13 Numerical methods for multi-phase flow
in curvilinear coordinate systems

This chapter presents a numerical solution method for multi-phase flow
analysis based on local volume and time averaged conservation equations. The
emphasis of this development was to create a computer code architecture that
absorb all the constitutive physics and functionality from the past 25years
development of the three fluid multi-component IVA-entropy concept for multi-
phase flows into a boundary fitted orthogonal coordinate framework. Collocated
discretization for the momentum equations is used followed by weighted averaging
for the staggered grids resulting in analytical expressions for the normal
velocities. Using the entropy concept analytical reduction to a pressure-velocity
coupling is found. The performance of the method is demonstrated by comparison
of two cases for which experimental results and numerical solution with the
previous method are available. The agreement demonstrates the success of this
development.

13.1 Introduction

We extend now the method described in the previous chapter to more arbitrary
geometry. Instead of considering Cartesian or cylindrical geometry only, we will
consider an integration space called a block in which the computational finite
volumes fit inside the block so that the outermost faces of the external layer of the
finite volumes create the face of the block. Similarly, bodies immersed into this
space have external faces identical with the faces of the environmental compu-
tational cells. Such blocks can be inter-connected. With this technology multi-
phase flows in arbitrary interfaces can be conveniently handled.

For understanding the material presented in this section I strongly recommend
going over Appendixes 1 and 2 before continuing reading.

Before starting with the description of the new method let us summarize briefly
the state of the art in this field.

In the last ten years the numerical modeling of single-phase flow in boundary
fitted coordinates is becoming standard in the industry. This is not the case with
the numerical modeling of multiphase flows. There are some providers of single-
phase-computer codes claming that their codes can simulate multi-phase flows.
Taking close looks of the solution methods of these codes reveals that existing
single phase solvers are used and a provision is given to the user to add an other
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velocity field and define explicit the interfacial interaction physics. This strategy
does not account for the feed back of the strong interfacial interactions on the
mathematical solution methods - see the discussion in Miettinen and Schmidt
(2002). Multi-phase flow simulations require specific solution methods accounting
for this specific physics - see for instance the discussion by Antal et al. (2000).

There are groups of methods that are solving single phase conservation
equations with surface tracking, see the state of the art part of Tryggavson et al.
(2001) work. This is in fact a direct numerical simulation that is outside of the
scope of this chapter. To mention few of them: In Japan a powerful family of
cubic-interpolation methods (CIP) is developed based on the pseudo-characteristic
method of lines Takewaki, Nishiguchi and Yabe (1985), Takewaki and Yabe
(1987), Nakamura, Tanaka, Yabe and Takizawa (2001), Yabe, Xiao and Utsumi
(2001), Yabe, Tanaka, Nakamura and Xiao (2001), Yabe, Xiao and Utsumi
(2001), Yabe and Takei (1988), Xiao and Yabe (2001), Xiao, Yabe, Peng and
Kobayashi (2002), Xiao (2003), Xiao and Ikebata (2003), Yabe and Wang (1991),
Yabe and Aoki (1991), Yabe et al. (1991). In USA particle tracking and level-set
surface tracking methods are very popular; see for instance Sussman, Smereka
and Oslier (1994), Osher and Fredkiw (2003), Swthian (1996), Tryggavson at al.
(2001). The third group of DNS method with surface tracking is the lattice-
Boltzman family, see Hou et al. (1995), Nourgaliev et al. (2002) and the references
given there. To the family of emerging methods the so called diffuse interface
methods based on high order thermodynamics can be mentioned, see Verschueren
(1999), Jamet et al. (2001). Let as emphasize once again, that unlike those methods,
our work is concentrated on methods solving the local volume and time averaged
multiphase flow equations which are much different then the single phase equations.

In Europe two developments for solving two-fluid conservation equations in
unstructured grids are known to me. Staedke et al. (1998) developed a solution
method based on the method of characteristics using unstructured grid in a single
domain. The authors added artificial terms to enforce hyperbolicy in the initially
incomplete system of partial differential equations that contain derivatives which
do not have any physical meaning. Toumi et al. (2000) started again from the
incomplete system for two-fluid two phase flows without interaction terms and
included them later for a specific class of processes; see Kumbaro et al. (2002).
These authors extended the approximate Riemann solver originally developed for
single phase flows by Roe to two-fluid flows. One application example of the
method is demonstrated in a single space domain in Toumi et al. (2000), Kumbaro
et al. (2002). No industrial applications of these two methods have been reported
so far. One should note that it is well know that if proper local volume averaging
is applied the originating interfacial interaction terms provide naturally
hyperbolicy of the system of PDS and there is no need for artificial terms without
any physical meaning. An example for the resolution of this problem is given by
van Wijngaarden in 1976 among many others.

In USA Lahey and Drew demonstrated clearly in 1999 haw by careful
elaboration of the constitutive relationships starting from first principles variety of
steady state processes including frequency dependent acoustics can be successfully
simulated. Actually, the idea by Lahey and Drew (1999) is a further development
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of the proposal made by Harlow and Amsden in 1975 where liquid (1) in vapor (2)
and vapor (3) in liquid (4) are grouped in two velocity fields 1 + 2 and 3 + 4. The
treatment of Lahey and Drew (1999) is based on four velocity fields. Antal et al.
(2000) started developing the NPHASE multi-domain multi-phase flows code
based on the single phase Rhie and Chow numerical method extended to
multiphase flows. Application example is given for T-pipe bubble flows with 10
groups of bubble diameters. Two works that can be considered as a subset of this
approach are reported in Tomiyama et al. (2000) Gregor, Petelin and Tiselj
(2000). Another direction of development in USA that can be observed is the use
of the volume of fluid method with computing the surface tension force as a
volumetric force Hirt (1993), Kothe et al. (1996), Brackbill et al. (1992), Rider
and Kothe (1998).

13.2 Nodes, grids, meshes, topology - some basic
definitions

Database concept: Let as consider the data base concept. The data volume is
made up of points, or nodes, which themselves define in their neighborhood a vo-
lume element. We use hexahedrons (Fig. 4 in Appendix 1). A hexahedron is a 3D
volume element with six sides and eight vertices. The vertices are connected in an
order that mimics the way nodes are numbered in the data volume. The nodes in
the data volume are numbered by beginning with 1 at the data volume’s origin.
Node numbering increases, with x changing fastest. This means node numbering
increases along the x axis first, the y axis second, and the z axis last, until all nodes
are numbered. The numbering of the vertices of the volume elements follows the
same rule. It starts with the vertex being closest to the data volume’s origin, moves
along x, then y, and then z.

Grid: A grid is a set of locations in a 3D data volume defined with x, y, and z
coordinates. The locations are called nodes, which are connected in a specific
order to create the topology of the grid. A grid can be regular or irregular
depending on how its nodes are represented as points.

A regular grid’s nodes are evenly spaced in x, y, and z directions, respectively.
A regular grid’s nodes are specified with x, y, and z offsets from the data
volume’s origin. A regular grid may have equidistant or non-equidistant spacing.
If equidistant spacing is used all areas of the data volumes have the same
resolution. This suits data with regular sample intervals.

An irregular grid’s nodes need not be evenly spaced or in a rectangular
configuration. This suits data with a specific area of interest that require finer
sampling. Because nodes may not be evenly spaced, each node’s xyz coordinates
must be explicitly listed.

Topology: A topology defines an array of elements by specifying the
connectivity of the element’s vertices or nodes. It builds a volume from separate
elements by specifying how they are connected together. The elements can be
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3D volume elements or 2D surface elements. A topology is either regular or
irregular, depending upon what types of elements it defines and how they are
structured.

A regular topology defines a data volume’s node connectivity. We assume a
hexahedron volume element type. A regular topology can be used for regular or
irregular grids.

An irregular topology defines the node connectivity of either a data volume or
geometric surface elements. An irregular topology data volume can be composed
of either hexahedron or tetrahedron volume elements. Geometry objects are
composed of points, lines, or polygons. An element list has to explicitly specify
how the nodes connect to form these elements.

Volume elements: The volume elements are the smallest building blocks of a
data volume topology.

Mesh: A mesh is a grid combined with specific topology for the volume of
data. We distinguish the following mesh types: regular meshes, irregular or
structured meshes, unstructured meshes, and geometry meshes.

A regular mesh consists of grid having regular spacing and regular topology
that consists of simple, rectangular array of volume elements.

An irregular mesh explicitly specifies the xyz coordinates of each node in a node
list. As in the regular mesh, the topology is regular, although individual elements are
formed by explicit xyz node locations. The grid may be irregular or rectilinear.

An unstructured mesh explicitly defines the topology. Each topology element is
explicitly defined by its node connectivity in an element list. The grid may be reg-
ular or irregular.

In this sense we are dealing in this Chapter with multi-blocks each of them
consisting of

e irregular grid’s nodes, irregular meshes,
e regular topology with hexahedron volume element type.

The integration space is built by a specified number of interconnected blocks.

13.3 Formulation of the mathematical problem

Consider the following mathematical problem: A multi-phase flow is described by
the following vector of dependent variables

U’ =(,,T;,5,,5,,Cys 1 P14, Vs W,)
where
l=1,2,3,il=1..nl,i2=1..n2,i3=1..n3
which is a function of the three space coordinates (x, y, z) , and of the time 7 ,

U=U(x,y,Z,T)~
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The relationship U = U(x, y, z,7) is defined by the volume-averaged and successively

time-averaged mass, momentum and energy conservation equations derived in
Chapters 1, 2, 5 Kolev (1994a, b, 1995, 1997, 1998) as well as by initial
conditions, boundary conditions, and geometry. The conservation equations are
transformed in a curvilinear coordinate system &,7,{ as shown in Chapter 11,

Kolev (2001). The flux form of these equations is given in Chapter 11. As shown
in Chapter 11, Kolev (2001), the conservation principles lead to a system of
194n1+n2+n3 non-linear, non-homogeneous partial differential equations with
variable coefficients. This system is defined in the three-dimensional domain R.
The initial conditions of U(z =0)=U,_ in R and the boundary conditions acting at

the interface separating the integration space from its environment are given. The
solution required is for conditions after the time interval A7 has elapsed. The
previous time variables are assigned the index a. The time variables not denoted
with a are either in the new time plane, or are the best available guesses for the
new time plane.

In order to enable modeling of flows with arbitrary obstacles and inclusions in
the integration space as is usually expected for technical applications, surface
permeabilities are defined

a

(¥e»7,»7,) = functions of (£,7,¢,7),

at the virtual surfaces that separate each computational cell from its environment.
By definition, the surface permeabilities have values between one and zero,

O<eachofall (y,7,,7,) s<I.

A volumetric porosity
Y. =7.81m.6.7)

is assigned to each computational cell, with
O<y, <1.

The surface permeabilities and the volume porosities are not expected to be
smooth functions of the space coordinates in the region R and of time. For this
reason, one constructs a frame of geometrical flow obstacles which are functions
of space and time. This permits a large number of extremely interesting technical
applications of this type of approach.

In order to construct useful numerical solutions it is essential that an
appropriate set of constitutive relations be available: state equations,
thermodynamic derivatives, equations for estimation of the transport properties,
correlations modeling the heat, mass and momentum transport across the
surfaces dividing the separate velocity fields, etc. These relationships together
are called closure equations. This very complex problem will not be discussed in
Volume II. Only the numerics will be addressed here.
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13.4 Discretization of the mass conservation equations

13.4.1 Integration over a finite time step and finite control volume

We start with the conservation equation (10.56) for the species i inside the
velocity field / in the curvilinear coordinate system

{anenli ) e 6,) )

d
g e G =7 e (13.1)
where the species mass flow rate vector is defined as follows
oC, ,dC, aC,
G, =0p |:Cil (V, —VCS)— . [a aéj +a —n”+a3a_é:lj:|, (13.2)

Note that for C, =1 we have the mass flow vector of the velocity field
G =ap(V,-V,). (13.3)
Next we will use the following basic relationships from Appendix 2 between the

surface vectors and the contravariant vectors, and between the Jacobian determi-
nant and the infinitesimal spatial and volume increments

.S dav
[oal =-S5 [ga'=—> [g= (1347
St = aga; ¥ =3 aganag 7

We will integrate both sides of the equation over the time, and spatial intervals
a7, d&, dn, and ¢ respectively. We start with the first term

JHDO P (alplcllfy)ar}a@naé’ [I (alpl na ar}ﬂ av

:I:(alplcil}/v)_(alplcilyv )a]AV : (13.8)

This result is obtained under the assumption that there is no spatial variation of the

properties (0(, p.C, %,) inside the cell. The integration of the other terms gives the

following results:

A7 0 . Aé D 1
) £JVI£(7;\/8—3 -G,-,)aéanag“arzmjfg(yés G, )o¢

(765 )
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= ATAV{%AS—“/(@ .G”)— Yei j_\z/(el -G, )”}, (13.9)
12 (5, g a6, a@macar =ar[" 2 (1,8*-G,)d
J-o ‘EJ‘;[%(?/” ga- il) §010{dT = TJ-O %(7/;7 : i[) n
“ad (5 65 ),

Sy (s S,
=ArAV{ynE(e ~G,.,)—7/”_leV (-G, )/l}, (13.10)
[ Ljvj%(%@az 6, )ammcor=ac[ (78" 6,)oc

= AT|:(}/§S3 -Gy ) - (}/g"s3 Gy )k—l:l

- ATAV[;@ AS—‘S/(es Gy) s j_‘ﬁl(@ .G, )kJ : (13.11)
[7 [ 7s mpgomcor=azf[[yu,dv = Azyu,av . (13.12)
AV AV

It is convenient to introduce the numbering at the surfaces of the control volumes 1
to 6 corresponding to high-i, low-i, high-j, low-j, high-k and low-k, respectively. We

first define the unit surface vector (e)m at each surface m as outwards directed:

() =€ (e =€l () =€, (€)' =-€2,. (¢) =€, (¢) =—¢l,. (13.13-18)

With this we have a short notation of the corresponding discretized concentration
conservation equation

alpl 117/ alapln 11(17/\1(1 + ATZﬂ m tl m AT}/vﬂil : (1319)

m=1

We immediately recognize that it is effective to compute once the geometry coef-
ficients

S S,
ﬂ1=75ﬁ, B = 75,1 NS 7,, AV s Bi=7y - IAV
S
- 13.20-25
Bs = 7; AV s B =V k- IAV ( )

before the process simulation, to store them, and to update only those that
change during the computation. Secondly, we see that these coefficients contain
exact physical geometry information. Note that for cylindrical coordinate
systems we have
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U r U r/i— 7/
2~ %—,( 4—0 1,
ﬂ h7 ﬂ (hy 1 ﬂ ﬂ =

rAr r“Ar AB r*AQ
2 Ve k-1
=L = 13.26-31
Bs Az Bs Az ( )

and for Cartesian setting k=0 and r=x, &=y,

}/le }/\/l

hi= Ay

V.
ﬂz B=-=, B, = , By = 7 ﬂ6 A1 (13.32-39)
Az
compare with Section 11.4. Setting C, =1 in Eq. (13.19) we obtain the discretized

mass conservation equation of each velocity field

6
alpl}/v _alnplayvn +A12ﬂm (e)m .Gl,m = ATyvll’ll : (1340)

m=1

Next we derive the useful non-conservative form of the concentration equations.
We multiply Eq. (13.40) by the concentration at the new time plane and subtract
the resulting equation from Eq. (13.19). Then the field mass source term is split in

two non-negative parts 4, = g, + 4, . The result is

P ( 1~ Cia ) Via T ATZ ﬂm ( ilm CilGl,m ) + AWvﬂ;Cﬂ = A7y, DC, .

m=1
(13.41)
where DC, = u, + u; C, . Note that

G - Ci[G[.m

il,m

«( 1 9C, , dC, aC,
= V, -V, Ci,—Cy)— D |a' —lL4a? =i 4> =L || |
I:alpl ( 1 es ):'m ( il m ,1) |:0(,,0, il ( Y a’ an a o J:|m

(13.42)

Up to this point of the derivation we did not made any assumption about the com-
putation of the properties at the surfaces of the control volume.

13.4.2 The donor-cell concept

The concept of the so called donor-cell for the convective terms is now intro-
duced. Flow of given scalars takes the values of the scalars at the cell where the
flow is coming from. Mathematically it is expressed as follows. First we define
velocity normal to the cell surfaces and outwards directed

Vi =(e)"-(V,=-V,) , (13.43)

m

then the switch functions (to store them use signet integers in computer codes, it
saves memory)
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e = %[1+ sign(Vi) | (13.44)

S =18, s (13.45)

and then the b coefficients as follows

b1m+ = ﬂmglm+‘/17nn 2 O ’ (1346)
blmf = _ﬂmé:[mf‘/l:t 2 O : (1347)

If the normal outwards directed velocity is positive the +b coefficients are unity
and the —b coefficients are zero and vice versa. In this case the normal mass flow
rate at the surfaces is

(e)m : Gl,m = [alple ’ (‘]1 - VL'S ):Im = (glm+alpl + glm—al,mpl,m )‘/lrnn : (1348)

Using the above result the mass conservation equations for each field result is

6
Py, —0,PuYw T ATE (blm+alpl -B,._ ) —Atyp, = 0. (13.49)

m=1
In the donor-cell concept the term

B

Im—

= blm—al,mpl,m (1350)

plays an important role. B, is in fact the mass flow entering the cell from the face

m divided by the volume of the cell. Once computed for the mass conservation
equation it is stored and used subsequently in all other conservation equations.

At this point the method used for computation of the field volumetric fractions
by iteration using the point Gauss-Seidel method for known velocity vectors and
thermal properties will be described.

Consider the field variables ¢, p, in the convective terms associated with the
output flow in the new time plane, and ¢, p,, in the neighboring cells m as the

best available guesses for the new time plane. Solving Eq. (13.49) with respect to
a,p, gives

=~ A ulapla 3 }/v 5
a,p, = +—= 1+ » B =+ >b,. | 13.51
[Iol |:;/vu [/’ll AT j Z}‘ Im— :|/[AT Z: Im+ J ( )

Here

LJFZ% >0 (13.52)
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is ensured because ¥, is not allowed to be zero. For a field that is just originating
we have

6
+ ) B
AT }/vu:lll Z: Im—

== - . (13.53)
pl yv + ATZ blm+
m=1

1

6
Obviously the field can originate due to convection, szm- >0, or due to an in-

m=1
cell mass source, 4, >0, or due to the simultaneous appearance of both pheno-

mena. In case of origination caused by in-cell mass source terms it is important to
define the initial density, p,, in order to compute &, = A7y, / p,.

The best mass conservation in such procedures is ensured if the following se-
quence is used for computation of the volume fractions:

o, =a,p,1p,, 0, =0,p,/ p,, o, =1—-, — ;. (13.54-56)

For designing the pressure-velocity coupling the form of the discretized mass con-
servation is required that explicitly contains the normal velocities,

6
(alpl}/v - a’lnplayva)/AT+ Zﬂm (glm-#alpl + glm—almplm )‘/1:1 - }/VILII = 0 :
m=1
(13.57)

The mass flow rate of the species i inside the field / at the cell surface m is then

m . JC, aC, JC,
(e) Gy = I:alplcile ’ (Vl -V, ):'m - |:alplDile ’ (al a_g +a’ 3_7; +a’ a_éi[J:L
, . (,9c, ,ac, ,aC
= (glm-f—alplcil + glm—al,mpl,mcil,m )‘/lm - |:al1p1Di1e : [al a_gl + az 8_771 + az a_é/[]:|m ’

(13.58)

and consequently
(e)m ’ (Gil,m - CilGl,m)

n # aCz 8Cl aCz
= é:lmfa[.mpl,m‘/[m (Cil.m - Ci[ ) - |:a[p[Di[e : (al a_gl + az a_ﬂl + 33 a_éf]i|m (1359)

Thus Eq. (13.41) takes the intermediate form
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6 By, (C”~’" h C”)
%P (Cil —Ca )7/"" B ATZ

m=1

aC, aC,
+5, {%P;Dﬂe-(al 84‘:[ +a P +a’ aé;’ ﬂm

=Avy, (,Ui/ - Ci[:u[) . (13.60)

13.4.3 Two methods for computing the finite difference approximations
of the contravariant vectors at the cell center

The contravariant vectors for each particular surface can be expressed by

S! , §? , S?
a'l=—09¢f,a’=—09n,a’=—09¢. 13.61-63

dv ¢ dv g av ¢ ( )
Note that the contravariant vectors normal to each control volume surface are con-

veniently computed for equidistant discretization in the computational space as
follows

(al)l_ S! _(S)l S (e)l’ (al)z_ S! (S)2 S,

-2 _2h_ 2 =22 =22 (e)’, (13.64-65)
AV AVi AV, AV

) =S -Oh_S ) -8B,

=2 b5 ——t=——t(e), (13.66-67)
AVs AVs AV, AV

3 S 3 S
(a), == I A (a') == ~ B S (o 36869
sTAVs AVs AV, NN AN

where the volume associated with these vectors is

AV, =%(AV +AV,). (13.70)

m

The finite volume method: There are two practicable methods for approximation of
the contravariant vectors at the cell center. The first one makes use of the already
computed normal interface vectors in the following way:

a = [() (@), ] a2 =2 (), + (), ], &l =5 [ (), + (@), ] 137179
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Fig. 13.1 Numbering of the vertices

The finite difference method: The second method uses the coordinates of the ver-
tices of the control volume directly, Fig. 13.1. First we define the position at the
cell surfaces that will be used to compute the transformation metrics as follows:

rg, =%(r2+r4+r8+r6), rs2=%(rl+r3+r7+r5), (13.74-75)
1 1

rS3:Z(r3+r4+r8+r7), rs4:Z(rl+r2+r6+r5), (13.76-77)
1 1

T, :Z(r5+r6+r8+r7), I :Z(r1+r2+r4+r3). (13.78-79)

Then we compute the inverse metrics of the coordinate transformation for equi-
distant discretization in the transformed space

a i

85 an aé/ X1~ X2 X3 — Xsq Xss ~ X6

D DL ey (150
85 an aé’ sl 2 s3 s4 55 s6 | .
a_z a_z % T~ %0 3T Zu % T e

of an of

Then we compute the Jacobian determinant and the metrics of the coordinate
transformation for equidistant discretization in the transformed space.

As already mentioned all this information belongs to the center of the cell.
However, the off-diagonal geometry information is required at the cell surfaces.
For both cases we use the two corresponding neighbor vectors to compute the con-
travariant vectors at the cell surfaces as follows
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13.4.4 Discretization of the diffusion terms

13.4.4.1 General

(13.81-94)

Our next task is to find appropriate finite difference approximation for the six dif-

fusion terms

¢

{alp[ D;e.[a 1€, , 2 9C,
an

2 G,
a aé‘ m ’

The geometric properties computed by using the control volume approach in the
previous section are used to transform the diagonal diffusion terms as direct finite

differences
;ﬂm [Ot,p,Dde [a aaiél
=4 a,Z_IVD s |:C'['+l
+8, H,Z_,‘/D} 252 {C,,, 1
+8, %Z_,VD,. S{Cd -
+, “zf_é),i S{sz,l

on ¢

2 9C, BLH
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+/ [alp—lD” ] Ss |:Cil,k+1 -C, + AV [e -a' 9C, +e-a’ J9C, ] 1
5 5

AV S ¢ on
alplD; EG 1 acil 2 acil
+0| —= | S¢| Cyys —Cy + e-a +e-a . 13.95
ﬁs [ AV l 6 { il k-1 il S, ( 85 an i ( )

A natural averaging of the diffusion coefficients is then the harmonic averaging as
given in Appendix 12.1

Di?,m _ azp_zD; § _s 2 (alp[D; )(alp[D; )m , (13.96)
AL, AV " AV, (ap D, )+ AV (a0 D))

where in the right hand side m =1, 2, 3,4, 5, 6 is equivalent to i + 1, i - 1, j + 1,
Jj-1,k+1, k-1, respectively regarding the properties inside a control volumes. It
guaranties that if the field in one of the neighboring cells is missing the diffusion
coefficient is zero.

13.4.4.2 Orthogonal coordinate systems

In the case of orthogonal coordinate systems we see that:

e the off-diagonal diffusion terms are equal to zero,

e the finite volume approximations of the diagonal terms are obtained without
the need to know anything about the contravariant vectors.

This illustrates the advantage of using orthogonal coordinate systems. This is valid
for any diffusion terms in the conservation equations, e.g. the thermal heat diffu-
sion terms in the energy conservation equations, the viscous diffusion terms in the
momentum equations etc.

13.4.4.3 Off-diagonal diffusion terms in the general case

The geometric coefficients of the off-diagonal diffusion terms can then be com-
puted as follows

d]z _ (e)l -(32 )1 _ (e)” (azl )1 +(e)12 (a22 )1 4 (e)m (az3) , (13.97)
dy = () -(a'), = (e)" (a"), + () (a), +(e)" (a),. (13.98)

d31 _ (e)3 ~(a' )3 _ (6)31 (a” )3 +(e)32 (alz )3 +(e)33 ((113)3 , (13'101)
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), +(e)" (a”), (13.102)

d,=(e) -(a’) =(e)" (a”), +(e)” (a®), +(e)"” (@), ==(ds),,» (13.104)

=€) (a), = () (@), (o), +(0)" ). (13.109
o = () (a7), = (&) (@), +(0)" (), + (o) (), (13.106
dg =(e) - (a' ), = (e)" (a"), + (e)” (a” ), +(e)” (a"), ==(ds),,» (13.107)
dg =(e) -(a%) =(e)" ('), +(e)" (a®), +(e)” (), ==(ds), - (13.108)

With this notation the diffusion term takes the form

o . aC, aC, aC,
zﬂm |:a1p1Di1e : (al aél +a’ iLig’ aél ]:lm

m=1 877
6 D¢ NT2
= ﬂm L Cil m Ci[ +&DI - Ci[ m (13109)
m=l1 ALh,m | Sm '
where
aC. aC. aC. aC,
DI_C,, =d, <" +d,<2 DI_C,,=d, =" +d, 1|,
1,1 12 anl 13 aézl 1,2 22 anz 23 aézz
(13.110-111)
aC, aC, aC, aC,
DI _C;; =d;, Ho+dy = DI_C,, =d, —H +d, = .
9¢ |, CIa 9 |, a¢ |,
(13.112-113)
daC. aC. aC. oC,
DI_C, =d, <t +d,51| DI_C,, =dy, <] +d, <
1,5 51 ag S 52 an . 1,6 61 ag ) 62 an )

(13.114-115)

The twelve concentration derivatives are computed as follows

ac,| 1

877 1 = Z(Ci[,jﬂ + Ci[,i+l,j+1 - Cil,j—l - Cil,i+1,j—1 ) > (13.116)
oC, 1
a_éill = Z(Cil,lﬁ—l + Cil,i+1,k+1 - Cil,k—l - Cil,i+l,k—1 ) s (13.117)
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E;_C;; ) B %(C"’vi*lﬂl +Ciju = Cija =)
aa_? 3 = i(C,.,_,.+l +Cuirjn = Cirin = G jin )5
%(21 3 = AIL(C'I v T Coaan = Cagr — Cil..i+1~k-1) ’
aa_? 4 = %(Cﬂj+1 + G = Gt = G j ) ’
aa_c;; s - i(cﬂ,fﬂ +Cjoiin =Gy = Citjien ) ’
83_67‘711 . - %(Cilvm + Cijeria = G = Gt jraam ) ’

(13.118)

(13.119)

(13.120)

(13.121)

(13.122)

(13.123)

(13.124)

(13.125)

(13.126)

(13.127)

13.4.4.4 Final form of the finite volume concentration equation

Thus the final form of the discretized concentration equation (13.1) is

P (Ci = Ci ) Vi — ATZ(B,,ﬁﬁ AL“"

=At1y,DC, + Arz B, ” " A;’”

m=1 ‘hm m

DI

Solving with respect to the unknown concentration we obtain

]( il m —C,,)+AT}/WUI+C

(13.128)
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B, C

Im—""il,m

6
pln}/vn ila +AT }/VDC” + Z

m=1

DS AV
+8, | C, . + AV DI_C,,
ALh m S

m

C, = =

6 D.f
a[a}/vap[n + AT yvll'l; + Z Blmf + m A[l;.m
h

m=1 Jm

(13.129)

For the case of a just originating velocity field, ¢;, =0 and

DS
Yoy +Z by Oy, P, + B, >0, (13.130)
m=l ’ , Al’h.m
we have
11 m Avrn
?/DCII +2}/DC11 +2 Blm— tlm+ﬂm DI_C,],,,
m=1 Al’h m Sm

C, = )

il 6 DC
+ il,m
}/wl’ll +Z(Blm— +ﬂm AL ]

m=1 h,m

(13.131)

13.5 Discretization of the entropy equation

The entropy equation (10.62) is discretized following the procedure already de-
scribed in the previous section. The result is

6
a[npla (S[ - sla)}/va _ATZ B[mf (sl.m - sl )+ AT}/WIJ;—S[ = AT}/VDSI* 4 (13132)
m=l1

A m
[’” [ Lm 4 7;,77!]

where

6
Ds; = Ds, +i2p’m (13.133)

v m=l1

Jm 3 Hm
Ali 2( llm_ S DI—CIIJ

‘hom =2
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The term DI _T,

i is computed by replacing the concentrations in Egs. (11.110-127)
with the corresponding temperatures. The computation of the harmonic averaged
thermal conductivity coefficients is given in Appendix 12.1. Solving with respect

to the unknown specific entropy we obtain

6
alaplnymsla + AT(YVDS; + ZBlm—slm )

m=1

(13.134)

SIZ

6
a’lap[n?/vn + AT(ZBI:H + ;/vﬂ;rj

m=1

6
For the case of a just originating velocity field, ¢, =0 and ZBW +y.u >0,

m=1

we have

6
%DSI*JFZBIW—SIW
5 = ——2] . (13.135)

Z Blm— + }/LII’IIJr

m=1

13.6 Discretization of the temperature equation

The temperature equation (10.65) is discretized following the procedure already
described in the previous section. The result is

D
e (1)1 Arz( o

oh, 5 B
-P %, (P=Pa)Vu—ATY2,—=(P,— P }
[ l[ap l.allC's:H: [ ( ) mzzf p[m ( )

=Aty, |:DT1N -7, iAsirlw (luil -Cyuu, ):|
i=2

hm i=2 m hm m

DE ; — -
N m D m
_ATZ ﬂm |:Alirzz ZASZIIP [C[],m _ C,l A;/ DI C ] im AV AYm pr T:l

(13.136)
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13.7 Discretization of the particle number
density equation

The particle number density equation (10.66) is discretized following the proce-
dure already described in the previous section. The result is

6 m Dnm
ny, —m.t ATZ B, {(e) : (Vl,m -V, )”z,m _AL;(nl'm - ):|
m=l1 h,m
= AT, (Fiy gy = T oy + 71y, ) + Ariﬂ Dl AV DI _n,, . (13.137)

S

m=1 h,m m

The turbulent diffusion coefficient is again a result of harmonic volume averaging —
Appendix 12.1.

e {2)2)
Dy, _| S¢t § =g Sc’ |\ S¢' |

AL AV " ‘ AN
o AV, | Yol av]
m SC SC bt

(13.138)

13.8 Discretization of the x momentum equation

The x momentum equation (10.68) is discretized as already discussed in the pre-
vious Section. The result is

6 v
Pl (”1 — Uy, )7va - ATZ {Blm— + 0, h|:1 + % (e)ml (e)ml }} (ul,m - )

m=1 ‘h

dp op
+A70, ly —+a'ly, =
1(‘1 yfaé: a %787] a yé“aé*
_ATy zcml ml (um _ul wl |A wl M _ul)

m=1
m#l

lmnx
—AT;/VEE"Z [(vl v, )b, —(w,—w, )bml]

m#l

_A T;/VE‘Z |:(V[ - ch )bw,3 - (Wl - Wcs )bw,2:|

—um [ AU, = OAU —, 0Au —. dAu
_A V ml V ml V ml
sz i [ or o2 ' Tap T Tac j
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Y AT dAu,, R oAu,, L7 dAu,, L7 oAu,,
or of on a¢

3w
=Aty, |:_a1ngx + Z[lllml (”m - ):' T Uy, (ulw - )i|

m=1

2 m
D1_um,—§()1Lu ul, + DI _vis"

+A72,Bm o : (13.139)

h,m 1

#3(0)" () (v =0) + ()" (=)

A natural averaging of the diffusion coefficients is the harmonic averaging —
Appendix 12.1

D, _(apv) ¢ _g _ 2letav)lerov), (13.140)
AL,, AV )" Ay, (afp,vf)+AV(afp,Vf)m

It is valid for all momentum equations. Note how we arrive to the integral form of
the pressure term:

gt 8

dp Bp op
= A7, (a Vesz 85 }/”8 7/4 aé'J

The b coefficients of in the lift force expressions result from the Cartesian
component decomposition:

(13.141)

_ oW, _g? v, + g2 w, _4® v, 2 0w, 3 v,

b =a s (13.142)
: P P on n Cle ¢
boma P g My Oy Wy s Py 0 W3 4y3)
: A& o on on o¢ 35
bo=a Pr g2 O 21 P 20 | P 2 P g3y
: oE A& on on i i
and
b e o Ve My n Ve oMy nRa (13 145
PR oE an an o e
b 13%_ 1 aW Wes | o2 au 21%_{_ 33%_ 3l aw” (13.146)

w2 =4 a —,
' g e a77 o7 a¢ e
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av,, Ju. av
n e 120Uy o2

s 22 du,, +a v, _o» du,,

W RE T e T T T T T o T o

We proceed in a similar way for the other momentum equations.

(13.147)

13.9 Discretization of the y momentum equation

The result of the discretization of the y momentum equation (10.73) is

P \V ( Vi )7va ATZ {Blm— + 5, AL j |:1 +%(6)”’2 (e)"’z }} (Vz,m Vi )

m=1 h,
) 4 ) ap
& oyt e

‘ 1AV,

wl

(v, = )+c

(v =)

—Aty, 2 Co |A

m=1
m#l

ml

Imax
_AT%, Zarfl I:(WI - Wm )bm,l - (ul - um )bm,3:|

m=1
m#l

- AW\/E}Z |:(Wl - WL'S )bw,l - Aulw (ul - u(rs )bw,3 :|

ml
m=1
m#l

_ATy Z—Vm [ &AV’”[ aAV + V aAle + ‘73 aAle J

PR an Y%

—, dAv,, =3 0AV
A sl \% 2 csl \% 3 csl
“hATe P a0 o J

WI

—m [&Avm, L7 JdAv
T

3w
= AW\/ |:_a1p1gy + Z[#ml (Vm - vl )] + ll’llw (Vlw - vl ):|
m=1

DI _v,, —g(e)’"2 DI _u’ +DI _vis)"
3 ,

+ATY B DL, . (13.148)
; AI‘hm
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13.10 Discretization of the z momentum equation

The result of the discretization of the z momentum equation (10.77) is

Dy, s,
a,p, (W - WU%aAVEﬁEm+ﬂ”M [Hé()3@)qhmm—m)

m=1 N,

ap op
@ ”ag na ”a;)

—Aty, Zcml |A m,| w, =W +c w _Wl)

m=1
m#l

llmx

_AT}/szrfl |:(u1 —u, )bm2 - (VI Vi )bm,l]
el

- AT}/LEWLI I:(M U )bw 27 (VI Vs )bw,l :|

ATy, Z_Lm (&Aw L7 dAw,, L7 0Aw,, +V —; 0Aw,, J

wl

9E o ol
m#l
IAw J0Aw 0Aw 0Aw
A" csl Vl csl V2 West ‘/z csl
=V, Atc,, ( + 85 + 877 + aé/ j

3w
=Aty, |:_a1ngz + Zl:ﬂml (Wm -wW )] + 4, (W[w -wW )i|
m=1

2 ma .
DI _w,, —g(e) DI _uf,n + DI _vzs}fnT

+A12ﬂm DL, . (13.149)

m=1 hm 1

13.11 Pressure-velocity coupling

The IVA3 method: An important target of the numerical methods is to guarantee a
strict mass conservation in the sense of the overall mass balance as for the single
cell as well for the sum of the cells inside the physical domain of interest. We use
the discretized mass conservation equations of each field in a special way to
construct the so called pressure-velocity coupling keeping in mind the above
requirement. First we note that the difference resulting from the time derivative
divided by the new time level density can be rearranged as follows
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1 Q
;(alpl}/v _alnpla;/va)= (al _aln);/v +aln (}/L _}/va)-‘r la (pl _pla)?/va .

1 1

(13.150)

Then, we divide each of the discretized field mass conservation equations by the
corresponding new time level density. Having in mind Eq. (13.150) we obtain

o 1< .\
(a’[ - a[a ) yv + 710(10[ - p[a ) yva + AT—Zﬁm (éera[p[ + émfa[mplm )‘/[m

1 1 m=1

1
=—Aty 1, =, (¥, = V) - (13.151)

1

We sum all of the /[ _mass conservation equations. The first term disappears be-
cause the sum of all volume fractions is equal to unity. In the resulting equation
the temporal density difference is replaced by the linearized form of the equation

of state, Eq. (3.173),

1 J N
P~ Pu =_2(p_pu)+[0—)_/:jl (sl _Sm)+2[%} (Ci,l _Ci.[a) .

la i=2 il
(13.152)

The result is

L by 1 & . g
(p - pa )yva Zﬁ-’- ATZ_Zﬂm (glm-#alpl + flm—almplm )‘/Im = ATZ Da’l 4

1=l 1“%la =1 1 m=1 =1

(13.153)

where

1
AZ'Dall =_Az7/\ulll _aln (}/b - yva)

a, p. i p,
Y pl, [[Tsj] (s, _S[n)+;(ﬁl (C,.’, -C,, )]. (13.154)

This equation is equivalent exactly to the sum of the discretized mass conservation
equations divided by the corresponding densities. It takes into account the
influence of the variation of the density with the time on the pressure change. The
spatial variation of the density in the second term is still not resolved. With the
next step we will derive a approximated approach to change also the influence of
the spatial variation of the density on the pressure change.

Writing the discretized momentum equation in the linearized form

Vin=avVy —(e)" -V, ~RVel,(p,~p), (13.155)
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and replacing we finally obtain the so called pressure equation

[mnx

a, J &
p;/va Zﬁ - ATZ ﬂm |:Z [éma[ + ém—alm %]Rvellm i| (pm - p)

1=1 1%la m=1 =1 1

Lnax a Linax 1 6 ., m
= pn }/vn z laz - ATZ_ Z ﬂm (glm-f—alpl + flm—almplm )I:d‘/lm - (e) : V(rs,m ]
= P [T

[mﬂx
+A7Y Da, . (13.156)

=1

Defining the coefficients

ll\’la)\
Cm = _ATﬂmz glm-ﬁ—al +§1m—a1m pl’” RVEllm 4 (13157)
=1 P
[ a 6
=DV, 5=, (13.158)
=1 p[ala m=1

[~ ”
d=p.Y. Z% + ATZ Do,

= P4y, =1

6 Linax

- ATZ IBm Z [éera[ + émfallm & ][d‘/l;lz - (e)m : Vcs.m ] ) (13 159)
I=1 P

m=1

1

we obtain the pressure equation

6
p+ Y c,p,=d, (13.160)

m=1

connecting each cell pressure with the pressure of the surrounding cells. We see
that the system of algebraic equations has positive diagonal elements, is symmetric
and strictly diagonally dominant because

6
>

m=1

c

(13.161)

m|*

These are very important properties.

The IVA2 method: The spatial deviation of the density of the surrounding
cells from the density of the cell considered can be introduced into Eq.
(13.153) as follows

ﬂm (§1m+a'1pl + glm—almplm) = ﬂm (5177,4.“1 + glm—alm )pl + ﬂmé:lm—alm (plm - pl ) :
(13.161)
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The result is
by o lye 6
p pu yvu 2 Iﬂ + ATZ Zﬂm ém+a + émf lm )‘/lr’rlt
I=1 1 lu I=1 m=l1
+ ATZ 2 ﬁ é:lnr [m p[m p[ )
1 m=1
1
_AT?/Vlll[ a (yv - }/vu )
[max 1
= . (13.163)
1=1
2, P, [ dp,
V.~ = (s =5 — | (C;, = C,
?/vn p[ |:( &Sl ] ( 1 1:1) ~ aci.[ ] ( tla)
The spatial density variation can again be expressed as follows, Eq. (3.173),
1 ap e dp
Pim — P =_2(pm_p)+[0—)_1] Sim — 2[ : ( idm _Ci,[)'
la S[ la
(13.164)
With this we obtain
N Pu=P ||y
p pa }/va 2 l“ + ATZ z ﬂm glm-*—al + flm—alm "1—2 ‘/lm
= Pa la =1 m=1 Piay,
lmax
=A7) De (13.165)
I=1
where
?/vnalu (sl - S[u )

a
pIATDaI :AT}/VILII _alapl (}/v _}/va)_[a_’;lj
L Ja

_A TZ Im— lm S[m )
Ima apl
_22 [WJ |:7/vaa1a ( il tla) ATZ lm—alm ( ilm Ci,l ):| ’ (13166)
i=! il ),

Equation (13.165) is equivalent exactly to the sum of the discretized mass
conservation equations. The discretized concentration equation divided by the old
time level density is
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yvaaln (Cil - Cil ) ATZ Im—al m p[ = ( ilbm CII) AT DCIIIV 4 (13167)
la la
where
6 *
DC) =y,(DC, -1 C, )+ ;ﬂ ALI, (C,,—C,+DI_C,,).  (13.168)

does not contain time derivatives and convection terms. Even these terms are the
most strongly varying in transient processes during a single time step. In the case

of negligible diffusion DC;’ contains only source terms.

We realize that the expression on the right hand side is very similar to the left
hand side of the concentration equation divided by the old time level density.
A very useful approximation is then

Vva@%a ( i tln) ATZ =G ( idm Ci,l)

m=1

=0, (sz Ctln)}/m ATZ -1 m ﬁ(Cil,m -G ) = gDCiIIV (13.169)

m=1 la la

and

yvaaln Sla ATZ Im—alm Slm )

~ o, (5, =5 ) 7 - Arz i 22 (s, =5, ) =22 D) (13.170)

m=1 la la

Thus D¢, can be approximated as follows

Da 7, lul_ a, Yo =V _; % DslN-{—i ﬁ DC[ZIV .
pl At p[plu aS[ la i=2 aC"'[ la

(13.171)

Replacing with the normal velocities computed from the discretized momentum
equation in linearized form we finally obtain the so called pressure equation

Imax

p 7/\/11

m

=1 1 la m=1 1 [u

|:5[m+a +5[m7 [m [1 +t—— pm — J‘|RV€llm (pm p)

[m.'xx a lmux
=PV 2 Iﬂz + ATZ De,

=t Pr%, I=1

6

AT B IZ[émﬂwémalm(H” - H[dv,; (&) Vo] (13.172)

m=l1
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or
6
cp+Y.c,p,=d, (13.173)
m=l
where
Lo p _ p
¢, ==AB Y | &+ &, @, | 1+72—5 | RVel,, (13.174)
=1 Py,
Lnax o 6
C=pr.y—5-Yc,, (13.175)
=t P, m=l
lm.’lx a lm.’lx
d=p7. Y —5+ATY De,
1=1 [alu =1
6l b —p )
_ATZﬂmz é:lm+a1 +§1m—alm [1+ - 2 J |:d‘/17r:z _(e) .Vcs‘mjl . (13176)
m=1 =1 p;ala

The advantage of Eq. (13.172) for the very first outer iteration step is that it takes the
influence of all sources on the pressure change which is not the case in Eq. (13.156).
The advantage of Eq. (13.156) for all subsequent outer iterations is that it reduces
the residuals to very low value which is not the case with Eq. (13.172) because of
the approximations (13.169) and (13.170). An additional source of numerical error
is that the new density is usually computed within the outer iteration by using
Eq. (13.159) and not Eq. (13.164). Combined, both equations result in a useful
algorithm. As a predictor step use Eq. (13.172) and for all other iterations use
Eq. (13.156).

13.12 Staggered x momentum equation

Two families of methods are known in the literature for solving partial differential
equations with low order methods, the so called co-located and staggered grid me-
thods. In the co-located methods all dependent variables are defined at the center
of the mass control volume. In these methods unless the staggered grid method is
used, discretization of order higher then the first order is required to create a stable
numerical method. In the staggered grid method all dependent variables are de-
fined in the center of the mass control volume except the velocities which are de-
fined at the faces of the volume. In both cases the velocities are required for the
center as well for the faces, so that the one group of velocities is usually computed
by interpolation from the known other group. The control volume for the stag-
gered grid methods consists of the half of the volumes belonging to each face.
Strictly speaking the required geometrical information that has to be stored for
these methods is four times those for the co-located methods. A compromise be-
tween low order methods using low storage and stability is to derive the discre-
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tized form of the momentum equation in the staggered cell from already discre-
tized momentum equations in the two neighboring cells. This is possible for the
following reason. Momentum equations are force balances per unit mixture vo-
lume and therefore they can be volumetrically averaged over the staggered grids.
In this section we will use this idea. As already mentioned the staggered computa-
tional cell in the & direction consists of the half of the mass control volumes be-

longing to the both sites of the & face. We will discretize the three components of

the momentum equation in this staggered cell. Then we will use the dot product of
the so discretized vector momentum equation with the unit face vector to obtain
the normal velocity at the cell face. In doing this, we will try to keep the computa-
tional effort small by finding common coefficients for all three equations. This
approach leads to a pressure gradient component normal to the face instead of a
pressure gradient to each of the Cartesian directions, which is simply numerically
treated. This is the key for designing implicit or semi-implicit methods.

Time derivatives: We start with the term ¢, p,, (ul —uln)}/m, perform volume

averaging

P (”1 —U, ) Via

}/vaAV ?/va,i+ A‘/H
=, P (”1 U, )m T % i1 Plaini (”1,i+1 Ui )W (13.177)
and approximate the average with
alalolu (ul - ula ) yva = (a[uplayvu )u (u[” - ”;Z ) > (13178)
where
}/ AV }/vn,i+lA‘/i+l
Q =o,.p,———+a,, . 13.179
( lalolu ?/va )u lup[a AV + A‘/Hl la.:+llolu.t+1 AV + A‘/Hl ( )
Note that this procedure of averaging does not give
u 1
! =E(ul +ty,,) (13.180)

in the general case. Similarly we have for the other directions momentum equations

%P (V=) Via = (@upu00), (V1 =) 5 (13.181)

%P (W[ — W, ) Ve = (ampla7vu )u (Wlu - W;Z ) . (13.182)

We realize that in this way of approximation the component velocity differences
for all three Cartesian directions possess a common coefficient.
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Convective terms: The following approximation for the convective terms is
proposed

2 [mfal,mp[,m (ul.m _ul )
6 6
{ 2 In— (”1 m )+ A‘/i+12|:Blm— (ul,m Ly )] }
i+l

m - =
= Z -Gl Phon (Ul =141 ) (13.183)
where
b0 pl =C B, +(1-C")(B,.),., (13.184)

is the m-th face mass flow into the staggered cell divided by its volume and

C = AV
AV + AV,

i+l

(13.185)

As in the case of the time derivatives we realize that in this way of approximation
the component velocity differences for all three Cartesian directions possess a
common coefficient.

Diagonal diffusion terms: We apply a similar procedure to the diagonal diffusion
terms

~ i (uf!, —u)). (13.186)

fo-crm e fierer ]

h,m
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Thus the combined convection-diffusion terms are finally approximated as follows

_;{B,m_ +p, ADL;V""[l Jr%(‘f)ml (e)" }} (=)

h,m
6 6
= Za[m,al (u[u.m - u[“ ) + Zalm,uidif (ulu,m - ulu ) ’ (13187)
m=1 m=1
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(13.189)
Similarly we have
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- Zalm'Cd (W[um —W[u )+ Zalm_witlif (W[u.m - W[“ ) ’ (13192)

m=1 m=1

v

* D/, m3 , \m3 D, m3 , \m3
"lm.wdifz_%{c B, AL‘ (e)" (e) +(1_C ){ﬁm?(e) (e) ] }

h,m h,m

(13.193)

We realize again that the coefficients «,, , are common for all the momentum

equations in the staggered cell.
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Drag force terms: The following approximation contains in fact computation of
the volume averages of the linearized drag coefficients.

7, Z_" |A ml| +c" ( ul)
m=1
m#l
= (), (=) (), (o =) (13.19)
m=1
m#l
where
(7.ch )M =m( AVES AV, |+ 7, AV, [AV, ], ). (13.195)
(1), = (PAVEL AV [+ 7 Vo a[AV.A] ) - (13.196)
i+l
Similarly we have
3
7 ngdl Ale|(V wl AV, (v ( Vz)
el
=3 (nel) (= )+ (et ) (vt =0) (13.197)
m=1
m#l
72| 32|V, 5, ~ )25 AV, (o, )
m=1
m#l
3
=Y (mem) (wh—wi )+ (mess) (wh —wt'). (13.198)

Again the drag term coefficients for the momentum equations in the staggered cell
are common.

Gravitational force: The volume averaging for the gravitational force gives

08,7, = 8. (CuPuV),> (13.199)

alplgy}/v :gy (alapla}/va )u ’ (13200)

p8.7, = 8. (CuPuti), - (13.201)
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Interfacial momentum transfer due to mass transfer: The interfacial momen-
tum transfer is again approximated by first volume averaging the volume mass
source terms due to interfacial mass transfer. The source terms due to external
injection or suction are computed exactly because it is easy to prescribe the
velocities corresponding to the sources at the mass cell center.

3w
|: |: M,y 7v m U )] + 4,7, (u[w Y )

m=1

3
=X (b)) (= )+ (vt (=)= (70, ), (=) (13.202)

m=1

(rtt), =y AV B FosiVotn ) (13.203)
(1), = Fvs av PV B+ iVl ) (13.204)
(.20.), AVJF—AVM(%AVMW + AV il ) (13.205)
(7.4), ﬁ(mmzuw iVttt )s (13.206)
(), 0 =y (HAV it + Vo oAV it ) (13:207)

i+1

Similarly we have

—ﬁ[ﬂmm (v =v) ]+ 0, (v =, )}

m=1

3
= (7t ), (=i )+ (rbr), (i =1 )= (s ), (v =1 ). (13.208)

m=1

rZw[ﬂmm (W =) |+ 24,7, (w3, = w, )}

=1

3
= 2(}/ ltlml) (Wi:’l _WIM )+(}/v1tlwl )u (Wiil _WIM )_(yvll’llw )u (WIMW _WIM ) : (13209)
m=1

Lift force, off-diagonal viscous forces: The lift force and the off-diagonal
viscous forces are explicitly computed by strict volume averaging.



13.12 Staggered x momentum equation 635

Pressure gradient:

o 7:(Vp)-i=a,7: (Vp)i, (13.210)
where
}/AVa' +}/Vl+ t+ai+
3 ’ e (13.211)
}/AV+}/V1+I i+l

Similarly we have
@ 7:(Vp)-i=a,7:(Yp) i, (13.212)
o 7:(Vp) 'k =0,7:(Vp) k.. (13.213)

Virtual mass force:

\%
o Y o o

ml

Z—Vm [QAM ‘71 aAMml +‘72 aAMml /3 aAMml J

uan—Tuzu _ u:‘naA_T”Z; + (Vl )1 (”m.i+1 — Uy — U, +u,)
3,cs
;(77,2’,” ) . (13.214)
ml _ o u ~ . Ny
V)| | 79) | 9| _ 9
+( )1[377 | an\l}’-( )1[('9; : aé‘\l]

Similarly we have

&E_ [N, S 0Av, —,0Av,, —;0Av,,
7/’;’"1[071 +V PR +V Pr +V a;]
m#l
B (7) (5 =i v 1)
3,cs
=Y (rnar), . (13.215)
el — v v — dv v
+V) | = - [+ (V] ml——L
( )1[877 . an\lJ ( )l[ag” | E)C\IJ

3.cs _ _ _
yb Z —’;;n aA‘/le + Vl aAWml +V 2 aAWml +V 3 aAWml
o Y o oc

m=1
m#l
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i u

w.o—W, W —W 1

m L ma la + V W
A A 1 m,i+1

3,cs T T

2(7/\/ "Ll;” )u
‘73 Ewm
] ( )l[ aé .

m=1
Implicit treatment of the interfacial interaction:

Wi T W, TW, )

|

o

an |,

M
|,

an |,

(77) [GL -

(13.216)

u

( laplayvn lﬂ +Zalm cd (’"1 m U ) Ve (Vp)

u

u u u

u —u u —u =1

m L ma e (V) (u . —u,., —u U
A A 1 m,i+1 Li+1 m 1

3,cs T T

=Y. (nan), ~(nf").
m=1
m#l +(‘72)1[% _% J+(‘73)1[88L£ _%IJ
1
6

anl, In|, ol |.
= _z alm,u_dl_'f (u;t,m - ulu )_ gx (alapla }/vn )u

m=1
3
+2 (ywllm[ ) (um - ulu )+ (ywllw[ )u (u‘l:l - ulu )_ (;/v:lllw )u (ull:t - u[” )
m=1
+i(}/VC;'{‘1 )u (M}L'tn - ul ) (}/LCWI ) ( _ulu )+VZS; . (13217)
m=1
m#l

For all three velocity fields we have a system of algebraic equations with respect
to the corresponding field velocity components in the x direction

(alnpln va 5 AL - zalm ) (%E‘L;n )u AL‘L' + (}/vc»dvl )u + (%aluwl )u - (}/wulw )u uw

m=1
m#l

3
+ Zalmu::z = b[ [ u ;/5 (Vp) (13218)

m#l
or

A"u" =bu" —a"y, (Vp)i. (13.219)
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The non-diagonal and the diagonal elements of the A" matrix are

—my 1 §
a, = —[(nc,;z ), 2zt (btn), +(76), } , (13.220)
and
3
a = (am e )M i - mZ:; Ay, T, oy + (%E»::zm )u i + (7VC:>1 )u + (}/vﬂwl )u - (%ﬂzw )u >
m#l
(13.221)
respectively, where
A ca = _26‘, Apyca - (13.222)
m=1
The elements of the algebraic vector bu" are
u 3,cs
bul = bul,cmzv + Vislu + (ala pla ym )u [ZI; - gx J_ Zbulm + (;/v -fIL )u
m=1
m#l
— 1
+[(nc;’," )zt (), }u (), - (na), ] (13.223)
where
_%*' (‘71 )1 (um,iﬂ U U, T )
bu,, =-bu,, = (?’vaﬁm )
() | L| ) (79 [ L) O
I " oon|, 9n|, "oag |, ag\l_
(13.224)
and
6
Dty oy == (Gt + O )t = O] (13.225)

m=1

The elements of the algebraic vector a* are a,, , where [ = 1,2,3. Note that by de-

finition, if one velocity field does not exist, ¢, =0, the coefficients describing its

coupling with the other fields are then equal to zero. Similarly we can discretize
the momentum equations in the same staggered control volume for the other Car-
tesian components. The result in component form is then
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A"u" =bu" —a"y; (Vp)i, (13.226)
A"V =bv' —a'y; (Vp)-j. (13.227)
A"w' =bw" —a"y; (Vp)-k. (13.228)

It is remarkable that the A matrix and the coefficients of the pressure gradient
are common for all the three systems of equations. If we take the dot product of
each u-v-w equation with the unit normal vector at the control volume face we
then obtain

A" [(e” )1 u’ + (e12 )1 v +(e13 )1 w“]
=(e") bu’ + () by + (") bw —a‘y, [(e1 ) -(Vp):| . (13.229)

Having in mind that the outwards pointing normal face velocity is

Vi=(e) V", (13.230)
and

op 1

e (Vp), 13.231

L= (o) (%) (13231)
we obtain finally

" o, OP

A"V =b"-a 7§£, (13.232)
where

b" =(6”)1 bu* +(612 )l bv" +(el3 )l bw" . (13.233)

This algebraic system can be solved with respect to each field velocity provided that

u __ _ _ _
det A" = a,,ay 055 + A1y Ay, 0y, + Ay, 3,013 — 3105y y3 = Ayy A3y — Ayl Az # 0.

(13.234)

The result is

V' =dV, -RV.7: (p.,—p). (13.235)
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where
-1
dv, =(A") b (13.236)
with components
— 3
dVe = (zbma,m J/det A, (13.237)
m=1
and
-1
RV, =(A") a,, (13.238)

with components

3
RU[ = (zama,ualm J/det Au ’ (13239)

m=1

and the a values are

Q) = Ayplyy —Ayplyy, A = AypGi3 —Apyy, Qi3 = Ay — Ay,
Ay = Ay3ly) — Ay Uy s Ayy = AyUyy — A3 Gy, Aoz = Ay Ay3 — Aplyy,
Ay =0y Ay — Uy 0y, Ay = Apyly — Ay, Gy = Ay 0y, — 0y 4y, - (13.240-248)

Actually, not the absolute but the relative normal face velocity is required to con-
struct the pressure equation which is readily obtained

—n 1

V=V —(e) V,. (13.249)

cs

Appendix 13.1 Harmonic averaged diffusion coefficients

A natural averaging of the coefficients describing diffusion across the face m, hav-
ing surface cross section S, is then the harmonic averaging

D, _( @ _ 2((D1)((1)1)m
AL AV )" AV, (@) +AV (D))

h,m

where on the right hand side m =1, 2, 3,4, 5, 6 is equivalent to i + 1,i- 1,j+ 1, -
1, k+ 1, k - 1, respectively regarding the properties inside a control volumes. AV
is the non-staggered cell volume, and AV, is the volume of the cell at the other
side of face m. It guaranties that if the field in one of the neighboring cells is miss-

ing the diffusion coefficient is zero. This property is derived from the solution of
the steady state one-dimensional diffusion equations.
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For computation of

D;-m :[alplD;] S =S, 2(0{,plD.*)(0(,p[D,*)

AL AV AV, (a,pD;)+AV (a1pD;)

h,m

we simply set @, =, p, D,
T
For computation of

we simply set @, =4, .
h,m
sC

il,m

For computation of

we simply set @, =, p,D, (s, —s,) . Note that
‘h,m
lem
=0
AL

'h,m

for s, =, or Sitm = Stim

n

For computation of the turbulent particle diffusion coefficient we simp-
h,m
V[
ly set ®, = S0

14

For computation of we simply set @, =, p,V; .
h,m
In the case of cylindrical or Cartesian coordinate systems we have zero off-

diagonal diffusion terms and

D_l?= z(q)l)(q)/)ﬂ
Ar, Ar(CD )I_ +Ar, @,

i+1

quz) — z(q)l )((I)l )i—l
Ar o Ar(D)  +Ar, @, ’
D, 2(®,)(®, ),+1

At A0(®,),, +46,,0, |

Jj+l

py  _ 2A®)(®),

G [ A0(®) ,+A6,.@ |

D_g _ Z(CI)I )((I)l )k+l

Azh_AZ( 1) +Azk+lq)

k+1
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k-1 <=

Appendix 13.2 Off-diagonal viscous diffusion terms of the
X momentum equation

The off-diagonal viscous diffusion terms in the x momentum equation are

6 v

Zﬂ Din [DI U=

%( )'"1 DI _u}, + DI _vis|! ]

= ﬂ q +q aul +q % +q ﬂ +q aﬁ +q aﬁ
' Y2 5 X113 o 1 x1,22 o x1,23 aé,l X132 an 1 1,33 o 1
{q g u, g el rq v, ow, g ow, }
X212 5 2135 & | 4x2.2275 X223 & X232 | X233 &~
2 ¢ 2 a7 2 o¢ 2 d 2 ¢ 2
q au, g du; g v, +q v, g aw, ‘g aw,
x3,11 \ x3.13 aé/ \ x3,21 aég x3,23 aé/ x3,31 ag x3,33 a;
+B,14 au1 +q % +q & +q » q 9 +q o
41 9xan ) x4.13 o ) 421 £ 4,23 8§ X431 o0& ) ¥4.33 o )
au, . au, +q avl . % rg % . %
x511 . x5,12 877 . x5,21 af x5,22 an X x5,31 85 : x5,32 877 .
B g, Qul g, Ol M g O
6 1 9x6.11 oE ) x6.12 an ) x6,21 oE ) x6,22 an ) x6.31 P ) x6.32 an .
Here the coefficients
. D}, AV,
ﬂm :ﬂ)ﬂ = 1,
ALh,m Sm

are used also in the other momentum equations. The following 36 coefficients are
functions of the geometry only.

=300 @) 6 () +(6) (@), =+ 506 (),
=30 () #(6) (07) +(e) (@) =+ 30 ),
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923 = (6)12 (a“ )1 -

913 _( )13 (021 )1
9133 _( )l3 (031 )1
4

9don = g(
= _(qxl,lz )H >
4
9213 = g(
)

Gan =3
G =7
G = ()" (a"),
Gz =(e)" (a"),

2

—g(e)” (),
2,1 3
200)" (@),
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4

61 [ 91 62 2 63 ( 23 1 61 [ o1
quz:g(e) (a )6+(6) (a )6+(e) (a )6:d62+§(e) (a )6

=- (%5,12 )H >
2

= (0"), =50 (), = (),
=0 (@), 56" (%), =~(52),
=€) (0), =50 (@), = (),

2

s = (@), 50" (@), =),

Appendix 13.3 Off-diagonal viscous diffusion terms of the
y momentum equation

The off-diagonal viscous diffusion terms in the y momentum equation

6 Dvm 2 m2 Y
;ﬂm Ali (DI_V,_m —g(e) DI _u;, + DI _vis; j

h,m

are computed using the same procedure as those for x equation replacing simply
the subscript x with y and using the following geometry coefficients.

g =(0)' (@), ~2()" (a")
g =(6)" (a%) ~3()" (a).
Gm=(0)" (a) +3(6) (a) +(e) ()
G =()" (a), +3(6) (@), +(0)" (@),
g = () () ~2(e) (),

g = () (), =3(e) (a").
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9212 = (6)21 (a22 )2

9213 = (6)21 (a32 )2 -
yrm = (6)21 (aﬂ )2 +
Qy203 = (6)21 (a3l )2 *

923 = (6)23 (a22 )2
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A ONCe )3
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05 =(e) (),
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9yt = (e)“ (al2 )4 B
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Qys3 = (6)41 (a3l )4

2, 2 4
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20 o)l

4

4

2

2

2 20 11
g(e) (a )4

4

e (@), 0 o),

4

+20% (a%),+()" (@),

37 (@), +(e)" (),
37 (@), +(e) (a¥),

—(qyz,ll)j,l’

_(qy3,13 ),‘71 ’

=— (qyl,ZZ )H ’

= _(qyl,23 )H ’

207 ()l

9y233 = (6)23 (a32 )2 _5(6)22 (a33 )2 = _(q.\'l-33 )i—l ’

EONCHN
EONCRN
S ONCORIONCDR
#2(6)" (a%), +(e)" (")
_g(e)ﬂ C
EONCOR

= —(q'v3.21 )_j—l ’

= _(qy3,23 )_;—1 ’
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2

9yas = (6)43 (a12 )4 _5(6)42 (a13 )4 = _(q)'”' ).i—l ’
Qya3 = (6)43 (a32 )4 _2(6)42 (a33 )4 = _(qy3,33 )H ’

3

9ysi1 = (6)51 (alz )5 _2(6)52 (a” )5 >
9ys12 = (6)51 (azz )5 _2(6)52 (aZl )5 >

3
=€) (@) 56" (@), 10 (),
0= ()" (), +5(0)% (a) +(0)" (),

3

qys31 = (6)53 (alz )5 _2(6)52 (aB )5 ’

3

9y = (6)53 (a22 )5 _2(6)52 (a23 )5 ’

9yen = (6)61 (alz )6 _2(6)62 (a“ )6 - _(qy5~11 )k—l ’

3
e = (€)' (%), =50 (0, =),
= (@), 430" (@), +0° (@), =~(152),

4

yen = (6)61 (aZl )6 +§(e)62 (a22 )6 + (6)63 (a23 )6 = _(q."ﬂz )k—l ’

2

9ye31 = (6)63 (a12 )6 _5(6)62 (al3 )6 - _(q)‘5’31 )k—l ’
9y632 = (6)63 (azz )6 _2(6)62 (azz )6 = _(qy5’32 )k—l :

3

Appendix 13.4 Off-diagonal viscous diffusion terms of the
Z momentum equation

The off-diagonal viscous diffusion terms in the z momentum equation
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DV

34,

m=1 ALh,m

2 ms )
L (Dl_wlvm —g(e) ‘DI _u’, +Dl_vis;;[j

are computed using the same procedure as those for x equation replacing simply

the subscript x with z and using the following geometry coefficients.

() (@),
S ONCOR
26 (),
() (@),

4
e

9 = (e)“ (a23 )1
9113 = (6)11 (a33 )1
920 = (6)12 (a23 )1

9153~ (6)12 (a33 )1 -
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3

G = (€)' (a®), -
Gy =(e)" ("), -
Gom =(e)" (a”),-
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Qoo = (€)' (), +(e)" (@), +
Qo = ()" (@), + ()" (), +

930 = (6)31 (a13 )3
9313 = (6)31 (a33 )3

2

2

2

2

2,3 1
_g(e) (a )3 )
2, 3/ 3
_g(e) (a )3 s

b =) (&) (6" (67) e

3
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Gn = (6)32 (a13 )3
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2

n =(0)" (), 2" (@), = (0.

Gon=(0)" (), ~2(0)" (@), =~(4),_,

Gon=(6)" (@), ~2(0)" (a%), =521,

G =(0)° (@), ~3(0)" (%), =~(0), .,

G =(€) (), +(0)" (%), +3()" (@), ==(.52).
s

G5 = (e)61 (a21 )6 +(e)62 (a22 )6 +§(e)63 (a23 )6 = —(925,32 )H .
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