
2 Conservation of Momentum 

The time rate for change in momentum of a body equals the net force exerted on it. 
 
Isaac Newton, Philosophiae Naturalis Principia, 1687 

 
 
 

2.1 Introduction 

As in Chapter 1, from the large number of formulations of the conservation equ-
ations for multiphase flows, local volume averaging as founded by Anderson 
and Jackson, Slattery, and Whitaker was selected to derive rigorously the mo-
mentum equations for multiphase flows conditionally and divided into three ve-
locity fields. The heterogeneous porous-media formulation introduced by Gen-
try et al., commented on by Hirt, and used by Sha, Chao, and Soo, is then  
implanted into the formalism as a geometrical skeleton. Beyond these concepts, 
I perform subsequent time averaging. This yields a working form that is  
applicable to a large variety of problems. All interfacial integrals are suitably 
transformed in order to enable practical application. Some minor simplifications 
are introduced in the finally obtained general equation and working equations 
for each of the three velocity fields are recommended for general use in multi-
phase fluid dynamic analysis. 

This chapter is an improved and extended version of the work published in Ko-
lev (1994b). The strategy followed is: We first apply the momentum equations for 
each of the velocity fields, excluding the interfaces by replacing their actions by 
forces. Then, we write a force balance at the interfaces, considering them as im-
material and therefore inertialess. This interfacial force balance links the momen-
tum equations that are valid for the both sides of the interface. 
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2.2 Local volume-averaged momentum equations 

2.2.1 Single-phase momentum equations 

The time rate for change in momentum of a body relative to an inertial 
frame of reference equals the net force exerted on it (Newton).  

 
Applied to a single continuum, this principle results in Euler’s first law of conti-
nuum mechanics (Truesdell, 1968). When applied to each velocity field within the 
control volume, except the interface, this principle yields the well known local in-
stantaneous momentum equation 

( ) ( ) 0l l l l l l l lpτ τ τ τ τ∂ ρ ρ ρ
∂τ

+ ∇ ⋅ − + ∇ + =V V V T g ,   (2.1) 

which is valid only inside the velocity field l excluding the interface. Here, the 
positive velocity direction gives the negative force direction – a commonly used 
definition. The total stress tensor is split into lpτ I  and l

τT . lpτ  is the static 

pressure inside field l, I is the unit matrix, and l
τT  is the shear stress tensor. l l

τ τV V  

is the dyadic product of two vectors l
τV and l

τV – see Appendix 1. It is a second-

order tensor. g is the vector of the gravitational acceleration. Equation (2.1) is the 
generally accepted balance of momentum for the single phase for velocities that 
are much smaller than the velocity of light. 

2.2.2 Interface force balance (momentum jump condition) 

Next, we abstract a volume around the interface having thickness ε  converging to 
zero. Mechanical decoupling of the control volume from the adjacent fields requires 
replacing the action of the forces on the volume by equivalent forces. In this case, 
Cauchy’s lemma holds:  
 

The stress vectors acting upon opposite sides of the same surface at a given 
point are equal in magnitude and opposite in direction, Truesdell (1968,   
p.32). 

 
Characterization of the interface surface tension: Consider two fluids with 
different densities, fluid m, and fluid l as presented in Fig. 2.1.  
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Fig. 2.1 Surface force – geometry definitions 

Fluid m is a gas and fluid l is a liquid, l mρ ρ> . A three-dimensional surface S, de-

scribed by the position vector ( ), ,S x y zr , separates both fluids. We call such fluids 

imiscible. The unit normal vector of the liquid interface ln  points outside the liquid 
l and is an important local characteristic of this surface. It is defined from the spatial 
distribution of the volume fraction of the field l as follows:  

 

( )
( )

l
l

l

α γ
α γ

∇
= −

∇
n .      (2.2) 

 

Due to different molecular attraction forces at the two sides of the surface a result-
ing attraction force with special properties arises at the surface. The force exists 
only at the surface and acts at the denser fluid l. This force is called surface force. 
The surface force per unit mixture volume is denoted by m

l
σf . The subscript l indi-

cates that the force acts at the field l, and the subscript mσ  indicates that the sur-
face is an interface with field m. From the surface S we extract an infinitesimal 
part Aδ  around the point ( ), ,S x y zr  so that 

l Aδ=δA n .       (2.3) 

The closed curve C contains Aδ . The closed curve C is oriented counterclock-
wise. Consider the infinitesimal directed line element ds called the arc length vec-
tor. The unit tangent vector to the surface S at C that is perpendicular to ds is t. In 
this case, the following relation holds: 

lds = ×t ds n .       (2.4) 

The surface force exerted on the surface Aδ  by the surface outside of Aδ  across 
the directed line element ds is equal to lm dsσ t . Here lmσ  is a material property 
being a force tangential to S per unit length called surface tension. It may vary 
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with surface properties such as temperature, concentration of the impurities of the 
liquid, etc. The net surface force on the element Aδ  is then obtained by sum-

ming all forces lm dsσ t  exerted on each element of arc length ds, lm

C

dsσ t . Using 

Eq. (2.4) gives 

lm lm l

C C

dsσ σ= × t ds n .      (2.5) 

The Stokes theorem, see Thomas et al. (1998) for derivation, allows one to transfer 
the integral over a closed curve to an integral over the surface closed by this curve 

( )l lm l l lm

C S

dAσ σ× = ×∇ × ds n n n .    (2.6) 

We see that for the infinitesimal surface Aδ  the surface force per unit interface is  

( ) ( ) ( )l l lm lm l l l lm lσ σ σ× ∇ × = × ∇ × + × ∇ ×  n n n n n n .  (2.7) 

This force can be split into a normal and a tangential component by splitting the 
gradient into a sum of normal and tangential components 

n t∇ = ∇ + ∇ ,       (2.8) 

where 

( )n l l∇ = ∇ ⋅n n       (2.9) 

and 

t n∇ = ∇ − ∇ .       (2.10) 

Using this splitting and after some mathematical manipulation, Brackbill et al. 
(1992) simplified Eq. (2.7) and finally obtained the very important result, 

( ) ( )l l l lm l t lm l lm l t lmσ σ σ σ κ σ× ∇ × = − ∇ ⋅ + ∇ = + ∇n n n n n ,  (2.11) 

where 

( ) ( )
( )

l
l l

l

α γ
κ

α γ
 ∇

= − ∇ ⋅ = ∇ ⋅  
∇  

n      (2.12) 

is the curvature of the interface defined only by the gradient of the interface unit 
vector. Equation (2.12) is used in Eq. (5.4) in Drazin and Reid (1981, p. 23). Note 
that the mathematical definition of curvature is the sum of the two principal 
curvatures which are magnitudes of two vectors. This sum is always positive. The 
expression resulting from Eq. (2.12) defines curvature with sign, which means with 
its orientation. The curvature is positive if the center of the curvature is in the fluid 
m. In other words, the positive curvature lκ  is oriented along the normal vector ln .  
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As an example, let us estimate the curvature of a liquid layer in stratified flow 
between two horizontal planes with a gap equal to H. The interface is described by 

the curve ( )2*
z

z x
H

α= =  being in the plane y = const. As coordinates we use 

( ), , *x y z . The gradient of the liquid volume fraction is then 

( ) ( ) ( ) ( ) ( )2 2 2 2
2

*
* *

x x x xz
x

x z x z x

α α α α
α

∂ ∂ ∂ ∂∂∇ = + = + = +
∂ ∂ ∂ ∂ ∂

i k i k i k . 

The magnitude of the gradient is then  

( ) ( )
1/ 22

2
2 1

x
x

x

α
α

 ∂  ∇ = +  ∂   
. 

The normal vector is 

( )
( )

( )

( ) ( )

2

2
2 1/ 2 1/ 22 2

2
2 2

1

1 1

x
x x
x x x

x x

α
α
α α α

 
 ∂
 ∇ ∂ = − = − +
 ∇    ∂ ∂       + +       ∂ ∂           

n i k . 

The curvature in accordance with Eq. (2.12) is then 

( ) ( )
( )

l
l l

l

α γ
κ

α γ
 ∇

= − ∇ ⋅ = ∇ ⋅  
∇  

n  

( )

( ) ( )

2

1/ 2 1/ 22 2

2 2

1

1 1

x

x

x x

x x

α

α α

 
 ∂
 

∂ = ∇ ⋅ +
    ∂ ∂       + +       ∂ ∂           

i k  

( )

( ) ( )

2

1/ 2 1/ 22 2

2 2

1

*
1 1

x

x
x zx x

x x

α

α α

∂
∂ ∂∂= +
∂ ∂   ∂ ∂      + +      ∂ ∂         

. 
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Bearing in mind that 

( )

( ) ( )

( )

2
2 2

1/ 2 3/ 22 2

2 2

1 * 0
*

1 1

x x

x x z
z x x

x x

α α

α α

∂ ∂
∂ ∂ ∂ ∂= − =

∂    ∂ ∂      + +      ∂ ∂         

, 

one finally obtains the well known expression 

( ) ( )
3/ 222

2 2
2 2

1
x x

x x

α α
κ

 ∂ ∂  = +  ∂ ∂   
. 

The higher pressure is in the fluid medium on the concave side of the interface, 
since surface force in case of constant surface tension is a net normal force  
directed toward the center of curvature of the interface.  

Note that the term lm lσ κ  becomes important for  

1/ 0.001l mκ < .       (2.13) 

The term t lmσ∇  can be expressed as 

( ) ( )
max

1

i
lm lm

t lm t l t il
il il

T C
T C

∂σ ∂σσ
∂ ∂=

∇ = ∇ + ∇ .    (2.14) 

These terms describe the well known Marangoni effect. 
The grid density for computational analysis can be judged by comparing the 

size of the control volume xΔ  with the curvature. Obviously, if and only if the 
volume is small enough, 

1lx κΔ < ,       (2.15) 

the curvature can be resolved by the computational analysis. 
 

No velocity variation across the interface: Consider the case for which there is no 
velocity variation across the interface (e.g., stagnant fluids) – Fig. 2.2.  

The interface pressure ,m
lp σ τ  is the normal force per unit surface acting on field 

l. This force acts inside the field l in the immediate vicinity of the interface and in 
the opposite direction on the interface control volume. It is different from the sur-
face force exerted by the pressure of the neighboring velocity field, ,l

mp σ τ . If there 
are no other forces except pressure and surface tension, we have 

, ,m l
l l m mp pσ τ σ τ+n n 0l lm lm l lσ σ κ+∇ + =n .    (2.16) 
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Fig. 2.2 Interface force equilibrium without mass transfer and Marangoni effect (Laplace) 

This equation is known as the Laplace equation. If, in addition, we have viscous 
forces acting on the two sides the momentum balance is 

( ) ( ), , , ,m m l l
l l l m m mp pσ τ σ τ σ τ σ τ− ⋅ + − ⋅T I n T I n 0l lm lm l lσ σ κ−∇ − =n . (2.17) 

Velocity variation across the interface: If mass is transferred from one to the other 
fluid for whatever reason, the interface moves in space not only convectively but 
is also controlled by the amount of mass transferred between the fields – Fig. 2.3. 
In this case, the interface velocity lm

τV  is not equal to the neighboring field veloci-
ties. The mass flow rate 

( ) ( )l l lm llm
w τ τρ ρ= − ⋅V V n   

enters the interface control volume and exerts the force ( )l l l lm l
τ τ τρ − ⋅V V V n  per 

unit surface on it. Note that this force has the same direction as the pressure force 

inside the field l. Similarly, we have a reactive force ( )m m m lm m
τ τ τρ − ⋅V V V n  exerted 

per unit surface on the control volume by the leaving mass flow rate. Assuming 
that the control volume moves with the normal component of the interface  
velocity, lm l

τ ⋅V n , we obtain the following force balance: 

( ) ( ), ,m m
l l l lm l l l lpτ τ τ σ τ σ τρ− − ⋅ + − ⋅V V V n T I n  

( ) ( )m m m m m m m mpτ τ τ τ τ
σ σ σρ− − ⋅ + − + ⋅V V V n I T n 0l lm lm l lσ σ κ−∇ − =n . (2.18) 
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Fig. 2.3 Definition of the interface characteristics 

This is the general form of the interfacial momentum jump condition. It is con-
venient to rewrite the above equation by using the mass jump condition at the 
interface 

( ) ( ) 0l l lm l m m lm m
τ τ τ τρ ρ− ⋅ + − ⋅ =V V n V V n ,   (2.19) 

which is Eq. (1.42). The result is  

( ) ( ), , , ,( ) 0l m m l
l l lm m l m l l m lm l l l lmp pτ τ τ τ σ τ σ τ σ τ σ τρ σ κ σ − − + − + − − ⋅ − ∇ = V V V V I T T n  

   (2.20) 

or 

( ) ( ) ( ), , , , 0l m m l
m l m l l l m lm l l l lmlm

w p pτ τ σ τ σ τ σ τ σ τρ σ κ σ − + − + − − ⋅ − ∇ = V V n T T n . 

   (2.21) 

The projection of this force to the normal direction is obtained by scalar multipli-
cation of the above equation with the unit vector ln . The result is 

( ) ( ) ( ), , , ,l m m l
m l l m l lm l l m l llm

w p pτ τ σ τ σ τ σ τ σ τρ σ κ  − ⋅ + − − + − ⋅ ⋅ V V n T T n n  

( ) 0l lm lσ− ∇ ⋅ =n .      (2.22) 

Using the mass conservation at the interface we finally have an important force 
balance normal to the interface 

( ) ( )2 , , , ,1 1 l m m l
m l lm l l m l llm

m l

w p pσ τ σ τ σ τ σ τρ σ κ
ρ ρ

   − + − − + − ⋅ ⋅    
T T n n  

( ) 0l lm lσ− ∇ ⋅ =n .      (2.23) 
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Neglecting all forces except those caused by pressure and interfacial mass 
transfer results in the surprising conclusion that during the mass transfer 
the pressure in the denser fluid is always larger than the pressure in the 
lighter fluid independently of the direction of the mass transfer – Delhaye 
(1981, p. 52, Eq. (2.64)). 

 

For the limiting case of no interfacial mass transfer and dominance of the 
pressure difference, the velocity of the interface can be expressed as a function of 
the pressure difference and the velocities in the bulk of the fields, 

( )
, ,

, ,

, ,

l m
n n m l

lm l n n
l m l

p p
V V

V V

σ τ σ τ
τ τ

τ τρ
−= −

−
.     (2.24) 

This velocity is called contact discontinuity velocity. Replacing the discontinuity 
velocity with Eq. (1.42), we obtain 

( ) ( )2, , , ,n n m ll m
l m l m

l m

V V p pτ τ σ τ σ τρ ρ
ρ ρ

−− = − .    (2.25) 

For the case l mρ ρ>> , we have the expected result that the pressure difference 

equals the stagnation pressure at the side of the lighter medium 

( )2, , , ,m l n n
l m m l mp p V Vσ τ σ τ τ τρ− = − .    (2.26) 

2.2.3 Local volume averaging of the single-phase  
momentum equation 

The aim here is to average Eq. (2.1) over the total control volume – see Fig. 2.4. 
 

 Vol

w structures ,
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Vol l 
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l

=  
1 
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nlσ

F le 

Vl
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( ) 1 − γ v Vol 
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Fig. 2.4 Definition regions for single-phase instantaneous momentum balance and the local 
volume average balance 
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The mathematical tools used to derive local volume-averaged field conservation 
equations for the property being any scalar, vectorial, or tensorial function of time 
and location are once again Slattery–Whitaker’s spatial averaging theorem, to-
gether with the Gauss–Ostrogradskii theorem and the general transport equation 
(Leibnitz rule), see Anderson and Jackson (1967), Slattery (1967), Whitaker (1967, 
1985, 1969), and Gray and Lee (1977). Applying the local volume average to Eq. 
(2.1), the following is obtained: 

( ) ( ) ( ) 0l l l l l l l lpτ τ τ τ τ∂ ρ ρ ρ
∂τ

+ ∇ ⋅ − ∇ ⋅ + ∇ + =V V V T g , (2.27) 

or using Eqs. (1.28), (1.32), and (1.28), (Kolev, 1994), 

l l l l l
τ τ τ∂ ρ ρ

∂τ
+ ∇ ⋅V V V ( ),1

l lw

l l l l l l l

F F

p dF
Vol

σ

τ τ τ τ σ τρ
+

+∇ ⋅ − + − ⋅I T V V V n  

( )1
0

l lw

l l l l

F F

p dF
Vol

σ

τ τ ρ
+

− − + ⋅ + = I T n g .    (2.28) 

The volume average momentum equation can be rewritten using the weighted 
average, see Eq. (1.19), Kolev (1994), 

,
/

le le l

l l l l

ρτ τρ ρ=V V ,      (2.29) 

and 

/
lele le l

l l l l ll

τ τ τ τρ ρ=V V V V .    (2.30) 

The result is 

( ) ( ) ( )le le le lel le e
l v l l l l l l l l

τ τ τ τ∂ α γ ρ α γ ρ α γ
∂τ

+ ∇ ⋅ − ∇ ⋅V V V T  

( ) ( ), ,1

l

le le m m
l l l v l l l l l l lm l

F

p p dF
Vol

σ

τ σ τ σ τ τ τ τα γ α γ ρ ρ +∇ + − − + − − ⋅ g I T V V V n  

( ), ,1
0

lw

w w
l l l l l lw l

F

p dF
Vol

σ τ σ τ τ τ τρ − − + − − ⋅ =  I T V V V n .  (2.31) 

We assume that the weighted average of products can be replaced by the products 
of the average. This should be borne in mind when constructing a numerical algo-
rithm for solving the final system and selecting the size of the finite volume so as 
to be not so large as to violate the validity of this assumption. 

Note the differences between Eq. (2.31) and the final result obtained by Ishii 
(1975), Eq. (3.16): 

 

(a) the directional permeability is used here instead of the volumetric porosity in 
the pressure gradient term, and 
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(b) as for the mass conservation equation in Kolev (1994a), the volumetric porosity 
is kept below the time differential since it can be a function of time in a num-
ber of interesting applications. 

 

For the case 1vγ γ= =  and one-dimensional flow, Eq. (2.31) reduces to Eq. (15) 
derived by Delhaye in Hetstrony (1982, p. 163).  

Equation (2.31), the rigorously derived local volume average momentum equa-
tion, is not amenable to direct use in computational models without further trans-
formation. In order to facilitate its practical use  

 

(a) the integral expression must be evaluated, and  
(b) the time averaging must be performed subsequently.  

 

These steps, which go beyond Sha et al. (1984), are performed in Sects. 2.3 and 2.4. 

2.3 Rearrangement of the surface integrals 

The expression under the surface integral is replaced by its equivalent from the 
momentum jump condition, Eq. (2.18): 

( ) , ,1

l

m m
l l l lm l l l

F

p dF
Vol

σ

τ τ τ σ τ σ τρ − − − + − ⋅  V V V T I n  

( ){ }, ,1

l

l l
m m m m m m lm l l l lm

F

p dF
Vol

σ

τ τ τ σ τ σ τ
σρ σ κ σ = − − − + − + ⋅ + ∇  V V V T I n . (2.32) 

Note that there are no surface force terms in Eq. (2.31). Equation (2.32) reflects 
the action of the surface forces and the action of the stresses caused by the sur-
rounding field m on l. Note also that if the momentum equations are written for 
two neighboring fields the interface forces will appear in both equations with op-
posite sign only if the equations are applied to a common dividing surface. Other-
wise, the exchange terms in question will be nonsymmetric. 

The intrinsic surface-averaged field pressure at the entrances and exits of the 

control volume crossing the field m is 
me

mpτ . We call it bulk pressure inside the 

velocity field m at this particular surface. The interfacial m-side pressure ,l
mp σ τ  can 

be expressed as the sum of the intrinsic averaged pressure, 
me

mpτ , which is not a 

function of the position at the interface inside the control volume and can be taken 
outside of the integral sign, and a pressure difference ,l

mp σ τΔ , which is a function 
of the position at the interface in the control volume 

, ,mel l
m m mp p pσ τ τ σ τ= + Δ .      (2.33) 

The same is performed for all other fields. Similarly, the surface pressure of the 
field structure interface is expressed as 
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, ,lew w
l l lp p pσ τ τ σ τ= + Δ .     (2.34) 

The interfacial pressure differs from the bulk pressures of the corresponding 
fields mσ , and lw, , 0l

mp σ τΔ ≠  and , 0w
lp σ τΔ ≠ . This occurs because obstacles to 

the continuous phase can cause local velocity decreases or increases at the inter-
face velocity boundary layer, resulting in increased or decreased pressure relative 
to bulk pressure. In order to estimate the surface integrals the exact dependence 
of the pressure as a function of the position at the interface inside the control vo-
lume must be elaborated for each idealized flow pattern and form of the struc-
ture. The same is valid for the viscous shear stresses ,l

m
σ τT  and ,w

l
σ τT . Note that 

in order to estimate the interfacial pressure integrals for practical use of the 
momentum equations the time averaging must be performed first to make it 
admissible to use the real pressure distributions measured experimentally on bo-
dies in turbulent flow. 

Substituting Eqs. (2.32)–(2.34) into Eq. (2.31), we obtain 

( ) ( ) ( )le le le lel le e
l v l l l l l l l l

τ τ τ τ∂ α γ ρ α γ ρ α γ
∂τ

+ ∇ ⋅ − ∇ ⋅V V V T  

( )lee
l lpτα γ+ ∇ l

l v lα γ ρ+ g
1 1

l lw

me le

m l l l

F F

p dF p dF
Vol Vol

σ

τ τ+ + n n  

( ){ }, ,1

l

l l
m m m m m lm lm l l t lm

F

p dF
Vol

σ

σ τ σ τ τ τ τρ σ κ σ − −Δ + − − + ⋅ + ∇  I T V V V n  

( ), ,1
0

lw

w w
l l l l l lw l

F

p dF
Vol

σ τ σ τ τ τ τρ − −Δ + − − ⋅ =  I T V V V n .  (2.35) 

Keeping in mind that 
me

mpτ  and 
le

lpτ  are not functions of the interface posi-

tion inside the control volume, and making use of Eq. (1.32) (see also Kolev 
(1994)), the bulk pressure integrals can then be rewritten as follows: 

1 1

l lw

me le

m l l lw

F F

p dF p dF
Vol Vol

σ

τ τ+ n n  

( ) ( ) 1

lw

me le mee
m l l m l

F

p p p dF
Vol

τ τ τα γ= − ∇ + −  n .  (2.36) 

Rearranging the surface tension integrals: The surface force per unit volume of 
the mixture is, in fact, the local volume average of the surface tension force 

( )1

l

m
l l lm t lm

F

dF
Vol

σ

σ σ κ σ= − + ∇f n .    (2.37) 

Note that the orientation of this force is defined with respect the coordinate system 
given in Fig. 2.1. Using Eq. (1.29) we have 
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( )1 1

l l

m
l lm l l lm t lm

F F

dF dF
Vol Vol

σ σ

σ σ κ σ κ σ= − − ∇ f n  

( ) ( )1 1

lw l

e
lm l l l t lm

F F

dF dF
Vol Vol

σ

σ κ α γ σ
 

= ∇ + − ∇ 
  

 n ,   (2.38) 

with normal  

( ) ( )
( ) ( ),

1 1

lw lw

lm e e
l n lm l l l lm l l

lF F

dF dF
Vol Vol

σ α γ
σ κ α γ σ α γ

α γ
    ∇

= ∇ + = ∇ ⋅ ∇ +    
∇        

 f n n     

for  0lα >        (2.39) 

and tangential  

( ),

1

l

m
l t t lm lm t lm

F

dF a
Vol

σ

σ σ σ= − ∇ ≈ − ∇f     (2.40) 

surface force components per unit volume of the mixture, respectively. Here lma  
is the interfacial area density. In the literature, the local volume averaged surface 
force is sometimes called the continuum surface force or abbreviated as CSF, see 
Brackbill et al. (1992). 

Note that if the surface tension is a constant in space there is no resulting tan-
gential force component. At plane surfaces the curvature is zero and therefore 
there is no normal force acting at the liquid. If the liquid consists of clouds of 
spheres the local surface force creates only a difference in pressures inside and 
outside the sphere, but there is no net force influencing the total movement either 
of a single droplet or of the cloud of the droplets in the space due to this force. We 
express this fact by multiplying the surface force by the function 1δ  being 1 for 
the continuum and 0 for the disperse field. 

Using Eqs. (2.36) and (2.38) the pressure and the surface tension terms can be 
rearranged as follows: 

( ) 1 1

l lw

le me lee
l l m l l l

F F

p p dF p dF
Vol Vol

σ

τ τ τα γ∇ ⋅ + + n n  

( )1

l

l lm t lm

F

dF
Vol

σ

σ κ σ− + ∇ n  

( ) ( ) ( )
( ) ( )

1

1 1

lw

lw l

le me le mee e
l l m l l m l

F

e
l lm l l l l t lm

F F

p p p p dF
Vol

dF dF
Vol Vol

σ

τ τ τ τα γ α γ

δ σ κ α γ δ σ

= ∇ ⋅ − ∇ + −

 
+ ∇ + − ∇ 

  



 

n

n
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( ) ( ) 1

lw

le le mee e
l l l m l lm l l l

F

p p p dF
Vol

τ τ τα γ δ σ κ α γ
 

= ∇ + − + ∇ +  
 

 n  

( )1

l

l t lm

F

dF
Vol

σ

δ σ− ∇ .      (2.41) 

Note that in Eq. (2.41) 

lee
l lpτα γ∇ ⋅   

stands for  

( ) ( )le lee e
l l l lp pτ τα γ α γ∇ ⋅ − ∇ ⋅ . 

Rearranging the integrals defining interfacial momentum transfer due to mass 
transfer: Again using the mass jump condition at the interface, which is Eq. 
(1.42), 

( ) ( )m m m lm l m l lm
τ τ τ τ τ τρ ρ− = −V V V V V V ,    (2.42) 

the surface integral is rearranged as follows: 

( ) ( )1 1

l l

m m m lm l l m l lm l

F F

dF dF
Vol Vol

σ σ

τ τ τ τ τ τρ ρ   − − − ⋅ = − ⋅    V V V n V V V n . (2.43) 

For practical applications, the mass source term is split into nonnegative compo-
nents, as has already been explained in Chap. 1 (see also Kolev (1994a)). In addi-
tion, it is assumed that the mass emitted from a field has the velocity of the donor 
field. As a result, the local volume-averaged interfacial forces related to mass 
transfer through the interfaces can be rewritten as follows: 

 

(a) The components related to mass injection into, or suction from, the field 
through the field structure interface are replaced by the “donor” hypothesis 

( ) ( )1

lw

we le

l m l lw l v wl w lw l

F

dF
Vol

τ τ τ τ τ τ τρ γ μ μ − − ⋅ = −  V V V n V V . (2.44) 

(b) The components due to evaporation, condensation, entrainment, and deposi-
tion are replaced by the “donor” hypothesis 

( ) ( )3

1

1

l

me le

l l l l l v ml m lm l
mF

dF
Vol

σ

τ τ τ τ τ τ τ
σρ γ μ μ

=

 − − ⋅ = −   V V V n V V . (2.45) 

The sum of all interface mass transfer components is then 

( )3,

1

w me le

v ml m lm l
m

τ τ τ τγ μ μ
=

− V V .     (2.46) 
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Thus, the final form obtained for the local volume average momentum equation is 
as follows: 

( ) ( ) ( )le le le lel l le e
l v l l l l l l l l l v l

τ τ τ τ∂ α γ ρ α γ ρ α γ α γ ρ
∂τ

+ ∇ ⋅ − ∇ ⋅ +V V V T g  

( ) ( ) 1

lw

le le mee e
l l l m l lm l l l

F

p p p dF
Vol

τ τ τα γ δ σ κ α γ
 

+ ∇ + − + ∇ +  
 

 n  

( ) ( ), ,1 1

l l

l l
l t lm m m l

F F

dF p dF
Vol Vol

σ σ

σ τ σ τδ σ− ∇ + Δ − ⋅  I T n  

( ), ,1

lw

w w
l l l

F

p dF
Vol

σ τ σ τ+ Δ − ⋅ I T n ( )3,

1

w me le

v ml m lm l
m

τ τ τ τγ μ μ
=

= − V V , (2.47) 

and is independent of whether the field is structured or nonstructured. Before we 
continue with the estimation of the remaining integrals, we will first perform a 
time averaging of Eq. (2.47). 

2.4 Local volume average and time average 

The instantaneous surface-averaged velocity of the field l, 
le

l
τV , can be ex-

pressed as the sum of the surface-averaged velocity, which is subsequently time-
averaged,  

le

l lV τ= V        (2.48) 

and a pulsation component lV ′ , 

le

l l lV Vτ ′= +V ,      (2.49) 

as proposed by Reynolds. The fluctuation of the velocity is the predominant fluc-
tuation component relative to, say, the fluctuation of lα  or lρ . Introduction of Eq. 
(2.49) into the momentum conservation equation and time averaging yields 

( ) ( ) ( )e e
l l l v l l l l l l l l l l

∂ α ρ γ α ρ γ α γ ρ δ
∂τ

 ′ ′+ ∇ ⋅ + ∇ ⋅ − V V V V V T e
l l l v lpα γ α γ ρ+ ∇ + g  

( ) ( ) ( )1 1
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e
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p p dF dF
Vol Vol

σ

δ σ κ α γ δ σ
 

+ − + ∇ + − ∇  
 

 n  

( )1
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l l
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p dF
Vol

σ

σ σ+ Δ − ⋅ I T n ( )1

lw

w w
l l l

F

p dF
Vol

σ σ+ Δ − ⋅ I T n  
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( )
3,

1

w

v kl k lk l
k
k l

γ μ μ
=
≠

= − V V ,     (2.50a) 

see also Appendix 2.1. It is evident from Eq. (2.50a) that the products of the pulsa-
tion velocity components, called Reynolds stresses, act on the flow, introducing 
additional macroscopic cohesion inside the velocity field. Equation (2.50a) is ap-
plied on the field l including the surface up to the m-side interface.  

For dispersed flows it is convenient to have also the momentum equation of the 
continuum in a primitive form without using the momentum jump condition. In 
this case, the time average of Eq. (2.31) for field m after introducing Eq. (2.33) is  

( ) ( ) ( )e e
m m m v m m m m m m m m m m

∂ α ρ γ α ρ γ α γ ρ δ
∂τ

 ′ ′+ ∇ ⋅ + ∇ ⋅ − V V V V V T m v mα γ ρ+ g  

e
m mpα γ+ ∇ ( )1

m

l l
m m l

F

p dF
Vol

σ

σ σ− Δ − ⋅ I T n ( )1

mw

w w
m m m

F

p dF
Vol

σ σ+ Δ − ⋅ I T n  

( )
3,

1

w

v km k mk m
k
k m

γ μ μ
=
≠

= − V V .     (2.50b) 

Comparing Eq. (2.50a) with Eq. (2.50b) we realize that the term 

( )1

m

l l
m m l

F

p dF
Vol

σ

σ σ− Δ − ⋅ I T n  

appears in both equations with opposite sign. For practical computation we rec-
ommend the use of a couple of equations having common interface in order to eas-
ily control the momentum conservation at the selected common interface.  

2.5 Dispersed phase in a laminar continuum – pseudo 
turbulence 

It is known that even low-velocity potential flow over a family of spheres is asso-
ciated with natural fluctuations of the continuum. The produced oscillations of the 
laminar continuum are called pseudo turbulence by some authors. The averaged 
pressure over the dispersed particles surface is smaller than the volume averaged 
pressure. Therefore, in flows with spatially changing concentration of the disperse  
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phase, an additional force acts towards the concentration gradients. For bubbly 
flow, Nigmatulin (1979) obtained the analytical expression 

2

4
0 0

20
3

0 0
20

3
0 0

20

c c cd′ ′− = ΔV V V . 

Van Wijngaarden (1982) used this expression multiplied by dα . 

2.6 Viscous and Reynolds stresses 

The solid body rotation and translation of the fluid element does not cause any de-
formation and, therefore, no internal viscous stresses in the fluid. Only the defor-
mation of the fluid element causes viscous stress resisting this deformation. For 
estimation of the relationship between deformation and viscous stress, the heuris-
tic approach proposed by Helmholtz and Stokes (1845a and b) can be used for the 
continuous, intrinsic isotropic, nonstructured field, see Schlichting (1959, p. 58). 
The background conditions behind this approach will now be recalled: (a) the field 
is a continuum, (b) small velocity changes are considered, (c) only the linear part 
of the Taylor series is taken into account, and (d) linear dependence between 
stresses and velocity deformations (Newtonian continuum). The mathematical 
notation for this hypothesis is 

( ) ( ) ( )2 2
2

3 3
T

η η η   = ∇ + ∇ − ∇ ⋅ = − ∇ ⋅      
T V V V I D V I  

1
2

3

1
2

3

1
2

3

u v u w u

x x y x z

u v v w v

y x y y z

u w v w w

z x z y z

η

 ∂ ∂ ∂ ∂ ∂ − ∇ ⋅ + +  ∂ ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂ ∂ = + − ∇ ⋅ + ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂  + + − ∇ ⋅  ∂ ∂ ∂ ∂ ∂  

V

V

V

, (2.51) 

where T is the second-order tensor for the viscous momentum flux, ∇V is the 
dyadic product of the nabla operator and the velocity vector (a second-order 
tensor), and T  designates the transposed tensor. Note that the nabla operator of 
the velocity vector,  

∇ = +V D W  

consists of a symmetric part  
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( )1

2
T = ∇ + ∇ D V V , 

called deformation rate, and a skew part  

( )1

2
T = ∇ − ∇ W V V  

called spin or vortices tensor.  

u v w

x y z

∂ ∂ ∂∇ ⋅ = + +
∂ ∂ ∂

V  

is the divergence of the velocity vector. Stokes called the term containing 
the divergence of the velocity vector the rate of cubic dilatation. The hypothe-
sis says that the relation between viscous stresses and the deformation rate of a 
control volume is linear and the proportionality factor is the dynamic viscosi-
tyη , that solid body translations and rotations do not contribute to the viscous 

forces, that the share stresses are symmetric, and that the relation between vo-
lumetric and the share viscosity is such that the pressure always equals one 
third of the sum of the normal stresses. Stokes ingeniously argues each of 
these points in his paper. In the multiphase continuous field models, as long as 
they are resolved with very fine grids this stress tensor reflects the real one.  
I recommend to anyone having the serious intention to understand flows to 
study this paper. Alternatively, see Schliching (1959, p.60), where it is ex-
plained that Eq. (2.51) contains the Stokes result for the relation of the bulk 
viscosity equal to −2/3 dynamic viscosity. From the mechanical equilibrium 
condition for all angular momenta around an axis for vanishing dimensions of 
the control volume, one obtains the symmetry of the components of the visc-
ous stress tensor, see Schlichting (1959, p. 50)  for the Cartesian coordinates. 

For practical use it is convenient to write the viscous stress tensor for Cartesian 
and cylindrical coordinates as follows: 

( )

( )

( )

1 1
2

3

1 1 1 1
2

3

1 1
2

3

u u v v u w

r r z rr r

u v v v v v w

r zr r r r r

u w v w w

z r z zr

κ κ

η κ κ κ κ κ

κ

κ
θ

η κ κ
θ θ θ

θ

 ∂ ∂ ∂ ∂ ∂ − ∇ ⋅ − + +  ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂ = − + + − ∇ ⋅ +  ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂  + + − ∇ ⋅  ∂ ∂ ∂ ∂ ∂  

V

T V

V

, 

where 

( )1 1 v w
r u

r zr r
κ

κ κ θ
∂ ∂ ∂∇ ⋅ = + +
∂ ∂ ∂

V . 
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For cylindrical coordinates κ = 1. For Cartesian coordinates set κ = 0 and replace 
r , θ , z with x, y, z, respectively. 

Now let us step to the turbulence stress tensor l l lρ ′ ′− V V  called the Reynolds 
stress tensor. The search for a quantitative estimation of the Reynolds stresses for 
multiphase flows is in its initial stage. A possible step in the right direction, in 
analogy to single-phase turbulence, is the use of the Boussinesq hypothesis (1877) 
for the viscosity of turbulent eddies inside the velocity field. Boussinesq intro-
duced the idea of turbulent eddy viscosity inside the velocity field, 

( )2
2

3
t

l l l l l lρ η  ′ ′− = − ∇ ⋅  
V V D V I  

1
2

3

1
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3

1
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3

t
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l

u v u w u

x x y x z

u v v w v

y x y y z

u w v w w

z x z y z

η

 ∂ ∂ ∂ ∂ ∂ − ∇ ⋅ + +  ∂ ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂ ∂ = + − ∇ ⋅ + ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂  + + − ∇ ⋅  ∂ ∂ ∂ ∂ ∂  

V

V

V

, (2.52) 

so that it has the same structure as the Stokes hypothesis. The corresponding Rey-
nolds stresses are  

,
1

2
3

t l
l l l l xx l l

u
u u

x
ρ τ η ∂ ′ ′ ′− = = − ∇ ⋅ ∂ 
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t l
l l l l yy l l

v
v v

y
ρ τ η  ∂′ ′ ′− = = − ∇ ⋅ ∂ 

V ,  

,
1

2
3

t l
l l l l zz l l

w
w w

y
ρ τ η  ∂′ ′ ′− = = − ∇ ⋅ ∂ 

V ,  

,
t l l

l l l l xy l
v u

u v
x y

ρ τ η  ∂ ∂′ ′ ′− = = + ∂ ∂ 
,   

,
t l l

l l l l xz l
w u

u w
x z

ρ τ η ∂ ∂ ′ ′ ′− = = + ∂ ∂ 
,   

,
t l l

l l l l yz l
w v

v w
y z

ρ τ η  ∂ ∂′ ′ ′− = = + ∂ ∂ 
.  

The dynamic turbulent viscosity now is a flow property and remains to be esti-
mated. Note that at a given point this is a single value for all directions. Strictly 
speaking, this approach is valid for isotropic turbulence because there is a single 
eddy viscosity assumed to be valid for all directions. 
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An alternative notation of the term ( )e
l l l lα ρ γ ′ ′∇ ⋅  V V  is given here for iso-

tropic turbulence, for which  

2

3l l l l l lu u v v w w k′ ′ ′ ′ ′ ′= = = :     (2.53) 

( )

ee e
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+ 

∂ ∂ 
 ′ ′ ′ ′∂ ∂ = +

∂ ∂ 
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( )2

3
e
l l lkγα ρ+ ∇  

( )2

3
e

l l l lkγα ρ= − + ∇S ,       (2.54) 

where 
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γ α ρ ν γ α ρ ν
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S

l lw v

y z

 
 
 
 
 
 
 
  ∂ ∂ 

+    ∂ ∂   

. (2.55) 

Here the diagonal symmetric term ( )2

3
e
l l lkγα ρ∇  is considered as a dispersion 

force and is directly computed from the turbulent kinetic energy delivered by the 
turbulence model. 

It is important to emphasize that, in spite of the fact that several processes in 
single-phase fluid dynamics can be successfully described by the Helmholtz–
Stokes and by the Boussinesq hypotheses; these hypotheses have never been de-
rived from experiments or proven by abstract arguments. This limitation of the 
hypotheses should be borne in mind when they are applied. 
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While the heuristic approach proposed by Helmholtz and Stokes, Eq. (2.51), is 
valid only for the continuous part of each velocity field, the Boussinesq hypothesis 
is useful for continuous and disperse velocity fields. This behavior is again  
described here by introducing for each velocity field the multiplier lδ  in Eq. 

(2.50), where lδ = 0 for dispersed field and lδ = 1 for continuous nonstructured 
fields. 

For a single field, lδ = 1, the description of the viscous and Reynolds stresses 
reduces to the widely accepted expression. 

It is plausible to define the turbulent pressure as 

( )2 1

3 3l l l lp k u u v v w wρ ρ′ ′ ′ ′ ′ ′ ′= = + + ,    (2.56) 

and to consider the term e
l lpα γ ′− ∇  as absorbed from the pressure term  e

l lpα γ ∇  
and the term 

( ) 1 1

l lw

e
l l l l l l

F F

p p dF p dF
Vol Vol

σ

α γ′ ′ ′− ∇ = + n n    (2.57) 

as included in the pressure differences between the bulk pressure and boundary 
layer pressure. This could mean that lp′  no longer needs to appear in the notation. 
Until the correctness of this agglomeration of the terms is not strictly proven I do 
not recommend it. 

It is interesting to note that from the kinetic theory for two colliding particles 
plus their added mass the following is obtained:  

( ) ( ) 21
 

3
e e vm
l l l l l m lp cα γ α γ ρ ρ ′ ′∇ ≈ ∇ +  

V .    (2.58) 

2.7 Nonequal bulk and boundary layer pressures 

2.7.1 Continuous interface 

2.7.1.1 3D flows 

Examples for the existence of continuous interfaces are the stratified pool, see Fig. 
2.5, and annular pipe flow.  

The treatment of the interface depends very much on the numerical method 
used. If the numerical method is able to resolve the interface itself and the two at-
tached boundary layers (see, for instance, Hirt and Nichols (1981) for more infor-
mation), the interface momentum jump condition is the only information needed 
to close the mathematical description of the interface. If this is not the case, spe-
cial treatment of the processes at the interface is necessary. In this section we dis-
cuss some possibilities.  
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Fig. 2.5 Continuous interface 

Consider a liquid (l)-gas (m) flow without mass transfer. The computational cells 
are so large that the surface is at best represented by piecewise planes at which the 
surface tension is neglected. The compressibility of the gas is much larger than the 
compressibility of the liquid. In this case, we can assume that there is almost no 
difference between the bulk and liquid side interface pressure 

0m
lp σΔ = .       (2.59) 

The pressure change across the gas side boundary layer is then approximated by 
the stagnation pressure  

( ) ( )2 2l n n n n n
m m l m m lm l mp V V sign V Vσ ρ ρΔ = − = Δ −V ,  (2.60) 

see Fig. 2.6. The normal velocity difference required in the above expression can 
be obtained by splitting the relative velocity vector at the interface lmΔV  into a 

component that is parallel to ln  

( )
l

n lm l
lm lm l lm l l

l l

proj
 Δ ⋅Δ = Δ = = Δ ⋅ ⋅ 

n

V n
V V n V n n

n n
,   (2.61) 

with a magnitude 

( ) ( ) ( )22 2n
lm lm l lx l m ly l m lz l mn u u n v v n w w Δ = Δ ⋅ = − + − + −       V V n   (2.62) 

and a component orthogonal to ln ,  

( )
l

t
lm lm lm lm lm l lprojΔ = Δ − Δ = Δ − Δ ⋅eV V V V V n n  

( ) ( ) ( )   lm lx lm l lm ly lm l lm lz lm lu n v n w n     = Δ − Δ ⋅ + Δ − Δ ⋅ + Δ − Δ ⋅     V n i V n j V n k . 

   (2.63) 
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Fig. 2.6 Stagnation pressure in stratified flow 
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Fig. 2.7 Geodesic pressure force 

In a similar way, the stagnation pressure difference at the field-structure interface 
can be estimated, 

( ) ( )2w n n n n
l l l w l wp V V sign V Vσ ρΔ = − − .    (2.64)

 
For the case of l

mp constσΔ ≈  within Vol the following can be written: 

1 1

l l

l l
m l m l

F F

p dF p dF
Vol Vol

σ σ

σ σΔ = Δ n n ( ) 1

lw

l e
m l l

F

p dF
Vol

σ α γ
 

= −Δ ∇ + 
  

 n . 

    (2.65) 

For n n
l m>V V  and decreasing e

lα γ  in space, this force resists the field l. If there is 

no difference in the average normal velocities at the interface the above term is ze-
ro. 

If the tangential average velocity difference differs from zero, there is a tangen-
tial viscous shear force 

1

l

t t
m l ml lm lm

F

dF c
Vol

σ

σ σ− ⋅ = Δ Δ T n V V .    (2.66) 

Here mlc  has to be computed using empirical correlation in the case of the large 
scale of the cells not resolving the details of the boundary layer. For a wavy sur-
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face, the interface share coefficient should be increased by a component for form 
drag caused by the nonuniform pressure distribution, which results in an additional 
tangential force. Similarly, the viscous shear stress of the wall is 

1

lw

t t
lw lw wl l l

F

dF c
Vol

− ⋅ = T n V V ,     (2.67) 

where, like in the previous case, wlc  has to be computed using empirical correla-
tion. Note that in the case of stratified rectangular duct flow in the z direction, see 
Fig. 2.7, the change in the liquid thickness causes a lateral geodesic pressure force 

l
v l v l

l

ddy dy

dz d dz

αγ ρ γ ρ
α

=g g .     (2.68) 

Here y is the distance between the bottom of the duct and the center of mass of the 
liquid. In three-dimensional models this force automatically arises due to differ-
ences in the local bulk pressure having the geodesic pressure as a component. This 
force should be taken into account in one-dimensional models. If this force is neg-
lected, the one-dimensional model will not be able to predict water flow in a hori-
zontal pipe with negligible gas-induced shear. In the next section we consider this 
problem in more detail. 

2.7.1.2 Stratified flow in horizontal or inclined rectangular channels 

Geometrical characteristics: Stratified flow may exist in regions with such rela-
tive velocities between the liquid and the gas which does not cause instabilities 
leading to slugging. 

Some important geometrical characteristics are specified here – compare with 
Fig. 2.8. The perimeter of the pipe is then 

( )1 2wPer a H= + ,      (2.69) 

and the wetted perimeters for the gas and the liquid parts are 

( )1 2 12 2w FPer a H a Hδ α= + − = + ,    (2.70) 

2 1 22 2w FPer a a Hδ α= + = + .     (2.71) 
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Fig. 2.8 Definition of the geometrical characteristics of the stratified flow 

The gas-–liquid interface median is then a, and the liquid level 

 2 2F Hδ α= .       (2.72) 

The hydraulic diameters for the gas and the liquid for computation of the pressure 
drop due to friction with the wall are, therefore, 

1
1 1 1

1

4
4 /

2h w

aH
D F Per

a H

αα
α

= =
+

,     (2.73) 

2
2 2 2

2

4
4 /

2h w

aH
D F Per

a H

αα
α

= =
+

 ,    (2.74) 

and the corresponding Reynolds numbers 

1 1 1 1
1

1 1

4
Re

2

w aH

a H

α ρ α
η α

=
+

,     (2.75) 

2 2 2 2
2

2 2

4
Re

2

w aH

a H

α ρ α
η α

=
+

.     (2.76) 

Here F is the channel cross-section and Per1w and Per2w are the perimeters wet by 
gas and film, respectively. If one considers the gas-core of the flow, the hydraulic 
diameter for computation of the pressure loss component due to the gas-liquid fric-
tion is then 

( ) 1
12 1 1

1

2
4 /h w

aH
D F Per a

a H

αα
α

= + =
+

    (2.77) 

and the corresponding Reynolds number 

1 1 1 2 1
1

1 1

2
Re

w w aH

a H

α ρ α
η α

−
=

+
.     (2.78) 

The gas-wall, liquid-wall, and gas-liquid interfacial area densities are 
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1 1
1

2w
w

Per a H
a

F aH

α+= = ,     (2.79) 

2 2
2

2w
w

Per a H
a

F aH

α+= = ,     (2.80) 

12

1a
a

F H
= = .       (2.81) 

For the estimation of the flow pattern transition criterion, the following expression 
is sometimes required: 

2

2

1

F

d

d H

α
δ

= .       (2.82) 

Using the geometric characteristics and the Reynolds numbers the interfacial inte-
raction coefficients can be computed by means of empirical correlations as dis-
cussed in Volume II of this monograph.  

 

Gravitational (hydrostatic) pressure variation across the flow cross-section of ho-
rizontal pipe: In stratified flow the gravitation is a dominant force. The cross-
section averaged gas gravity pressure difference with respect to the interface is 

2
1 1 1 2

H
p gσ ρ αΔ = .      (2.83) 

The cross-section averaged liquid gravity pressure difference with respect to the 
interface is  

1
2 2 2 2

H
p gσ ρ αΔ = − .      (2.84) 

The cross-section averaged field pressures in terms of the interfacial pressure are 
then 

2 2 2
1 1 1 1 1 1 2

H
p p p p gσ σ σ ρ α= − Δ = − ,    (2.85) 

1 1 1
2 2 2 2 2 2 2

H
p p p p gσ σ σ ρ α= − Δ = + ,    (2.86) 

recalling the definition in Eqs. (2.33) and (2.34). The averaged pressure in the 
cross-section can be expressed as the cross-section weighted averaged pressures 
inside the fields 

( )2 1 2 2
1 1 2 2 1 1 2 2 2 2 1 12

H
p p p p p gσ σα α α α α ρ α ρ= + = + + − .  (2.87) 

Neglecting the surface tension, we obtain 
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( )2 2
2 2 1 12

H
p p gσ α ρ α ρ≈ + − ,     (2.88) 

or 

( )2 2
2 2 1 12

H
p p gσ α ρ α ρ≈ − − .     (2.89) 

The averaged pressure in the gas and in the liquid phase can be then expressed as a 
function of the system averaged pressure and geometrical characteristics by re-
placing pσ  in Eqs. (2.85) and (2.86) 

1 22

H
p p gα ρ= −    for   1 0α >  ,    (2.90) 

2 12

H
p p gα ρ= +    for   2 0α > ,    (2.91) 

where 1 1 2 2ρ α ρ α ρ= +  is the homogeneous mixture density. The check 

1 1 2 2p p pα α+ =  proves the correctness of the computation. The difference be-
tween both averaged pressures is then 

21 2 1 2

H
p p p gρΔ = − =  for   1 0α >  and 2 0α > ,   (2.92) 

Delhaye (1981, p.89). Therefore 

1 2 21p p pα= − Δ ,      (2.93) 

2 1 21p p pα= + Δ ,      (2.94) 

and consequently 

1 2 21
21 2

p p p
p

z z z z

α α∂ ∂ ∂ ∂Δ= − Δ −
∂ ∂ ∂ ∂

,    (2.95) 

2 1 21
21 1

p p p
p

z z z z

α α∂ ∂ ∂ ∂Δ= + Δ +
∂ ∂ ∂ ∂

.    (2.96) 

Now we can write the specific form of the following general terms of the momen-
tum equation: 

( ) ( )... e l el z
l z l m l lm l m l z l

p
p p p

z z z
σ∂ ∂ ∂γα γ δ σ κ α γ δ

∂ ∂ ∂
 + + − − − Δ −  

 

cos ...w z
l l v l lp g

z
σ ∂γδ γ α ρ ϕ

∂
− Δ +       (2.97) 

Note that both fields are continuous and, therefore, 1lδ =  and the effect of the 
surface tension is neglected 
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( )11 1
1 21 2 1... ...w z

z z

p
p p p

z z z
σ σ∂ ∂α ∂γα γ γ

∂ ∂ ∂
+ − Δ + Δ − Δ   (2.98) 

( )22 2
2 21 1 2... ...w z

z z

p
p p p

z z z
σ σ∂ ∂α ∂γα γ γ

∂ ∂ ∂
+ + Δ − Δ − Δ   (2.99) 

Substituting the field pressures, we finally obtain 

( )121 1
1 1 2 2 21 2 1... ...w z

z

p p
p p p

z z z z
σ σ∂ ∂α ∂γγ α α α α

∂ ∂ ∂
 ∂ Δ+ − − Δ + Δ − Δ ∂ 

 (2.100) 

( )221 1
2 1 2 1 21 1 2... ...w z

z

p p
p p p

z z z z
σ σ∂α ∂γγ α α α α

∂ ∂
 ∂ ∂Δ+ + − Δ − Δ − Δ ∂ ∂ 

 (2.101) 

Assuming that the change of the densities contributes much less to the change of  

( )21 21 1 1
1 2

1 2

p p H
g

z z z

∂ ∂ ∂α ∂αρ ρ
∂ ∂α ∂ ∂
Δ Δ≈ = −     (2.102) 

then the change of the local volume fraction becomes 

( ) 1
1 1 2 1 2 1... ...w z

z

p
gH p

z z z
σ∂α ∂γγ α α α ρ ρ

∂ ∂
 ∂+ − − − Δ ∂ 

  (2.103) 

( ) 1
2 1 2 1 2 2... ...w z

z

p
gH p

z z z
σ∂α ∂γγ α α α ρ ρ

∂ ∂
 ∂+ + − − Δ ∂ 

  (2.104) 

As a plausibility check note that for 1 0α →  or 2 0α →  the term containing the 
derivative of the volume fraction of velocity field 1 converges to zero and the 
momentum equations take the expected form. The sum of the two momentum eq-
uations gives 

( )1 2... ...w w z
z

p
p p

z z
σ σ ∂γγ

∂
∂+ − Δ + Δ
∂

    (2.105) 

Note that the gravitational force is already taken into account in Eqs. (2.103) and 
(2.104) and there is no need for an additional term cosv l l gγ α ρ ϕ . Stability criteria 
for the stratified flow can be obtained from the eigenvalue analysis. For simplicity, 
assuming incompressible flow the mass and momentum equations of stratified 
flow in a straight pipe with constant cross-section section are 

( )1 2 1
1 2 1 2 0

w w
w w

z z z

αα α∂ ∂ ∂+ + − =
∂ ∂ ∂

,    (2.106) 

1 1 1
1 1 0

w
w

z z

∂α αα
∂τ

∂ ∂+ + =
∂ ∂

,     (2.107) 
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( )2 2 11 1 1
1

1 1

1
0

w w p
w gH

z z z

α ρ ρ∂ ∂α
∂τ ρ ρ ∂

−∂ ∂+ + + =
∂ ∂

,  (2.108) 

( )1 2 12 2 1
2

2 2

1
0

w w p
w gH

z z z

α ρ ρ∂ ∂α
∂τ ρ ρ ∂

−∂ ∂+ + − =
∂ ∂

,  (2.109) 

or in matrix notation 

( )

( )

( )

1 2 1 2

1 1

1 12 2 1
1

1 11 1

2 21 2 1
2

2 2

0

0 0 0 0 0 0
0 1 0 0 1 00
0 0 1 0

0 0 0 1 1
0

w w

p pw

gH w
w wz

w w
gH w

α α

α
α αα ρ ρ

τ ρ ρ
α ρ ρ

ρ ρ

 −
 

      
      ∂ ∂−      + =
      ∂ ∂
           

     − −  
 

. 

    (2.110) 

For the reader who is not familiar with the analysis of the type of a system of 
partial differential equations by first computing the eigenvalues, eigenvectors, and 
canonical forms it is recommended to first read Section 11 before continuing here.  

The eigenvalues are defined by the characteristics equations 

( )

( )

( )

1 2 1 2

1 1

2 2 1
1

1 1

1 2 1
2

2 2

0

0 0

1 00

1
0

w w

w

gH w

gH w

α α

λ α
α ρ ρ

λ
ρ ρ

α ρ ρ
λ

ρ ρ

 −
 
 −
 −  =− 
 

− − −  
 

,   (2.111) 

or 

( ) ( ) ( ) ( ) ( )2
1 1 2

1 2 2 1 2 1
1 1 2

w w w w w w
α α αλ λ λ λ
ρ ρ ρ

− − − − − − −   

( )1 2 2 1

1 2

0gH
α α ρ ρ

ρ ρ
−

+ = ,     (2.112) 

or 

( )1 2 2 12 2 21 2 1 2 1 2
2 1 2 1

1 2 1 2 1 2 1 2

2 0w w w w gH
α α ρ ρα α α α α αλ λ

ρ ρ ρ ρ ρ ρ ρ ρ
−   

+ − + + + − =   
   

. 

   (2.113) 

This equation is, in fact, consistent with the long wave gravity theory by Milne-
Thomson (1968). There are two eigenvalues 
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( )

2

1 2
2 1

1 2

1 2
2 1

1 2

1 2 2 12 21 2 1 2
2 1

1 2 1 2 1 2

1,2

1 2

1 2

w w

w w

w w gH

α α
ρ ρ

α α
ρ ρ

α α ρ ρα α α α
ρ ρ ρ ρ ρ ρ

λ
α α
ρ ρ

 
+ 

 
+ ±

−  
− + + −  
  =

 
+ 

 

, 

   (2.114) 

or after rearranging 

( ) ( )21 2 1 2 1 2
2 1 2 1 1 2

1 2 1 2 1 2

1,2

1 2

1 2

w w gH w w
α α α α α αρ ρ
ρ ρ ρ ρ ρ ρ

λ
α α
ρ ρ

  
+ ± − + − −  

  =
 

+ 
 

, 

    (2.115) 

which are real and different from each other if 

( ) ( )2 1 2
1 2 2 1

1 2

w w gH
α αρ ρ
ρ ρ

 
− < − + 

 
.    (2.116) 

In fact this is the Kelvin–Helmholtz stability criterion. If the above condition is sa-
tisfied the system describing the flow is hyperbolic. In nature, violation of the 
above condition results in flow patterns that are different from the stratified one. 
Condition (2.116) is equivalent to Eq. (2.216) derived by Delhaye (1981, p. 90). In 
1992 Brauner and Maron included the surface tension effect in their stability 
analysis and obtained 

( ) ( )2 21 2
1 2 2 1 12

1 2

w w H g k
α α ρ ρ σ
ρ ρ

 
 − < + − +   

 
, 

see Eq. (28a) in Brauner and Maron (1992), which for neglected surface tension 
results in Eq. (2.116). Here k is the real wave number.  

2.7.1.3 Stratified flow in horizontal or inclined pipes 

Geometrical characteristics: The geometric flow characteristics for round pipes 
are nonlinearly dependent on the liquid level, which makes the computation 
somewhat more complicated. 

Some important geometrical characteristics are specified here – compare with 
Fig. 2.9. The angle with the origin of the pipe axis defined between the upwards 
oriented vertical and the liquid-gas-wall triple point is defined as a function of the 
liquid volume fraction by the equation 
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( ) ( )21 sin cos 0f θ α π θ θ θ= − − + − = .    (2.117) 

The derivative 

2
1 2sin

d

d

θ π
α θ

=       (2.118) 

will be used later. Bearing in mind that 

22sin
df

d
θ

θ
= ,,      (2.119) 

the solution with respect to the angle can be obtained by using the Newton itera-
tion method as follows: 

( )2 0 0 00
0 0 2

0

1 sin cos

2sin

f

df d

α π θ θ θ
θ θ θ

θ θ
− − +

= − = + ,  (2.120) 
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Fig. 2.9 Definition of the geometrical characteristics of the stratified flow 

where subscript 0 indicates the previous guess in the iteration. The iteration starts 
with an initial value of / 2π  (Kolev 1977). In 1999 Biberg proposed an accurate 
direct approximation 

( )
1/ 3

1/ 31/3
2 2 2 2

3
1 2 1

2

πθ πα α α α   = + − + − −    
   (2.120b) 

with an error of less than 0.002rad±  or 

( )
1/ 3

1/ 31/3
2 2 2 2

3
1 2 1

2

πθ πα α α α   = + − + − −    
 

( ) ( ) ( ){ }22
2 2 2 2 2

1
1 1 2 1 4 1

200
α α α α α − − − + + −  ,  (2.120c) 
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with an error less then 0.00005rad± . The perimeter of the pipe is then 

1w hPer Dπ= ,       (2.121) 

and the wetted perimeters for the gas and the liquid parts are 

1w hPer Dθ= ,       (2.122) 

( )2w hPer Dπ θ= − .      (2.123) 

The gas-liquid interface median is then 

( )sin sinh hb D Dπ θ θ= − = ,     (2.124) 

and the liquid level is 

 ( )2

1
1 cos

2F hDδ θ= + .      (2.125) 

The hydraulic diameters for the gas and the liquid for computation of the pressure 
drop due to friction with the wall are, therefore, 

1 1 1 14 /h w hD F Per D
πα α
θ

= = ,     (2.126) 

2 2 2 24 /h w hD F Per D
πα α

π θ
= =

−
,    (2.127) 

and the corresponding Reynolds numbers are 

1 1 1
1

1

Re hw Dα ρ π
η θ

= ,      (2.128) 

2 2 2
2

2

Re hw Dα ρ π
η π θ

=
−

.     (2.129) 

Here F is the channel cross-section section and Per1 and Per2 are the wet perime-
ters of gas and film, respectively. 

If one considers the core of the flow the hydraulic diameter for computation of 
the friction pressure loss component at the gas-liquid interface is then 

( )12 1 1 14 /
sinh w hD F Per b D
πα α

θ θ
= + =

+
,   (2.130) 

and the corresponding Reynolds number is 

1 1 1 2
1

1

Re
sin

hw w Dα ρ π
η θ θ
−

=
+

.    (2.131) 

The gas-wall, liquid-wall, and gas-liquid interfacial area densities are 
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1 1
1

1

4 4w
w

h h

Per
a

F D D

α θ
π

= = = ,     (2.132) 

2 2
2

2

4 4w
w

h h

Per
a

F D D

α π θ
π
−= = = ,     (2.133) 

12

sin 4

h

b
a

F D

θ
π

= = .      (2.134) 

Some authors approximated this relation for a smooth interface with  

( )12 2 2

8
1

h

a
D

α α
π

≅ − ,     (2.135) 

which in view of the accurate computation presented above is no longer necessary. 
For the estimation of the flow pattern transition criterion, the following expression 
is sometimes required: 

2

2

4 sin

F h

d

d D

α θ
δ π

= .      (2.136) 

Gravitational (hydrostatic) pressure variation across the flow cross-section sec-
tion of a horizontal pipe: In stratified flow the gravitation is a dominant force. The 
cross-section section averaged gas gravity pressure difference with respect to the 
interface is  

3
2
1 1

1

sin 1
cos

3 2hp gDσ θρ θ
πα

 
Δ = − 

 
.    (2.137) 

The cross-section averaged liquid gravity pressure difference with respect to the 
bottom of the pipe is  

3
1
2 2

2

sin 1
cos

3 2hp gDσ θρ θ
πα

 
Δ = − + 

 
.    (2.138) 

With respect to the interfacial pressure we have 

3
2 2 2

1 1 1 1 1
1

sin 1
cos

3 2hp p p p gDσ σ σ θρ θ
πα

 
= − Δ = − − 

 
,  (2.139) 

3
1 1 1

2 2 2 2 2
2

sin 1
cos

3 2hp p p p gDσ σ σ θρ θ
πα

 
= − Δ = + + 

 
,  (2.140) 

which are, in fact, Eqs. (55) and (60) in Ransom et al. (1987 , p. 30). The averaged 
pressure in the cross-section section can be expressed as the cross-section section 
weighted averaged pressures inside the fields 
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( ) ( )
3

2 1
1 1 2 2 1 1 2 2 2 1 2 2 1 1

sin 1
cos

3 2hp p p p p gDσ σ θα α α α ρ ρ α ρ α ρ θ
π

 
= + = + + − + + 

 
. 

   (2.141) 

Neglecting the surface tension we obtain 

( ) ( )
3

2 1 2 2 1 1

sin 1
cos

3 2hp p gDσ
θ ρ ρ α ρ α ρ θ

π
 

≈ + − + + 
 

,  (2.142) 

or 

( ) ( )
3

2 1 2 2 1 1

sin 1
cos

3 2hp p gDσ
θ ρ ρ α ρ α ρ θ

π
 

≈ − − + + 
 

.  (2.143) 

The averaged pressure in the gas phase and in the liquid phase can then be ex-
pressed as a function of the system’s averaged pressure and geometrical characte-
ristics: 

( ) ( )
3

1 1 2 2 1 2 2 1
1

sin 1
cos

3 2hp p gD
θ α ρ α ρ α ρ ρ θ

πα
 

= − + + − 
 

   for   1 0α > , 

    (2.144) 

( ) ( )
3

2 1 2 2 1 1 2 1
2

sin 1
cos

3 2hp p gD
θ α ρ α ρ α ρ ρ θ

πα
 

= + + + − 
 

   for   2 0α > .  

   (2.145) 

The check 1 1 2 2p p pα α+ =  proves the correctness of the computation. The differ-

ence between both averaged pressures is then 

( )
3

2 1
21 2 1 2 1

2 1

sin 1
cos

3 2hp p p gD
θ ρ ρ ρ ρ θ

π α α
  

Δ = − = + + −  
  

  

for   1 0α >  and 2 0α > ,     (2.146) 

 
and, therefore ,Eqs. (2.93)–(2.96) are valid also for a circular pipe. Assuming that 
the change of the densities contributes much less to the change of 21pΔ , the 

change of the local volume fraction results in 

21 21 1

1

p p

z z

∂ ∂α
∂α ∂

∂Δ Δ
≈

∂
 

( )
3

2 1 2 1 1
2 12 2

2 1 2 1

sin 1
cos

3 2 4sinhgD
z

θ ρ ρ ρ ρ π ∂αθ ρ ρ
π α α α α θ ∂

    
= − + + − −    

    
. 

(2.147) 
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This equation was obtained by taking into account that θ  is also an implicit func-
tion of 1α  through Eq. (2.117) and using Eq. (2.118). Using Eqs. (2.156), (2.146), 

(2.137), and (2.138) and substituting into the momentum equations (2.100) and 
(2.101), we finally obtain 

( ) 1
1 1 2 2 1 1... ...

4sin
wh z

z

gDp
p

z z z
σπ ∂α ∂γγ α α α ρ ρ

θ ∂ ∂
 ∂+ + − − Δ ∂ 

  (2.148) 

( ) 1
2 1 2 2 1 2... ...

4sin
wh z

z

gDp
p

z z z
σπ ∂α ∂γγ α α α ρ ρ

θ ∂ ∂
 ∂+ − − − Δ ∂ 

  (2.149) 

As a plausibility check note that for 1 0α →  the term containing the derivative of 

the volume fraction of velocity field 1 converges to zero and the momentum equa-
tion for field 2 takes the expected form. The sum of the two equations is then 

( )1 2... ...w w z
z

p
p p

z z
σ σ ∂γγ

∂
∂+ − Δ + Δ
∂

    (2.150) 

Comparing with the momentum equations for the rectangular channel we find in-

stead of H the length 
2

4sin 4
h hD D

b

π π
θ

= , which is the height of the rectangular channel 

having the same cross-section section as the pipe and a base equal to the gas-liquid 
median from Eq. (2.124). Therefore, the stability condition for stratified flow in a 
pipe is 

( ) ( )2 1 2
1 2 2 1

1 24sin
hD

w w g
π α αρ ρ

θ ρ ρ
 

− < − + 
 

,   (2.151a) 

or in an alternative form 

( ) ( )2 1 2 2
1 2 2 1

1 2 2

Fd
w w g

d

α α δρ ρ
ρ ρ α

 
− < − + 

 
,               (2.151b) 

which is a generalized Kelvin–Helmholtz stability criterion valid for pipes with ar-
bitrary cross-section section. Substituting Eq. (2.82) in the above equation we ob-
tain Eq. (2.116) for rectangular channels. This result is, in fact, Eq. (26) in Barnea 
and Taitel (1994) for the inviscid case. It is identical with Eq. (6.9), p. 313, ob-
tained by de Crecy in 1986. 

Dividing the momentum equations by 1 1α ρ  and 2 2α ρ , respectively, and sub-

tracting the second from the first, we obtain 

( ) 1 1 2
2 1

1 2 1 2 1 1 2 2

1 1
... ...

4sin

w w
h z

z

gDp p p

z z z

σ σπρ ∂α ∂γγ ρ ρ
ρ ρ ρ ρ θ ∂ α ρ α ρ ∂

    ∂ Δ Δ+ − + − − −    ∂    
  

   (2.152) 
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The second term in the first brackets is exactly Eq. (58) obtained by Ransom et al. 
(1987, p. 30). 

Note the general notation of the coefficients of 1 / zα∂ ∂  in Eqs. (2.103) and 

(2.104) and Eqs. (2.148) and (2.149) 

( ) 1
1 2 2 1

F
g

b z

∂αα α ρ ρ
∂

− , 

where F is the channel cross-section section and b is the gas-liquid interface me-
dian. This result was obtained by de Crecy (1986, p. 312) in his Eq. (6.3). 
Teletov and Mamaev et al., see Mamaev et al. (1969), presented analytical solu-
tions for stratified flow between two parallel plates and stratified flow in circular 
tubes, respectively. The gas and liquid phases are considered incompressible. No 
heat and mass transfer is considered. The pressure gradient is assumed constant 
and the flow is considered to be stationary and fully developed. The velocities at 
the wall are assumed to be zero and the velocity at the interface is assumed to be 
equal for both phases. The solution for the circular tube is found after introducing 
a bipolar coordinate transformation and integration, and is expressed as cross-
section section averaged velocities as a function of the flow parameter in the form 

( ) ( )
4

1 1 1 1 2 1
1

cos , ,
8

R dp
w g z

dz

π ρ ϕ α η η
η

 = −  
g , 

( ) ( )
4

2 2 2 1 2 1
2

cos , ,
8

R dp
w g z

dz

π ρ ϕ α η η
η

 = −  
g . 

( )1 1 2 1,ϕ α η η  and ( )2 1 2 1,ϕ α η η  are complicated integral functions. For practical 

use they are presented in graphical form. 

2.7.2 Dispersed interface 

2.7.2.1 General 

In this section, we provide a guide for derivation of a constitutive relation for me-
chanical interaction between a dispersed field l and the surrounding continuum m. 
An example for such flow is bubbly flow. In other words, we discuss a possible 
simplification of the surface integrals in Eq. (2.50). For a dispersed phase l, the 
viscous shear at the interface is negligible for non-Stokes flows: 

1
0

l

m
l l

F

dF
Vol

σ

σ− ⋅ ≈ T n .     (2.153) 

The viscous effects in the continuum at the interface are also neglected,  

1
0

m

l
m m

F

dF
Vol

σ

σ− ⋅ ≈ T n .     (2.154) 
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Note that a 1 cm bubble in water having a relative velocity of 10 cm/s has a 
Reynolds number of about 100. For Reynolds numbers less than 24 the visc-
ous effect in the continuum is important.  For larger Reynolds numbers, 
which is often the case in nature, the viscous effects can be neglected. The 
force of the Marangoni effect, 

( )1
0

l

l t lm

F

dF
Vol

σ

δ σ∇ = ,     (2.155) 

can be neglected for the majority of macroscopic processes. If the dispersed phase 
is assumed to have no wall contact, 0lwF = , the following results: 

( )1
0

lw

w w
l l l

F

p dF
Vol

σ σΔ − ⋅ = I T n .     (2.156) 

The difference between the bubble bulk pressure and the bubble interface pressure 
is also negligible, 

1
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m

m
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F

p dF
Vol

σ

σ+ Δ ≈ n .     (2.157) 

The momentum equation for the dispersed field is 
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    (2.158) 

The dispersed equation for the continuum (2.50b) is  
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Fig. 2.10 Difference between the bulk pressure and interfacial pressure inside the velocity 
field m for steady state flow 

The term in the momentum equation for the dispersed field that remains to be es-
timated is 

 
1

l

l
m l

F

p dF
Vol

σ

σΔ n .  

For this, information is needed about the pressure distribution over the surface of a 
single particle, see Fig. 2.10. For illustration of the estimation of this integral we 
assume a family of monodisperse spheres. For dispersed flow with a small con-
centration of the dispersed phase, the flow about each sphere can be considered as 
unaffected by its neighbors. The interface pressure distribution along the surface 
can be generally represented by the following expression: 

( ) ( )21
cos

2
l
m l m l ml l ml m mlp R Fσ ∂ρ ξ ρ ξ

∂τ
 Δ = − Δ + ⋅ ∇ Δ + Δ  

n V V V V , 

    (2.160) 

see, for example, Stuhmiller (1977). Here a spherical coordinate system is used 
with the main axis along lmΔV . The polar angle ξ  is measured with respect to the 

direction of lmΔV . The azimuthal angle is ϕ . The force per unit surface is split in-

to a component parallel to lmΔV  and a component perpendicular to lmΔV . The in-

tegration is then performed. Note that Eq. (2.160) does not depend on ϕ  and, 
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therefore, the perpendicular component for the symmetric body is 0. Note also that 
the pressure distribution in Eq. (2.160) does not take into account the spatial varia-
tion of the continuum velocity. The latter will give rise to a force component per-
pendicular to lmΔV  even for a symmetric body. For the integration we need the 

following relations. The differential surface element of the sphere (rotational body) 
is 2 sin   ldF R d dξ ξ ϕ= . The projection of the interfacial pressure force on  

direction lmΔV  for a single particle is, therefore, 

2
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l l
m l l m l
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p dF R p d d
Vol
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π π
σ σξ ξ ξ ξ ϕΔ = Δ  n n ,  (2.161) 

and on the plane normal to lmΔV  
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p dF R p d d
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σ σξ ξ ξ ϕΔ = Δ  n n .  (2.162) 

For our case of a rotational body, the above integral gives 0. The collective force 

acting on the cloud of 
3

1
l l

l

n Vol
=
  spheres in the control volume Vol per unit control 

volume in the axial direction is, therefore, 
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   (2.163) 

and in the plane normal to mlΔV  
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    (2.164) 

Estimation of the integrals (2.163) and (2.164) provides a practical approach for 
computing the interfacial forces. What remains after the integration and some rear-
rangements given in the next section is 
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This result for one-dimensional flow was obtained by Stuhmiller (1977). If we 
take the nonisotropy of the continuum velocity field into account in Eq. (2.160), 
we obtain the general form 

1

l

l
m l
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p dF
Vol
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σΔ n ( ) * 1

m
l

vm d L l
v l l l m l
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p dF
Vol σ

σγ= + + + Δ f f f n .  (2.166) 

The force components vm
lf , d

lf , L
lf , and * 1

m
l

l
m l

F

p dF
Vol σ

σΔ  n  are called virtual mass 

force, drag force, lift force, and stagnation pressure force, respectively. A detailed 
discussion of these is given below. Empirical information on how to compute 
these forces is given in Volume II. 

The pressure distribution around a particle may influence the local mass trans-
fer. In the case of strong thermodynamic nonequilibrium, the larger pressure dif-
ference across the interface at the stagnation point may lead to lower evaporation 
compared to the rear point. It may lead to a reactive resulting force at the droplet, 
which manifests itself as an effective drag reduction. A strong condensation may 
lead to the opposite effect. Although such arguments may sound reasonable, one 
should be careful because there is no accurate theoretical or experimental treat-
ment of this problem. 

2.7.2.2 Virtual mass force 

Consider the integral defined by Eq. (2.161) taking over the first term of Eq. 
(2.160) 

vm
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V V V .    (2.167) 

The force vm
lf  is the virtual mass force per unit mixture volume. Here, the virtual 

mass coefficient is 1 2vm
mlc = . The general form of the virtual mass force with the 

accuracy of an empirical coefficient was first proposed first Prandtl (1952), Lamb 
(1945), and Milne-Thomson (1968) in the same form  

( )vm vm
d d c d cd d cdc

∂α ρ
∂τ
 = − Δ + ⋅∇ Δ  

f V V V ,   (2.168) 

where the subscripts c and d mean continuous and disperse, respectively. The sca-
lar force components in Cartesian and in cylindrical coordinates are 
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( ) ( )
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. (2.171) 

The virtual mass force is experienced by the body as if it were to have an addi-
tional mass during its translation relative to the continuum. This explains the 
other name used for this force, added mass force. For larger particle concentra-
tions, vm

dc  is a function of lα . Expressions for practical computation of the vir-

tual mass coefficient for dispersed fields with larger concentration can be found 
in Biesheuvel and  van Wijngaarden (1984), Biesheuvel and Spollstra (1989), 
Cook and Harlow (1983, 1984), Ishii and Michima (1984), Lahey (1991), Lamb 
(1945), Milne-Thomson (1968), Mokeyev (1977), No and Kazimi (1985), 
Prandtl (1952), Ruggles et al. (1988), van Wijngaarden (1976), Winatabe et al. 
(1990), Wallis (1969), and Zuber (1964). These references represent the state of 
the art in this field. Winatabe et al. (1990) proposed the use of only the tran-
sient part of the virtual mass force for the case of strong transients. 

Lamb (1945) computed the virtual mass coefficient for partials in potential flow 
with ellipsoidal shape defined by  

2 2 2

1
x y z

x y z

R R R
+ + = , 

where the lengths of the principal axis are xR , yR  and zR , and the relative veloci-

ty is parallel to the x-axis as follows: 

 0

02
vm
cd

a
c

a
=

−
, 
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2 2 2 2
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x x y z
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λ λ λ λ

∞

=
+ + + +

 . 

Bournaski (1992) evaluated some values as given in Table 2.1. 

Table 2.1. Virtual mass coefficients for an ellipsoid 

Shape of particles Translation parallel to axis 
x y z 

,
vm
cd xc  ,

vm
cd yc  ,

vm
cd zc  

x y zR R R= = , sphere 1/2 1/2 1/2 

2x y zR R R= = , rotary ellipsoid 0.704 0.704 0.210 

3x y zR R R= = , rotary ellipsoid 0.803 0.803 0.122 

4x y zR R R= = , rotary ellipsoid 0.859 0.859 0.081 

( )2 3 2x y zR R R= = , unrotary ellipsoid 0.936 0.439 0.268 

2 4x y zR R R= = , unrotary ellipsoid 1.516 0.398 0.126 

 
For a single ellipsoid bubble with axis aspect ratio χ  

( )
( )

1/ 22 1 1

21 1/ 21 1 2 2

1 cos

cos 1

vmc
χ χ

χ χ χ

− −

− −

− −
=

− −
,  

van Wijngaarden (1998). 

Lance and Bataille (1991) reported experiments showing that for a 5mm deform-
ing bubble the virtual mass coefficient is in the region: 211.2 3.4vmc< < . For a 
family of spherical bubbles:  

( )21 1

1
1 2.78

2
vmc α= + , 

dilute bubble dispersion, interaction between two equally sized bubbles, van Wijn-
gaarden (1976);  

1
21

1

1 21

2 1
vmc

α
α

+
=

−
,  

no interaction with the neighboring bubbles, Zuber (1964);  

( )21 1

1
1 3

2
vmc α= + , 0α → ,  

Zuber (1964);  
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( )21 1

1
1 3.32

2
vmc α= + ,  

analogously to thermal conductivity in composite material, Jeffrey (1973);  

( )21 1

1 1
1.98ln 0.62

2 2
vmc α = − −  

, 

the approximation for 1 0.35α ≤ , Biesheuvel and Spoelstra (1989). Laurien and 
Niemann (2004) used direct numerical simulation and come to 
 

2
21 1 10.5 1.63 3.85vmc α α= + + . 

Kendoush (2006) considered the separation of the velocity profile around a single 
sphere and obtained a virtual mass coefficient depending on the separation angle. 
Pougatch, Salcudean, Chan, and Knapper (2008) concluded that the virtual mass 
force cannot be larger than the inertia force for accelerating the remaining liquid 
and, therefore, the coefficient is naturally limited by  

 

21 2 1
vmc α α≤ .  

 

2.7.2.3 Form drag and stagnation pressure force  

For inviscid (ideal) potential flow we have in Eq. (2.160) 

( ) ( )21
9cos 5

8
F ξ ξ= − ,     (2.172) 

see Lamb (1945). This profile does not give any resulting force component 
(d’Alembert’s paradox).  

In nature ( )F ξ  gives a nonsymmetric profile, as indicated in Fig. 2.10. For an 

idealized nonsymmetric fore-aft profile, Nigmatulin (1979) estimated the integrals 
of Eqs. (2.160) and (2.161) for the second term of the right-hand side of Eq. 
(2.159) for bubbles in bubble-liquid flows. Biesheuvel and van Wijngaarden 
(1984) analytically computed the coefficients for spherical bubbles for Nigmatu-
li’s derivation. 

A more general approach was proposed by Hwang and Schen (1992). For the 
general case, ( )F ξ  is determined experimentally, see Schlichting (1959, p.21, 

Fig. 1.11). Hwang and Schen (1992) provided a method for computing the pres-
sure distribution around a sphere for Reynolds numbers greater than 3000, where 

( ) ( ) ( )
2

2 2

1 2 1 9
2 sin 2 cos 2

4 4 2 4
e

F
λξλξ λ ξ ξ

λ λ

− −= + +   + + 
,  (2.173) 



84      2 Conservation of Momentum 

see Eq. (12) in Hwang and Schen (1992). When the drag coefficient d
mlc  is known 

and the equation 

( ) ( )2 2

1
45

4 16
d
ml

e
c

πλ

λ λ

−−=
+ +

     (2.174) 

is solved for the smaller real root of λ , there is a method for estimating the inte-
grals analytically. The reader can find the final result of this derivation, characte-
rized by anisotropic forces in Hwang and Schen (1992). 

Before Hwang and Schen published their work, Stuhmiller (1977) had already 
rewritten the term ( )F ξ  as follows: 

( ) ( ) ( ) ( )l l
F F F F

σ σξ ξ ξ ξ= + − ,    (2.175) 

where ( ) l
F

σξ  represents the surface average over a single sphere. For a turbu-

lent pressure distribution around a sphere as given by Schlichting (1959), the in-
terface average of the function ( )F ξ  is 

( ) 0.37
l d

mlF c
σξ = − ,      (2.176) 

where d
mlc  is the form drag coefficient for single particles. In the literature some-

times ( ) l
F

σξ  is set to the constant value ¼ – see, for instance, Lamb (1945). 

This means that the integral over the second term of Eq. (2.160) can be split into 

two parts. The first part can be estimated directly exploiting the fact that ( ) l
F

σξ  

does not depend on the position at the interface. The result is 

( )2 l

m ml l

l

F dF
F

σ

σ

ρ ξΔ V n ( ) ( )2 1

lw

l e
m ml l l

F

F dF
Vol

σρ ξ α γ
 

= − Δ ∇ + 
  

V n  

( )2 1
0.37

lw

d e
ml m ml l l

F

c dF
Vol

ρ α γ
 

= Δ ∇ + 
  

V n ( )2
0.37 d e

ml m ml lc ρ α γ= Δ ∇V , 

    (2.177) 

which results in an effective stagnation pressure difference 

2* 0.37l d
m ml m mlp cσ ρΔ = − ΔV      (2.178) 

similar to that discussed for stratified flow (Eq. (2.64)). To derive Eq. (2.177), 
Eq. (29) from Kolev (1994b) is also used together with the fact that there is no 
contact between the dispersed field and the wall, 0lwF = . 

The second part is the net force experienced by the particle due to nonuniform 
pressure distribution around the particle, the so-called form drag force: 
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( ) ( )
2

2

0 0

cos sin
ld

v l v l m ml ml ln R d F F d
π π

σγ γ ρ ϕ ξ ξ ξ ξ ξ = − Δ Δ −  f V V  

2 3 21 4 1
/

2 3 2
d d

v l m ml ml ml l v l l m ml ml ml ln c R R c Rγ ρ π γ α π ρ π  = − Δ Δ = − Δ Δ    
V V V V  

1 3

4
d

v l m ml ml ml
l

c
D

γ α ρ= − Δ ΔV V .     (2.179) 

The form drag force per unit mixture volume is, therefore, 

1 3

4
d d
l l m ml ml ml

l

c
D

α ρ= − Δ Δf V V .    (2.180) 

For larger volume fractions lα  one should take into account the dependence of the 
drag force on the volume fraction – also see Ishii and Mishima (1984) and Zuber 
(1964), for example. For drag forces in two-phase flows, the study by Ishii and 
Mishima (1984) is recommended. 

2.7.2.4 Lift force 

Note on particle rotation: A rotating sphere obeys the law of conservation of 
momentum 

5
1

2 2
d d

d d d d d

d D
I C

d
ωω ρ ω ω

τ
 = −  
 

. 

Here, the particle rotation velocity is dω and dI  is the particle’s moment of iner-
tia.  

( )
1 2

31/ 2
Re

ReRe
d cd

cdcd

c c
C cω ω

ωω
= + +   

is a coefficient depending on the rotational Reynolds number  

Re
2

d
cd d c

Dω ω ν =  
 

. 

The c coefficients are given by Yamamotto et al. (2001) in the following table: 
 

Recd
ω  0 to 1 1 to 10 10 to 20 20 to 50 >50

c1 0 0 5.32 6.44 6.45
c2 50.27 50.27 37.2 32.2 32.1
c3 0 0.0418 5.32 6.44 6.45

 



86      2 Conservation of Momentum 

We learn from this dependence that small and light particles can be more easily 
put in rotation compared to heavy and large particles. The following three main 
idealizations give an idea of the origin of the so-called lift force:  
 
a) A rotating symmetric particle in symmetric flow of continuum experiences a 

lift force called the Magnus force (named after the Berlin physicist Gustav 
Magnus, 1802–1870). The curiosity of Lord Rayleigh in regard to the trajecto-
ry of the tennis ball led him in 1877 to the corresponding explanation. The 
force was analytically estimated by Jukowski and independently by Kutta, see 
Albring (1970, p. 75). 

b) A nonrotating symmetric particle in nonsymmetric continuum flow as pre-
sented in Fig. 2.11 experiences lift force, Jukowski. 

c) A nonrotating asymmetric particle in symmetric continuum flow experiences 
lift force, Jukowski. 

 

The force component perpendicular to the relative velocity direction is called the 
lateral or lift force. The lift force is zero for symmetric bodies exposed to symme-
trical flow 

0L
l =f .       (2.181) 

Vm

( ) ( )f V V Vml
L

l m ml
L

l m mc= − − × ∇ ×α ρ

fml
d fml

vmVl

 

Fig. 2.11 Drag, virtual mass, and lift forces acting simultaneously on the field l 

A symmetric body exposed to asymmetrical flow experiences a lateral force – see 
Fig. 2.11. The lift force is similar in nature to the aerodynamic lift of an airfoil, but 
differs in that it is a result of the gradient in the continuum velocity field over a 
symmetric body rather than a uniform flow over an asymmetric airfoil. The gener-
al form of the lateral lift force for inviscid flows is given by Drew and Lahey 
(1987) 

( ) ( )L L
cd d c cd d c ccα ρ= − − × ∇ ×f V V V .    (2.182) 

The scalar components for Cartesian and cylindrical coordinates are 

( ) ( ) ( ),

1 1L L c c c
cd r d c cd d c c d c

u u w
f c v v r v w w

r r r z r
κ

κ κ
∂ ∂ ∂∂α ρ

∂ ∂θ ∂ ∂
    = − − − − − −       

, 

   (2.183) 
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( ) ( ) ( ),

1 1 1L L c c c
cd d c cd d c d c c

w v u
f c w w u u r v

r z r r r
κ

θ κ κ κ
∂ ∂ ∂∂α ρ
∂θ ∂ ∂ ∂θ

    = − − − − − −       
 

,  (2.184) 

( ) ( ),

1L L c c c c
cd z d c cd d c d c

u w w v
f c u u v v

z r r zκ
∂ ∂ ∂ ∂α ρ
∂ ∂ ∂θ ∂

    = − − − − − −       
.  

   (2.185) 

The lift coefficient must be derived experimentally. The reader will find infor-
mation on modeling of the lift force in Deich and Philipoff (1981), Staffman 
(1965), Bernemann et al. (1991), Soo and Tung (1972), Ho and Leal (1976), Vas-
seur and Cox (1976), Drew and Lahey (1987, 1990), Erichhorn and Small (1969), 
and Bataille et al. (1990). 

For negligible particle rotation, Staffman (1965, 1968) derived a negligible par-
ticle Reynolds number and small gradients of the continuum velocity the analytical 
expression for the shear lift force 

1/ 2
1/ 2 2

21 2 13.084L dw
c D

dr
ν

 
=   

 
. 

Inside the boundary layer of bubbly flow having 1 2w w>  and 2 0w r∂ ∂ < , the lift 
force pushes the bubbles towards the wall. Note that the spatial resolution in dis-
crete analyses must be fine enough in order to accurately compute the rotation of 
the continuous velocity field. Bad resolution, such in so-called subchannel analys-
es, produces only useless noise that makes the use of this force meaningless. 

Mei (1992) proposed an expression that can be used for larger particle Reynolds 
numbers 

1/ 2
1/ 2 2

21 2 1 3.084L dw
c Mei D

dr
ν

 
=   

 
, 

where 

( ) ( )1/ 2 1/ 2
2 12 21 0.3314 exp 0.1Re 0.3314Mei ω ω= − − + ,   12Re 40≤ , 

( )1/ 2

2 120.0524 ReMei ω= ,   12Re 40> ,  

and 12 12 1 2Re w D ν= Δ , 1 2
2

2 1

2D dw

w w dr
ω =

−
. In a later work, Klausner et al. (1993) 

found that the lift force on a bubble attached to a wall can be computed using 

( )1/ 43 / 2 2 2
21 2 12

16
3.877 0.014 Re

3
Lc ω β −= + , 
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which is valid for larger Reynolds numbers than the previous relation. In a later 
work Mei and Klausner (1995) proposed to use interpolation between the Staf-
man’s results for small Reynolds numbers and Auton’s (1987) results for large 
Reynolds numbers: 

1/ 22

2 12
21 21/ 2 1/ 2

2 12

1.72 2 Re3 16

98 Re
L J

c
ω

ω
ω

   = +   
    

, 

( ){ }10 120.6765 1 tanh 2.5 log 2 Re 0.191J β = + +   

( ){ }10 120.667 tanh 6 log 2 Re 0.32β × + −   

There are other expressions for the lift force on a single bubble. Tomiyama et 
al. (2002) measured trajectories of single bubbles in simple share flows of glyce-
rol–water solution. They obtained the following empirical correlation: 

( ) ( )21 12 1min 0.288 tanh 0.121Re ,  L
mc f Eö=       for   1 4mEö < , 

( ) 3 2
21 1 1 1 10.00105 0.0159 0.0204 0.474L

m m m mc f Eö Eö Eö Eö= = − − +  

for   14 10.7mEö≤ ≤ ,   

21 0.29Lc = −  for 110.7 mEö< ,  

based on experiments within the region of parameters defined by 

11.39 5.74mEö≤ ≤ , 10 125.5 log 2.8Mo− ≤ ≤ − , and 1
20 8.3s−< ∇× ≤V . The lift 

coefficient varied in this region between about 0.3 and −0.3. Here a modified 
Eötvös and Morton numbers are computed using the horizontal bubble size 

( ) 2
1 2 1 1,max 12mEö g Dρ ρ σ= − ,  

( ) ( )4 2
12 2 1 2 2 12Mo g ρ ρ η ρ σ= − . 

The aspect ratio of the bubble is computed by using the Wellek et al. (1966) correlation 

0.757
1,max 1,min 11 0.163 mD D Eö= + .   

In accordance with the Tomiyama et al. correlation, the lift coefficient for a bubble 
with a diameter of 3 mm in an air–water system is equal to 0.288. Zun (1980) per-
formed measurements and estimated a value for small bubbles of about 0.3. Naciri 
et al. (1992) experimentally measured the lift coefficient of a bubble in a vortex to 
be 0.25.  
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It should be emphasized that the above reviewed considerations are for a single 
object in shear flow. The presence of multiple objects in share flow is found to in-
fluence this force too. 

The importance of the findings by Tomiyama et al. (2002) is in the observation 
that for large bubbles the lift force changes sign. Krepper et al. (2005) observed 
experimentally that in vertical bubbly flow the void profile depends on the bubble 
size spectrum. For a spectrum with predominantly small sized bubbles a wall void 
peaking is observed. The level of the wall peaking depends on the turbulence in 
the liquid and on the stagnation pressure force. For spectra having predominantly 
large bubbles the central void, peaking is observed. This effect was reproduced by 
Krepper et al. (2005) by using lift force applied on multiple groups with 

21 0.05Lc =  for 1 0.006D m<  and 21 0.05Lc = −  for 1 0.006D m≥ . The improvement 

going from 1 to 2 groups was considerable. No substantial change was reported if 
more then 8 size groups were used. 

Using a combination of the radial liquid and gas momentum equations 

( ) ( ) ( )
( ) ( )2 2

1 2
2

1 2

1
1 *

*

r

R

u v
p r p R u dr

r

α ρ
α ρ

′ ′− −
′= − − −   .  

and the measured fluctuation velocities in the radial and in the azimuthal direction, 
Wang et al. (1987) explained why the bubble peaking for upwards flows is ob-
served close to the wall. Later it was found that this is valid for bubbles with small 
sizes. Close to the wall the authors observed that a) the velocity gradient has a 
maximal, b) the velocity fluctuations have maximum, and c) the static pressure has 
a minimum. Using the radial momentum equations for gas and liquids  

( )1 1 1, 1 1, 21

1 1
0L

rr

dp d
r f

dr r dr r θθα α τ α τ− + − + =  

( ) ( ) ( )1 1 2, 1 2, 21

1 1
1 1 1 0L

rr

dp d
r f

dr r dr r θθα α τ α τ − − + − − − − =  , 

it is possible to estimate the radial pressure distribution and the lift force, knowing 
from measurements the void and the velocity profiles with their fluctuations 

1, 0rrτ ≈ 1, 0θθτ ≈ , 2
2, 2 2rr uτ ρ ′= − , 2

2, 2 2vθθτ ρ ′= − . This is the approach used by 

Wang et al. to gain expression for the lift force in bubbly flow based on groups of 
variables that come from the theory of the lift force on a single object. Wang et al. 
introduced the influence of the local volume fraction into the lift coefficient 

( ) 1
21

0.49 log 9.3168
0.01 cot

0.1963
Lc

ξξ
π

− += + , 

as a function of  
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( )
2 2

1 1
1 2

12 12

1
exp 2

Rehyd

D w

D w
ξ α ω

∞

   
= −      Δ  

,    

where ( )1/ 4

12 21.18w gσ ρ∞Δ = . This coefficient varies within 0.01 and 0.1 in ac-

cordance to Wang’s et al. data. The disadvantage of this approach is that due to the 

dependence ( )hydDξ ξ=  the correlation depends on one global geometry charac-

teristic and cannot be applied locally. 
For a down flow of buoyant bubbles the lift-force is directed toward the center 

of the pipe. As a result, no wall peaking of the void fraction is experimentally ob-
served in turbulent bubbly flow. The level of the wall peaking depends of the tur-
bulence in the liquid and on the stagnation pressure force. 
 

Conclusions: (a) The spatial resolution in finite volume analyses must be fine 
enough in order to accurately compute the rotation of the continuous velocity 
field. Bad resolution such as in the so-called subchannel analyses produces only 
useless noise that makes the use of this force meaningless. (b) There is no method 
known to me that is based on local conditions and that allows taking into account 
the effect of multiple objects on the lift force. (c) The other problem is that small 
bubbles will probably rotate and the application of lift force derived for nonrotat-
ing objects in shear flows is questionable. (d) Heavy solid particles carried by gas 
are rather subject to lift force than to Magnus force because due to their inertia 
they will hardly take the rotation of the surrounding continuum.  

2.7.2.5 Interfacial structure forces 

The continuous field interacts with the wall structures. Careful estimation of the 
surface integral  

1

mw

w
m m

F

p dF
Vol

σΔ n   

is required, especially in the case of variable geometry of the structure in space. 
The discussion of flow on immersed bodies given in Sections 2.6.2.2 through 
2.6.2.4 is also valid for the case of a porous solid structure with a characteristic 
size of wD . This means that the stagnation pressure force, form drag, virtual mass 
force, and lift force must also be incorporated, 

( )1

mw

w w
m m m

F

p dF
Vol

σ σΔ − ⋅ I T n ( ) * 1

mw

d vm L w
v wm wm wm m m

F

f f f p dF
Vol

σγ= + + + Δ  n . 

    (2.186) 
For a continuous velocity field wetting the total structure, mw wF F=  and, there-
fore, 
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( )1 1
1

mw w

m m

F F

dF dF
Vol Vol

γ γ= = ∇ − = −∇ n n .   (2.187) 

which is in fact Eq. (1.29) with l w= −n n  and 1e
lα = . Consequently 

( )1

mw

w w
m m m

F

p dF
Vol

σ σΔ − ⋅ I T n ( ) *d vm L w
v wm wm wm mf f f p σγ γ= + + − Δ ∇ . (2.188) 

Here the following applies for a disperse structure (flow through porous media): 

( )vm vm
wm m w mw w mwc

∂ρ
∂τ
 = Δ + ⋅∇ Δ  

f V V V ( )vm
w mw w mwc

∂
∂τ
 = Δ + ⋅∇ Δ  

V V V , 

    (2.189) 

1 3

4
d d d
wm m mw mw mw mw mw mw

w

c c
D

ρ= Δ Δ = Δ Δf V V V V ,   (2.190) 

( ) ( ) ( ) ( )L L L
wm m mw w m m mw w m mc cρ= − × ∇ × = − × ∇ ×f V V V V V V . (2.191) 

For the case of a wall at rest we have 

vm vm vmm m
wm m w wc c

∂ ∂ρ
∂τ ∂τ

= =V V
f ,     (2.192) 

1 3

4
d d d
wm m mw m m mw m m

w

c c
D

ρ= =f V V V V ,    (2.193) 

( ) ( )L L L
wm m mw m m mw m mc cρ= − × ∇ × = − × ∇ ×f V V V V .   (2.194) 

The shear (friction) force for channels is usually incorporated into d
mwc . The same 

is performed for the drag resulting from local changes in the flow cross-section for 
the specific flow direction. 

2.7.2.6 Force in the wall boundary layer 

Note that no bubbles are observed at the wall for adiabatic flows. This led Antal et 
al. (1991) to the conclusion that there is a special force at the wall similar to the 
lubrication force that pushes the bubbles away from the surface, 

2

0

ˆ
0.104 0.06 0.147

d cLw d
cd cd w

d

R
V

R y

α ρ  
= − − Δ + 

 

V
f n , 

where 0y  is the distance between the bubble and the wall, wn  is the unit outward 

normal vector on the surface of the wall, and 
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( )ˆ .d c w d c w= − − −  V V V n V V n . 

2.7.2.7 Force causing turbulent diffusion 

It is experimentally observed that turbulence in the continuous phase tends to 
smooth the volumetric concentrations of the dispersed phase. In other words, the 

pulsation in the continuum producing the force ( )e
l l l lα ρ γ ′ ′∇ ⋅  V V forces the par-

ticles to move from the places with higher concentration to the places with lower 
concentration. For homogeneous turbulence  

( ) ( )2e e
d d d d d d dkα ρ γ α ρ γ ′ ′  ∇ ⋅ = ∇   V V  . 

For bubbly flow ( ) ( )2 2e e
d d d d d ck kα ρ γ α ρ γ   ∇ ≈ ∇    . Here, ck  is the specific 

turbulent kinetic energy of the continuous phase. For bubbly flow, Lopez de Ber-
todano (1992) proposed the following form of this force: 

( )t e t
cd d d d d cd c c dc kα ρ γ ρ α ′ ′= ∇ ⋅ ≈ − ∇ f V V , 

with 0.1t
cdc =  proposed by Lahey et al. (1993). Shi et al. (2005) performed a Fa-

vre (mass-weighted) averaging of the classical form of the drag form. His final 
expression for the dispersed form is 

( )
3

4 1

d t
t cd c
cd c c d dt

d d c

c

D Sh

ν ρ α
α

= − − ∇
−

f V V , 

where the turbulent Schmidt number for the continuous field, t
cSh , is set to 1. 

2.7.2.8 Force causing rejection of droplet deposition at the wall 

Consider very strong evaporation of a film. The deposition mass flow rate of 
droplets is ( )32

wρ  with a velocity ( )32 332
w wρ ρ= , which is perpendicular to the 

wall. The film evaporation emits a vapor with velocity that has a component 
opposing the droplet deposition velocity 1, 1evaporationw q hρ′′= Δ . Therefore, the 

droplet in the proximity to the wall experiences an additional drag force that 
opposes its movement towards the wall 

( )1, 32 1, 32

1 3

4
dw dw
cd c cd evaporation evaporation w

d

c w w w w
D

ρ= − −f n . 

As we can see this force is important a) for high pressure because the continuum  
density is high, b) for high heat fluxes, and c) for low turbulence in the vapor 
phase. 
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2.8 Working form for the dispersed and continuous phase 

Thus the momentum equation of a dispersed velocity field takes the form 

( ) ( ) ( )e e
l l l v l l l l l l l l

∂ α ρ γ α ρ γ α ρ γ
∂τ

 ′ ′+ ∇ ⋅ + ∇ ⋅  V V V V V e
l lpα γ+ ∇ l v lα γ ρ+ g  

( ) ( )e
l m l lm l lp p δ σ κ α γ+ − + ∇ ( )*l e
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( ) 1 3

4

vm
ml ml l ml

v l m

L d
ml ml m ml ml ml
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∂
∂τ

γ α ρ
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 
 − Δ × ∇ × + Δ Δ
  

V V V
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( )
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w

v kl k lk l
k
k l

γ μ μ
=
≠

= − V V .      (2.195) 

In the case of isotropic turbulence we have 

( ) ( )e
l l l v l l l l

∂ α ρ γ α ρ γ
∂τ

+ ∇ ⋅V V V ( )2

3
e

l l l lkγα ρ− + ∇S e
l lpα γ+ ∇ l v lα γ ρ+ g  

( ) ( )*l e
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γ α ρ
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 
 − Δ × ∇ × + Δ Δ
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( )
3,

1

w

v kl k lk l
k
k l

γ μ μ
=
≠

= − V V .      (2.195b) 

The momentum equation of the continuous phase so far takes the following form: 

( ) ( )e
m m m v m m m m

∂ α ρ γ α ρ γ
∂τ

+ ∇ ⋅V V V   

( ) ( )2 2
2

3 3
e e

m m m m m m m mkγα ρ α γη  − + ∇ − ∇ ⋅ − ∇ ⋅    
S D V I e

m mpα γ+ ∇  

m v mα γ ρ+ g ( )*l e
m lp σ α γ+Δ ∇ *w

mp σ γ−Δ ∇  
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( )

( ) 1 3
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ml ml l ml

v l m

L d
ml ml m ml ml ml
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c c
D
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γ α ρ
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 
 − Δ × ∇ × + Δ Δ
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2 4
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c c c
D
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 
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 

V
V V V V  

( )
3,

1

w

v km k mk m
k
k m

γ μ μ
=
≠

= − V V .     (2.196) 

In the case of isotropic turbulence, we have 

( ) ( )e
m m m v m m m m

∂ α ρ γ α ρ γ
∂τ

+ ∇ ⋅V V V  ( )e
m m m m mα γ ρ ′ ′+∇ ⋅ − V V T e

m mpα γ+ ∇  

m v mα γ ρ+ g ( )*l e
m lp σ α γ+Δ ∇ *w

mp σ γ−Δ ∇  
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v l m

L d
ml ml m ml ml ml

l

c

c c
D

∂
∂τ

γ α ρ

  Δ + ⋅∇ Δ     +  
 
 − Δ × ∇ × + Δ Δ
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V V V
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( )1 1 3

2 4
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v m w mw m m mw m m
w

c c c
D

∂γ ρ
∂τ

 
+ − × ∇ × + 

 

V
V V V V  

( )
3,

1

w

v km k mk m
k
k m

γ μ μ
=
≠

= − V V .     (2.196b) 

The relation between the two bulk pressures is given by the momentum jump con-
dition. With the assumptions made in Section 2.6.2.1, the momentum jump condi-
tion, Eq. (2.23), reduces to 

( )2 , ,1 1
0m l

l m ml mml
l m

w p pσ τ σ τρ σ κ
ρ ρ

 
− + − − = 

 
.   (2.197) 

We exchange the subscripts l and m because the surface tension is assumed to be-
long to the liquid phase. After time averaging we obtain 
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( )2 1 1
0m l

l m ml lml
l m

w p pσ σρ σ κ
ρ ρ

 
− + − + = 

 
,   (2.198) 

or in terms of bulk pressure 

( )2 1 1l
l m ml l m ml

m l

p p p wσσ κ ρ
ρ ρ

 
− + = Δ + − 

 
.   (2.199) 

Actually, the pressure difference l
mp σΔ  varies over the surface and some surface-

averaged value  

1 1

l l

l l
m l m l

l lF F

Vol
p dF p dF

F F Vol
σ σ

σ σ

σ σ

Δ = Δ n n     (2.200) 

may be used. There is no experience in this field and future investigations are ne-
cessary. Approximations are thinkable for predominant surface tension and low 
mass transfer 

0l m ml lp p σ κ− + ≈ ,      (2.201) 

or for predominant mass transfer 

( )2 1 1
l m ml l ml

m l

p p wσ κ ρ
ρ ρ

 
− + ≈ − 

 
.    (2.202) 

Note that for spheres 1/ 1/ 2 /l l l lR R Rκ = + = . Remember that if the radius is in-
side the field the curvature is negative.  

Now let us as a practical illustration of the application of the theory analyze the 
eigenvalues for bubble flow without mass transfer in a one-dimensional horizontal 
channel with constant cross-section section, assuming noncompressible phases 
and neglecting the diffusion terms. The governing system then simplifies to 

2p p= ,       (2.203) 

1 12 2p p σ κ= + ,      (2.204) 

( )1 2 1
1 2 1 2 0

w w
w w

z z z

αα α∂ ∂ ∂+ + − =
∂ ∂ ∂

    (2.205) 

1 1 1
1 1 0

w
w

z z

∂α αα
∂τ

∂ ∂+ + =
∂ ∂

     (2.206) 

( ) 1 1 2 2
1 1 2 21 1 1 2 21 1 1

vm vmw w w w p
c w c w

z z z

∂ ∂ ∂ ∂ ∂α ρ ρ α ρ α
∂τ ∂ ∂τ ∂ ∂

   + + − + +   
   

1 * 1
2p

z
σ ∂α

∂
−Δ  

1 2 21 21 21
1

1 3

4
dc w w

D
α ρ= Δ Δ ,     (2.207) 
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( ) ( )1 1 2 2
1 2 21 1 2 1 21 2 2 2 1 21 1 2

vm vm vm vm
w

w w w w
c w c c w c w

z z

∂ ∂ ∂ ∂α ρ α α ρ α α ρ
∂τ ∂ ∂τ ∂

 − + + + + + + 
 

 

2

p

z

∂α
∂

+ 1 * 1
2p

z
σ ∂α

∂
+Δ 2 1 21 21 21 2 2 2

1

3 1 1

4
d d

w
w

c w w c w w
D D

ρ α 
= − Δ Δ + 

 
 

    (2.208) 

In matrix notation we have 

( )
( )

1

1 1 2 21 1 2 21 1

21 2 21 2 1 21 2

0 0 0 0

0 1 0 0

0 0

0 0

vm vm

vm vm vm
w

p

c c w
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α
α ρ ρ α ρ τ

α ρ α α ρ

        ∂   + −  ∂      − + +   

 

( )
( )

1 2 1 2

1 1
1

1 *
1 2 1 1 2 21 1 1 2 21 1 1

1 *
22 2 1 2 21 1 2 2 1 21 1 2

0

0 0
vm vm

vm vm

w w p
w

p c w c w wz

wp c w w c w

σ

σ

α α
α α

α α ρ ρ α ρ

α α ρ α α ρ

 −       ∂  +  −Δ + −  ∂        Δ − + 

 

1 2 21 21 21
1

2 1 21 21 21 2 2 2
1

0

0

1 3
4

3 1 1

4

d

d d
w

w

c w w
D

c w w c w w
D D

α ρ

ρ α

 
 
 
 

Δ Δ=  
 
   − Δ Δ +    

 .  (2.209) 

The reader unfamiliar with the analysis of the type of a system of partial diffe-
rential equations by first computing the eigenvalues, eigenvectors, and canonical 
forms, is recommended to first read Section 11 before continuing here.  

The characteristic equation for determining the eigenvalues is then 

( ) ( ) ( )

( )
( )

1 2 1 2

1 1

1 *
1 2 1 1 2 21 1 1 2 21 1

2 2 1 21 1

1 *
2 2 1 2 21 1 2

2 1 21

0

0 0

0

vm vm

vm

vm

vm vm
w

w w

w

p c w c w

w c w

p c w

c c

σ

σ

α α
λ α

α α ρ ρ λ α ρ λ

α α
α α ρ λ ρ

λ α α

− 
 − 
 −Δ + − − −
  =  +  
 Δ − −  
    − + +   

. 

  (2.210) 
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or 

( ) ( ) ( )21
2 21 2 1 1 2 2 2 1 21 1 2 1 21

2

vm vm vm vm
wc w w w c w c c

ρα α λ α λ α α λ α α
ρ

   + − + − + − + +    
 

( ) ( )
1 *
2

1 2 1 2 21 1 2
2

0vm p
w w c w

σ

α α λ α
ρ

Δ− − − + =    (2.211) 

or 

2 2 0a b cλ λ− + =       (2.212) 

where 

( )21
2 1 2 1 2 21 1

2

0vm vm
wa c c

ρα α α α α α
ρ

 
= − + − + > 

 
,   (2.213) 

( ) ( )2 2 1
1 2 1 2 1 2 1 21 1 2 2 1 2

2

1
2 2 2

2
vm vm

wb w w c c w w
ρα α α α α α α α
ρ

  = + − − + + −   
, 

    (2.214) 

( )
1 *

2 2 2 2 21 2
1 1 2 2 1 21 1 2 2 2 1 2

2 2

vm p
c w w w c w w

σρα α α α α α
ρ ρ

Δ= + + + + ,  (2.215) 

with two real solutions 

2

1,2

b b ac

a
λ ± −=       (2.216) 

for 

2b ac>        (2.217) 

which is, in fact, the stability criterion for bubbly flow. 

2.9   General working form for dispersed and continuous   
phases 

In this section, we write a single equation valid for both disperse and continuous 
phases. First we compare the terms in the two equations 

( ) ( )*d e
d d c d dc d c dp p p σ
α δ σ κ α γ= − + − Δ ∇f ,   (2.218) 

and 

( )*d e
c c dp σ
α α γ= Δ ∇f ,      (2.219) 
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and realize that in both cases the force is a function of the gradient of the disperse 
volume fraction multiplied by different multipliers. With this notation, we have 

 

( ) ( ) ( )* 2

3
Te

l l l v l l l l l l l l

∂ α ρ γ α ρ γ ν
∂τ

   + ∇ ⋅ − ∇ + ∇ − ∇ ⋅      
V V V V V V I  

e
l l l l vpα γ α ρ γ+ ∇ + g *w

l lp σ
αγ−Δ ∇ + f  

( ) ( ) ( )

3

1

d
ml ml ml

v
m
m l L vm

ml l m m ml ml l ml

c

c c

γ
∂
∂τ

=
≠

 
 Δ Δ
  −  
   + − × ∇ × + Δ + ⋅ ∇ Δ    


V V

V V V V V V

 

( )d vm Ll
v lw l l l lw l lw l lc c c

∂γ ρ ρ
∂τ

 + + − × ∇ ×  

V
V V V V ( )

3,

1

w

v ml m lm l
m

γ μ μ
=

= − V V . 

      (2.220) 
Note that 

* 0w
dp σΔ = ,       (2.221) 

* 0w
cp σΔ ≠ .       (2.222) 

Similarly 

, , 0d vm L
dw dw dwc c c = ,      (2.223) 

and 

, , 0d vm L
cw cw cwc c c ≠ ,      (2.224) 

if the continuum is in a contact with the wall. For easy programming, a couple of 
simple drag, lift, and virtual mass coefficients combined as follows are introduced 
for each field 

( )3
/ /

4
d d d d

ml lm m l lm m l m ml lc c c D c Dα ρ α ρ= = + ,   (2.225) 

L L L L
ml lm m l lm l m mlc c c cα ρ α ρ= = + ,     (2.226) 

vm vm vm vm
ml lm m l lm l m mlc c c cα ρ α ρ= = + .     (2.227) 
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If field l  is disperse and surrounded by the continuous m-field, the coefficient mlc  

is not equal to zero and lmc  is equal to zero, and vice versa. In other words if the 
second subscript refers to a disperse field, the local size of dispersion is positive 
and the coefficients are not equal to zero. For application in computer codes the 
following general notation is recommended: 

3,

1

w
d

l ml ml
m
m l

c
=
≠

=f f        (2.228) 

to take into account the fact that a control volume may contain two dispersed 
fields carried by one continuous field. This approach together with implicit discre-
tization of the momentum equations, their strong coupling through a special nu-
merical procedure, and the comparison with data for three-phase bubble flow was 
presented by Kolev et al. (1991). In Volume II the reader will find additional in-
formation on practical computation of drag forces in multiphase flows.  

Equation (2.220) is the rigorously derived local volume and time average mo-
mentum balance for multiphase flows in heterogeneous porous structures condi-
tionally divided into three velocity fields. 

The nonconservative form of the momentum conservation equation in compo-
nent notation is given in Appendix 2.3. In the same appendix some interesting sin-
gle-phase analytical solutions are given. They can be used as benchmarks for test-
ing the accuracy of the numerical solution methods. 

2.10 Some practical simplifications 

Equation (2.220) has been used since 1984 in the IVA1 to IVA6 computer codes 
Kolev (1985, 1986a, 1986b, 1987, 1991a, 1991b, 1993a, 1993b, 1993c, 1993d, 
1994, 1996, 1999) with the following simplifications: 

*2
0llm

l m m
l

p p p
R

σσ− + − Δ ≈ ,     (2.229) 

l mp p p≈ = ,       (2.230) 

0t
lν ≈ .       (2.231) 

Assumption (2.229) is quite close to the local volume and time average interfacial 
jump condition at the interface and, therefore, does not lead to any problems for 
slow interfacial mass transfer. 

Assumption (2.230) leads to the so-called single-pressure model. It should be 
emphasized that the most important interfacial pressure forces, which are consi-
derably larger in magnitude than the error introduced by the single-pressure as-
sumption, have already been taken into account. This assumption likewise does 
not lead to any problems. In this type of single-pressure model the hyperbolicy is 
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preserved due to the stabilizing viscous, drag, and virtual mass terms. Neglect of 
the viscous, drag and virtual mass terms leads to unphysical models. 

Assumption (2.231) was dictated by a lack of knowledge. When information 
for t

lν  becomes available, this can easily be included, as the viscous terms have al-

ready been taken into account. 
The resulting simplified form of Eq. (2.220) is, therefore, 
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( )
3,

1

w

v ml m lm l
m

γ μ μ
=

= − V V .     (2.232) 

The form of Eq. (2.232) is sometimes called conservative in order to distinguish it 
from the nonconservative form. The nonconservative form is derived by applying 
the chain rule to the first two terms and inserting the mass-conservation equation 
(1.45). The resulting equation, 
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( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l

m

γ μ μ μ
=

 = − + − + −    
 V V V V V V , (2.233) 

contains some extremely interesting information, namely: 
 

(a) mass sinks of the velocity field l have no influence on the velocity change (an 
exception is the controlled flow suction from the structure through the structure in-
terface), and  
(b) mass sources from a donor field whose velocities differ from the velocity of 
the receiving field influence the velocity change. 

 

To facilitate the direct use of the vector equation (2.333), we give its scalar com-
ponents for the most frequently used cylindrical, 1κ = , and Cartesian, 0κ = , 
coordinate systems. 

 
r direction 
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u
u r u u
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where 
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     (2.235) 

θ  direction 

( ) *1 l
l l l v l l l l l r

v
v r u v

r r r
κ

κ
∂∂ ∂α ρ γ α ρ ν γ

∂τ ∂ ∂
  + −    

 

*1 1 l
l l l l l

v
v v

r r θκ κ
∂∂ α ρ ν γ

∂θ ∂θ
  + −    

 



102      2 Conservation of Momentum 

* * 1l l
l l l l l l
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where 
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l l l v l l l l l r

w
w r u w

r r r
κ

κ
∂∂ ∂α ρ γ α ρ ν γ

∂τ ∂ ∂
  + −    

 

*1 1 l
l l l l l

w
v w

r r θκ κ
∂∂ α ρ ν γ

∂θ ∂θ
  + −    

* l
l l l l l z

w
w w

z z

∂∂ α ρ ν γ
∂ ∂

  + −    
 

( ) ( )
3,

1

w

l z l l z lw v v ml ml lm l lw
m

p
g f w w f

z ν
∂α γ α ρ γ γ μ μ
∂ =

+ + + = − + ,  (2.238) 

where 

* * *1 1l l l
lw l l l r l l l l l l z

u v w
f r

r r z r z z z
κ

ν θκ κ
∂ ∂ ∂∂ ∂ ∂α ρ ν γ α ρ ν γ α ρ ν γ

∂ ∂ ∂θ ∂ ∂ ∂
     = + +     
     

 

( )*2

3 l l l l zz

∂ α ρ ν γ
∂

 − ∇ ⋅ V .     (2.239) 

Here 

( )1 1 l l
l l

v w
r u

r zr r
κ

κ κ

∂ ∂∂
∂ ∂θ ∂

 ∇ ⋅ = + +  
V .    (2.240) 

Note that all interfacial forces are designated with lf  with components luf , lvf , 

and lwf . 
The viscous terms have been rearranged in order to obtain a convection-

diffusion form for the left-hand side of the momentum equations. The residual 
terms are pooled into the momentum source terms νf . This notation is justified for 
two reasons. First, for a single-phase flow in a pool (unrestricted flows) and a con-
stant density, the source terms νf  are equal to zero, which intuitively leads to the 

idea that the main viscous influence is outside the νf  source terms. This argument 

led some authors to derive an explicit discretization for the νf  source terms for 
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single-phase flow applications, see Trent and Eyler (1983), or even to neglect 
these source terms. Second, methods with known mathematical properties for the 
discretization of convection-diffusion equations have already been developed, and 
these can be applied directly. 

Note that for Cartesian coordinates the convective components contain spatial 
derivatives. In the case of cylindrical coordinates the convective part contains in 
addition two components not containing spatial derivatives. The component  

centrifugal force l l l lv v
r θκ
κ α ρ γ= −     (2.241) 

is known in the literature as centrifugal force. It gives the effective force component in 
the r direction resulting from fluid motion in the θ  direction. The component  

Coriolis force l l l lv u
r θκ
κ α ρ γ=      (2.242) 

is known in the literature as the Coriolis force. It is an effective force component 
in the θ  direction when there is flow in both the r and θ directions. This results in 
the components of the viscous stress tensor, ,l θθτ  and ,l rθτ  corresponding to these 

forces and acting in the opposite directions. 

2.11 Conclusion 

The positive experience with Eqs. (2.334)–(2.340) in the development of the IVA 
code Kolev (1985, 1993e, 1996, 1999) allows one to recommend these equations 
for general use. One should keep in mind for application purposes that both sides 
of the equations are local volume and time averages. 

Understanding of the local volume and time average momentum equations is a 
prerequisite for understanding the second law of thermodynamics and its extreme-
ly interesting application to yield a simple description of this highly complicated 
system. As a next step in this direction, a rigorous formulation of the equations re-
flecting the second law of thermodynamics for this multiphase, multicomponent 
system has been successfully derived. The result of this derivation has formed the 
subject of a Chapter 5, see also Kolev (1995), and a comment to this publication 
(Kolev 1997).  

Appendix 2.1 

Substituting in the momentum conservation equation and performing time averaging,  

le

l lp pτ = , 
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me

m mp pτ = , 

l

l v l l l v l lα γ ρ α γ ρ=V V , 

 0
l

l v l lα γ ρ ′ =V ,  

le e
l l l l l l l lα γ ρ α γρ=V V V V , 

0
le

l l l lα γ ρ ′ =V V , 

le e
l l l l l l l lα γ ρ α γρ′ ′ ′ ′=V V V V , 

( ) ( )lee e
l l l l

τα γ α γ∇ ⋅ = ∇ ⋅T T , 

lee e
l l l lp pτα γ α γ∇ ⋅ = ∇ ⋅ , 

l

l v l l v lα γ ρ α γ ρ=g g , 

( )
3 3

1 1

me le

ml m lm l ml m lm l
m m

τ τ τ τμ μ μ μ
= =

 − ≈ − 
  V V V V , 

and 

( ) ( ) ( )1 1

lw l

e
l m l lm l l l l t lm

F F

p p dF dF
Vol Vol

σ

δ σ κ α γ δ σ
 

+ − + ∇ + − ∇  
 

 n  

( )1

l

l l
m m l

F

p dF
Vol

σ

σ σ+ Δ − ⋅ I T n ( )1

lw

w w
l l l

F

p dF
Vol

σ σ+ Δ − ⋅ I T n  

( )
3,

1

w

v ml m lm l
m

γ μ μ
=

= − V V   

( ){ } ( )

( ){ } ( )

l lw

l lw

l l w w
m m l t lm l l l

F F

l l w w
m m l t lm l l

F F

p dF p dF

p dF p dF

σ

σ

σ σ σ σ

σ σ σ σ

σ

σ

−Δ + ⋅ − ∇ + −Δ + ⋅

= −Δ + ⋅ − ∇ + −Δ +

 

 

I T n I T n

I T n I T

 

one obtains Eq. (2.50a). 
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Appendix 2.2 

The normal velocity difference can be obtained by splitting the relative velocity 
vector at the interface lmΔV  into a component that is parallel to ln  

 ( )
l

n lm l
lm lm l lm l l

l l

proj
 Δ ⋅Δ = Δ = = Δ ⋅ ⋅ 

n

V n
V V n V n n

n n
,      

with a magnitude 

( ) ( ) ( )22 2n
lm lm l lx l m ly l m lz l mn u u n v v n w w Δ = Δ ⋅ = − + − + −       V V n   

and a component orthogonal to ln ,  

( )
l

t
lm lm lm lm lm l lprojΔ = Δ − Δ = Δ − Δ ⋅eV V V V V n n  

( ) ( ) ( )lm lx lm l lm ly lm l lm lz lm lu n v n w n     = Δ − Δ ⋅ + Δ − Δ ⋅ + Δ − Δ ⋅     V n i V n j V n k  

Appendix 2.3 

The nonconservative form of Eqs. (2.195) is 
 

r direction: 

21 1
2

l l l l
l l v r l l z

u u u u
v w

r r zθ κ
∂ ∂ ∂ ∂α ρ γ γ γ γ
∂τ ∂ ∂θ ∂

 
+ + + 

 
 

* *1 1 1l l
l l l r l l l

u u
r

r r r r r
κ

θκ κ κ
∂ ∂∂ ∂α ρ ν γ α ρ ν γ

∂ ∂ ∂θ ∂θ
   − −   
   

* l
l l l z

u

z z

∂∂ α ρ ν γ
∂ ∂

 −  
 

 

*2 l
l l l l l l

v
v v u

r r θκ κ
∂κ α ρ ν γ
∂θ

  − − +    
( )l r l l r lu v

p
g f

r

∂α γ α ρ γ
∂

+ + +   

( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l lu

m

u u u u u u fνγ μ μ μ
=

  = − + − − − +   
 ; 

θ  direction: 

21 1
2

l l l l
l l v l r l z

v v v v
u w

r r zθ κ
∂ ∂ ∂ ∂α ρ γ γ γ γ
∂τ ∂ ∂θ ∂

 
+ + + 

 
 

* * *1 1 1l l l
l l l r l l l l l l z

v v v
r

r r r r r z z
κ

θκ κ κ
∂ ∂ ∂∂ ∂ ∂α ρ ν γ α ρ ν γ α ρν γ

∂ ∂ ∂θ ∂θ ∂ ∂
     − − −     
     
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* * 1l l
l l l l l l

v u
v u r

r r r r
κ

θκ κ κ
∂κ ∂α ρ ν ν γ

∂ ∂θ
  + − −    

( )1
l l l lv v

p
g f

rθ θκ
∂α γ α ρ γ
∂θ

+ + + . 

( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l lv

m

v v v v v v fνγ μ μ μ
=

  = − + − − − +   
 ; 

 

z direction: 

21 1
2

l l l l
l l v l r l z

w w w w
u v

r r zθ κ
∂ ∂ ∂ ∂α ρ γ γ γ γ
∂τ ∂ ∂θ ∂

 
+ + + 

 
 

* * *1 1 1l l l
l l l r l l l l l l z

w w w
r

r r r r r z z
κ

θκ κ κ
∂ ∂ ∂∂ ∂ ∂α ρ ν γ α ρ ν γ α ρν γ

∂ ∂ ∂θ ∂θ ∂ ∂
     − − −     
     

 

( )l z l l z lw v

p
g f

z

∂α γ α ρ γ
∂

+ + +  

( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l lw

m

w w w w w w fνγ μ μ μ
=

  = − + − − − +   
 . 

Some simple single-phase test cases: For testing numerical solutions it is impor-
tant to provide a set of simple benchmarks having analytical solutions. Some of 
them are presented here. 

 

Rigid body steady rotation problem: This test problem presents a hollow cylinder 
with symmetric flow in the azimuth direction, see Fig. A2.3-1. No axial and radial 

flow exists. The mass conservation equation gives 0
v∂

∂θ
= . The r direction mo-

mentum equation simplifies to 
2v

r
ρ =

p

r

∂
∂

, and the θ  direction momentum equa-

tion gives 0
p∂

∂θ
= . For constant rotational frequency ω , ( )( )=rv r ω , the analyt-

ical solution of the radial momentum equation is ( )2 2 2
0 0

1

2
p p r rρω− = −  or 

( )
2

2 0
0

1
1

2

r
p p v r

r
ρ

  − = −         
. 
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Fig. A2.3-1 Geometry of the test problem rigid body steady rotation 
 
Pure radial symmetric flow: This test problem presents a hollow cylinder with 
symmetric flow in the radial direction, see Fig. A2.3-2.  
 

 
 

Fig. A2.3-2 Geometry of the test problem pure radial symmetric flow 
 
No axial and azimuthal flow exists. The mass conservation equation gives 

( ) 0ru
r

∂
∂

= . The r direction momentum equation simplifies to 
21

2
u p

r r

∂ ∂ρ
∂ ∂

= − , 

and the θ  direction momentum equation gives 0
p∂

∂θ
= . From the mass conserva-

tion we have 0
0

r
u u

r
= . The analytical solution of the radial momentum equation 

is the well-known Bernoulli equation ( )2 2
0 0

1

2
p p u uρ− = − −  or 

2
2 0

0 0

1
1

2

r
p p u

r
ρ

  − = −  
   

. 

 
Radial-azimuthal symmetric flow: This test problem presents a hollow cylinder 
with symmetric flow in the radial and azimuthal directions – it is, in fact, a super-
position of the previous two cases, rigid body steady rotation and pure radial 
symmetric flow, see Fig. A2.3-3. No axial flow exists. The mass conservation eq-
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uation gives ( ) 0ru
r

∂
∂

= . The r direction momentum equation simplifies to 

2 21
2

u v p

r r r

∂ ∂ρ
∂ ∂

 
− = − 

 
, and the θ -direction momentum equation gives 

1v v p
u

r r r

∂ ∂ρ
∂ ∂θ

 + = − 
 

. From the mass conservation we have 0
0

r
u u

r
= . From the 

azimuthal symmetry, 0
p∂

∂θ
= , the θ  direction momentum equation gives 

0
v v

r r

∂
∂

+ =  or 0
0

r
v v

r
= . Taking into account the both solutions of the mass and 

of the θ  momentum equation the radial momentum equation gives 

( )2 21 p
u v

r r

∂ρ
∂

+ =  or ( )2 2 2
0 0 0 3

1 p
u v r

r r

∂ρ
∂

+ =  or 

 ( )2 2 2
0 0 0 0 2 2

0

1 1 1

2
p p u v r

r r
ρ  

− = + − 
 

. 

 

 
 

Fig. A2.3-3 Geometry of the test problem radial-azimuthal symmetric flow 
 

Trajectory of particles in a known gas field: Consider flow of particles with 
very small concentrations in a known gas velocity field. Compute the trajectory of 
a particle with mass mi taking into account only the drag force and assuming the 
validity of Stokes’ law. Such a task was usually solved in the past for computing 
trajectories of particles in cyclone separators. If in such computations, the trajecto-
ry ends in the particle capturing devices, this class characterized by particle size 
and starting coordinate is considered as removed from the gas flow. The three 
simplified momentum equations are then 

( )
3 2
3, 3, 3,

1 3, 1 3,3
6

i i i
i i i

D du v
D u u

d r

π
ρ πη

τ
 

− = −  
 

,   ( )
2

3, 3, 1
1 3,2

3,

18i i
i

i i

du v
u u

d r D

η
τ ρ

= + − , 

( )
3
3, 3, 3, 3,

1 3, 1 3,3
6

i i i i
i i i

D dv v u
D v v

d r

π
ρ πη

τ
 

+ = − 
 

,  ( )3, 3, 3, 1
1 3,2

3,

18i i i
i

i i

dv v u
v v

d r D

η
τ ρ

= − + − , 
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( )
3
3, 3,

1 3, 1 3,3
6

i i
i i i

D dw
D w w

d

π
ρ πη

τ
= − ,   ( )3, 1

1 3,2
3,

18i
i

i i

dw
w w

d D

η
τ ρ

= − . 

For constant gas velocity and particle size the analytical solution is provided by 
Crowe and Patt (1974) 

( ) ( )3, 1 1 3, , 13expi i aw w w w τ τ= − − − Δ Δ , 

( ) ( ) ( ) 2
3, 1 1 3, , 13 13 13 3,exp 1 expi i a iu u u u v rτ τ τ τ τ= − − − Δ Δ + − − Δ Δ Δ   , 

( ) ( ) ( )3, 1 1 3, , 13 13 13 3, 3,exp 1 expi i a i iv v v v v u rτ τ τ τ τ= − − − Δ Δ − − − Δ Δ Δ   , 

where 

( ) ( )2
13 3 3 118iDτ ρ ηΔ =  

is the Stokes relaxation time constant. Knowing the initial position and the veloci-
ty, the position after the time interval τΔ  can be computed by using the Euler me-
thod. 
 
The Kreith and Sonju solution for the decay of turbulent swirl in a pipe: Kreith 
and Sonju (1965) analyzed steady turbulent swirl in a pipe. After making several 
reasonable simplifying assumptions the authors arrived at the following form of 
the tangential momentum equation: 

( )
2

2 2

1tv v v v
w

z r rr r

∂ ∂ ∂ν ν
∂ ∂∂

 
= + + − 

 
, 

or in nondimensional form 

 
2

2 2

1

Re

v v v v

z r rr r

∂ ν ∂ ∂
∂ ∂∂

 
= + − 

 
, 

where maxv v w= , r r R= , ( )tv v ν ν= + , z z R= , and Re wR ν= . The au-

thors solved this equation by separation of the variables for the following boun-
dary conditions: v = 0 at r = 0 and r = R, v(r, 0) = f(r) at z = 0. The initial condi-
tion was gained from experimental data for the initial distribution of the tangential 
velocity behind a tape swirler 

( ) ( ) 2.68
,0 6.3 0.013 1.1 tsv r r r z

− = − − Δ  , 

where ts tsz z RΔ = Δ , tszΔ is the length of the tape swirler making a complete 360° 
rotation. 

( ) ( )1

7.78
, 3.832 exp 16.7

Re

z
v r z J r

H

ν = − 
 

( )1

5.26
7.016 exp 55.7

Re

z
J r

H

ν − − 
 

 

( )1

3.93
10.174 exp 117.9

Re

z
J r

H

ν + − 
 

( )1

3.16
13.324 exp 203.7

Re

z
J r

H

ν − − 
 

+… 

1J  is the Bessel’s function of the first kind of order one. From experimental data 

the relation 3 0.861 2.03 10 Rev −= + ×  was recommended for 4 64 10 Re 1 10× < < × . 
Experimental data for Re = 18 000 and 61 000 validate the approximate solution. 
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The data indicate the initial swirl decay to be about 20% at z = 100. There are au-
thors trying to represent the decay by a single exponential function. From the data 
collected by Steenberger (1995) it is visible that the decay coefficient is a decreas-
ing function with increasing Reynolds number as manifested by the above solu-
tion. Note the practical importance of this solution. Having the rotation introduced 
by twisted tapes in the cylinder particle trajectories can be computed and, there-
fore, the efficiency of separation devices can be judged. 
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