are equipped with
sensing, communication, and processing capabilities. The nodes usually only
have a limited view of the network. Therefore, distributed algorithms that work
on local information are best suited for the emerging tasks in these environments.

Many applications in sensor networks require a certain knowledge of the un-
derlying network topology, especially of holes and boundaries. Examples are
intrusion detection, data gathering [16], mundane services like efficient routing
within the network [5], or event detection [4]. In many situations, holes can also
be considered as indicators for insufficient coverage or connectivity. Especially in
dynamic settings, where nodes can run out of power, fail, or move, an automatic
detection of holes and boundaries is inevitable.

For this reason, many boundary recognition algorithms have been developed
previously. However, most of them have certain disadvantages. Some rely on
oversimplified assumptions concerning the communication model or on knowl-
edge about absolute or relative node positions, which is usually not available
in large-scale sensor networks. Other algorithms are not distributed or require
information exchange over long distances, so they do not scale well with network
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size. And those algorithms that solely work locally usually produce many mis-
classifications. Furthermore, many of the existing algorithms are too complex
for an actual implementation on real sensor nodes. So there is still demand for
simple and efficient algorithms for boundary recognition.

Related Work. Since there is a wide range of applications that require bound-
ary detection, there is an equally large number of approaches to detect holes.
Based on the underlying ideas, they can be classified roughly into three cate-
gories.

Geometrical approaches use information about node positions, distances be-
tween nodes, or angular relationships. Accordingly, these approaches are limited
to situations where GPS devices or similar equipment are available. Unfortu-
nately, in many realistic scenarios this is not the case. Examples for geometrical
approaches are Fang et al. [5], Martincic et al. [12], and Deogun et al. [3].

Statistical approaches try to recognize boundary nodes by low node degree
or similar statistical properties. As long as nodes are smoothly distributed, this
works quite well. However, as soon as node degrees fluctuate noticeably, most
statistical approaches produce many misclassifications. Besides, these algorithms
often require unrealistic high average node degrees. Prominent statistical ap-
proaches are Fekete et al. [6,7], and Bi et al. [1].

Topological approaches concentrate on information given by the connectivity
graph and try to infer boundaries from its topological structure. For example,
the algorithm of Kröller et al. [11] works by identifying complex combinatorial
structures called flowers and Funke [8] and Funke et al. [9] describe algorithms
that construct iso-contours and check whether those contours are broken. Further
examples of topological approaches are given by Wang et al. [16], Ghrist et
al. [10], De Silva et al. [2], and Saukh et al. [13]. A recent distributed algorithm
by Dong et al. [4] is especially aimed at locating small holes.

An extended version of this article has been published as technical report [14].
It includes a more comprehensive list on related work and an overview on existing
classification schemes for network holes and boundaries. There, we also present
a more detailed description of our algorithms and additional simulation results,
as we had to condense this article significantly due to page restrictions.

2 Model Description

2.1 Network Model

A sensor network consists of nodes located in the two-dimensional plane accord-
ing to some distribution. Communication links between nodes induce a connec-
tivity graph C(V, E), with graph nodes v ∈ V corresponding to sensor nodes and
graph edges (u, v) ∈ E; u, v ∈ V to communication links between sensor nodes.
An embedding p : V → IR2 of the connectivity graph C assigns two-dimensional
coordinates p(v) to each node v ∈ V . For easier reading, distances are normalized
to the maximum communication distance of the sensor nodes.
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Communication model. Two communication models are considered. Both
assume bidirectional communication links. In the unit disk graph (UDG) model,
two sensor nodes u, v ∈ C can communicate with each other, i.e., there exists a
communication link between them, if their distance |p(u)p(v)| is at most 1. In the
quasi unit disk graph (d-QUDG) model, sensor nodes u, v ∈ C can communicate
reliably if |p(u)p(v)| ≤ d for a given d ∈ [0, 1]. For |p(u)p(v)| > 1 communication
is impossible. In between, communication may or may not be possible.

Node distribution. Two node distribution strategies are considered. Using
perturbed grid placement, nodes are placed on a grid with grid spacing 0.5 and
translated by a uniform random offset taken from [0, 0.5] in both dimensions.
Using random placement, nodes are placed uniformly at random on the plane.

2.2 Hole and Boundary Model

For evaluation, well-defined hole and boundary definitions are required. The
definitions introduced by previous contributions are often too complicated or not
extensive enough. Several approaches define holes but do not specify which nodes
are considered boundary nodes, while others classify boundary nodes without
taking into account their positions. In our work, we take a very practical look at
what to label as holes. In short, we call large areas with no communication links
crossing them holes and nodes on the borders of these areas boundary nodes.

Hole Definition. Some previous definitions are based on abstract topological
definitions. In contrast, we think that the hole definition should be based on
the embedding of the actual sensor network. Thus, for evaluation only, we take
advantage of the true node positions.

All faces induced by the edges of the embedded connectivity graph p(C) are
hole candidates. Similarly to [11], we define holes to be faces of p(C) with a
circumference of at least hmin. Fig. 1(left) depicts a hole according to our defi-
nition. Take note that the exterior of the network is an infinite face. Thus, it is
regarded as a hole for the purpose of computation and evaluation.

Boundary Node Definition. As seen in Fig. 1(left), hole borders and node
locations do not have to align. Thus, there exists the problem which nodes to
classify as boundary nodes. For example, it can be argued whether nodes A and
B should be boundary nodes or not. To alleviate this problem, we classify nodes
into three categories:

– Mandatory Boundary Nodes. Nodes that lie exactly on the hole border are
boundary nodes.

– Optional Boundary Nodes. Nodes within maximum communication distance
of a mandatory node can be called boundary nodes but do not have to be.

– Interior Nodes. All other nodes must not be classified as boundary nodes.

The resulting node classification is shown in Fig. 1(right). Mandatory boundary
nodes form thin bands around holes, interrupted by structures like for nodes



Efficient Algorithms for Distributed Detection of Holes and Boundaries 391

hole

A B

Fig. 1. (left) Hole Definition: Border
as dashed line. (right) Boundary Node
Classification: Mandatory nodes (white
boxes), optional nodes (gray boxes), in-
terior nodes (black circles).

Fig. 2. Node Classification. Border out-
line of mandatory nodes (large, black),
halo of optional nodes (large, gray), in-
terior nodes (small, black). Full network
and magnified upper right corner.

A and B before. Together with the optional boundary nodes, they form a halo
around each hole. Any point within the halo is at most one maximum communi-
cation distance away from the border of the enclosed hole. A sample classification
is depicted in Fig. 2.

3 Multidimensional Scaling Boundary Recognition
(MDS-BR)

Both of our algorithms work in a distributed fashion and only require local con-
nectivity information. Each node independently decides whether it is a boundary
node or an interior node, solely using information from a small neighborhood.

Our first algorithm is a geometrical approach at its core. But instead of using
real node coordinates, which are usually not known in sensor networks, it uses
multidimensional scaling (MDS) [15] to compute virtual coordinates. Two angu-
lar conditions are then tested to classify a node, followed by a refinement step
after all nodes have classified themselves. Subsequently, the base algorithm and
a refinement step of MDS-BR are described. We refer to [14] for an analysis of
runtime, message complexity, and possible variants of MDS-BR.

Base Algorithm. Each node performs the following base algorithm to decide
independently whether to classify itself as a boundary node. At first, each node
u gathers its 2-hop neighborhood N2

u and computes a two-dimensional embed-
ding of N2

u ∪ {u}, using hop distances to approximate true distances between
nodes. Then, using these virtual locations, node u declares itself to be a bound-
ary node if two conditions are fulfilled. First, the maximum opening angle α
between two subsequent neighbors v, w of u in circular order and u must be
larger than a threshold αmin as depicted in Fig. 3(a). This primary condition
models the observation that boundary nodes exhibit a large gap in their neigh-
borhood compared to interior nodes, which are usually completely surrounded
by other nodes. Secondly, neighbors v, w of u must not have common neighbors
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Fig. 3. MDS-BR Conditions. (a) Opening angle. (b) Prohibited cone. (c) Micro-holes.

other than u in the cone opened by (uv) and (uw). This condition is exemplified
in Fig. 3(b). It filters micro-holes framed by 4 nodes with a circumference of at
most 4 maximum communication distances as seen in Fig. 3(c). If such holes are
to be detected, the condition can be omitted.

Both conditions only require angular information. Thus, any embedding al-
gorithm yielding realistic angles between nodes is sufficient – we are not limited
to MDS. Furthermore, we do not need complex embedding techniques to com-
pensate for problems occurring in large graphs such as drifting or foldings since
we only embed very small graphs. In particular, we only compute embeddings
of 2-hop neighborhoods around each node, i.e., graphs of diameter 4 or less.

Refinement. The base algorithm already yields good results as shown in
Fig. 4(a). But it retains some “noise” due to detecting boundary nodes around
small holes one might not be interested in and due to some misclassifications. If
desired, a refinement step can be used to remove most of these artifacts as seen
in Fig. 4(b).

The refinement is performed distributed on the current set of boundary nodes.
First, each boundary node u gathers its rmin-hop neighborhood Ñ rmin

u of nodes
marked as boundary nodes by the base algorithm, where rmin is a free parameter.
Then, u verifies if there exists a shortest path of at least rmin hops in Ñ rmin

u ∪
{u} that contains u. If no such path exists, u classifies itself as interior node.
This approach removes boundary nodes that are not part of a larger boundary
structure, with rmin specifying the desired size of the structure. Note that only
connectivity information is required for the refinement.

a) b)

Fig. 4. Classification results of MDS-BR on a sample network. Boundary nodes marked
as larger black nodes. (a) Results of the base algorithm. (b) Results after refinement.
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4 Enclosing Circle Boundary Recognition (EC-BR)

Our second algorithm, EC-BR, allows to detect if a node is surrounded by other
nodes without having to reconstruct node positions. Every node considers only
nodes that are exactly two hops away. For a node u, we denote the corresponding
subgraph as G

2\1
u = (N2\1

u , E
2\1
u ). Based on connectivity information in G

2\1
u ,

the node tries to decide if it is surrounded by a closed path C . If such a path
exists, one can be sure that the node is not a boundary node (cf. Fig. 5(a)-(c)).

Given node positions, it would be easy to decide if an enclosing circle exists.
However, we do not have this information and we do not want to reconstruct
node positions in order to save computation time. So, how can we distinguish
enclosing circles as the one in Fig. 5(b) and non-enclosing circles such as the
one in Fig. 5(c)? Circle length is no sufficient criterion as both circles have the
same length and only the first one is enclosing. Fortunately, there is a structural
difference between both types of circles: in the first case, for each pair v, w of
circle nodes, the shortest path between them using only circle edges is also a
shortest path between them in G

2\1
u . Now we try to find a preferably long circle

with this property. This can be achieved using a modified breadth-first search.
The corresponding search tree for G

2\1
u of Fig. 5(b) is depicted in Fig. 5(d). We

start from a random node z in G
2\1
u with maximum degree. In every step, we

maintain shortest path lengths for all pairs of visited nodes. When a new edge
is traversed, either a new node is visited or a previously encountered node is
revisited. In the first case we set the shortest path distances between the already
visited nodes and the new node. This can be done efficiently, as all distances can
be directly inferred from the distances to the parent node. In the second case
we found a new circle in G

2\1
u . The length of the circle is the current shortest

path between the endpoints v and w of the traversed edge e = (v, w) plus
one. Subsequently, we update the shortest path information of all visited nodes.
During search, we keep track of the maximum length of a circle encountered so
far. Depending on this maximum length, the considered node is either classified
as a boundary node or as an inner node. This enclosing circle detection can be
achieved with time complexity O(|E2\1

u |). See [14] for further details.

u

(a)

u

z

C

(b)

Border

u

(c)

1

2
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5

6

z

C

(d)

Fig. 5. Basic Idea of EC-BR. (a) 2-hop neighborhood of u. (b) Enclosing circle C .
(c) Boundary node without enclosing circle. (d) Modified breadth-first search.
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Fig. 6. Distribution of Maximum Circle Lengths. (a) UDG. (b) QUDG.

Fig. 6 depicts histograms of maximum circle lengths in our simulations with
networks based on unit disk graphs and quasi unit disk graphs. There are ap-
parently two very well defined peaks, corresponding to nodes with and without
enclosing circles. Based on this distribution, we classify all nodes that have a
maximum circle with length of at least 6 as inner nodes and all other nodes
as boundary nodes. Our simulations indicate that this statistical classification
works extremely well for both UDGs and QUDGs. Later on, we will see how good
this correlates with being in the interior or on the boundary of the network.

It is also noteworthy that this kind of classification is extremely robust to
variations in node degree: it does not matter whether N

2\1
u consists of a small

number of nodes or hundreds of nodes. The classification stays the same, as long
as we assume that the node density is sufficiently high so that inner nodes are
actually surrounded by other nodes.

Fig. 7 shows an example of a classification with EC-BR. In comparison with
MDS-BR, the recognized boundaries are broader and EC-BR also detects small-
scale holes which occur in areas of low node density.

Refinement. If one is only interested in large scale boundaries, EC-BR can
be extended with a simple refinement. The key insight is that nodes which lie
immediately next to the hole are surrounded by nodes that are marked as bound-
ary nodes and by the hole itself. So a boundary candidate simply has to check
whether a certain percentage γ of its immediate neighbors are currently classi-
fied as boundary nodes. If this is not the case, the node changes its classification
to being an interior node. The effect of this simple strategy with γ = 100% is
depicted in Fig. 7(c). Apparently, all nodes but the ones near large-scale holes
are now classified as inner nodes and the boundary is very precise.

a) b) c)

Fig. 7. Classification of EC-BR. (a,b) Before refinement. (c) After refinement.
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Fig. 8. Hole Patterns. Node distributions with perturbed grid placement and davg = 12.

5 Simulations

5.1 Simulation Setup

Network Layout. We generate network layouts by iteratively placing nodes
on an area of 50 × 50 maximum communication distances according to one of
the distribution strategies described in Section 2: perturbed grid placement (pg)
or random placement (rp). After each node placement, communication links are
added according to the UDG or QUDG model. Nodes are added until an average
node degree davg is reached. To generate holes, we apply hole patterns such as
the ones in Fig. 8. Our default layout uses perturbed grid placement, the UDG
model and average node degree davg = 12.

Considered Algorithms. We compare the performance of our approaches EC-
BR and MDS-BR to three well-known boundary recognition algorithms: The
algorithm by Fekete et al. [7] (labelled Fekete04) and the centralized and dis-
tributed algorithms by Funke [8] and Funke et al. [9] (labeled Funke05 and
Funke06, respectively). In addition, we show qualitative comparisons of these al-
gorithms and the algorithm by Wang et al. [16] in Section 5.5. We apply our own
implementation of these algorithms according to their description in the respec-
tive publications. For MDS-BR, αmin = 90◦ and rmin = 3 are used throughout
the simulations. For the refinement of EC-BR, γ = 100% is used if not stated
otherwise. Additional details on parameter selection are given in [14].

Measurement Procedure. Each setup is evaluated 100 times for each hole
pattern in Fig. 8. Faces with circumference hmin ≥ 4 are considered to be holes,
e.g. a square of edge length 1 with no communication link crossing it. The anal-
ysis lists mean misclassification ratios (false negatives) in percent. For optional
boundary nodes, we give the percentage of nodes classified as interior nodes.

5.2 Network Density

First, we consider the performance of all algorithms on networks with different
average node degrees davg. Table 1 shows the percentage of misclassifications for
mandatory boundary nodes and interior nodes with increasing davg. Results for
optional boundary nodes state the percentage classified as interior nodes.
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Table 1. Misclassification ratios (false negatives) in percent for average node degrees
between 9 and 21 (resp. classification as interior nodes for optional boundary nodes)

Mandatory Optional Interior
9 12 15 18 21 9 12 15 18 21 9 12 15 18 21

EC-BR 2.1 0.0 0.0 0.0 0.0 0.3 0.1 0.2 0.2 0.3 54.8 7.5 3.8 2.2 1.6
EC-BR Ref 4.4 0.4 0.6 1.0 1.3 51.2 80.4 81.3 82.8 84.3 7.1 0.0 0.0 0.0 0.0
MDS-BR 1.9 2.9 3.5 3.8 3.9 68.0 79.8 79.8 79.8 80.0 19.0 0.7 0.3 0.1 0.0

Fekete04 34.7 14.2 6.7 3.4 1.9 83.2 80.3 69.0 63.5 64.6 9.8 3.5 7.2 6.9 2.5
Funke05 16.6 6.3 5.7 5.1 5.0 61.5 59.5 55.4 52.5 50.6 21.7 3.5 2.0 1.3 0.9
Funke06 39.7 13.8 16.6 18.9 20.9 80.6 70.7 71.9 72.5 73.2 13.0 3.4 1.4 0.6 0.3

EC-BR with refinement and MDS-BR both classify almost all interior nodes
correctly, except for the smallest node degree. But in this extreme scenario, all
algorithms start having problems as small holes arise due to overall sparse con-
nectivity. The classification of mandatory boundary nodes is also excellent. Here,
EC-BR dominates all other algorithms. The performance of MDS-BR fluctuates
only slightly over the various node degrees.

The numbers for optional boundary nodes state how many nodes within max-
imum communication distance of a hole are not classified as boundary nodes.
Here, the results for EC-BR are particularly interesting. Before refinement, the
algorithm classifies almost all of the optional nodes as boundary nodes while still
providing a strict separation to the interior nodes.

A more detailed analysis shows that a lot of small-scale holes emerge in net-
works with average node degree of 10 or less. Accordingly, a different boundary
definition and adjusted algorithms might be more appropriate for such networks.
For further details we refer to our extended technical report [14].

5.3 Random Placement vs. Perturbed Grid

In this section we examine the performance when random placement is used
instead of perturbed grid placement. Table 2 compares the performance of all
algorithms for both placement strategies and davg = 15. The performance of the
existing algorithms decreases dramatically compared to perturbed grid place-
ment. In contrast, the results of the new algorithms only decrease noteworthy
for interior nodes. For mandatory boundary nodes they remain roughly constant.

We also compare the influence of the network density when using random
node placement. Table 3 shows the classification results for mandatory and in-
terior nodes. Overall, our approaches dominate the other algorithms for both,
mandatory boundary nodes and interior nodes. For sparse networks, we see an
increased misclassification of interior nodes. This is partly caused by recognizing
very small holes.

5.4 Beyond Unit Disk Graphs

Unit disk graphs are frequently used for theoretical analyses and in simulations.
They are motivated by the assumption that each node has a fixed transmission
range. However, under realistic conditions the transmission range depends on
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Table 2. Misclassifications for random
(rp) and perturbed grid placement (pg)

Mandatory Interior
rp pg rp pg

EC-BR 2.0 0.0 48.7 3.8
EC-BR Ref 4.0 0.6 4.1 0.0
MDS-BR 5.2 3.5 12.2 0.3

Fekete04 26.2 6.7 13.0 7.2
Funke05 15.5 5.7 16.1 2.0
Funke06 45.8 16.6 7.9 1.4

Table 3. Misclassifications dependent on av-
erage node degree for random placement

Mandatory Interior
15 20 25 15 20 25

EC-BR 2.0 1.6 0.5 48.7 25.9 11.3
EC-BR Ref 4.0 3.1 1.9 4.1 0.5 0.1
MDS-BR 3.8 5.2 5.8 13.4 5.2 1.7

Fekete04 26.2 13.7 7.7 13.0 13.9 12.3
Funke05 15.5 9.4 6.7 16.1 8.1 3.6
Funke06 45.8 29.1 26.4 7.9 6.1 2.8

unpredictable effects such as interference or signal reflections. We now evaluate
the algorithms in a more realistic context by representing uncertainties with the
d-QUDG model.

Table 4 shows the performance for average node degrees 12 and 15 on 0.75-
QUDG networks. The increased error rate of MDS-BR occurs because the base
algorithm produces a candidate set which is not necessarily connected. Thus,
the refinement classifies many correct boundary candidates as interior nodes
since the connected substructures are not large enough. Fekete04, Funke05 and
Funke06 yield even higher error rates and perform significantly worse than on
UDGs. For QUDGs, we use γ = 70% for the refinement of EC-BR because in
QUDGs mandatory boundary nodes are not necessarily completely surrounded
by boundary candidates and holes. This value of γ works equally well for UDGs,
only producing slightly broader boundaries than γ = 100%. EC-BR with this
refinement outperforms all other approaches significantly. In Table 5, we go a step
further and compare 0.25-QUDGs with 0.75-QUDGs. This implies a very high
level of uncertainty. As expected, all algorithms produce more misclassifications.
Again, EC-BR with refinement outperforms the other algorithms easily.

5.5 Visual Comparison

We now present a visual comparison of the results of the considered algorithms
in Fig. 9. Both, EC-BR with refinement and MDS-BR return thin outlines of the
inner and outer border with almost no artifacts. In contrast, Funke05 returns
a broader outline with more noise. The results of Fekete04 show many artifacts
and a lot of boundary nodes are not detected. Funke06 correctly identifies the

Table 4. Misclassifications for the 0.75-
QUDG model and different node degrees

Mandatory Interior
12 15 12 15

EC-BR 0.0 0.0 28.5 7.7
EC-BR Ref 0.0 0.0 4.9 0.3
MDS-BR 8.3 11.2 8.3 1.6

Fekete04 16.9 6.9 8.8 8.9
Funke05 9.0 7.4 12.9 5.2
Funke06 15.6 15.4 12.4 3.7

Table 5. Misclassifications for 0.25- and
0.75-QUDG models with node degree 12

Mandatory Interior
0.25 0.75 0.25 0.75

EC-BR 3.0 0.0 41.5 28.5
EC-BR Ref. 12.7 0.0 1.7 4.9
MDS-BR 27.7 8.3 11.8 8.3

Fekete04 14.6 16.9 13.6 8.8
Funke05 11.5 9.0 17.8 12.9
Funke06 24.2 15.6 2.8 12.4
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(a) Truth (b) MDS-BR (c) EC-BR (d) EC-BR Ref.

(e) Fekete 04 (f) Funke 05 (g) Funke 06 (h) Wang 06

Fig. 9. Visual comparison of several algorithms for boundary detection.

boundaries with some artifacts. Similar to EC-BR, the apparent noise is caused
by small holes which are surrounded by these marked nodes. We also present
classification results of the global algorithm by Wang et al. [16]. It yields closed
boundary cycles without artifacts, but due to its nature, marked boundaries are
not always at the true border but shifted inwards. Hence, we did not include the
algorithm into our analysis, as it would result in unfairly poor ratings.

6 Conclusion

We proposed two novel distributed algorithms for location-free boundary recog-
nition. Both of them only depend on connectivity information of small local
neighborhoods, at most 3 hops for MDS-BR and only 2 hops for EC-BR. Their
low communication overhead makes both algorithms excellent choices for bound-
ary recognition in large-scale sensor networks and in dynamic scenarios.

We showed in extensive simulations that both algorithms are very robust
to different network densities, communication models, and node distributions.
Despite their simplicity and low communication overhead, they outperformed
the other considered approaches significantly. Additionally, they have much lower
computational complexity than most existing approaches.
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Abstract. In cumulative scheduling, conflict analysis seems to be one
of the key ingredients to solve such problems efficiently. Thereby, the
computational complexity of explanation algorithms plays an important
role. Even more when we are faced with a backtracking system where
explanations need to be constructed on the fly.

In this paper we present extensive computational results to analyze
the impact of explanation algorithms for the cumulative constraint in a
backward checking system. The considered explanation algorithms differ
in their quality and computational complexity. We present results for the
domain propagation algorithms time-tabling, edge-finding, and energetic
reasoning.

1 Introduction

In cumulative scheduling we are given a set of jobs that require a certain amount
of different resources. In our case, the resources are renewable with a constant
capacity and each job is non-interruptible with a fixed processing time and de-
mand request for several resources. A resource can be, for example, a group of
worker with the same specialization, a set of machines, or entities like power
supply.

Cumulative scheduling problems have been tackled with techniques from con-
straint programming (CP), integer programming (IP), or satisfiability testing
(SAT). In recent years hybrid approaches are developed which combine methods
from these areas. Currently, the best results are reported by a hybrid solver which
uses CP and SAT techniques [13]. However, there are still instances with 60 jobs
and four cumulative constraints published in the PSPLib [12] that resist to be
solved to proven optimality.

Several exact approaches use a search tree to solve cumulative scheduling prob-
lems. The idea is to successively divide the given problem instance into smaller
subproblems until the individual subproblems are easy to solve. The best of
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all solutions found in the subproblems yields the global optimum. During the
course of the algorithm, a search tree is created with each node representing one
of the subproblems. These subproblems are usually generated by adding bound
changes, called branching decisions, to the current problem. That means the fea-
sibility region gets restricted. At each subproblem, mathematically sophisticated
techniques exclude further values from the variables’ domains. One of them is
domain propagation which infers bound changes on the variables.

Recently it was discovered that conflict analysis plays an import role to solve
cumulative scheduling problems efficiently [13,7]. Conflict analysis is used to
analyze infeasible subproblems which arise during the search in order to generate
conflict clauses [10,1] also known as no-goods. These conflict clauses are used to
detect similar infeasible subproblems later in the search. In order to perform
conflict analysis, a bound change which was performed during the search needs
to be explained. Such an explanation is a set of bounds which infer the performed
bound change. Note that bound changes which are branching decisions cannot
be explained. There are two common ways to collect an explanations. One is
to submit it directly with the bound change, called forward checking. The other
way is to reconstruct an explanation on demand which means only if it is needed.
This is known as backward checking. Both versions have their advantages and
disadvantages. A forward checking system always constructs an explanation even
if it is not needed, whereas the backward checking framework needs to be able to
reconstruct an explanation for a bound change at any point during the search. In
the latter case it can be computationally expensive to compute an explanation
lazily, since the same bound changes might be explained multiple times.

In this paper we present extensive experimental results which give evidence
that minimum-size explanations of bound changes are a crucial component for
solving cumulative scheduling instances efficiently. We analyze the impact of con-
structing explanations in a backward checking system. For our study we consider
the domain propagation algorithms time-tabling, edge-finding, and energetic rea-
soning, see [6]. In case of time-tabling, the complexity status of computing a min-
imum size explanation is still open. Thus, we evaluate three different heuristic
approaches to deliver an appropriate explanation of small size. As benchmark set
we use instances of the problem library PSPLib [12] and Pack instances from [4].

Related work. Scheduling problems have been widely studied in the literature.
For an overview we refer to [4,8]. The cumulative constraint was introduced by
Aggoun and Beldicneau [3]. Current state-of-the-art propagation algorithms for
cumulative are surveyed in [6,4]. Best results on the instances we are focusing
on are achieved by a solver combining CP and SAT techniques [13].

Learning from infeasible subproblems is one of the key ingredients in mod-
ern SAT solvers. This technique is called conflict analysis. The basic idea is to
conclude a conflict clause which helps to prune the search tree and enables the
solver to use non-chronological backtracking. For a detailed description see for
example [10]. There are two main differences of IP and SAT solving in the con-
text of conflict analysis. First, the variables of an IP do not need to be of binary
type. Therefore, we have to extend the concept of the conflict graph: it has to
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represent bound changes instead of variable fixings, see [1] for details. Second,
infeasibility cannot only arise by propagation but also due to an infeasible linear
program relaxation [1]. To be able to perform a conflict analysis, it is essential
to explain bound changes. This means to state a set of bounds which lead to
the proposed bound change. From that a conflict graph is created, then a cut in
this graph is chosen, which produces a conflict clause that consists of the bound
changes along the frontier of this cut. For cumulative constraints, explanation
algorithms to some of the known propagation algorithms are given in [13,7].

Outline. Section 2 introduces the notation of the considered scheduling problem.
In Section 3 we present the propagation and different explanation algorithms that
are used in our experimental study, presented in Section 4.

2 Cumulative Scheduling

In cumulative scheduling, an instance is given by a set J of n non-preemptable
jobs with processing times pj ∈ N for each job j ∈ J . Each job j requests a
certain demand rj of a cumulative resource with capacity C ∈ N. In a contraint
program, a cumulative constraint is given by cumulative(S, p, r, C), i.e., vectors
of start times, processing times and demands, and the capacity. The cumulative
constraint enforces that at each point in time t, the cumulated demand of the
jobs running at t, does not exceed the given capacity, i.e.,∑

j∈J :t∈[Sj,Sj+pj)

rj ≤ C for all t.

Depending on the tightness of the earliest start times (estj), earliest completion
times (ectj), latest start times (lstj), and latest completion times (lctj) for each
job j ∈ J , propagation algorithms are able to update variable bounds. Since we
use start time variables Sj , the lower bound corresponds to estj and the upper
bound corresponds to lstj .

3 Propagation and Explanation Algorithms

Explanations tend to create stronger conflict clauses if they include only few
variables since we could expect that the constructed conflict graph has a smaller
width and size. Hence, one would like to search for minimum sized explanations.
On the other side, we are facing a backward checking system which implies that
bound changes have to be explained several times during the search. Therefore,
explanation algorithms should have a small complexity. In case of the cumula-
tive constraint, computing a minimum sized explanation stands in contrast to a
reasonable complexity. In this section we briefly introduce the three propagation
algorithms used for our experiments. For each algorithm we state three variants
to generate an explanation for a bound change. These constructions differ in
their quality (the size of the explanation) and their computational complexity.
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We only consider lower bound (estj) adjustments of the start variables Sj .
Upper bound (lstj) changes can be treated symmetrically. To keep the notation
simple, we assume for each interval [a, b) that the condition a < b holds even it
is not explicitly mentioned.

3.1 Energetic Reasoning

Energetic reasoning checks non-empty time intervals [a, b), with a < b, whether
the jobs contributing to that interval require more energy than available. That
is why, it has also been considered under the name interval consistency test.
There are O(n2) intervals to be checked, see [5]. The available energy of such an
interval is given by C ·(b−a). The energy of a job is the product of its processing
time and its demand. For a job j the required energy ej(a, b) for such an interval
is given by:

ej(a, b) := max{0, min{b − a, pj , ectj −a, b − lstj}} · rj .

Hence, ej(a, b) is the non-negative minimum of (i) the energy if it runs completely
in the interval [a, b), i.e., (b−a)·rj, (ii) the energy of job j, i.e., pj ·rj , (iii) the left-
shifted energy, i.e., (ectj −a)·rj , and (iv) the right-shifted energy, i.e., (b−lstj)·rj .

We can make the following deductions, see Baptiste et.al. [5] for further read-
ings. First, in case an interval is overloaded, i.e., the required energy E(a, b) :=∑

j ej(a, b) is larger than C · (b − a), the problem is infeasible. Second, the ear-
liest start time (lower bound) of a job j can be updated using any non-empty
interval [a, b) which intersects with job j according to the following equation:

est′j = a +
⌈

1
rj

(
E(a, b) − ej(a, b) − (b − a) · (C − rj)

)⌉
.

A proof is given in [5].
In the following lemmas we state conditions on a set of bounds to achieve

the deductions. In case both bounds of a job are responsible, we say, the job is
reported. Otherwise, we explicitly mention the bound of interest.

Lemma 1. An overload of interval [a, b), with a < b, can be explained by a
set Ω ⊆ J such that ∑

j∈Ω

ej(a, b) > C · (b − a). (1)

Lemma 2. A lower bound update of job j to est′j due to interval [a, b), with
a < b, intersecting with [estj , ectj) can be explained by the previous lower bound
of job j and a set Ω ⊆ J \ {j} such that∑

i∈Ω

ei(a, b) > (C − rj)(b − a) + (est′j −a) · rj − rj . (2)

To construct such a sub set of jobs Ω for a lower bound update we compare in
our experimental study three different algorithms:
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Variant 1
Report all jobs i ∈ J \ {j} with ei(a, b) > 0.

Variant 2
Report jobs i ∈ J \ {j} with ei(a, b) > 0 until the Condition (2) is satisfied.

Variant 3
First, sort the jobs with respect to their energies ei(a, b) in non-increasing
order and report jobs until Condition (2) is satisfied.

If the interval [a, b), which inferred the lower bound change, is known, Variant 1
runs in linear time as Variant 2, which additionally needs a pre-computation
of the necessary energy. Because of the sorting, Variant 3 runs in O(n log n).
Observe that Variant 3 reports a minimum sized explanation with respect to
interval [a, b).

Note that in case of an overloaded interval (Lemma 1) the above explanation
algorithms can be easily adjusted by considering the complete set of jobs J as
basis and use Condition (1) as stopping criterion in Variants 2 and 3.

3.2 Edge-Finding

Edge-finding can be seen as a special variation of energetic reasoning. In that ver-
sion the energy requirement of a job is only considered if the job lies completely
in the interval [a, b), i.e., estj ≥ a and lctj ≤ b. This clearly leads to weaker
bound updates, but can be executed with a smaller computational complexity
using sophisticated data structures, see [14]. We use the same explanation algo-
rithms as for energetic reasoning. Note that besides the jobs which lie completely
in the interval [a, b), we can also consider jobs which partly intersect with [a, b).
In case of constructing a suitable set of jobs Ω this has no influence on the
computational complexity.

3.3 Time-Tabling

Time-tabling can be seen as a unit-interval capacity consistency test. For each
interval of size one, a test is performed as by energetic reasoning. Since this
attempts to be too time-consuming, implementations focus on a profile-based
view. This profile is constructed using the cores of each job, see [9]. For a job j
a core γj is given by the interval [lstj , ectj). This is the interval where parts of
the job j must be executed. Note that this interval might be empty.

We denote by peakt(J ) the height of the resource profile at time t which is
generated by the cores of jobs J . Obviously, if peakt(J ) > C holds for some t
then the corresponding cumulative constraint is infeasible. On the other hand,
variable bound adjustments can be made as follows. Consider a job j. First,
remove the core from job j out of the profile. Search in the interval [estj , lstj ],
starting from estj , the first time point such that job j can be scheduled without
creating a profile peak exceeding the capacity. That time point est′j defines a
lower bound on the start time for job j. The bounds that are responsible in
either case are stated in the following lemmas. Proofs are omitted.
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Lemma 3. An infeasibility due to peakt(J ) > C at a time point t can be ex-
plained by a set Ω ⊆ J such that ∑

j∈Ω:t∈γj

rj > C.

Lemma 4. A lower bound update of job j to est′j can be explained by the pre-
vious lower bound of j and a set Ω ⊆ J \ {j} such that for all intervals
I ∈ {[est′j −1, est′j)} ∪ {[a, b) ⊆ [estj , est′j) | b − a = pj} the following condi-
tion holds

∃ t ∈ I :
∑

i∈Ω:t∈γ
i

ri > C − rj . (3)

Note that even in the special case of jobs with unit processing times, it is an
open question whether it is NP-hard to find an explanation of minimum size. In
the following we describe three different techniques to derive an explanation for
a lower bound updated by the time-tabling algorithm. These approaches differ
in their computational effort. Consider the lower bound update of job j from
estj to est′j .

Variant 1
Report all variables whose core intersect with the interval [estj , est′j).

Variant 2
(i) Sort jobs in non-decreasing order w.r.t. their demands.
(ii) For each t ∈ [estj , est′j) with peakt(J \ {j}) > C − rj report jobs i ∈

J \ {j} with t ∈ γi until Condition (3) is satisfied.
Variant 3

(i) Sort jobs in non-decreasing order w.r.t. their demands.
(ii) Set t = est′j −1.
(iii) If t < estj stop.
(iv) Explain peakt(J \ {j}).
(v) Find smallest time point t′ ∈ [t−pj , t) such that peakt′(J \{j}) > C−dj

holds.
(vi) Set t = t′ and goto (iii).

Note that in Variants 2 and 3 we are starting with the largest time point, i.e.,
est′j −1, and report all cores until we satisfy Condition (3). For the remaining
peaks we first compute the contribution of previously stated jobs and only add
as many new jobs to the explanation until we fulfill Condition (3). Variant 1 runs
in linear time, Variant 2 explains each peak larger than C − dj , and Variant 3
tries to report only a few peaks. For the two latter once we need O(n log n) for
sorting the jobs in non-decreasing order w.r.t. their demands. The number of
time points that need to be considered is linear in the number of jobs.

4 Experimental Study

In this section we describe the computational environment, introduce the selected
test instances, and finally present and discuss the computational results.
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4.1 Computational Environment

For performing our experimental study we used the non-commercial constraint
integer programming framework scip [2], version 2.0.1.1. We integrated cplex

release version 12.20 as underlying linear programming solver. All computations
reported were obtained using Intel Xeon 5150 core 2.66GHz computers (in 64 bit
mode) with 4MB cache, running Linux, and 8GB of main memory. A time limit
of one hour was always enforced.

scip has a SAT-like conflict analysis mechanism and is a backtracking system.
To avoid an overhead by constructing explanations for bound changes, it is
possible to store additional information for each bound change. Since the number
of stored bound changes is quite large during the search, the space for these
information are restricted to 32 bits each. In case of energetic reasoning and
edge finding we use these bits to store the responsible interval. Otherwise, we
would need to search in worst case over O(n2) interval candidates. Hence, we
can use the explanation algorithms stated in the previous section without any
additional effort.

The basic version of scip also supports solving cumulative scheduling prob-
lem. For this study, we enhanced the capability for cumulative constraints and
implemented the different explanation algorithms discussed in the previous sec-
tion. We additionally used a scheduling-specific series-generation scheme based
on α-points in order to generate primal solutions, see [11].

For our study we are interested in instances which are not trivial to solve
on the one side and solvable on the other side. For all test sets we used the
following criteria to restrict the test set to reasonable instances. We kept all
instances which:

(i) could be solved to optimality by at least one solver,
(ii) at least one solver needed more than one search node, and
(iii) at least one solver needed more that one second of computational running

time.

We collect resource-constrained project scheduling problem (RCPSP) instances
from the problem library PSPLib [12]. As bases we only choose test set J30

and J60, which are RCPSP instances with 30 and 60 jobs, respectively. Each test
set has 480 instances. Applying the above criteria, we are left with 115 and 71
instances for the test sets J30 and J60. We omit the larger test sets J90 and J120

since for these cases the remaining set after filtering are too small. The collection
of RCPSP instances in the PSPLib is criticized for containing rather disjunctive
problems. Therefore, we additionally considered the 55 Pack instances which are
introduced by Artigues et.al [4]. The restricted set contains 28 instances.

4.2 Computational Results

In Section 3 we stated for the propagation algorithms time-tabling, edge-finding,
and energetic reasoning three different explanation algorithms. We additionally
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Table 1. Evaluation of time spend in conflict analysis for time-tabling on 115 instances
from J30 and 71 instances from J60 and for energetic reasoning and edge-finding on 28
Pack instances

test set setting solved outs better worse totaltime expl. time allopt shnodes shtime

time-tabling

no conflict 111 4 – – 27329.3 – 105 2267 k 6.0
no explanation 105 10 28 29 41182.8 – 105 2477 k 6.4

J30 Variant 1 115 0 55 6 15739.5 0.7% 105 871 k 2.5
Variant 2 115 0 56 4 12328.1 0.9% 105 797 k 2.5
Variant 3 115 0 55 3 9998.9 1.02% 105 791 k 2.4

no conflict 69 2 – – 19334.3 – 60 3815 k 10.6
no explanation 60 11 8 38 55037.5 – 60 9212 k 25.6

J60 Variant 1 70 1 38 10 13420.4 1.3% 60 2008 k 7.1
Variant 2 70 1 42 5 10207.9 1.64% 60 1759 k 5.7
Variant 3 71 0 40 5 8800.0 1.76% 60 1510 k 5.6

energetic reasoning

no conflict 23 5 – – 21064.0 – 16 375 k 8.2
no explanation 21 7 9 6 29267.6 – 16 467 k 14.2

Pack Variant 1 21 7 3 9 30028.5 0.27% 16 641 k 18.0
Variant 2 19 9 4 9 39323.8 0.4% 16 677 k 18.9
Variant 3 24 4 11 3 16869.6 0.35% 16 106 k 4.3

edge-finding

no conflict 21 7 – – 35921.1 – 16 471 k 7.7
no explanation 17 11 3 8 41658.3 – 16 660 k 13.1

Pack Variant 1 19 9 7 4 35194.8 0.018% 16 388 k 5.9
Variant 2 19 9 6 5 36442.5 0.032% 16 378 k 5.8
Variant 3 19 9 6 4 37720.4 0.026% 16 385 k 5.5

consider two further settings. One in which the conflict analysis is globally dis-
abled (“no conflict”). That means no infeasible problem is analyzed. Second, the
cumulative constraint does not explain the bound changes such that all bound
changes made by the cumulative constraint are considered as branching decisions
(“no explanation”).

For each run we only used the propagation algorithm of interest for retrieving
domain reductions due to the cumulative constraints. All other scheduling spe-
cific techniques were disabled. The computational results showed that the effort
spent by edge-finding and energetic reasoning compared the amount of reduction
detected for the RCPSP instances are rather small. Most of the running time was
used within these propagation algorithms. As a result, the running time of these
propagation algorithms was dominating the time needed for constructing expla-
nation in such a way that no differences between the explanation algorithms
could be made. In contrast the time-tabling algorithm is too weak for the Pack

instances which ended up in similar behavior. Therefore, we only present the
results of the time-tabling explanation algorithms for the rather disjunctive in-
stances of the test set J30 and J60 and the results of the propagation algorithms
edge-finding and energetic reasoning for the Pack instances.

Table 1 presents the computational results for the three test sets. Column
“solved” shows how many instances were solved to proven optimality whereas
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column “outs” states the number of instances which timed out. The next two
columns “better” and “worse” indicate how often a setting was 10% faster or
slower than the reference solver which is the one performing no conflict anal-
ysis at all. To evaluate how much time was spent by the various explanation
algorithms, column “totaltime” displays the total solving time in seconds and
column “expl. time” the percentage of the total solving time used for the consid-
ered explanation algorithm. The column “allopt” gives the number of instances
which were solved to proven optimality by all settings. These instances are used
to compute the shifted geometric mean1 of all nodes (“shnodes”) in thousands
and of the running time in seconds (“shtime”), respectively.

Treating domain reductions as branching decisions (“no explanation”) per-
forms worst in all cases. The number of solved instances decreases and the shifted
number of nodes and the computation times increase. This is an interesting re-
sult since overall, we experience that using conflict analysis usually helps to solve
instances faster. An explanation for this behavior is that the resulting conflict
clauses are large and in most case the solver discards them. This means the time
spent for constructing them was in these cases useless.

In case of time-tabling we observe that Variant 3 yields the best results on
instances from J30, and J60 as well. Considering only the 60 instances of the test
set J60 which are solved to optimality by all settings, Variant 1 of explanation
algorithms for time-tabling decreases the average running time in the shifted
geometric mean by 30% and Variant 3 even to 53%, the number of nodes are
decreased by 47% and 40%, respectively. Column “expl. time” reveals that the
more precise the explanation algorithm is, the more percentage of the total
running time is spent on explaining the bound changes. In total the time spent
on explaining the cumulative propagations, is negligible. For the test set J30 the
results are similar, again the strongest variant of explanations yields the best
results.

In case of energetic reasoning on the highly cumulative Pack instances, we
observe that only Variant 3 performs better than the “no conflict” setting. Vari-
ants 1 and 2 show that greedily explaining bound changes may mislead the search
and are worse than not using conflict analysis at all. For Variant 3 the shifted
solving time reduced to 50% and the shifted number of nodes decreased to 28%.

The edge-finding algorithm performs worse w.r.t. the number of solved in-
stances when using conflict analysis in any form compared to disabling it. Two
instances were not solved anymore. Recall that we explain edge-finding via the
demands as defined in energetic reasoning. One could expect this to be a good
counterpart, but it does not pay. There are less instances solved then by ener-
getic reasoning. Nevertheless, in case of the instances solved to optimality by
all settings, we experience that all variants need roughly the same amount of
shifted nodes and shifted time which decrease by 25% and 20%, respectively, in
contrast to turning conflict analysis off.

1 The shifted geometric mean of values t1, . . . , tn is defined as
( ∏

(ti + s)
)1/n − s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.
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5 Conclusions

We studied explanation algorithms for the cumulative constraint in a backward
checking system. We presented extensive computational results. These show, that
minimum sized explanations of bound changes are crucial in order to solve hard
scheduling problem instances efficiently. Future research should focus on the com-
plexity status of explanation algorithms for time-tabling or deliver approaches
with reasonable computational complexity for at least some special cases.
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Abstract. Cluster analysis has been applied to several domains with
numerous applications. In this paper, we propose several GRASP with
path-relinking heuristics for data clustering problems using as case study
biological datasets. All these variants are based on the construction and
local search procedures introduced by Nascimento et. al [22]. We hy-
bridized the GRASP proposed by Nascimento et. al [22] with four alter-
natives for relinking method: forward, backward, mixed, and randomized.
To our knowledge, GRASP with path-relinking has never been applied
to cluster biological datasets. Extensive comparative experiments with
other algorithms on a large set of test instances, according to different
distance metrics (Euclidean, city block, cosine, and Pearson), show that
the best of the proposed variants is both effective and efficient.

1 Introduction

Clustering algorithms aim to group data such that the most similar objects be-
long to the same group or cluster, and dissimilar objects are assigned to different
clusters. According to Nascimento et. al [22], cluster analysis has been applied
to several domains, natural language processing [2], galaxy formation [3], image
segmentation [4], and biological data [7; 8; 9]. Surveys on clustering algorithms
and their applications can be found in [5] and [6].

This paper presents a GRASP with path-relinking for data clustering based
on a linearized model proposed by Nascimento et. al [22]:

min
N−1∑
i=1

N∑
j=i+1

dijyij (1)

subject to:
M∑

k=1

xik = 1, i = 1, ..., N (2)
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c© Springer-Verlag Berlin Heidelberg 2011



GRASP with Path-Relinking for Data Clustering 411

N∑
i=1

xik ≥ 1, k = 1, ..., M (3)

xik ∈ {0, 1}, i = 1, ..., N, k = 1, ..., M (4)

yij ≥ xik + xjk − 1, i = 1, ..., N, j = i + 1, ..., N, k = 1, ..., M (5)

yij ≥ 0 i = 1, ..., N, j = i + 1, ..., N. (6)

As described in [22], the objective function (1) aims to minimize the distance
between the objects inside the same cluster, where dij denotes the distance
between objects i and j; N denotes the number of objects; M denotes the number
of clusters; xik is a binary variable that assumes value 1, if the object i belongs
to the cluster k and 0, otherwise; and yij is a real variable that assumes the
value 1, if the objects i and j belong to the same cluster.

While constraints (2) assure that object i belongs to only one cluster, con-
straints (3) guarantee that cluster k contains at least one object, and con-
straints (4) assure that the variables xik are binaries. Finally, constraints (5)
and (6) guarantee that yij assumes the value 1, if both values of xik and xjk are
equal to 1.

The paper is organized as follows. In Section 2, we describe the GRASP with
path-relinking procedure. Computational results are described in Section 3 and
concluding remarks are made in Section 4.

2 GRASP with Path-Relinking for Data Clustering

GRASP, or greedy randomized adaptive search procedure, is a multi-start meta-
heuristic for finding approximate solutions to combinatorial optimization prob-
lems formulated as

min f(x) subject to x ∈ X ,

where f(·) is an objective function to be minimized and X is a discrete set of
feasible solutions. It was first introduced by Feo and Resende [7] in a paper
describing a probabilistic heuristic for set covering. Since then, GRASP has
experienced continued development [8; 23; 25] and has been applied in a wide
range of problem areas [9; 10; 11].

At each GRASP iteration, a greedy randomized solution is constructed to be
used as a starting solution for local search. Local search repeatedly substitutes
the current solution by a better solution in the neighborhood of the current
solution. If there is no better solution in the neighborhood, the current solution
is declared a local minimum and the search stops. The best local minimum found
over all GRASP iterations is output as the solution.

GRASP iterations are independent, i.e. solutions found in previous GRASP
iterations do not influence the algorithm in the current iteration. The use of
previously found solutions to influence the procedure in the current iteration can
be thought of as a memory mechanism. One way to incorporate memory into
GRASP is with path-relinking [13; 16]. In GRASP with path-relinking [18; 24],
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an elite set of diverse good-quality solutions is maintained to be used during
each GRASP iteration. After a solution is produced with greedy randomized
construction and local search, that solution is combined with a randomly selected
solution from the elite set using the path-relinking operator. The best of the
combined solutions is a candidate for inclusion in the elite set and is added to
the elite set if it meets quality and diversity criteria.

Algorithm 1 shows pseudo-code for a GRASP with path-relinking heuristic
for the data clustering problem. The algorithm takes as input the dataset to be
clustered and outputs the best clustering π∗ ∈ χ found.

Data : Dataset to be clustered
Result : Solution π∗ ∈ χ.
P ← ∅;1

while stopping criterion not satisfied do2

π′ ← GreedyRandomized(·) as described in [22];3

if elite set P has at least ρ elements then4

π′ ← LocalSearch(π′) as described in [22];5

Randomly select a solution π+ ∈ P ;6

π′ ← PathRelinking(π′, π+);7

π′ ← LocalSearch(π′) as described in [22];8

if elite set P is full then9

if c(π′) ≤ max{c(π) | π ∈ P} and π′ �≈ P then10

Replace the element most similar to π′ among all11

elements with cost worst than π′;
end12

13

else if π′ �≈ P then14

P ← P ∪ {π′};15

end16

17

else if π′ �≈ P then18

P ← P ∪ {π′};19

end20

end21

return π∗ = min{c(π) | π ∈ P};22

Algorithm 1. GRASP with path-relinking heuristic

After initializing the elite set P as empty in line 1, the GRASP with path-
relinking iterations are computed in lines 2 to 21 until a stopping criterion is
satisfied. This criterion could be, for example, a maximum number of iterations,
a target solution quality, or a maximum number of iterations without improve-
ment. In this paper, we have adopted the maximum number of iterations without
improvement (IWI) as stopping criterion of the GRASP-PR variants. During
each iteration, a greedy randomized solution π′ is generated in line 3. If the elite
set P does not have at least ρ elements, then if π′ is sufficiently different from
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all other elite set solutions, π′ is added to the elite set in line 19. To define the
term sufficiently different more precisely, let Δ(π′, π) be defined as the minimum
number of moves needed to transform π′ into π or vice-versa. For a given level
of difference δ, we say that π′ is sufficiently different from all elite solutions in
P if Δ(π′, π) > δ for all π ∈ P , which we indicate with the notation π′ �≈ P . If
the elite set P does have at least ρ elements, then the steps in lines 5 to 16 are
computed.

The local search described in [22] is applied in line 5 using π′ as a starting
point, resulting in a local minimum, which we denote by π′. Next, path-relinking
is applied in line 7 between π′ and an elite solution π+, randomly chosen in line 6.
Solution π+ is selected with probability proportional to Δ(π′, π+). In line 8, the
local search described in [22] is applied to π′. If the elite set is full, then if π′ is
of better quality than the worst elite solution and π′ �≈ P , then it will be added
to the elite set in line 11 in place of some elite solution. Among all elite solutions
having cost no better than that of π′, a solution π most similar to π′, i.e. with
the smallest Δ(π′, π) value, is selected to be removed from the elite set. Ties are
broken at random. Otherwise, if the elite set is not full, π′ is simply added to
the elite set in line 15 if π′ �≈ P .

2.1 Path-Relinking

Path-relinking was originally proposed by Glover [13] as an intensification strat-
egy exploring trajectories connecting elite solutions obtained by tabu search or
scatter search [14; 15; 16]. Starting from one or more elite solutions, paths in the
solution space leading toward other elite solutions are generated and explored
in the search for better solutions. To generate paths, moves are selected to in-
troduce attributes in the current solution that are present in the elite guiding
solution. Path-relinking may be viewed as a strategy that seeks to incorporate
attributes of high quality solutions, by favoring these attributes in the selected
moves.

Algorithm 2 illustrates the pseudo-code of the path-relinking procedure ap-
plied to a pair of solutions xs (starting solution) and xt (target solution). The
procedure starts by computing the symmetric difference Δ(xs, xt) between the
two solutions, i.e. the set of moves needed to reach xt (target solution) from xs

(initial solution). A path of solutions is generated linking xs and xt. The best
solution x∗ in this path is returned by the algorithm. At each step, the procedure
examines all moves m ∈ Δ(x, xt) from the current solution x and selects the one
which results in the least cost solution, i.e. the one which minimizes f(x ⊕ m),
where x ⊕ m is the solution resulting from applying move m to solution x. The
best move m∗ is made, producing solution x⊕m∗. The set of available moves is
updated. If necessary, the best solution x∗ is updated. The procedure terminates
when xt is reached, i.e. when Δ(x, xt) = ∅.

We notice that path-relinking may also be viewed as a constrained local search
strategy applied to the initial solution xs, in which only a limited set of moves
can be performed and where uphill moves are allowed. Several alternatives have
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Data : Starting solution xs and target solution xt

Result : Best solution x∗ in path from xs to xt

Compute symmetric difference Δ(xs, xt);
f∗ ← min{f(xs), f(xt)};
x∗ ← argmin{f(xs), f(xt)};
x ← xs;
while Δ(x, xt) �= ∅ do

m∗ ← argmin{f(x ⊕ m) : m ∈ Δ(x, xt)};
Δ(x ⊕ m∗, xt) ← Δ(x, xt) \ {m∗};
x ← x ⊕ m∗;
if f(x) < f∗ then

f∗ ← f(x);
x∗ ← x;

end
end

Algorithm 2. Path-relinking

been considered and combined in recent implementations of path-relinking [1; 2;
3; 5; 26; 27; 29], among them:

– forward relinking: path-relinking is applied using the worst among xs and xt

as the initial solution and the other as the target solution;
– backward relinking: the roles of xs and xt are interchanged, path-relinking is

applied using the best among xs and xt as the initial solution and the other
as the target solution;

– mixed relinking: two paths are simultaneously explored, the first emanating
from xs and the second from xt, until they meet at an intermediary solution
equidistant from xs and xt; and

– randomized relinking: instead of selecting the best yet unselected move, ran-
domly select one from among a candidate list with the most promising moves
in the path being investigated.

Figure 3 illustrates an example of path-relinking. Let x be a solution composed
by clusters A = {2, 3, 7}, B = {4, 6}, and C = {1, 5}; and xt the target solution
with the clusters A = {6, 7}, B = {4, 5}, and C = {1, 2, 3}. Initially, Δ(x, xt) =
{(2, A, C), (3, A, C), (5, C, B), (6, B, A)}, where (e, s, t) means a move of element
e from cluster s to cluster t. After the best move (2, A, C) from solution x is
performed, x is updated with clusters A = {3, 7}, B = {4, 6}, and C = {1, 2, 5}.
The process is repeated until xt is reached.

3 Experimental Results

In this section, we present results on computational experiments with the GRASP
with path-relinking (GRASP-PR) heuristic introduced in this paper. First, we de-
scribe our datasets. Second, we describe our test environment and determine an
appropriated combination of values for the parameters of the heuristic. Finally,
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Fig. 1. A path-relinking example for data clustering

besides the GRASP-L algorithm introduced by Nascimento [22], we compare sev-
eral GRASP-PR variants implementations with the three known clustering algo-
rithms described in [22]: K-means, K-medians and PAM [17]1.

3.1 Datasets

We used the same five datasets from [22]: fold protein classification, named Pro-
tein [6], prediction of protein localization sites, named Yeast [21]; seven cancer
diagnosis datasets, named Breast [4], Novartis [30], BreastA [31], BreastB [32],
DLBCLA [20], DLBCLB [28] and MultiA [30]; and the benchmark Iris [12].

Table 1. Characteristics of datasets used in the experiments

Data Set #Objects #Str(#Groups) #Attrib

Protein 698 2 (4,27) 125
Yeast 1484 1 (10) 8
Breast 699 2 (2,8) 9

Novartis 103 1 (4) 1000
BreastA 98 1 (3) 1213
BreastB 49 2 (2,4) 1213
DLBCLA 141 1 (3) 661
DLBCLB 180 1 (3) 661
MultiA 103 1 (4) 5565

Iris 140 1 (3) 4

1 K-means and K-medians implementations are available at
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm
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Table 1 shows the main characteristics of each dataset. The second column
indicates the number of objects in each dataset. The third column shows the
number of structures in the dataset and, in parenthesis, the number of clusters
for each structure. The fourth column shows the number of attributes in the
objects. Next, we describe in more details each of the datasets used.

3.2 Test Environment and Parameters for GRASP-PR Heuristic

All experiments with GRASP-PR were done on a Dell computer with Core 2 Duo
2.1 GHz T8100 Intel processor and 3 Gb of memory, running Windows XP Pro-
fessional version 5.1 2002 SP3 x86. The GRASP-PR heuristic was implemented
in Java and compiled into bytecode with javac version 1.6.0.20. The random-
number generator is an implementation of the Mersenne Twister algorithm [19]
from the COLT2 library.

The values of the parameters for GRASP-PR heuristic used for each dataset
are shown in Table 2.

Table 2. Path-Relinking parameters. Pool size (PS), elements in pool before start PR
(EPBS), symmetrical difference (SD), and Iterations without Improvement (IWI)

Iris Novartis BrstA BrstB1 BrstB2 DLBCLA DLBCLB MultA Brst1 Brst2 Prt1 Prt2 Yeast
PS 3 5 4 3 3 5 5 5 3 6 5 5 7
EPBS 1 3 1 1 1 2 2 2 1 3 2 3 3
SD 4 70 4 30 30 100 100 70 4 550 450 450 1200
IWI 15 15 15 15 15 15 15 15 15 15 15 15 5

3.3 Numerical Comparisons

We compare the three known clustering algorithms described in [22] (K-means,
K-medians and PAM [17]) with the GRASP-L algorithm introduced by Nasci-
mento [22] and the following five GRASP-PR variants implementations: GRASP,
GRASP-PRf, GRASP-PRb, GRASP-PRm and GRASP-PRrnd. GRASP is
our implementation of the GRASP-L algorithm. GRASP-PRf, GRASP-PRb,
GRASP-PRm and GRASP-PRrnd correspond to the following relinking alter-
natives: forward, backward, mixed and greedy randomized, respectively. We used
the same distance measurements for all of them.

The comparisons of the algorithms were based on the Corrected Rand index
(CRand) proposed in [26] (Table 3). While GRASP-L, K-means and K-medians
were run 100 times, GRASP-PRf, GRASP-PRb, GRASP-PRm and GRASP-
PRrnd were run 30 times. All algorithms selected the partition with the best
solution for each of the distance metrics.

With respect to the comparisons of the algorithms based on the Corrected
Rand index (CRand) reported in Table 3, we observe that GRASP-PR variants
found the best-quality solutions with all different dissimilarity measures. In fact,
2 COLT is a open source library for high performance scientific and technical comput-

ing in Java. See http://acs.lbl.gov/~hoschek/colt/

http://acs.lbl.gov/~hoschek/colt/


GRASP with Path-Relinking for Data Clustering 417

T
a
b
le

3
.

S
u
m

m
a
ry

o
f

C
R

a
n
d

re
su

lt
s

fo
r

G
R

A
S
P

-P
R

rn
d
,

G
R

A
S
P

-P
R

m
,

G
R

A
S
P

-P
R

b
,

G
R

A
S
P

-P
R

f,
G

R
A

S
P
,

G
R

A
S
P

-L
,

K
-m

ea
n
s,

K
-m

ed
ia

n
s

a
n
d

P
A

M
a
lg

o
ri
th

m
s.

M
is

th
e

n
u
m

b
er

o
f
cl

u
st

er
s

fo
r

th
e

b
es

t
C

R
a
n
d

fo
u
n
d
.
T

im
es

a
re

g
iv

en
in

se
co

n
d
s

o
n

a
C

o
re

2
D

u
o

2
.1

G
H

z
T

8
1
0
0

In
te

l
p
ro

ce
ss

o
r

(j
a
v
a
c

co
m

p
il
er

v
er

si
o
n

1
.6

.0
.2

0
).

T
im

es
fo

r
G

R
A

S
P

-L
a
n
d

P
A

M
a
lg

o
ri
th

m
s

a
re

n
o
t

re
p
o
rt

ed
in

[2
2
].

G
R

A
S
P
-
P
R

r
n
d

G
R

A
S
P
-
P
R

m
G

R
A

S
P
-
P
R

b
G

R
A

S
P
-
P
R

f
G

R
A

S
P

G
R

A
S
P
-
L

K
M

E
A

N
S

K
M

E
D

I
A

N
S

P
A

M
M

c
R

a
n
d

T
im

e
M

c
R

a
n
d

T
im

e
M

c
R

a
n
d

T
im

e
M

c
R

a
n
d

T
im

e
M

c
R

a
n
d

T
im

e
M

c
R

a
n
d

M
c
R

a
n
d

T
im

e
M

c
R

a
n
d

T
im

e
M

c
R

a
n
d

E
U

C
L
I
D

E
A

N

P
ro

te
in

4
0
.2

9
7

5
8
.9

0
6

4
0
.2

9
7

6
3
.6

2
4

4
0
.2

9
4

5
8
.6

2
5

4
0
.2

9
4

6
1
.6

7
2

4
0
.2

9
4

5
4
.5

3
1

4
0
.3

2
2

7
0
.3

2
2

0
.4

8
4

7
0
.3

1
3

0
.4

5
3

6
0
.2

5
0

1
1

0
.1

6
9

2
0
7
.8

9
0

1
1

0
.1

6
8

3
0
6
.1

9
7

1
1

0
.1

6
7

2
4
4
.5

4
7

1
1

0
.1

6
9

1
5
6
.7

1
9

1
1

0
.1

6
8

1
2
2
.0

9
4

1
1

0
.1

6
8

1
7

0
.1

3
9

0
.5

6
2

2
5

0
.1

3
4

0
.6

2
5

1
3

0
.0

9
8

B
re

a
st

2
0
.8

7
8

1
6
.5

3
1

2
0
.8

7
8

1
9
.7

8
1

2
0
.8

7
8

1
9
.2

9
7

2
0
.8

7
8

1
9
.3

4
3

2
0
.8

7
8

1
8
.4

8
4

2
0
.8

7
7

2
0
.8

0
3

0
.0

7
8

2
0
.7

8
2

0
.0

6
2

2
0
.8

2
8

1
5

0
.0

1
6

1
4
7
.2

8
2

1
5

0
.0

1
6

1
3
7
.8

5
7

1
5

0
.0

1
4

1
2
9
.2

0
3

1
5

0
.0

1
6

1
5
2
.2

0
3

1
5

0
.0

1
7

1
2
4
.6

2
5

1
5

0
.0

1
5

1
8

-0
.0

1
0

0
.0

9
4

1
7

0
.0

3
6

0
.0

7
8

5
0
.0

1
2

Y
ea

st
9

0
.1

5
1

1
6
8
9
.7

6
6

9
0
.1

5
3

1
4
1
0
.0

4
7

9
0
.1

5
3

1
4
9
2
.1

3
2

9
0
.1

5
0

8
4
9
.3

6
3

9
0
.1

5
1

1
7
3
8
.6

4
1

9
0
.1

5
0

7
0
.1

7
0

0
.1

0
9

8
0
.1

7
3

0
.1

4
1

8
0
.1

4
3

N
o
v
a
rt

is
4

0
.9

5
0

7
.3

9
1

4
0
.9

5
0

6
.9

2
1

4
0
.9

5
0

6
.9

8
4

4
0
.9

5
0

7
.3

4
4

4
0
.9

5
0

6
.0

9
4

4
0
.9

2
1

4
0
.9

4
6

0
.4

6
9

4
0
.9

4
6

0
.4

8
4

4
0
.8

9
7

B
re

a
st

A
2

0
.6

8
2

5
.9

3
7

2
0
.7

2
3

5
.8

4
4

2
0
.6

8
2

5
.7

9
7

2
0
.6

8
2

6
.1

8
8

2
0
.6

8
2

5
.8

1
3

2
0
.6

8
2

2
0
.6

5
4

0
.4

6
8

2
0
.6

5
4

0
.4

8
4

2
0
.5

4
3

B
re

a
st

B
2

0
.6

9
4

1
.8

9
0

2
0
.6

9
4

1
.9

0
6

2
0
.6

9
4

1
.9

0
6

2
0
.6

9
4

1
.9

8
5

2
0
.6

9
4

1
.8

9
1

2
0
.6

2
6

3
0
.5

0
2

0
.2

8
1

4
0
.5

0
0

0
.2

9
7

2
0
.3

8
8

2
0
.3

2
2

1
.8

9
0

2
0
.3

2
2

2
.0

3
1

2
0
.3

2
2

1
.8

9
0

2
0
.3

2
2

1
.9

8
4

2
0
.3

2
1

1
.8

9
1

2
0
.3

1
4

3
0
.2

8
6

0
.2

9
7

3
0
.2

6
0

0
.2

8
1

2
0
.1

8
7

D
L
B
C

L
A

4
0
.4

6
5

1
3
.6

4
0

4
0
.4

3
1

1
0
.1

8
7

4
0
.5

0
4

7
.0

1
5

4
0
.4

0
8

8
.2

9
7

4
0
.4

4
3

7
.8

2
8

4
0
.4

0
8

4
0
.3

0
9

0
.4

3
7

5
0
.3

6
5

0
.4

3
7

4
0
.2

7
6

D
L
B
C

L
B

4
0
.5

2
0

1
3
.5

7
8

4
0
.5

1
9

2
1
.6

6
1

4
0
.5

3
7

1
1
.0

0
0

4
0
.5

0
9

1
3
.2

1
9

4
0
.5

1
9

1
0
.3

9
1

4
0
.4

8
1

2
0
.4

2
0

0
.5

1
5

3
0
.4

2
4

0
.5

1
5

3
0
.3

9
1

M
u
lt
iA

4
0
.8

7
4

3
4
.0

3
1

4
0
.8

7
4

3
1
.5

6
2

4
0
.8

7
4

3
1
.7

8
1

4
0
.8

7
4

3
3
.8

5
9

4
0
.8

7
4

2
9
.8

4
4

4
0
.8

7
4

6
0
.7

6
5

2
.5

0
0

5
0
.6

8
2

2
.5

0
0

4
0
.7

6
5

Ir
is

3
0
.7

5
7

0
.3

1
2

3
0
.7

5
7

0
.3

1
2

3
0
.7

5
7

0
.3

9
0

3
0
.7

5
7

0
.3

9
1

3
0
.7

5
7

0
.3

5
9

3
0
.7

5
6

3
0
.7

3
0

0
.0

4
6

3
0
.7

4
4

0
.0

6
3

3
0
.7

3
0

C
I
T

Y
B

L
O

C
K

P
ro

te
in

5
0
.3

1
0

7
1
.1

4
1

5
0
.3

1
0

8
5
.7

4
8

5
0
.3

0
9

6
2
.4

8
4

5
0
.3

0
9

5
0
.8

1
2

5
0
.3

0
9

9
8
.3

5
9

5
0
.2

9
3

8
0
.2

2
3

0
.4

8
4

7
0
.2

2
9

0
.4

6
8

3
0
.1

9
2

9
0
.1

7
9

9
5
.1

8
7

9
0
.1

7
6

2
5
4
.4

3
2

9
0
.1

8
0

7
6
.0

7
8

9
0
.1

8
0

1
1
5
.8

5
9

9
0
.1

7
5

9
9
.0

3
2

9
0
.1

6
6

1
7

0
.1

5
8

0
.5

4
7

2
8

0
.1

4
1

0
.5

9
4

1
9

0
.0

8
4

B
re

a
st

2
0
.8

7
7

1
4
.5

6
2

2
0
.8

7
7

1
7
.6

7
2

2
0
.8

7
7

1
7
.3

4
4

2
0
.8

7
7

1
7
.2

3
4

2
0
.8

7
7

1
6
.4

2
2

2
0
.8

7
7

2
0
.7

7
0

0
.0

7
8

2
0
.7

6
5

0
.0

6
3

2
0
.8

0
7

1
9

0
.0

1
6

2
4
3
.6

5
6

1
9

0
.0

1
5

2
9
5
.4

6
2

1
9

0
.0

1
5

1
6
6
.1

1
0

1
9

0
.0

1
5

2
1
0
.1

7
2

1
9

0
.0

1
6

1
4
6
.2

8
1

1
9

0
.0

1
3

1
9

-0
.0

0
9

0
.0

9
4

1
0

0
.0

2
3

0
.0

6
3

1
3

0
.0

1
0

Y
ea

st
7

0
.1

6
1

1
4
3
2
.0

4
7

7
0
.1

5
9

9
5
3
.7

6
6

7
0
.1

6
0

1
3
7
4
.0

1
9

7
0
.1

6
1

1
6
3
0
.9

1
7

7
0
.1

6
1

7
0
6
.2

6
6

7
0
.1

5
7

7
0
.1

8
1

0
.1

0
9

6
0
.1

6
7

0
.1

1
0

7
0
.1

5
2

N
o
v
a
rt

is
4

0
.9

5
0

2
.8

5
9

4
0
.9

5
0

2
.7

9
6

4
0
.9

5
0

2
.7

8
1

4
0
.9

5
0

2
.7

9
6

4
0
.9

5
0

2
.5

0
0

4
0
.9

2
1

4
0
.9

4
6

0
.4

8
4

4
0
.9

2
1

0
.4

8
4

4
0
.9

4
7

B
re

a
st

A
2

0
.7

2
3

1
.8

4
4

2
0
.7

2
3

1
.8

8
9

2
0
.6

8
2

1
.7

9
7

2
0
.7

2
3

1
.9

2
2

2
0
.7

2
2

1
.7

5
0

2
0
.6

8
2

2
0
.5

8
3

0
.4

8
4

2
0
.6

1
8

0
.4

8
4

4
0
.5

6
0

B
re

a
st

B
4

0
.3

6
6

1
.3

9
1

4
0
.3

6
6

1
.3

4
3

4
0
.2

6
1

0
.9

2
2

4
0
.2

8
8

2
.2

5
0

4
0
.3

2
8

0
.8

9
0

4
0
.2

2
8

3
0
.5

6
3

0
.2

9
7

2
0
.5

6
1

0
.2

9
7

2
0
.3

8
8

7
0
.3

3
3

2
.2

9
7

7
0
.3

4
4

1
.8

2
8

7
0
.2

4
4

0
.9

5
3

7
0
.3

2
8

1
.2

6
5

7
0
.3

6
7

1
.0

0
0

7
0
.1

5
9

3
0
.3

2
8

0
.2

9
7

3
0
.2

8
4

0
.3

1
2

2
0
.1

8
7

D
L
B
C

L
A

3
0
.8

3
8

1
.9

5
3

3
0
.8

3
8

1
.9

9
9

3
0
.8

3
8

1
.9

5
3

3
0
.8

3
8

1
.9

5
4

3
0
.8

3
8

1
.7

9
7

3
0
.8

0
0

3
0
.8

0
5

0
.4

2
2

3
0
.7

8
4

0
.4

5
3

3
0
.4

0
6

D
L
B
C

L
B

2
0
.7

0
1

2
.9

0
6

2
0
.7

0
1

2
.7

9
7

2
0
.7

0
3

2
.8

6
0

2
0
.7

0
1

2
.8

4
3

2
0
.7

0
1

2
.6

7
2

2
0
.7

0
0

2
0
.6

9
0

0
.5

0
0

2
0
.6

9
0

0
.5

0
0

3
0
.3

5
0

M
u
lt
iA

4
0
.8

9
9

1
0
.2

9
7

4
0
.9

2
4

1
1
.1

4
1

4
0
.8

9
9

1
0
.4

3
8

4
0
.8

9
9

1
1
.0

1
5

4
0
.8

9
9

9
.9

0
6

4
0
.8

9
9

4
0
.8

5
1

2
.3

0
0

4
0
.8

7
5

2
.3

0
0

5
0
.7

5
0

Ir
is

3
0
.8

1
8

0
.2

8
1

3
0
.8

1
8

0
.2

8
1

3
0
.8

1
8

0
.3

4
3

3
0
.8

1
8

0
.3

5
9

3
0
.8

1
8

0
.3

2
8

3
0
.8

1
8

3
0
.7

1
7

0
.0

6
3

3
0
.7

1
7

0
.0

4
7

3
0
.7

7
2

C
O

S
I
N

E

P
ro

te
in

4
0
.3

5
0

1
0
2
.6

6
8

4
0
.3

4
8

8
9
.4

1
9

4
0
.3

4
4

1
6
8
.3

4
4

4
0
.3

4
2

8
1
.6

5
6

4
0
.3

4
8

8
2
.2

9
6

4
0
.3

4
9

7
0
.3

2
0

0
.4

3
8

6
0
.3

0
4

0
.4

6
9

6
0
.2

4
7

1
2

0
.1

7
0

2
6
6
.7

8
1

1
2

0
.1

7
0

1
4
1
.7

9
4

1
2

0
.1

7
0

1
6
2
.5

0
0

1
2

0
.1

7
3

2
2
5
.6

5
6

1
2

0
.1

7
0

1
5
0
.5

7
8

1
2

0
.1

6
6

2
0

0
.1

3
4

0
.6

5
6

2
1

0
.1

2
5

0
.6

2
5

1
5

0
.0

9
1

B
re

a
st

3
0
.2

9
4

2
8
.7

8
1

3
0
.2

9
4

3
2
.8

1
2

3
0
.2

9
4

2
9
.5

4
7

3
0
.2

9
4

3
1
.7

9
6

3
0
.2

9
4

3
1
.1

8
8

3
0
.2

9
3

4
0
.2

5
8

0
.0

7
8

3
0
.3

0
6

0
.0

7
8

3
0
.3

3
2

8
0
.0

2
2

1
3
3
.4

5
3

8
0
.0

2
1

7
7
.4

0
3

8
0
.0

2
1

7
8
.2

8
1

8
0
.0

2
2

8
2
.7

0
3

8
0
.0

2
2

7
7
.5

6
2

8
0
.0

2
0

2
0
.0

2
7

0
.0

7
8

8
0
.0

5
2

0
.0

7
8

3
0
.0

2
1

Y
ea

st
9

0
.1

3
7

1
1
0
3
.9

4
2

9
0
.1

3
7

9
7
2
.3

1
3

9
0
.1

3
7

6
8
0
.1

7
2

9
0
.1

3
7

9
8
8
.5

4
7

9
0
.1

3
6

7
1
6
.1

7
2

9
0
.1

3
5

9
0
.1

3
8

0
.1

5
6

6
0
.1

3
2

0
.1

2
5

7
0
.1

4
6

N
o
v
a
rt

is
4

0
.9

5
0

1
4
.4

2
2

4
0
.9

5
0

1
2
.3

2
8

4
0
.9

5
0

1
3
.5

7
8

4
0
.9

5
0

1
1
.7

3
4

4
0
.9

5
0

1
1
.7

6
6

4
0
.9

2
0

4
0
.9

1
9

0
.4

8
4

4
0
.9

1
9

0
.4

8
4

4
0
.7

4
5

B
re

a
st

A
2

0
.6

8
7

1
2
.2

8
2

2
0
.6

8
7

1
0
.9

9
6

2
0
.6

8
7

1
2
.1

7
2

2
0
.6

8
7

1
0
.4

8
5

2
0
.6

8
7

1
2
.2

8
1

2
0
.6

8
6

2
0
.6

9
1

0
.4

8
5

2
0
.6

9
1

0
.4

8
4

2
0
.6

6
4

B
re

a
st

B
2

0
.6

9
4

3
.0

1
6

2
0
.6

9
4

2
.8

7
5

2
0
.6

9
4

2
.8

9
1

2
0
.6

9
4

2
.6

8
8

2
0
.6

9
4

3
.0

1
5

2
0
.6

2
6

2
0
.5

6
1

0
.2

8
1

3
0
.5

0
2

0
.2

8
1

4
0
.4

4
3

2
0
.3

2
2

3
.0

0
0

2
0
.3

2
2

2
.8

7
5

2
0
.3

2
2

3
.0

3
1

2
0
.3

2
2

2
.6

8
7

2
0
.3

2
1

3
.0

1
6

2
0
.3

1
4

2
0
.2

6
9

0
.2

9
7

3
0
.2

6
4

0
.2

8
1

4
0
.2

3
9

D
L
B
C

L
A

4
0
.6

0
7

1
3
.2

0
3

4
0
.6

1
9

1
6
.6

4
0

4
0
.6

0
7

1
2
.4

2
2

4
0
.6

0
7

1
2
.0

7
8

4
0
.6

0
7

1
1
.2

9
7

4
0
.6

0
5

5
0
.6

4
2

0
.4

6
8

4
0
.6

7
8

0
.4

3
8

3
0
.5

4
7

D
L
B
C

L
B

4
0
.5

0
0

2
4
.3

7
5

4
0
.5

0
0

2
1
.1

0
9

4
0
.5

0
0

2
3
.2

8
1

4
0
.5

0
0

1
9
.9

8
4

4
0
.5

0
0

2
1
.7

9
7

4
0
.5

0
2

3
0
.5

0
1

0
.5

1
6

3
0
.6

2
3

0
.5

6
2

5
0
.3

8
5

M
u
lt
iA

4
0
.8

3
1

6
0
.0

7
8

4
0
.8

3
1

5
4
.4

6
8

4
0
.8

3
1

5
6
.1

4
0

4
0
.8

3
1

4
8
.5

3
2

4
0
.8

3
1

4
7
.8

7
5

4
0
.8

0
5

4
0
.7

1
8

2
.3

0
0

7
0
.7

3
1

2
.4

0
0

6
0
.7

1
6

Ir
is

3
0
.9

4
2

0
.3

5
9

3
0
.9

4
2

0
.3

4
4

3
0
.9

4
2

0
.4

2
1

3
0
.9

4
2

0
.4

0
6

3
0
.9

4
2

0
.3

9
0

3
0
.9

4
1

3
0
.9

0
4

0
.0

4
7

3
0
.9

4
1

0
.0

6
2

3
0
.9

0
4

P
E
A

R
S
O

N

P
ro

te
in

4
0
.3

4
5

1
3
3
.5

0
0

4
0
.3

4
5

1
2
7
.5

9
2

4
0
.3

4
5

1
3
5
.5

6
3

4
0
.3

4
5

1
3
9
.6

2
5

4
0
.3

4
5

1
2
0
.5

3
2

4
0
.3

4
4

7
0
.3

1
3

0
.5

0
0

7
0
.3

0
6

0
.4

8
4

6
0
.2

4
5

1
2

0
.1

7
2

3
2
2
.8

9
1

1
2

0
.1

7
2

2
5
1
.0

8
9

1
2

0
.1

7
2

3
2
8
.9

6
9

1
2

0
.1

6
9

2
6
1
.1

8
7

1
2

0
.1

7
2

4
3
7
.4

3
8

1
2

0
.1

6
7

2
0

0
.1

2
9

0
.6

0
9

2
7

0
.1

3
6

0
.6

4
1

1
4

0
.0

9
6

B
re

a
st

3
0
.3

1
1

3
8
.5

1
5

3
0
.3

1
1

4
1
.3

2
7

3
0
.3

1
1

4
0
.9

6
8

3
0
.3

1
1

4
2
.1

4
1

3
0
.3

1
1

3
8
.7

0
3

3
0
.2

8
4

2
0
.4

4
1

0
.0

7
8

2
0
.3

6
8

0
.0

7
8

2
0
.2

8
9

1
1

0
.0

1
7

1
3
7
.0

7
8

1
1

0
.0

1
6

1
9
7
.0

5
6

1
1

0
.0

1
7

1
2
4
.3

6
0

1
1

0
.0

1
6

1
1
0
.8

4
4

1
1

0
.0

1
6

9
1
.2

3
4

1
1

0
.0

1
7

9
0
.0

1
5

0
.0

9
3

1
9

0
.0

2
4

0
.1

0
9

6
0
.0

1
5

Y
ea

st
9

0
.1

3
8

1
0
1
0
.2

8
9

9
0
.1

3
8

8
7
7
.0

0
0

9
0
.1

3
8

6
6
2
.3

9
0

9
0
.1

3
8

6
6
0
.4

0
6

9
0
.1

3
8

5
1
0
.9

6
9

9
0
.1

3
1

8
0
.1

3
5

0
.1

7
1

8
0
.1

3
3

0
.1

2
5

7
0
.1

4
5

N
o
v
a
rt

is
4

0
.9

5
0

2
3
.6

2
5

4
0
.9

5
0

2
0
.1

5
6

4
0
.9

5
0

2
2
.0

1
6

4
0
.9

5
0

2
3
.4

2
2

4
0
.9

5
0

1
8
.1

1
0

4
0
.9

2
0

4
0
.9

1
9

0
.4

6
8

4
0
.9

1
9

0
.4

8
4

4
0
.7

4
6

B
re

a
st

A
2

0
.6

9
2

2
0
.6

5
6

2
0
.6

9
2

1
8
.9

0
4

2
0
.6

9
2

2
0
.5

4
7

2
0
.6

9
2

2
1
.7

3
4

2
0
.6

9
2

2
0
.6

2
5

2
0
.6

9
2

2
0
.7

0
5

0
.4

6
9

2
0
.7

0
5

0
.4

6
9

2
0
.6

3
5

B
re

a
st

B
2

0
.7

6
6

4
.7

9
7

2
0
.7

6
6

5
.5

6
2

2
0
.6

2
6

4
.7

1
9

2
0
.7

6
6

5
.5

4
6

2
0
.7

6
6

6
.5

4
6

2
0
.6

9
4

3
0
.5

0
2

0
.2

9
7

3
0
.5

2
9

0
.2

9
7

3
0
.4

4
5

2
0
.3

2
2

8
.9

6
9

2
0
.3

2
2

5
.0

1
6

2
0
.3

0
6

4
.7

3
4

2
0
.2

8
1

5
.5

6
3

2
0
.2

7
9

6
.4

6
8

2
0
.3

5
5

4
0
.2

8
9

0
.2

9
6

3
0
.2

8
3

0
.2

8
1

3
0
.2

2
7

D
L
B
C

L
A

4
0
.6

0
4

2
0
.6

8
8

4
0
.6

0
4

2
0
.5

7
7

4
0
.6

0
7

2
0
.8

4
4

4
0
.6

0
4

2
3
.1

4
0

4
0
.6

0
4

1
8
.1

1
0

4
0
.5

8
5

4
0
.6

0
5

0
.4

6
9

4
0
.6

8
4

0
.4

5
3

4
0
.5

8
6

D
L
B
C

L
B

2
0
.5

8
5

3
2
.7

3
7

2
0
.5

8
5

3
3
.7

9
6

2
0
.5

8
5

3
6
.9

3
7

2
0
.5

8
5

3
9
.6

4
1

2
0
.5

8
5

3
7
.4

5
3

2
0
.5

2
7

3
0
.6

6
5

0
.5

4
7

3
0
.5

6
1

0
.5

1
6

3
0
.5

4
5

M
u
lt
iA

4
0
.8

2
9

9
8
.7

6
6

4
0
.8

2
9

9
2
.6

5
5

4
0
.8

2
9

9
2
.4

5
3

4
0
.8

2
9

1
0
2
.1

5
6

4
0
.8

2
9

8
5
.7

1
9

4
0
.8

2
8

4
0
.7

1
8

2
.3

0
0

9
0
.6

9
1

2
.5

0
0

4
0
.7

0
5

Ir
is

3
0
.8

8
6

0
.7

5
0

3
0
.8

8
6

0
.6

4
0

3
0
.8

8
6

0
.7

8
1

3
0
.8

8
6

0
.7

8
1

3
0
.8

8
6

0
.7

6
6

3
0
.8

8
6

3
0
.8

8
6

0
.0

4
7

3
0
.9

4
1

0
.0

6
2

3
0
.8

8
6



418 R.M.D. Frinhani et al.

– using Euclidean metric as dissimilarity measure, GRASP-PRb found best
results for 8 out of 10 datasets; GRASP-PRrnd, GRASP-PRm and GRASP-
PRf found best results for 7 datasets; GRASP for 5, GRASP-L for 1, while
K-means and K-medians found the best solution for only 1 and 2 datasets,
respectively;

– using City Block metric as dissimilarity measure, GRASP-PRm found best
results for 7 out of 10 datasets; GRASP-PRrnd, GRASP-PRb and GRASP-
PRf found best results for 6 datasets; GRASP for 5, GRASP-L and K-
medians for 2, while K-means only for 1;

– using Cosine metric as dissimilarity measure, GRASP-PRrnd and GRASP-
PRf found best results for 6 out of 10 datasets; GRASP-PRb and GRASP-
PRm for 5, GRASP for 4, and K-medians, PAM, and K-means for 4, 2, and
1, respectively.

– using Pearson metric, GRASP-PRrnd, GRASP-PRm and GRASP found
best results for 5 out of 10 datasets; GRASP-PRb, GRASP-PRf and K-
medians for 4, K-means for 3, GRASP-L and PAM for 1.

As expected, we can observe in In Table 3 that the higher the distance metric
complexity, the higher the computacional time. In instances with a small num-
ber of clusters, usually the GRASP procedure is sufficient to find good solutions,
reducing the path-relinking utility and increasing the time consuming. The ex-
perimental results present the number of clusters with the highest CRand in the
range from 2 to 30 clusters.

4 Concluding Remarks

In this paper, we propose four variants of GRASP with path-relinking (forward,
backward, mixed, and randomized) for data clustering problem. The algorithms
were implemented in Java and extensively tested. Computational results from
several instances from the literature demonstrate that the heuristic is a well-
suited approach for data clustering.
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Abstract. This paper presents a new approach to solve the NP-complete
minimum branch vertices problem (MBV) introduced by Gargano et. al[1].
In spite of being a recently proposed problem in the network optimization
literature, there are some heuristics to solve it [3]. The main contribution of
this paper consists in a new heuristic based on the iterative refinement ap-
proach proposed by Deo and Kumar [2]. The experimental results suggest
that this approach is capable of finding solutions that are better than the
best known in the literature. In thiswork, for instance, the proposed heuris-
tic found better solutions for 78% of the instances tested. The heuristic
looks very promising for the solution of problems related with constrained
spanning trees.

Keywords: Constrained spanning trees, Branch vertices, Iterative
refinement.

1 Introduction

Given a undirected unweighted graph G = (V, E) the minimum branch vertices
problem (MBV) consists in finding the spanning tree of G which has the minimum
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number of branch vertices [1]. A vertex v of G is said to be a branch vertex if its
degree δ is greater than 2, i.e., δ(v) > 2.

This problem has been recently proposed in the optimization literature. The
main contributions were made by Cerulli et al. [3], who developed a mixed in-
teger linear formulation which is able to find the optimal solution. However, for
a reasonable computational running time, the model can only solve small in-
stances. For large instances the authors proposed 3 heuristic methods capable
of finding suboptimal solutions for the MBV: Edge Weighting Strategy (EWS),
Node Coloring Heuristic (NCH), and a combined strategy (CS) between EWS
and NCH. Details about these methods as well as their pseudo-codes can be
found in [3].

The paper is organized as follows. In Section 2, we describe the iterative re-
finement algorithms introduced by Deo and Kumar [2]. In Section 3, we describe
our iterative refinement algorithm for minimum branch vertices problem. Com-
putational results are described in Section 4, and concluding remarks are made
in Section 5.

2 Iterative Refinement and Constrained Spanning Trees

Among the approaches used in the literature to solve NP-complete constrained
spanning tree problems there are the iterative refinement algorithms (IR) [2].
Consider the problem of constrained spanning tree defined by a weighted graph
G and two constraints, C1 and C2, where C1 consists typically in the minimization
of the sum of the weights in the spanning tree. The algorithm IR starts from a
spanning tree partially constrained (which satisfies only C1) and moves at each
iteration in the direction of a fully constrained tree (which satisfies C2), but
sacrificing the optimality in relation to C1.

The general idea of the method is shown in the algorithm 1, extracted from
[2]. First, a spanning tree T which satisfies only constraint C1 is constructed.
Next, the edges which do not satisfy constraint C2 in T are identified and their
weights in G are modified, originating G′. This is done in such a way that the
new spanning tree constructed from G′ violates less the constraint C2, in a step
called blacklisting, whose aim is to discourage certain edges from reappearing
in the next spanning trees. Usually the trick used in the blacklisting consists in
increasing the weight of the edge associated with a violation of C2 in T . After
each blacklisting step, a new spanning tree is constructed which satisfies only
C1. This steps are repeated until a tree that satisfies C2 is found. Note that, the
final spanning tree will satisfy C2, but will be sub-optimal in relation to C1.

The iterative refinement method is simple and easy to apply. The core of
method consists in the design of a penalty function, or blacklisting, specific for
the problem being studied. To be effective many important decisions must be
taken regarding the number of edges to be penalized, what edges to penalize,
and the value of the penalty for each edge to be penalized.

In their paper, Deo and Kumar [2] applied the IR method for the Degree Con-
strainedMinimum SpanningTree problem. The implemented algorithm alternates
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the computation of the Minimum Spanning Tree (MST) with the increase of the
weights on the edges whose degree exceeds a predetermined limit d.

Algorithm 1. Iterative-Refinement-Algorithm(G, C1, C2)
1. In graph G find a spanning tree that satisfies C1

2. while spanning tree violates C2 do
3. Using C2 alter weight of edges in G to obtain G′ with new weights
4. In graph G′ find a spanning tree that satisfies C1

5. Set G ← G′

6. end while

In the blacklisting, the edges are penalized by a quantity proportional to:

(i) the number f [e] of degree-violating vertices where the edge e is incident;
(ii) a constant k defined by the user;
(iii) the weight w[e] and the range of weights in current spanning tree, given by

wmin ≤ w[e] ≤ wmax.

All the edges e incident to a degree violating vertex, except for the edge with
smallest weight amongst them, are penalized as follows:

w′[e] = w[e] + kf [e]
(

w[e] − wmin

wmax − wmin

)
wmax. (1)

In another paper, Boldon et. al [4] applied the dual-simplex approach to the
Degree Constrained Minimum Spanning Tree Problem involving iterations in
two stages until the convergence criteria are reached. The first stage consists
in computing a MST using Prim’s algorithm, which in the first iterations will
violate the degree constraints of several vertices. The second stage consists in
adjusting the weights of the violating edges using a blacklisting function which
will increase the weight of an edge e as follows:

w′[e] = w[e] + fault × wmax ×
(

w[e] − wmin

wmax − wmin

)
. (2)

In this function, fault is a variable which takes the values 0, 1 or 2 depending
on the number of vertices incident to the edge which is currently violating the
degree constraint. Note that, this approach is very similar to the one used by
Deo and Kumar [2]. The refinement idea is also referred in [5].

Other authors have applied the iterative refinement approach for other tree
problems, such as Diameter-Constrained Minimum Spanning Tree [6]. In that
paper, the authors presented two algorithms using the iterative refinement, IR1
and IR2. IR1 consists in iteratively computing a MST as solution to the tree
diameter problem, and applying penalties to a subset of edges of the graph, such
that they will be discouraged from appearing in the next iteration. The selection
of the edges to modify is associated with presence of these edges or not in long
paths of the tree, since its elimination aims at reducing the diameter of the tree.
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Let L be a set of edges to be penalized; w(l) the current weight of edge l;
wmax and wmin the smallest and largest weight in the current spanning tree,
respectively; distc(l) the distance of the edge l to the central vertex of the path,
increased by 1 unit. When the center is the edge lc, we have distc(lc) = 1, and
as well there the only edge l incident to one of the extremes of the central edge
lc will have distc(l) = 2. The penalty imposed to each edge l in the current
spanning tree will be:

max
{ (

w(l) − wmin

distc(l)(wmax − wmin)

)
wmax, ε

}
, (3)

where ε > 0 is the minimum penalty which guarantees that the iterative re-
finement will not stay in the same spanning tree when the sum of the edges has
penalty zero. The penalty decreases as the edges penalized are more distant from
the center of current spanning tree, in such way that a path is broken in two
sub-paths significantly shorter instead of a short sub-path and a long sub-path.
The algorithm IR2 works almost same way as IR1, except for the fact that it
does not recompute a new spanning tree at each iteration. A new spanning tree
is created by modifying the current spanning tree, by removing one edge at a
time.

3 An Iterative Refinement Algorithm for the MBV
Problem

Section 2 presented several cases where the iterative refinement approach has
been used to solve constrained spanning tree problems. Although these cases
deal with weighted graphs, we propose an adaptation of the IR approach to
solve the Minimum Branch Vertices Problem.

Let G = (V, E) be a unweighted undirected graph representing a network in
which we would like to find a spanning with the minimum number of vertices
branch. By assigning random weights in the interval [0, . . . , 1] to each edge e ∈ E,
the graph G becomes a new weighted graph G′ = (V, E). A minimum spanning
tree T constructed on G′ using the Kruskal’s algorithm would be the starting
solution for the iterative refinement algorithm. However, this initial solution may
not satisfy the constraint δ(v) ≤ 2, ∀ v ∈ V . Therefore, the topology of the initial
solution will depend only on the weight that were assigned to the edges of G′.

Usually, the method starts with an initial solution with many vertices branch.
The spanning tree T will then be modified iteratively, being recreated by changes
to the topology of the previous spanning tree, and moves towards better solu-
tions, i.e., with fewer vertices branch.

The difference between the iterative process proposed in this paper for the
minimum branch vertices problem and the other iterative processes published
by [2], [5], and [6] is the way the penalties are applied to the violating incident
edges. In previous works the idea has been to penalize edges by increasing their
weights to discourage them from reappearing in the trees in the next iterations.
In this paper, we choose to penalize each violating edge by removing it explicitly
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from the tree and replacing it with an edge with less violations. A violating
edge of T (denoted by ‘cutting edge’) is selected for removal and is replaced by
another edge of G′ which is not yet in T (denoted by ‘replacement edge’). Such
replacement is defined by the exchange of the weights of the cutting edge and
the replacement edge in G′. This replacement of edges continues until there are
no replacement can reduce the number of vertices branch in the current tree T .
The algorithm 2 describes the steps of the algorithm, and will be detailed next.

The strategy used to replace the edges is based on two measures of the vio-
lation of the edges, expresses as 1) the number of actual end vertices violating
the edge (α); and 2) the sum of the degree of the extreme edges of the edge
minus 2 (σ), which tells the sum of the degree of extremes of edge if we removed
it from the tree. Good cutting edges are those edges that have many violating
end vertices (i. e., with high values of α, followed by high values of σ). In a
similar way, a good replacement edge is an edge that contributes the most to
the reduction of the number of vertices branch in T (i.e., with low values of α,
followed by low values of σ).

At each iteration of the refinement, one identifies a cutting edge to be removed
from the tree T . Any edge incident to a vertex branch can be chosen as a cutting
edge; edges of this type are used to construct a list of candidates Lcut. Next, we
select one of the edges in the candidate list and remove it from Lcut and from T .
The choice of the cutting edges at each iteration takes into account the degree
of violation of the edge in T , quantified by the values α and σ. The edge selected
will be the edge that has the largest α followed by the largest σ.

The removal of the cutting edge will divide the tree T into two connected
components, and the set V of vertices of T into two sub-sets, S and S′. To avoid
cycles, each edge removed from T is inserted into a special set, denoted by Blist,
which indicates that the edges is tagged and cannot be reinserted in T .

To reconnect the two connected components we need to find an advantageous
replacement edge capable of connecting both components without creating cy-
cles. The candidate list Lrep includes all the edges in G which are not in T and
that are capable of connecting both components and are not in Blist. A good
replacement edge is an edge that does create violations when it is inserted in T ,
i.e., an edge that has lower values of α, followed by lower values of σ. Once the
replacement edge selected is inserted in T , the current iteration of the algorithm
ends.

If there is no advantageous replacement edges, then the replacement does not
occur. The cutting edge returns to T . A new cutting edge is selected from Lcut

and a new list Lrep is created to select the replacement edge. The algorithm
continues until no more cutting edges can be replaced in T , i.e., Lcut = ∅.

We will illustrate the method using a simple instance of the problem MBV.
The steps are shown in Figure 1. In (a) we have an initial spanning tree T ,
created by applying Kruskal’s algorithm on graph G′. The tree shown in (a) is
the result of assigning weights to the edges of G′, which initial topology indicates
the occurrence of two vertices branch: vertices 5 and 8.
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Algorithm 2. Mbv-Iterative-Refinement-Algorithm(G = (V, E))
1. G′ ← AssignRandomWeights(G)
2. T ← CalculateMinimumSpanningTree(G′ )
3. Blist ← ∅
4. repeat
5. ThereWasExchange ← false

6. Lcut ← CreateCutList(T, Blist)

7. while ((ThereWasExchange �= true) ∧ (|Lcut| �= 0)) do
8. (u∗, v∗) ← SelectArcFromCutList(Lcut)

9. Lcut ← Lcut \ { (u∗, v∗) }
10. Lrep ← CreateReplacementListToCutArc(T, G′, (u∗, v∗))
11. (u, v) ← SelectArcFromReplacementList(Lrep)

12. if (∃ (u, v)) then
13. Blist ← Blist

⋃ {(u, v)}
14. SwapWeightsIntoGraph((u∗ , v∗), (u, v))
15. T ← T \ {(u∗, v∗)}
16. T ← T

⋃ {(u, v)}
17. ThereWasExchange ← true

18. end if
19. end while
20. until (ThereWasExchange �= false)
21. return T

Fig. 1. An example of the iterative refinement algorithm solving an instance of MBV

In the sequence, the algorithm determines a cutting edge and a replacement
edge and tries to transform T into a tree with less violations. Lcut is constructed
with the incident edges to vertices branch, i.e.: Lcut = {(5, 3), (5, 4), (5, 6), (8, 1),
(8, 6), (8, 7)}. The edges (5, 3), (5, 6), (8, 1) and (8, 6) have the highest values of
α, followed by σ. We select edge (5, 3), which is removed from T and from Lcut

and creates a cut in T which separates V in S = {2, 3} e S′ = {0, 1, 4, 5, 6, 7, 8}.
The edges capable of connectingS andS′ areLrep = {(1, 2), (2, 5), (2, 7), (3, 4)}.

Amongst these, the edges (2, 7) and (3, 4) are the only ones that can replace (5, 3)
without causing any violations in the tree. We choose to replace (5, 3) by (2, 7), in-
serting (2, 7) in T to obtain (b). This concludes the first iteration of the algorithm.

The next iteration continues from the tree T showed in (b). Lcut = {(8, 1),
(8, 6), (8, 7)}, where (8, 1) is the most interesting edge to cut since it has the
highest values of α and σ. We remove (8, 1) from T and Lcut, creating the cut
S = {0, 1} and S′ = {2, 3, 4, 5, 6, 7, 8}. The edges capable of connecting S and
S′ are Lrep = {(0, 8), (1, 2)}, which have the same value of α and σ. Edge (0, 8)
is selected to replace (8, 1) in T .
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Replacing edge (8, 1) by (0, 8) does not bring any advantages in T since it does
not reduce the number of vertices branch in the tree, which will continue having
1 vertex branch. The replacement is canceled, edge (8, 1) returns to the tree T ,
and we select a new cutting edge from Lcut = {(8, 6), (8, 7)}. The edge selected
is (8, 6), given the value of α and σ. Removing (8, 6) from the tree will divide V
into S = {0, 1, 8, 7, 2, 3} and S′ = {6, 5, 4}, with Lrep = {(2, 5), (3, 4), (6, 7)}.
The edge (3, 4) is the best replacement for edge (8, 6), and is inserted into T . The
replacement ends the second iteration of the algorithm, resulting in tree (c).

The third iteration begins with Lcut = ∅. There are no more vertices branch
in the tree and therefore there is no cutting edge available. The tree T presented
in (c) is then a solution to be returned by the algorithm.

4 Experimental Results

In this section, we present results on computational experiments with the iter-
ative refinement method applied to a set of instances with the purpose of com-
paring the quality of the results obtained by our IR algorithm with the results
obtained by the heuristics EWS and NCH proposed by [3]. All the algorithms
cited were implemented in ANSI C++, compiled with gcc version 4.3.2, us-
ing the libraries STL and run in the operating system Ubuntu 4.3.2-1. The
algorithm used to find an initial solution was the Kruskal’s algorithm, using effi-
cient data structures to represent the disjoint sets (union-find structures). This
data structures where used by all methods to determine if two vertices were in
different connected components of a graph, as well as to determine the replace-
ment edges candidates capable of connecting S e S′. Details about the efficient
implementation of the data structures union-find can be found in [7] and [8].

The instances were created by the network flow problem generator NetGen
[9], available in public ftp from DIMACS 1. The instances were divided into
different classes, each containing different number of vertices and edges. Net-
Gen constructs network flow problems using as input a file that specifies the
input parameters. Since the minimum branch vertices problem consists of an
unweighted and uncapacitated graph, we used only the topology of the graphs
input. Repeated edges were ignored.

The input files used by NetGen to generate the instances follow the format
given in Table 1. According to the table, the only parameters that can vary are
the seed for the random number generator and the number of vertices and edges
of the output graph. In tables 2 and 3 the values presented for each instance in
columns d, n and s, correspond to the number of edges, number of vertices, and
seed for each instance, respectively. The column m represents the ‘real’ number
of edges of the graph, removing the repeated edges.

We have generated instances with 30, 50, 100, 150, 300, and 500 vertices, with
edges densities of 15% and 30% in 5 graphs capable of representing each of these
classes.

1 ftp://dimacs.rutgers.edu/pub/netflow/

ftp://dimacs.rutgers.edu/pub/netflow/
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Table 1. NetGen parameters for input files

# Parameters Input Parameter Description

1 SEED Variable Random numbers seed

2 PROBLEM 1 Problem number

3 NODES Variable Number of nodes

4 SOURCES 1 Number of sources (including transshipment)

5 SINKS 1 Number of sinks (including transshipment)

6 DENSITY Variable Number of (requested) edges

7 MINCOST 0 Minimum cost of edges

8 MAXCOST 1000 Maximum cost of edges

9 SUPPLY 1 Total supply

10 TSOURCES 0 Transshipment sources

11 TSINKS 0 Transshipment sinks

12 HICOST 1 Percent of skeleton edges given maximum cost

13 CAPACITED 1 Percent of edges to be capacitated

14 MINCAP 0 Minimum capacity for capacitated edges

15 MAXCAP 3 Maximum capacity for capacitated edges

The methods EWS and NCH were run only once, since the runs result in the
same deterministic values. The iterative refinement method has been statistically
evaluated, since it depends on the weights of the graph G′ assigned randomly
at the beginning of the algorithm. The methodology used consisted in 100 runs
for each instance, each one with a different seed. Tables 2 and 3 present the
minimum, maximum, average, median, standard deviation, and variance found
for the execution time, and the solution value of each instance, respectively
in columns ‘Min’, ‘Max’, ‘Mean’, ‘Med’, ‘Dev’ and ‘Var’ of the column ‘Value’
corresponding to the results of algorithm IR.

The rows of column ‘C’ are tagged with the character ‘y’ when the IR methods
found solutions with an average number of vertices branch (column ‘Mean’) lower
than the values found by the algorithms EWS and NCH. This condition occurred
happens in 43 out 55 instances (78% of the instances).

The median values suggests that the IR method performed very well for these
instances. For the 55 instances tested, the IR method obtained median values
better than the ones obtained by EWS and NCH in 37 instances, and equal
values in 15 instances.

Even when the IR method did not obtain the best values, we can see that it
obtains value very close to the ones obtained by EWS and NCH.

The histograms in Figures 2 – 7 report frequencies computed for the 100 runs
of some of the instances in which IR did not obtain better values than EWS and
NCH. Note that, the most frequent strip corresponds to values close or equal to
the EWS and NCH heuristics.

The reported running times are in seconds. The running times of the EWS
and NCH heuristics correspond to only one run. The running time for the IR
algorithm varies since the computational effort to find a solution depends on the
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Fig. 3. Histogram for the instance n =
30, m = 135, s = 5081: NCHval = 0;
IRmean = 0, 24; freq[0 . . . 1] ∼ 98
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Fig. 4. Histogram for the instance n =
50, m = 375, s = 1720: NCHval = 0;
IRmean = 0, 56; freq[0 . . . 1] ∼ 90
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Fig. 5. Histogram for the instance n =
100, m = 750, s = 5885: NCHval = 1;
IRmean = 1, 5; freq[0 . . . 1] ∼ 55
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150, m = 1688, s = 3738: NCHval = 1;
IRmean = 1, 69; freq[0 . . . 1] ∼ 45
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Fig. 7. Histogram for the instance n =
300, m = 6750, s = 4889: NCHval = 1;
IRmean = 1, 27; freq[0 . . . 1] ∼ 65

number of branch vertices existing in the initial solution, and therefore should
be analyzed statistically by the measures ’Min’, ‘Max’, ‘Mean’, ‘Dev’ and ‘Var’
of the block ‘Time’. These measure correspond to the minimum, the maximum,
the average, the median, the standard deviation, and variance of the 100 runs
of the IR algorithm, respectively.
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Fig. 8. IR solution for the inst.
n=50, m=186, s=7085, branch=0
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Fig. 9. NCH solution for the inst.
n=50, m=186, s=7085, branch=4
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Fig. 10. IR solution for the inst.
n=150, m=1688, s=5011, branch=0
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Fig. 11. NCH solution for the inst.
n=150, m=1688, s=5011, branch=3

It is worth mentioning that for each instance from benchmark evaluated, there
was at least one run of the 100 runs were the IR method obtained a solution with
zero vertices branch. Figures 8, 9, 10, and 11 depict the difference in topology of
some of the best solutions found by IR and the one found by NCH. The vertices
highlighted correspond to vertices branch, i.e., δ(v) > 2.

5 Concluding Remarks

According to the results presented in Section 4, for the benchmark used in the
paper, the iterative method presented has better performance than the methods
proposed by [3]: edge weighting and node coloring strategies. In 78% of the
instances the IR algorithm obtained average results better than the ones found
by the methods EWS and NCH. The small standard deviation as well as the
better median values in 37 of the 55 instances classes further support quality of
the IR algorithm compared to EWS and NCH.
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The experimental results show that the iterative refined method is an effective
approach to solve the MBV directly or as a sub-problem of large problems.
Since the test benchmark is made of artificial instances generated by NetGen,
further research should be conducted using real instances. Comparisons with
exact methods such as the algorithms proposed in [3] should also be carried in
future experiments.
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Abstract. In the last decade major progress has been made in accelerating short-
est path queries in large-scale, time-dependent road networks. Most techniques
are heuristically motivated and their performance is experimentally evaluated on
real-world data. However, to our knowledge no free time-dependent dataset is
available to researchers.

This is the first work proposing algorithmic approaches for generating time-
dependent road networks that are built on top of static road networks in the sce-
nario of systematic delays. Based on an analysis of a commercial, confidential
time-dependent dataset we have access to, we develop algorithms that utilize ei-
ther road categories or coordinates to enrich a given static road network with
artificial time-dependent data. Thus, the static road-networks we operate on may
originate from manifold sources like commercial, open source or artificial data.
In our experimental study we assess the usefulness of our algorithms by compar-
ing global as well as local statistical properties and the shortest-path structure of
generated datasets and a commercially used time-dependent dataset. Until now,
evaluations of time-dependent routing algorithms were based on artificial data
created by ad-hoc random procedure. Our work enables researchers to conduct
more reasonable validations of their algorithms than it was possible up to now.

1 Introduction

In recent years the focus of accelerating shortest path queries switched from static to
time-dependent scenarios. One reason is that the time-dependent scenario is more real-
istic in the sense that the time needed to travel a certain distance depends on the traffic
and thus changes over the day. The speedups for route calculations gained in this field
are yet not as impressive as they are for static scenarios. Hence, many people are still
attracted by this field of research to achieve similar results for time-dependent scenar-
ios. To prove the applicability of new algorithms they are usually evaluated on large-
scale, i.e., continental-size, time-dependent road networks. Ideally, this is done using
real-world data, as most of the algorithms are custom tailored for road networks. Un-
fortunately, to our knowledge no freely available real-world dataset of time-dependent
road networks exist. The reason may be that observing traffic and maintaining statistics
is an expensive and tedious task [1]. Hence, companies do not share their valuable data.
Thus, experimental evaluations are done using artificial datasets [2,3,4]. The test data
used there is generated by an ad-hoc method for randomized delay assignment and it
is not geared towards any properties of real-world data. We aim at closing this gap by

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 434–446, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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artificially generating time-dependency information by exploiting structural properties
of an underlying static road network.

Related Work. In recent years, many publications on point-to-point route-planning
techniques have appeared. Good overviews for the static [5] as well as the
time-dependent scenario [6] exist. Time-dependent data is usually modeled by a map-
ping of functions to edges that determine for each time of the day how fast one can
traverse a certain distance in relation to the default time when no delay occurs. These
functions are called profiles. To our knowledge, the only known approach for artificially
assigning time-dependent information on edges in a large scale road-network is to ran-
domly assign delays on a specific level within the road network’s inherent hierarchy [3].
The work does not provide a systematic analysis of the generated data. In a personal dis-
cussion with the authors it turned out that way too many profiles are generated, which
have to be removed by an unreported process. The information on the shape of profiles
is taken from the research field of traffic and transportation prognosis [7]. The simu-
lations used there are not applicable to large-scale road networks of continental-size,
e.g., Europe, for two reasons: First, no dataset exists that contains the travel behavior
of all people living on a continent. Second, no algorithm is capable of simulating all
individuals’ behaviors within a road-network of that size [8].

Contribution. This is the first work providing algorithms which allow researchers to
enrich static road-networks with time-dependent information and conduct more reason-
able validations of their algorithms. Our scenarios are systematic time dependencies
in road networks that occur on a daily basis. We explicitly do not cover dynamic time
dependencies, i.e., delays occurring because of unexpected events like accidents.

The analysis of a commercial and confidential time-dependent small subset of the
European road-network1, namely Germany, gives insights on the properties of delays.
Based upon these results we develop our algorithms. In order to generate meaningful
time-dependent data, we either require the road network to have road-category informa-
tion attached to edges, or to contain the coordinates of the nodes. Thus, our algorithms
can be applied to graphs of manifold origin, e.g. commercial, open source or artificial.
We use the additional data to compute structural information, in particular, areas of
urban type. Based on this, we find edge candidates for assigning time-dependent infor-
mation. In an extensive computational study, we show that the generated data has in
global as well as local scope statistical properties similar to those of the real-world road
network. Additionally, we show that the shortest-path structure exhibits similar charac-
teristics on artificial and real-world data. Hence, a shortest-path technique that performs
well on our generated datasets is likely to behave similarly on real-world data.

Outline. In Section 2 we establish the basis of our work by analyzing confidential
commercial time-dependent road-network data1. We present statistical data and rep-
resentative extracts of the time-dependent data and derive a systematic model of how
delays occur. Based on our observations we develop our algorithms for generating time-
dependency within static road networks in Section 3. In Section 4 we compare the re-
sults of our generators with real-world data, in order to demonstrate the usefulness of
our algorithms.

1 Provided by the company PTV (http://www.ptv.de.)

http://www.ptv.de
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2 Analysis of Real-World Time-Dependent Data

The time-dependent road-network dataset of Germany1 we use is confidential and part
of commercial products. On the technical side, the dataset consists of two parts. The
basis is a static network relying on data of the company NavTeq. The data is not fully
free for scientific use but has been provided to participants of the 9th Dimacs Imple-
mentation Challenge [9]. We have access to a slightly updated version of the year 2006.

The second part consists of the time-dependency information. Delays are modeled by
assigning profiles to edges. A widely applied solution is to use piece-wise linear func-
tions (PWLF) to model the delay of specific intervals of the day. Intermediate points are
interpolated linearly. The real-world dataset provides sets of PWLFs for different days
of the week. A mapping assigns edges of the static dataset that are affected by a delay to
the corresponding PWLF. Each day is split up into 96 time intervals of 15 minutes each.
Accordingly, a PWLF consists of 96 support points. Each point represents the delay of
traversing this edge as a factor in relation to the mean speed usually assigned. For the
remaining part of this work we refer to these PWLFs as profiles.

The dataset contains systematic time-dependency profiles, i.e., it contains historical
data of a larger, specific period of time that represents time-dependency information
that is used commercially for daily routing. It explicitly does not cover dynamic time-
dependency information, which may be caused by unpredictable events like accidents,
holiday traffic or bad weather. The time-dependent data covers only a fraction of the
static graph. Table 1 shows how many edges are affected by time-dependency. Addition-
ally, the number of affected edges is broken down into their assigned road-categories.
The first row of Table 1 shows that each of the daily time-dependent datasets con-
sists of a few hundred profiles, each of which represents traveling times of hundreds of
thousands of edges. Evidently, the data is already highly compressed. We push the com-
pression idea to the limit to see whether a small set of representative profiles emerges.

Each profile is represented by a PWLF having 96 supporting points. We find similar
profiles using the k-means algorithm of Lloyd [10]. To compare the profiles, we interpret
them as points in R96. Since the outcome of k-means depends on the randomly chosen
profiles in the initialization phase, the algorithm is restarted several times and the result
with the lowest total distance is used. The results were stable over several executions of
the k-means algorithm. Figure 1 shows all profiles of the days Tuesday to Thursday on
the left side and the normalized ([0.0,1.0]), k-means compressed profiles with k = 4 on
the right; larger values of k gives similar functions differing only by an offset. Following
the intuition, four types of profiles can be distinguished:

Table 1. Fraction of edges of the static graph, consisting of ∼11 million edges, affected by time-
dependent profiles. The number of affected edges has been broken down into their road category.

Mo Tu-Th Fr Sa So
#Profiles 406 436 420 255 153
% of tdEdges 4.60% 4.73% 4.30% 2.67% 1.74%
Expressway 14.05% 14.24% 12.90% 7.43% 10.12%
Non-urban 60.52% 60.44% 60.38% 66.75% 63.49%
Urban 25.43% 25.32% 25.72% 25.82% 26.39%
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Fig. 1. On the left hand side all profiles for the days Tuesday to Thursday are shown. On the right
hand side, the centroids of the first normalized ([0.0,1.0]) and then compressed set of profiles for
the days Tuesday to Thursday using the k-means algorithm with k = 4 is shown.

– Full-time: the travel speed is constantly reduced on a large part of the day (FUL).
– Camel: the travel speed is reduced in the morning and in the afternoon. In between

the edge can be traversed faster (CAM).
– Morning: the travel speed is mainly reduced in the morning. Probably it is reduced

in the afternoon too, but not as strong as in the morning (MOR).
– Afternoon: the travel speed is opposite to the case in the morning, thus, the main

reduction is in the afternoon (AFT).

An explanation can be found in the structure of the underlying graph. Roads are mod-
eled using undirected edges, where possible, to reduce space consumption, e.g., small
roads that can be traversed in both directions. However, in the case of roads whose di-
rectional lanes are separated, directed edges are used. Thus, sections of roads that would
have a camel profile assigned have a morning profile assigned for the one direction and
the afternoon profile for the other direction.

A further, more detailed look at the road-network infrastructure reveals that urban
regions mostly have full-time profiles assigned. Roads leading into urban regions have
camel profiles assigned. In the case of separated lanes morning profiles are assigned
to roads leading into urban regions whereas afternoon profiles are assigned to roads
leaving urban regions.

So far, we made three observations that will help us in developing algorithms to
create realistic time-dependent road networks: 1. Delays seem to originate from traffic
between towns and their area of influence. 2. The profiles assigned to edges are differ-
ent, based on their location within, leading into or leading out of town. 3. Profiles have a
similar curve progression and are therefore well compressible. That way we can store a
few representative profile types P = {FUL,CAM,MOR, AFT} and use them for the as-
signment. To randomize the generated data and make it look more realistic, the profiles
can be disturbed accordingly before they are assigned to edges. A fourth observation
can be made that originates from the modeling process. Usually, roads have bends and
crossings. Thus, they are often modeled having many edges and nodes. On the one hand
it is important to know which edges are affected by time-dependency in general. On the
other hand it is unlikely that profiles of adjacent nodes differ significantly. Thus, similar
profiles should be assigned to paths of adjacent nodes.
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3 Algorithms for Assigning Profiles

As already stated, real-world road networks are hard to obtain. Nevertheless, some
sources for static scenarios are available, e.g., commercial data of PTV AG [9], arti-
ficially generated data [11] or open source data like the OpenStreetMap project2. Usu-
ally, these datasets not only contain nodes, edges and travel times of the underlying
road network, but contain additional information. We exploit this information to locate
urban regions within a given road network.

Real-world datasets often contain road categories that roughly correspond to com-
mon street categories, e.g., urban, express- or motorway, but are much more detailed.
Each edge e ∈ E has a single road category from the set of all road categories ζ assigned
by a function cat : E → ζ . In some cases, the datasets may not contain road-category
information in high detail, the data is flawed or is completely absent, e.g., when dealing
with artificial road-networks. However, in many cases these datasets have in common
that they rely on an embedding in the plane and thus contain coordinates for nodes.
Each of the vertices v ∈V has coordinates assigned by a function p : V → R2.

This additional information is used to compute structural information, which is then
exploited to locate edges that are likely to be affected by time dependency. Note that
we do not assign a profile to an edge immediately but rather attach profile types and
their quantity to affected edges. This allows edges to be affected by different types of
categories, e.g., if a road can be traversed in both directions it may get a morning as
well as an evening profile type attached. Our algorithms work in five stages as follows.

Preprocessing. First, in the preprocessing phase structural data is computed to split
the set of nodes V of the road network into two disjoint sets. Namely, urban nodes
U ⊆ V and rural nodes R ⊆ V . Boundary nodes are defined by the subset of urban
nodes that are adjacent to at least one rural node, i.e., B := {u ∈ U | ∃(u,v) ∈ E,v ∈ R}.
The following phases rely on this separation for profile type assignment. In some cases,
the urban regions can be classified to form a set of disjoint towns.

Urban. Next, the urban phase starts. We assume that people who live within an urban
region will travel only within an urban region. Thus, edges of paths that are used often
will get a full-time profile type assigned.

Rural. In the rural phase, we determine the edges that are likely to have a morning or
evening profile assigned. The basic idea is that commuters drive from rural into urban
regions in the morning and back in the evening. This is not done arbitrarily. Each urban
region has a surrounding region of influence denoted by urban catchment.

Filtering. In the case that too many edges are affected by profile types, these can be
filtered to fit statistical properties, e.g., the profile distribution of the commercial data.
We follow a simple rule: If less than a filter limit F profiles types are assigned to an
edge, the edge is considered to be not affected by any delay.

Postprocessing. So far profile types p ∈ P have been assigned to edges. In a more re-
alistic scenario, these could now be created with random offsets or overlayed with each

2 http://www.openstreetmap.org/

http://www.openstreetmap.org/
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other. To preserve comparability we will omit this randomization part. Instead, each
edge is examined and the profile type occurrences will determine the resulting profile
type of the edge using the following mapping (! indicates no occurrance):
1. (AFT ∧ !MOR) → AFT; 2. (!AFT ∧ MOR) → MOR; 3. (AFT ∧ MOR) → CAM;
4. (FUL∧ !AFT ∧ !MOR) → FUL. Note that other goals of this phase could be to make
the transitions from exterior profiles to interior profiles smooth by interpolation, as soon
as the boundary nodes are crossed. Furthermore, it may be interesting to overlay pro-
files on affected edges, e.g., to reduce harsh changes in the profiles. Problems arising
when dealing with both of these problems are not covered here.

In the following we present three algorithmic approaches to find edges that are likely
to be affected by time-dependent profiles types without having any traffic information
available. The phases of each algorithm are described in detail. Note that all of the
algorithms use the filtering and postprocessing phase as described above.

3.1 Algorithm I: Affected-By-Category

Our algorithm AFFECTED-BY-CATEGORY relies solely on road-category information
to identify edges that are likely to be affected by delays. We make two assumptions.
First, exploiting road-categories leads to a good classification of the nodes into urban
and rural regions. Second, most people use faster roads to travel between rural and
urban regions. Thus, delays occur mainly on those road-categories, which allow for a
fast traveling.

Preprocessing. We locate urban regions within the network by assuming that they are
connected by edges e of certain road-category, i.e., cat(e) ∈ ζurban, where ζurban ⊆ ζ
denotes a set of road categories that is considered to be urban. Additionally, the length
of those edges e that are of urban category must not exceed a maximal length len(e) ≤
mDist. The urban regions are defined by the connected components of the subgraph con-
taining only these edges. They are computed by a modified breadth first search (BFS),
which follows only the constrained edges. The urban regions of a road network identi-
fied this way are candidates for being towns.

In reality a town is not only connected by slow urban roads. Often faster roads are
built to speed up travel times within, out of and into towns. Our simple algorithm omits
these roads as otherwise only few quite big towns are found. We reduce the generated
fragmentation in the next step. The pseudo-code of the REDUCE-FRAGMENTATION

procedure is listed in Algorithm 1. We use a local neighborhood search (BFS) that
is limited to a specific number of hops hLim to visit nearby nodes and look for their
town candidate membership. If the number of neighbors belonging to the same town
candidate exceeds a specific ratio nRatio, we consider this node to be part of that town
candidate too. We store the update information but defer the update itself for a later
batch update to prevent towns from growing arbitrarily large.

After the fragmentation has been reduced, we compute the size of each town can-
didate. If the size exceeds a limit tThresh, we consider it to be a town t. Additionally,
we store which of the town nodes are boundary nodes by checking whether they are
adjacent to nodes outside the town.
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Algorithm 1: Reduce-Fragmentation
Input: G(V,E), hop limit hLim, neighbor ratio nRatio, connected components inform. CC
Output: Towns T
U ←− /0;1

foreach v ∈ V do2

neighbors ←− NeighborhoodSearch(v, hLim);3

maxfraci(v) ←− largest fraction of neighbors in same CC i;4

if size(maxfraci(v)) ≥ nRatio then U ←−U ∪pair(v, i);5

foreach u ∈U do CC(u) = i;6

Urban. In the urban phase we expect people who live in urban regions to travel mainly
within that area. This is done all over the day and thus, full-time profiles have to be
assigned to edges. To find intensely used roads inside a town, we perform shortest path
queries between all boundary nodes B of each town t ∈ T and assign full-time profiles
to the edges of the shortest paths found.

Rural. The regional influence of towns is the basis of the rural phase. Commuters will
drive in the morning into and in the evening out of the town. During their travel they
have to pass at least one boundary node of towns. We assume that the regional attraction
of a town is reduced with the distance people have to travel to reach the town, and we
expect travelers to use faster roads to quickly reach their destination. Thus, the idea is
to push a certain amount of delay along roads of a specific category starting from the
boundary nodes of each town. In each step the delay decays until the process stops.

The set of delay categories used for pushing delays is a subset of all available road
categories, i.e., ζdelay ⊆ ζ . In our generation process we used all road categories that
have a faster traveling speed than the urban road categories.

First, the so called capacity c = 10 · size(t) of each town is computed, which models
the amount of people traveling from and into town. Then, for each town t, the subroutine
DAMPENINGBFS[MORNING/AFTERNOON] (t, ζdelay, c, cDamp, rDamp) is executed.
It first sets the interior nodes of the town to be visited to not accidently run into the
interior part. Then, the capacity c is equally distributed among the boundary nodes B
of t. Depending on the subroutine’s type (morning/afternoon), DampeningBFS follows
edges (incoming/outgoing) of a given category ζdelay and assignes profile types to the
visited edges (MOR/AFT). Every assignment of a profile type to an edge uses up a
constant factor cDamp = 1.0% of the remaining capacity as well as a dynamic part
rDamp = 0.5% ·edgeLength. The subroutine ends when the capacity is depleted or falls
below the threshold cLim = 100. In our experiments, we used the constants given above.

The advantage of the algorithm AFFECTED-BY-CATEGORY is that individual ca-
pacities and categories can be chosen. Thus, it is possible to model diverse behavior,
e.g., short, mid or long distance commuters. A drawback of this approach might be that
roads do not have the same category from their start to their end. Thus, the algorithm
might not be able to use up a chosen capacity. Additionally, a harsh changeover of the
assigned profiles at the boundary nodes of towns can be observed.
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3.2 Algorithm II: Affected-By-Region

To overcome the limits of AFFECTED-BY-CATEGORY, we propose another algorithm
that involves random shortest path queries between the urban catchment of a town and
its interior. The preprocessing and urban phase are the same as in Section 3.1.

Rural. In the rural phase we first identify an area around the town that we expect to be
its corresponding urban catchment. The size � of this region is computed using the urban
catchment ratio UCR by � = UCR ·size(t). Again we assume that commuters travel from
this region into the town. To model this behavior, we perform Dijkstra queries from
randomly selected nodes of the ring around the urban catchment to randomly selected
urban nodes of the town. The ring consists of the neighbors of the nodes after � nodes are
found by a local exploration starting at the boundary nodes of the town. A fraction RQF
of these ring nodes are selected to perform shortest-path queries to randomly selected
nodes in the town and back. Profile types are assigned accordingly.

The algorithm AFFECTED-BY-REGION covers much better individual behavior and
overcomes the road-category specific limitation of AFFECTED-BY-CATEGORY. How-
ever, the algorithm does not model long-distance commuter behavior because it relies
on local subroutines. Nevertheless, this can easily be overcome by computing random
town-to-town shortest-paths.

3.3 Algorithm III: Affected-By-Level

So far we used road-category information of the source data to locate regions that cor-
respond to towns. The Algorithm AFFECTED-BY-LEVEL uses solely coordinate infor-
mation of the underlying road network for this purpose.

We assume that towns are well connected and modeled in large detail. Thus, the
bounding boxes of urban nodes of a limited local neighborhood search are expected
to be small whereas the bounding boxes of rural nodes are rather large. We use the
normalized reciprocal value of the occupied area and call it level of the node, which
is a function level : V → [0.0, . . . ,1.0]. Thus, a high level corresponds to a vertex in an
urban region whereas a low value is likely to lie in a rural region.

Preprocessing. In the preprocessing phase we compute the level of each node of the
road network to allow for a classification of the nodes into urban or rural ones. The
ratio of how many nodes are classified into the urban set can be specified by the param-
eter urbR. First, the local neighborhood of each node v ∈ V is explored until a limited
number BBL of neighbors is found. Afterwards, the bounding box of the neighbors
is computed and stored in area(v). Then, the level lev(v) = 1/area(v) of each node is
computed. This data is then sorted in ascending order. The value of urbR · |V | deter-
mines the index of the entry in the sorted dataset that contains the urbanThreshold.
Next, for each node v ∈ V , lev(v) ≤ urbanThreshold is evaluated. If true, the node is
assigned to the rural set R of nodes, otherwise to the urban set U of nodes. Note that in
this algorithm we do not model towns.

Urban / Rural. Now we follow the intuition that commuters in most cases travel locally
depending on their level. In the morning people travel from rural regions into urban re-
gions and back in the evening. The urban and the main phase are incorporated into the
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Algorithm 2: Affected-By-Level
Input: G(V,E), ∀v ∈V : level(v) ∈ [0,1], R, U , query fraction QF, settled nodes limit SNL
Output: G(V,E),e ∈ E : p(e) ∈ P
toPer f orm ←− QF · |V |; count ←− 0;1

for count ≤ toPerform do2

u ←− randomNode(V ); count ←− count +1;3

S ←− LevelDijkstra(u, SNL);4

if u ∈ R then5

v ←− select random node with high level of S;6

Dijkstra(u,v,MOR); Dijkstra(v,u,AFT);7

else8

v ←− select random node with similar level(r) out of S;9

Dijkstra(u,v,FUL); Dijkstra(v,u,FUL);10

AFFECTED-BY-LEVEL Algorithm. The pseudo-code is listed in Algorithm 2. First, the
fraction QF of local queries in relation to the number of nodes in the graph is deter-
mined. Then, a random node u is chosen until the necessary amount of queries to per-
form is exceeded. Starting from the node u, the subroutine LEVELDIJKSTRA(u,SNL)
returns the shortest-path tree S after SNL nodes have been settled. If the node u is of
rural type, a random target node v of high level in S is chosen and a morning profile
type attached to the edges of the shortest path from u to v. Afterwards, the edges of the
shortest path from v to u get an afternoon profile type assigned. In the case that the level
of node u is of urban type, a random node v of approximately equal level is chosen.
Afterwards, the edges of the shortest paths from u to v as well as from v to u get an
full-time profile type assigned.

A clear benefit of the algorithm AFFECTED-BY-LEVEL is that it is all-purpose be-
cause it depends solely on coordinate information of the underlying road network. Thus,
if road categories are faulty or even absent or in the case of artificially generated data
this algorithm can still be applied. A drawback of this approach is that quite a large
fraction of the road network has to be locally explored to achieve a representative pro-
file assignment. As a result quite many edges are affected, which is not true for the
commercial data. Hence, many edges have to be filtered out to fit with the statistical
properties of the real-world dataset.

4 Experiments

In this section we experimentally assess the usefulness of our proposed algorithms.
First, we will report on the parameter tuning done to generate meaningful data. The
hereby generated datasets are then compared to the commercial dataset by means of
statistical properties in a global and local scope. Furthermore, the shortest-path structure
of the datasets is analyzed. Our implementation is written in C++ using the STL but
no other additional library. The code was compiled with GCC 4.5 and optimization
level 3. All experiments were run using OpenSuse 11.3 on one core of an AMD Opteron
6172@2.1 GHz, 512KB L2 cache and 256GB RAM.
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Table 2. Parameters used by our algorithms to compute artificial, time-dependent data for the
graph of Germany

Algo mDist tThresh hLim nRatio UCR RQF urbR BBL QF SNL F
Category 300 500 5 75% - - - - - - 0
Region 300 750 5 75% 3.0 5% - - - - 0
Level I - - - - - - 45% 200 20% 400 8
Level II - - - - - - 45% 200 40% 400 8

Table 3. Percentage of the profile types assigned to edges of the time-dependent graphs. Addi-
tionally their creation time is given in minutes.

Category PTV Category Region Level I Level II
notset 93.00% 92.60% 90.73% 92.13% 80.55%
camel 2.73% 2.19% 1.53% 3.60% 9.33%
morning 1.21% 1.22% 3.40% 2.44% 5.30%
afternoon 1.53% 1.22% 3.40% 1.30% 3.30%
full-time 1.50% 2.74% 0.92% 0.50% 1.52%
time (min) - 55 72 21 26

Input. In the experiments, the road network of Germany that is provided by the com-
pany PTV AG was used. The graph consists of about 4.69 million nodes and 11.18 mil-
lion edges. An additional dataset contains time-dependency information, which refers to
a subset of the affected edges of the graph. We further compressed the time-dependent
data and substituted each profile by its representative profile, as identified in Section 2.

Parameters. The algorithms can be fine-tuned using many parameters. In Table 2 we
derive for each algorithm a parameter set that fits best with the statistical properties
of the profile distribution of the real-world dataset, which is shown in Table 3. An
exception is the parameter set Level II, which fits best with the statistical properties of
the time-dependent Dijkstra experiment, which we show later. Parameters that are not
listed here are treated as constants and are specified in the corresponding algorithm in
Section 3. When speaking of generated datasets we refer to the datasets generated with
these parameters. In our discussion we use the following abbreviations for each of the
datasets: PTV, Category (CAT), Region (REG), Level I (L1) and Level II (L2).

Global statistical properties. Table 3 shows the distribution of the representative pro-
file sets of the real-world dataset as well as of the generated datasets. CAT fits best the
properties of PTV but contains slightly more FUL profiles. REG contains only a third of
FUL profiles compared to CAT and three times the amount of MOR and AFT profiles.
An explanation is that REG works similar to CAT but randomly selects nodes inside of
towns instead of the towns boundary nodes. Thus, by the specification of our postpro-
cessing step many FUL profiles are overridden with profiles of type MOR and AFT. A
similar overriding behavior can be observed for L1. Noticeable is the difference of the
occurrences of MOR and AFT profiles for L1 and L2, which originates from different
shortest paths for nodes (u,v) and (v,u) in combination with the simple filtering rules
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Table 4. Amount of profile types assigned to the shortest path edges that are found by Dijkstra
during its execution of 10,000 queries. The results have been averaged.

Algorithm full-time evening camel morning ∑TDE not-set
PTV 6.14 26.49 28.36 18.79 79.78 188.99
Category 8.16 35.36 7.73 40.18 91.43 177.33
Region 1.09 32.28 31.63 33.60 98.60 170.16
Level I 2.23 4.80 17.66 13.15 37.84 230.93
Level II 5.89 10.07 41.03 31.93 88.92 179.85

Table 5. Algorithmic properties of 23,000 time-dependent Dijkstra queries performed on the
commercial and generated datasets. The results have been averaged.

Graph sNodes touEdges tdEdges errorRate rel-av rel-max
PTV 364722 436399 27608.2 - - -
Category 364700 436362 32684.0 22.77% 0.39% 5.88%
Region 364705 436364 37852.8 26.07% 0.45% 5.88%
Level I 364721 436400 29787.9 22.62% 0.43% 5.95%
Level II 364725 436407 73641.3 21.88% 0.56% 9.70%

applied. L2 does not aim at fitting best to PTV but we can see that the ratio of profile cat-
egories is preserved. Additionally, the running time of each of the generated datasets is
given. Note that a large part of the time is consumed by performing point-to-point short-
est path queries. Our algorithms can be accelerated using speed-up techniques where
possible.

Local statistical properties. The statistical properties given in Table 1 reflect only the
global view on the distribution of time-dependent edges in the generated datasets. To
compare this information on a local level, we chose 10,000 source-destination pairs at
random, performed Dijkstra queries between them and compared the occurrences of
profile types on the shortest path found for each of the datasets. In Table 4 the average
number of the encountered profile types during each query are shown. For a better
overview, the number of edges affected by time dependency are summed in the column
TDE. Despite minor outliers the relations of the data seem to be of equal size. The
outcome of this experiment leads to the recommendation to use REG as it seems to fit
best with the local properties of PTV.

Shortest-path behavior. So far we assessed the generated data to have similar struc-
tural properties in global as well as local scope. Next, we focus on the algorithmic
behavior in order to show that an evaluation of shortest-path algorithms on the gener-
ated datasets gives similar results as for the real-world dataset. In Table 5 we present the
shortest-path properties of 23,000 Dijkstra queries. In particular, these are the number
of settled nodes (sNodes), touched edges (touEdges) and time dependent edges (td-
Edges). Additionally, the error rate (errorRate) is given, which specifies the amount of
queries that had a different length compared to the referential distance computed on
PTV. The average difference between the actual computed distance and the reference
distance of the real-world graph is also presented (rel-av). Furthermore, the relative
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maximal distance difference is shown (rel-max). The experiment indicates that all of
our time-dependency generation algorithms lead to a similar behavior of the shortest
path algorithm applied and thus are qualified to generate meaningful time-dependency
datasets.

5 Conclusion

We presented the first algorithms to generate realistic time-dependency information for
large-scale road networks of continental-size. The scenario we deal with consists of sys-
tematic delays on a daily basis within road-networks, which omits unexpected events
like accidents, weather or holidays. By the analysis of a commercially used but con-
fidential time-dependent road network of Germany3, we found a set of representative
profiles and deduced a way to classify nodes and edges of the road network in such
a way that it is easy to compute edges that are likely to be affected by the aforemen-
tioned set of representative profiles. Hence, our algorithms search for urban areas within
static road-networks by the utilization of either road-categories or coordinates. Assum-
ing commuters behave in predictable ways depending on their location within the road
network, we compute edges that are likely to be affected by time dependency. The ex-
perimental study shows the usefulness of the generated dataset in a comparison to the
real-world dataset by means of the statistical properties of the generated graphs as well
as algorithmic shortest path behavior.

Our work allows experimenters to validate algorithms for time-dependent point-to-
point queries on more realistic data than it was previously possible. The running times of
our algorithms are practical in the sense that using reasonable parameters, continental-
sized graphs can be handled within a few hours. The algorithms incorporate many de-
grees of freedom that allow for an adaption to specific applications. The running times
of the algorithms can be accelerated by replacing Dijkstra’s algorithm with speed-up
techniques where possible.

Acknowledgments. We thank Reinhard Bauer, Daniel Delling, Ignaz Rutter and the
anonymous referee for the valuable discussions and for suggestions how to improve the
appearance of this work.
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Abstract. We study the performance of several alternatives for imple-
menting extendible arrays, which allow random access to elements stored
in them, whilst allowing the arrays to be grown and shrunk. The study
not only looks at the basic operations of grow/shrink and accessing data,
but also the effects of memory fragmentation on performance.

1 Introduction

Dynamic (internal-memory) data structures are ubiquitous in computing, and
are often used in on-line, continuously running, software that responds to exter-
nal events (such as “daemons”). Many classical data structures (heaps, dynamic
trees etc), are developed in the pointer machine model [17]; this paper is not
primarily concerned with these, but with the rapidly increasing number of RAM
dynamic data structures (e.g [1]) that have been recently proposed, particu-
larly succinct data structures [12,4,11,5,13]. An important feature of these data
structures is that they repeatedly allocate and deallocate variable-sized pieces
of memory. The memory usage can be measured in two ways:

– In the memory manager model the algorithm calls built-in “system” proce-
dures allocate and free. The procedure allocate(x) returns a pointer to the
start of a sequence of contiguous (unused) memory locations, and increases
the memory usage of the algorithm by x units. The procedure free(p) takes
as an argument a pointer p to a contiguous block of memory locations that
was previously allocated, and frees the entire block; the memory usage of the
algorithm reduces by the requisite number of units.

– In the classical RAM memory model, the algorithm has access to memory
words numbered 0, 1, 2 . . .. The space usage at any given time is simply s+1
where s is the highest-numbered word currently in use by the algorithm [6].

Although many dynamic succinct data structures [4,9,2] work in the memory
manager model, this model does not charge the data structure for space wastage
due to external fragmentation [16, Ch 9]. It is known that if N is the maximum
total size of blocks in use simultaneously, any memory manager needs Ω(N lg N)
words of memory to serve the requests in the worst case [14,15,10]. (If data is
always allocated in fixed-size chunks, there is no serious issue with fragmentation;
we also do not consider situations where the memory manager can move an
already allocated chunk of memory to a different address.)

P.M. Pardalos and S. Rebennack (Eds.): SEA 2011, LNCS 6630, pp. 447–458, 2011.
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Fragmentation is problematic for a number of reasons. If the memory allocator
is directly allocating physical memory, then fragmentation results in significant
underuse of physical memory. Of course, most computing devices run operating
systems that provide per-process virtual memory, but this is not universal: oper-
ating systems such as Android do not support virtual memory, and this appears
to be relatively widespread when the secondary storage is based on solid-state
technology, due to the current tendency for upgrades to degrade solid-state mem-
ory1. Even when virtual memory is supported, it is not axiomatic that virtual
memory is unlimited — a notable example is the Java VM, which is limited to
2GB of virtual memory. Finally, when virtual memory is effectively unlimited
(as it would be on a 64-bit machine), when the data being stored is close to the
physical internal memory on a machine, fragmentation may lead to “thrashing”,
and on smaller input sizes, poor usage of TLB.

Unfortunately, the memory-manager model is the only memory allocation
method available for normal application programmers, and it is inconvenient
(as in [11,5,13]) to simulate the RAM memory model through the memory-
manager model (in practice such simulation is impossible if the data struc-
ture is to be used as part of a large, complex application). Our aim, therefore,
is to find fragmentation-friendly dynamic data structures, which (ideally) achieve
fragmentation-friendliness through self-tuning, and not by means of parame-
ters that the user sets, since these parameters may be highly data-dependent
(e.g. they may depend upon the relative amount of textual and markup data
in an XML document, the distribution of keys to be hashed in a dictionary
etc.).

Collections of extendible arrays. We focus on the above issues in a collection
of extendible arrays (CEA), which is arguably the simplest dynamic random
access data structure, but can be used to build complex data structures [11,13]. A
CEA maintains a collection of extendible arrays (EAs); each EA in the collection
is a sequence of n records. Each record is stored in a single word and is assigned
a unique index between 0 and n − 1. The operations supported are:

– create(r): create an new empty EA and return its name,
– destroy(A): destroy the EA A, and
– access(i, A): access (read/write) the record with index i in the EA A,
– grow(A): if the EA A currently has n records, add a new record to the end

of A with index n.
– shrink(A): if the EA A currently has n records, delete the record in A with

index n − 1 (the last record).

Although there have been several studies of memory fragmentation in general
[3,8,7], we believe this the first study where the effect on fragmentation of a
series of allocations/deallocations by a specific data structure is studied.

1 This is especially problematic when the amount of secondary memory is limited, as
memory locations will be written to repeatedly by the virtual memory system.
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2 Data Structures

We now describe our data structures. A CEA is represented by a vector (as
described below) which contains pointers to the individual EAs; the handle of
an EA is simply the index in this vector that contains the pointer to the EA.
We consider the following implementations of an individual EA:

Vector. This is the standard data structure, which stores an EA with n records
in an array of size at most 21+�log2 n� records. To handle an intermixed sequence
of grow and shrink operations, a rule for resizing the array might be as follows:
double the array size whenever there is no more room to accommodate a grow
and halve the array size whenever a shrink causes it to become less than 1/4 full.

Remarks. The time for access is worst-case O(1), grow and shrink take O(1)
amortized time each and and create/destroy take O(1) time each. However, a
vector of size n may have internal fragmentation of Θ(n) words2. Furthermore,
assuming a first-fit allocator, it is easy to come up with a sequence of operations
that yields n vectors of total size O(n) records that occupy a range of memory
addresses spanning Θ(n log n) words (details omitted).

Simple. To reduce the internal fragmentation, the simplest idea is to choose
a fixed integer parameter b > 1 (ideally a power of 2). Records are stored in
fixed-size data blocks of b words each. For each EA with size n, we store a
vector (called the index block) that contains �n/b� pointers to each data block;
to perform access(i), we access the (i mod b)-th entry in the �i/b -th data block.

Remarks. This gives O(1) worst-case time for access and O(1) amortized time
for grow and shrink, and O(1) time to create and destroy empty EAs. The use of
equal-sized data blocks means that a CEA built upon this EA is less susceptible
to external fragmentation. The index block occupies O(n/b) words, this overhead
can be minimized by choosing a large value of b. However, if the collection
contains a significant proportion of small (size , b) EAs, there could Θ(b) words
of internal fragmentation per EA, and the internal fragmentation could be even
more than for the vector CEA. Thus, the parameter b must be chosen based
upon knowledge of the way the DS will be used (which may not be available),
and this DS is not “self-tuning”. Furthermore, from an asymptotic viewpoint,
the fact that index blocks are Θ(n) in size may mean that external fragmentation
caused by index blocks is relevant.

Brodnik. In [4] a vector of size n is divided into consecutive (conceptual)
superblocks of size 1, 2, 4, . . . , 2�log2 n�. A superblock of size 2k is represented
as up to 2�k/2� data blocks of size 2�k/2� each, and memory is only allocated for
non-empty data blocks. An index block contains pointers to all data blocks and
is represented as a vector. The access(i) function is a little complex:

2 By internal fragmentation we mean memory allocated by a data structure but not
used, analogous to the operating systems term [16]).



450 S. Joannou and R. Raman

access(i):
1. Let r denote the binary representation of i+1, with all leading zeros removed.
2. The desired element i is element e of data block b of superblock k, where:

(a) k = �log2(i + 1)�,
(b) b is the �k/2� bits of r immediately after the leading 1-bit, and
(c) e is the last �k/2� bits of r.

3. Let3 p = 2�k/2� + 2�k/2� − 2.
4. Return the e-th element of the (p + b)-th datablock.

Remarks. Brodnik et al. [4] show how to implement access in O(1) worst-case
time. The amortized time for grow and shrink is clearly O(1), and O(1) time is
needed to create and destroy empty EAs. It is easy to see that “wasted” space
(internal fragmentation plus the index block) is O(

√
n) words. Brodnik et al. [4]

show that this level of wasted memory is optimal. However, it is possible to give
a sequence of grow and shrink operations that creates O(n) vectors of total size
O(n), but occupying Θ(n log log n) words of memory (details omitted).

Modified Brodnik. A modification of Brodnik et al.’s data structure is as
follows. All data blocks in a given EA are of the same size b (which is a power of
2), initially b = 2. There is initially an index block of size i (also a power of 2),
initially i = 1. A grow or shrink adds/deletes elements from the last data block,
allocating a new data block or freeing a newly-empty one, as needed. Consider
now a sequence comprising solely of grow operations. If the index block is full,
we alternate between two courses of action: doubling i and doubling b; in the
latter case we take pairs of existing data blocks, and copy their data into a newly
allocated data block of size 2b, and free the existing data blocks (this has the
effect of making the index block half-full). For a mixture of intermixed grow and
shrink operations, if the index block occupancy drops below 1/4 after a shrink we
undo the last “adjustment” operation (i.e. we halve b or i, whichever variable
was doubled most recently). The access operation works as in Simple.

Remarks. This gives O(1) worst-case time for access and O(1) amortized time
for grow and shrink, and O(1) time to create and destroy empty EAs. However,
the CPU cost of the access instruction is significantly lower. Again, the wasted
space is O(

√
n) words and, as with Brodnik, it is possible to give a sequence

of grow and shrink operations that creates O(n) vectors of total size O(n), but
occupying Θ(n log log n) words of memory.

Global Brodnik. Both Brodnik-style data structures above potentially suffer
from external fragmentation when used in a CEA. This is because different EAs
in the CEA will have different data block sizes (we ignore external fragmen-
tation due to index blocks since the index blocks are typically a small overall
component), so a mixture of block sizes will typically be in the process of alloca-
tion/deallocation. We now use some ideas from [13] to “self-tune” block sizes. If
t is the number of EAs currently created, N is their total size, and b the current

3 The formula p = 2k − 1 in [4] is (clearly) wrong: there are O(
√

n) data blocks.
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block size, then the worst-case internal fragmentation is O(bt), and that due to
the index blocks is O(t + N/b). Balancing the two gives the optimal block size
as b = Θ(

√
N/t). The algorithm tries to maintain an ideal block size of c

√
N/t

for some constant c > 0, and whenever the real block size is more than a factor
of two away from this “ideal” value, it is either doubled or halved, resulting in
a re-organization of all EAs in the CEA.

Remark. The time for access is clearly O(1), and in [13] it is shown that the amor-
tized time for grow, shrink and create is O(1); however, this analysis assumes that
the number of EAs in existence at any given time is within a constant factor
of the maximum number of EAs that were ever in existence in the past. The
internal fragmentation is clearly O(

√
Nt) words; representing each EA individu-

ally using Brodnik would lead to internal fragmentation of O(
∑t

i=1

√
ni) words,

where ni is the size of the i-th EA, which is better than O(
√

Nt) unless all EAs
have roughly the same size.

3 Experimental Evaluation

The aforementioned data structures have been implemented in C++ and a va-
riety of tests were conducted to study the speed as well as the memory us-
age/fragmentation of the implementations together with the C++ STL vector,
which we now describe. The test machine that was used to run these tests was
a Intel Core 2 Duo 64-bit machine with 4GB of main memory, 3.16GHz CPU
and 6MB L2 cache, running Ubuntu 10.04.1 LTS Linux. The compiler version
was g++ 4.4.3 with optimization level 3. The CEAs all stored 4-byte integer
records; note that pointers are 8 bytes each. To measure the memory, both vir-
tual memory (VM) and resident memory (RES) that was used by the tests,
/proc/file/stat was used. For the speed tests clock() method was used to
measure CPU time and the /usr/bin/time command for wall time.

3.1 Implementation Details

For all of these DS, except Global Brodnik, a common collection manager class
was used, to allow multiple instantiations of EAs, choosing the DS using compiler
options. The collection manager uses an array of pointers to store the memory
locations of each instance of the DS. Every time the array is full it doubles its
size. The EAs are allocated in memory using the new keyword.

Vector. We used the standard STL implementation, which uses doubling if the
underlying array is full, but when elements are removed, the underlying array
size does not change in any way.

Brodnik. This implementation of this DS is based on the original paper. To
optimize the speed of access (and also shrink and grow), a number of values are
stored in the header block of this DS, giving a relatively large header size of 41
bytes. Further, to optimize access(i), some operations (e.g. �x/2 , �x/2�) were
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written using bitwise operations. To compute �log2 x (the left-most set bit in an
integer x) the folklore trick of casting x to a float is used. We access this memory
as an integer, use bitwise operations to extract the exponent, then subtract the
bias, and the result is the position of the left-most set bit. Finally, a table of
size at most 64 integers was used to map the number of the superblock that
the i-th record is located in, to the number of data blocks prior to the specified
superblock. These optimizations greatly increased the speed of access(i).

Simple. This DS is implemented with the data block size (which must be a
power of 2) being a constructor parameter. In the access function, operations such
as division by b and modulo b are implemented by shifts and masks, respectively.
We used b = 26 = 64 throughout in our tests. Again a number of header variables
are used and the header block size is 29 bytes.

Modified Brodnik. The access(i) operation is similar to Simple, it uses mask-
ing and shifting to get the location of element in a data block and the location
of that data block in a super block. Since the size of these data blocks changes
over time as elements are added or removed, a static array of masks was used.
Since growing the index block and data block alternates, a boolean was used to
check what was doubled last (the index block size or the data block size). This
DS has a header size of 30 bytes.

When the data blocks need to double, every two data blocks are merged into
a new one with double the size. This new data block is stored in the already
existing index block starting from the beginning (thus avoiding the creation of
a new index block). Similarly where access is worst-case O(1), grow and shrink
would take O(1) amortized time each and and create/destroy applied to a new
EA/empty EA would take O(1) time each. However, a vector of size n may have
internal fragmentation of Θ(n) words. Furthermore, assuming a first-fit allocator,
it is easy to come up with a sequence of creates, grows and shrinks that yields
n vectors of total size O(n) records, occupying a range of memory addresses
spanning Θ(n log n) words in total. When shrinking, either the size of the index
block or the data block will be halved. When data blocks need to shrink, one
data block is split into two and this is done by storing the new bigger data block
into a new index block of the same size as the original one. The old data blocks
and index blocks are subsequently deleted.

Global Brodnik. Each individual EA has a header size of 25 bytes. The col-
lection maintains the total number of elements t in all the instances of the EAs
that it contains. We derive from the current data block size b (a power of 2)
an upper bound U = 2b and lower bound L = b/2. After each grow/shrink we
use calculate an ideal block size b̂ =

√
t/N , where N is the number of EAs. We

maintain the condition that L < b̂ < U : if this condition is violated then the
data block size is doubled/halved, along with U and L, to restore this condition.
We avoid doing a square root calculation every time there is a grow or shrink by
checking if t/N ≥ U2 for the upper bound and similarly for shrink. The values
U2, L2 are recomputed every time U and L change.
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The access method is the same as modified Brodnik and an array of masks is
used. The index block of an individual EA is doubled when it gets full, either
to accommodate one new data block, or because the size of the data blocks is
halved. An index block is halved when its occupancy drops below a quarter of
its capacity (by a shrink on an individual EA).

3.2 Speed Tests

We tested the time for access(i) (specifically a read — writes were not tested). In
all cases EAs were created sequentially, i.e., the i-th EA was created and grown
to its final size before creating and growing the (i+1)-st EA. We considered two
access patterns: sequential and random. For the sequential access test elements
were accessed in the order in which they were grown. In the random access test,
we instead made uniform random accesses equal to the number of elements in
the CEA. The random test was essentially run only in the case where all EAs
in the CEA are equally sized, and the number of EAs and elements per EA are
both powers of two. In this case we used one call to the lrand48() method in
the C++ cstdlib. This generates a number in the range of [0, 231): we use the
most-significant bits to select an EA and the least-significant bits to select an
element within that EA. This avoids making two calls to lrand48() (which is
relatively slow), but limits the total number of elements t that can be used for
this test to 231. This was not a limitation as data sizes such as these would have
exceeded the RAM of our machine.

A variety of values of N (the number of EAs) and k (the size of each EA)
was used. The values used were N = 16 and k = 16777216 (a few large EAs),
N = k = 16384 and N = 2097152, k = 128 (many small EAs, relevant to some

Table 1. Growing time, Sequential and Random access time test results (in seconds)

EAs x Elements DS Grow Sequential Random

16 x 16777216

Vector 2.38 0.25 22.65
Brodnik 2.93 1.90 28.66
Simple 1.87 0.31 40.53

Modified Brodnik 1.69 0.29 20.63
Global Brodnik 4.95 0.33 23.96

16384 x 16384

Vector 1.90 0.25 24.03
Brodnik 3.12 1.87 57.46
Simple 1.85 0.32 44.35

Modified Brodnik 2.39 0.30 48.05
Global Brodnik 4.93 0.34 44.46

2097152 x 128

Vector 3.12 0.29 44.69
Brodnik 6.31 2.09 86.45
Simple 2.11 0.43 56.28

Modified Brodnik 6.21 0.58 54.04
Global Brodnik 6.26 0.48 58.26
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succinct dynamic data structures). Each test was run five times and the average
of these times is included in this paper. Table 1 gives the results.

As can be seen, all the data structures are significantly faster than Brodnik for
sequential access. This is very much as expected (and Brodnik is not particularly
“slow” in absolute terms). Also vector is slightly faster than other EAS in all the
tests. The random tests show more interesting structure. In the first test, most
data structures are similar except for Simple, which is a bit slower. All the data
structures used for these tests except for the vector require two memory accesses
to retrieve the required element due to indirection cause by the index blocks.
This is the main reason why in general the vector is faster than the other DS
that were tested. However, in the first test the size of the index blocks in all but
Simple are very small (they grow as

√
n, where n is the size of an individual EA)

and so fit in cache. However, this pattern is not repeated in the other tests, since
the overall size of the index blocks (as a proportion of data blocks) increases
as n decreases. There is a slight advantage to the Global and Modified Brodnik
in terms of access times, we believe that this may be because the regular re-
arrangement of data in Global and Modified results in more compact storage;
but this requires further investigation.

3.3 Memory Usage Results

Worst Case for Brodnik DS. We now discuss a potential worst-case scenario
for the Brodnik DS. The scenario is constructed assuming that there is some
“first-fit-like” behavior in the memory manager and will be tested experimentally
against the real-life Linux allocator.

The Brodnik DS, as mentioned before, has a header block, an index block
and data blocks grouped into virtual superblocks. The test proceeds in rounds
0, 1, 2 . . .. In round i, Ni EAs of size ki are created sequentially (see beginning of
3.2); in rounds i > 0 this creation is accompanied by shrinking (in a round-robin
manner) the EAs created in round i − 1. We choose j0 to be an even integer
and let k0 = 2j0+1 − 1; in subsequent iterations we take ji+1 = 2ji+1 + 4 and
ki+1 = 2ji+1+1 −1. We always maintain N0k0 = N1k1 = N2k2 and so on, so that
the total number of elements in the CEA stays the same.

The reason why this pattern may result in fragmentation is as follows. We
hope that if we sequentially allocate Ni EA of size ki, the space between the
header blocks of EAs will be approximately equal to ki. Note that for EAs of
size 2x+1 − 1, the last superblock is of size 2x, and the size of the data blocks
in the last superblock is 2�

x
2 �. Thus, in the next round, the data blocks in the

last two superblocks of the newly created EAs will be of size 2ji+2 > 2ki. Thus,
we hope that all these data blocks (which total 3/4 of the EAs created in the
i + 1-st phase) will be allocated in “fresh” memory.

In the test, we chose j0 = 4, giving k0 = 31, k1 = 8191 and k2 = 229 − 1 =
536870911. Assuming that N2 = 1, this would imply that N0 = k2/k0, but
our machine was unable to allocate so many EAs. Hence we chose N0 = 222,
N1 = N0k0/k1, N2 = 1, and k2 = N0k0 ≈ 227. The results are shown in Table 2.
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Table 2. The results of the Brodnik DS worst case

i Ni ki VM (GB) RES (GB)

0 4194304 31 2.46 2.45

1 15873 8191 3.03 2.99

2 1 130023424 3.53 3.08

Although the real size occupied with the data blocks should be close to 507MB,
due to the headers of the data structure it reaches the 2.46GB initially as shown
above. In subsequent phases, there is an increase of almost 570MB, showing that
in each case most of the memory allocated for the data blocks is coming from
“new” memory, not memory previously freed, even though the very last EA is
not quite as large as needed by the formula.

Random. For this test we start with N EAs sequentially created, each of size
k. Then we go through the CEA and shrink each EA once. We call this a pass.
After each shrink we grow one EA. The EA to be grown is selected based on
the following rule: the first 20% of the EAs should contain 80% of the elements.
This rule is applied recursively so 20% of the first 20% of EAs should contain
80% of the total number of elements of the first 20% of the EAs. We go through
all the EAs k times, so the EAs at the beginning of the CEA should be larger
and the EAs which have not been grown will have 0 elements.

To run this test the values N = 216 and k = 1024 were used. The gradual
increase after every pass is shown in Figure 1. Table 3 shows the initial memory
usage after creation and growing of the N EAs of size k and the resulting memory
usage after this test was run. The important thing to notice in this test is that
there has been a significant memory increase in all of the data structures without
adding new elements, just by redistributing the elements within the EAs.

Thrashing. For the thrashing test we created N = 219 EAs sequentially, each
of size k = 1200, equating to about 2.4GB of useful data (recall that our machine
has 4GB RAM). We performed random access tests immediately after creation
and after growing and shrinking arrays as in the the 80-20 test described in

Table 3. Memory usage before and after 80-20 test

DS
Initial Ending

VM (KB) RES (KB) VM (KB) RES (KB)

Vector 277648 266980 692040 603772

Brodnik 388228 377576 628456 523156

Simple 304276 293624 357080 343476

Modified Brodnik 328828 318264 577224 485612

Global Brodnik 328768 318208 372900 357440
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Fig. 1. Virtual Memory (Top) and Resident Memory (Bottom) results of the 80-20 test
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Table 4. Memory usage (GB) before and after 80-20 EA modification in thrashing
test; CPU and elapsed time for second random access test (s)

DS
Initial Final

CPU Elapsed
VM RES VM RES

Vector 4.23 3.73 7.34 3.74 40.12 780

Brodnik 3.66 3.65 6.06 3.73 40.19 872

Simple 2.83 2.82 3.20 3.17 28.2 150

Modified Brodnik 3.15 3.14 5.71 3.67 43.28 1988.4

Global Brodnik 3.15 3.14 3.51 3.47 25.52 134.4

Section 3.34. We measured the following: (a) CPU time for the first random
access test (b) VM/RES before and after the 80-20 test (c) CPU/elapsed time
for the second random access test. The results for (b) and (c) are shown in in
Table 4 – we do not report (a) because they are in line with Table 1, except
that Brodnik was slower by a factor of 2 than expected (the initial VM was close
to the physical memory of the test machine). For (c), Brodnik and Modified
Brodnik fell foul of thrashing and took over 14 minutes to complete(thrashing
was verified by inspecting CPU usage and page faults using top). Vector, despite
a high VM, completed, albeit slowly, because it allocates contiguous chunks of
memory. Simple and Global Brodnik performed the best in this case.

4 Conclusions

In this paper we have investigated a simple random-access dynamic data struc-
ture, the collection of extendible arrays. The standard solution would be to use a
number of vectors, but this solution runs into memory fragmentation problems.
We have demonstrated a sharp rise in virtual memory usage for the standard
solution. We have also conducted some tests that demonstrate that for appropri-
ate data sets that require memory close to the physical memory of the machine,
after running the 80-20 test described in section 3.3 the memory requirements
were greater than the physical memory of the machine, thus thrashing occured.
Unfortunately, the same is true for the data structure proposed by Brodnik et
al., which is aimed at solving this problem. We observe that the simple solution
of using indirection, together with the so-called “Global Brodnik” seem to avoid
this problem, but the simple solution requires parameter setting (which in turn
requires knowledge of how the data structure is used) which would appear to pre-
clude it as a general-purpose solution. However, “Global Brodnik” is relatively
slow when supporting the grow and shrink operations, which should be investi-
gated further. Another important task would be to compare their performance
on real-life inputs.

4 With a minor modification: we never let a shrink reduce the size of an EA below 200.
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