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A Few Words about the New Editions of  
Volumes 1 through 5 

The present content and format of the fourth, improved, and extended edition of 
Volumes 1, 2, and 3, and the second improved and extended edition of Volumes 4 
and 5 were achieved after I received many communications from all over the 
world from colleagues and friends commenting on different aspects or requesting 
additional information. Of course, misprints and some layout deficiencies in the 
previous editions, for which I apologize very much, have also been removed, as is 
usual for subsequent editions of such voluminous 3000-page monographs. I thank 
everyone who contributed in this way to improving the five volumes! 

The new editions contain my experiences in different subjects, collected during 
my daily work in this field since 1975. They include my own new results and the 
new information collected by colleagues since the previous editions. The over-
whelming literature in multiphase fluid dynamics that has appeared in the last 40 
years practically prohibits a complete overview by a single person. This is the rea-
son why, inevitably, one or other colleague may feel that his personal scientific 
achievements are not reflected in this book, for which I apologize very much. 
However, it is the responsibility of transferring knowledge to the next generation 
that drove me to write these, definitely not perfect, books. I hope that they will 
help young scientists and engineers to design better facilities than those created by 
my generation. 
 
 
29.12.2010                Nikolay Ivanov Kolev 
Herzogenaurach                                                                       
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Introduction 

Multiphase flows, such as rainy or snowy winds, tornadoes, typhoons, air and water 
pollution, volcanic activities, etc., see Fig.1, are not only part of our natural envi-
ronment but also are working processes in a variety of conventional and nuclear 
power plants, combustion engines, propulsion systems, flows inside the human 
body, oil and gas production, and transport, chemical industry, biological industry, 
process technology in the metallurgical industry or in food production, etc.  

 

    

  

Fig. 1 The fascinating picture of the start of a discovery, a piece of universe, a tornado, a 
volcano, flows in the human heart, or even the “pure” water or the sky in Van Gogh’s paint-
ing are, in fact, different forms of multiphase flows 

The list is by far not exhaustive. For instance, everything to do with phase 
changes is associated with multiphase flows. The industrial use of multiphase sys-
tems requires methods for predicting their behavior. This explains the “explosion” 
of scientific publications in this field in the last 50 years. Some countries, such as 
Japan, have declared this field to be of strategic importance for future technologi-
cal development. 

Probably the first known systematic study on two-phase flow was done during 
the Second World War by the Soviet scientist Teletov and published later in 1958 
with the title “On the problem of fluid dynamics of two-phase mixtures”. Two 
books that appeared in Russia and the USA in 1969 by Mamaev et al. and by  
Wallis played an important role in educating a generation of scientists in this dis-
cipline, including me. Both books contain valuable information, mainly on steady 
state flows in pipes. In 1974 Hewitt and Hall-Taylor published the book “Annular 
two-phase flow”, which also considers steady state pipe flows. The usefulness of 
the idea of a three-fluid description of two-phase flows was clearly demonstrated 
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on annular flows with entrainment and deposition. In 1975 Ishii published the 
book “Thermo-fluid dynamic theory of two-phase flow”, which contained a rigor-
ous derivation of time-averaged conservation equations for the so called two-fluid 
separated and diffusion momentum equations models. This book founded the ba-
sics for new measurement methods appearing on the market later. The book was 
updated in 2006 by Ishii and Hibiki who included new information about the inter-
facial area density modeling in one-dimensional flows, which had been developed 
by the authors for several years. R. Nigmatulin published “Fundamentals of me-
chanics of heterogeneous media” in Russian in 1978. The book mainly considers 
one-dimensional two-phase flows. Interesting particular wave dynamics solutions 
are obtained for specific sets of assumptions for dispersed systems. The book was 
extended mainly with mechanical interaction constitutive relations and translated 
into English in 1991. The next important book for two-phase steam-water flow in 
turbines was published by Deich and Philipoff in 1981, in Russian. Again, mainly 
steady state, one-dimensional flows are considered. In the same year Delhaye et 
al. published “Thermohydraulics of two-phase systems for industrial design and 
nuclear engineering”. The book contains the main ideas of local volume averaging 
and considers mainly many steady state one-dimensional flows. One year later, in 
1982, Hetsroni edited the “Handbook of multiphase systems”, which contained the 
state of the art of constitutive interfacial relationships for practical use. The book 
is still a valuable source of empirical information for different disciplines dealing 
with multiphase flows. In 2006 Crowe 2006 edited the “Multiphase flow hand-
book”, which contained an updated state of the art of constitutive interfacial rela-
tionships for practical use. In the monograph “Interfacial transport phenomena” 
published by Slattery in 1990 complete, rigorous derivations of the local volume-
averaged two-fluid conservation equations are presented together with a variety of 
aspects of the fundamentals of the interfacial processes based on his long years of 
work. Slattery’s first edition appeared in 1978. Some aspects of the heat and mass 
transfer theory of two-phase flow are now included in modern textbooks such as 
“Thermodynamics” by Baer (1996) and “Technical thermodynamics” by Stephan 
and Mayinger (1998). 

It is noticeable that none of the above mentioned books is devoted in particular 
to numerical methods of solution of the fundamental systems of partial differential 
equations describing multiphase flows. Analytical methods still do not exist. In 
1986 I published the book “Transient two-phase flows” with Springer-Verlag, in 
German, and discussed several engineering methods and practical examples for in-
tegrating systems of partial differential equations describing two- and three-fluid 
flows in pipes. 

Since 1984 I have worked intensively on creating numerical algorithms for de-
scribing complicated multiphase multicomponent flows in pipe networks and com-
plex three-dimensional geometries mainly for nuclear safety applications. Note that 
the mathematical description of multidimensional two-phase and multiphase flows is 
a scientific discipline that has seen considerable activity in the last 30 years. In addi-
tion, for yeas thousands of scientists have collected experimental information in this 
field. However, there is still a lack of systematic presentation of the theory and prac-
tice of numerical multiphase fluid dynamics.  This book is intended to fill this gap.  
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Numerical multiphase fluid dynamics is the science of the derivation and the 
numerical integration of the conservation equations reflecting the mass momen-
tum and energy conservation for multiphase processes in nature and technology at 
different scales in time and space. The emphasis of this book is on the generic 
links within computational predictive models between 

 
• fundamentals,  
• numerical methods, 
• empirical information about constitutive interfacial phenomena, and 
• a comparison with experimental data at different levels of complexity. 

 
The reader will realize how strong the mutual influence of the four model con-

stituencies is. There are still many attempts to attack these problems using single-
phase fluid mechanics by simply extending existing single-phase computer codes 
with additional fields and linking with differential terms outside the code without 
increasing the strength of the feedback in the numerical integration methods. The 
success of this approach in describing low concentration suspensions and dis-
persed systems without strong thermal interactions should not confuse the engi-
neer about the real limitations of this method. 

This monograph can also be considered as a handbook on the numerical model-
ing of three strongly interacting fluids with dynamic fragmentation and coalescence 
representing multiphase multicomponent systems. Some aspects of the author’s 
ideas, such us the three-fluid entropy concept with dynamic fragmentation and coa-
lescence for describing multiphase, multicomponent flows by local volume-
averaged and time-averaged conservation equations, were published previously in 
separate papers but are collected here in a single context for the first time. An im-
portant contribution of this book to the state of the art is also the rigorous thermo-
dynamic treatment of multiphase systems consisting of different mixtures. It is also 
the first time that the basics of the boundary fitted description of multiphase flows 
and an appropriate numerical method for integrating them with proven convergence 
has been published. It is well known in engineering practice that “the devil is hid-
den in the details”. This book gives many hints and details on how to design com-
putational methods for multiphase flow analysis and demonstrates the power of the 
method in the attached compact disc and in the last chapter in Volume 2 by present-
ing successful comparisons between predictions and experimental data or analytical 
benchmarks for a class of problems with a complexity not known in the multiphase 
literature until now. It starts with the single-phase U-tube problem and ends with 
explosive interaction between molten melt and cold water in complicated 3D ge-
ometry and condensation shocks in complicated pipe networks containing acousti-
cally interacting valves and other components. 

Volume 3 is devoted to selected subjects in multiphase fluid dynamics that are 
very important for practical applications but could not find place in the first two 
volumes of this work. 
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The state of the art of turbulence modeling in multiphase flows is also pre-
sented. As an introduction, some basics of the single-phase boundary layer theory, 
including some important scales and flow oscillation characteristics in pipes and 
rod bundles are presented. Then the scales characterizing the dispersed flow sys-
tems are presented. The description of the turbulence is provided at different lev-
els of complexity: simple algebraic models for eddy viscosity, algebraic models 
based on the Boussinesq hypothesis, modification of the boundary layer share due 
to modification of the bulk turbulence, and modification of the boundary layer 
share due to nucleate boiling. Then the role of the following forces on the 
matematical description of turbulent flows is discussed: the lift force, the 
lubrication force in the wall boundary layer, and the dispersion force. A pragmatic 
generalization of the k-eps models for continuous velocity fields is proposed, 
which contains flows in large volumes and flows in porous structures. Its large 
eddy simulation variant is also presented. A method to derive source and sinks 
terms for multiphase k-eps models is presented. A set of 13 single- and two-phase 
benchmarks for verification of k-eps models in system computer codes are 
provided and reproduced with the IVA computer code as an example of the 
application of the theory. This methodology is intended to help engineers and 
scientists to introduce this technology step by step in their own engineering 
practice. 

In many practical applications gases are dissolved in liquids under given condi-
tions, released under other conditions, and therefore affect technical processes for 
good or for bad. There is almost no systematic description of this subject in the lit-
erature. That is why I decided to collect in Volume 3 useful information on the 
solubility of oxygen, nitrogen, hydrogen, and carbon dioxide in water, valid within 
large intervals of pressures and temperatures, provide appropriate mathematical 
approximation functions, and validate them. In addition, methods for computation 
of the diffusion coefficients are described. With this information solution and dis-
solution dynamics in multiphase fluid flows can be analyzed. For this purpose, the 
nonequilibrium absorption and release on bubble, droplet, and film surfaces under 
different conditions are mathematically described. 

Volume 4 is devoted to nuclear thermal hydraulics, which is a substantial part 
of nuclear reactor safety. It provides knowledge and mathematical tools for the 
adequate description of the process of transferring the fission heat released in ma-
terials due to nuclear reactions into its environment. The heat release inside the 
fuel, the temperature fields in the fuels, and the “simple” boiling flow in a pipe, 
are introduced step by step, using ideas of different complexity like equilibrium, 
nonequilibrium, homogeneity, and nonhomogeneity. Then the “simple” three-fluid 
boiling flow in a pipe is described by gradually involving mechanisms like  
entrainment and deposition, dynamic fragmentation, collisions, and coalescence, 
turbulence. All heat transfer mechanisms are introduced gradually and their uncer-
tainty is discussed. Different techniques like boundary layer treatments or integral 
methods are introduced. Comparisons with experimental data at each step demon-
strate the success of the different ideas and models. After an introduction into the 
design of reactor pressure vessels for pressurized and boiling water reactors, the 
accuracy of modern methods is demonstrated using a large number of experimen-
tal data sets for steady and transient flows in heated bundles. Starting with single 
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pipe boiling going through boiling in a rod bundles the analysis of the complete 
vessel, including the reactor, is finally demonstrated. Then a powerful method for 
nonlinear stability analysis of flow boiling and condensation is introduced. Models 
are presented and their accuracies in describing critical multiphase flow at differ-
ent level of complexity are investigated. The basics of the design of steam genera-
tors, moisture separators, and emergency condensers are presented. Methods for 
analyzing a complex pipe network flows with components like pumps, valves, 
etc., are also presented. Methods for the analysis of important aspects of severe 
accidents like melt-water interactions and external cooling and cooling of layers of 
molten nuclear reactor material are presented. Valuable sets of thermophysical and 
transport properties for severe accident analysis are presented for the following 
materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, alumi-
num, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide,  
reactor corium, sodium, lead, bismuth, and lead-bismuth eutectic alloy. The em-
phasis is on the complete and consistent thermodynamical sets of analytical  
approximations appropriate for computational analysis. Thus the book presents a 
complete coverage of modern nuclear thermal hydrodynamics. 
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Fig. 2 Examples of multiphase flows in nuclear technology. See 
http://www.herzovision.de/kolev-nikolay/ 

 
 
Herzogenaurach, Winter 2010                                                Nikolay Ivanov Kolev  
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Summary 

This monograph contains theory, methods, and practical experience for describing 
complex transient multiphase processes in arbitrary geometrical configurations. It 
is intended to help applied scientists and practicing engineers to better understand 
natural and industrial processes containing dynamic evolutions of complex multi-
phase flows. The book is also intended to be a useful source of information for 
students in higher semesters and in PhD programs. 

This monograph consists of five volumes:  
 
Vol. 1 Fundamentals, 4th ed. (14 chapters and 2 appendixes), 782 pages.  
Vol. 2 Mechanical interactions, 4th ed. (11 chapters), 364 pages, 
Vol. 3 Thermal interactions, 4th ed. (16 chapters), 678 pages. 
Vol. 4 Turbulence, gas absorption and release by liquid, diesel fuel properties, 
2nd ed. (13 chapters), 328 pages. 
Vol. 5 Nuclear thermal hydraulics, 2nd ed. (17 chapters), 848 pages. 
 
In Volume 1 the concept of three-fluid modeling is presented in detail “from 

the origin to the applications”. This includes the derivation of local volume- and 
time-averaged equations and their working forms, the development of methods for 
their numerical integration, and finally a variety of solutions for different prob-
lems of practical interest.   

Special attention is paid in Volume 1 to the link between partial differential 
equations and constitutive relations, called closure laws, without providing any in-
formation on the closure laws.  

Volumes 2 and 3 are devoted to these important constitutive relations for the 
mathematical description of the mechanical and thermal interactions. The structure 
of the volumes is, in fact, a state of the art review and a selection of the best avail-
able approaches for describing interfacial transfer processes. In many cases, the 
original contribution of the author is incorporated in the overall presentation. The 
most important aspects of the presentation are that they stem from the author’s 
long years of experience in developing computer codes. The emphasis is on the 
practical use of these relationships: either as stand-alone estimation methods or 
within a framework of computer codes.  

Volume 4 is devoted to turbulence in multiphase flows.  
Nuclear thermal hydraulics is the science providing knowledge about the physi-

cal processes occurring during the transfer of the fission heat released in structural 
materials due to nuclear reactions into its environment. Along its way to the envi-
ronment thermal energy is organized to provide useful mechanical work or useful 
heat, or both. Volume 5 is devoted to the nuclear thermal hydraulics. In a way this 
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is the most essential application of multiphase fluid dynamics in analyzing steady 
and transient processes in nuclear power plants. 

In particular in Volume 1, Chapters 1, 2, 3, and 5, the concept of three-fluid mod-
eling is introduced. Each field consists of multicomponents grouped into an inert 
and a noninert components group. Each field has its own velocity in space and its 
own temperature, allowing mechanical and thermodynamic nonequilibrium among 
the fields. The idea of dynamic fragmentation and coalescence is introduced. Using 
the Slattery–Whitaker local spatial averaging theorem and the Leibnitz rule, the local 
volume-averaged mass, momentum and energy conservation equations are rigor-
ously derived for heterogeneous porous structures. Successively time averaging is 
performed. A discussion is provided on particle size spectra and averaging, cutting 
off the lower part of the spectrum due to mass transfer, the effect of the averaging on 
the effective velocity difference, etc. Chapter 1 also contains brief remarks on the 
kinematic velocity of density wave propagation in porous structures and on  
the diffusion term of void propagation in the case of pooling all the mechanical in-
teractions in this kind of formalism. In the derivation of the momentum equations 
special attention is paid to rearranging the pressure surface integrals in order to 
demonstrate the physical meaning of the originating source terms in the averaged 
systems and their link to hyperbolicity. The Reynolds stress concept is introduced 
for multiphase flows. Chapter 2 also contains a collection of constitutive relations 
for lift- and virtual mass forces, for wall boundary layer forces, for forces causing 
turbulent diffusion, and for forces forcing the rejection of droplet deposition on a 
wall with evaporation.  

Before deriving the energy conservation in Chapter 5, I provide Chapter 3 in 
which it is shown how to generate thermodynamic properties and the substantial de-
rivatives for different kinds of mixtures by knowing the properties of the particular 
constituents. It contains the generalization of the theory of the equations of states 
for arbitrary real mixtures. With one and the same formalism a mixture of miscible 
and immiscible components in arbitrary solid, liquid, or gaseous states mixed 
and/or dissolved can be treated. This is a powerful method for creating a universal 
flow analyzer. Chapter 3 contains additional information on the construction of the 
saturation line by knowing pressure or temperature. An application of the material 
given in Chapter 3 is given in the new Volume 3 of this work to diesel fuel, where 
an inherently consistent set of equations of state for both gas and liquid is formu-
lated. In addition, a section defining the equilibrium of gases dissolved in liquids 
is provided. These basics are then used in Volume 3 to construct approximations 
for the equilibrium solution concentrations of H2, O2, N2 and CO2 in water and to 
describe the nonequilibrium solution and dissolution at bubble, droplet, and film 
interfaces, which extend the applicability of the methods of multiphase fluid  
dynamics to flows with nonequilibrium solution and dissolution of gases. The 
generalizations of Chapter 3 are also used in Chapter 17 of Volume 4 to represent 
a variety of thermal properties including sodium vapor properties. An additional 
appendix to Chapter 3 shows a table where the partial derivatives of different 
forms of the equation of state is provided. This chapter provides the information 
necessary to understand the entropy concept, which is presented in Chapter 5.  
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In the author’s experience understanding the complex energy conservation for 
multiphase systems and especially the entropy concept is very difficult for most stu-
dents and practicing engineers. This is why Chapter 4 is provided as an introduction, 
showing the variety of notations of the energy conservation principle for single-
phase multicomponent flows. Chapter 4 further contains a careful state of the art 
review for the application of the method of characteristics for modeling 1D and 
2D flows in engineering practice.  

The local volume-averaged and time-averaged energy conservation equation is 
derived in Chapter 5 in different notational forms in terms of specific internal en-
ergy, specific enthalpy, specific entropy, and temperatures. The introduction of the 
entropy principle for such complex systems is given in detail in order to enable the 
practical use of the entropy concept. The useful “conservation of volume” equation 
is also derived. Chapter 5 contains an additional example of the computation of ir-
reversible viscous dissipation in the boundary layer. For easy application addi-
tional sections have been added to Chapter 5, which contain the different notations 
of energy conservation for lumped parameter volumes and steady state flows. The 
limiting case with gas flow in a pipe is considered in order to show the important 
difference to the existing gas dynamics solution where the irreversible heat dissi-
pation due to friction is correctly taken into account. 

Examples for a better understanding are given for the simple cases of lumped 
parameters – Chapter 6, infinite heat exchange without interfacial mass transfer, 
discharge of gas from a volume, injection of inert gas in a closed volume initially 
filled with inert gas, heat input in a gas in a closed volume, steam injection in a 
steam–air mixture, chemical reaction in a gas mixture in a closed volume, and 
hydrogen combustion in an inert atmosphere. Chapter 6 has been extended with 
cases including details of the modeling of combustion and detonation of hydrogen 
by taking into account the equilibrium dissociation. 

The exergy for a multiphase, multicomponent system is introduced in Chapter 7 
and discussed for the example of judging the efficiency of a heat pump. 

Simplification of the resulting system of PDEs to the case of one-dimensional 
flow is presented in Chapter 8. Some interesting aspects of fluid structure coupling, 
such as pipe deformation due to temporal pressure change in the flow and forces 
acting on the internal pipe walls are discussed. The idea of algebraic slip is 
presented. From the system thus obtained the next step of simplification leads to the 
system of ordinary differential equations describing the critical multiphase, 
multicomponent flow by means of three velocity fields. Modeling of valves and 
pumps is discussed in the context of the modeling of networks consisting of pipes, 
valves, pumps, and other different components. 

Another case of simplification of the theory of multiphase flows is presented in 
Chapter 9, where the theory of continuum sound waves and discontinuous shock 
waves for melt-water interaction is presented. In order to easily understand it, the 
corresponding theory for single- and two-phase flows is reviewed as an introduction. 
Finally, an interesting application for the interaction of molten uranium and 
aluminum oxides with water, as well of the interaction of molten iron with water is 
presented. Chapter 9 also deals with detonation during melt-water interaction. To 
better put this information into the context of the detonation theory, additional 
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introductory information is given for the detonation of hydrogen in closed pipes, 
taking into account the dissociation of the generated steam. 

Chapter 10 is devoted to the derivation of the conservation equations for 
multiphase, multicomponent, multivelocity field flow in general curvilinear 
coordinate systems. For a better understanding of the mathematical basics used in 
this chapter two appendixes are provided: Appendix 1 in which a brief introduction 
to vector analysis is given and Appendix 2 in which the basics of the coordinate 
transformation theory are summarized.  

A new Chapter 11 gives the mathematical tools for computing eigenvalues and 
eigenvectors and for determination of the type of systems of partial differential 
equations. The procedure for the transformation of a hyperbolic system into 
canonical form is also provided. Then the relations between eigenvalues and 
critical flow and between eigenvalues and the propagation velocity of small 
perturbations are briefly defined. This is, in fact, a translation of one chapter of my 
first book published in German by Springer in 1986. This completes the basics of 
the multiphase, multicomponent flow dynamics. 

Chapter 12 describes numerical solution methods for different multiphase flow 
problems. The first-order donor-cell method is presented in detail by discretizing 
the governing equations, creating a strong interfacial velocity coupling, and strong 
pressure-velocity coupling. Different approximations for the pressure equations 
are derived and three different solution methods are discussed in detail. One of 
them is based on the Newton iterations for minimizing the residuals by using the 
conjugate gradients. A method for temperature inversion is presented. Several 
details are given, which enables scientists and engineers to use this chapter for 
their own computer code development, such as the integration procedure (implicit 
method), the time step, and accuracy control. Finally, some high-order 
discretization schemes for convection-diffusion terms such as space exponential 
scheme and other high-order up-winding schemas are presented. Different 
analytical derivations are provided in Appendixes 12.1–12.8, including the 
analytical derivatives of the residual error of each equation with respect to the 
dependent variables. Some important basic definitions that are required for 
describing pipe networks are introduced. In addition, the variation of volume-
porosity with time is systematically incorporated into the numerical formalism.  

Chapter 13 presents a numerical solution method for multiphase flow problems in 
multiple blocks of curvilinear coordinate systems, generalizing, in fact, the experi-
ence gained in Chapter 12. Several important details of how to derive explicit pres-
sure equations are provided. The advantage of using orthogonal grids also is easily 
derived from this chapter. Appendixes 1 and 2 of Volume I contain some addi-
tional information about orthogonal grid generation.  

Chapter 14 provides several numerical simulations as illustrations of the power 
of the methods presented in this monograph. A compact disc that contains films 
corresponding to particular cases discussed in this chapter is attached. The films 
can be played with any tool capable of accepting avi- or animated gif-files. 

As has already been mentioned, Volumes 2 and 3 are devoted to the so called 
closure laws: the important constitutive relations for mechanical and thermal  
interactions. The structure of the volume has the character of a state of the art  
review and a selection of the best available approaches for describing interfacial 
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processes. In many cases, the original contribution of the author is incorporated 
into the overall presentation. The most important aspects of the presentation are 
that they stem from the author’s long years of experience in developing computer 
codes. The emphasis is on the practical use of these relationships: either as stand 
alone estimation methods or within a framework of computer codes. 

Volume 4 is devoted to selected chapters of the multiphase fluid dynamics that 
are important for practical applications: The state of the art of the turbulence mod-
eling in multiphase flows is presented. As an introduction, some basics of single-
phase boundary layer theory, including some important scales and flow oscillation 
characteristics in pipes and rod bundles are presented. Then the scales characteriz-
ing dispersed flow systems are presented. The description of turbulence is pro-
vided at different level of complexity: simple algebraic models for eddy viscosity, 
algebraic models based on the Boussinesq hypothesis, modification of the 
boundary layer share due to modification of the bulk turbulence, and modification 
of the boundary layer share due to nucleate boiling. Then the role of the following 
forces on the matematical description of turbulent flows is discussed: the lift force, 
the lubrication force in the wall boundary layer, and the dispersion force. A 
pragmatic generalization of the k-eps models for continuous velocity fields, which 
contains flows in large volumes and flows in porous structures, is proposed. A 
method of how to derive source and sink terms for multiphase k-eps models is 
presented. A set of 13 single- and two phase benchmarks for the verification of  
k-eps models in system computer codes is provided and reproduced with the IVA 
computer code as an example of the application of the theory. This methodology is 
intended to help other engineers and scientists to introduce this technology step by 
step in their own engineering practice. 

In many practical application gases are solved in liquids under given condi-
tions, released under other conditions, and therefore affect technical processes for 
good of for bad. There is almost no systematical description of this subject in the 
literature. This is why I decided to collect useful information on the solubility of 
oxygen, nitrogen, hydrogen, and carbon dioxide in water under large intervals of 
pressures and temperatures, and provide appropriate mathematical approximation 
functions and validate them. In addition, methods for computation of the diffusion 
coefficients are described. With this information solution and dissolution dynam-
ics in multiphase fluid flows can be analyzed. For this purpose, the nonequilibrium 
absorption and release on bubble, droplet, and film surfaces under different condi-
tions is mathematically described.  

In order to allow the application of the theory from the first three volumes also 
to processes in combustion engines, a systematic set of internally consistent state 
equations for diesel fuel gas and liquid valid in a broad range of changing pres-
sures and temperatures is provided. 

Volume 5 is devoted to nuclear thermal hydraulics, which is a substantial part 
of nuclear reactor safety. It provides knowledge and mathematical tools for an 
adequate description of the process of the transfer of the fission heat released in 
materials due to nuclear reactions into its environment. It step by step introduces 
the reader into the understanding of the “simple” boiling flow in a pipe described 
mathematically using ideas of different complexity like equilibrium, nonequilib-
rium, homogeneity, and nonhomogeneity. Then the mathematical description of 
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the heat release inside the fuel, the resulting temperature distribution inside the fu-
els, and the interaction of the fuel with the cooling fluid are introduced. Next, the 
“simple” three-fluid boiling flow in a pipe is described by gradually involving the 
mechanisms like entrainment and deposition, dynamic fragmentation, collisions, 
coalescence, and turbulence. All heat transfer mechanisms are introduced gradu-
ally by discussing their uncertainty. Different techniques are introduced, like 
boundary layer treatments or integral methods. Comparisons with experimental 
data at each step demonstrate the success of the different ideas and models. After 
an introduction into the design of the reactor pressure vessels for pressurized and 
boiling water reactors the accuracy of modern methods is demonstrated using a 
large number of experimental data sets for steady and transient flows in heated 
bundles. Starting with single pipe boiling going through to boiling in rod bundles 
the analysis of the complete vessel including the reactor is finally demonstrated. 
Then a powerful method for nonlinear stability analysis of flow boiling and con-
densation is introduced. Models are presented and their accuracies for describing 
critical multiphase flow at different level of complexity are investigated. The ba-
sics of the design of steam generators, moisture separators, and emergency con-
densers are presented. Methods for analyzing complex pipe network flows with 
components like pumps, valves, etc., are also presented. Methods for the analysis 
of important aspects of severe accidents like melt-water interactions, external 
cooling, and cooling of layers of molten nuclear reactor material are presented. 
Valuable sets of thermophysical and transport properties for severe accident 
analysis are presented for the following materials: uranium dioxide, zirconium di-
oxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron 
oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth, and 
lead-bismuth eutectic alloy. The emphasis is on the complete and consistent ther-
modynamical sets of analytical approximations appropriate for computational 
analysis. Thus, the book presents a complete coverage of modern nuclear thermal 
hydrodynamics. 

 
29.12.2010 
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Nomenclature 

Latin 
 

A cross-section, m² 
A surface vector 
a speed of sound, /m s  

lwa  surface of the field l wetting the wall w per unit flow volume 
max

1

l

l
l

Vol
=

  

belonging to control volume Vol (local volume interface area density of 
the structure w), 1m−  

la σ  surface of the velocity field l contacting the neighboring fields per unit 

flow volume 
max

1

l

l
l

Vol
=

 belonging to  control volume Vol (local volume  

interface area density of the velocity field l), 1m−  

la  total surface of the velocity field l per unit flow volume 
max

1

l

l
l

Vol
=

 belong-

ing to control volume Vol (local volume interface area density of the  
velocity field l), 1m−  

iCu  Courant criterion corresponding to each eigenvalue, dimensionless 

ilC  mass concentration of the inert component i in the velocity field l 

c  coefficients, dimensionless 

mC  mass concentration of the component m in the velocity field,  

dimensionless 

iC  mass concentration of the component i in the velocity field, dimensionless 

pc  specific heat at constant pressure, ( )/J kgK  
vmc  virtual mass force coefficient, dimensionless 
dc  drag force coefficient, dimensionless 
Lc  lift force coefficient, dimensionless 

hyD  hydraulic diameter (4 times cross-sectional area / perimeter), m 

3ED  diameter of the entrained droplets, m 

ldD  size of the bubbles produced after one nucleation cycle on the solid  

structure, bubble departure diameter, m 
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1dmD  size of bubbles produced after one nucleation cycle on the inert solid  

particles of field m = 2, 3 

lchD  critical size for homogeneous nucleation, m 

lcdD  critical size in presence of dissolved gases, m 

lD′  most probable particle size, m 

lD  characteristic length of the velocity field l, particle size in case of  

fragmented field, m 
l
ilD  coefficient of molecular diffusion for species i into the field l, 2 /m s  
t
ilD  coefficient of turbulent diffusion, 2 /m s  
*
ilD  total diffusion coefficient, 2 /m s  

ilDC  right-hand side of the nonconservative conservation equation for the inert 

component, ( )3/kg sm  

D diffusivity, 2 /m s  
d total differential 
E total energy, J 
e specific internal energy, J/kg 

( )F ξ  function introduced first in Eq. (42), Chapter 2 

, (...F f    function of (... 

f force per unit flow volume, 3/N m  
f fraction of entrained melt or water in the detonation theory 

lwF  surfaces separating the velocity field l from the neighboring structure 

within Vol, 2m  

lFσ  surfaces separating the velocity field l from the neighboring velocity field 

 within Vol, 2m  
F surface defining the control volume Vol, 2m  

imf  frequency of the nuclei generated from one activated seed on the particle 

 belonging to the donor velocity field m, 1s−  

lwf  frequency of the bubble generation from one activated seed on the  

channel wall, 1s−  

,l coalf  coalescence frequency, 1s−  

g acceleration due to gravity, 2/m s  
H height, m 
h specific enthalpy, J/kg 

ih  eigenvectors corresponding to each eigenvalue 

I unit matrix, dimensionless 
i unit vector along the x-axis 
J matrix, Jacobian 
j unit vector along the y-axis 
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k unit vector along the k-axis 
k cell number  
k kinetic energy of turbulent pulsation, 2 2/m s  

T
ilk  coefficient of thermodiffusion, dimensionless 
p

ilk  coefficient of barodiffusion, dimensionless 

L length, m 

iM  kg-mole mass of the species i, kg/mole 

m total mass, kg 

ΔVn  unit vector pointing along mlΔV , dimensionless 

n unit vector pointing outwards from the control volume Vol, dimensionless 

len  unit surface vector pointing outwards from the control volume Vol 

lσn  unit interface vector pointing outwards from the velocity field l 

iln  number of the particle from species i per unit flow volume, 3m−  

ln  number of particles of field i per unit flow volume, particle number  

density of the velocity field l, 3m−  

coaln  number of particles disappearing due to coalescence per unit time and 

unit volume, 3m−  

,l kinn  particle production rate due to nucleation during evaporation or  

condensation, ( )31/ m s  

lwn′′  number of the activated seeds on unit area of the wall, m−2  

lhn  number of the nuclei generated by homogeneous nucleation in the donor 

 velocity field per unit time and unit volume of the flow, ( )31/ m s  

,l disn  number of the nuclei generated from dissolved gases in the donor velocity 

field per unit time and unit volume of the flow, ( )31/ m s  

,l spn  number of particles of the velocity field l arising due to hydrodynamic 

 disintegration per unit time and unit volume of the flow, ( )31/ m s  

P probability 
P irreversibly dissipated power from the viscous forces due to deformation 

of the local volume and time average velocities in the space, /W kg  

Per perimeter, m 

lip  l = 1: partial pressure inside the velocity field l 

 l = 2,3: pressure of the velocity field l 
p pressure, Pa 
q′′′  thermal power per unit flow volume introduced into the fluid, 3/W m  

lqσ′′′  l = 1,2,3. Thermal power per unit flow volume introduced from the  

interface into the velocity field l, 3/W m  
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w lq σ′′′  thermal power per unit flow volume introduced from the structure  

interface into the velocity field l, 3/W m  
R mean radius of the interface curvature, m 
r(x,y,z)  position vector, m 
R (with indexes) gas constant, J/(kgK) 
s arc length vector, m 
S total entropy, J/K 
s specific entropy, J/(kgK) 

tSc  turbulent Schmidt number, dimensionless 
tnSc  is the turbulent Schmidt number for particle diffusion, dimensionless 

T temperature, K 

lT  temperature of the velocity field l, K 

T shear stress tensor, 2/N m  
t unit tangent vector 
U dependent variables vector 
Vol control volume, 3m  

1/ 3Vol  size of the control volume, m 

lVol  volume available for the field l inside the control volume, 3m  
max

1

l

l
l

Vol
=

  volume available for the flow inside the control volume, 3m  

V instantaneous fluid velocity with components, u, v, w in , ,r θ  and z  
direction, m/s 

l
τV  instantaneous field velocity with components, , ,l l lu v wϑ τ τ  in  , ,r θ  and 

z direction, m/s 

lV  time-averaged velocity, m/s 

l′V  pulsation component of the instantaneous velocity field, m/s 

lmΔV  l m−V V , velocity difference, disperse phase l, continuous phase m  

carrying l, /m s  

i lV τδ  diffusion velocity, m/s 

l
τ
σV  interface velocity vector, m/s 

l
τγV  instantaneous vector with components, , ,l r l l zu v wϑ τ τ

θγ γ γ in , ,r θ  and z  

directions, m/s 
v specific volume, 3 /m kg  

x  mass fraction, dimensionless 
y  distance between the bottom of the pipe and the center of mass of the  

liquid, m 
×  vector product 
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Greek 
 

lα  part of vVolγ  available to the velocity field l, local instantaneous volume 

 fraction of  the velocity field l, dimensionless 

ilα  the same as lα  in the case of gas mixtures; in the case of mixtures  

consisting of liquid and macroscopic solid particles, the part of vVolγ  

available to the inert component i of the velocity field l, local instantane-
ous volume fraction of the inert component i of the velocity field l,  
dimensionless 

,maxlα  0.62≈ , limit for the closest possible packing of particles, dimensionless 

vγ  the part of dVol available for the flow, volumetric porosity, dimensionless 

γ  surface permeability, dimensionless 

γ  directional surface permeability with components , ,r zθγ γ γ ,  

dimensionless 
Δ  finite difference 
δ  small deviation with respect to a given value 

lδ  = 1 for continuous field; 

 = 0 for disperse field, dimensionless 
∂  partial differential 
ε  dissipation rate for kinetic energy from turbulent fluctuation, power  

irreversibly dissipated by the viscous forces due to turbulent fluctuations, 
/W kg  

η  dynamic viscosity, kg/(ms) 

θ  θ -coordinate in the cylindrical or spherical coordinate systems, rad 
κ  = 0 for Cartesian coordinates, 
 = 1 for cylindrical coordinates 
κ  isentropic exponent 

lκ  curvature of the surface of the velocity field l, m 

λ  thermal conductivity, W/(mK)  
λ  eigenvalue 

l
τμ  local volume-averaged mass transferred into the velocity field l per unit 

time and unit mixture flow volume, local volume-averaged instantaneous 

mass source density of the velocity field l, ( )3/kg m s  

lμ  time average of l
τμ , ( )3/kg m s  

wlμ  mass transport from exterior source into the velocity field l, ( )3/kg m s  

il
τμ  local volume-averaged inert mass from species i transferred into the velocity 

field l per unit time and unit mixture flow volume, local volume-averaged 
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instantaneous mass source density of the inert component i of the velocity 

field  l, ( )3/kg m s  

ilμ  time average of il
τμ , ( )3/kg m s  

iml
τμ  local volume-averaged instantaneous mass source density of the inert 

component i of the velocity field l due to mass transfer from field m, 

( )3/kg m s  

imlμ  time average of iml
τμ , ( )3/kg m s  

ilm
τμ  local volume-averaged instantaneous mass source density of the inert 

component i of the velocity field l due to mass transfer from field l  into 

velocity field m, ( )3/kg m s  

ilmμ  time average of ilm
τμ , ( )3/kg m s  

ν  cinematic viscosity, 2 /m s  

ν l
t  coefficient of turbulent cinematic viscosity, 2 /m s  
tn
lν  coefficient of turbulent particles diffusion, 2 /m s  

ξ  angle between lσn  and lmΔV , rad 

ρ  density, kg/m3 

ρ  instantaneous density, density; without indexes, mixture density, kg/m3 

lρ  instantaneous field density, kg/m3 

ilρ  instantaneous inert component density of the velocity field l, kg/m3 
l

lρ  intrinsic local volume-averaged phase density, kg/m3 

( )
23

wρ  entrainment mass flow rate, ( )2/kg m s  

( )
32

wρ  deposition mass flow rate, ( )2/kg m s  

( )lel l
τρ V local intrinsic surface mass flow rate, ( )2/kg m s  

σ , 12σ  surface tension between phases 1 and 2, N/m 

τ  time, s 
ϕ  angle giving the projection of the position of the surface point in the 

plane normal to lmΔV , rad  
m
l
σχ  the product of the effective heat transfer coefficient and the interfacial 

area density, ( )3/W m K . The subscript l denotes inside the velocity field 

l. The superscript mσ  denotes location at the interface σ  dividing field 
m from field l. The superscript is only used if the interfacial heat transfer 
is associated with mass transfer. If there is heat transfer only, the  
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linearized interaction coefficient is assigned the subscript ml only,  
indicating the interface at which the heat transfer takes place. 

 
 

Subscripts 
 
c continuous 
d disperse 
lm from l to m or l acting on m 
w region "outside of the flow" 
e entrances and exits for control volume Vol 
l velocity field l, intrinsic field average 
i inert components inside the field l, noncondensable gases in the gas field 

l = 1, or  microscopic particles in water in field 2 or 3 
i corresponding to the eigenvalue iλ  in Chapter 4 

M noninert component 
m mixture of entrained coolant and entrained melt debris that is in thermal 

and mechanical equilibrium behind the shock front 
ml from m into l 
iml from im into il 
max maximum number of points 
n inert component 
0 at the beginning of the time step 
E entrainment 
coal coalescence 
sp splitting, fragmentation 
σ  interface 
τ  old time level 
τ τ+ Δ  new time level 
* initial 
0 reference conditions 
p,v,s at constant p,v,s, respectively 
L left 
R right 
 
1 vapor or in front of the shock wave 
2 water or behind the shock wave 
3 melt 
4 entrained coolant behind the front – entrained coolant 
5 microparticles after the thermal interaction – entrained melt  
 
Superscripts 
 
´  time fluctuation 

' saturated steam 
" saturated liquid 
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"' saturated solid phase 
A air 
d drag 
e heterogeneous 
i component (either gas or solid particles) of the velocity field 

maxi  maximum for the number of the components inside the velocity field 

L lift 
l intrinsic field average 
le intrinsic surface average 
lσ  averaged over the surface of the sphere 
m component 
n normal 
n old iteration 
n+1 new iteration  
t turbulent, tangential 
vm virtual mass 
τ  temporal, instantaneous 

 averaging sign 

 
Operators 
 
∇⋅  divergence 
∇  gradient 

n∇  normal component of the gradient 

t∇  tangential component of the gradient 

l∇  surface gradient operator, 1/m 
2∇  Laplacian 

 local volume average 
l
 local intrinsic volume average 

le
 local intrinsic surface average 

 
Nomenclature required for coordinate transformations 
 

( ), ,x y z   coordinates of a Cartesian, left oriented coordinate system (Euclidean 

space). Another notation which is simultaneously used is ix  ( )1,2,3i = : 

1 2 3, ,x x x  

( ), ,ξ η ζ   coordinates of the curvilinear coordinate system called transformed  

coordinate system. Another notation which is simultaneously used is iξ  

( )1,2,3i = : 1 2 3, ,ξ ξ ξ  
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csV  the velocity of the curvilinear coordinate system 

g   Jacobian determinant or Jacobian of the coordinate transformation  

( ), ,x f ξ η ζ= , ( ), ,y g ξ η ζ= , ( ), ,z h ξ η ζ=  

ija  elements of the Jacobian determinant 
ija  elements of the determinant transferring the partial derivatives with 

respect to the transformed coordinates into partial derivatives with re-
spect to the physical coordinates. The second superscript indicates the 
Cartesian components of the contravariant vectors 

 

( )1 2 3, ,a a a  covariant base vectors of the curvilinear coordinate system tangent  

 vectors  to the three curvilinear coordinate lines represented by  

( ), ,ξ η ζ  

( )1 2 3, ,a a a  contravariant base vectors, normal to a coordinate surface on which  

 the coordinates ξ , η  and ζ  are constant, respectively 

ijg  covariant metric tensor (symmetric) 
ijg  contravariant metric tensor (symmetric) 

( )1 2 3, ,e e e  unit vectors normal to a coordinate surface on which the coordinates  

 ξ , η  and ζ  are constant, respectively 
iV  i= ⋅a V , contravariant components of the vector V 

iV  i= ⋅a V , covariant components of the vector V 

( ), ,ξ η ζγ γ γ  permeabilities of coordinate surfaces on which the coordinates ξ , η   

and ζ  are constant, respectively 

 
Greek 
 
Α , α  Alpha 
Β , β  Beta 

Γ , γ  Gamma 

Δ , δ  Delta 
Ε , ε  Epsilon 
Ζ , ζ  Zeta 

Η , η  Eta 

Θ , ϑ  Theta 
 

Ι , ι  Iota 
Κ , κ  Kappa 
Λ , λ  Lambda 
Μ , μ  Mu 

Ν , ν  Nu 
Ξ ,ξ  Xi 

Ο , ο  Omikron 
Π , π  Pi 
Ρ , ρ  Rho 

 

Σ , σ  Sigma 
Τ , τ  Tau 
Φ , ϕ  Phi 

Χ , χ  Chi 

ϒ , υ  Ypsilon 
Ψ , ψ  Psi 

Ω , ω  Omega 
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1 Mass conservation 

“...all changes in the nature happen so that  
the mass lost by one body is added to other...”. 
 
1748, M. Lomonosov’s  letter to L. Euler  

1.1 Introduction 

The creation of computer codes for modeling multiphase flows in industrial 
facilities is very complicated, time-consuming, and expensive. This is why the 
fundamentals on which such codes are based are subject to continuous review in 
order to incorporate the state of the art of knowledge into the current version of 
the code in question. An important element of the codes is the system of partial 
differential equations governing the flow. The understanding of each particular 
term in these equations is very important for the application. 

From the large number of formulations of the conservation equations for mul-
tiphase flows, see Slattery (1990), Hetstrony (1982), Delhaye et al. (1981), Ishii 
(1975) and the references given therein, the local volume averaging as founded 
by Anderson and Jackson (1967), Slattery (1967), and Whitaker (1967) is se-
lected because it is rigorous and mathematically elegant. The heterogeneous 
porous media formulation introduced by Gentry et al. (1966), commented on by 
Hirt (1993), and used by Sha et al. (1984), is then implanted into the formalism 
as a geometrical skeleton because of its practical usefulness. For technical 
structures, the introduction of the local volume porosity and directional per-
meability is a convenient formalism to describe the real distances between the 
flow volumes. Simplifications of geometry that lead to distortion of the mod-
eled acoustic process characteristics of the systems are not necessary. Beyond 
these concepts, I include inert components in each velocity field, and introduce 
the concept of dynamic particle fragmentation and coalescence. Then I perform 
subsequent time averaging. The link between kinetic generation of particles and 
the mass source terms is specified. The link between mass source terms and the 
change in bubble/droplet size due to evaporation or condensation is presented for 
local volume-averaged and time-averaged source terms. The concept of mono-
dispersity is discussed, and a method is proposed for computation of the disap-
pearance of particles due to evaporation and condensation. 

Having started this work in 1983 to create the foundations of the IVA computer 
code, I believed then and now after 23 years, I am convinced that this concept is 
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unique and that it is the most effective concept for deriving multiphase equations 
that are applicable to flows in complicated technical facilities.  

Here I will present the derivation of the mass conservation equation for a single 
component inside the field, for the mixture constituting the field. Then I will 
present the derivation of the particle number density equations. This chapter is an 
improved version of the work published in Kolev (1994b). 

1.2 Basic definitions 

Consider the idealized flow patterns of the three-phase flows shown in Fig. 1.1. 
What do all these flow patterns have in common? How can they be described by a 
single mathematical formalism that allows transition from any flow pattern to any 
other flow pattern? How can the complicated interactions between the participat-
ing components be described as simply as possible? In the discussion that follows 
a number of basic definitions are introduced or reiterated so as to permit success-
ful treatment of such flows using a unified algorithm. 

Zemansky (1968), p. 566, defines “a phase as a system or a portion of the sys-
tem composed of any number of chemical constituents satisfying the requirements 
(a) that it is homogeneous and (b) that it has a definite boundary”. In this sense, 
consideration of a multiphase flow system assumes the consistency described be-
low: 

 

1) A homogeneous gas phase having a definite boundary. The gas phase can be 
continuous (nonstructured) or dispersed (structured). The gas phase in the 
gas/droplet flow is an example of a nonstructured gas phase. The bubbles in the 
bubble/liquid flow are an example of a structured gas phase. Besides the steam, 
the gas phase contains 1max 1i −  groups of species of inert components. Inert means 
that these components do not experience changes in the aggregate state during the 
process of consideration. The gas components occupy the entire gas volume in ac-
cordance with Dalton’s law, and therefore possess the definite boundary of the gas 
phase themselves. The gas phase velocity field will be denoted as no.1 and 1l =  
assigned to this. Velocity field no.1 has the temperature 1T . 

2) A mixture of liquid water and a number of species 2max 1i −  of microscopic 

solid particles. The particles are homogeneous and have a definite boundary sur-
rounded by liquid only. The water has its own definite outer boundary. An exam-
ple of such a mixture is a liquid film carrying 2max 1i −  groups of radioactive solid 

species. This means that the mixture of water with 2max 1i −  groups of species is a 

mixture of 2maxi  phases. The mixture velocity field defined here will be denoted as 

no. 2. Velocity field no. 2 can likewise be nonstructured or structured. Velocity 
field no. 2 has the temperature 2T . 
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Fig. 1.1 Multiphase flow patterns 

3) A mixture of the type of velocity field no. 2 of liquid with 3max 1i −  groups of 

species of microscopic solid particles. The mixture can be nonstructured or struc-
tured; this is denoted as velocity field no. 3. Velocity field no. 3 has the tempera-
ture 3T . In the event that only one inert component occupies velocity field no. 3, 

this component will be allowed to be either a liquid, or a homogeneous liquid–
solid mixture being in thermodynamic equilibrium, or solid particles only. This al-
lows versatile application of the concept. 
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The entire flow under consideration consists of 2max 3max 1i i+ +  phases and is 

conditionally divided into three velocity fields. In order to avoid the need to write 
indices to the indices, il  will be written in place of li . 

An example demonstrating the necessity for the use of three velocity fields is 
the modeling of a mixture consisting of gas, water, and a liquid metal, whose den-
sities have the approximate ratios 3 41 :  10  :  10 . In a transient, these three fields 
will have velocities and temperatures that differ considerably. 

Turning our attention again to the flow patterns depicted in Fig. 1.1 and keep-
ing in mind that in reality these change their characteristic sizes chaotically, it is 
obvious that it is not possible to determine the details of the thermodynamic and 
flow parameters for each component of each velocity field. Consequently, some 
type of averaging must be implemented. Following Anderson and Jackson (1967), 
Slattery (1967), and Whitaker (1967), a control volume is allocated to every point 
in space, and the thermodynamic and flow properties averaged for each velocity 
field are assigned to the center of the control volume. Since there is a control vo-
lume associated with every point in space, a field of average values can be gener-
ated for all thermodynamic and flow properties. The field of average properties is, 
therefore, smooth, and space derivatives of these averaged properties exist.  

Consider the control volume Vol occupied by a nonmovable structure in addi-
tion to the three velocity fields, see Figs. 1.2 and 1.3. While the individual l-field 
volumes lVol  may be functions of time and space, the control volume Vol is not.  

Velocity field l is taken to have the characteristic length lD  (e.g., bubble size, 

droplet size), which is much larger than the molecular free path (Fig. 1.3). The 
size of the computational region of interest here is much larger than the size of 
the local structure lD  and larger than the spatial changes in the flow parameters 

of interest. The choice of the size of the control volume, which is of the order 
of 

 
Vol
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Fig. 1.2 Control volume for definition of the mass conservation equation, partially occupied 
by structure and two different velocity fields 
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Fig. 1.3 Comparison of possible scales of local volume averaging, scale of the measuring 
devices, scale of the computational region (s.c.r.) and the global flow dimensions 

1/ 3Vol  has a major impact on the meaning of the averaged values. From the 
various approaches possible, two are meaningful:  

 

(i) The size of the control volume is larger than the characteristic configuration 
length lD  of the field l, i.e., 

 

molecular free path 1/ 3
lD Vol<< << <<   size of the computational region   (1.1) 

 
This approach is useful for fine dispersed flows. 

 

(ii) The size of the control volume is comparable to the characteristic configu-
ration length lD  of the field l , i.e., 

 

molecular free path 1/ 3
lD Vol<< ≈ <<   size of the computational region    (1.2) 

 
This approach is meaningful for direct simulation or for simulation of flow pat-
terns with stratification, for example. 

The geometry of the nonmovable structures inside Vol is characterized by the 
volumetric porosity vγ , which is defined as the ratio of the volume occupied by 

the flow mixture inside the control volume, 
3

1
l

l

Vol
=
 , and the control volume Vol : 

3

1
l

l
v

Vol

Vol
γ ==


.       (1.3) 

Consequently, the part of Vol occupied by structures is 1 vγ− . Inside the volume 

available for the flow, 
3

1
l

l

Vol
=
 , it is assumed that three velocity fields coexist. The 

instantaneous geometry of the velocity field is defined in a similar way to the 
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nonmovable structure. The local instantaneous volume fraction of the velocity 
field l, lα , is defined as the part of vVolγ  occupied by the velocity field l: 

3

1

l l
l

v
l

l

Vol Vol

Vol
Vol

α
γ

=

= =


.       (1.4) 

In general, this varies with time and location. By definition, we have 

3

1

1l
l

α
=

= .        (1.4a) 

On the basis of the definitions introduced above, the part of the control volume 
Vol occupied by the velocity field l is 

l l vVol Volα γ= .      (1.5) 

The discussion here is restricted to the right-handed Cartesian and cylindrical 
coordinates designated by r , θ , and z. The instantaneous field veloci-
ty ( , , , )l r zτ θ τV  is defined through the entire region occupied by the velocity field 

l. The components of the velocity vectors along the axes are 

( ), ,l l l lu v wτ τ τ τ=V .      (1.6) 

The control volume Vol is bounded by a surface F. The velocity field within the 
volume lVol  is bounded by a surface lF . The orientation of the smooth l-surfaces 

in space with respect to the field l is given with the unit vector ln  attached to the 

l-surface and pointing outwards of the field l. The interface belongs to both neigh-
boring phases. The surfaces F , lF  are defined as scalars. The surface lF  has the 

following three constituents: 
 

(1) leF , the control volume enters and exits crossing the field l, being also part of 

the control volume surface F . 
(2) lFσ , the interface between the field l and the surrounding field or fields m. 

(3) lwF , the interface between the solid structure, wall, and the field. 
 

Consider the small part of the surface F, FΔ . The part of this surface occupied 

by the flow is 
3

1
l

l

F
=

Δ . The ratio 

3

1

1
le

l

F
F

γ
=

= Δ
Δ        (1.7) 

is also known as surface permeability. We consider the surface permeability as the 
ratio of scalars. Here 

le le ledF F F< Δ < ,      (1.8) 
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and  

dF F F< Δ < .      (1.9) 

Note the difference between surface permeability and the “permeability coeffi-
cients” in standard use for the description of the pressure drop in porous media. 
Also note that the values of vγ  at the center and at the surface of the control vo-

lume may be different, because they belong to different averaging volumes. This 
definition of vγ  is sufficient to describe the isotropic porosity that is found in 

homogeneous porous bodies. For most of the technical structures forming chan-
nels for multiphase flow it is extremely convenient to introduce the surface per-
meability γ  in addition to the volumetric porosity vγ  in order to describe ob-

stacles to the flow inside the space of interest, i.e., nonisotropic porosity 
(heterogeneous porous body). As far I know, Gentry et al. (1966) introduced this 
concept for the first time in 1966, using the terms volume and surface flow frac-
tions for volumetric porosity and surface permeability. Valuable comments for 
the practical use of the concept are given by Hirt (1993). Note that inclined 
surfaces in orthogonal structured grids can also be modeled by this method by 
specifying correctly the part of the boundary cells that is occupied by flow and 
the part of the surfaces that is open for the flow. γ -values are likewise permitted 

to be prescribed functions of time in addition to functions of space. Additionally, 
the vector 

, , ,   l x l y l zγ γ γ γ= + +n n n


 x y zγ γ γ= + +  
   (1.10) 

is referred to as the directional surface permeability. 
 
The counterpart of the surface permeability γ  for each velocity field is then in-

troduced as field surface fraction e
lα  (sometimes called the heterogeneous volume 

fraction), which is the part of the surface FγΔ occupied or passed by the field l: 

( )/e
l leF Fα γ= Δ Δ .      (1.11) 

This means that  

3

1

1e
l

l

α
=

= .        (1.11a) 

The impact of the choice of the size for the control volume can now be clearly un-
derstood by examining the relationship between the heterogeneous volume frac-
tion and the local volume fraction. A large size for the control volume compared 
to the characteristic configuration length, assumption (i), leads to 

e
l lα α= .       (1.12) 

 



8      1 Mass conservation 

This assumption is reasonable for dispersed flows. If the size of the control vo-
lume is comparable with the characteristic configuration length of the field l, as-
sumption (ii), the following results: 

e
l lα α≠ .       (1.13) 

In both cases local volume averaging is mathematically permissible. 
Consider any scalar property of field l designated with lϕ . Inside the space oc-

cupied by the field l this property is considered to be smooth. In general, the aver-
ages of the property lϕ  given below are required for the derivation of local volume 
average equations. 

 

(1) The local volume average is defined by 

1
:   

l

l l

Vol

dVol
Vol

ϕ ϕ=  .     (1.14) 

Note that when the property lϕ  is constant, the local volume average given by Eq. 
(1.14) does not equal this constant. 

 

(2) The intrinsic field average is defined by 

1
 :   

l

l

l l
l Vol

dVol
Vol

ϕ ϕ=  .     (1.15) 

These two average properties are obviously related by 

l

l l v lϕ α γ ϕ= .      (1.16) 

The averages defined by Eqs. (1.14) and (1.15) are applicable not only for scalars 
but also for vectors and tensors.  

The macroscopic density 
l

lρ  is the intrinsic field average over the space 

occupied by velocity field l. Outside the velocity field l the density 
l

lρ  is not 

defined. The macroscopic density, simply referred to as density in the following, 
obeys the law expressed by the macroscopic equation of state. The equation of 
state describes the interdependence between density, the intrinsic field-averaged 

pressure, and the intrinsic field-averaged temperature, ( ),
l l l

l l lf p Tρ =  

frequently denoted in short as ( ),l l l lp Tρ ρ=  in the sense of intrinsic volume 

average. 
 

3) The intrinsic surface average is defined by 

1
 :   

le

le

l l l
le F

dF
F

ϕ ϕ
Δ

=
Δ  n .     (1.17) 
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The result of the surface averaging of a scalar is a vector. Therefore
le

lϕ  is a vec-

tor. The product of the scalar property lϕ   and l
τV , l l

τϕ V  is referred to as the flux 

of lϕ  along the flow direction. This is a vector. The scalar product of the three-

dimensional vector field l l
τϕ V  across the oriented surface dF in the direction ln , 

l l ldFτϕ ⋅V n , is the flow of property lϕ  normal through the surface dF. The vector 

form of Eq. (1.17) is 

1
 :    

le

le

l l l l l
le F

dF
F

τ τϕ ϕ
Δ

= ⋅
Δ V V n     (1.18) 

Note that the intrinsic surface average of a scalar is a vector and the intrinsic sur-

face average of a vector is a scalar. The notation , 
l
, and 

le
 should be 

considered as operators defined by Eqs. (1.14), (1.15), and (1.17). Here, I adapted 
the notation used by Whitaker (1985).  

For practical applications the following definition of the weighted average ve-
locity is used: 

,
/

le le l

l l l l

ρτ τρ ρ=V V .     (1.19) 

1.3 Nonstructured and structured fields 

As has already been mentioned, within the averaging volume the fields are es-
sentially allowed to be (a) nonstructured or (b) structured. For the nonstructured 
fields the spatial variation of the properties within the continuous volume is 
smooth, and, therefore, space differentiating of the properties is allowed inside the 
space occupied by the field. Consequently the Gauss–Ostrogradskii theorem for 
transformation of surface integrals into volume integrals is applicable. This is not 
the case for a structured fluid, where the properties within the continuous fragment 
are smooth, but the field volume inside the control volume consists of several 
fragments. In this case, a simple extension of the Gauss–Ostrogradskii theorem 
for transfer of surface integral into volume integral over the fragmented volume 
occupied by the field is not possible unless one extends the definition of the prop-
erties in the sense of distributions, see the discussion by Gray and Lee in (1977), 
or uses some type of special treatment as described in the next section. 
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1.4 The Slattery and Whitaker local spatial 
averaging theorem 

In the following text the operator ∇  is used for the gradient of a scalar that is a 

vector, and ∇ ⋅  for the divergence of a vector that is a scalar. The following 

mathematical tools are used to derive local volume-averaged field conservation 
equations for the property lϕ . 

 

(a) The spatial averaging theorem, Eq. (22) in Whitaker (1985), 

( ) 1
   

le

l

l l v l l l

F

dF
Vol

ϕ α γ ϕ ϕ∇ = ∇ =  n .   (1.20) 

Here lϕ∇  is a vector. The vector form of the spatial averaging theorem is given 

by Eq. (23) in Whitaker (1985) as 

( ) 1
  

le

l

l l l v l l l l l

F

dF
Vol

τ τ τϕ α γ ϕ ϕ∇ ⋅ = ∇ ⋅ = ⋅V V V n ,  (1.21) 

Here l l
τϕ∇ ⋅ V  is a scalar. For the validation of Eqs. (1.20) and (1.21) see Ander-

son and Jackson (1967), Slattery (1967), and Whitaker (1967, 1985). 
Useful consequences of Eq. (1.20) are obtained for 1lϕ = : 

( )1 1
   

le

e e
l v l l l l

F F

dF dF
Vol Vol

α γ α γ α γ′∇ = = = ∇ n n .  (1.22) 

Taking into account Eqs. (1.4a) and (1.11a), the sum of the above equation for all 
three fields yields 

1
   v l

F

dF
Vol

γ γ γ′∇ = = ∇ n .     (1.23) 

It follows from Eq. (1.21) that 

1 1
    

le

ele
l l l l l l l l l

F F

dF dF
Vol Vol

τ τ τϕ ϕ α γ ϕ ′∇ ⋅ = ⋅ = ⋅ V V n V n . (1.24) 

By introducing local surface averaging, Eq. (1.18), the last surface integral can be 
transformed into the divergence for a smooth vector field  

( )ele
l l l l l

τ τϕ α γ ϕ∇ ⋅ = ∇ ⋅V V .     (1.25) 
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This equation is similar to Eq. (2.26) obtained by Sha et al. (1984), where, howev-
er, the surface averaging was performed over the entire surface F of the control 
volume rather than over local FΔ , which is a part of F.  
 

Note: Comparing Eq. (1.25) with Eq. (1.21) we realize something very interesting 

( ) ( )l ele
l l l v l l l l l

τ τ τϕ α γ ϕ α γ ϕ∇ ⋅ = ∇ ⋅ = ∇ ⋅V V V .   (1.25a) 

This means that one can work either with local volume-averaged fluxes 
l

l l
τϕ V  or with local surface-averaged fluxes 

el

l l
τϕ V . In the first case, 

one has to use in the divergence expression the local volume fractions lα  

and vγ , and in the second case the local surface fractions e
lα  and γ . 

 

There are many literature sources where this difference is not clearly made. 
 

(b) The Gauss–Ostrogradskii theorem is applied to the volume lVol . The result-
ing expression is divided by Vol. The result is 

1 1 1
         

l le l lw

l l l l l

Vol F F F

dVol dF dF
Vol Vol Vol

σ

ϕ ϕ ϕ
+

∇ = ⋅ + ⋅  n n . (1.26) 

Replacing the first integral of the RHS of Eq. (1.26) with Eq. (1.20) one obtains 

1
  

l lw

l l l l

F F

dF
Vol

σ

ϕ ϕ ϕ
+

∇ = ∇ + ⋅ n .    (1.27) 

This equation expresses the volume average of derivatives in the form of deriva-
tives of volume average and a surface integral. While the derivatives of the non-
average property lϕ  may be a nonsmooth function of location, the local volume-

averaged property lϕ  is a smooth function of location and can be differentiated. 

This is an extremely interesting consequence of the Slattery–Whitaker spatial av-
eraging theorem, which allows one to write local volume average differential con-
servation equations for nonstructured as well for structured fluids. For one-
dimensional flow Eq. (1.27) reduces to Eq. (3) by Delhaye, p. 160, published in 
1981. 

The analogous form for a vector is 

( ) 1
   

l lw

l l l l l l l

F F

dF
Vol

σ

τ τ τϕ ϕ ϕ
+

∇ ⋅ = ∇ ⋅ + ⋅V V V n .  (1.28) 

A different route to this result was given by Gray and Lee (1977). These authors 
extended the definition of the field properties in the sense of distributions. 

Useful consequences of Eq. (1.27) are obtained by setting 1lϕ =  
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( ) ( )1
    

l lw

e
l v l l

F F

dF
Vol

σ

α γ α γ
+

∇ = − = ∇ n    (1.29) 

compare this with Eq. (1.22). Summing over all the fields and keeping in mind 

(Eq. (1.4a)) that 
3

1

1l
l

α
=

=  and w l= −n n , the following is obtained: 

3 3

1 1

1 1 1
      

l lw w

v l l w
l lF F F

dF dF dF
Vol Vol Vol

σ

γ
= =

∇ = − − =   n n n . (1.30) 

While the first integral is a sum of repeating terms with alternating signs and, 
therefore, is equal to zero, the second integral will be zero only in the case of im-
mersed structure inclusions. Otherwise the second integral is not equal to zero. 

1.5 General transport equation (Leibnitz rule) 

The general transport equation applied to the field volume lVol  is used in the form 

   
l l l lw le

l
l l l l

Vol Vol F F F

d
dVol dVol dF

d
σ

τ
σ

∂ϕϕ ϕ
τ ∂τ + +

= + ⋅   V n   (1.31) 

using Eq. (1.14), divided by the constant Vol  and rearranged, 

1
 

l lw le

l
l l l l

F F F

d
dF

d Vol
σ

τ
σ

∂ϕ ϕ ϕ
∂τ τ + +

= − ⋅ V n .   (1.32) 

l
τ
σV  is the instantaneous interface velocity. Replacing the total differential  

l l l l

d

d
τϕ ϕ ϕ

τ τ
∂= +∇ ⋅
∂

V , 

and using Eq. (1.21) we can see that the components at the control volume surfac-
es cancel and, therefore, 

1
 

l lw

l
l l l l

F F

dF
Vol

σ

τ
σ

∂ϕ ϕ ϕ
∂τ τ +

∂= − ⋅
∂  V n .   (1.32a) 

Since
l

l l v lϕ α γ ϕ=  (Eq. (1.16)), we finally obtain 

( ) 1
 

l lw

ll
l v l l l l

F F

dF
Vol

σ

τ
σ

∂ϕ α γ ϕ ϕ
∂τ τ +

∂= − ⋅
∂  V n .  (1.32b) 
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A useful consequence is obtained by setting 1lϕ = : 

( ) 1
 

l lw

l v l l

F F

dF
Vol

σ

τ
σ

∂ α γ
∂τ +

= ⋅ V n .    (1.33) 

1.6 Local volume-averaged mass conservation equation 

The principle of the conservation of mass for the control volume Vol can be ex-
pressed verbally as follows:  
 

The change in the mass of the velocity field l within Vol with time equals 
the net mass flow of the field l through the surface F and through the inter-
face of the velocity field lFσ . 

 

The conservation equation for the property lϕ  valid inside lVol  is the classical 
one: 

( ) 0l
l l

τ∂ϕ ϕ
∂τ

+∇ ⋅ =V .      (1.34) 

Performing volume averaging, 

( ) 0l
l l

τ∂ϕ ϕ
∂τ

+ ∇ ⋅ =V ,     (1.35) 

and using Eqs. (1.32a) and (1.28), the local average of the derivatives is replaced 
by derivatives of the local average and additional terms. The result is 

1
( )

l lw

l l l l l l l

F F

dF
Vol

σ

τ τ τ
σ

∂ ϕ ϕ ϕ
∂τ +

+ ∇ ⋅ = − − ⋅V V V n ,   (1.36) 

or, replacing the volume average with its equivalents, 

( ) ( ) 1
( )

l lw

lel

l v l l l l l l l l

F F

dF
Vol

σ

τ τ τ
σ

∂ α γ ϕ α γ ϕ ϕ
∂τ +

+ ∇ ⋅ = − − ⋅V V V n , (1.37) 

which is valid for nonstructured as well for structured velocity fields. Finally, the 
mass conservation equation is easily obtained by setting l lϕ ρ=  and using the de-
finition of the weighted average velocity (Eq. (1.19)). The result is 

( ) ( )lel l

l l v l l l v l
τ τ∂ α ρ γ α ρ γ γ μ

∂τ
+ ∇ ⋅ =V ,   (1.38) 
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which is Eq. (3.9) or (5.7) in Sha et al. (1984) with vγ  incorporated into the time 

derivatives. Leaving vγ  under the time derivatives allows modeling of structure 

with varying vγ  over time, e.g., deformable structures that depend on local pres-
sure differences or structures deformed by actions independent of the flow para-
meter but governing the flow. Here 

1
( )

l lw

l l l l l
v F F

dF
Vol

σ

τ τ τ
σμ ρ

γ +

= − − ⋅ V V n  

3 3

1 1

1 1
( ) ( )

l lw

l lw
l l l l l l lw lw

l lwF F
l l

l l

F F
dF dF

F F
Vol Volσ

τ τ τ τσ
σ σ

σ

ρ ρ

= =

= − − ⋅ − − ⋅ 
 

V V n V V n   

   (1.39) 

is the local volume-averaged mass transferred into the velocity field l per unit time 

and unit mixture flow volume 
3

1
l

l

Vol
=
 . This term is referred to as the local vo-

lume-averaged instantaneous mass source density in 3/( )kg m s  for the velocity 

field l. Note the difference between the mass source per unit volume of flow, l
τμ , 

and the mass source per unit of the control volume Vol, v l
τγ μ . The ratio of the in-

terface surface to the mixture volume 
3

1
l l

l

F Volσ
=
  is referred to in the literature as 

interfacial area density. It is customary in two-phase flow theory to incorporate 
local volume interface density of the velocity field l in the form of the interface 

per unit flow volume 
3

1
l

l

Vol
=
  belonging to the control volume Vol: 

3

1

/l l l
l

a F Volσ σ
=

=  .      (1.40) 

This is an important dependent variable. In general, it varies with time and loca-
tion. The means for describing this variable are discussed in detail in Sections 1.10 
and 1.11. In addition, the local volume interface density of the structure w is de-
fined as follows: 

3

1

/ 4 /lw lw l hy
l

a F Vol D
=

= = ,     (1.41) 

where hyD  is the hydraulic diameter (4 times cross-sectional area divided by pe-

rimeter).  
For numerical integration it should not be forgotten that the volume fraction at the 

surfaces of the discretization volume may differ from the local volume fraction of 
the cells, as has already been mentioned, simply because these are associated with 
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different points in space. Setting these volume fractions to be equal, as is usually 
done in the widely used donor-cell method, introduces nonphysical diffusion. This 
kind of diffusion is in no way associated with numerical diffusion. It influences the 
modeling of the disperse flow pattern less than free surface modeling does. The per-
formance of the numerical model can be improved even for the case of free surfaces 
in the control volume by extension of the numerical technique developed by Hirt 
and Nichols (1981) to cover multiphase flows. 

If the interface is immaterial and consequently does not accumulate mass, we 
have 

( ) ( ) 0l l l l m m m m
τ τ τ τ

σ σρ ρ− ⋅ + − ⋅ =V V n V V n .   (1.42) 

This is the instantaneous mass balance of the interface. Note that l m= −n n , 
and that the contact discontinuity velocity is common for both sides of the in-
terface, 

l m lm
τ τ τ
σ σ= =V V V .       (1.43) 

Interfaces at which we have 

l l ml m
τ τ⋅ = ⋅V n V n       (1.44) 

are called impermeable. Such a surface may be a solid–fluid or fluid–fluid inter-
face (Whitaker 1977, p. 307). Surfaces at which 

l ml
τ τ= =V V 0        (1.45) 

are called impermeable fixed surfaces, (Whitaker 1977, p. 307). It is convenient to 
write the mass flow rates perpendicular to the interface in the following form: 

( ) ( )l l lm llm
w τ τρ ρ= − ⋅V V n      (1.46) 

( ) ( )m m lm mml
w τ τρ ρ= − ⋅V V n .     (1.47) 

Then Eq. (1.42) reads as 

( ) ( )lm ml
w wρ ρ= − .      (1.48) 

Consequently the relations between the velocity components normal to the inter-
face and the density are 

( )1 1
( )l m l lm

l m

wτ τ ρ
ρ ρ

 
− ⋅ = − 

 
V V n ,    (1.49) 

for the case of mass transfer across the interface and 

, ,
,

n n
n l l m m

lm
l m

V V
V

τ τ
τ ρ ρ

ρ ρ
−=
−

,      (1.50) 
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( ), , , ,n n n nm
l lm m l

l m

V V V Vτ τ τ τρ
ρ ρ

− = −
−

,    (1.51) 

( ), , , ,n n n nl
m lm m l

l m

V V V Vτ τ τ τρ
ρ ρ

− = −
−

,    (1.52) 

for “shock wave discontinuity“ without mass transfer. The volume average mass 
balance of the surface lFσ  common to the fields m and l is 

1
( ) ( ) 0l l lm m m lm m

lm

dF
Vol F

τ τ τ τρ ρ − − − ⋅ =  V V V V n .  (1.53) 

1.7 Time average 

Splitting time dependent variables, e.g., τΦ  and τΨ , into their mean Φ , Ψ  and 
fluctuation parts ′Φ , ′Ψ , 

τ ′Φ = Φ +Φ ,   τ ′Ψ = Ψ + Ψ ,     (1.54) 

and time averaging them in the following way: 

1
2

d
τ

τ

τ

τ
τ

Δ

−Δ

Φ = Φ
Δ  ,      (1.55) 

is known in the literature as Reynolds averaging (Reynolds. 1894). Here τΔ  is a 
time scale, large relative to the time scale of turbulent fluctuations, and small rela-
tive to the time scale that we wish to resolve. This averaging process has the fol-
lowing properties: 

τΦ = Φ ,   τΨ = Ψ ,      (1.56) 

a b a bτ τΦ + Ψ = Φ + Ψ ,     (1.57) 

τ τ ′ ′Φ Ψ = ΦΨ +Φ Ψ ,      (1.58) 

τ

τ τ
∂Φ ∂Φ=
∂ ∂

,   τ∇Φ = ∇Φ .     (1.59) 

The instantaneous surface-averaged velocity of the field l, 
le

l
τV , can be ex-

pressed as the sum of the surface-averaged velocity, which is subsequently time 
averaged,  

:
le

l lV τ= V        (1.60) 
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and a pulsation component lV ′ , 

le

l l lV Vτ ′= +V       (1.61) 

as proposed by Reynolds. Substituting for the appropriate terms in the mass con-
servation equation, performing time averaging, and dropping any averaging signs 
for the sake of simple notation leads to 

 

( ) ( )l l v l l l v l

∂ α ρ γ α ρ γ γ μ
∂τ

+∇ ⋅ =V .    (1.62) 

 
For convenience of numerical integration, the source term lμ  is split up into a 

sum of pairs of nonnegative terms: 

( )
max ,

1

l w

l ml lm
m

μ μ μ
=

= − .      (1.63) 

Thus, source terms with two subscripts are nonnegative. Two successive sub-
scripts denote the direction of the mass transfer. For instance, ml denotes the trans-
ferred mass per unit time and unit volume of the flow from velocity field m into l. 
As a consequence of this definition, source terms with two identical subscripts are 
equal to zero 0mmμ = . w is used to denote the region outside of the flow. wlμ  de-
notes mass transport from an exterior source into the velocity field l. 

If an interface is immaterial and consequently does not accumulate mass, the 
following equation holds at this interface: 

3

1

0l
l

μ
=

= .       (1.64) 

For 1vγ γ= = , Eq. (1.62) has been successfully used in thousands of publica-
tions in two-phase flow literature, tacitly in the majority of cases in the sense of 
a local volume average and successively time-averaged equation. There is no 
doubt as to its validity for velocities far below the velocity of light. If used in-
correctly, however, this can give rise to nonsolvable numerical problems. An 
example for usage that can lead to such problems is the use of the left-hand 
side in the sense of local volume and time average and the right-hand side in 
the sense of instantaneous sources. For processes with intense mass transfer 
(condensation shocks, flushing, etc.) this is incorrect. The right-hand side must 
be the local volume average, with this successively time averaged over the 
current time step. 

After some rearrangements, Eq. (1.62) can be written in the following form: 

ln
lnl l l v l l

l l v l
v l v

∂α γ μ ∂ γ ρ γα α γ ρ
∂τ γ ρ ∂τ γ

   
+∇ ⋅ = − + ⋅∇   

   

V V
. 
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We can see that the effective convection velocity of the volumetric fraction inside 
a complex structure is not the velocity itself but the expression l vγ γV . 

To describe multiphase flows by using gross spatial discretization the effective 
flux of the dispersed component caused by turbulent fluctuations has to be taken 
into account. If no turbulence pulsation forces are taken into account in the mo-

mentum equation, the term l l lρ α′ ′V  has to be modeled. Idealizing the transversal 

bubble movement as a diffusion process 

( ) 1 ,12 1
1

tDαρα ρ α′ ′ = − ∇V , 

from pipe experimental data within gas mass flow fractions of 10 0.04X< <  Seri-

zawa et al. (1975) deduced a diffusion coefficient of the following order of magni-
tude: 

( ) 4
,12 1 2.5 10 ²t

XD m s−≈ ÷ × . 

Some authors describe diffusion of bubbles using the mixture length ap-
proach ,12 2 2,

t
mixD vα ′≈  , where 2v′  is the liquid pulsation velocity. In any case, the 

process of turbulent bubble diffusion is still not well understood. 

1.8 Local volume-averaged component  
conservation equations 

The definition given previously should now be recalled, i.e., that each velocity 
field consists of one noninert component and several inert components. Each 
component is designated with li . As mentioned in Section 1.2, in order to avoid 
complicated indices, the designation il will be used in the following. 

The local volume-averaged instantaneous mass conservation equation for the 
microscopic component il in the velocity field l can be expressed as follows:  
 

Inside the part of the control volume filled with the component il, the net 
mass flow of the component il must equal the rate of increase in mass for 
the component il, or mathematically: 

( ) ( )lel l

il il v il il il
τ∂ α ρ γ α ρ γ

∂τ
+∇ ⋅ V  

1
( )

l lw

il il il il l v il

F F

dF
Vol

σ

τ τ τ
σα ρ γ μ

+

= − − ⋅ = V V n .   (1.65) 
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For a gas mixture it follows from Dalton’s law that il lα α= , whereas for mixtures 

consisting of liquid and macroscopic solid particles il lα α≠ . The instantaneous 
mass concentration of the component i in l is now defined by: 

( )/
l l

il il il l lCτ α ρ α ρ= .     (1.66) 

The center of mass (c.m.) velocity is given by intrinsic surface-averaged field ve-

locity 
le

l
τV  introduced previously: 

max max

1 1

i i
le le lel l l

l l l il il il l l il il
i i

Cτ τ τ τα ρ α ρ α ρ
= =

= = V V V . (1.67) 

Consequently 

max

1

i
le le

l il il
i

Cτ τ τ

=

=V V .      (1.68) 

For the description of transport of the microscopic component il in the velocity 

field l it is convenient to replace the velocity component 
le

il
τV  by the sum of the 

center of mass velocity for the particular field 
le

l
τV and the deviation from the 

c.m. velocity or the so-called diffusion velocity of the inert component 
le

i l
τδ V , 

which yields the following: 

( )le le le

il l l
i

τ τ τδ= +V V V .     (1.69) 

Fick (1855) noticed that the mass flow rate of the inert component with respect to 
the total mass flow rate of the continuous mixture including the inert component is 
proportional to the gradient of the concentration of this inert component 

( )lel l l
il il l l l l il il

i
D Cτ τα ρ δ α ρ δ= − ∇V .   (1.70) 

The coefficient of proportionality, l
ilD , is known as the coefficient of molecular 

diffusion. The diffusion mass flow rate is directed from regions with higher con-
centration to regions with lower concentration, with this reflected by the minus 
sign in the assumption made by Fick (which has subsequently come to be known 
as Fick’s law), because many processes in nature and industrial equipment are 
successfully described mathematically by the above approach – so called diffusion 
processes. Here 1lδ =  for a continuous field and 0lδ =  for a disperse field. Subs-
titution in Eq. (1.65) yields 

( ) ( ) ( )lel l l l
l l il v l l l il l l l il il v ilC C D Cτ τ τ τ τ∂ α ρ γ α ρ γ α ρ δ γ γ μ

∂τ
+∇ ⋅ −∇ ⋅ ∇ =V . 

   (1.71) 
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Molecular diffusion has a microscopic character, as it is caused by molecular inte-
ractions. The general expression (1.70) is actually 

( ) T p
lel l l il il

il il l l il l il il l
i l

k k
D C T p

T p
τ τα ρ δ α ρ δ  

= − ∇ + ∇ + ∇ 
 

V . (1.72) 

T
ilk  and p

ilk  are the dimensionless coefficients of thermodiffusion and barodiffu-

sion, which are functions of the component concentrations, Grigorieva and Zorina 
(1988). They tend to zero in the limiting cases of pure substances. Note that  

max

1

0
i

l
il il

i

D Cτ

=

∇ = ,      (1.73) 

max

1

0
i

T
il

i

k
=

= ,       (1.74) 

max

1

0
i

p
il

i

k
=

= .       (1.75) 

The effect of the barodiffusion is usually negligible. Thermodiffusion may be sub-
stantial if the components have a quite different molecular mass (e.g., a mixture of 
hydrogen and freon), large temperature gradients, and concentrations about 

max1/ i . Usually, thermodiffusion is also neglected in practical computations, Gri-

gorieva and Zorina (1988). The special theoretical treatment and the experimental 
experience of how to determine the molecular diffusion coefficients in multicom-
ponent mixtures, is a science in its own right. This topic is beyond the scope of 
this book. In this context, it should merely be noted that in line with the thermo-
dynamics of irreversible processes, the thermal diffusivity and the diffusion coef-
ficients influence each other. The interested reader can find useful information in 
Reid et al. (1982). 

1.9 Local volume- and time-averaged 
conservation equations 

As has already been mentioned, the c.m. velocity of the velocity field can be ex-
pressed as time-averaged c.m. velocity and a pulsation component as proposed by 
Reynolds, see Eq. (1.61). The same can be performed for the concentrations, 

il il ilC C Cτ ′= + ,       (1.76) 

where 

:il ilC Cτ= .       (1.77) 
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Substituting appropriately in Eq. (1.71), performing time averaging, and omitting 
averaging signs 

l l

l l il l l il l l ilC C Cτ τα ρ α ρ α ρ= ≡ ,     (1.78) 

0
l

l l ilCα ρ ′ = ,      (1.79) 

l l

l l il l l l il l l l il lC C Cα ρ α ρ α ρ= ≡V V V ,    (1.80) 

0
l

l l il lCα ρ ′ =V ,       (1.81) 

0
l

l l il lCα ρ ′ =V ,       (1.82) 

l ll l l
l l l il il l l l il il l l l il ilD C D C D Cα ρ δ α ρ δ α ρ δ∇ = ∇ ≡ ∇ ,  (1.83) 

 0
l l

l l l il ilD Cα ρ δ ′∇ = ,      (1.84) 

il il
τμ μ= ,        (1.85) 

the following is obtained: 

( ) ( ) ( ) ( )l
l l il v l l il l l l il l l l l il il v ilC C C D C

∂ α ρ γ α ρ γ α ρ γ α ρ δ γ γ μ
∂τ

′ ′+ ∇ ⋅ + ∇ ⋅ −∇ ⋅ ∇ =V V . 

   (1.86) 

For the sake of simplicity, averaging signs are omitted except in the turbulent dif-
fusion term, which will be discussed next. The diffusion can also have macroscop-
ic character, being caused by the macroscopic strokes between large eddies with 
dimensions considerably larger than the molecular dimensions – turbulent diffu-
sion. In a mixture at rest the molecular strokes are the only mechanism driving dif-
fusion. In real flows both mechanisms are observed. The higher the velocity of the 
flow, the higher the effect of the turbulent diffusion. O. Reynolds assumed for iso-
tropic diffusion 

t
il l il ilC D C′ ′ = − ∇V ,      (1.87) 

where the coefficient of turbulent isotropic diffusion t
ilD  is proportional to the 

coefficient of turbulent kinematic viscosity (this is not valid for turbulence of elec-
troconductive liquids in a strong magnetic field): 

/t t t
il lD Scν= ,       (1.88) 

where the proportionality is determined by the turbulent Schmidt number (e.g., 
tSc = 0.77 if no other information is available). This coefficient is not a thermo-
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dynamic property of the material as the molecular coefficient is, but forms a prop-
erty of the flow. Thus, having for the total diffusion coefficient 

* l t
il l il ilD D Dδ= + ,      (1.89) 

in a final step, the local volume and time-averaged mass conservation equation va-
lid for each species il inside each velocity field l is obtained: 
 

( ) ( )*
l l il v l l l il il ilC C D C

∂ α ρ γ α ρ γ
∂τ

 +∇ ⋅ − ∇ V  

( )
3,

1

w

v iml ilm v il
m

γ μ μ γ μ
=

= − ≡ .       (1.90) 

 
For 1lα = , 1vγ γ= =  this is the well known concentration equation from single-
phase flow dynamics. There is no doubt as to its general validity as previously 
mentioned for velocities much smaller than the velocity of light. Equation (1.90) 
has been successfully used in IVA codes with diffusion terms neglected, see Kolev 
(1985a, 1985b, 1986a, 1986b, 1987, 1990, 1991a, 1991b, 1993a, 1993b, 1993c) 
and with diffusion terms Kolev (1999). 

If the surface is immaterial and does not accumulate mass from the inert com-

ponent, then the mass jump condition is 
3

1
il

m

μ
=
 .  

Note that there is no net mass diffusively transported across a cross-section per-
pendicular to the strongest concentration gradient. Mathematically it is expressed 
as follows: 

( )
max

*

1

0
i

il il
i

D C
=

∇ = ,      (1.91) 

or 

( )
max

* *
1 1

2

i

l l il il
i

D C D C
=

∇ = − ∇ .     (1.92) 

For monodisperse particles, i.e., particles with constant particle size ilD  inside the 
control volume, Eq. (1.90) can be divided by the mass of the single particle in or-
der to obtain an alternative form 

( ) ( )* 31
6il v l il il il v il il iln n D n D

∂ γ γ γ μ ρ π
∂τ

  +∇⋅ − ∇ =     
V .  (1.93) 

Here 
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31
6il l l il il iln C Dα ρ ρ π =  

 
     (1.94) 

is the number of particles of species i per unit flow volume. 
After expansion of the first two terms using the chain rule and a comparison 

with the local volume and time-averaged mass conservation equation of the veloc-
ity field, the nonconservative form is obtained as follows: 

( ) ( )*il
l l v l il l l il il v il il l

C
C D C C

∂α ρ γ γ α ρ γ γ μ μ
∂τ

 + ∇ −∇ ∇ = − 
 

V . (1.95) 

For numerical integration it is more convenient to use the so called semiconserva-
tive form, Eq. (1.64), obtained by splitting the right-hand side into nonnegative 
source and sink terms and then placing the sources at the left-hand side: 

( )*il
l l v l il l l il il v l il v il

C
C D C C DC

∂α ρ γ γ α ρ γ γ μ γ
∂τ

+ + ∇ −∇ ∇ + = 
 

V . (1.96) 

 
Here  

3

1
il iml

m
m l

μ μ+

=
≠

= ,       (1.97) 

( )il il il l lDC Cμ μ μ+= − − .     (1.98) 

For mass transport among the velocity fields and between the exterior sources and 
the velocity fields it is assumed that the mass convectively leaving the velocity 
field has the concentrations of the inert components and the mass entering the 
field has the concentrations of the donor field. 

For the particular case of flow consisting of air-steam and two additional liquid 
fields with one species of solid particles, as postulated for the IVA codes, Kolev 
(1985a, 1986a, 1986b, 1987, 1991a, 1991b, 1993b, 1993c, 1993d, 1993e, 1993f, 
1994a, 1996, 1998, 1999), the following are obtained 

( )1 1 12 13i iDC C μ μ= + ,      (1.99) 

2 2 21 3 32i i iDC C Cμ μ= + ,     (1.100) 

3 3 31 2 23i i iDC C Cμ μ= + ,      (1.101) 

and 

1 21 31μ μ μ+ = + ,      (1.102) 

2 12 32μ μ μ+ = + ,      (1.103) 
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31 13 23μ μ μ+ = + ,      (1.104) 

or, in abbreviated form 

il lμ μ+ += .       (1.105) 

The simplicity of the concentration equation is the reason for the choice of ilC  as 
elements of the dependent variables’ vector describing the flow. As a consequence 
of this choice, the equation of state for the multicomponent mixture, 

( , ,l l lp Tρ ρ= ilC  for all i ) , has to be derived from the equation of state for the 

elementary components of the mixture, ( , )il il il ilp Tρ ρ= . This has already been 
performed by the author and published in Kolev (1990). An extended variant of 
this work is given Chapter 3 of this monograph. 

Finally, let us write the mass jump condition at the interface. 
Instant: 

( ) ( ) 0il il il lm l im im im lm m
τσ σ τ τ τσ σ τ τα ρ α ρ− ⋅ + − ⋅ =V V n V V n .  (1.106) 

In terms of local volume-averaged parameter: 

( ) l
il l l lm l l il il lC D Cτσ τ τ τσρ ρ− ⋅ − ∇ ⋅V V n n  

( ) 0l
im m m lm m m im im mC D Cτσ τ τ τσρ ρ+ − ⋅ − ∇ ⋅ =V V n n .   (1.107)  

Local volume and time average: 

( ) *m m
il l l lm l l il il lC D Cσ σρ ρ− ⋅ − ∇ ⋅V V n n  

( ) * 0l l
im m m lm m m im im mC D Cσ σρ ρ+ − ⋅ − ∇ ⋅ =V V n n .   (1.108) 

1.10 Conservation equations for the number density 
of particles 

Modeling of gases and liquids that disintegrate in a finite time from a continuum 
to a spectrum of particles and vice versa, see Fig. 1.4, requires, in addition to the 
mass conservation equation, equations balancing the number of particles per  
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Fig. 1.4 Fragmentation mechanism. (1) Acceleration and turbulence-induced droplet 
fragmentation in pool flow; (2) jet disintegration in pool; (3) acceleration and turbulence-
induced droplet fragmentation in channels; (4) jet fragmentation in channels; (5) droplet in 
pool; (6) jet in pool; (7) droplet in channel; (8) jet in channel; Liquid metal jet 
disintegration in liquid: (9) with film boiling – thin film; (10) with film boiling and strong 
radiation (thick film); liquid metal droplet disintegration in liquid: (11) with film boiling – 
thin film; (12) with film boiling and strong radiation (thick film); (13) bubble fragmentation 
in pool; (14) gas jet disintegration in pool; (15) bubble fragmentation in channels; and (16) 
gas jet disintegration in channels 

unit volume of the mixture. Such particles may originate from nucleation or may 
be the result of convection from the neighboring cells.  

If the flow is dispersed there are several possible reasons for the presence of a 
spectrum of particle sizes in the local control volume. A practicable simplification 
is the used concept of monodispersity in the control volume. This concept is 
associated with the assumption that the particles in each control volume are 
represented by a single local volume and time-average particle size. As the vo-
lume fraction lα  and the local volume and time-average particle number density 

ln  are known, it is then possible to compute the representative local volume and 
time-average particle diameter 

1/3
6 l

l
l

D
n

α
π
 

=  
 

      (1.109) 

for any control volume. The approach used to obtain Eq. (1.93) illustrates the phi-
losophy behind the method for obtaining the equation for the conservation of the 
number of macroscopic particles (droplets or bubbles) per unit flow volume: 
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( ) ( ), , ,

t
l

l v l l l v l kin l coal l sptn
n n n n n n

Sc

ν∂ γ γ γ
∂τ

  
+∇ ⋅ − ∇ = − +  

   
V    , (1.110) 

 
for 0lα > . For simplicity, any averaging signs are omitted. ln  takes values be-
tween zero and approximately 1012 per cubic meter (1012 m-3 is presumably the up-
per limit for nucleation during evaporation or condensation). ln = 0 for an existing 

velocity field here will be associated with a continuous fluid. 0 1l celnVol< < , 

where celVol  is the volume under consideration, can be interpreted as a continuous 

fluid (jet or free surface) with an excited interface. 0l celnVol →  means a stable 

surface and 1l celnVol →  means an unstable interface. 1l celnVol >  means that there 

is no longer a continuous velocity field l. Here /tn tn
l lScν−  is the diffusive flux for 

particle number density resulting from the fact that the particles are in random mo-
tion in the presence of a particle density gradient. In accordance with Batchelor 
(1970), 

 ( ) ( ) ( )
1/ 2 1/ 21/ 2

  
tn
l

l l l l lm lm ltn
const D const D H

Sc

ν α′ ′− ≈ ⋅ = Δ ⋅Δ   V V V V , (1.111) 

where the constant is approximately unity, 

( )
,max ,max

1l l
l

l l

H
α αα

α α
 

≈ −  
 

,     (1.112) 

and ,maxlα ≈ 0.62 is the limit for the closest possible packing of particles. ( )l l′ ′⋅V V  

is the mean square of the velocity fluctuations and ( )1/ 2

lm lmΔ ⋅ΔV V  is the magni-

tude of the relative velocity. This choice meets the requirements for disappearance 
of velocity fluctuations at the limit 0lα →  and at the limit for the closest possible 

packing ,maxl lα α→ . 

For the locally monodisperse system there is a unique relationship between vo-
lume, concentration, particle number density, and the local particle length scale or 
the interfacial area density da  (interfacial area dF  divided by the mixture flow 

volume 
max

1

l

l
l

Vol
=
 ),  

max

,single particle ,single particle ,single particle
1

l

d d l d d d d d
l

a F Vol n F F Volα
=

= = =  

1/ 3
2 / 36

6
6d d d

d

n
D

πα α = =  
 

.     (1.113) 
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Therefore the use of one of the variables dn  or dD  or da  is equivalent and only 

the simplicity of the conservation equation dictates preference for dn . 
The production terms on the right-hand side of Eq. (1.109) can be classified as 

kinetic and nonkinetic terms. The kinetic terms are 

( )
max

, , ,
1

4 i

l kin lw lw m im im m l h l dis
ihy

n f n f n n n
D

α α
=

′′= + + +   .   (1.114) 

In the case of bubble flow, l = 1, m = 2. For this case, the following then apply: 
4

lw lw
hy

f n
D

′′  is the number of bubbles generated at the wall per unit time and unit 

volume of the flow (wall cavity nucleation rate). lwf  is the frequency of bubble 

generation at one activated seed on the channel wall. lwn′′  is the number of acti-
vated seeds per unit area of the wall. 

The term 
max

1

i

m im im
i

f nα
=
  gives the number of bubbles generated from the solid 

particles homogeneously mixed with the second velocity field per unit time and 
unit volume of the flow. imf  is the frequency of bubbles generated from one acti-

vated seed on the particle belonging to the second velocity field. , ,l h l disn n+  is the 

bulk liquid nucleation rate consisting of the number of bubbles generated by ho-
mogeneous nucleation in the second velocity field per unit time and unit volume 
of the flow, ,l hn , and the number of bubbles generated from the dissolved gases in 

the second velocity field per unit time and unit volume of the flow, ,l disn . 

The nonkinetic mechanical terms are 

, , / 2l coal l l coaln n f= ,      (1.115) 

which denotes the number of bubbles that disappear due to coalescence per unit 
time and unit volume of the flow, and 

, ,l sp l l spn n f= ,       (1.116) 

which is the number of the bubbles arising due to hydrodynamic bubble 
disintegration per unit time and unit volume of the flow. ,l coalf  is the 

coalescence frequency of two colliding particles. ,l spf  is the fragmentation 

frequency of single particle. The coalescence frequency of a single particle is 
defined as a product of the collision frequency per single particle ,d colf and the 

coalescence probability of two colliding particles ,d coalP . Different causes for the 

collisions are associated with different collision frequencies ,
s

d colf ,  ,
no

d colf  and 

,
o

d colf . Similarly, different causes for collisions are associated with different  
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coalescence probabilities ,
no

d coalP , ,
o

d coalP . ,
o

d coalP  is the probability of oscillatory 

coalescence (due to turbulent oscillations). ,
no

d coalP  is the probability of 

nonoscillatory coalescence (due to nonuniform velocity field in space). Thus the 
final expression takes the form 

( ), , , , , ,
s no no o o

d coal d col d col d coal d col d coalf f f P f P= + + .    (1.117) 

,
o

d colf  is the frequency of collision due to turbulence fluctuation of the particles. It 

depends on the fluctuation component of the velocity of the particles, dV ′ , 

( ), , , ...,...o
d col d df f V α′= Δ .     (1.118) 

The superscript o is used to remind us that this is an oscillatory frequency. ,
s

d colf  

and ,
no

d colf  are the frequencies of collision due to the convective motion. The split-

ting into two components is due to the use of the concept of monodispersity. The 
computational collisions, ,

no
d colf , are caused only by the mean relative velocity be-

tween the field with averaged particle size and the surrounding continuum no
ddVΔ . 

Correct mathematical averaging of the velocity difference gives an additional 
component s

ddVΔ  associated with ,
s

d colf . ,
s

d colf  is zero for real monodisperse sys-

tems. Thus 

( ), , , ...,...no no
d col dd df f V α= Δ ,     (1.119) 

and 

( ), , , ...,...s s
d col dd df f V α= Δ .     (1.120) 

The superscript no is used to remind us that this is a nonoscillatory frequency. The 
superscript s is used to remind us that this frequency is associated with a spectrum 
of particle sizes. The source terms for the conservation equation for droplet num-
ber density, l = 3 are defined in a similar way.  

For channel flow it is assumed here that the second velocity field is continuous 
and that the third is disperse. In this case, besides the fragmentation and coales-
cence that also exist in pool flow, the entrainment and deposition will influence 
not only the mass but also the particle number density balance 

( ) ( ) ( )1/ 2

23 32 2 23 32

4
1

h

w w
D

μ μ α ρ ρ − = − −  ,   (1.121) 

( ) ( ) ( ) ( ) ( )1/ 2 3 3
23 32 2 2 3 3 323 32

6 4
1 / /E

h

n n w D w D
D

α ρ ρ ρ ρ
π

 − = − −   , (1.122) 
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where ( )23
wρ  and ( )32

wρ are entrainment and deposition mass flow rate, and 

3ED  is the diameter of the entrained droplets. 
The large variety of phenomena leading to fragmentation and coalescence are 

discussed by the author in Kolev (1993a) and more recently in Kolev (1998). In 
Volume II of this monograph the reader will find the current status of empirical 
knowledge in this field and the way in which this can be used to compute the 
fragmentation and coalescence production rates. 

It is now appropriate to highlight an interesting potential of this concept. Dur-

ing numerical integration the multiplying of ln  with 
3

1
l

l

Vol
=
  gives the number of 

particles in a single control volume or in a single discretization volume. If there is 
more than one particle in the cell, 

3

1

1l l
l

n Vol
=

> ,       (1.123) 

the field is dispersed. Consequently, the mechanisms governing fragmentation and 
coalescence are the mechanisms for dispersed field l surrounded by m, e.g., drop-
lets or bubble fragmentation and coalescence. If 

3

1

1l l
l

n Vol
=

≤ ,       (1.124) 

the field is continuous. This means that the mechanisms controlling potential 
fragmentation are the mechanisms known for continuous field l surrounded by the 
field m. An example is jet fragmentation, where both participating fields at the jet 
region are continuous. In this case there is no coalescence. Thus, natural transition 
from continuum to disperse and vice versa can be modeled. In addition, a very im-
portant memory effect of the multiphase structure is taken into account in this 
modeling approach. An example of the use of this approach was given in Kolev 
(1993b) for interaction and fragmentation of gas, molten metal, and water during a 
transient. 

Equation (1.109) without diffusion and nonkinetic production terms was 
successfully used by Kocamustafaogulari and Ishii (1983) for the modeling of 
single-component boiling systems. A comparison of nonequilibrium model 
predictions with experimental data for flashing in Laval nozzles performed by the 
author (1985b) showed that an additional differential equation for the description 
of the particle number density is necessary to obtain a more accurate prediction 
than the widespread approach of assuming an almost arbitrary number density 
within the range of 109 to 1013cm-3. Riznic and Ishii (1989) applied the 
Kocamustafaogulari and Ishii approach with success to the modeling of single-
component flushing systems. Deich and Philipoff (1981) analyzed the pressure 
and temperature distribution inside the eddies of subcooled steam and came to the 
conclusion that eddies with appropriate dimensions serve as nuclei for 
condensation, which provides further substantiation for the use of the method 
discussed above. 
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The derived particle number density conservation equation can be used to com-
pute the surface energy associated with the interface. Multiplying the bubble num-
ber density, ln , by the surface energy of a single bubble, 2

1 12Dπ σ , the surface 

energy per unit mixture volume is then obtained. The conservation equation for 
this energy is similar to Eq. (1.109). It is interesting to note that the surface energy 
is transported by the convection and diffusion of the discrete velocity fields but 
that the terms supplying the change in this energy (kinetic origination, collision, 
splitting) result from the energy of the surrounding continuous liquid. 

1.11 Implication of the assumption of monodispersity in 
a cell 

1.11.1 Particle size spectrum and averaging 

The result of the initial, boundary conditions, convection, local collision and coa-
lescence, fragmentation entrainment, and deposition is a spectrum of particle size. 
In this section we will demonstrate what influence the replacement of the spec-
trum of particle sizes with a single particle size may have on heat and mass trans-
fer processes and how it can be incorporated approximately in the analysis. 

To illustrate this we use the Nukiama–Tanasawa distribution observed in 1931 

( ) ( )
2

24 di dD Ddi di

d d

P D D
e

D D
′− 

=  ′ ′ 
.     (1.125)  

Here ( )diP D  is the probability that a particle size is between diD  and di diD Dδ+ . 

dD′  is the most probable particle size, i.e., the size where the probability distribu-
tion function has its maximum value. The particle sizes may take values between 
zero and a maximum value  

,max0 di dD D< < .       (1.126) 

Thus, if we know dD′  and ,maxdD , the particle distribution is uniquely characte-

rized. MacVean (see Wallis (1969)) found that a great deal of data could be corre-
lated by assuming that 

/ 2d dD D′ = ,       (1.127)  

where dD  is the volume-averaged particle size. The relationship between dD  and 

the maximum particle size, ,maxdD , is reported as  

,maxdD ≈ (2.04 to 3.13) dD       (1.128)  

(see Pilch et al. (1981) and Kataoka et al. (1983), among others). Other distribu-
tions give slightly different results, e.g., Kolomentzev and Dushkin  (1985)  
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( ) ( )2
2

48 di dD Ddi di

d d

P D D
e

D D
′− 

=  ′ ′ 
      (1.129) 

came to ,maxdD ≈ 1.33 dD . Other distributions are reported by Rosin and Rammler 

(1933), Griffith (1943), and Mugele and Evans (1951).  
In contrast to Eq. (1.113), for monodisperse spherical particles the interfacial 

area density in the general case is  

max

,single particle ,single particle ,single particle
1

l

d d l d d d d d
l

a F Vol n F F Volα
=

= = = =  

6 6d d d
sm sm
d d d

D

D D D

α α= .      (1.130)  

Here  

( ) ( )
,max ,max

3 2

0 0

d dD D

sm
d d d d d d dD D P D dD D P D dD

 
=  
  
     (1.131)  

is the so-called Sauter mean diameter, see Sauter (1929). A droplet with a diame-
ter equal to the Sauter mean diameter has the same surface to volume ratio as the 
entire spray. Using the Nukiama–Tanasawa distribution, Eq. (1.125), and Eqs. 
(1.127) and (1.128), after evaluating Eq. (1.131) analytically we obtain for the 
Sauter mean diameter 

sm
dD ≈ (1.154 to 1.238) dD    ( 1.25sm

d dD D< ),  

or  

sm
d dD D ≈ 0.867 to 0.807 > 0.8,     (1.132)  

which is perfectly confirmed by the measurements summarized by Faeth (1995) – 
/ 1.2sm

d dD D ≈ . This is a very useful result, allowing use of the volume fraction 

dα  and the particle number density dn  in cases where the assumption of mono-
dispersity does not hold.  

1.11.2 Cutting of the lower part of the spectrum due to mass transfer 

The use of the particle number density conservation equations for each of the three 
velocity fields as already implemented in the IVA computer code series since 
1985 is an extremely practical method of modeling the scale of the field. A num-
ber of important features of the concept of monodispersity will now be discussed. 

The time-averaged source terms associated with the change in the aggregate 
state for the mass conservation equations are 
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3 3

0

1
/

6 6l l l l l l l

d
n D d n D

d

τ π πμ ρ τ ρ τ
τ τ

Δ     = = Δ Δ    Δ       

( )
max

3 3 3 3
0 , , , ,

1

4

6

i

l ld lw lw ldm m im im m l h l h l dis l dis
ihy

D f n D f n D n D n
D

πρ α α
=

 
′′= + + + 

  
    

( )3 3
0 0 0 0/ 1 /l l l l l lD Dα ρ ρ ρ τ + − Δ  .    (1.133) 

Here 0 0,l lnρ  and 0lD  are density, particle number density, and particle size at the 

beginning of the time step τΔ . ldD  is the size with which the bubbles are pro-
duced after one nucleation cycle on the solid structure, i.e., the particle departure 
diameter. ldmD  is the size with which the bubbles are produced after one nuclea-
tion cycle on the inert solid particles of the field m = 2. If the nucleation takes 
place in the bulk of the donor field, the size is equal to the smallest stable size, 

,l hD , or in case of nucleation on dissolved gases, ,l disD . More information on the 

modeling of particulate processes is provided in Volume II of this monograph. 
The first term in the above equation gives the time and local volume-averaged 

mass production due to nucleation; the second term gives the time and local vo-
lume average of mass production due to mass change for existing particles. 

It is important to note that the second term describes changes in the particle size 
due to evaporation and condensation. In accordance with the concept of monodis-
persity, the mass changes leading to a decrease in the local volume and time-
average particle size also cause the disappearance of those particles in the spec-
trum with sizes smaller than the size change. This statement, together with the as-
sumption made for the form of the spectrum, provides the basics for computation 
of the averaged number of disappearing particles. Suppose the particle size distri-
bution obeys the Nukiama–Tanasawa (1931) law 

( ) ( ) ( )2
4 / exp 2 /l l l l lP D D D D D′ ′= −   .    (1.134) 

Suppose the form of the distribution remains unchanged during the time step. 

Having in mind that  ( )3 3
0 0 0 0/ 1 /lm l l l l l lD Dμ α ρ ρ ρ τ = − − Δ   the volume-averaged 

diameter changes within this time by 

( )
1/ 3

0
0 0 0 0

0 0

1 / 1 1 lm l
l l l l l l l

l l l

D D D D D D D
μ τ ρ
α ρ ρ

   Δ Δ = − = − = − −   
    

 

1/ 3

0
0 0

1 1 lm
l

l l

D
μ τ
α ρ

   Δ ≈ − −   
    

.      (1.135) 

and all particles having sizes 0 2l lD D≤ ≤ Δ , namely, 
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( )
2

2 1 exp 4 1 4 1 2
0

lD

l l l
l l l l

l l l

D D D
n P D dD n

D D D

Δ      Δ Δ Δ = − − + +     ′ ′ ′      
 , (1.136) 

disappear. The averaged particle sink per unit time and unit mixture volume is 
consequently 

 

, _ 2 1 exp 4 1 4 1 2l l l l
l spectrum cut

l l l

n D D D
n

D D Dτ
     Δ Δ Δ   = − − + +       ′ ′ ′Δ         

 , (1.137) 

 

for l lD D′Δ ≥ . The latter condition means that the averaged particle size is 

lDΔ , with particle sizes ranging approximately within the interval 2 lDΔ . It was 
found that for shock condensation of bubbles the inclusion of Eq. (1.137) for pre-
diction of a reduction in the number density for disappearance of steam volume 
fractions is very important, Kolev (1993d, 1993e, 1993f, 1996, 1999). The same is 
true for the disappearance of water droplets in highly superheated gases due to 
evaporation. The latter can be the case in steam explosion analysis where gas is 
superheated due to previous contact with melt followed by water droplet entry into 
the superheated gas regions. Combustion processes and spray cooling of hot gas 
jets are further examples. 

Equation (1.137) can be written in the following form: 

, _ , _l spectrum cut l l spectrum cutn n f= ,     (1.138) 

where 

, _

2
1 exp 4 1 4 1 2l l l

l spectrum cut
l l l

D D D
f

D D Dτ
     Δ Δ Δ = − − + +     ′ ′ ′Δ       

 (1.139) 

is the frequency of particle disappearance due to spectrum cutting. 

1.11.3 The effect of averaging on the effective velocity difference 

Consider i groups of particles with different diameters having a concentration per 
unit volume called particle number density 

( )di d din n P D=   i = 1, I ,    (1.140)  

which is dependent on the diameter. Here ( )diP D  is the probability of a particle 

having a size between diD  and di diD Dδ+ . We assume that the continuous veloci-

ty field possesses a constant velocity cw . The difference of the continuum and the 
particle velocity is approximately described by the following equations:  
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( ) 1 1 3
1 0

4

d
vm cd cd

d cd d cd cd
c d d

w c
b c p b w w

D

∂
∂τ ρ ρ

 Δ+ + − ∇ + Δ Δ = 
 

, (1.141)  

( ) 1 1 3
1 0

4

d
vm cdi cdi

di cdi di cdi cdi
c d di

w c
b c p b w w

D

∂
∂τ ρ ρ

 Δ+ + − ∇ + Δ Δ = 
 

, (1.142)  

where ( ) ( )/d c c d d c db α ρ α ρ ρ ρ= + , and ( ) ( )/di c c di d c db α ρ α ρ ρ ρ= + . In this 

case we see that each particular group possesses a different relative velocity with 
respect to the continuum and consequently the groups move relatively to each oth-
er. Therefore, collision caused by particle-particle relative velocity  in real nature 
is an inevitable phenomenon. For steady flow from Eqs. (1.141) and (1.142) we 
have 

1/ 2d
d d di

cdi cd cd id
di cdi d

b c D
w w w f

b c D

 
Δ = Δ = Δ 

 
.    (1.143)  

Obviously there is a resulting average velocity  

( )1 1
1 1dd di cd cdi cd di i cd di i

i i id d

V n w w w n f w P D f
n n

Δ = Δ − Δ = Δ − = Δ −   , 

   (1.144)  
which is the  

1
1di i

id

n f
n

−        (1.145) 

part of the average relative velocity of the droplets with respect to the continuum. 
For monodispersed particles  

1 2 ... 1if f f= = = =        (1.146) 

and  

0ddVΔ = .        (1.147) 

The expression  

( ) ( )
,max /

0

1
1 1 /

d dD D

di i di i di d
id

n f P D f d D D
n

− = −  ,  (1.148)  

can be numerically estimated using known distribution functions, e.g., the Nukia-
ma–Tanasava distribution (1939) as given by Eq. (1.125). Furthermore,  

1/ 2
* 1

* /

d
d di

i d
di d cdi d

c Db
f

b c Dα α
 +=  + 

,     (1.149)  
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where * /c c d db α ρ α ρ=  can be expressed as function of /di dD D , having in mind 

that ( )3 / 6di di diD nα π=  and ( )3 / 6d d dD nα π=  and using Eq. (1.140),  

( ) ( )3
/ /di d di d diD D P Dα α = .      (1.150) 

1.12 Stratified structure 

If the selected scale of discretization δ  is smaller than the characteristic length of 
the fields, 

1lδ κ < ,       (1.151) 

the local control volume contains a surface dividing for instance field l from field 
m. The unit vector ln  pointing outwards from the field l is an important local cha-
racteristic of this surface. It is defined from the spatial distribution of the volume 
fraction of the field l as follows:  

( )
( )

l
l

l

α γ
α γ

∇
= −

∇
n .      (1.152)  

The curvature of the surface is conveniently computed following the derivation of 
Brackbill et al. (1992), 

l lκ = ∇ ⋅n ,       (1.153) 

and is defined as positive if the center of the curvature is in field l.  

1.13 Final remarks and conclusions 

Local volume averaging as founded by Anderson and Jackson, Slattery, Whitaker, 
is applied to derive mass conservation equations for multiphase multicomponent 
flows conditionally divided into three velocity fields. The heterogeneous porous 
media formulation introduced by Gentry, Martin and Daly, commented on by 
Hirt, and used by Sha, Chao and Soo, was then implanted into the formalism as a 
geometrical skeleton because of its practical usefulness. Beyond these concepts, 
inert components in each velocity field are included, and the concept of dynamic 
particle fragmentation and coalescence is introduced. Then subsequent time aver-
aging was performed.  

The result of this derivation yields the following three local volume and time-
average equations applicable for each velocity field. Here, the equations are 
written in the scalar form for the most frequently used Cartesian and cylindrical 
coordinate systems to simplify their direct use by the reader for his particular 
application. 
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( ) ( ) ( ) ( )1 1
l l v l l l r l l l l l l zr u v w

r r r z
κ

θκ κ
∂ ∂ ∂ ∂α ρ γ α ρ γ α ρ γ α ρ γ
∂τ ∂ ∂θ ∂

+ + +  

( )
max ,

1

l w

v ml lm
m

γ μ μ
=

= − ,      (1.154) 

( ) *1 il
l l il v l l l il il r

C
C r u C D

r r r
κ

κ
∂∂ ∂α ρ γ α ρ γ

∂τ ∂ ∂
  + −    

 

*1 1 il
l l l il il

C
v C D

r r θκ κ
∂∂ α ρ γ

∂θ ∂θ
  + −    

* il
l l l il il z

C
w C D

z z

∂∂ α ρ γ
∂ ∂

  + −    
 

( )
max ,

1

l w

v iml ilm
m

γ μ μ
=

= −    for  0lα ≥ ,    (1.155) 

( ) 1 tn
l l

l v l l rtn
l

n
n r u n

r rr Sc
κ

κ

ν ∂∂ ∂γ γ
∂τ ∂ ∂

  
+ −  

   

1 1t
l l

l l t
l

n
v n

r Sc r θκ κ
ν ∂∂ γ

∂θ ∂θ
  

+ −  
  

 

( ), , ,

t
l l

l l z v l kin l coal l spt
l

n
w n n n n

z Sc z

ν ∂∂ γ γ
∂ ∂

  
+ − = − +  

  
    

( ), , , , , , , , _

1 1

2
s no no o o

v l l kin l sp d col d col d coal d col d coal l spectrum cut
l

n n f f f P f P f
n

γ   ≡ + − + + −   
  

for  0lα ≥ .       (1.156) 

For flow in a pipe the entrainment and deposition terms have to be taken into ac-
count. The link between kinetic generation of particles and the mass source terms 
is specified. The link between mass sources and the change in bubble/droplet size 
due to evaporation or condensation has been presented for local volume and time-
averaged source terms. The concept of monodispersity has been discussed and a 
method proposed for computation of the disappearance of particles due to evapo-
ration and condensation. 

The following conclusions can be drawn from this derivation: 
 

1. For numerical integration, the size of the discretization for the above local vo-
lume and time-average equations is allowed to be smaller than, equal to, or larger 
than the characteristic length scale lD  of the velocity field, unless other mathe-
matical constraints associated with the numerical method used or concept used 
for the computation of the fragmentation and coalescence sources are imposed. 
The characteristic length scale lD  is understood to be: 2 /l lD κ= , for a conti-

nuum, and lD  = particle size, for a disperse field. 
2. The size of the spatial discretization for the resulting equations should not be an 

order of magnitude larger than the characteristic length scale of the fragmenta-
tion. This ensures that important local events will not be obscured as a result of 
averaging of the properties in the finite volume. For example, insufficiently fine 
spatial discretization on modeling of the melt–water interaction may lead to 
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nonprediction of steam explosions for situations where explosions have been 
observed in experiments, because averaging over large volume has regions with 
intensive fragmentation and others without such fragmentation. 

3. The use of the concept of monodispersity is associated with the effect of disap-
pearance of part of the particles during a given time step in the case of coinci-
dent mass transfer that reduces the local volume fraction of the phase. 

4. Kinetic particle source terms are directly related to mass source terms in the 
mass conservation equation. 

5. Nonkinetic particle source terms such as fragmentation or coalescence 
influence the average particle size and, with the size, the amount of evaporation 
or condensation. This means that the nonkinetic particle source terms indirectly 
influence the mass of the field. These terms introduce important time delays 
compared to the approach where the quasistatic particle size under local 
conditions is used. This is of major significance in the analysis of severe 
accidents such as steam explosions or processes associated with condensation 
shocks. 
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2 Conservation of Momentum 

The time rate for change in momentum of a body equals the net force exerted on it. 
 
Isaac Newton, Philosophiae Naturalis Principia, 1687 

 
 
 

2.1 Introduction 

As in Chapter 1, from the large number of formulations of the conservation equ-
ations for multiphase flows, local volume averaging as founded by Anderson 
and Jackson, Slattery, and Whitaker was selected to derive rigorously the mo-
mentum equations for multiphase flows conditionally and divided into three ve-
locity fields. The heterogeneous porous-media formulation introduced by Gen-
try et al., commented on by Hirt, and used by Sha, Chao, and Soo, is then  
implanted into the formalism as a geometrical skeleton. Beyond these concepts, 
I perform subsequent time averaging. This yields a working form that is  
applicable to a large variety of problems. All interfacial integrals are suitably 
transformed in order to enable practical application. Some minor simplifications 
are introduced in the finally obtained general equation and working equations 
for each of the three velocity fields are recommended for general use in multi-
phase fluid dynamic analysis. 

This chapter is an improved and extended version of the work published in Ko-
lev (1994b). The strategy followed is: We first apply the momentum equations for 
each of the velocity fields, excluding the interfaces by replacing their actions by 
forces. Then, we write a force balance at the interfaces, considering them as im-
material and therefore inertialess. This interfacial force balance links the momen-
tum equations that are valid for the both sides of the interface. 
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2.2 Local volume-averaged momentum equations 

2.2.1 Single-phase momentum equations 

The time rate for change in momentum of a body relative to an inertial 
frame of reference equals the net force exerted on it (Newton).  

 
Applied to a single continuum, this principle results in Euler’s first law of conti-
nuum mechanics (Truesdell, 1968). When applied to each velocity field within the 
control volume, except the interface, this principle yields the well known local in-
stantaneous momentum equation 

( ) ( ) 0l l l l l l l lpτ τ τ τ τ∂ ρ ρ ρ
∂τ

+∇ ⋅ − +∇ + =V V V T g ,   (2.1) 

which is valid only inside the velocity field l excluding the interface. Here, the 
positive velocity direction gives the negative force direction – a commonly used 
definition. The total stress tensor is split into lpτ I  and l

τT . lpτ  is the static 

pressure inside field l, I is the unit matrix, and l
τT  is the shear stress tensor. l l

τ τV V  

is the dyadic product of two vectors l
τV and l

τV – see Appendix 1. It is a second-

order tensor. g is the vector of the gravitational acceleration. Equation (2.1) is the 
generally accepted balance of momentum for the single phase for velocities that 
are much smaller than the velocity of light. 

2.2.2 Interface force balance (momentum jump condition) 

Next, we abstract a volume around the interface having thickness ε  converging to 
zero. Mechanical decoupling of the control volume from the adjacent fields requires 
replacing the action of the forces on the volume by equivalent forces. In this case, 
Cauchy’s lemma holds:  
 

The stress vectors acting upon opposite sides of the same surface at a given 
point are equal in magnitude and opposite in direction, Truesdell (1968,   
p.32). 

 
Characterization of the interface surface tension: Consider two fluids with 
different densities, fluid m, and fluid l as presented in Fig. 2.1.  
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Fig. 2.1 Surface force – geometry definitions 

Fluid m is a gas and fluid l is a liquid, l mρ ρ> . A three-dimensional surface S, de-

scribed by the position vector ( ), ,S x y zr , separates both fluids. We call such fluids 

imiscible. The unit normal vector of the liquid interface ln  points outside the liquid 
l and is an important local characteristic of this surface. It is defined from the spatial 
distribution of the volume fraction of the field l as follows:  

 

( )
( )

l
l

l

α γ
α γ

∇
= −

∇
n .      (2.2) 

 

Due to different molecular attraction forces at the two sides of the surface a result-
ing attraction force with special properties arises at the surface. The force exists 
only at the surface and acts at the denser fluid l. This force is called surface force. 
The surface force per unit mixture volume is denoted by m

l
σf . The subscript l indi-

cates that the force acts at the field l, and the subscript mσ  indicates that the sur-
face is an interface with field m. From the surface S we extract an infinitesimal 
part Aδ  around the point ( ), ,S x y zr  so that 

l Aδ=δA n .       (2.3) 

The closed curve C contains Aδ . The closed curve C is oriented counterclock-
wise. Consider the infinitesimal directed line element ds called the arc length vec-
tor. The unit tangent vector to the surface S at C that is perpendicular to ds is t. In 
this case, the following relation holds: 

lds = ×t ds n .       (2.4) 

The surface force exerted on the surface Aδ  by the surface outside of Aδ  across 
the directed line element ds is equal to lm dsσ t . Here lmσ  is a material property 
being a force tangential to S per unit length called surface tension. It may vary 
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with surface properties such as temperature, concentration of the impurities of the 
liquid, etc. The net surface force on the element Aδ  is then obtained by sum-

ming all forces lm dsσ t  exerted on each element of arc length ds, lm

C

dsσ t . Using 

Eq. (2.4) gives 

lm lm l

C C

dsσ σ= × t ds n .      (2.5) 

The Stokes theorem, see Thomas et al. (1998) for derivation, allows one to transfer 
the integral over a closed curve to an integral over the surface closed by this curve 

( )l lm l l lm

C S

dAσ σ× = ×∇ × ds n n n .    (2.6) 

We see that for the infinitesimal surface Aδ  the surface force per unit interface is  

( ) ( ) ( )l l lm lm l l l lm lσ σ σ×∇ × = ×∇ × + ×∇ ×  n n n n n n .  (2.7) 

This force can be split into a normal and a tangential component by splitting the 
gradient into a sum of normal and tangential components 

n t∇ = ∇ +∇ ,       (2.8) 

where 

( )n l l∇ = ∇ ⋅n n       (2.9) 

and 

t n∇ = ∇ −∇ .       (2.10) 

Using this splitting and after some mathematical manipulation, Brackbill et al. 
(1992) simplified Eq. (2.7) and finally obtained the very important result, 

( ) ( )l l l lm l t lm l lm l t lmσ σ σ σ κ σ×∇ × = − ∇ ⋅ +∇ = +∇n n n n n ,  (2.11) 

where 

( ) ( )
( )

l
l l

l

α γ
κ

α γ
 ∇

= − ∇ ⋅ = ∇ ⋅  
∇  

n      (2.12) 

is the curvature of the interface defined only by the gradient of the interface unit 
vector. Equation (2.12) is used in Eq. (5.4) in Drazin and Reid (1981, p. 23). Note 
that the mathematical definition of curvature is the sum of the two principal 
curvatures which are magnitudes of two vectors. This sum is always positive. The 
expression resulting from Eq. (2.12) defines curvature with sign, which means with 
its orientation. The curvature is positive if the center of the curvature is in the fluid 
m. In other words, the positive curvature lκ  is oriented along the normal vector ln .  
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As an example, let us estimate the curvature of a liquid layer in stratified flow 
between two horizontal planes with a gap equal to H. The interface is described by 

the curve ( )2*
z

z x
H

α= =  being in the plane y = const. As coordinates we use 

( ), , *x y z . The gradient of the liquid volume fraction is then 

( ) ( ) ( ) ( ) ( )2 2 2 2
2

*
* *

x x x xz
x

x z x z x

α α α α
α

∂ ∂ ∂ ∂∂∇ = + = + = +
∂ ∂ ∂ ∂ ∂

i k i k i k . 

The magnitude of the gradient is then  

( ) ( )
1/ 22

2
2 1

x
x

x

α
α

 ∂  ∇ = +  ∂   
. 

The normal vector is 

( )
( )

( )

( ) ( )

2

2
2 1/ 2 1/ 22 2

2
2 2

1

1 1

x
x x
x x x

x x

α
α
α α α

 
 ∂
 ∇ ∂ = − = − +
 ∇    ∂ ∂       + +       ∂ ∂           

n i k . 

The curvature in accordance with Eq. (2.12) is then 

( ) ( )
( )

l
l l

l

α γ
κ

α γ
 ∇

= − ∇ ⋅ = ∇ ⋅  
∇  

n  

( )
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 ∂
 

∂ = ∇ ⋅ +
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1
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x zx x
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α α

∂
∂ ∂∂= +
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. 
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Bearing in mind that 

( )

( ) ( )

( )

2
2 2

1/ 2 3/ 22 2

2 2

1 * 0
*

1 1

x x

x x z
z x x

x x

α α

α α

∂ ∂
∂ ∂ ∂ ∂= − =
∂    ∂ ∂      + +      ∂ ∂         

, 

one finally obtains the well known expression 

( ) ( )
3/ 222

2 2
2 2

1
x x

x x

α α
κ

 ∂ ∂  = +  ∂ ∂   
. 

The higher pressure is in the fluid medium on the concave side of the interface, 
since surface force in case of constant surface tension is a net normal force  
directed toward the center of curvature of the interface.  

Note that the term lm lσ κ  becomes important for  

1/ 0.001l mκ < .       (2.13) 

The term t lmσ∇  can be expressed as 

( ) ( )
max

1

i
lm lm

t lm t l t il
il il

T C
T C

∂σ ∂σσ
∂ ∂=

∇ = ∇ + ∇ .    (2.14) 

These terms describe the well known Marangoni effect. 
The grid density for computational analysis can be judged by comparing the 

size of the control volume xΔ  with the curvature. Obviously, if and only if the 
volume is small enough, 

1lx κΔ < ,       (2.15) 

the curvature can be resolved by the computational analysis. 
 

No velocity variation across the interface: Consider the case for which there is no 
velocity variation across the interface (e.g., stagnant fluids) – Fig. 2.2.  

The interface pressure ,m
lp σ τ  is the normal force per unit surface acting on field 

l. This force acts inside the field l in the immediate vicinity of the interface and in 
the opposite direction on the interface control volume. It is different from the sur-
face force exerted by the pressure of the neighboring velocity field, ,l

mp σ τ . If there 
are no other forces except pressure and surface tension, we have 

, ,m l
l l m mp pσ τ σ τ+n n 0l lm lm l lσ σ κ+∇ + =n .    (2.16) 
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τσ ,m
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Fig. 2.2 Interface force equilibrium without mass transfer and Marangoni effect (Laplace) 

This equation is known as the Laplace equation. If, in addition, we have viscous 
forces acting on the two sides the momentum balance is 

( ) ( ), , , ,m m l l
l l l m m mp pσ τ σ τ σ τ σ τ− ⋅ + − ⋅T I n T I n 0l lm lm l lσ σ κ−∇ − =n . (2.17) 

Velocity variation across the interface: If mass is transferred from one to the other 
fluid for whatever reason, the interface moves in space not only convectively but 
is also controlled by the amount of mass transferred between the fields – Fig. 2.3. 
In this case, the interface velocity lm

τV  is not equal to the neighboring field veloci-
ties. The mass flow rate 

( ) ( )l l lm llm
w τ τρ ρ= − ⋅V V n   

enters the interface control volume and exerts the force ( )l l l lm l
τ τ τρ − ⋅V V V n  per 

unit surface on it. Note that this force has the same direction as the pressure force 

inside the field l. Similarly, we have a reactive force ( )m m m lm m
τ τ τρ − ⋅V V V n  exerted 

per unit surface on the control volume by the leaving mass flow rate. Assuming 
that the control volume moves with the normal component of the interface  
velocity, lm l

τ ⋅V n , we obtain the following force balance: 

( ) ( ), ,m m
l l l lm l l l lpτ τ τ σ τ σ τρ− − ⋅ + − ⋅V V V n T I n  

( ) ( )m m m m m m m mpτ τ τ τ τ
σ σ σρ− − ⋅ + − + ⋅V V V n I T n 0l lm lm l lσ σ κ−∇ − =n . (2.18) 
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Fig. 2.3 Definition of the interface characteristics 

This is the general form of the interfacial momentum jump condition. It is con-
venient to rewrite the above equation by using the mass jump condition at the 
interface 

( ) ( ) 0l l lm l m m lm m
τ τ τ τρ ρ− ⋅ + − ⋅ =V V n V V n ,   (2.19) 

which is Eq. (1.42). The result is  

( ) ( ), , , ,( ) 0l m m l
l l lm m l m l l m lm l l l lmp pτ τ τ τ σ τ σ τ σ τ σ τρ σ κ σ − − + − + − − ⋅ −∇ = V V V V I T T n  

   (2.20) 

or 

( ) ( ) ( ), , , , 0l m m l
m l m l l l m lm l l l lmlm

w p pτ τ σ τ σ τ σ τ σ τρ σ κ σ − + − + − − ⋅ −∇ = V V n T T n . 

   (2.21) 

The projection of this force to the normal direction is obtained by scalar multipli-
cation of the above equation with the unit vector ln . The result is 

( ) ( ) ( ), , , ,l m m l
m l l m l lm l l m l llm

w p pτ τ σ τ σ τ σ τ σ τρ σ κ  − ⋅ + − − + − ⋅ ⋅ V V n T T n n  

( ) 0l lm lσ− ∇ ⋅ =n .      (2.22) 

Using the mass conservation at the interface we finally have an important force 
balance normal to the interface 

( ) ( )2 , , , ,1 1 l m m l
m l lm l l m l llm

m l

w p pσ τ σ τ σ τ σ τρ σ κ
ρ ρ

   − + − − + − ⋅ ⋅    
T T n n  

( ) 0l lm lσ− ∇ ⋅ =n .      (2.23) 
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Neglecting all forces except those caused by pressure and interfacial mass 
transfer results in the surprising conclusion that during the mass transfer 
the pressure in the denser fluid is always larger than the pressure in the 
lighter fluid independently of the direction of the mass transfer – Delhaye 
(1981, p. 52, Eq. (2.64)). 

 

For the limiting case of no interfacial mass transfer and dominance of the 
pressure difference, the velocity of the interface can be expressed as a function of 
the pressure difference and the velocities in the bulk of the fields, 

( )
, ,

, ,

, ,

l m
n n m l

lm l n n
l m l

p p
V V

V V

σ τ σ τ
τ τ

τ τρ
−= −
−

.     (2.24) 

This velocity is called contact discontinuity velocity. Replacing the discontinuity 
velocity with Eq. (1.42), we obtain 

( ) ( )2, , , ,n n m ll m
l m l m

l m

V V p pτ τ σ τ σ τρ ρ
ρ ρ
−− = − .    (2.25) 

For the case l mρ ρ>> , we have the expected result that the pressure difference 

equals the stagnation pressure at the side of the lighter medium 

( )2, , , ,m l n n
l m m l mp p V Vσ τ σ τ τ τρ− = − .    (2.26) 

2.2.3 Local volume averaging of the single-phase  
momentum equation 

The aim here is to average Eq. (2.1) over the total control volume – see Fig. 2.4. 
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for field  onlyl 
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for Vol

Local volume
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Fig. 2.4 Definition regions for single-phase instantaneous momentum balance and the local 
volume average balance 
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The mathematical tools used to derive local volume-averaged field conservation 
equations for the property being any scalar, vectorial, or tensorial function of time 
and location are once again Slattery–Whitaker’s spatial averaging theorem, to-
gether with the Gauss–Ostrogradskii theorem and the general transport equation 
(Leibnitz rule), see Anderson and Jackson (1967), Slattery (1967), Whitaker (1967, 
1985, 1969), and Gray and Lee (1977). Applying the local volume average to Eq. 
(2.1), the following is obtained: 

( ) ( ) ( ) 0l l l l l l l lpτ τ τ τ τ∂ ρ ρ ρ
∂τ

+ ∇ ⋅ − ∇ ⋅ + ∇ + =V V V T g , (2.27) 

or using Eqs. (1.28), (1.32), and (1.28), (Kolev, 1994), 

l l l l l
τ τ τ∂ ρ ρ

∂τ
+ ∇ ⋅V V V ( ),1

l lw

l l l l l l l

F F

p dF
Vol

σ

τ τ τ τ σ τρ
+

+∇ ⋅ − + − ⋅I T V V V n  

( )1
0

l lw

l l l l

F F

p dF
Vol

σ

τ τ ρ
+

− − + ⋅ + = I T n g .    (2.28) 

The volume average momentum equation can be rewritten using the weighted 
average, see Eq. (1.19), Kolev (1994), 

,
/

le le l

l l l l

ρτ τρ ρ=V V ,      (2.29) 

and 

/
lele le l

l l l l ll

τ τ τ τρ ρ=V V V V .    (2.30) 

The result is 

( ) ( ) ( )le le le lel le e
l v l l l l l l l l

τ τ τ τ∂ α γ ρ α γ ρ α γ
∂τ

+ ∇ ⋅ −∇ ⋅V V V T  

( ) ( ), ,1

l

le le m m
l l l v l l l l l l lm l

F

p p dF
Vol

σ

τ σ τ σ τ τ τ τα γ α γ ρ ρ +∇ + − − + − − ⋅ g I T V V V n  

( ), ,1
0

lw

w w
l l l l l lw l

F

p dF
Vol

σ τ σ τ τ τ τρ − − + − − ⋅ =  I T V V V n .  (2.31) 

We assume that the weighted average of products can be replaced by the products 
of the average. This should be borne in mind when constructing a numerical algo-
rithm for solving the final system and selecting the size of the finite volume so as 
to be not so large as to violate the validity of this assumption. 

Note the differences between Eq. (2.31) and the final result obtained by Ishii 
(1975), Eq. (3.16): 

 

(a) the directional permeability is used here instead of the volumetric porosity in 
the pressure gradient term, and 
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(b) as for the mass conservation equation in Kolev (1994a), the volumetric porosity 
is kept below the time differential since it can be a function of time in a num-
ber of interesting applications. 

 

For the case 1vγ γ= =  and one-dimensional flow, Eq. (2.31) reduces to Eq. (15) 
derived by Delhaye in Hetstrony (1982, p. 163).  

Equation (2.31), the rigorously derived local volume average momentum equa-
tion, is not amenable to direct use in computational models without further trans-
formation. In order to facilitate its practical use  

 

(a) the integral expression must be evaluated, and  
(b) the time averaging must be performed subsequently.  

 

These steps, which go beyond Sha et al. (1984), are performed in Sects. 2.3 and 2.4. 

2.3 Rearrangement of the surface integrals 

The expression under the surface integral is replaced by its equivalent from the 
momentum jump condition, Eq. (2.18): 

( ) , ,1

l

m m
l l l lm l l l

F

p dF
Vol

σ

τ τ τ σ τ σ τρ − − − + − ⋅  V V V T I n  

( ){ }, ,1

l

l l
m m m m m m lm l l l lm

F

p dF
Vol

σ

τ τ τ σ τ σ τ
σρ σ κ σ = − − − + − + ⋅ + ∇  V V V T I n . (2.32) 

Note that there are no surface force terms in Eq. (2.31). Equation (2.32) reflects 
the action of the surface forces and the action of the stresses caused by the sur-
rounding field m on l. Note also that if the momentum equations are written for 
two neighboring fields the interface forces will appear in both equations with op-
posite sign only if the equations are applied to a common dividing surface. Other-
wise, the exchange terms in question will be nonsymmetric. 

The intrinsic surface-averaged field pressure at the entrances and exits of the 

control volume crossing the field m is 
me

mpτ . We call it bulk pressure inside the 

velocity field m at this particular surface. The interfacial m-side pressure ,l
mp σ τ  can 

be expressed as the sum of the intrinsic averaged pressure, 
me

mpτ , which is not a 

function of the position at the interface inside the control volume and can be taken 
outside of the integral sign, and a pressure difference ,l

mp σ τΔ , which is a function 
of the position at the interface in the control volume 

, ,mel l
m m mp p pσ τ τ σ τ= + Δ .      (2.33) 

The same is performed for all other fields. Similarly, the surface pressure of the 
field structure interface is expressed as 
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, ,lew w
l l lp p pσ τ τ σ τ= + Δ .     (2.34) 

The interfacial pressure differs from the bulk pressures of the corresponding 
fields mσ , and lw, , 0l

mp σ τΔ ≠  and , 0w
lp σ τΔ ≠ . This occurs because obstacles to 

the continuous phase can cause local velocity decreases or increases at the inter-
face velocity boundary layer, resulting in increased or decreased pressure relative 
to bulk pressure. In order to estimate the surface integrals the exact dependence 
of the pressure as a function of the position at the interface inside the control vo-
lume must be elaborated for each idealized flow pattern and form of the struc-
ture. The same is valid for the viscous shear stresses ,l

m
σ τT  and ,w

l
σ τT . Note that 

in order to estimate the interfacial pressure integrals for practical use of the 
momentum equations the time averaging must be performed first to make it 
admissible to use the real pressure distributions measured experimentally on bo-
dies in turbulent flow. 

Substituting Eqs. (2.32)–(2.34) into Eq. (2.31), we obtain 

( ) ( ) ( )le le le lel le e
l v l l l l l l l l

τ τ τ τ∂ α γ ρ α γ ρ α γ
∂τ

+ ∇ ⋅ −∇ ⋅V V V T  

( )lee
l lpτα γ+ ∇ l

l v lα γ ρ+ g
1 1

l lw

me le

m l l l

F F

p dF p dF
Vol Vol

σ

τ τ+ + n n  

( ){ }, ,1

l

l l
m m m m m lm lm l l t lm

F

p dF
Vol

σ

σ τ σ τ τ τ τρ σ κ σ − −Δ + − − + ⋅ + ∇  I T V V V n  

( ), ,1
0

lw

w w
l l l l l lw l

F

p dF
Vol

σ τ σ τ τ τ τρ − −Δ + − − ⋅ =  I T V V V n .  (2.35) 

Keeping in mind that 
me

mpτ  and 
le

lpτ  are not functions of the interface posi-

tion inside the control volume, and making use of Eq. (1.32) (see also Kolev 
(1994)), the bulk pressure integrals can then be rewritten as follows: 

1 1

l lw

me le

m l l lw

F F

p dF p dF
Vol Vol

σ

τ τ+ n n  

( ) ( ) 1

lw

me le mee
m l l m l

F

p p p dF
Vol

τ τ τα γ= − ∇ + −  n .  (2.36) 

Rearranging the surface tension integrals: The surface force per unit volume of 
the mixture is, in fact, the local volume average of the surface tension force 

( )1

l

m
l l lm t lm

F

dF
Vol

σ

σ σ κ σ= − + ∇f n .    (2.37) 

Note that the orientation of this force is defined with respect the coordinate system 
given in Fig. 2.1. Using Eq. (1.29) we have 



2.3 Rearrangement of the surface integrals      53 

( )1 1

l l

m
l lm l l lm t lm

F F

dF dF
Vol Vol

σ σ

σ σ κ σ κ σ= − − ∇ f n  

( ) ( )1 1

lw l

e
lm l l l t lm

F F

dF dF
Vol Vol

σ

σ κ α γ σ
 

= ∇ + − ∇ 
  

 n ,   (2.38) 

with normal  

( ) ( )
( ) ( ),

1 1

lw lw

lm e e
l n lm l l l lm l l

lF F

dF dF
Vol Vol

σ α γ
σ κ α γ σ α γ

α γ
    ∇

= ∇ + = ∇ ⋅ ∇ +    
∇        

 f n n     

for  0lα >        (2.39) 

and tangential  

( ),

1

l

m
l t t lm lm t lm

F

dF a
Vol

σ

σ σ σ= − ∇ ≈ − ∇f     (2.40) 

surface force components per unit volume of the mixture, respectively. Here lma  
is the interfacial area density. In the literature, the local volume averaged surface 
force is sometimes called the continuum surface force or abbreviated as CSF, see 
Brackbill et al. (1992). 

Note that if the surface tension is a constant in space there is no resulting tan-
gential force component. At plane surfaces the curvature is zero and therefore 
there is no normal force acting at the liquid. If the liquid consists of clouds of 
spheres the local surface force creates only a difference in pressures inside and 
outside the sphere, but there is no net force influencing the total movement either 
of a single droplet or of the cloud of the droplets in the space due to this force. We 
express this fact by multiplying the surface force by the function 1δ  being 1 for 
the continuum and 0 for the disperse field. 

Using Eqs. (2.36) and (2.38) the pressure and the surface tension terms can be 
rearranged as follows: 

( ) 1 1

l lw

le me lee
l l m l l l

F F

p p dF p dF
Vol Vol

σ

τ τ τα γ∇ ⋅ + + n n  

( )1

l

l lm t lm

F

dF
Vol

σ

σ κ σ− +∇ n  

( ) ( ) ( )
( ) ( )

1

1 1

lw

lw l

le me le mee e
l l m l l m l

F

e
l lm l l l l t lm

F F

p p p p dF
Vol

dF dF
Vol Vol

σ

τ τ τ τα γ α γ

δ σ κ α γ δ σ

= ∇ ⋅ − ∇ + −

 
+ ∇ + − ∇ 

  



 

n

n
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( ) ( ) 1

lw

le le mee e
l l l m l lm l l l

F

p p p dF
Vol

τ τ τα γ δ σ κ α γ
 

= ∇ + − + ∇ +  
 

 n  

( )1

l

l t lm

F

dF
Vol

σ

δ σ− ∇ .      (2.41) 

Note that in Eq. (2.41) 

lee
l lpτα γ∇ ⋅   

stands for  

( ) ( )le lee e
l l l lp pτ τα γ α γ∇ ⋅ − ∇ ⋅ . 

Rearranging the integrals defining interfacial momentum transfer due to mass 
transfer: Again using the mass jump condition at the interface, which is Eq. 
(1.42), 

( ) ( )m m m lm l m l lm
τ τ τ τ τ τρ ρ− = −V V V V V V ,    (2.42) 

the surface integral is rearranged as follows: 

( ) ( )1 1

l l

m m m lm l l m l lm l

F F

dF dF
Vol Vol

σ σ

τ τ τ τ τ τρ ρ   − − − ⋅ = − ⋅    V V V n V V V n . (2.43) 

For practical applications, the mass source term is split into nonnegative compo-
nents, as has already been explained in Chap. 1 (see also Kolev (1994a)). In addi-
tion, it is assumed that the mass emitted from a field has the velocity of the donor 
field. As a result, the local volume-averaged interfacial forces related to mass 
transfer through the interfaces can be rewritten as follows: 

 

(a) The components related to mass injection into, or suction from, the field 
through the field structure interface are replaced by the “donor” hypothesis 

( ) ( )1

lw

we le

l m l lw l v wl w lw l

F

dF
Vol

τ τ τ τ τ τ τρ γ μ μ − − ⋅ = −  V V V n V V . (2.44) 

(b) The components due to evaporation, condensation, entrainment, and deposi-
tion are replaced by the “donor” hypothesis 

( ) ( )3

1

1

l

me le

l l l l l v ml m lm l
mF

dF
Vol

σ

τ τ τ τ τ τ τ
σρ γ μ μ

=

 − − ⋅ = −   V V V n V V . (2.45) 

The sum of all interface mass transfer components is then 

( )3,

1

w me le

v ml m lm l
m

τ τ τ τγ μ μ
=

− V V .     (2.46) 
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Thus, the final form obtained for the local volume average momentum equation is 
as follows: 

( ) ( ) ( )le le le lel l le e
l v l l l l l l l l l v l

τ τ τ τ∂ α γ ρ α γ ρ α γ α γ ρ
∂τ

+ ∇ ⋅ −∇ ⋅ +V V V T g  

( ) ( ) 1

lw

le le mee e
l l l m l lm l l l

F

p p p dF
Vol

τ τ τα γ δ σ κ α γ
 

+ ∇ + − + ∇ +  
 

 n  

( ) ( ), ,1 1

l l

l l
l t lm m m l

F F

dF p dF
Vol Vol

σ σ

σ τ σ τδ σ− ∇ + Δ − ⋅  I T n  

( ), ,1

lw

w w
l l l

F

p dF
Vol

σ τ σ τ+ Δ − ⋅ I T n ( )3,

1

w me le

v ml m lm l
m

τ τ τ τγ μ μ
=

= − V V , (2.47) 

and is independent of whether the field is structured or nonstructured. Before we 
continue with the estimation of the remaining integrals, we will first perform a 
time averaging of Eq. (2.47). 

2.4 Local volume average and time average 

The instantaneous surface-averaged velocity of the field l, 
le

l
τV , can be ex-

pressed as the sum of the surface-averaged velocity, which is subsequently time-
averaged,  

le

l lV τ= V        (2.48) 

and a pulsation component lV ′ , 

le

l l lV Vτ ′= +V ,      (2.49) 

as proposed by Reynolds. The fluctuation of the velocity is the predominant fluc-
tuation component relative to, say, the fluctuation of lα  or lρ . Introduction of Eq. 
(2.49) into the momentum conservation equation and time averaging yields 

( ) ( ) ( )e e
l l l v l l l l l l l l l l

∂ α ρ γ α ρ γ α γ ρ δ
∂τ

 ′ ′+ ∇ ⋅ + ∇ ⋅ − V V V V V T e
l l l v lpα γ α γ ρ+ ∇ + g  

( ) ( ) ( )1 1

lw l

e
l m l lm l l l l t lm

F F

p p dF dF
Vol Vol

σ

δ σ κ α γ δ σ
 

+ − + ∇ + − ∇  
 

 n  

( )1

l

l l
m m l

F

p dF
Vol

σ

σ σ+ Δ − ⋅ I T n ( )1

lw

w w
l l l

F

p dF
Vol

σ σ+ Δ − ⋅ I T n  
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( )
3,

1

w

v kl k lk l
k
k l

γ μ μ
=
≠

= − V V ,     (2.50a) 

see also Appendix 2.1. It is evident from Eq. (2.50a) that the products of the pulsa-
tion velocity components, called Reynolds stresses, act on the flow, introducing 
additional macroscopic cohesion inside the velocity field. Equation (2.50a) is ap-
plied on the field l including the surface up to the m-side interface.  

For dispersed flows it is convenient to have also the momentum equation of the 
continuum in a primitive form without using the momentum jump condition. In 
this case, the time average of Eq. (2.31) for field m after introducing Eq. (2.33) is  

( ) ( ) ( )e e
m m m v m m m m m m m m m m

∂ α ρ γ α ρ γ α γ ρ δ
∂τ

 ′ ′+ ∇ ⋅ + ∇ ⋅ − V V V V V T m v mα γ ρ+ g  

e
m mpα γ+ ∇ ( )1

m

l l
m m l

F

p dF
Vol

σ

σ σ− Δ − ⋅ I T n ( )1

mw

w w
m m m

F

p dF
Vol

σ σ+ Δ − ⋅ I T n  

( )
3,

1

w

v km k mk m
k
k m

γ μ μ
=
≠

= − V V .     (2.50b) 

Comparing Eq. (2.50a) with Eq. (2.50b) we realize that the term 

( )1

m

l l
m m l

F

p dF
Vol

σ

σ σ− Δ − ⋅ I T n  

appears in both equations with opposite sign. For practical computation we rec-
ommend the use of a couple of equations having common interface in order to eas-
ily control the momentum conservation at the selected common interface.  

2.5 Dispersed phase in a laminar continuum – pseudo 
turbulence 

It is known that even low-velocity potential flow over a family of spheres is asso-
ciated with natural fluctuations of the continuum. The produced oscillations of the 
laminar continuum are called pseudo turbulence by some authors. The averaged 
pressure over the dispersed particles surface is smaller than the volume averaged 
pressure. Therefore, in flows with spatially changing concentration of the disperse  
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phase, an additional force acts towards the concentration gradients. For bubbly 
flow, Nigmatulin (1979) obtained the analytical expression 

2

4
0 0

20
3

0 0
20

3
0 0

20

c c cd′ ′− = ΔV V V . 

Van Wijngaarden (1982) used this expression multiplied by dα . 

2.6 Viscous and Reynolds stresses 

The solid body rotation and translation of the fluid element does not cause any de-
formation and, therefore, no internal viscous stresses in the fluid. Only the defor-
mation of the fluid element causes viscous stress resisting this deformation. For 
estimation of the relationship between deformation and viscous stress, the heuris-
tic approach proposed by Helmholtz and Stokes (1845a and b) can be used for the 
continuous, intrinsic isotropic, nonstructured field, see Schlichting (1959, p. 58). 
The background conditions behind this approach will now be recalled: (a) the field 
is a continuum, (b) small velocity changes are considered, (c) only the linear part 
of the Taylor series is taken into account, and (d) linear dependence between 
stresses and velocity deformations (Newtonian continuum). The mathematical 
notation for this hypothesis is 

( ) ( ) ( )2 2
2

3 3
T

η η η   = ∇ + ∇ − ∇ ⋅ = − ∇⋅      
T V V V I D V I  

1
2

3

1
2

3

1
2

3

u v u w u

x x y x z

u v v w v

y x y y z

u w v w w

z x z y z

η

 ∂ ∂ ∂ ∂ ∂ − ∇ ⋅ + +  ∂ ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂ ∂ = + − ∇⋅ + ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂  + + − ∇ ⋅  ∂ ∂ ∂ ∂ ∂  

V

V

V

, (2.51) 

where T is the second-order tensor for the viscous momentum flux, ∇V is the 
dyadic product of the nabla operator and the velocity vector (a second-order 
tensor), and T  designates the transposed tensor. Note that the nabla operator of 
the velocity vector,  

∇ = +V D W  

consists of a symmetric part  
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( )1

2
T = ∇ + ∇ D V V , 

called deformation rate, and a skew part  

( )1

2
T = ∇ − ∇ W V V  

called spin or vortices tensor.  

u v w

x y z

∂ ∂ ∂∇ ⋅ = + +
∂ ∂ ∂

V  

is the divergence of the velocity vector. Stokes called the term containing 
the divergence of the velocity vector the rate of cubic dilatation. The hypothe-
sis says that the relation between viscous stresses and the deformation rate of a 
control volume is linear and the proportionality factor is the dynamic viscosi-
tyη , that solid body translations and rotations do not contribute to the viscous 

forces, that the share stresses are symmetric, and that the relation between vo-
lumetric and the share viscosity is such that the pressure always equals one 
third of the sum of the normal stresses. Stokes ingeniously argues each of 
these points in his paper. In the multiphase continuous field models, as long as 
they are resolved with very fine grids this stress tensor reflects the real one.  
I recommend to anyone having the serious intention to understand flows to 
study this paper. Alternatively, see Schliching (1959, p.60), where it is ex-
plained that Eq. (2.51) contains the Stokes result for the relation of the bulk 
viscosity equal to −2/3 dynamic viscosity. From the mechanical equilibrium 
condition for all angular momenta around an axis for vanishing dimensions of 
the control volume, one obtains the symmetry of the components of the visc-
ous stress tensor, see Schlichting (1959, p. 50)  for the Cartesian coordinates. 

For practical use it is convenient to write the viscous stress tensor for Cartesian 
and cylindrical coordinates as follows: 

( )

( )

( )

1 1
2

3

1 1 1 1
2

3

1 1
2

3

u u v v u w

r r z rr r

u v v v v v w

r zr r r r r

u w v w w

z r z zr

κ κ

η κ κ κ κ κ

κ

κ
θ

η κ κ
θ θ θ

θ

 ∂ ∂ ∂ ∂ ∂ − ∇ ⋅ − + +  ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂ = − + + − ∇ ⋅ +  ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂  + + − ∇ ⋅  ∂ ∂ ∂ ∂ ∂  

V

T V

V

, 

where 

( )1 1 v w
r u

r zr r
κ

κ κ θ
∂ ∂ ∂∇ ⋅ = + +
∂ ∂ ∂

V . 
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For cylindrical coordinates κ = 1. For Cartesian coordinates set κ = 0 and replace 
r , θ , z with x, y, z, respectively. 

Now let us step to the turbulence stress tensor l l lρ ′ ′− V V  called the Reynolds 
stress tensor. The search for a quantitative estimation of the Reynolds stresses for 
multiphase flows is in its initial stage. A possible step in the right direction, in 
analogy to single-phase turbulence, is the use of the Boussinesq hypothesis (1877) 
for the viscosity of turbulent eddies inside the velocity field. Boussinesq intro-
duced the idea of turbulent eddy viscosity inside the velocity field, 

( )2
2

3
t

l l l l l lρ η  ′ ′− = − ∇ ⋅  
V V D V I  

1
2

3

1
2

3

1
2

3

t
l

l

u v u w u

x x y x z

u v v w v

y x y y z

u w v w w

z x z y z

η

 ∂ ∂ ∂ ∂ ∂ − ∇ ⋅ + +  ∂ ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂ ∂ = + − ∇ ⋅ + ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂  + + − ∇⋅  ∂ ∂ ∂ ∂ ∂  

V

V

V

, (2.52) 

so that it has the same structure as the Stokes hypothesis. The corresponding Rey-
nolds stresses are  

,
1

2
3

t l
l l l l xx l l

u
u u

x
ρ τ η ∂ ′ ′ ′− = = − ∇ ⋅ ∂ 

V ,  

,
1

2
3

t l
l l l l yy l l

v
v v

y
ρ τ η  ∂′ ′ ′− = = − ∇ ⋅ ∂ 

V ,  

,
1

2
3

t l
l l l l zz l l

w
w w

y
ρ τ η  ∂′ ′ ′− = = − ∇ ⋅ ∂ 

V ,  

,
t l l

l l l l xy l
v u

u v
x y

ρ τ η  ∂ ∂′ ′ ′− = = + ∂ ∂ 
,   

,
t l l

l l l l xz l
w u

u w
x z

ρ τ η ∂ ∂ ′ ′ ′− = = + ∂ ∂ 
,   

,
t l l

l l l l yz l
w v

v w
y z

ρ τ η  ∂ ∂′ ′ ′− = = + ∂ ∂ 
.  

The dynamic turbulent viscosity now is a flow property and remains to be esti-
mated. Note that at a given point this is a single value for all directions. Strictly 
speaking, this approach is valid for isotropic turbulence because there is a single 
eddy viscosity assumed to be valid for all directions. 



60      2 Conservation of Momentum 

An alternative notation of the term ( )e
l l l lα ρ γ ′ ′∇ ⋅  V V  is given here for iso-

tropic turbulence, for which  

2

3l l l l l lu u v v w w k′ ′ ′ ′ ′ ′= = = :     (2.53) 

( )

ee e
y l l l lx l l l l z l l l l

ee e
y l l l le x l l l l z l l l l

l l l l

ee e
y l l l lx l l l l z l l l l

u vu u u w

x y z

v vv u v w

x y z

w vw u w w

x y z

γ α ργ α ρ γ α ρ

γ α ργ α ρ γ α ρα ρ γ

γ α ργ α ρ γ α ρ

′ ′ ∂′ ′ ′ ′∂ ∂
+ + 

∂ ∂ ∂ 
 ′ ′∂′ ′ ′ ′∂ ∂  ′ ′∇ ⋅ = + +   ∂ ∂ ∂
 

′ ′∂′ ′ ′ ′∂ ∂ + +  ∂ ∂ ∂ 

V V  

e e
y l l l l z l l l l

e e
x l l l l z l l l l

ee
y l l l lx l l l l

u v u w

y z

v u v w

x z

w vw u

x y

γ α ρ γ α ρ

γ α ρ γ α ρ

γ α ργ α ρ

′ ′ ∂ ′ ′∂
+ 

∂ ∂ 
 ′ ′ ′ ′∂ ∂ = +

∂ ∂ 
 ′ ′∂′ ′∂ +
 ∂ ∂ 

( )2

3
e
l l lkγα ρ+ ∇  

( )2

3
e

l l l lkγα ρ= − + ∇S ,       (2.54) 

where 

e t e tl l l l
y l l l z l l l

e t e tl l l l
l x l l l z l l l

e t e tl l
x l l l y l l l

v u w u

y x y z x z

v u w v

x x y z y z

w u

x x z y

γ α ρν γ α ρν

γ α ρν γ α ρν

γ α ρν γ α ρν

 ∂ ∂  ∂ ∂  ∂ ∂  + + +     ∂ ∂ ∂ ∂ ∂ ∂     
   ∂ ∂ ∂ ∂   ∂ ∂= + + +      ∂ ∂ ∂ ∂ ∂ ∂      

 ∂ ∂ ∂ ∂ + +  ∂ ∂ ∂ ∂  

S

l lw v

y z

 
 
 
 
 
 
 
  ∂ ∂ 

+    ∂ ∂   

. (2.55) 

Here the diagonal symmetric term ( )2

3
e
l l lkγα ρ∇  is considered as a dispersion 

force and is directly computed from the turbulent kinetic energy delivered by the 
turbulence model. 

It is important to emphasize that, in spite of the fact that several processes in 
single-phase fluid dynamics can be successfully described by the Helmholtz–
Stokes and by the Boussinesq hypotheses; these hypotheses have never been de-
rived from experiments or proven by abstract arguments. This limitation of the 
hypotheses should be borne in mind when they are applied. 



2.7 Nonequal bulk and boundary layer pressures      61 

While the heuristic approach proposed by Helmholtz and Stokes, Eq. (2.51), is 
valid only for the continuous part of each velocity field, the Boussinesq hypothesis 
is useful for continuous and disperse velocity fields. This behavior is again  
described here by introducing for each velocity field the multiplier lδ  in Eq. 

(2.50), where lδ = 0 for dispersed field and lδ = 1 for continuous nonstructured 
fields. 

For a single field, lδ = 1, the description of the viscous and Reynolds stresses 
reduces to the widely accepted expression. 

It is plausible to define the turbulent pressure as 

( )2 1

3 3l l l lp k u u v v w wρ ρ′ ′ ′ ′ ′ ′ ′= = + + ,    (2.56) 

and to consider the term e
l lpα γ ′− ∇  as absorbed from the pressure term  e

l lpα γ ∇  
and the term 

( ) 1 1

l lw

e
l l l l l l

F F

p p dF p dF
Vol Vol

σ

α γ′ ′ ′− ∇ = + n n    (2.57) 

as included in the pressure differences between the bulk pressure and boundary 
layer pressure. This could mean that lp′  no longer needs to appear in the notation. 
Until the correctness of this agglomeration of the terms is not strictly proven I do 
not recommend it. 

It is interesting to note that from the kinetic theory for two colliding particles 
plus their added mass the following is obtained:  

( ) ( ) 21
 

3
e e vm
l l l l l m lp cα γ α γ ρ ρ ′ ′∇ ≈ ∇ +  

V .    (2.58) 

2.7 Nonequal bulk and boundary layer pressures 

2.7.1 Continuous interface 

2.7.1.1 3D flows 

Examples for the existence of continuous interfaces are the stratified pool, see Fig. 
2.5, and annular pipe flow.  

The treatment of the interface depends very much on the numerical method 
used. If the numerical method is able to resolve the interface itself and the two at-
tached boundary layers (see, for instance, Hirt and Nichols (1981) for more infor-
mation), the interface momentum jump condition is the only information needed 
to close the mathematical description of the interface. If this is not the case, spe-
cial treatment of the processes at the interface is necessary. In this section we dis-
cuss some possibilities.  
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θ

r

z

fieldl −
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t
lmVΔ

lmVΔ
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Fig. 2.5 Continuous interface 

Consider a liquid (l)-gas (m) flow without mass transfer. The computational cells 
are so large that the surface is at best represented by piecewise planes at which the 
surface tension is neglected. The compressibility of the gas is much larger than the 
compressibility of the liquid. In this case, we can assume that there is almost no 
difference between the bulk and liquid side interface pressure 

0m
lp σΔ = .       (2.59) 

The pressure change across the gas side boundary layer is then approximated by 
the stagnation pressure  

( ) ( )2 2l n n n n n
m m l m m lm l mp V V sign V Vσ ρ ρΔ = − = Δ −V ,  (2.60) 

see Fig. 2.6. The normal velocity difference required in the above expression can 
be obtained by splitting the relative velocity vector at the interface lmΔV  into a 

component that is parallel to ln  

( )
l

n lm l
lm lm l lm l l

l l

proj
 Δ ⋅Δ = Δ = = Δ ⋅ ⋅ 

n

V n
V V n V n n

n n
,   (2.61) 

with a magnitude 

( ) ( ) ( )22 2n
lm lm l lx l m ly l m lz l mn u u n v v n w w Δ = Δ ⋅ = − + − + −       V V n   (2.62) 

and a component orthogonal to ln ,  

( )
l

t
lm lm lm lm lm l lprojΔ = Δ − Δ = Δ − Δ ⋅eV V V V V n n  

( ) ( ) ( )   lm lx lm l lm ly lm l lm lz lm lu n v n w n     = Δ − Δ ⋅ + Δ − Δ ⋅ + Δ − Δ ⋅     V n i V n j V n k . 

   (2.63) 
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Fig. 2.6 Stagnation pressure in stratified flow 
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Fig. 2.7 Geodesic pressure force 

In a similar way, the stagnation pressure difference at the field-structure interface 
can be estimated, 

( ) ( )2w n n n n
l l l w l wp V V sign V Vσ ρΔ = − − .    (2.64)

 
For the case of l

mp constσΔ ≈  within Vol the following can be written: 

1 1

l l

l l
m l m l

F F

p dF p dF
Vol Vol

σ σ

σ σΔ = Δ n n ( ) 1

lw

l e
m l l

F

p dF
Vol

σ α γ
 

= −Δ ∇ + 
  

 n . 

    (2.65) 

For n n
l m>V V  and decreasing e

lα γ  in space, this force resists the field l. If there is 

no difference in the average normal velocities at the interface the above term is ze-
ro. 

If the tangential average velocity difference differs from zero, there is a tangen-
tial viscous shear force 

1

l

t t
m l ml lm lm

F

dF c
Vol

σ

σ σ− ⋅ = Δ Δ T n V V .    (2.66) 

Here mlc  has to be computed using empirical correlation in the case of the large 
scale of the cells not resolving the details of the boundary layer. For a wavy sur-
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face, the interface share coefficient should be increased by a component for form 
drag caused by the nonuniform pressure distribution, which results in an additional 
tangential force. Similarly, the viscous shear stress of the wall is 

1

lw

t t
lw lw wl l l

F

dF c
Vol

− ⋅ = T n V V ,     (2.67) 

where, like in the previous case, wlc  has to be computed using empirical correla-
tion. Note that in the case of stratified rectangular duct flow in the z direction, see 
Fig. 2.7, the change in the liquid thickness causes a lateral geodesic pressure force 

l
v l v l

l

ddy dy

dz d dz

αγ ρ γ ρ
α

=g g .     (2.68) 

Here y is the distance between the bottom of the duct and the center of mass of the 
liquid. In three-dimensional models this force automatically arises due to differ-
ences in the local bulk pressure having the geodesic pressure as a component. This 
force should be taken into account in one-dimensional models. If this force is neg-
lected, the one-dimensional model will not be able to predict water flow in a hori-
zontal pipe with negligible gas-induced shear. In the next section we consider this 
problem in more detail. 

2.7.1.2 Stratified flow in horizontal or inclined rectangular channels 

Geometrical characteristics: Stratified flow may exist in regions with such rela-
tive velocities between the liquid and the gas which does not cause instabilities 
leading to slugging. 

Some important geometrical characteristics are specified here – compare with 
Fig. 2.8. The perimeter of the pipe is then 

( )1 2wPer a H= + ,      (2.69) 

and the wetted perimeters for the gas and the liquid parts are 

( )1 2 12 2w FPer a H a Hδ α= + − = + ,    (2.70) 

2 1 22 2w FPer a a Hδ α= + = + .     (2.71) 
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Fig. 2.8 Definition of the geometrical characteristics of the stratified flow 

The gas-–liquid interface median is then a, and the liquid level 

 2 2F Hδ α= .       (2.72) 

The hydraulic diameters for the gas and the liquid for computation of the pressure 
drop due to friction with the wall are, therefore, 

1
1 1 1

1

4
4 /

2h w

aH
D F Per

a H

αα
α

= =
+

,     (2.73) 

2
2 2 2

2

4
4 /

2h w

aH
D F Per

a H

αα
α

= =
+

 ,    (2.74) 

and the corresponding Reynolds numbers 

1 1 1 1
1

1 1

4
Re

2

w aH

a H

α ρ α
η α

=
+

,     (2.75) 

2 2 2 2
2

2 2

4
Re

2

w aH

a H

α ρ α
η α

=
+

.     (2.76) 

Here F is the channel cross-section and Per1w and Per2w are the perimeters wet by 
gas and film, respectively. If one considers the gas-core of the flow, the hydraulic 
diameter for computation of the pressure loss component due to the gas-liquid fric-
tion is then 

( ) 1
12 1 1

1

2
4 /h w

aH
D F Per a

a H

αα
α

= + =
+

    (2.77) 

and the corresponding Reynolds number 

1 1 1 2 1
1

1 1

2
Re

w w aH

a H

α ρ α
η α

−
=

+
.     (2.78) 

The gas-wall, liquid-wall, and gas-liquid interfacial area densities are 
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1 1
1

2w
w

Per a H
a

F aH

α+= = ,     (2.79) 

2 2
2

2w
w

Per a H
a

F aH

α+= = ,     (2.80) 

12

1a
a

F H
= = .       (2.81) 

For the estimation of the flow pattern transition criterion, the following expression 
is sometimes required: 

2

2

1

F

d

d H

α
δ

= .       (2.82) 

Using the geometric characteristics and the Reynolds numbers the interfacial inte-
raction coefficients can be computed by means of empirical correlations as dis-
cussed in Volume II of this monograph.  

 

Gravitational (hydrostatic) pressure variation across the flow cross-section of ho-
rizontal pipe: In stratified flow the gravitation is a dominant force. The cross-
section averaged gas gravity pressure difference with respect to the interface is 

2
1 1 1 2

H
p gσ ρ αΔ = .      (2.83) 

The cross-section averaged liquid gravity pressure difference with respect to the 
interface is  

1
2 2 2 2

H
p gσ ρ αΔ = − .      (2.84) 

The cross-section averaged field pressures in terms of the interfacial pressure are 
then 

2 2 2
1 1 1 1 1 1 2

H
p p p p gσ σ σ ρ α= − Δ = − ,    (2.85) 

1 1 1
2 2 2 2 2 2 2

H
p p p p gσ σ σ ρ α= − Δ = + ,    (2.86) 

recalling the definition in Eqs. (2.33) and (2.34). The averaged pressure in the 
cross-section can be expressed as the cross-section weighted averaged pressures 
inside the fields 

( )2 1 2 2
1 1 2 2 1 1 2 2 2 2 1 12

H
p p p p p gσ σα α α α α ρ α ρ= + = + + − .  (2.87) 

Neglecting the surface tension, we obtain 
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( )2 2
2 2 1 12

H
p p gσ α ρ α ρ≈ + − ,     (2.88) 

or 

( )2 2
2 2 1 12

H
p p gσ α ρ α ρ≈ − − .     (2.89) 

The averaged pressure in the gas and in the liquid phase can be then expressed as a 
function of the system averaged pressure and geometrical characteristics by re-
placing pσ  in Eqs. (2.85) and (2.86) 

1 22

H
p p gα ρ= −    for   1 0α >  ,    (2.90) 

2 12

H
p p gα ρ= +    for   2 0α > ,    (2.91) 

where 1 1 2 2ρ α ρ α ρ= +  is the homogeneous mixture density. The check 

1 1 2 2p p pα α+ =  proves the correctness of the computation. The difference be-
tween both averaged pressures is then 

21 2 1 2

H
p p p gρΔ = − =  for   1 0α >  and 2 0α > ,   (2.92) 

Delhaye (1981, p.89). Therefore 

1 2 21p p pα= − Δ ,      (2.93) 

2 1 21p p pα= + Δ ,      (2.94) 

and consequently 

1 2 21
21 2

p p p
p

z z z z

α α∂ ∂ ∂ ∂Δ= − Δ −
∂ ∂ ∂ ∂

,    (2.95) 

2 1 21
21 1

p p p
p

z z z z

α α∂ ∂ ∂ ∂Δ= + Δ +
∂ ∂ ∂ ∂

.    (2.96) 

Now we can write the specific form of the following general terms of the momen-
tum equation: 

( ) ( )... e l el z
l z l m l lm l m l z l

p
p p p

z z z
σ∂ ∂ ∂γα γ δ σ κ α γ δ

∂ ∂ ∂
 + + − − − Δ −  

 

cos ...w z
l l v l lp g

z
σ ∂γδ γ α ρ ϕ

∂
− Δ +       (2.97) 

Note that both fields are continuous and, therefore, 1lδ =  and the effect of the 
surface tension is neglected 
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( )11 1
1 21 2 1... ...w z

z z

p
p p p

z z z
σ σ∂ ∂α ∂γα γ γ

∂ ∂ ∂
+ − Δ + Δ − Δ   (2.98) 

( )22 2
2 21 1 2... ...w z

z z

p
p p p

z z z
σ σ∂ ∂α ∂γα γ γ

∂ ∂ ∂
+ + Δ − Δ − Δ   (2.99) 

Substituting the field pressures, we finally obtain 

( )121 1
1 1 2 2 21 2 1... ...w z

z

p p
p p p

z z z z
σ σ∂ ∂α ∂γγ α α α α

∂ ∂ ∂
 ∂ Δ+ − − Δ + Δ − Δ ∂ 

 (2.100) 

( )221 1
2 1 2 1 21 1 2... ...w z

z

p p
p p p

z z z z
σ σ∂α ∂γγ α α α α

∂ ∂
 ∂ ∂Δ+ + − Δ − Δ − Δ ∂ ∂ 

 (2.101) 

Assuming that the change of the densities contributes much less to the change of  

( )21 21 1 1
1 2

1 2

p p H
g

z z z

∂ ∂ ∂α ∂αρ ρ
∂ ∂α ∂ ∂
Δ Δ≈ = −     (2.102) 

then the change of the local volume fraction becomes 

( ) 1
1 1 2 1 2 1... ...w z

z

p
gH p

z z z
σ∂α ∂γγ α α α ρ ρ

∂ ∂
 ∂+ − − − Δ ∂ 

  (2.103) 

( ) 1
2 1 2 1 2 2... ...w z

z

p
gH p

z z z
σ∂α ∂γγ α α α ρ ρ

∂ ∂
 ∂+ + − − Δ ∂ 

  (2.104) 

As a plausibility check note that for 1 0α →  or 2 0α →  the term containing the 
derivative of the volume fraction of velocity field 1 converges to zero and the 
momentum equations take the expected form. The sum of the two momentum eq-
uations gives 

( )1 2... ...w w z
z

p
p p

z z
σ σ ∂γγ

∂
∂+ − Δ + Δ
∂

    (2.105) 

Note that the gravitational force is already taken into account in Eqs. (2.103) and 
(2.104) and there is no need for an additional term cosv l l gγ α ρ ϕ . Stability criteria 
for the stratified flow can be obtained from the eigenvalue analysis. For simplicity, 
assuming incompressible flow the mass and momentum equations of stratified 
flow in a straight pipe with constant cross-section section are 

( )1 2 1
1 2 1 2 0

w w
w w

z z z

αα α∂ ∂ ∂+ + − =
∂ ∂ ∂

,    (2.106) 

1 1 1
1 1 0

w
w

z z

∂α αα
∂τ

∂ ∂+ + =
∂ ∂

,     (2.107) 
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( )2 2 11 1 1
1

1 1

1
0

w w p
w gH

z z z

α ρ ρ∂ ∂α
∂τ ρ ρ ∂

−∂ ∂+ + + =
∂ ∂

,  (2.108) 

( )1 2 12 2 1
2

2 2

1
0

w w p
w gH

z z z

α ρ ρ∂ ∂α
∂τ ρ ρ ∂

−∂ ∂+ + − =
∂ ∂

,  (2.109) 

or in matrix notation 

( )

( )

( )

1 2 1 2

1 1

1 12 2 1
1

1 11 1

2 21 2 1
2

2 2

0

0 0 0 0 0 0
0 1 0 0 1 00
0 0 1 0

0 0 0 1 1
0

w w

p pw

gH w
w wz

w w
gH w

α α

α
α αα ρ ρ

τ ρ ρ
α ρ ρ

ρ ρ

 −
 

      
      ∂ ∂−      + =
      ∂ ∂
           

     − −  
 

. 

    (2.110) 

For the reader who is not familiar with the analysis of the type of a system of 
partial differential equations by first computing the eigenvalues, eigenvectors, and 
canonical forms it is recommended to first read Section 11 before continuing here.  

The eigenvalues are defined by the characteristics equations 

( )

( )

( )

1 2 1 2

1 1

2 2 1
1

1 1

1 2 1
2

2 2

0

0 0

1 00

1
0

w w

w

gH w

gH w

α α

λ α
α ρ ρ

λ
ρ ρ

α ρ ρ
λ

ρ ρ

 −
 
 −
 −  =− 
 

− − −  
 

,   (2.111) 

or 

( ) ( ) ( ) ( ) ( )2
1 1 2

1 2 2 1 2 1
1 1 2

w w w w w w
α α αλ λ λ λ
ρ ρ ρ

− − − − − − −   

( )1 2 2 1

1 2

0gH
α α ρ ρ

ρ ρ
−

+ = ,     (2.112) 

or 

( )1 2 2 12 2 21 2 1 2 1 2
2 1 2 1

1 2 1 2 1 2 1 2

2 0w w w w gH
α α ρ ρα α α α α αλ λ

ρ ρ ρ ρ ρ ρ ρ ρ
−   

+ − + + + − =   
   

. 

   (2.113) 

This equation is, in fact, consistent with the long wave gravity theory by Milne-
Thomson (1968). There are two eigenvalues 
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1 2 2 12 21 2 1 2
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λ
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, 

   (2.114) 

or after rearranging 

( ) ( )21 2 1 2 1 2
2 1 2 1 1 2

1 2 1 2 1 2

1,2

1 2

1 2

w w gH w w
α α α α α αρ ρ
ρ ρ ρ ρ ρ ρ

λ
α α
ρ ρ

  
+ ± − + − −  

  =
 

+ 
 

, 

    (2.115) 

which are real and different from each other if 

( ) ( )2 1 2
1 2 2 1

1 2

w w gH
α αρ ρ
ρ ρ

 
− < − + 

 
.    (2.116) 

In fact this is the Kelvin–Helmholtz stability criterion. If the above condition is sa-
tisfied the system describing the flow is hyperbolic. In nature, violation of the 
above condition results in flow patterns that are different from the stratified one. 
Condition (2.116) is equivalent to Eq. (2.216) derived by Delhaye (1981, p. 90). In 
1992 Brauner and Maron included the surface tension effect in their stability 
analysis and obtained 

( ) ( )2 21 2
1 2 2 1 12

1 2

w w H g k
α α ρ ρ σ
ρ ρ

 
 − < + − +   

 
, 

see Eq. (28a) in Brauner and Maron (1992), which for neglected surface tension 
results in Eq. (2.116). Here k is the real wave number.  

2.7.1.3 Stratified flow in horizontal or inclined pipes 

Geometrical characteristics: The geometric flow characteristics for round pipes 
are nonlinearly dependent on the liquid level, which makes the computation 
somewhat more complicated. 

Some important geometrical characteristics are specified here – compare with 
Fig. 2.9. The angle with the origin of the pipe axis defined between the upwards 
oriented vertical and the liquid-gas-wall triple point is defined as a function of the 
liquid volume fraction by the equation 
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( ) ( )21 sin cos 0f θ α π θ θ θ= − − + − = .    (2.117) 

The derivative 

2
1 2sin

d

d

θ π
α θ

=       (2.118) 

will be used later. Bearing in mind that 

22sin
df

d
θ

θ
= ,,      (2.119) 

the solution with respect to the angle can be obtained by using the Newton itera-
tion method as follows: 

( )2 0 0 00
0 0 2

0

1 sin cos

2sin

f

df d

α π θ θ θ
θ θ θ

θ θ
− − +

= − = + ,  (2.120) 
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Fig. 2.9 Definition of the geometrical characteristics of the stratified flow 

where subscript 0 indicates the previous guess in the iteration. The iteration starts 
with an initial value of / 2π  (Kolev 1977). In 1999 Biberg proposed an accurate 
direct approximation 

( )
1/ 3

1/ 31/3
2 2 2 2

3
1 2 1

2

πθ πα α α α   = + − + − −    
   (2.120b) 

with an error of less than 0.002rad±  or 

( )
1/ 3

1/ 31/3
2 2 2 2

3
1 2 1

2

πθ πα α α α   = + − + − −    
 

( ) ( ) ( ){ }22
2 2 2 2 2

1
1 1 2 1 4 1

200
α α α α α − − − + + −  ,  (2.120c) 
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with an error less then 0.00005rad± . The perimeter of the pipe is then 

1w hPer Dπ= ,       (2.121) 

and the wetted perimeters for the gas and the liquid parts are 

1w hPer Dθ= ,       (2.122) 

( )2w hPer Dπ θ= − .      (2.123) 

The gas-liquid interface median is then 

( )sin sinh hb D Dπ θ θ= − = ,     (2.124) 

and the liquid level is 

 ( )2

1
1 cos

2F hDδ θ= + .      (2.125) 

The hydraulic diameters for the gas and the liquid for computation of the pressure 
drop due to friction with the wall are, therefore, 

1 1 1 14 /h w hD F Per D
πα α
θ

= = ,     (2.126) 

2 2 2 24 /h w hD F Per D
πα α

π θ
= =

−
,    (2.127) 

and the corresponding Reynolds numbers are 

1 1 1
1

1

Re hw Dα ρ π
η θ

= ,      (2.128) 

2 2 2
2

2

Re hw Dα ρ π
η π θ

=
−

.     (2.129) 

Here F is the channel cross-section section and Per1 and Per2 are the wet perime-
ters of gas and film, respectively. 

If one considers the core of the flow the hydraulic diameter for computation of 
the friction pressure loss component at the gas-liquid interface is then 

( )12 1 1 14 /
sinh w hD F Per b D
πα α

θ θ
= + =

+
,   (2.130) 

and the corresponding Reynolds number is 

1 1 1 2
1

1

Re
sin

hw w Dα ρ π
η θ θ
−

=
+

.    (2.131) 

The gas-wall, liquid-wall, and gas-liquid interfacial area densities are 
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1 1
1

1

4 4w
w

h h

Per
a

F D D

α θ
π

= = = ,     (2.132) 

2 2
2

2

4 4w
w

h h

Per
a

F D D

α π θ
π
−= = = ,     (2.133) 

12

sin 4

h

b
a

F D

θ
π

= = .      (2.134) 

Some authors approximated this relation for a smooth interface with  

( )12 2 2

8
1

h

a
D

α α
π

≅ − ,     (2.135) 

which in view of the accurate computation presented above is no longer necessary. 
For the estimation of the flow pattern transition criterion, the following expression 
is sometimes required: 

2

2

4 sin

F h

d

d D

α θ
δ π

= .      (2.136) 

Gravitational (hydrostatic) pressure variation across the flow cross-section sec-
tion of a horizontal pipe: In stratified flow the gravitation is a dominant force. The 
cross-section section averaged gas gravity pressure difference with respect to the 
interface is  

3
2
1 1

1

sin 1
cos

3 2hp gDσ θρ θ
πα

 
Δ = − 

 
.    (2.137) 

The cross-section averaged liquid gravity pressure difference with respect to the 
bottom of the pipe is  

3
1
2 2

2

sin 1
cos

3 2hp gDσ θρ θ
πα

 
Δ = − + 

 
.    (2.138) 

With respect to the interfacial pressure we have 

3
2 2 2

1 1 1 1 1
1

sin 1
cos

3 2hp p p p gDσ σ σ θρ θ
πα

 
= − Δ = − − 

 
,  (2.139) 

3
1 1 1

2 2 2 2 2
2

sin 1
cos

3 2hp p p p gDσ σ σ θρ θ
πα

 
= − Δ = + + 

 
,  (2.140) 

which are, in fact, Eqs. (55) and (60) in Ransom et al. (1987 , p. 30). The averaged 
pressure in the cross-section section can be expressed as the cross-section section 
weighted averaged pressures inside the fields 
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( ) ( )
3

2 1
1 1 2 2 1 1 2 2 2 1 2 2 1 1

sin 1
cos

3 2hp p p p p gDσ σ θα α α α ρ ρ α ρ α ρ θ
π

 
= + = + + − + + 

 
. 

   (2.141) 

Neglecting the surface tension we obtain 

( ) ( )
3

2 1 2 2 1 1

sin 1
cos

3 2hp p gDσ
θ ρ ρ α ρ α ρ θ

π
 

≈ + − + + 
 

,  (2.142) 

or 

( ) ( )
3

2 1 2 2 1 1

sin 1
cos

3 2hp p gDσ
θ ρ ρ α ρ α ρ θ

π
 

≈ − − + + 
 

.  (2.143) 

The averaged pressure in the gas phase and in the liquid phase can then be ex-
pressed as a function of the system’s averaged pressure and geometrical characte-
ristics: 

( ) ( )
3

1 1 2 2 1 2 2 1
1

sin 1
cos

3 2hp p gD
θ α ρ α ρ α ρ ρ θ

πα
 

= − + + − 
 

   for   1 0α > , 

    (2.144) 

( ) ( )
3

2 1 2 2 1 1 2 1
2

sin 1
cos

3 2hp p gD
θ α ρ α ρ α ρ ρ θ

πα
 

= + + + − 
 

   for   2 0α > .  

   (2.145) 

The check 1 1 2 2p p pα α+ =  proves the correctness of the computation. The differ-

ence between both averaged pressures is then 

( )
3

2 1
21 2 1 2 1

2 1

sin 1
cos

3 2hp p p gD
θ ρ ρ ρ ρ θ

π α α
  

Δ = − = + + −  
  

  

for   1 0α >  and 2 0α > ,     (2.146) 

 
and, therefore ,Eqs. (2.93)–(2.96) are valid also for a circular pipe. Assuming that 
the change of the densities contributes much less to the change of 21pΔ , the 

change of the local volume fraction results in 

21 21 1

1

p p

z z

∂ ∂α
∂α ∂

∂Δ Δ
≈

∂
 

( )
3

2 1 2 1 1
2 12 2

2 1 2 1

sin 1
cos

3 2 4sinhgD
z

θ ρ ρ ρ ρ π ∂αθ ρ ρ
π α α α α θ ∂

    
= − + + − −    

    
. 

(2.147) 
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This equation was obtained by taking into account that θ  is also an implicit func-
tion of 1α  through Eq. (2.117) and using Eq. (2.118). Using Eqs. (2.156), (2.146), 

(2.137), and (2.138) and substituting into the momentum equations (2.100) and 
(2.101), we finally obtain 

( ) 1
1 1 2 2 1 1... ...

4sin
wh z

z

gDp
p

z z z
σπ ∂α ∂γγ α α α ρ ρ

θ ∂ ∂
 ∂+ + − − Δ ∂ 

  (2.148) 

( ) 1
2 1 2 2 1 2... ...

4sin
wh z

z

gDp
p

z z z
σπ ∂α ∂γγ α α α ρ ρ

θ ∂ ∂
 ∂+ − − − Δ ∂ 

  (2.149) 

As a plausibility check note that for 1 0α →  the term containing the derivative of 

the volume fraction of velocity field 1 converges to zero and the momentum equa-
tion for field 2 takes the expected form. The sum of the two equations is then 

( )1 2... ...w w z
z

p
p p

z z
σ σ ∂γγ

∂
∂+ − Δ + Δ
∂

    (2.150) 

Comparing with the momentum equations for the rectangular channel we find in-

stead of H the length 
2

4sin 4
h hD D

b

π π
θ
= , which is the height of the rectangular channel 

having the same cross-section section as the pipe and a base equal to the gas-liquid 
median from Eq. (2.124). Therefore, the stability condition for stratified flow in a 
pipe is 

( ) ( )2 1 2
1 2 2 1

1 24sin
hD

w w g
π α αρ ρ

θ ρ ρ
 

− < − + 
 

,   (2.151a) 

or in an alternative form 

( ) ( )2 1 2 2
1 2 2 1

1 2 2

Fd
w w g

d

α α δρ ρ
ρ ρ α

 
− < − + 

 
,               (2.151b) 

which is a generalized Kelvin–Helmholtz stability criterion valid for pipes with ar-
bitrary cross-section section. Substituting Eq. (2.82) in the above equation we ob-
tain Eq. (2.116) for rectangular channels. This result is, in fact, Eq. (26) in Barnea 
and Taitel (1994) for the inviscid case. It is identical with Eq. (6.9), p. 313, ob-
tained by de Crecy in 1986. 

Dividing the momentum equations by 1 1α ρ  and 2 2α ρ , respectively, and sub-

tracting the second from the first, we obtain 

( ) 1 1 2
2 1

1 2 1 2 1 1 2 2

1 1
... ...

4sin

w w
h z

z

gDp p p

z z z

σ σπρ ∂α ∂γγ ρ ρ
ρ ρ ρ ρ θ ∂ α ρ α ρ ∂

    ∂ Δ Δ+ − + − − −    ∂    
  

   (2.152) 
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The second term in the first brackets is exactly Eq. (58) obtained by Ransom et al. 
(1987, p. 30). 

Note the general notation of the coefficients of 1 / zα∂ ∂  in Eqs. (2.103) and 

(2.104) and Eqs. (2.148) and (2.149) 

( ) 1
1 2 2 1

F
g

b z

∂αα α ρ ρ
∂

− , 

where F is the channel cross-section section and b is the gas-liquid interface me-
dian. This result was obtained by de Crecy (1986, p. 312) in his Eq. (6.3). 
Teletov and Mamaev et al., see Mamaev et al. (1969), presented analytical solu-
tions for stratified flow between two parallel plates and stratified flow in circular 
tubes, respectively. The gas and liquid phases are considered incompressible. No 
heat and mass transfer is considered. The pressure gradient is assumed constant 
and the flow is considered to be stationary and fully developed. The velocities at 
the wall are assumed to be zero and the velocity at the interface is assumed to be 
equal for both phases. The solution for the circular tube is found after introducing 
a bipolar coordinate transformation and integration, and is expressed as cross-
section section averaged velocities as a function of the flow parameter in the form 

( ) ( )
4

1 1 1 1 2 1
1

cos , ,
8

R dp
w g z

dz

π ρ ϕ α η η
η

 = −  
g , 

( ) ( )
4

2 2 2 1 2 1
2

cos , ,
8

R dp
w g z

dz

π ρ ϕ α η η
η

 = −  
g . 

( )1 1 2 1,ϕ α η η  and ( )2 1 2 1,ϕ α η η  are complicated integral functions. For practical 

use they are presented in graphical form. 

2.7.2 Dispersed interface 

2.7.2.1 General 

In this section, we provide a guide for derivation of a constitutive relation for me-
chanical interaction between a dispersed field l and the surrounding continuum m. 
An example for such flow is bubbly flow. In other words, we discuss a possible 
simplification of the surface integrals in Eq. (2.50). For a dispersed phase l, the 
viscous shear at the interface is negligible for non-Stokes flows: 

1
0

l

m
l l

F

dF
Vol

σ

σ− ⋅ ≈ T n .     (2.153) 

The viscous effects in the continuum at the interface are also neglected,  

1
0

m

l
m m

F

dF
Vol

σ

σ− ⋅ ≈ T n .     (2.154) 
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Note that a 1 cm bubble in water having a relative velocity of 10 cm/s has a 
Reynolds number of about 100. For Reynolds numbers less than 24 the visc-
ous effect in the continuum is important.  For larger Reynolds numbers, 
which is often the case in nature, the viscous effects can be neglected. The 
force of the Marangoni effect, 

( )1
0

l

l t lm

F

dF
Vol

σ

δ σ∇ = ,     (2.155) 

can be neglected for the majority of macroscopic processes. If the dispersed phase 
is assumed to have no wall contact, 0lwF = , the following results: 

( )1
0

lw

w w
l l l

F

p dF
Vol

σ σΔ − ⋅ = I T n .     (2.156) 

The difference between the bubble bulk pressure and the bubble interface pressure 
is also negligible, 

1
0

m

m
l m

F

p dF
Vol

σ

σ+ Δ ≈ n .     (2.157) 

The momentum equation for the dispersed field is 

( ) ( ) ( )e e
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    (2.158) 

The dispersed equation for the continuum (2.50b) is  

( ) ( ) ( )e e
m m m v m m m m m m m m m m

∂ α ρ γ α ρ γ α γ ρ δ
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v km k mk m
k
k m

γ μ μ
=
≠

= − V V      (2.159) 
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Fig. 2.10 Difference between the bulk pressure and interfacial pressure inside the velocity 
field m for steady state flow 

The term in the momentum equation for the dispersed field that remains to be es-
timated is 

 
1

l

l
m l

F

p dF
Vol

σ

σΔ n .  

For this, information is needed about the pressure distribution over the surface of a 
single particle, see Fig. 2.10. For illustration of the estimation of this integral we 
assume a family of monodisperse spheres. For dispersed flow with a small con-
centration of the dispersed phase, the flow about each sphere can be considered as 
unaffected by its neighbors. The interface pressure distribution along the surface 
can be generally represented by the following expression: 

( ) ( )21
cos

2
l
m l m l ml l ml m mlp R Fσ ∂ρ ξ ρ ξ

∂τ
 Δ = − Δ + ⋅∇ Δ + Δ  

n V V V V , 

    (2.160) 

see, for example, Stuhmiller (1977). Here a spherical coordinate system is used 
with the main axis along lmΔV . The polar angle ξ  is measured with respect to the 

direction of lmΔV . The azimuthal angle is ϕ . The force per unit surface is split in-

to a component parallel to lmΔV  and a component perpendicular to lmΔV . The in-

tegration is then performed. Note that Eq. (2.160) does not depend on ϕ  and, 
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therefore, the perpendicular component for the symmetric body is 0. Note also that 
the pressure distribution in Eq. (2.160) does not take into account the spatial varia-
tion of the continuum velocity. The latter will give rise to a force component per-
pendicular to lmΔV  even for a symmetric body. For the integration we need the 

following relations. The differential surface element of the sphere (rotational body) 
is 2 sin   ldF R d dξ ξ ϕ= . The projection of the interfacial pressure force on  

direction lmΔV  for a single particle is, therefore, 

2
2

0 0

1
cos  cos sin   

l

l l
m l l m l

F

p dF R p d d
Vol

σ

π π
σ σξ ξ ξ ξ ϕΔ = Δ  n n ,  (2.161) 

and on the plane normal to lmΔV  

2
2 2

0 0

1
sin  sin   

l

l l
m l l m l

F

p dF R p d d
Vol

σ

π π
σ σξ ξ ξ ϕΔ = Δ  n n .  (2.162) 

For our case of a rotational body, the above integral gives 0. The collective force 

acting on the cloud of 
3

1
l l

l

n Vol
=
  spheres in the control volume Vol per unit control 

volume in the axial direction is, therefore, 
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   n n , 

   (2.163) 

and in the plane normal to mlΔV  

3

2 2
2 2 2 21

0 0 0 0

 sin    sin   
l
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l l m l v l l m l

Vol
n R p d d n R p d d

Vol

π π π π
σ σξ ξ ϕ γ ξ ξ ϕ= Δ = Δ


   n n . 

    (2.164) 

Estimation of the integrals (2.163) and (2.164) provides a practical approach for 
computing the interfacial forces. What remains after the integration and some rear-
rangements given in the next section is 

1
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2v l m ml l ml

∂γ α ρ
∂τ
 = − Δ + ⋅∇ Δ  

V V V  

( )2 1 3
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ρ α γ γ α ρ+ Δ ∇ − Δ ΔV V V  

( ) * 1

m
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vm d l
v l l m l
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p dF
Vol σ

σγ= + + Δ f f n .    (2.165) 
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This result for one-dimensional flow was obtained by Stuhmiller (1977). If we 
take the nonisotropy of the continuum velocity field into account in Eq. (2.160), 
we obtain the general form 

1

l

l
m l

F

p dF
Vol

σ

σΔ n ( ) * 1

m
l

vm d L l
v l l l m l

F

p dF
Vol σ

σγ= + + + Δ f f f n .  (2.166) 

The force components vm
lf , d

lf , L
lf , and * 1

m
l

l
m l

F

p dF
Vol σ

σΔ  n  are called virtual mass 

force, drag force, lift force, and stagnation pressure force, respectively. A detailed 
discussion of these is given below. Empirical information on how to compute 
these forces is given in Volume II. 

The pressure distribution around a particle may influence the local mass trans-
fer. In the case of strong thermodynamic nonequilibrium, the larger pressure dif-
ference across the interface at the stagnation point may lead to lower evaporation 
compared to the rear point. It may lead to a reactive resulting force at the droplet, 
which manifests itself as an effective drag reduction. A strong condensation may 
lead to the opposite effect. Although such arguments may sound reasonable, one 
should be careful because there is no accurate theoretical or experimental treat-
ment of this problem. 

2.7.2.2 Virtual mass force 

Consider the integral defined by Eq. (2.161) taking over the first term of Eq. 
(2.160) 

vm
v lγ =f  ( )

2
3 2

0 0

1
cos sin

2v l m ml l ml ln R d d
π π∂γ ρ ϕ ξ ξ ξ

∂τ
 − Δ + ⋅∇ Δ    V V V  

( )34 1

3 2v l l m ml l mln R
∂γ π ρ
∂τ
 = − Δ + ⋅∇ Δ  

V V V  

( )1

2v l m ml l ml

∂γ α ρ
∂τ
 = − Δ + ⋅∇ Δ  

V V V .    (2.167) 

The force vm
lf  is the virtual mass force per unit mixture volume. Here, the virtual 

mass coefficient is 1 2vm
mlc = . The general form of the virtual mass force with the 

accuracy of an empirical coefficient was first proposed first Prandtl (1952), Lamb 
(1945), and Milne-Thomson (1968) in the same form  

( )vm vm
d d c d cd d cdc

∂α ρ
∂τ
 = − Δ + ⋅∇ Δ  

f V V V ,   (2.168) 

where the subscripts c and d mean continuous and disperse, respectively. The sca-
lar force components in Cartesian and in cylindrical coordinates are 
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,  (2.169) 
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,  (2.170) 

( ) ( )

( ) ( )
,

1

c d d c d

vm vm
d z d c d

d c d d c d

w w u w w
r

f c

v w w w w w
r zκ

∂ ∂
∂τ ∂

α ρ
∂ ∂
∂θ ∂

 − + − 
 

= −  
 
 + − + −
 

. (2.171) 

The virtual mass force is experienced by the body as if it were to have an addi-
tional mass during its translation relative to the continuum. This explains the 
other name used for this force, added mass force. For larger particle concentra-
tions, vm

dc  is a function of lα . Expressions for practical computation of the vir-

tual mass coefficient for dispersed fields with larger concentration can be found 
in Biesheuvel and  van Wijngaarden (1984), Biesheuvel and Spollstra (1989), 
Cook and Harlow (1983, 1984), Ishii and Michima (1984), Lahey (1991), Lamb 
(1945), Milne-Thomson (1968), Mokeyev (1977), No and Kazimi (1985), 
Prandtl (1952), Ruggles et al. (1988), van Wijngaarden (1976), Winatabe et al. 
(1990), Wallis (1969), and Zuber (1964). These references represent the state of 
the art in this field. Winatabe et al. (1990) proposed the use of only the tran-
sient part of the virtual mass force for the case of strong transients. 

Lamb (1945) computed the virtual mass coefficient for partials in potential flow 
with ellipsoidal shape defined by  

2 2 2

1
x y z

x y z

R R R
+ + = , 

where the lengths of the principal axis are xR , yR  and zR , and the relative veloci-

ty is parallel to the x-axis as follows: 

 0

02
vm
cd

a
c

a
=

−
, 



82      2 Conservation of Momentum 

( ) ( )( )( )0
2 2 2 2

0

x y z

x x y z

d
a R R R

R R R R

λ

λ λ λ λ

∞

=
+ + + +

 . 

Bournaski (1992) evaluated some values as given in Table 2.1. 

Table 2.1. Virtual mass coefficients for an ellipsoid 

Shape of particles Translation parallel to axis 
x y z 

,
vm
cd xc  ,

vm
cd yc  ,

vm
cd zc  

x y zR R R= = , sphere 1/2 1/2 1/2 

2x y zR R R= = , rotary ellipsoid 0.704 0.704 0.210 

3x y zR R R= = , rotary ellipsoid 0.803 0.803 0.122 

4x y zR R R= = , rotary ellipsoid 0.859 0.859 0.081 

( )2 3 2x y zR R R= = , unrotary ellipsoid 0.936 0.439 0.268 

2 4x y zR R R= = , unrotary ellipsoid 1.516 0.398 0.126 

 
For a single ellipsoid bubble with axis aspect ratio χ  

( )
( )

1/ 22 1 1

21 1/ 21 1 2 2

1 cos

cos 1

vmc
χ χ

χ χ χ

− −

− −

− −
=

− −
,  

van Wijngaarden (1998). 

Lance and Bataille (1991) reported experiments showing that for a 5mm deform-
ing bubble the virtual mass coefficient is in the region: 211.2 3.4vmc< < . For a 
family of spherical bubbles:  

( )21 1

1
1 2.78

2
vmc α= + , 

dilute bubble dispersion, interaction between two equally sized bubbles, van Wijn-
gaarden (1976);  

1
21

1

1 21

2 1
vmc

α
α

+
=

−
,  

no interaction with the neighboring bubbles, Zuber (1964);  

( )21 1

1
1 3

2
vmc α= + , 0α → ,  

Zuber (1964);  
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( )21 1

1
1 3.32

2
vmc α= + ,  

analogously to thermal conductivity in composite material, Jeffrey (1973);  

( )21 1

1 1
1.98ln 0.62

2 2
vmc α = − −  

, 

the approximation for 1 0.35α ≤ , Biesheuvel and Spoelstra (1989). Laurien and 
Niemann (2004) used direct numerical simulation and come to 
 

2
21 1 10.5 1.63 3.85vmc α α= + + . 

Kendoush (2006) considered the separation of the velocity profile around a single 
sphere and obtained a virtual mass coefficient depending on the separation angle. 
Pougatch, Salcudean, Chan, and Knapper (2008) concluded that the virtual mass 
force cannot be larger than the inertia force for accelerating the remaining liquid 
and, therefore, the coefficient is naturally limited by  

 

21 2 1
vmc α α≤ .  

 

2.7.2.3 Form drag and stagnation pressure force  

For inviscid (ideal) potential flow we have in Eq. (2.160) 

( ) ( )21
9cos 5

8
F ξ ξ= − ,     (2.172) 

see Lamb (1945). This profile does not give any resulting force component 
(d’Alembert’s paradox).  

In nature ( )F ξ  gives a nonsymmetric profile, as indicated in Fig. 2.10. For an 

idealized nonsymmetric fore-aft profile, Nigmatulin (1979) estimated the integrals 
of Eqs. (2.160) and (2.161) for the second term of the right-hand side of Eq. 
(2.159) for bubbles in bubble-liquid flows. Biesheuvel and van Wijngaarden 
(1984) analytically computed the coefficients for spherical bubbles for Nigmatu-
li’s derivation. 

A more general approach was proposed by Hwang and Schen (1992). For the 
general case, ( )F ξ  is determined experimentally, see Schlichting (1959, p.21, 

Fig. 1.11). Hwang and Schen (1992) provided a method for computing the pres-
sure distribution around a sphere for Reynolds numbers greater than 3000, where 

( ) ( ) ( )
2

2 2

1 2 1 9
2 sin 2 cos 2

4 4 2 4
e

F
λξλξ λ ξ ξ

λ λ

− −= + +   + + 
,  (2.173) 
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see Eq. (12) in Hwang and Schen (1992). When the drag coefficient d
mlc  is known 

and the equation 

( ) ( )2 2

1
45

4 16
d
ml

e
c

πλ

λ λ

−−=
+ +

     (2.174) 

is solved for the smaller real root of λ , there is a method for estimating the inte-
grals analytically. The reader can find the final result of this derivation, characte-
rized by anisotropic forces in Hwang and Schen (1992). 

Before Hwang and Schen published their work, Stuhmiller (1977) had already 
rewritten the term ( )F ξ  as follows: 

( ) ( ) ( ) ( )l l
F F F F

σ σξ ξ ξ ξ= + − ,    (2.175) 

where ( ) l
F

σξ  represents the surface average over a single sphere. For a turbu-

lent pressure distribution around a sphere as given by Schlichting (1959), the in-
terface average of the function ( )F ξ  is 

( ) 0.37
l d

mlF c
σξ = − ,      (2.176) 

where d
mlc  is the form drag coefficient for single particles. In the literature some-

times ( ) l
F

σξ  is set to the constant value ¼ – see, for instance, Lamb (1945). 

This means that the integral over the second term of Eq. (2.160) can be split into 

two parts. The first part can be estimated directly exploiting the fact that ( ) l
F

σξ  

does not depend on the position at the interface. The result is 

( )2 l

m ml l

l

F dF
F

σ

σ

ρ ξΔ V n ( ) ( )2 1

lw

l e
m ml l l

F

F dF
Vol

σρ ξ α γ
 

= − Δ ∇ + 
  

V n  

( )2 1
0.37

lw

d e
ml m ml l l

F

c dF
Vol

ρ α γ
 

= Δ ∇ + 
  

V n ( )2
0.37 d e

ml m ml lc ρ α γ= Δ ∇V , 

    (2.177) 

which results in an effective stagnation pressure difference 

2* 0.37l d
m ml m mlp cσ ρΔ = − ΔV      (2.178) 

similar to that discussed for stratified flow (Eq. (2.64)). To derive Eq. (2.177), 
Eq. (29) from Kolev (1994b) is also used together with the fact that there is no 
contact between the dispersed field and the wall, 0lwF = . 

The second part is the net force experienced by the particle due to nonuniform 
pressure distribution around the particle, the so-called form drag force: 
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( ) ( )
2

2

0 0

cos sin
ld

v l v l m ml ml ln R d F F d
π π

σγ γ ρ ϕ ξ ξ ξ ξ ξ = − Δ Δ −  f V V  

2 3 21 4 1
/

2 3 2
d d

v l m ml ml ml l v l l m ml ml ml ln c R R c Rγ ρ π γ α π ρ π  = − Δ Δ = − Δ Δ    
V V V V  

1 3

4
d

v l m ml ml ml
l

c
D

γ α ρ= − Δ ΔV V .     (2.179) 

The form drag force per unit mixture volume is, therefore, 

1 3

4
d d
l l m ml ml ml

l

c
D

α ρ= − Δ Δf V V .    (2.180) 

For larger volume fractions lα  one should take into account the dependence of the 
drag force on the volume fraction – also see Ishii and Mishima (1984) and Zuber 
(1964), for example. For drag forces in two-phase flows, the study by Ishii and 
Mishima (1984) is recommended. 

2.7.2.4 Lift force 

Note on particle rotation: A rotating sphere obeys the law of conservation of 
momentum 

5
1

2 2
d d

d d d d d

d D
I C

d
ωω ρ ω ω

τ
 = −  
 

. 

Here, the particle rotation velocity is dω and dI  is the particle’s moment of iner-
tia.  

( )
1 2

31/ 2
Re

ReRe
d cd

cdcd

c c
C cω ω

ωω
= + +   

is a coefficient depending on the rotational Reynolds number  

Re
2

d
cd d c

Dω ω ν =  
 

. 

The c coefficients are given by Yamamotto et al. (2001) in the following table: 
 

Recd
ω  0 to 1 1 to 10 10 to 20 20 to 50 >50

c1 0 0 5.32 6.44 6.45
c2 50.27 50.27 37.2 32.2 32.1
c3 0 0.0418 5.32 6.44 6.45
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We learn from this dependence that small and light particles can be more easily 
put in rotation compared to heavy and large particles. The following three main 
idealizations give an idea of the origin of the so-called lift force:  
 
a) A rotating symmetric particle in symmetric flow of continuum experiences a 

lift force called the Magnus force (named after the Berlin physicist Gustav 
Magnus, 1802–1870). The curiosity of Lord Rayleigh in regard to the trajecto-
ry of the tennis ball led him in 1877 to the corresponding explanation. The 
force was analytically estimated by Jukowski and independently by Kutta, see 
Albring (1970, p. 75). 

b) A nonrotating symmetric particle in nonsymmetric continuum flow as pre-
sented in Fig. 2.11 experiences lift force, Jukowski. 

c) A nonrotating asymmetric particle in symmetric continuum flow experiences 
lift force, Jukowski. 

 

The force component perpendicular to the relative velocity direction is called the 
lateral or lift force. The lift force is zero for symmetric bodies exposed to symme-
trical flow 

0L
l =f .       (2.181) 

Vm

( ) ( )f V V Vml
L

l m ml
L

l m mc= − − × ∇ ×α ρ

fml
d fml

vmVl

 

Fig. 2.11 Drag, virtual mass, and lift forces acting simultaneously on the field l 

A symmetric body exposed to asymmetrical flow experiences a lateral force – see 
Fig. 2.11. The lift force is similar in nature to the aerodynamic lift of an airfoil, but 
differs in that it is a result of the gradient in the continuum velocity field over a 
symmetric body rather than a uniform flow over an asymmetric airfoil. The gener-
al form of the lateral lift force for inviscid flows is given by Drew and Lahey 
(1987) 

( ) ( )L L
cd d c cd d c ccα ρ= − − × ∇×f V V V .    (2.182) 

The scalar components for Cartesian and cylindrical coordinates are 

( ) ( ) ( ),

1 1L L c c c
cd r d c cd d c c d c

u u w
f c v v r v w w

r r r z r
κ

κ κ
∂ ∂ ∂∂α ρ

∂ ∂θ ∂ ∂
    = − − − − − −       

, 

   (2.183) 
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( ) ( ) ( ),

1 1 1L L c c c
cd d c cd d c d c c

w v u
f c w w u u r v

r z r r r
κ

θ κ κ κ
∂ ∂ ∂∂α ρ
∂θ ∂ ∂ ∂θ

    = − − − − − −       
 

,  (2.184) 

( ) ( ),

1L L c c c c
cd z d c cd d c d c

u w w v
f c u u v v

z r r zκ
∂ ∂ ∂ ∂α ρ
∂ ∂ ∂θ ∂

    = − − − − − −       
.  

   (2.185) 

The lift coefficient must be derived experimentally. The reader will find infor-
mation on modeling of the lift force in Deich and Philipoff (1981), Staffman 
(1965), Bernemann et al. (1991), Soo and Tung (1972), Ho and Leal (1976), Vas-
seur and Cox (1976), Drew and Lahey (1987, 1990), Erichhorn and Small (1969), 
and Bataille et al. (1990). 

For negligible particle rotation, Staffman (1965, 1968) derived a negligible par-
ticle Reynolds number and small gradients of the continuum velocity the analytical 
expression for the shear lift force 

1/ 2
1/ 2 2

21 2 13.084L dw
c D

dr
ν

 
=   

 
. 

Inside the boundary layer of bubbly flow having 1 2w w>  and 2 0w r∂ ∂ < , the lift 
force pushes the bubbles towards the wall. Note that the spatial resolution in dis-
crete analyses must be fine enough in order to accurately compute the rotation of 
the continuous velocity field. Bad resolution, such in so-called subchannel analys-
es, produces only useless noise that makes the use of this force meaningless. 

Mei (1992) proposed an expression that can be used for larger particle Reynolds 
numbers 

1/ 2
1/ 2 2

21 2 1 3.084L dw
c Mei D

dr
ν

 
=   

 
, 

where 

( ) ( )1/ 2 1/ 2
2 12 21 0.3314 exp 0.1Re 0.3314Mei ω ω= − − + ,   12Re 40≤ , 

( )1/ 2

2 120.0524 ReMei ω= ,   12Re 40> ,  

and 12 12 1 2Re w D ν= Δ , 1 2
2

2 1

2D dw

w w dr
ω =

−
. In a later work, Klausner et al. (1993) 

found that the lift force on a bubble attached to a wall can be computed using 

( )1/ 43 / 2 2 2
21 2 12

16
3.877 0.014 Re

3
Lc ω β −= + , 
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which is valid for larger Reynolds numbers than the previous relation. In a later 
work Mei and Klausner (1995) proposed to use interpolation between the Staf-
man’s results for small Reynolds numbers and Auton’s (1987) results for large 
Reynolds numbers: 

1/ 22

2 12
21 21/ 2 1/ 2

2 12

1.72 2 Re3 16

98 Re
L J

c
ω

ω
ω

   = +   
    

, 

( ){ }10 120.6765 1 tanh 2.5 log 2 Re 0.191J β = + +   

( ){ }10 120.667 tanh 6 log 2 Re 0.32β × + −   

There are other expressions for the lift force on a single bubble. Tomiyama et 
al. (2002) measured trajectories of single bubbles in simple share flows of glyce-
rol–water solution. They obtained the following empirical correlation: 

( ) ( )21 12 1min 0.288 tanh 0.121Re ,  L
mc f Eö=       for   1 4mEö < , 

( ) 3 2
21 1 1 1 10.00105 0.0159 0.0204 0.474L

m m m mc f Eö Eö Eö Eö= = − − +  

for   14 10.7mEö≤ ≤ ,   

21 0.29Lc = −  for 110.7 mEö< ,  

based on experiments within the region of parameters defined by 

11.39 5.74mEö≤ ≤ , 10 125.5 log 2.8Mo− ≤ ≤ − , and 1
20 8.3s−< ∇× ≤V . The lift 

coefficient varied in this region between about 0.3 and −0.3. Here a modified 
Eötvös and Morton numbers are computed using the horizontal bubble size 

( ) 2
1 2 1 1,max 12mEö g Dρ ρ σ= − ,  

( ) ( )4 2
12 2 1 2 2 12Mo g ρ ρ η ρ σ= − . 

The aspect ratio of the bubble is computed by using the Wellek et al. (1966) correlation 

0.757
1,max 1,min 11 0.163 mD D Eö= + .   

In accordance with the Tomiyama et al. correlation, the lift coefficient for a bubble 
with a diameter of 3 mm in an air–water system is equal to 0.288. Zun (1980) per-
formed measurements and estimated a value for small bubbles of about 0.3. Naciri 
et al. (1992) experimentally measured the lift coefficient of a bubble in a vortex to 
be 0.25.  
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It should be emphasized that the above reviewed considerations are for a single 
object in shear flow. The presence of multiple objects in share flow is found to in-
fluence this force too. 

The importance of the findings by Tomiyama et al. (2002) is in the observation 
that for large bubbles the lift force changes sign. Krepper et al. (2005) observed 
experimentally that in vertical bubbly flow the void profile depends on the bubble 
size spectrum. For a spectrum with predominantly small sized bubbles a wall void 
peaking is observed. The level of the wall peaking depends on the turbulence in 
the liquid and on the stagnation pressure force. For spectra having predominantly 
large bubbles the central void, peaking is observed. This effect was reproduced by 
Krepper et al. (2005) by using lift force applied on multiple groups with 

21 0.05Lc =  for 1 0.006D m<  and 21 0.05Lc = −  for 1 0.006D m≥ . The improvement 

going from 1 to 2 groups was considerable. No substantial change was reported if 
more then 8 size groups were used. 

Using a combination of the radial liquid and gas momentum equations 

( ) ( ) ( )
( ) ( )2 2

1 2
2

1 2

1
1 *

*

r

R

u v
p r p R u dr

r

α ρ
α ρ

′ ′− −
′= − − −   .  

and the measured fluctuation velocities in the radial and in the azimuthal direction, 
Wang et al. (1987) explained why the bubble peaking for upwards flows is ob-
served close to the wall. Later it was found that this is valid for bubbles with small 
sizes. Close to the wall the authors observed that a) the velocity gradient has a 
maximal, b) the velocity fluctuations have maximum, and c) the static pressure has 
a minimum. Using the radial momentum equations for gas and liquids  

( )1 1 1, 1 1, 21

1 1
0L

rr

dp d
r f

dr r dr r θθα α τ α τ− + − + =  

( ) ( ) ( )1 1 2, 1 2, 21

1 1
1 1 1 0L

rr

dp d
r f

dr r dr r θθα α τ α τ − − + − − − − =  , 

it is possible to estimate the radial pressure distribution and the lift force, knowing 
from measurements the void and the velocity profiles with their fluctuations 

1, 0rrτ ≈ 1, 0θθτ ≈ , 2
2, 2 2rr uτ ρ ′= − , 2

2, 2 2vθθτ ρ ′= − . This is the approach used by 

Wang et al. to gain expression for the lift force in bubbly flow based on groups of 
variables that come from the theory of the lift force on a single object. Wang et al. 
introduced the influence of the local volume fraction into the lift coefficient 

( ) 1
21

0.49 log 9.3168
0.01 cot

0.1963
Lc

ξξ
π

− += + , 

as a function of  
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( )
2 2

1 1
1 2

12 12

1
exp 2

Rehyd

D w

D w
ξ α ω

∞

   
= −      Δ  

,    

where ( )1/ 4

12 21.18w gσ ρ∞Δ = . This coefficient varies within 0.01 and 0.1 in ac-

cordance to Wang’s et al. data. The disadvantage of this approach is that due to the 

dependence ( )hydDξ ξ=  the correlation depends on one global geometry charac-

teristic and cannot be applied locally. 
For a down flow of buoyant bubbles the lift-force is directed toward the center 

of the pipe. As a result, no wall peaking of the void fraction is experimentally ob-
served in turbulent bubbly flow. The level of the wall peaking depends of the tur-
bulence in the liquid and on the stagnation pressure force. 
 

Conclusions: (a) The spatial resolution in finite volume analyses must be fine 
enough in order to accurately compute the rotation of the continuous velocity 
field. Bad resolution such as in the so-called subchannel analyses produces only 
useless noise that makes the use of this force meaningless. (b) There is no method 
known to me that is based on local conditions and that allows taking into account 
the effect of multiple objects on the lift force. (c) The other problem is that small 
bubbles will probably rotate and the application of lift force derived for nonrotat-
ing objects in shear flows is questionable. (d) Heavy solid particles carried by gas 
are rather subject to lift force than to Magnus force because due to their inertia 
they will hardly take the rotation of the surrounding continuum.  

2.7.2.5 Interfacial structure forces 

The continuous field interacts with the wall structures. Careful estimation of the 
surface integral  

1

mw

w
m m

F

p dF
Vol

σΔ n   

is required, especially in the case of variable geometry of the structure in space. 
The discussion of flow on immersed bodies given in Sections 2.6.2.2 through 
2.6.2.4 is also valid for the case of a porous solid structure with a characteristic 
size of wD . This means that the stagnation pressure force, form drag, virtual mass 
force, and lift force must also be incorporated, 

( )1

mw

w w
m m m

F

p dF
Vol

σ σΔ − ⋅ I T n ( ) * 1

mw

d vm L w
v wm wm wm m m

F

f f f p dF
Vol

σγ= + + + Δ  n . 

    (2.186) 
For a continuous velocity field wetting the total structure, mw wF F=  and, there-
fore, 
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( )1 1
1

mw w

m m

F F

dF dF
Vol Vol

γ γ= = ∇ − = −∇ n n .   (2.187) 

which is in fact Eq. (1.29) with l w= −n n  and 1e
lα = . Consequently 

( )1

mw

w w
m m m

F

p dF
Vol

σ σΔ − ⋅ I T n ( ) *d vm L w
v wm wm wm mf f f p σγ γ= + + − Δ ∇ . (2.188) 

Here the following applies for a disperse structure (flow through porous media): 

( )vm vm
wm m w mw w mwc

∂ρ
∂τ
 = Δ + ⋅∇ Δ  

f V V V ( )vm
w mw w mwc

∂
∂τ
 = Δ + ⋅∇ Δ  

V V V , 

    (2.189) 

1 3

4
d d d
wm m mw mw mw mw mw mw

w

c c
D

ρ= Δ Δ = Δ Δf V V V V ,   (2.190) 

( ) ( ) ( ) ( )L L L
wm m mw w m m mw w m mc cρ= − × ∇× = − × ∇×f V V V V V V . (2.191) 

For the case of a wall at rest we have 

vm vm vmm m
wm m w wc c

∂ ∂ρ
∂τ ∂τ

= =V V
f ,     (2.192) 

1 3

4
d d d
wm m mw m m mw m m

w

c c
D

ρ= =f V V V V ,    (2.193) 

( ) ( )L L L
wm m mw m m mw m mc cρ= − × ∇× = − × ∇×f V V V V .   (2.194) 

The shear (friction) force for channels is usually incorporated into d
mwc . The same 

is performed for the drag resulting from local changes in the flow cross-section for 
the specific flow direction. 

2.7.2.6 Force in the wall boundary layer 

Note that no bubbles are observed at the wall for adiabatic flows. This led Antal et 
al. (1991) to the conclusion that there is a special force at the wall similar to the 
lubrication force that pushes the bubbles away from the surface, 

2

0

ˆ
0.104 0.06 0.147

d cLw d
cd cd w

d

R
V

R y

α ρ  
= − − Δ + 

 

V
f n , 

where 0y  is the distance between the bubble and the wall, wn  is the unit outward 

normal vector on the surface of the wall, and 
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( )ˆ .d c w d c w= − − −  V V V n V V n . 

2.7.2.7 Force causing turbulent diffusion 

It is experimentally observed that turbulence in the continuous phase tends to 
smooth the volumetric concentrations of the dispersed phase. In other words, the 

pulsation in the continuum producing the force ( )e
l l l lα ρ γ ′ ′∇ ⋅  V V forces the par-

ticles to move from the places with higher concentration to the places with lower 
concentration. For homogeneous turbulence  

( ) ( )2e e
d d d d d d dkα ρ γ α ρ γ ′ ′  ∇⋅ = ∇   V V  . 

For bubbly flow ( ) ( )2 2e e
d d d d d ck kα ρ γ α ρ γ   ∇ ≈ ∇    . Here, ck  is the specific 

turbulent kinetic energy of the continuous phase. For bubbly flow, Lopez de Ber-
todano (1992) proposed the following form of this force: 

( )t e t
cd d d d d cd c c dc kα ρ γ ρ α ′ ′= ∇ ⋅ ≈ − ∇ f V V , 

with 0.1t
cdc =  proposed by Lahey et al. (1993). Shi et al. (2005) performed a Fa-

vre (mass-weighted) averaging of the classical form of the drag form. His final 
expression for the dispersed form is 

( )
3

4 1

d t
t cd c
cd c c d dt

d d c

c

D Sh

ν ρ α
α

= − − ∇
−

f V V , 

where the turbulent Schmidt number for the continuous field, t
cSh , is set to 1. 

2.7.2.8 Force causing rejection of droplet deposition at the wall 

Consider very strong evaporation of a film. The deposition mass flow rate of 
droplets is ( )32

wρ  with a velocity ( )32 332
w wρ ρ= , which is perpendicular to the 

wall. The film evaporation emits a vapor with velocity that has a component 
opposing the droplet deposition velocity 1, 1evaporationw q hρ′′= Δ . Therefore, the 

droplet in the proximity to the wall experiences an additional drag force that 
opposes its movement towards the wall 

( )1, 32 1, 32

1 3

4
dw dw
cd c cd evaporation evaporation w

d

c w w w w
D

ρ= − −f n . 

As we can see this force is important a) for high pressure because the continuum  
density is high, b) for high heat fluxes, and c) for low turbulence in the vapor 
phase. 
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2.8 Working form for the dispersed and continuous phase 

Thus the momentum equation of a dispersed velocity field takes the form 

( ) ( ) ( )e e
l l l v l l l l l l l l

∂ α ρ γ α ρ γ α ρ γ
∂τ

 ′ ′+ ∇ ⋅ + ∇ ⋅  V V V V V e
l lpα γ+ ∇ l v lα γ ρ+ g  

( ) ( )e
l m l lm l lp p δ σ κ α γ+ − + ∇ ( )*l e

m lp σ α γ−Δ ∇  

( )

( ) 1 3

4

vm
ml ml l ml

v l m

L d
ml ml m ml ml ml

l

c

c c
D

∂
∂τ

γ α ρ

  Δ + ⋅∇ Δ     −  
 
 − Δ × ∇× + Δ Δ
  

V V V

V V V V

 

( )
3,

1

w

v kl k lk l
k
k l

γ μ μ
=
≠

= − V V .      (2.195) 

In the case of isotropic turbulence we have 

( ) ( )e
l l l v l l l l

∂ α ρ γ α ρ γ
∂τ

+∇ ⋅V V V ( )2

3
e

l l l lkγα ρ− + ∇S e
l lpα γ+ ∇ l v lα γ ρ+ g  

( ) ( )*l e
l m l lm l m lp p p σδ σ κ α γ+ − + −Δ ∇  

( )

( ) 1 3

4

vm
ml ml l ml

v l m

L d
ml ml m ml ml ml

l

c

c c
D

∂
∂τ

γ α ρ

  Δ + ⋅∇ Δ     −  
 
 − Δ × ∇× + Δ Δ
  

V V V

V V V V

 

( )
3,

1

w

v kl k lk l
k
k l

γ μ μ
=
≠

= − V V .      (2.195b) 

The momentum equation of the continuous phase so far takes the following form: 

( ) ( )e
m m m v m m m m

∂ α ρ γ α ρ γ
∂τ

+∇ ⋅V V V   

( ) ( )2 2
2

3 3
e e

m m m m m m m mkγα ρ α γη  − + ∇ −∇ ⋅ − ∇ ⋅    
S D V I e

m mpα γ+ ∇  

m v mα γ ρ+ g ( )*l e
m lp σ α γ+Δ ∇ *w

mp σ γ−Δ ∇  
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( )

( ) 1 3

4

vm
ml ml l ml

v l m

L d
ml ml m ml ml ml

l

c

c c
D

∂
∂τ

γ α ρ

  Δ + ⋅∇ Δ     +  
 
 − Δ × ∇× + Δ Δ
  

V V V

V V V V

 

( )1 1 3

2 4
vm L dm

v m w mw m m mw m m
w

c c c
D

∂γ ρ
∂τ

 
+ − × ∇× + 

 

V
V V V V  

( )
3,

1

w

v km k mk m
k
k m

γ μ μ
=
≠

= − V V .     (2.196) 

In the case of isotropic turbulence, we have 

( ) ( )e
m m m v m m m m

∂ α ρ γ α ρ γ
∂τ

+∇ ⋅V V V  ( )e
m m m m mα γ ρ ′ ′+∇ ⋅ − V V T e

m mpα γ+ ∇  

m v mα γ ρ+ g ( )*l e
m lp σ α γ+Δ ∇ *w

mp σ γ−Δ ∇  

( )

( ) 1 3

4

vm
ml ml l ml

v l m

L d
ml ml m ml ml ml

l

c

c c
D

∂
∂τ

γ α ρ

  Δ + ⋅∇ Δ     +  
 
 − Δ × ∇× + Δ Δ
  

V V V

V V V V

 

( )1 1 3

2 4
vm L dm

v m w mw m m mw m m
w

c c c
D

∂γ ρ
∂τ

 
+ − × ∇× + 

 

V
V V V V  

( )
3,

1

w

v km k mk m
k
k m

γ μ μ
=
≠

= − V V .     (2.196b) 

The relation between the two bulk pressures is given by the momentum jump con-
dition. With the assumptions made in Section 2.6.2.1, the momentum jump condi-
tion, Eq. (2.23), reduces to 

( )2 , ,1 1
0m l

l m ml mml
l m

w p pσ τ σ τρ σ κ
ρ ρ

 
− + − − = 

 
.   (2.197) 

We exchange the subscripts l and m because the surface tension is assumed to be-
long to the liquid phase. After time averaging we obtain 
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( )2 1 1
0m l

l m ml lml
l m

w p pσ σρ σ κ
ρ ρ

 
− + − + = 

 
,   (2.198) 

or in terms of bulk pressure 

( )2 1 1l
l m ml l m ml

m l

p p p wσσ κ ρ
ρ ρ

 
− + = Δ + − 

 
.   (2.199) 

Actually, the pressure difference l
mp σΔ  varies over the surface and some surface-

averaged value  

1 1

l l

l l
m l m l

l lF F

Vol
p dF p dF

F F Vol
σ σ

σ σ

σ σ

Δ = Δ n n     (2.200) 

may be used. There is no experience in this field and future investigations are ne-
cessary. Approximations are thinkable for predominant surface tension and low 
mass transfer 

0l m ml lp p σ κ− + ≈ ,      (2.201) 

or for predominant mass transfer 

( )2 1 1
l m ml l ml

m l

p p wσ κ ρ
ρ ρ

 
− + ≈ − 

 
.    (2.202) 

Note that for spheres 1/ 1/ 2 /l l l lR R Rκ = + = . Remember that if the radius is in-
side the field the curvature is negative.  

Now let us as a practical illustration of the application of the theory analyze the 
eigenvalues for bubble flow without mass transfer in a one-dimensional horizontal 
channel with constant cross-section section, assuming noncompressible phases 
and neglecting the diffusion terms. The governing system then simplifies to 

2p p= ,       (2.203) 

1 12 2p p σ κ= + ,      (2.204) 

( )1 2 1
1 2 1 2 0

w w
w w

z z z

αα α∂ ∂ ∂+ + − =
∂ ∂ ∂

    (2.205) 

1 1 1
1 1 0

w
w

z z

∂α αα
∂τ

∂ ∂+ + =
∂ ∂

     (2.206) 

( ) 1 1 2 2
1 1 2 21 1 1 2 21 1 1

vm vmw w w w p
c w c w

z z z

∂ ∂ ∂ ∂ ∂α ρ ρ α ρ α
∂τ ∂ ∂τ ∂ ∂

   + + − + +   
   

1 * 1
2p

z
σ ∂α

∂
−Δ  

1 2 21 21 21
1

1 3

4
dc w w

D
α ρ= Δ Δ ,     (2.207) 
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( ) ( )1 1 2 2
1 2 21 1 2 1 21 2 2 2 1 21 1 2

vm vm vm vm
w

w w w w
c w c c w c w

z z

∂ ∂ ∂ ∂α ρ α α ρ α α ρ
∂τ ∂ ∂τ ∂

 − + + + + + + 
 

 

2

p

z

∂α
∂

+ 1 * 1
2p

z
σ ∂α

∂
+Δ 2 1 21 21 21 2 2 2

1

3 1 1

4
d d

w
w

c w w c w w
D D

ρ α 
= − Δ Δ + 

 
 

    (2.208) 

In matrix notation we have 

( )
( )

1

1 1 2 21 1 2 21 1

21 2 21 2 1 21 2

0 0 0 0

0 1 0 0

0 0

0 0

vm vm

vm vm vm
w

p

c c w

wc c c

α
α ρ ρ α ρ τ

α ρ α α ρ

        ∂   + −  ∂      − + +   

 

( )
( )

1 2 1 2

1 1
1

1 *
1 2 1 1 2 21 1 1 2 21 1 1

1 *
22 2 1 2 21 1 2 2 1 21 1 2

0

0 0
vm vm

vm vm

w w p
w

p c w c w wz

wp c w w c w

σ

σ

α α
α α

α α ρ ρ α ρ

α α ρ α α ρ

 −       ∂  +  −Δ + −  ∂        Δ − + 

 

1 2 21 21 21
1

2 1 21 21 21 2 2 2
1

0

0

1 3
4

3 1 1

4

d

d d
w

w

c w w
D

c w w c w w
D D

α ρ

ρ α

 
 
 
 

Δ Δ=  
 
   − Δ Δ +    

 .  (2.209) 

The reader unfamiliar with the analysis of the type of a system of partial diffe-
rential equations by first computing the eigenvalues, eigenvectors, and canonical 
forms, is recommended to first read Section 11 before continuing here.  

The characteristic equation for determining the eigenvalues is then 

( ) ( ) ( )

( )
( )

1 2 1 2

1 1

1 *
1 2 1 1 2 21 1 1 2 21 1

2 2 1 21 1

1 *
2 2 1 2 21 1 2

2 1 21

0

0 0

0

vm vm

vm

vm

vm vm
w

w w

w

p c w c w

w c w

p c w

c c

σ

σ

α α
λ α

α α ρ ρ λ α ρ λ

α α
α α ρ λ ρ

λ α α

− 
 − 
 −Δ + − − −
  =  +  
 Δ − −  
    − + +   

. 

  (2.210) 
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or 

( ) ( ) ( )21
2 21 2 1 1 2 2 2 1 21 1 2 1 21

2

vm vm vm vm
wc w w w c w c c

ρα α λ α λ α α λ α α
ρ

   + − + − + − + +    
 

( ) ( )
1 *
2

1 2 1 2 21 1 2
2

0vm p
w w c w

σ

α α λ α
ρ

Δ− − − + =    (2.211) 

or 

2 2 0a b cλ λ− + =       (2.212) 

where 

( )21
2 1 2 1 2 21 1

2

0vm vm
wa c c

ρα α α α α α
ρ

 
= − + − + > 

 
,   (2.213) 

( ) ( )2 2 1
1 2 1 2 1 2 1 21 1 2 2 1 2

2

1
2 2 2

2
vm vm

wb w w c c w w
ρα α α α α α α α
ρ

  = + − − + + −   
, 

    (2.214) 

( )
1 *

2 2 2 2 21 2
1 1 2 2 1 21 1 2 2 2 1 2

2 2

vm p
c w w w c w w

σρα α α α α α
ρ ρ

Δ= + + + + ,  (2.215) 

with two real solutions 

2

1,2

b b ac

a
λ ± −=       (2.216) 

for 

2b ac>        (2.217) 

which is, in fact, the stability criterion for bubbly flow. 

2.9   General working form for dispersed and continuous   
phases 

In this section, we write a single equation valid for both disperse and continuous 
phases. First we compare the terms in the two equations 

( ) ( )*d e
d d c d dc d c dp p p σ
α δ σ κ α γ= − + − Δ ∇f ,   (2.218) 

and 

( )*d e
c c dp σ
α α γ= Δ ∇f ,      (2.219) 
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and realize that in both cases the force is a function of the gradient of the disperse 
volume fraction multiplied by different multipliers. With this notation, we have 

 

( ) ( ) ( )* 2

3
Te

l l l v l l l l l l l l

∂ α ρ γ α ρ γ ν
∂τ

   +∇ ⋅ − ∇ + ∇ − ∇ ⋅      
V V V V V V I  

e
l l l l vpα γ α ρ γ+ ∇ + g *w

l lp σ
αγ−Δ ∇ + f  

( ) ( ) ( )

3

1

d
ml ml ml

v
m
m l L vm

ml l m m ml ml l ml

c

c c

γ
∂
∂τ

=
≠

 
 Δ Δ
  −  
   + − × ∇× + Δ + ⋅∇ Δ    


V V

V V V V V V

 

( )d vm Ll
v lw l l l lw l lw l lc c c

∂γ ρ ρ
∂τ

 + + − × ∇×  

V
V V V V ( )

3,

1

w

v ml m lm l
m

γ μ μ
=

= − V V . 

      (2.220) 
Note that 

* 0w
dp σΔ = ,       (2.221) 

* 0w
cp σΔ ≠ .       (2.222) 

Similarly 

, , 0d vm L
dw dw dwc c c = ,      (2.223) 

and 

, , 0d vm L
cw cw cwc c c ≠ ,      (2.224) 

if the continuum is in a contact with the wall. For easy programming, a couple of 
simple drag, lift, and virtual mass coefficients combined as follows are introduced 
for each field 

( )3
/ /

4
d d d d

ml lm m l lm m l m ml lc c c D c Dα ρ α ρ= = + ,   (2.225) 

L L L L
ml lm m l lm l m mlc c c cα ρ α ρ= = + ,     (2.226) 

vm vm vm vm
ml lm m l lm l m mlc c c cα ρ α ρ= = + .     (2.227) 
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If field l  is disperse and surrounded by the continuous m-field, the coefficient mlc  

is not equal to zero and lmc  is equal to zero, and vice versa. In other words if the 
second subscript refers to a disperse field, the local size of dispersion is positive 
and the coefficients are not equal to zero. For application in computer codes the 
following general notation is recommended: 

3,

1

w
d

l ml ml
m
m l

c
=
≠

=f f        (2.228) 

to take into account the fact that a control volume may contain two dispersed 
fields carried by one continuous field. This approach together with implicit discre-
tization of the momentum equations, their strong coupling through a special nu-
merical procedure, and the comparison with data for three-phase bubble flow was 
presented by Kolev et al. (1991). In Volume II the reader will find additional in-
formation on practical computation of drag forces in multiphase flows.  

Equation (2.220) is the rigorously derived local volume and time average mo-
mentum balance for multiphase flows in heterogeneous porous structures condi-
tionally divided into three velocity fields. 

The nonconservative form of the momentum conservation equation in compo-
nent notation is given in Appendix 2.3. In the same appendix some interesting sin-
gle-phase analytical solutions are given. They can be used as benchmarks for test-
ing the accuracy of the numerical solution methods. 

2.10 Some practical simplifications 

Equation (2.220) has been used since 1984 in the IVA1 to IVA6 computer codes 
Kolev (1985, 1986a, 1986b, 1987, 1991a, 1991b, 1993a, 1993b, 1993c, 1993d, 
1994, 1996, 1999) with the following simplifications: 

*2
0llm

l m m
l

p p p
R

σσ− + − Δ ≈ ,     (2.229) 

l mp p p≈ = ,       (2.230) 

0t
lν ≈ .       (2.231) 

Assumption (2.229) is quite close to the local volume and time average interfacial 
jump condition at the interface and, therefore, does not lead to any problems for 
slow interfacial mass transfer. 

Assumption (2.230) leads to the so-called single-pressure model. It should be 
emphasized that the most important interfacial pressure forces, which are consi-
derably larger in magnitude than the error introduced by the single-pressure as-
sumption, have already been taken into account. This assumption likewise does 
not lead to any problems. In this type of single-pressure model the hyperbolicy is 
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preserved due to the stabilizing viscous, drag, and virtual mass terms. Neglect of 
the viscous, drag and virtual mass terms leads to unphysical models. 

Assumption (2.231) was dictated by a lack of knowledge. When information 
for t

lν  becomes available, this can easily be included, as the viscous terms have al-

ready been taken into account. 
The resulting simplified form of Eq. (2.220) is, therefore, 

( ) ( ) ( )* 2

3
Te

l l l v l l l l l l l l

∂ α ρ γ α ρ γ ν
∂τ

   +∇ ⋅ − ∇ + ∇ − ∇ ⋅      
V V V V V V I  

e
l l l vpα γ α ρ γ+ ∇ + g  

( ) ( ) ( )

( )

3

1

d
ml ml ml

v
m
m l L vm

ml l m m ml ml l ml

d vm Ll
v lw l l l lw l lw l l

c

c c

c c c

γ
∂
∂τ

∂γ ρ ρ
∂τ

=
≠

 
 Δ ⋅ Δ
  −  
   + − × ∇× + Δ + ⋅∇ Δ    

 + ⋅ + − × ∇×  


V V

V V V V V V

V
V V V V

 

( )
3,

1

w

v ml m lm l
m

γ μ μ
=

= − V V .     (2.232) 

The form of Eq. (2.232) is sometimes called conservative in order to distinguish it 
from the nonconservative form. The nonconservative form is derived by applying 
the chain rule to the first two terms and inserting the mass-conservation equation 
(1.45). The resulting equation, 

( ) ( ) ( )* 2

3
Tel

l l v l l l l l l l l

∂α ρ γ γ α ρ γν
∂τ

    + ∇ −∇ ⋅ ∇ + ∇ − ∇ ⋅       

V
V V V V V I  

 

e
l l l vpα γ α ρ γ+ ∇ + g  

( ) ( ) ( )

( )

3

1

d
ml ml ml

v
m
m l L vm

ml l m m ml ml l ml

d vm Ll
v lw l l l lw l lw l l

c

c c

c c c

γ
∂
∂τ

∂γ ρ ρ
∂τ

=
≠

 
 Δ ⋅ Δ
  −  
   + − × ∇× + Δ + ⋅∇ Δ    

 + ⋅ + − × ∇×  


V V

V V V V V V

V
V V V V
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( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l

m

γ μ μ μ
=

 = − + − + −    
 V V V V V V , (2.233) 

contains some extremely interesting information, namely: 
 

(a) mass sinks of the velocity field l have no influence on the velocity change (an 
exception is the controlled flow suction from the structure through the structure in-
terface), and  
(b) mass sources from a donor field whose velocities differ from the velocity of 
the receiving field influence the velocity change. 

 

To facilitate the direct use of the vector equation (2.333), we give its scalar com-
ponents for the most frequently used cylindrical, 1κ = , and Cartesian, 0κ = , 
coordinate systems. 

 
r direction 

( ) *1 l
l l l v l l l l l r

u
u r u u

r rr
κ

κ

∂∂ ∂α ρ γ α ρ ν γ
∂τ ∂ ∂

  + −  
  

 

*1 1 l
l l l l l

u
v u

r r θκ κ

∂∂ α ρ ν γ
∂θ ∂θ

  + −  
  

 

* *2 l l
l l l l l l l l l l l z

v u
v v u w u

r r z zθκ κ
∂ ∂κ ∂α ρ ν γ α ρ ν γ
∂θ ∂ ∂

      − − + + −            
  

( ) ( )
3,

1

w

l r l l r lu v v ml ml lm l lu
m

p
g f u u f

r ν
∂α γ α ρ γ γ μ μ
∂ =

+ + + = − + ,  (2.234) 

 
where 

* *1 1l l
lu l l l r l l l

u v
f r r

r r r r r r
κ κ

ν θκ κ κ
∂∂ ∂ ∂α ρν γ α ρν γ

∂ ∂ ∂θ ∂
    = +        

 

* l
l l l z

w

z z

∂∂ α ρν γ
∂ ∂

 +  
 

( ) ( )* *2 1

3 l l l l r l l l lr
r r

κ
θκ

∂ α ρν γ α ρν γ
∂

  − ∇ ⋅ − ∇ ⋅   
V V ; 

     (2.235) 

θ  direction 

( ) *1 l
l l l v l l l l l r

v
v r u v

r r r
κ

κ
∂∂ ∂α ρ γ α ρ ν γ

∂τ ∂ ∂
  + −    

 

*1 1 l
l l l l l

v
v v

r r θκ κ
∂∂ α ρ ν γ

∂θ ∂θ
  + −    
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* * 1l l
l l l l l l

v u
v u r

r r r r
κ

θκ κ κ
∂κ ∂α ρ ν ν γ

∂ ∂θ
  + − −    

* l
l l l l l z

v
w v

z z

∂∂ α ρ ν γ
∂ ∂

  + −    
  

( ) ( )
3,

1

1 w

l l l lv v v ml ml lm l lv
m

p
g f v v f

rθ θ νκ
∂α γ α ρ γ γ μ μ
∂θ =

+ + + = − + , (2.236) 

where 

* *1 1 1
2l l

lv l l l l r l l l l

u v
f v u

r r r rν θκ κ κ
∂ ∂∂ ∂α ρν γ α ρν γ

∂ ∂θ ∂θ ∂θ
      = − + +            

 

* 1 l
l l l z

w

z rκ
∂∂ α ρν γ

∂ ∂θ
 +  
 

( )*2 1

3 l l l lr θκ
∂ α ρν γ
∂θ

 − ∇ ⋅ V ;  (2.237) 

z direction 

( ) *1 l
l l l v l l l l l r

w
w r u w

r r r
κ

κ
∂∂ ∂α ρ γ α ρ ν γ

∂τ ∂ ∂
  + −    

 

*1 1 l
l l l l l

w
v w

r r θκ κ
∂∂ α ρ ν γ

∂θ ∂θ
  + −    

* l
l l l l l z

w
w w

z z

∂∂ α ρ ν γ
∂ ∂

  + −    
 

( ) ( )
3,

1

w

l z l l z lw v v ml ml lm l lw
m

p
g f w w f

z ν
∂α γ α ρ γ γ μ μ
∂ =

+ + + = − + ,  (2.238) 

where 

* * *1 1l l l
lw l l l r l l l l l l z

u v w
f r

r r z r z z z
κ

ν θκ κ
∂ ∂ ∂∂ ∂ ∂α ρν γ α ρν γ α ρν γ

∂ ∂ ∂θ ∂ ∂ ∂
     = + +     
     

 

( )*2

3 l l l l zz

∂ α ρν γ
∂

 − ∇ ⋅ V .     (2.239) 

Here 

( )1 1 l l
l l

v w
r u

r zr r
κ

κ κ

∂ ∂∂
∂ ∂θ ∂

 ∇⋅ = + +  
V .    (2.240) 

Note that all interfacial forces are designated with lf  with components luf , lvf , 

and lwf . 
The viscous terms have been rearranged in order to obtain a convection-

diffusion form for the left-hand side of the momentum equations. The residual 
terms are pooled into the momentum source terms νf . This notation is justified for 
two reasons. First, for a single-phase flow in a pool (unrestricted flows) and a con-
stant density, the source terms νf  are equal to zero, which intuitively leads to the 

idea that the main viscous influence is outside the νf  source terms. This argument 

led some authors to derive an explicit discretization for the νf  source terms for 



Appendix 2.1      103 

single-phase flow applications, see Trent and Eyler (1983), or even to neglect 
these source terms. Second, methods with known mathematical properties for the 
discretization of convection-diffusion equations have already been developed, and 
these can be applied directly. 

Note that for Cartesian coordinates the convective components contain spatial 
derivatives. In the case of cylindrical coordinates the convective part contains in 
addition two components not containing spatial derivatives. The component  

centrifugal force l l l lv v
r θκ
κ α ρ γ= −     (2.241) 

is known in the literature as centrifugal force. It gives the effective force component in 
the r direction resulting from fluid motion in the θ  direction. The component  

Coriolis force l l l lv u
r θκ
κ α ρ γ=      (2.242) 

is known in the literature as the Coriolis force. It is an effective force component 
in the θ  direction when there is flow in both the r and θ directions. This results in 
the components of the viscous stress tensor, ,l θθτ  and ,l rθτ  corresponding to these 

forces and acting in the opposite directions. 

2.11 Conclusion 

The positive experience with Eqs. (2.334)–(2.340) in the development of the IVA 
code Kolev (1985, 1993e, 1996, 1999) allows one to recommend these equations 
for general use. One should keep in mind for application purposes that both sides 
of the equations are local volume and time averages. 

Understanding of the local volume and time average momentum equations is a 
prerequisite for understanding the second law of thermodynamics and its extreme-
ly interesting application to yield a simple description of this highly complicated 
system. As a next step in this direction, a rigorous formulation of the equations re-
flecting the second law of thermodynamics for this multiphase, multicomponent 
system has been successfully derived. The result of this derivation has formed the 
subject of a Chapter 5, see also Kolev (1995), and a comment to this publication 
(Kolev 1997).  

Appendix 2.1 

Substituting in the momentum conservation equation and performing time averaging,  

le

l lp pτ = , 
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me

m mp pτ = , 

l

l v l l l v l lα γ ρ α γ ρ=V V , 

 0
l

l v l lα γ ρ ′ =V ,  

le e
l l l l l l l lα γ ρ α γρ=V V V V , 

0
le

l l l lα γ ρ ′ =V V , 

le e
l l l l l l l lα γ ρ α γρ′ ′ ′ ′=V V V V , 

( ) ( )lee e
l l l l

τα γ α γ∇ ⋅ = ∇ ⋅T T , 

lee e
l l l lp pτα γ α γ∇ ⋅ = ∇ ⋅ , 
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l v l l v lα γ ρ α γ ρ=g g , 

( )
3 3

1 1

me le

ml m lm l ml m lm l
m m

τ τ τ τμ μ μ μ
= =

 − ≈ − 
  V V V V , 
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( ) ( ) ( )1 1

lw l

e
l m l lm l l l l t lm

F F
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Vol Vol

σ

δ σ κ α γ δ σ
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σ σ+ Δ − ⋅ I T n ( )1

lw

w w
l l l

F

p dF
Vol

σ σ+ Δ − ⋅ I T n  

( )
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w

v ml m lm l
m

γ μ μ
=
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one obtains Eq. (2.50a). 
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Appendix 2.2 

The normal velocity difference can be obtained by splitting the relative velocity 
vector at the interface lmΔV  into a component that is parallel to ln  

 ( )
l

n lm l
lm lm l lm l l

l l

proj
 Δ ⋅Δ = Δ = = Δ ⋅ ⋅ 

n

V n
V V n V n n

n n
,      

with a magnitude 

( ) ( ) ( )22 2n
lm lm l lx l m ly l m lz l mn u u n v v n w w Δ = Δ ⋅ = − + − + −       V V n   

and a component orthogonal to ln ,  

( )
l

t
lm lm lm lm lm l lprojΔ = Δ − Δ = Δ − Δ ⋅eV V V V V n n  

( ) ( ) ( )lm lx lm l lm ly lm l lm lz lm lu n v n w n     = Δ − Δ ⋅ + Δ − Δ ⋅ + Δ − Δ ⋅     V n i V n j V n k  

Appendix 2.3 

The nonconservative form of Eqs. (2.195) is 
 

r direction: 

21 1
2

l l l l
l l v r l l z

u u u u
v w

r r zθ κ
∂ ∂ ∂ ∂α ρ γ γ γ γ
∂τ ∂ ∂θ ∂

 
+ + + 

 
 

* *1 1 1l l
l l l r l l l

u u
r

r r r r r
κ

θκ κ κ
∂ ∂∂ ∂α ρν γ α ρν γ

∂ ∂ ∂θ ∂θ
   − −   
   

* l
l l l z

u

z z

∂∂ α ρν γ
∂ ∂

 −  
 

 

*2 l
l l l l l l

v
v v u

r r θκ κ
∂κ α ρ ν γ
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  − − +    
( )l r l l r lu v

p
g f

r

∂α γ α ρ γ
∂

+ + +   

( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l lu

m

u u u u u u fνγ μ μ μ
=

  = − + − − − +   
 ; 

θ  direction: 

21 1
2

l l l l
l l v l r l z

v v v v
u w

r r zθ κ
∂ ∂ ∂ ∂α ρ γ γ γ γ
∂τ ∂ ∂θ ∂

 
+ + + 

 
 

* * *1 1 1l l l
l l l r l l l l l l z

v v v
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r r r r r z z
κ

θκ κ κ
∂ ∂ ∂∂ ∂ ∂α ρν γ α ρν γ α ρν γ

∂ ∂ ∂θ ∂θ ∂ ∂
     − − −     
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* * 1l l
l l l l l l

v u
v u r

r r r r
κ

θκ κ κ
∂κ ∂α ρ ν ν γ

∂ ∂θ
  + − −    

( )1
l l l lv v

p
g f

rθ θκ
∂α γ α ρ γ
∂θ

+ + + . 

( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l lv

m

v v v v v v fνγ μ μ μ
=
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 ; 

 

z direction: 

21 1
2

l l l l
l l v l r l z

w w w w
u v

r r zθ κ
∂ ∂ ∂ ∂α ρ γ γ γ γ
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* * *1 1 1l l l
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( )l z l l z lw v

p
g f

z

∂α γ α ρ γ
∂

+ + +  

( ) ( ) ( )
3

1
v ml m l wl wl l lw lw l lw

m

w w w w w w fνγ μ μ μ
=

  = − + − − − +   
 . 

Some simple single-phase test cases: For testing numerical solutions it is impor-
tant to provide a set of simple benchmarks having analytical solutions. Some of 
them are presented here. 

 

Rigid body steady rotation problem: This test problem presents a hollow cylinder 
with symmetric flow in the azimuth direction, see Fig. A2.3-1. No axial and radial 

flow exists. The mass conservation equation gives 0
v∂

∂θ
= . The r direction mo-

mentum equation simplifies to 
2v

r
ρ =

p

r

∂
∂

, and the θ  direction momentum equa-

tion gives 0
p∂

∂θ
= . For constant rotational frequency ω , ( )( )=rv r ω , the analyt-

ical solution of the radial momentum equation is ( )2 2 2
0 0

1

2
p p r rρω− = −  or 

( )
2

2 0
0

1
1

2

r
p p v r

r
ρ

  − = −         
. 
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Fig. A2.3-1 Geometry of the test problem rigid body steady rotation 
 
Pure radial symmetric flow: This test problem presents a hollow cylinder with 
symmetric flow in the radial direction, see Fig. A2.3-2.  
 

 
 

Fig. A2.3-2 Geometry of the test problem pure radial symmetric flow 
 
No axial and azimuthal flow exists. The mass conservation equation gives 

( ) 0ru
r

∂
∂

= . The r direction momentum equation simplifies to 
21

2
u p

r r

∂ ∂ρ
∂ ∂

= − , 

and the θ  direction momentum equation gives 0
p∂

∂θ
= . From the mass conserva-

tion we have 0
0

r
u u

r
= . The analytical solution of the radial momentum equation 

is the well-known Bernoulli equation ( )2 2
0 0

1

2
p p u uρ− = − −  or 

2
2 0

0 0

1
1

2

r
p p u

r
ρ

  − = −  
   

. 

 
Radial-azimuthal symmetric flow: This test problem presents a hollow cylinder 
with symmetric flow in the radial and azimuthal directions – it is, in fact, a super-
position of the previous two cases, rigid body steady rotation and pure radial 
symmetric flow, see Fig. A2.3-3. No axial flow exists. The mass conservation eq-



108      2 Conservation of Momentum 

uation gives ( ) 0ru
r

∂
∂

= . The r direction momentum equation simplifies to 

2 21
2

u v p

r r r

∂ ∂ρ
∂ ∂

 
− = − 

 
, and the θ -direction momentum equation gives 

1v v p
u

r r r

∂ ∂ρ
∂ ∂θ

 + = − 
 

. From the mass conservation we have 0
0

r
u u

r
= . From the 

azimuthal symmetry, 0
p∂

∂θ
= , the θ  direction momentum equation gives 

0
v v

r r

∂
∂

+ =  or 0
0

r
v v

r
= . Taking into account the both solutions of the mass and 

of the θ  momentum equation the radial momentum equation gives 

( )2 21 p
u v

r r

∂ρ
∂

+ =  or ( )2 2 2
0 0 0 3

1 p
u v r
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∂ρ
∂

+ =  or 

 ( )2 2 2
0 0 0 0 2 2

0

1 1 1

2
p p u v r

r r
ρ  

− = + − 
 

. 

 

 
 

Fig. A2.3-3 Geometry of the test problem radial-azimuthal symmetric flow 
 

Trajectory of particles in a known gas field: Consider flow of particles with 
very small concentrations in a known gas velocity field. Compute the trajectory of 
a particle with mass mi taking into account only the drag force and assuming the 
validity of Stokes’ law. Such a task was usually solved in the past for computing 
trajectories of particles in cyclone separators. If in such computations, the trajecto-
ry ends in the particle capturing devices, this class characterized by particle size 
and starting coordinate is considered as removed from the gas flow. The three 
simplified momentum equations are then 

( )
3 2
3, 3, 3,

1 3, 1 3,3
6

i i i
i i i

D du v
D u u

d r

π
ρ πη

τ
 

− = −  
 

,   ( )
2

3, 3, 1
1 3,2

3,

18i i
i

i i
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u u

d r D

η
τ ρ
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( )
3
3, 3, 3, 3,

1 3, 1 3,3
6

i i i i
i i i

D dv v u
D v v

d r

π
ρ πη

τ
 

+ = − 
 

,  ( )3, 3, 3, 1
1 3,2

3,

18i i i
i

i i

dv v u
v v

d r D

η
τ ρ

= − + − , 
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( )
3
3, 3,

1 3, 1 3,3
6

i i
i i i

D dw
D w w

d

π
ρ πη

τ
= − ,   ( )3, 1

1 3,2
3,

18i
i

i i

dw
w w

d D

η
τ ρ

= − . 

For constant gas velocity and particle size the analytical solution is provided by 
Crowe and Patt (1974) 

( ) ( )3, 1 1 3, , 13expi i aw w w w τ τ= − − −Δ Δ , 

( ) ( ) ( ) 2
3, 1 1 3, , 13 13 13 3,exp 1 expi i a iu u u u v rτ τ τ τ τ= − − −Δ Δ + − −Δ Δ Δ   , 

( ) ( ) ( )3, 1 1 3, , 13 13 13 3, 3,exp 1 expi i a i iv v v v v u rτ τ τ τ τ= − − −Δ Δ − − −Δ Δ Δ   , 

where 

( ) ( )2
13 3 3 118iDτ ρ ηΔ =  

is the Stokes relaxation time constant. Knowing the initial position and the veloci-
ty, the position after the time interval τΔ  can be computed by using the Euler me-
thod. 
 
The Kreith and Sonju solution for the decay of turbulent swirl in a pipe: Kreith 
and Sonju (1965) analyzed steady turbulent swirl in a pipe. After making several 
reasonable simplifying assumptions the authors arrived at the following form of 
the tangential momentum equation: 

( )
2

2 2

1tv v v v
w

z r rr r

∂ ∂ ∂ν ν
∂ ∂∂

 
= + + − 

 
, 

or in nondimensional form 

 
2

2 2

1

Re

v v v v

z r rr r

∂ ν ∂ ∂
∂ ∂∂

 
= + − 

 
, 

where maxv v w= , r r R= , ( )tv v ν ν= + , z z R= , and Re wR ν= . The au-

thors solved this equation by separation of the variables for the following boun-
dary conditions: v = 0 at r = 0 and r = R, v(r, 0) = f(r) at z = 0. The initial condi-
tion was gained from experimental data for the initial distribution of the tangential 
velocity behind a tape swirler 

( ) ( ) 2.68
,0 6.3 0.013 1.1 tsv r r r z

− = − − Δ  , 

where ts tsz z RΔ = Δ , tszΔ is the length of the tape swirler making a complete 360° 
rotation. 

( ) ( )1

7.78
, 3.832 exp 16.7

Re

z
v r z J r

H

ν = − 
 

( )1

5.26
7.016 exp 55.7

Re

z
J r

H

ν − − 
 

 

( )1

3.93
10.174 exp 117.9

Re

z
J r

H

ν + − 
 

( )1

3.16
13.324 exp 203.7

Re

z
J r

H

ν − − 
 

+… 

1J  is the Bessel’s function of the first kind of order one. From experimental data 

the relation 3 0.861 2.03 10 Rev −= + ×  was recommended for 4 64 10 Re 1 10× < < × . 
Experimental data for Re = 18 000 and 61 000 validate the approximate solution. 
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The data indicate the initial swirl decay to be about 20% at z = 100. There are au-
thors trying to represent the decay by a single exponential function. From the data 
collected by Steenberger (1995) it is visible that the decay coefficient is a decreas-
ing function with increasing Reynolds number as manifested by the above solu-
tion. Note the practical importance of this solution. Having the rotation introduced 
by twisted tapes in the cylinder particle trajectories can be computed and, there-
fore, the efficiency of separation devices can be judged. 
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3 Derivatives for the equations of state 

Derivation of partial derivatives for isothermal multi-component mixtures needed for 
development of universal models for multi-phase multi-component flows is presented. The 
equations of state and the derivative approximations as functions of temperature and 
pressure for the elementary mixture constituents are assumed to be known. The so called 
universal fluid is introduced consisting of an arbitrary number of miscible and non-
miscible components. This fluid model describes in its limiting cases gas, or gas mixture, or 
liquid, or solution of liquids, or gas-liquid solutions with an arbitrary number of gaseous 
and liquid components, or gas-liquid solutions containing immiscible liquid or solid 
particles.  In addition, one component liquid-gas and solid-liquid equilibrium mixtures are 
considered. 

3.1 Introduction 

Numerical modeling of complicated physical phenomena such as multi-
component multi-phase flows is a powerful tool supplementing experiments and 
enabling optimum design of complicated technical facilities. The wide range of 
computer codes developed over the past 30 years for the description of multi-
dimensional single-, two- and multiphase flows inevitably leads to the step of de-
veloping a universal flow analyzer. Such a computer code should model transient 
and steady-state three-dimensional flows in a complicated geometry with arbitrary 
internals. The flow should be described by multi-velocity fields, each of them 
consisting of an arbitrary number of chemical components. 

The local volume- and time-averaged fundamental equations are derived by 
applying the so-called instantaneous equations inside the velocity field and 
averaging these over space and time. But even the instantaneous conservation 
equations for mass, momentum and energy are averages too in the sense that the 
motions of the individual molecules are averaged. This leads to loss of informa-
tion on the thermodynamic behavior of the system. The information lost must be 
provided by the state and transport equations which already incorporate the 
averaging procedure by virtue of their derivation. 

For a mathematical description of the flow, time and three space coordinates 
are generally used as independent variables, with a set of time- and space-dependent 
variables, e.g. p and T as dependent variables. Besides the velocities that describe 
the flow, there are dependent variables that describe the thermodynamic state of 
the particular velocity field. This group of variables has to consist of mutually 
independent variables, e.g. ( ),p T , or ( ),p h , or ( ),p s , or ( ),p ρ , etc., see for 

example, Kestin (1979). Some valuable references are also given in Appendix 3.2. 
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All other properties of the velocity field are a unique function of these mutually 
independent variables. Analytical or tabular approximations of the equation of 
state and of the transport properties as a function of pressure ( )p  and temperature 

( )T  are in general use. As already mentioned, the set of dependent variables can 

be transformed from ( ),p T  to another set, e.g. ( ),p h  or ( ),p s , and the system 

of PDEs can be rearranged in terms of the chosen set. From the large variety of 
systems that result, only one has the remarkable quality of being the simplest. 
Interestingly enough, it is just this system which is obtained if the specific entropy 
of the velocity fields is used as an element of the dependent variable vector. 
This will be demonstrated in Chapters 4 and 5. An interesting dilemma thus aris-
es: on the one hand, the desire to integrate the simplest possible system of PDEs 
in order to save computer time, to reduce errors during code development, and to 
concentrate on other related models incorporated into the code; on the other, the de-
sire to use an existing library of analytical approximations for the equation of 
state and for the transport equation as a function of pressure and temperature. 
These two tendencies are not contradictory. A solution is easily obtained if the 
equation of state is used in the form 

( ),T T p s= ,   
ps

T T
dT dp ds

p s

∂ ∂
∂ ∂

   = +   
  

   (3.1) 

and 

( ),p sρ ρ= ,   
ps

d dp ds
p s

∂ρ ∂ρρ
∂ ∂

   = +   
  

   (3.2) 

where the derivatives ( )/
s

T p∂ ∂ , ( )/
p

T s∂ ∂ , ( )/
s

p∂ρ ∂ , and ( )/
p

s∂ρ ∂  are 

functions of ( ),p T . The derivatives  ( )/
s

p∂ρ ∂  and ( )/
p

s∂ρ ∂  are needed for 

development of the very important link between the density change and the 
change in the other dependent variables describing the flow. This link is, at 
the same time, the link between the mass, momentum, and energy-
conservation equations. This construct for the solution methods is called the 
entropy concept. 

The results presented can be used in the framework of the entropy concept, or 
in any other concepts for development of solution methods in the field of multi-
phase fluid dynamics. The expressions used in the IVA computer code family Ko-
lev (1994a, 1995, 1998) are the simple cases for two components of the general 
expressions presented in this chapter for the n-component. Complete implementa-
tion of the theory for computational analyses was performed by this author in Ko-
lev (1996, 1999, 2002). 
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3.2 Multi-component mixtures of miscible 
and non-miscible components 

Every fluid that seems to be pure in nature is in fact a mixture of substances. The 
idealization pure applied to a fluid is very helpful in science. In many cases replac-
ing mixtures of one predominant fluid with some traces of other substances is a very 
good approximation to work with. But there are a lot of other applications where 
even these small “impurities” substantially control processes. Examples are the in-
itiation of phase transitions in meta-stable liquids and gases – the so called hetero-
geneous nucleation process starting at proffered “impurities” such as fine gas 
bubbles or solid particles. Another example is the solution and dissolution process of 
gases. In some technological applications such processes may lead to explosive gas 
mixtures which under some circumstances may ignite and destroy the facility. 

The results obtained in Kolev (1986a, b) for mixtures consisting of one real and 
one ideal gas were generalized in Kolev (1991) for mixtures with an unlimited 
number of chemical gas components. Chapter 3.2 in Kolev (2002) was an extended 
version of Kolev (1986a, b). Here we extend the theory once again for mixtures 
consisting simultaneously of miscible and non-miscible chemical constituents. 

Consider a mixture of max max maxi m n= +  components, where maxm  is the num-

ber of the miscible components and maxn  is the number of the non-miscible 

components.  
Examples of miscible components are: 
 

a) Gases inside a gas mixture; 
b) Gases dissolved in liquid; 
c) Liquids dissolved in liquid.  
 

In this case each component occupies the total volume occupied by the mixture it-
self. The volumetric fraction of each miscible component iα  in the multiphase 

flow is therefore equal to the volume fraction of the corresponding velocity field, 

α , and the definition of the density of the mixture 
max

1

i

i i
i

αρ α ρ
=

=  simplifies to 

max

1

i

i
i

ρ ρ
=

= . As a result, the definition of the mass concentrations simplifies to 

( )/ /i i i iC α ρ αρ ρ ρ= = . The total pressure p is then the sum of the partial pres-

sures of the miscible components,
max

1

m

i
i

p p
=

=  . This relation expresses the law of 

Dalton.  
Examples of non-miscible components are: 

 

a) Mixtures of non-miscible liquids; 
b) Mixture of solid particles and liquid. 
As already said, in a mixture consisting of miscible components, each component 
occupies the total volume occupied by the mixture itself. This is not the case for 
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mixtures consisting of non-miscible components. The volume fraction occupied 
by each species differs from the volume fraction occupied by the mixture itself. 

The definition of the mixture density is then 
max max

1 1

i i

i i i
i i

α ρ α ρ
= =

 
= 

 
  , and the defini-

tion of the mass concentrations therefore 

max max

1 1

/ /
i i

i i i i i i i i
i i

C α ρ α ρ α ρ α ρ
= =

    
= =     

    
   

does not simplify, as does that for gas mixtures.  
The non-miscible components experience the same total pressure which is 

equal to the total mixture pressure np p= , where max max max1,n m m n= + + . 
Examples of mixture of miscible and non-miscible fluids are in fact all fluids in 

the nature such us: 
 

a) Liquid water containing dissolved gases and impurities such as solid particles 
of different chemical components; 

b) Lava consisting of several molten components containing dissolved gases and 
solid particles from other than the molten species; 

c) Air containing microscopic impurities such as dust. 
 

There are many examples of dramatic events happening in nature and in technolo-
gy due to the release of the dissolved components inside mixtures: 
 

a) Volcanic explosions initiated first by pressure release and followed by a 
dramatic release of the dissolved gases; 

b) Choked flow in propulsion machines caused by gas release due to a pressure 
drop; 

c) Hydrogen and oxygen release and accumulation in nuclear power plant 
pipelines that could be ignited and cause explosive damage etc. 

3.2.1 Computation of partial pressures for known mass 
concentrations, system pressure and temperature 

Task definition. The mass concentration of each constituent, designated iC  is 

max

1

: / /
i

i i m i
m

C ρ ρ ρ ρ
=

= = ,     (3.3) 

where 

( ) ( )

max

max
max

max

max

1

1

1

1
1

,
,

i

n i
n m n

m
n m n

m m
m

C
C

p T
p T

ρ ρρ

= +

= +

=

−
= +





,    (3.4) 
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is the mixture density. Equations (3.3) and (3.4) are valid for mixture consisting 
simultaneously of both miscible and non-miscible components. The system 
pressure, temperature of the mixture and mass concentration of each constituent, 

max

max max

1

1,2,..., 1
1

, , , 1
i

i i k
k

p T C C C
−

−
=

= −   

are, by definition, known. The partial pressure of each particular miscible component 
is sought. 
 

Solution. We start with the max 1m −  definition equations for the mass concentrations,  

( ),i i ip T Cρ ρ= ,   max1, 1i m= − ,    (3.5) 

and with Dalton’s law valid for the miscible components (i.e., the sum of the par-
tial pressures = system pressure) 

max

1

m

m
m

p p
=

=  .       (3.6) 

In the general case of real fluids, Eqs. (3.5) and (3.6) are a system of non-linear 
algebraic equations for the unknowns max, 1,mp m m= , which can be solved 
numerically by iterations. Before showing this solution we will first give the well-
known solution for which the miscible components are perfect fluids. It can be 
used as a first approximation for the numerical solution. 

The solution if the miscible components are perfect fluids. For miscible fluids as-
sumed to be perfect we have 

i
i

i

p

RT
ρ = .       (3.7) 

This simplifies the system (3.5), (3.6) considerably. We first substitute the mixture 
density in Eq. (3.5) using (3.4). Then we substitute each of the m densities of the 
miscible fluids using (3.7) in the resulting equation. After multiplying both sides 
of the resulting equation by T we finally obtain 

( )

max

max
max

max

max

1

1

1

1
1

,

i

n i
n mi n

i m
n mi nm

i m m

C
p C

C
R T p Tp

R

ρ

−

= +

= +

=

 
− 

 = +
 
 
  





,   max1, 1i m= − . (3.8) 

Now the system (3.6) and (3.8) can be solved analytically for the unknown partial 
pressures in the following way. Select the component, maxm , whose pressure 

maxmp  

must be calculated first. Add the max 1m −  equations (3.8)  
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( )

max

max max max
max

max

max

1

1 1
1

1 1 1

1
1

,

i

nm m i
n m n

k k k m
k k n m nm

i m m

C
C

p R C
T p Tp

R

ρ

−

− −
= +

= = = +

=

 
− 

 = +
 
 
  


  


, (3.9) 

rewrite Eq. (3.6) in the following form 

max

max

1

1

m

m k
k

p p p
−

=

− =  ,      (3.10) 

and replace the sum of the left-hand side of Eq. (3.9) by Eq. (3.10) to obtain 

( )

max

max max
max

max max

max

1

1
1

1 1

1
1

,

i

nm i
n m n

m k k m
k n m nm

i m m

C
C

p p R C
T p Tp

R

ρ

−

−
= +

= = +

=

 
− 

 − = +
 
 
  


 


. (3.11) 

Replace the sum 
max

1

m
m

m m

p

R=
  in this equation by the definition equation (3.3) for 

maxmC  

max
max

max max
1

m
mm

m m m m

pp

R C R=
= ,      (3.12) 

to obtain the quadratic equation 

( )
max

max

max

2

1 ,

i
m n

n m n

p C

T p Tρ= +
   

( )
max max max

max max max

max max1 1 1 ,

m i i
n

k k m m n m
k n m n m n

Cp
C R C R C p

T p Tρ= = + = +

 
+ − − 
  
    

max

max max

max 1

1 0
i

n m m
n m

C C R p
= +

 
− − = 
 

 .    (3.13) 

The solution of this equation gives the result we are looking for. Analogously, we 
compute each of the other partial pressures of the miscible components.  

 
Limiting case for no non-miscible components. For the limiting case of no non-
miscible components in the mixture the solution is 

max max

max maxmax

1

m m

m mm

k k
k

R C
p p Y p

R C
=

= =


,     (3.14) 
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see Elsner (1974) for comparison. Analogously, we compute each of the other 
partial pressures 

i ip Y p= ,       (3.15) 

where 

max max

1 1

/

/

i i i i
i i i

k k k k
k k

R C C M
Y

R C C M
= =

= =
 

     (3.16) 

is the molar concentration of the i-th component of the gas mixture. Here iM  is 
kg-mole of the constituent i. Note that for a description of transport processes 
without chemical reactions the use of the mass concentrations is much more con-
venient than the use of the molar concentrations. For perfect fluids the reverse 
computation of the mass concentrations if the kg-mole concentrations are known is 
useful 

max

1

i i
i i

k k
k

Y M
C

Y M
=

=


.       (3.17) 

The general solution. In reality, the mixture does not consist of perfect fluids but 
of real fluids. As a result, the solution already obtained can be used as a first ap-
proximation for the exact solution of the system (3.5) and (3.6), which then must 
be obtained by iteration. For this purpose, we use the standard method of Newton-
Raphson, seeking the zeros for the following functions 

( ),i i i ip T Cε ρ ρ= − ,   max1, 1i m= − ,    (3.18) 

max

max
1

m

m m
m

p pε
=

= − .      (3.19) 

Small deviations in mp , mpδ , max1, 1m m= −  lead to a corresponding deviation in mε  

i
i i i

i T

p C
p

∂ρδε δ δρ
∂

 
= − 
 

,   max1, 1i m= − ,   (3.20) 

and 

max

max
1

m

m m
m

pδε δ
=

= − .      (3.21) 

Further to this, the task is reduced to finding such a mpδ , which for a given initial 

approximation mp , and 
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( ),m
m

m T

p
f p T

p

∂
∂

 
= 

 
      (3.22) 

minimizes the residuals of the functions, namely, 

( ),m m mp Tδε ε= −       (3.23) 

or 

pδ = −J e        (3.24) 

or 

1pδ −= −J e ,       (3.25) 

where the algebraic vector of the pressure increments is 

max max

1
1 1

1
2 2

1

...

n n

n n

n n
m m

p p

p p
p

p p

δ

+

+

+

 −
 − =  
  − 

,      (3.26) 

and the residuals 

( )

( )

max

1 1 1

2 2 2

1

,

,

...

m

m
m

p T C

p T C

p p

ρ ρ

ρ ρ

=

− 
 
 
 −
 
 =  
 
 
 
 −   



e

.     (3.27) 

Knowing the residuals and the Jacobian in the previous iteration step n, the 
solution improves as follows 

( ) 11n n np p
−+ = − J e .      (3.28) 

Because p and T are constant the term ( )
max

max 1 ,

i
i

i m i

C

p Tρ= +
  in the density expression is 

also a constant. Therefore 
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( )
( )

max

max
max

max

2

1

2
1

1

1

,

,

i

i m
i m

i i
m i

i i
i

C

d d p T

p T

ρ
ρ ρ

ρ

= +

=

=

 
−  

 =
 
 
 





,    (3.29) 

and the Jacobian takes the form 

( )

max

max

max

2

1

2

1

1

/

,

i

i
i m k

kj k j kj k
m

k T
i i

i

C

J p C
p

p T

ρ
∂ρ∂ε ∂ δ
∂

ρ

= +

=

  
−  

   = = −  
    
  
  




 for  max1,..., 1k m= − ,` 

(3.30) 

max
1m jJ = − .       (3.31) 

kjδ  in Eq. (3.30) is the Kroneker delta function ( kjδ = 0 for j = k, and kjδ  = 1  

otherwise). For non-existing non-miscible components Eq. (3.30) reduces to Eq. 
(3.30) in Kolev (2002). If one part of the components is taken to be a perfect gas, 
the corresponding derivatives in the Jacobian are simply 

1i

i iT
p RT

∂ρ
∂

 
= 

 
.      (3.32) 

But in the general case 

( )
1

,
i

i i iT
p R p T T

∂ρ
∂

 
= 

 
,      (3.33) 

where 

( ), 1 i
i i

i T

R p T T
p

∂ρ
∂

  
=   

   
     (3.34) 

is not a constant, but a function of ip  and T  because 

( ),i
i

i T

T f p T
p

∂ρ
∂

 
= 

 
.      (3.35) 

Using ( ), , ip T ρ  instead of ( ), , ip T C  as dependent variables we eliminate the 

need for computing the partial pressure by iterations because we have directly 
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( ),i i ip p Tρ= . This approach has its limitation if used with digital computers due 

to the so called truncation error. Thus below a given Mach number 

( )1 2 / 2
1 10 n nMa +<       (3.36) 

the density change is then below the truncation error for computers 

11

10

10nρ
ρ
Δ ≈        (3.37) 

and cannot influence the pressure field any more below the value, 

2
2

10 10

10np

wρ
Δ ≈        (3.38) 

due to 2p a ρΔ ≈ Δ ,      (3.39) 

21
12

10 10 10

/
p

Ma
w

ρ
ρ ρ
Δ Δ≈ ,      (3.40) 

see Issa (1983). More recent discussion of this topic is given in Sesternhenn  
et al. (1999). 

Thus, after p, iC  and T are known, the partial pressure and therefore the densi-
ties can be calculated as 

( ),i i ip Tρ ρ=       (3.41) 

as can the partial derivatives for each of the components i

i T
p

∂ρ
∂

 
 
 

and 
i

i

pT

∂ρ
∂

 
 
 

 . 

For a perfect gas the densities and their derivatives can easily be computed 
from the state equation ( ),i i ip Tρ ρ= . For real gases, it is assumed that the 

analytical expression for ( ),i i ip Tρ ρ= is known. It is therefore easy to derive 

analytical expressions to compute the corresponding derivatives. The differen-
tial form of the equation of state 

( ),i i ip Tρ ρ= ,      (3.42) 

namely, 

i

i i
i i

pi T

d dp dT
p T

∂ρ ∂ρρ
∂ ∂

   = +   
  

,    (3.43) 

for each of the components is uniquely defined. 
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3.2.2 Partial derivatives of the equation of state ( )
max2,...,, , ip T Cρ ρ=  

The mixture density 

( ) ( ) ( )
max

max
max

maxmax

max

1

1
1,2,...,

1

1

1

, ,
,

,

i

n i
n m n

im
n m n

m m
m

C
C

C p T
p T

p T

ρ ρ
ρρ

−

= +

= +

=

 
− 

 = + =
 
 
  





 (3.44) 

is obviously a function of 
max1,2,..., ,iC p  and T. Note that only max 1i −  concentrations 

are mutually independent due to the fact that 

max

1

1
i

i
i

C
=

= .       (3.45) 

Consequently, ρ  is simply a function of only  max 1i −  mutually independent con-
centrations, 

( )
max2,..., , ,iC p Tρ ρ= .      (3.46) 

Further we solve the following task: Let us assume that 
max2,..., ,iC p  and T are giv-

en, from which, as already shown, all ,i ip ρ , i

i T
p

∂ρ
∂

 
 
 

, 
i

i

pT

∂ρ
∂

 
 
 

 and  ρ , respec-

tively can be calculated. The expressions defining the partial derivatives for the 
mixture in the differential form of the equation of state (3.46) are sought: 

 

max

2, _, _ , , _ _ _ i

i

i
ip all C s iT all C s p T all C s except C

d dp dT dC
p T C

∂ρ ∂ρ ∂ρρ
∂ ∂ ∂=′′ ′

    = + +     
    

  (3.47) 

 

The partial derivatives 
, _T all C s

p

∂ρ
∂ ′

 
 
 

, 
, _p all C sT

∂ρ
∂ ′

 
 
 

 and 
, , _ _ _ i

i p T all C s except C
C

∂ρ
∂ ′

 
 
 

 fol-

low immediately from the differential form of the equation 
max

1

m

m
m

p p
=

=  , 

( ) ( )
max max

1 1

, ,
m m

m m m m
m m

dp d p T d p C Tρ ρ
= =

= =        ,   (3.48) 

where 

m

m m m
m m m

m mT T

p p p
dp C d dC dT

T ρ

∂ ∂ ∂ρ ρ
∂ρ ∂ρ ∂

     = + +     
    

,  (3.49) 
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or 

( ) ( )
max max

1 1

, ,
m m

m m m m
m m

dp d p T d p C Tρ ρ
= =

= =         

( )
max

1
m

m
m m

m m
m m T

p p
C d dC dT

T ρ

∂ ∂ρ ρ
∂ρ ∂=

    = + +    
    

  

max max max

1 1 1
m

m m m
m m m

m m
m m mi mT T

p p p
C d dC dT

T ρ

∂ ∂ ∂ρ ρ
∂ρ ∂ρ ∂= = =

       = + +        
          

    (3.50) 

or after substituting 

max max max

max

1
2 2 1

i m i

i i i
i i i m

dC dC dC dC
= = = +

= − = − −       (3.51) 

max max

1 1
m

m m
m m

m
m mm T

p p
dp C d dT

T ρ

∂ ∂ρ
∂ρ ∂= =

     = +      
        

   

max max

max

1 1

2 11 1

m i
m

m n
m n mm T TT

p p p
dC dC

∂ ∂ ∂ρ ρ
∂ρ ∂ρ ∂ρ= = +

      
+ − −      

      
    (3.52) 

namely, 

max

1, _

1
m

m
m

m mT all C s T

p
C

p

∂ρ ∂
∂ρ∂ =′

   
=    

     
 ,    (3.53) 

max max

1 1, _ m

m m
m m

m
m m mp all C s T

p p
C

TT ρ

∂ρ ∂ ∂
∂ ∂ρ∂ = =′

       = −        
          

  ,  (3.54) 

max
1

11, , _ _ _ i

m
i m

m
mi mi TT Tp T all C s except C

p pp
C

C

∂ρ ∂ ∂∂ρ
∂ρ ∂ρ ∂ρ∂ =′

         
= − −         

            
 , 

    (3.55) 

for max2,i m= , and 

max
1

11, , _ _ _ i

m
m

m
m mi T Tp T all C s except C

pp
C

C

∂ρ ∂∂ρ
∂ρ ∂ρ∂ =′

     
=      

       
 ,  (3.56) 
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for max max1,i m i= + . Here an arbitrary existing component is denoted with 1, 

1 0C > . The equations above contain derivatives i

i T

p∂
∂ρ

 
 
 

, 
i

ip

T ρ

∂
∂

 
 
 

. Only the  

derivatives ( )/i i T
p∂ρ ∂  and ( )/

i
i p

T∂ρ ∂  of the simple components are known, 

so that the expressions for the mixture derivatives (3.53) through (3.56) in 
which the known component derivatives explicitly occur are easily obtained 
by replacing 

1/i i

i iT T

p

p

∂ ∂ρ
∂ρ ∂

   
=   

   
,      (3.57) 

/
i i

i i i

p i T

p

T T pρ

∂ ∂ρ ∂ρ
∂ ∂ ∂

    = −     
     

.     (3.58) 

The final result is 
 

max

1, _

1
m

m
m

m mT all C s T

C
pp

∂ρ ∂ρ
∂∂ =′

   
=    

     
 ,    (3.59) 

 

max

1, _ , _ m

m
m m

m mp all C s pT all C s T
T pT p

∂ρ ∂ρ ∂ρ ∂ρ
∂ ∂∂ ∂ =′ ′

     =      
      

 ,  (3.60) 

 

1

1, _, , _ _ _

1 1
i

i

ii T all C s TTp T all C s except C
p pC p

∂ρ ∂ρ ∂ρ ∂ρρ
∂ ∂∂ ∂ ′′

       
= − −       

        
, (3.61) 

 
for max2,i m= , and 

 

1

1, _, , _ _ _ i
i T all C s Tp T all C s except C

p pC

∂ρ ∂ρ∂ρρ
∂ ∂∂ ′′

    =    
    

,  (3.62) 

 
for max max1,i m i= + . With these results Eq. (3.49) can be rewritten as a function of 
the pressure, temperature and concentrations 
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max

max max

1

1 1

/
1 i

m

m
i im

m
i ipm T mT

m mm m
pi m i

i i
i ii m iT T T

p
C

T p
dp dp C dT

Tp p
C C

p

∂ρ ∂ρ∂
∂ ∂∂ρ ∂ρ

∂∂ ∂ρ ∂
∂ρ ∂ ∂ρ

=

= =

     
     

       = + −                
       



 
 

max

max
1

1

m
m m i

m im
im iiT T

i
i i T

p C p
dC dC

p
C

∂ ∂ρ
∂ρ ∂ρ∂

∂ρ
=

=

 
 

    + −          
   




,  (3.63) 

or 

max

2, _ ', _ ' , , _ ' _ _ i

m
m m m

m i
i ip all C sT all C s p T all C s except C

p p p
dp dp dT dC

p T C

∂
∂=

  ∂ ∂ = + +     ∂ ∂    
 . 

        (3.64) 

Therefore 
 

max
, _ '

1

m
m

mm T

m
iT all C s

i
i i T

C
pp

p
C

p

∂ρ
∂
∂ρ
∂=

 
 

 ∂  = ∂   
 
 


,    (3.65) 

 

max

max

1

, _ '

1

/
1 i

m

m
i i

i ip Tm m
m m

p all C s pm i
i

im iT T

T pp
C

T T
C

p p

∂ρ ∂ρ
∂ ∂ ∂ρ

∂∂ρ ∂ρ
∂ ∂

=

=

   
   

 ∂     = −    ∂           
     




, (3.66) 

 

max

1

1

, , _ ' _ _

1

i

i

im m TT
mi m m

i m ip T all C s except C T
i

i i T

p p

p p
C

C p
C

∂ ∂
∂ρ ∂ρ∂ ∂ρ δ

∂ ∂ρ ∂
∂ρ=

    
−    

       = −            
   


. (3.67) 
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For the limiting case, where all of the components are taken to be perfect gases, 
we have 

1i

i iT
p RT

∂ρ
∂

 
= 

 
,      (3.68) 

i

i i

pT T

∂ρ ρ
∂

  = − 
 

,      (3.69) 

and 

1

1 1

1

T
p R T

∂ρ
∂

 
= 

 
,      (3.70) 

1

1 1

pT T

∂ρ ρ
∂

  = − 
 

.      (3.71) 

Substituting in the equations defining the derivatives this yields 

max

1, _

1
1

i

i i
iT all C s

T C R
p RT

∂ρ
∂ =′

   = =  
   

 ,    (3.72) 

max max

1 1, _

/
i i

i i i i
i ip all C s

R T C R T
T

∂ρ ρ ρ
∂ = =′

     = − = −    
     

  ,  (3.73) 

( )1

, , _ _ _ i

i
i p T all C s except C

R R R
C

∂ρ ρ
∂ ′

 
= − − 

 
,    (3.74) 

where 
max

1

i

i i
i

R C R
=

= .  

Now assume that the gas consists only of one i-th component, 1 0C = , 1 0ρ = , 

and 1iC = . Using Eq. (3.50), this trivial case yields 

, _

1

iT all C s
p RT

∂ρ
∂ ′

  = 
 

,      (3.75) 

, _

/i
p all C s

T
T

∂ρ ρ
∂ ′

  = − 
 

,      (3.76) 

and 

, , _ _ _

0
i

i p T all C s except C
C

∂ρ
∂ ′

 
= 

 
.     (3.77) 
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The derivatives are not defined in the case of missing miscible components be-
cause in this case Eq. (3.6) from which we started our derivation is no longer va-
lid. In this case the Eq. (3.44) simplifies fortunately to 

( ) ( )
max

max1,2,...,
1

1
1 , ,

,

i
i

i
i i

C
C p T

p T
ρ

ρ ρ=
= = .     (3.78) 

The derivatives are then obtained from the differential form 

max max2
2

2
1 1

1i i

i i i
i ii i

d C d dC
ρρ ρ ρ
ρ ρ= =

= −   

max max max2 2
2

2 2
1 1 2 1

1 1i i i
i i

i i i
i i i ii i pT

C dp C dT dC
p T

∂ρ ∂ρρ ρ ρ
∂ ∂ ρ ρρ ρ= = =

       = + − −       
          

   . (3.79) 

The final result is 
 

max 2

2
1, _

i
i

i
i iT all C s T

C
p p

∂ρ∂ρ ρ
∂ ∂ρ=′

   
=   

   
 ,    (3.80) 

 

max 2

2
1, _

i
i

i
ip all C s i p

C
T T

∂ρ∂ρ ρ
∂ ∂ρ=′

   =   
   

 ,    (3.81) 

 

2

1, , _ _ _

1 1

i
i ip T all C s except C

C

∂ρ ρ
∂ ρ ρ′

   
= − −   

   
,    (3.82) 

 
If some of the non-miscible components are considered as non-compressible, their 
density derivatives are simply set to zero. 

3.2.3 Partial derivatives in the equation of state ( )
max2,...,, , iT T p Cϕ= , 

where , ,s h eϕ =  

The next step is to define the partial derivatives in the linearized equation of state 

( )
max2,...,, , iT T p Cϕ=       (3.83) 

namely 
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max

2, _ , _ , , _ _ _ i

i

i
i iall C s p all C s p all C s except C

T T T
dT dp d dC

p Cϕ ϕ

∂ ∂ ∂ϕ
∂ ∂ϕ ∂=′ ′ ′

    
= + +     
     

 , 

    (3.84) 

where ϕ  may be one of the following variables: specific entropy, specific  
enthalpy or specific internal energy, 

, ,s h eϕ = . 

This is very important for the construction of a numerical algorithm within the 
framework of the entropy, or enthalpy or energy concepts. Remember that this kind 
of algorithm describes the behavior of the flow using the specific mixture property 
ϕ  as elements of the dependent variable vector. As the increments ,pδ δϕ  and 

iCδ  are known from the numerical integration of the system of PDEs governing 
the flow, it is then possible to compute the corresponding increment of the 
temperature T, and therefore, the particular thermo-physical and transport proper-
ties of the velocity field, which depend on ,T p  and iC . 

Begin with the definition equation for the specific mixture property 

max

1

i

i i
i

ρϕ ρ ϕ
=

=        (3.85) 

or 

max

1

i

i i
i

Cϕ ϕ
=

= .       (3.86) 

After differentiating the definition equation for the specific mixture entropy 
(3.86), the following is obtained 

max max

1 1

i i

i i i i
i i

d C d dCϕ ϕ ϕ
= =

= +  .     (3.87) 

An arbitrary, but existing component is again denoted with 1, where the mass 
concentration of this component is uniquely defined by knowing the other 
concentrations 

max

1
2

1
i

i
i

C C
=

= −        (3.88) 

and therefore 

max

1
2

i

i
i

dC dC
=

= − .      (3.89) 
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Note that this is the only criterion for selecting the above component denoted with 
1. Its concentration is not calculated using the differential conservation equation, 
but merely using Eq. (3.88). 

Enthalpy concept hϕ = . In this case Eq. (3.87) is 

max max

1 1

i i

i i i i
i i

dh C dh h dC
= =

= +  .     (3.90) 

Replace in the above equation the differentials of the specific enthalpies using the 
caloric equations 

i
i pi i

i T

h
dh c dT dp

p

∂
∂

 
= +  

 
,     (3.91) 

to obtain 

max max max max

max1 1 1 1

i m i i
i i

i pi i i i i i
i i i m ii TT

h h
dh C c dT C dp C dp h dC

p p

∂ ∂
∂ ∂= = = + =

     = + + +     
      

    .  

(3.92) 

Replace idp  in the above equation by means of the differentiated equation of state 

( , ) ( , )i i i i ip p T p C Tρ ρ= = , namely 

i

i i i
i i i

i iT T

p p p
dp C d dC dT

T ρ

∂ ∂ ∂ρ ρ
∂ρ ∂ρ ∂

     = + +     
    

,  (3.93) 

to obtain 

max max max
2

1 1 1i

i m m
i i i i

i pi i i
i i ii i iT T T

h p h p
dh C c C dT C d

p T pρ

∂ ∂ ∂ ∂ ρ
∂ ∂ ∂ ∂ρ= = =

           = + +           
             

    

max max max

max 1 1 1

i i m
i i i

i i i i i
i m i i i iT T T

h h p
C dp h dC C dC

p p

∂ ∂ ∂ρ
∂ ∂ ∂ρ= + = =

      + + +      
      

   . (3.94) 

Substituting 1dC  from Eq. (3.89) and dρ  from Eq. (3.47) into Eq. (3.94) yields 

max max

max1 1, _i

m i
i i i

i pi i i pi
i i mp all C si iT T

h p p
dh C c C C c dT

p T Tρ

∂ ∂ ∂ ∂ρ
∂ ∂ ∂ρ ∂= = +′

           = + + +        
           

 

max max

max

2

1 1, _

m i
i i i

i i
i i mi i T all C s TT T

h p h
C C dp

p p p

∂ ∂ ∂∂ρ
∂ ∂ρ ∂ ∂= = +′

          + +         
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max max
2

1
2 1 , , _ _ _ i

i m
i i

i i i
i i i i iT T p T all C s except C

h p
h h C dC

p C

∂ ∂ ∂ρ
∂ ∂ρ ∂= = ′

        + − +        
         

   

max
1 1

1
2 1 1

m
i i

i i
i i i T TT T

h p h p
C C dC

p p

∂ ∂ ∂ ∂ρ
∂ ∂ρ ∂ ∂ρ=

        
+ −        

        
 ,  (3.95) 

or 
 

max

2, _ , , _ _ _ i

i

p i
i iT all C s p T all C s except C

h h
dh c dT dp dC

p C

∂ ∂
∂ ∂=′ ′

  
= + +   

   
  (3.96) 

or 
 

max

2, _ , , _ _ _

1 1

i

i

i
ip p p iT all C s p T all C s except C

dh h h
dT dp dC

c c p c C

∂ ∂
∂ ∂=′ ′

  
= − −   

   
  (3.97) 

 
where 

 

max max

max 1 1 , _i

i m
i i i

p i pi i pi i
i m i p all C si iT T

h p p
c C c C c C

p T Tρ

∂ ∂ ∂ ∂ρ
∂ ∂ ∂ρ ∂= + = ′

         = + + +        
         

   

( )
( )

max max

max 1 1 , _ i

i m
i i iT

i pi i pi i
i m i p all C s pi i T

h p
C c C c C

p T T

∂ ∂ ∂ρ∂ρ
∂ρ ∂ ∂ ∂= + = ′

     = + + −     
       

  ,  (3.98) 

 

max max

max

2

1 1, _ , _

m i
i i i

i i
i i mi iT all C s T all C s TT T

h hh
C C

p p p p p

∂ ∂ρ ∂∂ ∂ρ
∂ ∂ ∂ ∂ ∂= = +′ ′

         = +         
          
  ,

        (3.99) 

 

1

, , _ _ _ i

np
i i

i p T all C s except C

h
h h h

C

∂
∂ ′

 
= − + Δ 

 
    (3.100) 

and 
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1 1
1

1 1

np i i
i i

i i T TT T

h h
h C C

p p p p

∂ ∂ρ ∂ ∂ρρ
∂ ∂ ∂ ∂

        
Δ = −        

        
 

max
2

1 , , _ _ _ i

m
i i

i
i i i iT T p T all C s except C

h
C

p p C

∂ ∂ρ ∂ρ
∂ ∂ ∂= ′

      
+       
       
 ,  (3.101) 

for max2,i m=  and  

max
2

1 , , _ _ _ i

m
np i i
i i

i i i iT T p T all C s except C

h
h C

p p C

∂ ∂ρ ∂ρ
∂ ∂ ∂= ′

      
Δ =       

       
   (3.102) 

for max max1,i m i= + . 

Important: note that for non-existing miscible components the concentration de-
noted with “1” in Eq. (3.100) is the first non-miscible component. 

Equation (3.100) consists of two parts. In the case of a mixture consisting of 
perfect fluids, the second part is equal to zero, 0np

ilhΔ = , because the enthalpies 
do not depend on the corresponding partial pressures. This also illustrates the 
meaning of the superscript np which stands for non-perfect fluid. From Eq. (3.97) 
we obtain the analytical expressions for the following derivatives  

 

, _ , _

1

ph all C s T all C s

T h

p c p

∂ ∂
∂ ∂′ ′

   = −   
   

,    (3.103) 

 

, _

1

p all C s p

T

h c

∂
∂ ′

  = 
 

,      (3.104) 

 

, , _ _ _ , , _ _ _

1

i i
i p ip h all C s except C p T all C s except C

T h

C c C

∂ ∂
∂ ∂′ ′

   
= −   

   
.  (3.105) 

 
Checking the above derivation: for a perfect gas mixture, and taking into account that 

0i

i T

h

p

∂
∂

 
= 

 
,       (3.106) 
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1

1

0
T

h

p

∂
∂

 
= 

 
,       (3.107) 

we obtain 

max

1

i

p i pi
i

c C c
=

=  ,      (3.108) 

, _

0
T all C s

h

p

∂
∂ ′

  = 
 

,      (3.109) 

and 

1

, , _ _ _ i

i
i p T all C s except C

h
h h

C

∂
∂ ′

 
= − 

 
,     (3.110) 

which is the result expected.  
Energy concept eϕ = . The derivation already presented for the specific enthalpy 
is formally identical with the derivation for the specific internal energy. One has to 

replace formally h with e and write instead pic , 
,i

i

p T

e

T

∂
∂

 
 
 

. 

Entropy concept sϕ = . Then use the definition equation for the particular specific 
entropies 

i i i i iT ds dh dpρ ρ= −       (3.111) 

or divided by ρ  

i
i i i i

dp
TC ds C dh

ρ
= − .      (3.112) 

Substituting in this equation dhi using Eq. (3.91), summing the resulting imax equa-
tions and comparing the result with Eq. (3.87) we finally obtain 

max max

1 1

i i

i i i i
i i

dp
Tds C dh T s dC

ρ= =

 
= − + 
 
  .    (3.113) 

Note that this is equivalent to the Gibbs equation for mixtures  

( ) ( )
max max max max

1 1 1 1

i i i i

i i i i i i i i i
i i i i

dp dp
Tds d C h T s dC h dC dh h Ts dC

ρ ρ= = = =

 
= − + − = − − − 

 
     

( )
max

1

1 i

i i i
i

de pd h Ts dC
ρ =

 = + − − 
 

 ,    (3.114) 
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in which the i ih Ts−  is the so called Gibbs potential for the single component. 
The entropy change due to the mixing process is 

( )
max

1

1 i

mixing i i i
i

ds h Ts dC
T =

= − − .     (3.115) 

Substituting 1dC  from Eq. (3.89) into Eq. (3.115) results in 

( )
max

1 1
2

1 i

mixing i i i
i

ds h h T s s dC
T =

= − − − −   .   (3.116a) 

This result follows not from Eq. (3.114) directly but from the comparison of 
Eq. (3.114) with the energy conservation equation for the mixture. For a mixing 

process in which there is no total mass change in the system, 
max

1

i

k k
k

Y M const
=

= , 

Eq. (3.116a) can be rearranged using Eq. (3.17) 

( )
max

1 1
2

1
ln

i

mixing i i i i
i

ds C h h T s s d Y
T =

= − − − −   .   (3.116b) 

Remember, that in case of mixing of perfect fluids the molar concentration is 
equivalent to the ratio of the partial pressure to the total pressure. 
 

Replace the differentials in Eq. (3.114) of the mixture specific enthalpy using 
the caloric equations (3.96) to obtain 
 

max

1
2, _

1
1

npi
p i

i i
iT all C s

c hh
ds dT dp s s dC

T T p T

∂ρ
ρ ∂ =′

     Δ
= + − + − +    

     
 , (3.117) 

 
or 

 

max
, _

2 , , _ _ _

1

i

i
T all C s

i
ip p p i p T all C s except C

h

pT T s
dT ds dp dC

c c c C

∂ρ
∂ ∂

ρ ∂
′

= ′

  − 
  = − −  
 

  (3.118) 

 
where 

1

, , _ _ _ i

np
i i

i p T all C s except C

s
s s s

C

∂
∂ ′

 
= − + Δ 

 
    (3.119) 
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where 

np
np i
i

h
s

T

ΔΔ = .       (3.120) 

Comparing Eq. (3.100) with Eq. (3.119) we realize that 

, , _ _ _ , , _ _ _

1

i i
i ip T all C s except C p T all C s except C

s h

C T C

∂ ∂
∂ ∂′ ′

   
=   

   
.   (3.121) 

Like Eq. (3.100) Eq. (3.119) also consists of two parts. In the case of a mixture con-
sisting of perfect fluids, the second part is equal to zero, 0np

ilsΔ = , because the en-

thalpies do not depend on the corresponding partial pressures. This again illustrates 
the meaning of the superscript np which stands for non-perfect fluid. From Eq. 
(3.118) analytical expressions for the following derivatives are obtained 
 

, _ , _

1
1

ps all C s T all C s

T h

p c p

∂ ∂ρ
∂ ρ ∂′ ′

    = −    
     

,   (3.122) 

 

, _p all C s p

T T

s c

∂
∂ ′

  = 
 

,      (3.123) 

 

, , _ _ _ , , _ _ _i i
i p ip s all C s except C p T all C s except C

T T s

C c C

∂ ∂
∂ ∂′ ′

   
= −   

   
.  (3.124) 

 
Checking the above derivation: for a perfect gas mixture, and taking into account that 

0i

i T

h

p

∂
∂

 
= 

 
,       (3.125) 

1

1

0
T

h

p

∂
∂

 
= 

 
,       (3.126) 

we obtain 

max

1

i

p i pi
i

c C c
=

=  ,      (3.127) 
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, _

0
T all C s

h

p

∂
∂ ′

  = 
 

,      (3.128) 

and 

1

, , _ _ _ i

i
i p T all C s except C

s
s s

C

∂
∂ ′

 
= − 

 
,     (3.129) 

which is the result expected.  
Thus, as already mentioned, after the required derivatives have been computed 

in Eq. (3.118) in the manner shown, the temperature difference can be easily com-
puted: 

( ) ( )
, _, _

a a a
p all C ss all C s

T T
T T p p s s

p s

∂ ∂
∂ ∂ ′′

   − = − + −   
  

 

( )
max

2 , , _ _ _ i

i

i ia
i i p s all C s except C

T
C C

C

∂
∂= ′

 
+ − 

 
 ,    (3.130) 

which corresponds to the increments for the pressure, entropy and concentrations. 
When the increments pδ , sδ  and iCδ  are of considerable magnitude, it is better 
to take into account their non-linear dependencies in Eq. (3.118), 

max

2 , _, , _ _ _

1
1

i

i

i
ip i p T all C sp T all C s except C

dT s p h dp
ds dC

T c C Tc p p

∂ ∂ρ
∂ ρ ∂= ′′

      
 = − + −    
        

  

        (3.131) 

in the following way: substitute 

( )
max

2 , , _ _ _

1
*

i

i

a ia
ip i p T all C s except C

s
s s s C C

c C

∂
∂= ′

  
 Δ = − − − 
   

   (3.132) 

, _

1
T all C s

p h
R

T p

∂ρ
ρ ∂ ′

  = −  
   

     (3.133) 

and integrate to obtain 

( ) ( ) ( )ln * lna p aT T s R c p p= Δ +     (3.134) 

or 

( )* pR cs
a aT T e p pΔ= ,      (3.135) 

or for a quasi-linear relationship between temperature T and specific enthalpy h 
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( )* pR cs
a ah h e p pΔ= .      (3.136) 

This is a canonical equation, as all thermodynamic properties of the gas mixture 
can be computed as a function of ( , , )is p C  by differentiating. For * 0sΔ = , 

( ) pR c

a aT T p p= .      (3.137) 

Equation (3.130) is also useful for exact solution of the task T = ? if s, p and  

max2,3,...,iC  are known. This can be performed by iterations (Newton method) as fol-

lows: the error for the previous step designated with superscript n is 

( )
max2,3,...,, ,n n n
is s s T p CΔ = − .     (3.138) 

A new temperature 1nT +  can be computed so as to obtain 1 0ns +Δ = , 

( )1 1

, _

n n n n

p all C s

s
s s T T

T

∂
∂

+ +

′

 Δ − Δ = − − 
 

    (3.139) 

or solving with respect to 1nT +  and using Eq. (3.123) 

( ){ }max

1
2,3,...,1 , , /n n n n

i pT T s s T p C c+  = + −     (3.140) 

or, in more precise form 

( ){ }max

1
2,3,...,exp , , /n n n n

i pT T s s T p C c+  = −     (3.141) 

3.2.4 Chemical potential 

3.2.4.1 Gibbs function 

Neither the specific entropy, nor the specific enthalpy, nor the specific internal 
energy can be measured directly. The quantities that can be measured directly are 
pressure, temperature and concentrations. It is interesting to know whether Eq. 
(3.114) can be rewritten as a function of measurable variables f  =  f(p, T, C’s). 
The answer is yes and the result is 

( ) ( )
max

1

i

i i i
i

dp
d h Ts sdT h Ts dC

ρ =

− = − + − .    (3.142) 

Introducing the so called free enthalpy or Gibbs function,  

g h Ts= −        (3.143) 

Eq. (3.142) takes the remarkable form 
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( )
max

1 1
2

i

i i i
i

dp
dg sdT h h T s s dC

ρ =

= − + − − −   ,   (3.144) 

 
with 
 

, _ '

1

T all C s

g

p ρ
 ∂ = ∂ 

,      (3.145) 

 

, _ 'p all C s

g
s

T

∂  = − ∂ 
,      (3.146) 

 

( )1 1

, , _ _ _ i

i i
i p s all C s except C

g
h h T s s

C

∂
∂ ′

 
= − − − 

 
.   (3.147) 

3.2.4.2 Definition of the chemical equilibrium 

We identify a mixture that is at constant mixture pressure and temperature 
and that does not change the concentrations of its constituent as a mixture 
in chemical equilibrium.  

 
The remarkable property of Eq. (3.144) is that it provides a quantitative definition 
of the chemical equilibrium, namely:  

0dg =    or g const=       (3.148) 

Now consider the following chemical reaction  

max

1

0
i

i i
i

n Symb
=

= .      (3.149) 

Here iSymb is the chemical identification symbol of the i-th species and in  is the 
stoichiometric coefficient equal to the number of kg-moles of each species that 
participates in the reaction. Usually 0in <  for reactants that are reducing their 

mass and 0in >  for products that are increasing their mass in the mixture. An 

example is 2 2 22 2 0H O H O− − + = . During the progress of a stoichiometric reac-
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tion all concentrations change not arbitrarily but so that the mass change of a sin-
gle species is always proportional to i in M . This is demonstrated as follows. The 
mass balance of the stoichiometric reaction (3.149) gives 

max

1

0
i

i i
i

n M
=

= .       (3.150) 

Applied to our last example: 2 2 1 32 2 18 0kg kg kg− × − × + × = . Note that i in M  is 
a natural constant belonging to the specific chemical reaction. On other hand, the 
sum of all mass sources per unit volume of the mixture is equal to zero,  

max

1

0
i

i
i

μ
=

= .       (3.151) 

Selecting one arbitrary, but existing, mass source term designated with subscript 1 
(usually having the minimal initial concentration if it is going to be consumed) 
and rearranging we have 

max

1
1 1

0
i

i

i

μμ
μ=

= .       (3.152) 

Equations (3.150) and (3.151) can then, and only then, be satisfied simulta-
neously if  

1
1 1

i i
i

n M

n M
μ μ= .       (3.153) 

Applying this to our example we obtain  

2 2H Hμ μ= , ( )
2 2 2

32 4 8O H Hμ μ μ= = ,  ( )
2 2 2

36 4 9H O H Hμ μ μ= − = − . 

For the closed volume in which the chemical reaction happens the mass conserva-
tion for each species gives 

/ /i idC dτ μ ρ= ,      (3.154) 

and therefore 

1 1

/ /

/ /
i idC d

dC d

τ μ ρ
τ μ ρ
= ,      (3.155) 

or 

1

1 1
i i i i i

C
dC n M d n M d

n M
ξ= = ,     (3.156) 

where ξ  is sometimes called in the literature the reaction progress variable. 

Substituting in Eq. (3.142) we obtain 
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( ) ( )
max

1

i

i i i i
i

dp
d h Ts sdT h Ts n M dξ

ρ =

 
− = − + − 

 
 .   (3.157) 

For the case of chemical equilibrium, dg = 0, and at constant mixture pressure and 
temperature, dp = 0 and dT = 0, Eq. (3.157) reads 

 

( )
max

1

0
i

i i i i
i

h Ts n M
=

− = .      (3.158) 

 
This means that the function ( )g g ξ=  possesses an extreme dg = 0 if Eq. (3.158) 

is fulfilled for all components. For a single component Eq. (3.142) results in 

( ) i
i i i

i

dp
d h Ts s dT

ρ
− = − .     (3.159) 

For the case of a constant mixture temperature valid for each species, dT = 0, we 
have 

 

( ) i
i i

i

dp
d h Ts

ρ
− = ,      (3.160) 

or after integration 

0

0 0

ip

i
i i i i

ip

dp
h Ts h Ts

ρ
′

− = − +  .     (3.161) 

For perfect gases Eq. (3.161) results in 

0

0 0 0 0
0

ln
ip

i i
i i i i i i i i

ip

dp p
h Ts h Ts TR h Ts TR

p p

′  
− = − + = − +  

 
 .  (3.162) 

Substituting (3.162) in Eq. (3.158) we obtain 

( )
max max

0 0
1 1 0

ln 0
i i

i
i i i i i i i

i i

p
h Ts M n T n M R

p= =

 
− + = 

 
  ,   (3.163) 

or bearing in mind that  

i iR M R= ,       (3.164) 

with R = 8314 J/(kg-mol K) being the universal gas constant, 



3.2 Multi-component mixtures of miscible and non-miscible components      145 

( )
maxmax

0 0
1 1 0

ln 0
inii

i
i i i i

i i

p
h Ts M n TR

p= =

 
− + = 

 
 ∏ .   (3.165) 

Introducing the so called pressure equilibrium factor 
 

max

max max
1

1 10 0 0

i
i

i

i
n

n n nii i
ni i

p i yn
i io

p
p p p

K Y K
p p pp

=

= =

     
= = = =     

     

∏
∏ ∏ ,  (3.166) 

 
where 

max

1

i

i
i

n n
=

= ,       (3.167) 

max

1

i

i
n

y i
i

K Y
=

=∏ ,       (3.168) 

and solving Eq. (3.165) with respect to Kp results in the expression well known in 
chemical thermodynamics defining mathematically the chemical equilibrium 
 

( )
max

0 0
1

1
exp

i

p i i i i
i

K h Ts n M
TR =

 
= − − 

 
 ,                (3.169a) 

 
see for comparison in Warnatz et al. (2001) p. 42, or 
 

( )
max

0
0 0

1

1
exp

n i

y i i i i
i

p
K h Ts n M

p TR =

  
= − −   
   

 .               (3.169b) 

 
Therefore the pressure equilibrium factor for the particular reaction (3.149) can 
be analytically computed from the properties of the constituents. Another reaction 
generates another expression for the pressure equilibrium constant.  

The expression  

( )
max max max

,0 0 0 0 0
1 1 1

i i i

ch i i i i i i i i i i
i i i

G h Ts n M h n M T s n M
= = =

Δ = − = −  
,  (3.170) 

is called the molar Gibbs energy of the chemical reaction, Warnatz et al. (2001). 
The expressions 
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max

,0 0
1

i

ch i i i
i

H h n M
=

Δ =
,      (3.171) 

max

,0 0
1

i

ch i i i
i

S s n M
=

Δ = ,      (3.172) 

are called the enthalpy and entropy changes of the mixture due to the chemical 
reaction, respectively. With this Eq. (3.169b) can also be used in the form 

max
,0 ,0 ,00 0 0

1

exp exp
n n i

ch ch ch i
y i

i i

H S H Rp p s
K n

p TR R p T R=

Δ Δ Δ     
= − + = − +     
      

 ,  

(3.173) 
The choice of the reference pressure varies in the literature. Some authors set it to 
unity. In this case n

p yK p K= . If the mixture pressure is selected as the reference 

pressure we have p yK K= . In this case ( ),0 ,chG G p TΔ = .  In this case Eq. 

(3.162) in its integral form ( )lni i ig TR d p pΔ =  define a dimensionless property 

i if p p=  called the fugacity of component i in the solution of perfect fluids. The 

general definition of the fugacity of component i is ( )ln i i id f dg TR= . 

3.2.4.3 Partial pressures of perfect fluid compounds in chemical 
equilibrium 

Given the temperature T and the total pressure p of a mixture of maxj  compounds 

that may react in a number maxi  of chemical reactions, then 

max

1

0
j

ij j
j

n Symb
=

= ,  for    i = 1, maxi .    (3.174) 

Here ijn  is the stoichiometric coefficient, < 0 for reactants and > 0 for products. 

We look for a solution of maxj  molar concentrations 

( )
max1 2, ,...,T

jY Y Y=Y ,      (3.175) 

for which the system is in chemical equilibrium. We know from Dalton’s law that 
the system pressure is the sum of the partial pressures 

max

1

j

j
j

p p
=

= , j
i

p
Y

p
= ,    

max

1

1
j

j
j

Y
=

= .    (3.176) 

For each chemical reaction i we have the condition enforcing chemical equili-
brium (3.174), 
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max max
0,0,0

,
11

exp
i

j

nj j
jn ch i

y i j ij
jj j

sH Rp
K Y n

p T R==

 Δ 
= = − +       

∏ , for  i = 1, maxi . (3.177) 

where 

max

1

j

i ij
j

n n
=

= .       (3.178) 

Here R is the universal gas constant, Rj is the gas constant of the j-th component, 

max

,0, 0
1

j

ch i j ij j
j

H h n M
=

Δ =       (3.179) 

and  

0 0j j js s R=         (3.180) 

are the dimensionless reference entropies of the species j. Therefore we have maxj  

unknowns and 1+ maxi  equations (3.176) ,  (3.177). The missing max max 1j i− −  are 
obtained from the proportions defined by the mass conservation equations 

max

1

0
j

ij j
j

n M
=

= ,   for    i = 1, maxi ,     (3.181) 

resulting in 

*

* *

j ij

ij ij ij ij

dC dC

n M n M
= ,   for   max1,i i= , max1,j j= ,   (3.182) 

where ij*  refers for each i-reaction to the minimum but existing compound j, or 

*

*

j ij

ij ij

dY dY

n n
= ,   for   max1,i i= , max1,j j= .    (3.183) 

Observe that in a chemical reaction for reactants that completely disappear we 
have j jdY Y= − , and for products that do not exist before the reaction but just ori-

ginate we have j jdY Y= . Comparing this with the definition of the stoichiometric 

coefficient for which ijn  < 0 for reactants and > 0 for products, we have 

*

*

j ij

ij ij

Y Y

n n
= , for   max1,i i= , max1,j j= .    (3.184) 

Significance. The theory of the chemical equilibrium has very wide-ranging ap-
plications that that are particularly important to physical chemists, metallurgists, 
solid-state physicists, and many engineers. It permits us to predict the equilibrium 
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composition of a mixture of chemicals in an isolated vessel; it tells us how many 
phases of an alloy can exists together at any particular temperature and pressure 
etc. Examples of the application of these theoretical results are given in Chapter 6. 

3.2.4.4 Phase equilibrium 

The idea of chemical equilibrium is extendable to the so called phase equilibrium. 
If we apply the definitions of the Gibbs function, Eq. (3.144), to a mixture of two 
phases designated with ´ for the liquid and ´´ for its vapor we have 

( ) ( )dp dp
dg sdT h h T s s dC sdT h h T s s dC

ρ ρ
′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′′= − + − − − = − − − − −      

.        (3.185) 

Because evaporation at a given constant pressure happens for pure liquids at a 
constant temperature the relation between the entropy change and the enthalpy 
change is 

h h
s s

T

′′ ′−′′ ′− = .      (3.186) 

This relation makes the Gibbs function of the mixture independent of the vapor 
mass concentration change at constant pressure and temperature. Therefore the 
equilibrium between the liquid and its vapor for any pressure and temperature is 
defined by 

0dg = .        (3.187) 

Equation (3.186) can be rewritten in the form h Ts h Ts′ ′ ′′ ′′− = − .  
 

In other words, the equilibrium between the liquid and its vapor is defined 
by the equality of the specific Gibbs functions for each phase 

g g′ ′′= .       (3.188) 

 
If the liquid and the vapor initially in equilibrium are disturbed by dp resulting in 
dg ′  and dg ′′ , respectively, but in such a way that the resultant mixture is again in 
equilibrium we have 

g dg g dg′ ′ ′′ ′′+ = + ,      (3.189) 

or after using Eq. (3.188)  

dg dg′ ′′= ,       (3.190) 

resulting in 
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v dp s dT v dp s dT′ ′ ′′ ′′− = −      (3.191) 

and finally 

dT v v

dp s s

′′ ′−=
′′ ′−

,       (3.192) 

derived for the first time by Benoit Pierre Emile Clapeyron in 1834. The significance 
of Clapeyron´s equation is in the description of the p-T line dividing the stable 
single phase state from the metastable state. This line is called the saturation line, 
Clausius, see in Elsner (1974) p. 327. Another derivation of Eq. (3.192) is  
obtained if one visualizes in the T-s and p-v diagrams the evaporation process as a 
Carnot cycle for infinitesimal values of dT and dp. Equalizing the work computed 
from both diagrams for the cycle results in Eq. (3.193). Using Eq. (3.186) the 
above relation reads 
 

dT v v
T

dp h h

′′ ′−=
′′ ′−

,      (3.193) 

 
Clapeyron’s equations also define the equilibrium state for the case of an equili-
brium mixture of liquid and solid. In this case the corresponding properties along 
the solidification line have to be used. 
 

At low pressure for which the density difference between liquid and vapor is 
very large Eq. (3.193) simplifies to dT dp T v h′′= Δ . This equation has been 
known since 1828 in France as the August equation. Assuming the vapor behaves 
as a perfect gas results in ( ) 2dp p h R dT T= Δ , where R is the vapor gas con-

stant for the specific substance, (R. Clausius 1850). Assuming that the latent heat 
of evaporation is a constant, integrating between an initial state 0 and a final state 
and rearranging results in a useful expression for extrapolation along the satura-
tion line around the known state 0, 

0 0

0 0

exp 1
p p T Th

p RT T

 − −Δ= − 
 

.     (3.194) 

A next step in the improvements of Eq. (3.194) is to be assumed that 

0h h TαΔ ≈ Δ + , resulting in ( ) ( )2
0dp p h RT dT RT dTα= Δ + . After integrat-

ing we obtain  

0 0
0 0

0

ln ln ln ln
h h

p T p T
RT R RT R

α αΔ Δ
= − + + + − ,   (3.195) 

or  
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ln / lnp A T B T C= + + ,     (3.196) 

which is a form empirically proposed by G. R. Kirchhoff in 1858. Sometimes only 
the boiling properties at atmospheric pressure are known. Equation (3.194) allows 
us to compute the saturation temperature at a pressure different from the atmos-
pheric pressure as long as the pressure remains far below the critical pressure. Eq-
uation (3.196) allows the three unknown constants to be fitted on three measured 
points. In fact the non-linear dependence of the group ( ) ( )v v h h′′ ′ ′′ ′− −  on the 

temperature requires a non-linear approximation of the saturation line of the type 

( )ln p f T=  e.g. 2
1 2 3h a a T a TΔ ≈ + + . In this case  

1 2 32

1dp dT dT
a a a dT

p R TT
 = + + 
 

. 

After integration between two pressure-temperature points we obtain 

( )1 2 3 0
0 0 0

1 1
ln ln

p T
R a a a T T

p T T T

 
= − + + − 

 
. 

The reference point can be also the critical point. In this case we have an accu-
rate representation of the saturation line that satisfy the Clausius equation, is 
consistent with definition of the latent heat of vaporization and with the criti-
cal point of the fluid. This equation for is very useful in the practice. If the 
pressure is the known variable it is useful to approximate the above equation 

with ( ) ( )101 logT p a b p′  = +   as a first approximation and the solve it by  

iterations 

( )1
1 2 3

1
= ln  lnn

c
c c c

p T
T a R a a T T

T p T
+  

− − − − 
 

. 

3.2.4.5 Equilibrium of gas solution in water  

Consider absorption of a gas i by water having temperature 2T . The pressure in 

the gas space is ,i gasp . The partial pressure of the specie i in the water is ,i aqp . The 

stoichiometric reaction is then 1 1 0gas aqI I− × + × = .  The solution is reaching 

equilibrium. The equilibrium is described by Eq. (3.169a) 

( )
1 1

, ,
0, 0, 2 0, 0,

0 0 2

expi gas i aq i
i aq i gas i aq i gas

p p M
h h T s s

p p RT

−
      = − − − −          

. 

The equation can be rewritten as, 
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( ) ( )

( ) ( )

0, 2 0 0, 2 0

,

, 2

2 0, 2 0 0, 2 0

, ,

exp

, ,

i aq i gas

i aq i

i gas

i aq i gas

h T p h T p
p p M

p p RT
T s T p s T p

  −
    = −  
   − −     

. 

Considering the gas-water solution as a perfect fluid solution we obtain for the sa-
turated molar concentration of specie i in the water the final expression 

( ) ( )

( ) ( )

0, 2 0 0, 2 0

, ,
2

2 0, 2 0 0, 2 0

, ,

exp

, ,

i aq i gas

i
i aq i gas

i aq i gas

h T p h T p
M

Y Y
RT

T s T p s T p

  −
    = −  
   − −     

. 

Note that the specific enthalpies and entropies at the reference state for gas and 
gas dissolved in water have to differ in order to obtain a solution. Several values 
for aqueous gas solutions are tabulated in Oelkers et al. (1995). For known rela-
tions ( )pic T  and ( ),pi aqc T  the above expression may be explicitly expressed as a 

function of temperature. 
If the exponential expression is only a temperature function the results reflects 

the empirically found Henry’s law. The Henry’s law says 
 

“The mass of non condensable gas dissolved in a liquid is proportional to 
the partial pressure of the gas above the liquid with which it is in equilib-
rium” 

 
Frequently in the chemical thermodynamic literature the solubility data are 
approximated by the Henry’s law in the following form 

 

( )1 ,2 2 2 ,,i H i ip k p T Y ∞= .       

Here the partial pressure of specie i in the gas phase is 1ip  and 2 ,iY ∞  is the satura-

tion molar concentration of the same specie in the liquid.  

( )
( ) ( )

( ) ( )

0, 2 0 0, 2 0

,2 2
2

2 0, 2 0 0, 2 0

, ,

, exp

, ,

i aq i gas

i
H i

i aq i gas

h T p h T p
M

k p T p
RT

T s T p s T p

  −
    = −  
   − −     

 

is called the Henry’s coefficient. Note, that this idealization does not hold for 
many cases. There is a non linear pressure dependence of the Henry’s coefficient 
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too especially for very high pressures. Knowing the Henry’s coefficient the molar 
concentration of the saturated solution is then 

( )2 , 1 ,2 2i i H iY p k T∞ = ,       

and the corresponding mass concentration is 

( )
2

2 , 2 ,
2 ,

2 , 2 , 2 ,1
i i

i

i i i H O

Y M
C

Y M Y M
∞ ∞

∞
∞ ∞ ∞

=
+ −

.     

If the mass concentration of the saturated solution is known the molar concentra-
tion is easily computed by 

( )
2

2 , 2 ,
2 ,

2 , 2 , 2 ,1
i i

i

i i i H O

C M
Y

C M C M
∞ ∞

∞
∞ ∞ ∞

=
+ −

.     

3.2.5 Partial derivatives in the equation of state ( )
max2,...,, , ip Cρ ρ ϕ= , 

where , ,s h eϕ =  

Enthalphy concept hϕ = . Finally, we replace dT in Eq. (3.96) using Eq. (3.47) 
and substitute 

, _, _ , _ , _

1

p all C s ph all C s T all C s T all C s

h

p p T c p

∂ρ ∂ρ ∂ρ ∂
∂ ∂ ∂ ∂′′ ′ ′

      = −      
      

,  (3.197) 

, _ , _

1

p all C s p all C sph c T

∂ρ ∂ρ
∂ ∂′ ′

   =   
   

,     (3.198) 

, , _ _ _ i
i p h all C s except C

C

∂ρ
∂ ′

 
 
 

 

, _, , _ _ _ , , _ _ _

1

i i
p all C si p ip T all C s except C p T all C s except C

h

C T c C

∂ρ ∂ρ ∂
∂ ∂ ∂′′ ′

    = −    
    

,  (3.199) 

to obtain 
 

max

2, _, _ , , _ _ _ i

i

i
ip all C s ih all C s p h all C s except C

d dp dh dC
p h C

∂ρ ∂ρ ∂ρρ
∂ ∂ ∂=′′ ′

    = + +     
    

  (3.200) 

 
which is the differential form for the equation of state 
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( )
max2,...,, , np h Cρ ρ= .      (3.201) 

Energy concept eϕ = . Again, the derivation already presented for the specific en-
thalpy is formally identical with the derivation for the specific internal energy. 

One has to replace formally h with e and write instead pic , 
,i

i

p T

e

T

∂
∂

 
 
 

. 

 

Entropy concept sϕ = : We replace dT in Eq. (3.118) using Eq. (3.47) and substi-

tute 

, _

2
, _, _ , _

1
1T all C s

p all C s ps all C s T all C s

h

p

p p T c a p

∂ρ
∂∂ρ ∂ρ ∂ρ ρ

∂ ∂ ∂ ρ κ
′

′′ ′

 
− 

      = − = =     
    

, 

        (3.202) 

, _ , _p all C s p all C s p

T

s T c

∂ρ ∂ρ
∂ ∂′ ′

   =   
   

,     (3.203) 

, , _ _ _ i
i p s all C s except C

C

∂ρ
∂ ′

 
 
 

 

, _, , _ _ _ , , _ _ _i i
p all C si p ip T all C s except C p T all C s except C

T s

C T c C

∂ρ ∂ρ ∂
∂ ∂ ∂′′ ′

    = −    
    

, (3.204) 

to obtain 
 

max

2
2, _ , , _ _ _ i

i

i
ip all C s i p s all C s except C

dp
d ds dC

a s C

∂ρ ∂ρρ
∂ ∂=′ ′

  = + +   
   

   (3.205) 

 
or 

max

2, _ , , _ _ _ i

i

i
ip all C s i p s all C s except C

dp
d ds dC

p s C

ρ ∂ρ ∂ρρ
κ ∂ ∂=′ ′

  = + +   
   

 , (3.206) 

which is the differential form for the equation of state 

( )
max2,...,, , np s Cρ ρ= .      (3.207) 

The value κ  in Eq. (3.206) is defined as 
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, _

, _, _

1
T all C s

p all C s pT all C s

h

p

p p T c

∂ρ
∂ρ ∂ρ ∂ρκ

∂ ∂ ρ
′

′′

   −  
     = −       
  

 

, _, _

, _

1 p
p p

p all C s vT all C s

T all C s

cp T
c c R

p T cp

p

∂ρ ∂ρ
ρ ∂ ρ ∂ ∂ρ

ρ ∂
′′

′

    = + =            
 

, (3.208) 

where 

, _

1
T all C s

p h
R

T p

∂ρ
ρ ∂ ′

  = −  
   

,     (3.209) 

, _ , _

, _

, _ , _

1
1p all C s p all C s

v p p

T all C s

T all C s T all C s

T

T T h
c c R c

pp

p p

∂ρ ∂ρ
ρ ∂ ∂ ∂ρ

ρ ∂∂ρ ∂ρ
ρ ∂ ∂

′ ′

′

′ ′

   
         = + = + −            
   

, (3.210) 

is generally valid for real gases as well for perfect gases. R  is used to denote the 
pseudo gas constant, which is of course not in fact a constant for real gases. κ  is the 
isentropic exponent for real gas mixtures. Note, that κ  is not identical to the isen-
tropic exponent for perfect gases in all cases. Only for mixtures of perfect gases does 
the pseudo gas constant R  reduce to the gas constant for perfect mixtures because 
( ) , _

0
T all C s

h p∂ ∂ ′ = , and the expression above for the κ  coefficient for real gases 

then reduces to the usual expression defining the isentropic exponent for perfect gas. 
For proof, we insert Eqs. (3.75), (3.76) into Eq. (3.208). The result is 

p

p

c

c R
κ =

−
.       (3.211) 

An example for application of the general theory to an air-steam mixture is given 
in Appendix 3.1. 

3.3 Mixture of liquid and microscopic solid particles 
of different chemical substances 

This is a limiting case of the theory presented in the previous Section 3.2. 



3.3 Mixture of liquid and microscopic solid particles of different chemical substances      155 

3.3.1 Partial derivatives in the equation of state ( )
max2,...,, , ip T Cρ ρ=  

For this particular case the derivatives in Eq. (3.47) given by Eqs. (3.80) through 
(3.82) reduce to 
 

2
1

1 2
1, _T all C s T

C
p p

∂ρ ρ ∂ρ
∂ ρ ∂′

   =   
   

 ,    (3.212) 

 

2
1

1 2
, _ 1p all C s p

C
T T

∂ρ ρ ∂ρ
∂ ρ ∂′

   =   
   

 ,    (3.213) 

 

2

1, , _ _ _

1 1

i
i ip T all C s except C

C

∂ρ ρ
∂ ρ ρ′

   
= −   

   
.    (3.214) 

For missing inert components in the liquid, 
max

2

0
i

i
i

C
=

= , and 1ρ ρ= , Eqs. (3.213) 

and (3.214) take values characteristic of the pure liquid. If the mixture consists 

solely of inert components, 
max

2

1
i

i
i

C
=

= , Eqs. (3.212) and (3.213) are not defined. In 

this case 0δρ =  holds by definition.  

Another consequence of Eq. (3.214) is that the concentration change for a given 
component causes a density change if and only if the density differs from the 
density of the liquid, 1iρ ρ≠ . In all other cases, 1iρ ρ= , the concentration 
change does not lead to a change in mixture density. 

3.3.2 Partial derivatives in the equation of state ( )
max2,...,, , iT T p Cϕ=  

where , ,h e sϕ =  

For this simple case we obtain the following. 

Enthalpy concept hϕ = :  

max

1

i

p i pi
i

c C c
=

= ,       (3.215) 

1
1

, _T all C s T

h h
C

p p

∂ ∂
∂ ∂′

   =   
   

.     (3.216) 
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Energy concept eϕ = :  

max

1

i
i

i
ip p

ee
C

T T=

∂∂    =   ∂ ∂   
 ,     (3.217) 

1
1

, _T all C s T

e e
C

p p

∂ ∂
∂ ∂′

   =   
   

.     (3.218) 

Entropy concept sϕ = :  

1

, , _ _ _ i

i
i p T all C s except C

s
s s

C

∂
∂ ′

 
= − 

 
.     (3.219) 

If the increments pδ , sδ  and iCδ  are known, the temperature increments Tδ can 
be computed from Eq. (3.118) in a manner analogous to that used in the preceding 
section. In the event that the increments pδ , sδ  and iCδ  are large in magnitude, 
it is better to take into account the non-linear character of Eq. (3.118), as already 
demonstrated using Eqs. (3.131) through (3.141). If * 0sΔ = , Eq. (3.137) will 
once again result. For p = const Eq. (3.136) yields 

*s
aT T eΔ= .       (3.220) 

Usually R  is significantly smaller for liquids or mixtures of liquids than for gases 
because of the marked differences in the densities. The temperature change caused 
by compression or decompression is thus observable after significant changes in 
pressure. Usually, the entropy change due to the heat and mass transfer causes a 
change in the liquid temperature *s

aT T eΔ≈ . The partial derivatives in the equation 

of state  ( )
max2,...,, , np s Cρ ρ=  are formally identical to those shown in Section 2.4, 

and are therefore not presented here. 

3.4 Single-component equilibrium fluid 

The restriction applied that one velocity field is in thermodynamic equili-
brium is very strong and is, in fact, not necessary for an adequate description 
of multi-phase flow behavior. This assumption is, however, used in a number 
of applications to yield an approximate estimate of the order of magnitude of 
the processes. For this reason, this section briefly summarizes the derivatives 
calculated previously (see Kolev (1986b), for example) for equilibrium  
mixtures. 

Consider the properties of a fluid, assuming that it is in a thermodynamic 
equilibrium. Additional use will be made here of the following superscripts:  

 

  ′ , saturated liquid,  
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  ′′ , saturated steam,  
  ′′′ , saturated solid phase.  

 

The properties on the saturation lines are functions of pressure only  

( )T T p′ ′= , ( )T T p′′ ′′= , , , , , , ( )s s s f pρ ρ ρ′ ′′ ′′′ ′ ′′ ′′′ = . 

The same is valid for the properties  

/ , / , / , / , / , / ( )d dp d dp d dp ds dp ds dp ds dp f pρ ρ ρ′ ′′ ′′′ ′ ′′ ′′′ = . 

As a result, four regions are distinguished. 

3.4.1 Superheated vapor 

For s > s′′ superheated steam exists with properties that are functions of the pres-
sure and of the temperature 

( ),p Tρ ρ= ,       (3.221) 

pT

d dp dT
p T

∂ρ ∂ρρ
∂ ∂

   = +   
  

,     (3.222) 

, ( , )
pT

f p T
p T

∂ρ ∂ρ
∂ ∂

    =   
  

,     (3.223) 

( , )T T p s= ,       (3.224) 

p p

dT ds R dp

T c c p
= + ,      (3.225) 

( , )p pc c p T= ,       (3.226) 

1 ( , )
T

p h
R R p T

T p

∂ρ
ρ ∂

  = − =  
  

,    (3.227) 

( , )p sρ ρ= ,       (3.228) 

2
p p

dp dp
d ds ds

a s p s

∂ρ ρ ∂ρρ
∂ κ ∂

   = + = +   
   

,   (3.229) 

2

1
1 T

p pT

h

p

a p p T c

∂ρ
∂ρ ∂ρ ∂ρ

κ ∂ ∂ ρ

  −      = = −   
  

,   (3.230) 
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p p p

T

s T c

∂ρ ∂ρ
∂ ∂

   =   
   

,      (3.231) 

where 

( ),p pc c p T= ,      (3.232) 

( ),
T

h
f p T

p

∂
∂

  = 
 

.      (3.233) 

A very useful retaliation for gaining this derivative from experimental data is ob-
tained by using the so called Schwarz theorem:  

 

pT p T

s s

T p p T

∂ ∂
∂ ∂

   ∂ ∂  =      ∂ ∂      
, 

1 1

pT p T

h v h

T T p T p T T

∂ ∂
∂ ∂

      ∂ ∂    − =        ∂ ∂            
, 

2 2

2 2

1 1 1 1 1

pT

h h v h
v

T p T p T T T T T T p

∂ ∂ ∂
∂ ∂ ∂

     ∂ − + + − =      ∂ ∂ ∂      
,  

 
resulting in 

 

pT

h v
v T

p T

∂
∂
  ∂ = −    ∂  

. 

 
For a perfect gas, the state equations and the derivatives are easily computed. For 
real gases, it is assumed that analytical expressions for the state equation are 
known, and therefore analytical expressions for the derivatives required can easily 
be derived. 

3.4.2 Reconstruction of equation of state by using a limited  
amount of data available 

For many new application fields the information regarding thermodynamic data is 
very limited but order of magnitude analyses are required for the practice. There-
fore we present next a few brief examples of how to construct an approximate 
closed description of the thermodynamic state using only a few data points. 

3.4.2.1 Constant thermal expansion coefficient and isothermal 
compressibility coefficient 

The volumetric thermal expansion coefficient defined as 
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1 1

p p

dv d

v dT dT

ρβ
ρ

   = = −   
   

,     (3.234) 

and the isothermal coefficient of compressibility defined as 

1 1

T T

dv d
k

v dp dp

ρ
ρ

   = − =   
   

,     (3.235) 

are measured experimentally. As an example solid 2 3Al O  has the properties 
5 15.0 10 Kβ − −= × , 12 12.8 10k Pa− −= ×  McCahan and Shepherd (1993). The recip-

rocal value of the isothermal compressibility is known as elasticity modulus, 
1E k −= , having dimensions of pressure, Pa. Thus the equation of state 

( ),T pρ ρ=         (3.236) 

can be easily constructed starting with  

1 1

p T

d
dT dp dT kdp

T p

ρ ∂ρ ∂ρ β
ρ ρ ∂ ρ ∂

  = + = − +  
   

,  (3.237) 

and integrating with respect to some reference temperature and pressure 

( ) ( )0 0 0exp T T k p pρ ρ β= − − + −   .    (3.238) 

For construction of the equation of state for specific enthalpy, entropy and internal 
energy the measured dependence on the specific heat as a function of temperature 

( )p pc c T=        (3.239) 

is necessary. Using the differential relationships 

1 1
1p

p

dh c dT T dp
T

∂ρ
ρ ρ ∂
  = + +  

   
 

( ) ( ) ( )0 0
0

1
expp

T
c dT T T k p p dp

β
β

ρ
−

= + − − −   ,   (3.240) 

( ) ( )0 02
0

1
expp p

p

c c
ds dT dp dT T T k p p dp

T T T

∂ρ β β
ρ ∂ ρ

 = + = − − − −     
,  

(3.241) 

2

1 p
de dh dp dρ

ρ ρ
= − +

2

1
p

p p T

p T p
c dT dp

T T p

∂ρ ∂ρ ∂ρ
∂ ρ ρ ∂ ρ ∂ρ

       = + + +       
          

 

( )1
p

p
c dT T kp dpβ β

ρ ρ
 

= − + − + 
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( ) ( )0

0
0

exp
expp

p k p p
c dT T T dTβ β

ρ
− −  = − −    

( ) ( )0 0
0

exp exp
T

T T k p p dp
β β
ρ

− − − −        

( ) ( )0 0
0

1
exp expT T k p p kpdpβ

ρ
+ − − −       ,   (3.242) 

and integrating from some reference pressure and temperature we obtain 

( ) ( ) ( ) ( ){ }
0

0 0 0
0

1
exp exp 1

T

p

T

T
h h c T dT T T k p p

k

β
β

ρ
−

= + − − − − −       , 

    (3.243) 

( ) ( ) ( ){ }
0

0 0 0
0

1
exp exp 1

T
p

T

c T
s s dT T T k p p

T k
β β

ρ
= + + − − − −       , (3.244) 

( ) ( ) ( ){ }
0

0 0 0
0

exp exp 1
T

p

T

p
e e c T dT k p p T Tβ

ρ
= + − − − − −        

( ) ( ){ }0 0
0

exp exp 1
T

T T k p p
k

β β
ρ

+ − − − −        

( ) ( )
0

0 0
0

1
exp exp

p

p

T T k p p kpdpβ
ρ

+ − − −       .    (3.245) 

Many authors enforce s = 0 for T = 0. This is called in some text books the third 
law of the thermodynamics Cordfunke and Konings (1990) as proposed by Max 
Plank  in 1912. Note that the solution of the last integral is quite complicated 

( )
0

2 2
0 0 0 0

1 1 1
exp exp

2 4 2 2

p

p

k p p kpdp k p erf kp kp erf kp
k

π       − − = − − + +                 . 

        (3.246) 

In addition from the equation of state in the form 

2

pp p s

T T
d ds k dp ds dp

c c s p

∂ρ ∂ρρ βρ ρ β
∂ ∂

      = − + − = +    
     

, (3.247) 

we obtain the derivatives  

/ p
p

T c
s

∂ρ βρ
∂

  = − 
 

,       (3.248) 
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2 / p

s

k T c
p

∂ρ ρ β
∂

  = − 
 

.      (3.249) 

The velocity of sound is therefore 

2

1

/ p

a
k T cρ β

=
−

.      (3.250) 

The derivatives of the enthalpy, entropy and specific internal energy with respect 
to pressure and temperature follow immediately from Eqs. (3.228) through 
(3.242). 

p
p

h
c

T

∂
∂

  = 
 

,        (3.251) 

( ) ( ) ( )0 0
0

1
exp

T

Th
T T k p p

p

β∂ β
∂ ρ

−  = − − −    
 

,   (3.252) 

p

p

cs

T T

∂
∂

  = 
 

,       (3.253) 

( ) ( )0 0
0

exp
T

s
T T k p p

p

∂ β β
∂ ρ

  = − − − −    
 

,   (3.254) 

( ) ( )0 0
0

expp
p

e p
c T T k p p

T

∂ β β
∂ ρ

  = − − − −     
,   (3.255) 

( ) ( )0 0
0

exp
T

e kp T
T T k p p

p

∂ β β
∂ ρ

  −= − − −    
 

.   (3.256) 

3.4.2.2 Properties known only at given a pressure as temperature 
functions 

Frequently in the literature there are measured properties at atmospheric pressure 

0p  given as temperature functions only 

( )
0 0p p Tρ ρ= ,       (3.257) 

or 

( )
p

f T
T

∂ρ
∂

  = 
 

,      (3.258) 

( )p pc c T= .       (3.259) 
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In addition the velocity of sound is measured  

( )a a T= .       (3.260) 

For practical application of this information the reconstruction of the properties in 
consistent data functions is required. Next we construct the analytical form of the 
density as a function of temperature and pressure. The density derivative with re-
spect to pressure at constant temperature  

( )
2

2
2 2 2

1 1
/ p

ppT

d T d
T c f T

dp a a c dT

ρ ρβ
ρ

   = + = + =   
  

  (3.261) 

is obviously a function of the temperature only. Therefore the density can be com-
puted by integrating analytically the equation of state 

p T

d dT dp
T p

∂ρ ∂ρρ
∂ ∂

  = +   
   

.     (3.262) 

The result is 

( )
0 0p

T

p p
p

∂ρρ ρ
∂

 = + − 
 

.     (3.263) 

Using the differential equations 

1 1
1p

p

dh c dT T dp
T

∂ρ
ρ ρ ∂
  = + +  

   
2

1
p

p

dp
c dT T dp

T

∂ρ
ρ ρ ∂

 = + +  
 

, (3.264) 

2

1p

p

c
ds dT dp

T T

∂ρ
ρ ∂

 = +  
 

,     (3.265) 

2 2

1 1
p

p p T

p p T p
de dh dp d c dT dp

T T p

∂ρ ∂ρ ∂ρρ
ρ ρ ρ ∂ ρ ρ ∂ ρ ∂

       = − + = + + +       
            

( )
0

22

0

p
p p

p

T

p dp
c dT dT T

T T
p p

p

∂ρ ∂ρ
ρ ∂ ∂ ∂ρρ

∂

   = + +   
      

+ −  
  

 

( )
0

2

0

T

p

T

pdp

p
p p

p

∂ρ
∂ ∂ρρ

∂

 +  
    + −  

  

,    (3.266) 

keeping in mind that 
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( ) 00

0 0

1
ln

p

pp
p

T T

dp

p p
p p

ρ
ρ∂ρ ∂ρρ

∂ ∂

=
   + −   
   

 ,   (3.267) 

( ) 00

0

0
2

0

p

pp

p

T

p pdp

p p
p

ρ ρ∂ρρ
∂

−=
  

+ −  
  

 ,    (3.268) 

( )0

0

2

0

p

pT

p

T

pdp

p
p p

p

∂ρ
∂ ∂ρρ

∂

 
 
    

+ −  
  

  

0

0 0

0

1 1 1
lnp

p pT

T

p
p

p

∂ρ ρρ
ρ ρ ∂ ρ∂ρ

∂

      = − − +            
 
 

,  (3.269) 

and integrating from some reference pressure and temperature we obtain 

( )
0 00

0
0

1
ln

T

p
pp pT

T

p p
h h c T dT T

T

p

ρ ∂ρ
ρ ∂ ρ ρ∂ρ

∂

− = + + +     
 
 

 ,  (3.270) 

( )0

0

0 2

0

T
p

pT

p

T

c dp
s s dT

T T
p p

p

∂ρ
∂ ∂ρρ

∂

 = + +  
    + −  

  

  

00

0
0

T
p

p pT

c p p
s dT

T T

∂ρ
∂ ρ ρ

− = + +  
  ,    (3.271) 

0 0

0 2

1T T

p
pT T

e e c dT p dT
T

∂ρ
ρ ∂

 = + +  
    

0

0 0 0

0
0

1 1 1
lnp

p p p pT

T

p p
T p

T p

p

∂ρ ∂ρ ρρ
∂ ρ ρ ρ ρ ∂ ρ∂ρ

∂

     −   + + − − +                
 
 

. 

    (3.272) 

Again the derivatives are 

p
p

h
c

T

∂
∂

  = 
 

,        (3.273) 
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1 1
1

pT

h
T

p T

∂ ∂ρ
∂ ρ ρ ∂

    = +    
     

,     (3.274) 

p

p

cs

T T

∂
∂

  = 
 

 ,      (3.275) 

2

1

pT

s

p T

∂ ∂ρ
∂ ρ ∂

   =   
  

,      (3.276) 

2p
p p

e p
c

T T

∂ ∂ρ
∂ ρ ∂

    = +    
     

,     (3.277) 

2

1

pT T

e
T p

p T p

∂ ∂ρ ∂ρ
∂ ρ ∂ ∂

     = +     
      

.    (3.278) 

3.4.2.3 Constant density approximations 

For an idealized case of constant density we obtain 

0ρ ρ= ,       (3.279) 

( )
0

0

T

p

T

h h c T dT= +  ,      (3.280) 

0

0

T
p

T

c
s s dT

T
= +  ,      (3.281) 

0

0

T

p

T

e e c dT= +  .      (3.282) 

For zero initial values at the reference point we have  

e h≡ .       (3.283) 

Within this concept internal pressure for the incompressible field is not defined. 
Submerged in fluid the interface averaged stress is the pressure of the system. 

3.4.2.4 Perfect gas approximations 

For a perfect gas defined by  

p RT ρ=        (3.284) 
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with constant specific heat at constant pressure the differential Eqs. (3.241, 3.242, 
3.243) result in 

1 1
1p p

p

dh c dT T dp c dT
T

∂ρ
ρ ρ ∂
  = + + =  

   
,   (3.285) 

2

1
p p

p

dT dT dp
ds c dp c R

T T T p

∂ρ
ρ ∂

 = + = − 
 

,   (3.286) 

2 2

1 1
p

p p T

p p T p
de dh dp d c dT dp

T T p

∂ρ ∂ρ ∂ρρ
ρ ρ ρ ∂ ρ ρ ∂ ρ ∂

       = − + = + + +       
          

 ( )p vc R dT c dT= − = ,      (3.287) 

or 

( )0ph c T T= − ,      (3.288) 

( )0ve c T T= − ,      (3.289) 

0 0

ln lnp

T p
s c R

T p
= − .      (3.290) 

Obviously for 0p ≤ 0ln p p  and consequently s is not defined.  With other 
words: Gases does not exist at zero pressure and gases do not possess tension 
state. Modeling multi-phase flows using multi-velocity field models offers the 
possibility of postulating one of the mixtures described above for each of the 
fields. The combination of velocity fields and an appropriate number of compo-
nents in each field make it possible to describe a large variety of flows observed in 
nature and in the field of engineering. 

3.4.3 Vapor-liquid mixture in thermodynamic equilibrium 

For s′  < s < s′′  a saturated liquid coexists with its saturated vapor in thermody-
namic equilibrium after having enough time for relaxation. The mass concentra-
tion of the vapor in the equilibrium mixture is denoted with C”. The mass concen-
tration is used to generate the following definitions for the specific entropy and the 
density of the mixtures 

( )1s C s C s′′ ′′ ′′ ′= + − ,      (3.291) 

1 1C C

ρ ρ ρ
′′ ′′−= +
′′ ′

.      (3.292) 
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As p (and therefore s′′ , s′ ) and s are known, this permits easy computation of C′′  
from Eq. (3.291), i.e., 

s s
C

s s

′−′′ =
′′ ′−

.       (3.293) 

As C′′  and the pressure are known, the density is uniquely defined by Eq. (3.292), i.e., 

( ),p sρ ρ= ,       (3.294) 

or 

2
p

dp
d ds

a s

∂ρρ
∂

 = +  
 

.      (3.295) 

The derivatives can be easily obtained after differentiating Eqs. (3.291) and 
(3.292) and after eliminating dC”. The result is 

2

ps s s

∂ρ ρ ρ ρ
∂ ρ ρ

′ ′′−  = −  ′ ′′ ′′ ′− 
,     (3.296) 

( )2
2 2 2 2

1 1 1
1

p

C d C d ds ds
C C

a p dp dp s dp dp

ρ ρ ρ ∂ρρ
κ ρ ρ ρ ∂

 ′′ ′′ ′′ ′ ′′ ′ −   ′′ ′′= = + − + −    ′′ ′     
, 

   (3.297) 

Kolev (1986b). As Eq. (3.296) shows, the density change with the entropy for con-
stant pressure depends strongly on ρ , and therefore on the concentration C”. 

3.4.4 Liquid-solid mixture in thermodynamic equilibrium 

For s′′′  < s < s′ , an equilibrium mixture of liquid and solid phases (designated 
with superscripts  ′  and  ′′′  respectively) exists. Replacing the superscript  ′′  
with  ′′′  in the formalism of the previous section the required equation of state and 
the corresponding derivatives are then obtained.  

3.4.5 Solid phase 

For s < s′′′ , a solid phase exists. It is assumed here that analytical expressions for 
the corresponding derivatives are available. Solid phases can be approximately 
treated as shown in Section 3.4.2.1. 
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3.5 Extension state of liquids 

Superheated liquids are typical examples for liquids in tension state. Their internal 
pressure is higher than the surrounding pressure and the molecules starts to build 
clusters of vapor nucleolus. The liquid properties are then computed extrapolating 
the approximations into the region between the saturation- and the spinoidal line. 

Liquids at low pressure can be brought in extension state for a very short time 
too. This state may lead to negative pressures. Many times in the past, researchers 
have observed in clever experiments such states. Such states are usual if at low 
pressure strong pressure waves are reflected. Similarly, fast closing valves inter-
rupting fast liquid flows, results also in tension state of the liquid behind the 
valves. The question of practical interests is haw to compute the properties at neg-
ative pressure. The reader will find seldom information to this subject in the litera-
ture. Worthington (1892) reported “…In the neighborhood of the zero pressure the 
absolute coefficient of volume elasticity of alcohol is the same for extension as for 
compression, and so far as the observation shows is constant between pressure of -
17 and atmospheres 12.” It is confirmed also by Meyer (1911), reporting that 

“…the extension coefficient of water 
1

T

T

v

v p
β  ∂=  ∂ 

 was measured depending on 

the temperature from 0 to 31°C and pressures between –30 to 7 atmospheres and 
found in agreement with the compression coefficient at this temperatures.” Skri-
pov et al. (1980) reported properties for heavy water and recommended use of li-
near change of the density with the pressure in the meta-stable region. Therefore, a 
useful strategy as a first approximation is to fix the derivatives at the correspond-
ing temperature and minimum pressure and using them to linearly extrapolate 
densities, enthalpies, entropies etc. Regarding the transport properties, again they 
can be fixed at the given temperature and minimum pressure for which they are 
valid and then used in the region of negative pressure until better approach is 
found. 

Appendix 3.1 Application of the theory 
to steam-air mixtures 

Consider a mixture consisting of steam and air. This mixture is common in nature. 
To facilitate easy application, the definitions obtained for the partial derivatives 
are reduced to those for a two-component mixture consisting of one inert and one 
non-inert component. Here air is designated with A and steam with S, with air tak-
en as a single ideal gas. The result is 

( )
, _

1 1 / S
A A A

ST all C s T

C R T C
p p

∂ρ∂ρ
∂ ∂′

    = + −   
     

,   (A.1) 
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, _ , _

/
S

S S
A A

p all C s p ST all C s T

R
T p T p

∂ρ ∂ρ∂ρ ∂ρ ρ
∂ ∂ ∂ ∂′ ′

       = − +      
        

, (A.2) 

( ), _, , _ _ _

1

A

A
A S ST all C sp T all C s except C T

R T
C p p

∂ρ ∂ρρ
∂ ∂ ∂ρ ∂′′

    = − −    
     

, (A.3) 

( )
( ) ( )

, _

(1 ) 1
S

S S ST
p A pA A pS A

p all C s pS S T

h p
c C c C c C

p T T

∂ ∂ ∂ρ∂ρ
∂ρ ∂ ∂ ∂′

     = + − + − −     
       

 

(1 )A pA A pSC c C c= + −  

( ) ( )
( )

(1 ) 1
1 1

S

S SS T
A A A A

p A A S S T

h p
C C R C T

T C R T p

∂ ∂∂ρρ
∂ ∂ρ ∂

  − − − +    − −     
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  (A.4) 
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, _ , _

(1 ) /S S
A

S ST all C s T all C s T T

hh
C

p p p p

∂ ∂ρ∂ ∂ρ
∂ ∂ ∂ ∂′ ′

      = −       
       

 

2(1 ) / 1 1S S
A A A

S ST T

h
C C R T

p p

∂ ∂ρ
∂ ∂

      = − − −     
       

,   (A.5) 
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1 / 1 1

i

S S
A S A A

S S A p T all C s except CT T

h
s s C C

T p p C

∂ ∂ρρ ∂ρ
∂ ∂ ρ ∂ ′

       
 = − − − − −      
          

 

( )1 / 1 1S S
A S A A A A

S ST T

h
s s C R C R T

p p

∂ ∂ρρ
∂ ∂

      = − − − − −     
       

, (A.6) 

and 

, _ , _

1
1

ps all C s T all C s

T h

p c p

∂ ∂ρ
∂ ρ ∂′ ′

    = −    
     

 ,   (A.7) 

, _p all C s p

T T

s c

∂
∂ ′

  = 
 

,      (A.8) 
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, , _ _ _ , , _ _ _i A
A p Ap s all C s except C p T all C s except C

T T s

C c C

∂ ∂
∂ ∂′ ′

   
= −   

   
.  (A.9) 

Appendix 3.2 Useful references for computing properties 
of single constituents  

In this appendix a number of references that provide a useful set of approximations 
for thermodynamic and transport properties of simple constituents are summarized. 
These approximations are an example of a simple state equation library. 

The library discussed below as an example is used in the computer code IVA3 Kolev 
(1991a, b, c). This library consists of a set of analytical approximations for the follow-
ing simple substances: air, water, steam, uranium dioxide in solid, liquid and equili-
brium solid/liquid state. Alternatively, the analytical approximations for stainless steel 
or corium can be used instead of the approximation for uranium dioxide properties. 

For air, the Irvine and Liley (1984) approximations of ( ), ,pc h f Tρ =  and 

( ),s s T p const= =  are used where the influence of the pressure on the entropy, 

( )0ln /R p p−   is added, where 0p  is a reference pressure (e.g. 510 ) and R  is the 

gas constant of air. For steam, the Irvine and Liley (1984) approximations of 

( ), , , ,pc s h f T pρ =  are used. For water the Rivkin and Kremnevskaya (1977) ap-

proximations of ( ), , ,pc h f T pρ =  are used. For metastable water, the above ana-

lytical properties from Rivkin and Kremnevskaya (1977) are extrapolated, taking into 
account the discussion by Skripov et al. (1980). The water entropy as a function of 
temperature and pressure is computed as follows. First the saturation entropy as a 

function of liquid temperature is computed, ( )s s p T′ ′ ′=    , using analytical ap-

proximations proposed by Irvine and Liley (1984), with  the pressure correction 

( ),s s s p T p′ ′= −    then introduced as proposed by Garland and Hand (1989). 

The analytical approximations by Irvine and Liley (1984) for the steam/water 
saturation line, ( )p p T′ ′=  and ( )T T p′ ′=  are used in IVA3. The Clausius-

Clapeyron equation for /dp dT′  was obtained by taking the first derivative of the 
analytical approximation with respect to temperature. 

The steam/water saturation properties are computed as a function of p  and 

( )T p′ using the above approximations. 

Analytical approximations for the properties ( ), , ,pc s h f Tρ =  of solid and liquid 

uranium dioxide as proposed by Fischer (1990), Chawla et al. (1981) and Fink  
et al. (1982) are used. 

For the solid stainless steel properties ( ), , ,pc s h f Tρ =  the analytical  

approximations proposed by Chawla et al. (1981) are recommended. For liquid 
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stainless steel properties ( ), , ,pc s h f Tρ =  the approximations proposed by 

Chawla et al. (1981) and Touloukian and Makita (1970) are recommended.  
For the solid/liquid two-phase region for liquid metal, the assumptions of ther-

modynamic equilibrium within the velocity field are used, and the properties then 
computed as explained in Kolev (1991d). 

The derivatives ( )/
T

h p∂ ∂ , ( )/
p

T∂ρ ∂ , ( )/
T

p∂ρ ∂  are easily obtained by dif-

ferentiating the corresponding analytical approximations. 
The transport properties of the simple substances are computed as follows. Thermal 

conductivity and dynamic viscosity of air, and steam ( )Tλ λ=  - after Irvine and Li-

ley (1984). The water thermal conductivity ( ),T pλ λ=  is computed using the Rivkin 

and Alexandrov (1975) approximation and the water dynamic viscosity ( ),T pη η=  

and surface tension ( )Tσ σ= using the TRAC approximation, Liles et al. (1981). 

The thermal conductivity and dynamic viscosity of the air-steam mixture are 
computed using the mole weight method of Wilke (1950). 

The thermal conductivity of solid and liquid uranium dioxide and stainless 
steel, as well as the dynamic viscosity and surface tension of liquid uranium dio-
xide and steel, are computed using the Chawla et al. (1981) approximations. 

Hill and Miyagawa proposed in 1997 to use The IAPS Industrial Formulation 
1997 for the Thermodynamic Properties of Water and Steam, see in Wagner et al. 
(2000), in tabulated form. The use of an equidistant grid on the two independent 
axes is proposed and storing not only the properties but also their derivatives at a 
center of the computational cell. Marking this point with the integer coordinates 
(i,j) the interpolation is made by Taylor series expansion 

( ) ( ) ( ) ( )
2

2

, 2
, , , ,, ,

1
,

2i j i i j
y i j x i jy i j

f f f
f x y f x x x x y y

x yx

   ∂ ∂ ∂ = + − + − + −    ∂ ∂∂    
 

( ) ( )( )
2 2

2

2

, , ,

1

2 j i j

y i j i j

f f
y y x x y y

x yy

   ∂ ∂+ − + − −   ∂ ∂∂   
 

In addition to first derivatives, which are usually available as analytical derivatives 
from the basic functions, the second derivatives have to be computed numerically, 
e.g. with steps of 0.001 K and 1000 Pa. Six constants per property and cell center 
have to be stored. The search of the integer address is quick because of the selected 
equidistant grid. The reversed functions are also easily obtained by solving analyti-
cally the above quadratic equation. Appropriate selected grids contain the critical 
point at the boundary of a cell (not at the center). Thus, for two such neighboring 
cells sub- and supercritical approximations are used, respectively. ix  and jy  may be 

slightly removed from the center if the saturation line crosses the cell. In this case 
the properties at the stable site of the saturation line are used. The authors also rec-
ommended that instead of the functions ( ), , ,v h s f p T= , the more appropriate 

( ), , ,pv h ps f p T=  be used, which give finite values for pressures tending to zero. 
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Reliable source of water and steam approximations is Wagner and Kruse (1998) 
providing also some inverted approximations for the sub-critical region. Some inverted 
approximations for water and steam are also available in Meyer-Pittroff et al. (1969). 
General approaches for constructing properties for liquids and gases are given in Reid et 
al. (1982). Large data base for caloric and transport properties for pure substances and 
mixtures is given in Vargaftik et al. (1996). The NIST-JANAF thermo-chemical tables 
edited by Chase (1998) are inevitable for computational analysis of reactive flows. 

Useful differential thermodynamic relationships are given in Appendix 3.3. The 
reader can find in Elizer et al. (2002) the relativistic modification to this relation. 

Appendix 3.3 Useful definitions and relations between 
thermodynamic quantities  
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Specific capacity at constant volume
v

v

u
c

T

∂ =  ∂ 
 

Specific capacity at constant pressure
p

p p

u v
c p

T T

∂ ∂   = +   ∂ ∂   
 

Thermal expansion coefficient 1

p

v

v T
α ∂ =  ∂ 

 

Compressibility 1

T

v
k

v p

 ∂= −  ∂ 
 

Coefficient of thermal strain 1

v

p

p T
σ ∂ =  ∂ 
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4 On the variety of notations of the energy 
conservation for single-phase flow 

The Greek word τροπη  stems from the verb εντροπειη  – 

conversion, transformation, and was used by R. Clausius 
in a sense of “value representing the sum of all 
transformations necessary to bring each body or system of 
bodies to their present state” (1854 Ann. Phys., 125, p. 
390; 1868 Phil. Mag., 35, p. 419; 1875 “Die mechanische 
Wärmetheorie”, vol. 1). 
 
 
This chapter recalls the achievements of the classical thermodynamics for describing the 
thermodynamic behavior of flows. At the end of the 19th century this knowledge had al-
ready formed the classical technical thermodynamics.  

The classical thermodynamics makes use of different mathematical notation of the first 
principles. The purpose of this chapter is to remember that all mathematically correct 
transformations from one notation into the other are simply logical and consistent reflections of 
the same physics. The use of the specific entropy is not an exception. The importance of the 
entropy is that it allows one to reflect nature in the simplest mathematical way. 

Even being known since 100 years the basic system of partial differential equations is 
still not analytically solved for the general case. The requirements to solve this system 
numerically and the virtual possibility to do this by using modern computers is the 
charming characteristic of the science today. The obtained numerical results have always 
to be critically examined. As we demonstrate here for pressure wave analysis lower order 
numerical methods predict acceptably only the first few cycles but then the solution 
degrades destroyed by numerical diffusion. The inability of the lower order numerical 
methods to solve fluid mechanics equations for initial and boundary conditions defining 
strong gradients is not evidence that the equations are wrong. That high accuracy solution 
methods are necessary to satisfy future needs of the industry is beyond question. 

4.1 Introduction 

Chapter 4 is intended to serve as an introduction to Chapter 5.  
The computational fluid mechanics produces a large number of publications in 

which the mathematical notation of the basic principles and of the thermodynamic 
relationships is often taken by the authors for self understanding and is rarely 
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explained in detail. One of the prominent examples is the different notation of the 
energy conservation for flows in the literature. The vector of the dependent 
variables frequently used may contain either specific energy, or specific enthalpy, 
or specific entropy, or temperature etc. among other variables. If doing the 
transformation from one vector into the other correctly the obtained systems of 
partial differential equation must be completely equivalent to each other. Nevertheless, 
sometimes the message of the different notations of the first principle is 
misunderstood by interpreting one of them as “wrong” and other as right. 
That is why recalling the basics once more seems to be of practical use in order to 
avoid misunderstandings.  

4.2 Mass and momentum conservation, energy 
conservation 

The fluid mechanics emerges as a scientific discipline by first introducing the 
idea of control volume. The flowing continuum can be described mathematical-
ly by abstracting a control volume inside the flow and describing what happens 
in this control volume. If the control volume is stationary to the frame of refer-
ence the resulting description of the flow is frequently called Eulerian descrip-
tion. If the control volume is stationary to the coordinate system following the tra-
jectory of fluid particles the description is called Lagrangian. Oswatitsch’s 
“Gasdynamik” (1952) is my favorite recommendation to start with this topic because 
of its uncomplicated introduction into the “language of the gas dynamics”. Next we 
write a system of quasi linear partial differential equations describing the behavior of 
a single-phase flow in an Eulerian control volume without derivation.  

The idea of conservation of matter was already expressed in ancient philosophy. 
Much later, in 1748, M. Lomonosov wrote in a letter to L. Euler “... all changes in the 
nature happens so that the mass lost by one body is added to other ...”. Equation (4.1) 
reflects the principle of conservation of mass per unit volume of the flow probably 
first mathematically expressed in its present form by D’Alembert (1743). The 
second equation is nothing else than the first principle of Newton (1872) applied 
on a continuum passing through the control volume probably for the first time by 
Euler (1737-1755), see Euler (1757). Again the equation is written per unit 
flow volume. The third equation reflects the principle of the conservation of 
energy, Mayer (1841-1851), see Mayer (1757), a medical doctor finding that the 
humans loose more energy in colder regions in the globe then in hotter, which is 
reflected in the color of the blood due to the different degree of blood oxidation. 

( ) 0
∂ρ ρ
∂τ

+∇ ⋅ =V       (4.1) 

0p
∂ρ ρ
∂τ

 + ∇ ⋅ + ∇ ⋅ + = 
 

V
V V g     (4.2) 
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2 21 1
/ . 0

2 2
e V e p V

∂ ρ ρ ρ ρ
∂τ

      + +∇ ⋅ + + + =            
V g V  (4.3) 

Here the usual notations of the thermodynamics are used.  
Note that these equations are 

 

a) local volume averaged which means that the behavior of a single molecule in-
teracting with its neighbors is not described in detail. 

 

Secondly, they are  
 

b) not time-averaged conservation equation for  
c) flow without internal or external heat sources. 

 

That this equation does not reflect all of the complexity of the flows in nature is 
evident from the fact that 

 

d) the forces resisting the flow due to viscosity are neglected, and consequently  
e) the power component of these forces into the energy conservation equation is 

also neglected. 
 

Nevertheless the system (4.1) through (4.3) reflects several important characteristics 
observed in real flows and is frequently used in science and practical computations. 
In other words this system describes well wave dynamics but does not describe any 
diffusion processes in the flow, like viscous energy dissipation, heat conduction etc. 

4.3 Simple notation of the energy conservation equation 

The energy conservation equation can be substantially simplified as it will be 
demonstrated here without any loss of generality. To achieve this first the scalar 
product of Eq. (4.2) is constructed with the field velocity V. The result is a scalar 
expressing the mechanical energy balance. Subtracting this result from the energy 
equation results in 

( ) ( ) 0e e p
∂ ρ ρ
∂τ

+ ∇ ⋅ + ∇ ⋅ =V V .    (4.4) 

Obviously, this equation is much more compact than the primitive form of the 
energy conservation equation (4.3). Additional simplification is reached if diffe-
rentiating the first two terms and comparing with the mass conservation equation. 
Dividing by the density results in  

( ). 0
e p

e
∂
∂τ ρ

+ ∇ + ∇ ⋅ =V V .     (4.4) 
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Note, that the system consisting of Eqs. (4.1, 4.2, 4.3) is completely equivalent to 
the system consisting of Eqs. (4.1, 4.2, 4.4 or 4.4a). 

4.4 The entropy 

Equation (4.4) is called frequently in the literature also energy equation. It can be 
additionally simplified by introducing a new variable. In a closed system the 
introduced external heat, dq, may be transformed into internal specific energy de, or 
into expansion work pdv, or into both simultaneously, in a way that no energy is lost 
dq = de + pdv – energy conservation principle. A unique functional dependence of 
the type q = q(e,v) cannot be derived. In the mathematics the linear form dq = de + pdv 
in which dq is not a total differential is called Pfaff´s form. The Gibbs relation, 

2

p
Tds de pdv de dρ

ρ
= + = − ,     (4.5) 

Gibbs (1878), simply says that per unit mass the change of the internal energy de 
and the expansion work pdv in the control volume can be expressed as a change of 
an single variable denoted with s, provided T is the so-called integrating 
denominator. That T is the integrating denominator was proven 30 years earlier. 
The integrating denominator itself was found to be the absolute temperature T (W. 
Thomson 1848). M. Plank showed that among the many choices for the 
integrating denominator only the absolute temperature allows to integrate 
independently from the trajectory of the transformation Plank (1964). The new 
remarkable variable was called by R. Clausius specific entropy, see Clausius 
(1854). Specific – because related to unit mass of the fluid. The Greek word for 
entropy, τροπη , stems from the verb εντροπειη  which means conversion or 

transformation, and is used by Clausius in a sense of “...value representing the 
sum of all transformations necessary to bring each body or system of bodies to 
their present state”. The introduction of the specific entropy allows simple 
notation of the second principle of the thermodynamics formulated also by 
Clausius. Gibbs used Eq. (4.5) as a mathematical expression of the so called 
equilibrium principle “... after the entropy of the system reaches the maximum 
the system is in a state of equilibrium ...”. Equation (4.5) has another remarkable 
property. It is the differential expression of a unique equation of state ( ),s s e v=  in 

which the partial derivatives ( )v
e s T∂ ∂ =  and ( )s

e v p∂ ∂ = −  are technically 

measurable properties. 
Note that the introduction of the new variable entropy plays also an important role 

in the statistical mechanics and in the informatics which will not be discussed here. 
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Thus, making use of the Gibbs relation, of the mass conservation equation, and 
of Eq. (4.5), Eq. (4.4a) is easily transformed into the simplest notation expressing 
the energy conservation law 

( ). 0
s

s
∂
∂τ

+ ∇ ⋅ =V .      (4.6) 

Again note that the system consisting of Eqs. (4.1, 4.2, 4.6) is completely 
equivalent to the system consisting of Eqs. (4.1, 4.2, 4.4), and consequently to the 
original system containing Eqs. (4.1, 4.2, 4.3). 

4.5 Equation of state 

The macroscopic behavior of fluids can be described by describing the behavior 
of the simple molecule in interaction with others in a control volume Boltzman 
(1909). The technical thermodynamics makes use of the so called equation of state 
in which the local volume- and time-averaged behavior of the fluid is reflected ra-
ther than describing the behavior of the single molecule (see the Riemann´s work 
from 1859 in which he combines the experimental findings by Gay-Lussac 
(1806), Boyle-Mariotte to one equation of state, or any thermodynamic text book). 
One example for the equation of state is the dependence of the specific internal 
energy on the volume-averaged density and on the volume-averaged tempera-
tures, the so called caloric equation of state, 

( , )e e Tρ= .        (4.7) 

Note the useful definition of the specific capacity at constant volume 

v
v

e e
c

T Tρ

∂ ∂
∂ ∂

   = =   
   

      (4.8) 

Perfect fluids are defined by the dependence of the specific internal energy on the 
temperature only, but not on the density (remember the famous expansion expe-
riments by Gay-Lussac). Variety of forms of the equation of state is possible 
which may lead to a variety of notations of the energy conservation principle. 

4.6 Variety of notation of the energy conservation 
principle 

4.6.1 Temperature 

Equation (4.4) can be rewritten in terms of temperature using the equation of state 
(4.7) and the mass conservation equation (4.1). The result is 
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( )
2

. 1 0
v T

T p e
T

c p

∂ ρ ∂
∂τ ρ ∂ρ

  + ∇ + − ∇ ⋅ =  
  

V V ,   (4.9) 

an equation containing only one time derivative. Note that  

2

1
vT

p e p

T p T

ρ ∂ ∂
∂ρ ∂

    − ≡    
   

,      (4.10) 

which is an important thermodynamic relationship, see Reynolds and Perkins 
(1977) p. 266 Eq. 8.54. Again note that the system consisting of Eqs. (4.1, 4.2, 4.9) 
is completely equivalent to the system consisting of Eqs. (4.1, 4.2, 4.4a), and con-
sequently to the original system containing Eqs. (4.1, 4.2, 4.3). 

4.6.2 Specific enthalpy 

Another specific variable frequently used in the thermodynamic is the specific en-
thalpy defined as follows 

/h e p ρ= + .        (4.11) 

Using the differential form of this definition  

( ) ( )d e dp d hρ ρ+ =        (4.12) 

Eq. (4.4) can be written in terms of the specific enthalpy and pressure 

( ) ( ) 0
p

h h p
∂ ∂ρ ρ
∂τ ∂τ

 +∇ ⋅ − + ⋅∇ = 
 

V V .   (4.13) 

Again note that the system consisting of Eqs. (4.1, 4.2, 4.13) is completely 
equivalent to the system consisting of Eqs. (4.1, 4.2, 4.4), and consequently to the 
original system containing Eqs. (4.1, 4.2, 4.3). Moreover, it is easily shown that 
using the definition equation for the specific enthalpy (4.11) the Gibbs relation 
(4.5) takes the form 

T ds dh dpρ ρ= −        (4.14) 

which immediately transforms Eq. (4.13) into the entropy equation (4.6) again. 
Equation (4.13) is easily transferred in terms of temperature and pressure by using 
the following equation of state 

( , )h h T p=         (4.15) 

or in differential form 



4.7 Summary of different notations   181  

p

T

h
dh c dT dp

p

∂
∂

 = +  
 

.      (4.16) 

The resulting equation is 

( ) ( )1
1 0

p T

T h p
T p

c p

∂ ∂ ∂ρ
∂τ ρ ∂ ∂τ

    + ⋅∇ − − + ⋅∇ =       
V V . (4.17) 

Again note that the system consisting of Eqs. (4.1, 4.2, 4.17) is completely 
equivalent to the system consisting of Eqs. (4.1, 4.2, 4.13), and consequently to 
the original system containing Eqs. (4.1, 4.2, 4.3). 

4.7 Summary of different notations 

It follows from Sections 4.3 through 4.6 that the system of equations (4.1, 4.2, 
4.3) is completely equivalent to one of the systems containing equations (4.1) and 
(4.2), and one of the following expressions of the first principle 

( ). 0
e p

e
∂
∂τ ρ

+ ∇ + ∇ ⋅ =V V ,     (4.4a) 

( ). 0
s

s
∂
∂τ

+ ∇ =V , (4.6) 

( )
2

. 1 0
v T

T p e
T

c p

∂ ρ ∂
∂τ ρ ∂ρ

  + ∇ + − ∇ ⋅ =  
  

V V , (4.9) 

( ) ( )1
. 0

h p
h p

∂ ∂
∂τ ρ ∂τ

 + ∇ − + ⋅∇ =  
V V ,    (4.13) 

( ) ( )1
1 0

p T

T h p
T p

c p

∂ ∂ ∂ρ
∂τ ρ ∂ ∂τ

    + ⋅∇ − − + ⋅∇ =       
V V . (4.17) 

These equations are derived without specifying the type of the fluid as perfect or 
real gas. They are valid for both cases. The reader will find in McDonald et al. 
(1978) notation using as dependent variables: (w, h, p), (G, h, p), (w, ρ , p), 

(G, ρ , p) , (w, ρ , h), (G, ρ , h), (w, ρ , e), (G, ρ , e)  and in  Thorley and Tiley 

(1987) ( ρ , h, w) and (p, T, w) . 
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4.8 The equivalence of the canonical forms 

The system of partial differential equations can be further considerably simplified if 
they are from a special type called hyperbolic. Riemann found that such a system can 
be transferred to the so called canonical form which consists of ordinary differential 
equations. Next we will start with two different forms of the system, one using 
specific entropy and the other using specific internal energy. We then give the eigen 
values, the eigen vectors and the canonical form of both systems. It will be shown 
again that the so obtained forms are mathematically identical. 

Before performing the analysis of the type of the system we simplify the mass 
conservation equation as follows. The density in the mass conservation equation is 
expressed as function of pressure and specific entropy 

( ),p sρ ρ=        (4.18) 

or in differential form 

2
p

dp
d ds

a s

∂ρρ
∂

 = +  
 

.      (4.19) 

Substituting Eq. (4.19) into Eq. (4.1) and taking into account the entropy Eq. (4.6) 
the mass conservation equation takes the form of Eq. (4.21). Thus using the 
following vector of dependent variables 

( ), ,U p w s=        (4.20) 

the flow is completely described by the system of quasi linear partial differential 
equations 

2 0
p p w

w a
z z

∂ ∂ ∂ρ
∂τ ∂ ∂

+ + = ,     (4.21) 

1
0z

w w p
w g

z z

∂ ∂ ∂
∂τ ∂ ρ ∂

+ + + = , (4.2) 

0
s s

w
z

∂ ∂
∂τ ∂

+ = . (4.6) 

It is well known that the eigen values of this system defined by 

2 0

1/ 0 0

0 0

w a

w

w

λ ρ
ρ λ

λ

−
− =

−
,     (4.22) 

are real and different from each other 

1,2 w aλ = ± , 3 wλ = . (4.23, 4.24, 4.25) 
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The eigen vectors of the transposed characteristic matrix 

1
2

2

3

1/ 0

0 0

0 0

i

i

i i

w h

a w h

w h

λ ρ
ρ λ

λ

−  
  − =  
  −  

,    (4.26) 

are linearly independent 

( )
1

1/

1

0

a

h

ρ 
 =  
 
 

, 

( )
2

1/

1

0

a

h

ρ− 
 =  
 
 

, and 3

0

0

1

h

 
 =  
 
 

. (4.27, 4.28, 4.29) 

Therefore the quasi linear system of partial differential equations is hyperbolic 
and can be transformed into the very simple and useful canonical form 

dz
w a

dτ
= + , 

1 dp dw
g

a d dρ τ τ
+ = − ,         (4.30, 4.31) 

dz
w a

dτ
= − , 

1 dp dw
g

a d dρ τ τ
− + = − ,         (4.32, 4.33) 

dz
w

dτ
= ,  0

ds

dτ
= .          (4.34, 4.35) 

As far as I know Eqs. (4.30 to 4.35) were obtained for the first time by Riemann in 
1859. Remember that each of the ordinary differential equations (4.31, 4.33, 4.35) is 
valid in its own coordinate system attached along one of the three characteristic lines 
defined by the equations (4.30, 4.32, 4.34), respectively. Equations (4.34, 4.35) 
contain a very interesting analytical solution s = const. It means that an infinitesimal 
control volume moving with the fluid velocity along the line defined by Eq. (4.34) in 
the ( ), zτ  plane does not change a specific property defined as specific entropy. 

This change of state is called isentropic. Comparing with Eq. (4.5) it simply means 
that within this control volume the energy required for volume expansion per unit 
flow volume reduces the specific internal energy per unit time by the same amount.  

Now let us perform the same analysis starting from the system containing the 
first principle in terms of specific internal energy. We use this time as dependent 
variables vector, 

( ), ,U p w e= ,       (4.36) 

and the system describing the flow 

2 0
p p w

w a
z z

∂ ∂ ∂ρ
∂τ ∂ ∂

+ + =      (4.21) 
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1
0z

w w p
w g

z z

∂ ∂ ∂
∂τ ∂ ρ ∂

+ + + =  (4.2) 

0
e e p w

w
z z

∂ ∂ ∂
∂τ ∂ ρ ∂

+ + = .     (4.4a) 

If you are not familiar with the analysis of the type of a system of partial diffe-
rential equations by first computing the eigen values, eigenvectors and canonical 
forms it is recommended first to read Section 11 before continuing here.  

From the characteristic equation 

2 0

1/ 0 0

0

w a

w

p
w

λ ρ
ρ λ

λ
ρ

−
− =

−

     (4.37) 

we obtain the same eigen values, Eqs. (4.23, 4.24, 4.25),  as in the previous case, 
which is not surprising for equivalent systems. Using the eigen vectors of the 
transposed characteristic matrix 

1
2

2

3

1/ 0

0

0 0

w
h

p
a w h

h
w

λ ρ

ρ λ
ρ
λ

 −
  
  − =        − 

,    (4.38) 

we can transform the system of partial differential equations again into a system 
of ordinary equations along the characteristic lines. Along the first two characte-
ristic lines both canonical equations are identical with the system using the specif-
ic entropy as a dependent variable. Along the third characteristic line we have a 
canonical equation which is in terms of specific internal energy and pressure, 

dz
w

dτ
= ,  

2
1

0
de p dp

d a p dτ ρ τ
 − = 
 

.        (4.39, 4.40) 

For the general case it can be shown that the following relation holds 

2

2

1

p

p p
T ds de dp

s a p

∂ρ
ρ ∂ ρ

    + = −    
     

.    (4.41) 

Applying this relation to the canonical equation (4.40) results exactly in  
Eq. (4.35). This demonstrates that also the canonical forms of the system using 
different sets as depending variables are mathematically equivalent.  
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4.9 Equivalence of the analytical solutions 

That the analytical solutions of the equivalent systems of equations written in 
terms of different dependent variables are equivalent to each other is obvious. 

4.10 Equivalence of the numerical solutions? 

4.10.1 Explicit first order method of characteristics 

Next let us apply the simple explicit first order method of characteristics for solv-
ing the system for a horizontal equidistant discretized pipe,  

( )1z w a τΔ = + Δ , ( )1 1

1
0p p w w

a
τ τ τ τ

ρ
+Δ +Δ− + − = ,         4.42, 4.43) 

( )2z w a τΔ = − Δ , ( )2 2

1
0p p w w

a
τ τ τ τ

ρ
+Δ +Δ− − + − = , (4.44, 4.45) 

3z w τΔ = Δ ,   3 0s sτ τ+Δ − = ,    (4.46, 4.47) 

where indices i refers to values of the dependent variables at ( ), izτ λ τ− Δ . There 

are a variety of methods to compute iU  as a function of the neighboring values. 

One of the simplest is the linear interpolation 

( ) ( ) ( )1 1

1
1 1

2i i k k iU sign Cu U U U Cu− −= + + − −        

( ) ( )1

1
1

2 i k isign Cu U U U Cu++ − − −       ,   (4.48) 

where 

i
iCu

z

λ τΔ=
Δ

.       (4.49) 

The result is 

( )2 1 1 2

1 1

2
w p p w w

a
τ τ

ρ
+Δ  = − − + + 

 
    (4.50) 

( )2 1 2 1

1

2
p p p w w aτ τ ρ+Δ = + − −       (4.51) 

3s sτ τ+Δ = .       (4.52) 
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Obviously, the pressure and the velocity in the point ( ), zτ τ+ Δ  depend on the 

pressure and the velocities at points 1 and 2. The old time value of the specific en-
tropy is simply shifted along the third characteristic from the point ( ), z wτ τ− Δ  

to the point ( ), zτ τ+ Δ . This result is derived without any assumption of the type 

of the fluid. 
In case of closed ends of the pipe we have the following results. For the left 

end 0Lw = , 3 Ls s= , and therefore Ls sτ τ+Δ = , and from Eq. (4.45) 

2 2p p w aτ τ ρ+Δ = − . Similarly for the right end 0Rw = , 3 Rs s= , and therefore 

Rs sτ τ+Δ = , and from Eq. (4.43) 1 1p p w aτ τ ρ+Δ = + . For open ends only the canon-

ical equations whose characteristics are inside the pipe are used. For the missing 
equations boundary conditions have to be provided.  

Joukowsky (1898) derived the closed end relation already in 1898. He ex-
plained for the first time the physics behind the maximum pressure spikes for wa-
ter pipe lines in which valves are closed quickly.  

 

Therefore, fast closing valves produce stagnation pressure spikes that are 
proportional (a) to the undisturbed initial velocity and (b) to the sound ve-
locity, 

1 1p p w aτ τ ρ+Δ − = ,  Eq. (16),  Joukowsky  (1898). 

 
This is important knowledge for designing the pipe supports in the engineering 
practice. Either the designer of the valves have to implement solution not allowing 
fast closing, or if fast closing is desired for some reasons, the pipes have to sustain 
the forces originating after the closing. Farther more Joukowsky uses the Rie-
mann’s method to transfer the mass and momentum equations into canonical 
forms and proposed for the first time numerical solution method which is known 
now as the “method of characteristics”. Not having computers, Joukowsky pro-
posed graphical method of characteristics. In his important for the modern hydro-
dynamics work, Joukowsky also considered the influence of the elasticity of the 
pipe walls on the velocity of sound, Eq. (15) in Joukowsky (1898). 

The reader will find examples for numerical solutions based on the single-
phase method of characteristics as follows:  
 

1D-flows: For diabatic three-equations model see Namatame and Kobayashi 
(1974), for two-equations model for pipe-networks see Katkovskiy and Poletaev 
(1975), Henshaw (1987), Weisman and Tenter (1981), for two-equations model 
for pipe-networks with pumps see Capozza (1986), Chen et al. (1974), Shin and 
Chen (1975). 
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2D-flows: For single component flow see George and Doshi (1994), Henshaw 
(1987), Weisman and Tenter (1981), for multi-component steady reactive flows 
see Zucrow and Hoffman (1977), for isentropic flow see Shin and Valentin (1974). 

 
1D homogeneous two-phase flows: The extension of the single phase flow mod-
els to two-phase equilibrium models is very easy. The mixture specific entropy is 
defined as follows  

( )1, 1,1eq eqs X s X s′′ ′= + − , 

resulting in equilibrium vapor mass flow fraction 

1,eq

s s
X

s s

′−=
′′ ′−

. 

The specific mixture volume is then  

( )1, 1,1eq eqv X v X v′′ ′= + −  

( ) ( )1 2, ,
v v s v s v dT s v s v

s s f s p sf f v p s
s s s s dp s s

′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′ ′′− − −= + = + = = + =
′′ ′ ′′ ′ ′′ ′− − −

. 

Therefore a convenient equation of state is ( ),v v p s=  with differential form  

ps

v v
dv dp ds

p s

 ∂ ∂ = +   ∂ ∂  
, 

where 

1 2

s

df dfv
s

p dp dp

 ∂ = + ∂ 
,  

1
p

v
f

s

∂  = ∂ 
. 

We realize that the partial derivative of the mixture specific volume with respect 
to the specific mixture entropy is equivalent to the Clapeyron’s expression 

dT v v

dp s s

′ ′′ ′−=
′′ ′−

. 

Approximating the function f1 and f2 with smooth pressure functions is very con-
venient for using them in fast computational algorithms. The velocity of sound a 
is easily derived if we use the above expressions to obtain the equation of state 

( )1 ,v p sρ ρ= =  or in differential form 
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2
p

dp
d ds

sa

ρρ ∂ = +  ∂ 
, 

where 

1 2
2 2

1 1

s

df df
s

p dp dpa v

ρ   ∂= = − +   ∂   
 

2
1

p

f v
s

ρ∂  = − ∂ 
. 

Alternative expression for the velocity of sound, 

( )
( ) ( )1, 1, 1, 1,2

1
1 1eq eq eq eq

v v ds ds dv dv
X X X X

s s dp dp dp dpaρ
′′ ′ ′′ ′ ′′ ′ −= + − − + − ′′ ′−  

, 

is frequently used in the literature but it is obviously computationally more expen-
sive compared to the previous expression. 

Homogeneous non equilibrium 4-equation model is solved by the method of 
characteristics on structured grid using second order method by Köberlein (1972), 
Grillenberger (1981). Homogeneous equilibrium 3-equations models with va-
riety of notations for the energy conservation are reported by McDonald et al. 
(1978). Different variants of the methods of characteristics are proposed in this 
work with the most interesting one based on two grids. On the even grids a 
conservative form of the conservation equations is used guaranteeing strict 
conservation, and on the odd grids – the canonical form using the method of 
characteristics. Homogeneous equilibrium 3-equations and homogeneous non-
equilibrium 5-equations model are solved by the method of characteristics on non 
structured grid by Hancox and Banerjee (1977), Hancox et al. (1978). Homoge-
neous non-equilibrium 5-equations model is solved by the method of characteris-
tics on non structured grid by Ferch (1979); For two fluid model without thermal 
interaction see Weisman and Tenter (1981). 
 

1D non-homogeneous two-phase flows: For isentropic drift flux model see Kai-
zerman et al. (1983). Analytical solution for concentration waves in boiling chan-
nel at constant pressure and known mass flow is provided by Santalo and Lahey 
(1972). 

If the spatial derivatives in the canonical form are computed by finite differ-
ences for the old time plane by using weighing depending on the direction of the 
velocity the method is called method of lines or pseudo-characteristics method. 
Examples are available by Wang and Johnson (1981), Kolev and Carver (1981). 
Positioning adaptively more grid points along the pipe axis where the gradients of 
the variables are stronger is a efficient technique to increase the accuracy of the 
method of lines by low computational costs Hu and Schiesser (1981). 
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To get an impression about the physical meaning of Eq. (4.52) we rewrite it for 
a perfect gas 

/

3 3

pR c
T p

T p

τ τ τ τ+Δ +Δ 
=  
 

.      (4.53) 

This is usually used as a benchmark for any other numerical solution using first 
order explicit methods. 

Applying again the explicit method of characteristics to the system in terms of 
the specific internal energy we obtain the same results for the pressure and veloci-
ties. The relation along the third characteristic line should be considered very 
carefully. If the differential form  

2
p dp

de
a pρ

 =  
 

      (4.54) 

is analytically integrated for a perfect gas it results exactly in Eq. (4.53). This is 
not the case if the differential form is written in finite difference form, 

( )
( )3 32

p
e e p p

a
τ τ τ τ

ρ
+Δ +Δ= + − ,     (4.55) 

because for the computation of the coefficient 
( )2

p

aρ
 an assumption has to be 

made of how it has to be computed. For this reason the result, 

( )3 3
p

T R
T T p p

p c
τ τ τ τ+Δ +Δ− = − ,     (4.56) 

does not fit to the exact benchmark solution. Over many time steps it may accu-
mulate to considerable error.  

4.10.2 The perfect gas shock tube: benchmark for numerical methods  

What is a perfect gas? The experiment that demonstrates the properties of a fluid 
classified as a perfect fluid was performed in 1806 by Gay-Lussac and repeated 
with a more sophisticated apparatus in 1845 by Joule see Gay-Lussac (1807) and 
Joule (1884). In this remarkable experiment a closed space with rigid and ther-
mally insulated walls is separated by a membrane into two parts. The left part con-
tained gas with temperature T and pressure p. The right part was evacuated. The 
separating membrane was broken and the gas expands decreasing first tempera-
ture and pressure in the left side and increasing temperature and pressure in the 
right side. After enough time something remarkable happens. The temperature 
everywhere approaches the initial temperature. For the same mass and internal 
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energy, that is for the same specific internal energy, the temperature remains con-
stant in spite of the change of the specific volume. Mathematically this means 

0
T

e

v

∂
∂

  = 
 

,       (4.57) 

and therefore 

( )e e T= .       (4.58) 

This reflects the condition which has to be satisfied by the caloric equation of state 
of the fluid to classify it as a perfect fluid. Real fluids do not satisfy this condition 
Elsner (1974). That is why after such experiments the temperature will not be the 
same as the initial temperature even if the experimental apparatus could provide 
perfect energy conservation inside the control volume.  

The modern expression for this apparatus is a shock tube. Shock tubes are im-
portant experimental facilities for studying dynamic processes in fluids. In the 
numerical fluid dynamics they serve as a benchmark problem on which the accu-
racy of the numerical methods can be examined. Text book analytical solution for 
a perfect gas is available; see for instance Hoffmann and Chang (2000). Procedure 
to its use is given in Appendix A4.1 and comparison of this solution with some 
numerical solutions is given in Appendix A4.2. 

Remember that there are two important error sources in the numerical solution: 
discretization errors and truncation errors. The discretization errors are associated 
with the approximations used to represent derivatives at given points. Usually se-
ries expansion is used and the terms not taken into account are computed to esti-
mate the error. To make the error plausible it can be expressed in changes of mea-
surable variables. The truncation errors themselves are associated with inability of 
the digital computers to work with as much digits as necessary. In the course of 
the computation errors generated from both sources accumulate. Under given cir-
cumstances the accumulated error can be so big that the obtained solutions are no 
longer consistent with the initial conditions. 

Let us perform such a test in order to quantify the error of the numerical solu-
tion of the system of partial equations. Consider a pipe with constant cross section 
A and length L. Discretize it equidistantly by using maxk  points. maxk  is an even 

number. Assign for time τ  initial values for T and p as follows: *T T= , 0w =  
for max1,k k= , Lp p=  for max1, / 2k k=  and Rp p=  for   max max/ 2,k k k= . Having 

the temperature and pressure in each point all other variables required for the 

analysis can be computed as follows ( )p RTρ = , a RTκ= , where 

( )p pc c Rκ = − , ( ) ( )pp
s p RTc∂ρ ∂ = − , ( ) ( )0 0ln lnps c T T R p p= − , 

( )0ve c T T= − , ( )0ph c T T= − . Select the time step τΔ  satisfying the criterion 

( )max 1iCu < .       (4.59) 
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Compute all dependent variables in the new time plane τ τ+ Δ  taking into ac-
count that the velocities at the both ends are zero. If the entropy or the specific 
internal energy is one of the dependent variables compute the temperature as ei-

ther using ( ) ( )0 0 exppR c

pT T p p s c=  or using 0 vT T e c= + , respectively. 

Then all properties can be computed as function of pressure and temperatures. 
Compare the differences between the initial total energy of the system at the be-
ginning of the process to the actual energy and estimate the error made. Advance the 
computation up to obtaining the steady state solution and compare the tempera-
ture with the initial temperature.  
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Fig. 4.1 Pressure as function of  the distance from the left closed end of the pipe at 
250 sτ μ= . Comparison between the analytical and numerical solutions. The systems of 

PDE´s contain the energy conservation principle in terms of specific internal energy or 
specific entropy. Both numerical solutions are indistinguishable 
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Fig. 4.2 Velocity as function of the distance from the left closed end of the pipe at 
250 sτ μ= . Comparison between the analytical and numerical solutions. The systems of 

PDE´s contain the energy conservation principle in terms of specific internal energy or 
specific entropy. Both numerical solutions are indistinguishable 
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Fig. 4.3 Pressure as function of the distance from the left closed end of the pipe at 
250 sτ μ= . Comparison between the analytical and two numerical solutions obtained by 

using the explicit method of characteristics: one with piecewise linear interpolation, the 
second with cubic spline interpolation. The systems of PDE´s contain the energy conserva-
tion principle in terms of specific internal entropy. As expected increasing the order of the 
spatial discretization increases the accuracy 
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Fig. 4.4 Velocity as function of the distance from the left closed end of the pipe at 
250 sτ μ= . Comparison between the analytical and two numerical solutions obtained by 

using the explicit method of characteristics: one with piecewise linear interpolation, the 
second with cubic spline interpolation. The systems of PDE´s contain the energy conserva-
tion principle in terms of specific internal entropy. As expected increasing the order of the 
spatial discretization increases the accuracy 
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Fig. 4.5 Pressures at the both ends of the pipe as functions of time. The energy conservation is 
used in terms of specific internal energy. The result using the energy conservation in terms 
of specific entropy is almost indistinguishable 
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Fig. 4.6 Spatial distribution of the gas temperature at the 0.4th second. Comparison 
between the predictions using the energy conservation in terms of specific internal energy 
or entropy 
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Taking into account the equidistant discretization and the piecewise linear de-
pendence of the variables between two adjacent points, the initial mass, the total 
energy and the total entropy in the pipe are 

( )
max 1

0
1

1

1

2

k

k k
k

m

zA
ρ ρ

−

+
=

= +
Δ  ,     (4.60) 

max 1
2 20

1 1 1
1

1 1 1
2 2 2

k

k k k k k k
k

E
e w e w

zA
ρ ρ

−

+ + +
=

    = + + +    Δ     
 ,  (4.61) 

( )
max 1

0
1 1

1

1

2

k

k k k k
k

S
s s

zA
ρ ρ

−

+ +
=

= +
Δ  ,     (4.62) 

respectively. After each time step we compute the mass, the total energy and the 
total entropy of the system. Thus, the relative mass and total energy errors are 

0

1m

m

m
ε = − ,       (4.63) 

0

1E

E

E
ε = − ,       (4.64) 

respectively. Next we show a numerical computation for initial conditions of 100 
and 50 bar respectively and initial temperature 600 K. The material properties 
used are 1034.09pc = , 287.04R = , 0 1T =  and 0 1p = . The small computer code 

used here was written in FORTRAN 90 and runs using 32 or 16 bits floating point 
operations on real numbers. The computation was performed using a SGI Octane 
work station with a R10000 processor. 

Figures 4.1 and 4.2 show comparisons between an analytical solution Oertel 
(1966) for the problem defined at 250 sτ μ= . The time step used here was 0.1 µs.  

We see that both systems deliver indistinguishable numerical solutions. Both nu-
merical solutions suffer from considerable numerical diffusion. Repeating the 
computation with single precision does not change the numerical diffusion. This is 
evidence that the numerical solution suffers from a considerable truncation error 
introduced by the lower order approximation of the PDE’s with finite difference 
algebraic equations in time and space. Improvement is, as expected, achievable by 
increasing the order of the discretization as demonstrated in Figs. 4.3 and 4.4. The 
latter results are obtained by using instead of piecewise linear interpolation piece 
wise cubic spline interpolation. 
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Fig. 4.7 Accumulated relative error as a function of time. The conservation of energy is 
used in terms of specific entropy 

Next we perform a computation for a much longer time. The time step was 
forced to satisfy the condition / 0.1i iCu zλ τ≡ Δ Δ = . Figure 4.5 shows the pressure 

at the both ends of the pipe as a function of time. The computation was performed 
with a system containing the energy conservation in terms of specific energy. We 
see pressure waves are traveling through the pipe up to 0.2 s. The computation 
was stopped at 0.4th second when the “mechanical equilibrium” inside the pipe is 
almost reached. As it will be explained later the damping of the oscillations is an 
artificial product of the numerical method with a large truncation error acting as 
dissipative force. Now we repeat the same computation with a system containing 
the energy conservation in terms of specific entropy. The comparison of the two 
results shows that they are hardly distinguishable.  The spatial distribution of the 
temperature at the 0.4th second is presented in Fig. 4.6. We found that the differ-
ence between the two results is very small. 

Figure 4.7 presents the accumulation of the numerical errors as a function of 
time. 3.5% energy error means that the averaged temperature is predicted with an 
error ( )0* 21ET T T KεΔ = − ≈ . Again the accuracy of both numerical solutions is 

hardly distinguishable.  
As noted at the beginning of our discussion, there are no dissipative diffusion 

terms in the solved equations. A prominent consequence of this model simplifica-
tion is manifested by the temperature distribution after the “end” of the dynamic 
oscillations, Fig. 4.6. Actually, the nature will enforce spatial thermal equilibrium 
after some time due to molecular diffusion. 

Remarkable is the fact that the largest error originates in the initial phase of 
the oscillation process where the replacement of complicated non-linear spatial 
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distribution with piecewise linear distribution is obviously not appropriate. 
Lower order numerical methods predict acceptably only the first few cycles but 
then the solution degrades destroyed by numerical diffusion. The inability of 
the lower order numerical methods to solve fluid mechanics equations for initial 
and boundary conditions defining strong gradients is not evidence that the equa-
tions are wrong. It is beyond question that high accuracy solution methods are 
necessary to satisfy future needs of the industry. Such a method is discussed in 
Section 12.15.3. 

This computational analysis shows a behavior of the numerical solutions which 
is indeed expected. The solutions varies slightly only due to the additional error 
made by discretization of two terms in the energy conservation equation (4.4a) in-
stead of one in the entropy equation (4.6). 

Secondly, the viscosity of the fluid resists the relative movement of the fluid 
particles. To illustrate this effect let us introduce the viscous force in accordance 
with the Stokes (1845) hypothesis for a compressible fluid into the momentum eq-
uation. For simplicity, we use the one-dimensional notation. The corresponding 
energy change per unit time and unit flow volume is introduced into the energy 
conservation equation. For comparison we also introduce a term q′′′  representing 

the heat introduction into the flow per unit time and unit flow volume. The mod-
ified systems is then 

( ) 0w
z

∂ρ ∂ ρ
∂τ ∂

+ =       (4.65) 

( ) ( ) 4

3z

p w
w ww g

z z z z

∂ ∂ ∂ ∂ ∂ρ ρ ρ ρν
∂τ ∂ ∂ ∂ ∂

 + + + =  
 

   (4.66)  

2 21 1 4
/

2 2 3z

w
e w e p w w g w w q

z z z

∂ ∂ ∂ ∂ρ ρ ρ ρ ρν
∂τ ∂ ∂ ∂

         ′′′+ + + + + = +                
  

  (4.67) 

Performing the same transformation as described in the previous chapter we ob-
tain the corresponding equations 

22
2 4

3s

w a w
w a q

z z s T z

∂ρ ∂ρ ∂ ∂ρ ∂ρ ρν
∂τ ∂ ∂ ∂ ρ ∂

    ′′′+ + = − +    
     

   (4.68) 

1 1 4
3z

w w p w
w g

z z z z

∂ ∂ ∂ ∂ ∂ρν
∂τ ∂ ρ ∂ ρ ∂ ∂

 + + = − +  
 

   (4.69) 

2
1 4

3

e e p w w
w q

z z z

∂ ∂ ∂ ∂ρν
∂τ ∂ ρ ∂ ρ ∂

  ′′′+ + = +  
   

    (4.70) 
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or 

2
1 4

3

s s w
w q

z T z

∂ ∂ ∂ρν
∂τ ∂ ρ ∂

  ′′′+ = +  
   

     (4.71) 

Again the systems containing the energy conservation in terms of specific internal 
energy and those in terms of specific entropy are identical. We see that the viscous 

dissipation per unit flow volume 
4

3

w
w

z z

∂ ∂ρν
∂ ∂

 
 
 

 cancels. This is the reversible 

component of the viscous dissipation of mechanical energy. The parts which re-

mains 
2

4

3

w

z

∂ρν
∂

 
 
 

  is called irreversible dissipation. Looking at Eq. (4.70) we 

immediately recognize that it acts in a way transferring mechanical energy in 
thermal energy. The molecular cinematic viscosity has typically very small values, 
e.g. 40/100000 m²/s for air at atmospheric conditions. Numerical solutions with 
large truncation errors such as the solutions discussed above introduce much more 
numerical diffusion so that for such methods the effect of this term can not be ac-
tually seen. In nature this effect is also small except for singularities in the flow. 
Such a singularity is a shock front. In a shock front the dissociation processes can 
make this value effectively considerable higher Oertel (1966).  

The pseudo-canonical forms of the two systems are  

dz
w a

dτ
= + ,       (4.72) 

2
1 1 4 1 4

3 3z
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dp dw a w w
q g

a d d s T z z z

∂ρ ∂ ∂ ∂ρν ρν
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        (4.73) 

dz
w a

dτ
= − ,       (4.74) 
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 (4.75) 

dz
w

dτ
= ,  
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q

d T z

∂ρν
τ ρ ∂

  ′′′= +  
   

 .   (4.76, 4.77) 
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or 

dz
w

dτ
= ,  

( )

2

2

1 1 4
1

3p

de p dp p w
q

d d T s za

∂ρ ∂ρν
τ τ ρ ρ ∂ ρ ∂ρ

     ′′′− = + +     
         

 .  

  (4.78, 4.79) 

Pseudo-canonical because the dissipative terms are considered as a sources for the 
hyperbolic part. 

4.11 Interpenetrating fluids 

Mixtures are an example of interpenetrating fluids. For an infinite time gas species 
penetrate the space occupied by the total mixture in a way that in each point the 
same concentration is observed. This is known as a Dalton’s law. What does infi-
nite time mean? The time scale for complete mixing depends on the size of the 
considered volume, of the specific properties of the constituents to each other and 
of course on the initial state of the system. The conservation equations for mass, 
momentum and energy can be written in the same way as for the single compo-
nent by considering that the single component occupies all the volume, possesses 
locally the same temperature as the mixture temperature and exerts on walls par-
tial pressure corresponding to each component so that the sum of the partial pres-
sures is equal to the total pressure. It is common practice to introduce some aver-
aged properties and to sum the component equations. The equations are first local 
volume averaged and then time averaged. For simplicity we do not consider any 
dissipative effects like diffusion, viscous effects etc. except fluid mixing due to 
convection and local mass sources. We give here the final results for one-
dimensional flow in a thermally isolated non-deformable pipe with constant cross 
section without derivation. 

( )w
z

∂ρ ∂ ρ μ
∂τ ∂

+ =       (4.80) 

( )1i i
i i

C C
w C

z

∂ ∂ μ μ
∂τ ∂ ρ

+ = −   max2,i i=   (4.81) 

1
0z

w w p
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z z

∂ ∂ ∂
∂τ ∂ ρ ∂

+ + + = ,     (4.82) 

( )
max

1

i

i i i
i

h h p p
w w h h

z z
σ∂ ∂ ∂ ∂ρ μ

∂τ ∂ ∂τ ∂ =

   + − + = −   
   

   (4.83) 
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where 

max

1

i

i i
i

h C h
=

= .       (4.84) 

The first equation reflects the mass conservation for the mixture. The second 
group of max 1i −  equations reflects the mass conservation for each velocity field. 

Note that the sum of all mass concentrations is equal to one, 

max

1

1
i

i
i

C
=

= ,       (4.85) 

or 

max

1
2

1
i

i
i

C C
=

= −        (4.86) 

Equation (4.83) is remarkable. It says that at constant pressure the injected mass 
sources contribute to the total enthalpy change with their deviation of the external 
component enthalpies from the corresponding component enthalpy inside the 
flow. More information about the rigorous derivation of the above set of equations 
for the general case of muti-phase multi-component flows is presented in the next 
Chapter (first published in Kolev (1990, 1994a, b, 1995, 1997a). Next we will write 
the energy conservation equation in terms of entropy. For this purpose define the 
mixture entropy in a similar way as the mixture enthalpy 

max

1

i

i i
i

s C s
=

=        (4.87) 

Obviously 

( )
max max

1
1 2

i i

i i i i
i i

Tds T C ds T s s dC
= =

= + −  .    (4.88) 

Having in mind that 

i
iC

ρ
ρ

=        (4.89) 

and replacing with the Gibbs equation (4.14) for each component 

i i i i iT ds dh dpρ ρ= −  or 

i
i i i i

dp
TC ds C dh

ρ
= −       (4.90) 

and rearranging results in the Gibbs mixture equation (compare with Eq. (12) in 
ibbs (1992))  
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( ) ( )
max max max

1 1 1
1 2 2

i i i

i i i i i i i
i i i

dp dp
Tds C dh T s s dC dh h Ts h Ts dC

ρ ρ= = =

= − + − = − − − − −     . 

(4.91) 

Now, Eq. (4.83) is easily transformed into the entropy equation 

( ) ( )
max max

1 1

i i

i i i i i i
i i

s s
T w h h T C s

z
σ∂ ∂ρ μ μ μ

∂τ ∂ = =

 + = − + − 
 

    (4.92) 

using Eqs. (4.91) and (4.81). Again we see that the entropy equation is simpler 
then Eq. (4.83). The temperature equation can be derived from Eq. (4.92) by using 
the equation of state, Eq. (3.98), 

max

2, _ , , _ _ _

1
i

i

p i
i iT all C s p T all C s except C

h s
Tds c dT dp T dC

p C

∂ ∂ρ ρ ρ ρ
∂ ∂=′ ′

    = − − +         
  

   (4.93) 

derived by this author in Kolev (1990). Here 
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    (4.94) 

In the intermediate result 
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        (4.95) 

we replace the RHS of the concentration equations instead of the total variation of 
the concentrations. Keeping in mind that 

( ) ( ) ( )
max max

1
1 2

0
i i

i i i i i i
i i

C s s s Cμ μ μ μ
= =

− − − − =     (4.96) 

we obtain a very informative form of the temperature equation 
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( ) ( )
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The mixture mass conservation equation can be rearranged similarly as in the sin-
gle component case by using the equation of state 
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namely 
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w w

a z s z

∂ ∂ ∂ρ ∂ ∂
∂τ ∂ ∂ ∂τ ∂′

     + + + +     
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2 , , _ _ _ i

i
i i

i i p s all C s except C

C C w
w

C z z

∂ ∂∂ρ ∂ρ μ
∂ ∂τ ∂ ∂= ′

   + + =   
  

   (4.99) 

or 

2p p w
w a Dp

z z

∂ ∂ ∂ρ
∂τ ∂ ∂

+ + =      (4.100) 

where 

( ) ( )
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max max
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2
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i i

i i i i i i
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. (4.101) 

The source term can be further simplified by using the following expressions for 
the derivatives 

, _ , _p all C s p all C s p

T

s T c

∂ρ ∂ρ
∂ ∂′ ′

   =   
   

,     (4.102) 

, , _ _ _ , , _ _ _i i
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∂ρ ∂ρ
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, _ , , _ _ _ i
p all C s p i p T all C s except C

T s

T c C

∂ρ ∂
∂ ∂′ ′

  −   
   

,    (4.103) 
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and Eq. (4.96). The result is 

( ) ( )

( )

max max
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i i
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. (4.104) 

For mixture of ideal gases the specific component enthalpies is not a function of 

pressure, therefore 
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0
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R R
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. Consequently 
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and 
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max max

2
1

1 2

1 1i i

i i i i i i
i ip

Dp a h h R R C
c T R
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   (4.106) 

The equation of state for a mixture of maxi  ideal gases is ( )p RTρ = , where 
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i i
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The caloric equation of state can be considerably simplified if one uses the same 
reference point for integration constants set to zero, that is, 0 0iT T=  and 0 0ip p= . 

The result is   

( ) ( )
max max

0 0
1 1

ln ln
i i

i i p i i i
i i

s C s c T T C R p p
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1
exp ln ln

i
i i

i i
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C Rs R p
T T C R
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i i

p p

R C R
ic c

i i

io p

C Rp s
T
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    =           
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( )0ve c T T= − ,  

( )0ph c T T= − .  

For two components M and n we have 

( )
( )1

0

1
exp

n Mn n

pp p

C RR C R
cc c n Mn n

o p

C RC Rp s
T T

p c R R

−

  −    =             
. 

4.12 Summary of different notations for interpenetrating 
fluids 

For convenience we summarize the results of Section 4.11. The system of partial 
differential equations describing the multi-component flow is 

2p p w
w a Dp

z z

∂ ∂ ∂ρ
∂τ ∂ ∂

+ + =      (4.107) 

( )1i i
i i

C C
w C

z

∂ ∂ μ μ
∂τ ∂ ρ

+ = −   max2,i i=   (4.108) 
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1
0z

w w p
w g

z z

∂ ∂ ∂
∂τ ∂ ρ ∂

+ + + = ,     (4.109) 

( ) ( )
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1 1

i i

i i i i i i
i i

s s
T w h h T C s

z
σ∂ ∂ρ μ μ μ

∂τ ∂ = =
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    (4.110) 

or 

( )
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1

i

i i i
i

h h p p
w w h h

z z
σ∂ ∂ ∂ ∂ρ μ

∂τ ∂ ∂τ ∂ =

   + − + = −   
   

   (4.111) 

or 
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1p
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T T h p p
c w w

z p z

∂ ∂ ∂ ∂ ∂ρ ρ
∂τ ∂ ∂ ∂τ ∂′

     + − − +     
      

 

( ) ( )
max max

1 2

i i
np

i i i i i i
i i

h h T s Cσμ μ μ
= =

= − − Δ −  .     (4.112) 

As for the single-component flows, the energy conservation can be noted in terms 
of different variables. Equations (4.110), (4.111) and (4.112) which are complete-
ly equivalent are few of the possible examples. Preferring one of them for practic-
al analysis is only a matter of convenience. Obviously the entropy concept offers 
again the simplest equation. Analysis of the type of the system is again greatly 
simplified by using the entropy equation. Thus, using the following vector of de-
pendent variables 

( )
max2,, , , i iU p w s C ==       (4.113) 

the flow is completely described by the system of quasi linear partial differential 
equations 

2p p w
w a Dp

z z

∂ ∂ ∂ρ
∂τ ∂ ∂

+ + =      (4.114) 

1
0z

w w p
w g

z z

∂ ∂ ∂
∂τ ∂ ρ ∂

+ + + = ,     (4.115) 

s s
w Ds

z

∂ ∂
∂τ ∂

+ =       (4.116) 

i i
i

C C
w DC

z

∂ ∂
∂τ ∂

+ =   max2,i i=    (4.117) 

where 
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( ) ( )
max max

1 1

1 i i

i i i i i i
i i

Ds h h T C s
T

σμ μ μ
ρ = =

 
= − + − 

 
     (4.118) 

( )1
i i iDC Cμ μ

ρ
= −       (4.119) 

The eigen values of this system are real and different from each other 

1,2 w aλ = ± , 
max3, 2,i i wλ = = .            (4.120, 4.121, 4.122) 

The eigen vectors of the transposed characteristic matrix are linearly independent. 
Therefore the quasi linear system of partial differential equations is hyperbolic 
and can be transformed into the very simple and useful canonical form 

dz
w a

dτ
= + , 

1 1dp dw
Dp g

a d d aρ τ τ ρ
+ = −   (4.123, 4.124) 

dz
w a

dτ
= − , 

1 1dp dw
Dp g

a d d aρ τ τ ρ
− + = − −   (4.125, 4.126) 

dz
w

dτ
= ,  

ds
Ds

dτ
= ,      (4.127, 4.128) 

dz
w

dτ
= , i

i

dC
DC

dτ
= .    (4.129, 4.130) 

We see the remarkable behavior that concentrations and entropy change along the 
characteristic line defined with the mixture velocity. For the here considered sim-
plified case if there are no mass sources in the pipe the concentrations and the en-
tropy do not change along the characteristic line for a given time step - convective 
transport only. In case of mass sources, the mixing process changes the concentra-
tion and increases the entropy along the characteristic line for a given time step. 
One should again not forget that at the beginning of Section 4.11 we have neg-
lected all other dissipative effects which cause entropy increase in the real nature 
and that our final system is only an idealization of the nature. 

Appendix 4.1 Analytical solution of the shock tube 
problem 

Consider a pipe with a constant cross section filled with perfect gas. The left halve 
of the pipe is separated from the right with a membrane that separates high pres-
sure region 4, from low pressure region 1 – see Fig- 4.1-1. The membrane is re-
moved and a shock wave propagates from the left to the right and a refraction 
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wave from right to the left. There is a text book solution for this case that is wide-
ly used as a benchmark for numerical methods. This solution is given below. 

 

1) First the pressure ratio 2 1p p  is found by solving the following equations by 

iterations 

( )

( )

4

4

2

1

1 2
4

4 14 2
1/ 2

1 1 2 2
1 1 1

1

1 1

1

4 2 1 1

a p

a pp p

p p p

p

κ
κ

κ

κ κ κ

−
−   − −   = − 

   
+ + −   

   

.  (1) 

 
p

4p

3 2p p=
1p

T

2T

4 1T T=

3T

x

x

x

V

3 2V V=

4 0V = 1 0V =
3V 2V sV4a

1234

Expansion waves  Shock wave

Contact surface  
Fig. A4.1-1 Analytical solution to the perfect gas shock wave problem in a pipe with  
constant cross section 

2) The shock Mach number is found by solving the following equation by itera-
tions 
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3) Knowing the pressure ratio 2 1p p  all parameter behind the shock are com-

puted as follows 
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4) The shock velocity and the shock Mach number are computed alternatively by  

1/ 2

1 2
1

1 1

1
1 1

2s

p
V a

p

κ
κ

  +
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,     (5) 
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The velocity of the gas behind the shock is then 
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The parameter in the region 3 are computed as follows 

3 3 1 2 1

4 1 4 1 4

p p p p p

p p p p p
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4 4
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3 3 3V Ma a= .       (12) 

The flow parameters in the refraction wave are functions of time and pace. The re-
lation between the position and time along the backwards characteristic 

dx
V a

dτ
= − ,       (13) 

is 

( )x V a τ= − .       (14) 

From 
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a
V const
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−
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The following relations results 

4 4
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κ τ
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The other parameters in the refraction region are then 
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Appendix 4.2 Achievable accuracy of the donor-cell 
method for single-phase flows 
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Fig. A4.2-1 Pressure as function of the distance from the left closed end of the pipe at 

250 sτ μ= . Comparison between the analytical and four numerical solutions obtained by 

using the explicit method of characteristics: piecewise linear interpolation using entropy 
equation, the second solution with cubic spline interpolation, and the third solution is the 
IVA5 solution 
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Fig. A4.2-2 Velocity as function of the distance from the left closed end of the pipe at 

250 sτ μ= . Comparison between the analytical and numerical solutions. The systems of 

PDE´s contain energy conservation principle in terms of specific internal energy in the first 
case or specific entropy as used in IVA5 computer code in the second case 
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Fig. A4.2-3 Temperature as function of the distance from the left closed end of the pipe at 

250 sτ μ= . Comparison between analytical and two numerical solutions. The systems of 

PDE´s contain the energy conservation principle in terms of specific internal energy in the 
first case or specific entropy as used in IVA5 computer code in the second case 
 

0.0 0.1 0.2
4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

 Left end
 Right end

P
re

ss
ur

e 
in

 P
a

Time in s
 

Fig. A4.2-4 Pressures at the both ends of the pipe as a functions of time (air). The energy 
conservation is used in terms of specific entropy in IVA5 
 
For many years the first order donor-cell method has been widely used in the mul-
ti-phase fluid mechanics because of its simplicity and stability. It is interesting to 
know how this method compares with the other already discussed methods based 
on the shock tube problem. Figure A4.2-1 shows the pressure as a function of time 
computed with the computer code IVA5 which exploits the first order donor-cell 
method as discussed in Kolev (1997a, 1999).  The initial conditions are the same 
as discussed before. The code uses equation of state for air as real gas. As we see 
from Figs. A4.2-1 through A4.2-3 the IVA5 donor-cell method is more accurate 
than the first order method of characteristics and less accurate then the method of 
characteristic using third order spatial interpolation. The pressure at both ends of 
the pipe as a function of time is presented in Fig. A4.2-4. Comparing Fig. A4.2-4 
with Fig. 4.5 we see almost indistinguishable solutions. The total mass and energy 
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conservation error is show in Fig. A4.2-5. Again we observe from Fig. A4.2-5 that 
the IVA5 numerical method is better than the first order method of characteristics. 
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Fig. A4.2-5 Comparison between the overall mass and energy conservation error of the 
IVA5 numerical method and the first order method of characteristics 
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Fig. A4.2-6 Pressure at the ends of the pipe as a function of time (corium melt 3300 K).The 
energy conservation is used in terms of specific entropy in IVA5 
 
Now we perform a similar test with IVA5 replacing the air with a molten oxide 
mixture called corium at 3300 K initial temperature. The initial pressure distribu-
tion is the same as in the previous examples. The velocity of sound of the system 
is around 1500 m/s. For this test we developed a special set of equation of state 
and their derivatives which are strictly consistent to each other. The pressure at 
both ends as function of time is shown in Fig. A4.2-6 and the corresponding ac-
cumulative relative mass and energy conservation error is given in Fig. A4.2-7. 
We see the order of magnitude is 10-7 which is much better than for the case of the 
strongly compressible gas. The slight difference in steady state pressures is due to 
the geodetic pressure difference because the pipe is considered to be vertical. 
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Fig. A4.2-7 Relative overall mass and energy conservation error as function of time (corium melt 
3300 K). The energy conservation is used in terms of specific entropy in IVA5 

 
For practical applications in large scale facilities spatial resolution of one cen-

timeter is hardly achievable and therefore the expected errors for single phase-
flows will be higher corresponding, among others, to the size of the cells. 

For multi-phase flow in Euler representation there are additional sources of 
conservation errors, with one of them being associated with the limited minimum 
of the used time steps. An example for three-phase flow case is given in Kolev 
(1996, 1997b) where the accumulative relative mass error for two seconds tran-
sient was below 0.1% and the accumulative energy conservation error was below 
1%. 
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5 First and second laws of the thermodynamics 

Local volume and time averaging is used to derive rigorous energy equations for multi-
phase flows in heterogeneous porous media. The flow is conditionally divided into three 
velocity fields. Each of the fields consists of several chemical components. Using the 
conservation equations for mass and momentum and the Gibbs equation, entropy equations 
are rigorously derived. It is shown that the use of the specific entropy as one of the 
dependent variables results in the simplest method for describing and modeling such a 
complicated thermodynamic system. A working form of the final entropy equation is 
recommended for general use in multi-phase flow dynamics. 

5.1 Introduction 

As in Chapters 1 and 2, from the large number of formulations of the conservation 
equations for multi-phase flows the local volume averaging as founded by 
Anderson and Jackson, Slattery, and Whitaker was selected to derive rigorously 
the energy conservation equations for multi-phase flows conditionally divided into 
three velocity fields. The heterogeneous porous-media formulation introduced by 
Gentry et al., commented by Hirt, and used by Sha, Chao and Soo, is then 
implanted into the formalism as a geometrical skeleton.  

Beyond these concepts: I introduce in each of the velocity fields several 
constituents; The energy equations obtained in this way are then rearranged into 
the entropy equation using the mass and momentum equations, thereby 
reflecting the second law of thermodynamics; Then I perform subsequent time 
averaging; All interfacial integrals are suitably transformed in order to enable 
practical application. 

This yields working equations for each of the three velocity fields that are 
recommended for general use in multi-phase fluid dynamic analysis. 

As far as the author is aware, it was the first time in Kolev (1995) that a 
formulation of the second law of thermodynamics has been presented for such 
a complicated thermodynamic system as the multi-phase flows consisting of 
three velocity fields in porous structure, with each of these consisting of 
several chemical components. The most interesting result of this work is the 
simplicity of the local volume and time-averaged entropy equation (5.125) 
finally obtained 
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This equation is more suitable for general use than the various forms of the energy 
equation e.g. Eq. (5.109) written in terms of the specific internal energy, 
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or Eq. (5.176) written in terms of temperature 
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or Eq. (5.115) written in terms of specific enthalpy 
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Another important result is the so called volume conservation equation 
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This equation can be used instead of the one of the field mass conservation equ-
ations. 

This Chapter is an extended version of the work published in Kolev (1995, 
1997a). 
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5.2 Instantaneous local volume average energy equations 

The energy principle formulated for a volume occupied by the velocity field l only 
is as follows:  
 

The sum of the rates of energy added to the velocity field from the sur-
roundings due to conduction and convection plus the rate of work done on 
the velocity field is equal to the rate of change in the energy of the velocity 
field as it flows through a volume occupied by this velocity field.  

 
The instantaneous energy conservation equation written per unit field volume is 
thus 
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where 2
il il ilV τ τ τ= ⋅V V  is a scalar. The scalar l

lλ  in the Fourier’s law of heat con-

duction l
l l lq Tλ′′ = − ∇  is called isotropic thermal conductivity. There is no doubt 

about the validity of equation (5.1) for velocities much less than the velocity of 
light. In contrast to the Sha et al. (1984) derivation, a multi-component velocity 
field is considered here instead of a single component. This will allow for deriva-
tion of mixture properties for the field that are strictly consistent with the first law 
of thermodynamics. 

The specific enthalpy of each component 

/il il il ilh e pτ τ τ ρ= +       (5.2) 

naturally arises in the second differential term. Historically, the specific enthalpy 
was introduced as a very convenient variable to describe steady-state processes. 
We replace the specific internal energy also in the first differential term by using 

/il il il ile h pτ τ τ ρ= − .      (5.3) 

Performing local volume averaging on Eq. (5.1) as already described in Chapter 1, 
one obtains 
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The time derivative of the pressure is averaged using Eq. (1.32) (Leibnitz rule) as 
follows: 
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As in Chapter 2, the pressure at the interface lFσ  is expressed in the form of the 
sum of bulk averaged pressure, which is independent on the location of the inter-
face, and of the deviation from the bulk pressure, which depends on the location of 
the surface: 
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il il ilp p pτ τ τ
σ= + Δ       (5.6) 

An analogous separation can be performed at the structure interface lwF  
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il il ilwp p pτ τ τ= + Δ .      (5.7) 

Substituting Eqs. (5.6) and (5.7) into Eq. (5.5), and using Eq. (1.33), the following 
is obtained 
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The first term is the power introduced into the velocity field due to a change of the 
field component volume per unit time and unit control volume (expansion or com-
pression power). Thus, the final result for the averaging of the time derivative of 
the pressure is 
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Applying Eqs. (1.28), (1.25) and (1.32) to the other terms of Eq. (5.4), and taking 
into account Eq. (5.9), one obtains 
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The lδ -identifier for the dispersed field is now introduced into the heat conduction 
term, which thus becomes 

( )lee l
l l l lTα γδ λ∇ ⋅ ∇ .      (5.11) 

The above simply means that there is no heat transfer through heat conduction for 
dispersed field, lδ  = 0, and that heat conduction is taken into account for a conti-

nuous field, lδ  = 1. 
The heat source term 
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takes into account the sum of the heat power per unit control volume introduced 
into the velocity field through the interface, v m lq σγ ′′′ , and through the wall, v wlqγ ′′′ . 

The integral terms containing the velocity difference il il
τ τ

σ−V V  represent the 

energy transfer due to (a) evaporation, or (b) condensation, or (c) entrainment, or 
(d) deposition at the interface lFσ , or (e) due to injection or (f) suction through the 

solid interface lwF . It is very important to note that ilhτ  under the interface integral 
is taken inside the field l at the immediate interface neighborhood denoted with 
σ . The subscript M is introduced here to designate the non-inert component  
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within the field. n used to designate the inert component. The total number of inert 
components in each field is max 1i − . 

Consequently 

( )12Mlh h Tτσ σ′′=    or   ( )13Mlh h Tτσ σ′′=    for 1l = ,   (5.13) 

( )2Mh h pτσ ′=    for 2l = ,     (5.14) 

( )3Mh h pτσ ′=    for 3l = , 3 0MC > ,    (5.15) 

for all mass flows entering field l. Mass flows leaving field l possess the l-
properties. One now assumes that il l

τ τ=V V  at the l side of the interface, with these 

terms then split into non-negative components. It is necessary to distinguish be-
tween mass transfer due to change in the state of aggregate, and mass transfer such 
as entrainment, deposition, etc. resulting from mechanical macroscopic forces. 

 

(a) The mass transfer term at the field-solid interface is decomposed as follows: 
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(b) The mass transfer term at the field interface is decomposed as follows 
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(5.17) 

Attention: The interfacial mass transfer is either convective or is a change of the 
state of aggregate (evaporation or condensation). Eq. (5.17) is strictly valid for 
convective interfacial mass transfer. In case of evaporation or condensation the 
specific enthalpy of the leaving mass flow rate may be different than the volume 

averaged field enthalpy resulting in: ( )
3
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... ...Mml Ml Mlm Ml
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h hτ τσ τ τσμ μ
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Fig. 5.1 Interfacial energy transfer 

The sum of Eqs. (5.12), (5.16) and (5.17) gives 
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The interfacial energy jump condition is introduced at this point, with interface lm 
considered as non-material, see Fig. 5.1, 
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Using Eqs. (1.42b) and (1.42c), Eq. (5.20) can be simplified as follows 
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We realize that if there is no mass transfer across the interfacial contact disconti-
nuity heat conduction is the only mechanism transferring energy across. In the 
simple case of no heat conduction at both sides of the interface and zero stress ten-
sors the energy jump condition simplifies to 

( )2 21
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2l m l mh h V Vτσ τσ τ τ− + − = .     (5.22) 

Integrating Eq. (5.20) over the interface inside the control volume and dividing by 
the control volume we obtain 
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ρ ρ
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− ∇ + ∇ − − ⋅ + − ⋅ 
  



V V V V

n

V V T V V T

.

        (5.23) 
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In the event of evaporation or condensation this yields 

2 21 1

2 2Ml Ml l m l Mm Mm m l mh V q h V qτ τσ τ τ τσ τ
σ σμ μ   ′′′ ′′′+ − − + −   

   
   

( ) ( )1
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l lw

l l l m m m l

F F

dF
Vol

σ

τ τ τ τ τ τ
σ σ

+

 + − − ⋅ + − ⋅ ⋅ =  V V T V V T n . (5.24) 

Postulating the weighted average 

/
il ilil

il il il ilh hτ τρ ρ = ,     (5.25) 

ρ ρτ τ
il il

ile

il

ile

il

ile
V V2 2/ = ,    (5.26) 

2 2/
ile ile ileile

il il il il il ilV Vτ τ τ τρ ρ =V V ,    (5.27) 

one can then write the conservative form of the energy conservation equation in 
the following form 
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i
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        (5.28) 

Using the chain rule, differentiation can now be performed on the first two terms. 
Comparing them with the mass conservation equations (1.38) one then obtains the 
non-conservative form of the energy equation: 
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il ile
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1 1

l lw
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l lw

N
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        (5.29) 

where 

( )max
*

1

i
iw ilN

l l iwl iw il
i

q q h hτ τ τμ
=

′′′= + −  

( ) ( )max3
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Mml Ml Ml nml nm nl
m n

h h h hτ τσ τ τ τμ μ
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( ) ( )2 2 2 21 1
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( )3
2 2

1

1

2

me le

ml m l
m

V Vτ τ τμ
=

+ − .     (5.30) 

The superscript N stands here to remember that this RHS belongs to the non-
conservative notation of the energy conservation equation. 

5.3 Dalton and Fick’s laws, center of mass mixture 
velocity, caloric mixture properties 

As mentioned in Chapter 1, for a gas mixture it follows from the Dalton’s law that 

il lα α= , whereas for mixtures consisting of liquid and macroscopic solid particles 

il lα α≠ . The instantaneous mass concentration of the component i in l is defined 
by Eq. (1.49) , 

( )/
l l

il il il l lCτ α ρ α ρ= .     (5.31) 

The center of mass (c. m.) velocity is given by intrinsic surface-averaged field ve-

locity Vl

leτ . Equation (1.50) can be rewritten as 

max max

1 1

i i
le le lel l l

l l l il il il l l il il
i i

Cτ τ τ τα ρ α ρ α ρ
= =

= = V V V . (5.32) 

Consequently 
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1

i
le le

l il il
i

Cτ τ τ

=

=V V .      (5.33) 
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As for the derivation of the mass conservation equation, it is convenient for 
description of transport of the microscopic component il in the velocity field l to 

replace the velocity component 
le

il
τV  by the sum of the center of mass velocity 

for the particular field 
le

l
τV and the deviation from the c. m. velocity or the so 

called diffusion velocity of the inert component 
le

i l
τδ V , this yielding the 

following 

( )le le le

il l l
i

τ τ τδ= +V V V .     (5.34) 

Fick (1855) noticed that the mass flow rate of the inert component with respect to 
the total mass flow rate of the continuous mixture including the inert component is 
proportional to the gradient of the concentration of this inert component 

( )le ill il le l l
il il l l l il il l l l il il

i
D D Cτ τα ρ δ α δ ρ α ρ δ= − ∇ = − ∇V , (5.35) 

or divided by the component density 

1
ln

il ile e l e l
il il l l il il l l il ilil

il

D C D C
C

τ τ τ

τ
α δ α δ α δ= − ∇ = − ∇V .  (5.36) 

The coefficient of proportionality, l
ilD , is known as the isotropic coefficient of 

molecular diffusion. The diffusion mass flow rate is directed from regions with 
higher concentration to regions with lower concentration, with this reflected by 
the minus sign in the assumption made by Fick (which has subsequently come to 
be known as  Fick’s law), because many processes in nature and industrial 
equipment are successfully described mathematically by the above approach – 
so called diffusion processes. Here 1lδ =  for a continuous field and 0lδ =  for a 
disperse field. Molecular diffusion has microscopic character, as it is caused by 
molecular interactions. The special theoretical treatment and the experimental 
experience of how to determine the molecular diffusion constant in multi-
component mixtures, is a science in its own right. This topic is beyond the scope 
of this chapter. In this context, it should merely be only noted that in line with 
the thermodynamics of irreversible processes, the thermal diffusivity and the 
diffusion coefficients influence each other. The interested reader can find useful 
information in Reid et al. (1982). 

One should keep in mind that there is no molecular net mass diffusively trans-
ported across a cross section perpendicular to the strongest concentration gradient. 
This is mathematically expressed as follows 

( )max

1

0
i

ill
il il

i

D Cτ

=

∇ = ,      (5.37) 
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or 

( )max

1 1
2

i
il ill l

l l il il
i

D C D Cτ τ

=

∇ = − ∇ .    (5.38) 

Therefore, the diffusion can be considered as volumetric replacement of groups of 
molecules of one specie with group of molecules of other specie. The compensat-
ing volumetric flow is called sometimes Stefan’s flow, Stefan (1874). 

The caloric mixture properties naturally arise after summing all the energy con-
servation equations in conservative form. These are defined as follows 

( )
max

max
1

1

i
ilil

il il il i
l ilili
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α ρ ϕ

ϕ ϕ
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 ,   (5.39) 

where 

, ,h e sϕ = .       (5.40) 

5.4 Enthalpy equation 

For practical applications it is extremely convenient to simplify the energy equa-
tion in a way that the mechanical energy terms disappear. The resulting equation is 
called the enthalpy equation. The enthalpy equation will now be derived. 

The non-conservative form of the momentum equation (2.31) using Eq. (1.38) is 
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        (5.41) 

Here, Eqs. (5.6) and (5.7) are used, and the integral containing 
le

lpτ  is rear-

ranged using Eq. (1.29). The scalar product of Eq. (5.41) is constructed with the 
field velocity. The result is a scalar expressing the mechanical energy balance. 
Subtracting this result from the energy equation and bearing in mind that 

( ) ( ) ( )2
2 21 1

2 2

me le le me le me le

m l l m l m lV V Vτ τ τ τ τ τ τ− − ⋅ − = −V V V V , 

    (5.42) 
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and 

( ) ( )2 2 2 21 1
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τ τ τ τ τ τμ μ= − − −V V V V ,  (5.43) 

one then obtains the non-conservative form of the enthalpy equation: 
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where 
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The corresponding conservative form is 
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where 
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Here 
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is the irreversible bulk viscous dissipation. The term, 
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is the irreversible power dissipation caused by the interface mass transfer between 
two regions with different velocities. A good approximation of the last two terms 
is obtained if one assumes 

me

l m
τ τ≈V V    at   lFσ       (5.50) 

and  

0l
τ =V    at   lwF       (5.51) 

(non-slip condition), namely 
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The order of magnitude of the first two terms in Eq. (5.49) is 
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where lm lpτ
σ ρΔ  is an averaged pressure difference between the bulk pressure and 

the boundary layer pressure inside the velocity field l. 
Performing the summation in Eq. (5.46), using the Dalton’s law, substituting 

the Fick’s laws in the thus obtained equation, and applying the definitions given in 
Chapter 3 yields 

( ) ( )l le ll le
l l l v l l l lh hτ τ τ∂ α ρ γ α ρ γ

∂τ
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l le le
l v l l l lp pτ τ τ∂α γ α γ
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V  
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The non-conservative form of the equation (5.55) is readily obtained by differen-
tiating the first two terms and comparing them with the field mass conservation 
equation. The result is 
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        (5.56) 

Remember that the sum of all C’s inside the velocity field is equal to one so that 
one of the concentrations depends on all the others. 

5.5 Internal energy equation 

Engineers sometimes have in their personal library approximations for the state 
variables and transport properties in terms of the specific internal energy. For 
practical use in this case, Eq. (5.46) can be rewritten in terms of the specific inter-
nal energy: 
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( ) ( ) *
,

lee l
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ηα γδ λ γ α ρ−∇ ⋅ ∇ = + + ,    (5.57) 

or using the definitions introduced in Chapter 3 
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5.6 Entropy equation 

The basic idea of the Legendre transformation is briefly introduced here: If f is a 
function of n variables, 1 2, ,..., nx x x , ( )1 2, ,..., nf f x x x= , and for j of them the 

partial derivatives if x∂ ∂  are known, the Legendre transformation z is defined by 

1
1 21

, ,..., , ,...,
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i j n
i ji

f f f f
z f x z x x

x x x x +
=

 ∂ ∂ ∂ ∂= − =   ∂ ∂ ∂ ∂ 
 , 

for which the differential is dz is defined as follows 

1 1

jn

i i
i ii j i

f f
dz dx x d

x x= + =

∂ ∂= −
∂ ∂  . 

So if the specific volume is a function of the specific entropy and internal energy 

( ),v e s e=  the specific internal energy ( ),e e s v=  is its Legendre transformation. 

The derivatives of e are measurable variables ( )v
e s T∂ ∂ =  and ( )s

e v p∂ ∂ = − . 

The differential de is then de Tds pdv= −  or 

Tds de pdv= + .      (5.59) 
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This equation is called Gibbs equation (1878). The thermodynamic definitions of 
temperature T (absolute temperature - Kelvin 1848) and of the thermodynamic 
pressure p are used here. This is a differential equation of state which is extremely 
important in the thermodynamic theory of compressible substances. It relates the 
difference in entropy between any two infinitesimally separated states to the 
infinitesimal differences in internal energy and volume between those states. Note 
that the Gibbs equation is valid only if s is a smooth function of e and v, i.e. where 
the differentials de and dv are uniquely defined (smooth equation of state), see in 
Gibbs (1892). Using the definition of enthalpy (a mixture of thermodynamic and 
mechanical properties) 

h e pv= +        (5.60) 

the Gibbs equation can be written as 

T ds dh dpρ ρ= − .      (5.61) 

After substituting for 
il ilil

il il ild h d pτ τρ −  in Eq. (5.44) with the Gibbs defini-

tions of the specific entropy of the corresponding components, 
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one obtains 
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The following rearrangements are performed to give the conservative form of Eq. 
(5.62). Each of the mass conservation equations is multiplied by the corresponding 
component-specific entropy and field temperature. All the mass conservation equ-
ations are then added to Eq. (5.62). The differential terms are lumped together us-
ing the reverse chain rule of differentiation. The resulting conservative form is: 
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 . 

(5.63) 

After replacing the instantaneous values of the component velocities with the 
sums of the c. m. field velocities plus the deviations from the c. m. velocities, 
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Eq. (5.34),  and applying Fick’s law, Eq. (5.36) and keeping in mind that there 
is no molecular net mass diffusively transported across a cross section perpendicular 
to the strongest concentration gradient, Eqs. (5.37, 5.38), defining the specific 

mixture entropy of the velocity field, 
l

lsτ , by Eq. (5.39), introducing the 

Prandtl number 

Pr /l l l
l l pl l lcρ ν λ= ,      (5.64) 

and dividing by lT , the following form for the local instantaneous entropy equa-
tions is obtained: 
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Observe the form of the RHS of Eq. (5.65). 
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Mml Ml nml nl
m nl l

h h h h
s s

T T

τσ τ τ
τ τ τ τμ μ

= =

    − −    + + + +
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max3

1 1

Ml nl nl
n

Ml nlMl Ml nl nl

Mlm Ml nlm nl
m nl l
m l

h h h h
s s

T T

τσ τ τ
τ τ τ τμ μ

= =
≠

    − −    − + + +
    
     

   

( ) ( )2 2

,

1 1 1

2 2

we le le le

l l l wl wl l lw lw l
lT

τ τ τ τ τ τ τ
ηα ρ ε μ μ + + − − −  

V V V V . 

Obviously if and only if the pressure at the boundary inside the field is equal to the 
field averaged pressure the sources can be rewritten as follows 

( ) ( )
max3,

,
1 1

/
iw

ilN
l l l l l iml ilm il

m i
m l

q T sτ τ τ τ
ηα ρ ε μ μ

= =
≠

+ + −
max

1

i
iw il

l
iwl iw ilw il

il

q
s s

T
τ τ τ τμ μ

=

′′′  = + −  


 

( )max3

1 1

n
nm nl

Mml Ml Mlm Ml nml nm nlm nl
m n
m l

s s s sτ τσ τ τσ τ τμ μ μ μ
= =
≠

 
+ − + − 

 
   

( ) ( )2 2

,

1 1 1

2 2

we le le le

l l l wl wl l lw lw l
lT

τ τ τ τ τ τ τ
ηα ρ ε μ μ + + − − −  

V V V V . 

Otherwise, the primary form has to be used. 
 
We discussed in Chapter 4 a variety of notations of the energy conservation prin-
ciple for single-phase flow. All of them are more complicated than the entropy no-
tation. As for the single-phase flow comparing the multi-phase entropy equation 
(5.65) with the energy conservation equations in terms of specific enthalpy and 
specific internal energy (5.56, 5.58), it is evident that the computational effort re-
quired to approximate 

 

1 time derivative, 
1 divergence term, 
2 diffusion terms, and 
1 tensor product 
 

is much less than the computational effort required to discretize 
 

2 time derivatives, 
2 divergence terms, 
2 diffusion terms, and 
1 tensor product. 

 

Bearing in mind that each divergence term contains at least 3 differential terms, it 
is obvious that for computational analysis the use of the entropy equation instead 
of energy equation in any of its variants is the most cost effective way for the nu-
merical modeling of flows.  
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CONCLUSION: The use of the specific entropies as components of the 
dependent variable vector, the entropy concept, gives the simplest form for 
the mathematical description of the flow. The use of any other state va-
riables instead of the entropies makes the description more complicated. 

5.7 Local volume- and time-averaged entropy equation 

The procedure we use to obtain a time-averaged entropy equation will be used al-
so for deriving the time-averaged enthalpy, or specific internal energy equations. 
Here we introduce the time averaging rules. The instantaneous surface-averaged 

velocity of the field l, 
le

l
τV , can be expressed as the sum of the surface-averaged 

velocity  which is subsequently time averaged,  

:
le

l lV τ= V        (5.66) 

and a fluctuation component lV ′ , 

le

l l lV Vτ ′= +V       (5.67) 

as proposed by Reynolds. The same is performed for the pressure 

l

l l lp p pτ ′= + ,      (5.68) 

and for any specific property 

l

il il il
τϕ ϕ ϕ′= + ,      (5.69) 

where , , , ,s h e T Cϕ = . Here the fluctuations of densities, volume fractions are 
neglected as they are only of small magnitude relative to the velocity and 
entropy fluctuations. 

The time averaging rules we use are: 

l l

l l il l l ilα ρ ϕ α ρ ϕ= ,     (5.70) 

0
l

l l ilα ρ ϕ′ = ,      (5.71) 

l le e
l l il l l l il lα ρ ϕ α ρ ϕ=V V ,     (5.72) 

0
le

l l il lα ρ ϕ ′ =V ,      (5.73) 

0
le

l l il lα ρ ϕ′ =V ,      (5.74) 
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0l
il il ilD Cϕ′ ∇ = ,      (5.75) 

0l
il il ilD Cϕ ′∇ = ,      (5.76) 

l l
il il il il il ilD C D Cϕ ϕ∇ = ∇ ,      (5.77) 

( ) ( )il

iml ilm il iml ilm il
τ τ τμ μ ϕ μ μ ϕ− = −     (5.78) 

il il
τμ μ= ,       (5.79) 

( ) ( ) ( )2 22

ml m m l l ml m l ml m l
τμ μ μ′ ′ ′ ′ ′+ − − = − + −V V V V V V V V , (5.80) 

: :l l l l
′ ′∇ ⋅ = ∇ ⋅T V T V ,     (5.81) 

: 0l l′∇ ⋅ =T V ,      (5.82) 

: :l l l l∇⋅ = ∇⋅T V T V ,     (5.83) 

( ) ( )iw il

iwl iw il iwl iw ilh h h hτ τ τμ μ− = −     (5.84) 

( ) ( )Ml

Mml Ml Ml Mml Ml Mlh h h hτ τσ τ σμ μ− = −     (5.85) 

( ) ( )nm nl

nml nm nl nml nm nlh h h hτ τ τμ μ− = −     (5.86) 

N N
l lq qτ =        (5.87) 

( ) ( ) ( )
max max3

1 1 1

i n
N
l l iwl iw il Mml Ml Ml nml nm nl

i m n

q q h h h h h hσμ μ μ
= = =

 ′′′= + − + − + − 
 

    

( ) ( ) ( )
32 2 2

1

1
2 wl wl l lw lw l ml m l

m

μ μ μ
=

 + − − − + − 
 

V V V V V V  

( ) ( ) ( )
32 2 2

1

1
2 wl wl l lw lw l ml m l

m

μ μ μ
=

 ′ ′ ′ ′ ′ ′+ − − − + − 
 

V V V V V V  (5.88) 

Substituting in Eq. (5.65) the above mentioned variables as consisting of mean values 
and fluctuations and performing time averaging following the above rules we obtain 

( ) ( )e
l l l v l l l ls s

∂ α ρ γ α ρ γ
∂τ

+ ∇ ⋅ V  
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max

1

1
.

Pr

l i
e e ll
l l l pl l l l l il il ill

il l

c T s D C
T

να γδ ρ α δ ρ γ
=

    
− ∇ ⋅ ∇ −∇ ∇    

    
  

max

1

i
e l
l l l il il ill

i

s s D Cα ρ γ
=

  ′ ′ ′ ′+∇ ⋅ − ∇  
  

V
1 N

v l
l

DT
T

γ= ( )
max3,

1 1

iw

v iml ilm il
m i
m l

sγ μ μ
= =
≠

+ − . 

    (5.89) 

Here 

( ) ( )
max

* *
, ,

1

i
N

l l l k l l l l l l l iwl iwl il
i

DT P E E q h hηα ρ δ ε ε μ
=

′ ′′′= + + + + + + −  

( ) ( ) ( )
max max

1 1

l n

Mml Ml Ml Mlm Ml Ml nml nm nl
m n
m l

h h h h h hσ σμ μ μ
= =
≠

 
+ − − − + − 

 
   

( ) ( ) ( )

( ) ( ) ( )

32 2 2

1

32 2 2

1

1

2

wl wl l lw lw l ml m l
m

wl wl l lw lw l ml m l
m

μ μ μ

μ μ μ

=

=

 − − − + − 
 

+  
 
 ′ ′ ′ ′ ′ ′+ − − − + −
  





V V V V V V

V V V V V V

, (5.90) 

( ), , :e
v l l l l l lη ηγ α ρ ε α γ= ⋅ ∇ ⋅T V      (5.91) 

is the irreversible dissipated power caused by the viscous forces due to deforma-
tion of the mean values of the velocities in the space, and  

( )l  :  e
v l l l l lγ α ρ ε α γ′ ′ ′= ⋅ ∇ ⋅T V      (5.92) 

is the irreversibly dissipated power in the viscous fluid due to turbulent pulsa-
tions, and  

( ), :e
v l l k l l l lPγ α ρ α γ ′= ⋅ ∇ ⋅T V  

is the power needed for production of turbulence. By modeling of the turbulence 
usually the last term is removed from the energy conservation equation and intro-
duced as a generation term for the turbulent kinetic energy. 

It is evident that the mass transfer between the velocity fields and between the 
fields and external sources causes additional entropy transport as a result of the 
different pulsation characteristics of the donor and receiver fields. 

For simplicity’s sake, averaging signs are omitted except in the turbulent 
diffusion term, which will be discussed next. The diffusion can also have 
macroscopic character, being caused by the macroscopic strokes between eddies 
with dimensions considerably larger than the molecular dimensions: turbulent 
diffusion. In a mixture at rest, molecular strokes represent the only mechanism 
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driving diffusion. In real flows both mechanisms are observed. The higher the 
velocity of the flow, the higher the effect of turbulent diffusion. 

To permit practical application of the entropy equation, it is necessary to define 
more accurately the term 

max

1

i
e l
l l l il il ill

i

s s D Cα ρ γ
=

  ′ ′ ′ ′∇ ⋅ − ∇  
  

V . 

A possible assumption for this case is that the mechanism of entropy transport 
caused by fluctuations is a diffusion-like mechanism, which means that 

max

1

i
e l
l l l il il ill

i

s s D Cα ρ γ
=

  ′ ′ ′ ′∇ ⋅ − ∇  
  

V  

max

1

1
.

Pr

t ti
e el l
l l pl l l l il ilt t

il l l

c T s C
T Sc

ν να ρ γ α ρ γ
=

      
= − ∇ ⋅ ∇ −∇ ∇      

      
  (5.93) 

where 

Pr /t t t
l l pl l lcρ ν λ=       (5.94) 

is the turbulent Prandtl number and t
lλ  is the turbulent coefficient of thermal con-

ductivity or eddy conductivity. Note that the thermal diffusion  

/ Prl l pl l lcλ ρ ν=        (5.95) 

is a thermodynamic property of the continuum l, and  

/ Prt t t
l l pl l lcλ ρ ν=        (5.96) 

is a mechanical property of the flowing field l. In channels,  

Pr 0.7...0.9t
l ≈ ,       (5.97) 

whereas for flow in jets, i.e., in free turbulence, the value is closer to 0.5 -see Bird 
et al. (1960),  

Pr 0.25...2.5t
l ≈       (5.98) 

for water, air and steam - see Hammond (1985)]. The turbulent Schmidt number is 
defined as 

/t t t
l l lSc Dν= .       (5.99) 

Here again the turbulent diffusion coefficient  

/t t t
l l lD Scν=        (5.100) 
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is a mechanical property of the flowing field l. As a result, the final form of the 
entropy equation is 

( ) ( )e
l l l v l l l ls s

∂ α ρ γ α ρ γ
∂τ

+ ∇ ⋅ V
1

Pr Pr

t
e l l
l l pl l lt

l l l

c T
T

ν να ρ δ γ
  

− ∇ ⋅ + ∇  
   

 

max

1

.
ti

e l l
l l il l ilt

i l l

s C
Sc Sc

ν να ρ γ δ
=

    −∇ + ∇   
     
 ( )

max3,

1 1

1 iw
N

v l iml ilm il
m il
m l

DT s
T

γ μ μ
= =
≠

 
 = + − 
  

 , 

 (5.101) 

with this called the conservative form.  
Keeping in mind that there is no net mass diffusively transported across a cross 

section perpendicular to the strongest concentration gradient 

( )
max

*

1

0
i

il il
i

D C
=

∇ = ,      (5.102) 

results in 

( )
max

* *
1 1

2

i

l l il il
i

D C D C
=

∇ = − ∇ .     (5.103) 

where the effective conductivity, and the diffusivity are 

*

Pr Pr Pr

t t
l l l

l l l l pl l pl lt t
l l l

c c
ν ν νλ δ λ ρ ρ δ

 
= + = + 

 
,   (5.104) 

*
t t
l l l

il l il lt t
l l l

D D
Sc Sc Sc

ν ν νδ δ= + = + ,    (5.105) 

we obtain finally 
 

( ) ( )
max

*
1

2

i
e

l l l v l l l l il l il il
i

s s s s D C
∂ α ρ γ α ρ γ
∂τ =

   + ∇ ⋅ − − ∇  
   

V  

( ) ( )
max3,

*

1 1

1 1 iw
e N
l l l v l iml ilm il

m il l
m l

T DT s
T T

α λ γ γ μ μ
= =
≠

 
 − ∇ ⋅ ∇ = + − 
  

 .            (5.101b) 

For a mixture consisting of several inert components and one no-inert component 
it is advisable to select subscript i = 1 = M for the non-inert component and con-
sider the mixture of the inert components as an ideal gas. In this case we have 
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( ) *... ...e
l l nl Ml nl nls s D Cα ρ γ = ∇ ⋅ − ∇      (5.101c) 

This method is used in IVA6 computer code Kolev (1997b) developed by this 
author. 

5.8 Local volume- and time-averaged internal 
energy equation 

Following the same procedure as for the entropy equation we perform time 
averaging of Eq. (5.58). The result is 

( ) ( ) ( ) ( )e e
l l l v l l l l l l v l le e p

∂ ∂α ρ γ α ρ γ α γ α γ
∂τ ∂τ

 +∇ ⋅ + +∇ ⋅  
V V  

Pr

l
e l
l l l pl l l ll

l

c T e
να ρ δ γ

  ′ ′−∇ ⋅ ∇ +  
  

V  

max max

1 1

i i
e l l
l l l il il il il il il

i i

e D C e D Cα ρ δ γ
= =

  ′ ′− ∇ ⋅ ∇ + ∇  
  
  ( ) *e

l l l v lp Deα γ γ′ ′+ ∇ ⋅ =V   

        (5.106) 

where 

( )*
, ,l l l k l l l lDe P qηα ρ δ ε ε ′ ′′′= + + +   

( ) ( ) ( )

( ) ( ) ( )

32 2 2

1

32 2 2

1

1

2

wl wl l lw lw l ml m l
m
m l

wl wl l lw lw l ml m l
m
m l

μ μ μ

μ μ μ

=
≠

=
≠

 − − − + − 
 
 

+  
 

′ ′ ′ ′ ′ ′ + − − − + −
   





V V V V V V

V V V V V V

 

( )
max

1

i

iwl iwl ilw il
i

h hμ μ
=

+ − ( )
max max

1 1

l n

Mml Ml nml nm nlm nl
m n
m l

h h hσμ μ μ
= =
≠

 
+ + − 

 
   (5.107) 

or introducing 

max

1

i
e l
l l l l il il ill

i

e e D Cα ρ δ γ
=

  ′ ′ ′ ′∇ ⋅ − ∇  
  

V  
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max

1Pr

t ti
e l l
l l pl l il ilt t

il l

c T e C
Sc

ν να ρ γ
=

  
= −∇ ⋅ ∇ + ∇  

  
    (5.108) 

we obtain finally 

( ) ( ) ( ) ( )e e
l l l v l l l l l l v l le e p

∂ ∂α ρ γ α ρ γ α γ α γ
∂τ ∂τ

 +∇ ⋅ + +∇ ⋅  
V V  

( )
max

* *
1

2

i
e
l l l l il l il il

i

T e e D Cα γ λ ρ
=

   −∇ ⋅ ∇ + − ∇  
   

 ( ) *e
l l l v lp Deα γ γ′ ′+ ∇ ⋅ =V .

        (5.109) 

 
The expression defining the diffusion coefficient for the specific internal mixture 
energy is then 

( )e e
l l l lD eα ρ γ∇ ⋅ ⋅∇  

( )
max

*
1

2Pr Pr

t i
e l l
l l pl l l il l il ilt

il l

c T e e D C
ν να ρ γ δ

=

    = ∇ ⋅ + ∇ + − ∇   
     

  (5.110a) 

which for ideal gas mixtures where the specific internal energy is not a function of 
pressure reduces to 

( )e e
l l l lD eα ρ γ∇ ⋅ ⋅∇

max*
*

1 ,

/
l

i
e l l
l l il il l

il pl il p T

e
e D e

c C

λ ∂α ρ γ
ρ ∂=

     = ∇ ⋅ + ∇  
     

      (5.110b) 

where 
max*

*

1 ,

/
l

i
e l l
l il il

il pl il p T

e
D e D

c C

λ ∂
ρ ∂=

 
= +  

 
     (5.111) 

This equation can be used to derive an alternative form for computation of the en-
tropy diffusion coefficient 

( ) ( ) ( ) /e s e e e
l l l l l l l l l l l lD s D e p Tα ρ γ α ρ γ α γ ′ ′∇ ⋅ ⋅∇ = ∇ ⋅ ⋅∇ − ∇ ⋅  

V . (5.112) 

5.9 Local volume- and time-averaged specific enthalpy 
equation 

Following the same procedure as for the entropy equation we perform time aver-
aging of Eq. (5.55). The result is 
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( ) ( )e el
l l l v l l l l l v l l l

p
h h p

∂∂ α ρ γ α ρ γ α γ α γ
∂τ ∂τ

 +∇ ⋅ − + ⋅∇ 
 

V V  

( ) ( )
max max

1 1

i i
e
l l l l l l l l l il il il l il il il

i i

T h h D C h D Cα γ δ λ ρ δ ρ ρ
= =

   ′ ′ ′ ′−∇ ⋅ ∇ − + ∇ + ∇  
   

 V  

e
l l lpα γ′ ′− ⋅∇V ( )

max

1

ln
i

e l
l l l il il

i

p D Cδ α γ
=

+ ∇ ⋅ ∇  

N
v lDTγ= ( )

max3,

1 1

iw

v iml ilm il
m i
m l

hγ μ μ
= =
≠

+ −     (5.113) 

Introducing 

( )
max

1

i
e
l l l l il il il

i

h h D Cα ρ γ
=

   ′ ′ ′ ′∇ ⋅ − ∇  
   

V  

max

1Pr

t ti
e l l
l l l pl l il ilt t

il l

c T h C
Sc

ν να ρ δ γ
=

  
= −∇ ⋅ ∇ + ∇  

  
    (5.114) 

we obtain 
 

( ) ( )e el
l l l v l l l l l v l l l

p
h h p

∂∂ α ρ γ α ρ γ α γ α γ
∂τ ∂τ

 +∇ ⋅ − + ⋅∇ 
 

V V  

( )
max

* *
1

2

i
e e
l l l l il l il il l l l

i

T h h D C pα λ ρ γ α γ
=

    ′ ′−∇ ⋅ ∇ + − ∇ − ⋅∇  
   

 V  

( )
max

1

ln
i

e l
l l l il il

i

p D Cδ α γ
=

+ ∇ ⋅ ∇ N
v lDTγ= ( )

max3,

1 1

iw

v iml ilm il
m i
m l

hγ μ μ
= =
≠

+ − . (5.115) 

 
The non-conservative form is then 

( )e el l
l l v l l l l l v l l l

h p
h p

∂ ∂α ρ γ α ρ γ α γ α γ
∂τ ∂τ

 + ⋅∇ − + ⋅∇ 
 

V V  

( )
max

* *
1

2

i
e e
l l l l il l il il l l l

i

T h h D C pα λ ρ γ α γ
=

    ′ ′−∇ ⋅ ∇ + − ∇ − ⋅∇  
   

 V  
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( )
max

1

ln
i

e l
l l l il il

i

p D Cδ α γ
=

+ ∇ ⋅ ∇ N
v lDTγ= .    (5.115) 

The definition equation for an enthalpy diffusion coefficient is then 

( ) ( )
max*

*
1

2

i
e h e l
l l l l l l l il l il il

il

D h T h h D C
λα ρ γ α ρ γ
ρ =

   ∇ ⋅ ∇ = ∇ ⋅ ∇ + − ∇  
   

 . (5.116) 

For mixtures of two ideal gases n and M we have 

( ) ( )
*

*e h e l
l l l l l l l nl Ml nl nl

l

D h T h h D C
λα ρ γ α ρ γ
ρ

   ∇ ⋅ ⋅∇ = ∇ ⋅ ∇ + − ∇  
   

 (5.117a) 

and an equation of state in differential form 

( )l pl l nl Ml nlh c T h h C∇ = ∇ + − ∇ , 

which finally gives 

( ) ( ){ }* *1e h e
l l l l l l il l nl lD h Le T D hα ρ γ α γ λ ρ ∇ ⋅ ∇ = ∇ ⋅ − ∇ + ∇    (5.117b) 

where  

*

*

l pl nl
il

l

c D
Le

ρ
λ

=  

is the Lewis-Semenov number. For a lot of binary gas mixtures 1ilLe ≈  and 

( ) ( )*e h e
l l l l l l nl lD h D hα ρ γ α ρ γ∇ ⋅ ∇ = ∇ ⋅ ∇ ,    (5.117c) 

which results in 

*h
l nlD D= , 

Grigorieva and Zorina (1988) p. 267. This relation is widely used for simulation 
of diffusion in binary gas mixtures. If both components possess equal specific ca-
pacities at constant pressures, and therefore nl Mlh h≈ , we have  

( ) ( )*e h e
l l l l l l lD h Tα ρ γ α λ γ∇ ⋅ ⋅∇ = ∇ ⋅ ∇ .     (5.117d) 

This condition is fulfilled for many liquid mixtures and solutions. In this case the 
diffusion enthalpy transport looks like the Fick’s law and is totally controlled by 
the temperature gradient. 
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5.10 Non-conservative and semi-conservative forms 
of the entropy equation 

The non-conservative form of the entropy equation is obtained by differentiating 
the first and second terms of the conservative form appropriately and comparing 
with the mass conservation equation. The result is 

( )el
l l v l l l

s
s

∂ρ α γ α γ
∂τ

 + ⋅∇  
V  

( ) ( )
max

* *
1

2

1
.

i
e e
l l l l il l il il

il

T s s D C
T

α λ γ α ρ γ
=

   − ∇ ⋅ ∇ −∇ − ∇  
   

  

( )
max max,

1 1

1 l w i
N N

v l iml ilm il l l v l
m il
m l

DT s s Ds
T

γ μ μ μ γ
= =
≠

 
 = + − − ≡  
 

  ´.  (5.118) 

The superscript N stands to remember that the RHS is for the non-conservative 
form of the energy conservation equation written in entropy form. Note that in ad-
dition to the enthalpy source terms divided by the field temperature, new terms 
arise. In fact, these denote the difference between the sum of the mass source per 
unit time and mixture volume multiplied by the corresponding specific component 
entropies and the product of the specific field entropy and the field mass source 
density. 

( ) ( )
max max max max, ,

1 1 1 1

l w i l w i

v iml ilm il l iml ilm
m i m i
m l m l

s sγ μ μ μ μ
= = = =
≠ ≠

 
 − − − 
  
    .  (5.119) 

Splitting the mass source term into sources and sinks 

( )
max max,

1 1

l w i

l iml ilm l l
m i
m l

μ μ μ μ μ+ −

= =
≠

= − = −      (5.120) 

where 

max max,

1 1

0
l w i

l iml
m i
m l

μ μ+

= =
≠

= ≥  ,      (5.121) 

max max,

1 1

0
l w i

l ilm
m i
m l

μ μ−

= =
≠

= ≥  ,      (5.122) 

0l lsμ+ ≥ ,       (5.123) 
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0l lsμ− ≥ ,       (5.124) 

one then obtains the final semi-conservative form for the entropy equation 
 

( )el
l l v l l l

s
s

∂ρ α γ α γ
∂τ

 + ⋅∇  
V ( )*1 e

l l
l

T
T

α λ γ− ∇ ⋅ ∇  

( )
max

*
1

2

.
i

e
l l il l il il

i

s s D Cα ρ γ
=

   −∇ − ∇  
   

 v l l v ls Dsγ μ γ++ = ,  (5.125) 

 
in which 

( )
max3,

1 1

1 iw
N

l l iml ilm il l l l l
m il
m l

Ds DT s s s
T

μ μ μ μ+

= =
≠

= + − − +  

( )
max3,

1 1

1 iw
N

l iml ilm il l l
m il
m l

DT s s
T

μ μ μ−

= =
≠

= + − +  

( )
max3,

1 1

1 iw
N

l v lm l iml ilm il
m il
m l

DT s s
T

γ μ μ μ
= =
≠

 
  = + + −  
   

     (5.126) 

The three forms of the entropy equation, conservative (5.110b), non-conservative 
(5.118), and semi-conservative (5.125) are mathematically identical.  
 

The introduction of the semi-conservative form is perfectly suited to nu-
merical integration because it ensures proper initialization of the value for 
the entropy in a computational cell in which a previously non-existent field 
is just in the course of origination. 

5.11 Comments on the source terms in the mixture 
entropy equation 

The following terms in the semi-conservative entropy equation (5.125), 

....lDs = ( )
max3,

1 1

iw

v lm l iml ilm il
m i
m l

s sγ μ μ μ
= =
≠

 
  + + −  
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( ) ( ) ( )
max max3

1 1 1

i n
v

iwl iwl il Mml Ml Ml nml nm nl
i m nl

h h h h h h
T

σγ μ μ μ
= = =

   + − + − + −  
   
   , (5.127) 

are discussed in some detail in this section in order to facilitate their practical ap-
plication. For the wall source terms, that is, for injection from the wall into the 
flow and suction from the flow into the wall one can write 

iwl iwl wlCμ μ= ,       (5.128) 

ilw il lwCμ μ= ,       (5.129) 

and therefore 

....lDs = ( )
max

1

/
i

v wl iwl il iwl il l
i

C s h h Tγ μ
=

 + + −  ( )
max max

1 1

l i

v lm l iml ilm il
m i
m l

s sγ μ μ μ
= =
≠

 
+ + − 

 
   

( ) ( )
max3

1 1

n
v

Mml Ml Ml nml nm nl
m nl

h h h h
T

σγ μ μ
= =

 
+ − + − 

 
  .   (5.130) 

Similar relationships as Eqs. (5.128) and (5.129) are valid for entrainment from 
field 2 to 3 and deposition from field 3 to 2, that is for lm = 23, 32. Note that, say, 
for steam condensation from multi-component gas mixtures, lm = 12, 13, and for 
evaporation, lm = 21, 31, the following then applies: ilm lm ilCμ μ≠ . For practical 
applications it is convenient to group all inert and non-inert components in pseu-
do-two-component mixtures inside the field l designated simply with n and M, re-
spectively. 

The most important mass transfer mechanisms in the three velocity fields flow 
will now be taken into account in accordance with the following assumptions: 

 

a) No solution of gas into field 2 and/or 3; 
b) No gas dissolution from field 2 and/or 3; 
c) Evaporation from field 2 and/or 3 into the gas field 1 is allowed; 
d) Condensation of the component M from the gas field onto the interface of  

 fields 2 and/or 3 is allowed; 
e) Injection from the wall into all of the fields is allowed; 
f) Suction from all of the fields through the wall is allowed. 

 

The mass transfer terms are written in the following form: 

1 1 1

23 2 23 2 2 2

32 3 32 3 3 3

1 1 1 2 2 2 3 3 3

0 0 0

0 0

0 0

0

n w n w

n n n w n w
nlm

n n n w n w

nw nw w nw nw w nw nw w

C

C C

C C

C C C

μ μ
μ μ μ μ

μ
μ μ μ μ

μ μ μ μ μ μ

=
= =

=
= =

= = =

, 

    (5.131) 
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12 12 13 13 1 1 1

21 21 23 2 23 2 2 2
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1 1 1 2 2 2 3 3 3
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M M M w M w
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μ μ μ μ μ μ
μ μ μ μ μ μ

μ
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= = =

=
= = =

= = =

. 

   (5.132) 

Except for the diagonal elements, the zeros in Eq. (5.132) result from assumptions 
a) and b). Assumptions c) and d) give rise to the terms 

12 12 13 13

21 21

31 31

0 ...

0 ... ...

... 0 ...

... ... ... 0

M M

M
Mlm

M

μ μ μ μ
μ μ

μ
μ μ

= =
=

=
=

   (5.133) 

in the above equation. 
Figures 5.2 and 5.3 illustrate the l-field side interface properties for the three 

fields under consideration. 
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Fig. 5.2 Evaporation and condensation mass transfer. Interface properties 
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l = 2

Gas l =1

l = 3

μ32

μ 23

 
 

Fig. 5.3 Entrainment and deposition mass transfer 
 

Taking into account Eqs. (5.131) and (5.132), the specific form for the source 
terms is: 

1 1 1/Ds q T′′′=   

( ) ( ) ( ){ }1 1 1 1 1 1 1 1 1 1 11 / /v w nw M Mw M nw n nw nC s h h T C s h h Tγ μ    + − + − + + −     

( ) ( )

( ) ( )

2
21 1 1 1 1 12 1 1 1

3
31 1 1 1 1 13 1 1 1

/

/

M M M n M n

v

M M M n M n

s h h T C s s

s h h T C s s

σ

σ

μ μ

γ

μ μ

  + − − −  
 +
 

  + − − −  

( )1 1 1 1 1 1/kP Tτα ρ δ ε+ +  

( ) ( ) ( )2 2 2

1 1 1 1 1 1 1 1 1
2,3

1
/

2 w w w w m m
m

Tμ μ μ
=

 
+ − − − + − 

 
V V V V V V  

( ) ( ) ( )2 2 2

1 1 1 1 1 1 1 1 1
2,3

1
/

2 w w w w m m
m

Tμ μ μ
=

 
′ ′ ′ ′ ′ ′+ − − − + − 

 
V V V V V V , (5.134) 

2 2 2/Ds q T′′′=   

( ) ( ) ( ){ }2 2 2 2 2 2 2 2 2 2 21 / /v w nw M Mw M nw n nw nC s h h T C s h h Tγ μ    + − + − + + −     

( ) ( ) ( ){ }32 3 2 3 2 2 3 2 3 2 21 / /v n M M M n n n nC s h h T C s h h Tγ μ    + − + − + + −     

( ) ( ){ }12 2 2 2 2 21 2 2 2/v M M M n M ns h h T C s sσγ μ μ + + − − −  ( )2 2 2 2 2 2/kP Tτα ρ δ ε+ +  

( ) ( ) ( )2 2 2

2 2 2 2 2 2 2 2 2
1,3

1
/

2 w w w w m m
m

Tμ μ μ
=

 
+ − − − + − 

 
V V V V V V  
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( ) ( ) ( )2 2 2

2 2 2 2 2 2 2 2 2
1,3

1
/

2 w w w w m m
m

Tμ μ μ
=

 
′ ′ ′ ′ ′ ′+ − − − + − 

 
V V V V V V , (5.135) 

3 3 3/Ds q T′′′=   

( ) ( ) ( ){ }3 3 3 3 3 3 3 3 3 3 31 / /v w nw M Mw M nw n nw nC s h h T C s h h Tγ μ    + − + − + + −     

( ) ( ) ( ){ }23 2 3 2 3 3 2 3 2 3 31 / /v n M M M n n n nC s h h T C s h h Tγ μ    + − + − + + −     

( ) ( ){ }13 3 3 3 3 31 3 3 3/v M M M n M ns h h T C s sσγ μ μ + + − − −  ( )3 3 3 3 3 3/kP Tτα ρ δ ε+ +  

( ) ( ) ( )2 2 2

3 3 3 3 3 3 3 3 3
1,2

1
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2 w w w w m m
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Tμ μ μ
=
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V V V V V V  

( ) ( ) ( )2 2 2

3 3 3 3 3 3 3 3 3
1,2

1
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2 w w w w m m
m

Tμ μ μ
=

 
′ ′ ′ ′ ′ ′+ − − − + − 

 
V V V V V V . (5.136) 

The above equations can be simplified by taking into account  

( ) /iwl il iwl il ls s h h T= + − ,      (5.137) 

max

1

i

wl iwl iwl
i

s C s
=

= ,       (5.138) 

( ) /il im il im ms s h h T= + − ,      (5.139) 

max

1

i

l il il
i

s C s
=

= ,        (5.140) 

( ) /Ml Ml Ml Ml ls s h h Tσ σ= + − ,      (5.141) 

for  l = 2,3 and m = 3,2 respectively. 

1 ...Ds = ( ) ( ) ( ){ }1 1 1 1 1 1 1 1 1 1 11 / /v w nw M Mw M nw n nw nC s h h T C s h h Tγ μ    + − + − + + −     

( ) ( ) ( )

( ) ( )

2 3
21 31 1 21 1 1 31 1 1 1

12 13 1 1 1

/M M M M M

v

n M n

s h h h h T

C s s

σ σμ μ μ μ

γ
μ μ

  + + − + −  
 +
 
− + − 
  

...+ , (5.142) 

2 ...Ds = ( )2 2 32 3 12v w ws s s pγ μ μ μ ′ + + +  +... ,   (5.143) 
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3 ...Ds = ( )3 3 23 2 13v w ws s s pγ μ μ μ ′ + + +  +....   (5.144) 

Note that the mass transfer terms can give rise to entropy change even if mass 
leaves the field with entropy at the interface not equal to the intrinsic average field 
entropy. There is an additional source of entropy change if the non-inert compo-
nent leaves the field with entropy at the interface not equal to the intrinsic average 
field entropy as a result of evaporation or condensation.  
For evaporation only within the closed control volume one obtains 

( ) ( )( ) ( )( )12 13 1 21 1 2 1 1 31 1 3 1 1/ /M M M Ms s h T h T s h T h Tσ σμ μ μ μ   ′′ ′′+ = + − + + −      
 

   (5.145) 
or  

( )( ) ( )( ){ } ( )1 21 1 2 1 1 31 1 3 1 1 12 13/ / /M M M Ms s h T h T s h T h Tσ σμ μ μ μ   ′′ ′′= + − + + − +      
. 

   (5.146) 

For condensation and deposition the following is obtained for the specific entropy 
of the second velocity field 

( ) ( )2 32 3 12 12 32/s s s pμ μ μ μ′ = + +  .    (5.147) 

For condensation and entrainment the following is obtained for the specific entro-
py of the third velocity field 

( ) ( )3 23 2 13 13 23/s s s pμ μ μ μ′ = + +  .    (5.148) 

A frequently used simplification of the energy jump condition for computing the 
resulting evaporation or condensation is 

( ) 0m l l m Ml Mm Mlq q h hτ σ σ
σ σ μ′′′ ′′′+ + − =  ,    (5.149) 

or if ( ) ( )/ 0m l l m Mm Mlq q h hσ σ
σ σ′′′ ′′′− + − >  , then 

( ) ( )/Mml m l l m Mm Mlq q h hσ σ
σ σμ ′′′ ′′′= − + −     and    0Mlmμ = ,  (5.150) 

else 

( ) ( )/Mlm m l l m Ml Mmq q h hσ σ
σ σμ ′′′ ′′′= + −     and    0Mmlμ = .  (5.151) 

5.12 Viscous dissipation 

Now we will discuss three important terms reflecting the irreversible part of the 
dissipation of the mechanical energy. The irreversibly dissipated power in the 
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viscous fluid due to turbulent pulsations and due to change of the mean velocity in 
space is 

( ) ( ) ( ), ,: :e
v l l l v l l l l l l l l lη ηγ α ρ ε γ α ρ ε ε α γ  ′ ′ ′= + = ⋅ ∇ ⋅ + ∇ ⋅ T V T V . (5.152) 

These components can not be returned back as a mechanical energy of the flow. 
They express quantitatively the transfer of mechanical in thermal energy in the 
field l. In a notation common for Cartesian and cylindrical coordinates the 
irreversibly dissipated power in the viscous fluid due to turbulent pulsations is 
expressed as follows 

22 2
1

2l l l l
r l z
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u v w
u

r zrθ κ

ε ∂ ∂ ∂γ γ κ γ
ν ∂ ∂θ ∂
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l l l l
r z
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r z r z

∂ ∂ ∂ ∂γ γ
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1 1l l l l
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∂ ∂ ∂ ∂γ γ
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′ ′ ′ ′   + + +      
 

2 1 1
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3
l l l l l l
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u v w u v w
u u
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∂ ∂ ∂ ∂ ∂ ∂κ γ γ κ γ
∂ ∂θ ∂ ∂ ∂θ ∂
′ ′ ′ ′ ′ ′      ′ ′− + + + + + + ≥      

      
.

        (5.153) 

All terms in the right-hand side of this equation are time averages. Similarly, the 
irreversibly dissipated power in the viscous fluid due to deformation of the mean 
velocity field in space is expressed as follows 

( ), , :e
v l l l l l lη ηγ α ρ ε α γ= ⋅ ∇ ⋅T V  

( ) ( )
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          + + +                 
=  
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, (5.154) 

where 

1
. l l l

l r l z
u v w

u
r zr

θ κ
∂ ∂ ∂γ γ γ κ γ
∂ ∂θ ∂

 ∇ = + + + 
 

V ,   (5.155) 
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1
. l l l

l l
u v w

u
r zrκ
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∂ ∂θ ∂

 ∇ = + + + 
 

V ,    (5.156) 

2
,

1 1l l l l
k l l r l

v u v u
S v v

r rr r
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∂ ∂ ∂ ∂κ γ γ κ
∂ ∂θ ∂ ∂θ

      = + − + −      
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w u w u
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∂ ∂ ∂ ∂γ γ
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1 1l l l l
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w v w v

z zr r
θκ κ

∂ ∂ ∂ ∂γ γ
∂θ ∂ ∂θ ∂

   + + +   
   

.   (5.157) 

Here the Stokes hypothesis is used. For single-phase flow, 1lα = , in free three- 
dimensional space, 1γ = , the above equation then reducing to the form obtained 
for the first time by Rayleigh. Note that in a turbulent pipe flow in the viscous 
boundary layer 0lε ′ =  and , 0lηε > . Outside the boundary layer for relatively flat 

velocity profiles 0lε ′ >  and , 0lηε →   

The specific irreversibly dissipated power per unit viscous fluid mass due to 
turbulent pulsations  

,l l lηε ε ε ′= +         (5.158] 

is used as important dependent variable characterizing the turbulence in the field. 
It is subject of model description. This power is considered to be constantly re-
moved from the specific turbulent kinetic energy per unit mass of the flow field 
defined as follows 

( )2 2 21

2l l l lk u v w′ ′ ′= + + .      (5.159) 

This is the second dependent variable for the velocity field which is also a subject 
of modeling.  

In fact, Eq. (5.152) is the definition equation for the viscous dissipation rate, lε  

of the turbulent kinetic energy lk . Here it is evident that lε  is  
 

(a) a non-negative quadratic form, 0lε ≥ , 

(b) its mathematical description does not depend on the rotation of the coordi-
nate system, and 

(c) it contains no derivatives of the viscosity, 
compare with Zierep (1983) for single phase flow. 

 

The term 

( ), :e
v l l k l l l lPγ α ρ α γ ′= ⋅ ∇ ⋅T V ( ) ( )e

l l lα γ γ′ ′= ∇ ⋅ ⋅ − ⋅ ∇ ⋅  T V V T  



256      5 First and second laws of the thermodynamics 
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. (5.160) 

is considered to be a generation of turbulent kinetic energy, a turbulence source 
term. It is removed from the energy conservation and introduced as a source term 
in the balance equation for the turbulent kinetic energy. Inserting the Reynolds 
stresses by using the Boussinesq (1877) hypothesis results in common notation for 
Cartesian and cylindrical coordinates 

,
, : l k l

v k l v e t
l l

P
P

α
γ γ

α ν
=

22 2
1

2 l l l
r l z

u v w
u

r r zθ κ
∂ ∂ ∂γ γ κ γ
∂ ∂θ ∂

        = + + +               
 

( ) ( )2
. .

3 l lγ− ∇ ∇V V  + 2
,k lS .     (5.161)  

Compare this expression with Eqs. (5.153) and (5.154) and recognize the 
difference. 

An alternative notation of the Eq. (5.161) is given for isotropic turbulence 

( ):e
l lα γ ′ ∇T V  

2
.

3
e
l l l lkα ρ γ= − ∇ V 2

,
e t
l l l k lSα ρ ν+  .    (5.162) 

Nothing that the pressure pulsation caused the eddies is  

2 2

3l l l lp V kρ ρ′ ′= =       (5.163) 

the term  

2
.

3l l l lkα ρ γ∇ ≡V   pdVol-work      (5.164) 

is immediately recognized as the mechanical expansion or compression pdVol-
work. 

For the case of steady-state single-phase, 1lα = , incompressible ( 0l∇ =V ), 

isentropic, and developed flow, , 0k l lP ε ′+ = , with equal velocity gradients in all 

directions, Taylor  (1935) noticed that  

2

12 l
l l

w

z

∂ε ν
∂

 ≈  
 

.       (5.165) 
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The modeling of turbulence in multi-phase flows constitutes an exciting chal-
lenge for theoreticians and experimental scientists. We collect useful information 
to this subject in Volume 3 of this monograph. 
 

Problem 1: Compute the power dissipation in laminar flow inside a pipe. 
 

Solution to problem 1: For axially symmetric flow in a pipe the Eqs. (5.163) and 
(5.152) reduce to 

( ) ( ), , ,2
0 0

1 4
:   :  2   

hRz
e e e
l l l l l l l l l
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dVol r dr dz
Vol D zη η ηα ρ ε α α π

π
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− = ∇ = ∇
Δ  T V T V

( ) ( ) ( )
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2

,

0 0

: / /e
l l l hd r R d z zηα= ∇ Δ  T V     (5.166) 

( ) ( ) ( ) ( )
1 1

2

0 0

1
: : / /e e e

l l l l l l l l l h

Vol

dVol d r R d z z
Vol

α ρ ε α α′ ′ ′ ′ ′− = ∇ = ∇ Δ  T V T V . 

    (5.167) 

For a single-phase flow Eq. (5.166) reduces to 

( )
21

2

,

0

/l l h

dw
d r R

drηρ ε  =  
  .     (5.168) 

As an illustration of how to estimate the above integral, laminar flow in a pipe in 
line with the Hagen-Poiseuille law will now be considered, with the velocity dis-
tribution 

( ) ( )2 21

4 h

dp
w r R r

dz η
= − − ,     (5.169) 

2 2

32
h

k

Ddp

dz
ρε

η
 =  
 

.      (5.170) 

Bearing in mind that 

232 / h

dp
w D

dz
η= ,      (5.171) 

one then obtains 

k

dp
w

dz
ρε = ,       (5.172) 

i.e., the frictional pressure loss per unit mixture volume multiplied by the aver-
aged flow velocity gives the irreversible part of the dissipated energy due to fric-
tion per unit time and unit flow volume. There are a number of industrial processes 
where this component is important, e.g., heating of liquid in a circuit due to heat 
dissipation from pumping, and gas flow in very long pipes.  
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Problem 2: Compute the power dissipation in turbulent flow inside a pipe. 
 

Solution to problem 2: The predominant cross section averaged velocity is w . 
The irreversible dissipated power per unit flow volume caused by the viscous 

forces is ( )ηρ ε ε ′+ . The irreversible dissipated power per unit flow volume 

caused by the viscous forces due to deformation of the mean values of the 

velocities in the space is ( ):η ηρε = ∇ ⋅T V . In case of turbulence flow the second 

component, the irreversibly dissipated power per unit flow volume in the viscous 
fluid due to turbulent pulsations is ( ): 'ρε ′ ′= ∇ ⋅T V . The friction force per unit 

flow volume can be computed in this case using correlations based on the 
macroscopic flow, 

21

2
fr

w
hyd

f w
D

λ
ρ= .      (5.173) 

The power per unit flow volume needed to overcome this force is wf w . Therefore 

( ) ( ) ( ) ( ): : : 'w kf w P η ηρ ε ε ′ ′ ′= + + = ∇ ⋅ + ∇ ⋅ + ∇ ⋅T V T V T V . (5.174) 

With other words, in turbulent flow there are two components of the mechanical 
energy dissipation: the viscous dissipation mainly in the viscous sub-layer where 
the velocity gradient possesses a maximum and the dissipation due to disappearing 
of microscopic eddies. In the flow considered here the following simplification 
can be used 

2

:
dw

dyη ρν  
∇⋅ ≈  

 
T V ,      (5.175) 

( ): ' 0′ ∇ ⋅ ≈T V .      (5.176) 

Within the laminar sub-layer, 5y+ ≤ , there is no turbulence energy dissipation, 

: ' 0′ ∇ ⋅ =T V . In this region the velocity is linear function of the wall distance 

w y+ +=    or   
2
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w y
λ

ν
= , 
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T V .     (5.177) 

The ratio of the viscous boundary layer volume to the total flow volume is  

lim lim4

flow h

zy y

F z D

ΠΔ
=

Δ
.       (5.178) 
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Here Π is the wetted perimeter and flowF is the flow cross section. The irreversible 

dissipated power per unit flow volume caused by the viscous forces due to defor-
mation of the mean values of the velocities in the space is then approximately 

( )
lim
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yz w
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F z Dη
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ρε ρ
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 ΠΔ= ∇ ⋅ =  Δ  

 T V .  (5.179) 

From ( )w kf w P ηρ ε ε= + +  we compute irreversibly dissipated power per unit 

flow volume in the viscous fluid due to turbulent pulsations  

k wP f w ηρ ρε ρε ′= − −       (5.180) 

or 
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P w y
D

λ λ
ρ ρ +

 
 = −
 
 

,    (5.181) 

compare with Chandesris et al. (2005). In Volume 3 I will extend this method to 
multiphase flows. 

5.13 Temperature equation 

The purpose of this section is to rewrite the entropy equation in terms of the field 
temperature and system pressure. It will be shown that the temperature and 
pressure changes do not depend on the absolute values of the specific component 
entropies, and therefore on the selection of the reference temperature and pressure 
to define the zero specific entropies. Important differences between mixtures of 
perfect and non-perfect gases will also be demonstrated.  

In Chapter 3 the relationship between the field temperature, lT , and the field 

properties ( ), ,l ils C p , Eq. (3.106), is found to be 

max

2 , , _ _ _l il

i
l l l

pl l l il
il l il p T all C s except C

dT dp s
c R ds dC

T p C

∂
∂= ′

 
− = −  

 
 ,  (5.182)  

where 

1

, , _ _ _ i

np
il l il

i p T all C s except C

s
s s s

C

∂
∂ ′

 
= − + Δ 

 
.    (5.183) 

One of the mass concentrations, arbitrarily numbered with subscript 1, 1lC , de-
pends on all others and is computed as all others are known,  
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max

1
2

1
i

l il
i

C C
=

= − .      (5.184) 

Equation (3.86) consists of two parts. For the case of a mixture consisting of ideal 
gases the second part is equal to zero, 

0np
ilsΔ = ,       (5.185) 

this also demonstrating the meaning of the subscript np, which stands for non-
perfect fluid.  

The non-conservative form of the entropy equation, Eq. (5.118), is 

( ) ( )
max

* *

1

1
.

i
e e el

l l v l l l l l l l l il il il
il

s
s T s D C

T

∂ρ α γ α γ α λ γ α ρ γ
∂τ =

    + ⋅∇ − ∇ ⋅ ∇ −∇ ∇        
V  

( )
max

1

1 i
N

v l il il l
il

DT s s
T

γ μ
=

 
= + − 

 
 ,    (5.186) 

The non-conservative form of the mass conservation for each component inside 
the velocity field, Eq. (1.95), is 

( ) ( )*il
l l v l il l l il il v il il l

C
C D C C

∂α ρ γ γ α ρ γ γ μ μ
∂τ

 + ∇ −∇ ∇ = − 
 

V . (5.187) 

The non-conservative form of the entropy equation in terms of temperature and 
pressure is obtained by multiplying the max 1i −  mass conservation equations 

(5.187) by 1
np

il l ils s s− + Δ  and subtracting them from the equation (5.186). The re-
sult is simplified by using 

( ) ( ) ( ) ( )
max max max

1
1 2 2

i i i
np np

il il l il l il il il l il il il l
i i i

s s s s s C s Cμ μ μ μ μ
= = =

− − − + Δ − = − Δ −   , 

    (5.188) 

namely 

( ) ( )
max

1
2

i
e np el il

l l v l l l l il l il l v l l il
i

s C
s s s s C

∂ ∂ρ α γ α γ ρ α γ α γ
∂τ ∂τ=

   + ⋅∇ − − + Δ + ∇     
V V  

max
* *

1

1
.

i
e e
l l l l il l il il

il

T s D C
T

α λ γ α γ ρ
=

  
 − ∇ ⋅ ∇ −∇ ∇       

  

( ) ( )
max

*
1

2

i
np e

il l il l l il il
i

s s s D Cα ρ γ
=

+ − + Δ ∇ ∇ ( )
max

2

1 i
N np

v l il il il l
il

DT s C
T

γ μ μ
=

 
= − Δ − 

 
 . 

       (5.189) 
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Further simplification is obtained by using 

( )el
l l v l l l

s
s

∂ρ α γ α γ
∂τ

 + ⋅∇  
V  

max

2 , , _ _ _l il

i
el il

l l v l l il
i il p T all C s except C

s C
C

C

∂ ∂ρ α γ α γ
∂ ∂τ= ′

   − + ∇   
  

 V  

( ) ( ) /e el l l l
l pl l v l l l l v l l l

T R T p
c T p T

p

∂ ρ ∂ρ α γ α γ α γ α γ
∂τ ∂τ

    = + ⋅∇ − + ⋅∇       
V V , 

   (5.190) 

where Eq. (3.121) is 

, _

1
l

l l l l
l

T all C s

R T h

p p

ρ ∂ρ
∂ ′

  
 = −  
   

.     (5.191) 

The last two terms of the left-hand side are simplified by using Eq. (5.103) 

( ) ( )
max max

* *
1

1 2

.  
i i

e np e
l il l il il il l il l l il il

i i

s D C s s s D Cα γ ρ α ρ γ
= =

  
∇ ∇ − − + Δ ∇ ∇  
   

   

( ) ( ) ( )
max max

* *
1 1

2 2

.  
i i

e np e
l il l l il il il l il l l il il

i i

s s D C s s s D Cα γ ρ α ρ γ
= =

  
= ∇ − ∇ − − + Δ ∇ ∇  

   
   

( ) ( ) ( )
max max

* *
1

2 2

 
i i

e np e
l l il il il l il l l il il

i i

D C s s s D Cα ρ γ α ρ γ
= =

= ∇ ∇ − − Δ ∇ ∇   (5.192) 

Neglecting the second order terms 

( ) ( )
max

*
1

2

i
e
l l il il il l

i

D C s sα ρ γ
=

∇ ∇ − ,     (5.193) 

we obtain the form below that is very convenient for practical applications  
 

( )el
l pl l v l l l

T
c T

∂ρ α γ α γ
∂τ

 + ⋅∇  
V  

( ) ( )*

, _

1
l

e el
l l l l v l l

T all C s

h p
T p

p

∂ ∂α λ γ ρ α γ α γ
∂ ∂τ′

     −∇ ⋅ ∇ − − + ⋅∇       
V  
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( ) ( )
max max

*

2 2

i i
np e N np

l il l l il il v l l il il il l
i i

T s D C DT T s Cα ρ γ γ μ μ
= =

 
+ Δ ∇ ∇ = − Δ − 

 
  .  (5.194) 

 
This is the entropy equation rewritten in terms of temperature and pressure. For 
perfect gas mixtures, the following is obtained 

( ) ( )*e el
l pl l v l l l l l

T
c T T

∂ρ α γ α γ α λ γ
∂τ

 + ⋅∇ −∇ ⋅ ∇  
V  

( )e N
l v l l v l

p
p DT

∂α γ α γ γ
∂τ

 − + ⋅∇ =  
V .    (5.195) 

Conclusions: 
 

a) The temperature change caused by the injection into the velocity field de-
pends on the difference between the specific enthalpy of the donor and the specific 
enthalpy of the velocity field. It is important to note that this is an enthalpy differ-
ence but not, say, differences in the specific internal energies, entropies, etc. 
b) Equation (5.194) does not contain any specific entropies. As a result, the 
temperature change described by Eq. (5.194) does not depend on the reference 
temperature and pressure for computation of the specific entropies for the specific 
components. 
c) Consider diffusion in a gas mixture consisting of non-perfect gases in 
adiabatic closed space. The initial state is characterized by spatially uniform 
temperature. At nearly constant system pressure Eq. (5.194) reduces to  

( )
max

*

2

i
npl

v l pl l il l il il
i

T
c T s D C

∂γ ρ ρ γ
∂τ =

≈ − Δ ∇ ∇ ,     (5.196) 

which demonstrates that a temporal temperature change takes place at the loca-
tions of considerable diffusion. Bad numerical resolution can amplify this effect, 
leading to considerable local error in the numerical analysis. 
d) Injection of non-perfect gas components into a volume initially filled with 
perfect gas can also give rise to behavior different from that of injection of a perfect 
gas component, due to the differences in the temperature and pressure equations 
describing both cases. This will be demonstrated in a simple case in the next section. 

5.14 Second law of the thermodynamics 

The entropy equation reflects very interesting physical phenomena. It is evident 
that velocity gradients in continuum of viscous fluid cause energy dissipation, 

, 0l lηε ε ′+ ≥ , and may generate turbulent kinetic energy , 0k lP ≥ . The turbulent 

kinetic energy increases the turbulent viscosity according to the Prandtl-
Kolmogorov law, and helps to reduce the velocity gradients. The irreversible 
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dissipation of kinetic energy caused by the turbulent pulsation increases the 
specific internal energy of the continuum field, 0lε ′ ≥ . This dissipation decreases 
the specific turbulent kinetic energy directly. The same action is caused by the 
direct viscous dissipation ,lηε . 

If the equation is applied to a single velocity field in a closed system without 
interaction with external mass, momentum or energy sources, the change in the 
specific entropy of the system will be non-negative, as the sum of the dissipation 
terms, ,l lηε ε ′+ , is non-negative. This expresses the second law of thermodynam-

ics. The second law tells us in what direction a process will develop in nature for 
closed and isolated systems.  

The process will proceed in a direction such that the entropy of the system 
always increases, or at best stays the same, , 0l lηε ε ′+ = , - entropy principle.  

 
This information is not contained in the first law of thermodynamics. It results on-
ly after combining the three conservation principles (mass, momentum and ener-
gy) and introducing a Legendre transformation in the form of a Gibbs equation. In 
a way, it is a general expression of these conservation principles. 

The entropy equation is not only very informative, but as already mentioned, it 
is very convenient for numerical integration because of its simplicity compared to 
the primitive form of the energy principle. This is the reason why the specific 
entropies of the velocity fields together with the concentrations of the inert 
component nlC  were chosen for use as components of the dependent variables 
vector as already mentioned in Kolev (1994a). This unique combination of the 
dependent variables simply minimizes the computational effort associated with 
numerical integration and therefore makes the computer code faster and the 
analysis cheaper. It also makes the computer code architecture simple and allows 
the inclusion of more physical phenomena within a general flow model. 

 

I call the flow modeling concept which makes use of the specific entropies 
of the velocity fields as components of the dependent variables vector the 
entropy concept. 

5.15 Mixture volume conservation equation 

Any numerical method in fluid mechanics should provide correct coupling be-
tween pressure changes and velocity changes. There are different ways of achiev-
ing this. One of these is faster than the others. Probably the fastest of these me-
thods uses a specially derived equation, referred to as here the mixture volume 
conservation equation, MVCE. The MVCE is a linear combination of the mass 
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conservation equations. The purpose of this section is to derive the analytical form 
of the MVCE, to discuss the physical meaning of each separate term and finally to 
show the reasons that make this equation so appropriate for use in constructing 
numerical schemes for complicated multi-phase flows. 

The MVCE was obtained as follows: 
 

(a) The mass conservation equations (1.62) were differentiated using the chain rule. 
(b) Each equation was divided by the associated density. The resulting equations 
are dimensionless, 3 3/m m , and reflect the volume change balance for each ve-
locity field per unit time and per unit mixture volume. 

( ) ( )1l v l l
v l l v l l l l l v

l l

∂α ∂γ ∂ρ μγ α α γ α γ ρ α γ γ
∂τ ∂τ ρ ∂τ ρ

 + + + ⋅∇ + ∇ ⋅ =  
V V  (5.197) 

(c) The volume conservation equations obtained in this way were added and the 
fact that 

3

1

1l
l

α
=

=         (5.198) 

and 

3

1

0l
l

dα
=

=         (5.199) 

was used to cancel the sum of the time derivatives of the volume concentrations. 

( ) ( )
max max max

1 1 1

1l l l
l l v

l v l l l l l v
l l ll l

∂ρ μ ∂γα γ α γ ρ α γ γ
ρ ∂τ ρ ∂τ= = =

 + ⋅∇ +∇ ⋅ = −  
  V V  (5.200) 

(d) The density derivatives were substituted using the differential form of the eq-
uation of state for each velocity field (3.137) 

max

2
2, _ , , _ _ _l l li

i
l l l

l l li
il l lip all C s p s all C s except C

dp
d ds dC

a s C

∂ρ ∂ρρ
∂ ∂=′ ′

   
= + +   

   
 . (5.201) 

The result is 

( ) ( )
max max max

2 2
1 1 1

l l l
l l l

v l l l l
l l ll l l l

p
p

a a

α ∂ αγ γ α γ
ρ ∂τ ρ= = =

   
+ ⋅∇ +∇⋅   

   
  V V  
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( )

( )

max

max

, _

1

2 , , _ _ _

1 1
l

i

l l
l l v l l l

l p all C s
l

v l
l l l i

l li
l l v l l li

i li p s all C s except C

s
s

s

C
C

C

∂ρ ∂ρ α γ α γ
∂ ∂τ

γ μ
ρ ρ

∂ρ ∂ρ α γ α γ
∂ ∂τ

′

=

= ′

     + ⋅∇         
  = −  
       + + ⋅∇         





V

V

 

v∂γ
∂τ

−         (5.202) 

(e) The concentration equations (1.96) in Chapter 1 and the non-conservative 
form of the entropy equation (5.118) in this Chapter are compared with the LHS 
of Eq. (5.202). Making the substitution 

( ).  e Nil
l l v l l il il

C
C DC

∂ρ α γ α γ
∂τ

 + ∇ =  
V ,    (5.203) 

( ).  e Nl
l l v l l l l

s
s Ds

∂ρ α γ α γ
∂τ

 + ∇ =  
V ,    (5.204) 

where 

( ) ( )*N
il l l il il v il il lDC D C Cα ρ γ γ μ μ= ∇ ∇ + − ,   (5.205) 

( )
max

* *

1

1
.

i
N e e
l l l l l l il il il

il

Ds T s D C
T

α λ γ α ρ γ
=

   = ∇ ⋅ ∇ +∇ ∇  
   

  

( )
max

1

1 i
N

v l il il l
il

DT s s
T

γ μ
=

 
+ + − 

 
 ,    (5.206) 

we obtain the final form for the MVCE 
 

( ) ( )
max max max max

2 2
1 1 1 1

l l l l
l l l v

v l l l l l
l l l ll l l l

p
p D

a a

α ∂ α ∂γγ γ α γ α
ρ ∂τ ρ ∂τ= = = =

   
+ ⋅∇ +∇⋅ = −   

   
   V V  

 
which for negligible differences in the field pressures is 

( ) ( )
max max max

2 2
1 1 1

l l l
v l v

l l l l
l l ll l

p
p D

a a

γ α ∂γ∂ γ α γ α
ρ ∂τ ρ ∂τ= = =

+ ⋅∇ +∇ ⋅ = −  V V , (5.207) 

or in scalar form for practical application in Cartesian and cylindrical coordinates 

3

2 2
1

v l
l r l l z

l l l

p p p p
u v w

a a r zθ
γ α∂ ∂ ∂ ∂γ γ γ
ρ ∂τ ρ ∂ ∂θ ∂=

 + + + 
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( ) ( ) ( )
3

1

1 v
l l r l l l l z l

l

u r v w D
r r z

κ
θκ

∂γ∂ ∂ ∂α γ α γ α γ α
∂ ∂θ ∂ ∂τ=

+ + + = −  (5.208) 

where 

max

1
2, _ , , _ _ _

1 1

li li l

i
N Nl l

l v l l il
il l l lip all C s p s all C s except C

D Ds DC
s C

∂ρ ∂ρα γ μ
ρ ρ ∂ ∂′ = ′

       = − +    
       

  

   (5.209) 

Replacing the derivatives of the mixture density with the Eqs. (110) and (111) 
obtained in Kolev (1991), one obtains 

max
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2, _ , , _ _ _

2

2 , , _ _ _

1
l il

l il

i
N Nl l l
l il
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T c C
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∂ρ ∂
∂ ∂

μα γ
ρ ρ

∂ρ
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=′ ′
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       −          
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  +      





. 

   (5.210) 

Further simplification is obtained by using Eqs. (5.205) and (5.206), subsequently 
the chain rules and neglecting the second order term 

( ) ( )
max

*
1

2

i

l l l il il il l
i

T D C s sα ρ γ
=

∇ ∇ ∇ − .    (5.211) 

The result is 
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2 , , _ _ _l il

i
N Nl

l l il
i il p T all C s except C

s
T Ds DC

C

∂
∂= ′

  
 −  
   

  

( ) ( ) ( )
max

* *

2

i
e N np e
l l v l l il l l il il v il il l

i

T DT T s D C Cα λ γ γ α ρ γ γ μ μ
=

 ≈ ∇ ⋅ ∇ + − Δ ∇ ∇ + −  ,  

   (5.212) 

For perfect gas mixtures the following alone is obtained 

( )
max

*

2 , , _ _ _l il

i
N N e Nl

l l il l l v l
i il p T all C s except C

s
T Ds DC T DT

C

∂ α λ γ γ
∂= ′

  
 − ≈ ∇ ⋅ ∇ + 
   

  

    (5.213) 
a is the sonic velocity in a homogeneous multi-phase mixture and is defined as 
follows 
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3 3

2 2
1 1

1 1 1l l

l ll l la a p p

α α
ρ ρ κ κ= =

= = =  ,    (5.214) 

and 

3

1
l l

l

ρ α ρ
=

=        (5.215) 

is the mixture density. Equation (5.207) was already derived in Kolev (1986) and 
published in Kolev (1987) p.100. 

The MVCE equation can be directly discretized and incorporated into the nu-
merical scheme. Another possibility is to follow the same scheme as for deriving 
the MVCE analytically but starting with already discretized mass conservation eq-
uations. The coupling finally obtained is then strictly consistent with the discre-
tized form of the mass conservation equations. 

Alternative forms of the MVCE can also be used, e.g. 

3 3 3

1 1 1

. .v l v
l l l l

l l ll

p
p D

p p

γ α ∂γ∂ γ α γ α
κ ∂τ κ ∂τ= = =

 + ∇ +∇ = − 
 

  V V ,  (5.216) 

or certain integrated forms 

3 3 3

1 1 1

ln . ln .v l v
l l l l

l l ll

p p D
γ α ∂γ∂ γ α γ α
κ ∂τ κ ∂τ= = =

 + ∇ +∇ = − 
 

  V V , (5.217) 

where 
2 /a pκ ρ= ,       (5.218) 

2 /l l la pκ ρ=        (5.219) 

are the mixture isentropic exponent and the isentropic exponent of each particular 
velocity field, respectively. 

For completeness of the theory the MVCE equation valid in the case of steady-
state non-compressible flow will also be given 

( )
3 3

1 1

. .l l l
l l

Dα γ γ α
= =

 ∇ = ∇ = 
 
 V J ,    (5.220) 

where 

3 3

1 1
l l l

l l

jα
= =

= = J V       (5.221) 

is the volumetric mixture flow rate in m³/(m²s). If diffusion is neglected and no 
mass exchange takes place between the velocity fields or between the flow and ex-
ternal sources, this gives 

( ). 0γ∇ =J        (5.222) 
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or 

constγ =J .       (5.223) 

The MVCE has the remarkable feature that it couples the temporal pressure 

change through the compressibility ( )21/ aρ  with 

a) the convective specific volume change 
3

1

. l l
l

α γ
=

 ∇  
 
 V  for the control volume; 

b) the change in the specific volume of the mixture associated with the net specific 

volume change for the mixture due to the mass sources 
3

1

/v l l
l

γ μ ρ
=
 ; 

c) the density change due to the spatial pressure, entropy and concentration 
changes for the associated velocity field. 
 

Another specific property of Eq. (5.207) should be emphasized. The second term 
on the left-hand side represents the dimensionless changes in the density. This fact 
allows one to use up-wind discretization even for the pressure terms (donor-cell 
concept), because one in fact discretizes the dimensionless density change within 
the interval , ,r zθΔ Δ Δ . 

The above features of this equation make it very suitable for coupling with the 
momentum equations in order to derive an equation for the mixtures which is sim-
ilar to the Poisson equation for single-phase flow. 

For the case of negligible diffusion the right-hand side of the MVCE contains 
no differential terms: 

( ) ( )
max

1

/
i

v l l
l l l l l li li li l

il l li

D Ds s C
s C

γ ∂ρ ∂ρα μ μ μ μ ρ
ρ ∂ ∂

+ +

=

   = − − + −  
   

 . (5.224) 

This means that during numerical integration the influence of the changes of 
entropies and concentrations on the pressure field can be taken into account in a 
single step only (without outer iterations). The computer code architecture is thus 
extremely simplified, speeding up the numerical integration and therefore making 
it cheaper. This is an important feature of the entropy concept presented here and 
used in the IVA computer code development compared to the concepts of other 
computer codes, e.g. TRAC Liles et al. (1978, 1981), COBRA-TF Kelly and Kohrt 
(1983), COBRA/TRAC Thurgood et al. (1983) and AFDM Bohl et al. (1988). 

The right-hand side of the pressure equation, Eq. (5.207), does not contain any 
specific entropy. As a result, the pressure change described by Eq. (5.207) is not 
dependent on the reference temperature and pressure for computation of the spe-
cific entropies for the specific components. 

Comparing Eqs. (5.212) and (5.213) it is evident that if systems in which at 
least one of the gas components deviates from the perfect gas behavior are  
approximated as consisting of perfect gasses, an entropy imbalance of about  

( ) ( )
max

*

2

i
np e
il l l il il v il il l

i

s D C Cα ρ γ γ μ μ
=

 − Δ ∇ ∇ + −      (5.225) 
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is introduced. This is a very surprising result. I call this result the non-perfect gas 
paradox. 

5.16 Linearized form of the source term for the 
temperature equation 

The source terms with fluctuation components neglected 

( ) ( )
max

,
1

i
N

l l l l l l iwl iwl il
i

DT P q h hτ
ηα ρ δ ε μ

=

′′′= + + + −  

( ) ( )
max3

1 1

n

Mml Ml Ml nml nm nl
m n

h h h hσμ μ
= =

 
+ − + − 

 
     (5.226) 

will be next rewritten for each velocity field in a form that allows the use of 
implicit integration schemes. The conditions governing heat and mass transfer can 
change during the time step, thereby influencing the averaged rate for the trans-
ported quantity. This feedback effect during a single time step may be crucial in 
the case of a number of applications associated with strong heat and mass transfer 
processes. The first work known to this author formalizing source terms is those 
by Solbrig et al. published in 1977. Solbrig et al. considered mass and energy equ-
ations in a closed system for two single component phases. The meta-stable state 
of the phases was not allowed in their work. Instead the pressure depending mass 
sources are defined adjusting the state of each phase to the saturation with the 
changing pressure. But even the meta-stable state is the driving force for sponta-
neous evaporation and condensation, and therefore has to be taken into account as 
we do in our analysis. 

The following definitions and assumptions are used here: 

max

2 2 2
1

i

pw iw piw
i

c C c
=

= ,       (5.227) 

max

3 3 3
1

i

pw iw piw
i

c C c
=

= ,       (5.228) 

max

2 2 2
1

i

p i pi
i

c C c
=

= ,      (5.229) 

 
max

3 3 3
1

i

p i pi
i

c C c
=

= ,      (5.230) 

( )2 2
1 1 1 1 1M M pM Mh h c T Tσ σ− ≈ −    and   2

1 1M Mp pσ ≈ ,   (5.231) 
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( )3 3
1 1 1 1 1M M pM Mh h c T Tσ σ− ≈ −    and   3

1 1M Mp pσ ≈ ,   (5.232) 

( )1 1
2 2 2 2 2M M pMh h c T Tσ σ− ≈ − ,     (5.233) 

( )1 1
3 3 3 3 3M M pMh h c T Tσ σ− ≈ − ,     (5.234) 

( ) ( ) ( )
max

2 2 3 2 2 3 2 2 3
1

n

M M M n n n p
n

C h h C h h c T T
=

− + − ≈ − ,  (5.235) 

( ) ( ) ( )
max

3 3 2 3 3 2 3 3 2
1

n

M M M n n n p
n

C h h C h h c T T
=

− + − ≈ − ,  (5.236) 

( ) ( )
max

2 2 2 2 2
1

i

i iw i pw w
i

C h h c T T
=

− ≈ − ,    (5.237) 

( ) ( )
max

3 3 3 3 3
1

i

i iw i pw w
i

C h h c T T
=

− ≈ − .    (5.238) 

It is assumed that the properties of the mass leaving the velocity field are equal to 
the properties of this donor field. Here I introduce the product of the effective heat 
transfer coefficient and the interfacial area density and designate this by m

l
σχ . The 

subscript l designates the location inside the velocity field l and the superscript 
mσ  designates the location at the interface σ  dividing field m from field l. 
Superscripts are only used if the interfacial heat transfer is associated with mass 
transfer. If there is heat transfer only, the linearized interaction coefficient is as-
signed the subscript ml only, this indicating the interface at which the heat transfer 
takes place. These rules are valid also for the wall. Actually, the wall is treated as 
an additional field. The result is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 21 31 1 1 1

2 2 3 3
1 1 21 2 1 31 3 1 1 1 1 1 1 1

N w w w w w
k pM M

w w

DT P T T c T T

T T T T T T T T T T

τ σ σ σ

σ σ σ σ

α ρ δ ε χ μ μ

χ χ χ χ χ

= + + − + + −

+ − + − + − + − + −

 

( ) ( ) ( )
max

2 3
1 1 1 1 21 1 1 31 1 1

1

i

iw iw i pM
i

h h c T T T Tσ σμ μ μ
=

 + − + − + −  ,  (5.239) 

( ) ( ) ( )2 2 2 2 2 2 2 2 2 12 2 2 2
N w w w w

k pMDT P T T c T Tτ σ σ σα ρ δ ε χ μ= + + − + −  

( ) ( ) ( ) ( ) ( )2 2 2 2 32 32 3 3 2 21 2 1w w pw w pc T T c T T T Tχ μ χ μ χ+ + − + + − − −  

( ) ( )1 1 1
2 2 2 12 2 2 2pMT T c T Tσ σ σχ μ+ − + − ,    (5.240) 
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( ) ( ) ( )3 3 3 3 3 3 3 3 3 13 3 3 3
N w w w w

k pMDT P T T c T Tτ σ σ σα ρ δ ε χ μ= + + − + −  

( ) ( ) ( ) ( ) ( )3 3 3 3 32 23 2 3 2 31 3 1w w pw w pc T T c T T T Tχ μ χ μ χ+ + − − + − − −  

( ) ( )1 1 1
3 3 3 13 3 3 3pMT T c T Tσ σ σχ μ+ − + − .    (5.241) 

The energy jump condition at the interfaces yields the following for the 
condensation sources 

( ) ( )1 1 2 2
2 2 2 1 1 1

12 12 2 1
1 2

0
M M

T T T T

h h

σ σ σ σ

σ σ

χ χ
μ ψ

− + −
= ≥

−
,    (5.242) 

( ) ( )1 1 3 3
3 3 3 1 1 1

13 13 3 1
1 3

0
M M

T T T T

h h

σ σ σ σ

σ σ

χ χ
μ ψ

− + −
= ≥

−
,   (5.243) 

for 1 0MC > . Here the integer switches 

( ) ( ){ }1 1 2 2
12 2 2 2 1 1 1

1
1

2
sign T T T Tσ σ σ σψ χ χ = + − + −  ,  (5.244) 

( ) ( ){ }1 1 3 3
13 3 3 3 1 1 1

1
1

2
sign T T T Tσ σ σ σψ χ χ = + − + −    (5.245) 

guarantee that the mass sources are non-negative. For 1 0MC =  we have 12 0μ = , 

and 13 0μ =  because there is nothing to condense. The energy jump condition at 
the interfaces yields the following for the evaporation sources: 

( ) ( ) ( )1 1 2 2
2 2 2 1 1 1

21 12 2 1
1 2

1 0
M M

T T T T

h h

σ σ σ σ

σ σ

χ χ
μ ψ

− + −
= − − ≥

−
, for 2 0,MC >  (5.246) 

( ) ( ) ( )1 1 3 3
3 3 3 1 1 1

31 13 2 1
1 3

1 0
M M

T T T T

h h

σ σ σ σ

σ σ

χ χ
μ ψ

− + −
= − − ≥

−
, for 3 0MC > . (5.247) 

For 2 0MC =  we have 21 0μ =  because there is nothing to evaporate. Similarly for 

3 0MC =  we have 31 0μ = .  
The mass transfer at heated or cooled walls is defined similarly: 
 

Condensation: 

( ) ( )1 1
1 1 1

12 12 2 1
1 2

0
w w

w w ww w
cond film

M M

T T T T
f

h h

σ σ σ σ

σ σ

χ χ
μ ψ →

− + −
= ≥

−
,   (5.248) 
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( ) ( ) ( )1 1
1 1 1

13 13 3 1
1 3

1 0
w w

w w ww w
cond film

M M

T T T T
f

h h

σ σ σ σ

σ σ

χ χ
μ ψ →

− + −
= − ≥

−
. (5.249) 

Here we introduce the factor cond filmf →  which determines how much of the con-

densed vapor is going into the film. For 1cond filmf → =  we have film condensation at 

the wall. For 0cond filmf → =  we have droplet condensation at the wall. The decision 

which of the mechanisms is active depends on the wetability of the surface and its 
orientation in space. 

 

Evaporation: 

( ) ( )2 2
2 2 2

21 21 2 1
1 2

w w
w w ww w

M M

T T T T

h h

σ σ σ σ

σ σ

χ χ
μ ψ

− + −
= −

−
  

( ) ( )
( ) ( )

2
2 2

21 0
w

w ww
T p T T p T

h p h p

σ σχ χ
ψ

′ ′   − + −   = − ≥
′′ ′−

, for 2 0,MC >  (5.250) 

( ) ( )3 3
3 3 3

31 31 3 1
1 3

w w
w w ww w

M M

T T T T

h h

σ σ σ σ

σ σ

χ χ
μ ψ

− + −
= −

−
 

( ) ( )
( ) ( )

3
3 3

31 0
w

w ww
T p T T p T

h p h p

σ σχ χ
ψ

′ ′   − + −   = − ≥
′′ ′−

, for 3 0MC > . (5.251) 

In deriving Eqs. (5.231) and (5.232) the following assumptions are made  

( )2 3
2 3, , ,w w

w wT T T T T pσ σ σ σ ′= ,     (5.252) 

( )2 3
1 1,M Mh h h pσ σ ′′= ,      (5.253) 

and 

( )1 1
2 3,M Mh h h pσ σ ′= .      (5.254) 

Here again the integer switches 

( ) ( )( ){ }2
21 2 2

1
1

2
w w

w wsign T p T T p Tσ σψ χ χ′ ′   = − − + −    ,  (5.255) 

( ) ( )( ){ }3
31 3 3

1
1

2
w w

w wsign T p T T p Tσ σψ χ χ′ ′   = − − + −    ,  (5.256) 

( ) ( ){ }1 1
12 1 1 1

1
1

2
w w w

w w wsign T T T Tσ σ σ σψ χ χ = + − + −  ,     (5.257) 

and conditions for film condensation otherwise 12 0wψ = , 
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( ) ( ){ }1 1
13 1 1 1

1
1

2
w w w

w w wsign T T T Tσ σ σ σψ χ χ = + − + −       (5.258) 

and conditions for droplet condensation otherwise 13 0wψ = , guarantee that the 
mass sources are non-negative. 

Substituting for the evaporation and condensation mass sources one obtains 

( ) ( )

( ) ( ){ }

( ) ( ){ } ( ) ( ) ( )

1 1 1 1 1 1 1 1 1

2
21 2 2

1
1 1

3
31 3 3

N w w
k

w w
w w

pM w

w w
w w

DT P T T

T p T T p T
c

T T
h p h p

T p T T p T

τ σ σ

σ σ

σ

σ σ

α ρ δ ε χ

ψ χ χ

ψ χ χ

= + + −

 ′ ′   − + −    
 − −
  ′′ ′−
 ′ ′   + − + −    

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

max

1 1 21 2 1 31 3 1 1 1 1
1

2
1 1 12 2 1 1 2 2

1 1 1 12 2 2 2 1 1 1 2 1
1 2

1

i

w w iw iw i
i

pM

M M

T T T T T T h h

c T T
T T T T T T

h h

σ
σ σ σ σ σ σ

σ σ

χ χ χ μ

χ ψ χ χ

=

+ − + − + − + −

−
 + − − − − + −  −


 

( ) ( ) ( ) ( ) ( )3
1 1 13 3 1 1 3 3

1 1 1 13 3 3 3 1 1 1 3 1
1 3

1
pM

M M

c T T
T T T T T T

h h

σ
σ σ σ σ σ σ

σ σχ ψ χ χ
−

 + − − − − + −  −
, 

    (5.259) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2 2

21 1
12 1 1 1 2 22 1

1 2

2 2 2 2 32 32 3 3 2 21 2 1

N w w
k

pMw w w w
cond film w w w

M M

w w pw w p

DT P T T

c
f T T T T T T

h h

c T T c T T T T

τ σ σ

σ σ σ σ σ
σ σ

α ρ δ ε χ

ψ χ χ

χ μ χ μ χ

→

= + + −

 + − + − −  −

+ + − + + − − −

 

( ) ( ) ( ) ( )1
2 2 21 1 1 1 2 2

2 2 2 12 2 2 2 1 1 1 2 1
1 2

pM

M M

c T T
T T T T T T

h h

σ
σ σ σ σ σ σ

σ σχ ψ χ χ
−

 + − + − + −  −
, 

    (5.260) 



274      5 First and second laws of the thermodynamics 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 3 3 3 3 3 3 3 3

31 1
13 1 1 1 3 33 1

1 3

3 3 3 3 32 23 2 3 2 31 3 1

1

N w w
k

pMw w w w
cond film w w w

M M

w w pw w p

DT P T T

c
f T T T T T T

h h

c T T c T T T T

τ σ σ

σ σ σ σ σ
σ σ

α ρ δ ε χ

ψ χ χ

χ μ χ μ χ

→

= + + −

 + − − + − −  −

+ + − − + − − −

  

( ) ( ) ( ) ( )1
3 3 31 1 1 1 3 3

3 3 3 13 3 3 3 1 1 1 3 1
1 3

pM

M M

c T T
T T T T T T

h h

σ
σ σ σ σ σ σ

σ σχ ψ χ χ
−

 + − + − + −  −
. 

    (5.261) 

The above expressions can be rewritten in the compact form 

3
*

1

N T T
l l lk k

k

DT c a T
=

= −       (5.262) 

where 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

max

1 1 1 1 1 1 1 1 1 1
1

2 3
21 2 31 3

1
1 1 1

2 3
21 31

i
T

k iw iw i w w
i

w w w w
w w

pMw w w

w w
w w w

c P h h T

T p
c

T T
h p h p

T

τ

σ σ σ σ

σ σ σ

σ σ

α ρ δ ε μ χ

ψ χ χ ψ χ χ

χ

ψ χ ψ χ

=

= + + − +

   ′+ + +  
 + −
  ′′ ′−
 − + 
 


 

( ) ( )12 12 1 1 2 2 2
1 2 2 1 1 12 1

1 2

1 pM

M M

c
T T T

h h
σ σ σ σ σ σ

σ σ

ψ
χ χ χ
 −

+ − + −  
 

( ) ( )13 13 1 1 3 3 3
1 3 3 1 1 13 1

1 3

1 pM

M M

c
T T T

h h
σ σ σ σ σ σ

σ σ

ψ
χ χ χ
 −

+ − + −  
,   (5.263) 

* 2 3
11 1 21 31 1 1 1

T w
wa σ σ σχ χ χ χ χ χ= + + + + + +  

( ) ( ){ }

( ) ( ){ } ( ) ( )

2
21 2 2

1

3
31 3 3

w w
w w

pM

w w
w w

T p T T p T
c

h p h p
T p T T p T

σ σ

σ σ

ψ χ χ

ψ χ χ

 ′ ′   − + −    
 −
  ′′ ′−
 ′ ′   + − + −    
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( ) ( ) ( ) ( )
1 2
2 12 1 1 12 11 2

2 2 1 12 1 2 1
1 2 1 2

1 1
2pM pM

M M M M

c c
T T T T

h h h h

σ σ
σ σ

σ σ σ σ

χ ψ χ ψ− −
− − + −

− −
 

( ) ( ) ( ) ( )
1 3
3 13 1 1 13 11 3

3 3 1 13 1 3 1
1 3 1 3

1 1
2pM pM

M M M M

c c
T T T T

h h h h

σ σ
σ σ

σ σ σ σ

χ ψ χ ψ− −
− − + −

− −
, (5.264) 

( )
( ) ( )

1
2 12 1 21 2 1* 2

12 21 1 12 1
1 2

1 w w
pM pMT w

M M

c c
a T T

h h h p h p

σ σ
σ σ

σ σ

χ ψ ψ χ
χ

−
= − − −

′′ ′− −
,  (5.265) 

( )
( ) ( )

1
3 13 1 31 3 1* 3

13 31 1 13 1
1 3

1 w w
pM pMT w

M M

c c
a T T

h h h p h p

σ σ
σ σ

σ σ

χ ψ ψ χ
χ

−
= − − −

′′ ′− −
,  (5.266) 

( ) ( )1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
T w w

k w w pw wc P T T c Tτ σ σ σ σα ρ δ ε χ χ χ μ= + + + + +  

( )1 1
12 1 1 2

2

2 1
1 21 1 2 2 1

12 2 2 1 1 2

w w w w
cond film w w w

pM

M M

f T T T T
c

h h
T T T

σ σ σ σ σ

σ σ
σ σ σ σ σ

ψ χ χ

ψ χ χ

→
  − +  
 +   −  + +   

,  (5.267) 

( ) 2* 2 1
21 12 1 2 12 1 2 212 1

1 2

pMT w w w
cond film

M M

c
a f T T

h h
σ σ σ σ

σ σψ χ ψ χ χ→= + −
−

,  (5.268) 

* 1
22 2 2 2 2 2 32 32 3 21
T w

w w pw pa c cσ σχ χ χ μ χ μ χ= + + + + + +  

( ) ( )

( ) ( )

1 1
12 1 1 1

2

2 1
1 2

1 1 2 2
12 2 2 2 1 1 12

w w w
cond film w w w

pM

M M

f T T T T
c

h h
T T T T

σ σ σ σ

σ σ

σ σ σ σ

ψ χ χ

ψ χ χ

→
  − + −  
 +   −  + − + −   

, (5.269) 

*
23 32 32 3
T

pa cχ μ= − − ,      (5.270) 

( ) ( )1 1
3 3 3 3 3 3 3 3 3 3 3 3 3
T w w

k w w pw wc P T T c Tτ σ σ σ σα ρ δ ε χ χ χ μ= + + + + +  

( ) ( )

( )

1 1
13 1 1 3

3

3 1
1 31 1 3 3 1

13 3 3 1 1 3

1w w w w
cond film w w w

pM

M M

f T T T T
c

h h
T T T

σ σ σ σ σ

σ σ
σ σ σ σ σ

ψ χ χ

ψ χ χ

→
  − − +  
 +   − + +  

, (5.271) 

( ) 3* 3 1
31 13 1 3 13 1 3 313 1

1 3

1 pMT w w w
cond film

M M

c
a f T T

h h
σ σ σ σ

σ σψ χ ψ χ χ→
 = − + −  −

, (5.272) 
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*
32 32 23 2

T
pa cχ μ= − − ,      (5.273) 

* 1
33 3 3 3 3 3 32 23 2 31

T w
w w pw pa c cσ σχ χ χ μ χ μ χ= + + + + + +  

( ) ( ) ( )

( ) ( )

1 1
13 1 1 1

3

3 1
1 3

1 1 3 3
13 3 3 3 1 1 1

1

2

w w w
cond film w w w

pM

M M

f T T T T
c

h h
T T T T

σ σ σ σ

σ σ

σ σ σ σ

ψ χ χ

ψ χ χ

→
  − − + −  
 +   −  + − + −   

, (5.274) 

5.17 Interface conditions 

Steam only: For the case of steam only in the gas field, i.e. 1 1MC = , one has 

( ) ( ) ( )1 1 2 3
3 2 1 1 a a

dT
T T T T T p T p p p

dp
σ σ σ σ ′′ ′= = = = ≈ + −  

( )a

dT dp
T p

dp d
τ

τ
′′≈ + Δ ,     (5.275) 

( )1 1
3 2M Mh h h pσ σ ′= = ,      (5.276) 

( )2 3
1 1M Mh h h pσ σ ′′= = .      (5.277) 

Here ap  is the reference pressure for the previous time step. Note that the pressure 
p can change during the time interval considered, which can reduce or even stop 
the condensation and promote evaporation, for example. 
Flashing: For the case of spontaneous evaporation of the water, e.g. from the 
second velocity field, 

( )
2 2
1 1

2 11 1
2 2

1T T p T
σ σ

σ σ
χ χ
χ χ

  ′> + − 
 

     (5.278) 

one has 

( ) ( ) ( )1 2
2 1 a a

dT
T T T p T p p p

dp
σ σ ′′ ′= = ≈ + − ,   (5.279) 

( )2
1Mh h pσ ′′= .       (5.280) 

Similarly, for the case of spontaneous evaporation of the water from the third ve-
locity field, 
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( )
3 3
1 1

3 11 1
3 3

1T T p T
σ σ

σ σ
χ χ
χ χ

  ′> + − 
 

     (5.281) 

one has 

( ) ( ) ( )1 3
3 1 a a

dT
T T T p T p p p

dp
σ σ ′′ ′= = ≈ + − ,   (5.282) 

( )3
1Mh h pσ ′′= .       (5.283) 

Boiling at the wall: If boiling conditions are in force at the wall one has 

( ) ( ) ( )1
w

M a a

dT
T T p T p p p

dp
σ ′′ ′= ≈ + − .    (5.284) 

Non-condensibles present in the gas field: This case is much more complicated 
than the single component case, especially for diffusion-controlled interfacial 
mass transfer. 

The liquid side interface temperature during condensation processes is the satu-
ration temperature at the local partial steam pressure 

( ) ( ) ( )1 1
3 2 1 1 1 1M M a M M a

dT
T T T p T p p p

dp
σ σ ′′ ′= = = + − .  (5.285) 

5.18 Lumped parameter volumes 

If in a practical application a good mixing at any time within a control volume can 
be considered as a good approximation, the energy conservation equations in any 
of their variants simplify considerable. All convection and diffusion terms disap-
pear. What remains are the time derivatives and the source terms. We summarize 
the results of this section for this particular case in order to make easy practical 
applications. Thus, we have for the entropy, specific internal energy, the tempera-
ture and the specific enthalpy equations the following result: 

 

l
l l

ds

d
ρ α

τ ( )
max

1

1 i
N

l il il l
il

DT s s
T

μ
=

= + −  for  0lα ≥ ,  (5.286) 

( ) ( )l l l v l l v

d d
e p

d d
α ρ γ α γ

τ τ
+ *

v lDeγ= ,     (5.287) 

, _

1
l

l l
l pl l l l

T all C s

dT h dp
c

d p d

∂ρ α ρ α
τ ∂ τ′

  
 − −  
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( )
max

2

i
N np

l l il il il l
i

DT T s Cμ μ
=

= − Δ − ,    (5.288) 

( ) l
l l l v l v

dpd
h

d d
α ρ γ α γ

τ τ
− N

v lDTγ= ( )
max3,

1 1

iw

v iml ilm il
m i
m l

hγ μ μ
= =
≠

+ − . (5.289) 

 

The volume conservation equation divided by the volumetric porosity for this case 
reduces to 
 

max

2
1

1
ln

l

l v
l

dp d
D

a d d
α γ

ρ τ τ=

= − ,     (5.290) 

 
where 

( )

( )

max

max

1

1, _

2

2 , , _ _ _

1

1
li

li l

i
Nl

l il il l
il lp all C s

l
l

l l i
l

il il l
i li p s all C s except C

DT s s
s T

D

C
C

∂ρ μ
∂

μα
ρ ρ

∂ρ μ μ
∂

′ =

= ′

    
+ −    

    
 = −  
   + − 
   





. (5.291) 

5.19 Steady state 

Now we consider a steady state flows. Neglecting the time derivatives we obtain 
the following different forms of the energy conservation.  

( )e
l l l lsρ α γ ⋅∇V ( )*1 e

l l
l

T
T

α λ γ− ∇ ⋅ ∇ ( )
max

*
1

2

.
i

e
l l il l il il

i

s s D Cα ρ γ
=

   −∇ − ∇  
   

  

( )
max3,

1 1

1 iw
N

v l iml ilm il l l
m il
m l

DT s s
T

γ μ μ μ
= =
≠

 
 = + − − 
  

 ,   (5.292) 

( ) ( )e e
l l l l l l le pα ρ γ α γ∇ ⋅ + ∇ ⋅V V ( )

max
* *

1
2

i
e
l l l l il l il il

i

T e e D Cα γ λ ρ
=

   −∇ ⋅ ∇ + − ∇  
   

  

( ) *e
l l l v lp Deα γ γ′ ′+ ∇ ⋅ =V ,     (5.293) 
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( )e
l pl l l lc Tρ α γ ⋅∇V ( ) ( )*

, _

1
l

e el
l l l l l

T all C s

h
p T

p

∂ρ α γ α λ γ
∂ ′

  
 − − ⋅∇ −∇ ⋅ ∇ 
   

V  

( ) ( )
max max

*

2 2

i i
np e N np

l il l l il il v l l il il il l
i i

T s D C DT T s Cα ρ γ γ μ μ
= =

 
+ Δ ∇ ∇ = − Δ − 

 
  , (5.294) 

( ) *e e e
l l l l l l l l l lh p Tα ρ γ α γ α γλ ⋅∇ − ⋅∇ −∇ ⋅ ∇ V V  

( )
max

*
1

2

i
e e
l l il l il il l l l

i

h h D C pα γρ α γ
=

  ′ ′−∇ ⋅ − ∇ − ⋅∇ 
 

 V  

( )
max

1

ln
i

e l
l l l il il

i

p D Cδ α γ
=

+ ∇ ⋅ ∇ N
v lDTγ= .    (5.295) 

For single phase single component flows without mass transfer trough the external 
sources we obtain and neglecting second order terms including conduction we 
obtain the well known forms: 
 

( ) 1 N
vs DT

T
ρ γ γ⋅∇ =V ,     (5.296) 

( ) ( ) *
ve p Deρ γ γ γ∇ ⋅ + ∇ ⋅ =V V ,    (5.297) 

( ) ( )1 N
p v

T

h
c T p DT

p

∂ρ γ ρ γ γ
∂

  
⋅∇ − − ⋅∇ =  

   
V V ,  (5.298) 

( ) N
vh p DTρ γ γ γ⋅∇ − ⋅∇ =V V ,    (5.299) 

where 

( )*N
kDT De P qρ ε ′′′= = + +  .     (5.300) 

 

Again note the simplicity of the entropy notation of the conservation of energy 

( ) vs P T qηγ γ ρ′′′⋅∇ = +V  .     (5.301) 

Remember that in a adiabatic pipe flow in which 0q′′′ = , the friction dissipation 
causes entropy production due to  

3
lim

1
0

2 8
fr fr

h

P w y
Dη

λ λ+= > .     (5.302) 
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This is in the technology very important if one has to do with expansion of gases 
in long pipes. Without taking this term into account the gas may “freeze in the 
computation” which dies not happen in the reality. 
 

Problem: Write the conservation equation for a pipe single-phase single-
component flow without mass transfer. 
 

Solution: The mass momentum and energy conservation equations are: 

( ) 0z

d
w

dz
ρ γ =  or 

1 1 1 z

z

ddw d

w dz dz dz

γρ
ρ γ

+ = − ,   (5.303) 

2
21 1 1

0
2 2

fr v
z

h z

dw dp
g w

dz dz D

λ γ
ρ γ

 
+ + + = 

 
,    (5.304) 

( )2
lim

1
2 8

fr frv
z z

hz

ds
w y T q w s

Ddz

λ λγ ρ γ
γ

+ ′′′= + = .   (5.305) 

Problem: Assume the flow is a perfect gas and rewrite the above system in terms 
of temperature and pressure. 

Solution: Having in mind 
p

RT
ρ = , ( )p pc c Rκ = − , 2a RTκ=  and 

0 0

ln lnp

T p
s c R

T p
= −  we obtain 

1 1 1 1 z

z

ddw dp dT

w dz p dz T dz dz

γ
γ

+ − = − ,    (5.306) 

2
21 1

2 2
fr v

z
h z

dw RT dp
g w

dz p dz D

λ γ
γ

 
+ = − + 

 
,    (5.307) 

1 z

p p

sdT R dp

T dz c p dz c
− = .      (5.308) 

Solving with respect to the derivatives we finally obtain: 

2 2

2

2

1 1
2

1

fr vz z
z

p z h z

s d
w g w

c dz Ddp

dz w

a

λ γγρ ρ
γ γ

   
− + +       = −

−
,  (5.309) 
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2
2

2

2

1 1 1
21 1 1

1

fr vz z
z

p z h zz z

p z

s d
g w

c dz Das ddw dp

w dz c dz p dz w

a

λ γγ
γ γγ

γ κ

 
− + + 

 = − − =
−

, 

        (5.310) 

z
p

dT T R dp
s

dz c p dz

 
= + 

 
.      (5.311) 

The obtained system of non-homogeneous non-linear ordinary differential equa-
tion indicates important behavior immediately. For constant pipe cross section 

z constγ = , the nominator of the pressure gradient is positive. For sub-critical 
flow, w a< , the pressure gradient is therefore negative. Consequently, the veloci-
ty gradient in the second equation is positive. If the pipe is long enough for a giv-
en pressure difference acting at the both ends and the velocity approach the sound 
velocity at the exit of the pipe, w a→ , the pressure gradient tends to minus infini-
ty. We call such flow critical single phase flow. Because the multi-phase flows are 
compressible flows they obey also such behavior in pipes. Finding the conditions 
for the critical flow will be one of the tasks solved in the next chapters. We learn 
on this example haw to proceed in multiphase flows to.  

Note the difference to the solution repeated in many gas-dynamics text books, 
Albring (1970), Oswatitsch (1952), Shapiro (1953), by using the energy 
conservation for adiabatic flow neglecting the gravitation and the friction 
component in the energy equation 

21

2z v z

d
w h w wg

dz
ρ γ γ ρ + + 

 
v lqγ ′′′=  2

lim

1

2 8
fr fr

v
h

w y
D

λ λ
γ ++ . (5.312) 

In this case the energy conservation for perfect fluid simplifies to 

21

2p

dT dw
c

dz dz
= −  or ( ) 21 1

1
dT dw

M
T dz w dz

κ= − − ,   (5.313) 

and allows to write the definition of the mach number, 
2

2 w
M

RTκ
= , and the mass 

conservation equations in the following forms 

( )
2

2 2

1 1

2 1

dw dM

w dz dzM Mκ
=
 + − 

,    (5.314) 

( )
( )

2 2

2 2

1 11

2 1

Mdp dM

p dz dzM M

κ
κ
+ −

= −
 + − 

,    (5.315) 

respectively. This allows in the rearranged momentum equation for separation of 
the variables 



282      5 First and second laws of the thermodynamics 

2
2

2 4

1
1

1
2

fr

h

M
dM dz

D
M M

λ
κ

κ
− = −
− + 

 

,    (5.316) 

Albring (1970) p. 315, and for integration it analytically for constant friction 
coefficient 

( ) 2
1

2 2
0 1

2
0

2
1

1 1 1 1
ln

2 2
1

fr

h

M
z

DM M

M

κ
λκ

κ κ
κ

 
+ − +    + − = − Δ 

   + − 
 

.  (5.317) 

For critical flow at the exit 1 1M =  the results simplifies to 

( )
2 2
0 0

1 2 1 1 1
ln 1 1 1

2 1
fr

h

z
DM M

λκ
κ κ κ

 +    
− − + − = Δ    +     

,  (5.318) 

which is Eq. 21.48 in Albring (1970) p. 315. For frictionless flow the above equa-
tion is satisfied only for 0 1M = . 

5.20 Final remarks 

It should be emphasized that in the temperature equation, just as in the energy 
equation, in the enthalpy equation and in the internal energy equations, the 
specific enthalpy occurs in the mass transfer terms. In the entropy equations 
the interfacial mass source terms are associated with specific entropies. 

The most important result of this chapter is the rigorous derivation of the 
entropy equation, which reflects the second law of thermodynamics for multi-
phase systems consisting of several chemical components which are conditionally 
divided into three velocity fields. It was shown that the use of specific entropy, 
introduced by Clausius and recognized by Gibbs as a very important quantity 
more than one hundred years ago, provides the simplest method for modern 
description and modeling of complicated flow systems. The experience gained by 
the author of this work in the development of the various versions of the IVA 
computer code, Kolev (1985-1995), which are based on the entropy concept 
allows for the recommendation of the local volume and time average entropy 
equation for general use in multi-phase flow dynamics. 
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6 Some simple applications of mass and energy 
conservation 

 
This Chapter contains some simple cases illustrating the use of the mass and the 
energy conservation for describing the thermodynamic state of multi-component 
single-phase systems. The results are useful themselves or for use as a bench-
marks for testing the performance of computer codes. 

6.1 Infinite heat exchange without interfacial mass transfer 

Consider the simple case of a three-field mixture having constant component mass 
concentration without wall interaction, without any mass transfer, and with instan-
taneous heat exchange that equalizes the field temperatures at any moment. Equa-
tion (5.176) reduces to 

l
l l pl l l l

dT dp q
c R

T p T
α ρ α ρ ′′′

− = .     (6.1) 

After dividing by the mixture density 

3

1
l l

l

ρ α ρ
=

= ,       (6.2) 

and summing all three equations one obtains 

1

p

dT R dp n dp

T c p n p

−= = ,     (6.3) 

where the mixture specific heat is 

3

1

l l
p pl

l

c c
α ρ
ρ=

= ,      (6.4) 

and the effective gas constant is 

3

1

l l
l

l

R R
α ρ
ρ=

= .      (6.5) 
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Note that for the second and the third field the pseudo-gas constant is negligibly 
small. The polytrophic exponent is 

p

p

c
n

c R
=

−
.       (6.6) 

Integration of Eq. (6.3) yields 

1

0 0

n

nT p

T p

−

 
=  
 

.      (6.7) 

This change of state is associated with considerable entropy change for the gas 
phase 

1 1
1

1 1
p

dp
ds c

n pκ
 

= − − 
 

,     (6.8) 

and for the other fields 

1
l pl

n dp
ds c

n p

−= ,   for l = 2,3.     (6.9) 

There are a number of cases where such simplification forms a useful approxima-
tion instead of modeling all details of the heat transfer for inert velocity fields. 
This result was obtained for two velocity field by Tangren et al. in 1949. In ex-
panding steady state flow the steady state energy conservation for each field gives 

( )1
21 31

1 1

1ds dp
q q

dp dz X GT
′′′ ′′′= + ,     (6.10) 

2
21

2 2

1ds dp
q

dp dz X GT
′′′= − ,      (6.11) 

3
31

3 3

1ds dp
q

dp dz X GT
′′′= − .      (6.12) 

Therefore the transferred thermal power per unit mixture volume from the liquid 
to the gas necessary to equalize the temperatures is a function of the pressure gra-
dient 

1 1
21 31 1

1

1 1
p

X GT dp
q q c

n p dzκ
 ′′′ ′′′+ = − − 
 

,    (6.13) 

2
21 2 2 2 2 2

1 1
p

ds dp n dp
q X GT X GT c

dp dz n p dz

−′′′ = − = − ,   (6.14) 
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3
31 3 3 3 3

1 1
p

ds dp n dp
q X GT X GTc

dp dz n p dz

−′′′ = − = − .   (6.15) 

Useful relations are  

1 1d

dp np

ρ ρ=  ,       (6.16) 

the integrated form 

1

1

10 0

np

p

ρ
ρ

 
=  
 

       (6.17) 

and  

1 1

1
1

1

1 1
p

d

ds
nc

n

ρ ρ

κ

= −
 

− 
 

.     (6.18) 

6.2 Discharge of gas from a volume 

Consider a volume V with initial pressure and temperature p0 and T0, respectively. 
The discharged mass per unit time and volume is 

w out

F
w

V
μ ρ= .      (6.19) 

Here F is the flow cross section. The transient behavior of the pressure and tem-
perature is then described by 

2

1
out

dp F
w

a d V
ρ

τ
= −       (6.20) 

0p

dT dp
c

d d
ρ

τ τ
− =    i.e. 

1

0
0

T
p p

T

κ
κ −

 
=  

 
.    (6.21) 

Note that for perfect gases the last equation results in the isentropic relation. The 
discharge velocity and the corresponding densities are  

2

1
w RTκ

κ
=

+
,       (6.22) 

1
12

1out

κ
ρ ρ

κ
− =  + 

,      (6.23) 
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for   *ε ε≥ , and 

1 1
2 2

2 1 1
1 1

p
w RT

κ κ
κ κκ ε κ ε

ρ κ κ

− −   
= − = −   − −   

 ,   (6.24)  

( )
1

12 11
1 1

2out

w

RT

κ
κρ ρ κ ρε

κ
− 

= − − = 
 

    (6.25) 

for *ε ε< , which means  for critical and sub-critical flow, respectively. This re-
sult was obtained by de Saint Venant and Wantzel in 1838. Here  

outp

p
ε =        (6.26) 

is the pressure ratio and 

12
*

1

κ
κ

ε
κ

− =  + 
      (6.27) 

is the critical pressure ratio – see Oswatitsch (1952), Landau and Lifshitz (1987), 
p. 319. For the case of critical outflow we have 

1 1
2 12

1

dp F
p RT

d V

κ
κ

κ κ
τ κ

+
− = −  + 

,    (6.28) 

0p

dT dp
c

d d
ρ

τ τ
− = .      (6.29) 

Replacing the pressure derivative in the second equation we obtain 

1 1
2 12

1p

dT F
c p RT

d V

κ
κ

ρ κ κ
τ κ

+
− = −  + 

,    (6.30) 

or  

( )
1 1
2 1

3/ 2

1 2
1

1

dT F
R

T d V

κ
κ

κ κ
τ κ

+
− = − −  + 

,    (6.31) 

or after integrating 

( )
21 1

2 1

1/ 2
0

1 1 2
1   

2 1

F
T R

T V

κ
κ

κ κ τ
κ

−+
−

 
  = + −   + 

 

.   (6.32) 

The pressure as a function of time is computed from the isentropic equation as 
mentioned before. 
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For the sub-critical case we have 

1/ 21/ 2 1 11 2
1

1

dp F
RT

p d V

κ
κ κκ κ ε ε

τ κ

−  = − −  −   
.   (6.33) 

Replacing the temperature using the isentropic relation we obtain 

3 1
1/ 21/ 2 1 3 12
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0 0
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2
1

1
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p RT
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κ
κ κκ
κ κκ κ ε ε

τ κ

−
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, (6.34) 

or 
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0 01/ 21
0

1
2

1 1
1

out

d
p F

p RT d
p V

κ
κ κ

κ

κ
κ

ε
κ κ τ
κ κ

ε ε

−
−

−

 
− 

    =   − −    
− 

 

.  (6.35) 

Here the subscript 0 means an arbitrary state, e.g. the initial state. The equation 
has to be integrated numerically. 

6.3 Injection of inert gas in a closed volume initially filled 
with inert gas 

For the case of inert gas injection with constant mass source density nwμ  and con-

stant temperature wT  in a closed volume initially filled with inert gas at tempera-

ture and pressure T0 and p0, respectively, we have 

( )2

1 1
nw nw nw n

p

dp
h h

a d Tc
μ μ

τ
 = + −      (6.36) 

( )p nw nw n

dT dp
c h h

d d
ρ μ

τ τ
− = − .     (6.37) 

Rearranging 

2 w
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dp T
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d T
μ

τ
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d
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τ
=    or   0 nw wp p RTμ κ τ= + , (6.38) 

( )p nw p w
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c c T T

d d
ρ μ

τ τ
− = −    or   
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pT T T T

R

τ
κ κ τ
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− +

, (6.39) 
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and integrating we obtain 

0 nw wp p RTμ κ τ= +       (6.40) 
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We see that in this case the pressure increases linearly with time and the tempera-
ture tends to an asymptotic for infinite time 

( ) wT kTτ → ∞ = .      (6.42) 

6.4 Heat input in a gas in a closed volume 

For the case of no chemical reaction but introduction of heat only into the gas 
mixture we have  

2

p

dp a
q

d Tcτ
′′′= ,       (6.43) 

p

dT dp
c q

d d
ρ

τ τ
′′′− = .      (6.44) 

Bearing in mind that  

2a RTκ= ,        (6.45) 

1

p

R

c

κ
κ
−=  ,       (6.46) 

and after rearrangement we obtain 

( )1
dp

q
d

κ
τ

′′′= − ,      (6.47) 

( )ln 1
d q

T
d p

κ
τ

′′′
= − .      (6.48) 

We recognize that  

ln ln
d d

T p
d dτ τ

=        (6.49) 

results in a polytrophic change of state with polytrophic exponent equal to one,  



6.5 Steam injection in a steam-air mixture      291 

0

0

T
T p

p
= .        (6.50) 

Integrating over the time τΔ  for initial conditions 0p  and 0T  and assuming that 

the isentropic exponent does not depend on temperature and pressure we finally 
obtain 

( )0

0

1p p q d
τ

κ τ
Δ

′′′= + −  ,     (6.51) 

0
0

0 0 0

1
1

T
T p T q d

p p

τκ τ
Δ − ′′′= = + 

 
 .    (6.52) 

If the heat source term is not a time function we have 

( )0 1p p qκ τ′′′= + − Δ ,      (6.53) 

0
0

0 0

1
1

T
T p T q

p p

κ τ
 − ′′′= = + Δ 
 

.     (6.54) 

6.5 Steam injection in a steam-air mixture 

Consider a closed volume filled with air, 1nC = , at initial temperature 

273.15 20T K= +  and pressure 51 10p Pa= × . The volume is adiabatic, 0q′′′ = . 

Inject into this volume steam at a temperature 273.15 100wT K= +  and intensity 

M constμ μ μ+= = = . There is no mass generation for the inert component (air), 

that is 1 0nμ = . Compute the change in the concentration, pressure and tempera-

ture with time. The air concentration in the volume is governed by 

/n
n

dC
C

d
μ ρ

τ
= − ,      (6.55) 

or integrating within a time step τΔ , 

, / expn nC C d
τ τ

τ τ
τ

μ τ
ρ

+Δ

+Δ

 
=  

 
 .     (6.56) 

For a closed adiabatic volume occupied by a single-phase mixture, one has the 
simple form of the entropy equation in terms of temperature and pressure 

( )
, _

1 np
p pM w n n

T all C s

dT h dp
c c T T C T s

d p d

∂ρ ρ μ
τ ∂ τ′

    − − = − + Δ       
. (6.57) 
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Taking into account that 

( )1 / 1 1 0np M M
n n n n n

M MT T

h
s C R C R T

p p

∂ ∂ρρ
∂ ∂

      Δ = − − − − ≥     
       

 (6.58) 

one obtains 

, _

1p

T all C s

dT h dp
c

d p d

∂ρ ρ
τ ∂ τ′

  
− −  
   

 

( ) ( )1

1 1

M
n

M T
pM w n n

M
n n

M T

h
R T

p
c T T C C

C R T
p

∂
∂

μ ρ
∂ρ
∂

 
     = − − − 

   
 − −  
     

.  (6.59) 

For steam 

0M

M T

h

p

∂
∂

 
< 

 
,       (6.60) 

287.22
1

461.631
M n

n
M MT

R
R T

p R

∂ρ
∂

 
≈ = < 

 
,    (6.61) 

and therefore 

0

1 1

M
n

M T

M
n n

M T

h
R T

p

C R T
p

∂
∂

∂ρ
∂

 
 
  <

  
− −  

   

.     (6.62) 

Consider the case of a open volume in which in addition to the inlet flow there is 
an outlet flow that guarantees nearly constant pressure. We assume an ideal, im-
mediate intermixing of the introduced steam with the air in the volume. For this 
particular case and ideal gas mixtures one has 

( )p pM w

dT
c c T T

d
ρ μ

τ
= − .     (6.63) 

It is evident that for wT T> the volume temperature should increase monotonical-

ly until reaching wT . For steam considered as a real gas one obtains 
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( ) ( )1

1 1

M
n

M T
p pM w n n

M
n n

M T

h
R T

pdT
c c T T C C

d
C R T

p

∂
∂

ρ μ ρ
τ ∂ρ

∂

  
  
  = − − −    − −       

. (6.64) 

On the basis of Eq. (6.62), the temperature will increase somewhat more strongly 
and monotonically if the mixture is considered to be a non-perfect gas mixture. 
For single component flow the non-perfect gas term is equal to zero because of the 
multiplier ( )1n nC C− . 

 
For a closed volume, the pressure is described by 

( )

, , _ _ _

2

, _

1
1

1

1 1

i

n
n p T all C s except C

np
pM w n n

pp all C s

C
C

p

a

c T T T s C
T c

∂ρ
ρ ∂

∂ μ
∂τ

∂ρ
ρ ∂

′

′

  
+  

  
 =  
     − − + Δ      

. (6.65) 

After substituting the derivatives (A-1), (A-2) and (A-3) from Chapter 3 one ob-
tains 

( )2

, _

1 1
1 n n

M MT all C s T

p
C R T

p pa

∂ ∂ρ
∂τ ∂ ∂ρ ∂μ ′

    = + −  
     

 

( )

1

1
M

M
pM w

p

n n
p M np

n n
M T

c T T
T

R
c

T s C
p

∂ρ
∂

ρ
ρ ∂ρ

∂

    −         + −       + Δ         

.   (6.66) 

For a mixture of perfect gases this gives 

11 1 1 1
1 12

1 1 1 1

1
1 pMM n w

n
p

cp R R T T
C

a R c T

∂ μ
∂τ

 − −= + +  
 

.   (6.67) 

In a similar manner to the temperature changes, the pressure change will be  
somewhat more pronounced in a non-perfect gas than in a perfect gas mixture. 

For practical application the perfect gas mixture approximation can be used: 

ln Mw
n

d RT
C

d p

μ
τ

= − ,      (6.68) 
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( )1 1Mw pM w
M

dp
c T T

d

κμ κ
τ κ

  
= − + −  

   
,    (6.69) 

2pMMw
w

p M

cdT R
T T T

d p c

μ κκ
τ κ

 
= − 

 
   or   ln pMMw

w
p

w
M

cd T R
T

d p cT T

μ κκτ κ
κ

=
−

, 

   (6.70) 

( )1n n n MR C R C R= + − ,     (6.71) 

( )1p n pn n pMc C c C c= + − ,     (6.72) 

p

p

c

c R
κ =

−
,       (6.73) 

pM
M

pM M

c

c R
κ =

−
.      (6.74) 

A simple numerical method can be easily constructed to integrate this system of 
three non-linear ordinary differential equations. 

6.6 Heat removal from a closed volume containing 
equilibrium two-phase mixture 

Problem: Given a vessel with volume Vol filled with saturated water at steam. 
The steam volume is stratified above the water volume. The initial steam volume 

fraction is 10α . The initial pressure is 0p . The power 1
wQ σ  is removed from the 

steam volume leading to condensation of the steam. Assume that the process al-
ways occurs at saturation and compute the pressure development as a function of 

time. Assume Vol = 140 m³, 10α  = 0.75, 0.5, 0.25, and 1
wQ σ = 60 and 30 MW. 

 
Solution to the problem: First I take the volume concentration equation (5.207) 
together with (5.90) and apply it the total volume: 
 

max max

2 2 2
1 1, _

1 1 1

li

l l
l l l l l l

l ll l l l pl ll l pp all C s

q qdp T

d s T c T Ta

μ ∂ρ μ ∂ρ
τ ρ ∂ ρ ∂ρ ρ ρ′= =

     ′′′ ′′′  = − = −            
  .
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Using the assumption of thermal equilibrium 1 1
2 2 2

11

a a a

α α
ρ ρ ρ

−
= +

′′ ′′ ′ ′
, 1 12μ μ= − , 

2 12μ μ= , 1 1
1 w wq q Q Volσ σ′′′ ′′′= − = − , 2 0q′′′ = , 

1

12
wq

h h

σ

μ
′′′

=
′′ ′−

, 
1v v dT

h h T dp

′′ ′ ′− =
′′ ′−

, 

Clapeyron (1834), 0
pT

∂ρ
∂
′′  = 

 
, the volume conservation equation reduces to 

 
1

2

1 1wQdp dT

T dp Vol ad

σ

ρτ
′

= −
′

. 

 
Integrating over a time step assuming that the expression under the integral is an 
averaged value over the time step results in 

11 2

0 02
1

11 1 ww QQ dT adT
p p p

T dp Vol a T dp Vol

σσ ρτ τ
ρ α

   ′ ′′ ′′′
= − Δ ≈ − Δ     ′ ′   

.  

Note that the mass conservation ( )1 11 0
d

d
α ρ α ρ

τ
′′ ′ + − =   gives 

( )0
1 10 1 11

p p d d

dp dp

ρ ρα α α α
ρ ρ

′′ ′ −
= + + − ′ ′′−  

.   
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Fig. 6.1 Pressure as a function of time for the three different initial void fractions and for 60 
and 30 MW cooling power 
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Fig. 6.2 Void fraction as a function of time for the three different initial void fractions and 
for 60 and 30 MW cooling power 

Figures 6.1 a) and b) show the pressure dependences as a function of time for the 
three different initial void fractions and for 60 and 30 MW cooling power. Figures 
6.2 a) and b) show the corresponding void fraction dependences as a function of 
time for the three different initial void fractions and for 60 and 30 MW cooling 
power. The simple form of the volume conservation equation possesses remarka-
ble messages. We realize that the smaller the void fraction, the stronger the influ-
ence of the heat removal on the decompression. Therefore, the dynamics of such a 
system depends on the void volume 1Volα . This is clearly visible from Figs. 6.1 

a) and b). Contrary to the strong pressure reduction, we see a relatively small vari-
ation of the void fraction from Figs. 6.2 a) and b). 

6.7 Chemical reaction in a gas mixture in a closed volume 

For the case of a closed control volume filled with a multi-component gas mixture 
we have 

N
p

dT dp
c DT

d d
ρ

τ τ
− = ,      (6.75) 

2

1 dp
D

a dρ τ
= ,       (6.76) 

where for a mixture consisting of perfect gases 

( )
max

*

1

i
N

i i i
i

DT q h hμ
=

′′′= + − ,     (6.77) 
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( )
max

1
2

1 1 i
N

i i
ip

D DT R R
c T R

ρ μ
=

= + −  

( ) ( )
max max

*
1

1 2

1 1i i

i i i i i
i ip

q h h R R
c T R

μ μ
= =

 ′′′= + − + − 
 

  .   (6.78) 

For 0iμ < , *
i ih h= . For the case 0iμ >  the assumption that the origination en-

thalpy is equal to the component specific enthalpy at some specified reference 
temperature and pressure, 

( )*
, ,i i ref ref refh h T p= ,      (6.79) 

simplifies the computation but should be considered in computing a proper energy 
source due to chemical reaction. The final form of the temperature and the pres-
sure change equations is 

( ) ( )
max max2 2

*
1

1 2

1
1

i i

i i i i i
i ip p p

dT a a
q h h R R

d c c T c R
μ μ

τ ρ ρ= =

   ′′′= + + − + −       
  ,  (6.80) 

( ) ( )
max max2 2

*
1

1 2

i i

i i i i i
i ip

dp a a
q h h R R

d c T R
μ μ

τ = =

 ′′′= + − + − 
 

  .  (6.81) 

Bearing in mind that  

2a RTκ= ,        (6.82) 

1

p

R

c

κ
κ
−= ,       (6.83) 

( ) ( ) ( )
max max

*
1

1 2

1
ln 1

i i

i i i i i
i i

d
T q h h T R R

d p
κ μ μ

τ = =

 ′′′= − + − + − 
 

   

( ) ( )
max

*

1

1
1

i

i i i i
i

q h h TR
p

κ μ
=

 ′′′= − + − + 
 

 ,    (6.84) 

( ) ( ) ( )
max max

*
1

1 2

1
i i

i i i i i
i i

dp
q h h T R R

d
κ μ κ μ

τ = =

 ′′′= − + − + − 
 

  .  (6.85) 

These are remarkable equations. From Eq. (6.84) we realize that in the case of a 
chemical reaction in order to have a constant temperature the following condition 
has to hold  

( )
max

*

1

i

i i i i
i

q h h TRμ
=

′′′ = − − + .     (6.86) 
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6.8 Hydrogen combustion in an inert atmosphere 

Mixtures of hydrogen and oxygen react at atmospheric conditions over millions of 
years to produce water Kolarov (1970). At an elevated temperature of 673.15K 
this process happens within 80 days and at 773.15K within 2h Crussard (1907). A 
real combustion is possible if some specific thermodynamic conditions are satis-
fied as will be discussed in a moment. 

6.8.1 Simple introduction to combustion kinetics 

A single chemical combustion reaction containing N initial components and final 
products can be mathematically described by the so called stoichiometric equation 

1 1

N N

i i i i
i i

M Mν ν
= =

′ ′′→  ,     (6.87) 

see in Kuo (1986).  Here Mi is the chemical identification symbol of the i-th spe-
cies before and after the reaction, iν ′  is the stoichiometric coefficient of the initial 

substances, and iν ′′  is the stoichiometric coefficient of the final substances. N is 

the total number of the components participating in the reaction. The order of the 
chemical reaction is defined by  

1

N

i
i

n v
=

′= .       (6.88)  

The reaction velocity as found by Beketov  in 1865, and by Guldberg and Baare in 
1867,  has the general form 

( )
*

*

1

( )
N

i
i i i

i

dY
k T Y

d
νν ν

τ
′

=

′′ ′= − ∏ ,     (6.89) 

where k(T) is the velocity coefficient of the reaction and  

1 ,1*
,1

,1

i
i

i

C
Y

M

ρ
=         (6.90) 

is the molar density in kg-mole/m³. The dependence of the reaction velocity on the 
temperature is described by the Arrhenius law,  

( ) ( ) exp /ak T A E RT= −   ,      (6.91) 

see in Bartlmä (1975), where A = 5× 106[m3/(kg-mole)]2/s, R = 8 314 J/(kg-mole 
K) is the general gas constant, and E = 78× 106 J/(kg-mole) is the activation ener-
gy. Instead of complete modeling of the complicated H2-O2 kinetics, as is usually 
done in rocket propulsion systems design, there is a simplified possibility to de-
scribe the global chemical combustion that is frequently used in the literature: 
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2 2 22 2H O H O+ → .      (6.92) 

Therefore for a closed control volume we have 

( )2

2 2 2 2 2

*
,1 *2 *

,1 1 ,1 1 ,1 ,1 ,12H
H H H H O

dY
M M k T Y Y

d
μ α α

τ
= = − ,   (6.93) 

( )2

2 2 2 2,1 2,1

*
,1 *2 *

,1 1 ,1 1 ,1
O

O O O H O

dY
M M k T Y Y

d
μ α α

τ
= = − .   (6.94) 

One can easily see in the kinetic model the expected relations: a) the mass of hy-
drogen and oxygen is consumed to produce water-steam 

2 2 2,1 ,1 ,1 0H O H Oμ μ μ+ + = ,     (6.95) 

and b) the ratio between the reacted mass source terms is related to the mole 
masses as follows 

2 2

2 2

,1

,1

1
8

2
O O

H H

M

M

μ
μ

= = ,      (6.96) 

2 2

2 2

,1

,1

1
1 9

2
H O O

H H

M

M

μ
μ

 
= − + = −  

 
.     (6.97) 

Therefore, once the mass source term of the hydrogen mass conservation equation 
is computed all other mass sources are easily derived from Eqs. (6.96) and (6.97).  

 
Note that usually the fuel equivalence ratio 

2 2 2 2

2 2 2 2

, ,

, ,

1 1

1 1
H st H H st H

H st H H st H

C C Y Y

C C Y Y

− −
Φ = =

− −
,    (6.98) 

with a stoichiometric mass concentration 
2,st HC , is used to classify the premixed 

combustion process into three groups, 

rich combustion:  1Φ > ,    (6.99) 

stoichiometric combustion: 1Φ = ,    (6.100) 

lean combustion:   1Φ < .    (6.101) 

In the limiting  case of complete consumption of the fuel or of the oxidizer over 
the time step τΔ  we have 

( )2 2

2 2 2

1 ,1 1 ,1 1
,1 ,1 ,1

8
min , min , 8H O

H H O

C C
C C

ρ ρ ρμ
τ τ τ

 
= − = − Δ Δ Δ 

 . (6.102) 

The first term in the brackets is taken for either lean or stoichiometric mixtures, 
and the second for rich mixtures. 
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6.8.2 Ignition temperature and ignition concentration limits 

In accordance with Isserlin (1987), if the mole-fraction of H2 in the air is between 
4.1 and 74.2%, or if the mole-fraction of H2 in the hydrogen-oxygen mixtures is 
between 4 and 94%, and if the gas temperature increases above 1,ignT = 783.15 - 

863.15K, ignition is possible. Bröckerhoff et al. (2002) reviewed 10 sources and 
summarized that if the mole-fraction of H2 in the air is between 4.0 and 75% the 
burning gas temperature is 803.15 to 953.15 K with most of the authors reporting 
temperatures between 833.15 and 857.15 K. The ignition temperature is a function 
of the local species concentrations and of the pressure of the mixture. Belles re-
ported in 1958 a method for prediction of the ignition temperature based on equa-
lizing the rate of the chain-branching reaction to the half of the rate of the chain-
breaking reaction resulting in a transcendental equation 

1, 1,

_

3.11 exp( 8550 / )
1ign ign

X in atm

T T

Y p

−
= ,     (6.103) 

where the effective mole fraction of the third bodies for the formation of HO2 rad-
icals is 

2 2 2 2
0.35 0.43 0.20 1.47X H O N Ar COY Y Y Y Y Y= + + + + .   (6.104) 

In a similar way  Maas and Wanatz proposed in 1988 a method for explicit com-
putation of the ignition temperature defined as a temperature dividing the slow 
reaction from the rapid reaction region. Moser (1997) p. 38 approximated in 1997 
this method by the following equation 

{3 2 2
1, 1.03015 10 1.08375 10 ln 8.47444 10ignT −= × + × ×  

( ) }2 31 7.40849 10 1.45577 10bar bar barp p pζ ζ ζ− − + + × + ×  ,  (6.105) 

where 

2 2 2
0.3 0.5 6.5H O N H OY Y Y Yζ = + + + ,    (6.106) 

is the stokes efficiency and 5/10barp p= . The approximation is reported to be va-

lid in the region of pbar = 1 to 40 bar, T1 = 700 to 2500 K for a fuel equivalence ra-
tio 

 Φ = 0.2 to 0.4,      (6.107) 

with a stoichiometric mass concentration  

2,st HC =0.02818       (6.108) 

in air.  
As already mentioned the ignition may start at a much lower temperature but 

the velocity of the reaction is very low. That is why the term ignition temperature is 
associated with a single-step reaction because the steps absorbing energy 
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necessary to create mutually interacting radicals are absorbed in a single 
reaction which simply releases the energy. The term ignition temperature is not 
necessary if one uses appropriate multi-step reactions and in addition resolves 
the spatial variation of the controlling variables properly. In this case, as in 
nature, if the local energy dissipation is higher than the locally released energy the 
reaction cannot propagate. 

6.8.3 Detonability concentration limits 

For the history of the detonation analysis see Laffitte (1938), Wendlandt (1924), 
Chapman (1899), Jouguet (1905), Crussard (1907) and Zeldovich (1940). Belles 
(1958) analyzed how strong a shock wave must be in order to obtain parameters 
satisfying Eq. (6.86). Then he computed the enthalpy of the gas behind the shock 
for different hydrogen concentrations and compared it with the available enthalpy 
increase due to combustion.  

Table 6.1.  Predicted and observed limits of detonability of hydrogen mixtures at 300K  
and 1 atm 

System Lean limit, molar concentration 
H2 in % 

Rich limit, molar concentra-
tion H2 in % 

H2-O2 16.3 (15*) 92.3 (90*) 
H2-Air 15.8 (18.3*) 59.7 (58.9*) 

* Experimentally observed detonability limits by Mallard and Le Chatelier (1881). 

As a result he obtained the detonability limits given in Table 6.1. 

6.8.4 The heat release due to combustion 

The heat release per 1 kg of the final reaction product (in this case steam) is usual-
ly called the enthalpy of formation of steam. One should pay attention to the  
exact definition of the measured values. Dorsey (1951)  provided a review of all 
the measurements up to 1940 and selected the value  

( )
2 2 , 273.1 15 ,  1.01325 H O H O ref refh T K p bar Δ = + = =  13 425 000 J/kg.   (6.109) 

defined as follow: 

Enthalpy of formation of steam = the heat produced after reaction of 1/9 kg 
hydrogen with 8/9 kg oxygen at the condition 

2 ,H O refT  = 288.1K and 

2 ,H O refp  = 1.101325bar and then removed from the produced 1kg water- 

steam in order to obtain the same initial temperature and pressure.  

 
Note that the enthalpy of formation of water is about six times larger then the la-
tent heat of evaporation. The enthalpy of formation of steam is almost not a func-
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tion of the pressure but is a slight function of the temperature due to the differenc-
es of the specific capacities at constant pressure of the stoichiometric mixture of 
the initial products and of the resulting steam. 

 ( )2 2 2 2 2

,2

, , ,
stochiometric

H O ref

T

H O H O ref p H O p H O
T

h h c c dT+
  ′= Δ − − ≈   

2 3 6240.227 3.93108 6.9003 3.094968 10 /18.0154T T T ≈ + + −   

( )2 3 613.334 536 01 0.118206 0.383022 0.1717957 10T T T= + + −  J/kg,  (6.110) 

where /1000T T= , Dorsey (1951). The difference of the measurements of the en-
thalpy of formation and of the specific heat at constant pressure gives an agree-
ment of the computed values within 10% deviation from different authors. In Zwe-
rev and Smirnov (1987) p. 169 the value 

2H OhΔ =13 275 363 J/kg is used, which 

gives an adiabatic temperature of the burned gases of about 2773 K. In Landau 
and Lifshitz (1987) p. 655 the value 

2H OhΔ =13 333 kJ/kg is reported. Lewis and 

von Elbe (1987) p. 696 reported in 1987 the value of 13 281 kJ/kg. Cox recom-
mended in 1989 the following value 

2H OhΔ (298.15K, 1atm) = 13 431 0.017%±  

kJ/kg. A summary is given in Table 6.2. Further information on this topic can be 
found in Zwerev and Smirnov (1987), Cox (1989) and Lewis and von Elbe (1987). 

Table 6.2. Enthalpy of formation of steam 

Author 
2H OhΔ  in MJ/kg  burned gasesT  in K 

Dorsey (1951)  13.425  
Zwerev and Smirnov (1987) p. 169 13.275 2 773* 
Landau and Lifshitz (1987) p. 655 13.333  
Lewis and von Elbe (1987) p. 696 13.281  
Cox (1989) 13.435 0.017%±   

*computed 

6.8.5 Equilibrium dissociation 

Identification of the chemical system. Consider the idealized single-step reaction 

( )2 2 1 2 1 22 2H O m H O m H O+ + → + ,    (6.111) 

followed by dissociation. Six compounds are usually identified in the chemical li-
terature as important with their chemical identification symbols  

1,6 2 2 2( , , , , , )jSymb H O H O HO H O= =     (6.112) 
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consisting of two different chemical elements (O, H). Therefore 6 – 2 = 4 chemi-
cal reactions are required to describe the system. Water dissociates in two ways, 

2 2 22 2H O H O+ = ,      (6.113) 

2 22 2OH H H O+ = .      (6.114) 

Hydrogen and oxygen dissociate as follows 

22H H= ,       (6.115) 

22O O= .       (6.116) 

The four expressions can be rewritten formally as 

2 2 22 2 1 0 0 0 0H O H O HO H O× − × − × + × + × + × =   (6.117) 

2 2 22 1 0 2 0 0 0H O H O HO H O× − × + × − × + × + × =   (6.118) 

2 2 20 1 0 0 2 0 0H O H O HO H O× + × + × + × − × + × =   (6.119) 

2 2 20 0 1 0 0 2 0H O H O HO H O× + × + × + × + × − × = ,  (6.120) 

or 

6

1

0ij j
j

n Symb
=

= ,   for    i = 1, 4.     (6.121) 

Here ijn  is the stoichiometric coefficient, < 0 for reactants and > 0 for products. 

The temperature T and the total pressure p of the mixture of compounds are given. 
We look for a solution of six molar concentrations 

2 2 2
( , , , , , )T

H O H O OH H OY Y Y Y Y Y=Y ,    (6.122) 

for which the system is in a chemical equilibrium. We know from Dalton’s law 
that the system pressure is the sum of the partial pressures 

6

1
j

j

p p
=

= , j
i

p
Y

p
= ,    

6

1

1j
j

Y
=

=     (6.123) 

and that the total number of hydrogen atoms is twice that of oxygen in non-
dissociated as well in dissociated water 

1 2 4 5

1 3 4 6

2 2
1

2

Y Y Y Y

Y Y Y Y

+ + +
=

+ + +
.      (6.124) 
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We need four additional equations to close the system. The four equation are the 
enforced chemical equilibrium for the considered four reactions for the prescribed 
temperature T and pressure p. The chemical equilibrium condition is a compli-
cated relation between partial pressure ratios and the system pressure and tempera-
ture. For a mixture of perfect fluids the resulting system consists of implicit tran-
scendental equations. It is solvable by iteration. Now we consider this task in more 
detail. 
 
Chemical equilibrium conditions. The so called pressure equilibrium factors are 
defined as follows: 

max

max max

1

1 1

i

i
i i i

i in
n n

p i i
i i

K p p Y=

= =


= =∏ ∏ .      (6.125) 

For a reference pressure equal to 1bar and for pressures in dimensions of bar we 
have 

2

2 2

2

1 2

1 H O
p

H O

Y
K

p Y Y
=       (6.126) 

2

2

2

2 2

1 H O
p

H HO

Y
K

p Y Y
= ,      (6.127) 

2

3 2

1 H
p

H

Y
K

p Y
= ,       (6.128) 

2

4 2

1 O
p

O

Y
K

p Y
= .       (6.129) 

Each of the pressure equilibrium factors can be computed for the reference 
pressure and temperature 0 1p bar=  and 0 0T K=  using the chemical equilibrium 

condition 

max max
0,0, ,0,

0
1 1

ln
j j

j jch i ch i
pi ij ij j j

j j

s MH H
K n n s R

TR R TR= =

Δ Δ
= − + = − +  . (3.130) 

Here the R is the universal gas constant, Rj is the gas constant of the j-th compo-
nent,  

max

,0, 0
1

j

ch i j ij j
j

H h n M
=

Δ =       (6.131) 

and  

0 0j j js s R=         (6.132) 
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are the dimensionless reference entropies of the species j. Equation (6.130) is ap-
plied for each of the four selected chemical reactions resulting in 

( )1 ,0,1 01 02 03ln / 2 2p chK H R T s s s= − Δ − + + ,   (6.133) 

( )2 ,0,2 01 02 04ln / 2 2p chK H R T s s s= − Δ − + + ,   (6.134) 

( )1 ,0,3 02 05ln / 2p chK H R T s s= − Δ − + ,    (6.135) 

( )4 ,0,4 03 06ln / 2p chK H R T s s= − Δ − + .    (6.136) 

Thermo-physical data required. Thermo-physical data are available in the 
chemical literature e.g. Chase (1998) and Robert, Rupley and Miller (1987). Ex-
amples for molar masses and the enthalpies of formation for a reference pressure 
of 1bar for each of the compounds are given in Table 6.3.  

 

Table 6.3. The molar mass and the enthalpy of formation for components of water vapor 
dissociation at pressure p = 0.1MPa, by Chase et al. (1998) 

j Symbol 
jM  jhΔ ,  

T = 0K 
jhΔ  

T = 0K 
jhΔ ,  

T = 298.15K
jhΔ  

T = 298.15K
kg/kg-
mole 

MJ/kg-mole MJ/kg MJ/kg-mole MJ/kg 

1 H2O 18.01528 − 238.921 13.262 − 241.826 13.424 
2 H2 2.01588 0 0 0 0 
3 O2 31.9988 0 0 0 0 
4 HO 17.00734 38.39 2.257 38.987 2.292 
5 H 1.00794 216.035 214.333 217.999 216.28 
6 O 15.9994 246.79 15.425 249.173 15.574 

 
Using the data in the table we obtain 

,0,1 / 57.471546chH R KΔ = ,     (6.137) 

,0,2 / 66.706116chH R KΔ = ,     (6.138) 

,0,3 / 51.966405chH R KΔ = ,     (6.139) 

,0,4 / 59.364404chH R KΔ = .     (6.140) 

Ihara (1977, 1979) provided the following approximation for the dimensionless 
entropies at the reference pressure and temperature for each species. 
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( ) ( )
201 0, ln 1 exp 5262 / ln 1 exp 2294 /H Os s T T   = = − − − − − −     

( ) ( ) ( )5ln 1 exp 5404 / 4ln 4.1164 ln /10T T p − − − + − −  ,  (6.141) 

202 0, 2

2

0.875
227.53

1 0.711 104 171
ln exp

682.6 24
87.457 6136.3

H

T

T
s s

T TT

T T

  +  
    = = + + + + −    

   
  + +    

 

1 3
6338 360.65 6338 6338

ln 1 exp exp 1 exp
T T T T

− −          + − − + − − −         
          

 

( ) ( )52.5ln 2.6133 ln /10T p+ − − ,     (6.142) 

( )
203 0, ln 1 exp 2239 /Os s T = = − − −   

( ) ( )ln 3 2exp 11340 / exp 18878 /T T + + − + −   

( ) ( )53.5ln 0.114 ln /10T p+ + − ,     (6.143) 

( ) ( )04 0, ln / 26.638 1/ 3 1.776 / ln 1 exp 5136 /OHs s T T T = = + + − − −   

( ) ( ) ( )5ln 1 exp 201/ 2.5ln 1.2787 ln /10T T p + + − + + −  ,  (6.144) 

( ) ( )5
0, 2.5ln 2.9604 ln /10Hs T p= − − ,    (6.145) 

( ) ( ) ( )0, ln 5 3exp 228 / exp 326 / 5exp 22830 /Os T T T = + − + − + −   

( ) ( )52.5ln 0.4939 ln /10T p+ + − .     (6.146) 

Figure 6.3 demonstrates the result of the solution of the system of equations 
(6.123), (6.124), (6.126) through (6.129) for different temperatures and pres-
sures with the algorithm developed by Vasic (1993). For comparison see the me-
thod reported by Kesselman et al. (1968) and the tables provided by Vargaftik 
(1983). We immediately realize how important it is to take into account the dis-
sociation physics in analyzing combustion processes leading to temperatures 
higher then 1600K. 
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Fig. 6.3 Molar fraction of dissociated steam as a function of temperature with pressure as  
a parameter 

Thus initially we have a gas consisting of 

2 2 21, 1, 1, 1H O H OC C C+ + = ,     (6.147) 

and finally a mixture of gases and radicals 

2 2 22, 2, 2, 2, 2, 2, 1H O H O H O OHC C C C C C+ + + + + = .   (6.148) 

Note that  

2 2 2 2 2 21, 1, 2, 2, 2, 2, 2, 2, 1,H O H O H O OH H O H OC C C C C C C C C+ − − − − − = −   (6.149) 

reflects in fact the net generation of stable steam and therefore 

( ) ( )
2 22 2, 1,formation ref p ref H O H Oh h c T C C= Δ − − .    (6.150) 

6.8.6 Source terms of the energy conservation of the gas phase 

Bearing in mind the information already introduced the expression in the brackets 
in Eq. (6.84) can then be rearranged as follows: 

( ) ( )
max max

*
1

1 2

i i

i i i i i
i i

q h h T R Rμ μ
= =

′′′ + − + −   

( ) ( ) ( )
2 2 2 2 2 2 2 2 2,ref H O H O ref H O H H H O O O H Oq h h T R R R Rμ μ μ ′′′= + − + − + −   

( ) ( )
2 2 2 2 2 2 2 2 2,ref H O H O ref H O H H O O H O H Oq h h T R R Rμ μ μ μ′′′= + − + + + . (6.151) 
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Note that for perfect gases RT pvμ μ=  which results in a very interesting inter-

pretation of the term 

2 2 2 2 2 2
( )H H O O H O H OT R R R pvμ μ μ μ+ + ≡ ,    (6.152) 

which is in fact the pvμ work associated with the disappearance and appearance 

of components with respect to zero reference pressure. 
 
Expressing on the right hand side all mass sources as a function of the hydro-

gen mass source only results in 

( )2

2 2 2

2

,

1
1

2
O

ref H H O ref H O
H

M
q h h

M
μ

  
′′′= + − + −     

 

2 2

2 2 2

2 2

1 1
1

2 2
O O

H O H O
H H

M M
T R R R

M M

  
 + + − +     

 

( ) ( )
2 2 2 2 2 2,9 8 9ref H H O ref H O H O H Oq h h T R R Rμ  ′′′= − − − + −  .  (6.152) 

Keeping in mind that  

( )
2 2 2 2, , ,H O ref H O p H O H O refh h c T T− = − ,    (6.153) 

and 

( )
2 2 2 2

9ref H O H O H H Oq h hμ μ′′′ = Δ = − Δ ,    (6.154) 

we finally obtain 

( ) ( )
2 2 2 2 2 2, ,9 8 9ref H p H O H O ref H O H Oq c T T T R R Rμ  ′′′= − − − + −   

( )
2 2 2 2 2 2 2, , ,8 9 9 9ref H H O H O p H O p H O H O refq T R R R c c Tμ  ′′′= + + − + −   

( ) ( )
2 2 2 2 2 2 2 2, , ,9 8 9 9H H O p H O H O ref H O H O p H Oh c T T R R R cμ  = − Δ + − + − +   

( )
2

81.19478267 10 10515.3H Tμ= − × − × .   (6.155) 

Consequently the term 
2
10515.3 0H Tμ × <  obviously has a cooling effect. At  

T = 3000K the cooling effect amounts to about 26% of the origination enthalpy. 
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6.8.7 Temperature and pressure changes in a closed control volume; 
adiabatic temperature of the burned gases 

Thus, the temperature and pressure changes of the burning mixture in a closed vo-
lume are governed by the equations 

( )
22

1 1
1H

dT

aT cT d p
μ κ

τ
= − −

−
,     (6.156) 

( ) ( )
2

1H

dp
a bT

d
μ κ

τ
= − − − ,     (6.157) 

where 81.2 10a = × , 10515.3c = , 8466 2049.3
1

b
κ

κ
= +

−
. The hydrogen and 

oxygen concentrations change obeying the mass conservation 

2

2
/H

H

dC

d
μ ρ

τ
= − ,      (6.158) 

2

2
8 /O

H

dC

d
μ ρ

τ
= − ,      (6.159) 

where  

0 constρ ρ= = .       (6.160) 

Therefore 

2 20

0

H Hd C
τ

μ τ ρ
Δ

= − Δ .      (6.161) 

Given the initial conditions, the system can be integrated numerically until the 
concentrations of the fuel and the oxidizer are below given limits for which no 
more oxidation is possible. The duration of the process gives the inherent time 
scale of the burning process as presented in Fig. 6.4. The higher the initial pres-
sure the faster is the burning. This information is important for selecting of an 
appropriate integration time step for large scale computational analysis. 
 

The hydrogen mass source term can be eliminated from Eqs. (6.156) and 
(6.157) and the equation obtained written in a compact form 

2
ln

a bT
dT d p

aT cT

− =
−

   or   
( )

1/

1ln ln
c

c

c

Tb
d d p

a cT
− =

−
  (6.162) 
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Fig. 6.4 Time elapsed from ignition to complete burning as a function of the initial mass 
concentration of the stoichiometric mixture fuel + oxidizer. Initial temperature 783.15K. Inert 
component is nitrogen. a) 1bar; b) 70bar; Inert component is steam: c) 1bar; d) 70bar 

can be integrated analytically assuming that constκ ≈ . The result 

( )
( )

1

0
1

0 0

c

c

c

c

a cTT p

T pa cT

−

−

−
=

−
      (6.163) 

can be further simplified by noting that c >> 1 

0
0

0 0 0

1
p pT p c

T
T p a p

 −= + 
 

.     (6.164) 

Bearing in mind that 0
0

0

1
c p p

T
a p

−>>  the solution converges to those of heat input 

only in a closed volume obtained previously. Using Eq. (6.163) and substituting for 
the pressure into Eq. (6.156) we obtain 

( )
( )

( )
2

0
1

0 0

11
Hm c

c

TdT

da cT p a cT

κ
μ

τ −

−
= −

− −
,    (6.165) 

where 2 1/ 2m c= − ≈ . After integrating with respect to time and solving with re-
spect to the temperature we obtain 
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( )
( ) ( )
( )

2

1

1

0
1 1

0 00
0

1 11 1
m

Hm c

c

c m T
T a d

c pa cT a cT

τκ
μ τ

−
−

Δ

− −

 
  − −  = − −  − −    

   

( )
2

0

0

0 0

1

1 1 H

a cT
a

c T
c d

p

τ

κ μ τ
Δ

 
 − ≈ − 
 − −  


.    (6.166) 

For the limiting case of complete consumption of the fuel or of the oxidizer over 
the time step τΔ  we have 

( )
( ) ( )
( )

( )
2 2

1

1

0 0
1 1

00
0

1 11 1
min ,  8

m

H Om c

c

c m T
T a C C

c pa cT a cT

κ ρ
−

−

− −

 
  − −  = − + Δ Δ  − −    

 

( ) ( )
2 2

0

0 0

0

/
/

1 1 min ,  8H O

a c T
a c

T
c C C

p

ρκ

−≈ −
+ − Δ Δ

.   (6.167) 
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Fig. 6.5 Temperature after burning as a function of the initial mass concentration of the 
stoichiometric mixture fuel + oxidizer. Initial temperature 783.15 K. Initial pressure: inert 
component is nitrogen. a) 1 bar; b) 70 bar; inert component is steam: c) 1 bar; d) 70 bar 
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This result is valid for the case of no steam dissociation, i.e. for a burned products 
(steam) temperature below 1600 K. For higher temperatures κ  and R are no long-
er constant and the integration has to be performed numerically. Note that for 
temperature higher then 1600 K the specific capacity at constant pressure changes 
dramatically due to the thermal dissociation and the “effective isentropic expo-
nent” tends to unity which clearly reduces the right hand side of Eqs. (6.156) and 
(6.157). Figures 6.5 and 6.6 demonstrate the error in the final temperature and 
pressure made if the dissociation is not taken into account. For low pressure the 
difference in the final temperatures may be higher then 1500 K, and for high initial 
pressure the difference in the final pressures may be greater then 450 bar. 
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Fig. 6.6 Pressure after burning as a function of the initial mass concentration of the stoichi-
ometric mixture fuel + oxidizer. Initial temperature 783.15 K. Initial pressure: inert compo-
nent is nitrogen. a) 1 bar; b) 70 bar; inert component is steam: c) 1 bar; d) 70 bar 

An easy method of indication of combustible gases in pipelines intended to 
work with saturated steam is to measure their temperature. The accumulation of 
combustible gases is manifested in a temperature reduction. An example is given 
in Fig. 6.7 for steam lines at 70bar nominal pressure. 

In a coordinate system moving with the burning front velocity 1,bw , the temper-

ature before the front is governed by heat conduction mainly, 1, 1bw dT dz−  
2

1 1 0d T dzλ− = , with the solution ( )1 10 1, 1exp /bT T w z λ= − , where 10T  if the flame 

temperature at the burning front, Landau and Lifschitz (1987) p. 645.  
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Fig. 6.7 Initial temperature −  saturated temperature under the given partial steam pressure 
as a function of the mass concentration of a stoichiometric hydrogen-oxygen mixture with 
initial presence of steam. Initial total pressure 70bar 

Here are some velocities characterizing the interaction process for stoichiome-
tric mixture: The propagation of a laminar combustion front is reported to be 
about 1 to 30 m/s see Landau and Lifschitz (1987) p. 639  and Schmidt (1945), re-
spectively. The sound velocity in stagnant mixture at 783.15K is about 664m/s. 
The detonation velocity of 2819 m/s was measured by Lewis and Friauf in 1930 
for initial mixture temperature of 291K (see also Oswatitsch (1952) p.59). The au-
thors computed a temperature of the burning products of about 3583K. From these 
data we see that the propagation velocity of a combustion front is very small com-
pared to the sound velocity and to the detonation velocity. 

6.9 Constituents of sodium vapor 

Water vapor at boiling point consists 100% of water molecules. In contrast, at the 
boiling point of sodium 11% of the matter is not in a mono-atomic state – the 
normal state at high temperatures (Cordfunke and Konings 1990). The sodium va-
por is, therefore, a mixture of mono-atomic (monomer), diatomic (dimmer), and 
probably four-atomic (tetramer) components with ion and electron components as 
well. The general way to compute the constituency of sodium vapor is associated 
with the classical approach of chemical thermodynamics for computing the equili-
brium mole concentrations as shown in Chapter 4.2.4.3. There are differences in 
the literature in the implementation of this method by considering different num-
ber of components and the corresponding reactions. As an example I give here the 
approach clearly stated by Golden and Tokar (1967).  

 
Given the temperature T and the total pressure p of a mixture of max 3j =  com-

pounds that may react in a number max 2i =  of chemical reactions,  

max

1

0
j

ij j
j

n Symb
=

= ,  for    i = 1, maxi ,    (6.168) 
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or in particular 

 

22 0Na Na− + = , reaction Nr. 1,    (6.169) 

 

44 0Na Na− + = , reaction Nr. 2.    (6.170) 

 
Here ijn  is the stoichiometric coefficient, < 0 for reactants and > 0 for products. 

We look for a solution of three molar concentrations 
 

( )1 2 4, ,T Y Y Y=Y ,      (6.171) 

 
for which the system is in chemical equilibrium. We know from Dalton’s law that 
the system pressure is the sum of the partial pressures 

 

1 2 4p p p p= + + ,      (6.172)  

 

j
i

p
Y

p
= ,        (6.173)    

 

1 2 4 1Y Y Y+ + = .      (6.174) 

 
For each chemical reaction i we have the condition enforcing chemical equili-
brium, see Eq. (3.174), 
 

( ) ( )2 10 10 1 20 20 2

1
exp 2pK h Ts M h Ts M

TR
 = − − − + −    

 

 

( ) ( )10 20 1
10 20 1

2
exp 2

h h R
s s R

T

− 
= − − + 

 
( )1 2exp a ae e T= + , (6.175) 

 

( ) ( )4 10 10 1 40 40 4

1
exp 4pK h Ts M h Ts M

TR
 = − − − + −    

 

 

( ) ( )10 40 1
10 40 1

4
exp 4

h h R
s s R

T

− 
= − − + 

 
( )1 2exp b be e T= + , (6.176) 

 
with the chemical equilibrium factors defined as follows: 
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0 2
2 2

1
p

p Y
K

p Y
= ,       (6.177) 

 
3
0 4

4 3 4
1

p

p Y
K

p Y
= .       (6.178) 

 
Using the molar enthalpy of demerization and tetramerization given above recom-
puted per kg  

 
( )

2

2 6
20 10 12 1.666315 10 /Na

Nah h h M J kg− = Δ = − × ,    (6.179) 

 
( )

4

4 6
40 20 14 1.887987 10 /Na

Nah h h M J kg− = Δ = − × ,   (6.180) 

 
results in  
 

( )2 10 20 12 9117.50383ae h h R= − = K,    (6.181) 

 

( )2 10 40 14 20660.83388be h h R= − = K,    (6-182) 

 
which are the values used here. Stone et al. (1965) used values for the enthalpy 
and entropy changes of the mixture due to each chemical reaction derived from 
their p-v-T data. They come to ea2 = 9217.72 K and eb2 = 20772.05 K, which are 
slightly different. For the entropy terms these authors come to 
 

ea1 = ( )10 20 12 s s R− − = -9.95845,     (6.183) 

eb1 = ( )10 40 14 s s R− − = -24.59115,    (6.184) 

 
related to reference pressure p0 = 1 atm, which means 20 10s s− = −1820.006322 

J/(kgK), and 40 10s s− = -2247.139287 J/(kgK). These values are used by Hame 

(1986). Recomputed to p0 = 1 Pa results in ea1 = -21.4845, eb1 = −59.1694 which 
means 20 10 3926.50722s s− = −  J/(kgK),  40 10 5406.899772s s− = −  J/(kgK). 

Therefore, for given pressure and temperature the algebraic system of Eqs. 
(6.174), (6.177), and (6.178) completely defines the mole concentrations. Replac-
ing in Eq. (6.174) the mole concentrations 
 

2
2 2 1pY K pY= ,       (6.185) 

 
3 4

4 4 1pY K p Y=        (6.186) 

 
results in the fourth-order equation 
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3

4 2
4 1 2 1 13

00

1 0p p

p p
K Y K Y Y

pp
+ + − = ,    (6.187) 

or 
 

4 2
4 1 2 1 1 1 0a Y a Y Y+ + − = ,     (6.188) 

 
where 
 

( )2 2 1 2expp a aa K p p e e T= = + ,    (6.189) 

 

( )3 3
4 4 1 2expp b ba K p p e e T= = + .    (6.190) 

 
The solution of the fourth-order equation is performed by iteration using Newton’s 
method starting with 1 0.8Y =  and iterating 

 
2 4

1 2 1 4 1 1f Y a Y a Y= + + − ,     (6.191) 

 
3

1 2 1 4 11 2 4df dY a Y a Y= + + ,     (6.192) 

 

( )1 1Y f df dYΔ = ,      (6.193) 

 

1 1 1Y Y Y= − Δ ,       (6.194) 

 
until 1 1Y YεΔ < , where ε = 10-6. So at each given temperature and pressure the 

mole concentrations are uniquely defined. The mixture moll mass is usually com-
puted by assuming instantaneous adjustment of chemical equilibrium for each 
pressure and temperature. Therefore, 
 

( ),M p T ( )1 1 2 2 4 4 1 1 2 42 4Y M Y M Y M M Y Y Y= + + = + + ( )2
1 1 2 14 3 2M Y a Y= − − .

        (6.195) 
Knowing the mole concentrations iY , the moll masses iM , and the mixture mole 

mass M the component mass concentrations iC are then 

i i iC Y M M= .      (6.196) 

 
The method presented here for computation of the components of the gas mix-

ture is sometimes called the quasi-chemical method in the literature. Thus, know-
ing the concentration of the constituents at each pressure and temperature, the ca-
loric properties of the vapor can be computed. 
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7 Exergy of multi-phase multi-component 
systems 

7.1 Introduction 

Fluids at pressures and temperatures higher then the environment pressures and 
temperatures may perform technical work at the costs of their internal energy. 
Experience shows that not all available internal energy of fluids may be consumed 
for performing technical work but only part of it. The industrial revolution 
initiated with the invention of the steam machine started also the discussion on how 
much of the internal fluid energy may be transferred under given circumstances in 
technical work. The result of this discussion is well presented in the references and 
text books Baer (1996), Elsner (1974), Gouy (1889), Rant (1956-1964), Reynolds 
and Perkins (1977), Stephan and Mayinger (1998) and Zwicker (1976). We will 
shortly demonstrate the main ideas on a single-phase multi-component open 
system in which the spatial intermixing at any time is assumed to be perfect. 

We will emphasize the different definitions of the exergy used in the Anglo-
Saxon thermodynamic literature and in the German literature. Thereafter, we will 
discuss different limiting cases. On the example of the heat pump we will 
demonstrate a practical application of the exergy. 

Finally, we consider the exergy of multi-fluid mixtures for which each of the 
fluids consists of many chemical components.  

7.2 The pseudo-exergy equation for single-fluid systems 

The energy conservation equation written in a specific enthalpy form is 

Ndh dp
DT

d d
ρ

τ τ
− = ,      (7.1) 
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where 

( ) ( ) ( )
max max

, , , ,
1 1

i i
N

k i in i in i i out i out i
i i

DT P q h h h hρ ε μ μ
= =

′′′= + + + − − − 
 

( ) ( )2 21

2 in in out outμ μ + − − −  
V V V V     (7.2) 

are different components of the energy input into the flow. kP  and ε  are 

irreversible components of the energy dissipation per unit volume of the flow for 
whatever reason. The thermal energy (heat) introduced per unit time into unit 
volume of the flow is q′′′ . The specific energy of the system is influenced by the 

difference between the in-flowing and the system enthalpy of the chemical 

components ( )
max

, ,
1

i

i in i in i
i

h hμ
=

−  as well as by the difference between the out-

flowing and the system enthalpy of the chemical components ( )
max

, ,
1

i

i out i out i
i

h hμ
=

− . 

Sources and sinks of fluid mass in the system with a velocity different from the 
system fluid velocity also give rise to the internal energy change, 

( ) ( )2 21
2 in in out outμ μ − − −  

V V V V . 0inμ ≥  and 0outμ ≥  are the inflow and 

outflow mass per unit volume and unit time, i in outμ μ μ= − . The complete 

equivalent to this equation in its entropy form is 

( )
max

1

1 i
N

i i
i

ds
DT s s

d T
ρ μ

τ =

= + − .     (7.3) 

For the derivation see Chapter 5 or Kolev (1995, 1997, 1998).  
In order to come to the exergy definition Elsner (1974), Reynolds and Perkins 

(1977) used the energy conservation equation for an infinite time step without 
irreversible entropy sources and combined it with the entropy conservation 
equation with irreversible entropy sources.  Then they simply eliminate the 
thermal energy from both equations. In this way the exergy of the thermal energy 
is not defined, which is a disadvantage of their approach, the reason why we will 
not follow this approach but only use their exergy definition. Note that in our 
quantitative statement we take into account in the energy conservation equation 
the same irreversible terms as in the entropy equations. We emphasize that the two 
equations are mathematically equivalent (Legendre transformed by using the 
Gibbs definition of specific entropy). 

Now we multiply the entropy equation by the environment temperature, sub-
tract it from Eq. (7.1), multiply the resulting equation by the time differential and 
divide by the fluid density. The result is called here the pseudo-exergy equation 

( )
max

1

1
i

N
i i

i

T
dh vdp T ds v DT T s s d

T
μ τ∞

∞ ∞
=

  − − = − + −  
  

 .  (7.4) 



7.3 The fundamental exergy equation      323 

Note the appearance in the right-hand site of the so called efficiency coefficient 
1 /T T∞−  called Carnot coefficient – compare with Carnot in 1824.  

As already mentioned, there are different definitions of the exergy used in the 
Anglo-Saxon thermodynamic literature and in the German literature. Next we 
discuss the differences. 

7.3 The fundamental exergy equation 

7.3.1 The exergy definition in accordance with Reynolds and Perkins 

Assuming constant environmental conditions, p const∞ =  and T const∞ = , Rey-

nolds and Perkins (1977) defined the specific quantity 

:pdv
xe e p v T s∞ ∞= + − ,      (7.5) 

as a specific internal pdv exergy. pdv here is not an exponent but a superscript, 
whose meaning will be clear in a moment. Note that the exergy is a combination 
of state variables. Consequently the exergy itself is a state variable. The exergy is 
a remarkable quantity. As noted by the authors, it is obviously a function of the 
environmental temperature and pressure besides the two other state variables 
selected as thermodynamically independent, 

( ), , ,pdv pdv
x xe e e v T p∞ ∞= .     (7.6) 

Note the similarity and the difference to the Gibbs function e pv Ts+ − , which 

does not depend on the environmental parameter. The differential form of the ex-
ergy is 

1
pdv pdv

pdv x x
x

v e

e e T T
de de dv de p p dv

e v T T
∞ ∞

∞
   ∂ ∂    = + = − + −       ∂ ∂       

. (7.7) 

The last form is obtained having in mind the thermodynamic definition of temper-
ature and pressure, see Eqs. (9) and (20) in Reynolds and Perkins (1977), 

1 1
pdv
x

vv

e s T
T

e e T
∞

∞
 ∂ ∂ = − = −   ∂ ∂  

,    (7.8) 

and 
pdv
x

ee

e s T
p T p p

v v T
∞

∞ ∞ ∞
 ∂ ∂ = − = −   ∂ ∂  

,    (7.9) 

see in Reynolds and Perkins (1977). Note that the partial derivative of the exergy 
with respect to the specific internal energy at constant specific volume, Eq. (7.8) 
gives exactly the Carnot coefficient. The minimum of this function is defined by 
simultaneously equating the partial derivatives to zero, 
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1 0
pdv
x

v

e T

e T
∞ ∂ = − = ∂ 

,      (7.10) 

and 

0
pdv
x

e

e T
p p

v T
∞

∞
 ∂ = − = ∂ 

.     (7.11) 

This leads to the conclusion that the pdv exergy has an extremum and this 
extremum is at T T∞=  and p p∞= , compare with Reynolds and Perkins (1977). 

Because the exergy is decreasing function with decreasing pressure and 
temperature we conclude that this extreme is a minimum. 

7.3.2 The exergy definition in accordance with Gouy (l’énergie 
utilisable, 1889) 

Assuming constant environmental conditions, p const∞ =  and T const∞ = , Gouy 

in 1889 Eq. 2, p.506 defined the specific vdp exergy as 

( ) ( ):vdp pdv
x xe h T s e pv T s e p v T s p p v e p p v∞ ∞ ∞ ∞ ∞ ∞= − = + − = + − + − = + − , 

       (7.12) 

which differs from the Reynolds and Perkins (1977) definition 

:pdv
xe e p v T s∞ ∞= + − ,      (7.13) 

by the residual  

( )vdp pdv
x xe e p p v∞− = − .      (7.14) 

Note again that vdp here is not an exponent but a superscript, whose meaning will be 
clear in a moment. The name εχ εργον  = available work, was given by Rant 

(1956-1964). Note again the similarity and the difference to the Gibbs function 
e pv Ts+ − , which does not depend on the environmental parameter. Of course for 

relaxed fluid at environmental conditions p p∞= , vdp pdv
x xe e= , and both definitions 

possess a minimum. The differential form of the exergy definition is then 

( ) 1 1vdp pdv
x x

v e

T p T v p
e e d p p v v de pdv

T e T p v
∞ ∞

∞

   ∂ ∂    = + − = − + + − +        ∂ ∂       .  
 (7.15) 

The difference  

vdp
xe e p v T s∞ ∞− = − ,       (7.16) 

is called anergy - Ruppel. The anergy can not be transferred into mechanical work. 
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Using the two above introduced definitions of the exergy the pseudo-exergy 
equation (7.4) can be transferred into two alternative forms of the exergy equation. 

7.3.3 The exergy definition appropriate for estimation of the volume 
change work 

Using the differential form of the definition equation of the specific enthalpy 

:h e pv= + ,       (7.17) 

and replacing the specific enthalpy differential we obtain from Eq. (7.4) 

( )
max

1

1
i

N
i i

i

T
de pdv T ds v DT T s s d

T
μ τ∞

∞ ∞
=

  + − = − + −  
  

 .  (7.18) 

Replacing with 

p p p p∞ ∞= + − ,      (7.19) 

and rearranging we obtain 

( ) ( )
max

1

1
i

N
i i

i

T
de p dv T ds p p dv v DT T s s d

T
μ τ∞

∞ ∞ ∞ ∞
=

  + − + − = − + −  
  

 . 

        (7.20) 

The assumption p const∞ =  and T const∞ =  allows us to write 

( ) xde p dv T ds d e p v T s de∞ ∞ ∞ ∞+ − = + − =    (7.21) 

where the specific quantity pdv
xe , defined by Eq. (7.5), arises. With this definition 

of the specific exergy we obtain an abbreviated notation of the integral form of 
Eq. (7.20) 

( ) ( )
2 max

1

2

,1 ,2
11

1
i

pdv pdv N
x x i i

i

T
p p dv e e v DT T s s d

T

τ

τ

μ τ∞
∞ ∞

=

  − = − + − + −  
  

  . (7.22) 

The expression 

( )
2

1

0pdv
tw p p dv∞− = − > ,     (7.23) 

defines the specific work which is required to change the volume of the fluid and 
is called useful work (Nutzarbeit), see Baer (1996), p. 50. In the literature this 
work is called also expansion or compression work depending on the sign. For 
p p∞>  and 0dv >  the expression defines the specific expansion work per unit 

mass of the fluid. Technical expansion work taken away from the fluid is 
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considered negative per definition. The understanding that Eq. (7.21) is a total 
differential was clearly expressed first by Gouy in 1889. 

Thus the available technical work is defined exactly by the fundamental exergy 
equation in integral form 

( )
2 max

1

,12 ,1 ,2
1

1
i

pdv pdv pdv N
t x x i i

i

T
w e e v DT T s s d

T

τ

τ

μ τ∞
∞

=

  − = − + − + −  
  

 . (7.24) 

7.3.4 The exergy definition appropriate for estimation of the technical 
work 

In the sense of the Gouy exergy definition, Eq. (7.4) reads 

( )
max

1

1
i

vdp N
x i i

i

T
vdp de v DT T s s d

T
μ τ∞

∞
=

  − = − + − + −  
  

 ,  (7.25) 

or in the integral form 

( )
max2

,12 ,1 ,2
11

1
i

vdp vdp vdp N
t x x i i

i

T
w e e v DT T s s d

T
μ τ∞

∞
=

  − = − + − + −  
  

 , (7.26) 

with 

2

,12

1

vdp
tw vdp=  ,       (7.27) 

interpreted as a specific technical work. Now the meaning of the superscript vdp is 
clear. 

7.4 Some interesting consequences of the fundamental 
exergy equation 

Several limiting cases can be derived from Eq. (7.26). Some of them are given as 
examples.  

A very interesting consequence of the two different forms (7.24) and (7.26) of the 
fundamental exergy equation in integral form is obtained for closed cycle processes 
in which the end and the initial fluid parameters are equal and therefore the specific 
exergy difference between the states 1 and 2 is zero. For this case we obtain 

( )
2 2

1 1

p p dv vdp∞− =  .      (7.28) 
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This conclusion is manifested in the classical example for computing the technical 
work of a piston air compressor; see e.g. Stephan and Mayinger (1998) p. 107. 
 

Let as discuss some important cases for the engineering applications: 
 

Case 1: For a closed and adiabatic system without internal irreversible energy 
dissipation, without external thermal energy supply or removal, the available tech-
nical work is exactly equal to the differences of the initial and the final exergy of 
the fluid 

,12 ,1 ,2
pdv pdv pdv
t x xw e e− = − .      (7.29a) 

,12 ,1 ,2
vdp vdp vdp
t x xw e e− = − .      (7.29b) 

The above expression is valid also for closed systems with irreversible energy dis-
sipation and heat exchange with the environment if it happens at environmental 
temperature.  
 

Case 2: If the system is closed, and there is no irreversible energy dissipation, but 
there is thermal energy exchange with the environment under temperatures 
different from the environmental temperatures, the available technical work is 

2

1

,12 ,1 ,2 1pdv pdv pdv
t x x

T
w e e vq d

T

τ

τ

τ∞  ′′′− = − + − 
  .    (7.30a) 

2

1

,12 ,1 ,2 1pdv pdv pdv
t x x

T
w e e vq d

T

τ

τ

τ∞  ′′′− = − + − 
  .    (7.30b) 

Case 3: If the real system is closed, and there is irreversible energy dissipation, 
and there is thermal energy exchange with the environment under temperatures 
different from the environmental temperatures, the available volume change work 
and the available technical work are 

( )
2 2

1 1

,12, ,1 ,2 1 1pdv pdv pdv
t irev x x k

T T
w e e vq d P d

T T

τ τ

τ τ

τ ε τ∞ ∞   ′′′− = − + − + − +   
     , (7.31a) 

( )
2 2

1 1

,12, ,1 ,2 1 1vdp vdp vdp
t irev x x k

T T
w e e vq d P d

T T

τ τ

τ τ

τ ε τ∞ ∞   ′′′− = − + − + − +   
     , (7.31b) 

which leads to 

,12, ,12
pdv pdv
t rev tw w> ,       (7.32a) 

,12, ,12
pdv pdv
t rev tw w> .       (7.32b) 

Case 4: If there is a cyclic process with the final state equal to the initial state and 
thermal energy supply only, only part of the thermal energy can be transferred in 
the technical work 
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2

1

,12, ,12, 1pdv vdp
t rev t rev

T
w w vq d

T

τ

τ

τ∞  ′′′− = − = − 
  ,    (7.33) 

compare with Carnot 1824.  
 

Case 5: If there is a process resulting in irreversible energy dissipation only, the 
available technical work is only a part of this dissipation 

2

1

,12, ,12, 1pdv vdp
t irev t irev k

T
w w vP d

T

τ

τ

τ∞ − = − = − 
  .    (7.34) 

7.5 Judging the efficiency of a heat pump as an example 
of application of the exergy 

Let as consider a heat pump, Thomson (1852), working with a cyclic steady state 
process for which at the same spatial point in the system at any time ,1 ,2

vdp vdp
x xe e= . 

The circuit of the system is closed and therefore there are no mass sinks or 
sources. Equation (7.26) therefore reads 

2 2

,12

1 1

1 1vdp
t dissipation

dissipation

T T
w vq d vq d

T T
τ τ∞ ∞

   ′′′ ′′′− = − + −       
  .  (7.35) 

Thermal power inq′′′  is introduced in the system at constant temperature Tin. Ther-

mal power outq′′′

 

is removed by the system at Tout. Somewhere under way from the 

lower to the higher level there are also unwished heat losses, dissipationq′′′  happening 

at some Tdissipation. In this case the exergy equation reads 

2 2 2

,12

1 1 1

1 1 1vdp
t in out dissipation

in out dissipation

T T T
w vq d vq d vq d

T T T
τ τ τ∞ ∞ ∞

    ′′′ ′′′ ′′′− = − − − − −           
   . 

  (7.36) 

We immediately realize that the mechanic work, which has to be performed on the 
fluid by the compressor, depends on the temperature levels at which energy is 
supplied from the environment and provided to the house. In the idealized case of 
introducing heat at environmental temperature and negligible energy dissipation 

the obtained heat from unit fluid mass 
2

1

outvq dτ′′′

 

is proportional to the compressor 

work ,12
vdp
tw

 

but not equal to it. The ratio 
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2

1

,12

: 1
out

out
vdp
t out

vq d
T

cop
w T T

τ

∞

′′′
= = >

−


     (7.37) 

is called coefficient of performance. The smaller the temperature difference which 
has to be overcome the larger is the amount of the transferred thermal energy per 
unit technical work. Usually the heat is introduced into the heat pump condenser at 
a temperature higher then the environmental temperature for instance if heat from 
another process is available. In this case the exergy of the heat introduced into the 
fluid, 

2

1

1 in
in

T
vq d

T
τ∞  ′′′− 

 
 , 

is a measure of the technical work which can be gained by an ideal Carnot cycle, 
so not utilizing this exergy is considered as a loss. This leads some authors to 
introduce the so called exergetic coefficient of performance 

22

11
2 2

,12 ,12

1 1

11

_ : 1 1

1 1

dissipationout
dissipationout

vdp vdp
t in t in

in in

TT vq dvq d
TT

ex cop
T T

w vq d w vq d
T T

ττ

τ τ

∞∞

∞ ∞

   ′′′−′′′  −   
   = = − <

   ′′′ ′′′+ − + −   
   



 
. 

  (7.38) 

This coefficient reflects the self-understanding that the heat 
2

1

outvq dτ′′′  has an 

exergetic equivalence (value) of 
2

1

1 out
out

T
vq d

T
τ∞  ′′′− 

 
 , which can be used as useful 

technical work. Thus, the exergetic coefficient of performance is a ratio of 
exergies. Only if there are no heat losses in the system is the exergetic coefficient 
of performance equal to one. If the introduction of the thermal energy happens 
under the environmental temperature we have 

_ : 1
out

T
ex cop cop

T
∞ 

= − 
 

.     (7.39) 

7.6 Three-fluid multi-component systems 

Now we consider a system consisting of three different fluids designated with 
subscript l. Each of the fluids takes only 0lα ≥  part of the total system volume. 

Each of the fluids consists of several chemical components, designated with 
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subscript i. Evaporation and condensation are allowed as well as mechanical 
transfer between the fluids having the same aggregate state as a constitutive fluid 
component. Details of the definitions of such a system are given in Chapter 1 or in 
Kolev (1994). Again as in the energy conservation equation for each fluid written 
in a specific enthalpy form we have 

l l
l l

dh dp

d d
α ρ

τ τ
 − 
 

N
lDT= ,     (7.40) 

where 
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32 2 2

, , , ,
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μ μ μ
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 + − − − + − 
 

V V V V V V . (7.41) 

are different components of the energy input into the flow. klP  and lε  are irre-

versible components of the energy dissipation per unit volume of the fluid mixture 
for whatever reason. The thermal energy introduced into the fluid per unit time in-
to unit volume of the fluid mixture is lq′′′ . The specific energy of the fluid is influ-

enced by the difference between the in-flowing and the fluid enthalpy of the 

chemical components ( )
max

, ,
1

i

il in il in il
i

h hμ
=

−  as well as by the difference between the 

out-flowing and the system enthalpy of the chemical components 

( )
max

, ,
1

i

il out il out il
i

h hμ
=

− . Injecting and removing of mass of the system with a velocity 

different to the system velocity also gives rise to the internal energy change, 

( ) ( ) ( )
32 2 2

, , , ,
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2 l in l in l l out l out l ml m l
m

μ μ μ
=

 − − − + − 
 

V V V V V V . ,l inμ  and ,l outμ  are 

the inflow and outflow mass per unit volume of the fluid mixture and unit time. 

mlμ  is the mass transferred from fluid m to fluid l per unit volume of the mixture 

and unit time. The complete equivalent to this equation in its entropy form is 

l
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d
ρ α
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max max,

1 1
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μ μ μ
= =
≠

= + − −  .   (7.42) 
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For the derivation see Chapter 5 or Kolev (1995, 1997, 1998).  
Now we multiply the entropy equation by the environment temperature, sub-

tract it from the energy conservation equation, multiply the resulting equation by 
the time differential and divide by the fluid density and fluid volume fraction. The 
result for 0lα ≥  is 
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 (7.43) 

Defining the fluid exergy as 

, :pdv
x l l l l le e p v T s∞ ∞= + − ,      (7.44) 

and the useful volume change work 

( )
2

, ,12

1

pdv
t l l lw p p dv∞− = − ,     (7.45) 

and after integration we obtain 
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, (7.46) 

the fundamental exergy equation for each fluid inside the fluid mixture. The 
essential difference to the single phase formulation is that mass and thermal 
energy transport inside the mixture is also taken into account. This equation can be 
reduced to all simple cases discussed before by setting the corresponding 
simplifying assumptions.  

In practical analysis not the available technical work from the each fluid but 
that from the mixture is of interests. To compute it we sum all the exergy 
equations and introduce the instantaneous local mass fraction of each fluid 

: l l
lx

α ρ
ρ

= ,       (7.47) 

where 
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ρ α ρ
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= = ,      (7.48) 
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is the mixture density. The result obtained after the integration 
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, (7.49) 

is the specific volume change work of the mixture. 
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,12
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or for the case of assumed equal fluid pressures (single pressure model) we have 
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In a similar way the alternative exergy equation is 
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where the specific technical work of the mixture is 

max2

,12
11

l
vdp
t l l l

l

w x v dp
=

− =  .      (7.53) 

For the case of assumed equal fluid pressures (single pressure model) we have 

max2 2

,12
11 1

l
vdp
t l l

l

w x v dp vdp
=

 
− = = 

 
  .     (7.54) 

Note that due to evaporation, condensation, or other mass transfer processes the 
mass concentration between the two selected states may change, which make the 
estimation of the integrals more complicated. For constant mass concentrations the 
exergy equations simplify. 
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7.7 Practical relevance 

The general exergy equations for mixtures provide a simple way for computing 
the available volume change work or the technical work for a variety of processes. 
The multi-fluid exergy equations allow us to estimate the changes of the available 
technical work of the system due to processes like evaporation or condensation in 
non-equilibrium mixtures, which seems to be not known up to now. It is a genera-
lization of the exergy principal to multi-phase multi-component systems. For the 
limiting case of a single fluid the equations reduce to the known relationships of 
classical thermodynamics. To the author’s knowledge, Eqs. (7.46), (7.49) and 
(7.52) are derived for the first time in Kolev (2001). 
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8 One-dimensional three-fluid flows 

We call “one dimensional” the flow in pipes or in a pipe networks. We understand 
here a flow with cross section averaged flow characteristics with special wall 
boundary layer treatment, like pressure loss modeling, heat transfer modeling etc. 
The flow axis is of course arbitrarily oriented in space. Therefore this class of 
flows is one dimensional along a curvilinear pipe axis. A network consists of pipes 
and knots. An example is illustrated in Fig. 8.1. 

 

 
 

Fig. 8.1 Pipe network 

8.1 Summary of the local volume- and time-averaged 
conservation equations 

In order to facilitate the practical application of the conservation equations derived 
in the previous chapters we give here a summary of the equations simplified for 
the case of flow in the axial direction only. The mass conservation equation (1.62) 
derived in Chapter 1 simplifies as follows 
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The mass conservation equation for each species inside the velocity field (1.90) 
derived in Chapter 1 simplifies as follows 

( )l l il vC
∂ α ρ γ
∂τ ( )

max ,
*

1

l w
il

l l l il il z v iml ilm
m

C
w C D

z z

∂∂ α ρ γ γ μ μ
∂ ∂ =

⎡ ⎤⎛ ⎞+ − = −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
∑  

for  0lα ≥ , max1,i i=       (8.2) 

 
or alternatively Eq. (1.96) 
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The particle number density equation (1.109) derived in Chapter 1 simplifies as 
follows 
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The momentum equation (2.233) derived in Chapter 2 simplifies as follows 
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Here ϕ  is the polar angle between the flow direction and the upwards directed 
vertical as shown in Fig. 8.2 
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ϕ

 
 

Fig. 8.2 Definition of the polar angle 

The entropy equation (5.125) derived in Chapter 5 simplifies as follows 
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Alternatively, the temperature equation (5.176) derived in Chapter 5 can be used 
instead of the entropy equation for some applications 
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The volume conservation equation (5.188) derived in Chapter 5 simplifies for one-
dimensional flow as follows 
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Remember that a is the sonic velocity in a homogeneous multi-phase mixture de-
fined as  
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is the mixture density. 

8.2 Treatment of the field pressure gradient forces 

8.2.1 Dispersed flows 

The pressure terms in the momentum equation are now written for a continuous 
and a disperse phase 
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is Eq. (2.178) in Chapter 2. An approximation is frequently used in the literature 
in the following form 
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8.2.2 Stratified flow 

In stratified flow the gravitation is the dominant force. It is manifested in different 
pressure distribution over the cross section which gives rise to differences in the 
averaged system pressure and the averaged field pressures. In Chapter 2 the Eqs. 
(2.103) and (2.104) 
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are derived for rectangular channels and Eqs. (2.148) and (2.149) 
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for pipes. Note that the term ... cos ...v l l gγ α ρ ϕ  does not appear any more in these 
equations. 

8.3 Pipe deformation due to temporal pressure 
change in the flow 

Pipes with elastic walls change the propagation velocity of pressure pulses  
because of the energy dissipation for mechanical deformation. The effect can be 
taken into account into the pressure equation (8.8) as follows 
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With the terms /vd dpγ  and /zd dpγ  we take into account the elasticity of the 
pipe. The method for computation of the two terms is given below.  

For closed pipe with uniform pressure the deformation caused by the pressure 
can be computed using text book solution 

( )/ * * /z rdz z Eθσ μ σ μ σΔ = − − ,    (8.24) 

( )/ * * /i i z rdr r Eθσ μ σ μ σ= − − ,    (8.25) 

( )/ * * /r zd Eθδ δ σ μ σ μ σ= − − ,    (8.26) 

where the subscripts i and a stand for inner and outer wall radius, respectively. 
Here E is the elasticity modulus e.g. for steel E=1x1011 Nm-², *μ  is the contrac-
tion number, e.g. 0.3. The axial, the radial and the angular stresses are functions of 
the pressure change of the fluid 
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Here ir  and ar  are the inner and the outer radius.  

a ir rδ = −         (8.30) 

is the wall thickness. The change of the flow volume due to elastic pipe deforma-
tion is therefore 
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where 

( ) ( ) ( )2 2 2 22 1 * 3 6 * /a i a ir r r rψ μ μ⎡ ⎤= + + − −⎣ ⎦    (8.32) 

is frequently called geometry factor. For long pipes the local distribution of pres-
sure makes it difficult to compute the axial component. Often, only the radial 
component is used 
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( ) ( ){ }2 2 2 22 1 * / *a i a ir r r rψ μ μ⎡ ⎤= + − − +⎣ ⎦ .   (8.33) 

From the geometry factor we see that the smaller the pipe wall thickness the 
stronger the effect of the pipe elasticity on the pressure wave propagation. 

The expression containing the pipe deformation can be rewritten as follows 
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where the effective velocity of sound is obviously a function of the elasticity of 
the pipe 
 

2 2 2
 

1 1 1

eff ellastic pipea a a
= + . 

 
Here  

( ) ellastic pipea E ρψ= . 

Note that if  ellastic pipea a>> , effa a≈  and if  ellastic pipea a<< ,  eff ellastic pipea a≈ . For 

elastic ducts like human vanes, the influence of the wall elasticity is substantial. 
Note, that this expression was obtained for the first time by Joukowsky in 1898. Jou-
kowsky extend the Rieman’s analysis to water flow in elastic pipe and explained the 
physical basics behind the reduction of the velocity of sound in elastic pipes. He also 
proved additional prove for this expression based on mechanical energy balance. 
Joukowsky computed numerically the influence of the axial extension and found that 
it is negligible for cases of metallic pipes used in urban environment. 
 

More complicated is the case if plastic deformations are possible. A simple me-
thod proposed by Pollak (1976) for taking this effect in pipes is 

 

( )2 2
wall i wall i i ad r d p r r rρ τ δ σ= − , 

 
where the stress-extension function ( )σ σ ε=  is material properties of the wall. 

8.4 Some simple cases 

Concentration and specific entropy propagation in incompressible flow with pre-
scribed velocity: In many practical applications where the convection is the go-
verning phenomenon the diffusion terms in the concentration and the entropy equ-
ations can be neglected. The resulting equations  
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( )il il
l l v l z v il l il

C C
w C

z

∂ ∂α ρ γ γ γ μ μ
∂τ ∂

⎛ ⎞+ = −⎜ ⎟⎝ ⎠
,   (8.34) 

( )
max

1

1 i
Nl l

l l v l z v l il il l
il

s s
w DT s s

z T

∂ ∂α ρ γ γ γ μ
∂τ ∂ =

⎡ ⎤⎛ ⎞+ = + −⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦
∑ ,  (8.35) 

can be easily analytically integrated. The eigenvalues of the characteristic  
matrix of the above system are /l l z vwλ γ γ= , where l =1,2,3 for each velocity 
field and equation, respectively. This means that changes of the concentrations 
and of the specific entropies travel with the corresponding field velocity multip-
lied by /z vγ γ . For pipes with constant cross section the multiplier is unity. If 
one changes the coordinate system for each equation with an rectangular system 
having one of the axes tangential to the curve defined with inclination 

/ ldz dτ λ=  in the time - space plane, called characteristic curves, the equations 
take a very simple form 

 ( ) ( )/il
il l il l l

dC
C

d
μ μ α ρ

τ
= − ,     (8.36) 

( )
max

1

1
/

i
Nl

l il il l l l l
il

ds
DT s s

d T
μ μ α ρ

τ =

⎛ ⎞
= + −⎜ ⎟
⎝ ⎠

∑ ,   (8.37) 

called characteristic form (Rieman). In case of no sources, that is the right-hand 
side of the equations is equal to zero,  

0ildC

dτ
= ,       (8.38) 

0lds

dτ
= ,       (8.39) 

the concentrations and the specific entropies are constant  

ilC const= ,       (8.40) 

ls const= ,       (8.41) 

along the characteristic line. The asymptotic solutions are 

/il il lC μ μ∞ = ,       (8.42) 

max

1

1 1 i
N

l l il il
il l

s DT s
T

μ
μ∞

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ .     (8.43) 

Rewriting the system in the following form 
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( ) ( )/il
il il l l l

dC
C C

d
μ α ρ

τ ∞= − ,     (8.44) 

( ) ( )/l
l l l l l

ds
s s

d
μ α ρ

τ ∞= − ,     (8.45) 

and assuming that during a time step τΔ  the expressions ilC const∞ = , 

ls const∞ = , the equations can be analytically integrated with the result 

( ) ( ), / exp /il il il il l l lC C C C d
τ τ

τ τ
τ

μ α ρ τ
+Δ

+Δ ∞ ∞

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦
∫ ,  (8.46) 

( ) ( ), / exp /l l l l l l ls s s s d
τ τ

τ τ
τ

μ α ρ τ
+Δ

+Δ ∞ ∞

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦
∫ .   (8.47) 

Note once more that the so obtained analytical solutions are valid along the cha-
racteristic curve. 

 

Steady state flow: In steady state the time derivatives are equal to zero. I split the 
resulting system in two groups of equations. For the first group 

( ) ( )/il
v il il l l l l z

dC
C C w

dz
γ μ α ρ γ∞= − ,    (8.48) 

( ) ( )/l
v l l l l l l z

ds
s s w

dz
γ μ α ρ γ∞= − ,    (8.49) 

assuming that along zΔ  the expressions ilC const∞ = , ls const∞ = hold, the equa-
tions can be analytically integrated with the result 

( ) ( ), / exp /
z z

il z z il il il v l l l l z

z

C C C C w dzγ μ α ρ γ
+Δ

+Δ ∞ ∞

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦
∫ ,  (8.50) 

( ) ( ), / exp /
z z

l z z l l l v l l l l z

z

s s s s w dzγ μ α ρ γ
+Δ

+Δ ∞ ∞

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦
∫ .  (8.51) 

The second group of equations is discussed below. The mass conservation eq-
uation 

( )l l l z v l

d
w

dz
α ρ γ γ μ= ,      (8.52) 

is expanded and the densities are replaced by their equals from the series 
expansion of the state equations. The result is 

2

1l l l l z
l l

l l l z

d dw dp d
D

dz w dz a dz dz

α α α γα α
ρ γ

+ + + = .   (8.53) 
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Using the concentration and the entropy equations we obtain  

max

2

1 i
v l l l l il

l l
il l z l l il

ds dC
D

w s dz C dz

γ α ∂ρ ∂ρα μ
ρ γ ρ ∂ ∂=

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
∑  

( ) ( )
max

2

1 1 i
v l l

l l l l l il il
il l z l l il

s s C C
w s C

γ ∂ρ ∂ρμ μ μ
ρ γ ρ ∂ ∂∞ ∞

=

⎧ ⎫⎡ ⎤⎪ ⎪= − − + −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ . (8.54) 

Having in mind that 

3

1

0l

l

d

dz

α
=

=∑ ,       (8.55) 

the sum of the volume fraction equations become the so called pressure equation 

3 3

2
1 1

1 1l l z
l

l ll z

dw dp d
D

w dz a dz dz

α γα
ρ γ= =

+ = −∑ ∑ .   (8.56) 

Next we look for expression for the velocity gradients obtained from the momen-
tum equations with the purpose to substitute them into the pressure equation and 
solve the so obtained equation with respect to the pressure gradient. The momen-
tum equation is 

3 3

1 1

e vm vmv l v m l l
l l ml ml

m mz z l l
m l m l

dw dw Zdp
c c

dz dz w dz w

γ γ αα ρ
γ γ= =

≠ ≠

⎛ ⎞
⎜ ⎟+ − + =⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑   (8.57) 

where 

( )

( ) ( )

3

1

d d
l l ml ml ml ml m l lw l l

m
m l

v
l

z

wl wl l lw lw l

g c w w w w c w w

Z

w w w w

α ρ μ

γ
γ

μ μ

=
≠

⎧ ⎫⎡ ⎤− + Δ Δ + − −⎪ ⎪⎣ ⎦
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪+ − − −⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

, (8.58) 

contains no differential terms. The system of algebraic equations containing the 
velocity gradients is therefore 

dw dp

dz dz
⎡ ⎤ = −⎢ ⎥⎣ ⎦

A B C .      (8.59) 

The components of the algebraic vectors C and B are /l l lc wα=  and /l l lb Z w= , 
respectively. The diagonal and the non-diagonal elements of the matrix A  are 
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3

1

e vmv
ll l l ml

mz
m l

a c
γα ρ
γ =

≠

= + ∑ ,      (8.60) 

3

1

vmv
lm ml ml

mz
m l

a a c
γ
γ =

≠

= = − ∑ ,     (8.61) 

respectively. Having in mind that vm vm
ml lmc c= , we realize that the coefficient matrix 

A  of the velocity derivatives is symmetric. If the virtual mass coefficients are set 
to zero there is only one velocity gradient in each momentum equation 

21 1

2
l l

l l l

dw Zdp

dz dzρ α ρ
+ = .     (8.62) 

The algebraic system (8.59) can be solved with respect to the velocity gradients to 
provide 

2 2 2
11 22 33 12 23 13 13 22 23 11 12 33det 2 0a a a a a a a a a a a a= + − − − ≠A .  (8.63) 

Note that if one field does not exists the coupling coefficients with the other fields 
are by definition zeros. In such case the rank of the matrix is reduced by one. 
Solving with respect to the velocity gradients gives 

*l
l l

dw dp
w R

dz dz
= −       (8.64) 

where 

( )
3

*

1

/ / detl l l lm
m

w Z w a
=

⎡ ⎤= ⎢ ⎥
⎣ ⎦
∑ A ,     (8.65) 

( )
3

1

/ / detl l l lm
m

R w aα
=

⎡ ⎤= ⎢ ⎥
⎣ ⎦
∑ A ,     (8.66) 

2
11 22 33 23a a a a= − , 2

22 11 33 13a a a a= − , 2
33 11 22 12a a a a= − ,  (8.67-8.69) 

12 21 32 13 12 33a a a a a a= = − , 13 31 12 23 22 13a a a a a a= = − , 23 32 21 13 23 11a a a a a a= = − .  

   (8.70-8.72) 

Replacing the so obtained velocity gradients into the pressure equation we obtain 

( )
3 3 3

* 2

1 1 1

1
/ 1l lz

l l l
l l lz l l

dp d
D w Ma R

dz dz w w

α αγα
γ= = =

⎧ ⎫
= − − − −⎨ ⎬

⎩ ⎭
∑ ∑ ∑ . (8.73) 

Here 
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3
2

2
1

1
/ l

l
l l

Ma R
a w

α
ρ =

= ∑       (8.74) 

is the definition of a dimensionless number corresponding to the Mach number for 
single-phase flows. Obviously if this number tends to unity the pressure gradient 
tends to minus infinity. If this happens at some position in the channel no pressure 
disturbances coming from flow downwards can influence the flow. This state is 
called critical flow. It plays an important role in the technology. The critical flow 
is expected to happen in the smallest cross section of the pipe where the velocities 
have local maximums and the pressure local minimum, or at the end of pipes with 
constant cross section. 

Let us summarize the resulting system in a form very convenient for numerical 
integration. 

( )
3 3 3

* 2

1 1 1

1
/ 1l lz

l l l
l l lz l l

dp d
D w Ma R

dz dz w w

α αγα
γ= = =

⎧ ⎫
= − − − −⎨ ⎬

⎩ ⎭
∑ ∑ ∑ , (8.75) 

*l
l l

dw dp
w R

dz dz
= − ,      (8.76) 

or alternatively 

2 3 3 3

1 1 1

1 1 1

2 det det
l

l l lm l lm l lm
m m m

dw dp dp
Z a Z a a

dz dz dz
α α

= = =

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞= − = −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑ ∑A A

 

    (8.77) 

and 

2

1l l l l z
l l

l l l z

d dw dp d
D

dz w dz a dz dz

α α α γα α
ρ γ

= − − − ,   (8.78) 

( ) ( )/il
v il il l l l l z

dC
C C w

dz
γ μ α ρ γ∞= − ,    (8.79) 

( ) ( )/l
v l l l l l l z

ds
s s w

dz
γ μ α ρ γ∞= − ,    (8.80) 

( ), , ,
l v l l l z

l kin l coal l sp
l z l z

dn n dw n d
n n n

dz w w dz dz

γ γ
γ γ

= − + − −   .  (8.81) 

Nozzles frozen flow: For steady state with neglected virtual mass forces the 
momentum equation takes the simple form (8.64). Replacing the density in the gas 
momentum equation with the expression for the isentropic state of change we obtain 

1

1

12
0 1 1

10 1 1 1

1
2 1

ldw p d Z

dz dz

κ
κκ ε

ρ κ α ρ

−

+ =
−

,    (8.82) 

where 
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0

p

p
ε =        (8.83) 

is the pressure ratio. Here we designate with 0 some reference state, e.g. the state 
at the pipe inlet. For the second and the third velocity field Eq. (8.62) remains 
unchanged. Integrating between two points we obtain 

( )
1

1

0

1

2 2 01 1
1 10

1 1 10 1

1
1

2 1

z

z

pZ
w w dz

κ
κκ ε

α ρ ρ κ

−⎛ ⎞
⎜ ⎟− = − −⎜ ⎟− ⎝ ⎠

∫ ,   (8.84) 

( ) ( )
0

2 2 0
0

0

1
1

2

z
l

l l
l l lz

Z p
w w dz ε

α ρ ρ
− = − −∫ , for l = 2,3.   (8.85) 

For short pipes, nozzles and orifices with negligible interfacial drag we obtain 

1

1

1

2 2 0 1
1 10

10 1

2 1
1

p
w w

κ
κκ ε

ρ κ

−⎛ ⎞
⎜ ⎟= + −⎜ ⎟− ⎝ ⎠

,    (8.86) 

( )2 2 0
0

0

2 1l l
l

p
w w ε

ρ
= + − , for l = 2,3.    (8.87) 

The last two equations were obtained in 1949 by Tangren et al. For pure gas flow 
the equations results to the result obtained by de Saint Venant and Wantzel in 
1838. In the literature concerning critical two-phase flow the velocity ratio 

1 1 2/S w w=  is frequently called slip ratio or slip. For two velocity fields the slip 
ratio at the outlet of the nozzle 

( )

1

1

1/ 2
1

2 0 1
10

10 1

1
2 0
20

20

2 1
1

2 1

p
w

S
p

w

κ
κκ ε

ρ κ

ε
ρ

−⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟+ −⎜ ⎟−⎪ ⎪⎪ ⎪⎝ ⎠= ⎨ ⎬
⎪ ⎪+ −
⎪ ⎪
⎪ ⎪⎩ ⎭

    (8.88) 

depends also on the inlet history. For discharge from a vessel with stagnant mix-
ture or flushing inlet flow we have 

( )
1

1

1/ 2
1

20 1
1

10 1

1 / 1
1

S

κ
κρ κ ε ε

ρ κ

−⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= − −⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭

.    (8.89) 

In the reality the interfacial drag will reduce considerable this value especially in 
the limiting case of diminishing velocity field.  
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The sum of Eqs. (8.86) and (8.87) multiplied by the corresponding densities 
and volume fractions at the nozzle outlet, gives the interesting expression 

( )( )
1

1 1

13 3
1/2 2 1

0 0 1 1
1 1 1

1 1
1 1 1

2 2 1l l l l l l
l l

w w p
κ

κ κκα ρ α ρ α ε ε α ε
κ

−

= =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − + − −⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ . 

    (8.90) 

Equation (8.90) allows us to compute the mass flow rate by known slip and pres-
sure ratios. Note that in accordance with the slip definition from the next section 
Eq. (8.90) can be rewritten as follows 

( )( )
1

1 1

1

1/2 2 1
0 0 00 0 0 1 1

1

1 1
1 1 1

2 2 1S Sv f G v f G p
κ

κ κκα ε ε α ε
κ

−⎡ ⎤⎛ ⎞
⎢ ⎥= + − + − −⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

. 

Nozzle flow with instantaneous heat exchange without mass exchange: For this 
case  

( )( )
13 3

2 2 1/
0 0 1 1

1 1

1 1
1 1 1

2 2 1

n
n n

l l l l l l
l l

n
w w p

n
α ρ α ρ α ε ε α ε

−

= =

⎡ ⎤⎛ ⎞
= + − + − −⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑  

    (8.91) 

we have the polytrophic state of change with the polytrophic exponent  

p

p

c
n

c R
=

−
,        (8.92) 

and mixture specific heat defined as  

3

1

l l
p pl

l

c c
α ρ
ρ=

= ∑ ,       (8.93) 

and the effective gas constant  

3

1

l l
l

l

R R
α ρ
ρ=

= ∑ .       (8.94) 

Note that for the second and the third field the pseudo gas constant is negligibly 
small. 

8.5 Slip model – transient flow 

Historically for the mathematical description of the mechanical interfacial 
interaction the so called slip models are used among others. In this technique field 
velocity ratios are modeled with empirical correlation replacing the complete 
description of the mechanical interaction by means of separated momentum 
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equations. Only the mixture momentum equation is used instead. Thus only the 
mechanical behavior of the mixture as a whole is considered properly. The 
adjustment of the slip ratio as a function of the local flow parameter is assumed to 
be instantaneous that is – inertialess. The disadvantages of the slip model are 
obvious. Nevertheless, the slip model provides for some application a reasonable 
simplicity and therefore will be described here. We described one of the families 
of the slip models in which the slip velocity ratio is defined as the field velocity 
divided by the center of mass mixture velocity. 

/l lS w w= ,       (8.95) 

where the center of mass velocity 

/w G ρ= ,       (8.96) 

is defined as the mixture mass flow rate  

3

1
l l l

l

G wα ρ
=

= ∑ ,      (8.97) 

divided by the mixture density 

3

1
l l

l

ρ α ρ
=

= ∑ .       (8.98) 

Instead of using local volume fractions the local mass flow concentrations defined 
as follows  

/l l l lX w Gα ρ= ,      (8.99) 

will be used as very convenient.  Obviously  

3

1

1l
l

X
=

=∑ ,       (8.100) 

per definition. Some useful consequences of the introduction of the slip ratios and 
the mass flow concentrations are 

3

0
1

l

l l

X
f

S=

= ∑ ,       (8.101) 

3

1
1

S l l
l

f v X Sρ
=

= = ∑ ,      (8.102) 

w Gρ ≡ ,       (8.103) 

3

1
S l l l

l

v X S v
=

= ∑ ,      (8.104) 
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3
2 2

0
1

/I l l l S
l

v w G v fα ρ
=

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑ ,     (8.105) 

l l l
l

S

X v S

v
α = ,       (8.106) 

/l S lw v G S= .       (8.107) 

With these definitions the conservation equations for field mass, mixture mass and 
mixture momentum 

( ) ( )l l v l l l z v lw
z

∂ ∂α ρ γ α ρ γ γ μ
∂τ ∂

+ = ,    (8.108) 

3 3

1 1
v l l z l l l v l

l l

w
z

∂ ∂γ α ρ γ α ρ γ μ
∂τ ∂= =

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
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∑ ∑ ,   (8.109) 

3 3 3
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1 1 1
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l l l

p
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z z
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1

d
v lw l l wl wl l lw lw l

l

c w w w w w wγ μ μ
=

⎡ ⎤= + − − −⎣ ⎦∑ ,  (8.110) 

can be rewritten as follows 

( )l l
v l z v l

S

X S
X G

v z

∂ ∂γ γ γ μ
∂τ ∂

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
,    (8.111) 

( )1
v z v

S

f
G

v z

∂ ∂γ γ γ μ
∂τ ∂

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
,     (8.112) 

( ) ( ) ( )2 cosv I z z v fr

p
G v G f f g

z z μ
∂ ∂ ∂γ γ γ γ ρ ϕ
∂τ ∂ ∂

+ + = + − . (8.113) 

Here frf  is the frictional pressure drop gradient of the mixture depending on the 

local parameter. fμ  is the force due to injection of suction. We assign the sub-

script m to those particular fields whose mass flow concentration is dependent and 
defined by the other ones through Eq.(8.100). The dependent variable vector is 

,, , , ,T
l l m l ilG p X s C≠⎡ ⎤= ⎣ ⎦U .     (8.114) 

The conservative equations can be rewritten in the non-conservative form by using 
the chain rule. At this place the assumption of quasi-constant slip ratio is intro-
duced. With this assumption we obtain 
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, (8.116) 

where the local critical mass flow rate is  
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0 0*2 *2 *2 *2
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X S X SX S X S
f f
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∑ .   (8.117) 

Replacing Idv in the mixture mass equation we obtain Eq. (8.118). Equation 
(8.119) is obtained after differentiating the field mass conservation equations, add-
ing them, and taking into account Eq. (8.116). For the limiting case of three veloc-
ity fields this equations reduces to the equation obtained by Kolev in (1985). The 
third group of max 1l −  equations (8.120) is obtained from the mixture mass con-
servation equation by using the above derived differential relationships, and after 
some rearrangements. For two velocity fields these equations reduce to the equa-
tion obtained in Kolev (1986a, b). The last two equations are obtained easily from 
the entropy and momentum equations neglecting the diffusion terms. The equa-
tions below are obtained assuming also that ( )v z fγ γ τ= ≠ , and setting 

* 1
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∂γγ
γ ∂
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   (8.118) 
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X S
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∂ ∂γ γ γ μ
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( ) ( )1 1
k k l l l l k k

k l k lS S

X S X S X S X S
v v

∂ ∂
∂τ ∂τ≠ ≠
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X
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∂ ∂ γ μ μ
∂ γ ∂
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l m≠  

( )
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1

1 i
Nl S l S

l il il l
il l l l

s Gv s v
DT s s

S z X S T

∂ ∂ μ
∂τ ∂ =
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( )il S il S
il l il

l l l

C Gv C v
C

S z X S

∂ ∂ μ μ
∂τ ∂

+ = − , max max1, , 1,l l i i= = .  (8.123) 

This non-conservative form 

z

∂ ∂
∂τ ∂

+ =U U
A B C       (8.124) 

of the system is very suitable for numerical integration. The entropy and 
concentration equations can be integrated in each time step separately. With the 
thus-obtained values for the new time plane, the terms in the first two equations, 
containing entropies and concentrations can be calculated explicitly, and the 
resulting system can be integrated with one of the known integration methods (see 
Kolev (1986) p.157), as it was made for a three velocity fields by Kolev (1985). 

8.6 Slip model – steady state. Critical mass flow rate 

The local critical mass flow rate plays an important role for the modeling of the 
three-phase flow in technological equipment, because of the fact that the local 
mass flow rate in a confined geometry can not exceed the local critical mass flow 
rate, which is in many cases the limitation of the productivity of the particular 
apparatus. The local critical mass flow rate can be used as a boundary condition 
for the analysis of mixture discharge from three-dimensional pressurized vessels. 
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The purpose of this section is to derive from the steady state part of the system 
(8.118-8.123) an expression defining the local critical mass flow rate. 

We obtain the definition of the local critical mass flow rate from the steady state 
part of the system, solved as an algebraic equation with respect to the space 
derivatives. The resulting form of the equivalent system of ordinary differential 
equations is Eqs. (8.125) to (8.129). As we see the critical condition is reached if the 
mass flow rate tends to the local critical mass flow rate. This leads to an infinite 
negative pressure gradient either in the smallest cross section of the channel, or at 
the end of the duct with constant cross section. In case of three velocity fields the 
expression defining the local critical mass flow rate reduces to the one obtained by 
Kolev (1985). For three velocity fields without inert components it is reduced to the 
one derived by Kolev (1977). In case of three velocity fields without inert 
components, incompressible liquid, and a perfect gas the general expression reduces 
to one obtained by Nigmatulin and Ivandeev (1977). In case of homogeneous two-
phase flow the general expression reduces to the one obtained by Wood (1937). 
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 (8.125) 

*dG
G

dz
μ γ= − ,      (8.126) 

( ) /l
l l

dX
X G

dz
μ μ= − , l m≠  ,    (8.127) 
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1 1 1 i
N Nl
l l il il l

il l l
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dz X G X G T
μ
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( )1 1Nil
il il l il

l l

dC
DC C

dz X G X G
μ μ

γ
= = − , max max1, ,   1,l l i i= = . (8.129) 

Single component flashing nozzle flow without external sources: For a nozzle flow 
we have no friction forces. The gravitation is negligible. The system simplifies to 
the following form: 



354      8 One-dimensional three-fluid flows 

( )
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   (8.130) 

G const= ,       (8.131) 

l ldX

dz G

μ= , l m≠ ,      (8.132) 

1 Nl
l

l l

ds
DT

dz X GT
= , max1,l l= .     (8.133) 

The knowledge of the particular interfacial heat, mass and momentum transfer is 
the prerequisite for integrating the above system. In the 1960s several authors pro-
posed different assumptions replacing the mechanistic description of the interfa-
cial transfer mechanism, like homogeneity for the interfacial momentum descrip-
tion, thermodynamic equilibrium or limited non-equilibrium for the description of 
the heat and mass transfer etc. Probably the most successful approach was those 
proposed by Henry and Fauske in 1969. We will implement the main ideas of 
their model applying them consequently to three-field flow. We first compute the 
heat fluxes required to keep the thermal equilibrium between the fields. Then we 
will assume that only a part of this heat transfer happens in the real nozzle flow. 
Then we will compute the evaporation required to keep the liquid fields saturated 
and assume that only part of this evaporation happens in the real discharge after 
the nozzle. We will define under this assumption the critical mass flow rate in the 
throat of the nozzle and then use the simplified integrated Euler equations (8.90) 
to compute the critical pressure ratio. Then knowing the pressure ratio we com-
pute the critical mass flow rate. 
Modeling of the interfacial heat transfer: The transferred heat between the veloci-
ty fields will be a b1-part of those required to equalize instantaneously their tem-
peratures defined by Eqs. (6.13) and (6.15): 

1 1
21 31 1 1

1

1 1
p

X GT dp
q q b c

n p dzκ
⎛ ⎞′′′ ′′′+ = − −⎜ ⎟
⎝ ⎠

  ,    (8.134) 

21 1 2 2 2

1 1
p

n dp
q b X GT c

n p dz

−′′′ = − ,     (8.135) 

31 1 3 3

1 1
p

n dp
q b X GTc

n p dz

−′′′ = − .     (8.136) 

The heat removed by the liquids due to the evaporation is connected through the 
interfacial energy jump condition with the evaporated masses per unit time and 
unit mixture volume as follows 
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( )1
2 21q h hσ μ′′′ ′′ ′= − − ,      (8.137) 

( )1
3 31q h hσ μ′′′ ′′ ′= − − .      (8.138) 

Thus, the sources in the entropy equations (8.133) are 

( )( )1 21 21 21 31 1
NDT q q h hμ μ′′′ ′′′ ′′= + + + −  ,    (8.139) 

( ) ( )1
2 21 2 21 2 21 21 2
NDT q q h h q h hσ μ μ′′′ ′′′ ′ ′′′ ′′= − + − − = − − −   ,  (8.140) 

( ) ( )1
3 31 3 31 2 31 31 3
NDT q q h h q h hσ μ μ′′′ ′′′ ′ ′′′ ′′= − + − − = − − −   .  (8.141) 

Modeling of the interfacial mass transfer: The evaporation required to keep the 
fields 2 and 3 saturated is computed from the entropy equations 

22
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1pcT ds n dp
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33
31 3 1
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h h dp p n dz
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.   (8.143) 

The real evaporation may be a b2-part of this amount 
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33
31 2 3 1

3

1pcT ds n dp
b X G b

h h dp p n dz
μ ′⎛ ⎞−= − −⎜ ⎟′′ − ⎝ ⎠

,    (8.145) 

and therefore 

2 33 32 2
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   (8.146) 

The change of the gas mass concentration is then 

2 2 2 3 3 33 32 2
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   (8.146) 
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The critical mass flow rate: The momentum equation is then rewritten as follows 
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    (8.147) 

Substituting the sources we obtain 
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It is a very good approximation to neglect the change of the liquid density with the 
change of the liquid entropy. In addition the relative deviation of the gas 
temperature with respect to the saturation is very small. Taking into account this 
simplification the final result is therefore 
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Thus at the critical cross section the critical mass flow rate is defined by the above 
equation. If the b2 coefficient is set to zero, the model results in the so called frozen 
model. If the b2 coefficient is set to unity the model is close to the so called thermal 
equilibrium model. For gas mass concentrations different from zero the second and 
the third terms are much smaller then the first one. For homogeneous flow we have 
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(8.150) 

Comparing this result with the derivation by Henry and Fauske (1969) 

( ) ( )
( )

11 21
1 2 12

1 1 2 1

11 1 1pcX bX ds
v v X

G n p s s dp p s s nρ κ
⎡ ⎤− ′ ⎛ ⎞

= + − − −⎢ ⎥⎜ ⎟′′ ′− − ⎝ ⎠⎣ ⎦
, (8.151) 

we see a slight difference. 

The gas density changes rapidly in the process in accordance with 
1

1 10
nρ ρ ε= . 

Replacing in Eq. (8.149) and introducing the pressure ratios we obtain 
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, (8.152) 

where     
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   (8.154) 
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and 

3 1 21X X X= − − .      (8.156) 

Equation (8.152) together with Eq. (8.90)  
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  (8.157) 

define the critical pressure ratio. Both equations have to be solved by iterations 
with respect to G and ε . For estimation of the slip ratios, a reasonable assumption 
is 2 3 1S S= =  and 1S  computed using 
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1,max 0.1X = .       (8.160) 

Henry and Fauske proposed to use 
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As already mentioned the pressure gradient at the critical flow location is minus 
infinite. Such gradients are very difficult to be resolved numerically and special 
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attention has to be paid to the discretization. Non-equidistant discretization with 
sizes getting smaller in the proximity of the critical cross section is the right an-
swer of this challenge. 

As already mentioned the critical condition is reached if the mass flow rate 
tends to the local critical mass flow rate manifested by infinite negative pressure 
gradient either in the smallest cross section of the channel, or at the end of the duct 
with constant cross section. The numerical resolution of such gradients is difficult 
and needs special attention.  
 

Grid structure: It is recommendable to use fine discretization around the critical 
cross section and not so fine elsewhere. I recommended in Kolev (1986) p. 177 to 
use a grid sizes building a geometrical sequence 

1
1

k
kz z c −Δ = Δ , c < 1, 

so that the sum of the grid lengths give the length of the pipe 
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z z c c L+
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Δ = Δ − − =∑  

and therefore 

( ) ( )max 1
1 1 1 kz L c c +Δ = − − . 

The constant c is controlling the grid sizes. Renormalization of the grid sizes is 
necessary in the numerical discretization in order to have a strict conservation of 
the length. Later on other strategies are reported e.g. Wendt (1992). Counting the 
z-coordinate from the entrance of the pipe the coordinates of the cell boundaries 
are defined as 

( ){ }sinhk crit
k

z
c a

L a

ζ ζ ζ ′⎡ ⎤= − +⎣ ⎦ , 

where 

( ) max1k k kζ = − , max1,2,...,k k= , ( )sinha cζ ′= ,  

and 

( )
( )

1 11
ln

2 1 1

c
rit

c
rit

e

c e

ζ
ζ

ζ−

⎡ ⎤+ −
⎢ ⎥′ =
⎢ ⎥+ −⎣ ⎦

. 

Here the dimensionless position of the critical cross section is 

crit critz Lζ = . 

The cell sizes are controlled by the choice of the constant c ≈ 2…3.  
For Laval nozzles I recommended in Kolev (1986) p. 178 the following discre-

tization for the converging part decreasing cell sizes sequence 
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1
,1

m
m conv convz z c −Δ = Δ , cconv < 1, m = 1, mmax, 

( ) ( )1max

,1 1 1
m

conv crit conv convz z c c
+

Δ = − − , 

and for the diverging part increasing cell sizes sequence 

1
,1

n
n div divz z c −Δ = Δ , cdiv > 1, n = 1, nmax, 

( )( ) ( )1max

,1 1 1
n

div crit div divz L z c c
+

Δ = − − − , 

where mmax+nmax= kmax. 
 

Iteration strategy: The mathematical formalism describing the critical flow do 
not allow mass flow rates larger then the critical. Therefore the critical mass flow 
rate *G can be approached only using increasing trial values of *

1 2, ,...,G G G . The 

value of the denominator of the pressure gradient 1 2, ,...,N N ε  is the controlled va-

riable. The target is the small number 0ε → . Simple way to reach the target is if 
the target is becoming negative to half the step GΔ and to repeat the computation 
as long the GΔ is becoming small enough. Optimization strategies are also possi-
ble. I recommended in Kolev (1986) to construct a polynomial based on the 
couples ( ),i iG N  then to set 0N =  and to obtain the next guess for *G . 

I give in Appendix 1 additional 110 chronologically ordered references on the 
subject of critical two-phase flows for those of you who are interested on the 
history of this subject. 

8.7 Forces acting on the pipes due to the flow 
– theoretical basics 

In many applications the analysis of thermo-hydraulic processes in a networks or 3D 
facilities is done with the intention to estimate the thrusts acting on the pipes and fa-
cilities. These thrusts are used to design the mechanical supports of the constructions. 

The purpose of this chapter is to describe the algorithm needed for computation 
of the pipe thrusts in the network operating with multi-phase flows. 

In the following we assume a) that the effect of gravitational forces is negligi-
ble, and postulate that b) the positive flow force direction is the direction opposite 
to the positive flow velocity direction. 

The solid structure experiences forces from the continuum flow wetting its 
internal surface and from the ambient fluid. There are normal and shear forces 
caused by the flow and acting on the internal wall surface and normal forces due 
the action of the ambient pressure on the external wall surface. 

We designate with wpf  the normal pressure force acting on the structure. This 

force consists of two components due to internal and ambient pressure, respectively 
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wall ambient wall flow wall ambient wall flow

wp w f w w

A A A A

p da p da p da p da
− − − −

∞ ∞= + = −∫∫ ∫∫ ∫∫ ∫∫f n n n n . 

        (8.163) 

Here the subscript w stands for wall, f  for flow, p is the fluid pressure inside the pipe 
acting on the infinitesimal surface da, p∞  is the ambient pressure acting outside of 

the pipe on the same surface. wn  is the unit vector normal to the internal wall surface 

pointing into the flow - see Fig. 8.3. The flow friction shear force, fηf , resists the 

flow and is positive per definition. The wall experiences a force, wηf , with magnitude 

equal to the magnitude of the flow friction force but with the opposite direction, 

0f wη η+ =f f .       (8.164) 

fnwn

p∞

p∞
p∞

p

V

fηf
wηf

 
Fig. 8.3 Definitions of the force directions signs 

The total force acting on the wall is therefore 

wall wp w wp fη η= + = −f f f f f .     (8.165) 

Direct computation of the fluid friction force: The fluid friction force can be com-
puted directly by integrating the friction pressure loss through the total flow volume 

( )
  

dp
 

dzf friction
flow volume flow volume friction

p dVol dVolη
⎛ ⎞= − ∇ ≈ − ⎜ ⎟⎝ ⎠∫∫∫ ∫∫∫f .  (8.166) 

Indirect computation of the fluid friction force: The fluid friction force can be  
computed indirectly, using the momentum balance on the fluid in the control volume, 

max

1 

   
l

flow

l l l v f f
lflow volume A

dVol p da
∂ α ρ γ
∂τ =

−∑∫∫∫ ∫∫V n  

( )
maxl

l=1

   0
open

l l l f l n

A

da ηα ρ γ+ ⋅ + =∑∫∫ V n V f .    (8.167) 
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i.e. 

max

1 

l

l l l v
lflow volume

dVolη
∂ α ρ γ
∂τ =

− = ∑∫∫∫f V  

( )
maxl

l=1

      
flow open

f f l l l f l n

A A

p da daα ρ γ− + ⋅∑∫∫ ∫∫n V n V .   (8.168) 

Unlike the momentum flux 

( )
maxl

l=1

   
open

l l l f l n

A

daα ρ γ⋅∑∫∫ V n V  

that acts only at the open flow areas and vanishes on the wet surface the friction 
tension acts at the wet walls and vanishes at the open areas. We split the area sur-
rounding our flow control volume into a part contacting the wall and a open part 
crossed by the flow 

 flow open wall flowA A A= + ,      (8.169) 

and therefore 

 

         
flow open wall flow

f f f

A A A

p da p da p da= +∫∫ ∫∫ ∫∫n n n .   (8.170) 

The total wall force is therefore 

   

        
wall ambient wall flow open wall flow

wall wp f w w f f

A A A A

p da p da p da p daη ∞= − = − − −∫∫ ∫∫ ∫∫ ∫∫f f f n n n n  

( )
max maxl

1 l=1 

  
l

open

l l l v l l l f l n
lflow volume A

dVol da
∂ α ρ γ α ρ γ
∂τ =

+ + ⋅∑ ∑∫∫∫ ∫∫V V n V . (8.171) 

Having in mind that the unit vectors of the wall surface and the flow surface are 
opposite at the wet wall 

w f= −n n        (8.172) 

we recognize that in all surfaces where the pressure acts simultaneously on the 
wall and at the flow  wall flowA  the pressure force cancels and therefore 

 

    
wall ambient open

wall f f

A A

p da p da∞= − −∫∫ ∫∫f n n  

( )
max maxl

1 l=1 

  
l

open

l l l v l l l f l n
lflow volume A

dVol da
∂ α ρ γ α ρ γ
∂τ =

+ + ⋅∑ ∑∫∫∫ ∫∫V V n V . (8.173) 

Therefore the wall force consists of three components 
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(i) pressure force 

 

    
wall ambient open

f f

A A

p da p da∞− −∫∫ ∫∫n n ,    (8.174) 

(ii) “wave” force 

max

1flow volume

l

l l l v
l

dVol
∂ α ρ γ
∂τ =

∑∫∫∫ V ,     (8.175) 

and  
 

(iii) reaction thrust 

maxl
2

l=1

  
open

l l l n f

A

daα ρ γ∑∫∫ V n .     (8.176) 

The estimation of wall forces from the primary Eqs. (8.163-8.166) appears to be 
much simple than the final expression Eq. (8.173). Often, however, pressure dis-
tribution on the wet wall is not known well enough to obtain reasonable results. 
That is way Eq. (8.173) is successfully used in practice, see e.g. Abedin, Takeuchi 
and Zoung (1986), Lahey and Moody (1977). As illustration of the application of 
the final equation (8.173) we consider a few practical cases. 
 

Forces on a pipe segment with two bends: The pipe segment as given in Fig. 8.4 
consists of one straight part and two elbows. The respective angles of the elbows 
are 1kθ , and 2kθ . The velocity in the segment is directed from left to the right. 

Compute the projection of all wall forces on the main axis of the straight part. 

( )111, cos knkz Fp θπγ −−∞

wpf∞

( )212, cos knkz Fp θπγ −−∞

ηwf

Pipe p

 

Fig. 8.4 Forces acting at the flow control volume 
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ηff

wfpf

nkzk Fp 11,11 −− γ

( )111,11 cos knkzk Fp θπγ −−−

nkzk Fp 2,12 γ+

( )22,12 cos knkzk Fp θπγ −+

( ) ( )∑
=

−− −
max

1
111,11

2 cos
l

l
knkzklll Fw θπγρα

( ) ( )∑
=

−
max

1
22,2

2 cos
l

l
knkzklll Fw θπγρα

( ) ( ) wpknkzknkzwfwpw fFpFpfff ∞∞−∞ −−−−+−= 22,111, coscos θπγθπγη  

Fig. 8.5 Pressure forces acting on the flow control volume 

The pipe segment may be divided into several control volumes starting with k1 and 
ending with k2. Each control volume has a length kzΔ  and volume v k nz Fγ Δ , where 

vγ  is the part of the control volume k nz FΔ  occupied by flow. Here nF  is some 
constant cross section. The left surface passed by the flow at the left-hand side 
control volume k1, is , 1 1z k nFγ − , and right hand side surface passed by the flow of the 

right-hand side control volume k2 is , 2z k nFγ . The normal velocity at the entrance 

flow cross section of each velocity field is , 1 1l kw − , and at the outlet velocity at the 

outlet flow cross section of each velocity field is , 2l kw , respectively. The flow 

pressure before the cell k1 inside the pipe at the left is 1 1kp − , and the pressure after 

the cell k2 at the right is 2 1kp + . The ambient pressure is p∞ . 

The flow entering the control volume accelerates the flow with a force component 
in the z direction 

( ) ( )
max maxl

2
1 , 1 1 1

1 l=11 1 1

cos cos
l

k l l z k n k l l l
l k

m w F wπ θ γ π θ α ρ−
= −

⎛ ⎞ ⎛ ⎞
− − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ , (8.177) 

which is directed from the left to the right and is parallel to the flow axis, see Fig. 
8.4 and 8.5. The flow leaving the control volume resists the control flow volume 
with the force component in the z direction 

( ) ( )
max maxl

2
2 , 2 2

1 l=12 2

cos cos
l

k l l z k n k l l l
l k

m w F wπ θ γ π θ α ρ
=

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (8.178) 

which is directed from the right to the left and is parallel to the flow axis. The pres-
sure forces acting on the flow control volumes, see Fig. 8.5, are computed as follows. 
The projection of the pressure force acting at the inlet cross section on the axis, 
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( )1 1 , 1 1 1cosk z k n kp Fγ π θ− −− − ,     (8.179) 

is directed from left to the right. The projection of the pressure force acting at the 
left side of the flow control volume on the axis, 

( )2 1 , 2 2cosk z k n kp Fγ π θ+ − ,     (8.180) 

is directed from right to the left. In addition at the projection of the pressure force 
acting on the flow volume from the side of the wet wall surface on the flow axis is 

wfpf , and is directed from the left to the right. The opposite force fwpf  acts on the 

structure at the wet side. Both forces cancel after summation. Thus, the friction 
force resisting the flow is 

max2

1 1

lk

n v l l l
k k l k

f F w zη
∂ γ α ρ
∂τ = =

⎛ ⎞
− = Δ⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑  

( )
maxl

2
1 1 , 1 1 1

l=1 1 1

cosk l l l z k n k

k

p w Fα ρ γ π θ− −
−

⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  

( )
maxl

2
2 1 , 2 2

l=1 2

cosk l l l z k n k

k

p w Fα ρ γ π θ+

⎛ ⎞⎛ ⎞
+ + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ .     (8.181) 

Now we consider as a control volume the structure only, see Fig. 8.6. 
 

nkz Fp 11, −∞γ
nkz Fp 2,γ∞

1k
2kCell

1kθπ −
1kθ

2kθ 2kθπ −

11, −klw

11−kp
2,klw

12+kp

( ) ( )∑
=

−− −
max

1
111,11

2 cos
l

l
knkzklll Fw θπγρα

( )111,11 cos knkzk Fp θπγ −−−

( )111, cos knkz Fp θπγ −−∞

( ) ( )∑
=

−
max

1
22,2

2 cos
l

l
knkzklll Fw θπγρα

( )22,12 cos knkzk Fp θπγ −+

( )22, cos knkz Fp θπγ −∞

wfpf
fwpf

ηff

ηwf

 

Fig. 8.6 Total force acting on the pipe in axial direction 

The projection of the ambient pressure forces acting at the left cross section 

, 1 1z k nFγ −  on the axis is 

( ), 1 1 1cosz k n kp Fγ π θ∞ − − ,     (8.182) 
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and is directed from the right to the left. The projection of the ambient pressure 
forces acting at the right cross section , 2z k nFγ  on the axis is 

( ), 2 2cosz k n kp Fγ π θ∞− − ,     (8.183) 

and is directed from the left to the right. In addition there is a pressure force acting 
from the fluid side at the wet wall. Its projection on the axis is fwpf . The resulting 

pressure force acting on the structure is 

( ) ( ), 1 1 1 , 2 2cos coswp z k n k z k n k fwpp F p Fγ π θ γ π θ∞ − ∞= − − − +f f . (8.184) 

Now we have all components we need to compute the resulting force acting on the 
structure 

max2

1 1

lk

w wp w wp f n v l l l
k k l k

F w zη η
∂ γ α ρ
∂τ = =

⎛ ⎞
= + = − = Δ⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑f f f f f  

( )
maxl

2
1 1 , 1 1 1

l=1 1 1

cosk l l l z k n k

k

p p w Fα ρ γ π θ− ∞ −
−

⎡ ⎤⎛ ⎞
− − + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑  

( )
maxl

2
2 1 , 2 2

l=1 2

cosk l l l z k n k

k

p p w Fα ρ γ π θ+ ∞

⎡ ⎤⎛ ⎞
+ − + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ .  (8.185) 

The wave force during a time step is computed using the old time level values, 
designated with a, and the new time level values - without indices - as follows 

( )
max max2 2

1 1 1 1

1l lk k

n v l l l n v l l l l l l a
k k l k k lk k

F w z F w w z
∂ ∂γ α ρ γ α ρ α ρ
∂τ τ ∂τ= = = =

⎛ ⎞ ⎛ ⎞
⎡ ⎤Δ = − Δ⎜ ⎟ ⎜ ⎟⎣ ⎦⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ . 

        (8.186) 

For the simple case of a discharging flow from a pipe with dead end, , 1 1 0z kγ − = , 

and constant cross section nF , , 1v kγ = , we obtain 

( )
max2

1 1

1 lk

w wp f n v l l l l l l a
k k l k

F w w zη
∂ γ α ρ α ρ

τ ∂τ = =

⎧ ⎫⎪ ⎪⎡ ⎤= − = − Δ⎨ ⎬⎣ ⎦Δ ⎪ ⎪⎩ ⎭
∑ ∑f f f  

maxl
2

2 1 , 2
l=1 2

k l l l z k n

k

p p w Fα ρ γ+ ∞

⎡ ⎤⎛ ⎞
+ − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ .    (8.187) 

For the same case as that previously discussed but with critical discharge the criti-
cal pressure, cp , should replace 2 1kp +  in the above equation - see the discussion 

by Yano et al. (1982). 

( )
max2

1 1

1 lk

w wp f n v l l l l l l a
k k l k

F w w zη
∂ γ α ρ α ρ

τ ∂τ = =

⎧ ⎫⎪ ⎪⎡ ⎤= − = − Δ⎨ ⎬⎣ ⎦Δ ⎪ ⎪⎩ ⎭
∑ ∑f f f  
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maxl
2

, 2
l=1 2

c l l l z k n

k

p p w Fα ρ γ∞

⎡ ⎤⎛ ⎞
+ − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ .     (8.188) 

8.8 Relief valves 

8.8.1 Introduction 

Relief valves are designed to keep the system pressure under a prescribed value, 
and therefore are important safety components of industrial networks. Operating 
valves excites considerable forces in pipe networks. If the design of the support 
structures is based on the steady state analysis only the structures may be de-
stroyed by transient forces. That is why proper design of dynamic valve behavior 
is a necessary step towards modeling industrial pipe networks. Usually the second 
order ordinary differential equation describing the piston motion is solved by fi-
nite difference methods with time step limited by the non-dumped oscillation time 
constant of the valve. In this Section we demonstrate a piecewise analytical solu-
tion which removes this limitation and increases the stability of the numerical so-
lution for the flow itself. 

8.8.2 Valve characteristics, model formulation 

The commonly used components of a relief valve are: valve housing, inlet, outlet, 
piston, rod assembly, spring, bellows, and valve adjusting ring assembly, see 
Fig. 8.7. Back pressing valves belong to the same category and can also be de-
scribed by the models considered in this section. The main difference between re-
lief and back pressing valves is their mode of operation. Relief valves are usually 
closed during regular operation and open if the inlet pressure exceeds a prescribed 
value, whereas back pressing valves are open under regular conditions and closed 
in case of a sudden pressure loss. Also the damping mechanisms may be different. 

The dynamic behavior of a valve is uniquely defined at any moment τ  if we 
know the piston position z and the dependence of the smallest flow cross section 
as a function of the piston position ( )*A z  - see the Nomenclature at the end of 

Section 8. The inlet-outlet flow paths are usually absorbed as a part of the pipe 
model. Knowing ( )*A z  the dimensionless surface permeability at the contraction 

cross section used in the network analysis, 

( )* /z normA z Aγ =       (8.189) 

can be computed, where normA  is some normalizing cross section in m², e.g. the 
maximum cross section in the pipe where the valve is installed. The quantitative 
characteristics needed to describe the dynamic behavior of the valve given in Fig. 
8.8 are given in the Nomenclature. Valves without adjusting ring assembly, 
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0outA = , do not develop additional reaction force. Valves provided with adjusting 
ring assembly with lower end being below the closing surface of the valve in 
closed position, 

0rz ≤ ,        (8.190) 

0ϕ = ,       (8.191) 

develop the largest additional flow reaction force at the valve piston and conse-
quently have the lowest closing pressure for the particulate valve geometry. If the 
position of the lower end of the valve-adjusting-ring assembly is above the closing 
surface of the valve during the valve operation 

 

Fig. 8.7 Valve components 
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Fig. 8.8 Valve characteristics 

0rz > ,        (8.192) 

there are two possible regimes for the flow to develop additional reaction force at 
the piston. The first regime is defined if the piston position is below the lower end 
of the valve adjusting ring assembly 

rz z≤ .        (8.193) 

In this case the adjusting ring assembly has no influence on the flow behavior. We 
describe this by setting a multiplier 

/ 2ϕ π= ,       (8.194) 

for the additional flow reaction force. In the second regime the piston position is 
above the lower end of the valve adjusting ring assembly 

rz z> .        (8.195) 

In this case the angle between the velocity vectors of the inlet and outlet flows is 

( )arctan /rz rϕ = Δ .      (8.196) 

In this case the additional flow reaction force at the piston is between zero and the 
maximum possible value. 

Before writing down the momentum equation for the moving assembly of the 
valve let us summarize the forces acting on the moving valve mechanism:  

Inertia force 
2

2v

d z
m

dτ
;      (8.197) 

Friction force fr

dz
C

dτ
;       (8.198) 
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Spring force ( )0spC z z+ ;      (8.199) 

Gravitation force vm g ;       (8.200) 

Pressure difference forces for open valve 

( ) ( ) ( ) ( )in in out out outu outu atm atmp A p A p A p Aτ τ τ τ+ − − ,  (8.201)  

or for 

( ) ( )out outup pτ τ≈ ,       (8.202) 

( ) ( )( ) ( )in in out out outu atm atmp A p A A p Aτ τ τ+ − − .   (8.203) 

The fluid momentum flux force for open valve is 

max max max
2 2 * * * *2 2
, ,

1 1 1

1 1
cos

l l l

fl in l l l in out l l l out l l l
l l l in out

f A V A V V A
A A

α ρ α ρ α ρ ϕ
= = =

⎛ ⎞⎛ ⎞
= + ≈ +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

max 2
* * * *2

2 2
1

1 1l

l l l
l in out r

r
V A

A A z r
α ρ

=

⎛ ⎞⎛ ⎞ Δ≈ +⎜ ⎟⎜ ⎟ + Δ⎝ ⎠ ⎝ ⎠
∑    (8.204) 

for 0outA > , and 

max
* * * *2

1

/
l

fl l l l in
l

f V A Aα ρ
=

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠
∑      (8.205) 

for 0outA = . Here 
max

2
,

1

l

out l l l out
l

A Vα ρ
=
∑  is the additional flow reaction force at the pis-

ton. The field velocities *
lV  at the vena contracta, *A , for open valve are com-

puted with the fluid dynamic model of the flow in the network. Assuming  

( ) ( ) ( )*l l l l l lin out
α ρ α ρ α ρ≈ =       (8.206) 

the inlet and outlet velocities can be approximately estimated as follows 

* *
, /l in l inV V A A= ,      (8.207) 

( )* *
, / cosl out l outV V A A ϕ=    for   0outA > .   (8.208) 

The momentum principle applied to the valve moving mechanism gives 

2

2v

d z
m

dτ
+ fr

dz
C

dτ
+ ( )0spC z z+ + vm g - 

( ) ( )( ) ( )in in out out outu atm atm flp A p A A p A fτ τ τ⎡ ⎤+ − − +⎣ ⎦  = 0.  (8.209) 



8.8 Relief valves      371 

Having in mind that for steady state the following force equilibrium is valid at the 
moment the valve is just starting to open, 

( ) ( )( ) ( )0v sp on in out out outu atm atmm g C z p A p A A p Aτ τ τ+ = + − −  (8.210) 

we replace 

( )( ) ( ) ( )0v sp out out outu atm atm on inm g C z p A A p A p Aτ τ τ+ − − + =   (8.211) 

and obtain a simpler dynamic force balance 

2

2v

d z
m

dτ
+ fr

dz
C

dτ
+ spC z = ( ) ( )in on in flp p A fτ τ⎡ ⎤− +⎣ ⎦  = 0.   (8.212) 

In case out outuA A≈ , ( )on onp pτ ≈  is no longer a function of time. In this case in-

stead of the input information 0z , outA , outuA , atmA  only onp  is necessary for the 
description of the valve behavior. 

Next we look for a piecewise analytical solution of this equation assuming that 
within short time interval 

τΔ ,        (8.213) 

the input pressure is constant 

( )inp constτ ≈ .      (8.214) 

8.8.3 Analytical solution 

As already mentioned the differential equation describing the piston motion is 
solved usually by finite difference methods – see Ransom et al. (1988). This is as-
sociated with a time step controlled by the criterion 

0.01 vτ τΔ ≈ Δ ,       (8.215) 

where vτΔ  is the oscillation time constant. In order to avoid this limitation a 
piecewise quasi analytical method is applied in this work. Next we describe the 
theoretical basics for this solution – for more information see Greiner (1984), 
Sass, Bouché and Leitner (1969), Magnus (1986). First we use the text book solu-
tion of the homogeneous equation 

2

2v

d z
m

dτ
+ fr

dz
C

dτ
+ 0spC z = .     (8.216) 

The eigenvalues 1,2λ  are the roots of the equation 

2 0v fr spm C Cλ λ+ + = ,      (8.217)  
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2

1,2

1 1 1 2
1

2 2
fr fr sp

v v v d v

C C C

m m m

πλ
τ τ

⎛ ⎞
= − ± − = − ± −⎜ ⎟ Δ Δ⎝ ⎠

.  (8.218) 

a) For the harmonic oscillations case, 

2
1

2
sp fr

v v

C C

m m

⎛ ⎞
> ⎜ ⎟
⎝ ⎠

,      (8.219) 

the eigenvalues are complex: 

1,2

1 2

d v

i
πλ

τ τ
= − ±

Δ Δ
.      (8.220) 

Here the time constants of the process are 
 

(i) the dumping time constant 

2 /d v frm CτΔ = ,      (8.221) 

and 
 

(ii) the oscillation period 

2

2

1
v

sp

v d

C

m

πτ

τ

Δ =
−
Δ

.      (8.222) 

The oscillation frequency is then 

2 / vω π τ= Δ .       (8.223) 

The text book parametric solution of the homogeneous equation is therefore 

( ) ( ) ( )/
1 2cos sindz e C Cτ ττ ωτ ωτ− Δ ⎡ ⎤= +⎣ ⎦    (8.224) 

and the general parametric solution of the non-homogeneous equation 

( ) ( ) ( )/ **
1 2 maxcos sin / 2dz e C C zτ ττ ωτ ωτ− Δ ⎡ ⎤= + +⎣ ⎦ ,  (8.225)  

where 

( ) ( ){ }**
max

2
in on in fl

sp

z p p A f
C

τ τ⎡ ⎤= − +⎣ ⎦ .    (8.226) 

b) For the aperiodic case of 

2
1

2
sp fr

v v

C C

m m

⎛ ⎞
< ⎜ ⎟
⎝ ⎠

       (8.227) 
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2

2

1
v

sp

d v

C

m

πτ

τ

Δ =
−

Δ

.      (8.228) 

the eigenvalues are real 

1,2

1 2

d v

πλ
τ τ

= − ±
Δ Δ

       (8.229) 

and 

1 2λ λ≠ .       (8.230) 

In this case the text book solution is 

( ) 1 2 **
1 2 max / 2z C e C e zλτ λ ττ = + + .     (8.231) 

c) For the asymptotic case 

2
1

2
sp fr

v v

C C

m m

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

       (8.232) 

the eigenvalues are equal to each other 

1,2

1

d

λ λ
τ

= = −
Δ

.      (8.233) 

In this case the text book solution is 

( )
**
max

1 22

z
z C e C eλτ λττ τ= + + .     (8.234) 

8.8.4 Fitting the piecewise solution on two known 
position – time points 

a) Harmonic oscillations case:  
 

Knowing two arbitrary (τ , z) points 

1τ τ= ,    z = z1,      (8.235) 

and 

2τ τ= ,    z = z2,       (8.236) 

we compute the constants 1C  and 2C . Replacing the denominator of the so  
obtained solution with its equivalent 
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( ) ( ) ( ) ( ) ( )1 2 2 1 2 1cos sin cos sin sinωτ ωτ ωτ ωτ ω τ τ⎡ ⎤− = −⎣ ⎦ , (8.237) 

and substituting 

( ) 1 /* **
1 1 max / 2 dz z z eτ τΔ= − ,     (8.238) 

and   

( ) 2 /* **
2 2 max / 2 dz z z eτ τΔ= − ,     (8.239) 

we obtain finally 

( ) ( )
( )

* *
1 2 2 1

1

2 1

sin sin

sin

z z
C

ωτ ωτ
ω τ τ

−
=

⎡ ⎤−⎣ ⎦
 ,    (8.240) 

( ) ( )
( )

* *
2 1 1 2

2

2 1

cos cos

sin

z z
C

ωτ ωτ
ω τ τ

−
=

⎡ ⎤−⎣ ⎦
 ,    (8.241) 

or after inserting into Eq. (8.225) and some rearrangements we obtain  

( ) ( ) ( )
( )

** ****
1 2 2 1max

2 1

sin sin

2 sin

z zz
z

ω τ τ ω τ τ
τ

ω τ τ
⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦= +

⎡ ⎤−⎣ ⎦
,  (8.242) 

where 

( ) ( )1 /** **
1 1 max / 2 dz z z e τ τ τ− Δ= − ,     (8.243) 

and 

( ) ( )2 /** **
2 2 max / 2 dz z z e τ τ τ− Δ= − .     (8.244) 

b) Aperiodic case 
 

Again knowing the solutions in two previous points we can estimate the constants. 
Inserting into Eq. (8.231) and rearranging we obtain finally 

 

( ) ( ) ( )
( )

** ****
1 2 2 1max

2 1

sinh sinh

2 sinh

z zz
z

ω τ τ ω τ τ
τ

ω τ τ
⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦= +

⎡ ⎤−⎣ ⎦
 .  (8.245) 

 
Note the formal similarity to Eq. (8.242). The sine functions are here replaced by 
hyperbolic sinus.  
 
c) Asymptotic case 
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Again knowing the solutions in two previous points we can estimate the constants. 
Inserting into Eq. (8.234) and rearranging we obtain finally 

( ) ( ) ( )** ****
1 2 2 1max

2 12

z zz
z

τ τ τ τ
τ

τ τ
− − −

= +
−

.    (8.246) 

 
Note that Eqs. (8.242) and (8.245) reduces to the above equation for vτΔ → ∞ . 

8.8.5 Fitting the piecewise solution on known velocity and position 
for a given time 

For a description of reflection of the piston after the impact with the upper or low-
er lift limitation structures it is more appropriate to use a solution fitted to a single 

time point position and velocity 1τ τ= , z = z1, ,1v

dz
w

dτ
= . 

 

a) For the harmonic oscillations case we have for the integration constants 

( ) ( ) ( )/ **
1 2 maxcos sin / 2dz e C C zτ ττ ωτ ωτ− Δ ⎡ ⎤= + +⎣ ⎦ ,  (8.247) 

( ) ( ) ( )/**
max 1 2

1
/ 2 sin cosd

v
d

w z z e C Cτ τω ωτ ωτ
τ

− Δ ⎡ ⎤= − − + − +⎣ ⎦Δ
, (8.248) 

( ) ( ) ( ) ( )1 1 ,1/ **
1 1 max 1 1

sin
/ 2 cos sind v

d

w
C e z zτ τ ωτ

ωτ ωτ
ω τ ω

Δ
⎧ ⎫⎡ ⎤⎪ ⎪= − − −⎨ ⎢ ⎥ ⎬Δ⎪ ⎪⎣ ⎦⎩ ⎭

, (8.249) 

( ) ( ) ( ) ( )1 1 ,1/ **
2 1 max 1 1

cos
/ 2 sin cosd v

d

w
C e z zτ τ ωτ

ωτ ωτ
ω τ ω

Δ
⎧ ⎫⎡ ⎤⎪ ⎪= − + +⎨ ⎢ ⎥ ⎬Δ⎪ ⎪⎣ ⎦⎩ ⎭

. (8.250) 

b) For the aperiodic case 

1 2 **
1 2 max / 2z C e C e zλτ λ τ= + + ,     (8.251) 

1 2
1 1 2 2vw C e C eλτ λ τλ λ= + ,     (8.252) 

( )
( ) ( )

2 1 2 1

1 2 1 1 2 1

**
1 max 2 ,1

1

1 2

/ 2 vz z e w e
C

e e

λ τ λ τ

λ λ τ λ λ τ

λ

λ λ+ +

− − +
=

−
,    (8.253) 

( )
( ) ( )

1 1 1 1

1 2 1 1 2 1

**
1 max 1 ,1

2

1 2

/ 2 vz z e w e
C

e e

λτ λτ

λ λ τ λ λ τ

λ

λ λ+ +

− −
=

−
.    (8.254) 

c) For the asymptotic case 
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( )
**
max

1 22

z
z C e C eλτ λττ τ= + + ,     (8.255) 

( )1 2 1vw C e C eλτ λτλ λτ= + + ,     (8.256) 

( )( ) 1**
1 1 1 max 11 / 2 vC z z w e λτλτ τ −⎡ ⎤= + − −⎣ ⎦ ,   (8.257) 

( ) 1**
2 1 max / 2vC w z z e λτλ −⎡ ⎤= − −⎣ ⎦ .    (8.258) 

8.8.6 Idealized valve characteristics 

In order to understand some characterizing features of the valve dynamic we con-
sider next some interesting simple cases. 

 

a) No friction force 
 

If there is no friction force, 

0frC =        (8.259) 

dτΔ → ∞ ,       (8.260) 

the solution is 

( ) ( ) ( )
**
max

1 2cos sin
2

z
z C Cτ ωτ ωτ= + + ,     (8.261) 

which means that the oscillations are not damped. 
Some important features of the dynamic behavior of the valve can be studied on 

the non-damped solution. 
 

b) Opening just starts, idealized opening time: 
 

Let us consider the opening process at the very beginning. For this case we have 

τ  = 0,       (8.262) 

z = 0,        (8.263) 

and 

/ 0dz dτ = ,       (8.264) 

and consequently 

Cfr / 0dz dτ = ,      (8.265) 

the friction force is small due to the small averaged velocity gradient at the mo-
ment of the opening. Further it can be assumed that 
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ffl = 0,        (8.266) 

i. e. there is no flow reaction force. 

( ) ( )
*
max 1 cos 0
2

z
z τ ωτ⎡ ⎤= − ≥⎣ ⎦ ,      (8.267) 

where 

( ) ( )*
max

2 in
in on

sp

A
z p p

C
τ τ⎡ ⎤= −⎣ ⎦      (8.268) 

is the maximum of the piston position which can be reached if there where no 
hardware limitation of the piston motion. Obviously *

maxz  depends an ( )inp τ . If 

*
max maxz z<         (8.269) 

we have stable opening process. The time needed for opening the valve is 

max
*
max

 arccos 1 2op

z

z
τ ω

⎛ ⎞
Δ = −⎜ ⎟

⎝ ⎠
,     (8.270) 

where 

max
*
max

1 1 2 1
z

z
− < − ≤    or   *

max max0 z z< < .    (8.271) 

If 

*
max maxz z≥        (8.272) 

the non-damping harmonic oscillation of the piston position within 

*
max0 z z< <         (8.273) 

is expected. This operation regime of the valve is called piston fluttering. 
 

c) Closing just starts, idealized closing time:  
 

Now let as consider the case where the valve was completely open and starts to 
close, i.e. 

0τ = ,       (8.274) 

maxz z= ,       (8.275) 

/ 0dz dτ = ,       (8.276) 

and consequently 

Cfr / 0dz dτ = ,      (8.277) 
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the solution is 

( ) ( ) ( )
*
max

max max1 cos cos
2

z
z z zτ ωτ ωτ⎡ ⎤= − + <⎣ ⎦ .   (8.278) 

The condition maxz z<  leads to 

**
max max2z z< ,       (8.279) 

which is the necessary condition that the open valve starts to close. Obviously 

** *
max maxz z>    for the some   ( )in onp pτ −    (8.280) 

due to the existence of the flow reaction thrust 

ffl > 0.        (8.281) 

Consequently the closing time 

1

max
**
max

 arccos 1 2cl

z

z
τ ω

−
⎛ ⎞

Δ = −⎜ ⎟
⎝ ⎠

     (8.282) 

is larger than the closing time for the same value of ( )in onp pτ − . For **
max 0z = , 

/ 4cl vτ τΔ = Δ . For **
max 0z > , / 4cl vτ τΔ > Δ  and for **

max 0z < , / 4cl vτ τΔ < Δ . We 

see that in the case of open valve even for pressure difference ( ) 0in onp pτ − ≈  

the valve remain open at least / 4vτΔ  due to the action of the flow reaction force. 

8.8.7 Recommendations for the application of the model in system 
computer codes 

Finally the following algorithm can be recommended for modeling the dynamic 
valve behavior. The algorithm consists of logical conditions needed to identify the 
valve regime and the appropriate solution of the valve dynamic equation. 

 

1. The valve is closed and remains closed if 

(z = 0 and pin ≤   pon).      (8.283) 

2. The valve starts to open if 

(z = 0 and pin >  pon).       (8.284) 

For 

τ τ τ= + Δ ,       (8.285) 

the piston is lifted to 
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( ) ( )
*
max 1 cos
2

z
z τ ω τ⎡ ⎤= − Δ⎣ ⎦ .     (8.286) 

In this case if z < ε  set z  = ε , where 

0ε → ,       (8.287) 

is the “computer zero”. This is very important for the practical application of the 
method for all possible time steps.  

 
3. The valve was completely open and remains completely open if 

maxz z=    and   **
max max2z z≥ .     (8.288) 

4. The valve was completely open and starts to close 

maxz z=    and   **
max max2z z< .     (8.289) 

In this case after τΔ  the plug position is removed to the position 

( ) ( ) ( )
*
max

max max1 cos cos
2

z
z z zτ ω τ ω τ⎡ ⎤= − Δ + Δ <⎣ ⎦    (8.290) 

In this case if maxz z ε> −  set maxz z ε= − . This is very important for the practical 

application of the method for all possible time steps. 
 

5. The valve is in operation if 

maxz zε ε< = − .      (8.291) 

In this case the preceding information for two points is used 

1τ τ= ,    z = z1,      (8.292) 

and 

2τ τ= ,    z = z2,       (8.293) 

to compute the constants of the piecewise analytical solution C1 and C2. The plug 

position at τ  for 

2
1

2
sp fr

v v

C C

m m

⎛ ⎞
> ⎜ ⎟
⎝ ⎠

 is 

( ) ( ) ( )
( )

** ****
1 2 2 1max

2 1

sin sin

2 sin

z zz
z

ω τ τ ω τ τ
τ

ω τ τ

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦= +
⎡ ⎤−⎣ ⎦

   (8.294) 

for 

2
1

2
sp fr

v v

C C

m m

⎛ ⎞
< ⎜ ⎟
⎝ ⎠

, 
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( ) ( ) ( )
( )

** ****
1 2 2 1max

2 1

sinh sinh

2 sinh

z zz
z

ω τ τ ω τ τ
τ

ω τ τ
⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦= +

⎡ ⎤−⎣ ⎦
   (8.295) 

and for 

2
1

2
sp fr

v v

C C

m m

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 

( ) ( ) ( )** ****
1 2 2 1max

2 12

z zz
z

τ τ τ τ
τ

τ τ
− − −

= +
−

 ,    (8.296) 

where if 

z < 0,        (8.297) 

z is set to zero 

z = 0,        (8.298) 

and the valve is considered as completely closed, and if 

z > zmax,       (8.299) 

z is set to zmax, 

z = zmax ,       (8.300) 

and the valve is considered completely open. Note that if ϕ  <  0.00001  sinϕ ϕ≈  

and sinhϕ ϕ≈ . 

Thus the mathematical description of the plug motion is completed. Having the 
prescribed dependence of the flow surface at the vena contracta as a function of 
the plug position 

A* = A*(z)        (8.301) 

we can estimate in any moment the surface available for the flow and consequent-
ly the flow reaction force ffl. 

8.8.8 Some illustrations of the valve performance model 

This chapter is devoted to an example of the analytical work required to be done 
before implementing a single-component model into system computer codes. 
The system computer codes are very complex. The behavior of any single pipe 
network component has to be examined very carefully outside the code before 
coupling the model with the system code. The valve model is a typical example. 
It introduce such a non-linear interaction with the flows in pipe systems that 
without knowing exactly the valve model behavior it is very difficult to make 
error diagnostics during the development. Here we present some examples 
documented in Kolev (1993) and Roloff-Bock and Kolev (1998). The tests have 
been performed by Roloff-Bock and Kolev  (1998). 
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We will have a look on the valve response to various forms of the driving force 
function F(τ). The fluid momentum flux force Ffl is set to zero, therefore the 
driving force is directly proportional to the inlet pressure. For this purpose simply 
the inlet pressure pin is provided as a time function, which will be either a harmonic 
oscillation or a step function. 

 
1) Figure 8.9 shows the response to a slowly varying driving function with several 
values of the friction coefficient Cfr. The valve was closed at the beginning. When 
the inlet pressure exceeds the onset pressure pon, the valve starts to open as men-
tioned in the previous chapter. 
 

If there is no friction, i. e. Cfr = 0, the valve piston oscillates around the 
equilibrium position zinh(τ), which follows the driving function, until the upper 
boundary at zmax is reached. No reflection is taken into account here, so the 
valve stays open. 

If the friction coefficient is small with respect to the effect of the spring, the 
oscillations around the equilibrium position are damped. 

If the friction coefficient is large, the valve piston follows the equilibrium posi-
tion without oscillating, but with a delay. 
 
2) Figure 8.10 shows the response to a harmonic oscillation function. The 
frequency of the driving function is of the same order of magnitude as the eigen-
frequency of the free oscillating valve, which is in this case vf = 28 Hz. The valve 

is closed at the beginning. It starts to open, when the onset pressure pon is exceeded 
by the inlet pressure pin. Reflection is not taken into account here. Therefore the 
valve stays open, until the inlet pressure drops according to case 4 discussed in the 
previous Section.  
 
When the lower boundary at z = 0 is reached, the valve remains closed, until the 
inlet pressure again exceeds the onset pressure. Also in this case a delay due to the 
friction can be clearly seen. 
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Fig. 8.9 Valve response to a slowly varying driving function with frequency vf = 1 Hz 

 

3) Figure 8.11 shows the dependence of the valve response on the frequency of the 
driving function. No friction is taken into account this time. Reflection is also not 
considered here.  

If the frequency ν of the driving function is much larger than the eigen-frequency 
of the free oscillating valve, which in this example is vf  = 28 Hz, then the amplitude 

of the valve oscillation drops according to the ratio of the two frequencies. 
Figure 8.12 shows the valve response to a step function. The height of the step 

is varied. The previously closed valve starts oscillating around the new equili-
brium position, which corresponds to the height of the step, as long as the value of 
the inlet pressure does not satisfy the conditions of case 3 discussed in the pre-
vious Section to hold up the valve in a completely open stage. 
 

4) Figure 8.13 and 8.14 show the effect of the friction coefficient Cfr and the 
transition from the oscillation case to the aperiodic solution case and the 
asymptotic solution case. If the friction coefficient is small, the valve does some 
damped oscillations around the new equilibrium position. When the friction 
coefficient takes a value that counteracts the spring effect, the new equilibrium 
position is reached within one period and the oscillations are stopped. As the 
friction coefficient increases, the valve needs more and more time to reach the 
new equilibrium position. 
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Fig. 8.10 Valve response to a harmonic oscillation with frequency ν= 10 Hz 

 

 

Fig. 8.11 Dependence on the frequency ν of the driving function 



384      8 One-dimensional three-fluid flows 

 

Fig. 8.12 Valve response to a step function 

 

Fig. 8.13 Influence of the friction coefficient, oscillating and aperiodic case 
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Fig. 8.14 Influence of the friction coefficient, asymptotic case 

5) Figure 8.15 shows the effect of the reflection coefficients. The reflection 
coefficients for both boundaries are varied simultaneously. As an example 
the response to a large step satisfying the conditions of case 3 discussed 
in the previous chapter to hold up the valve in a completely open stage is 
considered.  
 

With no reflection at the upper boundary, i. e. ru= 0, the piston sticks to the 
boundary once it is reached.  

A reflection coefficient of ru= 1 means full reflection. In this case the valve pis-
ton retains all its velocity, but the direction of the movement is inverted. Therefore 
the piston goes back exactly in reverse manner.  

With a reflection coefficient value of ru= 0.5, half of the velocity amount is pre-
served. That means that every reversion goes only half the way back. 
 
6) Figure 8.16 shows the dependence of the solution on the time step Δτ. As can be 
seen clearly, the solution method gives good results also for very large time steps 
compared to a finite difference method approach. 
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Fig. 8.15 Influence of the reflection coefficients 

 

Fig. 8.16 Dependence of the valve equation solution on the time step Δτ 
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8.8.9 Nomenclature for Section 8.8 

Latin 
 

( )*A z  flow cross section or critical flow cross section as a function of the piston 

position, m². This function is defined by the particular valve geometry. 
*A  vena contracta area i.e. the valve ring area m² 

normA   some normalizing cross section, m² 

inA  0> , valve piston face area exposed to the inlet flow stream, m² 

outA  0≥ , valve piston face ring area exposed to the outlet pressure by 

open and closed valve, m² 

outuA  back valve piston area outside the bellow, m² 

atmA  back valve piston area inside the bellow, m² 

flf  fluid force acting on the piston for open valve, N 

vf  eigen frequency of the piston, 1/s 

Csp spring constant,  N/m 
Cft valve damping coefficient, Ns/m 
 
 
mv mass of the valve mechanism that is in motion (i.g. the valve piston, 

rod assembly combined with the spring and bellows), kg 

( )inp τ  valve inlet pressure, Pa 

( )outp τ  valve outlet pressure, Pa 

onp  pressure at which previously closed valve starts to open, Pa 

atmp  atmospheric back pressure inside the bellow, Pa 

outup  valve back pressure outside the bellow, Pa 

ru  reflection coefficient, dimensionless 

vw  velocity of the valve piston, m/s 

z  piston position (i.e., z coordinate, max0 z z≤ ≤ ), m 

= 0, piston position for closed valve, m 
= maxz , piston position for completely open valve, valve lift, m 

0z  spring pressing distance for the normal valve operation, m 

rz  position of the lower end of the valve adjusting ring assembly, 

max0 rz z≤ ≤ , m 
 

Greek 
 

lα  volume fraction of the field l, dimensionless 

zγ  ( )* / normA z A= , surface permeability at the contraction cross section 

used in the network analysis, dimensionless 
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rΔ  width of the expansion ring area formed by the inner surface of the 
valve adjusting ring assembly and the outer surface of the inlet, m 

clτΔ  closing time, s 

vτΔ  oscillation period, s 

dτΔ  damping time constant, s 

1,2λ  eigenvalues, 1/s 

lρ  density of field l, kg/m³ 

ϕ  / 2π≤ , angle of the flow path trajectory between valve inlet and 

valve outlet, rad 
τ  time, s 
ω  oscillation frequency, 2π/s 
 

Subscripts 
 

1 field 1, gas 
2 field 2, liquid 
3 field 3, droplets 
l field l 
in valve inlet 
out valve outlet 
atm at atmospheric pressure 
norm scaling 
outu outside the bellow 
sp spring 
fr friction 
on previously closed valve starts to open 
r ring 

 

Superscripts 
 

* at the smallest flow cross section called in Latin vena contracta 

8.9 Pump model 

In the previous section we considered the relief valves as an important component 
of pipe networks. Another important component is the pump. In this Section we 
describe the dynamic behavior of the centrifugal pumps by simple model. The 
model is appropriate for use in computer codes simulating system behavior of 
complex pipe networks e.g. Kolev (1993). 

The derived pump model is based on the following simplifying assumptions: 
 

(a) Transient flow processes into the pump impeller can be represented by a se-
quence of steady state processes because the time needed by the flow particle to 
pass the pump is very short. The smaller the pumps dimension the more correct is 
this assumption and vice versa. 
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(b) The flow through the pump is incompressible. 

8.9.1 Variables defining the pump behavior 

The variables required to describe mathematically the pump behavior are defined below. 
 

Geometry: 
 

1pD  inner pump impeller diameter, m 

2pD  outer pump impeller diameter, m 

1β  angle between the relative flow velocity 1
rV  and the impeller angular 

velocity 1Vθ , rad 

2β  angle between the relative flow velocity 2
rV  and the impeller angular 

velocity 2Vθ , rad 

Ipr moment of inertia of the pump rotor, kgm² 
 

Velocities: 
 

rV  radial (meridian) velocity, m/s 
rV  relative flow velocity for an observer rotating with the impeller, m/s 

1
rV  1/V A=  , relative flow velocity for an observer rotating with the 

impeller at the entrance cross section of the impeller, m/s 

2
rV  2/V A=  , relative flow velocity for an observer rotating with the 

impeller at the exit cross section of the impeller, m/s 
Vθ  angular impeller velocity, m/s 

iVθ  / 2pi piD D nω π= = , impeller angular velocity at the position defined 

with diameter piD , m/s 
 

Fluid characteristics: 
 

ρ  fluid density, kg/m³ 

mV  
max max

1 1

l l

l l l l l
l l

Vα ρ α ρ
= =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑ ∑ , fixture velocity, m/s 

A flow cross section at which the mixture velocity, m² 
 

Pump characteristics: 
 

g = 9.81, acceleration due to gravity, m/s² 

V   volumetric through flow, m³/s. The volumetric flow is positive if it is 
in the same direction as the positive velocity in the control volume i.e. 
if it has the direction of the increasing cell indices. 
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RV  rated volumetric through flow characterizing the normal pump 

operation, m³/s 
*V  / RV V=   , volumetric flow ratio, dimensionless 

pumppΔ  pump pressure difference i.e. pressure at the pump outlet minus 

pressure at the pump inlet (used in the momentum balance), Pa. The 
pressure difference is positive if it would accelerate the flow in the 
positive velocity direction. 

H ( )/pumpp gρ= Δ , total head rise of the pump (defined by empirical 

homologous pump performance model as a function of the volumetric 

through flow V ), m 

RH  rated total head rise of the pump characterizing the normal pump 

operation, m 
*H  / RH H= , head ratio, dimensionless 

Mfl torque acting at the pump rotor and caused by the flow in the pump 
(defined by empirical homologous pump performance model as a 

function of the volumetric through flow V ), Nm. Negative, if it tends 
to decelerate the pump. 

Mfl,R rated pump torque characterizing the normal pump operation, Nm 
M* = Mfl / Mfl,R, torque ratio, dimensionless 
Mfr friction torque, Nm 
Mm motor torque, Nm 
ω  pump angular speed (rotational speed defined by a pump drive 

model). A pump operating in a normal pump regime has positive 
angular velocity, rad/s 

Rω  rated pump angular speed characterizing the normal pump operation, rad/s 

*ω  / Rω ω , angular velocity ratio, dimensionless 

n rotation per second, 1/s 
nR rated rotation per second characterizing the normal pump operation, 1/s 
n* = n/nR, rotation ratio, dimensionless 

pumpP  p pump m p pumpM p AV p Vω η η= = Δ = Δ  , pump power introduced into the 

flow (used into the energy balance), W 

pη  efficiency, dimensionless 
 

The rated values RV , Rω , RH  and Mfl,R are required input data for the pump model. 
 

Dimensionless similarity criteria: 
 

ϕ   
2 3 2 3

8 4

/ 4pi pi pi

V V V

V D D nDθπ πω π
= = =

  
, specific capacity, Keller 

1934, dimensionless 
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ψ   
( ) ( )2 2 2 2 2

8 2

/ 2 / 2 / 2
pump

i i i pi pi

p gH gH gH gH

V V V D nDθ θ θ

ρ
ρ ρ ω π

Δ
= = = = = , specific 

head, L. Prandtl 1912, dimensionless. /pumpp ρΔ  can be con-

sidered as a specific work done on the fluid and 2 / 2iVθ  the 

specific kinetic energy at the outer impeller diameter. 
λ   / effϕψ η= , power number, dimensionless 

effη  ratio of the power inserted into the flow to the pump motor 

power, dimensionless 

( )2 5
2/ pM Dρω  specific torque, dimensionless 

 

In order to obtain bounded values in the homologous pump curve the following 
modified similarity numbers are used too: 

 

2/gH V  modified specific head, dimensionless 

( )2 3
2/ pM V Dρ   modified specific torque, dimensionless 

sn  specific speed, 1/s 
 

The specific speed is the speed necessary for a geometrically similar model pump 

to provide a head of H = 1 m and a volume flow rate of V  = 1 m³/s. Using the si-

milarity relationships and the steady state operation point ( RH , RV  and nR) the 

specific speed is computed with Eq. 8.5 in Kolev  (1982) p. 251 as follows 
3/ 41/ 2

3 11
R R

s R

V H
n n

mm s

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠


.     (8.302) 

The dimension of the specific speed is the same as the dimension of the rated 
speed Rn . One should be careful with the definition of the specific speed in older 

sources because at least three metric systems were widely used in the past. 

8.9.2 Theoretical basics 

The text book theoretical basics, see Pohlenz (1975) p. 53, are briefly given here 
in order to understand the world wide accepted pump modeling technique. 
Consider a centrifugal pump with impeller rotating with n rotations per second 
that is with angular velocity 

2 nω π= ,       (8.303) 

inner radius 1r  and outer radius 2r . The angular velocity at the inner impeller 

radius is 

1 1V rθ ω=        (8.304) 
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and at the outer impeller radius 

2 2V rθ ω= .        (8.305) 

The relative flow velocity for an observer rotating with the impeller is rV . The 
relative flow velocity is equal to the volumetric flow divided by the cross section 
normal to rV . For incompressible flow we have  

1 1/rV V A=  ,       (8.306) 

2 2/rV V A=  .       (8.307) 

The vector sum of the relative flow velocity and the angular impeller velocity 
gives the absolute flow velocity aV .  

a r a
θ= +V V V  .      (8.306) 

We designate the angular component of this velocity magnitude with aVθ .  
 

The mass flow in kg/s entering the pump impeller is 

m Vρ=  .       (8.307) 

The angle between the relative flow velocity 1
rV  and the impeller angular velocity 

1Vθ  is 1β  and that the angle between the relative flow velocity 2
rV  and the impel-

ler angular velocity 2Vθ is 2β . Therefore 

1 1 1 1cosa rV V Vθ θ β= − ,      (8.308) 

2 2 2 2cosa rV V Vθ θ β= − .      (8.309) 

The flow is stationary and incompressible. Thus the force acting on the flow in the 
angular direction at the inlet is 

1 1
aF mVθ θ=          (8.310) 

and at the impeller outlet 

 2 2
aF mVθ θ= −   .      (8.311) 

The corresponding torques are 1 1F rθ  and 2 2F rθ , respectively. The resulting torque 

acting on the flow inside the impeller is 

( )2 2 1 1 2 2 1 1
a a

flM F r F r m V r V rθ θ θ θ= + = −     (8.312) 

The power inserted into the flow is therefore flM ω  or 

( ) ( )2 2 1 1 2 2 1 1
a a a a

pump flp V M m V r V r V V r V rθ θ θ θω ω ρ ω ωΔ = = − = −  , (8.313) 
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or after canceling the volumetric flux 
 

( ) ( )2 2 1 1 2 2 1 1
a a a a

pumpp V r V r V V V Vθ θ θ θ θ θρ ω ω ρΔ = − = − .  (8.314) 

 
This is the main pump equation describing the pressure rise as a function of the 
impeller speed and geometry. Replacing Eqs. (8.308) and (8.309) in the main 
pump equation we obtain 

( ) ( )2 2 2 2 1 1 1 1cos cosr r
pumpp V V V V V Vθ θ θ θρ β β⎡ ⎤Δ = − − −⎣ ⎦  

( )2 2
2 1 1 1 1 2 2 2cos cosr rV V V V V Vθ θ θ θρ β β= − + − .   (8.315) 

or after using the mass conservation equations (8.306) and (8.307) one obtains 

( )2 2 2 1 2
2 1 1 2

1 2

cos cospump

r r
p r r V

A A
ρ ω β β ω
⎡ ⎤⎛ ⎞

Δ = − + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  

( )2 2 2 2 1 2
2 1 1 2

1 2

4 cos cos 2
r r

r r n nV
A A

ρ π β β π
⎡ ⎤⎛ ⎞

= − + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 .  (8.316) 

If we consider additionally that the flow exerts some pressure loss due to friction 
with the pump structures in the impeller region we finally obtain 

( )2 2 2 21 2
2 1 1 2

1 2

1
cos cos

2pump
m

r r
p r r V V

A A A

ρρ ω β β ω ξ
⎡ ⎤⎛ ⎞

Δ = − + − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

   

( )2 2 2 2 21 2
2 1 1 2

1 2

1
4 cos cos 2

2 m

r r
r r n nV V

A A A

ρρ π β β π ξ
⎡ ⎤⎛ ⎞

= − + − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  . (8.317) 

where ξ  is some friction loss coefficient and mA  some averaged flow cross section. 

The pressure rise of the pump is usually expressed for liquids with the head H 

pumpp gHρΔ = ,       (8.318) 

where g is the gravitational acceleration. Usually the main pump equation is writ-
ten in the form 

 

2 2H An BnV CV= + −  ,     (8.319) 

 

where 

( )2 2 2
2 1 4 /A r r gπ= − ,      (8.320) 
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1 2
1 2

1 2

cos cos 2 /
r r

B g
A A

β β π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

,    (8.321) 

1
/

2 m

C g
A

ρξ= .      (8.322) 

The coefficients A, B and C are not dependent on the fluid density and can be 
computed approximately from the particular pump geometry. The above equation 

contains the most important effect in the first quadrant i.e. V  > 0 and H > 0. In fact 
such analysis does not take into account several effects. That is why in the practical 

applications the dependence H = H(n,V ) is obtained experimentally for each 
particular pump family by the pump manufacturer. In the reality the ratio of the 
power inserted into the flow to the impeller power called efficiency is less than one 

( )/p flgHV Mη ρ ω=  .       (8.323) 

The power 

( )( )1diss p flW Mη ω= −       (8.324) 

is transferred irreversibly from mechanical energy into internal energy of the flow 
per unit second due to internal friction, turbulization etc.  Gao et al. (2011) re-
ported efficiencies between 72 and 79% for axial pump usually used in nuclear 
power plants. 

Obviously H is a function of n and V . It is easy to show that introduction of a 
simple variable transformation reduces the three-dimensional relationship to a 

two-dimensional one. Dividing either by 2V  or by n² one obtains 

( ) ( )2
2/ / / /H V A n V Bn V C f n V= + − =        (8.325) 

or 
 

( ) ( )2
2/ / / /H n A BV n C V n f V n= + − =   .   (8.326) 

 

This is a remarkable quality of the main pump equation. In spite of the fact that 
this dependence is only an approximate one, the practical measurements 

( ), , 0f H V n =       (8.327) 

are surprisingly reduced to a single curve named the similarity or homologous curve 

( )2
1 / , / 0f H V n V =        (8.328) 

or 
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( )2
2 / , / 0f H n V n = .      (8.329) 

Both above discussed forms are used in the literature in order to avoid division by 

zero in the four quadrant if n or V  tends to zero. This fact was recognized several 
decades ago. It was Prandtl in 1912, see Prandtl (1984), who introduced the so 
called specific head, 

( ) ( )2 2 2 2 2
2 2 2 2 2

8 2

/ 2 / 2 / 2
pump

p p

p gH gH gH gH

V V V D nDθ θ θ

ρψ
ρ ρ ω π

Δ
= = = = =  .  (8.330) 

Here /pumpp ρΔ  can be considered as a specific work done on the fluid and 2
2 / 2Vθ  

the specific kinetic energy at the outer impeller diameter. It was Keller in 1934 
who introduced the so called specific capacity of the pump defined as follows 

2 3 2 3
,2 2 2 2

8 4

/ 4p p p

V V V

V D D nDθ

ϕ
π πω π

= = =
  

.    (8.331) 

Like the measured dependence f(H, V , n) = 0  the presentation in the form 

( )1 , 0f ϕ ψ = .       (8.332) 

reduces with remarkable accuracy the data to a single curve. The very important 
practical significance of the above relationship is that keeping ϕ  constant in two 

neighboring steady state points of operation by 

1 1 2 2/ /V n V n=         (8.333) 

ψ  is also constant, which means 

2 2
1 1 2 2/ /H n H n= .       (8.334) 

Recently the main pump relationship was further modified by introducing dimen-
sionless quantities namely quantities divided by the corresponding quantities charac-

terizing the normal pump operation called some times rated quantities, RH , Rn , RV ,  

* / RH H H= ,       (8.335) 

* / Rn n n= ,       (8.336) 

* / RV V V=   ,       (8.337) 

( ) ( )2
2* / * * * / * * * / * * * / *H V A n V B n V C f n V= + − =    ,  (8.338) 

or 
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( ) ( )2
2* / * * * * / * * * / * * / *H n A B V n C V n f V n= + − =   ,  (8.339) 

where 

2* /R RA An H= ,      (8.340) 

* /R R RB Bn V H=        (8.341) 

and 

2* /R RC CV H=  .      (8.342) 

Table 1 gives a possible way how the homologous curve can be stored for all four 
quadrants avoiding division with zero as already exercised in RELAP 5/Mod 2 
computer code, see Ransom et al. (1988) p. 27, 179. Instead of the rotation ratio in 
Table 8.1 the angular velocity ratio is used. Note that the rotation ratio is equal to 
the angular velocity ratio 

* / / *R Rn n n ω ω ω= = = .     (8.343) 

Similarly the hydraulic torque acting on the pump rotor can be presented. 
One of the possibilities to provide the pump data for computer codes is to read the 
16 curves as discussed above as input - see Figs. 8.17 and 8.18. This is getting 
popular through the using of the RELAP computer code.  

But there is more efficient way to use the pump characteristics: It is recom-
mended then to store the data in the form of the so called Suter diagram, which is 
much simpler to use in a computer code - see Fig. 8.19. The idea how to construct 
a Suter diagram is described in the next section. 

Table 8.1 Pump homologous curve definitions 

Regime 
mode 

Regime   

  *ω  *V  *

*

V

ω


 

Head Key Tor-
que 

Key 

1 Normal pump, 
or energy 
dissipating 
pump,  
or reverse 
turbine 

> 0 ≥  0 ≤  1 *

*

V

ω


2

*

*

H

ω
HON

2

*

*

M

ω
 

TON 

2  > 0 ≥  0 > 1 *

*V

ω
 2

*

*

H

V
 

HVN 
2

*

*

M

V
 

TVN 

3 Energy 
dissipation 
only 

> 0 < 0 ≥ -1 *

*

V

ω


 
2

*

*

H

ω
 

HOD 
2

*

*

M

ω
 

TOD 



8.9 Pump model      397 

4  > 0 < 0 < -1 *

*V

ω


 2*

*H

ω
 

HVD 
2

*

*

M

V
 

TVD 

5 Normal 
turbine, or 
energy 
dissipating 
turbine 

≤ 0 ≤  0 ≤  1 *

*

V

ω


 
2

*

*

H

ω
 

HOT 
2

*

*

M

ω
 

TOT 

6  ≤  0 ≤  0 > 1 *

*V

ω


 
2

*

*

H

V
 

HVT 
2

*

*

M

V
 

TVT 

7 Reverse pump 
or energy 
dissipating  
reverse pump 

≤  0 > 0 ≥ -1 *

*

V

ω


 
2

*

*

H

ω
 

HOR 
2

*

*

M

ω
 

TOR 

8  ≤  0 > 0 < -1 *

*V

ω


 

2

*

*

H

V
 

HVR 
2

*

*

M

V
 

TVR 

       

*ω = rotational velocity ratio, *V = volumetric flow ratio, H* = head ratio, and 
M* = torque ratio. The key indicates which of the homologous parameters in each 
octant. The first sign is either H or T and means either head or torque, the second 

O or V indicates division either by 2*ω  or 2*V , and the third N, D, T and R indi-
cates the 1, 2, 3 and 4 quadrant, respectively. 

-1,0 -0,5 0,0 0,5 1,0
-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

 

 
         -1<X<0  0<X<1

 HOD     HON
 HOR     HOT
 HVD     HVT
 HVR     HVN

Y
=

(H
/H

R
)/

(n
/n

R
)2  o

r 
(H

/H
R
)/

(V
/V

R
)2

X=(V/V
R
)/(n/n

R
) or (n/n

R
)/(V/V

R
)

 

Fig. 8.17 Typical pump homologous head curves 
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-1,0 -0,5 0,0 0,5 1,0
-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

 

 

         -1<X<0  0<X<1
 TOD     TON
 TOR     TOT
 TVD     TVT
 TVR     TVN

Y
=

(T
/T

R
)/

(n
/n

R
)2  o

r 
(T

/T
R
)/

(V
/V

R
)2

X=(V/V
R
)/(n/n

R
) or (n/n

R
)/(V/V

R
)

 

Fig. 8.18 Typical pump homologous torque curves 

 

0 1 2 3 4 5 6

-1,0

-0,5

0,0

0,5

1,0

1,5

Sequence of the homologous
curves in the cyclic curve
2-HVN, k=0
1-HON rev, k=0
3-HOD rev, k=1
4-HVD, k=1
6-HVT, k=1
5-HOT rev, k=1
7-HOR rev, k=2
8-HVR, k=2

 
  YH=(H/H

R
)/[(n/n

R
)2+(V/V

R
)2], head

 YT=(T/TR)/[(n/n
R
)2+(V/V

R
)2], torque

Y
H

, Y
T

, -

X=arctan[(n/n
R
)/(V/V

R
)]+k*pi in rad

 
Fig. 8.19 Cyclic head and torque curves for single phase flow 
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8.9.3 Suter diagram 

In order to avoid the division of the homologous curve into eight segments the 
proposal made by Suter in (1966) and modified by Lang, see in Kastner, Riedle 
and Seeberger (1983, Kastner and Seeberger (1983) is very useful. Instead of us-

ing either 2* / *H n  or 2* / *H V  it is convenient to use only one function quantity 

( )2 2* / * *H n V+  ,      (8.344) 

which can be easily computed from the known eight homologous curves as follows 

( ) ( ) ( )2 2
2 2

2 2

* *
* / * * 1 * / * 1 * / *

* *

H H
H n V V n n V

n V
⎡ ⎤ ⎡ ⎤+ = + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  


,(8.345) 

or directly deduced from the experimental observation. The region splitting for the 
argument can also be avoided if one uses as argument 

( )arctan * / *X n V kπ= + ,     (8.346) 

where for the first n V−   quadrant k = 0, for the second and third quadrants k = 1, and 
for the fourth quadrant k = 2. The eight head curves presented in Figs. 8.17 and 8.18 
reduce to only one curve, as shown in Fig. 8.19. In similar way the eight torque curves 
can be reduced to a single curve. Thus finally we can use the Suter diagram in the form 

( ) ( )2 2* / * * arctan * / *H n V f n V kπ⎡ ⎤+ = +⎣ ⎦
  ,   (8.347) 

and 

( ) ( )* 2 2/ * * arctan * / *flM n V f n V kπ⎡ ⎤+ = +⎣ ⎦
  .   (8.348) 

Examples of such pump characteristics were obtained by Hollander in 1953 - see 
Donsky (1961) for three types of pumps in wide range of the so called specific 
speed defined as follows 

3/ 41/ 2

3 11
R R

s R

V H
n n

mm s

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠


,     (8.349) 

sn  = 34.8 rotations per minute for a centrifugal pump, 147.17 for a diagonal pump 

and 261.42 for an axial pump. Fox gives in 1977 the numerical values needed to draw 
the Suter diagram in the first three quadrants of the Hollander characteristics (see pp. 
135 - 142 in the Russian translation). We supplement these data with the data for the 
fourth quadrant obtained from the original diagrams as given in Donsky (1961) and 
use in the computer code series IVA the resulting curves as given in Table 8.2 and 
plotted in Figs. 8.20 to 8.22 as one of the possible options to generate Suter diagrams 
knowing only the pump data for the point having optimum pump efficiency. 



400      8 One-dimensional three-fluid flows 

Table 8.2 Suter diagram for three different specific speeds sn  

 
sn =0.581 2.452 4.357 

X YH YT YH YT YH YT 
0.000 -0.549 -0.433 -1.644 -1.417 -0.952 -0.574 
0.168 -0.408 -0.155 -1.098 -0.904 -0.874 -0.602 
0.318 -0.198 0.009 -0.623 -0.424 -0.686 -0.542 
0.464 -0.032 0.160 -0.350 -0.088 -0.399 -0.312 
0.588 0.158 0.297 0.035 0.200 -0.076 0.021 
0.695 0.332 0.415 0.308 0.397 0.219 0.303 
0.785 0.500 0.500 0.500 0.500 0.500 0.500 
0.876 0.650 0.555 0.626 0.579 0.803 0.619 
0.983 0.817 0.596 0.776 0.651 1.088 0.741 
1.107 0.984 0.616 0.968 0.728 1.409 0.904 
1.249 1.143 0.594 1.197 0.882 1.817 1.214 
1.406 1.254 0.526 1.479 1.147 2.268 1.626 
1.571 1.290 0.440 1.960 1.481 2.729 1.960 
1.736 1.274 0.370 2.103 1.538 3.183 2.310 
1.893 1.214 0.342 2.187 1.548 3.474 2.647 
2.034 1.145 0.345 2.265 1.623 3.576 2.934 
2.159 1.080 0.367 2.359 1.711 3.508 3.031 
2.266 1.020 0.437 2.474 1.907 3.451 2.945 
2.356 0.994 0.520 2.637 2.079 3.272 2.756 
2.447 0.958 0.604 2.802 2.356 2.853 2.547 
2.554 0.897 0.691 2.900 2.541 2.484 2.182 
2.678 0.865 0.783 2.976 2.722 2.161 1.801 
2.820 0.812 0.857 2.890 2.749 1.823 1.442 
2.976 0.767 0.884 2.624 2.496 1.440 1.030 
3.142 0.691 0.859 2.170 2.103 1.082 0.669 
3.307 0.623 0.787 1.555 1.525 0.787 0.417 
3.463 0.569 0.686 0.992 1.036 0.704 0.415 
3.605 0.529 0.552 0.616 0.664 0.616 0.504 
3.730 0.504 0.428 0.415 0.387 0.462 0.372 
3.836 0.503 0.319 0.279 0.183 0.260 0.106 
3.972 0.506 0.187 0.150 -0.100 0.065 -0.075 
4.018 0.520 0.141 0.112 -0.171 -0.166 -0.325 
4.124 0.548 0.069 0.042 -0.318 -0.416 -0.582 
4.249 0.584 -0.024 -0.096 -0.503 -0.687 -0.880 
4.391 0.621 -0.144 -0.252 -0.711 -1.026 -1.171 
4.547 0.642 -0.360 -0.448 -1.061 -1.508 -1.538 
4.712 0.630 -0.671 -0.671 -1.501 -2.190 -2.329 
4.791 0.616 -0.868 -0.786 -1.577 -2.427 -2.427 
4.869 0.514 -1.035 -0.800 -1.681 -2.625 -2.625 
4.948 0.367 -1.182 -0.859 -1.729 -2.785 -2.785 
5.027 0.202 -1.321 -0.937 -1.745 -2.928 -2.928 
5.105 0.068 -1.450 -1.008 -1.777 -3.071 -3.071 
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5.184 -0.120 -1.571 -1.137 -1.892 -3.192 -3.192 
5.262 -0.239 -1.618 -1.367 -2.008 -3.113 -3.113 
5.341 -0.325 -1.646 -1.582 -2.185 -3.034 -3.034 
5.419 -0.389 -1.663 -1.751 -2.355 -2.955 -2.955 
5.498 -0.470 -1.652 -1.888 -2.451 -2.876 -2.876 
5.576 -0.534 -1.641 -2.026 -2.547 -2.716 -2.742 
5.655 -0.586 -1.563 -2.163 -2.644 -2.436 -2.525 
5.733 -0.625 -1.475 -2.258 -2.742 -2.155 -2.309 
5.812 -0.653 -1.374 -2.341 -2.765 -1.875 -2.093 
5.890 -0.672 -1.245 -2.286 -2.750 -1.595 -1.850 
5.969 -0.682 -1.112 -2.232 -2.708 -1.519 -1.588 
6.048 -0.671 -0.957 -2.130 -2.583 -1.448 -1.326 
6.126 -0.652 -0.774 -2.021 -2.328 -1.262 -1.053 
6.205 -0.616 -0.546 -1.840 -1.889 -1.092 -0.788 
6.283 -0.549 -0.433 -1.644 -1.417 -0.952 -0.574 

 
There are situations in the engineering practice where transients have to be ana-
lyzed for networks with old pumps for which limited data are available. One 
usually knows the optimum working point and sometimes the first quadrant cha-
racteristics. But the data for all four quadrants are required for transient analysis. 
In this case one can generate approximate four quadrant characteristics by inter-
polation between the Hollander’s data. The way used to generate the Suter dia-
grams is the following: First the specific speed for the particular pump under 
consideration is computed. If 

sn < 0.581 rps       (8.350) 
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Fig. 8.20 Cyclic head and torque curves for single phase flow centrifugal pump. Measurements 
made by Hollander 1953 
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Fig. 8.21 Cyclic head and torque curves for single phase flow diagonal pump. Measurements 
made by Hollander 1953 
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Fig. 8.22 Cyclic head and torque curves for single phase flow axial pump. Measurements 
made by Hollander 1953 

the Suter diagram for sn = 0.581 rps is used. If 
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sn  > 4.357 rps       (8.351) 

the Suter diagram for sn = 4.357 rps is used. Otherwise the interpolation between 

two neighboring characteristics is used for 0.581 and 2.452, or 2.452 and 4.357, 
respectively, depending on the particular specific velocity. The code prints 
comprehensive data for the first quadrant in order to check the so obtained pump 
characteristics - see Figs. 8.23 and 8.24. 

As already mentioned, usually the first quadrant information is available. One 
should compare the so obtained characteristics with the known ones for the first qua-
drant and if the agreement is satisfactory the computation can continue. If the characte-
ristics disagree the actual data should be obtained from the pump manufacturer. In the 
case that no data except first quadrant data are available the Suter diagram can be sepa-
rately computed from the available first quadrant data and the residual part can be 
drawn parallel to some known characteristics for a pump with similar geometry. 

Characteristics of 1:4 and 1:5 models of large scale mixed flow and axial 
pumps are reported by Kastner et al. (1983a, b) and Kennedy et al. (1982) where 

the specific speed was sn ≈ 130 rpm. 

Large scale pump characteristics for two pumps are used by Ransom (1988). 
Characteristics of centrifugal pumps with different constructions are available 

in Pohlenz (1977). 

 
 

Fig. 8.23 Head as a function of the volumetric flow. Parameter – rotational frequency 
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Fig. 8.24 Hydraulic power as a function of the volumetric flow. Parameter – rotational 
frequency 

Data in a form of the Suter diagram can be approximated by a quadratic poly-
nomial of the main pump equation. In order to compute the coefficients A*, B*, and 
C* we need three characteristic points, e.g. the point with the maximum efficiency, 

X = 1, YH = 1,      (8.352) 

the point with the zero volumetric flux 

X = 0, YH = YH0,      (8.353) 

and some third point 

X = Xl, YH = YHl.      (8.354) 

Substituting into the main pump equation we obtain 

1 = A* + B* - C*,      (8.355) 

C*  =  -YH0,       (8.356) 

YH1 = A* 2
1X  + B* 1X + C*.     (8.357) 

Solving with respect to the unknown constants we obtain 

A* = [ (1 – YH0) 1X - YH1 + YH0]/( 1X  - 2
1X ),  (8.358) 

B* =[- (1 – YH0) 
2
1X  + YH1- YH0]/( 1X - 2

1X ),   (8.359) 
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C* = - YH0.       (8.360) 

An approximate model of the two-phase performance can be easily derived having in 
mind that the term C is in fact the frictional pressure loss coefficient for one-phase 
flow. The method of Lockhart and Martinelli can be applied here in order to compute 
also the frictional pressure drop exerted by the flow passing the pump. Thus a liquid 

only two-phase flow multiplier 2
0fΦ  should be computed for volumetric flow V  

considered to consist only of liquid and with some averaged characteristic hydraulic 
diameter of the impeller. Thereafter the coefficient C* is corrected as follows 

2
0 0* fC YH= − Φ .      (8.361) 

An immediate result of this approximation is that, if the pump is entered by a two-
phase mixture instead of water only, the pressure head decreases due to the dramatic 
increase of the frictional pressure drop. Additional effects are the flow non-
homogeneity and the disturbance of the flow velocity triangles in the impeller. 

8.9.4 Computational procedure 

Input for each time τ : 

RV , Rω , RH and ,fl RM  a priori defined. 

max

1

l

l l
l

V wα
=

= ∑  provided from the hydraulic modeling in the pipe network. 

ω   either prescribed or computed from the pump drive model. 

Compute 

* / RV V V=   , 

* / Rω ω ω= . 

From the homologous curve compute by interpolation 

( )* * *, *H H V ω= , 

( )* * *, *M M V ω= , 

Correct H* in case of multi-phase flow. 
 

Compute 

*pump Rp gH HρΔ = , 

,*fl fl RM M M= . 

Use further 
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pumppΔ   

in the momentum equations and the energy dissipation 

fl pumpM p Vω −Δ   

in the energy balance. 

8.9.5 Centrifugal pump drive model 

The angular momentum balance at the pump rotor reads 

0pr fl fr m

d
I M M M

d

ω
τ
+ + − = .     (8.362) 

Here the motor torque is provided by the motor manufacturer as a function of the 
angular speed (e.g. for induction motors at constant voltage) 

( )R RM M ω= .      (8.363) 

flM  is the hydraulic torque computed from the homologous curve as a function of 

pump angular speed and flow rate. The frictional torque is a prescribed function of 
the angular velocity 

( )fr frM M ω= ,      (8.364) 

where for 0frM ≥ > 0 for 0ω ≥  and 0frM ≤ for 0ω ≤  (if reverse rotation is al-

lowed at all). A cost down of pump is then defined if the motor torque is zero. Gao 
et al. (2011) reported interesting solution and data for cost down behavior of a 
pump in closed circuit filled with water. 

8.9.6 Extension of the theory to multiphase flow 

The theoretical basics for approximate description of the pump performance for 
multiphase flow are briefly given here. Consider a centrifugal pump with impeller 
rotating with n rotations per second or with the angular velocity 

2 nω π= ,       (8.365) 

inner radius r1, and outer radius r2. The angular velocity at the inner impeller ra-
dius is 

1 1V rθ ω=        (8.366) 

and at the outer impeller radius 

2 2V rθ ω= .       (8.367) 
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The corresponding velocity field components at the inner impeller radius are 

1, 1lV rθ ω=        (8.368) 

and at the outer impeller radius 

2, 2lV rθ ω= .       (8.369) 

The relative flow field velocity for an observer rotating with the impeller is r
lV . 

The vector sum of the relative flow field velocity and the angular impeller velocity 
gives the absolute flow velocity a

lV . We designate the angular component of this 

velocity with ,
a

lVθ . The mass flow in kg/s of each velocity field entering the pump 

impeller is lm . The flow is stationary and incompressible. Thus, the force acting 

on the flow in the angular direction at the inlet is 

1, 1,
a

l l lF m Vθ θ=         (8.370) 

and at the impeller outlet 

2, 2,
a

l l lF m Vθ θ= −        (8.371) 

The corresponding torques are 1, 1lF rθ  and 2, 2lF rθ . The resulting torque acting on 

the flow inside the impeller is 

( ) ( )
max max

2, 2 1, 1 2, 2 1, 1
1 1

l l
a a

fl l l l l l
l l

M F r F r m V r V rθ θ θ θ
= =

= + = −∑ ∑  .   (8.372) 

The power inserted into the flow is, therefore, flM ω  or 

( )
max

2, 2 1, 1
1

l
a a

pump fl l l l
l

p V M m V r V rθ θω ω
=

Δ = = −∑  .   (8.373) 

Bearing in mind that 

m Vρ=  ,       (8.374) 

one obtains 

( ) ( )
max max

2, 2 1, 1 2, 2, 1, 1,
1 1

l l
a a a al l

pump l l l l l l
l l

m m
p V r V r V V V V

V V
θ θ θ θ θ θω

= =

Δ = − = −∑ ∑ 
 

. (8.375)  

This is the main pump equation describing the pressure rise as a function of the 
impeller speed and geometry. Bearing in mind that the angle between the relative 
flow velocity 1,

r
lV  and the impeller angular velocity 1,lVθ  is 1β  and that the angle 

between the relative flow velocity 2,
r
lV  and the impeller angular velocity 2,lVθ  is 
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2β , the projections of the absolute flow velocities on the angular impeller veloci-

ties are 

1, 1, 1, 1cosa r
l l lV V Vθ θ β= − ,      (8.376) 

2, 2, 2, 2cosa r
l l lV V Vθ θ β= − .     (8.377) 

Substituting into the main pump equation we obtain 

( ) ( )
max

2, 2, 2 2, 1, 1, 1 1,
1

cos cos
l

r rl
pump l l l l l l

l

m
p V V V V V V

V
θ θ θ θβ β

=

⎡ ⎤Δ = − − −⎣ ⎦∑ 


 

( )
max

2 2
2, 1, 1, 1, 1 2, 2, 2

1

cos cos
l

r rl
l l l l l l

l

m
V V V V V V

V
θ θ θ θβ β

=

= − + −∑ 


.  (8.378)  

Bearing in mind that the relative flow velocity is equal to the volumetric flow di-
vided by the cross section normal to rV , i.e., 

( )1, 1, 1/r
l l lV V Aα=  ,      (8.379) 

( )2, 2, 2/r
l l lV V Aα=  ,      (8.380) 

one obtains 

( )
max

2 2 2 1 1 2 2
2 1

1 1, 1 2, 2

cos cosl
l

pump l
l l l

m r r
p r r V

A AV

β βω ω
α α=

⎡ ⎤⎛ ⎞
Δ = − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  


 

( )
max

2 2 2 2 1 1 2 2
2 1

1 1, 1 2, 2

cos cos
4 2

l
l

l
l l l

m r r
r r n nV

A AV

β βπ π
α α=

⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  


.  (8.381)  

If additionally we consider that the flow exerts some pressure loss due to friction 
with the pump structures in the impeller region, we finally obtain 

( )
max

2 2 2 2 21 1 2 2
2 1 20

1 1, 1 2, 2

cos cos 1

2

l
l

pump l
l l l m

m r r
p r r V V

A A AV

β β ρω ω ξ
α α=

⎡ ⎤⎛ ⎞
Δ = − + − − Φ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑   


 

( )
max

2 2 2 2 2 21 1 2 2
2 1 20

1 1, 1 2, 2

cos cos 1
4 2

2

l
l

l
l l l m

m r r
r r n nV V

A A AV

β β ρπ π ξ
α α=

⎡ ⎤⎛ ⎞
= − + − − Φ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑   


, 

    (8.382)  

where ξ  is some friction loss coefficient computed as with the multiphase mass 

flow rate and liquid properties, 2
20Φ  is the Lochart and Martinelli two-phase mul-

tiplier, and mA  some averaged flow cross section. The pressure rise of the pump is 

usually expressed with the head H 
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pump hp gHρΔ = ,       (8.383) 

where g is the gravitational acceleration and 

max

1

l

h l l
l

ρ α ρ
=

= ∑        (8.384) 

is the homogeneous mixture density. Usually, the main pump equation is written 
in the form 

( )
max

2 2 2 2
2 1

1

4
l

h l
l

gH r r m V nρ π
=

⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑   

max
2 21 1 2 2

20
1 1, 1 2, 2

cos cos 1
2

2

l
l l

l l l m

m Vr r
nV V

A A AV V

β β ρπ ξ
α α=

⎡ ⎤⎛ ⎞
+ − − Φ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑
 

 
,  (8.385) 

or 
 

2 2H A n B nV C V+ + + += + −  ,     (8.386) 

where 

( ) ( )
max max2

2 2
2 1

1 1

4 l l

l l h
l lh

A r r m V A m V
g

π ρ
ρ

+

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑      (8.387) 

max
1 1 2 2

1 1, 1 2, 2

cos cos2 l
l l

lh l l

m Vr r
B

g A AV V

β βπ
ρ α α

+

=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑


 
  

max
1 1 2 2

1 1, 1 2, 2

1 1 2 2

1 2

cos cos

cos cos

l
l l

l l l

h

m Vr r

A AV V
B

r r

A A

β β
α α

β βρ

=

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

∑


 
    (8.388) 

2 2 2
20 20 20

1

2 h m h

C C C
gA

ρ ρξ
ρ ρ

+ = Φ = Φ ≈ Φ .   (8.389) 

Obviously, for single-phase flow 

max

1

1
1

l

l
lh

m
Vρ =

=∑ 


       (8.390) 
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max
1 1 2 2

1 1, 1 2, 2

1 1 2 2

1 2

cos cos

1
cos cos

l
l l

l l l

h

m Vr r

A AV V

r r

A A

β β
α α

β βρ

=

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ =

⎛ ⎞
−⎜ ⎟

⎝ ⎠

∑


 
     (8.391) 

2
20 1Φ =        (8.392) 

and, therefore, 

A A+ = ,       (8.393) 

B B+ = ,       (8.394) 

C C+ = .       (8.395) 
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9 Detonation waves caused by chemical 
reactions or by melt-coolant interactions 

9.1 Introduction 

Analyzing a fascinating physical phenomenon such as the melt-water detonation 
in this chapter we will give an interesting application of the theory of multi-phase 
flows – namely the analysis of the detonation wave propagation during the 
interaction of molten materials with liquids such as that of iron with water. 

Melt-coolant interaction analysis plays an important role in risk estimation for 
facilities in which high-temperature molten material comes or may come into 
contact with low-temperature liquid coolant. Contacts of iron with water or 
uranium dioxide with water are some examples of this phenomenon. One of the 
intriguing discussions in this field is motivated by the observation that molten 
alumina produces severe interactions when dropped into water whereas molten 
uranium dioxide at a similar temperature produces only moderate interactions. 
Use of the solution of the Fourier equation for contact of melt and coolant during 
a prescribed time as presented in Kolev (1999a) does not yield any explanation for 
these differences. It was shown in Kolev (1999a) that the ratio of the discharged to 
the available thermal energy for UO2 at an initial temperature 3 3000T K=  in 

contact over 23 0.001sτΔ ≈  with water at temperature 2 30T C= °  and atmospheric 

pressure is 30.000133th Dη = . For the same conditions for Al2O3 this ratio is 

30.000129th Dη = . Here 3D  is the particle size. It is evident that the thermal 

properties for transient heat conduction by these fluid pairs do not differ to such a 
large extent that may explain the differences in the interaction. Thus the question 
still remains why these materials behave so differently. We will demonstrate in 
this chapter that the reason is mainly the differences in their caloric equations of 
state – this is the first target of this chapter. 

The next interesting problem is associated with the question of how to judge 
the explosivity of melt-water mixtures in engineering premixing computations 
used for upper bound estimates of the possible detonation energy release. In Kolev 
(1999b) the criterion that mixtures of melt and water can only experience severe 
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detonations if one of the liquids continuously surrounds the other was introduced. 
The roots of this idea go back to the works by Henry and Fauske (1981a, b) and 
are discussed in detail by Park and Corradini (1991). In the same work the so 
called “stochiometric” mixtures were introduced which are defined as mixtures in 
which there is an optimum amount of water available locally to permit the melt to 
transfer all its thermal energy by evaporation. The question whether dispersed 
systems such as melt droplets flowing together with water droplets may also be of 
some risk is still unresolved. We will answer in this work two questions associated 
with this issue. First, is it possible to have detonation waves in such disperse-
disperse systems and second, if so, what are the expected pressure wave 
magnitudes and can they be considered as dangerous? 

A further interesting aspect results from the detonation theory of melt-water 
interaction proposed by Board et al. (1975). Just as in detonation of reacting 
gases, Board et al. considered the fine fragmentation behind a shock front and the 
subsequent steam production and expansion as the driving force for transferring 
shock waves in self-sustaining detonation waves. The ideas propagated by Board 
have been discussed worldwide. In particular, his remark that not all the melt 
behind the front may necessarily participate in the energy transfer process was 
widely accepted and introduced in the detonation analysis – see for instance the 
work by Shamoun and Corradini (1995). Board’s remark that not all the coolant 
behind the front necessarily has to participate in the energy transfer process was 
controversially discussed. For instance, some authors thought that assuming that 
all the melt and coolant participate in the interaction is conservative, e.g. Frost, 
Lee and Ciccarelli (1991), and this may serve as an upper bound estimate. This 
was criticized by Yuen and Theofanous (1997). Based on their own experiments, 
these authors introduced the idea of not only a limited amount of melt but also of 
a limited amount of coolant participating in the interaction – the so-called micro-
interaction concept. Yuen and Theofanous came to an important conclusion for 
practical applications: mixtures judged as non-explosive assuming that all the 
water is participating in the debris quenching may be explosive if only part of the 
water is participating in the debris quenching. Of course, this problem naturally 
disappears if numerical computations are used that feature a very fine discretization 
grid for resolving regions of near and far interactions numerically. In simulations 
with a characteristic grid size much larger than the near interaction length this 
problem is acute and a quasi-micro-interaction approach is thus inevitable. One of 
the targets in the analysis presented here is to discriminate for the three important 
materials pairs (UO2-water, Al2O3 -water and Fe-water) between coolant 
entrainment leading to detonations and entrainment leading to quenching, thereby 
preventing detonations.  

The assumption of a homogeneous mixture was relaxed by Berthoud (1999) 
and Scott and Berthoud (1978) in a steady-state analysis and resulted in interesting 
estimates, one of them being the “thickness of the discontinuity front“ which 
depends on the initial particle size. Nevertheless, all applied computations  
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use a detonation theory based on homogeneity, inclusive of those of Scott and 
Berthoud. 

The theory of weak pressure waves, called sound waves, and strong 
pressure waves, called shock waves, for single-phase flow is also reiterated 
briefly in Section 9.2 to assist the reader in the transition to the multi-phase 
theory. The model for detonation analysis for multi-phase flow that will be 
used in Section 9.4 including a brief discussion of the numerical method is 
presented in Section 9.3. 

In Section 9.4 the application results will be discussed. Finally the answers to 
the questions posed above as obtained by this analysis will be summarized. 

9.2 Single-phase theory 

9.2.1 Continuum sound waves (Laplace) 

Consider a small pressure pulse propagating through a continuum. The pressure 
disturbance causes velocity disturbance. We are interested in the velocity of prop-
agation of this disturbance. Consider a control volume with infinitesimal thickness 
located around a plane that is perpendicular to the flow velocity. The control vo-
lume moves with the plane. The steady-state conservation equations for mass, 
momentum (neglecting body and viscous forces), energy (neglecting all dissipa-
tive effects such as work done by viscous stress and heat transfer due to thermal 
conduction and diffusion) are 

( ) 0d wρ = ,       (9.1) 

( )2 0d w dpρ + = ,       (9.2) 

21
0

2
d w h wρ  + =  

  
.     (9.3) 

Now remember that all flow parameters are continuous in space. Using the mass 
conservation equation, the momentum and energy conservation equations reduce to 

21
0

2
d w dpρ   + = 
 

 or 2 0w d dpρ− + =    (9.4) 

21
0

2
d h w
 + = 
 

      (9.5) 

If we exclude the differential of the kinetic energy, this yields 0dh dpρ − =  

which after application of the Gibbs equation is simply  

0ds = .       (9.6) 
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Using the equation of state in the form 

2
p

dp
d ds

s a

∂ρρ
∂

 = + 
 

,      (9.7) 

where 

2

1

s
a p

∂ρ
∂

 
=  
 

       (9.8) 

the momentum equation becomes 

2

1 0
w

dp
a

  − =  
   

.      (9.9) 

For a pressure difference that is non-zero, this is satisfied only if the velocity of the 
flow with respect to the plane is equal to a value defined solely by the local fluid 
properties, 

w a= , 

and called the sound velocity. This remarkable result was first obtained by Lap-
lace in 1816 and is generally accepted today. It simply says that: 

 

1) Small pressure-velocity disturbances called weak waves or acoustic waves propa-
gate with a velocity which is a function only of the local continuum parameters. 

2) Across small pressure-velocity disturbances (neglecting dissipative effects) 
the continuity of the flow variables implies entropy conservation across any 
infinitesimal distance. 

9.2.2 Discontinuum shock waves (Rankine-Hugoniot) 

Now consider a plane normal to the flow velocity separated into two continuous 
regions featuring discontinuity at that plane. We designate the medium ahead of 
wave motion and the medium behind the wave with indices 1 and 2, respectively. 
Following Landau and Lifshitz (1953) we call the side of the plane facing the non-
disturbed medium the down-flow side and the side facing the disturbed medium 
the up-flow side. Note that the major difference from the case with continuous 
flow parameters is that the differentiation across the plane is not possible. We will 
see that velocities before and after the plane are related through relationships that 
differ from the isentropic wave disturbance as discussed above. The conservation 
equations governing this process are similar to Eqs. (9.1), (9.2) and (9.3) but 
written as a primitive balance applied on the control volume: 
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( ) 0wρΔ = ,   or   w constρ =  or  1 1/w wρ ρ=    or   2 2/w wρ ρ= ,    (9.10) 

( )2 0w pρΔ + Δ = ,   or    2 2
2 2 1 1 2 1 0w w p pρ ρ− + − = ,       (9.11) 

21
0

2
w h wρ  Δ + =    

,   or   2 2
2 2 2 2 1 1 1 1

1 1
0

2 2
w h w w h wρ ρ   + − + =   

   
. (9.12) 

Thus, the parameters in front of and behind the discontinuity plane are related to 
each other by Eqs. (9.10) through (9.12). Using mass conservation, momentum 
and energy conservation can be rewritten as 

( )2 2 1

1 2

1 1
p p

wρ

ρ ρ

−=
−

,      (9.13) 

( )2

2 1 2 2
2 1

1 1 1
0

2
h h wρ

ρ ρ
 

− + − = 
 

.    (9.14) 

By inserting the mass flow rate from the momentum equation into the energy equ-
ation we obtain 

( )2 1 2 1
2 1

1 1 1
0

2
h h p p

ρ ρ
 

− − − + = 
 

.    (9.15) 

Using the equation of state 

( )2 2 2,h f p ρ=       (9.16) 

(e.g. 2 2
2 2 2

2 21p

p
h c T

κ
κ ρ

= =
−

 for perfect gases) the state behind the front is a 

unique function of the state in the undisturbed region. Equations (9.15) and (9.16) 
have to be solved with respect to 2p  by iterations. With the pressure difference 

known, the mass flow rate is then readily computed using Eq. (9.13). The veloci-
ties are then computed from the mass conservation equation. A very convenient 
formula for the velocity difference is  

( )1 2 2 1
1 2

1 1
w w p p

ρ ρ
 

− = − − − 
 

,    (9.17) 

which is the shock wave velocity in a laboratory frame. Equation (9.15) is frequently 
written in terms of specific internal energies 

2 1
2 1

2 1

1 1
0

2

p p
e e

ρ ρ
 +− + − = 
 

.    (9.18) 
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A similar procedure can be applied by using the equation of state in the form 

( )2 2 2,e f p ρ= .      (9.19) 

This remarkable result was first obtained by Rankine in 1870 and independently by 
Hugoniot in 1887 and is widely accepted today. It says that there is a velocity 
discontinuity in the shock plane. The velocities in front of and behind the shock plane 
relative to the shock plane are a unique function of state of the undisturbed region 1. 

The pressure and the density behind the shock front are higher than those in 
front of the plane. There is an entropy increase across the shock front. This 
conclusion was reached by Rayleigh (1910) and Taylor (1910). It is the only 
known case where flow processes in a non-viscous and non-dissipating medium 
take place irreversibly, that is with entropy increase, see the discussion by Landau 
and Lifshitz (1953) p. 443. The velocity in front of the shock with respect to the 
front is greater than the local sound velocity, 1 1w a> , and the velocity behind the 

shock with respect to the front is less than the local sound velocity, 2 2w a< . 

Whatever happens before the shock cannot influence the shock propagation. The 
events behind the shock influence the shock form and propagation. 

In the laboratory frame of reference we have 

1 csw w= − , 

( )2 2
a

csw w w= − − . 

Here csw is the velocity of our moving frame of reference and 2
aw  is the absolute 

velocity behind the shock. Therefore 

1 2 2
aw w w− = − . 

In the case of shock wave propagation in an explosive mixture, the compres-
sion may increase the temperature behind the shock to values that are higher than 
the ignition temperature. In the case of an exothermic chemical reaction, it is poss-
ible for the released energy behind the front to cause additional drive, resulting in 
a rise in the velocity behind the wave with respect to the front to the local velocity 
of sound, 2 2w a= . This process is usually visualized in the literature as a piston 

moving with a velocity ( )1 2w a− − pushing the reaction front ahead and leaving 

behind a refraction wave. In this case, neither the disturbance behind the shock 
nor the disturbance ahead of the shock can have any influence on the shock wave 
propagation. The propagation process becomes self-sustaining.  
 

A shock wave fulfilling the condition  

     2 2w a=        (9.20) 
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is called a detonation wave, Chapman (1899) and Jouguet (1905) 

This condition is called the Chapman-Jouguet condition – see Chapman who 
found in 1899 that the velocity behind the front with respect to the front in reality 
take the minimum of the possible detonation states, and Jouguet who found in 
1905 that the velocity behind the front with respect to the front is equal to the 
sound velocity of the burned products. Crussard showed in 1907 that both state-
ments are identical.  
 

It is important to note that the equations of state of the mixture ahead of the 
front and behind the front are different. 

 

The energy conservation equation also has to take into account the reaction energy 
release. An additional term then occurs, reactionhΔ ,  

2 2
2 1 2 1

1 1
0

2 2 reactionh h w w h− + − −Δ =  

or 

( )2 1 2 1
2 1

1 1 1
0

2reactionh h h p p
ρ ρ

 
− −Δ − − + = 

 
.   (9.21) 

The formation enthalpy reactionhΔ  in J  per kg of the final mixture at zero absolute 

temperature is related to the formation enthalpy refhΔ at the reference conditions 

( ),ref refp T  by the relation 

( )2 _reaction ref p ref st mixh h c T CΔ = Δ − Δ .    (9.22) 

Here the multiplier is first demonstrated for the case of an initially stoichiometric 
gas mixture containing hydrogen and oxygen without radicals in equilibrium 

 
2 2 2 2_ 1, 1, 2, 2,st mix H O H OC C C C CΔ = + − − . 

The multiplier converts the formation enthalpy related to 1kg of hydrogen-oxygen 
mixture to that related to 1kg gas mixture. If for instance other gas components 
are in the mixture that do not participate into the reaction the heating effect of the 
reaction on the final products is smaller. If the resulting temperature after the 
detonation wave is so low that the dissociation can be neglected we have 

22, 0HC = , 
22, 0OC = . The general form of the multiplier reads 
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( ) 2 2

2 2 2 2 2 2

2 2 2 2

_ min ,H O
st mix H O H H O O

H H O O

C C
C C C n M n M

n M n M

 Δ Δ
Δ = Δ + Δ = +   

 
 

( )
2 2

9 min , 8H OC C= Δ Δ , 

where 
2

2Hn = , 
2

1On =  are the stoichiometric coefficients equal to the number of 

kg-moles of each species that participates in the reaction and 
2

2HM kg= , 

2
32OM kg= are the kg-mole masses. 

The Rankine-Hugoniot curve constructed on the basis of the equation of state 
before the shock is called the shock adiabatic. The Rankine-Hugoniot curve con-
structed on the basis of the equation of state after the shock is called the detona-
tion adiabatic. The thermodynamic properties in front of and behind the detona-
tion discontinuity therefore lie on different thermodynamic curves. 

Detonation waves have a destructive potential. It is interesting to know how 
much energy can be released in this case and transferred into technical work. Us-
ing Eq. (7.26) we obtain 

( ),21 2 1 1 2
vdp
tw h h T s s∞− = − + − .     (9.23) 

9.2.3 The Landau and Liftshitz analytical solution for detonation 
in perfect gases 

Landau and Liftshitz obtained in 1953 an analytical detonation solution for perfect 
gas mixtures. The main idea of the procedure is to express the state of the gas 
behind the detonation front as a function of the parameters before the detonation 
front. Starting with the definition equation for having detonation 

2 2 2 2 2/w a pκ ρ= = ,      (9.24) 

and therefore ( )2

2 2 2w pρ κ ρ=  or  

( ) ( )2

2 2 2/w pρ ρ κ= ,       (9.25) 

the authors solved the system consisting of the last equation and the momentum 
Eq. (9.13) with respect to the pressure and density of the burned products. The 
result is 

( )2

1 2
1 1 1 1

2
2 2

1

1 1

p w
p w

p

ρ
ρ ρ

κ κ

+
+

= =
+ +

.    (9.26) 
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( ) ( )
( )

2 2 2 2
2 2 1 1

2 2
2

2 2 2 2 1 1 1
1

1

1 1
1

w w w

p p wp w

ρ ρκ κ ρρ
κ κ κ ρρ

ρ

+ +
= = =

++
,  (9.27) 

Using the burned gas density, the burned gas velocity relative to the moving front is 

2
1 1 2 1 1 1

2
2 2 1 11

w p w
w

w

ρ κ ρ
ρ κ ρ

+= =
+

.     (9.28)
 

The enthalpies of the perfect gas mixtures are computed with the zero point 
selected at zero temperature as follows 

1 1
1 1 1

1 11p

p
h c T

κ
κ ρ

= =
−

,      (9.29) 

( )( )
( )222

1 1 12 2 2
2 2 2 2 22

2 2 1 12 2
1 1 1

p

p wp
h c T

w

ρκ κ
κ ρ ρκ κ

+
= = =

− − +
.  (9.30) 

Here 
p

T
Rρ

=  , 
1

pc

R

κ
κ

=
−

, Eqs. (9.26) and (9.27) are used. Therefore 

( )222
1 1 12 2

2 2 2 2 2
2 1 1

1 1

2 2 1

p w
h w

w

ρκ
κ ρ

+
+ =

−
.    (2.31) 

Replacing all the terms in the energy conservation equation  

2 2
2 1 2 1

1 1
0

2 2 reactionh h w w h− + − −Δ = ,    (2.32) 

one obtains 

( )222
1 1 1 22 1 1

12 2 2
1 12 1 1

1 1
0

2 1 21 reaction

p w p
w h

w

ρκ κ
κ ρκ ρ

+
− − −Δ =

−−
,  (2.33) 

or 

( )
22

4 2 22 1 1 1
1 2 1 2

1 1 1

2 1 0
1reaction

p p
w h w

κ κκ κ
κ ρ ρ

   −− − Δ + + =  −   
.  (2.34) 

This is a bi-quadratic equation of the type  

4 22 0x px q− + = ,       (2.35) 
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having the largest positive solution  

2x p p q= + − ( ) ( )2 2p q p q= + + − .    (3.36) 

For a strong detonation waves the equation simplifies to 

( )2
1 22 1 reactionw hκ= − Δ .      (3.37) 

Knowing the velocity of the unburned products with respect to the detonation 
front, the pressure and the density behind the front are computed using Eqs. (2.26) 
and (2.27). The velocity of the burned products with respect to the front is then 
computed using Eq. (2.24). Note the important limitation of this theory 

1 constκ = ,       (3.38) 

2 constκ = .       (3.39) 

A systematic summary of data for the specific capacity was obtained in 1987 
by Robert et al. (1987) for 165 gases and radicals. Some of these data are based on 
measurements up to 5000K and others are provided by quantum chemistry 
computations. These data help us to compute properly the specific capacity at 
constant pressure for mixtures of gases or radicals and therefore to compute 
properly the isentropic exponents of the burned products. This approach results in 
more realistic temperatures. 

 

For large values of reactionhΔ , the computed temperatures, even with an ap-

propriate isentropic exponent of the burned products, are unrealistically 
high. At high temperature the products obtained start to dissociate absorb-
ing energy. This process limits the temperature increase itself. 
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Fig. 9.1 Molar fraction of dissociated steam as a function of temperature with pressure as a 
parameter 

This was found first by Zeldovich in 1940 p. 544 who proposed using the 
specific heat as a function of temperature taking into account the dissociation. 
Figure 9.1 shows the molar fraction of the dissociated steam as a function of the 
local temperature for different pressures. We compute this concentration as 
discussed in Chapter 3. Other authors have introduced a coefficient of 
completion of the reaction less then unity depending on the temperature of the 
burned gases.  

We give here two examples of detonation CJ pressures, CJ temperatures 
and CJ velocities in Figs. 9.2 through 9.4 (index 2 is replaced with CJ if the 
Chapman-Jouguet condition is fulfilled). We consider two cases one with 
nitrogen as an inert component and the second with steam. We present the 
results as a function of the concentration of the stoichiometric mixture of 
hydrogen and oxygen.  
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Fig. 9.2  CJ pressure for stoichiometric hydrogen-oxygen mixtures with nitrogen or steam 
as an inert component 

For the case of steam as an inert component we use the equation of state for 
dissociated steam. We see the effect of dissociation. It is manifested in the 
reduction of the effective isentropic exponent of the products close to unity. 
This makes the increases temperature and pressure with increasing energy 
release considerable smaller than if computed without consideration of the 
dissociation. 
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Fig. 9.3  CJ temperature for stoichiometric hydrogen-oxygen mixtures with nitrogen or 
steam as an inert component 
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9.2.4 Numerical solution for detonation in closed pipes 

Combustion in pipes with closed ends usually starts generating a shock wave 
which travels forwards and backwards between the front and the dead end. The re-
flected waves interact with the shock so that the picture of reacting detonation 
conditions is much more complex than that described by the idealized steady state 
theory. To demonstrate this we analyze a detonation process in a pipe 0.1m in di-
ameter and 11.65m in length. The left half of the pipe is filled with steam, and the 
right hand side with an explosive mixture of stoichiometric hydrogen-oxygen and 
steam as an inert species. The initial pressure is selected to be 70 bar. The initial 
temperature is 400 K. The solution is obtained with single step combustion kinetic 
postulating an ignition temperature of 783 K. We use a donor-cell discretization 
for the convective terms and second order discretization for the diffusion terms 
with IVA_5M computer code. The axial discretization has 1165 1-cm cells. The 
results are given below. 

Figure 9.5 gives a typical development of the shock wave into a detonation 
wave after ignition at one end. The initial transient process, followed by the semi-
steady-state formation of the detonation front, is clearly recognizable. The extension 
of the CJ pressure region followed by a refraction wave is also clearly visible. There 
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Fig. 9.4 CJ velocity for stoichiometric hydrogen-oxygen mixtures with nitrogen or steam 
as an inert component 
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Fig. 9.5 Pressure as a function of the distance for different times after the ignition 

is the effect of reflection of the wave at the moment it reaches the separation point 
and penetrates the inert gases without fuel continuing to propagate and without the 
pushing effect of the combustion behind the shock front. The reflected shock 
wave is clearly visible from Fig. 9.6. The destructive potential of such waves for 
pipes not designed to sustain such pressures is obvious. 

Increasing the concentration of the stoichiometric explosive mixture leads to an 
increase in the CJ pressure. The velocity of sound in the burning products is then 
higher. Therefore, the frequency of the wave reflections between the front and the 
dead end is much higher, as demonstrated in Fig. 9.7. 
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Fig. 9.6 Pressure as a function of distance for different times after the ignition 
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Fig. 9.7 Pressure as a function of distance for different times after the ignition 

9.3 Multi-phase flow 

9.3.1 Continuum sound waves 

a) No mechanical phase coupling (Wallis). Let us now examine the similar 
geometrical case of sound wave propagation in multi-phase flows. The local 
volume-averaged equations give: 

( ) 0l l ld wα ρ = ,      (9.40) 

( )2 0l l l ld w dpα ρ α+ =    or  21
0

2l ld w dpρ   + = 
 

,  (9.41) 

21
0

2l l l l ld w h wα ρ  + =    
   or   21

0
2l ld h w

 + = 
 

   or    

0l ldh dpρ − =    or   0lds = ,     (9.42) 

( ) 0l l l ild w Cα ρ =   or 0ildC =   for  0lα ≥ ,   (9.43) 

( ) 0l ld w n =    for  0lα ≥ .     (9.44) 

Equation (9.40) says that mass is conserved. Equation (9.41) says that force equals 
the time rate of change of momentum (neglecting body and viscous sources). 
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Equation (9.42) says that energy is conserved (neglecting all dissipative effects 
such as work done by viscous stress, and heat transfer due to thermal conduction 
and diffusion). Beyond Wallis (1969), we also take into account Eqs. (9.43) and 
(9.44). Equation (9.43) says that the species mass is conserved, neglecting diffu-
sion inside the shock front. Equation (9.44) says that there is no fragmentation 
across the shock. Differentiating the mass conservation equations using the chain 
rule, dividing by l lwρ , summing the resulting equations and allowing for the fact  

that the sum of the volume fraction is constant we then obtain 

max max

1 1

0
l l

l l
l l

l ll l

d dw
w

α αρ
ρ= =

+ =  ,     (9.45) 

Using the equation of state 

,max

2
1,,  C's ,

l

l l

i
l l

l l il
il l ilp all s p

dp
d ds dC

a s C

∂ρ ∂ρρ
∂ ∂=

   
= + +   

   
 ,   (9.46) 

where 

2
,  C's

1

l

l

l s all
a p

∂ρ
∂

 
=  
 

      (9.47) 

and taking into account the last form of Eqs. (9.42) and (9.43) we obtain 

max max

2
1 1

0
l l

l l
l

l ll l l

dp dw
a w

α α
ρ= =

 
+ = 

 
  .     (9.48) 

Excluding the velocity differential by using the momentum equation we obtain 

max

max

max

2
1

2
1

2
1

1 0

l
l

l
ll l l
l

l l l l

l l l

w
dp

a

a

α
α ρ
ρ α

ρ

=

=

=

 
   − =   
 
 





.    (9.49) 

This equation says that for pressure perturbations that are not equal to zero the fol-
lowing condition must be satisfied: 

max max

2 2
1 1

l l
l l

l ll l l lw a

α α
ρ ρ= =

=  .      (9.50) 

This result was obtained by Wallis (1969) p.142 in 1969 and is applicable to  
stratified flows without strong coupling between the phases and no interfacial 
heat and mass transfer. Equation (9.50) does not give any information on the 
magnitude of the phase velocities. If one assumes, that the velocity ratio for strati-
fied flow is controlled by the two independently written momentum equations 
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without friction resulting in 1 2 2 1S w w ρ ρ= = , then the vapor velocity satisfy-

ing Eq. (9.50) is  
 

1 1 1 1
1 2 2 2

1 2 1 1 2 2

1 1
w

S a a

α α α α
ρ ρ ρ ρ

   − −= + +   
   

. 

 

b) Homogeneous multiphase flow (Wood). Note that the sound velocity in a multi-
phase mixture is flow-pattern dependent and may be influenced by the 
amplitude and frequency. Let us recall the case for homogeneous multi-phase 
flow. In this case the sum of the momentum equations, the so called mixture 
momentum equation, is used instead of the separated momentum equations. 

( )2 0h hd w dpρ + =    or  
1

h
h h

dw dp
wρ

= − ,   (9.51) 

where 

 
max

1

l

h l l
l

ρ α ρ
=

=        (9.52) 

is the mixture density. Equation (9.48) simplifies in this case to 

max

2
1

1
0

l
l

h
l l l h

dp dw
a w

α
ρ=

 
+ = 

 
 .     (9.53) 

By inserting the velocity differential from the mixture momentum equation, we obtain 

max

2 2
1

1
0

l
l

l l l h h

dp
a w

α
ρ ρ=

  
− =  

   
 .     (9.54) 

For disturbances of small pressure amplitude we have the velocity of sound 

max

2
1

1
h l

l

l l l

w

a

αρ
ρ=

=


.      (9.55) 

This is the so called homogeneous mixture sound velocity. For two-phase flow 
this equation was first derived by Wood in 1930. It is widely accepted to be valid 
for bubbly flow, see the discussion by Wallis in 1969. 
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9.3.2 Discontinuous shock waves 

We assume that the thickness of the shock front is small and that essentially no 
fragmentation, interfacial heat, or mass transfer take place. The control volume bal-
ance is, therefore, 

( ) 0l l lwα ρΔ = ,      (9.56) 

( )2 0l l l lw pα ρ αΔ + Δ = ,      (9.57) 

21
0

2l l l l lw h wα ρ  Δ + =    
,     (9.58) 

( ) 0l l l ilw Cα ρΔ =    for  0lα ≥ ,     (9.59) 

( ) 0l lw nΔ =    for  0lα ≥ .     (9.60) 

Homogeneous multiphase flow: The problem is considerably simplified by the 
assumption that all the velocities are equal,  

l hw w= .        (9.61) 

The mass conservation for a single velocity field is then 

,2 ,2 ,2 ,1 ,1 ,1 0l l h l l hw wα ρ α ρ− =    or   ,2 ,2 ,1 ,1

,2 ,1

0l l l l

h h

α ρ α ρ
ρ ρ

− =   or   

,2 ,1 0l lx x− = ,       (9.62) 

which says that the field mass concentration remains constant across the shock 
front. This is a remarkable equation. It indicates that such calculations can be rea-
dily performed if one uses the following definition for the mass concentrations: 

l l
l

h

x
α ρ
ρ

= .       (9.63) 

The homogeneous density can thus be expressed as 

max

1

1
lh

l

l l

x
ρ

ρ=

=


.       (9.64) 

The mixture mass conservation results in 

,1 ,1 ,2 ,2h h h h h hw w wρ ρ ρ= = .     (9.65) 

Using the mixture mass conservation, the mixture momentum equation can then 
be transformed into 
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2 2
,2 ,2 ,1 ,1 2 1 0h h h hw w p pρ ρ− + − =    or   ( )2 2 1

,1 ,2

1 1h h

h h

p p
wρ

ρ ρ

−=
−

. (9.66) 

The energy conservation for each velocity field is then 

2 2
,2 ,2 ,2 ,2 ,2 ,1 ,1 ,1 ,1 ,1

1 1
0

2 2l l h l h l l h l hw h w w h wα ρ α ρ   + − + =   
   

.  (9.67) 

After applying the field-mass and the mixture-mass conservation equation and us-
ing the last form of the momentum equation, the single-field energy conserva-
tion that results is as follows: 

( ),2 ,1 2 1
,1 ,2

1 1 1
0

2l l
h h

h h p p
ρ ρ

 
− − − + =  

 
.    (9.68) 

The assumption that multiphase flow consists of steam and water, which are in 
thermodynamic equilibrium, reduces Eq. (9.66) to the equations derived by Fischer 
in 1967. 

 
From Eq. (7.52) we obtain the capability of the wave to perform technical work 

( )
max

,21 ,2 ,1 ,1 ,2
1

l
vdp
t l l l l l

l

w x h h T s s∞
=

 − = − + −  .    (9.69) 

 
The velocity of discontinuum shock waves for homogeneous flow without 

mass exchange is then 
 

( ),1 ,2 2 1
,1 ,2

1 1
h h

h h

w w p p
ρ ρ

 
− = − − −  

 
, 

 

For such flow 1X const= . Assuming isentropic change of state of the gas and set-

ting 2 constρ = results for the mixture density in 
( )

1 1
1/

,2 21,1 2 1

11

h

X X

p p
κρ ρρ

−
= + . 

Replacing and using the definitions 1 1,1 1,1 ,1hX α ρ ρ= , 1 1

,1 1 2

11

h

X X

ρ ρ ρ
−

= +  results 

in the simple expressions 
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( )
2

,1 2
1/

1 1,1 1 2 1

1
1 1h hw p

p p p p
κ

ρ
α

 Δ   = − −     

 

and 

( ) ( )
2
,1 2 1

1/
1 1,1 ,1 1 2

1

1

h

h

w p p

p p p
κα ρ

−=
−

. 

 
The assumption ,1 2hρ ρ≈ , valid for very small void fractions, reduces the above 

equation to Eq. (4) by van Vijngaarden (1971), which compares well with the ex-
perimental data for air–water shock wave propagation at initially subatmospheric 
pressure given in Table 9.8. 

Table 9.8 Shock wave velocity as a function of the pressure ratio (van Vijngaarden 1971), 
data for p1 = 1bar 

Exp. 
no. 

p2/p1 R1 
mm 

1α  % Shock vel., 
front m/s 

1 1.21 1.06 1.38 104.2 
2 1.21 0.9 0.74 142.9 
3 1.30 1.1 1.68 98 
4 1.30 0.98 1.1 125 
5 1.30 0.9 0.74 156.2 
6 1.40 1.25 2.04 83.3 
7 1.40 0.98 1.4 104.2 
8 1.40 0.95 0.96 128.2 
9 1.56 1.23 2.33 75.8 
10 1.56 1 1.68 84.7 
11 1.56 1 1.33 100 
12 1.70 1.35 2.75 68.5 
13 1.70 1.08 1.97 82 
14 1.70 1 1.67 92.6 
15 1.93 1.35 3.1 61 
16 1.93 1.09 2.25 71.4 
17 1.93 1 1.82 80.6 
18 2.23 1.4 3.55 56.8 
19 2.23 1.12 2.62 66.7 
20 2.23 1.04 2.19 72.5 
21 2.54 1.45 4.16 53.2 
22 2.54 1.13 3.15 64.1 
23 2.54 1 1.47 94.3 
24 3.06 1.5 4.69 51 
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25 3.06 1.05 3.05 64.9 
26 3.06 1 1.91 84.7 
27 3.79 1.56 6.04 46.3 
28 3.79 1.1 3.45 59.5 
29 3.79 1 2.48 71.4 
30 4.95 1.54 5.81 48.1 
31 4.95 1.3 4.8 53.2 
32 4.95 0.9 3.43 61.7 

9.3.3 Melt–coolant interaction detonations  

In the melt–coolant interaction, molten material is premixed with liquid that is in 
thermal nonequilibrium before the shock wave (Fig. 9.8).  

The melt is in the state of film boiling. The incoming shock wave causes 
instabilities and fragments the 3f  part of the melt mass. The microscopic particles 

generated release their thermal energy by direct contact with the 2f  part of the sur-

rounding coolant mass. This interaction is a short distance interaction. 21 f−  of the 
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Fig. 9.9 Definitions of the velocity field in the five-field concept 

coolant mass outside the short distance remains unaffected by this interaction. The 
physical problem can thus be specified using the following quantities: 

 1 1,1 2,1 3,1 1 3, , , , ,p T T T x x ,      (9.50) 

where the mass concentrations in the undisturbed mixture are 
 

vapor 1x ,       (9.71) 
 

liquid 2 1 31x x x= − − ,      (9.72) 



440      9 Detonation waves caused by chemical reactions or by melt-coolant interactions 

 

melt 3x ,       (9.73) 
 

and the mass concentrations of the newly born fields behind the front are 
 

short distance liquid ( )4 2 2 2 1 31x f x f x x= = − − ,  (9.74) 
 

and 
microparticles 5 3 3x f x= .     (9.75) 

 

Here 2f  indicates the fraction of 2x  that is within the short distance liquid. 3f  is 

the fraction of the melt that is finely fragmented. These fractions are controlled by 
complex interactions that are not considered in detail in this study. We use the two 
fractions as parameters in our analysis. 

One very useful simplification for such analyses was proposed by Shamoun 
and Corradini (1996). The authors proposed that the mixture of the entrained melt 
intermixed with the entrained liquid reaches thermal equilibrium so that both 
components have a common pressure 2p  and a common temperature ( )

2mT . In 

accordance with this, we seek for the following unknown variables: 

2 1,2 2,2 3,2, , , , mp T T T T ,      (9.76) 

which satisfy the Chapman–Jouguet condition behind the detonation front. 
Shamoun and Corradini (1996) used the assumption that the nonentrained melt 
and water do not change their initial temperatures and densities, and that the vapor 
phase experiences an isentropic change of state. These assumptions are in 
contradiction with the discontinuity of the properties across the shock. We relax 
these assumptions by using instead the corresponding conservation equations. 

The densities and enthalpies required for this computation are functions of the 
pressure and temperature in front of and behind the shock. The following results 
are obtained for the vapor 

1,1T , 2,1T , ( ) ( )1 1 1 1,11
,p Tρ ρ= , ( ) ( )1 1 2 1,22

,p Tρ ρ= , ( ) ( )1 1 1 1,11
,h h p T= , 

( ) ( )1 1 2 1,22
,h h p T= ,      (9.77) 

for the liquid, we have 

2,1T , 2,2T , ( ) ( )2 2 1 2,11
,p Tρ ρ= , ( ) ( )2 2 2 2,22

,p Tρ ρ= , ( ) ( )2 2 1 2,11
,h h p T= , 

( ) ( )2 1 2 2,22
,h h p T= ,      (9.78) 

for the melt, we have 

3,1T , 3,2T , ( ) ( )3 3 1 3,11
,p Tρ ρ= , ( ) ( )3 3 2 3,22

,p Tρ ρ= , ( ) ( )3 3 1 3,11
,h h p T= ,  
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( ) ( )3 3 2 3,22
,h h p T= ,      (9.79) 

for the short distance entrained liquid, we have 

2,1T , 1,2T , ( ) ( )4 2 1 2,11
,p Tρ ρ= , ( ) ( )4 1 22

, mp Tρ ρ= , ( ) ( )4 2 1 1,21
,h h p T= ,  

( ) ( )4 1 22
, mh h p T= ,      (9.80) 

and for the microparticles, we have 

3,1T , 1,2T , ( ) ( )5 3 1 3,11
,p Tρ ρ= , ( ) ( )5 3 22

, mp Tρ ρ= , ( ) ( )5 3 1 3,11
,h h p T= ,  

( ) ( )5 3 22
, mh h p T= .      (9.81) 

We assume that the pressure wave first causes microfragmentation and 
acceleration of the fine particles into the short distance liquid. The shock 
discontinuity then occurs. In this case, the mass conservation equation (9.62) 
holds. The homogeneous mixture densities are then 

( ) ( ) ( )
,1

1 1 3 3

1 1 1,1 2 1 2,1 3 1 3,1

1
1

, , ,

h x x x x

p T p T p T

ρ

ρ ρ ρ

= − −+ +
,   (9.82) 

( )
( ) ( )

( )
( )
( )

( )
( ) ( )

1

2 1 3 3 31

1 2 1,2 2 2 2,2 3 2 3,2

,2

2 1 3 3 3

1 2 3 2

1 1 1

, , ,

1

, ,

h

m m

f x x f xx

p T p T p T

f x x f x

p T p T

ρ ρ ρ
ρ

ρ ρ

−
 − − − −

+ + 
 
 =  
 − −
+ + 
  

. (9.83) 

Then the detonation adiabatic are for each phase is as follows: 
 

1) primary steam 

( ) ( )1 1 1 1,12
,h h p T h= + Δ ,     (9.84) 

where 

( )2 1
,1 ,2

1 1 1

2 h h

h p p
ρ ρ

 
Δ = − +  

 
,     (9.85) 

( ) ( )1 2 1,2 1 2
,h p T h=    or   ( )1,2 1 2 1 2

,T T p h =   ,   (9.86) 

( ) ( )1 1 2 1,22
,p Tρ ρ= .       (9.88) 
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2)  nonentrained liquid 

( ) ( )2 2 1 2,12
,h h p T h= + Δ ,     (9.88) 

( ) ( )2 2 2,2 2 2
,h p T h= ,      (9.89) 

( ) ( )2 2 2 2,22
,p Tρ ρ= .      (9.90) 

3) nonentrained melt 

( ) ( )3 3 1 3,12
,h h p T h= + Δ ,     (9.91) 

( ) ( )3 2 3,2 3 2
,h p T h= ,      (9.92) 

( ) ( )3 3 2 3,22
,p Tρ ρ= .      (9.93) 

4) entrained liquid 

( ) ( )4 2 1 2,12
,h h p T h= + Δ ,     (9.94) 

( ) ( )1 2 4 2
, mh p T h= ,      (9.95) 

( ) ( )4 1 22
, mp Tρ ρ= .      (9.96) 

5) entrained melt 

( ) ( )5 3 1 3,12
,h h p T h= + Δ ,     (9.97) 

( ) ( )3 2 5 2
, mh p T h= ,      (9.98) 

( ) ( )5 3 22
, mp Tρ ρ= .      (9.99) 

The definition of the homogeneous velocity of sound is rewritten in terms of the 
mass concentrations to give 

( ) ( )
max

2 2
1

1 l
l

lh l l

x

w aρ ρ=

= .      (9.100) 

The Chapman–Jouguet condition is thus defined as  

( ) ( )
,1 ,2

2 2
2 12

1 1

1 1 h h

h h h h
p pw w

ρ ρ
ρ ρ

−
= =

−
    (9.101) 
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or 

( )
max

,1 ,2
2

1 2 1
2

1 1
l

h hl

l
l l

x

p pa

ρ ρ

ρ=

−
=

− ,     (9.102) 

or 

( ) ( )
( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

2 1 31
2 2

1 2 1,2 1 2 1,2 2 2 2,2 2 2 2,2

3 3 2 1 3
2 2

1 2 1 23 2 3,2 3 2 3,2

1 1

, , , ,

1 1

, ,, , m m

f x xx

p T a p T p T a p T

f x f x x

p T a p Tp T a p T

ρ ρ

ρρ

− − −
+

      

− − −
+ +
     

 

( ) ( )
3 3

2

3 2 3 2, ,m m

f x

p T a p Tρ
+
  

,1 ,2

2 1

1 1

h h

p p

ρ ρ
−

=
−

.   (9.103) 

The temperature of the mixture consisting of entrained melt and coolant must 
satisfy the sum of the detonation equations 

( ) ( ) ( ) ( ) ( ) ( )2 1 3 4 3 3 5 2 1 3 1 2 3 3 3 22 2
1 1 , ,m mf x x h f x h f x x h p T f x h p T− − + ≡ − − +  

45,2h= Δ ,       (9.104) 

where 

( ) ( ) ( ) ( )45,2 2 1 3 2 1 2,1 3 3 3 1 3,1 2 1 3 3 31 , , 1h f x x h p T f x h p T f x x f x h Δ = − − + + − − + Δ  . 

        (9.105) 

Large coolant entrainment leads to quenching of the entrained melt and, therefore, 
makes detonation impossible. Theoretically, the coolant entrainment ratio should 
be smaller than a prescribed value dictated by the minimum microinteraction mix-
ture temperature leading to the expansion: 

( ) ( )
( ) ( )
3 1 3,1 3 2 ,min3

2 3
1 3 1 2 ,min 2 1 2,1

, ,

1 , ,

m

m

h p T h h p Tx
f f

x x h p T h p T h

+ Δ −
<

− −  − + Δ 
, 

where ( ),min 2mT T p′=  for 2 cp p<  and ,minm cT T=  for 2 cp p≥ . The temperature 

inversion can be performed using Newton’s iteration method 
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( ) ( ) ( )
( ) ( ) ( )

2 1 3 1 2 3 3 3 2 45,21

2 1 3 ,1 2 3 3 ,3 2

1 , ,

1 , ,

n n
m mn n

m m n n
p m p m

f x x h p T f x h p T h
T T

f x x c p T f x c p T
+

− − + − Δ
= −

− − +
. (9.106) 

The superscripts n and n + 1 denote the old and the new iteration values, respective-
ly. Similarly for the vapor, nonentrained liquid, and nonentrained melt, we have 

( ) ( )
( )

1 2 1,2 1 1 1,11
1,2 1,2

,1 1 1,1

, ,

,

n

n n

p

h p T h p T h
T T

c p T
+

− − Δ
= − ,   (9.107) 

( ) ( )
( )

2 2 2,2 2 1 2,11
2,2 2,2

,2 1 2,1

, ,

,

n

n n

p

h p T h p T h
T T

c p T
+

− − Δ
= − ,   (9.108) 

( ) ( )
( )

3 2 3,2 3 1 3,11
3,2 3,2

,3 1 3,1

, ,

,

n

n n

p

h p T h p T h
T T

c p T
+

− − Δ
= − .   (9.109) 

9.3.4 Similarity to and differences from the Yuen and Theofanous 
formalism 

The exact mathematical formalism used by Yuen and Theofanous is not reported 
in 1997. It seems that we use very much the same primitive conservation equa-
tions as these authors used. They then constructed numerically the Rankine-
Hugoniot shock and detonation adiabatic by using the primitive conservation equ-
ations and looked for the tangent to the detonation adiabatic corresponding to the 
initial state, the so called Chapman-Jouguet point.  

Instead, we use the formalism analytically transformed to the detonation 
adiabatic for each of the five fields together with the condition that the speed 
of propagation behind the shock is equal to the homogeneous velocity of 
sound that corresponds to the local conditions behind the shock. The 
computer code written by Huang Hu Lin to solve this system of nonlinear 
transcendental equations allows rapid performance of a variety of 
computations. In addition, the initial vapor mass is compressed by the shock 
adiabatic and the resulting vapor temperature behind the shock is different 
from that of the mixture of entrained melt and entrained liquid. Results of 
such computations will be shown in the next section. 

9.3.5 Numerical solution method 

In fact for the five unknowns, 2 1,2 2,2 3,2, , , , mp T T T T , we have a system of five 

nonlinear transcendental equations (9.103) and (9.106-9.109). The system 
was coupled with the material properties library of the IVA6 computer code 
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Kolev (1999c). This library contains properties for water and water vapor in 
sub- and supercritical states, properties of different inert gases, properties for 
ten materials, which can be either solid or two-phase or liquid with iron, 
uranium dioxide and alumina among them. The equations are solved by 
iteration as follows: 

 

a) Assume initial values at the very beginning of the iterations as follows: 

 2 1p p p= + Δ ,   where   

 0pΔ > , 

1

1

1

2
1,2 1,1

1

p
T T

p

κ
κ
−

 
=  

 
,  2,2 2,1T T= , 3,2 3,1T T= , 1,1mT T= . 

b) Compute the densities behind the front by using the state equations. 
c) Compute the pressure jump across the shock from the multi-phase Chapman-

Jouguet condition. 
d) Compute hΔ  using Eq. (9.85). 
e) Compute the temperatures using Eqs. (9.106) to (9.109). 
f) Repeat steps c) through d) until the change in the pressure jump from iteration 

to iteration becomes smaller than the prescribed. 
 

Conclusions. The following conclusions can be drawn from Sections 9.2 and 9.3. 
The maximum of the pressure jump for multiphase detonations in melt-water sys-
tems can be described by using the assumption of homogeneous flows and relying 
on the Rankine-Hugoniot relations for multiple concentration fields having the 
same speed. The resulting transcendental system of algebraic equations has to be 
solved by iteration. Several assumptions with respect of the part of the fragmented 
particles and of the part of the entrained coolant in the interacting zone are re-
quired to close the system. Parametric study can provide the upper limit of the 
produced detonation shock waves which can be used in estimation of the explo-
sive potential of mixtures of different material pairs. 

Such a study will be presented in the next section. In Section 9.4 we 
present a parametric detonation study for the systems of UO2-water, Al2O3-
water and Fe-water. We will draw the conclusion that at the same initial tem-
peratures, mass concentrations, entrainment factors and local volume frac-
tions, the Al2O3-water system produces the highest detonation pressures, and 
that the dispersed systems consisting of melted particles and water droplets 
can create detonation pressures less than 200bar. 
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9.4 Detonation waves in water mixed with different 
molten materials 

In Sections 9.2 and 9.3, see also Kolev (2000), we recalled the basics of the 
detonation theory for single- and multi-phase flows. We ended up with a model 
for detonation analysis for melt-coolant interaction systems. In this section, see 
also Kolev and Hulin (2001), we will apply the detonation theory of melt-water 
interaction to gain information required for an upper bound estimate of the 
energetic interactions for the nuclear industry. We will consider melt initially 
mixed with water that is in saturation at atmospheric pressure. In all examples the 
initial temperature of the melt is considered to be 3000 K. We will study the 
influence of the following parameters on the detonation pressure of self-sustaining 
waves: initial void fraction, initial mass concentration of the melt, melt 
entrainment ratio, water entrainment ratio, different melt material, etc. 

In particular, we will answer the following questions: 
 

a) How can we judge the risk potential of dispersed-dispersed systems for in-
vessel and ex-vessel analysis? 

b) Are there any differences between the detonation behavior of the following 
three pairs of materials: UO2 water, Al2O2 water and Fe water that result from 
the detonation theory? 

c) Do detonation solutions exist for lean mixtures with a limited amount of wa-
ter entrained? 

d) What is the maximum water entrainment ratio that allows detonation solu-
tions for the above mentioned three material pairs and what are the associated 
maximum pressures for these solutions? 

 

Note that postulating a given set of initial conditions that theoretically lead to de-
tonations does not necessarily mean that such an event can really take place. The 
present analysis provides only an upper bound of solution sets. 

9.4.1 UO2 water system 

Consider a mixture consisting of uranium dioxide and water. We will represent the 
detonation pressure behind a self-sustaining shock as a function of the void volume 
fraction rather than as a function of the mixture specific volume as is usually done in 
the literature. This is due to our aim of deriving conclusions for systems for which 
the local void fraction controls the  flow pattern. Figure 9.9 shows the pressure  
behind the self-sustained detonation wave as a function of vapor volume fraction for 
different mass concentrations of UO2. The C-J pressures sharply increase with 
decreasing vapor volume fraction. Increasing the melt mass concentration x3 up to 
about 30% leads to an increase in the C-J pressure. Figure 9.10 demonstrates the 
behavior of the lean mixtures – mixtures having small amounts of melt. One sees 
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that even a very small amount of entrained water may cause considerable detonation 
pressures at low void fractions. This result confirms the warning expressed by Yuen 
and Theofanous to consider lean mixtures as potentially explosive. 

We also see that lean systems are very sensitive to void fraction. For void 
fractions larger then 10% the lean mixture can in fact detonate but the 
detonation pressure has a low risk potential. Homogeneous low void fraction  
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Fig. 9.10 The C-J pressure behind the detonation wave as a function of the volume fraction 
of vapor for large melt mass concentrations of UO2 (rich mixtures) 
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Fig. 9.11 The C-J pressure behind the detonation wave as a function of the volume fraction 
of vapor for small melt mass concentrations of UO2 (lean mixtures) 

and low water fraction mixtures are in fact possible only in the case of fast 
transient water entrapment or water injection into the melt. Such systems 
possess very high detonation pressures. That is the reason why such systems, 
despite the fact that their existence is only locally possible, are real triggers in 
nature. Systems not having depletion paths may realize such states locally. 
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Large-scale existence of such mixtures is practically impossible in open 
systems having depletion paths for the participating materials. More 
discussion of this point is provided in Henry and Fauske (1981a, b). 

Figures 9.11 and 9.12 show the pressure as a function of the volume fraction 
for different entrained melt and liquid fractions, respectively. In Fig. 9.11 the  
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Fig. 9.12 The C-J pressure behind the detonation wave as a function of the initial volume 
fraction of vapor. Parameter: melt entrained fraction f3 of UO2 
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Fig. 9.13 The C-J pressure behind the shock wave as a function of the initial volume  
fraction of vapor. Parameter: liquid entrained fraction f2 for UO2 

entrained coolant controls the pressure and the amount of entrained melt does not 
influence the process for fixed coolant entrainment. 

Figure 9.12 shows that at fixed melt entrainment an increase of the coolant 
entrainment up to a given maximum value may increase the detonation pressure. 
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Above this value we have predominant by fine debris quenching, and detonation 
solutions can no longer be obtained. 

From this analysis we learn the following for dispersed systems: detonation 
solutions exist theoretically for mixtures consisting of dispersed melt and  
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Fig. 9.14 The steel C-J pressure behind the shock wave as a function of the initial volume 
fraction of vapor. Parameter: liquid entrained fraction f2 
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Fig. 9.15 The alumina C-J pressure behind the shock wave as a function of the initial  
volume fraction of vapor. Parameter: liquid entrained fraction f2 

dispersed water. There is, however, no mechanism that would explain the degree 
of melt fragmentation and water entrainment required for these solutions. As 
a result, such mixtures cannot be considered to have explosive risk potential. Even 
assuming a hypothetical, as yet unknown, mechanism that may lead to the 
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required fragmentation, the resulting detonation pressures are of no concern for 
the so called in-vessel analysis in nuclear reactor safety. 
 

Comparison of the detonation behavior of different material pairs: Here, we keep 
the parameter the same as for Fig. 9.5 but change only the melt material. The 
computational results for steel are presented in Fig. 9.13 and for alumina in Fig. 
9.14. Comparing Figs. 9.5, 9.13 and 9.14 we come to a very interesting conclu-
sion: at the same initial conditions the steel and the alumina possess the potential 
to create stronger detonations than the uranium dioxide. This is a fact known from 
experiments e.g. KROTOS, Huhtniemi, Magalon and Hohmann (1977) and the 
discussion by Kolev (1999b). This means that it is solely the differences in the ca-
loric thermal state properties (an example is given in Appendix 9.1 where the spe-
cific capacities at constant pressure for urania and zirconia as functions of the 
temperature are plotted) for the different materials that make any difference to the 
achievable detonation pressure under similar conditions. 

9.4.2 Efficiencies 

We will now compare for the three different pairs the fraction of the energy 
contained in the melt that is necessary to transport the mixture across the 
boundary of the control volume moving with the frame of reference, 

2 2 1 1

3,1
th

p v p v

e
η −= , 

and the fraction of the thermal energy discharge that is transformed into this work 

2 2 1 1

3,1 3 5 3 3,2(1 )

p v p v

e f e f e
η −=

− − −
. 

From Figs. 9.15a, 9.16a and 9.17a we see that for all of the material pairs 
considered here lean mixtures with a melt mass fraction of 10%, and 30% melt 
entrainment cannot transform more than 20% of their thermal energy into 
mechanical flow transport energy. Increasing the void in the system reduces this 
figure dramatically. 

From Figs. 9.15b, 9.16b and 9.17b we learn that increasing the entrained coo-
lant may cause quenching and reduce the transformation of all the discharged 
thermal energy into mechanical flow transport energy. Surprisingly, this effect is 
not so manifested for the alumina-water system. 
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Fig. 9.16 The two nominal efficiencies of uranium dioxide behind the shock wave as a 
function of the initial volume fraction of vapor. Parameter: liquid entrained fraction f2 
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Fig. 9.17 The two nominal efficiencies of steel behind the shock wave as a function of the 
initial volume fraction of vapor. Parameter: liquid entrained fraction f2 
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Fig. 9.18 The two nominal efficiencies of steel behind the shock wave as a function of the 
initial volume fraction of vapor. Parameter: liquid entrained fraction f2 
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9.4.3 The maximum coolant entrainment ratio 

As already mentioned, even theoretically large coolant entrainment ratios do not 
result in detonation solutions. In this chapter we compare the three pairs by 
presenting the maximum of the achievable coolant entrainment ratio that allows 
self-sustaining detonation waves as a function of the void fractions and the 
corresponding detonation pressures – Figs. 9.18, 9.19 and 9.20. The jumps in the 
entrainment ratios in Figs. 9.18 and 9.19 are associated with the latent heat of 
solidification. The larger water entrainment ratios give higher detonation 
pressures because the volume of the produced vapor is larger. 

Surprisingly, the alumina-water system once again allows the highest water 
entrainment rates and produces higher detonation pressures at very low void 
fractions. This is due to the fact that the specific heat of uranium dioxide is less 
than that of alumina. 
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Fig. 9.19 The maximum water mass entrained fraction and C-J pressure behind the shock 
wave for uranium dioxide as a function of the initial volume fraction of vapor 

Assuming small coolant entrainment leads to large superheating of the evaporated 
entrained coolant surrounding the melt and therefore a temperature difference between 
this coolant and the melt limits locally the energy transferred from the melt to the 
coolant. This means there is also in this sense a natural limit of the energy transfer. 

9.5 Conclusions 

In this chapter we applied the detonation theory in order to learn features of melt-
water interaction required for an upper bound estimate of the energetic interac-
tions for the nuclear industry. We found the following results: 

 
 
 



9.5 Conclusions      455 

1) Mixtures consisting of dispersed melt and dispersed water have detonation 
solutions but there is no mechanism to explain the degree of melt fragmen-
tation and of water entrainment into brought contact with the melt debris. 
Therefore, such mixtures cannot be considered to have explosive risk 
potential. Even assuming a hypothetical mechanism that may lead to the 
required fragmentation, the resulting detonation pressures are of no concern 
for in-vessel melt-water interaction risk analysis. 
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Fig. 9.20 The maximum water mass entrained fraction and C-J pressure behind the shock 
wave for steel as a function of the initial volume fraction of vapor 
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Fig. 9.21 The maximum water mass entrained fraction and C-J pressure behind the shock 
wave for alumina as a function of the initial volume fraction of vapor 

2) Even a very small amount of entrained water may cause considerable 
detonation pressures at low void fractions. This result confirms the warning 
expressed by Yuen and Theofanous to consider lean mixtures as potentially 
explosive. We also see that lean systems are very sensitive to void fraction. 
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For void fractions higher then 10% the lean mixture can in fact detonate but 
the detonation pressure has low risk potential. 

3) Homogeneous low void fraction and low water fraction mixtures are in fact 
possible only in the case of fast transient water entrapment or water injection 
into the melt. Such systems possess very high detonation pressures. That is the 
reason why such systems, despite the fact that their existence is only locally 
possible, are real triggers in nature. Large-scale existence of such mixtures is 
practically impossible in open systems having depletion paths for the participating 
materials. Systems not having depletion paths may realize such states locally. 

4) For each entrained melt ratio there is a maximum of entrained coolant ratio 
that controls the maximum of the detonation pressure. 

5) For the same initial conditions the detonation pressures for Al2O3-water and 
Fe-water systems are definitively larger than that for UO2-water systems. The 
capability for heat discharge during postulated melt-water contact for these 
systems does not explain the differences in their detonation behavior. As a 
result, only the differences in the caloric equation of state explain the 
differences in the detonation behavior. In addition, at the same initial 
condition, UO2-water systems can entrain a lower mass fraction of liquid than 
the other analyzed material pairs. This system reaches the thermal equilibrium 
state at a lower mixture temperature than the other analyzed material pairs. 

6) The efficiency of transformation of thermal energy into mechanical flow 
transport energy depends strongly a) on the vapor fraction and b) on the 
entrained water. The higher the void fraction the lower the efficiency of 
transformation of thermal into mechanical flow transport energy. At levels 
below some characteristic water entrainment rates for low void fraction 
mixtures lower efficiency results due to the local non-availability of an 
adequate amount of water to evaporate. The theoretical maximum of the 
highest total efficiency of transformation of the all-internal melt energy into 
mechanical flow transport energy is lower than 20%. This very high figure is 
achievable in a small-scale laboratory experiment with very low initial void 
fraction, mainly in cases of entrapment or very fast melt injection into water. 
That is why we consider this value as a local maximum for trigger 
efficiencies which cannot be transferred to large scale systems with a variety 
of depletion paths such as those of in-vessel melt-water interaction. 

9.6 Practical significance 

Judging the explosivity of melt-water and vapor mixtures is important for nuclear 
safety. There is a consensus among researchers that mixtures in which one of the 
liquids is continuous are explosive. But up to this study Kolev (2000), Kolev and Hulin 
(2001) it was not clear how to judge the risk of mixtures consisting of melt 
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droplets, coolant droplets and gas. The practical outcome of this study is the 
demonstration that detonation pressure jumps in disperse systems are lower than 200 
bar without considering the question whether they can be realized in nature or not. This 
knowledge classified such mixtures as not dangerous at all for in-vessel melt-water 
interactions.  

Another unexpected outcome of this study is the different theoretical behavior 
of different melt-water pairs for the same initial temperatures, gas volume frac-
tions and mass concentrations of the melt and water, resulting only from the dif-
ference of their caloric equations of state. 

Appendix 9.1 Specific heat capacity at constant pressure 
for urania and alumina 
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Fig. A9-1 Specific capacity at constant pressure as a function of the temperature of solid 
and liquid UO2, Reymann (1990)  
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Fig. A9-2 Specific capacity at constant pressure as a function of the temperature of solid 
and liquid alumina, Turnay (1985)  
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10 Conservation equations in general curvilinear 
coordinate systems 

10.1 Introduction 

In 1974 Vivand and Vinokur published their remarkable works on conservation 
equations of gas dynamics in curvilinear coordinate systems. Since that time there 
have been many publications on different aspects of this topic. Several providers 
of computational fluid dynamics tools use the developed strategy for single-phase 
flows in attempting to extend the algorithm for multi-phase flows. The usually 
used approach is to write all partial differential equation in convection-diffusion 
form and to use the already existing transformations and numerical algorithms for 
single-phase flow. What remains outside the convection-diffusion terms is pooled 
as a source into the right hand side. The problems with this approach are two: (a) 
the remaining terms can contain substantial physics represented in differential 
terms and (b) the realized coupling between the equations is weak. The latter is 
manifested if one tries to use such codes for processes with strong feedback of the 
interfacial heat and mass transfer processes on the pressure, e.g. steam explosion, 
spontaneous flashing etc.  

In this Chapter, the conservation equations rigorously derived in Chapters 1, 2, 5 
for multi-phase flows based on local time and volume average Kolev (1994a, b, 
1995, 1997, 1998, 1999) are rewritten in general curvilinear coordinate in order to 
facilitate their numerical integration for arbitrary geometry. In addition the so 
called conservation of total volume equation is also transformed. The latter is 
extremely useful for creating strongly coupled numerical solution algorithms. 
Note that the derivation in Chapter 1, 2, 5, Kolev (1994a, b, 1995, 1997, 1998, 
1999), is performed for flows in heterogeneous porous structures. Each of the 
velocity fields was considered to consist of several chemical components. The 
concept of dynamic fragmentation and coalescence is used. The derivation given 
here was first published in Kolev (2001). 

For the consideration presented below we assume that the flow happens in the 
physical space described by the Cartesian, left oriented coordinate systems 
(x,y,z) (Euclidean space) – Fig. 10.1. In this space the new curvilinear 
coordinate system is introduced having the coordinates , ,ξ η ζ . Another 

notation simultaneously used is ix  ( )1,2,3i = : 1 2 3, ,x x x  and iξ  ( )1,2,3i = : 
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1 2 3, ,ξ ξ ξ . The new coordinate system is called the transformed coordinate 

system. The curves defining the transformed system are smooth (at least one 
times differentiable). The transformation is invertible. The Jacobian, the metrics 
and inverted metrics tensors, the covariant and the contravariant vectors exist. 
Figure 10.1 shows the physical coordinate system, the transformed coordinate 
system and a control volume in the transformed coordinates system build by 
coordinate surfaces. The figure shows also the definition of the contravariant 
vectors perpendicular to the coordinate surfaces. In addition, the curvilinear 
coordinates system moves with velocity csV .  

 

const=ξ

const=η

const=ζ

x

y

z
1a

2a

3a

 

Fig. 10.1 The unit normal vectors to the coordinate surfaces form the contravariant 
base vectors 

For better understanding of the material in this Chapter we present in Appendix 1 
a brief introduction to vector analysis and in Appendix 2 some basics of the coor-
dinate transformation theory. I strongly recommend the reader to go over these 
Appendixes before continuing reading this Chapter. 

10.2 Field mass conservation equations 

The local volume- and time-averaged mass conservation equation derived in 
Chapter 1, Eq. (1.62) Kolev (1994a) is 

( ) ( )l l v l l l v l

∂ α ρ γ α ρ γ γ μ
∂τ

+∇⋅ =V .    (10.1) 

First we transform the time derivative having in mind that 

, , , ,
cs

x y z ξ η ζ

ϕ ϕ ϕ
τ τ
∂ ∂   = − ⋅∇   ∂ ∂   

V .    (10.2) 
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The result is 

( ) ( ) ( )l l v l l l cs l l v lα ρ γ α ρ γ α ρ γ γ μ
τ
∂ +∇⋅ − ⋅∇ =
∂

V V .  (10.3) 

Here the time derivative ( )
, ,

 ξ η ζτ∂ ∂  is understood to be at a fixed point in the 

transformed region and the subscripts are omitted for simplicity of the notation. 
Then having in mind that the divergence of a vector and the gradient of a scalar in 
the transformed region are 

( ) ( ) ( )1 2 31
   

 
g g g

g ξ η ζ
 ∂ ∂ ∂∇⋅ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

F a F a F a F , (10.4) 

( ) ( ) ( )1 2 31
   

 
g g g

g
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a a a , (10.5) 

we obtain finally 
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   (10.6) 

The term containing the velocity of the transformed coordinate system can be 
rewritten as follows 

( ) ( ) ( )
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1 2 3cs cs cs
l l vα ρ γ

ξ η ζ
 ∂ ∂ ∂− ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

V V V
a a a .   (10.7) 
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Having in mind that 

1 2 31 cs cs csd g

dtg ξ η ζ
∂ ∂ ∂= ⋅ + ⋅ + ⋅
∂ ∂ ∂
V V V

a a a , 

we obtain after multiplying by g  and using the reverse chain rule, 

( ) ( )l l v l l v l l v

g
g gα ρ γ α ρ γ α ρ γ

τ τ τ
∂∂ ∂+ =

∂ ∂ ∂
,   (10.8) 

the following final conservative form of the mass conservation equation for multi-
phase flows 

( ) ( ) ( )1 2   l l v l l l cs l l l csg g gξ ηα ρ γ α ρ γ α ρ γ
τ ξ η
∂ ∂ ∂   + ⋅ − + ⋅ −   ∂ ∂ ∂

a V V a V V  

( )3 l l l csgζα ρ γ
ζ
∂  + ⋅ − ∂

a V V v lgγ μ= .   (10.9) 

We see that the scalar  

l l gα ρ   

with the flux  

( ) i
l l l csgα ρ ⋅ −a V V   

is subject to conservation in the transformed coordinate system. The velocity vec-
tor components 

( )i i
l l csV = ⋅ −a V V  

will be called contravariant field relative velocity vector components. It is perpen-
dicular to the coordinate surface defined by i constξ = . Thus the mass conserva-

tion equation is simply 

( ) ( ) ( ) ( )1 2 3   l l v l l l l l l l l lg g V g V g Vξ η ζα ρ γ α ρ γ α ρ γ α ρ γ
τ ξ η ζ
∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 

 v lgγ μ= .       (10.10) 

Remember again that the time derivative is understood to be at a fixed point in the 
transformed region. Note that setting l l v l l constα ρ γ α ρ γ= = , l const=V  and 

0lμ = , and using the first fundamental metric identity, Peyret (1996) 

( ) ( ) ( )1 2 3 0g g g
ξ η ζ
∂ ∂ ∂+ + =
∂ ∂ ∂

a a a ,   (10.11) 
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results in  

( ) ( ) ( )1 2 3   0cs cs cs

g
g g g

τ ξ η ζ
∂ ∂ ∂ ∂− ⋅ − ⋅ − ⋅ =
∂ ∂ ∂ ∂

a V a V a V , (10.12) 

which is the second fundamental metric identity, Thompson et al. (1985), p.159. 
As pointed out by Thompson et al. (1985) this identity should be used to 

numerically determine updated values of the Jacobian, g , instead of updating it 

directly from the new values of the Cartesian coordinates. In the later case 
spurious source terms will appear, Thompson et al. (1985). 

10.3 Mass conservation equations for components inside 
the field – conservative form 

The conservative form of the local volume- and time-averaged field mass 
conservation equations for each component inside a velocity field as derived in 
Kolev (1994a) is 

( ) ( )*
l l il v l l l il il il v ilC C D C

∂ α ρ γ α ρ γ γ μ
∂τ

 +∇⋅ − ∇ = V .  (10.13) 

The time derivative and the convection term are transformed as in the previous 
section. For the transformation of the diffusion term we use the Diffusion 
Laplacian in the non-conservative form  

( ) g λ ϕ∇⋅ ∇  

1 1 2 3

2 1 2 3

 

 

g

g

ϕ ϕ ϕλ
ξ ξ η ζ

ϕ ϕ ϕλ
η ξ η ζ

  ∂ ∂ ∂ ∂= ⋅ + +  ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂+ ⋅ + +  ∂ ∂ ∂ ∂   

a a a a

a a a a

 

3 1 2 3 g
ϕ ϕ ϕλ

ζ ξ η ζ
  ∂ ∂ ∂ ∂+ ⋅ + +  ∂ ∂ ∂ ∂   

a a a a ,   (10.14) 

where *
l l ilDϕ α ρ γ=  is a scalar valued function of the local flow parameters. 

With this we obtain the final form which is additionally multiplied by the Ja-
cobian 
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( ) l l il vC gα ρ γ
τ
∂
∂

 

1 * 1 1 1 2 1 3 il il il
l l il l il

C C C
g C V Dξα ρ γ

ξ ξ η ζ
   ∂ ∂ ∂ ∂ + − ⋅ + ⋅ + ⋅   ∂ ∂ ∂ ∂     

a a a a a a  

2 * 2 1 2 2 2 3 il il il
l l il l il

C C C
g C V Dηα ρ γ

η ξ η ζ
   ∂ ∂ ∂ ∂ + − ⋅ + ⋅ + ⋅   ∂ ∂ ∂ ∂     

a a a a a a  

3 * 3 1 3 2 3 3 - il il il
l l il l il

C C C
g C V Dζα ρ γ

ζ ξ η ζ
   ∂ ∂ ∂ ∂ + ⋅ + ⋅ + ⋅   ∂ ∂ ∂ ∂     

a a a a a a  

v ilgγ μ= .       (10.15) 

We see that the scalar  

l l ilC gα ρ   

with the convective flux  

( ) i
l l il l csC gα ρ ⋅ −a V V   

and a diffusion flux is subject to conservation in the transformed coordinate 
system. Using the elements of the inverted metric tensor which is symmetric per 
definition the notation simplifies to 

( ) l l il vC gα ρ γ
τ
∂
∂

 

1 * 11 12 13 il il il
l l il l il

C C C
g C V D g g gξα ρ γ

ξ ξ η ζ
   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂     

 

2 * 21 22 23 il il il
l l il l il

C C C
g C V D g g gηα ρ γ

η ξ η ζ
   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂     

 

3 * 31 32 33 il il il
l l il l il

C C C
g C V D g g gζα ρ γ

ζ ξ η ζ
   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂     

 v ilgγ μ= . 

   (10.16) 

Thus the isotropic convection-diffusion problem in the physical space turns out to 
be a anisotropic in the transformed space. One immediately recognizes the 
advantage of the orthogonal coordinate systems for which only the diagonal 
elements of the inverse matrices are different from zero 
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( ) l l il vC gα ρ γ
τ
∂
∂

 

1 11 * il
l l il l il

C
g C V g Dξα ρ γ

ξ ξ
  ∂ ∂+ −  ∂ ∂   

 

2 22 * il
l l il l il

C
g C V g Dηα ρ γ

η η
  ∂ ∂+ −  ∂ ∂   

 

3 33 * il
l l il l il

C
g C V g Dζα ρ γ

ζ ζ
  ∂ ∂+ −  ∂ ∂   

v ilgγ μ= .  (10.17) 

10.4 Field mass conservation equations for components 
inside the field – non-conservative form 

The non-conservative form is obtained by differentiating the time derivative and the 
convection term and comparing with the mass conservation equation. The result is 

1 2 3 il il il il
l l v l l l

C C C C
g V V Vξ η ζα ρ γ γ γ γ

τ ξ η ζ
 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

 

* 11 12 13 il il il
l l il

C C C
g D g g gξα ρ γ

ξ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂   

 

* 21 22 23 il il il
l l il

C C C
g D g g gηα ρ γ

η ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂   

 

* 31 32 33 il il il
l l il

C C C
g D g g gζα ρ γ

ζ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂   

( ) v il l ilg Cγ μ μ= − .  

        (10.18) 

10.5. Particles number conservation equations for each 
velocity field 

The local volume- and time-averaged particle number density conservation 
equation for each velocity field derived in Kolev (1994a) is 
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( ) ( ), , ,

t
l

l v l l l v l kin l coal l spt
n n n n n n

Sc

∂ νγ γ γ
∂τ

  
+∇⋅ − ∇ = − +  

   
V    . (10.19) 

By analogy to the component mass conservation equation derived in the previous 
section we have 

( )l vn g γ
τ
∂
∂

 

1 11 12 13 
t
l l l l

l l t

n n n
g n V g g g

Scξ
νγ

ξ ξ η ζ
   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂    

 

2 21 22 23 
t
l l l l

l l t

n n n
g n V g g g

Scη
νγ

η ξ η ζ
   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂    

 

3 31 32 33 
t
l l l l

l l t

n n n
g n V g g g

Scζ
νγ

ζ ξ η ζ
   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂    

( ), , , v l kin l coal l spg n n nγ= − +   .     (10.20) 

10.6 Field entropy conservation equations – 
conservative form 

The conservative form of the local volume- and time-averaged field entropy 
conservation equation Eq. (5.101b) as derived in Chapter 5, Kolev (1994a), is 

( ) ( ) ( )
max

* *
1

2

1i
e e

l l l v l l l l il l il il l l l
i l

s s s s D C T
T

∂ α ρ γ α ρ γ α λ γ
∂τ =

  
+∇⋅ − − ∇ − ∇⋅ ∇  

   
V  

( ) ( )
max max3,

1 1 1

1 i iw
N

v l il il l iml ilm il
i m il

m l

DT s s s
T

γ μ μ μ
= = =

≠

 
 = + − + − 
  

    (10.21) 

for 0lα ≥ . The entropy conservation equation in the transformed space is therefore 

( ) l l l vs gα ρ γ
τ
∂
∂

 

( )
max

1 * 11 12 13
1

2

 
i

il il il
l l l l il l il

i

C C C
g s V s s D g g gξα ρ γ

ξ ξ η ζ=

    ∂ ∂ ∂ ∂  + − − + +    ∂ ∂ ∂ ∂       
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( )
max

2 * 21 22 23
1

2

 
i

il il il
l l l l il l il

i

C C C
g s V s s D g g gηα ρ γ

η ξ η ζ=

    ∂ ∂ ∂ ∂  + − − + +    ∂ ∂ ∂ ∂       
  

( )
max

3 * 31 32 33
1

2

 -
i

il il il
l l l l il l il

i

C C C
g s V s s D g g gζα ρ γ

ζ ξ η ζ=

    ∂ ∂ ∂ ∂  + − + +    ∂ ∂ ∂ ∂       
  

* 11 12 131
 e l l l

l l
l

T T T
g g g g

T ξα λ γ
ξ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

* 21 22 231
 e l l l

l l
l

T T T
g g g g

T ηα λ γ
η ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

* 31 32 331
 e l l l

l l
l

T T T
g g g g

T ζα λ γ
ζ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

( ) ( )
max max3,

1 1 1

1
 

i iw
N

v l il il l iml ilm il
i m il

m l

g DT s s s
T

γ μ μ μ
= = =

≠

 
 = + − + − 
  

  .  (10.22) 

10.7 Field entropy conservation equations – 
non-conservative form 

The non-conservative form is obtained by differentiating the time derivative and the 
convection term and comparing with the mass conservation equation. The result is 

1 2 3 l l l l
l l v l l l

s s s s
g V V Vξ η ζα ρ γ γ γ γ

τ ξ η ζ
 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

 

( )
max

* 11 12 13
1

2

 
i

il il il
l l il l il

i

C C C
g s s D g g gξα ρ γ

ξ ξ η ζ=

   ∂ ∂ ∂ ∂ − − + +   ∂ ∂ ∂ ∂     
  

( )
max

* 21 22 23
1

2

 
i

il il il
l l il l il

i

C C C
g s s D g g gηα ρ γ

η ξ η ζ=

   ∂ ∂ ∂ ∂ − − + +   ∂ ∂ ∂ ∂     
  

( )
max

* 31 32 33
1

2

 
i

il il il
l l il l il

i

C C C
g s s D g g gζα ρ γ

ζ ξ η ζ=

   ∂ ∂ ∂ ∂ − − + +   ∂ ∂ ∂ ∂     
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* 11 12 131
 e l l l

l l
l

T T T
g g g g

T ξα λ γ
ξ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

* 21 22 231
 e l l l

l l
l

T T T
g g g g

T ηα λ γ
η ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

* 31 32 331
 e l l l

l l
l

T T T
g g g g

T ζα λ γ
ζ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

( )
max

1

1
 

i
N

v l il il l
il

g DT s s
T

γ μ
=

 
= + − 

 
 .    (10.23) 

10.8 Irreversible power dissipation caused 
by the viscous forces 

The irreversible power dissipation caused by the viscous forces due to 
deformation as a result of the mean velocities in the space is an important term in 
the energy conservation. Substituting for the stress tensor components using the 
Helmholtz and Stokes hypothesis, the following expression was obtained in 
Chapter 5 Eq. (5.154), Kolev (1994a), 

22 2

2l kl l l l
v x y ze

l l

P u v w

x y z

α ∂ ∂ ∂γ γ γ γ
α ν ∂ ∂ ∂

     = + +     
      

 

l l l l
x y

v u v u

x y x y

∂ ∂ ∂ ∂γ γ
∂ ∂ ∂ ∂

  
+ + +  
  

l l l l
x z

w u w u

x z x z

∂ ∂ ∂ ∂γ γ
∂ ∂ ∂ ∂

   + + +   
   

 

l l l l
y z

w v w v

y z y z

∂ ∂ ∂ ∂γ γ
∂ ∂ ∂ ∂

   
+ + +   
   

 

2

3
l l l l l l

x y z

u v w u v w

x y z r y z

∂ ∂ ∂ ∂ ∂ ∂γ γ γ
∂ ∂ ∂ ∂ ∂ ∂

   
− + + + +   

   
   (10.24) 

The transformed form is then 
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2

11 21 31

2

12 22 32

2

13 23 33

2

l l l

l kl l l l
v e

l l

l l l

u u u
a a a

P v v v
a a a

w w w
a a a

ξ

η

ζ

γ
ξ η ζ

αγ γ
α ν ξ η ζ

γ
ξ η ζ

  ∂ ∂ ∂
 + + ∂ ∂ ∂  
 
 
  ∂ ∂ ∂ = + + + ∂ ∂ ∂  
 
 
  ∂ ∂ ∂ + + +  ∂ ∂ ∂   

 

11 21 3111 21 31

12 22 32 12 22 32

l l ll l l

l l l l l l

v v vv v v a a aa a a

u u u u u ua a a a a a

ξ

η

γ
ξ η ζξ η ζ

γξ η ζ ξ η ζ

  ∂ ∂ ∂∂ ∂ ∂  + ++ +     ∂ ∂ ∂∂ ∂ ∂    
 +  
  ∂ ∂ ∂   ∂ ∂ ∂ + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂    

 

11 21 3111 21 31

13 23 33 13 23 33

l l ll l l

l l l l l l

w w ww w w a a aa a a

u u u u u ua a a a a a

ξ

ζ

γ
ξ η ζξ η ζ

γξ η ζ ξ η ζ

  ∂ ∂ ∂∂ ∂ ∂  + ++ +     ∂ ∂ ∂∂ ∂ ∂    
 +  
  ∂ ∂ ∂   ∂ ∂ ∂ + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂    

 

12 22 3212 22 32

13 23 33 13 23 33

l l ll l l

l l l l l l

w w ww w w a a aa a a

v v v v v va a a a a a

η

ζ

γ
ξ η ζξ η ζ

γξ η ζ ξ η ζ

  ∂ ∂ ∂∂ ∂ ∂  + ++ +     ∂ ∂ ∂∂ ∂ ∂    
 +  
  ∂ ∂ ∂   ∂ ∂ ∂ + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂    

 

11 21 3111 21 31

12 22 32 12 22 32

13 23 33 13 23

2

3

l l ll l l

l l l l l l

l l l l l

u u uu u u a a aa a a

v v v v v v
a a a a a a

w w w w wa a a a a a

ξ

η

ζ

γ
ξ η ζξ η ζ

γ
ξ η ζ ξ η ζ

γξ η ζ ξ η

 ∂ ∂ ∂ ∂ ∂ ∂ + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 
 
   ∂ ∂ ∂ ∂ ∂ ∂ − + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂  
 
 ∂ ∂ ∂ ∂ ∂+ + +  + + + ∂ ∂ ∂  ∂ ∂

33 lw

ζ

 
 
 
 
 
 
 
 
 
 

 ∂ 
   ∂  

 .(10.25) 
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10.9 The non-conservative entropy equation in terms 
of temperature and pressure  

The so called non-conservative entropy equation in terms of temperature and pres-
sure was already derived in Chapter 5, Eq. (5.176) Kolev (1997): 

( ) ( )
, _

1
l

e el l
l pl l v l l l l l v l l

T all C s

T h p
c T p

p

∂ ∂ ∂ρ α γ α γ ρ α γ α γ
∂τ ∂ ∂τ′

     + ⋅∇ − − + ⋅∇           
V V  

( ) ( )
max

* *

2

i
e np e
l l l il l l il il

i

T T s D Cα λ γ α ρ γ
=

−∇ ⋅ ∇ + Δ ∇ ∇ ( )
max

2

i
N np

v l l il il il l
i

DT T s Cγ μ μ
=

 
= − Δ − 

 
 . 

     (10.26) 

For the derivation of its counterpart in transformed coordinates we follow the 
same procedure as described in Chapter 5 for the derivation of Eq. (5.176) or in 
Kolev (1997). In Chapter 3 also in Kolev (1991) the differential relationship, 
Eq. (3.106), between the field temperature, lT , and the field properties ( ), ,l ils C p  

is found to be 

max

2 , , _ _ _l il

i
l l l

pl l l il
il l il p T all C s except C

dT dp s
c R ds dC

T p C

∂
∂= ′

 
− = −  

 
 ,  (10.27) 

where 

1

, , _ _ _ i

np
il l il

i p T all C s except C

s
s s s

C

∂
∂ ′

 
= − + Δ 

 
,    (10.28) 

, _

1
l

l l l l
l

T all C s

R T h

p p

ρ ∂ρ
∂ ′

  
= −  
   

.     (10.29) 

One of the mass concentrations, arbitrarily numbered with subscript 1, 1lC , 

depends on all others and is computed as all others are known,  

max

1
2

1
i

l il
i

C C
=

= − .      (10.30) 

Equation (10.28) consists of two parts. For the case of a mixture consisting of 
ideal fluids the second part is equal to zero, 

0np
ilsΔ = ,       (10.31) 

this also demonstrating the meaning of the subscript np, which stands for non-
perfect fluid. The non-conservative form of the entropy equation in terms of 
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temperature and pressure is obtained by multiplying the max 1i −  mass conservation 

equations (10.18) by 1
np

il l ils s s− + Δ  and subtracting them from Eq. (10.23). The 

result is simplified by using 

( ) ( ) ( ) ( )
max max max

1
1 2 2

i i i
np np

il il l il l il il il l il il il l
i i i

s s s s s C s Cμ μ μ μ μ
= = =

− − − + Δ − = − Δ −   , 

    (10.32) 

neglecting the second order terms, and making the same assumption about the dif-
ference in the diffusion coefficients as made in Kolev (1991), 

1 2 3 l l l l
l l pl v l l l

T T T T
g c V V Vξ η ζα ρ γ γ γ γ

τ ξ η ζ
 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

 

1 2 3

, _

 1
l

l l l l l
l l v l l l

T all C s

h p p p p
g V V V

p ξ η ζ
∂α ρ γ γ γ γ
∂ τ ξ η ζ′

     ∂ ∂ ∂ ∂− − + + +     ∂ ∂ ∂ ∂     
 

* 11 12 13

* 21 22 23

* 31 32 33

 

 

 

il il il
l l il

np il il il
l il l l il

il il il
l l il

C C C
g D g g g

C C C
T s g D g g g

C C C
g D g g g

ξ

η

ζ

α ρ γ
ξ ξ η ζ

α ρ γ
η ξ η ζ

α ρ γ
ζ ξ η ζ

   ∂ ∂ ∂ ∂+ +   ∂ ∂ ∂ ∂    


   ∂ ∂ ∂ ∂+ Δ + + +  ∂ ∂ ∂ ∂    


   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂   

max

2

i

i=

 
 
 
 
 
   

 
 
 
 
   

  

* 11 12 13 l l l
l l

T T T
g g g gξα λ γ

ξ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

* 21 22 23 l l l
l l

T T T
g g g gηα λ γ

η ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

 

* 31 32 33 l l l
l l

T T T
g g g gζα λ γ

ζ ξ η ζ
  ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂  

( )
max

2

i
N np

v l l il il il l
i

g DT T s Cγ μ μ
=

 
= − Δ − 

 
 .    (10.33) 

Note that the prescribing of the velocity at the boundary as a boundary condition is 
associated with pressure decoupling across the interface. 
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10.10 The volume conservation equation 

The so called volume conservation equation (5.188) was already derived by Kolev 
(1986) and published by Kolev in 1987: 

( ) ( )
max max max

2 2
1 1 1

l l l
v l v

l l l l
l l ll l

p
p D

a a

γ ∂ α ∂γγ α γ α
ρ ∂τ ρ ∂τ= = =

+ ⋅∇ +∇⋅ = −  V V , 

where 

max

1
2, _ , , _ _ _

1 1

li li l

i
N Nl l

l v l l il
il l l lip all C s p s all C s except C

D Ds DC
s C

∂ρ ∂ρα γ μ
ρ ρ ∂ ∂′ = ′

       = − +    
       

 , 

   (10.34) 

a is the sonic velocity in a “homogeneous” multi-phase mixture  

3 3

2 2
1 1

1 1 1l l

l ll l la a p p

α α
ρ ρ κ κ= =

= = =  ,    (10.35) 

and 

3

1
l l

l

ρ α ρ
=

=        (10.36) 

is the mixture density. It is very useful for designing numerical solution methods. 
We derive this equation for the transformed system following the same procedure 
as in Chapter 5, Kolev (1986, 1997). This means we start with the mass 
conservation for each velocity field, use the chain rule, divide by the field density 
and add the resulting field equations. The result is 

max
1 2 3

1

 
l

l l l l l
v l l l

l l

g V V Vξ η ζ
α ρ ρ ρ ργ γ γ γ
ρ τ ξ η ζ=

 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 
  

( ) ( ) ( )max
1 2 3

1

   
l

l l l l l l
l

g V g V g Vξ η ζα γ α γ α γ
ξ η ζ=

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
  

( )max

1

 
l

l
v v

l l

g g
μγ γ
ρ τ=

∂= −
∂ .     (10.37) 

The density derivatives were substituted using the differential form of the equation 
of state for each velocity field, Eq. (3.157) Kolev (1991) 

max

2
2, _ , , _ _ _ i

i

i
i ip all C s p s all C s except C

dp
d ds dC

a s C

∂ρ ∂ρρ
∂ ∂=′ ′

  = + +   
   

 . 
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Using the following substitutions  

1 2 3 Nil il il
l l l l l il

C C C
V V V DCξ η ζα ρ γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + = ∂ ∂ ∂ 

   (10.38) 

1 2 3 Nl l l
l l l l l l

s s s
V V V Dsξ η ζα ρ γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + = ∂ ∂ ∂ 

   (10.39) 

we finally obtain 

( ) ( ) ( )

max

max

1 2 3
2 2

1

1 2 3

1

1
  

   

l
l

v l l l
l l l

l

l l l l l l
l

p p p p
g g V V V

a a

g V g V g V

ξ η ζ

ξ η ζ

α∂γ γ γ γ
ρ ∂τ ρ ξ η ζ

α γ α γ α γ
ξ η ζ

=

=

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 





 

( )max max

1 2

1 1
  

l i
N Nl l

v l l il v
l il l l il

g Ds DC g
s C

∂ρ ∂ργ μ γ
ρ ρ ∂ ∂ τ= =

   ∂= − + −   ∂   
  . (10.40) 

Note that this equation is not more complicated then its counterpart in Cartesian 
coordinates and can be used instead of one of the mass conservation equations. 
The volume conservation equation can be directly discretized and incorporated 
into the numerical scheme. Another possibility is to follow the same scheme as for 
deriving it analytically but starting with already discretized mass conservation 
equations. The coupling finally obtained is then strictly consistent with the 
discretized form of the mass conservation equations. 

10.11 The momentum equations 

The conservative form of the local volume- and time-averaged field momentum 
conservation equations (2.232) as derived in Chapter 2 Kolev (1994a) is 

( ) ( ) ( )* 2

3
Te

l l l v l l l l l l l l

∂ α ρ γ α ρ γ ν
∂τ

   +∇⋅ − ∇ + ∇ − ∇⋅      
V V V V V V I  

e
l l l vpα γ α ρ γ+ ∇ + g  

( ) ( ) ( )
3,

1

w
d vm L

v ml ml ml ml ml l ml ml l m m
m
m l

c c c
∂γ
∂τ=

≠

  − Δ ⋅Δ + Δ + ⋅∇ Δ + − × ∇×    
 V V V V V V V V

 



476      10 Conservation equations in general curvilinear coordinate systems 

( )
3,

1

w

v ml m lm l
m

γ μ μ
=

= − V V .     (10.41) 

For the transformation it is more convenient to write the components in each 
Cartesian direction: 

 

x – direction: 

( ) ( )* 2

3
e l

l l l v l l l l l l lu u u
x

∂ α ρ γ α ρ γ ν
∂τ

  ∂ +∇⋅ − ∇ + − ∇⋅   ∂   

V
V V i  

e
l x l l x v

p
g

x
α γ α ρ γ∂+ +

∂
 

( )

( ) ( )

3,

1

d vm ml
ml ml ml ml l ml

w

v
m
m l

L m m m m
ml l m l m

u
c u c u

v u w u
c v v w w

x y x z

∂
∂τ

γ
=
≠

 Δ  Δ Δ + + ⋅∇ Δ   
 −  
   ∂ ∂ ∂ ∂  + − − + − −     ∂ ∂ ∂ ∂    



V V

 

( )
3,

1

w

v ml m lm l
m

u uγ μ μ
=

= − .     (10.42) 

y – direction: 

( ) ( )* 2

3
e l

l l l v l l l l l l lv v v
y

∂ α ρ γ α ρ γ ν
∂τ

   ∂ +∇⋅ − ∇ + − ∇⋅    ∂    

V
V V j  

e
l y l l y v

p
g

y
α γ α ρ γ∂+ +

∂
 

( )

( ) ( )

max ,

1

d vm ml
ml ml ml ml l ml

l w

v
m
m l

L m m m m
ml l m l m

v
c v c v

v u w v
c u u w w

x y y z

∂
∂τ

γ
=
≠

 Δ  Δ Δ + + ⋅∇ Δ   
 −  
     ∂ ∂ ∂ ∂ − − − − − −     ∂ ∂ ∂ ∂     



V V

 

( )
3,

1

w

v ml m lm l
m

v vγ μ μ
=

= − .     (10.43) 
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z – direction: 

( ) ( )* 2

3
e l

l l l v l l l l l l lw w w
z

∂ α ρ γ α ρ γ ν
∂τ

  ∂ +∇⋅ − ∇ + − ∇⋅   ∂   

V
V V k  

e
l z l l z v

p
g

z
α γ α ρ γ∂+ +

∂
 

( )

( ) ( )

max ,

1

d vm ml
ml ml ml ml l ml

l w

v
m
m l

L m m m m
ml l m l m

w
c w c w

w u w v
c u u v v

x z y z

∂
∂τ

γ
=
≠

 Δ  Δ Δ + + ⋅∇ Δ   
 −  
   ∂ ∂ ∂ ∂  − − − + − −    ∂ ∂ ∂ ∂     



V V

 

( )
3,

1

w

v ml m lm l
m

w wγ μ μ
=

= − .     (10.44) 

We see that the velocity components can be treated as scalars, which are subject to 
advection and diffusion as any other scalar variable describing the flow.  

First we transfer the bulk viscosity term 

( )* 2

3
e
l l l lα ρ γν ∇⋅ ∇⋅ 

 
V i , 

because it appears in similar form in all the momentum equations. Using Eqs. (10.4) 
and (10.11) we find that the divergence of the field velocity is the number 

1 2 3l l l
l ξ η ζ

∂ ∂ ∂∇⋅ = ⋅ + ⋅ + ⋅
∂ ∂ ∂
V V V

V a a a .    (10.45) 

Using Eq. (10.4) we then find that the divergence of the vector is 

( )* 2
 

3
e
l l l lg α ρ γν ∇ ∇⋅  

V i  

( ) ( )1 * 1 *2 2
  

3 3
e e
l l l l l l l lg gξ ηγ α ρν γ α ρν

ξ η
∂ ∂   = ⋅ ∇ ⋅ + ⋅ ∇ ⋅   ∂ ∂   

a i V a i V  

( )1 * 2
 

3
e
l l l lg ζγ α ρν

ζ
∂  + ⋅ ∇ ⋅ ∂  

a i V     (10.46) 

The term 

*e l
l l l x

α ρ γν ∂ ∇⋅  ∂ 

V
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presents the divergence of a vector. Again using Eq. (10.4) we obtain 

* e l
l l lg

x
α ρ γν ∂ ∇⋅ ∂ 

V
 

* 1 * 2 * 3   e e el l l
l l l l l l l l lg g g

x x xξ η ζα ρ γ ν α ρ γ ν α ρ γ ν
ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂     = ⋅ + ⋅ + ⋅     ∂ ∂ ∂ ∂ ∂ ∂     

V V V
a a a . 

   (10.47) 

The component notation is  

1

x

∂⋅
∂
V

a 11 11 21 31 12 11 21 31u u u v v v
a a a a a a a a

ξ η ζ ξ η ζ
   ∂ ∂ ∂ ∂ ∂ ∂= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

 

13 11 21 31w w w
a a a a

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

    (10.48) 

2

y

∂⋅
∂
V

a
21 12 22 32 22 12 22 32u u u v v v

a a a a a a a a
ξ η ζ ξ η ζ

   ∂ ∂ ∂ ∂ ∂ ∂= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 

23 12 22 32w w w
a a a a

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

    (10.49) 

3

z

∂⋅
∂
V

a
31 13 23 33 32 13 23 33u u u v v v

a a a a a a a a
ξ η ζ ξ η ζ

   ∂ ∂ ∂ ∂ ∂ ∂= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 

33 13 23 33w w w
a a a a

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

    (10.50) 

with the second superscript indicating the Cartesian component of the contrava-
riant vectors.  

The interfacial virtual mass term is transformed as follows  

1 2 3

, , , ,
l l l l

x y z

V V V
ξ η ζ

∂ϕ ∂ϕ ϕ ϕ ϕϕ
∂τ ∂τ ξ η ζ

∂ ∂ ∂   + ⋅∇ = + + +    ∂ ∂ ∂   
V ,  (10.51) 

after using the Eqs. (10.2), (10.5) and (10.11). In a similar way the virtual mass 
term for the wall-field force is transformed. Note that in the moving coordinate 
system we have 

wl cs lΔ = −V V V .      (10.52) 

The conservative form of the transformed equations is given below. Note that the 
equations are still Cartesian components of the vector momentum equation. The 

component equations are multiplied by g . 
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x – direction: 

( ) l l l vu gα ρ γ
τ
∂
∂

 

( )

11 12 13

1 *

1 11

 

2

3

l l l

e
l l l l l

l
l

u u u
g g g

g u V

a
x

ξ

ξ η ζ
α ρ γ ν

ξ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

( )

21 22 23

2 *

2 21

 

2

3

l l l

e
l l l l l

l
l

u u u
g g g

g u V

a
x

η

ξ η ζ
α ρ γ ν

η

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

( )

31 32 33

3 *

3 31

 

2

3

l l l

e
l l l l l

l
l

u u u
g g g

g u V

a
x

ζ

ξ η ζ
α ρ γ ν

ζ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

11 21 31e
l

p p p
g a a aξ η ζα γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

 

3,
1 2 3

1

w
vm dml ml ml ml

v ml l l l ml ml ml
m
m l

u u u u
g c V V V c u

∂γ
∂τ ξ η ζ=

≠

  Δ ∂Δ ∂ ∂Δ − + + + + Δ Δ  ∂ ∂ ∂   
 V  

( )

( )

11 21 31

12 22 32

11 21 31

13 23 33

m m m

l m

m m m

L
v ml

m m m

l m

m m m

v v v
a a a

v v

u u u
a a a

g c

w w w
a a a

w w

u u u
a a a

ξ η ζ

ξ η ζ
γ

ξ η ζ

ξ η ζ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   
   −
   ∂ ∂ ∂   − − −  ∂ ∂ ∂  

−  
 ∂ ∂ ∂  + +  ∂ ∂ ∂   + −   ∂ ∂ ∂ − − −  ∂ ∂ ∂   

3,

1

w

m
m l
=
≠
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( )
3,

1

w

v l l x ml m lm l
m

g g u uγ α ρ μ μ
=

 = − + − 
 

 ,    (10.53) 

y – direction: 

( ) l l l vv gα ρ γ
τ
∂
∂

 

( )

11 12 13

1 *

1 12

 

2

3

l l l

e
l l l l l

l
l

v v v
g g g

g v V

a
y

ξ

ξ η ζ
α ρ γ ν

ξ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

( )

21 22 23

2 *

2 22

 

2

3

l l l

e
l l l l l

l
l

v v v
g g g

g v V

a
y

η

ξ η ζ
α ρ γ ν

η

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

( )

31 32 33

3 *

3 32

 

2

3

l l l

e
l l l l l

l
l

v v v
g g g

g v V

a
y

ζ

ξ η ζ
α ρ γ ν

ζ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

12 22 32e
l

p p p
g a a aξ η ζα γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

 

3,
1 2 3

1

w
vm dml ml ml ml

v ml l l l ml ml ml
m
m l

v v v v
g c V V V c v

∂γ
∂τ ξ η ζ=

≠

  Δ ∂Δ ∂Δ ∂Δ − + + + + Δ Δ  ∂ ∂ ∂   
 V  
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( )

( )

11 21 31

12 22 32

12 22 32

13 23 33

m m m

l m

m m m

L
v ml

m m m

l m

m m m

v v v
a a a

u u

u u u
a a a

g c

w w w
a a a

w w

v v v
a a a

ξ η ζ

ξ η ζ
γ

ξ η ζ

ξ η ζ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   
   − −
   ∂ ∂ ∂  − − −  ∂ ∂ ∂  

−  
 ∂ ∂ ∂  + +  ∂ ∂ ∂   + −   ∂ ∂ ∂ − − −  ∂ ∂ ∂   

3,

1

w

m
m l
=
≠







 
 
  


 
 
 
 
 
 
 
  

  

( )
3,

1

w

v l l y ml m lm l
m

g g v vγ α ρ μ μ
=

 = − + − 
 

 ,    (10.54) 

z – direction: 

( ) l l l vw gα ρ γ
τ
∂
∂

 

( )

11 12 13

1 *

1 13

 

2

3

l l l

e
l l l l l

l
l

w w w
g g g

g wV

a
z

ξ

ξ η ζ
α ρ γ ν

ξ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

( )

21 22 23

2 *

2 23

 

2

3

l l l

e
l l l l l

l
l

w w w
g g g

g wV

a
z

η

ξ η ζ
α ρ γ ν

η

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V

 

( )

31 32 33

3 *

3 33

 

2

3

l l l

e
l l l l l

l
l

w w w
g g g

g wV

a
y

ζ

ξ η ζ
α ρ γ ν

ζ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   ∂    + − ∂    ∂   + ⋅ − ∇ ⋅  ∂    

V
a V
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13 23 33e
l

p p p
g a a aξ η ζα γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

 

3,
1 2 3

1

w
vm dml ml ml ml

v ml l l l ml ml ml
m
m l

w w w w
g c V V V c w

∂γ
∂τ ξ η ζ=

≠

  Δ ∂Δ ∂Δ ∂Δ − + + + + Δ Δ  ∂ ∂ ∂   
 V  

( )

( )

11 21 31

13 23 33

12 22 32

13 23 33

m m m

l m

m m m

L
v ml

m m m

l m

m m m

w w w
a a a

u u

u u u
a a a

g c

w w w
a a a

v v

v v v
a a a

ξ η ζ

ξ η ζ
γ

ξ η ζ

ξ η ζ

  ∂ ∂ ∂ + +   ∂ ∂ ∂   
   − −
   ∂ ∂ ∂  − − −  ∂ ∂ ∂  

−  
 ∂ ∂ ∂  + +  ∂ ∂ ∂   − −   ∂ ∂ ∂ − − −  ∂ ∂ ∂   

3,

1

w

m
m l
=
≠







 
 
  


 
 
 
 
 
 
 
  

  

( )
3,

1

w

v l l z ml m lm l
m

g g w wγ α ρ μ μ
=

 = − + − 
 

 .    (10.55) 

10.12 The flux concept, conservative 
and semi-conservative forms 

The purpose of this section is to introduce the so called flux concept. Within the 
flux concept the integration over a control volume gives simple balance 
expressions which are very convenient for constructing of numerical algorithms. 

10.12.1 Mass conservation equation 

The conservative form of the mass conservation equation for each species i inside 
the velocity field l is 

( ) l l il vC gα ρ γ
τ
∂
∂ ( )1 C

ilgξγξ
∂+ ⋅
∂

a G ( )2 C
ilgηγη

∂+ ⋅
∂

a G  

( )3 C
ilgζγζ

∂+ ⋅
∂

a G v ilgγ μ= ,      (10.56) 
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where the species mass flow rate vector defined as follows 

( ) * 1 2 3C il il il
il l l l cs il l l il

C C C
C Dα ρ α ρ

ξ η ζ
 ∂ ∂ ∂= − − + + ∂ ∂ ∂ 

G V V a a a C
l il= +G F , 

    (10.57) 

consists of a convective  

( )l l l l csα ρ= −G V V       (10.58) 

and of a diffusion  

* 1 2 3C il il il
il l l il

C C C
Dα ρ

ξ η ζ
 ∂ ∂ ∂= − + + ∂ ∂ ∂ 

F a a a     (10.59) 

component. The minus sign reflects the observation that the positive diffusion 
mass flow rate happens towards the decreasing concentrations. Note that for 

1ilC =  we have C
il l=G G . The corresponding mass conservation equation for each 

velocity field is 

( )l l vgα ρ γ
τ
∂
∂ ( )1 lgξγξ

∂+ ⋅
∂

a G ( )2 lgηγη
∂+ ⋅
∂

a G  

( )3 lgζγζ
∂+ ⋅
∂

a G v ilgγ μ= .     (10.60) 

We multiply Eq. (10.60) by the concentration and subtract the resulting equation 
from Eq. (10.56). Then the field mass source term is split in two non-negative 
parts l l lμ μ μ+ −= + . The result is the so called semi-conservative form of the spe-

cies mass conservation equation 

1 2 3 il il il il
l l v l

C C C C
g ξ η ζα ρ γ γ γ γ

τ ξ η ζ
  ∂ ∂ ∂ ∂+ + + ⋅  ∂ ∂ ∂ ∂  

a a a G  

( )1 C
ilgξγξ

∂+ ⋅
∂

a F ( )2 C
ilgηγη

∂+ ⋅
∂

a F ( )3 C
ilgζγζ

∂+ ⋅
∂

a F  

( )  v l il v il il lg C g Cγ μ γ μ μ+ −+ = − .    (10.61) 

We will keep in mind the procedure used to derive this equation which is simpler 
than the initial equation (10.56) because in the convection part it does not contain 
the derivatives of the contravariant vectors. By designing numerical methods for 
Eq. (10.61) we will follow the same procedure but applied to the discretized 
couple of equations (10.56) and (10.60). 
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10.12.2 Entropy equation 

The flux notation of the entropy equation is 

1 2 3 l l l l
l l v l

s s s s
g ξ η ζα ρ γ γ γ γ

τ ξ η ζ
  ∂ ∂ ∂ ∂+ + + ⋅  ∂ ∂ ∂ ∂  

a a a G  

( ) ( ) ( )1 2 31
   T T T

l l lg g g
T ξ η ζγ γ γ

ξ η ζ
 ∂ ∂ ∂+ ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

a F a F a F  

( )1 sC
lgξγξ
Δ∂+ ⋅

∂
a F ( )2 sC

lgηγη
Δ∂+ ⋅

∂
a F ( )3 sC

lgζγζ
Δ∂+ ⋅

∂
a F  

  v l l v lg s g Dsγ μ γ++ = .     (10.62) 

We see that two diffusion fluxes additionally appear, the heat flux 

* 1 2 3T l l l
l l l

T T Tα λ
ξ η ζ

 ∂ ∂ ∂= − + + ∂ ∂ ∂ 
F a a a  ,   (10.63) 

and the entropy flux due to diffusion of species with different thermal properties 

( )
max

1
2

i
sC C

l il l il
i

s sΔ

=

= −F F .      (10.64) 

10.12.3 Temperature equation 

The flux notation of the temperature equation is 

1 2 3 l l l l
pl l l v l

T T T T
g c ξ η ζα ρ γ γ γ γ

τ ξ η ζ
  ∂ ∂ ∂ ∂+ + + ⋅  ∂ ∂ ∂ ∂  

a a a G  

1 2 3

, _

1
 1

l

l l l l l
l l v l

lT all C s

h p p p p
g

p ξ η ζ
∂α ρ γ γ γ γ
∂ τ ξ η ζ ρ′

      ∂ ∂ ∂ ∂− − + + + ⋅      ∂ ∂ ∂ ∂      
a a a G

 ( ) ( ) ( )1 2 3   T T T
l l lg g gξ η ζγ γ γ

ξ η ζ
∂ ∂ ∂+ ⋅ + ⋅ + ⋅
∂ ∂ ∂

a F a F a F  

( ) ( ) ( )max
1 2 3

2

   
i

np C C C
l il il il il

i

T s g g gξ η ζγ γ γ
ξ η ζ=

  ∂ ∂ ∂ − Δ ⋅ + ⋅ + ⋅  ∂ ∂ ∂   
 a F a F a F  

( )
max

2

i
N np

v l l il il il l
i

g DT T s Cγ μ μ
=

 
= − Δ − 

 
 .    (10.65) 
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The flux notation of the particles number density equation is 

( ) ( ) ( )

( )

1 2

3

   

 

l v l l cs l l cs

l l cs

n g g n g n

g n

ξ η

ζ

γ γ γ
τ ξ η

γ
ζ

∂ ∂ ∂   + ⋅ − + ⋅ −   ∂ ∂ ∂

∂  + ⋅ − ∂

a V V a V V

a V V

 

( ) ( ) ( )   n n n
l l lg g gη ξ ζγ γ γ

η ξ ζ
∂ ∂ ∂+ + +
∂ ∂ ∂

F F F  

( ), , , v l kin l coal l spg n n nγ= − +   ,     (10.66) 

where the turbulent diffusion flux of particles is defined as follows 

1 2 3
t

n l l l l
l t

n n n

Sc

ν
ξ η ζ

 ∂ ∂ ∂= − + + ∂ ∂ ∂ 
F a a a .    (10.67) 

10.12.4 Momentum conservation in the x-direction 

The flux notation of the x-component of the momentum equation is 

1 2 3 l l l l
l l v l

u u u u
g ξ η ζα ρ γ γ γ γ

τ ξ η ζ
  ∂ ∂ ∂ ∂+ + + ⋅  ∂ ∂ ∂ ∂  

a a a G  

( ) ( ) ( )1 2 3   u u u
l l lg g gξ ξ ξγ γ γ

ξ η ζ
∂ ∂ ∂+ ⋅ + ⋅ + ⋅
∂ ∂ ∂

a F a F a F  

11 21 31
l

p p p
g a a aξ η ζα γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

 
3

1

d d
v ml ml ml wl wl wl

m
m l

g c u c uγ
=
≠

 
 − Δ Δ − Δ Δ 
  
 V V  

( )
max

1 2 3

1

l
L m m m

v ml l m
m xm l

g cγ
ξ η ζ=

≠

  ∂ ∂ ∂− − × × + × + ×  ∂ ∂ ∂  
 V V V

V V a a a  

( ) 1 2 3L cs cs cs
v wl l cs

x

gcγ
ξ η ζ

  ∂ ∂ ∂− − × × + × + ×  ∂ ∂ ∂  

V V V
V V a a a  
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( ) ( )

( )

1 2

3

1
3

ml ml ml
l cs l cs

vm
v ml

m
m l ml

l cs

u u u

g c

u

∂
∂τ ξ η

γ

ζ

=
≠

Δ ∂Δ ∂Δ + ⋅ − + ⋅ − ∂ ∂ 
−  

 ∂Δ + ⋅ −
 ∂ 



a V V a V V

a V V

 

( ) ( )

( )

1 2

3

csl csl csl
l cs l cs

vm
v wl

csl
l cs

u u u

gc

u

∂
∂τ ξ η

γ

ζ

Δ ∂Δ ∂Δ + ⋅ − + ⋅ − ∂ ∂ 
−  

 ∂Δ + ⋅ −
 ∂ 

a V V a V V

a V V

 

( ) ( )
3,

1

w

v l l x ml m l lw lw l
m

g g u u u uγ α ρ μ μ
=

  = − + − + −   
 ,  (10.68) 

where 

u u u b u T
l l l l

ν ν ν= + +F F F F  ,      (10.69) 

is the diffusion momentum flux in the x-direction with components 

* 1 2 3u l l l
l l l l

u u uν α ρν
ξ η ζ

 ∂ ∂ ∂= − + + ∂ ∂ ∂ 
F a a a ,   (10.70) 

( )* 2

3
u b e
l l l l l
ν α ρν= ∇⋅F V i ,     (10.71) 

*u T e l
l l l l x
ν α ρν ∂= −

∂
V

F .      (10.72) 

10.12.5 Momentum conservation in the y-direction 

The flux notation of the y-component of the momentum equation is 

1 2 3 l l l l
l l v l

v v v v
g ξ η ζα ρ γ γ γ γ

τ ξ η ζ
  ∂ ∂ ∂ ∂+ + + ⋅  ∂ ∂ ∂ ∂  

a a a G  

( ) ( ) ( )1 2 3   v v v
l l lg g gξ ξ ξγ γ γ

ξ η ζ
∂ ∂ ∂+ ⋅ + ⋅ + ⋅
∂ ∂ ∂

a F a F a F  

12 22 32
l

p p p
g a a aξ η ζα γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
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3

1

d d
v ml ml ml wl wl wl

m
m l

g c v c vγ
=
≠

 
 − Δ Δ − Δ Δ 
  
 V V  

( )
max

1 2 3

1

l
L m m m

v ml l m
m ym l

g cγ
ξ η ζ=

≠

  ∂ ∂ ∂− − × × + × + ×  ∂ ∂ ∂  
 V V V

V V a a a  

( ) 1 2 3L cs cs cs
v wl l cs

y

gcγ
ξ η ζ

  ∂ ∂ ∂− − × × + × + ×  ∂ ∂ ∂  

V V V
V V a a a  

( ) ( )

( )

1 2

3

1
3

ml ml ml
l cs l cs

vm
v ml

m
m l ml

l cs

v v v

g c

v

∂
∂τ ξ η

γ

ζ

=
≠

Δ ∂Δ ∂Δ + ⋅ − + ⋅ − ∂ ∂ 
−  

 ∂Δ + ⋅ −
 ∂ 



a V V a V V

a V V

 

( ) ( )

( )

1 2

3

csl csl csl
l cs l cs

vm
v wl

csl
l cs

v v v

gc

v

∂
∂τ ξ η

γ

ζ

Δ ∂Δ ∂Δ + ⋅ − + ⋅ − ∂ ∂ 
−  

 ∂Δ + ⋅ −
 ∂ 

a V V a V V

a V V

 

( ) ( )
3,

1

w

v l l y ml m l lw lw l
m

g g v v v vγ α ρ μ μ
=

  = − + − + −   
 ,  (10.73) 

where  

v v v b v T
l l l l

ν ν ν= + +F F F F       (10.74) 

is the diffusion momentum flux in the y-direction with components 

* 1 2 3v l l l
l l l l

v v vν α ρν
ξ η ζ

 ∂ ∂ ∂= − + + ∂ ∂ ∂ 
F a a a ,   (10.75) 

( )* 2

3
v b e
l l l l l
ν α ρν= ∇⋅F V j ,     (10.76) 

*v T e l
l l l l y
ν α ρν ∂= −

∂
V

F . 
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10.12.6 Momentum conservation in the z-direction 

The flux notation of the z-component of the momentum equation is 

1 2 3 l l l l
l l v l

w w w w
g ξ η ζα ρ γ γ γ γ

τ ξ η ζ
  ∂ ∂ ∂ ∂+ + + ⋅  ∂ ∂ ∂ ∂  

a a a G  

( ) ( ) ( )1 2 3   w w w
l l lg g gξ ξ ξγ γ γ

ξ η ζ
∂ ∂ ∂+ ⋅ + ⋅ + ⋅
∂ ∂ ∂

a F a F a F  

13 23 33
l

p p p
g a a aξ η ζα γ γ γ

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

 

3

1

d d
v ml ml ml wl wl wl

m
m l

g c w c wγ
=
≠

 
 − Δ Δ − Δ Δ 
  
 V V  

( )
max

1 2 3

1

l
L m m m

v ml l m
m zm l

g cγ
ξ η ζ=

≠

  ∂ ∂ ∂− − × × + × + ×  ∂ ∂ ∂  
 V V V

V V a a a  

( ) 1 2 3L cs cs cs
v wl l cs

z

gcγ
ξ η ζ

  ∂ ∂ ∂− − × × + × + ×  ∂ ∂ ∂  

V V V
V V a a a  

( ) ( )

( )

1 2

3

1
3

ml ml ml
l cs l cs

vm
v ml

m
m l ml

l cs

w w w

g c

w

∂
∂τ ξ η

γ

ζ

=
≠

Δ ∂Δ ∂Δ + ⋅ − + ⋅ − ∂ ∂ 
−  

 ∂Δ + ⋅ −
 ∂ 



a V V a V V

a V V

 

( ) ( )

( )

1 2

3

csl csl csl
l cs l cs

vm
v wl

csl
l cs

w w w

gc

w

∂
∂τ ξ η

γ

ζ

Δ ∂Δ ∂Δ + ⋅ − + ⋅ − ∂ ∂ 
−  

 ∂Δ + ⋅ −
 ∂ 

a V V a V V

a V V

 

( ) ( )
3,

1

w

v l l z ml m l lw lw l
m

g g w w w wγ α ρ μ μ
=

  = − + − + −   
 ,  (10.77) 

where  

w w w b w T
l l l l

ν ν ν= + +F F F F       (10.78) 
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is the diffusion momentum flux in the z-direction with components 

* 1 2 3w l l l
l l l l

w w wν α ρν
ξ η ζ

 ∂ ∂ ∂= − + + ∂ ∂ ∂ 
F a a a ,   (10.79) 

( )* 2

3
w b e

l l l l l
ν α ρν= ∇⋅F V k ,     (10.80) 

*w T e l
l l l l z
θ α ρν ∂= −

∂
V

F .      (10.81) 

10.13 Concluding remarks 

The equations derived in this Chapter may be of interest not only for scientists and 
engineers developing computational models but also for those using intensively 
computational models. One may compare the set of equation presented in this 
Chapter with the sets solved by different commercial providers and reveal the 
physical phenomena which are still not taken into account by them. This is helpful 
to learn the limitations of the existing products. 
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11 Type of the system of PDEs 

Understanding the type of the partial differential equation systems is an important 
prerequisite for building successful numerical methods. This chapter gives the definition 
equations of eigenvalues and eigenvectors of systems of PDEs with constant coefficients. In 
addition the way to transform the initial system into canonical form is given after 
determining the type of the system.  Then the following questions are answered: What 
relation exists between the eigenvalues and (a) the propagation velocity of perturbations of 
the flow parameters, (b) the propagation velocity of harmonic oscillations of the flow 
parameters, and (c) the critical flows? 
 
This section is an English translation of the slightly modified Chap. 4 of Kolev 
(1986). The interested reader will find more information about the method of the 
characteristics in Kolev (1986). 

11.1 Eigenvalues, eigenvectors, canonical form 

The general form of the conservation laws presents a semi-linear non-
homogeneous system of partial differential equations 

zτ
∂ ∂+ =
∂ ∂
X Y

D . (11.1) 

This form is frequently called the primary or conservative form. Let us assume a 
flow that can be completely described by the following vector of dependent va-
riables: ( ), zτ=U U . Using the differential forms of the state variables it is possi-

ble to rewrite Eq. (11.1) in other forms, for instance in the so called semi-
conservative forms 

1 zτ
∂ ∂+ =
∂ ∂
U Y

J D  (11.2) 

or 

zτ
∂ ∂+ =
∂ ∂
U Y

F C  (11.3) 

where 1 = ∂ ∂J X U , 1
1
−=F J , 1

1
−=C J D , or in the non-conservative forms 
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1 2 zτ
∂ ∂+ =
∂ ∂
U U

J J D  or 
zτ

∂ ∂+ =
∂ ∂
U U

A C ,    (11.4, 5) 

where 2 = ∂ ∂J Y U , 1
1 2
−=A J J . Writing Eq. (11.5) in component form yields two 

equations 

1 1 2
1 11 12 1 0

u u u
L a a c

z zτ
∂ ∂ ∂= + + − =
∂ ∂ ∂

,    (11.6) 

2 1 2
2 21 22 2 0

u u u
L a a c

z zτ
∂ ∂ ∂= + + − =
∂ ∂ ∂

.    (11.7) 

Using a vector ih  we build a linear combination of the two equations 

11 1 21 2 12 1 22 21 1 2 2
1 2 1 1 2 2

1 2

0

i i

i i i i
i i i i i

i i

a h a h a h a hu u u u
L h h h c h c

h z h z
λ λ

τ τ

   
   + +∂ ∂ ∂ ∂   = + + + − − =
∂ ∂ ∂ ∂   

   
   

 

. 

        (11.8) 

If the components of the vector ih  are computed so that the following conditions 

are fulfilled 

11 1 21 2 1i i i ia h a h hλ+ = ,      (11.9) 

12 1 22 2 2i i i ia h a h hλ+ = ,      (11.10) 

or in matrix notation 

( ) 0T
i iλ− =A I h ,      (11.11) 

the two Eqs. (11.8) for each ih  can be written in a remarkably simple form as we 

will see later. Equation (11.11) is the definition equation for eigenvectors of the 
matrix TΑ . Because Eq. (11.11) is homogeneous, the condition to have linear 
independent solutions for ih  is that the determinant of the coefficient matrix is 

equal to zero 

0T
iλ− =A I .       (11.12) 

Actually, this is the definition equation for the eigenvalues of the matrix TΑ  
called the characteristic equation. With respect to the unknown eigenvalues it is a 
polynomial of the n-th degree, where n is the rank of the matrix TΑ . Let us 
assume we have already obtained n real solutions for the eigenvalues such that at 
least two of them differ from each other. With them we can obtain at least n 
independent solutions for the eigenvectors. In our particular case of Eq. (11.8) we have  
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1 1 2 2
11 1 12 1 11 1 12 2

u u u u
h h h c h c

z z
λ λ

τ τ
∂ ∂ ∂ ∂   + + + = +   ∂ ∂ ∂ ∂   

,  (11.13) 

1 1 2 2
21 2 22 2 21 1 22 2

u u u u
h h h c h c

z z
λ λ

τ τ
∂ ∂ ∂ ∂   + + + = +   ∂ ∂ ∂ ∂   

,  (11.14) 

or rewritten as a scalar product 

i i iz
λ

τ
∂ ∂ + = ∂ ∂ 

U U
h h C , 1,i n= ,    (11.15) 

or in matrix notation 

zτ
∂ ∂+ =
∂ ∂
U U

H ΛIH HC .     (11.16) 

Here H is a matrix whose rows are the eigenvectors ih . I is the unit matrix. 

Equations (11.15) or the system (11.16) is called the pseudo-canonical form of the 
original system.  

The total time derivative of U along the curve defined by  

idz dτ λ=        (11.17) 

is 

i

d

d z
λ

τ τ
∂ ∂= +
∂ ∂

U U U
.      (11.18) 

With this notation we reach the final, canonical form of the original system, 

i i

d

dτ
=U

h h C , 1,i n= .      (11.19) 

The curves whose inclination in the space-time domain is defined by idz dτ λ=  

are called characteristic curves. Note that each equation in Eq. (11.19) is valid on-
ly along the corresponding characteristic curve. The eigenvalues and eigenvectors 
determine the type of the system – see Courant and Hilbert (1962): 
 

a) If all the solutions of the characteristic equation are imaginer or complex then 
the system is elliptic and from the type of the potential equation.  

b) If all the solutions are real and equal, then the system is parabolic and from 
the type of the heat conduction equation. 

c) If the characteristic equation n different real solutions or it has n-real and at 
least two different solutions, and the system TA  has n-linear independent 
eigenvectors, then the system is hyperbolic and from the type of the wave 
equation. 
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11.2 Physical interpretation 

The eigenvalues contain very important physical information. This has to be well 
understood for several reasons. The first one the need to distinguish between 
different types of systems of partial differential equations with different 
properties. So, the proper defined multi-phase flow equations are from the type of 
the wave equation. If due to erroneous formulation the type of the resulting system 
turns to be other than hyperbolic the model is a priori not acceptable. Second, the 
formulation of different numerical methods has to rely on the basic mathematical 
properties of the system in order not to lose them during the numerical integration. 

11.2.1 Eigenvalues and propagation velocity of perturbations 

First of all observe that the eigenvalue iλ  has dimensions of velocity. Attaching a 

coordinate system with one axis tangential to the characteristic line and moving it 
with the characteristic velocity iλ  allows the initial system of partial differential 

equations to be transforming to the simpler system of ordinary differential 
equations. This simply means that (a) in the corresponding canonical equation the 
change of one variable is connected with the change of the other variables 
appearing with their derivatives, and (b) the propagation velocity of a perturbation 
of the participating variables is equal to the characteristic velocity iλ . This is 

remarkable. The absence of real eigenvalues in a wrong formulated model means 
that there is no real propagation velocity of the variable or variables describing the 
particular physical phenomenon. If the experimental observations show a real and 
finite propagation velocity such models are a priori in conflict with reality and 
therefore not acceptable. Using the language of the mathematicians:  

 

Non-hyperbolic models cannot adequately describe flow phenomena. 

11.2.2 Eigenvalues and propagation velocity of harmonic oscillations 

Consider a small perturbation ΔU  of the vector of the time-averaged dependent 

variables U , 

= + ΔU U U        (11.20) 

in a flow described by 

zτ
∂ ∂+ =
∂ ∂
U U

A C ,       (11.21) 
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resulting in 

z zτ τ
∂Δ ∂Δ ∂ ∂+ + + =
∂ ∂ ∂ ∂

U U U U
A A C .    (11.22) 

Assuming that  

zτ
∂ ∂+ ≈
∂ ∂
U U

A C       (11.23) 

results in 

0
zτ

∂Δ ∂Δ+ =
∂ ∂

U U
A .      (11.25) 

Consider harmonic oscillations of magnitude ΔU , the frequency of the not 
dumped oscillation f and the wave number k defined by 

( )i f kze τ −= ΔU U .      (11.26) 

Substituting in the perturbation equation we obtain  

( ) ( ) 0i f kzik f k e τ −− − Δ =A I U      (11.27) 

or  

( ) 0ik f k− − =A I .      (11.28) 

We see that if k λ= defined by 

0f k− =A I       (11.29) 

is the propagation velocity of the harmonic oscillations.  
 

Therefore, if the eigenvalues exist and are real and finite they are equal to 
the propagation velocity of the harmonic oscillations inside the flow. 

11.2.3 Eigenvalues and critical flow 

What happens if the propagation velocity of a disturbance is equal to zero, 0iλ = ? 

It follows from Eq. (11.29) that for this particular case  

0=A .       (11.30) 

If for instance pressure and velocity are coupled in one equation of the canonical 
form, the condition 0iλ =  means that a disturbance of the pressure and the 
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corresponding velocity disturbance cannot propagate in space. Let us take another 
look at this situation. Consider a steady state flow described by  

d

dz
=U

A C ,       (11.31) 

where U contains also the pressure. Solving with respect to the derivatives we 
obtain 

...dp

dz
= −

A
.       (11.32) 

Condition (11.30) means therefore 

dp

dz
= −∞ .       (11.33) 

But this is the well known condition for critical flow. So we win another physical 
interpretation of the eigenvalues.  
 

If one of the eigenvalues is equal to zero the flow is stagnant or critical. For 
the case of non-zero velocities, the changes of any parameters downwards 
the critical cross section does not influence the steady state mass flow rate. 
The critical steady state mass flow rate is only a function of the flow 
parameters upwards the flow. 

 
Critical flow is a phenomenon that is desirable if it is wished to limit the mass 
flow rate in a facility and undesirable if for instance due to the critical mass flow 
rate the coolability of a system is endangered or the productivity of a facility is 
reduced. 
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12 Numerical solution methods for multi-phase 
flow problems 

A class of implicit numerical solution methods for multi-phase flow problems based on the 
entropy concept is presented in this work. First order donor-cell finite difference 
approximation is used for the time derivatives and the convection terms. The diffusion 
terms are discretized using a second order finite difference approximation. A staggered 
grid is used for discretization of the momentum equations. The entropy concept permits 
analytical reduction of the algebraic problem to give pressure or pressure correction 
equations for each computational cell. Analytical backward substitution closes the iteration 
cycle. Three different methods applied in IVA computer codes are presented and the 
experience gained with these methods is discussed. The class of methods presented has 
been applied with success to a variety of practical problems in the field of nuclear 
engineering. High order upwinding and the constrained interpolation profile method are 
also presented. 

 
 

This Chapter is an extended version of the theoretical part of the publication Kolev 
(1996). 

12.1 Introduction 

Numerical methods for transient single-phase flow analysis are available and in 
widespread use for practical applications. Methods for cost-effective solution of 
multi-phase flow problems are still in their infancy. There is a significant 
experience base available for two-phase flows, e.g. gas/liquid and dispersed solid 
particles/gas flow for the special case of small concentrations in the dispersed 
phase. To my knowledge, there is no universal method for integrating systems of 
partial differential equations describing multi-phase flows. The purpose of this 
work is to present the methods derived for the computer codes IVA2 to IVA6 and 
to give a short description of the experience gained with these methods. 

12.2 Formulation of the mathematical problem 

Consider the following mathematical problem: A multi-phase flow is described by 
the following vector of dependent variables 
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1 2 3( , , , , , , , , , )T
m il l l l lT s s C n p u v wα=U , where 1,  2,  3l = ,  (12.1) 

which is a function of the three space coordinates ( , , )r zθ , and of the time τ , 

( , , , )r zθ τ=U U .      (12.2) 

The relationship ( , , , )r zθ τ=U U  is defined by the volume-averaged and 
successively time-averaged mass, momentum and energy conservation equations 
as well as by initial conditions, boundary conditions, and geometry. As shown in 
Chapters 1, 2 and 5 Kolev (1994a, b, 1995a), the conservation principles lead to 
the following system of 21 non-linear, non-homogeneous partial differential 
equations with variable coefficients 

( ) ( )l l v l l l v l

∂ α ρ γ α ρ γ γ μ
∂τ

+∇ ⋅ =V     (12.3) 

( ) ( )*il
l l v l il l l il il v l il v il

C
C D C C DC

∂α ρ γ γ α ρ γ γ μ γ
∂τ

+⎡ ⎤+ ∇ −∇ ⋅ ∇ + =⎢ ⎥⎣ ⎦
V  (12.4) 

( ) ( ) ( )l v l l v lkin lcol lspn n n n n
∂ γ γ γ
∂τ

+∇ ⋅ = − +V       for   0lα > , (12.5) 

( ) ( ) ( )l l l v l l l l l l l l l vp
∂ α ρ γ α ρ τ γ α γ α ρ γ
∂τ

+∇ ⋅ + + ∇ + +⎡ ⎤⎣ ⎦V V V g f  

( )
max

1

l

v wl wl lw lw ml m lm l
m

γ μ μ μ μ
=

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑V V V V ,   (12.6) 

( ) ( )

( ) ( )
max

*

*

2, _

1
l

e el
l pl l v l l l l l

i
e np el

l l v l l l il l l il il
iT all C s

T
c T T

h p
p T s D C

p

∂ρ α γ α γ α λ γ
∂τ

∂ ∂ρ α γ α γ α ρ γ
∂ ∂τ =′

⎡ ⎤+ ⋅∇ −∇ ⋅ ∇⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥− − + ⋅∇ + Δ ∇ ∇⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦
∑

V

V

 

( )
max

2

i
N np

v l l il il il l
i

DT T s Cγ μ μ
=

⎡ ⎤
= − Δ −⎢ ⎥

⎣ ⎦
∑ ,   for l = 1,    (12.7a) 

and 

( ) ( )*1 el
l l v l l l l v l l v l

l

s
s T s Ds

T

∂α ρ γ γ α λ γ γ μ γ
∂τ

+⎡ ⎤+ ∇ − ∇ ⋅ ∇ + =⎢ ⎥⎣ ⎦
V    for l = 2,3 

        (12.7b) 
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This system is defined in the three-dimensional domain R. The initial conditions 
of ( 0) aτ = =U U  in R and the boundary conditions acting at the interface 
separating the integration space from its environment are given. The solution 
required is for conditions after the time interval τΔ  has elapsed. The previous 
time variables are assigned the index a. The time variables not denoted with a 
are either in the new time plane, or are the best available guesses for the new 
time plane. 

In order to enable modeling of flows with arbitrary obstacles and inclusions in 
the integration space as is usually expected for technical applications, surface 
permeabilities are defined  

( , , )r zθγ γ γ = functions of ( , , , )r zθ τ ,     (12.8) 

at the virtual surfaces that separate each computational cell from its environment. 
By definition, the surface permeabilities have values between one and zero, 

0 ≤ each of all ( , , )r zθγ γ γ ’s 1≤ .    (12.9) 

A volumetric porosity 

( , , , )v v r zγ γ θ τ=        (12.10) 

is assigned to each computational cell, with  

0 1vγ< ≤ .       (12.11) 

The surface permeabilities and the volume porosities are not expected to be 
smooth functions of the space coordinates in the region R and of time. For this 
reason, one constructs a frame of geometrical flow obstacles which are functions 
of space and time. This permits a large number of extremely interesting technical 
applications to be done with this type of approach. 

In order to construct useful numerical solutions it is essential that an 
appropriate set of constitutive relations be available: state equations, thermo-
dynamic derivatives given in Chapter 3, equations for estimation of the 
transport properties, correlations modeling the heat, mass and momentum 
transport across the surfaces dividing the separate velocity fields given in 
Volume II, etc. These relationships together are called closure equations – see 
e.g. in Kolev (1990), Kolev, Tomiyama and Sakaguchi (1991), Kolev (1993, 
1994a, 1995b, c, d). 

12.3 Space discretization and location 
of the discrete variables 

The flow is defined in a domain to rectangular coordinate system; either Cartesian 
or cylindrical (see Fig. 12.1). 
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The domain is divided into computational cells as shown in Fig. 12.2, these 
having a center with the volume coordinates ( , , )r zθ . The sizes of each cell 

( , , )r zθΔ Δ Δ  are a result of non-uniform spatial discretization in each direction. 

The cell boundaries are defined by ( , , )h h hr zθ . The distances between two 

adjacent cell centers are ( , , )h h hr zθΔ Δ Δ , respectively. The dependent variables 

( , , , , )m l il ls C n pα , the state and the transport properties ( , , , , )l l l lT etcρ υ λ , and 
the volumetric porosity are located in the cell centers as shown in Fig. 12.3. The 
surface permeabilities ( , , )r zθγ γ γ , and the velocity components ( , , )l l lu v w  are 
located in the cell interfaces as shown in Fig. 12.3. Thus, all dependent field 
variables are located at the cell center except the flow variables which are 
located at the cell surfaces. Fig. 12.3 also shows the control volume for 
integration of the field and field-component mass conservation equations, of the 
particle density conservation equations, and of the entropy conservation 
equations. Figures 12.4, 12.5 and 12.6 show the control volumes for integration 
of the momentum conservation equations in each separate direction. The 
momentum cells have the mass cell centers at their surfaces. This forms the so-
called staggered grid system - see Harlow and Amsden (1971). Such systems are 
employed extensively in fluid mechanics to avoid non-physical oscillations by 
allowing the use of first order discretization methods - see Issa (1983), for 
example. The staggered grid system is not necessarily needed if high order 
discretization methods are used.  
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Fig. 12.1 Flow domain definition 
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Fig. 12.2 Geometrical sizes of the mass and energy conservation computational cell referred 
to as a non-staggered cell 
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Fig. 12.3 Location of the dependent variables and of the surface permeabilities 
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Fig. 12.4 Staggered control volume for integration of the radial momentum conservation 
equations 
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Fig. 12.5 Staggered control volume for  integration of the angular momentum conservation 
equations 
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Fig. 12.6 Staggered control volume for integration of the axial momentum conservation eq-
uations 

Each mass and energy cell is identified by the integer indices (i, j, k) 
corresponding to the three spatial directions (see Fig. 12.7). The integer indices 
take values i from 1 to IM + 2, j from 1 to JM + 2, and k from 1 to KM + 2. To 
achieve a code architecture that allows treatment of boundary cells in the same 
manner as non-boundary cells, I use a layer of fictitious cells surrounding the 
real cells as shown in Fig. 12.7. These cells have common indices i = 1 or  
i = IM + 2, j = 1, or j = JM + 2, k = 1, or k = KM + 2, respectively. The boundary 
conditions in the form of prescribed time functions are likewise applied within 
these auxiliary cells. 

The flow field variables for the front walls of the cell, just like the velocities, 
are assigned the same indices as the cell itself. Thus, the back walls of the cells 
have the cell indices minus one for each particular direction. 

It is convenient to denote with m = 1 through 6 the cells i+1, i-1, j+1, j-1, k+1 
and k-1, respectively that surround the mass and energy conservation cell (i,j,k) 
(see Fig. 12.3). Similarly the corresponding walls attached to the (i,j,k) cell, and 
the flow properties defined at this surfaces are assigned designations m = 1 
through 6. For notation convenience I define the outwards directed normal 
velocities to the surfaces of each computational cell, n

lmV , as follows 

( ) , 1 , 1 , 1( , , , , , )
Tn

lm l l i l l j l l ku u v v w w− − −= − − −V     (12.12) 

The donor- cell concept is used. This concept is based on the intuitive assumption 
that the material leaving the cell has the same properties as the cell. This concept 
stems from Courant et al. (1952). 

All field variables have three indices, i, j and k. For simplicity, I omit the indic-
es except where they are not i, j, k. For example , ,i j kp  is replaced by p. 
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Fig. 12.7 Three-dimensional mesh construction, boundary layer cells, cell numbering 

12.4 Discretization of the mass conservation equations 

The first order donor cell discretized mass conservation equation (12.3) for each 
velocity field is given in Appendix 12.1. Introducing a number of convenient 
abbreviations also given in Appendix 12.1 the following is obtained 

( )
6

1

( ) / 0l l v la la va lm l l lm lm lm v l
m

b bα ρ γ α ρ γ τ α ρ α ρ γ μ+ −
=

− Δ + − − =∑ . (12.13) 

Introducing the velocity normal to each surface of the discretization volume, as 
defined by Eq. (12.12), the b coefficients from Appendix 12.1 can be conveniently 
written as 

0n
lm m lm lmb β ξ+ += ≥V ,      (12.14) 

0n
lm m lm lmb β ξ− −= − ≥V ,      (12.15) 

( )1
1

2
n

lm lmsignξ +
⎡ ⎤= +⎣ ⎦V ,     (12.16) 

1lm lmξ ξ− += − .       (12.17) 



12.4 Discretization of the mass conservation equations      505 

It is advisable to compute the geometry coefficients, 

1
h rr

r r

κ

κ

γβ =
Δ

, 1
2

( )h r ir

r r

κ

κ

γβ −=
Δ

, 3 r
θ

κ

γβ
θ

=
Δ

, , 1
4

j

r
θ
κ

γ
β

θ
−=
Δ

, 5
z

z

γβ =
Δ

, , 1
5

z k

z

γ
β −=

Δ
, 

once at the beginning of the integration and perform corrections only for those 
computational cells where there is a change of the geometry during the time con-
sidered. Normally there are only a few such cells relative to the total number of 
cells. Note that for the first order finite difference approximation 

6

1
m

m

γ β
=

∇ ≈∑ .       (12.18) 

At this point the method used for computation of the field volumetric fractions in 
the computer codes IVA2 Kolev (1986, 1987, 1990, 1993), and IVA3 Kolev 
(1991) will be described. The method exploits the point Gauss-Seidel iteration as-
suming known velocity fields and thermal properties. 

In the donor cell concept the term 

, , 0lm lm l m l mB b α ρ− −= ≥  

plays an important role. lmB − is in fact the mass flow entering the cell from the 
face m divided by the volume of the cell – it is in fact a non-zero volumetric mass 
source. Once computed for the mass conservation equation it is stored and used 
subsequently in all other conservation equations. 

Consider the field variables l lα ρ  in the convective terms associated with 

the output flow in the new time plane, and lm lmα ρ  in the neighboring cells m 
as the best available guesses for the new time plane. Solving Eq. (12.13) with 
respect to l lα ρ  gives 

6 6

1 1

la la v
l l va l lm lm

m m

B b
α ρ γα ρ γ μ

τ τ− +
= =

⎡ ⎤ ⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎢ ⎥⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ .  (12.19) 

Here 
6

1

0v
lm

m

b
γ
τ +

=

+ >
Δ ∑  is ensured besides by Eq. (12.15) by Eq. (12.11) that does 

not allow vγ  to be zero. For just originating field we have 

6

1
6

1

va l lm
m

l
l

v lm
m

B

b

γ μ
τα
ρ γ τ

−
=

+
=

+
Δ=

+ Δ

∑

∑
. 
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Obviously the field can originate due to convection, 
6

1

0lm
m

B −
=

>∑ , or due to in-cell 

mass source, 0lμ > , or due to simultaneous appearance of the both phenomena. 
In case of origination caused by in-cell mass source terms it is important to define 

the initial density, lρ , in order to compute l
l

l

μα τ
ρ

= Δ . 

The best mass conservation in such procedures is ensured if the following se-
quence is used for computation of the volume fractions:  

2 2 2 2/α α ρ ρ= , 3 3 3 3/α α ρ ρ= , 1 2 31α α α= − − . 

12.5 First order donor-cell finite difference 
approximations  

Each velocity field is characterized by properties such as specific entropies, 
concentrations of the inert components, etc. denoted by Φ . These properties can 
be transported (a) by convection, driven by the mass flow F and (b) by diffusion, 
controlled by the diffusion constantΓ . Differentiating the convective terms in the 
conservation equation and comparing these with the corresponding field mass 
conservation equation multiplied by Φ  leads to a considerably simpler semi-
conservative form that contains the following connective terms 

... ...F
z z z

∂ ∂ ∂
∂ ∂ ∂
Φ Φ⎛ ⎞− Γ⎜ ⎟⎝ ⎠

     (12.20) 

To allow use of the values for the mass flows at the boundary of the computational 
cell where these mass flows are originally defined, I discretize the following 
equivalent form 

... ...
F

F
z z z

∂ ∂ ∂
∂ ∂ ∂

Φ⎛ ⎞Φ −Γ −Φ⎜ ⎟⎝ ⎠
     (12.21) 

There are a number of methods for discretizing this type of equation for single-
phase flows, see Chow et al. (1978), Patel et al. (1985), Patel et al. (1986). Some 
of them take the form of an analytical solution of the simple convection-diffusion 
equation as an approximation formula for the profile ( )zΦ = Φ . For multi-phase 
flows I use the simplest first order donor cell method for discretization of the 
convective terms and a second order central difference method for discretization 
of the diffusion term. The result 

F
z z z

∂ ∂ ∂
∂ ∂ ∂
Φ Φ⎛ ⎞− Γ⎜ ⎟⎝ ⎠

=
F

F
z z z

∂ ∂ ∂
∂ ∂ ∂

Φ⎛ ⎞Φ −Γ −Φ⎜ ⎟⎝ ⎠
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( ) ( ) ( )1 1

1 1 1
1 1

2 2 k k
h

F sign F sign F
z z+ +

⎡ ⎤Γ⎧ ⎫⎡ ⎤ ⎡ ⎤≈ + Φ + − Φ − Φ −Φ⎨ ⎬⎢ ⎥⎣ ⎦ ⎣ ⎦Δ Δ⎩ ⎭⎣ ⎦
 

( ) ( ) ( )1
1 1 1 1 1

, 1

1 1 1
1 1

2 2
k

k k k k k
h k

F sign F sign F
z z

−
− − − − −

−

⎡ ⎤Γ⎧ ⎫⎡ ⎤ ⎡ ⎤− + Φ + − Φ − Φ −Φ⎢ ⎥⎨ ⎬⎣ ⎦ ⎣ ⎦Δ Δ⎩ ⎭⎢ ⎥⎣ ⎦
 

( )1

1
kF F

z −− Φ −
Δ

,      (12.22) 

can be further simplified taking into account 

( ) ( )1 1
1 1 1

2 2
sign F sign F⎡ ⎤ ⎡ ⎤+ − = − −⎣ ⎦ ⎣ ⎦ ,    (12.23) 

( ) ( )1 1

1 1
1 1 1

2 2k ksign F sign F− −⎡ ⎤ ⎡ ⎤− − = − +⎣ ⎦ ⎣ ⎦ ,   (12.24) 

as follows 

( ) ( )1

1 1
1

2 k
h

F sign F
z z +

⎧ ⎫Γ⎡ ⎤− − − + Φ −Φ⎨ ⎬⎣ ⎦Δ Δ⎩ ⎭
 

( ) ( )1
1 1 1

, 1

1 1
1

2
k

k k k
h k

F sign F
z z

−
− − −

−

⎧ ⎫Γ⎪ ⎪⎡ ⎤− + + Φ −Φ⎨ ⎬⎣ ⎦Δ Δ⎪ ⎪⎩ ⎭
 

( )5 1

1
l k

h

F
z z

ξ − +

⎛ ⎞Γ= − − + Φ −Φ⎜ ⎟Δ Δ⎝ ⎠
( )1

1 6 1
, 1

1 k
k l k

h k

F
z z

ξ −
− − −

−

⎛ ⎞Γ− + Φ −Φ⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠
 

( )1 1 1 1 1 1k k k k k kb b b b+ − − − + += + Φ − Φ − Φ .    (12.25) 

An important property of the linearized coefficients 1kb + , 1kb −   should be noted, 

namely that they are not negative 1 0kb + ≥ , 1 0kb − ≥ . Two consequences of this 
property are: 

 

1) An increase in 1k±Φ  in the neighboring locations to k leads to an increase in 

Φ and vice versa; 
2) If the coefficients 1kb ±  are equal to zero (e.g. due to the fact that , 1 0z kγ ± = ), 

the difference 1k±Φ −Φ  cannot influence the value of Φ , so that there is real 
decoupling. 

3) If the diffusion is neglected, the flow leaving the cell due to convection does 
not influence the specific properties Φ of the velocity field in the cell. Inlet 
flows can influence the specific properties of the field in the cell only if they 
have specific properties that differ from those of the field in the cell considered. 
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The coefficient b contains information about the propagation speed of a 
disturbance Φ , namely /z τΔ Δ ≈  convection + diffusion velocity. The limitation 
of the time step is associated with the material velocity of the quality Φ . This 
method is very appropriate for predominant convection 

/ 2hPe F z= Δ Γ < ,      (12.26) 

see Patankar (1980). The local grid Peclet number Pe is the ratio of the amounts 
of the property Φ  transported by convection and diffusion, respectively. Large 
values of Pe, e.g. 10Pe > , mean that convection is predominant and small 

values that diffusion is predominant. For one-dimensional processes without 
sources of Φ  and with predominant convection, linearization of the profile 
leads to overestimation of the diffusion component of the flow. This is 
characteristic for coarse meshes, leading to 10Pe > . This consideration causes 

some investigators to look for a more realistic profile of the function ( )zΦ = Φ  
as a basis for construction of discretization schemes without a strong upper 
limitation on mesh size. 

12.6 Discretization of the concentration equations 

Equation (12.4) is discretized following the procedure already described in Sec-
tion 12.5. The result is given in Appendix 12.2. The abbreviated notation is 

( ) ( )
6

1

1 1
( )

2 2
il ila

la la va lm ilm il v va l il v va il
m

C C
b C C C DCα ρ γ γ γ μ γ γ

τ
+

=

−
− − + + = +

Δ ∑  

   (12.27) 

where 

* /lm lm m ilm hmb B D Lβ−= + Δ .     (12.28) 

Solving with respect to the unknown concentration we obtain 

( )

( )

6

1

6

1

1
2

1
2

la la va ila v va il lm ilm
m

il

la la va lm v va l
m

C DC b C

C

b

α ρ γ τ γ γ

α ρ γ τ γ γ μ

=

+

=

⎡ ⎤+ Δ + +⎢ ⎥
⎣ ⎦=
⎡ ⎤+ Δ + +⎢ ⎥
⎣ ⎦

∑

∑
. 

For the case of just an originating velocity field, 0laα =   and 

 ( )
6

1

1
0

2lm v va l
m

b γ γ μ+

=

+ + >∑ ,  
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we have 

( )

( )

6

1
6

1

1
2

1
2

v va il lm ilm
m

il

v va l lm
m

DC b C
C

b

γ γ

γ γ μ

=

+

=

+ +
=

+ +

∑

∑
. 

The diffusion coefficients *
ilmD  are defined at the surfaces m of the mass cell such 

that the diffusion flows through these surfaces are continuous. Because the 
diffusion coefficients *

ilD  are located by definition in the center of the cell, with 
the coefficients acting at the cell surfaces required, it is necessary to compute 
these by some kind of averaging procedure. Harmonic averaging, described in 
Appendix 12.3, is the natural choice for diffusion processes. Patankar (1978) 
shows that this averaging procedure gives better results than simple arithmetic 
averaging for steady-state heat conduction problems in multi-composite materials 
and for diffusion in single-phase flows. This type of averaging procedure has the 
following interesting properties: 

 

(a) If one of the diffusion coefficients *
ilD  or *

, 1il iD +  is equal to zero, *
1ilD  is like-

wise equal to zero, meaning that no diffusion can take place because one of 
the two elementary cells hinders it, this matching behavior in reality. 

(b) The above effect also takes place if in one of the two neighboring cells the 
velocity field l is does not exists. 

 

The superficial mass flow rate lmG  of the velocity field l through the surfaces 

1m =  through 6, computed by means of the donor-cell concept is also given in 
Appendix 12.2. In this case the absolute value of the Peclet number is 

*/lm hm ilmPe G L D= Δ ,   * 0ilmD >     (12.29) 

Pe → +∞   * 0ilmD = ,      (12.30) 

where hmLΔ  is the distance between the centers of the elementary cells belonging 

to the surface m. The mass flows lmG  are used simultaneously in several different 
conservation equations. It is advisable to compute these once at the beginning of 
the cycle. Because different dependent variables have different diffusion coeffi-
cients, the diffusion part is specific to each equation. 

12.7 Discretization of the entropy equation 

Equation (12.7) is discretized following the procedure already described in 
Section 12.5. The result is 
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( ) ( )
6

*

1

1 1
( )

2 2
l la

la la va lm lm l v va l l v va l
m

s s
B s s s Dsα ρ γ γ γ μ γ γ

τ
+

−
=

−
− − + + = +

Δ ∑  

   (12.31) 

where 

6
*

1

1
( )

T
lm

l l m lm l
mv l hm

D
Ds Ds T T

T L
β

γ =

= + −
Δ∑ .    (12.32) 

The computation of the harmonic averaged thermal conductivity coefficients is giv-
en in Appendix 12.3. Solving with respect to the unknown specific entropy we ob-
tain 

( )

( )
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1
2

1
2

la la va la v va l lm lm
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. 

For the case of just an originating velocity field, 0laα =   and 
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1

1
0

2lm v va l
m
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=

+ + >∑ ,  

we have  
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12.8 Discretization of the temperature equation 

In place of the entropy equation, the temperature equation can also be used. The 
temperature equation  

( ) ( )*e el
l pl l v l l l l l

T
c T T

∂ρ α γ α γ α λ γ
∂τ

⎡ ⎤+ ⋅∇ −∇ ⋅ ∇⎢ ⎥⎣ ⎦
V  
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, _

1
l

el
l l v l l

T all C s

h p
p

p

∂ ∂ρ α γ α γ
∂ ∂τ′

⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥− − + ⋅∇⎜ ⎟ ⎢ ⎥⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
V  

( )
max

2

i
N np

v l l il il il l
i

DT T s Cγ μ μ
=

⎡ ⎤
= − Δ −⎢ ⎥

⎣ ⎦
∑     (12.33) 
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is discretized following the procedure already described in Section 12.5. The result is 
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1
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T T
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∑ . (12.34) 

Computation of the harmonic averaged thermal conductivity coefficients is shown 
in Appendix 12.3. Bearing in mind that the linearized source terms can be 
rewritten as linear functions of the temperatures 

3
*

1

N T T
l l lk k

k

DT c a T
=

= −∑ ,      (12.35) 

we obtain the following form for the above equation 
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∑  

6

1, _

1
1 ( )

l

l a lm
l la m

mva lmT all C s a

h p p B
p p

p

∂ρ α
∂ τ γ ρ

−

=′

⎡ ⎤ ⎡ ⎤⎛ ⎞ −⎢ ⎥+ − − −⎜ ⎟ ⎢ ⎥Δ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ , (12.36) 

or in a short notation 

T T
ll l lk k l

k l

a T a T b
≠

+ =∑ ,      (12.37) 

or in a matrix notation for all velocity fields 

=AT B        (12.38) 
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where 

6

1, _

1
1 ( )

l

l a lm
l l la m

mva lmT all C s a

h p p B
Dp p p

p

∂ρ α
∂ τ γ ρ

−

=′

⎡ ⎤ ⎡ ⎤⎛ ⎞ −⎢ ⎥= − − −⎜ ⎟ ⎢ ⎥Δ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ , (12.39) 

*
* lm lm
lm lm pm m

hm

b B c
L

α λβ− −= +
Δ

,     (12.40) 

( )
max 6

* *

2 1

1 1
1

2

i
la la paT T npv

ll ll il il il l lm
i mva va

c
a a s C b

α ρ γ μ μ
τ γ γ −

= =

⎛ ⎞ ⎡ ⎤
= + + + Δ − +⎜ ⎟ ⎢ ⎥Δ ⎣ ⎦⎝ ⎠

∑ ∑ , 

        (12.41) 

*1
1

2
T Tv
lm lm

va

a a
γ
γ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
   for   l ≠ m,    (12.42) 

6
*

1

1 1
1

2
la la pa Tv

l la l lm lm l
mva va

c
b T c b T Dp

α ρ γ
τ γ γ −

=

⎛ ⎞
= + + + +⎜ ⎟Δ ⎝ ⎠

∑ .  (12.43) 

This algebraic system can be solved for the temperatures for 

11 22 33 12 23 31 21 32 13 31 22 13 32 23 11 12 21 33det 0a a a a a a a a a a a a a a a a a a= + + − − − ≠A . 
    (12.44) 

The result is 

1−=T A B        (12.45) 

with components 

3

1

/ detl m lm
m

T b a
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ A ,     (12.46) 

The a  values are given in Appendix 12.5. 
An important property of the diagonal elements of the matrix A  

( )
max 6

* *

2 1

1 1
1

2

i
la la paT T npv

ll ll il il il l lm
i mva va

c
a a s C b

α ρ γ μ μ
τ γ γ −

= =

⎛ ⎞ ⎡ ⎤
= + + + Δ − +⎜ ⎟ ⎢ ⎥Δ ⎣ ⎦⎝ ⎠

∑ ∑ (12.47) 

should be noted: The m-th diagonal element equal to zero indicates that at that 
time the velocity field does not exist, and will not originate in the next time step. 
For this reason, the rank of the matrix is reduced by one. Even if the field does not 
exist but will originate in the next time step either by convection or by mass 
transfer from the neighboring field, or from other mass sources, or by an arbitrary 
combination of these three processes, the diagonal element is not zero and the 
initial temperature is induced properly. It is obvious that, if one neglects all 
convective terms and mass sources, no initial value for a non-existent field can be 
defined. For numerical computations I recommend normalization of the diagonal 
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elements ( ), /T T
ll norm ll la plaa a cτ ρ= Δ  and their comparison with e.g. 0.001ε = . If 

,
T
ll norma ε< , there is no velocity field l, and the velocity field l will not originate in 

the next time step. 
The three equations obtained in this manner are used to construct the 

pressure-temperature coupling. I use the term partial decoupling of the 
temperature equations from each other (PDTE) to describe this decoupling 
procedure. This step is extremely important for creation of a stable numerical 
algorithm even when using first order donor cell discretization. The coupling 
coefficients between the velocity fields correspond to each of the flow patterns 
modeled. For a number of these the coupling is strong e.g. bubble-liquid, for 
others not so strong, e.g. large diameter droplets-gas. Coupling is non-linear in 
all cases and must be resolved by iteration. 

12.9. Physical significance of the necessary 
convergence condition 

Writing for each cell (i,j,k) a single algebraic equation (12.27), I obtain a 
system of algebraic equations for all ilC  values. This system has a specific 
seven diagonal structure. The coefficient matrix is defined positive. Suppose 
that all other variables except the ilC  values are known. A possible method for 

the solution of this system for all ilC  values is the Gauss-Seidel iterative 
method in one of its several variants. This method is not the most effective but 
is frequently used because of its simplicity. The necessary condition for 
convergence of this method is the predominance of the elements on the main 
diagonal compared to the other elements 

6

1
l lm

m

b b
=

≥ ∑    for all equations,     (12.48) 

6

1
l lm

m

b b
=

> ∑    at least for one equation.    (12.49) 

This is the well-known Scarborough criterion, see Scarborough (1958). Because 
this is only a necessary condition, convergence is possible even if this criterion is 
violated. But satisfaction of this condition gives the confidence that the algebraic 
system can be solved at least with one iteration method, Patankar (1980). Bearing 
in mind that all of the elements of the sum 

6

1

( / )v la la l lm
m

b bγ α ρ τ μ+

=

= Δ + +∑      (12.50) 
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are non-negative, the Scarborough criterion reduces to 

( / ) 0v la la lγ α ρ τ μ+Δ + ≥    for all equations   (12.51) 

( / ) 0v la la lγ α ρ τ μ+Δ + >    at least for one equation.  (12.52) 

If 0laα > at least for one elementary cell, the above conditions are always satis-

fied. If the velocity field l is missing from the integration domain, 0laα = for all 

cells, satisfaction of 0lμ
+ >  is necessary for at least one single point. 

The Scarbourough criterion will now be considered from a different point of 
view. Assuming that the properties associated with the flow leaving the cell are 
known at the new point in time and that the properties associated with the flow 
entering the cell are the best guesses for the new point in time , and solving 
Eq. (12.27) with respect to ilC , the following is obtained 

( )

( )

6

1

6

1

1
2

1
2

la la va ila v va il lm ilm
m

il

la la va lm v va l
m

C DC b C

C

b

α ρ γ τ γ γ

α ρ γ τ γ γ μ

=

+

=

⎡ ⎤+ Δ + +⎢ ⎥
⎣ ⎦=
⎡ ⎤+ Δ + +⎢ ⎥
⎣ ⎦

∑

∑
.  (12.53) 

This resembles the use of the point Jacobi method for the solution of the above 
equation. The method consists in a successive visiting of all cells in the definition 
domain as many times as necessary until the improvement in the solution from iteration 
to iteration falls below a defined small value. Where space velocity distribution is 
known, this method works without any problems. Even though this method has the 
lowest convergence rate compared to other existing methods, this illustrates an 
important feature, namely the computation of the initial values for field properties 
when the field is in the process of origination within the current time step, 0laα = , i.e. 

( )

( )

6

1
6

1

1
2

1
2

v va il lm ilm
m

il

v va l lm
m

DC b C
C

b

γ γ

γ γ μ

=

+

=

+ +
=

+ +

∑

∑
.    (12.54) 

Note that initial value for ilaC  is not required in this case. Only the following is 
required 

( )
6

1

1
0

2 v va l lm
m

bγ γ μ+

=

+ + >∑ .     (12.55) 

The velocity field can originate in several possible ways. Two of these are as follows: 
 

a) no convection and diffusion takes place but the source terms  differ from zero 

/il il lC DC μ+= ;      (12.56) 
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b) source terms in the cell are zero but convection or diffusion takes place 

6 6

1 1

/il lm ilm lm
m m

C b C b
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ ∑ .     (12.57) 

The Scarborough criterion is not satisfied if 

( )
6

1

1
0

2la la va lm v va l
m

bα ρ γ τ γ γ μ+

=

⎡ ⎤+ Δ + + =⎢ ⎥
⎣ ⎦
∑    (12.58) 

for all cells. In this case ilC  is, however, not defined in accordance with Eq. (12.53). 
In other words, this criterion simply states that if the field (a) does not exist in the 
entire integration domain and (b) will not originate at the next moment, its specific 
properties, such as concentrations, entropies, etc. are not defined. 

Note: In creation of the numerical method, it is necessary to set the initial 
values for the field properties once before starting simulation so as to avoid 
multiplication with undefined numbers /la la ilaCα ρ τΔ . If the field disappears 
during the transient, the field will retain its specific properties from the last time 
step. On origination of a field, its specific properties are obtained by averaging the 
specific properties of the flows entering it with weighting coefficients equal to the 
corresponding mass flow divided by the net mass flow into the cell, as obtained 
say using Eq. (12.54). In this case the previous value for the specific properties, 
such as ilaC , etc. do not influence the result. 

12.10. Implicit discretization of momentum equations 

Figure 12.4 shows the control volume for discretization of the momentum equation 
in the r direction. Compared to the mass conservation cell at the centre, for which 
pressure is defined, the volume r is displaced by / 2rΔ  in the r direction. Indices 1 
through 6 are used to denote the front and back surfaces of the elementary cell in 

,r θ , and z directions, respectively, similar to the manner shown in Fig. 12.3. 

The pressure difference 1ip p+ −  is the driving force for the velocity change in 
the r direction. As already mentioned, this type of construction for a staggered 
mesh of elementary cells is really only necessary in the case of schemes with the 
first order of accuracy for the space discretization of the convective terms in the 
momentum equations. The reasons behind this are as follows: If the mesh is not 
staggered for the case  

1 1i ip p+ −=        (12.59) 

and 

1ip p ±≠ ,        (12.60) 

the pressure gradient  
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( ) ( )1 1 , 1/i i h h ip p r r+ − −− Δ + Δ       (12.61) 

is equal to zero which means that in spite of the non-uniform pressure field the 
velocity component u is then not  influenced in any way by the pressure force, 
which does not correspond to reality. Such schemes are numerically unstable. 

By definition, the permeabilities, the porosities, mass flow rates, densities, and 
volumetric fractions are not defined at those points where they are needed for 
discretization of the momentum equation. As a result, surface properties for the 
staggered cells are derived by surface weighting of the surface properties for the 
adjacent non-staggered cells. Volumetric properties of the staggered cells are 
computed by volumetric weighting of the corresponding volumetric properties for 
the adjacent non-staggered cells. For velocities transporting material between two 
adjacent non-staggered cells the donor cell principle is used to compute the 
convected property. 

This calculation entails additional computational effort. Despite this, this 
method has been in widespread use for single-phase flows for the last three 
decades. A number of examples of the way in which cell mixing properties are 
computed will now be given. 

Instead of direct discretization of the momentum equations, I derive the discre-
tized working form through the following steps: 

 

1. Implicit discretization of the momentum equation. 
2. Implicit discretization of the mass conservation equation for the same  

velocity field. 
3. Subtraction of the mass conservation equation obtained in this way multip-

lication by lu  from the discretized momentum equation. 
 

The result is given in Appendix 12.4. Note that the centrifugal force gives the effective 
force in the r-direction which results from fluid motion in the θ  direction. For 
computation of the centrifugal force in the relatively large elementary cell both 
components for surfaces 3 and 4 are added, as was performed during the derivation of 
the momentum equation itself. For a very small θΔ  this yields the following  

( )
0

sin / 2 1
lim

2θ

θ
θΔ →

Δ
=

Δ
      (12.62) 

which reduces the expression for the centrifugal force to just this expression in the 
momentum equation. The viscous components that counteract the centrifugal force 
are computed in an analogous manner. 

The momentum equation is now rewritten in the following compact form 

3 3

,
1 1

lua lua
lm lu l l conv wl lw l lm m

m m
m l m l

a c u a u a u
α ρ μ μ

τ = =
≠ ≠

⎡ ⎤
⎢ ⎥− + + + − +⎢ ⎥Δ
⎢ ⎥⎣ ⎦

∑ ∑
 



12.10. Implicit discretization of momentum equations      517 

( )
3

,
1

/l conv lua lua la u lm wl wl lw lw
m
m l

b u g b u uα ρ τ μ μ
=
≠

= + Δ − − + −∑  

( )1

1 rua
lua i

h vu

p p
r

γα
γ +− −

Δ
,     (12.63) 

where 

6

,
1

1
l conv lm

mvu

a bu
γ =

= − ∑ ,      (12.64) 

6

,
1

1
l conv ul lm lm

mvu

b R bu u
γ =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑  ,    (12.65) 

represents the discretized convective term. 

( )
( )

( ) ( ){ 3 43 4

sin / 2

/ 2
ul l l l l l l l l

h

R v v v v
r r

θ θκ

θ
α ρ γ α ρ γ

θ
Δ

= − +
+ Δ Δ

 

( )
( ) ( ) }3 3 4 43 4

3 4

2

/ 2
l l

l ll l
h

v v
u u

r r
κ

∂ ∂αρν γ αρν γ
∂θ ∂θ

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞− + + +⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠+ Δ ⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭
. 

(12.66) 

All velocities lu  are taken as being in the new time plane, a so called implicit 

formulation. This process is repeated for the chosen number of the velocity fields. 
The result is a system of algebraic equations with respect to the velocities 

( )1ip p+= − −Au B a ,      (12.67) 

where the elements of the matrix A are 

*
lm lm mla a μ= − ,      (12.68) 

( )* * /d d vm vm
lm ml ml lm ml lma a c c c c τ= = − − − + Δ    for   m l≠ ,  (12.69) 

3

,
1

lua lua
ll lm lu l l conv wl lw

m
m l

a a c u a
α ρ μ μ

τ =
≠

= − + + + −
Δ ∑ ,   (12.70) 

the elements of the algebraic vector B are 

( )
3

,
1

/l l conv lua lua la u lm wl wl lw lw
m
m l

b b u g b u uα ρ τ μ μ
=
≠

= + Δ − − + −∑ , (12.71) 
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where 

( )( ) /vm vm
lm ml ml lm ma lab b c c u u τ= − = + − Δ .    (12.72) 

Note that by definition, if one velocity field does not exist, 0lα = , so that the 
coefficients describing its coupling with the other fields are then equal to zero, 

0vm
mlc = , 0vm

lmc = . This algebraic system can be solved to derive the l velocities 
provided that 

11 22 33 12 23 31 21 32 13 31 22 13 32 23 11 12 21 33det 0a a a a a a a a a a a a a a a a a a= + + − − − ≠A . 
    (12.73) 

The result is 
 

( )1ip p+= − −u du RU ,     (12.74) 

 
where 

1−=du A B        (12.75) 

with components 

3

1

/ detl m lm
m

du b a
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ A ,     (12.76) 

and 

1−=RU A a ,       (12.77) 

with components  

3

1

1
/ detrua

l mua lm
mh vu

RU a
r

γ α
γ =

⎛ ⎞= ⎜ ⎟Δ ⎝ ⎠
∑ A ,    (12.78) 

and the a  values given in Appendix 12.5. Equation (12.74) shows that applying a 
spatial pressure difference to a multi-field mixture with different field densities re-
sults in relative motion between the fields. This relative motion between two adja-
cent fields results in forces that act at the interfaces.  

An important property of the diagonal elements 

3

,
1

lua lua
lm lu l l conv wl lw

m
m l

a c u a
α ρ μ μ

τ =
≠

− + + + −
Δ ∑    (12.79) 

of the matrix A should be noted: The m-th diagonal element equal to zero 
indicates that at that time the velocity field does not exist, and will not originate in 
the next time step. For this reason, the rank of the matrix is reduced by one. Even  
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if the field does not exist, but will originate in the next time step either by 
convection, or by mass transfer from the neighboring field, or from other mass 
sources, or by an arbitrary combination of these three processes, the diagonal 
element is not zero and the initial velocity is induced properly. 

It is obvious that, if one neglects all convective terms and mass sources, no ini-
tial value for a non-existent field can be defined. For numerical computations we 
recommend normalization of the diagonal elements , /ll norm ll la a τ ρ= Δ  and their 

comparison with e.g. 0.001ε = . If ,ll norma ε< , there is no velocity field l, and the 

velocity field l will not originate in the next time step. 
If the convection, diffusion and mass source terms are disregarded, the 

matrix A is symmetric and the expressions for the relative velocities become 
very simple. 

The three equations obtained in this manner are used to construct the pressure-
velocity coupling. I use the term partial decoupling of the momentum equations 
from each other (PDME) to describe this decoupling procedure. Examples of the 
usefulness of this method are given in Kolev, Tomiyama and Sakaguchi (1991). 
Note the difference between this procedure and the decoupling procedure used in 
COBRA-TF, Kelly and Kohrt (1983), where decoupling is performed with a lower 
degree of implicitness by solving for the directional mass flow rates instead of for 
the velocities. This step is extremely important for creation of a stable numerical 
algorithm even when using first order donor cell discretization. The coupling 
coefficients between the velocity fields correspond to each of the flow patterns 
modeled. For a number of these the coupling is strong, e.g. bubble-liquid, for 
others not so strong, e.g. large diameter droplets-gas. Coupling is non-linear in all 
cases and must be resolved by iteration. 

I derive the discretized working form of the momentum equations in the other 
two directions analogously to Eq. (12.63). The corresponding control volumes are 
shown in Figs. 12.5 and 12.6. The result is given in Appendixes 12.6 and 12.7. The 
abbreviated notations are 

3 3

,
1 1

lva lva
lm lv l l conv wl lw l lm m

m m
m l m l

a c v a v a v
α ρ μ μ

τ = =
≠ ≠

⎡ ⎤
⎢ ⎥− + + + − +⎢ ⎥Δ
⎢ ⎥⎣ ⎦

∑ ∑  

( )
3

,
1

/l conv lva lva la v lm wl wl lw lw
m
m l

b v g b v vα ρ τ μ μ
=
≠

= + Δ − − + −∑  

( )1

1 va
lva j

vvh

p p
r

θ
κ

γα
γθ +− −

Δ
,     (12.80) 

where 

6

,
1

1
l conv lm

mvv

a bv
γ =

= − ∑ ,      (12.81) 
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6

,
1

1
l conv vl lm lm

mvv

b R bv v
γ =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ,     (12.82) 

or 
 

( )1jp p+= − −v dv RV ,     (12.83) 

 
and 

3 3

,
1 1

lwa lwa
lm lw l l conv wl lw l lm m

m m
m l m l

a c w a w a w
α ρ μ μ

τ = =
≠ ≠

⎡ ⎤
⎢ ⎥− + + + − +⎢ ⎥Δ
⎢ ⎥⎣ ⎦

∑ ∑    

( )
3

,
1

/l conv lwa lwa la w lm wl wl lw lw
m
m l

b w g b w wα ρ τ μ μ
=
≠

= + Δ − − + −∑  

( )1

1 zwa
lwa k

h vw

p p
z

γα
γ +− −

Δ
,     (12.84) 

where 

6

,
1

1
l conv lm

mvw

a bw
γ =

= − ∑ ,      (12.85) 

6

,
1

1
l conv wl lm lm

mvw

b R bw w
γ =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ,    (12.86) 

or 
 

( )1kp p+= − −w dw RW .     (12.87) 

 

The la  and lb  terms reflect the actions of drag and of added mass forces. The 

,l conva  and ,l convb  terms reflect the actions of the spatial inertia and viscous 

forces. This general structure of Eqs. (12.63), (12.80), and (12.84) proved its 
worth during testing of the code, permitting effects to be introduced step  
by step. 

Note that a non-slip boundary condition at the wall is easily introduced by 
computing the wall friction force resisting the flow as follows 
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Wall friction force =  

( )
* 3 5 64

, 1 , 1

1 1 111 1
2

/ 2
l l l

h h j h h kh

u
z z zr r r

κ κ

γ γ γγα ρν
θ θθ − −

⎡ ⎤⎛ ⎞ ⎛ ⎞− − −−⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟Δ Δ Δ Δ Δ⎢ ⎥+ Δ Δ ⎝ ⎠⎝ ⎠⎣ ⎦
 

( )
( )

* 3 4
2

, 1

2sin / 2 1 1
2

/ 2
l l l

h h j

v
r r

κ

θ γ γα ρν
θ θθ −

⎛ ⎞Δ − −− +⎜ ⎟⎜ ⎟Δ Δ+ Δ Δ ⎝ ⎠
   (12.88) 

where * 1lα =  for l = continuum and l = disperse. 

The forms of the momentum equations obtained in this way are 

( )n n
lm lm lm mV dV RVel p p= − − ,     (12.89) 

( )1,6
, 1 , 1 , 1, , , , ,n

l l l i l l j l l kdV du du dv dv dw dw=
− − −= − − − ,   (12.90) 

( )1,6
, 1 , 1 , 1, , , , ,n

l l l i l l j l l kRVel RU RU RV RV RW RW=
− − −= .  (12.91) 

Remember that the normal velocities, Eq. (12.12), are defined as positive if 
directed from the control volume to the environment on each of the six surfaces m 
of the computational cell. 

12.11 Pressure equations for IVA2 and IVA3 
computer codes 

The mixture volume conservation equation (5.188) derived in Chapter 5 and Kolev 
(1995a) is 

3 3 3

2 2
1 1 1

. .v l v
l l l l

l l ll l

p
p D

a a

γ α γ∂ γ α γ α
∂τ τρ ρ= = =

∂⎛ ⎞+ ∇ +∇ = −⎜ ⎟ ∂⎝ ⎠
∑ ∑ ∑V V . (12.92) 

Here a is the sonic velocity in a homogeneous multi-phase mixture defined as follows 

3

2 2
1

1 l

l l la a

α
ρ ρ=

= ∑ ,      (12.93) 

and 

3

1
l l

l

ρ α ρ
=

= ∑        (12.94) 

is the mixture density. The mixture volume conservation equation is discretized 
directly using the donor cell concept in the IVA2 computer code. The result is 
Eq. (38) in Kolev (1987), 
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3 6 3 3
*
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1 1 1 1
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+ = −

Δ Δ∑ ∑ ∑ ∑   (12.95) 
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( )*
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1
1lm lm l lm lm m

ma ma

p p
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α ξ α ξ α
ρ+ −

⎡ ⎤
= + + −⎢ ⎥

⎣ ⎦
,   (12.97) 

N
l l l lDs Ds sμ+= − ,      (12.98) 

N
il il l ilDC DC sμ+= − .      (12.99) 

Substituting the momentum equation (12.89) for the normal velocities 

( )n n
lm lm lm mV dV RVel p p= − − , 

one finally obtains the pressure equation used in IVA2: 
6

1

 m m
m

c p c p d
=

+ =∑ ,      (12.100) 

where 
3 6

2
1 1

va al
m

l mla la

c c
a

γ α
τ ρ= =

= −
Δ ∑ ∑ ,     (12.101) 

3
*

1
m m lm lm

l

c RVelβ α
=

= − ∑  ,     (12.102) 

3 3 6 3
*

2
1 1 1 1

nv va va al
l a m lm lm

l l m lla la

d D p V
a

γ γ γ αα β α
τ τ ρ= = = =

−
= − + −

Δ Δ∑ ∑ ∑ ∑ .  (12.103) 

An improvement of the performance of the method for immerging of one phase 
inside the others for what ever reason it happens is obtained by using 

3

2
1

1

2
al l

l la laa

α α
ρ=

+∑  instead 
3

2
1

al

l la laa

α
ρ=

∑ . 
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The mixture volume conservation equation used in IVA3 was derived in the same 
way but starting with mass conservation equations that had already been 
discretized instead of starting with the analytical one. This ensures full compatibility 
of the pressure equation obtained in this way with the discretized mass conservation 
equations. 

( ) ( )
3 3 6

1 1 1

1
/   nla

v l la m lm l l lm l l lmm
l l mla la

V
αγ ρ ρ τ β ξ α ρ ξ α ρ
ρ ρ + −

= = =

⎧ ⎫⎡ ⎤− Δ + +⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑ ∑  

( )
3

1

/v
l v va

lla

γ μ γ γ τ
ρ =

= − − Δ∑ .     (12.104) 

Replacing the linearized state equation (3.137) 

( ) ( )
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, ,
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1

l i l
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l la a l la
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∑

, 

from Kolev (1991) I obtain  
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1
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D
γ γα
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where 
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   (12.106) 

Substituting the momentum equation (12.89) for the normal velocities n
lmV , one 

finally obtains the pressure equation used in IVA3: 

6

1

 m m
m

c p c p d
=

+ =∑ ,      (12.107) 
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where 

3 6

2
1 1

v la
m

l mla la

c c
a

γ α
τ ρ= =

⎛ ⎞
= −⎜ ⎟Δ ⎝ ⎠

∑ ∑ ,     (12.108) 
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1
  m m lm l l lm l l lmm

l la

c RVelβ ξ α ρ ξ α ρ
ρ + −

=

⎡ ⎤= − +⎣ ⎦∑ ,  (12.109) 
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γ α γ γ
τ ρ τ=

⎛ ⎞ −= −⎜ ⎟Δ Δ⎝ ⎠
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( )
3 6

1 1

1
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l m lm l l lm l l lmm
l mla

D dVα β ξ α ρ ξ α ρ
ρ + −

= =

⎧ ⎫⎡ ⎤+ − +⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑ .  (12.110) 

Writing this equation for each particular cell I obtain a system of IM JM KM× ×  
algebraic equations with respect to the pressures in the new time plane. The coefficient 
matrix has the expected 7 diagonal symmetrical structure with the guaranteed diagonal 
dominance, see Eq. (12.108). The system coefficients are continuous non-linear 
functions of the solutions of the system. Therefore the system is non-linear. It has to 
be solved by iterations. There are two iteration cycles one called outer and another 
called inner. Inside the inner cycle the coefficients of the system are considered 
constant. Even in this case for large size of the problems an iterative procedure of 
solving the system of algebraic equations is necessary – see for brief introduction 
Appendix 12.9. I solve this system using one of the 4 successive relaxation methods 
built into the IVA3 computer code. The relaxation coefficient used here is unity. The 
four methods in IVA3 differ in the computational effort associated with direct 
inversion during the iterations. The first three methods solve directly the pressure 
equation plane by plane, for rectangle, cylinder, circle. The fourth method 
implements strong coupling between pressure and velocity along one line. This 
method is called the line-by-line solution method. The user can select the appropriate 
one of the four methods for the geometry of the problem which has to be simulated. 

12.12 A Newton-type iteration method 
for multi-phase flows 

The methods used in IVA2 and IVA3 are found to be converging and numerically 
stable. The reason for introduction of a new method is based on the following 
observations: 

 

(a) In spite of the fact that the mixture volume conservation residuals are re-
duced to the values of the computational zeros, there are limitations on the 
reduction of the mass residuals for all mass conservation equations; 

(b) Although strict convergence has been demonstrated in hundreds of numeri-
cal experiments, it has never been proven analytically. 
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The method presented below resolves the above two dilemmas: It (i) simulta-
neously leads to reduction of all residuals to strict computer zeros, and (ii) proof 
of convergence is derived from the principle of the Newton-type iteration method. 
Numerical experiments show that this method is 20% faster than the previous two 
methods, in spite of the fact that a single iteration step takes more time. This method 
does, however, require a preconditioning step. For the first iteration step I normally 
use the IVA3 method. All preceding methods are of course retained in IVA4.  

A variety of iteration methods for single- and two-phase flows were proposed 
by Patankar and Spalding (1967, 1972), Patankar (1975, 1978, 1980, 1981), 
Patankar, Rafiinejad and Spalding (1975), Patankar, Basn and Alpay (1977), 
Caretto, Gosman, Patankar and Spalding (1973), Spalding (1976, 1979, 1980a, b, 
1981a, b, c), Chow and Tien (1978), Connell and Stow (1986), van Doormaal and 
Raithby (1984), Haaland (1984), Amsden (1985), Köller (1980), Latimaer and Pollard 
(1985), Neuberger (1984), Prakash (1984), Vanka (1985), Patel and Markatos 
(1986), Roscoe (1976) having widespread use in a variety of applications, e.g., 
TRAC development, Addessio et al. (1984, 1985), Andersen and Schang (1984), 
Dearing (1985), Knight (1984), Liles and Reed (1978), Liles et al. (1981), Liles 
and Mahaffy (1984), Mahaffy and Liles (1979), Mahaffy (1979), Prior (1979), 
Rohatgi (1985), Sargis and Chan (1984), Williams and Liles (1984), the COBRA-
TF development, Kelly and Kohrt (1983), and the COBRA/TRAC development, 
Thurgood, Cuta, Koontz and Kelly (1983). 

The IVA4 method described here can be considered as a generalization of this 
family of methods for multi-phase flow that use the highly efficient entropy 
concept and allowing analytical derivation of the pressure correction equations in 
contrast with all preceding Newtonian iteration methods. The new method will be 
described in this Section.  

Consider the following system of algebraic non-linear equations 

( ) ( )
6

1

1
/ [ ( ) ] 0

2l l l v l l v lm l l lm l l m v va la
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    (12.111) 
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s s
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τ
+
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−
≡ − − + + − =

Δ ∑  

   (12.112) 

C il ila
il la la va
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f α ρ γ
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−≡
Δ

( ) ( ) ( )
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,
1 ,
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lm l l m m il m ilm

m h m

D
b A Pe C C

L
α ρ β−

=

⎧ ⎫⎡ ⎤⎪ ⎪− + −⎢ ⎥⎨ ⎬Δ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑  

( )( )1
0

2 v va l il ilC DCγ γ μ++ + − =      (12.113) 

( ) ( ) ( )
6

1

1
/ 0

2
n

l l v l v lm l lm l m v va la
m

f n n b n b n Dnγ γ τ γ γ+ −
=

⎡ ⎤≡ − Δ + − − + =⎣ ⎦ ∑  (12.114) 

( )n n
lm lm lm mV dV RVel p p= − − ,     (12.115) 
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resulting from the first order donor-cell discretization of the 21 defining equations 
describing the multi-phase, multi-component flow and the condition 

max

1

1 0
l

l
l

α
=

− =∑ .       (12.116) 

For simplicity, diffusion terms in the concentration and entropy equations are in-
cluded within the lDs  and ilDC  terms. The system can be written in the following 
compact form 

( ) 0=F U ,       (12.117) 

where 

( ), , , , ,T
l l il l ms C n p pα=U .     (12.118) 

In order to solve the system of Eqs. (12.111-12.115) I proceeded as follows. The 
sum of the terms on the left hand side should be equal to zero if the current values 
of all variables satisfy the equations. The mass, entropy, concentration and particle 
density equations will generally not be satisfied when the new velocities computed 
from the momentum equations are used to compute the convective terms in 
Eqs. (12.111) through (12.114). There will be some residual error in each equation 
as a result of the new velocities given by 

0( ) 0l
l l l

l

f
f

α
α ∂ α α

∂α
= − →      (12.119) 

0( ) 0
s

s l
l l l

l

f
f s s

s

∂
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= − →      (12.120) 

0( ) 0
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il il il
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f
f C C

C

∂
∂

= − →      (12.121) 

0( ) 0
n

n l
l l l

l

f
f n n

n

∂
∂

= − →      (12.122) 

max

1

1 0
l

l
l

f αΣ
=

= − →∑       (12.123) 

where 

( )
6

0
1

1
/ /

2
l

l va la la v va l lm lm lm
m l

f
b

α∂α γ α ρ τ γ γ μ α ρ
∂α−
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⎡ ⎤= Δ + + +⎢ ⎥
⎣ ⎦

∑ , (12.124) 

( )
6

*
0

1

1
/ /

2

s
l

l va la la la v va l lm lm lm lm
m l

f
s s Ds b s
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=
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∑ , (12.125) 
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n n Dn b n

n

∂γ τ γ γ
∂−
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∑ .  (12.127) 

All terms are computed using currently known values for each of the variables not 
marked with a. The equations are simultaneously satisfied when , , ,s C n

l l il lf f f fα  

and fΣ  simultaneously approach zero for all cells in the mesh. The variation of 
the each of the dependent variables required to bring the residual errors to zero can 
be obtained by using the block Newton-Raphson method for two-phase flow see 
for example Liles and Reed (1978), Thurgood et al. (1983). This is implemented 
by linearizing the equations with respect to the dependent variables , , , ,l l il ls C n pα  

and mp  to obtain the following equations for each cell. 

max 6

2 1

i
l l l l l

l l il m l
i ml l il m

f f f f f
s C p p f

s C p p

α α α α α
α∂ ∂ ∂ ∂ ∂δα δ δ δ δ

∂α ∂ ∂ ∂ ∂= =

+ + + + = −∑ ∑ , 

    (12.128) 
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f f f
s p p f
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∂ ∂ ∂δ δ δ
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C C C
Cil il il

il m il
mil m

f f f
C p p f

C p p

∂ ∂ ∂δ δ δ
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1

n n n
nl l l

l m l
ml m

f f f
n p p f

n p p

∂ ∂ ∂δ δ δ
∂ ∂ ∂=

+ + = −∑ ,   (12.131) 

max

1

l

l
l

fδα Σ
=

= −∑ .       (12.132) 

This equation has the form 

∂ δ
∂

= −f
U f

U
.       (12.133) 

( )/Det ∂ ∂f U is the Jacobian of the system of equations evaluated for the set of 

dependent variables given by the vector U. δU is the solution vector containing 
the linear variation of the dependent variables, and –f is a vector containing the 
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negative of the residual errors required to bring the error for each equation to zero. 
The matrix /∂ ∂f U  is composed of analytical derivatives of each of the increments 
of the residuals with respect to the dependent variables. The derivatives needed to 
construct the Jacobian are easily obtained and summarized in Appendix 12.8. The 
velocities are assumed to exhibit linear dependence on the pressures, this allowing 
one to obtain the derivatives of the velocities with respect to pressure directly 
from the momentum equations (12.89). The result is given also in Appendix 12.8. 
The linear variation of the velocity with respect to pressure is given by 

( )n
lm lm mV RVel p pδ δ δ= − − .     (12.134) 

 

Note that this form of the velocity increment equation is applicable only af-
ter an explicit pass of the explicit parts of the momentum equations.  

 
After all of the derivatives for the above equations have been calculated, the 

system of equations (12.133) is solved analytically by elimination for the 
unknown increments. In order to eliminate the volume fraction increments we 
divide the mass conservation equation by /l lf α∂ ∂α  and sum the resulting 
equations.  

Replacing 
max

1

l

l
l

δα
=
∑ by fΣ−  I eliminate the lδα values 
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The next step is to solve the entropy, concentration and particle density equations 
for the entropy, concentration and particle density increments. Thus for 

/ 0s
l lf s∂ ∂ > , 

6
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/ / /

s s s
l l l m

l ms s s
ml l l l l l

f f p f p
s p p

f s f s f s

∂ ∂ ∂ ∂δ δ δ
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C C C
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f f p f p
C p p

f C f C f C

∂ ∂ ∂ ∂δ δ δ
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= − − −∑   (12.137) 

For / 0s
l lf s∂ ∂ = , 

0lsδ = ,       (12.138) 

0ilCδ = .       (12.139) 
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Similarly for / 0n
l lf n∂ ∂ >  

6

1

/ /

/ / /

n n n
l l l m

l mn n n
ml l l l l l

f f p f p
n p p

f n f n f n

∂ ∂ ∂ ∂δ δ δ
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= − − −∑ ,  (12.140) 

and for / 0n
l lf n∂ ∂ = , 

0lnδ = .       (12.141) 

Note that computation of the increments is only permissible if / 0s
l lf s∂ ∂ > . If 

/ 0s
l lf s∂ ∂ = , the velocity field l did not exist, and will not originate in the time 

step considered. In this case, the properties of the velocity field l are not defined 
and not required for the computation of the pressure field as / 0l lf sα∂ ∂ = , 

/ 0l ilf Cα∂ ∂ = . 

If the velocity field l did not exist at the old time level but has just originated, 
this means that 

0laα ε≤ +  and / 0s
l lf s∂ ∂ > ,     (12.142) 

I then obtain from Eqs. (12.125) through (12.127) the exact initial values of the 
entropies, of the concentrations, and of the particle number densities 

0 0l ls s= > ,       (12.143) 

0 ,    0 1il il ilC C C= ≤ ≤ ,      (12.144) 

0 0l ln n= ≥ ,        (12.145) 

which obviously do not depend on the non-defined old values ,la ilas C and lan , 
respectively. The necessary temperature inversion is performed by the iterations 
using Eq. (3.129) 

( ){ }max, 1,exp , ,l l l l l il i i plT T s s T p C c− − −
=

⎡ ⎤= −⎣ ⎦ .   (12.146) 

Here the superscript “-” denotes the previous iteration value. The initial density is 
computed using the state equation of the new velocity field 

( )
max, 2,, ,l l l il i iT p Cρ ρ ==      (12.147) 

in this case only. In all other cases, the temperature and the density are calculated 
using the linearized equation of state for each velocity field (3.106) and (3.137): 
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i
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l la l il
il il

T T T
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p s C

∂ ∂ ∂δ δ δ
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max
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The above demonstrates the remarkable property of the semi-conservative form of 
the discretized entropy and concentration equations that they do not depend on the 
field volume fractions in the actual computational cell. We therefore replace the 
entropy and the concentration increments in Eq. (12.135), substituting for 
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l lf s∂ ∂ >  

/
/ /

/

s s
l l l l l l

l
l l l ll l

f s f f
s

s s sf

α

α

∂ ∂ ∂ α ∂ρ ∂α
∂ ρ ∂ ∂∂ ∂α

= = ,    (12.150) 

/
/ /

/

C s
l il il l l l

il
il l il ill l

f C f f
C

C C Cf

α

α

∂ ∂ ∂ α ∂ρ ∂α
∂ ρ ∂ ∂∂ ∂α

= = ,   (12.151) 

and for / 0s
l lf s∂ ∂ =  

0lsα = ,       (12.152) 

0ilCα = ,        (12.153) 

and finally obtain the so called pressure correction equation which is the discrete 
analog of the Poisson-type equation for multi-phase flows 
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and 
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for / 0s
l lf s∂ ∂ > . Using Eqs. (3.135) and (3.136), see also in Kolev (1990), we 

obtain for the ratio 
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bearing in mind Eqs. (3.57) and (3.58), see also in Kolev (1990), 
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the term ilRΔ  can be interpreted as the relative deviation of the pseudo gas con-
stant for the component l from the pseudo gas constant of component 1. For ideal 
gas mixtures this term is simply ( )1 /il il l lR R R RΔ = − .  

Obviously if 0τΔ → , 0mc → , and 
2

1
c
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Note that the coefficients in this equation are analytically defined. I emphasize 
this point as in the current state of the art for modeling of multi-dimensional, mul-
ti-phase flows this step is performed numerically e.g. Liles and Reed (1978), 
Thurgood et al. (1983), Kolev (1986), Bohl et al. (1988), this being a much more 
time consuming approach. 

The linear variation of the pressure in cell (i,j,k) as a function of the 
surrounding cell pressures is given by Eq. (12.154). A similar equation can be 
derived for each cell in the mesh. This set of equations for the pressure variation in 
each mesh cell must be simultaneously satisfied. The solution to this equation set 
can be obtained by direct inversion for problems involving only a few mesh cells, 
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or using the Gauss-Seidel iteration technique for problems involving a large 
number of mesh cells. In IVA4 the pressure corrector method exploits the 
algebraic solvers already discussed in Section 10. For brief introduction see 
Appendix 12.9. 

The computer time required to solve Eq. (12.133) can be greatly reduced if the 
non-linear coefficients n

lmdV  and lmRVel  are assumed to remain constant during a 

time step τΔ , with the solution then obtained only for the linearized system 
(12.133). Checks are made on the value of each of the new time variables to assure 
that the variations of the new time variables from the old variables lie within reason-
able limits. If the new time variables have non-physical values. e.g., void fractions 
less than zero or greater than one, or if the variation of the new time variable from 
the old variable is implausibly large, then the solution is run back to the beginning of 
the time step, the variables are set to their old time value, the time step is reduced 
and the computation repeated. This is implemented to ensure that the linearized equ-
ations are sufficiently representative of the non-linear equations to provide an ac-
ceptable level of calculation accuracy. The time step size is controlled as a function 
of the rate of change of the independent variables for the same reason. 

12.13 Integration procedure: implicit method 

The integration procedure is a logical sequence of the steps needed to obtain a set 
of dependent variables for each computational cell, these variables satisfying the 
conservation equations for each time step under the simplifying assumptions 
introduced and the working hypothesis for any given class of initial and boundary 
conditions.  

The following procedure was found to lead to unconditionally stable solutions. 
 

1. Read the information defining the problem and the required integration accuracy: 
 

- Logical control information; 
- Geometry; 
- Initial conditions; 
- Boundary conditions; 
- External sources; 
- Variable permeabilities; 
- Heat structure definitions. 
 

Perform as many time steps as required to reach the prescribed process time. A 
single time cycle consists of the following steps: 

 

2. Perform computations before starting the outer iterations: 
 

Numerics: 
 

- Impose actual geometry; 
- Store old time level information; 
- Impose boundary conditions; 
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- Impose structure heat sources; 
 

Cell by cell constitutive relations: 
 

- Estimate the equations of state for each component of the velocity field 
(thermo-physical and transport properties for simple constituents): 

- Estimate the equations of state for the mixtures of which each field 
consists; 

- Identify the flow pattern; 
- Estimate constitutive relationships dependent on flow pattern; 
- Compute energy and mass source terms for each particular cell for the flow 

pattern identified; 
- Compute interfacial drag and virtual mass coefficients; 
- Compute wall-fluid interaction drag coefficients; 
 

Numerics: 
 

- Compute coefficients of the discretized momentum equations; 
- Compute the linearized coefficients for solving the local momentum equa-

tion with respect to the local field velocities for each direction; 
- Estimate velocities based on the old time level pressures; 
- Impose cyclic boundary conditions in the case of θ  closed cylindrical 

geometry. 
 

3. Perform outer iterations: 
 

- Estimate new , ,l nl ls C α≈ ≈ ≈ ;  
- Repeat this step as many times as necessary to satisfy with prescribed 

accuracy all entropy and concentration equations and the appropriate two 
of the three mass conservation equations; 

- Compute the coefficients of the pressure equation; 
- Solve the pressure equation forτ τ+ Δ ; 
- Perform convergence, accuracy and time step control; 
- Compute velocities for τ τ+ Δ ; 
- Impose cyclic boundary conditions if required; 
- Compute , ,l nl ls C α  for τ τ+ Δ ; 
- Control convergence; 
- Check against general accuracy requirements, if not fulfilled perform the 

next outer iteration; if no convergence is achieved reduce time step, 
recover the old time level situation and repeat the outer iterations until 
convergence is achieved; 

- Perform the next outer iterations until all general accuracy requirements 
are satisfied; 

 

4. Perform computations after successful time step: 
 

- Perform temperature inversion; 
- Optimize time step for the next integration step; 
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5. Write restart information for prescribed step frequency before specified CPU 
time has elapsed, and at the end of the simulation. 

6. Write information for post processing of the results. 

12.14 Time step and accuracy control 

The time step limitation dictated by the linear stability analysis for implicit donor-
cell methods is 

max , ,h h h h
CFL

l l l

r r z

u v w

θτ
⎛ ⎞Δ Δ ΔΔ < ⎜ ⎟
⎝ ⎠

    (12.161a) 

for all cells. This is the so called material Courant, Friedrichs and Levi (MCFL) 
criterion. Numerous numerical experiments have shown that this method can work 
properly in many cases with larger time steps. The MCFL criterion is nevertheless 
retained to ensure convergence in all cases. In addition to this limitation, there are 
two reasons leading to further time step limits: (a) linearization limits, (b) definition 
limits for the dependent variables: 

 

(a) Linearization limits: The change of the dependent variables within a time step 
in each computational cell should not exceed a prescribed value. This 
condition is associated with the linearization of the strongly non-linear system 
of 21 PDEs and the state equations for each time step, which is not considered 
in the classical von Neumann linear stability analysis of 1D numerical scheme 
for differential equations with constant coefficients. 

(b) Definition limits for the dependent variables: We illustrate this problem by the 
following example. The velocity field mass is non-negative 

*
max ( ) / [ ( ) ]l l v la la va v l lm l l lm l l m

m

b bατ α ρ γ α ρ γ γ μ α ρ α ρ+ −
⎧ ⎫Δ < − − −⎨ ⎬
⎩ ⎭

∑ , (12.161b) 

where * 0lα =  for a decreasing volumetric fraction, that is for l laα α< . For an in-

creasing volumetric fraction, l laα α> , the volumetric fraction of the velocity field 

cannot exceed the value of one by definition, * 1lα = . 
The outer iterations are considered as successfully completed if pressure and 

velocity increments from iteration to iteration and the relative mass conservation 
error reach values smaller than those prescribed. Additional time step optimization 
is imposed in order to keep the time step such as to have only a prescribed number 
of outer iterations, e.g. 6. 

High order methods for discretization of the time derivatives require storing 
information for past time steps. This is the limitation that forces most of the 
authors to use in the multiphase flows first order explicit or implicit Euler 
methods. Such schemes can be easily extended to second order by using the 
trapezoid rule for integration over the time resulting in the popular Crank-
Nicolson method 
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( ) ( )1
, ,

2a af fτ τ τ τΦ −Φ = Δ Φ + + Δ Φ⎡ ⎤⎣ ⎦ , 

where f contains the remaining part of the discretized equation. Usually this me-
thod is using as a two step predictor corrector method 

( )1
* ,

2a afτ τΦ = Φ + Δ Φ , 

( )1
* , *

2
fτ τ τΦ = Φ + Δ + Δ Φ . 

The information required is stored in any case for the old and for the new time 
level. The corrector step can be repeated until the solution does not change any 
more within prescribed limits. Alternatively the method of Adams-Bashforth, see 
in Ferzinger and Paric (2002) p.139, can also be used 

( ) ( )1
3 , ,

2a af fτ τ τ τΦ −Φ = Δ Φ − + Δ Φ⎡ ⎤⎣ ⎦ . 

12.15 High order discretization schemes 
for convection-diffusion terms 

12.15.1 Space exponential scheme 

Patankar and Spalding (1972) propose the Φ profile between the locations  
(k, k+1) and (k-1, k) to be approximated by means of the following functions 

( )1
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z z
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   (12.163) 

For more details see Patankar (1980). Some reason for the choice even of this 
functional form is the solution of the equation 

0
d d

F
dz dz

Φ⎛ ⎞Φ −Γ =⎜ ⎟⎝ ⎠
 ,      (12.164) 

by the following boundary conditions 
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*z z= ,     *Φ = Φ ,    (12.165) 

1* kz z += ,     1* k+Φ = Φ     (12.166) 

for the first equation and 

1* kz z −= ,     1* k−Φ = Φ ,    (12.167) 

z* = z,   *Φ = Φ      (12.168) 

for the second. Tomiyama (1990) found that the analytical solution of a transient 
convection-diffusion equation without source terms is also fully consistent with 
the functions (12.162) and (12.163). These functions have interesting properties, 
namely, the total convection-diffusion flow on the boundaries 5 and 6 

( )
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1 1 1
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J F F
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  (12.169) 
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depends on z only by the averaging method for the computation of Γ  and 1k−Γ , 
but not on z alone. Using the so obtained flows on the boundaries of the computa-
tional cell we obtain the finite difference analog of 

0
d d dF

F
dz dz dz

Φ⎛ ⎞Φ −Γ −Φ =⎜ ⎟⎝ ⎠
     (12.171) 

namely 
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( )1 1 1 1 1 1k k k k k kb b b b+ − + + − −= + − Φ − Φ ,           (12.172) 

where 
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The computation of exponents is in general time consuming. Patankar (1981) 
proposed a very accurate approximation of the coefficients 



538      12 Numerical solution methods for multi-phase flow problems 

( ) ( )1
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where 

( ) ( )5
max 0, 1 0.1A Pe Pe⎡ ⎤= −⎢ ⎥⎣ ⎦

.    (12.177) 

Comparing these coefficients with the coefficients obtained with the linear profile, 
we see that for values of the local grid Peclet numbers Pe  greater than about 6 

the diffusion flow is reduced to zero and the both schemes are nearly equivalent. 
By construction of a numerical algorithm two methods can be easily used simulta-
neously, programming the second one and setting optionally A = 1 if the use of the 
first method is desired. 

Using such profile approximations for the discretization poses some unans-
wered questions: 

 

- The profile of Φ  in the case of no source terms (of Φ ) has to be not the same 
as in the case of source terms different from zero; 

- The convection in the other two directions in the three-dimensional flow will 
influence the profile in the first direction and vice versa, which is not taken in-
to account into the above discretization schemes; 

- During strong transients it is difficult to guess an appropriate profile of Φ ; 
- For most cases of practical interest, especially in three dimensions where very 

fine meshes are out of the question, the actual component grid Peclet numbers 
are likely to be orders of magnitude larger than 2 or 6 throughout the bulk of 
the flow domain. This means that the donor-cell upwind and the space expo-
nential schemes are operating as first order upwind almost everywhere in the 
flow field except for a very small fraction of grid points near boundaries and 
stagnation regions where the convecting velocities are small. Thus instead of 
solving a high-convection problem, these methods simulate a low convection 
problem in which the effective local component grid Peclet number can never 
be greater than 2 Leonard and Mokhtari (1990). 

 

There are attempts to answer the first two questions. Chow and Tien (1978) p. 91, 
successfully take into account some influence of the source term in their profile 
approximation. The resulting scheme is more accurate than the above described 
two schemes and possesses unconditional stability. Prakash (1984) takes into 
account the influence of the flow in the other two directions in his profile 
approximation. Patel et al. (1985), comparing the qualities of 7 discretization 
schemes with analytical one- and two-dimensional solutions, emphasize the 
advantages of the above discussed local analytical discretization scheme, and of the 
Leonard super upwind scheme (1978), Leonard and Mokhtari (1990), Leonard 
(1990). In a later publication, Patel and Markatos (1986) compare 8 new schemes 
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and emphasize the advantages of the quadratic-upstream-extended-revised scheme 
proposed by Pollard and Ali (1982). 

Günther comparing the qualities of 7 discretization schemes, emphasizes the 
advantages of the local-analytical-method of second order of accuracy in space 
(donor-cell) proposed in Günther (1988). 

The general tendency in the development of such schemes is to use further the 
donor-cell concept and increase the accuracy of the space approximations using 
schemes with an order of accuracy higher than one. 

12.15.2 High order upwinding 

The main idea behind the high order differencing methods is the approximation of 
the Φ function by using information from more than two adjacent cells. Usually 
the Lagrange polynomial parabolic approximation m-th order is used 

( )
( )
( ) ( )

k l
l m

h m
m m l

l m

z z
z z

z z
≠

≠

−
Φ = Φ

−

∑
∑∑

     (12.178) 

where, e.g. 

m = k - 2, k - 1, k, k + 1, k + 2. 

Numerical schemes for convection problems are usually constructed non-
symmetrically, which means using more information for the approximation of the 
actual Φ  from the upwind direction than from the downwind direction. Compared 
with symmetrical schemes the non-symmetrical schemes are more stable. Let us 
illustrate the main idea by the example of the successful third-order upwind 
scheme QUICK - see Leonard and Mokharti (1990): 

5Φ = Eq. (12.178)      (12.179) 

where 

m = k - 1, k, k + 1   for   w ≥  0, 

m = k, k + 1, k + 2   for   w < 0, 

and 

6Φ = Eq. (12.178)      (12.180) 

where 

m = k - 2, k - 1, k   for   w ≥  0, 

m = k - 1, k, k + 1   for   1kw −  < 0. 

For approximation of the diffusion terms QUICK uses the usual second order 
symmetric approximation. The disadvantage of the high order upwind schemes is 
the so called undershoot and overshoot if one simulates sharp discontinuities in the  
 



540      12 Numerical solution methods for multi-phase flow problems 

integration region. What is helpful to resolve this problem is a simple limiting 
strategy which maintains the good resolution of higher order upwinding while 
eliminating undershoots and overshoots without introducing artificial diffusion or 
destroying conservation. Leonard and Mokhtari (1990) propose an extremely simple 
technique which can be extended to arbitrary high order accuracy. Next we explain 
the main idea of this proposal. In the case of positive direction of the velocity, the 
character of the functional form of mΦ , m = k - 1, k, k + 1 is checked. One 
distinguishes between locally monotonic and locally non-monotonic behavior: 

 

1) Locally monotonic behavior is defined if 

1 1k k+ −Φ > Φ > Φ       (12.181) 

or 

1 1k k− +Φ < Φ < Φ .      (12.182) 

In this case the convected face-value, 5Φ , computed by the high order differenc-
ing should lie between adjacent node values 

5 1k+Φ < Φ < Φ ,      (12.183) 

or 

5 1k+Φ > Φ > Φ ,      (12.184) 

respectively. Otherwise 5Φ  is limited by one of the adjacent node values. If  

1k−Φ = Φ        (12.185) 

Leonard and Mokhtari use simply the upwind value 

5Φ = Φ    ( )1k−≡ Φ .      (12.186) 

2) Locally non-monotonic behavior is defined if 

1k+Φ > Φ    and   1k−Φ > Φ ,     (12.187) 

or 

1k+Φ < Φ    and   1k−Φ < Φ .     (12.188) 

In this case one can use the linear extrapolation of the values of the two adjacent 
upwind points, namely 

( )5 1
1

h
k

k

z z

z z −
−

−
Φ = Φ + Φ −Φ

−
,     (12.189) 

which is simply a reduction of order of the approximation to second order upwind. 
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One should be careful in applying the high order differencing in a region 
divided by permeabilities which can be zeros. If e.g. in the above discussed cases 

, 1 0z kγ − =  we should use simply the first order upwind value 

5 kΦ = Φ .       (12.190) 

The existing codes using the classical donor-cell upwind or local analytical 
schemes can be easily upgraded to incorporate cost-effective high order non-
oscillatory methods in order to use them in cases of coarse grids where the local 
grid Peclet number is greater than two or six respectively. 

12.15.3 Constrained interpolation profile (CIP) method 

Yabe, Xiao and Utsumi (2001) published a family of methods with the remarkable 
quality of resolving discontinuities with much smaller number of cells then any 
other known methods – see in Tanaka, Nakamura and Yabe (2000)  p. 588, Fig. 19. 
The basic idea of this group of methods is to use the primitive dependent variables 
and their derivatives as a set of dependent variables. For the first group the 
conservation equations are used and for the second group the corresponding 
derivatives of these equations are used. Instead of reviewing here all the methods 
of this group, we give few examples of the so called exactly conservative scheme 
for the CIP method. The remarkable quality of this scheme is the enforced 
conservation of given properties even by using a non-conservative form of the 
conservation equations. 

12.15.3.1 Exactly conservative scheme for transport equations in 
non-conservative form 

Tanaka, Nakamura and Yabe (2000) proposed to approximate the f profile 
between the locations , 1 *h k hz z z− ≤ ≤  by means of the fourth order polynomial 

spline function 

* 4 3 2
1 , 1 , 1 , 1 1 , 1( * ) ( * ) ( * ) ( * )k h k h k h k k h kf f a z z b z z c z z g z z− − − − − −− = − + − + − + − , 

        (12.191) 

which already satisfies the continuity and the smoothness conditions at the left 
boundary , 1* h kz z −= , 

*
1kf f −= , 1* k

df
g

dz −= ,      (12.192) 

abd has to satisfy the continuity and the smoothness conditions also at the right 
boundary * hz z=  

*f f= , 
*

df
g

dz
= .       (12.193) 
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This leads to the additional two equations for computing the unknown coefficients 
a, b, and c 

4 3 2
1 1 1 1 1 1k k k k k kz a z b z c f f g z− − − − − −Δ + Δ + Δ = − − Δ ,   (12.194) 

3 2
1 1 1 14 3 2k k k kz a z b z c g g− − − −Δ + Δ + Δ = − .    (12.195) 

In addition the authors enforce the so called continuity constraint. We use here the 
integral as proposed by the authors in Tanaka, Nakamura and Yabe (2000) divided 
by the distance between two points 1 , 1k h h kz z z− −Δ = −  which is the weighted aver-

aged over this distance, 

1

*

1

1
*

k

z

av
k z

f f dz
z

−−

=
Δ ∫ ,      (12.196) 

resulting in the third equation  

4 3 2
1 1 1 1 1 1

1 1 1 1

5 4 3 2k k k av k k kz a z b z c f g z f− − − − − −Δ + Δ + Δ = − Δ − ,  (12.197) 

required to compute the three unknown constants. Solving with respect the coeffi-
cients one obtains 

( ) ( )1 1 14
1

30 1 1

2 12av k k k
k

a f f f g g z
z − − −

−

⎡ ⎤= − + + − Δ⎢ ⎥Δ ⎣ ⎦
,  (12.198) 

1 1 13
1

4 3
15 7 8

2av k k k
k

b f f f g g z
z − − −

−

⎡ ⎤⎛ ⎞= − + + − − Δ⎢ ⎥⎜ ⎟Δ ⎝ ⎠⎣ ⎦
,  (12.199) 

( )1 1 1 12
1

3 1
10 4 6 3

2k av k k k
k

c f f f g g z
z− − − −

−

⎡ ⎤= − − + − Δ⎢ ⎥Δ ⎣ ⎦
.  (12.200) 

The CIP method is illustrated on integrating the following simple equation 

0
f f

w
zτ

∂ ∂+ =
∂ ∂

,      (12.201) 

written in canonical form / 0df dτ =  along the characteristic line defined by 

/dz d wτ = . The solution for the point k - 1 is 

( ) ( )1 *
1 , 1 1 , 1, ,n

k h k k h kf z f z wτ τ τ τ+
− − − −+ Δ = − Δ ,   (12.202) 

or in terms of the already find approximations for 0w >
 

1 4 3 2
1 1 1 1 2 2

n
k k k k k kf a b c g fξ ξ ξ ξ+
− − − − − −= + + + + ,   (12.203) 
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where ( ), 1 1 11 /h h k k kz z w z w zξ τ τ− − −= − − Δ = Δ − Δ Δ . We will need in a moment 

also the derivative 

1 3 2
1 1 1 1 24 3 2n

k k k k kg a b c gξ ξ ξ+
− − − − −= + + + ,    (12.204) 

and the flux 

( ) ( ) ( )
1

* 5 5 4 4
1 1 1 1 1

0

1 1

5 4

kz

k k k k kF f wd f z dz a z b z
τ

ξ

τ ξ ξ
−ΔΔ

− − − − −= = = Δ − + Δ −∫ ∫  

( ) ( ) ( )3 3 2 2
1 1 2 1 2 1

1 1

3 2k k k k k kc z g z f zξ ξ ξ− − − − − −+ Δ − + Δ − + Δ − .  (12.205) 

For 0w <
 
we have   

1 4 3 3
1 1 1

n
k k kf a b c g fξ ξ ξ ξ+
− − −= + + + + .    (12.206) 

where wξ τ= Δ . Again the derivative is 

1 3 2 2
1 14 3 3n

k kg a b c gξ ξ ξ+
− −= + + + ,    (12.207) 

and the flux is 

( )
0

5 4 3 2
1 1

0

1 1 1 1

5 4 3 2 k kF f wd f z dz a b c g f
τ

ξ

τ ξ ξ ξ ξ ξ
Δ

− −
⎛ ⎞= = = − + + + +⎜ ⎟⎝ ⎠∫ ∫ . 

(12.208) 

For solving the non homogeneous convection equation 

( ) 0
f

wf
zτ

∂ ∂+ =
∂ ∂

       (12.209) 

let us apply the splitting procedure as applied by Xiao, Ikebata and Hasegawa 

(2004). The solution of the homogeneous convection 0
f f

w
zτ

∂ ∂+ =
∂ ∂

 is done by 

the pseudo-characteristic method as already discussed. It gives * 1nf + . Then the 

second step of the splitting provides * 1nf +  as follows: 

1 * 1 * 1n n n w
f f f d

z

τ τ

τ

τ
+Δ

+ + + ∂ ′= −
∂∫ .     (12.210) 

Xiao, Ikebata and Hasegawa (2004) used the donor-cell concept for computing the 
integral term as follows 

( )* 1 * 1
1 1

1

2
n n

k k

w
d w w w w

z z

τ τ

τ

ττ
+Δ

+ +
− −

∂ Δ′ = − + −
∂ Δ∫    for   0w > ,  (12.211) 



544      12 Numerical solution methods for multi-phase flow problems 

( )* 1 * 1
1 1

1

1

2
n n

k k
k

w
d w w w w

z z

τ τ

τ

ττ
+Δ

+ +
+ +

+

∂ Δ′ = − + −
∂ Δ∫    for   0w ≤ . (12.212) 

12.15.3.2 Computing the weighted averages in the new time plane 

The non homogeneous convection defined by 

( ) 0
f

wf
zτ

∂ ∂+ =
∂ ∂

       (12.213) 

can be rewritten in integral form for w > 0 

* 1 * * *
1 1

0 0

1z z
n

k kf dz f dz f w d f wd
z

τ τ τ τ

τ τ

τ τ
Δ Δ +Δ +Δ

+
− −

⎛ ⎞
′ ′− = −⎜ ⎟⎜ ⎟Δ ⎝ ⎠

∫ ∫ ∫ ∫ .   (12.214) 

Substituting wd dzτ =  in the left hand site integrals and setting as a lower and 
upper boundaries the departure and the end point of the corresponding 
characteristic lines at the both ends of the cell we obtain 

1

1 1

* 1 * * *
1 1

0 0

1 k

k k

zz z z
n

k k

z w z w

f dz f dz f w d f wd
z τ τ

τ τ
−

− −

ΔΔ Δ Δ
+

− −
Δ − Δ Δ − Δ

⎛ ⎞
′ ′⎜ ⎟− = −⎜ ⎟Δ ⎝ ⎠

∫ ∫ ∫ ∫ . (12.215a) 

The general notation of this result is 

( ) ( )1
1 1

1 1n
av k av av kf F f z F f F F

z z
+

− −= + Δ − = + −
Δ Δ

.  (12.215b) 

where the F´s are the fluxes already defined by Eqs. (12.205) and (12.208): Re-
member that these fluxes are depending on the velocity direction. With other 
words, the profile in the new time plane between , 1h kz −  and hz  is the transported 

profile from the old time plane within the boundaries , 1 1h k kz w τ− −− Δ  and 

hz w τ− Δ .  

12.15.3.3 Choice of the gradients 

In the ordinary cubic-spline interpolation, continuity of the value, the first 
derivative, and the second derivative is required to generate the piecewise cubic 
polynomials from the data given at some discrete points. Yabe and Takewaki 
(1986) showed that this procedure is not suitable for the present problem because 
the profile generated by the classical spline method is not consistent with the 
physical nature of the governing equations.  

 

The CIP method relaxes the construction of the spline based on gradients 
computed with the values at the discrete points. Instead, it requires gra-



12.15 High order discretization schemes for convection-diffusion terms      545 

dients physically based on the governing equations which is the main 
source of success of this method.  

 
To estimate the gradient the authors differentiate the model equation with respect 
to the spatial coordinate,  

0
g g dg

w
z d

∂ ∂
∂τ ∂ τ

+ = = .      (12.216) 

Transforming the equation in the orthogonal coordinate system attached with the 
one coordinate to the characteristic line defined by /dz d wτ = , gives  

0
dg

dτ
= .       (12.217) 

For the solution of this particular case we have Eqs. (12.204) and (12.207). 

12.15.3.4 Phase discontinuity treated with CIP 

For propagation of a volumetric fraction described by the equation  

0w
z

∂α ∂α
∂τ ∂

+ = ,      (12.218) 

which may be monotonic or may possess sharp discontinuities, and at the same 
time has always to have values between 0 and 1, Yabe and Xiao (1993), Yabe, 
Xiao and Mochizuki (1995), proposed to use the following transformation 

( ) ( )tan 1 0.5ε π α⎡ ⎤Φ = − −⎣ ⎦ ,     (12.219) 

( )
arctan

0.5
1

α
ε π
Φ= +

−
,      (12.220) 

where ε  is a small positive constant. The factor ( )1 ε−  enables one to get for 

Φ→ −∞  0α →  and Φ→∞  1α → , and to tune the sharpness of the layer to be 
resolved. Differentiating and replacing in the original equation results in 

( ) ( )2

1
0

1 1
w

z

∂ ∂
∂τ ∂ε π
Φ Φ⎛ ⎞+ =⎜ ⎟− +Φ ⎝ ⎠

,    (12.221) 

or  

0w
z

∂ ∂
∂τ ∂
Φ Φ+ = ,      (12.222) 

which again is solved by the CIP method. The merit of this transformation is that, 
although Φ  may be slightly diffusive and may have undulation when the discre-
tized equation is solved, the inversely transformed value of Φ  is always limited to 
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a range between 0 and 1. The method is appropriate even for the description of the 
boundary of a rigid body moving in space. The method is not recommended in 
combination with a low order solution method like upwind etc. For more discus-
sion see Tanaka, Nakamura and Yabe (2000)  p. 567. 

12.16 Problem solution examples to the basics 
of the CIP method 

12.16.1 Discretization concept 

Before starting with exercises on the above introduced group of CIP methods I 
will define the double grid discretization concept on a single pipe as shown in 
Fig. 12.8. The pipe is discretized on kmax peaces with a length kzΔ , max1,k k= . 

There are kf , max1, 1k k= +  function values defined at the cell boundaries and 
v

kf , max1, 2k k= +  cell averages. Note that the cell averages are not equivalent 

with the cell value at the cell middle. The cell averages 1
v f  and 

max 2
v

kf +  are aux-

iliary values introduced to organize coupling with other pipes. 
 

1k =
2

max 2k +
1k =

2

max 1k +

2zΔ
max 1kz +ΔkzΔ

v
kf

kf

1kf −

 

Fig. 12.8 One dimensional pipe discretization concept on double grid. The empty symbols 
are boundary values. The filled symbols are spatially averaged values within the cell. The 
filled symbols k = 1 and kmax + 2 are auxiliary averaged values defined to couple this pipe 
with other regions 

 

1k =
2

max 2k +
1k =

2

max 1k +

2zΔ
max 1kz +ΔkzΔ

v
kf

kf

1kf −
1kf +

1
v

kf +

kg

1kg −

cm
kg

 

Fig. 12.9 One dimensional pipe discretization concept for double grid. Position of the spatial 

derivatives: kg  at the cell boundaries and v
kg  at the cell middle 
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In addition we define the inclinations kg  of the function f at the cell boundaries as 

given in Fig. 12.9 for the cell boundaries and cm
kg  for the middle of the cell. All 

of these values or parts of them are available from the integration process depend-
ing on its accuracy. For convenience we will notate only that subscript that differs 
from k. 

12.16.2 Second order constrained interpolation profiles 

Problem 1. Given are the fluid properties f  and 1kf +  at two different points be-

ing at distance 1kz +Δ  from each other. Position auxiliary coordinate system at the 

boundary point k so that 

' 0z = , fΦ = ,      (12.223) 

1' kz z += Δ , 1kf +Φ = .      (12.224) 

Find a polynomial of second degree that satisfy the condition 

( )
1

1
1 0

1 kz
v

k
k

z dz f
z

+Δ

+
+

′ ′Φ =
Δ ∫ .     (12.225) 

Solution to problem 1: The function, its spatial derivative, and its undetermined 
integral we are looking for have the form 

2' 'cz gz fΦ = + + ,      (12.226) 

2 '
d

cz g
dz

Φ = + ,      (12.227) 

( ) 3 21 1
' ' '

3 2
z dz cz gz fzΦ = + +∫ .     (12.228) 

Equations (12.226) satisfy already the conditions (12.223). These equations 
together with condition (12.224) and condition (12.225) applied to Eq. (12.225) 
give the following system of algebraic equations 

2
1 1 1k k kz c z g f f+ + +Δ + Δ = − ,     (12.229) 

2
1 1 1

1 1

3 2
v

k k kz c g z f f+ + +Δ + Δ + = .     (12.230) 

that is solved with respect to c  and g . The result is 

( )1 1
1

2
3 2R v

k k
k

g f f f
z + +

+

= − −
Δ

,     (12.231) 
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( )1 12
1

6 1

2
R v

k k
k

c f f f
z + +

+

⎡ ⎤= + −⎢ ⎥Δ ⎣ ⎦
.    (12.232) 

Note that in our absolute coordinate system the derivative at the point kz z=  is 
Rg g=  because in both coordinate systems the positive axis point to the same 

direction. 
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Fig. 12.10 Quadratic constrained interpolation for ' 0z = , 0f = , ' 0.1z = , 1 1kf + = , 

1
v

kf + =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 

Problem 2: Given are the values and the derivatives of a function ( )f z  at two 

points having a distance 0.1z mΔ =  from each other: 

BC 1: 0z = , 1Φ = ;      (12.233) 

BC 2: hz z= Δ , 0Φ = .      (12.234) 

Compute the profile between these points by using the results of problem 1 for 

avf = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,   (12.235) 

and plot them. 
 

Solution to problem 2: The computed values are plotted in Fig. 12.10. 

12.16.3 Third order constrained interpolation profiles 

Problem 3. Given are the fluid properties f  and 1kf +  at two different points be-

ing at distance 1kz +Δ  from each other. Position auxiliary coordinate system at the 

boundary point k so that 

' 0z = , fΦ = ,      (12.236) 
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1' kz z += Δ , 1kf +Φ = .      (12.237) 

Find a polynomial of third degree that satisfy the conditions 

( )
1

1
1 0

1 kz
v

k
k

z dz f
z

+Δ

+
+

′ ′Φ =
Δ ∫ ,     (12.238) 

1

1
'

2 kz z += Δ , 1
cm

k

d
g

dz +
Φ = .     (12.239) 

Solution to problem 3: The function, its spatial derivative, and its undetermined 
integral we are looking for have the form 

3 2' ' 'bz cz gz fΦ = + + + ,     (12.240) 

23 ' 2 '
d

bz cz g
dz

Φ = + + ,      (12.241) 

( ) 4 3 21 1 1
' '' ' ' ' '

4 3 2
z dz bz cz gz fzΦ = + + +∫ .    (12.242) 

Equation (12.240) already satisfies the conditions (12.236). These equations to-
gether with conditions (12.237) and (12.238) give the following system of alge-
braic equations 

3 2
1 1 1 1k k k kz b z c z g f f+ + + +Δ + Δ + Δ = − ,    (12.243) 

2
1 1 1

3

4
cm

k k kz b z c g g+ + +Δ + Δ + = ,     (12.244) 

3 2
1 1 1 1

1 1 1

4 3 2
v

k k k kz b z c z g f f+ + + +Δ + Δ + Δ = − .   (12.245) 

Solving with respect the unknown coefficients we have 

( )1 13
1

4 cm
k k

k

b f f g z
z + +

+

= − − Δ
Δ

,     (12.246) 

( )1 1 1 12
1

3
2 5 2v cm

k k k k
k

c f f f g z
z + + + +

+

= − − + + Δ
Δ

,   (12.247) 

( )1 1 1
1

2
3cm v

k k k
k

g z g f f
z + + +

+

⎡ ⎤= −Δ + −⎣ ⎦Δ
.    (12.248) 
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12.16.4 Fourth order constrained interpolation profiles  

Problem 4. Given are the fluid properties daf  and f  and their spatial derivatives 

dag  and g  at two different points being at distance zΔ  from each other: 

0z = , dafΦ = , da

d
g

dz

Φ = ,     (12.249) 

z z= Δ , fΦ = , 
d

g
dz

Φ = .     (12.250) 

Find a polynomial of fourth degree that satisfy the condition 

( )
0

1 z

avz dz f
z

Δ

Φ =
Δ ∫ .      (12.251) 

Solution to problem 4: The function, its spatial derivative, and its undetermined 
integral that we are looking for have the form 

4 3 2
da daaz bz cz g z fΦ = + + + + ,     (12.252) 

3 24 3 2 da

d
az bz cz g

dz

Φ = + + + ,     (12.253) 

( ) 5 4 3 21 1 1 1

5 4 3 2 da daz dz az bz cz g z f zΦ = + + + +∫ .   (12.254) 

Equations (12.252) and (12.253) already satisfy the conditions (12.249). These 
equations together with condition (12.251) applied to Eq. (12.254) give a system 
of algebraic equations 

4 3 2
, , , ,h up h up h up up h upz a z b z c f f g z−Δ + Δ + Δ = − − Δ ,   (12.255) 

3 2
, , ,4 3 2h up h up h up upz a z b z c g gΔ + Δ + Δ = − ,    (12.256) 

4 3 2
, , , ,

1 1 1 1

5 4 3 2h up h up h up av up hz a z b z c f g z fΔ + Δ + Δ = − Δ − ,  (12.257) 

from which the constants  

( ) ( )4

30 1 1

2 12av da daa f f f g g z
z

⎡ ⎤= − + + − Δ⎢ ⎥Δ ⎣ ⎦
,   (12.258) 

3

4 3
15 7 8

2av da dab f f f g g z
z

⎡ ⎤⎛ ⎞= − + + − − Δ⎜ ⎟⎢ ⎥Δ ⎝ ⎠⎣ ⎦
,   (12.259) 
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( )2

3 1
10 4 6 3

2av da dac f f f g g z
z

⎡ ⎤= − − + − Δ⎢ ⎥Δ ⎣ ⎦
,   (12.260) 

are uniquely defined. The function (12.252) is called monotonic, if its values in-
side zΔ  satisfy the condition 

daf f≤ Φ ≤ ,       (12.261) 

which means that  the zero-first derivative 

3 24 3 2 0da

d
az bz cz g

dz

Φ = + + + =     (12.262) 

has its roots outside the interval  

1,2,30 z z≤ ≤ Δ ,      (12.263) 

or do not have real roots. If the roots are inside the interval one have to prove 
whether the maximum and minimum are inside the definition region of Φ . In this 
case the approximation is acceptable, else appropriate limiters of the approxima-
tion have to be introduces. 

 

Problem 5: Given are the values and the derivatives of a function ( )f z  at two 

points having a distance 0.1z mΔ =  from each other: 

BC 1: 0z = , 1Φ = , 0
d

dz

Φ = ;     (12.264) 

BC 2: hz z= Δ , 0Φ = , 0
d

dz

Φ = .    (12.265) 

Compute the profile between these points by using the results of problem 1 for 

avf = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.   (12.266) 

Analyze the obtained solutions whether they are monotone or not. 
 

Solution to 5: Using the set of the polynomial coefficients defined by  
Eqs. (12.258 to 12.260) we compute the family of curves presented in Fig. 12.11 
which is the solution of this problem. 
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Fig. 12.11 Constrained fourth order profile for different averaged values of the function 

We see that our approximation function does not guarantee monotonic change 
between the minimum and the maximum values for all avf . 

Problem 6: Given are the values and the derivatives of a function ( )f z  at two 

points having a distance 0.1z mΔ =  from each other: 

BC 1: 0z = , 0Φ = , 0
d

dz

Φ = ;     (12.267) 

BC 2: hz z= Δ , 1Φ = , 0
d

dz

Φ = .     (12.268) 

Compute the profile between these points by using the results of problem 4 for 

avf = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.   (12.269) 

Solution to 6: The solution is presented at Fig. 12.12. We see again that only two 
of the curves are monotonic functions. 

Problem 7: Given are the conditions for Problem 5 and 6. Construct the profile 
between these points by using the results of problem 4 for 

avf = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1   (12.270) 

in such a way that the function values monotonically changes between the boun-
dary values. As already mentioned, monotonically change of the function means 
that all values within the definition region take values between the minimum and 
maximum values, 

min maxf f≤ Φ ≤ .      (12.271) 
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Fig. 12.12 Constrained fourth order profile for different averaged values of the function 

Solution to 7: We consider two cases: For case 1 the larger value is at the left 
boundary and for case 2 the larger value is at the right boundary. 

 

Case 1. For   

daf f>         (12.272) 

we have  

max daf f= ,       (12.273) 

minf f= .       (12.274) 

For  

min

max min

1

2
avf f

f f

−
<

−
,      (12.275) 

we construct a piecewise linear function that satisfy condition (12.251) 

'z z< Δ , ( ) ( )max min max '

z
z f f f

z
Φ = + −

Δ
,   (12.276) 

'z z≥ Δ , ( ) minz fΦ = ,      (12.277) 

where 

' min

max min

2 avf f
z z

f f

−
Δ = Δ

−
.      (12.278) 

For  

min

max min

1

2
avf f

f f

−
≥

−
,      (12.279) 
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we construct a piecewise linear function that satisfy condition (12.251) 

'z z< Δ , ( ) maxz fΦ = ,      (12.280) 

'z z≥ Δ , ( ) ( )
'

max min max '

z z
z f f f

z z

−Δ
Φ = + −

Δ −Δ
,   (12.281) 

where 

' min

max min

2 1avf f
z z

f f

⎛ ⎞−
Δ = Δ −⎜ ⎟−⎝ ⎠

.     (12.282) 

Now we combine this function and apply it only to those curves in Fig. 12.12 that 
are non monotonic. The result is presented in Fig. 12.13. 
 
Case 2: For the case   

daf f<         (2.284) 

we have  

maxf f= ,       (2.285) 

min daf f= .       (2.286) 

For  

min

max min

1

2
avf f

f f

−
<

−
,      (12.286) 
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Fig. 12.13 Constrained fourth order profile for different averaged values of the function 
with imposed step linear limiters guaranteeing the monotonic change and the integral con-
dition (12.251) 
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we construct a piecewise linear function that satisfy condition (12.251) 

'z z< Δ , ( ) minz fΦ = ,      (12.287) 

'z z≥ Δ , ( ) ( )
'

min max min '

z z
z f f f

z z

−Δ
Φ = + −

Δ − Δ
,   (12.288) 

where 

' min

max min

1 2 avf f
z z

f f

⎛ ⎞−
Δ = − Δ⎜ ⎟−⎝ ⎠

.     (12.289) 

For the case 

min

max min

1

2
avf f

f f

−
≥

−
,      (12.290) 

we construct a piecewise linear function that satisfy condition (12.251) 

'z z< Δ , ( ) ( )min max min '

z
z f f f

z
Φ = + −

Δ
,    (12.291) 

'z z≥ Δ , ( ) maxz fΦ = ,      (12.292) 

where 

' min

max min

1 2avf f
z z

f f

⎛ ⎞−
Δ = − Δ⎜ ⎟−⎝ ⎠

.     (12.293) 

Now we combine this function and apply it only to those curves in Fig. 12.12 that 
are non monotonic. The result is presented in Fig. 12.14. 
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Fig. 12.14 Constrained fourth order profile for different averaged values of the function 
with imposed step linear limiters guaranteeing the monotonic change and the integral  
condition (12.251) 
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The discussed limiters are summarized in Table 12.1. 

Table 12.1 Summary limiters, Kolev (2005) 

Case 
min

max min

avf f
f

f f

−
=

−
 

'zΔ  z  ( )g z  ( )f z  

daf f>   

max daf f=

minf f=
 

1

2
<  2 z fΔ  'z< Δ  min max

'

f f

z

−
Δ

 maxf gz+  

'z≥ Δ  0 
minf  

1

2
≥  ( )2 1z fΔ −

 

'z< Δ  0 
maxf  

'z≥ Δ  min max
'

f f

z z

−
Δ −Δ

 
( )

max

'

f

g z z+ − Δ

 

daf f<   

maxf f=
 

min daf f=
 

1

2
<  ( )1 2z fΔ −

 

'z< Δ  0 
minf  

'z≥ Δ  max min
'

f f

z z

−
Δ −Δ

 
( )

min

'

f

g z z+ − Δ

 
1

2
≥  ( )2 1z fΔ −

 

'z< Δ  max min
'

f f

z

−
Δ

 minf gz+  

'z≥ Δ  0 
maxf  

 
Problem 8: Given the following partial differential equation 

0
f f

w
zτ

∂ ∂+ =
∂ ∂

,      (12.294) 

The initial  

( )max0,0f z zτ = ≤ ≤        (12.295) 

and the left boundary values 

( )0, 0f zτ ≥ =       (12.296) 

are known. The convection velocity is a positive constant 

0w const= > .      (12.297) 

Design Tanaka et al. (2000) CIP-CSL4 symbolic algorithm for solution of  
Eq. (12.294) over the length max0 z z≤ ≤  for τ τ= Δ . 
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Solution to problem 5: We divide the total length on max 1k −  peaces. For simplicity 

but without losing the generality we will use an equidistant discretization 

( )max max 1z z kΔ = − . At each point we compute the coefficients using Eqs. (12.258 to 

12.260). For the positive velocity we visit all the points max2,k k=  and compute the 

values and the derivatives the new time plane. In addition we compute also the fluxes.  

0w ≥ , 1 1
1

1k k
k

w
z w z

z

τζ τ− −
−

⎛ ⎞Δ= Δ − Δ = Δ −⎜ ⎟Δ⎝ ⎠
, 1dak k= − ,  (12.298)  

( )1 4 3 2n
kda kda kda kda kda kdaa b c g fζ ζ ζ ζ ζ+Φ = Φ = + + + + ,  (12.299)  

1 3 24 3 2n
kda kda kda kdag a b c gζ ζ ζ+ = + + + ,    (12.300)  

( ) ( ) ( )
,

5 5 4 4

0

1 1

5 4

h kdaz

kda kda kda kda kdaF wd z dz a z b z
τ

ξ

τ ζ ζ
ΔΔ

= Φ = Φ = Δ − + Δ −∫ ∫  

( ) ( ) ( )3 3 2 21 1

3 2kda kda kda kda kda kdac z g z f zζ ζ ζ+ Δ − + Δ − + Δ − .   (12.301) 

The second set of equations is valid for negative velocity: 

0w < , wζ τ= − Δ , dak k= ,     (12.302)   

( )1 4 3 2n
kda kda kda kda kda kdaa b c g fζ ζ ζ ζ ζ+Φ = Φ = + + + + ,  (12.303)  

1 3 24 3 2n
kda kda kda kdag a b c gζ ζ ζ+ = + + + ,    (12.304)  

( )
0

5 4 3 2

0

1 1 1 1

5 4 3 2kda kda kda kda kdaF wd z dz a b c g f
τ

ξ

τ ζ ζ ζ ζ ζ
Δ ⎛ ⎞= Φ = Φ = − + + + +⎜ ⎟⎝ ⎠∫ ∫ .

        (12.305) 
 

Note that the time step is so selected that the origin of the characteristic line is 
always within zΔ . This is the so called Courant-Friedrihs-Levi condition 

1
w

Cu
z

τΔ
= <

Δ
.      (12.306) 

Of course the pseudo-characteristic method allows violating this criterion for con-
stant velocity. On have simply to contain appropriate procedure for searching the 
cell where the characteristic line originates. 

 

For constant velocity the non homogeneous convection defined by Eq. (12.294) 
can be rewritten as 

( ) 0
f

wf
zτ

∂ ∂+ =
∂ ∂

.       (12.307) 
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We rewrite this equation in integral form for w > 0. The result is 

* 1 * * *
1 1

0 0

1z z
n

k kf dz f dz f w d f wd
z

τ τ τ τ

τ τ

τ τ
Δ Δ +Δ +Δ

+
− −

⎛ ⎞
′ ′− = −⎜ ⎟⎜ ⎟Δ ⎝ ⎠

∫ ∫ ∫ ∫ .   (12.308) 

Substituting wd dzτ =  in the left hand site integrals and setting as a lower and 
upper boundaries the departure and the end point of the corresponding 
characteristic lines at the both ends of the cell we obtain 

1

1 1

* 1 * * *
1 1

0 0

1 k

k k

zz z z
n

k k

z w z w

f dz f dz f w d f wd
z τ τ

τ τ
−

− −

ΔΔ Δ Δ
+

− −
Δ − Δ Δ − Δ

⎛ ⎞
′ ′⎜ ⎟− = −⎜ ⎟Δ ⎝ ⎠

∫ ∫ ∫ ∫ . (12.309) 

The general notation of this result is 

( ) ( )1
1 1

1 1n
av k av av kf F f z F f F F

z z
+

− −= + Δ − = + −
Δ Δ

.  (12.310) 

where the F´s are the fluxes already defined with Eqs. (12.301) and (12.305) de-
pending on the velocity direction, respectively. With other words, the profile in 
the new time plane between , 1h kz −  and hz  is the transported profile from the old 

time plane within the boundaries , 1 1h k kz w τ− −− Δ  and hz w τ− Δ . Having the new 

values f  and avf  we can repeat the time step as much times as necessary. 
 

Problem 9: Given the initial values for f  and avf  defining a quadratic profile as 

follows 

1 for 2 :16

0 elsewhere

k
f

=
= ,       (12.311) 

1 for 2 :15

0 elsewhereav

k
f

=
= ,      (12.312) 

transported by the velocity 

1w =        (12.313) 

in accordance with equation (12.294). The special step is 0.01zΔ = . The time step 
is 0.002τΔ = . Find the profile after 1000 time steps using the Tanaka’s et al. me-

thod. Check the conservation of the quantity 0
,

 '

14av k
all k s

f =∑ . Compare the com-

puted position of the quadratic wave with its expected analytical position. The 
analytical position is 2.01z =  corresponding to cell number 201k =  for f and 

202k =  for avf . 
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Fig. 12.15 Propagation of rectangular profile after 1000 time steps. Velocity 1w = , 
0.01zΔ = , 0.002τΔ =  

Solution to 9: The solution to 9 for the averaged values designated with CIP-CSL4 

is presented in Fig. 12.15. The quantity 2000
,

 '

14av k
all k s

f =∑  is perfectly conserved. The 

arrival position of the wave after 2s is also very well predicted. The sharp 
discontinuity is very well preserved. We observe around the sharp discontinuities 
the typical oscillations characteristic for all high order methods applied without 
special measures called limiters. 
 

Problem 10: Solve the problem 9 by using the limiters from problem 7. 
 

Solution to 10: The solution for f  is presented in Fig. 12.16 designated with CIP 

method and the IVA computer code limiters derived for problem 7. We see an ex-
cellent agreement. The corresponding values of avf  are presented in Fig. 12.15 for 

comparison. This result is again better then CIP-CSL4. 
 

Problem 11: Given the model equation 

( )f
wf

z
μ

τ
∂ ∂+ =
∂ ∂

.      (12.314) 

Design a CIP-CSL4 method for solving it numerically by using time splitting and 
the method proposed by Xiao et al. (2004). 
 

Solution to 11: We first rewrite the model equation in non conservative form, 
f f w

w f
z z

μ
τ
∂ ∂ ∂+ = −
∂ ∂ ∂

,     (12.315) 



560      12 Numerical solution methods for multi-phase flow problems 

1,8 1,9 2,0 2,1 2,2 2,3

0,0

0,2

0,4

0,6

0,8

1,0

 

  CIP+IVA limiters
 exact

f

z
h

 
Fig. 12.16 Propagation of rectangular profile after 1000 time steps. Velocity 1w = , 

0.01zΔ = , 0.002τΔ = , Kolev (2005). Conservation error equal to zero. 

and then split it into two parts: the homogeneous advection part 

0
f f

w
zτ

∂ ∂+ =
∂ ∂

,      (12.316) 

and the source part 

f w
f

z
μ

τ
∂ ∂= −
∂ ∂

,      (12.317) 

in such a way that their sum results in the original equation. The approximate so-
lution for 0w >  is then 

( )1 * 1 * 1
1 1 1 1 1

0 0

1

2
n n n n

k k k k k

w
f f d f f d

z

τ τ ∂μ τ τ
∂

Δ Δ
+ + +
− − − − −= + − +∫ ∫ .  (12.318) 

For 0w <  we have 

( )1 * 1 * 1
1 1 1 1

0 0

1

2
n n n n

k k k k

w
f f d f f d

z

τ τ ∂μ τ τ
∂

Δ Δ
+ + +
− − − −= + − +∫ ∫ ,    (12.319) 

The intermediate solution designated with * are obtained for the homogeneous 
part as already discussed. This includes also the derivatives and the fluxes. The in-
tegrals are computed by Xiao et al. (2004), using the donor-cell concept.  

( )* 1 * 1
1 1

1

2
n n

k k

w
d w w w w

z z

τ τ

τ

ττ
+Δ

+ +
− −

∂ Δ′ = − + −
∂ Δ∫    for   0w > ,  (12.320) 
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( )* 1 * 1
1 1

1

1

2
n n

k k
k

w
d w w w w

z z

τ τ

τ

ττ
+Δ

+ +
+ +

+

∂ Δ′ = − + −
∂ Δ∫    for   0w < . (12.321) 

Then the integration of original model equation is used to obtain the solutions for 
the averaged values  

( )1
1

0

1n
av av kf f F F d

z

τ

μ τ
Δ

+
−= + − +

Δ ∫ .    (12.322) 

To obtain the conservation equation controlling the change of the derivatives we 
differentiate Eq. (12.314) with respect to the spatial coordinate. The result written 
in non conservative form is then 

2
g g w w

w f g
z z z z z

μ
τ
∂ ∂ ∂ ∂ ∂ ∂+ = − −
∂ ∂ ∂ ∂ ∂ ∂

.    (12.323) 

Again using time splitting the solution is combination of the advection part and 
the non advection part 

* 1 3 2
1 1 1 1 24 3 2n

k k k k kg a b c gξ ξ ξ+
− − − − −= + + + ,    (12.324) 

( ) ( )1 * 1 * 1 * 11
1 1 1 1 1 1

0 0 0

1

2
n n n n n nk
k k k k k k

w w
g g d f f d g g d

z z z z

τ τ τμ τ τ τ
Δ Δ Δ

+ + + +−
− − − − − −

∂ ∂ ∂ ∂⎛ ⎞= + − + − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠∫ ∫ ∫ ,

        (12.325) 

* * * *
1 1 2 1 1 2

1 1 10

k k k k k k

k k k

w w w w w w w ww
d

z z z z z z z z

τ ττ
Δ

− − − − − −

+ − −

⎛ ⎞− − − −∂ ∂ Δ⎛ ⎞ = − + −⎜ ⎟⎜ ⎟∂ ∂ Δ + Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠
∫ ,

        (12.326) 

( )1
1

10

2k
k

k

d
z z z

τ μ ττ μ μ
Δ

−
+

+

∂ Δ= +
∂ Δ + Δ∫ ,    (12.327) 

for 0w > , and 

* 1 3 2 2
1 14 3 3n

k kg a b c gξ ξ ξ+
− −= + + +     (12.328) 

( ) ( )1 * 1 * 1 * 1
1 1 1 1 1 1

0 0 0

1

2
n n n n n n
k k k k k k

w w
g g d f f d g g d

z z z z

τ τ τμ τ τ τ
Δ Δ Δ

+ + + +
− − − − − −

∂ ∂ ∂ ∂⎛ ⎞= + − + − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠∫ ∫ ∫ ,

        (12.329) 

( )1
10

2 k
k

d
z z z

τ μ ττ μ μ
Δ

+
+

∂ Δ= +
∂ Δ + Δ∫ ,    (12.330) 

for 0w < . For computation of the second derivatives at the boundaries the inter-
nal neighbors have to be uses as an approximation. 
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Problem 12. Given the mass conservation equation for multi-phase flow 

( ) ( )l l v l l l v l

∂ α ρ γ α ρ γ γ μ
∂τ

+∇ ⋅ =V .    (12.331) 

Derive an expression for the convective velocity of the volume fraction for a semi-
conservative form. Write the corresponding conservative form also. 

 

Solution to 12: Using the chain rule we differentiate the two products of the left 
hand site. Then we divide by the density and the volume porosity. Taking into ac-
count that  

lnl
l

l

ρ ρ
ρ
∂

= ∂  ,       (12.332) 

lnv
v

v

γ γ
γ
∂

= ∂  ,       (12.333) 

substituting  

l
l

v

γ
γ

=
V

V ,       (12.334) 

and after some rearrangements we finally obtain  

( ) ln
lnl l v l

l ll l v l
l

∂α μ ∂ γ ρα α γ ρ
∂τ ρ ∂τ

⎛ ⎞+∇ ⋅ = − + ⋅∇⎜ ⎟
⎝ ⎠

V V ,  (12.335) 

or 

ln
lnl l v l

l l ll l v l
l

∂α μ ∂ γ ρα α γ ρ
∂τ ρ ∂τ

⎛ ⎞+ ⋅∇ = − + ⋅∇ +∇ ⋅⎜ ⎟
⎝ ⎠

V V V . (12.336) 

or 

lnl l v l
ll

l

d d

d d

α μ γ ρα
τ ρ τ

⎛ ⎞= − +∇⋅⎜ ⎟
⎝ ⎠

V ,    (12.337) 

with the characteristic velocity lV , which is the real convection velocity of the 
volume fraction. Designing the semi-Lagrangian splitting for the cell boundary 
volume fractions we obtain 

*
,

0

'
l

z
z z n l

l l z w z
l

d
τ

τ
μα α τ
ρ

Δ

Δ − Δ= + ∫  for 0z
lw > ,    (12.338)  

*
,

0

'
l

z
z z n l

l l w z
l

d
τ

τ
μα α τ
ρ

Δ

− Δ= + ∫  for 0z
lw < ,    (12.339) 
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( )1 * *

0

ln1

2

z z
zz n z z z v l

ll l l l

d
d

d

τ γ ρα α α α τ
τ

Δ
+ ⎛ ⎞
= − + +∇ ⋅⎜ ⎟

⎝ ⎠
∫ V ,  (12.340) 

( )1
, 1

0

1
'n l

l l k
l

F F d
z

τ

α α
μα α τ
ρ

Δ
+

−= + − +
Δ ∫  

( )1

0

ln1
ln

2
n v l

ll l v l d
τ ∂ γ ρα α γ ρ τ

∂τ

Δ
+ ⎛ ⎞− + + ⋅∇⎜ ⎟

⎝ ⎠∫ V    (12.341) 

The same procedure can be applied to obtain conservative and non conservative 
equations with respect to l lα ρ . The result is 

( ) ( ) ( ) ( )ln lnl ll l l l l l l v v

∂ ∂α ρ α ρ μ α ρ γ γ
∂τ ∂τ

⎡ ⎤+∇ ⋅ = − + ∇ ⋅⎢ ⎥⎣ ⎦
V V , (12.342) 

( ) ( )ln ll l l l l v

d d

d d
α ρ μ α ρ γ

τ τ
⎡ ⎤= − +∇ ⋅⎢ ⎥⎣ ⎦

V ,   (12.343) 

where the total derivatives of the last equation are along the curve defined by 

ldz dτ =V . 
 

Problem 13: Design a concept for pipe flow for definition of the surface perme-
abilities and the volume porosities. 

 

Solution to 13: One of the possible solutions is the following. The axis of the pipe 
is discretized on mk non equidistant segments with length kzΔ . At the centre of 

each segment we define a volumetric porosity ,cv kγ . At the beginning and the end 

of each segment k we define surface permeabilities ,z kγ  and , 1z kγ + . For conven-

ience we will omit the subscript notation except it is different from k. We require 
also an additional set of volumetric porosities positioned at the cell boundaries. 
One thinkable approach is 

, 1 1

1

vc k k vc
v

k

z z

z z

γ γ
γ − −

−

Δ + Δ
=

Δ + Δ
,     (12.344) 

which is exactly the volume porosity of a staggered cell formed between two 
centres. There are solution methods that require the surface permeability at the 
centre of the cell. In this case a good approximation may be 

zc vcγ γ= .       (12.345) 

For the boundaries we have ,1 ,1v vcγ γ= , , 1 ,m mv k vc kγ γ+ = . 
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Problem 14.  Given the momentum conservation equation for multiphase flow 

( ) ( )l l l v l l l l z l z v z

p
w w w f

z z

∂ ∂ ∂α ρ γ α ρ γ α γ γ
∂τ ∂ ∂

+ + = .  (12.346) 

Write the form appropriate to use semi-Lagrangian methods with respect to the 
volume flux.  

 

Solution to 14: We introduce the velocity V  and rearrange to obtain the conserv-
ative form with respect to the field specific momentum 

( ) ( ) ln
lnvz

l l l l l l l l z l l l l v
v

p
w wV f w V

z z z

∂ γγ∂ ∂ ∂ ∂α ρ α ρ α α ρ γ
∂τ ∂ γ ∂ ∂τ ∂

⎛ ⎞+ + = − +⎜ ⎟⎝ ⎠
.

        (12.347) 

The corresponding non conservative form is  

( ) ( ) z
l l l l l l l l

v

p
w V w

z z

γ∂ ∂ ∂α ρ α ρ α
∂τ ∂ γ ∂

+ +  

ln
lnv l

z l l l l v

V
f w V

z z

∂ γ ∂∂α ρ γ
∂τ ∂ ∂

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
.   (12.348) 

The pseudo-canonical form along the characteristic line defined by dz d Vτ =  is 

then 

( ) ln v lz
l l l l z l l l

v

d Vd p
w f w

d z d z

γ ∂γ ∂α ρ α α ρ
τ γ ∂ τ ∂

⎛ ⎞
+ = − +⎜ ⎟

⎝ ⎠
.  (12.349) 

The pseudo-canonical form with respect to the volume flux is 

( ) lnl v l lz z
l l l l

l v l

d Vfd p
w w

d z d z

α γ ρ ∂γ ∂α α
τ ρ γ ∂ ρ τ ∂

⎛ ⎞
+ = − +⎜ ⎟

⎝ ⎠
.  (12.350) 

The last two differential expressions can be replaced using Eq. (12.337) resulting in 

( ) l l lz z
l l l

l v l l

dfd p
w w

d z d

α α μγ ∂α
τ ρ γ ∂ ρ τ ρ

⎛ ⎞
+ = + −⎜ ⎟

⎝ ⎠
.   (12.351) 

Using semil-Lagrangian operator splitting method we can compute the intermedi-
ate cell boundary values as follows 

( ) ( )
1

*

0

'
k l

l lz
l l l l lz V

l l

df
w w w d

d

τ

τ

α μα α τ
ρ τ ρ−

Δ

Δ − Δ

⎡ ⎤⎛ ⎞
= + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫ , for 0lw > , (12.352) 

and  
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( ) ( )*

0

'
l

l lz
l l l l lV

l l

df
w w w d

d

τ

τ

α μα α τ
ρ τ ρ

Δ

− Δ

⎡ ⎤⎛ ⎞
= + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫ , for 0lw < . (12.353) 

In a second step we have for both boundaries 

( ) ( )* l z
l l l l

l v

p
w w

z

α γ ∂α α τ
ρ γ ∂

= − Δ ,    (12.354) 

( ) ( )*1 1
11 1

l z
l l l lk k

kl vk k

p
w w

z

α γ ∂α α τ
ρ γ ∂− −

−− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
.  (12.355) 

Problem 15.  Given are maxl  mass conservation equations for multiphase flow 

( ) ( )l l v l l l v l

∂ α ρ γ α ρ γ γ μ
∂τ

+∇ ⋅ =V .    (12.356) 

Combine the equations in such a way to obtain one equation in which the time de-
rivative of the volume fraction is eliminated. Use the differential form of the state 
equation ( ), ,l l l l ilp s Cρ ρ=  to obtain Poison-like equation for multiphase flow. 

 

Solution to 15: We first differentiate using the chain rule to obtain 

( ) ( )1l v l l
v l l v l l l l l v

l l

∂α ∂γ ∂ρ μγ α α γ α γ ρ α γ γ
∂τ ∂τ ρ ∂τ ρ

⎡ ⎤+ + + ⋅∇ + ∇ ⋅ =⎢ ⎥⎣ ⎦
V V . (12.357) 

Then using the differential form of the state equation we replace all density 
derivatives with their equals. The terms not containing pressure derivatives are 
putted in the right hand site. The result is  

( ) ( )2
l v l

v l v l l l l
l l

p
p D

a

∂α ∂γ α ∂γ α γ γ α γ α
∂τ ∂τ ∂τρ

⎡ ⎤+ + + ⋅∇ +∇ ⋅ =⎢ ⎥⎣ ⎦
V V . (12.358) 

Dividing by the volumetric porosity, adding all the mass conservation equations, 

and having in mind that 
max

1

1
l

l
l

α
=

=∑ , and therefore 
max

1

0
l

l
l

dα
=

=∑  we obtain the so 

called volume conservation equation 

( ) ( )
max max max

2 2
1 1 1

l l l
v l v

l l l l
l l ll l

p
p D

a a

γ α ∂γ∂ γ α γ α
ρ ∂τ ρ ∂τ= = =

+ ⋅∇ +∇ ⋅ = −∑ ∑ ∑V V . (12.359) 

Multiplying both sites by 2
vaρ γ  we finally obtain 

( )max max
2 2

1 1

ln1l l
v

lp l l
l lv

p
p a a D

∂ γ∂ ρ α ρ α
∂τ γ ∂τ= =

⎛ ⎞
+ ⋅∇ + ∇ ⋅ = −⎜ ⎟

⎝ ⎠
∑ ∑V V . (12.360) 
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We may call 

max
2

2
1

l
l l

p
l vl l

a
a

α γρ
γρ=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ V

V ,     (12.361) 

pressure pseudo-convection velocity.  
 

Problem 16: Given the volume conservation equation (12.361). Find a way to 
couple its discretized form with the discerized form of the momentum equations. 

 

Solution to 16: If we define pressure v p  at the centre of each cell, we may con-

sider as possible dicretization of the volume flux 

max max

2
1 11

ln1 1 1l lv
v vz z

p l l l l l
l lv v vk

p
p w w D

za

∂ γγ γ∂ α α α
∂τ γ γ γ ∂τρ = =−

⎛ ⎞⎛ ⎞⎛ ⎞
+ ⋅∇ + − = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑V .

        (12.362) 

Using Eqs. (12.354) and (12.355) we express the volume fluxes at the new time 
plane with their equals. The result is 

2

1 v
v

p

p
p

a

∂
∂τρ

⎛ ⎞
+ ⋅∇⎜ ⎟

⎝ ⎠
V

max
2

1

lz
lz

lv l

p

z z

αγτ ∂
γ ∂ ρ=

⎛ ⎞ ⎛ ⎞Δ− ⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠
∑  

max
2

111 1

lz
lz

lv lkk k

p

z z

αγτ ∂
γ ∂ ρ=−− −

⎛ ⎞ ⎛ ⎞⎛ ⎞Δ+ ⎜ ⎟ ⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  

( ) ( )
max max

* *

1
1 1 1

ln1 1l l
v z z

l l l l l k
l lv v v k

D w w
z

∂ γ γ γα α α
γ ∂τ γ γ−

= = −

⎡ ⎤⎛ ⎞
= − − −⎢ ⎥⎜ ⎟Δ ⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ . (12.363) 

For the descretization of the spatial derivatives of the pressures we may use 
explicit, implicit or semi-implicit methods. Let us start with an explicit dicreti-
zation. The result is 

1

2

1 v n v
v

p

p p
p

a τρ

+⎛ ⎞−
+ ⋅∇⎜ ⎟Δ⎝ ⎠

V  

max
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1

11

2
v v l

k lz

lv k l

p p

z z z

αγτ
γ ρ

+

=+

⎛ ⎞ ⎛ ⎞−Δ− ⎜ ⎟ ⎜ ⎟Δ Δ + Δ⎝ ⎠ ⎝ ⎠
∑  

max
2

1

111 1

2
v v l

k lz

lv k lk k

p p

z z z

αγτ
γ ρ

−

=−− −

⎛ ⎞ ⎛ ⎞−Δ+ ⎜ ⎟ ⎜ ⎟Δ Δ + Δ⎝ ⎠ ⎝ ⎠
∑  
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( ) ( )
max max1

* *

1
1 1 1

1 1 1
ln

nl l
v z z

l l l l l k
l lv v vv k

D w w
z

γ γ γα α α
γ τ γ γγ

+

−
= = −

⎡ ⎤⎛ ⎞
= − − −⎢ ⎥⎜ ⎟Δ Δ ⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ . (12.364) 

Using the IVA-donor cell formula for first order explicit discretization of the term 
v

p

p
w

z

∂
∂

, 

( )
v

pv v
p p

wp
w w p p

z z z

∂∂ ∂
∂ ∂ ∂

= −  

( )( ) ( )( )5 1 1 6 1

1 1v v v v
p p k pk p kw p p w p p

z z
ξ ξ− + − − −= − − − − −

Δ Δ
, (12.365) 

where ( ) 5

1
1

2 p psign w ξ −
⎡ ⎤− =⎣ ⎦  and ( ), 1 6

1
1

2 p k psign w ξ− −
⎡ ⎤+ =⎣ ⎦  we obtain 

( ) ( ) ( )
max
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1
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1 1 2 l
v n v vlz
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lk v l

p w p p
z z za a

αγτ τξ
γ ρρ ρ

+
− +

=+

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ Δ⎢ ⎥− − + −⎜ ⎟ ⎜ ⎟Δ Δ + Δ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  

( ) ( ) ( )
max

2

1 6 12
11 1 1

1 2 l
v vlz

pk p k
lk v lk k

w p p
z z za

αγτ τξ
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=− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ Δ⎢ ⎥− + −⎜ ⎟ ⎜ ⎟Δ Δ + Δ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  

( ) ( )
max max1

* *

2 1
1 1 1

1
ln

nl lv
v z z

l l l l l k
l lv v vv k

p
D w w

za

γ γ γττ α α α
γ γ γρ γ

+

−
= = −

⎡ ⎤⎛ ⎞Δ= + Δ − − −⎢ ⎥⎜ ⎟Δ ⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ . 

        (12.366) 

Substituting in the above equation with 

( ) ( )
max

2
2

1 5
11

2 l
lz

k p p
lk v l

a
c w

z z z z

αγτ ρξ τ
γ ρ+ −

=+

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ⎢ ⎥= − − + Δ⎜ ⎟ ⎜ ⎟Δ Δ Δ + Δ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ , (12.367) 

( ) ( )
max

2
2

1 1 6
11 1 1

2 l
lz

k pk p
lk v lk k

a
c w

z z z z

αγτ ρξ τ
γ ρ− − −

=− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ⎢ ⎥= − + Δ⎜ ⎟ ⎜ ⎟Δ Δ Δ + Δ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ , (12.368) 

( ) ( )
max max1

* *2

1
1 1 1

1
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nl l
v v z z

l l l l l k
l lv v vv k

D p a D w w
z

γ γ γτρ τ α α α
γ γ γγ

+

−
= = −

⎧ ⎫⎡ ⎤⎛ ⎞Δ⎪ ⎪= + Δ − − −⎢ ⎥⎜ ⎟⎨ ⎬Δ ⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑ ,

        (12.369) 

we obtain 
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( ) ( )1
1 1 1 1

v n v v v v
k k k kp c p p c p p D+
+ + − −+ − + − = .   (12.370) 

For implicit discretization of the pressure gradients we have 

( )1 1 1
1 1 1 1 1 11v n v n v n

k k k k k kc p c c p c p D+ + +
− − + − + ++ − − + = .   (12.371) 

This is the pressure equation similar to the discretized Poison equation for single 
phase flow. 
 

Problem 17: Given the system of algebraic equations  

1 1k k k k k k kc p c p c p d− − + ++ + =      (12.372) 

for a pipe segment defined by 1, 1in outk k k= + −  internal cells. Find for all cells 
the dependence of a type 

* * * *
1ink k k k k k kc p c p c p d− + ++ + = .     (12.373) 

This means that each cell pressure depend on the inlet pressure 
inkp  and the right 

neighbor pressure 1kp + .  
 

Solution to 17: For the first real cell we have 

1, 1 1 1, 2 1in in in in in in ink k k k k k kc p c p c p d+ − + + + + + ++ + = ,   (12.374) 

and therefore *
1, 1,in ink kc c+ − + −= , *

1 1in ink kc c+ += , *
1, 1,in ink kc c+ + + +=  and *

1 1in ink kd d+ += . The 

task then is reduced to eliminating 1kp −  from the following system 

* * * *
1, 1 1 1, 1ink k k k k k kc p c p c p d− − − − − + −+ + =     (12.375) 

1 1k k k k k k kc p c p c p d− − + ++ + =      (12.376) 

resulting in 

( )* * * * * *
1, 1 1, 1 1 1 1ink k k k k k k k k k k k k k kc c p c c c c p c c p c d c d− − − − − − + − + + − − −− + − + = −  

with the recursion 
* *

1,k k kc c c− − − −= − , * * *
1 1,k k k k kc c c c c− − − += − , * *

1k k kc c c+ − += , * * *
1 1k k k k kd c d c d− − −= − . 

        (12.377) 

For the last real cells we have 
* * * *

1, 1 1 1, 1out in out out out out outk k k k k k kc p c p c p d− − − − − + −+ + = .   (12.378) 

Therefore for given outlet pressure next left pressure is analytically computed. This 
is the so called forwards elimination pass of the three diagonal solution algorithms.  
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Problem 18: Given the system of algebraic equations as in the previous case. Find 
for all cells the dependence of a type 

** ** ** **
1 outk k k k k k kc p c p c p d− − ++ + = .     (12.379) 

This means that each cell pressure depend on the outlet pressure 
outkp  and the left 

neighbor pressure 1kp − .  
 

Solution to 18: The pressure equation for the real cell having its neighbor outk  

gives the initial values for the recursive coefficients **
1, 1,out outk kc c− − − −= , 

**
1 1out outk kc c− −= , **

1, 1,out outk kc c− + − += , **
1 1out outk kd d− −= . Then eliminating 1kp +  from the 

system 

** ** ** **
1, 1 1 1, 1outk k k k k k kc p c p c p d+ − + + + + −+ + = ,    (12.380) 

1 1k k k k k k kc p c p c p d− − + ++ + = ,     (12.381) 

results in 

( )** ** ** ** ** **
1 1 1 1, 1, 1 1outk k k k k k k k k k k k k k kc c p c c c c p c c p c d c d+ − − + + − + + + −+ − − = − ,     (12.382) 

and therefore 

** **
1k kc c− += , ** ** **

1 1,k k k k kc c c c c+ + −= − , ** **
1,k k kc c c+ + += − , ** ** **

1 1k k k k kd c d c d+ −= − . 

        (12.383) 

Therefore for given outlet pressure next left pressure is analytically computed. 
 

Problem 19: Given the system of algebraic equations as in the previous two cases. 
Find the dependence of the pressure in any cells from the inlet and outlet pressure. 
 

Solution to 19: Writing Eqs. (12.373) and (12.380) 

* * * *
1, 1 1 1, 1ink k k k k k kc p c p c p d− − − − − + −+ + = , 

** ** ** **
1 outk k k k k k kc p c p c p d− − ++ + = , 

and eliminating the 1kp −  results in  

** * * ** ** * * **
1 1 1, 1

* ** * **
1, 1

in outk k k k k k k k k k

k
k k k k

c d c d c c p c c p
p

c c c c
− − − − − − − +

− + − −

− − +
=

−
.   (12.384) 

The solutions to the problems 17, 18 and 19 can be used to design variety of 
methods for solving algebraic systems for flows in pipe networks in which k may be 
the real cell selected as a knot. In any case, by iterative solutions of the algebraic 
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systems for many pipes, it is recommendable to rank the pipes depending of the 
number of knots they possess and to solve the equations for each pipe following this 
order. So the new information propagates faster in the iteration process. 

12.17 Pipe networks: some basic definitions 

The methods for integration of the systems of partial differential equations 
governing the multi phase flows in 3D presented in the previous Sections can be 
used also for describing the flow in pipe networks. The system takes a very simple 
form. Usually the z-direction components of all the equations are necessary in 
differential and in finite difference form with some small modifications for the 
change of the axis angle. In addition coupling through the so called knots has to be 
mathematically defined. We call the pipe network flow 1.5-dimensional flow 
rather then one dimensional, because of the cross connections among the pipes. It 
is very important before attempting to design a new computational model for 
flows in pipe networks to formally describe the pipe network in quantitative 
characteristics. This is the subject of this section. 

12.17.1 Pipes 

A pipe is a one-dimensional flow channel, of which the axis runs arbitrarily 
through three-dimensional space – see Fig. 12.17.  

 

x y

z

(0,0,0)

characteristic points

pipe coordinate system pipe sections

 

Fig. 12.17 Pipe definition: coordinate system, characteristic points, pipe sections 

At specified characteristic points the pipe may contain 
 

a) elbows,  
b) reductions and expansions,  
c) components such as valves, pumps etc.  
 

or may experience sudden changes in 
 

a) the pipe inner diameter defining the flow cross section, or in 
b) the pipe hydraulic diameter, 
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c) the pipe material, or in 
d) the wall thickness or in 
e) the roughness, 
 

or 
 

d) may be interconnected with the beginning or the end of other pipes and form a knot. 
The coordinates of all these characteristic points define the axis of the pipe in 
the space.  
 

The characteristic points divide the pipe into straight sections, where some specif-
ic pipe attributes like 

 

a) inner diameter,  
b) hydraulic diameter,  
c) wall thickness,  
d) the roughness and  
e) the material 
 

of the pipe are constant – see Fig. 12.18. 
 

inner diameter

wall thickness

roughnessmaterial

wetted perimeter  
 

hydraulic diameter
flow cross tion

wetted perimeter
=

⋅4 sec  

Fig. 12.18 Definitions of the pipe attributes: inner diameter defining the flow cross section, 
hydraulic diameter, material, wall thickness, roughness 

Pipes are identified by integer numbers ranging from 1 to the total number of pipes 
inside the network and for convenience by a text identifier - name. This name has to 
be unique throughout the network. Sometimes it may happen that pipes have exactly 
the same geometry and run parallel in space, i.e. they are of the same type. It is not 
necessary to model each of them separately. The resulting flow is instead computed 
by multiplying the single pipe flow by the number of parallel pipes.  

In addition, each pipe has its own normalizing diameter defining the 
normalizing flow area. All pipe flow cross section areas are divided by the 
normalizing cross section for the pipe. The results are the so called flow 
permeabilities defining the flow cross section. Describing the portion of the cross 
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section available for the flow is the technique used in the IVA code series and is 
applied in the three-dimensional analysis as well as in the one-dimensional 
network analysis. 

12.17.2 Axis in the space 

Before a pipe can be inserted into the network, its geometry has to be defined. 
The pipe is usually defined by an identifier name and the coordinates of its 
characteristic points.  

( ), ,p p px y z
 

The pipe is defined in its own rectangular left oriented coordinate system  
(Fig. 12.17).  The coordinate system is usually attached to the beginning of the pipe. 
That means every pipe starts at the point ( )0,0,0 in its own coordinate system. The 

coordinates of every point of interest called characteristic points, such as elbows, 
components, area changes or changes in material, are defined with respect to this 
point (relative coordinates). This gives an opportunity to create libraries with 
standardized pipes. Defining pipes in absolute coordinates is also possible. In this 
case the coordinate system is not necessarily connected to the pipe start point. 

The positive orientation of the pipe axis is defined through the order of the cha-
racteristic points from the start point to the pipe end. This direction corresponds to 
the increasing cell indices of the discrete control volumes created after the pipe 
definition for computational analysis.  

Two characteristic angles are specified (see Fig. 12.19) for use internally in 
computer codes. The first one,  

( ) ( )1, 1, 1, 1,arccos k k k k k k k kθ − + − +
⎡ ⎤= ⋅⎣ ⎦r r r r ,  

is called the deviation angle. Here k-1, k and k+1 define three sequential 
characteristic points and r’s are the vectors between them. This is the angle of a 
pipe section defined as the deviation from the positive oriented axis of the 
previous pipe section. The second one, 

( )1 1,arccos k k k kz zϕ + +
⎡ ⎤= −⎣ ⎦r , 

is called inclination angle (polar angle). 
Here k and k + 1 are the two end ponts of the segment.  The inclination angle is 
defined as the deviation of the positive oriented section axis with respect to the 
upwards oriented vertical direction (the negative gravity direction). 

The length of each pipe section, 

( ) ( ) ( )1, 1 1 1k k k k k k k kx x y y z z+ + + += − + − + −r , 
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z

ϕ

inclination angle (polar angle)

deviation angle

θ

 

Fig. 12.19 Definition of deviation and inclination angles 

and its characteristic angles can then be computed automatically with the already 
specified information. Both angles and the section length are basic geometrical 
inputs for the definition of the mathematical flow description problem. 

12.17.3 Diameters of pipe sections 

A pipe section is a part of the pipe being between two neighboring characteristic 
points, see Fig. 12.17. The pipe section is per definition a straight piece of a pipe. 
For every pipe section 

 

a) the pipe inner diameter defining the flow cross section,  
b) the pipe hydraulic diameter, 
c) the pipe material, 
d) the wall thickness and 
e) the roughness. 

 

have to be defined, see Fig. 12.18. 
The default for the inner diameter is the normalizing diameter of the pipe.  
The hydraulic diameter of a flow channel is defined as 4 times the flow cross 

section divided by the wetted perimeter corresponding to this cross section. By 
default the hydraulic diameter is equal to the inner diameter. That means the pipes 
are assumed by default to be circular tubes.  

Examples for default definitions are: the material is stainless steel, the wall 
thickness is 0.1 times the inner diameter, and the roughness is 0.00004 m. These 
values can then be changed by per input. 

12.17.4 Reductions 

A smooth change in the pipe inner diameter or hydraulic diameter is expressed 
through a form piece called reduction – see Fig. 12.20. The reduction has a 
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specified length and is centered on the corresponding characteristic point. At its 
ends it has the diameters of the adjacent pipe sections and the diameter varies 
linearly between the two ends. On the contrary, an abrupt area change is 
expressed exactly through the characteristic point itself. 

 

length

characteristic point

 

Fig. 12.20 Definition of reductions 

12.17.5 Elbows 

Elbows are associated with points, where the pipe segment axis changes its direc-
tion in space – see Fig. 12.21. The flow axis coincides before and after the bend 
with the pipe segment axis. Note that the cross point of these axes is the characte-
ristic point with which an elbow is associated.  

The flow axis of an elbow possesses a bend radius which is in fact the curvature 
radius of the flow axis. Example for default value for the bend radius is 1.5 times 
the inner diameter of the preceding section. This value can be then changed by in-
put. For example characteristic points which are not associated with an elbow, 
may receive a very large default value of the bend radius – 100 m. 

Therefore a pipe section possesses an elbow on one of its ends, if the deviation 
angle is greater than zero and the bend radius of the corresponding characteristic 
point is less than the specified default. 

Note that in accordance with the above definition the start point or the end 
point of a pipe can never be an elbow. 

θ

θ

characteristic point

deviation anglebend radius

 
Fig. 12.21 Definition of elbows 
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12.17.6 Creating a library of pipes 

After the pipe data have been specified correctly, the pipe definition has to be au-
tomatically saved in a file. A pipe library is a file system containing an arbitrary 
number of pipe defining files. Creating a library of files “pipes” allows one later to 
simply interconnect them and use some of them repeatedly for different problems.  

12.17.7 Sub system network 

A sub system network consists of a number of pipes already defined in the pipe 
library which are linked together through knots (Fig. 12.22). The sub system 
network is defined in its own coordinate system having default coordinates 

( )0,0,0 . 

The sub system network definition contains also 
 

a) a list of all involved pipes and  
b) the shift of the particular pipe attached coordinate system in the new sub sys-

tem coordinate system.   
 

Note: a sub system network can also consist of only one pipe. 
 

x
y

z

(0,0,0)

xi yi

zi

xk
yk

zk
(Δxi, Δyi, Δzi)

(Δxk, Δyk, Δzk)

knot

pipe i

pipe k

sub system coordinate system  

Fig. 12.22 Definition of sub system network 

Data of any pipe in the sub system network list should be allowed to be changed if 
necessary. Earlier defined pipes can be loaded into the list. Pipes can also be 
removed from the list. 

Once the list of pipes necessary to form the network its complete, the pipes can 
be linked together by editing coordinates of the starting points. 

( )0 0 0, ,x y z
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They act as an offset to the particular pipe attached coordinate system. The pipe 
internal coordinate system itself is not affected. 

12.17.8 Discretization of pipes 

For the numerical computation of the system of differential equations, we use 
usually a finite volume technique to discretize the system. Therefore each pipe is 
divided into finite control volumes, at whose centers the flow properties like 
pressure, temperature, mass etc. are defined. We call these the real cells of the 
pipe. They are numbered with increasing cell indices e.g. i. The increasing cell 
indices define explicitly the positive flow direction as illustrated in Fig. 12.23. The 
staggered grid method implies a second set of cells, called the momentum cells, 
e.g. k. These are used for the discretization of the momentum equations and are 
located at the upper boundary of the corresponding real cells. The velocity is 
defined for these momentum cells. In addition, two auxiliary cells with zero length 
are introduced: one representing the pipe inlet and the other representing the pipe 
outlet. These two are needed to set proper boundary conditions at the pipe edges. 
The relation between the real cell numbering and the computational cell 
numbering is simply k = i + 2(n - 1) + 1, where n is the consecutive number of 
pipes. It is wise to store the computational cell numbers for the entrance and exit 
cells of each pipe. Then the cycles can be organized by visiting in each pipe the 
cells from the entrance to the exit. 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

P ip e  1 P ip e  2

re a l c e l ls b o u n d a ry  c e lls

 

Fig. 12.23 Pipes 

Equidistant discretization is recommended but not always possible in technical 
systems for which the exact positioning of bents, valves etc. is important. A 
remedy is to try to dicretize each segment equidistantly. 

12.17.9 Knots 

Several pipes can be linked together through knots to design a pipe network. The 
knots are arbitrarily numbered with indices ranging from 1 to the total number of 
knots inside the network. The flow passes through the auxiliary cells of the pipes 
starting or ending at the knot. The pipes starting out of the knot are called knot 
outputs; the pipes ending into the knot are called knot inputs. The auxiliary cells 
represent the openings of the knot into the pipe. They are assumed identical with 
the knot cell and therefore have the same cell properties. A good knot model 
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provides a momentum transfer from one pipe into another. Therefore the angles 
between the pipes have to be specified. The inclination angles of the pipes 
connected through the knot are defined as the deviation from the positive direction 
of the knot cell, regardless of whether the corresponding pipe is a knot input or a 
knot output (see also Fig. 12.24). 

How to recognize knots? 
A knot must be a characteristic point belonging to one of the pipes included in 

the sub system satisfying the following conditions:  
If one of the ends of at least one other pipe coincides with a characteristic point 

of the pipe, this characteristic point is identified also as a knot. The same is valid, 
if one of the ends of the pipe itself coincides with a characteristic point of the pipe 
different from this end. 

pipe i
knot input

pipe j
knot input

pipe k
knot output

αk

αj

αi

deviation angle

 

Fig. 12.24 Definition of knots 

Thus, inspecting all of the characteristic points of one pipe and checking whether 
the first or the last points of other pipes - or of the same pipe, if the characteristic 
point is different from this end - coincide with it, we identify whether knots are 
present in this pipe or not. If during this search pipe ends of other pipes are identi-
fied to belong to a knot, they are marked as “already belongs to knot”.  

The procedure is repeated for all pipes successively in order of their appearance 
in the network list. The pipe ends already having the mark “already belongs to 
knot” are excluded from the further checks. Thus, all participating pipes are vi-
sited. Finally the total number of knots is identified. The knots are numbered from 
one to their total number in the order in which they are determined. 

Additional information is derived from the above specified knot data for the 
computational analysis by answering the following questions: How many pipes 
enter the knot? Which pipes are these? How many pipes exit the knot? Which 
pipes are these? What are the inclination angles of the entering pipes with respect 
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to the positive oriented axis pointing to the knot of the pipe which the knot 
belongs to? What are the inclination angles of the exiting pipes with respect to the 
positive oriented axis pointing to the knot of the pipe which the knot belongs to? 
The pipe to which the knot belongs is excluded from this questionnaire. 

The inclination angles of the entering and exiting pipes with respect to the 
positive oriented axis pointing to the knot of the pipe which the knot belongs to, 
are computed automatically. If the characteristic point identified as a knot belongs 
to a change in direction, the angle is computed with respect to the section before 
the characteristic point. In this case the direction change is not considered as an 
elbow, but as a sharp kink (see Fig. 12.23). 

So, the network definition can be then saved. A prior defined network 
definition file can be also loaded for modification or check if required. The 
strategy described in Section 12.16 was programmed by Iris Roloff-Bock in the 
graphical preprocessing system NETGEN and later transformed into SONIA 
graphical preprocessing module by Tony Chen. With both systems a convenient 
way is provided for defining a network flow problems for the IVA computer code 
system. 

Appendix 12.1 Definitions applicable to discretization of the mass 
conservation equations 

Following Section 12.5 the first order donor-cell discretized mass conservation 
equation (12.3) for each velocity field is 
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( )1
0

2 v va lγ γ μ− + =  

Introducing the velocity normal to each surface of the discretization volume, 
Eq. (12.12), the b coefficients can be conveniently written as follows 
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or compactly written 
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and 
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n
lm m lm lmb Vβ ξ− −= − , 

where the signed integers are 
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Obviously 

1lm lmξ ξ− += − . 

Note that the lmb + coefficients are volume flows leaving the cell through the face m 

divided by the cell volume. lmb −  coefficients are volume flows entering the cell 
through the face m divided by the cell volume. Therefore the b coefficients have 



12.17 Pipe networks: some basic definitions      581 

the physical meaning of volumetric mass sources and sinks in the cell due to 
convection. 

Appendix 12.2 Discretization of the concentration equations 

The concentration Eq. (12.4) will now be discretized following the procedure 
already described. The result is 
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or compactly written 
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The harmonic averaged diffusion coefficients are given in Appendix 12.3. The l-
field mass flow rate across the m-face is computed by means of the donor-cell 
concept as follows 

( ) ( )1 1 11 1l l l l l l l l l l li
G u uα ρ ξ α ρ ξ α ρ+ − +

⎡ ⎤= = +⎣ ⎦ , 

( ) ( )2 2 2 , 12 1l l l l l l l l l l l ii
G u uα ρ ξ α ρ ξ α ρ− + −−

⎡ ⎤= = +⎣ ⎦ , 

( ) ( )3 3 33 1l l l l l l l l l l lj
G v vα ρ ξ α ρ ξ α ρ+ − +

⎡ ⎤= = +⎣ ⎦ , 

( ) ( )4 4 4 , 14 1l l l l l l l l l l l jj
G v vα ρ ξ α ρ ξ α ρ− + −−

⎡ ⎤= = +⎣ ⎦ , 

( ) ( )5 5 55 1l l l l l l l l l l lk
G w wα ρ ξ α ρ ξ α ρ+ − +

⎡ ⎤= = +⎣ ⎦ , 



12.17 Pipe networks: some basic definitions      583 
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Note that the donor-cell concept takes into account the velocity directions. 
Computation of the harmonic averaged thermal conductivity coefficients is shown 
also in Appendix 12.3. 

Appendix 12.3 Harmonic averaged diffusion coefficients 

A natural averaging of the coefficients describing diffusion across the face m, 
having surface cross section mS  is then the harmonic averaging 
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For computation of ,
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In case of cylindrical or Cartesian coordinate systems we have zero off-diagonal 
diffusion terms and 
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Appendix 12.4. Discretized radial momentum equation 

The r-momentum equation discretized by using the donor-cell concept is 
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Now we introduce the volume weighting coefficient  

* 1

1

i

i

V
C

V V
+

+

=
+

. 

This coefficient allows us easily to compute the mass flows entering the staggered 
cell through each face divided by the staggered cell volume by using the lmB −  flux 
densities already computed for the non-staggered cells 
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With this abbreviation we have 
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− Δ + −∑ ... 

Comparison with simple test problems for pure radial flow, pure rotational flow 
and superposition of both gives rise to improvements that will be described in a 
moment.  

The first improvement is to use the following expression for the centrifugal 
force and its viscous counterpart 
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, 

instead of the original form. The method of computing the centrifugal force can be 
understood as first computing the average flow rotation frequency and then the 
corresponding force. The analogy to the single-phase rigid body steady rotation, 
Appendix 2.3, 

( )2 2 2
1 1

1

2i ip p r rρω+ +− = −  

or 

( )21 / 2i
h

h

p p
r r

r
ρω+ −

= + Δ
Δ

, 

is obvious. 
The second improvement regards the convective term in the r direction. The 

exact solution of the single-phase steady state mass and momentum equation for 
radial flow gives the well-known Bernulli equation 

( ) ( )2 2
1 1

1 1 1
* *

2i i
h h

p p u u
r r

ρ+ +− = − −
Δ Δ

, 

see Appendix 2.3. In this equation the velocities are defined at the same places 
where the pressures are defined. This is not the case with our finite difference eq-
uation. In order to make the finite difference form equivalent to Bernulli form we 

use the single-phase case to derive a corrector multiplier as follows. We still use 
the donor-cell idea to compute the displaced velocities 

0u >    0u ≤  
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Replacing in the Bernulli equation results in 
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respectively. We multiply and divide the convective term by ( )( )1 1i iu u u u− −+ −  

and use outside this product 
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The result is 
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For the singularity , 1 0h ir − =  we have 
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Similarly for negative velocity between the two pressures we have 
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and therefore 
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Thus the final form of the multiphase convective term is written as 
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It is convenient to compute the geometry coefficients at the start 
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The bu coefficients are defined as follows: 
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Now we introduce the volume weighting coefficient  
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. 

This coefficient allows us easily to compute the mass flows entering the staggered 
cell through each face divided by the staggered cell volume by using the lmB −  flux 
densities already computed for the non-staggered cells 
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With this abbreviation we have 
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Appendix 12.5 The a  coefficients for Eq. (12.46) 

11 22 33 32 23a a a a a= −  12 32 13 12 33a a a a a= −  13 12 23 22 13a a a a a= −  

21 23 31 21 33a a a a a= −  22 11 33 31 13a a a a a= −  23 21 13 23 11a a a a a= −  

31 21 32 31 22a a a a a= −  32 12 31 32 11a a a a a= −  33 11 22 21 12a a a a a= −  

Appendix 12.6 Discretization of the angular momentum equation 

The θ momentum equation discretized by using the donor cell concept is 
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Introducing the geometry coefficients 
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the bv coefficients are defined as follows 
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Now we introduce the volume weighting coefficient  
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. 

This coefficient allows us easily to compute the mass flows entering the staggered 
cell through each face divided by the staggered cell volume by using the lmB −  flux 
densities already computed for the non-staggered cells 
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With this abbreviation we have 
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Appendix 12.7 Discretization of the axial momentum equation 

The z momentum equation discretized by using the donor cell concept is 

( ) /vw lwa lwa l law wγ α ρ τ− Δ  
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the bw coefficients are defined as follows 
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Now we introduce the volume weighting coefficient  
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This coefficient allows us easily to compute the mass flows entering the staggered 
cell through each face divided by the staggered cell volume by using the lmB −  flux 
densities already computed for the non-staggered cells 
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Appendix 12.8 Analytical derivatives for the residual error of each 
equation with respect to the dependent variables 

The velocities are assumed to be linearly dependent on the pressures, with the 
result that derivatives for the velocities with respect to pressure can be obtained 
directly from the momentum equations 
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Particle number density derivatives: Taking the derivatives of the LHS of the dis-
cretized particle number density conservation equation 
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Mass conservation derivatives: Taking the derivatives of the LHS of the discre-
tized mass conservation equation 
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Specific entropy derivatives: Taking the derivatives of the LHS of the discretized 
entropy conservation equation 
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Inert mass conservation equation derivatives: Taking the derivatives of the LHS 
of the discretized inert mass conservation equation 

C il ila
il la la va

C C
f α ρ γ

τ
−≡
Δ

( ) ( ) ( )
*6

,
1 ,

ilm
lm l l m m il m ilm

m h m

D
b A Pe C C

L
α ρ β−

=

⎧ ⎫⎡ ⎤⎪ ⎪− + −⎢ ⎥⎨ ⎬Δ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑  

( )( ) 0

1
( ) 0

2

C
il

v va l il il il il
il

f
C DC C C

C

∂γ γ μ
∂

++ + − = − =  

we obtain 

( ) ( ) ( )
*6

1 ,

1
0

2

C
il va la la ilm

v va l lm l l m mm
mil h m

f D
b A Pe

C L

∂ γ α ρ γ γ μ α ρ β
∂ τ

+
−

=

⎡ ⎤
= + + + + ≥⎢ ⎥

Δ Δ⎢ ⎥⎣ ⎦
∑ , 

( ) ( ) ( ) ( )
6 6

1 1

C
il lm

l l ilm il l l ilm il m lm lmm m
m m

f b
C C C C RVel

p p

∂ ∂α ρ α ρ β ξ
∂ ∂ −

= =

= − − = −∑ ∑ , 

( ) ( ) ( )
6

1

C
il lx lm

l l ilx il lm lm ilm ilx
xm m m

f b
C C b C C

p p p

∂ ∂ ∂ρα ρ α
∂ ∂ ∂

−
−

=

= − − − −∑  

( ) lm lm
lm ilm il lm lm

m m

b
C C b

p p

∂ ∂ρα ρ
∂ ∂

−
−

⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠

( ) n lm
m lm lm ilm il lm lm lm

m

C C RVel V
p

∂ρβ ξ α ρ
∂−

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
   for   m=1,6. 

Appendix 12.9 Simple introduction to iterative methods for solution 
of algebraic systems 

Most of the iterative methods for solving the linear system of equations 

=Ax b  

are based on the regular splitting of the coefficient matrix 

= −A B R . 
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All three matrices above are of the same range. The iteration method is then 

1n n+ = +Bx Rx b  

or after eliminating R 

1n n n+ = + −Bx Bx b Ax . 

Introducing the residual error vector at the previous solution 

n n= −r b Ax , 

we have a method for computing the next approximation 

1 1n n n+ −= +x x B r , 

by adding to the previous estimate for the solution a correction vector nΔx , 

1n n n+ = + Δx x x . 

nΔx  is in fact the solution of the algebraic system 

n nΔ =B x r . 

The matrix B has to be selected so as to enable non-expensive solution of the 
above system in terms of computer time and storage. Selecting 

B = diag(A) 

results in the Jacobi method. Selection of B to be the lower off diagonal part 
including the diagonal leads to the Gauss-Seidel method. Selecting B to consists of 
non-expensively invertible blocks of A leads to the so called Block-Gauss-Seidel 
method. The secret of creating a powerful method is in appropriate selection of B. 
The reader will find valuable information on this subject in Saad (1996). 
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13 Numerical methods for multi-phase flow 
in curvilinear coordinate systems 

This chapter presents a numerical solution method for multi-phase flow 
analysis based on local volume and time averaged conservation equations. The 
emphasis of this development was to create a computer code architecture that 
absorb all the constitutive physics and functionality from the past 25years 
development of the three fluid multi-component IVA-entropy concept for multi-
phase flows into a boundary fitted orthogonal coordinate framework. Collocated 
discretization for the momentum equations is used followed by weighted averaging 
for the staggered grids resulting in analytical expressions for the normal 
velocities. Using the entropy concept analytical reduction to a pressure-velocity 
coupling is found. The performance of the method is demonstrated by comparison 
of two cases for which experimental results and numerical solution with the 
previous method are available. The agreement demonstrates the success of this 
development.  

13.1 Introduction 

We extend now the method described in the previous chapter to more arbitrary 
geometry. Instead of considering Cartesian or cylindrical geometry only, we will 
consider an integration space called a block in which the computational finite 
volumes fit inside the block so that the outermost faces of the external layer of the 
finite volumes create the face of the block. Similarly, bodies immersed into this 
space have external faces identical with the faces of the environmental compu-
tational cells. Such blocks can be inter-connected. With this technology multi-
phase flows in arbitrary interfaces can be conveniently handled. 

For understanding the material presented in this section I strongly recommend 
going over Appendixes 1 and 2 before continuing reading. 

Before starting with the description of the new method let us summarize briefly 
the state of the art in this field. 

In the last ten years the numerical modeling of single-phase flow in boundary 
fitted coordinates is becoming standard in the industry. This is not the case with 
the numerical modeling of multiphase flows. There are some providers of single-
phase-computer codes claming that their codes can simulate multi-phase flows. 
Taking close looks of the solution methods of these codes reveals that existing 
single phase solvers are used and a provision is given to the user to add an other 
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velocity field and define explicit the interfacial interaction physics. This strategy 
does not account for the feed back of the strong interfacial interactions on the 
mathematical solution methods - see the discussion in Miettinen and Schmidt 
(2002). Multi-phase flow simulations require specific solution methods accounting 
for this specific physics - see for instance the discussion by Antal et al. (2000). 

There are groups of methods that are solving single phase conservation 
equations with surface tracking, see the state of the art part of Tryggavson et al. 
(2001) work. This is in fact a direct numerical simulation that is outside of the 
scope of this chapter. To mention few of them: In Japan a powerful family of 
cubic-interpolation methods (CIP) is developed based on the pseudo-characteristic 
method of lines Takewaki, Nishiguchi and Yabe (1985), Takewaki and Yabe 
(1987), Nakamura, Tanaka, Yabe and Takizawa (2001), Yabe, Xiao and Utsumi 
(2001), Yabe, Tanaka, Nakamura and Xiao (2001), Yabe, Xiao and Utsumi 
(2001), Yabe and Takei (1988), Xiao and Yabe (2001), Xiao, Yabe, Peng and 
Kobayashi (2002), Xiao (2003), Xiao and Ikebata (2003), Yabe and Wang (1991), 
Yabe and Aoki (1991), Yabe et al. (1991). In USA particle tracking and level-set 
surface tracking methods are very popular; see for instance Sussman, Smereka 
and Oslier (1994), Osher and Fredkiw (2003), Swthian (1996), Tryggavson at al. 
(2001). The third group of DNS method with surface tracking is the lattice-
Boltzman family, see Hou et al. (1995), Nourgaliev et al. (2002) and the references 
given there. To the family of emerging methods the so called diffuse interface 
methods based on high order thermodynamics can be mentioned, see Verschueren 
(1999), Jamet et al. (2001). Let as emphasize once again, that unlike those methods, 
our work is concentrated on methods solving the local volume and time averaged 
multiphase flow equations which are much different then the single phase equations. 

In Europe two developments for solving two-fluid conservation equations in 
unstructured grids are known to me. Staedke et al. (1998) developed a solution 
method based on the method of characteristics using unstructured grid in a single 
domain. The authors added artificial terms to enforce hyperbolicy in the initially 
incomplete system of partial differential equations that contain derivatives which 
do not have any physical meaning. Toumi et al. (2000) started again from the 
incomplete system for two-fluid two phase flows without interaction terms and 
included them later for a specific class of processes; see Kumbaro et al. (2002). 
These authors extended the approximate Riemann solver originally developed for 
single phase flows by Roe to two-fluid flows. One application example of the 
method is demonstrated in a single space domain in Toumi et al. (2000), Kumbaro 
et al. (2002). No industrial applications of these two methods have been reported 
so far. One should note that it is well know that if proper local volume averaging 
is applied the originating interfacial interaction terms provide naturally 
hyperbolicy of the system of PDS and there is no need for artificial terms without 
any physical meaning. An example for the resolution of this problem is given by 
van Wijngaarden in 1976 among many others. 

In USA Lahey and Drew demonstrated clearly in 1999 haw by careful 
elaboration of the constitutive relationships starting from first principles variety of 
steady state processes including frequency dependent acoustics can be successfully 
simulated. Actually, the idea by Lahey and Drew (1999) is a further development 
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of the proposal made by Harlow and Amsden in 1975 where liquid (1) in vapor (2) 
and vapor (3) in liquid (4) are grouped in two velocity fields 1 + 2 and 3 + 4. The 
treatment of Lahey and Drew (1999) is based on four velocity fields. Antal et al. 
(2000) started developing the NPHASE multi-domain multi-phase flows code 
based on the single phase Rhie and Chow numerical method extended to 
multiphase flows. Application example is given for T-pipe bubble flows with 10 
groups of bubble diameters. Two works that can be considered as a subset of this 
approach are reported in Tomiyama et al. (2000) Gregor, Petelin and Tiselj 
(2000). Another direction of development in USA that can be observed is the use 
of the volume of fluid method with computing the surface tension force as a 
volumetric force Hirt (1993), Kothe et al. (1996), Brackbill et al. (1992), Rider 
and Kothe (1998). 

13.2 Nodes, grids, meshes, topology - some basic 
definitions  

Database concept: Let as consider the data base concept. The data volume is 
made up of points, or nodes, which themselves define in their neighborhood a vo-
lume element. We use hexahedrons (Fig. 4 in Appendix 1). A hexahedron is a 3D 
volume element with six sides and eight vertices. The vertices are connected in an 
order that mimics the way nodes are numbered in the data volume. The nodes in 
the data volume are numbered by beginning with 1 at the data volume’s origin. 
Node numbering increases, with x changing fastest. This means node numbering 
increases along the x axis first, the y axis second, and the z axis last, until all nodes 
are numbered. The numbering of the vertices of the volume elements follows the 
same rule. It starts with the vertex being closest to the data volume’s origin, moves 
along x, then y, and then z. 

 

Grid: A grid is a set of locations in a 3D data volume defined with x, y, and z 
coordinates. The locations are called nodes, which are connected in a specific 
order to create the topology of the grid. A grid can be regular or irregular 
depending on how its nodes are represented as points. 

A regular grid’s nodes are evenly spaced in x, y, and z directions, respectively. 
A regular grid’s nodes are specified with x, y, and z offsets from the data 
volume’s origin. A regular grid may have equidistant or non-equidistant spacing. 
If equidistant spacing is used all areas of the data volumes have the same 
resolution. This suits data with regular sample intervals.  

An irregular grid’s nodes need not be evenly spaced or in a rectangular 
configuration. This suits data with a specific area of interest that require finer 
sampling. Because nodes may not be evenly spaced, each node’s xyz coordinates 
must be explicitly listed. 

 

Topology: A topology defines an array of elements by specifying the 
connectivity of the element’s vertices or nodes. It builds a volume from separate 
elements by specifying how they are connected together. The elements can be 
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3D volume elements or 2D surface elements. A topology is either regular or 
irregular, depending upon what types of elements it defines and how they are 
structured.  

A regular topology defines a data volume’s node connectivity. We assume a 
hexahedron volume element type. A regular topology can be used for regular or 
irregular grids. 

An irregular topology defines the node connectivity of either a data volume or 
geometric surface elements. An irregular topology data volume can be composed 
of either hexahedron or tetrahedron volume elements. Geometry objects are 
composed of points, lines, or polygons. An element list has to explicitly specify 
how the nodes connect to form these elements. 

 

Volume elements: The volume elements are the smallest building blocks of a 
data volume topology. 

 

Mesh: A mesh is a grid combined with specific topology for the volume of 
data. We distinguish the following mesh types: regular meshes, irregular or 
structured meshes, unstructured meshes, and geometry meshes. 

A regular mesh consists of grid having regular spacing and regular topology 
that consists of simple, rectangular array of volume elements. 

An irregular mesh explicitly specifies the xyz coordinates of each node in a node 
list. As in the regular mesh, the topology is regular, although individual elements are 
formed by explicit xyz node locations. The grid may be irregular or rectilinear. 

An unstructured mesh explicitly defines the topology. Each topology element is 
explicitly defined by its node connectivity in an element list. The grid may be reg-
ular or irregular. 

In this sense we are dealing in this Chapter with multi-blocks each of them 
consisting of  

 

• irregular grid’s nodes, irregular meshes, 
• regular topology with hexahedron volume element type. 

 

The integration space is built by a specified number of interconnected blocks. 

13.3 Formulation of the mathematical problem 

Consider the following mathematical problem: A multi-phase flow is described by 
the following vector of dependent variables 

1 2 3( , , , , , , , , , )T
m il l l l lT s s C n p u v wα=U ,  

where  

1,  2,  3l = , 1 1... 1i n= , 2 1... 2i n= , 3 1... 3i n=   

which is a function of the three space coordinates ( , , )x y z , and of the timeτ , 

( , , , )x y z τ=U U . 
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The relationship ( , , , )x y z τ=U U  is defined by the volume-averaged and successively 
time-averaged mass, momentum and energy conservation equations derived in 
Chapters 1, 2, 5 Kolev (1994a, b, 1995, 1997, 1998) as well as by initial 
conditions, boundary conditions, and geometry. The conservation equations are 
transformed in a curvilinear coordinate system , ,ξ η ζ as shown in Chapter 11, 

Kolev (2001). The flux form of these equations is given in Chapter 11. As shown 
in Chapter 11, Kolev (2001), the conservation principles lead to a system of 
19+n1+n2+n3 non-linear, non-homogeneous partial differential equations with 
variable coefficients. This system is defined in the three-dimensional domain R. 
The initial conditions of ( 0) aτ = =U U  in R and the boundary conditions acting at 
the interface separating the integration space from its environment are given. The 
solution required is for conditions after the time interval τΔ  has elapsed. The 
previous time variables are assigned the index a. The time variables not denoted 
with a are either in the new time plane, or are the best available guesses for the 
new time plane. 

In order to enable modeling of flows with arbitrary obstacles and inclusions in 
the integration space as is usually expected for technical applications, surface 
permeabilities are defined  

( , , )ξ η ζγ γ γ = functions of ( , , , )ξ η ζ τ ,  

at the virtual surfaces that separate each computational cell from its environment. 
By definition, the surface permeabilities have values between one and zero, 

0 ≤ each of all ( , , )ξ η ζγ γ γ ‘s 1≤ . 

A volumetric porosity 

( , , , )v vγ γ ξ η ζ τ=   

is assigned to each computational cell, with  

0 1vγ< ≤ . 

The surface permeabilities and the volume porosities are not expected to be 
smooth functions of the space coordinates in the region R and of time. For this 
reason, one constructs a frame of geometrical flow obstacles which are functions 
of space and time. This permits a large number of extremely interesting technical 
applications of this type of approach. 

In order to construct useful numerical solutions it is essential that an 
appropriate set of constitutive relations be available: state equations, 
thermodynamic derivatives, equations for estimation of the transport properties, 
correlations modeling the heat, mass and momentum transport across the 
surfaces dividing the separate velocity fields, etc. These relationships together 
are called closure equations. This very complex problem will not be discussed in 
Volume II. Only the numerics will be addressed here. 
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13.4 Discretization of the mass conservation equations 

13.4.1 Integration over a finite time step and finite control volume 

We start with the conservation equation (10.56) for the species i inside the 
velocity field l in the curvilinear coordinate system 

( ) l l il vC gα ρ γ
τ
∂
∂ ( )1 ilgξγξ

∂+ ⋅
∂

a G ( )2 ilgηγη
∂+ ⋅
∂

a G  

( )3 ilgζγζ
∂+ ⋅
∂

a G v ilgγ μ= ,    (13.1) 

where the species mass flow rate vector is defined as follows 

( ) * 1 2 3il il il
il l l il l cs il

C C C
C Dα ρ

ξ η ζ
⎡ ⎤⎛ ⎞∂ ∂ ∂= − − + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

G V V a a a . (13.2) 

Note that for 1ilC =  we have the mass flow vector of the velocity field 

( )l l l l csα ρ= −G V V .      (13.3) 

Next we will use the following basic relationships from Appendix 2 between the 
surface vectors and the contravariant vectors, and between the Jacobian determi-
nant and the infinitesimal spatial and volume increments 

1
1g

η ζ
=
∂ ∂

S
a , 

2
2g

ξ ζ
=
∂ ∂

S
a , 

3
3g

ξ η
=
∂ ∂

S
a , 

dV
g

d d dξ η ζ
= . (13.4-7) 

We will integrate both sides of the equation over the time, and spatial intervals  
τ∂ , ξ∂ , η∂ , and ζ∂  respectively. We start with the first term 

( ) ( )
0 0

 l l il v l l il v

V V

C g C dV
τ τ

α ρ γ τ ξ η ζ α ρ γ τ
τ τ

Δ Δ

Δ Δ

∂ ∂⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ = ∂⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦∫∫∫ ∫ ∫ ∫∫∫  

( ) ( )l l il v l l il v a
C C Vα ρ γ α ρ γ⎡ ⎤= − Δ⎣ ⎦ .    (13.8) 

This result is obtained under the assumption that there is no spatial variation of the 

properties ( )l l il vCα ρ γ  inside the cell. The integration of the other terms gives the 

following results: 

( ) ( )1 1

0 0
 il il

V

g
τ ξ

ξ ξγ ξ η ζ τ τ γ ξ
ξ ξ

Δ Δ

Δ

∂ ∂⋅ ∂ ∂ ∂ ∂ = Δ ⋅ ∂
∂ ∂∫ ∫∫∫ ∫a G S G  

( ) ( )1 1

1il il iξ ξτ γ γ
−

⎡ ⎤= Δ ⋅ − ⋅⎣ ⎦S G S G  
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( ) ( )1 11 2
, 1 1il i il i

S S
V

V Vξ ξτ γ γ − −

⎡ ⎤= Δ Δ ⋅ − ⋅⎢ ⎥Δ Δ⎣ ⎦
e G e G ,   (13.9) 

( ) ( )2 2

0 0
 il il

V

g
τ η

η ηγ ξ η ζ τ τ γ η
η η

Δ Δ

Δ

∂ ∂⋅ ∂ ∂ ∂ ∂ = Δ ⋅ ∂
∂ ∂∫ ∫∫∫ ∫a G S G  

( ) ( )2 2

1il il jη ητ γ γ
−

⎡ ⎤= Δ ⋅ − ⋅⎢ ⎥⎣ ⎦
S G S G  

( ) ( )2 23 4
, 1 1il j il j

S S
V

V Vη ητ γ γ − −

⎡ ⎤= Δ Δ ⋅ − ⋅⎢ ⎥Δ Δ⎣ ⎦
e G e G ,   (13.10) 

( ) ( )3 3

0 0
 il il

V

g
τ ζ

ζ ζγ ξ η ζ τ τ γ ζ
ζ ζ

Δ Δ

Δ

∂ ∂⋅ ∂ ∂ ∂ ∂ = Δ ⋅ ∂
∂ ∂∫ ∫∫∫ ∫a G S G  

( ) ( )3 3

1il il kζ ζτ γ γ
−

⎡ ⎤= Δ ⋅ − ⋅⎣ ⎦S G S G  

( ) ( )3 35 6
, 1 1il k il k

S S
V

V Vζ ζτ γ γ − −

⎡ ⎤= Δ Δ ⋅ − ⋅⎢ ⎥Δ Δ⎣ ⎦
e G e G ,   (13.11) 

0
 v il v il v il

V V

g dV V
τ

γ μ ξ η ζ τ τ γ μ τγ μ
Δ

Δ Δ

∂ ∂ ∂ ∂ = Δ = Δ Δ∫ ∫∫∫ ∫∫∫ .  (13.12) 

It is convenient to introduce the numbering at the surfaces of the control volumes 1 
to 6 corresponding to high-i, low-i, high-j, low-j, high-k and low-k, respectively. We 

first define the unit surface vector ( )m
e  at each surface m as outwards directed: 

( )1 1=e e , ( )2 1
1i−= −e e , ( )3 2=e e , ( )4 2

1j−= −e e , ( )5 3=e e , ( )6 3
1k−= −e e . (13.13-18) 

With this we have a short notation of the corresponding discretized concentration 
conservation equation 

( )
6

,
1

m

l l il v la la ila va m il m v il
m

C Cα ρ γ α ρ γ τ β τγ μ
=

− + Δ ⋅ = Δ∑ e G .  (13.19) 

We immediately recognize that it is effective to compute once the geometry coef-
ficients 

1
1

S

Vξβ γ=
Δ

, 2
2 , 1i

S

Vξβ γ −=
Δ

, 3
3

S

Vηβ γ=
Δ

, 4
4 , 1j

S

Vηβ γ −=
Δ

,  

5
5

S

Vζβ γ=
Δ

, 6
6 , 1k

S

Vζβ γ −=
Δ

,      (13.20-25) 

before the process simulation, to store them, and to update only those that 
change during the computation. Secondly, we see that these coefficients contain 
exact physical geometry information. Note that for cylindrical coordinate  
systems we have 
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1
h rr

r r

κ

κ
γβ =
Δ

, 1
2

( )h r ir

r r

κ

κ
γβ −=
Δ

, 3
r

θ
κ
γβ
θ

=
Δ

, , 1
4

j

r

θ
κ
γ

β
θ
−=
Δ

,  

5
z

z

γβ =
Δ

, , 1
6

z k

z

γ
β −=

Δ
,      (13.26-31) 

and for Cartesian setting 0κ =  and r x= , yθ = , 

1
x

x

γβ =
Δ

, , 1
2

x i

x

γ
β −=

Δ
, 3

y

y

γ
β =

Δ
, , 1

4
y j

y

γ
β −=

Δ
, 5

z

z

γβ =
Δ

, , 1
6

z k

z

γ
β −=

Δ
, (13.32-39) 

compare with Section 11.4. Setting 1ilC =  in Eq. (13.19) we obtain the discretized 
mass conservation equation of each velocity field 

( )
6

,
1

m

l l v la la va m l m v l
m

α ρ γ α ρ γ τ β τγ μ
=

− + Δ ⋅ = Δ∑ e G .   (13.40) 

Next we derive the useful non-conservative form of the concentration equations. 
We multiply Eq. (13.40) by the concentration at the new time plane and subtract 
the resulting equation from Eq. (13.19). Then the field mass source term is split in 
two non-negative parts l l lμ μ μ+ −= + . The result is 

( ) ( ) ( )
6

, ,
1

m

la la il ila va m il m il l m v l il v il
m

C C C C DCα ρ γ τ β τγ μ τγ+

=

− + Δ ⋅ − + Δ = Δ∑ e G G . 

 (13.41) 

where il il l ilDC Cμ μ−= + . Note that  

, ,il m il l mC−G G  

( ) ( ) * 1 2 3
,

il il il
l l l cs il m il l l ilm

m

C C C
C C Dα ρ α ρ

ξ η ζ
⎡ ⎤⎛ ⎞∂ ∂ ∂= − − − + +⎡ ⎤ ⎢ ⎥⎜ ⎟⎣ ⎦ ∂ ∂ ∂⎝ ⎠⎣ ⎦

V V a a a . 

(13.42) 

Up to this point of the derivation we did not made any assumption about the com-
putation of the properties at the surfaces of the control volume. 

13.4.2 The donor-cell concept 

The concept of the so called donor-cell for the convective terms is now intro-
duced. Flow of given scalars takes the values of the scalars at the cell where the 
flow is coming from. Mathematically it is expressed as follows. First we define 
velocity normal to the cell surfaces and outwards directed 

( ) ( ),

mn
l m l cs m

V = ⋅ −e V V ,     (13.43) 

then the switch functions (to store them use signet integers in computer codes, it 
saves memory) 
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( )1
1

2
n

lm lmsign Vξ +
⎡ ⎤= +⎣ ⎦ ,     (13.44) 

1lm lmξ ξ− += − ,       (13.45) 

and then the b coefficients as follows 

0n
lm m lm lmb Vβ ξ+ += ≥ ,      (13.46) 

0n
lm m lm lmb Vβ ξ− −= − ≥ .      (13.47) 

If the normal outwards directed velocity is positive the +b coefficients are unity 
and the –b coefficients are zero and vice versa. In this case the normal mass flow 
rate at the surfaces is 

( ) ( ) ( ), , ,

m n
l m l l l cs lm l l lm l m l m lmm

Vα ρ ξ α ρ ξ α ρ+ −⎡ ⎤⋅ = ⋅ − = +⎣ ⎦e G e V V . (13.48) 

Using the above result the mass conservation equations for each field result is 

( )
6

1

0l l v la la va lm l l lm v l
m

b Bα ρ γ α ρ γ τ α ρ τγ μ+ −
=

− + Δ − − Δ =∑ .  (13.49) 

In the donor-cell concept the term 

, ,lm lm l m l mB b α ρ− −=       (13.50) 

plays an important role. lmB −  is in fact the mass flow entering the cell from the face 
m divided by the volume of the cell. Once computed for the mass conservation 
equation it is stored and used subsequently in all other conservation equations. 

At this point the method used for computation of the field volumetric fractions 
by iteration using the point Gauss-Seidel method for known velocity vectors and 
thermal properties will be described. 

Consider the field variables l lα ρ  in the convective terms associated with the 

output flow in the new time plane, and lm lmα ρ  in the neighboring cells m as the 
best available guesses for the new time plane. Solving Eq. (13.49) with respect to 

l lα ρ  gives 

6 6

1 1

la la v
l l va l lm lm

m m

B b
α ρ γα ρ γ μ

τ τ− +
= =

⎡ ⎤ ⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎢ ⎥⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ .  (13.51) 

Here  

6

1

0v
lm

m

b
γ
τ +

=

+ >
Δ ∑        (13.52)  
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is ensured because vγ  is not allowed to be zero. For a field that is just originating 
we have 

6

1
6

1

va l lm
m

l
l

v lm
m

B

b

γ μ
τα
ρ γ τ

−
=

+
=

+
Δ=

+ Δ

∑

∑
.     (13.53) 

Obviously the field can originate due to convection, 
6

1

0lm
m

B −
=

>∑ , or due to an in-

cell mass source, 0lμ > , or due to the simultaneous appearance of both pheno-
mena. In case of origination caused by in-cell mass source terms it is important to 
define the initial density, lρ , in order to compute /l l lα τμ ρ= Δ . 

The best mass conservation in such procedures is ensured if the following se-
quence is used for computation of the volume fractions:  

2 2 2 2/α α ρ ρ= , 3 3 3 3/α α ρ ρ= , 1 2 31α α α= − − .   (13.54-56) 

For designing the pressure-velocity coupling the form of the discretized mass con-
servation is required that explicitly contains the normal velocities, 

( )
6

1

( ) / 0n
l l v la la va m lm l l lm lm lm lm v l

m

Vα ρ γ α ρ γ τ β ξ α ρ ξ α ρ γ μ+ −
=

− Δ + + − =∑ . 

  (13.57) 

The mass flow rate of the species i inside the field l at the cell surface m is then 

( ) ( ) * 1 2 3
,

m il il il
il m l l il l cs l l ilm

m

C C C
C Dα ρ α ρ

ξ η ζ
⎡ ⎤⎛ ⎞∂ ∂ ∂⎡ ⎤⋅ = ⋅ − − ⋅ + +⎢ ⎥⎜ ⎟⎣ ⎦ ∂ ∂ ∂⎝ ⎠⎣ ⎦

e G e V V e a a a  
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 (13.58) 

and consequently 

( ) ( ), ,

m

il m il l mC⋅ −e G G  
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n il il il
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m
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e a a a .(13.59) 

Thus Eq. (13.41) takes the intermediate form 
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( )v il il lCτγ μ μ= Δ − .      (13.60) 

13.4.3 Two methods for computing the finite difference approximations 
of the contravariant vectors at the cell center 

The contravariant vectors for each particular surface can be expressed by 

1
1

dV
ξ= ∂S

a , 
2

2

dV
η= ∂S

a , 
3

3

dV
ζ= ∂S

a .    (13.61-63) 

Note that the contravariant vectors normal to each control volume surface are con-
veniently computed for equidistant discretization in the computational space as 
follows 

( ) ( ) ( )
1

11 1 1

1
1 1 1

S

V V V
= = =
Δ Δ Δ

SS
a e ,   ( ) ( ) ( )

1
21 2 2

2
2 2 2

S

V V V
= = − = −
Δ Δ Δ

SS
a e ,  (13.64-65)    

( ) ( ) ( )
2

32 3 3

3
3 3 3

S

V V V
= = =
Δ Δ Δ

SS
a e ,  ( ) ( ) ( )

2
42 4 4

4
4 4 4

S

V V V
= = − = −
Δ Δ Δ

SS
a e , (13.66-67)      

( ) ( ) ( )
3

53 5 5

5
5 5 5

S

V V V
= = =
Δ Δ Δ

SS
a e ,  ( ) ( ) ( )

3
63 6 6

6
6 6 6

S

V V V
= = − = −
Δ Δ Δ

SS
a e ,  (13.68-69) 

where the volume associated with these vectors is 

( )1

2
m mV V VΔ = Δ + Δ .      (13.70) 

The finite volume method: There are two practicable methods for approximation of 
the contravariant vectors at the cell center. The first one makes use of the already 
computed normal interface vectors in the following way: 

( ) ( )1 1 1

1 2

1

2c
⎡ ⎤= +⎣ ⎦a a a , ( ) ( )2 2 2

3 4

1

2c
⎡ ⎤= +⎣ ⎦a a a , ( ) ( )3 3 3

5 6

1

2c
⎡ ⎤= +⎣ ⎦a a a   (13.71-73) 
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Fig. 13.1 Numbering of the vertices 

The finite difference method: The second method uses the coordinates of the ver-
tices of the control volume directly, Fig. 13.1. First we define the position at the 
cell surfaces that will be used to compute the transformation metrics as follows: 

( )1 2 4 8 6

1

4S = + + +r r r r r ,  ( )2 1 3 7 5

1

4S = + + +r r r r r ,  (13.74-75) 

( )3 3 4 8 7

1

4S = + + +r r r r r ,  ( )4 1 2 6 5

1

4S = + + +r r r r r ,  (13.76-77) 

( )5 5 6 8 7

1

4S = + + +r r r r r ,  ( )6 1 2 4 3

1

4S = + + +r r r r r .  (13.78-79) 

Then we compute the inverse metrics of the coordinate transformation for equi-
distant discretization in the transformed space 

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

s s s s s s

s s s s s s

s s s s s s

x x x

x x x x x x
y y y

y y y y y y

z z z z z z
z z z

ξ η ζ

ξ η ζ

ξ η ζ

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟ − − −⎛ ⎞
⎜ ⎟∂ ∂ ∂ ⎜ ⎟= − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎜ ⎟⎜ ⎟ − − −⎝ ⎠⎜ ⎟∂ ∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

.  (13.80) 

Then we compute the Jacobian determinant and the metrics of the coordinate 
transformation for equidistant discretization in the transformed space.  

As already mentioned all this information belongs to the center of the cell. 
However, the off-diagonal geometry information is required at the cell surfaces. 
For both cases we use the two corresponding neighbor vectors to compute the con-
travariant vectors at the cell surfaces as follows  
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( ) ( )2 2 2
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1
2 c c i+= +a a a , ( ) ( )3 3 3

, 11

1
2 c c i+= +a a a ,  

( ) ( )2 2 2
, 12

1
2 c c i−= +a a a , ( ) ( )3 3 3

, 12

1
2 c c i−= +a a a , 

( ) ( )1 1 1
, 13

1

2 c c j+= +a a a , ( ) ( )3 3 3
, 13

1

2 c c j+= +a a a ,  

( ) ( )1 1 1
, 14

1

2 c c j−= +a a a , ( ) ( )3 3 3
, 14

1

2 c c j−= +a a a , 

( ) ( )1 1 1
, 15

1

2 c c k+= +a a a , ( ) ( )2 2 2
, 15

1

2 c c k+= +a a a ,  

( ) ( )1 1 1
, 16

1

2 c c k−= +a a a , ( ) ( )2 2 2
, 16

1

2 c c k−= +a a a .   (13.81-94) 

13.4.4 Discretization of the diffusion terms 

13.4.4.1 General 

Our next task is to find appropriate finite difference approximation for the six dif-
fusion terms 

* 1 2 3il il il
l l il

m

C C C
Dα ρ

ξ η ζ
⎡ ⎤⎛ ⎞∂ ∂ ∂⋅ + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

e a a a , 

The geometric properties computed by using the control volume approach in the 
previous section are used to transform the diagonal diffusion terms as direct finite 
differences 

6
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6 6 , 1
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e a e a . (13.95) 

A natural averaging of the diffusion coefficients is then the harmonic averaging as 
given in Appendix 12.1 

( )( )
( ) ( )

* **
,

* *
,

2C
l l il l l ilil m l l il m

m m
h m m l l il l l ilm m

D DD D
S S

L V V D V D

α ρ α ρα ρ
α ρ α ρ

⎛ ⎞
= =⎜ ⎟Δ Δ Δ + Δ⎝ ⎠

, (13.96) 

where in the right hand side m = 1, 2, 3, 4, 5, 6 is equivalent to i + 1, i - 1, j + 1,  
j - 1, k + 1, k - 1, respectively regarding the properties inside a control volumes. It 
guaranties that if the field in one of the neighboring cells is missing the diffusion 
coefficient is zero. 

13.4.4.2 Orthogonal coordinate systems 

In the case of orthogonal coordinate systems we see that: 
 

• the off-diagonal diffusion terms are equal to zero, 
• the finite volume approximations of the diagonal terms are obtained without 

the need to know anything about the contravariant vectors. 
 

This illustrates the advantage of using orthogonal coordinate systems. This is valid 
for any diffusion terms in the conservation equations, e.g. the thermal heat diffu-
sion terms in the energy conservation equations, the viscous diffusion terms in the 
momentum equations etc. 

13.4.4.3 Off-diagonal diffusion terms in the general case 

The geometric coefficients of the off-diagonal diffusion terms can then be com-
puted as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 12 132 21 22 23
12 1 1 1 1

d e a e a e a= ⋅ = + +e a ,   (13.97) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 12 133 31 32 33
13 1 1 1 1

d e a e a e a= ⋅ = + +e a ,  (13.98) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 22 232 21 22 23
22 12 12 2 2 2 i

d e a e a e a d
−

= ⋅ = + + = −e a ,  (13.99) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 22 233 31 32 33
23 13 12 2 2 2 i

d e a e a e a d
−

= ⋅ = + + = −e a ,  (13.100) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 31 32 331 11 12 13
31 3 3 3 3

d e a e a e a= ⋅ = + +e a ,   (13.101)  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 31 32 333 31 32 33
33 3 3 3 3

d e a e a e a= ⋅ = + +e a ,  (13.102) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 41 42 431 11 12 13
41 31 14 4 4 4 j

d e a e a e a d
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= ⋅ = + + = −e a ,  (13.103) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 41 42 433 31 32 33
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d e a e a e a d
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= ⋅ = + + = −e a , (13.104) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )5 51 52 531 11 12 13
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d e a e a e a= ⋅ = + +e a ,   (13.105)  
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−

= ⋅ = + + = −e a .  (13.108) 

With this notation the diffusion term takes the form 
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where 
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  (13.110-111) 
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  (13.114-115) 

The twelve concentration derivatives are computed as follows 
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13.4.4.4 Final form of the finite volume concentration equation 

Thus the final form of the discretized concentration equation (13.1) is 
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Solving with respect to the unknown concentration we obtain 
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 (13.129) 

For the case of a just originating velocity field, 0laα =   and 
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we have  

6 6
,

, , ,
1 1 ,

6
,

1 ,

_
C

mil m
v il v il lm il m m il m il m

m m h m m

il C
il m

v l lm m
m h m

D V
DC DC B C C DI C

L S
C

D
B

L

γ γ β

γ μ β

−
= =

+
−

=

⎡ ⎤⎛ ⎞Δ+ + + +⎢ ⎥⎜ ⎟⎜ ⎟Δ⎢ ⎥⎝ ⎠⎣ ⎦=
⎛ ⎞

+ +⎜ ⎟⎜ ⎟Δ⎝ ⎠

∑ ∑

∑
. 

 (13.131) 

13.5 Discretization of the entropy equation 

The entropy equation (10.62) is discretized following the procedure already de-
scribed in the previous section. The result is 
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The term ,_ l mDI T  is computed by replacing the concentrations in Eqs. (11.110-127) 

with the corresponding temperatures. The computation of the harmonic averaged 
thermal conductivity coefficients is given in Appendix 12.1. Solving with respect 
to the unknown specific entropy we obtain 

6
*

1

6

1

la la va la v l lm lm
m

l

la la va lm v l
m

s Ds B s

s

B

α ρ γ τ γ

α ρ γ τ γ μ

−
=

+
−

=

⎛ ⎞+ Δ +⎜ ⎟
⎝ ⎠=
⎛ ⎞+ Δ +⎜ ⎟
⎝ ⎠

∑

∑
.   (13.134) 

For the case of a just originating velocity field, 0laα =   and  
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13.6 Discretization of the temperature equation 

The temperature equation (10.65) is discretized following the procedure already 
described in the previous section. The result is 
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13.7 Discretization of the particle number 
density equation 

The particle number density equation (10.66) is discretized following the proce-
dure already described in the previous section. The result is 
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The turbulent diffusion coefficient is again a result of harmonic volume averaging – 
Appendix 12.1. 
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13.8 Discretization of the x momentum equation 

The x momentum equation (10.68) is discretized as already discussed in the pre-
vious Section. The result is 
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A natural averaging of the diffusion coefficients is the harmonic averaging – 
Appendix 12.1 
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It is valid for all momentum equations. Note how we arrive to the integral form of 
the pressure term: 
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The b coefficients of in the lift force expressions result from the Cartesian 
component decomposition: 
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We proceed in a similar way for the other momentum equations. 

13.9 Discretization of the y momentum equation 

The result of the discretization of the y momentum equation (10.73) is 
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13.10 Discretization of the z momentum equation 

The result of the discretization of the z momentum equation (10.77) is 
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13.11 Pressure-velocity coupling 

The IVA3 method: An important target of the numerical methods is to guarantee a 
strict mass conservation in the sense of the overall mass balance as for the single 
cell as well for the sum of the cells inside the physical domain of interest. We use 
the discretized mass conservation equations of each field in a special way to 
construct the so called pressure-velocity coupling keeping in mind the above 
requirement. First we note that the difference resulting from the time derivative 
divided by the new time level density can be rearranged as follows 
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Then, we divide each of the discretized field mass conservation equations by the 
corresponding new time level density. Having in mind Eq. (13.150) we obtain 
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We sum all of the lmax mass conservation equations. The first term disappears be-
cause the sum of all volume fractions is equal to unity. In the resulting equation 
the temporal density difference is replaced by the linearized form of the equation 
of state, Eq. (3.173), 
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The result is 
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where 
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This equation is equivalent exactly to the sum of the discretized mass conservation 
equations divided by the corresponding densities. It takes into account the 
influence of the variation of the density with the time on the pressure change. The 
spatial variation of the density in the second term is still not resolved. With the 
next step we will derive a approximated approach to change also the influence of 
the spatial variation of the density on the pressure change. 

Writing the discretized momentum equation in the linearized form 
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and replacing we finally obtain the so called pressure equation 
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Defining the coefficients 
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we obtain the pressure equation 
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connecting each cell pressure with the pressure of the surrounding cells. We see 
that the system of algebraic equations has positive diagonal elements, is symmetric 
and strictly diagonally dominant because  
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These are very important properties.  
The IVA2 method: The spatial deviation of the density of the surrounding 

cells from the density of the cell considered can be introduced into Eq. 
(13.153) as follows 
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The result is 
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The spatial density variation can again be expressed as follows, Eq. (3.173), 
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With this we obtain 
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Equation (13.165) is equivalent exactly to the sum of the discretized mass 
conservation equations. The discretized concentration equation divided by the old 
time level density is 
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does not contain time derivatives and convection terms. Even these terms are the 
most strongly varying in transient processes during a single time step. In the case 
of negligible diffusion N

ilDC  contains only source terms. 

We realize that the expression on the right hand side is very similar to the left 
hand side of the concentration equation divided by the old time level density. 
A very useful approximation is then 
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m la la

C C b C C DC
ρ τα γ τ α
ρ ρ−

=

Δ≈ − − Δ − =∑  (13.169) 

and 

( ) ( )
6

1
va la l la lm lm lm l

m

s s b s sγ α τ α−
=

− − Δ −∑  

( ) ( )
6

,
, ,

1

l m N
la l la va lm l m l m l l

m la la

s s b s s Ds
ρ τα γ τ α
ρ ρ−

=

Δ≈ − − Δ − =∑ ,  (13.170) 

Thus lDα  can be approximated as follows 

max

2 ,

1 i
N Nl v va l l

l v la l il
il l la l i la a

D Ds DC
s C

μ γ γ ∂ρ ∂ρα γ α
ρ τ ρ ρ ∂ ∂=

⎧ ⎫⎛ ⎞⎛ ⎞− ⎪ ⎪⎛ ⎞= − − + ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∑ . 

  (13.171) 

Replacing with the normal velocities computed from the discretized momentum 
equation in linearized form we finally obtain the so called pressure equation 

max max6

2 2
1 1 1

1 ( )
l l

la m
va m lm l lm lm lm m

l m ll la l la

p p
p RVel p p

a a

αγ τ β ξ α ξ α
ρ ρ+ −

= = =

⎡ ⎤⎛ ⎞−
− Δ + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  

max max

2
1 1

l l
la

a va l
l ll la

p D
a

αγ τ α
ρ= =

= + Δ∑ ∑  

( )
max6

,2
1 1

1
l

mnm
m lm l lm lm lm cs m

m l l la

p p
dV

a
τ β ξ α ξ α

ρ+ −
= =

⎡ ⎤⎛ ⎞− ⎡ ⎤− Δ + + − ⋅⎢ ⎥⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ e V  (13.172) 
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or 

6

1
m m

m

cp c p d
=

+ =∑ ,      (13.173) 

where 

max

2
1

1
l

m
m m lm l lm lm lm

l l la

p p
c RVel

a
τβ ξ α ξ α

ρ+ −
=

⎡ ⎤⎛ ⎞−= −Δ + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ,  (13.174) 

max 6

2
1 1

l
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va m
l ml la

c p c
a

αγ
ρ= =

= −∑ ∑ ,     (13.175) 

max max

2
1 1

l l
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a va l
l ll la

d p D
a

αγ τ α
ρ= =

= + Δ∑ ∑  

( )
max6

,2
1 1

1
l

mnm
m lm l lm lm lm cs m

m l l la

p p
dV

a
τ β ξ α ξ α

ρ+ −
= =

⎡ ⎤⎛ ⎞− ⎡ ⎤− Δ + + − ⋅⎢ ⎥⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ e V . (13.176) 

The advantage of Eq. (13.172) for the very first outer iteration step is that it takes the 
influence of all sources on the pressure change which is not the case in Eq. (13.156). 
The advantage of Eq. (13.156) for all subsequent outer iterations is that it reduces 
the residuals to very low value which is not the case with Eq. (13.172) because of 
the approximations (13.169) and (13.170). An additional source of numerical error 
is that the new density is usually computed within the outer iteration by using 
Eq. (13.159) and not Eq. (13.164). Combined, both equations result in a useful 
algorithm. As a predictor step use Eq. (13.172) and for all other iterations use 
Eq. (13.156). 

13.12 Staggered x momentum equation 

Two families of methods are known in the literature for solving partial differential 
equations with low order methods, the so called co-located and staggered grid me-
thods. In the co-located methods all dependent variables are defined at the center 
of the mass control volume. In these methods unless the staggered grid method is 
used, discretization of order higher then the first order is required to create a stable 
numerical method. In the staggered grid method all dependent variables are de-
fined in the center of the mass control volume except the velocities which are de-
fined at the faces of the volume. In both cases the velocities are required for the 
center as well for the faces, so that the one group of velocities is usually computed 
by interpolation from the known other group. The control volume for the stag-
gered grid methods consists of the half of the volumes belonging to each face. 
Strictly speaking the required geometrical information that has to be stored for 
these methods is four times those for the co-located methods. A compromise be-
tween low order methods using low storage and stability is to derive the discre-
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tized form of the momentum equation in the staggered cell from already discre-
tized momentum equations in the two neighboring cells. This is possible for the 
following reason. Momentum equations are force balances per unit mixture vo-
lume and therefore they can be volumetrically averaged over the staggered grids. 
In this section we will use this idea. As already mentioned the staggered computa-
tional cell in the ξ direction consists of the half of the mass control volumes be-

longing to the both sites of the ξ face. We will discretize the three components of 
the momentum equation in this staggered cell. Then we will use the dot product of 
the so discretized vector momentum equation with the unit face vector to obtain 
the normal velocity at the cell face. In doing this, we will try to keep the computa-
tional effort small by finding common coefficients for all three equations. This 
approach leads to a pressure gradient component normal to the face instead of a 
pressure gradient to each of the Cartesian directions, which is simply numerically 
treated. This is the key for designing implicit or semi-implicit methods. 

 

Time derivatives: We start with the term ( )la la l la vau uα ρ γ− , perform volume 

averaging 

( )la la l la vau uα ρ γ−  

( ) ( ) , 1 1
, 1 , 1 , 1 , 1

1 1

va i iva
la la l la la i la i l i la i

i i

VV
u u u u

V V V V

γγα ρ α ρ + +
+ + + +

+ +

ΔΔ= − + −
Δ + Δ Δ + Δ

 (13.177) 

and approximate the average with 

( ) ( ) ( )u u
la la l la va la la va l lau

u u u uα ρ γ α ρ γ− ≈ − ,   (13.178) 

where 

( ) , 1 1
, 1 , 1

1 1

va i iva
la la va la la la i la iu

i i

VV

V V V V

γγα ρ γ α ρ α ρ + +
+ +

+ +

ΔΔ= +
Δ + Δ Δ + Δ

.  (13.179) 

Note that this procedure of averaging does not give  

( ), 1

1

2
u
l l l iu u u += +        (13.180) 

in the general case. Similarly we have for the other directions momentum equations 

( ) ( ) ( )u u
la la l la va la la va l lau

v v v vα ρ γ α ρ γ− ≈ − ,   (13.181) 

( ) ( ) ( )u u
la la l la va la la va l lau

w w w wα ρ γ α ρ γ− ≈ − .   (13.182) 

We realize that in this way of approximation the component velocity differences 
for all three Cartesian directions possess a common coefficient. 
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Convective terms: The following approximation for the convective terms is 
proposed 

( )
6

, , ,
1

lm l m l m l m l
m

b u uα ρ−
=

−∑  

( ) ( )
6 6

, 1 ,
1 1 11

1
lm l m l i lm l m l

m m ii

V B u u V B u u
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= = ++
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∑ ∑  

( )
6

, , ,
1

u u u u u
lm l m l m l m l

m

b u uα ρ−
=

≈ −∑ ,     (13.183) 

where 

( )( )* *
, , 1

1u u u
lm l m l m lm lm i

b C B C Bα ρ− − − +
= + − ,    (13.184) 

is the m-th face mass flow into the staggered cell divided by its volume and 

*

1i

V
C

V V +

Δ=
Δ + Δ

.      (13.185) 

As in the case of the time derivatives we realize that in this way of approximation 
the component velocity differences for all three Cartesian directions possess a 
common coefficient. 

 

Diagonal diffusion terms: We apply a similar procedure to the diagonal diffusion 
terms 
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∑  
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D
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L
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D
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L

ν

ν

β

β
=

+
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⎜ ⎟≈ −⎜ ⎟
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∑ . (13.186) 
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Thus the combined convection-diffusion terms are finally approximated as follows 

( ) ( ) ( )
6

1 1,
,

1 ,

1
1

3
m ml m

lm m l m l
m h m

D
B e e u u

L

ν

β−
=
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, , , _ ,
1 1

u u u u
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a u u a u u
= =

≈ − + −∑ ∑ ,   (13.187) 

where 

( ), ,* *
,

, , 1

1l m l m
lm cd lm m lm m

h m h m i

D D
a C B C B

L L

ν ν

β β− −
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⎛ ⎞ ⎛ ⎞
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,  (13.188) 
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D D
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  (13.189) 

Similarly we have 
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, _

, , 1

1
1

3

m m m ml m l m
lm v dif m m

h m h m i

D D
a C e e C e e

L L

ν ν

β β
+

⎧ ⎫⎡ ⎤⎪ ⎪= − + − ⎢ ⎥⎨ ⎬Δ Δ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
. 

  (13.191) 
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D D
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  (13.193) 

We realize again that the coefficients ,lm cda  are common for all the momentum 

equations in the staggered cell. 
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Drag force terms: The following approximation contains in fact computation of 
the volume averages of the linearized drag coefficients. 

( ) ( )
3

1

d d
v ml ml m l wl wl cs l

m
m l

c u u c u uγ
=
≠

⎡ ⎤
⎢ ⎥Δ − + Δ −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ V V  
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3

1

d u u d u u
v ml m l v wl cs lu u

m
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c u u c u uγ γ
=
≠

≈ − + −∑ ,   (13.194) 

where 

( ) ( ), 1 1 , 1 1
1

1d d d
v ml v ml ml v i i ml i ml iu

i

c Vc V c
V V

γ γ γ + + + +
+

= Δ Δ + Δ Δ
Δ + Δ

V V , (13.195) 

( ) ( ), 1 1 , 1 1
1

1d d d
v wl v wl csl v i i wl i csl iu

i

c Vc V c
V V

γ γ γ + + + +
+

= Δ Δ + Δ Δ
Δ + Δ

V V . (13.196) 

Similarly we have 
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d d
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m
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=
≠
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( ) ( )
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1

d d
v ml ml m l wl wl cs l

m
m l

c w w c w wγ
=
≠

⎡ ⎤
⎢ ⎥Δ − + Δ −⎢ ⎥
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∑ V V  

( ) ( ) ( ) ( )
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m
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=
≠

≈ − + −∑ .   (13.198) 

Again the drag term coefficients for the momentum equations in the staggered cell 
are common.  

  

Gravitational force: The volume averaging for the gravitational force gives 

( )l l x v x la la va u
g gα ρ γ α ρ γ= ,     (13.199) 

( )l l y v y la la va u
g gα ρ γ α ρ γ= ,     (13.200) 

( )l l z v z la la va u
g gα ρ γ α ρ γ= .     (13.201) 
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Interfacial momentum transfer due to mass transfer: The interfacial momen-
tum transfer is again approximated by first volume averaging the volume mass 
source terms due to interfacial mass transfer. The source terms due to external 
injection or suction are computed exactly because it is easy to prescribe the 
velocities corresponding to the sources at the mass cell center. 

( ) ( )
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1
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ml v m l lw v lw l
m

u u u uμ γ μ γ
=
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Similarly we have 
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( ) ( )
3,

1

w

ml v m l lw v lw l
m

w w w wμ γ μ γ
=

⎡ ⎤⎡ ⎤− − + −⎢ ⎥⎣ ⎦⎣ ⎦
∑  

( ) ( ) ( ) ( ) ( ) ( )
3

1

u u u u u u
v ml m l v wl wl l v lw lw lu u u

m

w w w w w wγ μ γ μ γ μ
=

≈ − + − − −∑ . (13.209) 

Lift force, off-diagonal viscous forces: The lift force and the off-diagonal 
viscous forces are explicitly computed by strict volume averaging. 
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Pressure gradient: 

( )l pξα γ ∇ ⋅ i ( )lu pξα γ= ∇ ⋅ i ,     (13.210) 

where 
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v l v i i l i
lu

v v i i
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Similarly we have 

( )l pξα γ ∇ ⋅ j ( )lu pξα γ= ∇ ⋅ j ,     (13.212) 

( )l pξα γ ∇ ⋅k ( )lu pξα γ= ∇ ⋅k .     (13.213) 

Virtual mass force: 
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Similarly we have 
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  (13.216) 

Implicit treatment of the interfacial interaction: 
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( )
( ) ( )

( ) ( )
( )

1
, 1 , 11

3,

1

2 3

1 1
1̀ 1̀ 1̀ 1̀

u u u u
m l ma la

m i l i m l
cs

vm L
v ml v lu u

m
m l

m l m l

u u u u
V u u u u

c f

u u u u
V V

τ τ
γ γ

η η ζ ζ

+ +

=
≠

⎛ ⎞
− −⎜ ⎟− + − − +⎜ ⎟Δ Δ

⎜ ⎟− −⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟+ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  

( ) ( )
6

, _ ,
1

u u
lm u dif l m l x la la va u

m

a u u g α ρ γ
=

= − − −∑  

( ) ( ) ( ) ( ) ( ) ( )
3

1

u u u u u u
v ml m l v wl wl l v lw lw lu u u

m

u u u u u uγ μ γ μ γ μ
=

+ − + − − −∑  

( ) ( ) ( ) ( )
3

1

d u u d u u u
v ml m l v wl cs l lu u

m
m l

c u u c u u Visγ γ
=
≠

+ − + − +∑ .   (13.217) 

For all three velocity fields we have a system of algebraic equations with respect 
to the corresponding field velocity components in the x direction 

( ) ( ) ( ) ( ) ( )
3

,
1

1 1vm d u
la la va lm l cd v wl v wl v wl v lw lu u u u u

m
m l

a a c c uα ρ γ γ γ γ μ γ μ
τ τ=

≠

⎡ ⎤
⎢ ⎥− + + + + −⎢ ⎥Δ Δ
⎢ ⎥⎣ ⎦

∑  

3

1

u
lm m

m
m l

a u
=
≠

+∑ ( ),l l ub pξα γ= − ∇ ⋅ i      (13.218) 

or 

( )u u u u pξγ= − ∇ ⋅A u bu a i .     (13.219) 
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The non-diagonal and the diagonal elements of the Au matrix are  

( ) ( ) ( )1vm d
ml v ml v ml v mlu u u

a c cγ γ μ γ
τ

⎡ ⎤= − + +⎢ ⎥Δ⎣ ⎦
,   (13.220) 

and 

( ) ( ) ( ) ( ) ( )
3

,
1

1 1vm d
ll la la va lm l cd v wl v wl v wl v lwu u u u u

m
m l

a a a c cα ρ γ γ γ γ μ γ μ
τ τ=

≠

= − + + + + −
Δ Δ∑ , 

  (13.221) 

respectively, where 

6

, ,
1

l cd lm cd
m

a a
=

= −∑ .      (13.222) 

The elements of the algebraic vector buu are 

( ) ( )
3,

,
1

u cs
u Lla

l l conv l la la va x lm v lu u
m
m l

u
bu bu Vis g bu fα ρ γ γ

τ =
≠

⎛ ⎞
= + + − − +⎜ ⎟Δ⎝ ⎠

∑  

( ) ( ) ( ) ( )1vm d u u
v csl v wl cs v wl v lw lwu u u u
c c u uγ γ γ μ γ μ

τ
⎡ ⎤ ⎡ ⎤+ + + −⎢ ⎥ ⎣ ⎦Δ⎣ ⎦

  (13.223) 

where 

( )
( ) ( )

( ) ( )

1
, 1 , 11

2 3

1 1
1̀ 1̀ 1̀ 1̀

u u
ma la

m i l i m l

vm
ml lm v ml u

m l m l

u u
V u u u u

bu bu c

u u u u
V V

τ
γ

η η ζ ζ

+ +

⎡ ⎤
−⎢ ⎥− + − − +⎢ ⎥Δ

⎢ ⎥= − = ⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥+ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 

  (13.224) 

and 

( )
6

, , , _ , , _
1

u u
l conv lm cd lm u dif l m lm u dif l

m

bu a a u a u
=

⎡ ⎤= − + −⎣ ⎦∑ .   (13.225) 

The elements of the algebraic vector au are ,l uα , where l = 1,2,3. Note that by de-

finition, if one velocity field does not exist, 0lα = , the coefficients describing its 
coupling with the other fields are then equal to zero. Similarly we can discretize 
the momentum equations in the same staggered control volume for the other Car-
tesian components. The result in component form is then 
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( )u u u u pξγ= − ∇ ⋅A u bu a i ,    (13.226) 

( )u u u u pξγ= − ∇ ⋅A v bv a j ,    (13.227) 

( )u u u u pξγ= − ∇ ⋅A w bw a k .    (13.228) 

 
It is remarkable that the A matrix and the coefficients of the pressure gradient 
are common for all the three systems of equations. If we take the dot product of 
each u-v-w equation with the unit normal vector at the control volume face we 
then obtain 

( ) ( ) ( )11 12 13

1 1 1

u u u ue e e⎡ ⎤+ +⎣ ⎦A u v w  

( ) ( ) ( ) ( ) ( )11 12 13 1

1 1 1 1

u u u ue e e pξγ ⎡ ⎤= + + − ⋅ ∇⎣ ⎦bu bv bw a e .  (13.229) 

Having in mind that the outwards pointing normal face velocity is 

( )1n u= ⋅V e V ,       (13.230) 

and 

( ) ( )1p
p

ξ
∂ = ⋅ ∇
∂

e ,      (13.231) 

we obtain finally 

nu u u p
ξγ ξ
∂= −
∂

A V b a ,      (13.232) 

where 

( ) ( ) ( )11 12 13

1 1 1

u u u ue e e= + +b bu bv bw .    (13.233) 

This algebraic system can be solved with respect to each field velocity provided that 

11 22 33 12 23 31 21 32 13 31 22 13 32 23 11 12 21 33det 0u a a a a a a a a a a a a a a a a a a= + + − − − ≠A . 

  (13.234) 

The result is 

( )1

n

ip pξ ξ ξγ += − −V dV RV ,     (13.235) 
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where 

( ) 1u u
ξ

−
=dV A b       (13.236) 

with components 

3

,

1

/ det u
l m lm

m

dV b aξ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ A ,     (13.237) 

and 

( ) 1u
uξ

−
=RV A a ,      (13.238) 

with components  

3

,
1

/ detl ma u lm u
m

RU aα
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ A ,     (13.239) 

and the a  values are 

11 22 33 32 23a a a a a= − ,   12 32 13 12 33a a a a a= − ,   13 12 23 22 13a a a a a= − , 

21 23 31 21 33a a a a a= − ,   22 11 33 31 13a a a a a= − ,   23 21 13 23 11a a a a a= − , 

31 21 32 31 22a a a a a= − ,   32 12 31 32 11a a a a a= − ,   33 11 22 21 12a a a a a= − .   (13.240-248) 

Actually, not the absolute but the relative normal face velocity is required to con-
struct the pressure equation which is readily obtained 

( )1nn
cs= − ⋅V V e V .      (13.249) 

Appendix 13.1 Harmonic averaged diffusion coefficients 

A natural averaging of the coefficients describing diffusion across the face m, hav-
ing surface cross section mS  is then the harmonic averaging 

( )( )
( ) ( )

,

,

2 l ll m l m
m m

h m m l lm m

D
S S

L V V V

Φ Φ ΦΦ⎛ ⎞= =⎜ ⎟Δ Δ Δ Φ + Δ Φ⎝ ⎠
 

where on the right hand side m = 1, 2, 3, 4, 5, 6 is equivalent to i + 1, i - 1, j + 1, j - 
1, k + 1, k - 1, respectively regarding the properties inside a control volumes. VΔ  
is the non-staggered cell volume, and mVΔ  is the volume of the cell at the other 
side of face m. It guaranties that if the field in one of the neighboring cells is miss-
ing the diffusion coefficient is zero. This property is derived from the solution of 
the steady state one-dimensional diffusion equations. 
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For computation of  

( )( )
( ) ( )

* ** *
,

* *
,

2 l l il l l ilil m l l il m
m m

h m m l l il l l ilm m

D DD D
S S

L V V D V D

α ρ α ρα ρ
α ρ α ρ

⎛ ⎞
= =⎜ ⎟Δ Δ Δ + Δ⎝ ⎠

  

we simply set *
l l l ilDα ρΦ = . 

For computation of ,

,

T
l m

h m

D

LΔ
 we simply set l l lα λΦ = . 

For computation of ,

,

sC
il m

h m

D

LΔ
 we simply set ( )*

1l l l il il lD s sα ρΦ = − . Note that 

 ,

,

0
C
il m

h m

D

L
=

Δ
   

for   1il ls s=  or , 1 ,il m l ms s= . 

For computation of the turbulent particle diffusion coefficient ,

,

n
l m

h m

D

LΔ
 we simp-

ly set 
t
l

l tSc

ν
Φ = . 

For computation of ,

,

l m

h m

D

L

ν

Δ
 we simply set *

l l l lα ρνΦ = . 

In the case of cylindrical or Cartesian coordinate systems we have zero off-
diagonal diffusion terms and 

( )( )
( )

1 1

11

2 l ll i

h l i li

D

r r r

Φ
+

++

Φ Φ
=

Δ Δ Φ + Δ Φ
, 

( )( )
( )

2 1

, 1 11

2 l ll i

h i l i li

D

r r r

Φ
−

− −−

Φ Φ
=

Δ Δ Φ +Δ Φ
, 

( )( )
( )

13

11

2 l l jl

h l j lj

D

r r
κ κθ θ θ

Φ
+

++

Φ Φ
=

Δ ⎡ ⎤Δ Φ + Δ Φ⎣ ⎦
,  

( )( )
( )

14

, 1 11

2 l l jl

h j l j lj

D

r r
κ κθ θ θ

Φ
−

− −−

Φ Φ
=

Δ ⎡ ⎤Δ Φ + Δ Φ⎣ ⎦
, 

( )( )
( )

5 1

11

2 l ll k

h l k lk

D

z z z

Φ
+

++

Φ Φ
=

Δ Δ Φ + Δ Φ
, 
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( )( )
( )

6 1

, 1 11

2 l ll k

h k l k lk

D

z z z

Φ
−

− −−

Φ Φ
=

Δ Δ Φ + Δ Φ
. 

Appendix 13.2 Off-diagonal viscous diffusion terms of the 
x momentum equation 

The off-diagonal viscous diffusion terms in the x momentum equation are 

( )
6

1,
, ,

1 ,

2
_ _ _

3

ml m b uT
m l m l m lm

m h m

D
DI u e DI u DI vis

L

ν

β
=

⎛ ⎞− +⎜ ⎟Δ ⎝ ⎠
∑  

*
1 1,12 1,13 1,22 1,23 1,32 1,33

1 1 1 11 1

l l l l l l
x x x x x x

u u v v w w
q q q q q qβ

η ζ η ζ η ζ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪= + + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

 

*
2 2,12 2,13 2,22 2,23 2,32 2,33

2 2 2 22 2

l l l l l l
x x x x x x

u u v v w w
q q q q q qβ

η ζ η ζ η ζ
⎧ ⎫∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

 

*
3 3,11 3,13 3,21 3,23 3,31 3,33

3 3 3 33 3

l l l l l l
x x x x x x

u u v v w w
q q q q q qβ

ξ ζ ξ ζ ξ ζ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

 

*
4 4,11 4,13 4,21 4,23 4,31 4,33

4 4 4 44 4

l l l l l l
x x x x x x

u u v v w w
q q q q q qβ

ξ ζ ξ ζ ξ ζ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

 

*
5 5,11 5,12 5,21 5,22 5,31 5,32

5 5 5 55 5

l l l l l l
x x x x x x

u u v v w w
q q q q q qβ

ξ η ξ η ξ η
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

 

*
6 6,11 6,12 6,21 6,22 6,31 6,32

6 6 6 66 6

l l l l l l
x x x x x x

u u v v w w
q q q q q qβ

ξ η ξ η ξ η
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + + + +⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

. 

Here the coefficients 

,*

,

ml m
m m

h m m

D V

L S

ν

β β Δ= =
Δ

 

are used also in the other momentum equations. The following 36 coefficients are 
functions of the geometry only. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11 12 13 1121 22 23 21
1,12 121 1 1 1

4 1

3 3xq e a e a e a d e a= + + = + , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11 12 13 1131 32 33 31
1,13 131 1 1 1

4 1

3 3xq e a e a e a d e a= + + = + , 
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( ) ( ) ( ) ( )12 1121 22
1,22 1 1

2

3xq e a e a= − , 

( ) ( ) ( ) ( )12 1131 32
1,23 1 1

2

3xq e a e a= − , 

( ) ( ) ( ) ( )13 1121 23
1,32 1 1

2

3xq e a e a= − , 

( ) ( ) ( ) ( )13 1131 33
1,33 1 1

2

3xq e a e a= − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 22 23 2121 22 23 21
2,12 222 2 2 2

4 1

3 3xq e a e a e a d e a= + + = +  

( )1,12 1x i
q

−
= − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 22 23 2131 32 33 31
2,13 232 2 2 2

4 1

3 3xq e a e a e a d e a= + + = +  

( )1,13 1x i
q

−
= − , 

( ) ( ) ( ) ( ) ( )22 2121 22
2,22 1,22 12 2

2

3x x i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )22 2131 32
2,23 1,23 12 2

2

3x x i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )23 2121 23
2,32 1,32 12 2

2

3x x i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )23 2131 33
2,33 1,33 12 2

2

3x x i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )31 32 33 3111 12 13 11
3,11 313 3 3 3

4 1

3 3xq e a e a e a d e a= + + = + , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )31 32 33 3131 32 33 31
3,13 333 3 3 3

4 1

3 3xq e a e a e a d e a= + + = + , 

( ) ( ) ( ) ( )32 3111 12
3,21 3 3

2

3xq e a e a= − , 

( ) ( ) ( ) ( )32 3131 32
3,23 3 3

2

3xq e a e a= − , 

( ) ( ) ( ) ( )33 3111 13
3,31 3 3

2

3xq e a e a= − , 
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( ) ( ) ( ) ( )33 3131 33
3,33 3 3

2

3xq e a e a= − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )41 42 43 4111 12 13 11
4,11 414 4 4 4

4 1

3 3xq e a e a e a d e a= + + = +  

( )3,11 1x j
q

−
= − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )41 42 43 4131 32 33 31
4,13 434 4 4 4

4 1

3 3xq e a e a e a d e a= + + = +  

( )3,13 1x j
q

−
= − , 

( ) ( ) ( ) ( ) ( )42 4111 12
4,21 3,21 14 4

2

3x x j
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )42 4131 32
4,23 3,23 14 4

2

3x x j
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )43 4111 13
4,31 3,31 14 4

2

3x x j
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )43 4131 33
4,33 3,33 14 4

2

3x x j
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )51 52 53 5111 12 13 11
5,11 515 5 5 5

4 1

3 3xq e a e a e a d e a= + + = + , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )51 52 53 5121 22 23 21
5,12 525 5 5 5

4 1

3 3xq e a e a e a d e a= + + = + , 

( ) ( ) ( ) ( )52 5111 12
5,21 5 5

2

3xq e a e a= − , 

( ) ( ) ( ) ( )52 5121 22
5,22 5 5

2

3xq e a e a= − , 

( ) ( ) ( ) ( )53 5111 13
5,31 5 5

2

3xq e a e a= − , 

( ) ( ) ( ) ( )53 5121 23
5,32 5 5

2

3xq e a e a= − , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )61 62 63 6111 12 13 11
6,11 616 6 6 6

4 1

3 3xq e a e a e a d e a= + + = +  

( )5,11 1x k
q

−
= − , 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )61 62 63 6121 22 23 21
6,12 626 6 6 6

4 1

3 3xq e a e a e a d e a= + + = +  

( )5,12 1x k
q

−
= − , 

( ) ( ) ( ) ( ) ( )62 6111 12
6,21 5,21 16 6

2

3x x k
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )62 6121 22
6,22 5,22 16 6

2

3x x k
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )63 6111 13
6,31 5,31 16 6

2

3x x k
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )63 6121 23
6,32 5,32 16 6

2

3x x k
q e a e a q

−
= − = − . 

Appendix 13.3 Off-diagonal viscous diffusion terms of the 
y momentum equation 

The off-diagonal viscous diffusion terms in the y momentum equation 

( )
6

2,
, ,

1 ,

2
_ _ _

3

ml m b vT
m l m l m lm

m h m

D
DI v e DI u DI vis

L

ν

β
=

⎛ ⎞− +⎜ ⎟Δ ⎝ ⎠
∑  

are computed using the same procedure as those for x equation replacing simply 
the subscript x with y and using the following geometry coefficients. 

( ) ( ) ( ) ( )11 1222 21
1,12 1 1

2

3yq e a e a= − , 

( ) ( ) ( ) ( )11 1232 31
1,13 1 1

2

3yq e a e a= − , 

( ) ( ) ( ) ( ) ( ) ( )11 12 1321 22 23
1,22 1 1 1

4

3yq e a e a e a= + + , 

( ) ( ) ( ) ( ) ( ) ( )11 12 1331 32 33
1,23 1 1 1

4

3yq e a e a e a= + + , 

( ) ( ) ( ) ( )13 1222 23
1,32 1 1

2

3yq e a e a= − , 

( ) ( ) ( ) ( )13 1232 33
1,33 1 1

2

3yq e a e a= − , 
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( ) ( ) ( ) ( ) ( )21 2222 21
2,12 1,12 12 2

2

3y y i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )21 2232 31
2,13 1,13 12 2

2

3y y i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( ) ( ) ( )21 22 2321 22 23
2,22 1,22 12 2 2

4

3y y i
q e a e a e a q

−
= + + = − , 

( ) ( ) ( ) ( ) ( ) ( ) ( )21 22 2331 32 33
2,23 1,23 12 2 2

4

3y y i
q e a e a e a q

−
= + + = − , 

( ) ( ) ( ) ( ) ( )23 2222 23
2,32 1,32 12 2

2

3y y i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )23 2232 33
2,33 1,33 12 2

2

3y y i
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( )31 3212 11
3,11 3 3

2

3yq e a e a= − , 

( ) ( ) ( ) ( )31 3232 31
3,13 3 3

2

3yq e a e a= − , 

( ) ( ) ( ) ( ) ( ) ( )31 32 3311 12 13
3,21 3 3 3

4

3yq e a e a e a= + + , 

( ) ( ) ( ) ( ) ( ) ( )31 32 3331 32 33
3,23 3 3 3

4

3yq e a e a e a= + + , 

( ) ( ) ( ) ( )33 3212 13
3,31 3 3

2

3yq e a e a= − , 

( ) ( ) ( ) ( )33 3232 33
3,33 3 3

2

3yq e a e a= − , 

( ) ( ) ( ) ( ) ( )41 4212 11
4,11 3,11 14 4

2

3y y j
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )41 4232 31
4,13 3,13 14 4

2

3y y j
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( ) ( ) ( )41 42 4311 12 13
4,21 3,21 14 4 4

4

3y y j
q e a e a e a q

−
= + + = − , 

( ) ( ) ( ) ( ) ( ) ( ) ( )41 42 4331 32 33
4,23 3,23 14 4 4

4

3y y j
q e a e a e a q

−
= + + = − , 
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( ) ( ) ( ) ( ) ( )43 4212 13
4,31 3,31 14 4

2

3y y j
q e a e a q

−
= − = − , 

( ) ( ) ( ) ( ) ( )43 4232 33
4,33 3,33 14 4

2

3y y j
q e a e a q

−
= − = − , 
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Appendix 13.4 Off-diagonal viscous diffusion terms of the 
z momentum equation 

The off-diagonal viscous diffusion terms in the z momentum equation 
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are computed using the same procedure as those for x equation replacing simply 
the subscript x with z and using the following geometry coefficients. 
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14 Visual demonstration of the method 

The method presented in this monograph is implemented in the computer code IVA, 
Kolev (1996, 1999a, 1999b). The verification of the method is presented in the last 
Chapter of Volume II. The purpose of this Chapter is to demonstrate the capability 
of the method in simulating very complex flows – consisting of molten material, 
gases and water in all their possible combinations. The cases considered here are al-
ready documented and discussed in separate publications and the interested reader 
should go to the original sources for details, especially if he or she is interested in 
discussions on the physical phenomena and the conclusions for practical applica-
tions. What were not given in these publications are the videos corresponding to the 
discussed cases. 

We will proceed here with a short description of the case considered, provide 
the video, and discuss briefly the methods, which are operating within the 
mathematical simulations. The visualization tool used here is SONJA, Kolev, 
Chen, Kollmann and Schlicht (1998). 

14.1 Melt-water interactions 

Next generation nuclear reactors are designed to sustain any catastrophic melt of 
the reactor core and to keep the accident localized inside a specially designed 
reactor building called containment.  

14.1.1 Cases 1 to 4 

In Kolev (1998a) a postulated in-vessel melt-water interaction is analyzed caused by 
failure of the crust above the core support plate and below the molten poll. The ini-
tial conditions are given below: The lower head is assumed to be filled with residual 
water, 15 t, at saturation conditions up to the lower support plate. The molten pool 
consisting of 101 t Corium with initial temperature 3100 K - see Fig. 14.1. The re-
lease cross sections for the first three cases are effectively 0.3267, 0.5809 and 
0.9076 m², and the release time constants are 16.43, 9.24 and 5.91 s respectively. 
The release cross sections are defined with an axial permeability of 0.31 multiplied 
by the total failed cross sections. Making use of the symmetry we simulate the 
process as being two dimensional by using 1424 computational cells. Note that the 
distribution plate within the lower head is modeled. The 15% reduction of the vent-
ing cross section caused by the 8 core barrel supports is taken into account. Case 4 is 
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similar to the previous case. The only difference is that the total lower support plate 
is assumed to be permeable with 0.31-permeability. Because cases 1 to 3 did not 
lead to any melt elevation at all we decided to consider the very hypothetical case 4 
to see whether even under these hypothetical conditions the feared slug formation is 
possible. The most important results of the simulation are described below. 

14.1.1.1 Case 1 

Figure 14.1 presents the material relocation as a function of space and time. We 
see that after 0.1 s the melt reaches the water. The fragmentation produces larger 
melt interfacial area density and steam production driving the water depletion. 
After 1 s there is almost no water left in the lower head. 
 

 
                           0.0            0.1            0.2            0.3             0.4 

 
                      0.5            0.6             0.7            0.8           1.0 s 

Fig. 14.1 IVA5 EPR in-vessel melt water interaction analysis: Case 1, failure cross section 
0.3267 m². Material relocation as a function of space and time 

The pressures versus time functions at four different positions along the 
symmetry axis, given in Kolev (1998a), compared with the material relocation 
maps reveal the cyclic nature of this kind of interaction. The initial melt-water 
interaction is not strong enough to completely deplete the water. This occurs 
after the third interaction. In this case the lower head pressure was not large 
enough to invert the melt relocation in the cross section of the failure. The main 
conclusion drawn in Kolev (1998a) for this particular case is that, during the 
process considered, the total melt mass integrated over all cells with water 
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volume fraction above 0.52 (within the water - gas mixture) was at maximum 
several kilograms which presents no danger for RPV upper head integrity. 
 

 
                       0.0            0.1            0.2            0.3             0.4 

 
                      0.5             0.6           0.7         0.8         0.9 s 

Fig. 14.2 IVA5 EPR in-vessel melt water interaction analysis: Case 2, failure cross section 
0.5809 m². Material relocation as a function of space and time 

14.1.1.2 Case 2 

This case is similar to case 1 with the difference that the water depletion from the 
lower head happens faster, as demonstrated in Fig. 14.2, where the material 
relocation as a function of time and space is presented. 

14.1.1.3 Case 3 

The material relocation during the transient is presented on Fig. 14.3. In Kolev 
(1998a) the pressure as a function of time at the symmetry axis for four different 
positions: bottom, below and above the flow distribution plate, and below the 
lower core support plate is also presented. Again, as in cases 1 and 2, the first 
interaction was not strong enough to invert the melt relocation. The second 
interaction is started if the melt reaches the flow distribution plate. The flow 
distribution plate obviously serves as a trigger. This is evident from the fact that 
the pressure spikes occur here first and then propagate in all directions. The 
second interaction succeeded in halting the melt relocation.  
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                              0.0            0.1           0.2          0.3           0.4 

 
                          0.5            0.6           0.7           0.8         1.0 

 
                         1.092        1.29        1.75         2.0        2.984 s 

Fig. 14.3 IVA5 EPR in-vessel melt water interaction analysis: Case 3, failure cross section 
0.9076 m². a) Material relocation as a function of space and time; b) Melt being below the 
lower core support plate as a function of time. Without interaction the mass after 3 s must 
be about 59 t 
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The expanding steam creates RT instabilities and disintegrates the melt above the 
pressure source, relaxing the pressure source. Losing kinetic energy due to the action 
of gravity, the dispersed melt then settles down. The sideward sloshing of the 
remaining continuous melt is reflected from the walls. Thus, at about 1.0 s the melt 
starts to flow into the lower head again. The water was depleted from the lower head 
after the second interaction. Part of the water entered the primary circuit but part was 
reflected from the upper closure of the down-comer. At about 1.5 s both streams of 
melt and water penetrate each other and the third, most violent interaction is 
observed. This produces enough pressure to blow the water completely up from the 
lower head, but not enough to completely invert the melt stream - it stops it for about 
0.3 s. The melt relocation then starts again and continues undisturbed. 

The main conclusion drawn in Kolev (1998a) for this particular case is that the 
possible energy releases in this case are below the “no deformation limit” and 
therefore present no danger for the integrity of the containment. 

We would like to emphasize the cyclic nature of this kind of in-vessel interac-
tion. The first interaction is not always the strongest one. The next ones may be 
much stronger in so far as water is still available in the lower head. The water is 
depleted by cyclic explosions, down to the complete removal from the lower head 
and the down-comer. The available large venting area makes this possible. 

14.1.1.4 Case 4 

As expected, case 4 gives the most violent interaction compared to the previous 
three cases. The first explosion after 0.2 s creates enough pressure to accelerate 
the melt upwards. The melt reaches the top and starts to drop down. After 0.7 s 
the second explosion takes place as a result of entrapment. The second interac-
tion produces pressure spikes of up to 25 bar in the region of most intensive in-
teraction.  

The reason for the violent explosion is the dramatic increase in the interfacial 
melt area. The result is violent acceleration of the melt upwards again. There is a 
third cycle of the interaction after 2.2 s. The melt falling down accumulates in 
the external region of the lower head and intermixes again with the remaining 
water. The result is a third pressure excursion. 

Again as in the previous cases we observe cyclic interactions. Almost the 
total amount of water is depleted outside the reactor pressure vessel (RPV) 
after the third second. The melt mass inside the RPV in three-phase bubbly 
flow is not larger than 120 kg. The melt inside the RPV that is in 
“stoichiometric” three-phase flow is after 0.25 s in its major part of the in 
dispersed droplet-droplet state. 

14.1.1.5 Model elements addressed in cases 1 to 4 

1. All conservation equations for field 1 and field 3 including particle number 
conservation equations; 

2. Geometry description using direction-permeabilities; 
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Fig. 14.4 IVA5 EPR in-vessel melt water interaction analysis: Case 4, failure cross section-
lower support plate with permeability of 0.31. Material relocation as a function of space. 
Parameter - time: 0, 0.182, 0.256, 0.502, 0.893, 1.360, 1.515, 1.903, 2.206, 2.279, 2.500, 
and 2.993 
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3. Numerical method resolving short pressure spikes and complex material relo-
cations as presented in Kolev (1998a); 

4. Constitutive relations for mass, momentum, and heat transfer for bubbles, 
droplets and molten particles; 

5. Constitutive relations for radiation interaction between very hot melt and sur-
rounding water-steam-air mixture; 

6. Constitutive relations controlling the dynamics fragmentation and coalescence. 

14.1.1.6 Available file on CD 

fig_14.04.gif, fig_14.04.html 

14.1.2 Cases 5, 6 and 7 

In Kolev (1998b) an ex-vessel melt-water interaction caused by symmetric lower 
head unzipping within the reactor pit was analyzed. The melt-water interaction 
outside the reactor pressure vessel (RPV) in a typical pressurized water reactor 
(PWR) during a severe accident is associated with the particular geometry of each 
reactor system and the applied accident management strategy.  If melt is relocated 
in the lower head (LH) the nature of the buoyancy driven convection causes the 
largest heat flux at the circumferential level of the melt surface. The heat flux de-
creases with decreasing arc distance measured from the lowest point of the vessel. 
In this situation pressure inside the vessel or the stress caused by the weight of the 
melt itself causes circumferential failure Kolev (1998b). It is interesting to know 
what will happen if water is present at the time of lower head failure caused by 
melt attack for typical PWR. For this purpose we selected the following two hypo-
thetical cases: 
 

Case 5 Lower head unzipping and relocation in cavity partially filled with wa-
ter. No water is available in the RPV.  

Case 6 Lower head unzipping and relocation in dry cavity. Water is available 
in the RPV. 

 

In case 5 the melt is relocated into the lower head, the region around the reactor 
is free of water but there is some residual water in the pit below the reactor. With-
out external cooling ablation takes place in this plane within 10 to 20 min. The re-
sult is unzipping of the lower head. The lower head relocation due to gravity is li-
mited by the bottom of the pit. The water in the pit is displaced upwards. Part of 
the water comes into contact with the melt exercising large scale relocation and 
surface instabilities caused by the impact. 

In case 6 injection of water takes place after the melt relocation into the lower 
head. The injection does not stop the ablation process and the unzipping occurs 
just as in case 5. The lower head falls into the dry pit. The accelerated liquids are 
the melt and the water, the later being in a film boiling above the melt. The large 
scale melt relocation (sloshing) process starts and stratified melt-water interaction 
takes place. 
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14.1.2.1 Initial conditions 

We specify the following initial conditions for the two cases: 
 

Case 5 In this case the lower head with the melt inside it is accelerated due to 
gravitation only up to 5.3 m/s velocity before the lower head reaches the pit bot-
tom. The lower head contains 104 t oxide melt. The mass of the water in the reac-
tor pit is 53 t. The temperature of the water is equal to the saturation temperature 
at pressure 1 bar, which is assumed as initial system pressure. 

Case 6 In this case the lower head with the melt inside it is accelerated due to 
gravitation only up to 5.3 m/s velocity before the lower head reaches the pit bot-
tom. The lower head contains 104 t melt. The mass of the water inside the RPV is 
27 t. The temperature of the water is equal to the saturation temperature at pres-
sure 1 bar, which is assumed as initial system pressure. The volumetric fraction of 
the steam inside the water is 0.3.  

14.1.2.2 Driving instability for Case 5 and 6 

At the moment at which the accelerated lower head hits the bottom of the pit the 
stagnation at the walls create pressures which are reflected to the melt surface. 
The surface acts as reflector again and so pressure waves interfere, resulting in a 
complicated pattern in the space-time domain. The manifestation of the physics 
is clearly seen from Fig. 1 in Kolev (1998b) in which the pressure at the lowest 
point is presented. Pressure spikes up to 880 bar are computed. The frequency 
of 750 Hz is characteristic for the particular lower head geometry. The pressure 
waves are the reason for small- and large-scale melt motion. The large-scale 
motion causes surface instability, which is partially resolved by the code 
numeric. The small-scale instabilities are partially resolved by the fragmentation 
models. Just after the interpenetrating of some fragmented melt and water 
occurs, the triggering happens. The local triggers are inherently predicted by the 
code. No artificial trigger is applied. The system possesses its internal 
capabilities for triggering explosions. 

14.1.2.3 Material relocation 

Case 5 
 

In this case the melt-water contact starts at the corner of the relocated LH - see 
Fig. 14.5.  

Then the thoroidal pressure wave presses the melt in the corner downwards. 
Due to mass conservation, the melt erupts in the symmetry axis. The thoroidal 
pressure wave accelerates the water upward in the pit. Thus we observe that the 
path of the melt outside the vessel is practically blocked and melt relocation into 
the containment due to this event is not possible. The upward melt relocation does 
not have enough momentum to destroy the upper RPV head. Losing its momentum 
the melt drops down and starts to gather in the lower head. The large amount of 
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                       0                         0.1                      0.2                        0.4 

 
                                   0.6                        0.8                      1.0 s 

Fig. 14.5 An IVA5 simulation of PWR ex-vessel melt-water interaction. Case 1: Lower 
head unzipping and relocation in cavity partially filled with water. No water is available in 
the RPV. Material relocation after melt-water interaction 

the water initially above the melt level is depleted. The remaining water will 
cyclically receive portions of melt due to melt sloshing and be depleted after one 
or two additional cycles. 

The most jeopardized region is the pit wall around the region between the LH and the 
remaining RPV. The peripheral melt-water interaction in this case reflects the melt into 
the internal region of the reactor, thus limiting the melt depletion in the containment. 

 

Case 6 
 

This case is characterized by more violent interaction than in case 5. The inertia of 
the water holds the water for some time in an intensive unstable contact with the 
melt. The water above the melt serves as a constraint for pressure build before the 
expansion phase. The contact surface is much larger than in case 5. That is why the 
thermal energy transferred into evaporation is much larger than in case 5. The melt 
sloshing due to the instability, as previously described, provides additional penetra-
tion of melt into the water due to surface instabilities considerably accelerated by the 
local thermal interactions. It seems that the most intensive interaction starts at one  
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                      0                        0.02                      0.04                     0.06  

 
                    0.08                      0.10                     0.12                      0.22   

 
                     0.4                       0.82                     0.96                    1.00 s 
Fig. 14.6 An IVA5 simulation of PWR ex-vessel melt-water interaction. Case 2: Lower 
head unzipping and relocation in dry cavity. Water is available in RPV. Material relocation 
after melt-water interaction 

half of the LH melt surface radius. This is evident from the pressure-time histories 
plotted in Kolev (1998b) for three different points over the radius at the level of the 
initial melt surface. The pressure wave rises first in the corner and then propagates 
towards the axis of the RPV being strongly amplified at a half of the radius. We ob-
serve two interactions, the first within the first 0.015 s being much shorter than the 
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second. The interaction is so violent that within about 0.2 s all the water is 10 m 
above its initial state - see Fig. 14.6. The water fragments during the flight and 
reaches the upper head in a droplet form. The impact with the upper head leads to 
the pressure increase. This impact does not lead to upper head failure and missile 
formation. 

The explosion disperses not only the water but the melt too. After about 0.8 s 
the water falls down and interacts with the melt again. The kind of interaction is 
very interesting: It resembles two clouds of different materials penetrating into 
each other. Intensive evaporation causes local pressure to again increase, which 
again accelerates the remaining water upwards.  

In general this mode of material relocation possesses some potential for deplet-
ing some melt into the containment. 

Again as in case 5 the most jeopardized region is the pit wall around the region 
between the LH and the remaining RPV. In Kolev (1998b) the pressures in this re-
gion as a function of time are shown. The maximum pressure at the vertical wall 
inside the pit is about 17.5 bar (triangle, rise time 0.03 s, decrease time 0.15 s) de-
creasing as one moves upwards to 12.5 bar.  

Case 7 is the same as case 6 except the initial pressure which was 20 bar. In the 
attached move to case 7 the comparison between large scale relocation of the lower 
head and small relocation of the lower head is demonstrated.  Small scale relocation 
of the lower head leads to considerable low melt dispersion outside the vessel. 

One of the important conclusions drawn in Kolev (1998b) from studying cases 
5 and 6 is that no significant loads result in this case for the RPV upper head. Mis-
sile formation jeopardizing the containment integrity is not possible. 

14.1.2.4 Model elements addressed in cases 5, 6 and 7 

1. The same model elements as in cases 1 to 4; 
2. In addition, the driving instability is not only the gravitational acceleration as 

in cases 1 to 4 but the deceleration due to the impact of the lower head with 
the bottom. 

 
This case is extraordinarily complicated for the numerics and is recommended as a 
test for numerical models that will be developed in the future.  

14.1.2.5 Available files on CD 

figs_14.05_14.06.gif, figs_14.05_14.06.html 
case_14.07.gif, case_14.07.html 

14.1.3 Cases 8 to 10 

In Kolev (2000a) three-dimensional cases of melt-water interactions are presented. 
We postulate two cases 8 and 9 in which a molten sea is formed within the de-

stroyed core of a modern PWR. In both cases the process is modeled as three di-
mensional. We make use of the existing symmetry and consider only 45° of the 
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horizontal cross section. Both cases differ from each other in the elevation of the 
molten sea and in the side of the release slide as follows: Case 8: 15° slide, about 
100 t of melt pool, bottom position. We call this case inertialess release. Case 8: 
5° slide, 153 t of melt pool, elevated position. We call this case inertial release. 

While in case 8 the melt cannot reach considerable penetration velocity because 
of the short distance to the water pool, in case 9 the melt is considerably accele-
rated. This causes considerable differences in the physical behavior of the system. 

Note that in the case 7 the release is considered to happen simultaneously from 
8 symmetric positions in the RPV and in case 8 from 4.  

14.1.3.1 Case 8 

Figure 14.7 shows the initial conditions in a horizontal plane crossing the molten 
pool. We see also the radial discretization used in the computational analysis. 
 

 

Fig. 14.7 IVA5 PWR in-vessel melt water interaction analysis: Case 8, side failure of the 
heavy reflector, molten pool at the lowest position. Initial conditions and geometry in a 
plane crossing the molten pool 

In Fig. 14.7 the material relocation as function of time and space is presented. The 
discretization in the vertical plane used for the computational analysis is also visible. 
Reading Fig. 14.8 together with the pressure histories presented in Kolev (2000a) 
we realize the following behavior: Again as in the lower support failure cases 1 to 4 
the processes are cyclic starting with small pressure increase leading to small expan-
sion, collapse and steam explosion due to entrapment, characterized by the second 
sharp pressure peak. The explosion causes material relocation. The descending melt 
gathers again in the pool and causes a third violent pressure excursion producing the 
largest pressure inside the RPV. Whilst in cases 1 to 4 the water is completely dep-
leted after 3 s in case 7 from the initial amount of about 15 t, 11 t are steel in the 
RPV after the third second. We observe that the inertialess side penetration of melt 
into the water in the lower head is very difficult and causes very low water deple-
tion. The reverse injection of the water-steam mixture into the molten pool is possi-
ble due to the assumed large release cross section of the slice. This is the reason 
again for large-scale melt dispersion and depletion. After the third second from the 
initial mass of about 100 t, 50 t are depleted into the primary circuit. 
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        0         0.36       0.46       0.88       1.11       1.66        1.97        2.54       2.99 s 

Fig. 14.8 Material relocation as a function of space and time 

Note that there are three different geometrical regions: lower head, down comer 
and the empty space inside the core region. The melt is being dispersed through all 
of these regions. A coherent explosion influencing all regions in a sense that effec-
tive chain fragmentation happens simultaneously is impossible. The so called 
premixing mass that is the melt mass being in bubble three-phase flow is of partic-
ular interest. Only in bubble three-phase flow we have the most effective heat 
transfer mechanism from melt to liquid. During the all transient maximum 120 kg 
of melt are occasionally being in bubble three-phase flow. Thus, again we con-
clude that there is not enough available energy as a pressure source which can 
cause failure of the upper head endangering the containment integrity.  

14.1.3.2 Case 9 

Figure 14.9 shows the initial conditions in a plane crossing the molten pool.  
 

 

Fig. 14.9 IVA5 PWR in-vessel melt-water interaction analysis: Case 9, side failure of the 
heavy reflector, molten pool at the elevated position. Initial conditions and geometry in a 
plane crossing the molten pool 
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a) Failure plane 

        
b) Outermost plane 

        
c) Down-comer cylinder plane 

        
       0            0.72         1.64         2.01           2.22         2.52          2.77        2.97 s 

Fig. 14.10 Material relocation as a function of space and time  
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We see also the radial discretization and the three angular sectors used in the 
computational analysis. Figure 14.10 shows the discretization in the vertical plane 
used for the computational analysis. In Fig. 14.10 the material relocation as func-
tion of time and space is shown. The material relocation is presented for three dif-
ferent planes. The first one is the vertical plane of the failure slice. The second 
one is the outermost vertical plane. The third plane is in fact parallel to the cylin-
drical wall of the down-comer - the outermost layer. 

We observe here very complex three-dimensional flow. The melt jet is disinte-
grated shortly after impacting the RPV wall. After the first melt reaches the lower 
head, the sloshing of the water in the failure plane is so strong that the dispersed 
melt penetrates the water very easily in the non-failure planes - see Fig. 14.10. As 
seen from Fig. 14.10 a large space of the down-comer is occupied by dispersed 
melt-water-steam flow. If one observes the movies produced with this material, 
one recognizes concentration water droplet waves cyclically passing the dispersed 
melt. Because of the acceleration of the falling melt the water expulsion and later 
interactions do not force elevation of the melt. Thus, the depletion of the melt into 
the primary circuit is limited in this case. The pressures curves in Kolev (2000a) 
show very noisy interaction in the lower head. The lower head is filled with melt. 
Again as in case 8, there are three different geometrical regions where melt and 
water coexist: lower head, down comer and the empty space inside the core re-
gion. This melt mass is dispersed through all of these regions. A coherent explo-
sion influencing all regions in a sense that effective chain fragmentation happens 
simultaneously is impossible. There is a maximum of about 1.5 t premixed melt 
mass. We see that from all analyzed situations 1 to 7 this is the one with the larg-
est damage potential. The large amount of potentially explosive mixture is in fact 
found in the lower head. The mixture in the down-comer is rather dispersed. 

14.1.3.3 Case 10 

In this case we consider - 45° slice, about 120 t of melt pool, bottom position. In 
cases 8 and 9 we have considered melt release from the side of the heavy reflector 
having very pessimistic initial conditions of simultaneous release from 4 or 8 posi-
tions. In this section we consider release from one spot located at the bottom of the 
molten pool as presented in Fig. 14.11. As can be seen from Fig. 14.11 and Fig. 
14.12, the process is asymmetric and has to be considered as a complete three-
dimensional problem. 
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Fig. 14.11 a, b, c IVA5 model of case 9.  Discretization scheme for case 10 in two vertical 
planes: a) j = 2, b) j = 6 

 
Geometry: The calculation has been performed in a three-dimensional cylindrical 
geometry. The IVA computational model consists of 16 x 8 x 69 = 8 832 compu-
tational cells. These computational cells are denoted with indices (i, j, k), where i 
stands for the cell index in radial, j for azimuthal and k for axial direction. Sche-
matic plots of the discretization are given in Figs. 14.11 and 14.12. Note that the 
lowest cell indices in all three directions have the number 2. 

 
Initial conditions: The initial conditions are specified as follows: The initial sys-
tem pressure is assumed to be 3 bar, the system temperature is equal to the corres-
ponding saturation temperature. We assume about 120 t of oxide melt inside the 
heavy reflector and about 17 t of saturated water inside the lower head (see Fig. 
14.13). The remaining part of the computational domain is filled with air. 
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Fig. 14.12 Cross sections at different heights: a) k = 26, b) k = 62, c) k = 70 

 
 

    
               a)                                                           b) 

Fig. 14.13 Initial conditions for location of melt and water. a) Cross section in r-z plane.  
b) Surface close to the internal wall of the vessel 
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                       0                         0.15                      0.3                      0.5 

 

 
                    0.9                        0.95                       1.0                        1.2 

 

 
                     1.5                         2.0                       2.5                      3.0 s 

Fig. 14.14 Material relocation at different times (planes j = 2 and j = 6) 

Results: The computational results are presented as time functions for pressures at 
different positions in Kolev (2000a), as maps of the material relocation, Figs. 
14.14 to 14.17, and as time functions of the total mass being in bubbly flow in Ko-
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lev (2000a). We observe from the pressure time histories that the first contact of 
the melt with water happens after about 0.15 s. It produces a pressure peak of 
about 5.2 bar. Thereafter melt intermixing with water takes place for up to about 1 
s. At that time explosive events lead to strong local pressure changes with time, 
followed cyclically by two other weaker interactions. Pressure peaks of up to 12.4 
bar are observed. The comparison of the pressure time histories with the material 
relocation pictures reveals that, after the first melt-water contact happens, the inte-
ractions locally produce such a pressure that causes melt accumulation immediate-
ly after the release. Just after the pressure release the accumulated melt drops 
down into the water and creates an impact intermixing which leads to explosive 
interactions. The result is acceleration of the water into the depletion cross sec-
tions. The local pressure increase causes also a stop of the melt release. Moreover, 
it blows multi-phase mixture into the melt through the opening cross section in the 
heavy reflector. The melt contains a certain amount of water. This is the reason for 
internal interaction inside the molten pool leading to local dispersion. Due to the 
limited amount of water content in the mixture the interaction is not strong enough 
to accelerate the melt up to the top. After some time the melt settles down and 
starts again to flow continuously through the failure cross section (see Fig. 14.14). 
 

      
            0                 0.15               0.3                0.5                 0.9               0.95    

         
         1.0                1.2                1.5                  2.0                  2.5               3.0 s 

Fig. 14.15 Material relocation in the lower head at different times (plane j = 2) 

The asymmetric behavior of melt and water can be clearly seen in Fig. 14.16, 
where two planes are shown, one through the sector containing the leak and the 
other through the diametrically opposed sector. 
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                               1.5                                                            2.0 

   
                                2.5                                                           3.0 s 

Fig. 14.16 Material relocation in the peripheral direction at different times (plane i = 15) 

 

  

Fig. 14.17 Material relocation – melt and water iso-surfaces, 1.07, 1.5 s 
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How the water behaves, is illustrated by comparing Figs. 14.15, 14.16 and 14.17. 
On the side of the melt ingression the melt-water interaction pushes the water 
away. The intermixed masses are only about 300 kg, so that the cyclically released 
mechanical energies are not sufficient for complete water depletion from the reac-
tor pressure vessel. As seen from Fig. 14.16 a massive bulk of water is subject to 
azimuthal concentration waves. The water entrainment happens mainly due to 
fragmentation and mechanical steam-water interaction. The asymmetric geometry, 
as is clearly seen from Fig. 14.17, causes asymmetric behavior in the down comer. 
No more than 1.3 t of melt is able to release its energy. 

Finally, the pressurization events are not amplified but are essentially damped 
while propagating up to the upper head - as can be seen in the pressure time histo-
ries presented in Kolev (2000a). 

14.1.3.4 Model elements addressed in cases 8 to 10 

1. The same model elements as in cases 1 to 7; 
2. In addition, the numerical method is challenged for all three dimensions. 

 
Again these cases are extraordinarily complicated for the numeric and are recom-
mended as a test for numerical models that will be developed in the future. 

14.1.3.5 Available files on CD 

fig_14.08.gif, fig_14.08.html 
fig_14.09.gif, fig_14.09.html 
fig_14.10.gif, fig_14.10.html 
fig_14.10.gif, fig_14.10.html 
fig_14.10.gif, fig_14.10.html 

14.1.4 Cases 11 and 12 

In Kolev (2000a) two cases are presented for ex-vessel melt spreading into a com-
partment with a flat horizontal surface, one without a water layer and one with a wa-
ter layer.  

14.1.4.1 Case 11 

We simulated gravitational sloshing of 300 t of non-modified melt at 3000 K in a 
dry compartment comprising a 110o sector with horizontal spreading surface. Note 
that for this melt the dynamic viscosity of 0.0044 kg/(ms) has no influence on the 
spreading process, as in this particular case the spreading is inertia dominated. The 
melt enters the computational region at the axis of the spreading compartment. As 
the problem is symmetric, only half of the geometry is simulated. Figs. 14.18 and 
14.19 shows the dicretization net and the surface dividing volumetric concentra-
tion of the melt being less and larger than 0.005. The result shows that the spread-
ing is turbulent and heterogeneous. Two symmetric vortices are formed within 20 
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s. In the center of the vortices there are regions which are not reached by the melt 
in this initial period. The melt covers the total area in about 30 s. Gravitational 
surface waves travel for some time after this. 

 

 

Fig. 14.18 An IVA5 prediction of the dry melt spreading dynamics in a EPR spreading 
compartment. Iso-surface of the melt volume fraction with overlaid melt temperature  
at the surface 

 

 

Fig. 14.19 (Cont.) 

14.1.4.2 Case 12 

In this case we analyze the spreading using similar initial and boundary conditions 
as in the previous case with the only difference that the floor is covered with 1 cm 
water and the geometry is slightly different. 
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Fig. 14.20 IVA5 discretization model for simulation of melt spreading in presence of water 

 

 

Fig. 14.21 An IVA5 prediction of the wet melt spreading dynamics in a EPR spreading 
compartment. Iso-surface of the melt volume fraction with overlaid melt temperature at the 
surface. Iso-surface of the water volume fraction with overlaid water temperature at the sur-
face - blue. Spreading of melt in presence of thin water layer (1cm). Parameter: Time 0, 2, 
3.8, 6.2, 8, 10, 14.4, 16.8, 17.8, 18 s 
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Fig. 14.22 (Cont.) 

Figures 14.20 through 14.22 present the melt-water interaction in this case. The 
melt and the water are presented with iso-surfaces dividing volume fractions less 
than and larger than 0.5%. In Kolev (2000a) the pressures at two different places 
in the spreading compartment are presented. The pressure spikes are characteristic 
for inertial water entrapment. The discretization used in this case is not fine 
enough to resolve such events with large confidence. 

14.1.4.3 Model elements addressed in cases 11 and 12 

1. The same model elements as in cases 1 to 10; 
2. In addition, the numerical method is challenged for modeling of stratification 

of multiple materials. 
3. The iso-surfaces possess as an attribute the temperature of the constituent. 

The thermal radiation and temperature reduction of the surface are clearly vis-
ible. 

14.1.4.4 Available files on CD 

fig_14.18.gif, fig_14.18.html 
fig_14.20.gif, fig_14.20.html 

14.1.5 Case 13 

Figures 14.21 and 14.22 demonstrate a vessel filled with inert gas, hydrogen and 
molten material that is discharged in the container air atmosphere through a de-
fined opening at the lower heat. The pressure in the vessel and in the stagnation 
point of the jet is presented also in the Fig. 14.22.  

14.1.5.1 Model elements addressed in case 13 

1. Fragmentation and the associated thermal interaction between the inert gas 
and the molten material; 

2. Burning of hydrogen during the process. 
 



678      14 Visual demonstration of the method 

 

Fig. 14.23 A high pressure discharge of melt into a cavity, geometry (Sandia National La-
boratory), initial conditions 

 

Fig. 14.24 A high pressure discharge of melt into a cavity. 
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14.1.5.2 Available files on CD 

fig_14.22.gif, fig_14.22.html 

14.1.6 Case 14 

In Kolev (2001a) severe accident control for a large-scale boiling water reactor 
through in-vessel melt retention by external reactor pressure vessel cooling is con-
sidered. Side release of melt from a postulated molten pool in the core region is 
analyzed.  
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Fig. 14.25 Material relocation in the reactor pressure vessel as a function of time and space. 
0.18 m² melt release cross section. Legend: blue – water, red – melt, transparent – gas 

We assume a vertical opening of the core shroud wall with the height of 0.9 m and 
horizontal size of 20 cm which gives 0.18 m² cross section. The discretization con-
tains (8x6x29)= 1392 cells for the half of the reactor vessel. We assume 1.6 t 
steam within the rector vessel with temperature 419.15 K, 124 t water with tem-
perature 417.75 K, 186 t melt with temperature 3000 K – see Fig. 14.23. The ini-
tial pressure is 4.1 bar. We assume pressure 4.1 bar at the 6 safety valve lines that 
are open and remain open.  

14.1.6.1 Results of the computational analysis 

We present in Fig. 14.23 the material relocation as a function of the time and 
space. In Kolev (2001a) the pressures as functions of time in the down-comer pe-
riphery below the initial water level, the pressures as functions of time in the low-
er head at different positions, and the pressures as functions of time in the upper 
head at different positions are presented. Comparing the material relocation with 
the pressure history we reveal several interesting phenomena. The process requires 
200 s to come to the natural end at which there is no more water to interact with 
the melt any more. This is much longer than the characteristic time of 1 to 3 s for 
melt-water interactions in PWR’s – see in all previously discussed cases During 
this time the melt releases a considerable part of its internal energy as seen from 
the color of the melt representing the melt temperature. The melt reaches actually 
the lower head in a form of solid particles. For about 70 s the level of the pressure 
is around 12 bar. During this time there is pulsating water exchange between the 
lower head and the down-comer. Melt-water interactions in the down comer cause 
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considerable water dispersion waves. Water cyclically comes in contact with the 
melt and is then being repulsed. Short living pressure pulses up to 25 bar are also 
shown in Kolev (2001a). 

 
Limitation of the present day computer power is the main reason not to attack 

this complicated multi-phase problem with the same resolution as is now standard 
for single-phase flow. Grid dependence is investigated increasing the number of 
the cells up to (12x12x29) = 4176 for half of the reactor vessel. We found that the 
pressures satisfy the findings that the uncertainty in the pressure prediction is 
within 50% of the pressure increase. The main conclusion of studding this particu-
lar case made in Kolev (2001a) was that the melt-water interaction causes pressure 
spikes below 30 bar maximum pressure which again having the uncertainties in 
mind with which such computations are associated Kolev (2001a) is of no concern 
for the integrity of the pressure vessel. Therefore there is no danger that the exter-
nal cooling strategy will not start properly. 

14.1.6.2 Model elements addressed in case 14 

1. All elements as in the all previous cases; 
2. The main problem associated with this analysis is the long duration of the 

melt-water interaction compared to all previous cases and the need to resolve 
pressure spikes as in the cases of short time interactions. 

 

14.1.6.3 Available files on CD 

fig_14.23.gif, fig_14.23.html 

14.2 Pipe networks 

14.2.1 Case 15 

This case is in contrast with all previous cases. It is a simulation of processes in-
side a complicated network consisting of pipes, valves etc. – see Fig. 14.24 Kolev 
(2000b). The heat exchanger has as primary medium water at 320°C at about 160 
bar pressure and as secondary medium water with 50°C at about 6 bar. A break 
inside the heat exchanger is simulated. Flashing water enters in the secondary side 
and creates non-stable pressure increase. The first 0.2 s are characterized by strong 
condensation oscillation in the secondary side. Complicated interactions between 
the valves and the break are extremely challenging to the solution method. 
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Fig. 14.26 Pipe break in a high-pressure heat exchanger. Pressure as a function of time 

 

 

Fig. 14.27 (Cont.) 
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14.2.1.1 Model elements addressed in case 15 

1. Two-phase flow in complex pipe networks; 
2. Networks containing valves interacting with the flow; 
3. Completely opposite physical phenomena like flushing and condensation 

shocks happen in the same network; 
4. Constitutive models for flushing and condensation shocks. 

14.2.1.2 Available files on CD 

fig_14.24.gif, fig_14.24.html 
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14.3 3D steam-water interactions 

14.3.1 Case 16 

 

  
 

 

Fig. 14.28 a) 3D test section simulating full scale PWR for hot leg water injection in steam-
ing core. b) IVA6 geometry model for UPTF-Test 26 Run 230 simulation. c) Water volume 
concentration and steam velocity as a function of space at different times. Velocities at the 
entrance of the main circulation pipe for the corresponding times 

Figure 14.25 a) and b) presents a technical facility designed for studying of me-
chanical steam-water interaction in complicated geometry – see Kolev, Seitz and 
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Roloff (2001b). A water jet is injected from the side of the upper part, and steam is 
injected inside the vessel on a specified horizontal level through a part of the cross 
section. Figure 14.25 c) presents an IVA6 simulation of this process.  

14.3.1.1 Model elements addressed in case 16 

1. Geometry representation using the concept of the heterogeneous permeabili-
ties; 

2. Fragmentation and coalescence dynamics, represented here with conservation 
equations for a given class of particle number densities, etc. 

14.3.1.2 Available files on CD 

fig_14.25.gif, fig_14.25.html 

14.4 Three-dimensional steam-water interaction in 
presence of non-condensable gases 

14.4.1 Case 17 

Controlling the pressure of pressurized system is one of the most important safety 
tasks of the design engineer. Usually safety and relieve valves helps to release 
working material if for some reason the pressure increases. In many cases the 
working material is not released to the atmosphere but to an especially designed 
for this purpose vessel. For systems working with steam this may happen in water 
vessels in order to reduce dramatically the volume of the steam. The vessels are 
usually filled partially with water and partially with inert gas. Knowing the phe-
nomena in such a release process allows designing properly the system. Let con-
sider one such case which geometry and initial conditions are presented in Fig. 
14.29.  

The biggest challenge here is the very sensitive condensation process at bubble 
and droplet surfaces that changes dramatically. We open the valve over about 22 
seconds. Thereafter the valve is closed. Several interesting processes can be rec-
ognized from the attached move. Initially the pressure in the pressure dome in-
creases up to 10 bar in order to overcome the inertia of the water and to remove it 
from the dome. In front of the water we observe haw the initial volume of the inert 
nitrogen was dramatically reduced. The water first penetrates in the release vessel 
followed by the inert gases. This causes increasing the water level. Due to the in-
tensive input of the mechanical energy the system is so much turbulized that with-
in a few seconds all the vessel is occupied by rotating two phases, two component 
mixture. The condensation of the steam happens in the immediate neighborhood 
of the distribution nozzles. Large bubble oscillation in the vessel causes increasing 
and decreasing resistance to the steam resulting in some macroscopic pressure os-
cillations. After closing the valve, the pressure in the dome decreases exponential-
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ly. After reaching a values lower then the vessel pressure some waters penetrates 
back into the distribution system. Because there is only pure steam in the dome the 
condensation creates a vacuum of 0.2 bar. The inverse pressure difference causes 
change of the flow direction in the nozzles. The stratification process at that mo-
ment in the vessel has just started and there is enough rotation energy keeping the 
mixture none stratified. The result is the two-phase penetration back into the 
dome. But the gas inside the vessel was nitrogen. Therefore nitrogen is transferred 
in this way back into the dome reducing the non wished vacuum production in the 
dome. 
 

 

Fig. 14.29 Release of saturated steam (p = 175 bar) into vessel partially filled with 50°C 
water through 40 cm2 cross section valve. 

14.4.1.1 Model elements addressed in case 17 

1. Geometry representation using the concept of the heterogeneous permeabili-
ties, permeabilities being a time functions; 

2. Fragmentation and coalescence dynamics, represented here with conservation 
equations for a given class of particle number densities, etc.; 

3. Steam condensation (bubbles, droplets) in subcooled liquid; 
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4. Steam condensation (bubbles, droplets) in subcooled liquid in presence of 
non-condensable gases; 

5. Dynamic flow regime transitions. 

14.4.1.2 Available files on CD 

fig_14.26.gif, fig_14.26.html 

14.5 Three dimensional steam production in boiling water 
reactor 

14.5.1 Case 18 

Modern design of boiling water reactors requires analysis of the steam quality 
produced by the nuclear reactor. We give here an example from a design case 
study in which 1/4th of the modern reactor vessel was presented by about 10000 
cells. The thermal heat release in the reactor core is 3D-non uniform. The compu-
tation is performing starting with and arbitrary but meaningful initial state until 
reaching the steady state. The results are presented in Fig.14.27 for the horizontal 
plane being at the outlet of the core. Such studies are valuable tools for optimizing 
design geometry. 

14.5.1.1 Model elements addressed in case 18 

1. Geometry representation using the concept of the heterogeneous permeabilities; 
2. Fragmentation and coalescence dynamics, represented here with conservation 

equations for a given class of particle number densities, etc.; 
3. Dynamic flow regime transitions. 
4. Thermal structure-flow interactions. 
5. All forced convection heat transfer regimes: forced convection, subcooled boil-

ing, saturated forced convection boiling, departure of nucleate boiling etc. 
6. All kind of interaction of three velocity field with each other. 
7. Appearance and disappearance of velocity fields. 

14.5.1.2 Available files on CD 

fig_14.27.gif, fig_14.27.html 
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Fig. 14.30 Volume fraction of steam in a boiling water reactor - top view into 1/4th of the 
reactor vessel 
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Appendix 1 Brief introduction to vector analysis 

Before starting to study the theory of multi-phase flows it is advisable to refresh 
your knowledge on vector analysis. My favorite choice is the book “Calculus and 
Analytic Geometry” by Thomas et al. (1998). Of course you may use any text 
book to this topic also. Here only a brief summary is given in order to assist in the 
understanding of the vector notations in this book. 

 
Right handed Cartesian coordinate system: To locate points in space, we 
use three mutually perpendicular coordinate axes ( ), ,x y z  as proposed by Des-

cartes. When you hold your right hand so that the fingers curl from the positive x-
axis toward the positive y-axis and your thumb points along the positive z-axis the 
coordinate systems is right handed. We use right handed coordinate systems. 

 
Vector (The Gibbs - Heaviside concept from 1870): A vector in a space is 
a directed line segment. Two vectors are equal or the same if they have the same 
length and direction.  

 
The vector between two points: The vector from point ( )1 1 1 1, ,P x y z  to point 

( )2 2 2 2, ,P x y z  is 

( ) ( ) ( )1 2 2 1 2 1 2 1PP x x y y z z
→

= − + − + −i j k .   (1) 

Midpoints: The position vector of the midpoint M of the line segment joining 
points ( )1 1 1 1, ,P x y z  and ( )2 1 1 1, ,P x y z  is  

2 1 2 1 2 1

2 2 2M

x x y y z z+ + += + +r i j k .    (2) 

Centroid of a triangle: The position vector of the center of mass of a triangle 
defined by the points ( )0 0 0 0, ,P x y z ,  ( )1 1 1 1, ,P x y z  and ( )2 2 2 2, ,P x y z  is 

2 1 0 2 1 0 2 1 0

3 3 3cm

x x x y y y z z z+ + + + + += + +r i j k .   (3) 

Centroid of the union of non-overlapping plane regions: The Alexan-
drian Greek Pappus knew in the third century that a centroid of the union of two 
non-overlapping plane regions lies on the line segment joining their individual 
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centroids. More specifically, suppose m1 and m2 are the masses of thin plates P1 
and P2 that cover non overlapping regions in the xy plane. Let c1 and c2 be the vec-
tors from the origin to the respective centers of mass of P1 and P2. Then the center 
of mass of the union P1 ∪  P2 of the two plates is determined by the vector 

1 1 2 2

1 2
cm

m m

m m

+=
+

c c
r .      (4) 

This equation is known as the Pappus’s formula. For more than two non-
overlapping plates, as long a their number is finite, the formula generalizes to 

m m
m

cm
m

m

m

m
=



c
r .      (5) 

This formula is especially useful for finding the centroid of a plate of irregular 
shape that is made up of pieces of constant density whose centroids we know from 
geometry. We find the centroid of each piece and apply the above equation to find 
the centroid of the plane. 

 
Magnitude: The magnitude (length) of the vector 1 2 3a a a= + +A i j k  is 

2 2 2
1 2 3 1 2 3a a a a a a= + + = + +A i j k .    (6) 

Vectors with magnitude equal to one are called unit vectors. Unit vectors are built 
from direction cosines. Vectors with magnitude zero are called zero vectors and 
are denoted with 0. 

 
Lines and line segments in space: The vector equation for the line through 

( )0 0 0 0, ,P x y z  parallel to a vector A B C= + +v i j k  is 

0P P t
→

= v ,  t−∞ < < ∞      (7) 

or  

( ) ( ) ( ) ( )0 0 0x x y y z z t A B C− + − + − = + +i j k i j k , t−∞ < < ∞ , (8) 

where all points P lie on the line and t is a parameter. For line segments t is 
bounded, e.g. a t b< < . 

Standard parametrization of the line through ( )0 0 0 0, ,P x y z  parallel to 

A B C= + +v i j k : The standard parametrization of the line through ( )0 0 0 0, ,P x y z  

parallel to the vector A B C= + +v i j k  is  

0x x tA= + , 0y y tB= + , 0z z tC= + , t−∞ < < ∞ . (9) 
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In other words the points ( ) ( )0 0 0, , ,  ,  x y z x tA y tB z tC= + + +  in the interval 

t−∞ < < ∞  make up the line.  
 

Position vector defining a line: The vector 

( ) ( ) ( ) ( ) ( )0 0 0, ,   x y z t x tA y tB z tC= = + + + + +r r i j k , t−∞ < < ∞   

(10) 

from the origin to the point ( ), ,P x y z  is the position vector. The position vector 

defining a line crossing the points ( )1 1 1 1, ,P x y z  and ( )2 1 1 1, ,P x y z  is 

( ) ( ) ( ) ( ) ( )1 2 1 1 2 1 1 2 1, ,   x y z t x t x x y t y y z t z z     = = + − + + − + + −     r r i j k , 

0 1t< < .       (11) 

Derivative of a position vector defining a line: At any point t the derivative 
of the position vector is 

( ) ( )
0

lim
t

t t td
A B C

dt tΔ →

+ Δ −
= = = + +

Δ
r rr

i j k ,   (12) 

which is parallel to the line. 
 

Position vector defining a curve: The vector 

( ) ( ) ( ) ( ) ( ), ,  g  x y z t f t t h t= = + +r r i j k ,   t−∞ < < ∞   (13) 

from the origin to the point ( ), ,P x y z  that belongs to the curve is the position 

vector of the curve. 
 

Derivative of a position vector defining a curve: At any point t the deriva-
tive of the position vector is the vector 

( ) ( )
0

lim
t

t t td f g h

dt t t t tΔ →

+ Δ − ∂ ∂ ∂= = = + +
Δ ∂ ∂ ∂

r rr
i j k ,   (14) 

- see Fig. A1.1. 
 
The curve traced by r is smooth if dr/dt is continuous and never 0, i.e. if f, g, and h 
have continuous first derivatives that are not simultaneously 0. The vector dr/dt, 
when different from 0, is also a vector tangent to the curve. The tangent line 

through the point ( ) ( ) ( )0 0 0,  g ,  f t t h t    is defined to be a line through the point  
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rd

( )tr ( )dtt +r

 

Fig. A1.1 Infinitesimal change of the position vector 

parallel to dr/dt at 0t t= . The magnitude of the derivative of the position vector 

defining the  curve is  

2 2 2 2 2 2
d df dg dh dx dy dz

dt dt dt dt dt dt dt
           = + + = + +           
           

r
. (15) 

For the case where the position vector defines a line between two points 

( )1 1 1 1, ,P x y z  and ( )2 1 1 1, ,P x y z  the magnitude of the derivative of the position 

vector is 

( ) ( ) ( )2 2 2

2 1 2 1 2 1

d
x x y y z z

dt
= − + − + −r

   (16) 

the distance between the two points. 
 

Arc length: The length of a smooth curve ( ) ( ) ( ) ( ) g  t f t t h t= + +r i j k , 

a t b< < , that is traced exactly once as t increases from t = a to t = b is 

2 2 2 2 2 2b b b

a a a

df dg dh dx dy dz d
L dt dt dt

dt dt dt dt dt dt dt
           = + + = + + =           
             

r
.  

    (17) 

For the case where the position vector defines a line between two points 

( )1 1 1 1, ,P x y z  and ( )2 2 2 2, ,P x y z  the length of the line segment between the two 

points is 

( ) ( ) ( ) ( ) ( ) ( )
1

2 2 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1

0

L x x y y z z dt x x y y z z= − + − + − = − + − + − . 

    (18) 
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Arc length parameter base point ( )0 0 0 0, ,P x y z : If we choose ( )0 0P t  on a 

smooth curve C parametrized by t, each value of t determines a point 

( ) ( ) ( ), ,P x t y t z t    on C and a “directed distance”  

( )
0

t

t

d
s t d

dt
τ= 

r
,      (19) 

measured along C from the base point. If 0t t> , ( )s t  is the distance from ( )0 0P t  

to ( )P t . If 0t t< , ( )s t  is the negative of the distance. Each value of s determines 

a point on C and parametrizes C with respect to s. We call s an arc length parame-
ter for the curve. The parameter’s value increases in direction of increasing t. For 
a smooth curve the derivatives beneath the radical are continuous and the funda-
mental theorem of calculus tells us that s is a differentiable function of t with de-
rivative 

ds d

dt dt
= r

.       (20) 

Note that, while the base point ( )0 0P t  plays a role in defining s, it plays no role in 

defining ds/dt. Note also that / 0ds dt >  since the curve is smooth and s increases 
with increasing t. 

 
Time derivatives, velocity, speed, acceleration, direction of motion If 

( ) ( ) ( ) ( ) ( ), ,  g  x y z f hτ τ τ τ= = + +r r i j k     (21) 

is a position vector of a particle moving along a smooth curve in space, and the 
components are smooth functions of time τ , then 

( ) d
t

dt
= r

v        (22) 

is the particle’s velocity vector, tangent to a curve. At any time τ , the direction of 
v is the direction of motion. The magnitude of v is the particle’s speed.  

( ) d
Speed

d
τ

τ
= = r

v .      (23) 

The derivative 

2

2

d d

d dτ τ
= =v r

a ,      (24) 

when it exists, is the particle’s acceleration vector. 
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Differentiation rules for time derivatives: Because the derivatives of vector 
functions may be computed component by component, the rules for differentiating 
vector functions have the same form as the rules for differentiating scalar functions. 

Constant Function Rule: 
d

dτ
=C

0  (any constant vector C).  (25) 

Scalar Multiple Rules:  ( )d d
c c

d dτ τ
= u

u  (any number c)  (26) 

( )d d df
f f

d d dτ τ τ
= +u

u u    (any differentiable scalar function).  (27) 

If u and v are differentiable vector functions of t, then 

Sum Rule: ( )d d d

d d dτ τ τ
+ = +u v

u v .     (28) 

Difference Rule: ( )d d d

d d dτ τ τ
− = −u v

u v .    (29) 

Dot Product Rule: ( )d d d

d d dτ τ τ
⋅ = ⋅u v

u v .    (30) 

Cross Product Rule: ( )d d d

d d dτ τ τ
× = × + ×u v

u v v u  (in that order). (31) 

Chain Rule (Short Form):  If r is a differentiable function of τ  and τ  is a diffe-
rentiable function of s, then 

d d d

ds d ds

τ
τ

=r r
.       (32) 

Unit tangent vector T: The unit tangent vector of a differentiable curve ( )tr  is 

/ /

/ /

d d dt d dt

ds ds dt d dt
= = =r r r

T
r

,     (33) 

or 

d x y z

ds s s s

∂ ∂ ∂ = = + + ∂ ∂ ∂ 

r
T i j k .     (34) 

For the case where the position vector defines a line between two points 

( )1 1 1 1, ,P x y z  and ( )2 2 2 2, ,P x y z  the unit tangent vector is 
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( ) ( ) ( )
( ) ( ) ( )

2 1 2 1 2 1

2 2 2

2 1 2 1 2 1

/ /

/ /

x x y y z zd d dt d dt

ds ds dt d dt x x y y z z

− + − + −
= = = =

− + − + −

i j kr r r
T

r
. (35) 

The unit tangent vector plays an important role in the theory of curvilinear coordi-
nate transformation. 

 
Curvature of space curve: As a particle moves along a smooth curve in the 
space, /d ds=T r  turns as the curve bends. Since T is a unit vector, its length re-
mains constant and only its direction changes as the particle moves along the 
curve. The rate at which T turns per unit of the length along the curve is called 
curvature. The traditional symbol for the curvature is the Greek letter kappa, κ . If 
T is the tangent vector of a smooth curve, the curvature function of the curve is 

d

ds
κ = T

.       (36) 

The principal unit normal vector for space curve: Since T has a constant 
length, the vector dT/ds is orthogonal to T. Therefore, if we divide dT/ds by its 
magnitude κ , we obtain a unit vector orthogonal to T. At a point where 0κ ≠ , 
the principal unit normal vector for a curve in the space is 

/ 1

/

d ds d

d ds dsκ
= =T T

N
T

.      (37) 

The vector dT/ds points in the direction in which T turns as the curve bends. 
Therefore, if we face the direction of increasing length, the vector dT/ds points 
toward the right if T turns clockwise and towards the left if T turns counterclock-
wise. Because the arc length parameter for a smooth curve is defined with ds/dt 

positive, ds/dt = dtds / , the chain rule gives 

( ) ( )/ // /

/ / / /

d dt dt dsd ds d dt

d ds d dt dt ds d dt
= = =

TT T
N

T T T
.   (38) 

Scalar (dot) product: The scalar product (dot product) BA ⋅  (“A dot B”) of 
vectors 

1 2 3a a a= + +A i j k ,      (39) 

and 

1 2 3b b b= + +B i j k       (40) 

is the number  

cosθ⋅ =A B A B       (41) 
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where θ  is the angle between A and B. In words, it is the length of A times the 
length B times the cosine of the angle between A and B. The law of cosines for the 

triangle whose sides represent A, B and C is 
2 2 2

2 cosθ= + −C A B A B  is 

used to obtain  

1 1 2 2 3 3a b a b a b⋅ = + +A B .     (42) 

To find the scalar product of two vectors we multiply their corresponding compo-
nents and add the results. 

22 2 2
1 2 3a a a⋅ = + + =A A A      (43) 

is called the Euclidian norm. 
 
Splitting a vector into components parallel and orthogonal to another 
vector: The vector B can be split into a component which is parallel to A  

proj
⋅ =  ⋅ 

A

B A
B A

A A
       (44) 

and a component orthogonal to A, proj− AB B , 

 ⋅ ⋅   = + −    ⋅ ⋅    

B A B A
B A B A

A A A A
.    (45) 

Equations for a plane in space: Suppose a plane M passes through a point 

( )0 0 0 0, ,P x y z  and is normal (perpendicular) to the non-zero vector  

A B C= + +n i j k .       (46) 

Then M is the set of all points ( ), ,P x y z  for which 0P P
→

 is orthogonal to n. That 

is, P lies on M if and only if  

0 0P P
→
⋅ =n .        (47) 

This equation is equivalent to 

( ) ( ) ( ) ( )0 0 0 0A B C x x y y z z + + ⋅ − + − + − = i j k i j k   (48) 

or 

( ) ( ) ( )0 0 0 0A x x B y y C z z− + − + − = .    (49) 

Note that the angle between two intersecting planes is defined to be the (acute) 
angle determined by their normal vectors. 
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A plane determined by three points: Consider a plane determined by the 
three points ( )0 0 0 0, ,P x y z , ( )1 1 1 1, ,P x y z  and ( )2 2 2 2, ,P x y z . The vector connect-

ing point 0P  with point 1P  is then 

( ) ( ) ( )0 1 1 0 1 0 1 0P P x x y y z z
→

= − + − + −i j k .   (50) 

The vector connecting point 0P  with point 2P  is then 

( ) ( ) ( )0 2 2 0 2 0 2 0P P x x y y z z
→

= − + − + −i j k .   (51) 

The vector normal to the plane is defined by 

0 1 0 2 1 0 1 0 1 0

2 0 2 0 2 0

P P P P x x y y z z

x x y y z z

→ →
× = − − −

− − −

i j k

.    (52) 

The plane is then defined by 

( ) ( ) ( )1 0 1 0 1 0 0 0 0

2 0 2 0 2 0

0x x y y z z x x y y z z

x x y y z z

 − − − ⋅ − + − + − = 
− − −

i j k

i j k , (53) 

or 

0 0 0

1 1 1

2 2 2

0

x x y y z z

x x y y z z

x x y y z z

− − −
− − − =
− − −

.     (54) 

 
Laws of the dot product: The dot product is commutative 

⋅ = ⋅A B B A .       (55) 

If c is any number (or scalar), then 

( ) ( ) ( )c c c⋅ = ⋅ = ⋅A B A B A B .     (56) 

If  1 2 3c c c= + +C i j k   is any third vector, then 

( )⋅ + = ⋅ + ⋅A B C A B A C ,     (57) 

that is the dot product obeys the distributive low. Combined with the commutative 
law it is also evident that 

( )+ ⋅ = ⋅ + ⋅A B C A C B C .     (58) 
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The last two equations permit us to multiply sums of vectors by the familiar laws 
of algebra. For example 

( ) ( )+ ⋅ + = ⋅ + ⋅ + ⋅ + ⋅A B C D A C A D B C B D .   (59) 

Angle between two non-zero vectors: The angle between two non-zero vec-
tors A and B is 

arccosθ
 ⋅=   
 

A B
A B

.      (60) 

Perpendicular (orthogonal) vectors: Non-zero vectors A and B are perpen-
dicular (orthogonal) if and only if  

0⋅ =A B .       (61) 

The gradient vector (gradient): The gradient vector (gradient) of the diffe-
rentiable function ( ), ,f x y z  at point ( )0 0 0 0, ,P x y z  is the vector 

f f f
f

x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

i j k      (62) 

obtained by evaluating the partial derivatives of  f  at ( )0 0 0 0, ,P x y z . The notation 

f∇  is read “grad f” as well as “gradient of  f” and “del  f”. The symbol ∇  by it-

self is read “del”. Another notation for the gradient is grad  f, read the way it is 
written.  

 
Equations for tangent planes and normal lines: If 

 ( ) ( ) ( ) ( ) ( ), ,   x y z t g t h t k t= = + +r r i j k   

is a smooth curve on the level surface ( ), ,f x y z c=  of a differentiable function f, 

then ( ) ( ) ( ), ,  f g t h t k t c  =  . Differentiating both sides of this equation with re-

spect to t leads to 

( ) ( ) ( ), ,  
d dc

f g t h t k t
dt dt

  =       (63) 

df f dg f dh f dk f f f g h k

dt x dt y dt z dt x y z t t t

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
i j k i j k  

0
d

f
dt

= ∇ ⋅ =r
.       (64) 
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At every point along the curve, f∇  is orthogonal to the curve’s velocity vector 

d

dt

r
, and therefore orthogonal to the  surface ( ), ,f x y z c= . The unit normal vec-

tor to this surface is 

f

f

∇=
∇

n .       (65) 

If the curve passes through the point ( )0 0 0 0, ,P x y z : 

 
The tangent plane at the point 0P  on the level surface ( ), ,f x y z c=  is the plane 

through 0P  normal to 
0P

f∇ , 

( ) ( ) ( )0 0 0 0
f f f

x x y y z z
x y z

 ∂ ∂ ∂  + + ⋅ − + − + − =   ∂ ∂ ∂ 
i j k i j k ; (66) 

The normal line of the surface at 0P  is the line through 0P  parallel to 
0P

f∇ .  

 
Gradient of a plane defined by three points: Consider a plane determined 
by the three points ( )0 0 0 0, ,P x y z , ( )1 1 1 1, ,P x y z  and ( )2 2 2 2, ,P x y z  

( )
0 0 0

1 1 1

2 2 2

, ,

x x y y z z

f x y z x x y y z z

x x y y z z

− − −
= − − −

− − −
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2 2 0 1 1 2 0

2 1 0 1 0 2 0 2 1 0

x x y y z z x x y y z z x x y y z z

x x y y z z x x y y z z x x y y z z

= − − − + − − − + − − −

− − − − − − − − − − − − =
 

    (67) 

The gradient vector (gradient) of the differentiable function ( ), ,f x y z  at point 

( ), ,P x y z  is the vector 

f f f
f

x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

i j k ,     (68) 

with components 

( ) ( ) ( ) ( ) ( ) ( )1 2 0 2 0 1 0 1 2

f
y y z z y y z z y y z z

x

∂ = − − + − − + − −
∂

, (69) 

( ) ( ) ( ) ( ) ( ) ( )1 2 0 2 0 1 0 1 2

f
z z x x z z x x z z x x

y

∂ = − − + − − + − −
∂

, (70) 
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( ) ( ) ( ) ( ) ( ) ( )1 2 0 2 0 1 0 1 2

f
x x y y x x y y x x y y

z

∂ = − − + − − + − −
∂

. (71) 

Note that the vectors 0 1P P
→

, 0 2P P
→

, and the vector normal to the plane forms a left 
oriented vector system. The gradient vector is therefore parallel to the surface 
normal vector. 

 
Curvature of a surface: Consider the smooth curves 

( ) ( ) ( ) ( ) ( )1 1 1 1 1, ,   x y z t g t h t k t= = + +r r i j k ,   (72) 

( ) ( ) ( ) ( ) ( )2 2 2 2 2, ,   x y z t g t h t k t= = + +r r i j k ,   (73) 

on the level surface ( ), ,f x y z c=  of a differentiable function f. In this case 

( ) ( ) ( )1 1 1, ,  f g t h t k t c  =   and ( ) ( ) ( )2 2 2, ,  f g t h t k t c  =  along the curves. The 

curves crosses the point ( )0 0 0 0, ,P x y z . At this point they are orthogonal. The tan-

gents at 0P  of these curves are  1T  and 2T . 1s  and 2s  are the arc distances counted 

from 0P .  As a particle moves along the first curve in the space, 1 1 1/d ds=T r  turns 

as the curve bends. Since 1T  is a unit vector, its length remains constant and only its 

direction changes as the particle moves along the curve. The rate at which 1T  turns 

per unit of the length along the curve is called the curvature 1κ . As 1T  is the tan-
gent vector of a smooth curve, the curvature function of the curve is 

( )1
1 1 1

1

d

ds
κ = = ⋅∇T

T T .     (74) 

Similarly, the curvature function of the second curve is 

( )2
2 2 2

2

d

ds
κ = = ⋅∇T

T T .     (75) 

Both curvature functions are called principle curvatures. Their reciprocals are 
called principal radii. The curvature function of the level surface ( ), ,f x y z c=  is 

defined as 

1 2κ κ κ= + .       (76) 

The gradient along a direction normal and tangential to a surface: 
Consider the level surface ( ), ,f x y z c=  of a differentiable function f with a nor-

mal unit vector 
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f

f

∇=
∇

n .       (77) 

The gradient of any differentiable scalar function in space can then be split into a 
component parallel to the normal vector and a component tangential to the surface: 

n t

 ∇⋅ ∇ ⋅   ∇ = + ∇− = ∇ +∇    ⋅ ⋅    

n n
n n

n n n n
,   (78) 

where 

( )n∇ = ∇⋅n n        (79) 

and 

t n∇ = ∇−∇ .       (80) 

Curvature of a surface defined by the gradient of its unit normal vec-
tor: Consider a smooth surface in space defined by its normal vector 

( ) ( ) ( ) ( ), , , ,  , , , ,x y z g x y z h x y z k x y z= + +n i j k .   (81) 

In this case there is a convenient method reported by Brackbill et al. (1992) for 
computation of the curvature of this surface 

( )κ = − ∇⋅n .       (82) 

Let us estimate as an example the curvature of a liquid layer in stratified flow be-
tween two horizontal planes in the plane y = const. The interface is described by 
the curve ( )2z xδ=  where ( )2 xδ  is the film thickness. Thus the level surface 

function is ( ) ( )2, , 0f x y z x zδ≡ − = . The gradient of the level surface function is  

( ) ( ) ( ) ( )2, ,
, ,

f x z f x z x
f x y const z

x z x

δ∂ ∂ ∂
∇ = = + = −

∂ ∂ ∂
i k i k , (83) 

and the magnitude of the gradient  

( )
1/ 22

21
x

f
x

δ  ∂ ∇ = +  ∂   
.     (84) 

The normal vector is 
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( )

( ) ( )

2

2 1/ 2 1/ 22 2

2 2

1

1 1

x
f x
f

x x

x x

δ

δ δ

 
 ∂ 

∇ ∂ = − = − − ∇       ∂ ∂    + +       ∂ ∂           

n i k . (85) 

Note that for decreasing film thickness with x the normal vector points outside the 
liquid. This is the result of selecting ( ) ( )2, , 0f x y z x zδ≡ − =  instead of 

( ) ( )2, , 0f x y z z xδ≡ − =  which is also possible. The curvature is then 

( )
( )

( ) ( )

2

1/ 2 1/ 22 2

2 2

1

1 1

l l

x
f x
f

x x

x x

δ

κ
δ δ

 
 ∂  ∇ ∂ = − ∇⋅ = ∇⋅ = ∇⋅ −   ∇          ∂ ∂    + +       ∂ ∂           

n i k  

( )

( ) ( )

2

1/ 2 1/ 22 2

2 2

1

1 1

x

x
x z

x x

x x

δ

α δ

∂
∂ ∂∂= −
∂ ∂      ∂ ∂   + +      ∂ ∂         

.   (86) 

Having in mind that 

( )
1/ 22

2

1
0

1
z

x

x

δ

∂ =
∂   ∂ +  ∂   

     (87) 

one finally obtain the well-known expression 

( ) ( )
3/ 222

2 2
2 2

1
x x

x x

δ δ
κ

  ∂ ∂ = +  ∂ ∂   
.    (88) 

Speed of displacement of geometrical surface (Truesdell and Toupin 
1960): Consider a set of geometrical surfaces defined by the equation 

( )1 2, ,t t τ=r r ,       (89) 

where 1t  and 2t  are the coordinates of a point on this surface and τ  is the time. 

The velocity of the surface point ( )1 2,t t  is defined by 
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1 2,t t
σ τ

∂ =  ∂ 

r
V .      (90) 

Expressing the surface equation with 

( ), , , 0f x y z τ =       (91) 

we have 

0
f

fστ
∂ + ⋅∇ =
∂

V .      (92) 

Knowing that the outwards directed unit surface vector is 

f

f

∇=
∇

n        (93) 

the surface velocity can be expressed as 

/f

fσ
τ∂ ∂⋅ = −

∇
V n .      (94) 

Potential function: If the vector F is defined on D and  

f= ∇F        (95) 

for some scalar function on D then f is called a potential function for F. The im-
portant property of the potential functions is derived from the following considera-
tion. Suppose A and B are two points in D and that the curve 

( ) ( ) ( ) ( ) ( ), ,  g  x y z t f t t h t= = + +r r i j k , a t b≤ ≤ , (96) 

is smooth on D joining A and B. Along the curve,  f  is a differentiable function of 
t  and 

df f dx f dy f dz f f f x y z

dt x dt y dt z dt x y z t t t

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
i j k i j k  

d d
f

dt dt
= ∇ ⋅ = ⋅r r

F .      (97) 

Therefore, 

( ) ( )
b b

C a a

d df
d dt dt f A f B

dt dt
⋅ = ⋅ = = −  

r
F r F ,   (98) 

depends only of the values of  f  at A and B and not on the path between. In other 
words if 

( ) ( ) ( ), ,  , ,  , ,M x y z N x y z P x y z= + +F i j k    (99) 



706      Appendix 1 Brief introduction to vector analysis 

is a field whose component functions have continuous first partial derivatives and 
there is a solution of the equation 

( ) ( ) ( ), ,  , ,  , ,
f f f

M x y z N x y z P x y z
x y z

∂ ∂ ∂+ + = + +
∂ ∂ ∂

i j k i j k , (100) 

which means solution of the system 

( ), ,
f

M x y z
x

∂ =
∂

,      (101) 

( )N , ,
f

x y z
y

∂ =
∂

,      (102) 

( ), ,
f

P x y z
z

∂ =
∂

,      (103) 

the vector F possesses a potential function f  and is called conservative. 
 

Differential form, exact differential form: The form  

( ) ( ) ( ), ,  , ,  , ,M x y z dx N x y z dy P x y z dz+ +    (104) 

is called the differential form. A differential form is exact on a domain D in space 
if 

( ) ( ) ( ), ,  , ,  , ,
f f f

M x y z dx N x y z dy P x y z dz dx dy dz
x y z

∂ ∂ ∂+ + = + +
∂ ∂ ∂

 

     (105) 

for some scalar function f  through D. In this case f is a smooth function of x, y, 
and z. Obviously the test for the differential form being exact is the same as the 
test for F’s being conservative that is the test for the existence of f. Another way 
for testing whether the differential form is exact is Euler’s relations saying that if 
the differential form is exact the mutual cross derivatives are equal, that is 

f f

y x x y

 ∂ ∂ ∂ ∂  =   ∂ ∂ ∂ ∂   
, 

f f

z x x z

∂ ∂ ∂ ∂   =   ∂ ∂ ∂ ∂   
, and 

f f

y z z y

 ∂ ∂ ∂ ∂  =   ∂ ∂ ∂ ∂   
. 

     (106) 

Directional derivatives: Suppose that the function ( ), ,f x y z  is defined 

through the region R in the xyz space, that ( )0 0 0 0, ,P x y z  is a point in R, and that 

1 2 3u u u= + +u i j k  is a unit vector. Then the equations 

0 1x x su= + , 0 2y y su= + , 0 3z z su= + , s−∞ < < ∞ , (107) 
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parametrize the line through ( )0 0 0 0, ,P x y z  parallel to u. The parameter s measures 

the arc length from 0P  in the direction u.  We find the rate of change of  f  at 0P  in 

the direction u by calculating df/ds at 0P . The derivative of  f  at 0P  in the direc-

tion of the unit vector 1 2 3u u u= + +u i j k  is the number 

( ) ( )
0

0 1 0 2 0 3 0 0 0

0
,

, , , ,
lim
s

P

f x su y su z su f x y zdf

ds s→

+ + + −  = 
 u

 (108) 

provided the limit exists. Useful relations for practical calculations are 

( )
0 0 00

1 2 3
,P P PP

df df df df
u u u

ds dx dy dz

       = + + ⋅ + +       
        u

i j k i j k ( )
0P

f= ∇ ⋅u  

cosf θ= ∇ ⋅ u .      (109) 

At any given point,  f  increases most rapidly in the direction of f∇  and decreases 

most rapidly in the direction of - f∇ . In any direction orthogonal to f∇ , the de-

rivative is zero. 
 

Derivatives of a function along the unit tangent vector: Suppose that the 
function ( ), ,f x y z  is defined through the region R in the xyz space, and is diffe-

rentiable, and that  

d x y z

ds s s s

∂ ∂ ∂ = = + + ∂ ∂ ∂ 

r
T i j k      (110) 

is a unit tangent vector to the differentiable curve ( )tr  through the region R. 

( )0 0 0 0, ,P x y z  is a point at ( )tr  in R.  Then the derivative of  f  at 0P  along the 

unit tangent vector is the number 

f f x f y f z f f f x y z

s x s y s z s x y z s s s

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
i j k i j k  

( ) ( )f f
s

∂= ∇ ⋅ = ∇ ⋅
∂
r

T .       (111) 

The vector (cross) products: If A and B are two non-zero vectors in space 
which are not parallel, they determine a plane. We select a unit vector n perpendi-
cular to the plane by the right-handed rule. This means we choose n to be unit 
(normal) vector that points the way your right thumb points when your fingers curl 
through the angle θ  from A to B. We then define the vector product ×A B  (“A 
cross B”) to be the vector 

( )sinθ× =A B A B n .     (112) 
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The vector ×A B  is orthogonal to both A and B because it is a scalar multiple of 
n. The vector product of A and B is often called the cross product of A and B be-
cause of the cross in the notation ×A B .  

Since the sines of 0 and π  are both zero in the definition equation, it makes 
sense to define the cross product of two parallel non-zero vectors to be 0.  

If one or both of the vectors A and B are zero, we also define ×A B  to be zero. 
This way, the cross product of two vectors A and B is zero if and only if A and B 
are parallel or one or both of them are zero. 

 
Note that 

( )× = − ×A B B A .      (113) 

The determination formula for ×A B : If 1 2 3a a a= + +A i j k , and 

1 2 3b b b= + +B i j k , then 

1 2 3

1 2 3

a a a

b b b

× =
i j k

A B .      (114) 

As an example consider the expression appearing in the multi-phase fluid mechan-
ics for computation of the lift forces ( ) ( )l m m− × ∇×V V V  as a function of the ve-

locity vectors. The result is given in two steps 

( ) m m m m m m
m

m m m

w v w u v u

x y z y z x z x y

u v w

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∇× = = − − − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

i j k

V i j k , 

    (115) 

( ) ( )l m m− × ∇× =V V V  

( ) ( )m m m m
l m l m

v u w u
v v w w

x y x z

  ∂ ∂ ∂ ∂ = − − + − −    ∂ ∂ ∂ ∂   
i     

( ) ( )m m m m
l m l m

v u w v
u u w w

x y y z

    ∂ ∂ ∂ ∂− − − − − −    ∂ ∂ ∂ ∂    
j  

( ) ( )m m m m
l m l m

w u w v
u u v v

x z y z

  ∂ ∂ ∂ ∂ + − − − − − −   ∂ ∂ ∂ ∂    
k .  (116) 

Parallel vectors: Non-zero vectors A and B are parallel if and only if  

× =A B 0 .       (117) 
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The associative and distributive lows for the cross product: The scalar 
distributive law is 

( ) ( ) ( ) ( )r s rs× = ×A B A B ,     (118) 

with the special case 

( ) ( ) ( )− × = × − = − ×A B A B A B .    (119) 

The vector distributive laws are 

( )× + = × + ×A B C A B A C ,     (120) 

( )+ × = × + ×B C A B A C A .     (121) 

Note the interesting vector identities, Thompson et al. (1985), p. 100 and 101, 

( ) ( ) ( ) ( ) ( ) ( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅A B C D A C B D A D B C ,   (122) 

and 

( ) ( ) ( )× × = ⋅ − ⋅A B C A C B A B C .    (123) 

The area of a parallelogram: Because n is a unit vector, the magnitude of 
×A B is 

sin sinθ θ× = =A B A B n A B .    (124) 

This is the area of the parallelogram determined by A and B, A  being the base of 

the parallelogram and sinθB  the height. 

 
Area of union of two triangle plane regions: Consider four vertices points 
defined by the position vector  

i i i ix y z= + +r i j k ,       (125) 

where i = 5, 6, 8, 7, see Fig. A1.2. 
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24861 SS =

13752 SS =
34873 SS =

12654 SS =

56875 SS =

12436 SS =
 

Fig. A1.2 Tetrahedron defined by joint triangles 

In general the four points must not belong to the same plane. The surface vector 
defined by these points is computed as follows. First we compute the surface vec-
tors of  the triangles 587 and 568 

( ) ( )587 5 7 8 7

1

2
= − × −S r r r r ,     (126) 

( ) ( )568 6 8 5 6

1

2
= − × −S r r r r .     (127) 

The vector sum of the above two vectors yields an expression for the vector sur-
face  

( ) ( )5687 6 5 8 5

1

2
= − × −S r r r r ,     (128) 

Kordulla and Vinokur (1983). In fact this is the surface defined by the vector 
product of the vectors joining the couple of the opposite vertices, respectively. 
One should note that the first, the second and the resulting vector form right 
handed coordinate systems in order to specify the outward direction of the surface 
if it is part of the control volume surface. Thus, for the hexadron presented in Fig. 
A1.2, we have 

( ) ( )1 2486 4 6 8 2

1

2
= = − × −S S r r r r ,    (129) 

( ) ( )2 1375 3 5 1 7

1

2
= = − × −S S r r r r ,    (130) 
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( ) ( )3 3487 4 7 3 8

1

2
= = − × −S S r r r r ,    (131) 

( ) ( )4 1265 6 1 5 2

1

2
= = − × −S S r r r r ,    (132) 

( ) ( )5 5687 8 5 7 6

1

2
= = − × −S S r r r r ,    (133) 

( ) ( )6 1243 4 1 2 3

1

2
= = − × −S S r r r r .    (134) 

The triple scalar or box product: The product ( )× ⋅A B C  is called the triple 

scalar product of A, B, and C (in that order). As you can see from the formula 

( ) cosθ× ⋅ = ×A B C A B C ,     (135) 

the absolute value of the product is the volume of the parallelepiped (parallelo-
gram-sided box) determined by A, B, and C. The number ×A B  is the area of the 

parallelogram. The number cosθC  is the parallelogram’s height. Because of the 

geometry ( )× ⋅A B C is called the box product of A, B, and C. 

By treating the planes of B and C and of C and A as the base planes of the pa-
rallelepiped determined by A, B, and C, we see that 

( ) ( ) ( )× ⋅ = × ⋅ = × ⋅A B C B C A C A B .    (136) 

Since the dot product is commutative, the above equation gives 

( ) ( )× ⋅ = ⋅ ×A B C A B C .     (137) 

The triple scalar product can be evaluated as a determinant 

( )
1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

× ⋅ =A B C .     (138) 

Volume of a tetrahedron: Consider a tetrahedron defined by the four vertices 
numbered as shown in Fig. A1.3.  
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Fig. A1.3 Definition of the vertices numbering of the tetrahedron 

The volume of the tetrahedron is then 

( ) ( ) ( )5 1 2 1 3 1

1

6
V  = − ⋅ − × − r r r r r r .    (139) 

Volume of a hexahedron: Consider a hexahedron defined by the eight vertices 
numbered starting with base in the counterclockwise direction as shown in Fig. 
A1.4.  
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Fig. A1.4 Definition of the vertices numbering of the hexahedron 
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An alternative approach for computation of the volume of the hexahedron is to 
compute the volumes of the tetrahedra making up the hexahedron. Kordulla and 
Vinokur (1983) used symmetric partitioning of the faces decomposing the hexahe-
dron into four tetrahedra and obtained  

( ) ( ) ( ) ( )12435687 8 1 1243 1265 1375 8 1 2 4 6

1 1

3 3
V = − − ⋅ + + = − − ⋅ + +r r S S S r r S S S . 

     (140) 

Here the surfaces 1243S , 1265S , and 1375S belongs to the same vertices and 8 1−r r  is 

the diagonal joining these vertices with the opposite ones. 
 

Dyadic product of two vectors: Consider the vectors 1 2 3a a a= + +A i j k , 

1 2 3b b b= + +B i j k . The dyadic product of the two vectors is written as AB without 

any sign between them, and is defined as the following second order tensor 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

a b a b a b

a b a b a b

a b a b a b

 
 =  
 
 

AB .     (141) 

Note that the dyadic product of AB is not equivalent to BA. As examples we give 

some dyadic products between the vectors 
x y z

∂ ∂ ∂∇⋅ = + +
∂ ∂ ∂

i j k  and 

u v v= + +V i j k , which are used in fluid mechanics for definition of the friction 

forces in flows: 

u v w

x x x
u v w

y y y

u v w

z z z

 ∂ ∂ ∂
 ∂ ∂ ∂ 
∂ ∂ ∂ ∇ =  ∂ ∂ ∂

 
∂ ∂ ∂ 

 ∂ ∂ ∂ 

V ,     (142) 

( )T

u u u

x y z

v v v

x y z

w w w

x y z

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
 ∂ ∂ ∂
  ∂ ∂ ∂ 

V .     (144) 

Another dyadic product of the velocity vector 
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uu uv uw

vu vv vw

wu wv ww

 
 =  
 
 

VV ,     (145) 

is used to describe the convective momentum transport. 
 
Eigenvalues: The eigenvalues iλ  of a matrix A are the solution of the characte-

ristic polynomial 

( )det 0λ λ− = − =A I A I ,     (146) 

where I is the identity matrix. 
 
Eigenvectors: The right eigenvector of a matrix A corresponding to a an eigen-

value iλ  of A is a vector ( ) ( ) ( ) ( )
1 2, ,...,

T
i i i i

mk k k =  K   satisfying  

( ) ( )i i
iλ=AK K .      (147) 

Similarly, a left eigenvector of a matrix A corresponding to a an eigenvalue iλ  of 

A is a vector ( ) ( ) ( ) ( )
1 2, ,...,

T
i i i i

mk k k =  L   satisfying  

( ) ( )i i
iλ=AL L .       (148) 

Diagonalizable matrix: A matrix A is said to be diagonalizable if A can be ex-
pressed as 

1−=A KHK ,       (149) 

in terms of a diagonal matrix H  and a matrix K. The diagonal element of H  are 
the eigenvalues iλ  of A and the columns of K are the right eigenvectors of A cor-

responding to the eigenvalues iλ , that is 

1

2

0 . 0

0 . 0

. . . .

0 0 . m

λ
λ

λ

 
 
 =
 
 
  

H , ( ) ( ) ( ), ,...,
T

i i i =  K K K K , ( ) ( )i i
iλ=AK K . (150) 

Rotation around axes: Given a point ( )0 0 0, ,x y z . A new position of this point 

( ), ,x y z  obtained after rotation by angle ϕ  with respect to the x, y or z axes re-

spectively is 
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0

0

0

i

x x

y y

z z

   
   =   
   
   

R ,       (151) 

where  

1

1 0 0

0 cos sin

0 sin cos

ϕ ϕ
ϕ ϕ

 
 = − 
 
 

R , 2

cos 0 sin

0 1 0

sin 0 cos

ϕ ϕ

ϕ ϕ

 
 =  
 − 

R , 3

cos sin 0

sin cos 0

0 0 1

ϕ ϕ
ϕ ϕ

− 
 =  
 
 

R . 

            (152,153,154) 

Scaling: Given a point ( )0 0 0, ,x y z . A new position of this point ( ), ,x y z  ob-

tained after scaling by  

1

0 0

0 0

0 0

x

y

z

s

s

s

 
 =  
 
 

S ,      (155) 

is 

0

0

0

i

x x

y y

z z

   
   =   
   
   

S .      (156) 

Translation: Graphical systems make use of the general notation of transforma-
tion operation defining by multiplying the coordinates with a 4 by 4 matrix 

0

0

0

1

x x

y y

z z

w

   
   
   =
   
      
   

T ,      (157) 

called translation matrix      

1 0 0

0 1 0

0 0 1

0 0 0 1

x

y

z

Δ 
 Δ =
 Δ
  
 

T .      (158) 

w is used for hardware scaling in graphical representations. Replacing the upper 3 
by 3 elements with the matrices defining rotation or scaling, results in general no-
tation of transformation. Then multiple transformations on objects are simply se-
quences of matrices multiplications. Note that the round off errors may damage 
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the objects coordinates after many multiplications. Therefore one should design 
systems by starting the transformations always from a initial state. 
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Appendix 2 Basics of the coordinate 
transformation theory 

Cartesian coordinate systems are usually the first choice of the scientist and the 
engineer. Unfortunately in nature and technology the boundaries of a flow may 
have a very complicated form. Prescribing physically adequate boundary condi-
tion at such surfaces is frequently not a solvable problem. The next choice of 
course is one of the well-known curvilinear orthogonal coordinate systems, polar, 
or bipolar, or cylindrical. 

 
The purpose of this Appendix is to collect from the literature the most impor-

tant basics on which the general coordinate transformation theory relies. The ma-
terial is ordered in a generic way. Each statement follows from the already defined 
statement or statements. For those who would like to perfect his knowledge in this 
field there are two important books that are my favorite choices: Thomas et al. 
(1998) - about the calculus and analytic geometry, and Thompson et al. (1985) - 
about numerical grid generation. For a complete collection of basic definitions, 
rules and useful formula see Miki and Takagi (1984). 

 

ξ

η

ζ

x

y

z

 
 

Fig. A2.1 Cartesian and curvilinear coordinate systems 

Consider three non identical and non-parallel curves in the space , ,ξ η ζ  having 

only one common point designated as an origin and presented in Fig. A2.1. The 
curves are smooth (al least one times differentiable). We call these curves coor-
dinate lines or curvilinear coordinates. The curvilinear coordinate lines of a 
three-dimensional system can be considered also as space curves formed by the 
intersection of surfaces on which one of the coordinates is hold constant. One 
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coordinate varies along a coordinate line, while the other two are constant there-
on. Thus, we have the coordinate transformation defined by 

( ), ,x f ξ η ζ= ,      (1) 

( ), ,y g ξ η ζ= ,      (2) 

( ), ,z h ξ η ζ= .      (3) 

The surfaces defined by constξ = ,  constη = ,  constζ = , are called coordinate 

surfaces. We talk then of physical and transformed (computational) space. In the 
physical space the coordinates ( ), ,x y z  become independent variables. In the 

transformed space the transformed computational coordinates ( ), ,ξ η ζ  become 

independent variables. 
 
 

1a

2a

3a

x

y

z

 

Fig. A2.2 The covariant tangent vectors to the coordinate lines form the so called covariant 
base vectors of the curvilinear coordinate system 

The tangent vectors to the coordinate lines form the so called base vectors of 
the coordinate system. These base vectors are called covariant base vectors, Fig. 
A2.2. The normal vectors to the coordinate surfaces form the so called contrava-
riant base vectors. The two types of the base vectors are illustrated in Figs. A2.2 
and A2.3, showing an element of volume with six sides, each of which lies on 
some coordinate surface. 
 
Another frequently used notation is  ix  ( )1,2,3i = : 1 2 3, ,x x x  and iξ  ( )1,2,3i = : 

1 2 3, ,ξ ξ ξ . In the latter case the superscripts serve only as labels and not as powers. 
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const=ξ

const=η

const=ζ

x

y

z
1a

2a

3a

 
 

Fig. A2.3 The contravariant normal vectors to the coordinate surfaces form  the so called 
contravariant base vectors of the curvilinear coordinate system 

Metrics and inverse metrics: The differential increments in the transformed 
coordinate system as a function of the differential increments in the physical coor-
dinate system can be computed as follows 

x y z
d dx

d dy
x y z

d dz

x y z

ξ ξ ξ

ξ
η η ηη

ζ
ζ ζ ζ

 ∂ ∂ ∂
 ∂ ∂ ∂    
 ∂ ∂ ∂   =     ∂ ∂ ∂    

    ∂ ∂ ∂
  ∂ ∂ ∂ 

.     (4) 

The elements of the matrix in Eq. (4) are called metrics of the coordinate trans-
formation, Anderson (1995) p.178. An alternative notation of the metrics is aij. The 
differential increments in the physical coordinate system are a function of the dif-
ferential increments in the transformed coordinate system 

x x x

dx d
y y y

dy d

dz d
z z z

ξ η ζ ξ
η

ξ η ζ
ζ

ξ η ζ

 ∂ ∂ ∂
 ∂ ∂ ∂    
 ∂ ∂ ∂   =     ∂ ∂ ∂    

    ∂ ∂ ∂
  ∂ ∂ ∂ 

   or   

dx d

dy d

dz d

ξ
η
ζ

   
   =   
   
   

J .  (5) 

where 
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( ), ,

x x x

y y y

z z z

ξ η ζ

ξ η ζ
ξ η ζ

ξ η ζ

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂=  ∂ ∂ ∂ 
 ∂ ∂ ∂
  ∂ ∂ ∂ 

J      (6) 

is the so called Jacobian matrix of the coordinate transformation ( ), ,x f ξ η ζ= , 

( ), ,y g ξ η ζ= , ( ), ,z h ξ η ζ= . The elements of the Jacobian matrix are called in-

verse metrics of the coordinate transformation Anderson (1995). An alternative 
notation of the inverse metrics is T

ija . The relation between the so called metrics 

and the inverse metrics is obvious by noting that the transformation is invertible 

1
x x x

x y z
d dx dx

y y y
d dy dy

x y z
d dz dz

z z z

x y z

ξ ξ ξ
ξ η ζξ

η η ηη
ξ η ζ

ζ
ζ ζ ζ

ξ η ζ

−
   ∂ ∂ ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂ ∂ ∂        
   ∂ ∂ ∂ ∂ ∂ ∂     = =        ∂ ∂ ∂ ∂ ∂ ∂        

        ∂ ∂ ∂ ∂ ∂ ∂
      ∂ ∂ ∂ ∂ ∂ ∂   

, (7) 

and therefore 

1

1

x x x

x y z

y y y

x y z

z z z

x y z

ξ ξ ξ
ξ η ζ

η η η
ξ η ζ

ζ ζ ζ
ξ η ζ

−

−

   ∂ ∂ ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂= =   ∂ ∂ ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂
      ∂ ∂ ∂ ∂ ∂ ∂   

J  

1

y z y z x z x z x y x y

y z y z x z x z x y x y

g

y z y z x z x z x y x y

η ζ ζ η ζ η η ζ η ζ ζ η

ζ ξ ξ ζ ξ ζ ζ ξ ζ ξ ξ ζ

ξ η η ξ η ξ ξ η ξ η η ξ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

, (8) 

 
where  

( ), ,g ξ η ζ= J  
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x y z y z x y z y z x y z y z

ξ η ζ ζ η η ξ ζ ζ ξ ζ ξ η η ξ
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − − − + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

, 

  (9) 

is called the Jacobian determinant or Jacobian of the coordinate transformation. 
An alternative notation of the metrics is aij. We see that 

( ) 1T ij
ija a

−
= =J ,      (10) 

( ) 11ij T
ija a

−−= =J ,      (11) 

( ) ( )
11 T Tij ij

ija a a
−−   = =      

.     (12) 

Covariant base vectors: The tangent vectors ( )1 2 3, ,a a a  to the three curvili-

near coordinate lines represented by ( ), ,ξ η ζ  are called the three covariant base 

vectors of the curvilinear coordinate system, and are designated with 

1 :a  
x y z

ξ ξ ξ ξ
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

r
i j k ,     (13) 

2 :a  
x y z

η η η η
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

r
i j k ,     (14) 

3 :a  
x y z

ζ ζ ζ ζ
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

r
i j k .    (15) 

The components of the three covariant base vectors of the curvilinear coordinate 
system are the columns of the matrix of the inverse metrics (Jacobian matrix – Eq. 
6). They are not unit vectors. The corresponding unit vectors are 

1
1

1

=
a

e
a

, 2
2

2

=
a

e
a

, 3
3

3

=
a

e
a

.     (16,17,18) 

Contravariant base vectors: The normal vectors to a coordinate surface on 
which the coordinates ξ , η  and ζ  are constant, respectively are given by 

1 :a  
x y z

ξ ξ ξξ ∂ ∂ ∂∇ = + +
∂ ∂ ∂

i j k ,     (19) 

2 :a  
x y z

η η ηη ∂ ∂ ∂∇ = + +
∂ ∂ ∂

i j k ,     (20) 
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3 :a  
x y z

ζ ζ ζζ ∂ ∂ ∂∇ = + +
∂ ∂ ∂

i j k .    (21) 

The components of the three contravariant base vectors of the curvilinear coordi-
nate system are the rows of the matrix of the metrics – Eq. (4). They are not unit 
vectors. The corresponding unit vectors are 

constξ = , 
1

1

1
= a

e
a

,     (22) 

constη = , 
2

2

2
= a

e
a

,     (23) 

constζ = , 
3

3

3
= a

e
a

.     (24) 

At any given point on the surface defined with constξ = , ξ   increases most ra-

pidly in the direction of ξ∇  and decreases most rapidly in the direction of - ξ∇ . 

In any direction orthogonal to ξ∇ , the derivative is zero. The corresponding 

statements are valid for the remaining surfaces constη =  and  constζ = . 

 
These normal vectors to the three coordinate surfaces are called the three con-

travariant base vectors of the curvilinear coordinate system.  
 

Cartesian vector in co- and contravariant coordinate systems: Any 
Cartesian vector u v w= + +V i j k  has two sets of distinct components with respect 

to the frames of the covariant and contravariant base vectors 
 

1 2 3
1 2 3V V V′ ′ ′= + +V a a a ,     (25) 

 
1 2 3

1 2 3V V V′ ′ ′= + +V a a a .      (26) 

The components iV ′  and iV ′  are called contravariant and covariant components 

of V respectively. The components are easily computed by equalizing the Carte-
sian components as follows 

 
1 2 3

1 2 3u v w V V V′ ′ ′+ + = + +i j k a a a  

 

( ) ( )1 2 3 1 2 3
11 21 31 12 22 32V a V a V a V a V a V a′ ′ ′ ′ ′ ′= + + + + +i j  

 

( )1 2 3
13 23 33V a V a V a′ ′ ′+ + + k ,     (27) 
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or 
1

11 21 31
2

12 22 32
3

13 23 33

a a a V u

a a a V v

a a a V w

 ′   
    ′ =    

    ′    

   or   

1

2

3

V u

V v

wV

 ′     ′  =      ′   

J   (28) 

 
or after comparing with Eq. (9) we have 

 
11

11 21 31
2 1

12 22 32
3

13 23 33

V a a a u

V a a a v

V a a a w

−

−

 ′    
     ′ = = ⋅     

    ′     

J V .    (29) 

 
Therefore 

 
1 11 12 13 1V a u a v a w′ = + + = ⋅a V ,     (30) 
2 21 22 23 2V a u a v a w′ = + + = ⋅a V ,    (31) 
3 31 32 33 3V a u a v a w′ = + + = ⋅a V ,    (32) 

 
and Eq. (25) can be rewritten as follows 

 

( ) ( ) ( )1 2 3
1 2 3= ⋅ + ⋅ + ⋅V a V a a V a a V a ,    (33) 

 
compare with Eq. (35) in Thompson, Warsi and Mastin (1985) p. 109. Similarly 
we have 

( ) ( )
111 21 31

1 1 112 22 32
2

13 23 33
3

TTij ij T
ij

V a a a u

V a a a v a a a

V a a a w

−

− −
 ′   
        ′ = = = = = ⋅               ′    

J V , (34) 

and 
 

( ) ( ) ( )1 2 3
1 2 3= ⋅ + ⋅ + ⋅V a V a a V a a V a ,    (35) 

 
compare with Eq. (36) in Thompson, Warsi and Mastin (1985) p. 109. Remember 
again that the components i ⋅a V  and i ⋅a V  are called contravariant and covariant 

components of V respectively. 
 
Gravitational acceleration vector in inclined Cartesian coordinate 
system: Given the Cartesian coordinate system ( ), ,x y z  in which the gravita-

tional acceleration is x y zg g g= + +g i j k  with xg  = 0, yg  = 0 and zg  = - g . Ro-
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tate this coordinate system clockwise around y on angle yϕ  as shown in Fig. 1. 

The new coordinate system ( ), ,ξ η ζ is also Cartesian. Compute the Jacobian ma-

trix of the coordinate transformation and the inversed Jacobian matrix of the new 
system. Compute the components of the gravitational vector in the new system. 
Solve the same task for rotation around the other axis. 
 

dx

 dz
dζ

x

z

 ξ

 ζ

 yϕ

yϕ

 dξ
dz−

 

Fig. 4. Rotation of Cartesian coordinate system in y = const plane 

From geometrical consideration the solution the components of the Jacobian ma-
trix are 

 

cos 0 sin

0 1 0

sin 0 cos

y y

y

y y

x x x

y y y

z z z

η

ξ η ζ ϕ ϕ

ξ η ζ
ϕ ϕ

ξ η ζ

=

 ∂ ∂ ∂
 ∂ ∂ ∂   
   ∂ ∂ ∂= =   ∂ ∂ ∂   −  ∂ ∂ ∂
  ∂ ∂ ∂ 

J . 

 
Obviously the co-variant vectors are unit vectors. The inversed Jacobian matrix of 
the system is then 
 

1

1

cos 0 sin cos 0 sin

0 1 0 0 1 0

sin 0 cos sin 0 cos

y y y y
ij
y y

y y y y

a η η

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

−

−
= =

   −
   

= = =   
   −   

J . 

 
The components of the gravitational vector  
 

1 2 3
1 2 3g g g′ ′ ′= + +g a a a  
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in the new system are  
 

1 11 12 13 sinx y z yg g a g a g a gξ ϕ′= = + + = g ,  
2 21 22 23 0x y zg g a g a g a gη ′= = + + = ,  
3 31 32 33 cosx y z yg g a g a g a gζ ϕ′= = + + = − g , 

 
which in this case is easily directly verified by direct geometrical considerations. 
 

For rotation the Cartesian system around the x axis on angle xϕ  the result is: 
 

1 0 0

0 cos sin

0 sin cos
x x x

x x

x x x

y y y

z z z

ξ

ξ η ζ

ϕ ϕ
ξ η ζ

ϕ ϕ

ξ η ζ

=

 ∂ ∂ ∂
 ∂ ∂ ∂   
 ∂ ∂ ∂  = =   ∂ ∂ ∂   −  ∂ ∂ ∂
  ∂ ∂ ∂ 

J , 

1

1 0 0

0 cos sin

0 sin cos

ij
x x x x

x x

a ξ ξ ϕ ϕ
ϕ ϕ

−
= =

 
 = = − 
 
 

J , 

 
and therefore  

 
0gξ = ,  

sin xgη ϕ= g ,  

cos xgζ ϕ= − g . 

 
For rotation the Cartesian system around the z axis on angle zϕ  the result is: 
 

cos sin 0

sin cos 0

0 0 1

z z

z z z

x x x

y y y

z z z

ζ

ξ η ζ ϕ ϕ
ϕ ϕ

ξ η ζ

ξ η ζ

=

 ∂ ∂ ∂
 ∂ ∂ ∂   
 ∂ ∂ ∂  = = −   ∂ ∂ ∂   

  ∂ ∂ ∂
  ∂ ∂ ∂ 

J ,  
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1

cos sin 0

sin cos 0

0 0 1

z z
ij
z z z za ζ ζ

ϕ ϕ
ϕ ϕ−

= =

− 
 = =  
 
 

J , 

and therefore 
 

0gξ = ,  

0gη = ,  

gζ = − g , 

 
which is the expected result because in this case the z-axis remains parallel to the 
gravitational direction. 
 
Gravitational acceleration vector in inclined cylindrical coordinate 
system: Given the task as described in the previous problem. Consider the case 
with the rotation around the y-axis. In addition for the transformed coordinate sys-
tem use instead of Cartesian coordinate system ( ), ,ξ η ζ  a orthogonal cylindrical 

one ( ), ,r θ ζ  for which at 0θ =  r  coincides with ξ .  Compute the gravitational 

components along the two new axes. Because ζ  remains the same the component  
 

cos ygζ ϕ= − g  

 
along it remain as it is. In the plane constζ =  the component sinϕg  is a con-

stant along ξ  with components 

 
sin cosr yg ϕ θ= g , 

 
sin sinygθ ϕ θ= − g . 

 
Observe that this components do not depend on the radius r and on the axial coor-
dinate ζ . They only depend on the two angles yϕ  and θ  which is intuitively ex-

pected. The same result can be obtained using the general algorithm. As it will be 
shown later for transferring the Cartesian coordinate system ( ), ,ξ η ζ  into cylin-

drical one ( ), ,r θ ζ  the metrics of the coordinate transformation are 

 

1
, ,rξ η θ ζ ζ

−
= → =J

cos sin 0

1 1
sin cos 0

0 0 1
r r

θ θ

θ θ

 
 
 = −
 
 
 

. 



Appendix 2 Basics of the coordinate transformation theory      727    

 
The first and the third contravariant vectors are unit vectors, the unit vector of the 
second has components ( )sin cos 0θ θ− . With this the gravitational vector in 

the final coordinate system is represented by 
 

1 11 12 13 sin cosr yg g a g a g a gξ η ζ ϕ θ′= = + + = g , 

 
2 21 22 23 sin sinyg g a g a g a gθ ξ η ζ ϕ θ′= = + + = − g , 

 
cos ygζ ϕ= − g . 

 
This is a demonstration that several successive transformations of a vector in new 
coordinate systems can be obtained by  
 

( )( )( )1 1 1
2 1...final n initialg− − −=g J J J . 

 
Increment of the position vector: The infinitesimal increment of the position 
vector is 

 

1 2 3d d d dξ η ζ= + +r a a a .     (36) 

 
Increment of the arc length: The infinitesimal increment of the arc length 
along a general space curve can be approximated with the magnitude if the infini-
tesimal increment of the position vector 

ds d d d= = ⋅r r r       (37) 

or 

( ) ( )2

1 2 3 1 2 3ds d d d d d d d dξ η ζ ξ η ζ= ⋅ = + + ⋅ + +r r a a a a a a  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

d d d d d d

d d d d d d

d d d d d d

ξ ξ ξ η ξ ζ

η ξ η η η ζ

ζ ξ ζ η ζ ζ

 ⋅ + ⋅ + ⋅
 
 
 = + ⋅ + ⋅ + ⋅ 
 
  + ⋅ + ⋅ + ⋅ 

a a a a a a

a a a a a a

a a a a a a

.  (38) 

The tensor built by the dot products is obviously symmetric, and is called the co-
variant tensor. 
 
Covariant metric tensor: The covariant metric tensor is defined as 
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1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ijg

⋅ ⋅ ⋅ 
 = ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

a a a a a a

a a a a a a

a a a a a a

,     (39) 

which is a symmetric tensor. 
 

Angles between the unit covariant vectors: The angles between the cova-
riant unit vectors can be expressed in terms of the elements of the covariant metric 
tensor as follows  

1 2 12
12

1 2 11 22

arccos arccos
g

g g
θ

  ⋅
 = =       

a a
a a

,   (40) 

1 3 13
13

1 3 11 33

arccos arccos
g

g g
θ

  ⋅
 = =       

a a

a a
,   (41) 

2 3 23
23

2 3 22 33

arccos arccos
g

g g
θ

  ⋅
 = =       

a a

a a
.   (42) 

It is obvious that only in a specially designed curvilinear coordinate systems 
can the covariant vectors be mutually perpendicular. Such systems are called or-
thogonal. In this case the transformed region is rectangular.  

General curvilinear coordinate systems are not orthogonal in many applica-
tions. In such systems the transformed region where the curvilinear coordinates 
are independent variables can be thought of as being rectangular, and can be 
treated as such from a coding standpoint by formation of the finite difference equ-
ations and in the solution thereof. The problem is thus much simpler in the trans-
formed field, since the boundaries here are all thought of as rectangular. 
 
Orthogonality: In an orthogonal coordinate system: a) the two types of base 
vectors are parallel and b) three base vectors on each type are mutually perpendi-
cular. The consequence is that the off diagonal terms of covariant metric tensor are 
zeros. 
 
Surface area increment: Consider a parallelepiped with finite sizes 1dξa , 

2dηa , and 3dζa . The areas of the surfaces defined with constant curvilinear 

coordinates are 

constξ = , ( )1
2 3d d dη ζ= ×S a a ,    (43) 

constη = , ( )2
3 1d d dξ ζ= ×S a a ,    (44) 

constζ = , ( )3
1 2d d dξ η= ×S a a ,    (45) 
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respectively. Using the vector identity 

( ) ( ) ( ) ( ) ( ) ( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅A B C D A C B D A D B C    (46) 

for C = A and D = B  

( ) ( ) ( )( ) ( )2× ⋅ × = ⋅ ⋅ − ⋅A B A B A A B B A B ,   (47) 

or 

( )( ) ( )2× = ⋅ ⋅ − ⋅A B A A B B A B     (48) 

the magnitude of the increment of the surface area is 

constξ = ,

( )( ) ( )21 2
2 3 2 2 3 3 2 3 22 33 23dS d d d d g g g d dη ζ η ζ η ζ= × = ⋅ ⋅ − ⋅ = −a a a a a a a a , 

 (49) 

constη = ,

( ) ( ) ( )22 2
1 3 1 1 3 3 3 1 11 33 31dS d d d d g g g d dξ ζ ξ ζ ξ ζ= × = ⋅ ⋅ − ⋅ = −a a a a a a a a ,  

 (50) 

constζ = ,

( )( ) ( )23 2
1 2 1 1 2 2 1 2 11 22 12dS d d d d g g g d dξ η ξ η ξ η= × = ⋅ ⋅ − ⋅ = −a a a a a a a a .  

 (51) 

Infinite volume in curvilinear coordinate systems: An infinitesimal paral-
lelepiped formed by the vectors 1dξa , 2dηa , and 3dζa has a infinitesimal vo-

lume computed using the box product rule 

( ) ( )1 2 3 1 2 3dV d d d d d dξ η ζ ξ η ζ= × ⋅ = × ⋅a a a a a a  

11 12 13

21 22 23

31 32 33

x x x

a a a
y y y

a a a d d d d d d

a a a
z z z

ξ η ζ

ξ η ζ ξ η ζ
ξ η ζ

ξ η ζ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂= =
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

,  (52) 

or using the Jacobian determinant or Jacobian of the coordinate transformation 

( ), ,x f ξ η ζ= , ( ), ,y g ξ η ζ= , ( ), ,z h ξ η ζ=  we have 

( ), ,dV d d dξ η ζ ξ η ζ= J .     (53) 

Another notation of the Jacobian is  
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( ) ( ) ( ) ( )1 2 3 2 3 1 3 1 2, ,g ξ η ζ= = × ⋅ = × ⋅ = × ⋅J a a a a a a a a a , (54) 

so that the volume increment can also be written as 

 dV g d d dξ η ζ= .      (55) 

Note the cyclic permutation of the subscripts inside the brackets in Eq. (54). In fi-
nite difference form we have  

 V g ξ η ζΔ = Δ Δ Δ .      (56) 

Selecting strict equidistant discretization into the transformed space with 1ξΔ = , 

1ηΔ = , 1ζΔ = we have a visualization of the meaning of the Jacobian, namely 

 g V= Δ .       (57) 

Some authors are using this approach to compute the Jacobian from the volume of 
the computational cell provided the discretization of the computational domain is 
strictly equidistant with steps of unity in all directions. The real volume of the cell 
is computed in this case from the Cartesian coordinates of the vertices of the real 
cell as will be shown later. 

 
 
The Jacobian of the coordinate transformation in terms of dot prod-
ucts of the covariant vectors: The square of the Jacobian  

( ) ( )2 2

1 2 3, ,g ξ η ζ  = = ⋅ × J a a a     (58) 

can be rewritten as a function of the dot products of the components of the Jaco-
bian determinant as follows. Using the vector identities  

( ) ( ) ( ) ( ) ( ) ( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅A B C D A C B D A D B C    (59) 

for C = A and D = B results in 

( ) ( ) ( )( ) ( )2× ⋅ × = ⋅ ⋅ − ⋅A B A B A A B B A B    (60) 

or 

( ) ( )( ) ( ) ( )2⋅ = ⋅ ⋅ − × ⋅ ×A B A A B B A B A B .   (61) 

With this result we have 

( ) ( )( ) ( ) ( ) ( )2

1 2 3 1 1 2 3 2 3 1 2 3 1 2 3     ⋅ × = ⋅ × ⋅ × − × × ⋅ × ×     a a a a a a a a a a a a a a a . 

   (62) 

Using the same identity Eq. (59)  

( ) ( ) ( ) ( ) ( )2

2 3 2 3 2 2 3 3 2 3× ⋅ × = ⋅ ⋅ − ⋅a a a a a a a a a a    (63) 
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and by the vector identity 

( ) ( ) ( )× × = ⋅ − ⋅A B C A C B A B C     (64) 

we have 

( ) ( ) ( )1 2 3 1 3 2 1 2 3× × = ⋅ − ⋅a a a a a a a a a .    (65) 

Finally we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 22

1 2 3 1 1 2 2 3 3 2 3 1 3 2 1 2 3
  ⋅ × = ⋅ ⋅ ⋅ − ⋅ − ⋅ − ⋅   a a a a a a a a a a a a a a a a a  

( )( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )

2 2 2

1 1 2 2 3 3 1 1 2 3 2 2 1 3 3 3 1 2

1 2 3 2 1 32

= ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅

+ ⋅ ⋅ ⋅

a a a a a a a a a a a a a a a a a a

a a a a a a

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ijg

⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅

a a a a a a

a a a a a a

a a a a a a

 

( ) ( ) ( )2
11 22 33 23 12 21 33 23 31 13 21 32 22 31g g g g g g g g g g g g g g= − − − + − , (66) 

which is the determinant of the covariant symmetric tensor. 

Relation between the partial derivatives with respect to Cartesian and 
curvilinear coordinates: Partial derivatives with respect to Cartesian coordi-
nates are related to partial derivatives with respect to the curvilinear coordinates 
by the chain rule. If ( ), ,x y zϕ  is a scalar-valued function of the main va-

riables , ,x y z , through the three intermediate variables , ,ξ η ζ , then 

11 21 31a a a
x x x x

ϕ ϕ ξ ϕ η ϕ ζ ϕ ϕ ϕ
ξ η ζ ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

, (67) 

12 22 32a a a
y y y y

ϕ ϕ ξ ϕ η ϕ ζ ϕ ϕ ϕ
ξ η ζ ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

, (68) 

13 23 33a a a
z z z z

ϕ ϕ ξ ϕ η ϕ ζ ϕ ϕ ϕ
ξ η ζ ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

, (69) 

with the second superscript indicating the Cartesian component of the contrava-
riant vectors. If  

( ) ( ) ( ) ( ), , , , , , , ,x y z u x y z v x y z v x y z= + +V i j k  

is a vector-valued function of the main variables , ,x y z , through the three inter-

mediate variables , ,ξ η ζ , then 



732      Appendix 2 Basics of the coordinate transformation theory 

x

∂
∂
V 11 21 31 11 21 31u u u v v v

a a a a a a
ξ η ζ ξ η ζ

   ∂ ∂ ∂ ∂ ∂ ∂= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
i j  

11 21 31w w w
a a a

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

k ,    (70) 

y

∂
∂
V 12 22 32 12 22 32u u u v v v

a a a a a a
ξ η ζ ξ η ζ

   ∂ ∂ ∂ ∂ ∂ ∂= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
i j  

12 22 32w w w
a a a

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

k ,    (71) 

z

∂
∂
V 13 23 33 13 23 33u u u v v v

a a a a a a
ξ η ζ ξ η ζ

   ∂ ∂ ∂ ∂ ∂ ∂= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
i j  

13 23 33w w w
a a a

ξ η ζ
 ∂ ∂ ∂+ + + ∂ ∂ ∂ 

k .    (72) 

The divergence theorem (Gauss-Ostrogradskii): The divergence theorem 
says that under suitable conditions the outward flux of a vector field across a 
closed surface (oriented outward) equals the triple integral of the divergence of the 
field over the region enclosed by the surface. The flux of vector M N P= + +F i j k  

across a closed oriented surface S in the direction of the surface’s outward unit 
normal field n equals the integral of ∇⋅F  over the region D enclosed by the sur-
face: 

S D

d dVσ⋅ = ∇ ⋅ F n F .     (73) 

Volume of space enveloped by a closed surface: Consider in a space 
closed surface S described by the position vector r(x,y,z). The volume inside the 
surface can be expressed in terms of the area integral over its boundary using the 
divergence theorem 

( )
S D D

d dV x y z dV
x y z

σ  ∂ ∂ ∂⋅ = ∇ ⋅ = + + ⋅ + + ∂ ∂ ∂ 
  r n r i j k i j k  

3 3
D D

x y z
dV dV D

x y z

 ∂ ∂ ∂= + + = = ∂ ∂ ∂ 
  ,   (74) 

or 

1

3 S

D dσ= ⋅r n .      (75) 
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A practical application of this relation is the computation of the volume enclosed 
in plane elements with area mS , outwards unit normal vectors mn , and position 

vector of the centroids of the faces mr , 

1

3 m m m
m

D S= ⋅ n r .      (76) 

The divergence theorem for a curvilinear coordinate system: Consider 
a differential element of volume D bounded by six faces lying on coordinate sur-
faces, as shown in Fig. A2.3.  

 
Divergence: Applying the Divergence Theorem we obtain 

( )  
D

g d d dξ η ζ∇ ⋅ F  

( ) ( )
1 2

2 3 2 3

S S

d d d dη ζ η ζ= ⋅ × − ⋅ × F a a F a a  

( ) ( )
3 4

3 1 3 1

S S

d d d dξ ζ ξ ζ+ ⋅ × − ⋅ × F a a F a a  

( ) ( )
5 6

1 2 1 2

S S

d d d dξ η ξ η+ ⋅ × − ⋅ × F a a F a a .   (77) 

Dividing by D and letting D approach zero we obtain the so called conservative 
expression for the divergence 

( ) ( ) ( )2 3 3 1 1 2

1

 g ξ η ζ
 ∂ ∂ ∂     ∇⋅ = × ⋅ + × ⋅ + × ⋅      ∂ ∂ ∂ 

F a a F a a F a a F . 

    (78) 

Having in mind that 2a and 3a  are independent of ξ , and 1a and 3a  are indepen-

dent of η , and 1a and 2a  are independent of ζ  results in the so called first fun-

damental metric identity, Peyret (1996), 

( ) ( ) ( )2 3 3 1 1 2 0
ξ η ζ
∂ ∂ ∂× + × + × =
∂ ∂ ∂

a a a a a a .   (79) 

The so called non-conservative expression for the divergence is then 

( ) ( ) ( )2 3 3 1 1 2

1

 g ξ η ζ
 ∂ ∂ ∂∇ ⋅ = × ⋅ + × ⋅ + × ⋅ ∂ ∂ ∂ 

F F F
F a a a a a a . (80) 

Curl: The Divergence Theorem is valid if the dot product is replaced by a cross 
product. The conservative form of the curl is 
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( ) ( ) ( )2 3 3 1 1 2

1

 g ξ η ζ
 ∂ ∂ ∂     ∇× = × × + × × + × ×      ∂ ∂ ∂ 

F a a F a a F a a F , 

    (81) 

and the non-conservative form 

( ) ( ) ( )2 3 3 1 1 2

1

 g ξ η ζ
 ∂ ∂ ∂∇× = × × + × × + × × ∂ ∂ ∂ 

F F F
F a a a a a a . (82) 

Gradient: The Divergence Theorem is valid if the tensor or the vector F is re-
placed by a scalar ϕ . The conservative form of the gradient vector (gradient) of 
the differentiable function ϕ  is 

( ) ( ) ( )2 3 3 1 1 2

1

 g
ϕ ϕ ϕ ϕ

ξ η ζ
 ∂ ∂ ∂     ∇ = × + × + ×      ∂ ∂ ∂ 

a a a a a a ,(83) 

and the non-conservative form 

( ) ( ) ( )2 3 3 1 1 2

1

 g

ϕ ϕ ϕϕ
ξ η ζ

 ∂ ∂ ∂∇ = × + × + × ∂ ∂ ∂ 
a a a a a a .  (84) 

Laplacian: The expression for the Laplacian follows from the expression for the 
divergence and gradient as follows: The conservative form is 

( )2ϕ ϕ∇ = ∇ ⋅ ∇  

( )

( ) ( )

( )

2 3 3 1

2 3

1 2

1 1

  g g

ϕ ϕ
ξ η

ξ
ϕ

ζ

 ∂ ∂    × + ×     ∂ ∂  ∂   = × ⋅  ∂   ∂   + ×  ∂   

a a a a

a a

a a

 

( )

( ) ( )

( )

2 3 3 1

1 3

1 2

1 1

  g g

ϕ ϕ
ξ η

η
ϕ

ζ

 ∂ ∂    × + ×     ∂ ∂  ∂   + × ⋅  ∂   ∂   + ×  ∂   

a a a a

a a

a a

 

( )

( ) ( )

( )

2 3 3 1

1 2

1 2

1 1

  g g

ϕ ϕ
ξ η

ζ
ϕ

ζ

 ∂ ∂    × + ×     ∂ ∂  ∂   + × ⋅  ∂   ∂   + ×  ∂   

a a a a

a a

a a

. (85) 
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The non-conservative form is  

( )2ϕ ϕ∇ = ∇ ⋅ ∇  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 2 3 3 1 1 2

1 3 2 3 3 1 1 2

1 2 2 3 3 1 1 2

1

 

1 1

  

1

 

g

g g

g

ϕ ϕ ϕ
ξ ξ η ζ

ϕ ϕ ϕ
η ξ ξ ζ

ϕ ϕ ϕ
ζ ξ ξ ζ

   ∂ ∂ ∂ ∂ × ⋅ × + × + ×  ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ = + × ⋅ × + × + ×   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ + × ⋅ × + × + ×   ∂ ∂ ∂ ∂    

a a a a a a a a

a a a a a a a a

a a a a a a a a


. 

   (86) 

The above relations were used for the first time to derive conservative transformed 
equations in the gas dynamics by Vivand and Vinokur in 1974. 

 
Contravariant metric tensor: It is very interesting to note that in the Lapla-
cian the nine scalar products form a symmetric tensor 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ijg

 ⋅ ⋅ ⋅
 

= ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

a a a a a a

a a a a a a

a a a a a a

,     (87) 

called the contravariant metric tensor. Using the identity 

( ) ( ) ( ) ( ) ( ) ( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅A B C D A C B D A D B C    (88) 

we compute the six contravariant metric numbers as follows 

( ) ( ) ( ) ( ) ( )21 1
2 3 2 3 2 2 3 3 2 3

1 1

g g
 ⋅ = × ⋅ × = ⋅ ⋅ − ⋅ a a a a a a a a a a a a  

( )2
22 33 23

1
g g g

g
= − ,      (89) 

( ) ( ) ( ) ( ) ( )22 2
3 1 3 1 3 3 1 1 3 1

1 1

g g
 ⋅ = × ⋅ × = ⋅ ⋅ − ⋅ a a a a a a a a a a a a  

( )2
33 11 31

1
g g g

g
= − ,      (90) 

( ) ( ) ( ) ( ) ( )23 3
1 2 1 2 1 1 2 2 1 2

1 1

g g
 ⋅ = × ⋅ × = ⋅ ⋅ − ⋅ a a a a a a a a a a a a  
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( )2
11 22 12

1
g g g

g
= − ,      (91) 

( ) ( ) ( ) ( ) ( ) ( )1 2
2 3 3 1 2 3 3 1 2 1 3 3

1 1

g g
 ⋅ = × ⋅ × = ⋅ ⋅ − ⋅ ⋅ a a a a a a a a a a a a a a  

( )23 31 21 33

1
g g g g

g
= − ,      (92) 

( ) ( ) ( ) ( ) ( ) ( )1 3
2 3 1 2 2 1 3 2 2 2 3 1

1 1

g g
 ⋅ = × ⋅ × = ⋅ ⋅ − ⋅ ⋅ a a a a a a a a a a a a a a  

( )21 32 22 31

1
g g g g

g
= − ,      (93) 

( ) ( ) ( ) ( ) ( ) ( )2 3
3 1 1 2 3 1 1 2 3 2 1 1

1 1

g g
 ⋅ = × ⋅ × = ⋅ ⋅ − ⋅ ⋅ a a a a a a a a a a a a a a  

( )31 12 32 11

1
g g g g

g
= − .      (94) 

Computing the determinant of the contravariant metric tensor we realize that 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1

g

⋅ ⋅ ⋅
⋅ ⋅ ⋅ =
⋅ ⋅ ⋅

a a a a a a

a a a a a a

a a a a a a

.     (95) 

Relation between the contravariant and the covariant base vectors, 
dual vectors: The non-conservative form of the gradient vector of the differen-
tiable function ϕ  

( ) ( ) ( )2 3 3 1 1 2

1

 g

ϕ ϕ ϕϕ
ξ η ζ

 ∂ ∂ ∂∇ = × + × + × ∂ ∂ ∂ 
a a a a a a   (96) 

is applied for all of the coordinates , ,ξ η ζ . Since the three coordinates are inde-

pendent of each other their derivatives with respect to each other are zero. With 
this in mind we obtain  

( ) ( ) ( ) ( )2 3 3 1 1 2 2 3

1 1

  g g

ξ ξ ξξ
ξ η ζ

 ∂ ∂ ∂∇ = × + × + × = × ∂ ∂ ∂ 
a a a a a a a a , (97) 

( ) ( ) ( ) ( )2 3 3 1 1 2 3 1

1 1

  g g

η η ηη
ξ η ζ

 ∂ ∂ ∂∇ = × + × + × = × ∂ ∂ ∂ 
a a a a a a a a , (98) 
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( ) ( ) ( ) ( )2 3 3 1 1 2 1 2

1 1

  g g

ζ ζ ζζ
ξ η ζ

 ∂ ∂ ∂∇ = × + × + × = × ∂ ∂ ∂ 
a a a a a a a a , (99) 

or simply 

( )1
2 3

1

 g
= ×a a a ,      (100) 

( )2
3 1

1

 g
= ×a a a ,      (101) 

( )3
1 2

1

 g
= ×a a a .      (102) 

The contravariant vectors are not unit vectors. This result allows us to simplify the 
expressions for the gradient, divergence, curl, Laplacian, etc. Note that with these 
results the first fundamental metric identity, 

( ) ( ) ( )2 3 3 1 1 2 0
η ξ ζ
∂ ∂ ∂× + × + × =
∂ ∂ ∂

a a a a a a ,   (103) 

can be written as 

( ) ( ) ( )1 2 3 0g g g
ξ η ζ
∂ ∂ ∂+ + =
∂ ∂ ∂

a a a .   (104) 

It is very important that the grid generated for numerical integration fulfills the 
above identity strictly. Otherwise spurious numerical errors are introduced in the 
computational results. 

 
Note the useful relations between the covariant and the contravariant vectors 

( )1
1 1 2 3

1
1

 g
⋅ = ⋅ × =a a a a a , 1

2 0⋅ =a a , 1
3 0⋅ =a a , (105-107) 

2
1 0⋅ =a a , ( )2

2 2 3 1

1
1

 g
⋅ = ⋅ × =a a a a a , 2

3 0⋅ =a a , (108-110) 

3
1 0⋅ =a a , 3

2 0⋅ =a a , ( )3
3 3 1 2

1
1

 g
⋅ = ⋅ × =a a a a a . (111-113) 

These properties distinguish the couple of vectors ia  and ia . Such vectors are 

called dual. Using these properties Eqs. (33) and (35) can be easily proved.  
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Approximating the contravariant base vectors: Consider a parallelepiped 
with finite  sizes 1 ξΔa , 2 ηΔa , and 3 ζΔa . The areas of the surfaces defined with 

constant curvilinear coordinates are 

constξ = , ( )1 1
2 3 gη ζ η ζ= × Δ Δ = Δ ΔS a a a ,  (114) 

constη = , ( )2 2
3 1 gξ ζ ξ ζ= × Δ Δ = Δ ΔS a a a ,   (115) 

constζ = , ( )3 3
1 2 gξ η ξ η= × Δ Δ = Δ ΔS a a a ,   (116) 

respectively. Solving with respect to the contravariant vectors gives 

1
1

g η ζ
=

Δ Δ
S

a ,      (117) 

2
2

g ξ ζ
=

Δ Δ
S

a ,      (118) 

3
3

g ξ η
=

Δ Δ
S

a .      (119) 

If one selects 1ξΔ = , 1ηΔ = , and 1ζΔ = , the contravariant vectors are then 

1
1

g
= S

a ,       (120) 

2
2

g
= S

a ,       (121) 

3
3

g
= S

a .       (122) 

The contravariant metric tensor is in this case 

i j
ij i jg

g

⋅= ⋅ = S S
a a .      (123) 

In a sense of the numerical construction of the computational grid the above for-
mulas can be used for computation of the contravariant vectors for equidistant gr-
ids with steps of unity in all directions in the transformed space. 

 
Relations between the inverse metrics and the metrics of the coordi-
nate transformation: Usually in practical problems the inverse metrics are 
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computed analytically or numerically and then the metrics are computed using the 
following procedure 

( )1
2 3

1 1
:

  

x y z

x y z g g

x y z

ξ ξ ξ
η η η

ζ ζ ζ

∂ ∂ ∂ ∂ ∂ ∂= + + = × =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

i j k

a i j k a a , (124) 

where the Cartesian components are  

1

 

y z z y

x g

ξ
η ζ η ζ

 ∂ ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∂ 
,     (125) 

1

 

x z z x

y g

ξ
η ζ η ζ

 ∂ ∂ ∂ ∂ ∂= − − ∂ ∂ ∂ ∂ ∂ 
,    (126) 

1

 

x y y x

z g

ξ
η ζ η ζ

 ∂ ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∂ 
.     (127) 

Similarly we have for the other vectors 

( )2
3 1

1 1
:

  

x y z

x y z g g

x y z

η η η
ζ ζ ζ

ξ ξ ξ

∂ ∂ ∂ ∂ ∂ ∂= + + = × =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

i j k

a i j k a a  (128) 

resulting in 

1

 

y z z y

x g

η
ζ ξ ζ ξ

 ∂ ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∂ 
,     (129) 

1

 

x z z x

y g

η
ζ ξ ζ ξ

 ∂ ∂ ∂ ∂ ∂= − − ∂ ∂ ∂ ∂ ∂ 
,    (130) 

1

 

x y y x

z g

η
ζ ξ ζ ξ

 ∂ ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∂ 
,     (131) 

and 
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( )3
1 2

1 1
:

  

x y z

x y z g g

x y z

ζ ζ ζ
ξ ξ ξ

η η η

∂ ∂ ∂ ∂ ∂ ∂= + + = × =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

i j k

a i j k a a  (132) 

resulting in 

1

 

y z z y

x g

ζ
ξ η ξ η

 ∂ ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∂ 
,     (133) 

1

 

x z z x

y g

ζ
ξ η ξ η

 ∂ ∂ ∂ ∂ ∂= − − ∂ ∂ ∂ ∂ ∂ 
,    (134) 

1

 

x y y x

z g

ζ
ξ η ξ η

 ∂ ∂ ∂ ∂ ∂= − ∂ ∂ ∂ ∂ ∂ 
.     (135) 

A plausibility proof of this computation is obtained by comparing the partial de-
rivatives with the components of Eq. (8).  

Restatement of the conservative derivative operations: 

In what follows the covariant differential operators in conservative form are giv-
en. 

 
 
Divergence: 

( ) ( ) ( )1 2 31
   

 
g g g

g ξ η ζ
 ∂ ∂ ∂∇ ⋅ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

F a F a F a F . (136) 

Curl:  

( ) ( ) ( )1 2 31
   

 
g g g

g ξ η ζ
 ∂ ∂ ∂∇× = × + × + × ∂ ∂ ∂ 

F a F a F a F .  (137) 

Gradient: 

( ) ( ) ( )1 2 31
   

 
g g g

g
ϕ ϕ ϕ ϕ

ξ η ζ
 ∂ ∂ ∂∇ = + + ∂ ∂ ∂ 

a a a . (138) 

From this expression the conservative expressions for the first derivatives result 
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( ) ( ) ( )11 12 131
   

 
g a g a g a

x g

ϕ ϕ ϕ ϕ
ξ η ζ

 ∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂ 
, (139) 

( ) ( ) ( )21 22 331
   

 
g a g a g a

y g

ϕ ϕ ϕ ϕ
ξ η ζ

 ∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂ 
, (140) 

( ) ( ) ( )31 32 331
   

 
g a g a g a

z g

ϕ ϕ ϕ ϕ
ξ η ζ

 ∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂ 
. (141) 

Using the first fundamental metric identity the above expressions reduce to the 
simple non-conservative form, which are also immediately obtained by the chain 
rule. If conservative integration schemes are designed the use of the conservative 
form is strongly recommended. 

 
Laplacian:  

( )2ϕ ϕ∇ = ∇ ⋅ ∇  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 3

2 1 2 3

3 1 2 3

   

1
   

 

   

g g g

g g g
g

g g g

ϕ ϕ ϕ
ξ ξ η ζ

ϕ ϕ ϕ
η ξ η ζ

ϕ ϕ ϕ
ζ ξ η ζ

   ∂ ∂ ∂ ∂ ⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂  = + ⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ + ⋅ + +   ∂ ∂ ∂ ∂     

a a a a

a a a a

a a a a

. 

    (142) 

Diffusion Laplacian: Usually the Laplacian appears in the diffusion terms of the 
conservation equations in the form  

( )λ ϕ∇ ⋅ ∇

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 2 3

2 1 2 3

3 1 2 3

   

1
   

 

   

g g g

g g g
g

g g g

λ ϕ ϕ ϕ
ξ ξ η ζ

λ ϕ ϕ ϕ
η ξ η ζ

λ ϕ ϕ ϕ
ζ ξ η ζ

   ∂ ∂ ∂ ∂ ⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂  = + ⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ + ⋅ + +   ∂ ∂ ∂ ∂     

a a a a

a a a a

a a a a

, 
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  (143) 

where λ  is a scalar-valued function of the local flow parameters. 

Restatement of the non-conservative derivative operations: 

 
In what follows the covariant differential operators in non-conservative form are 
given. 

Divergence: 1 2 3

ξ η ζ
∂ ∂ ∂∇ ⋅ = ⋅ + ⋅ + ⋅
∂ ∂ ∂
F F F

F a a a .   (144) 

Curl: 1 2 3

ξ η ζ
∂ ∂ ∂∇× = × + × + ×
∂ ∂ ∂
F F F

F a a a .    (145) 

Gradient: 1 2 3ϕ ϕ ϕϕ
ξ η ζ
∂ ∂ ∂∇ = + +
∂ ∂ ∂

a a a .    (146) 

From this expression the non-conservative expressions for the first derivatives re-
sult 

11 21 31a a a
x

ϕ ϕ ϕ ϕ
ξ η ζ

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

,     (147) 

12 22 32a a a
y

ϕ ϕ ϕ ϕ
ξ η ζ

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

,    (148) 

13 23 33a a a
z

ϕ ϕ ϕ ϕ
ξ η ζ

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

,    (149) 

with the second superscript indicating the Cartesian components of the contrava-
riant vectors. 

 
Laplacian: 
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( )2ϕ ϕ∇ = ∇ ⋅ ∇

1 1 2 3

2 1 2 3

3 1 2 3

 

1
 

 

 

g

g
g

g

ϕ ϕ ϕ
ξ ξ η ζ

ϕ ϕ ϕ
η ξ η ζ

ϕ ϕ ϕ
ζ ξ η ζ

   ∂ ∂ ∂ ∂⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ = + ⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂+ ⋅ + +   ∂ ∂ ∂ ∂     

a a a a

a a a a

a a a a

 

11 12 13

21 22 23

31 32 33

 

1
 

 

 

g g g g

g g g g
g

g g g g

ϕ ϕ ϕ
ξ ξ η ζ

ϕ ϕ ϕ
η ξ η ζ

ϕ ϕ ϕ
ζ ξ η ζ

   ∂ ∂ ∂ ∂+ +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂     

.    (150) 

Diffusion Laplacian: 

( )λ ϕ∇ ⋅ ∇

1 1 2 3

2 1 2 3

3 1 2 3

 

1
 

 

 

g

g
g

g

ϕ ϕ ϕλ
ξ ξ η ζ

ϕ ϕ ϕλ
η ξ η ζ

ϕ ϕ ϕλ
ζ ξ η ζ

   ∂ ∂ ∂ ∂⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ = + ⋅ + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂+ ⋅ + +   ∂ ∂ ∂ ∂     

a a a a

a a a a

a a a a
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11 12 13

21 22 33

31 32 33

 

1
 

 

 

g g g g

g g g g
g

g g g g

ϕ ϕ ϕλ
ξ ξ η ζ

ϕ ϕ ϕλ
η ξ η ζ

ϕ ϕ ϕλ
ζ ξ η ζ

   ∂ ∂ ∂ ∂+ +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂    
 
 
   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂     

.  (151) 

Divergence of a tensor: Consider the dyadic product of the vector V, VV, which is 
a second order tensor. The divergence of this tensor is then 

( ) ( ) ( ) ( )u v w     ∇⋅ = ∇ ⋅ + ∇ ⋅ + ∇ ⋅     VV V i V j V k .  (152) 

In this case the already derived expressions for divergence of vectors can be used. 
Another example of the divergence of a tensor is the expression 

( )T
x y z

η η η η
     ∂ ∂ ∂   ∇ ⋅ ∇ = ∇ ⋅ + ∇ ⋅ + ∇ ⋅        ∂ ∂ ∂        

V V V
V i j k . (153) 

Also in this case the already derived expressions for divergence of vectors can be used. 
 

Diffusion Laplacian of a tensor: Usually the diffusion Laplacian of a tensor ap-
pears in the diffusion terms of the momentum conservation equations in the form 

( )η∇ ⋅ ∇V  

which is equivalent to 

( ) ( ) ( ) ( )u v wη η η η     ∇⋅ ∇ = ∇ ⋅ ∇ + ∇⋅ ∇ + ∇ ⋅ ∇     V i j k .  (154) 

In this case the already derived expressions for each component are used. 

Derivatives along the normal to the curvilinear coordinate surface: If 
( ), ,ϕ ξ η ζ  is a scalar-valued function of the main variables , ,ξ η ζ , through the 

three intermediate variables , ,x y z , then the derivatives along the normal to the 

curvilinear coordinate surface are 

constξ = , 
1

1
* 1

ϕ ϕ ϕ
ξ
∂ = ⋅∇ = ⋅∇
∂

a
e

a
,    (155) 
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constη = , 
2

2
* 2

ϕ ϕ ϕ
η
∂ = ⋅∇ = ⋅∇
∂

a
e

a
,    (156) 

constζ = , 
3

3
* 3

ϕ ϕ ϕ
ζ
∂ = ⋅∇ = ⋅∇
∂

a
e

a
.    (157) 

Derivatives along the tangent of the curvilinear coordinate lines: If 

( ), ,ϕ ξ η ζ  is a scalar-valued function of the main variables , ,ξ η ζ , through the 

three intermediate variables , ,x y z , then 

x y z x y z

x y z x y z

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ξ ξ ξ ξ ξ ξ ξ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
i j k i j k  

( ) 1ϕ ϕ
ξ
∂= ∇ ⋅ = ⋅∇
∂

r
a ,      (158) 

x y z x y z

x y z x y z

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
η η η η η η η

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
i j k i j k  

( ) 2ϕ ϕ
η
∂= ∇ ⋅ = ⋅∇
∂

r
a ,      (159) 

x y z x y z

x y z x y z

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ζ ζ ζ ζ ζ ζ ζ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
i j k i j k  

( ) 3ϕ ϕ
ζ
∂= ∇ ⋅ = ⋅∇
∂

r
a .      (160) 

These are the three directional derivatives of ( ), ,x y zϕ  along , ,ξ η ζ , respective-

ly. Another quick check is obtained by replacing the non-conservative form of the 
gradient in the transformed coordinate systems and using the dual properties of the 
co- and contravariant vectors. 

 
Derivatives along the normal to the coordinate lines and tangent to 
the curvilinear coordinate surface: The vector i

i×a a  is normal to the coor-

dinate line on which iξ  varies and is also tangent to the coordinate surface on 

which iξ  is constant. Using the relations between the covariant and the contrava-
riant vectors and the vector identity 

( ) ( ) ( ) × × = − ⋅ − ⋅ B C A A C B A B C     (161) 

we have 
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( ) ( ) ( )1
1 2 3 1 1 3 2 1 2 3

1 1

  g g
 × = × × = − ⋅ − ⋅ a a a a a a a a a a a  

( )13 2 12 3

1

 
g g

g
= − −a a ,     (162) 

( ) ( ) ( )2
2 3 1 2 2 1 3 2 3 1

1 1

  g g
 × = × × = − ⋅ − ⋅ a a a a a a a a a a a  

( )21 3 23 1

1

 
g g

g
= − −a a ,     (163) 

( ) ( ) ( )3
3 1 2 3 3 2 1 3 1 2

1 1

  g g
 × = × × = − ⋅ − ⋅ a a a a a a a a a a a  

( )32 1 31 2

1

 
g g

g
= − −a a .     (164) 

The magnitude is then 

( )21 2 2
1 13 22 12 13 32 12 33

1
2g g g g g g g

g
× = − +a a  

( ) ( )13 13 22 12 32 12 13 32 12 33

1
g g g g g g g g g g

g
 = − − −  ,   (165) 

( )22 2 2
2 21 33 21 23 31 23 11

1
2g g g g g g g

g
× = − +a a  

( ) ( )21 21 33 23 31 23 21 31 23 11

1
g g g g g g g g g g

g
 = − − −  ,   (166) 

( )23 2 2
3 32 11 31 21 32 31 22

1
2g g g g g g g

g
× = − +a a  

( ) ( )32 32 11 31 21 31 21 32 31 22

1
g g g g g g g g g g

g
 = − − −  .   (167) 

Comparing with 

( ) ( ) ( )2
11 22 33 23 12 21 33 23 31 13 21 32 22 31g g g g g g g g g g g g g g g= − − − + −  (168) 

results in computationally cheaper expressions 

( )21 2
1 11 22 33 23

1
1g g g g

g
× = − −a a ,    (169) 

( )22 2
2 22 11 33 31

1
1g g g g

g
× = − −a a ,    (170) 
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( )23 2
3 33 11 22 21

1
1g g g g

g
× = − −a a .    (171) 

With this result the derivatives normal to the coordinate line on which iξ  varies 

and are also tangent to the coordinate surface on which iξ  is constant are 

( )
( )

1
1

13 2 12 31 2
1 11 22 33 23

1
g g

g g g g g
ϕ ϕ× ⋅∇ = − − ⋅∇

× − −

a a
a a

a a
, (172) 

( )
( )

2
2

21 3 23 12 2
2 22 11 33 31

1
g g

g g g g g
ϕ ϕ× ⋅∇ = − − ⋅∇

× − −

a a
a a

a a
, (173) 

( )
( )

3
3

32 1 31 23 2
3 33 11 22 21

1
g g

g g g g g
ϕ ϕ×

⋅∇ = − − ⋅∇
× − −

a a
a a

a a
. (174) 

Replacing the non-conservative form of the gradient in the transformed coordinate 
systems and using the dual properties of the co- and contravariant vectors results 
in 

( )
13 121

1

1 2
1 11 22 33 23

g g

g g g g g

ϕ ϕ
η ζϕ

∂ ∂−
× ∂ ∂⋅∇ = −
× − −

a a

a a
,    (175) 

( )
23 212

2

2 2
2 22 11 33 31

g g

g g g g g

ϕ ϕ
ξ ζϕ

∂ ∂−
× ∂ ∂⋅∇ = −
× − −

a a

a a
,   (176) 

( )
32 313

3

3 2
3 33 11 22 21

g g

g g g g g

ϕ ϕ
ξ ηϕ

∂ ∂−
× ∂ ∂⋅∇ = −
× − −

a a

a a
.    (177) 

Moving coordinate system: Consider a coordinate transformation defined by 

( ), ,x f ξ η ζ= ,      (178) 

( ), ,y g ξ η ζ= ,      (179) 

( ), ,z h ξ η ζ= ,      (180) 

which moves with time in space. The velocity 
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, , , , , ,
cs

x y z

η ξ ζ η ξ ζ η ξ ζτ τ τ
∂ ∂ ∂     = + +     ∂ ∂ ∂     

V i j k ,   (181) 

is the grid point velocity. Note an interesting property of the time derivative of the 
covariant unit vectors 

1 cs

τ τ ξ ξ τ ξ
  ∂∂ ∂ ∂ ∂ ∂ = = =   ∂ ∂ ∂ ∂ ∂ ∂  

Va r r
,    (182) 

2 cs

τ τ η η τ η
  ∂∂ ∂ ∂ ∂ ∂ = = =   ∂ ∂ ∂ ∂ ∂ ∂  

Va r r
,    (183) 

3 cs

τ τ ζ ζ τ ζ
 ∂ ∂∂ ∂ ∂ ∂ = = =   ∂ ∂ ∂ ∂ ∂ ∂  

a Vr r
.    (184) 

If ( ), , ,f f x y zτ=  is a function of time and space using the chain rule we obtain 

, ,x y z

df f

dτ τ
∂ =  ∂ 

 

, , , , , , , , , ,, ,t y z t x yt x z

f f f dx dy dz

x y z d d dξ η ζ ξ η ζ ξ η ζτ τ τ
    ∂ ∂ ∂         + + + ⋅ + +             ∂ ∂ ∂                

i j k i j k . 

 (185) 

Comparing the second part of the right hand side of the above equation with the 
definition of the gradient and of the grid point velocity we see that 

( )
, , , ,

cs

x y z

df f
f

d ξ η ζτ τ
∂   = + ∇ ⋅   ∂   

V ,    (186) 

the absolute change with the time of a function f  is the velocity with the respect to 
the stationary coordinate system xyz plus a component resulting from the move-
ment of the coordinate system , ,ξ η ζ . Therefore 

, , , ,
cs

x y z

f f
f

ξ η ζτ τ
∂ ∂   = − ⋅∇   ∂ ∂   

V .    (187) 

Here the time derivative ( )
, ,

df dt ξ η ζ
 is understood to be at a fixed point in the 

transformed region. In a moving coordinate system the orientation of the unit co-
variant vectors will change. That is the elementary parallelepiped volume built by 
these vectors, the Jacobian, changes also. The derivative of the Jacobian of the 
coordinate transformation with time can be visualized by doting the change of the 
normal component to the covariant vector with the corresponding elementary 
coordinate surfaces formed by the other two vectors 
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( ) ( ) ( )31 2
2 3 3 1 1 2

, ,

d g dd d

d d d d
ξ η ζ

τ τ τ τ
 

= ⋅ × + ⋅ × + ⋅ ×  
 

aa a
a a a a a a  (188) 

or 

1 2 331 2d g dd d
g

d d d dτ τ τ τ
 = ⋅ + ⋅ + ⋅ 
 

aa a
a a a ,   (189) 

see Thompson, Warsi and Mastin (1985) p.130. Having in mind that 

1 cs

τ ξ
∂∂ =

∂ ∂
Va

,       (190) 

2 cs

τ η
∂∂ =

∂ ∂
Va

,       (191) 

3 cs

τ ζ
∂ ∂

=
∂ ∂
a V

,       (192) 

results in 

1 2 3cs cs csd g
g

dτ ξ η ζ
 ∂ ∂ ∂

= ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

V V V
a a a .   (193) 

Note some very interesting properties of the following expression 

( ) ( ) ( )1 2 3   cs cs csg f g f g f
ξ η ζ
∂ ∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂

a V a V a V  

1 2 3 cs cs csf g
ξ η ζ

 ∂ ∂ ∂= ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

V V V
a a a  

( ) ( ) ( )1 2 3   csg f g f g f
ξ η ζ

 ∂ ∂ ∂+ + + ⋅ ∂ ∂ ∂ 
a a a V  

( ) ( ) ( )1 2 3   cs

d g
f g f g f g f

dτ ξ η ζ
 ∂ ∂ ∂= + + + ⋅ ∂ ∂ ∂ 

a a a V  (194) 

Transformed fluid properties conservation equation: Consider 

( ), , ,f f x y zτ=  being a function of time and space which is a controlled by the 

following conservation equation 

( ) ( )
, ,x y z

f
f fλ μ

τ
∂  +∇ ⋅ −∇⋅ ∇ = ∂ 

V .    (195) 
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The convection-diffusion problem described by this equation is called isotropic. 
Using the expression for the time derivative, the conservative form of the diver-
gence of a vector and gradient of a scalar in the transformed space, we obtain 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 2 3

2 2 1 2 3

    

    

cs

cs

f g

f g g f g f g f

f g g f g f g f

τ

λ
ξ ξ η ζ

λ
η ξ η ζ

∂
∂

  ∂ ∂ ∂ ∂+ ⋅ − − ⋅ + +   ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂+ ⋅ − − ⋅ + +   ∂ ∂ ∂ ∂  

a V V a a a a

a V V a a a a

 

( ) ( ) ( ) ( )3 3 1 2 3    csf g g f g f g fλ
ζ ξ η ζ
  ∂ ∂ ∂ ∂+ ⋅ − − ⋅ + +   ∂ ∂ ∂ ∂  

a V V a a a a

 g μ= .       (196) 

Using the non-conservative form of the Diffusion Laplacian results in a simpler 
form which is still conservative with respect to the spatial derivatives in the trans-
formed coordinate system 

( )

( )

( )

1 1 1 1 2 1 3

2 2 1 2 2 2 3

 

 

cs

cs

f g

f f f
g f

f f f
g f

τ

λ
ξ ξ η ζ

λ
η ξ η ζ

∂
∂

   ∂ ∂ ∂ ∂ + ⋅ − − ⋅ + ⋅ + ⋅   ∂ ∂ ∂ ∂     

   ∂ ∂ ∂ ∂ + ⋅ − − ⋅ + ⋅ + ⋅   ∂ ∂ ∂ ∂     

a V V a a a a a a

a V V a a a a a a

 

( )3 3 1 3 2 3 3  cs

f f f
g f gλ μ

ζ ξ η ζ
   ∂ ∂ ∂ ∂ + ⋅ − − ⋅ + ⋅ + ⋅ =   ∂ ∂ ∂ ∂     

a V V a a a a a a . 

   (197) 

The equation can be rewritten in more compact form using the relative contrava-
riant velocity components in the transformed space defined as follows 



Appendix 2 Basics of the coordinate transformation theory      751    

( )
( )
( )

1 1

2 2

3 3

cs

cs

cs

V

V

V

  ⋅ −
  

= ⋅ − =   
  ⋅ −   

a V V

V a V V

a V V

     (198) 

and the terms of the inverse metrics matrices 

( )

1 11 12 13

2 21 22 23

 

 

f g

f f f
g fV g g g

f f f
g fV g g g

τ

λ
ξ ξ η ζ

λ
η ξ η ζ

∂
∂

   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂     

   ∂ ∂ ∂ ∂ + − + +   ∂ ∂ ∂ ∂     

 

 

3 31 32 33  
f f f

g fV g g g gλ μ
ζ ξ η ζ
   ∂ ∂ ∂ ∂ + − + + =   ∂ ∂ ∂ ∂     

. (199) 

We see a remarkable property of this equation. In the transformed coordinate sys-

tem the property f g  having convection-diffusion flux i-components  

( ) 1 2 3ˆ  i i i i i
cs

f f f
I g f g g gλ

ξ η ζ
  ∂ ∂ ∂= ⋅ − − + +  ∂ ∂ ∂   

a V V    (200) 

is conserved. The convective component can be visualized as 

( ) ( ) ,   i i i i n i
cs csg f g f g f V⋅ − = ⋅ − =a V V a e V V a . (201) 

Here  

( ),n i i
csV = ⋅ −e V V       (202) 

is the relative velocity component normal to the surface defined by i constξ = . 
Remember Eqs. (117-119) giving 

i
i

j k
g

d dξ ξ
= S

a ,       (203) 

or 
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i

i
j k

g
d dξ ξ

=
S

a .       (204) 

For equidistant discretization in the computational space we have 

i i ig S= =a S .      (205) 

Therefore the convective flux can be presented in several ways 

( ) ( ) ( ),   i i i i n i i i
cs cs csg f g f S V f g V f f⋅ − = ⋅ − = = = ⋅ −a V V a e V V S V V . 

   (206) 

With this the conservation equation can be rewritten in terms of the normal veloci-
ty components 

( )

1 ,1 11 12 13

2 ,2 21 22 23

 

 

n

n

f g

f f f
S V f g g g g

f f f
S V f g g g g

τ

λ
ξ ξ η ζ

λ
η ξ η ζ

∂
∂

  ∂ ∂ ∂ ∂+ − + +  ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂+ − + +  ∂ ∂ ∂ ∂   

 

 

3 ,3 31 32 33  n f f f
S V f g g g g gλ μ

ζ ξ η ζ
  ∂ ∂ ∂ ∂+ − + + =  ∂ ∂ ∂ ∂   

. (207) 

The convection-diffusion problem in the transformed space is called anisotropic. 
Thus, the isotropic convection-diffusion problem in the physical space turns out to 
be anisotropic in the transformed space.  

Note that it is computationally more effective to store ijg g  instead of ijg  if  

g  does not change with the time. 

 
For an orthogonal transformed system the equation simplifies much more 

( ) 1 11 2 22  
f f

f g g fV g g fV gλ λ
τ ξ ξ η η

      ∂ ∂ ∂ ∂ ∂+ − + −      ∂ ∂ ∂ ∂ ∂      
 

3 33  
f

g fV g gλ μ
ζ ζ
  ∂ ∂+ − =  ∂ ∂  

.    (208) 
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The convection-diffusion problem in an orthogonal transformed system is called 
orthotropic. 

 
Time dependent grid metric identity (second fundamental metric identity): 
Consider a conservation equation in the transformed space for f = const, and V = 
const without diffusion and mass sources 

( ) ( ) ( )1 2 3   cs cs cs

g
g g g

τ ξ η ζ
∂ ∂ ∂ ∂− ⋅ − ⋅ − ⋅
∂ ∂ ∂ ∂

a V a V a V  

( ) ( ) ( )1 2 3   g g g
ξ η ζ

 ∂ ∂ ∂= − ⋅ − − ∂ ∂ ∂ 
V a a a .  (209) 

Using the first fundamental metric identity Thompson et al. (1985), p.159, ob-
tained 

( ) ( ) ( )1 2 3   0cs cs cs

g
g g g

τ ξ η ζ
∂ ∂ ∂ ∂− ⋅ − ⋅ − ⋅ =
∂ ∂ ∂ ∂

a V a V a V . (210) 

This is an important identity for the numerical analysis called sometimes the 
second fundamental metric identity. As pointed out by Thompson et al. (1985) this 
identity should be used to numerically determine updated values of the Jacobian, 

g , instead of updating it directly from the new values of the Cartesian coordi-

nates. In the later case spurious source terms will appear Thompson et al. (1985). 
 

Transformed total time derivative of a scalar: The total derivative of a sca-
lar ϕ  traveling in the Cartesian coordinate system with velocity V is defined with 

 
d

d

ϕ ∂ϕ ϕ
τ ∂τ
= + ⋅∇V .      (211) 

Using the already derived relations we obtain 

, ,
l

x y z

d

d

ϕ ∂ϕ ϕ
τ ∂τ

 = + ⋅∇ 
 

V  

( ) ( ) ( )1 2 3

, ,
l cs l cs l cs

ξ η ζ

∂ϕ ϕ ϕ ϕ
∂τ ξ η ζ

∂ ∂ ∂ = + ⋅ − + ⋅ − + ⋅ −  ∂ ∂ ∂ 
a V V a V V a V V  

1 2 3

, ,
l l lV V V

ξ η ζ

∂ϕ ϕ ϕ ϕ
∂τ ξ η ζ

∂ ∂ ∂ = + + +  ∂ ∂ ∂ 
.    (212) 
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Examples of some frequently used curvilinear coordinate 
transformations:  

Next we apply the derivations from this Appendix to two well-known coordinate 
systems – the cylindrical and the spherical. If the derived formulas are applied cor-
rectly the well-known expressions will finally arise for the differential operators. It 
is recommended to go through these examples in order to understand better the 
transformation theory. 

 
Cylindrical coordinates: The transformation is defined analytically by  

cosx ξ η= ,   2 2x yξ = + + ,    (213,214) 

siny ξ η= ,   ( )arctan y xη = ,   (215,216) 

z ζ= ,  zζ = .      (217,218) 

Here ξ  is the radial coordinate, η  is the azimuthal coordinate and the axial coor-

dinate ζ  is equivalent with z. An equidistant transformation in the computational 

space is defined by 

( ) ( ) max min
min max min

max max

, cosi
i j jx r r r

i j

ξ θ θξ η η
   −= + −   
   

, 

( ) ( ) max min
min max min

max max

, sini
i j jy r r r

i j

ξ θ θξ η η
   −= + −   
   

, 

( ) max min

max
k k

z z
z

k
ζ ζ−

= , 

where 

max0,1,2,...,i iξ = ,   max0,1,2,...,j jη = ,   max0,1, 2,...,k kζ = . 

The inverse metrics of the coordinate transformation are then 

cos sin 0

sin cos 0

0 0 1

x x x

y y y

z z z

ξ η ζ η ξ η
η ξ η

ξ η ζ

ξ η ζ

 ∂ ∂ ∂
 ∂ ∂ ∂  − 
 ∂ ∂ ∂  =   ∂ ∂ ∂   

  ∂ ∂ ∂
  ∂ ∂ ∂ 

.   (219) 
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The Jacobian is then 

x y z y z x y z y z x y z y z
g

ξ η ζ ζ η η ξ ζ ζ ξ ζ ξ η η ξ
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − − − + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

ξ= .        (220) 

The metrics of the coordinate transformation are 

x y z

x y z

x y z

ξ ξ ξ

η η η

ζ ζ ζ

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂ = ∂ ∂ ∂ 
 ∂ ∂ ∂
  ∂ ∂ ∂ 

1

y z y z x z x z x y x y

y z y z x z x z x y x y

g

y z y z x z x z x y x y

η ζ ζ η ζ η η ζ η ζ ζ η

ζ ξ ξ ζ ξ ζ ζ ξ ζ ξ ξ ζ

ξ η η ξ η ξ ξ η ξ η η ξ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

cos sin 0

1 1
sin cos 0

0 0 1

η η

η η
ξ ξ

 
 
 = −
 
  
 

.     (221) 

The components of the three covariant base vectors of the curvilinear coordinate 
system are the columns of the matrix of the inverse metrics. They are given below 
together with the corresponding covariant unit vectors. 

1 cos sin
x y z η η
ξ ξ ξ
∂ ∂ ∂= + + = +
∂ ∂ ∂

a i j k i j       1 1=a        1 cos sinη η= +e i j , 

2 sin cos
x y z ξ η ξ η
η η η
∂ ∂ ∂= + + = − +
∂ ∂ ∂

a i j k i j    2 ξ=a     2 sin cosη η= − +e i j  

3

x y z

ζ ζ ζ
∂ ∂ ∂= + + =
∂ ∂ ∂

a i j k k                     3 1=a      3 =e k    

(222-230) 

The components of the three contravariant base vectors of the curvilinear coordi-
nate system are the rows of the matrix of the metrics. They are given below to-
gether with the corresponding contravariant unit vectors. 

1 cos sin
x y z

ξ ξ ξ η η∂ ∂ ∂= + + = +
∂ ∂ ∂

a i j k i j       1 1=a        1 cos sinη η= +e i j  

2 1 1
sin cos

x y z

η η η η η
ξ ξ

∂ ∂ ∂= + + = − +
∂ ∂ ∂

a i j k i j   2 1

ξ
=a    2 sin cosη η= − +e i j  

3

x y z

ζ ζ ζ∂ ∂ ∂= + + =
∂ ∂ ∂

a i j k k         3 1=a      3 =e k  
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   (231-239) 

We see that a) the two types of base vectors are parallel and that b) three base vec-
tors on each type are mutually perpendicular which means that the cylindrical 
coordinate system is orthogonal. 

 
The gradient of the vector is then 

( ) ( ) ( )1 2 31
   

 
g g g

g ξ η ζ
 ∂ ∂ ∂∇ ⋅ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

F a F a F a F , 

( ) ( ) ( )1 1 2 2 1 31
   

 
g g g

g ξ η ζ
 ∂ ∂ ∂= ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

a e F a e F a e F , 

( ) ( ) ( )1 1
F F Fξ η ζξ

ξ ξ ξ η ζ
∂ ∂ ∂= + +
∂ ∂ ∂

,    (240) 

where 1Fξ = ⋅e F , 2Fη = ⋅e F , 3Fζ = ⋅e F  are the components of F normal to the 

coordinate surfaces defined by constξ = , constη = , constζ = , respectively. 

This is the expected form for cylindrical coordinates – compare for instance Bird, 
Stewart and Lightfood (1960), p. 739B. 

 
The covariant metric tensor is 

1 1 1 2 1 3
2

2 1 2 2 2 3

3 1 3 2 3 3

1 0 0

0 0

0 0 1
ijg ξ

⋅ ⋅ ⋅   
   = ⋅ ⋅ ⋅ =   
   ⋅ ⋅ ⋅   

a a a a a a

a a a a a a

a a a a a a

,   (241) 

which is a symmetric tensor. The angles between the covariant unit vectors are  

12
12

11 22

arccos
2

g

g g

πθ
 
 = =
 
 

,     (242) 

13
13

11 33

arccos
2

g

g g

πθ
 
 = =
 
 

,     (243) 

23
23

22 33

arccos
2

g

g g

πθ
 
 = =
 
 

.     (244) 

The magnitude of the increment of the surface area is 

constξ = , 1 2
22 33 23dS g g g d d d dη ζ ξ η ζ= − = ,  (245) 
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constη = , 2 2
11 33 13dS g g g d d d dξ ζ ξ ζ= − = ,  (246) 

constζ = , 3 2
11 22 12dS g g g d d d dξ η ξ ξ η= − = .  (247) 

The volume increment is then 

 dV g d d d d d dξ η ζ ξ ξ η ζ= = .    (248) 

The elements of the contravariant metric tensor are 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ijg

 ⋅ ⋅ ⋅
 

= ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

a a a a a a

a a a a a a

a a a a a a

 

2
22 33 23 21 33 23 31 21 32 22 31

2
21 33 23 31 11 33 13 11 32 12 31

2
21 32 22 31 11 32 12 31 11 22 12

1
g g g g g g g g g g g

g g g g g g g g g g g
g

g g g g g g g g g g g

 − − −
 

= − − − 
 − − − 

2

1 0 0

1
0 0

0 0 1

ξ

 
 
 =  
  
 

. 

 (249) 

With this result we can compute the Diffusion Laplacian of a scalar for the ortho-
gonal system 

( )λ ϕ∇ ⋅ ∇  

11 22 331
   

 
g g g g g g

g

ϕ ϕ ϕλ λ λ
ξ ξ η η ζ ζ

      ∂ ∂ ∂ ∂ ∂ ∂= + +      ∂ ∂ ∂ ∂ ∂ ∂       
 

1 1 1ϕ ϕ ϕξλ λ λ
ξ ξ ξ ξ η ξ η ζ ζ

     ∂ ∂ ∂ ∂ ∂ ∂= + +     ∂ ∂ ∂ ∂ ∂ ∂     
.   (250) 

This is the well-known form in cylindrical coordinates – compare for instance 
with Bird, Stewart and Lightfood (1960), p. 739B 

 
Spherical coordinates:  

sin cosx ξ η ζ= ,   2 2 2x y zξ = + + + ,  (251,252) 

sin siny ξ η ζ= ,   
2 2

arctan
x y

x
z

+
= ,  (253,254) 

cosz ξ η= ,   ( )arctan y xζ = .   (255,256) 

Here ξ  is the radial coordinate, η  is the azimuthal coordinate and ζ  is the polar 

coordinate. An equidistant transformation in the computational space is defined by 
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( ) ( ) max min max min
min max min

max max max

, sin cosi
i j j jx r r r

i j k

ξ θ θ ϕ ϕξ η η ζ
     − −= + −     
     

, 

    (257) 

( ) ( ) max min max min
min max min

max max max

, sin sini
i j j jy r r r

i j k

ξ θ θ ϕ ϕξ η η ζ
     − −= + −     
     

, 

    (258) 

( ) ( ) max min
min max min

max max

, cosi
i j jz r r r

i j

ξ θ θξ η η
   −= + −   
   

, 

      (259) 

where 

max0,1,2,...,i iξ = ,   max0,1,2,...,j jη = ,   max0,1, 2,...,k kζ = . 

The inverse metrics of the coordinate transformation are then 

sin cos cos cos sin sin

sin sin cos sin sin cos

cos sin 0

x x x

y y y

z z z

ξ η ζ η ζ ξ η ζ ξ η ζ
η ζ ξ η ζ ξ η ζ

ξ η ζ
η ξ η

ξ η ζ

 ∂ ∂ ∂
 ∂ ∂ ∂  − 
 ∂ ∂ ∂  =   ∂ ∂ ∂   −  ∂ ∂ ∂
  ∂ ∂ ∂ 

. (260) 

The Jacobian is then 

x y z y z x y z y z x y z y z
g

ξ η ζ ζ η η ξ ζ ζ ξ ζ ξ η η ξ
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − − − + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

2 sinξ η= .       (261) 

The metrics of the coordinate transformation are 
 

x y z

x y z

x y z

ξ ξ ξ

η η η

ζ ζ ζ

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂ = ∂ ∂ ∂ 
 ∂ ∂ ∂
  ∂ ∂ ∂ 

1

y z y z x z x z x y x y

y z y z x z x z x y x y

g

y z y z x z x z x y x y

η ζ ζ η ζ η η ζ η ζ ζ η

ζ ξ ξ ζ ξ ζ ζ ξ ζ ξ ξ ζ

ξ η η ξ η ξ ξ η ξ η η ξ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
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sin cos sin sin cos

1 1 1
cos cos sin cos sin

1 sin 1 cos
0

sin sin

η ζ η ζ η

ζ η ζ η η
ξ ξ ξ

ζ ζ
ξ η ξ η

 
 
 
 

= − 
 
 

−  
 

.   (262) 

The components of the three covariant base vectors of the curvilinear coordinate 
system are the columns of the matrix of the inverse metrics. They are given below 
together with the corresponding covariant unit vectors. 

1 sin cos sin sin cos
x y z η ζ η ζ η
ξ ξ ξ
∂ ∂ ∂= + + = + +
∂ ∂ ∂

a i j k i j k , 1 1=a ,  

1 sin cos sin sin cosη ζ η ζ η= + +e i j k ,    (263-265) 

2 cos cos cos sin sin
x y z ξ η ζ ξ η ζ ξ η
η η η
∂ ∂ ∂= + + = + −
∂ ∂ ∂

a i j k i j k , 2 ξ=a ,  

2 cos cos cos sin sinη ζ η ζ η= + −e i j k ,    (266-268) 

3 sin sin sin cos
x y z ξ η ζ ξ η ζ
ζ ζ ζ
∂ ∂ ∂= + + = − +
∂ ∂ ∂

a i j k i j , 3 sinξ η=a , 

3 sin cosζ ζ= − +e i j .      (269-271) 

The components of the three contravariant base vectors of the curvilinear coordi-
nate system are the rows of the matrix of the metrics. They are given below to-
gether with the corresponding contravariant unit vectors. 

1 sin cos sin sin cos
x y z

ξ ξ ξ η ζ η ζ η∂ ∂ ∂= + + = + +
∂ ∂ ∂

a i j k i j k , 1 1=a , 

1 sin cos sin sin cosη ζ η ζ η= + +e i j k ,    (272-274) 

2 1 1 1
cos cos sin cos sin

x y z

η η η ζ η ζ η η
ξ ξ ξ

∂ ∂ ∂= + + = + −
∂ ∂ ∂

a i j k i j k , 2 1

ξ
=a , 

2 cos cos sin cos sinζ η ζ η η= + −e i j k ,    (275-277) 

3 1 sin 1 cos

sin sinx y z

ζ ζ ζ ζ ζ
ξ η ξ η

∂ ∂ ∂= + + = − +
∂ ∂ ∂

a i j k i j ,  3 1

sinξ η
=a , 

3 sin cosζ ζ= − +e i j .      (278-280) 

We see that a) the two types of base vectors are parallel and that b) three base vec-
tors of each type are mutually perpendicular which means that the cylindrical 
coordinate system is orthogonal. 
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( ) ( ) ( )1 1 2 2 1 31
   

 
g g g

g ξ η ζ
 ∂ ∂ ∂∇ ⋅ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ 

F a e F a e F a e F  

( ) ( ) ( )2
2

1
sin sin

sin
F F Fξ η ζξ η ξ η ξ

ξ η ζξ η
 ∂ ∂ ∂= + + ∂ ∂ ∂ 

.  (281) 

This is the expected form for spherical coordinates – compare for instance with 
Bird, Stewart and Lightfood (1960), p. 739C. 

 
The covariant metric tensor is 

1 1 1 2 1 3
2

2 1 2 2 2 3
2 2

3 1 3 2 3 3

1 0 0

0 0

0 0 sin
ijg ξ

ξ η

⋅ ⋅ ⋅   
   = ⋅ ⋅ ⋅ =   
   ⋅ ⋅ ⋅   

a a a a a a

a a a a a a

a a a a a a

,  (282) 

which is a symmetric tensor. The angles between the covariant unit vectors are  

12
12

11 22

arccos
2

g

g g

πθ
 
 = =
 
 

,     (283) 

13
13

11 33

arccos
2

g

g g

πθ
 
 = =
 
 

,     (284) 

23
23

22 33

arccos
2

g

g g

πθ
 
 = =
 
 

.     (285) 

The magnitude of the increment of the surface area is 

constξ = , 1 2 2
22 33 23 sindS g g g d d d dη ζ ξ η η ζ= − = ,  (286) 

constη = , 2 2
11 33 13 sindS g g g d d d dξ ζ ξ η ξ ζ= − = ,  (287) 

constζ = , 3 2
11 22 12dS g g g d d d dξ η ξ ξ η= − = .  (288) 

The volume increment is then 

2 sindV g d d d d d dξ η ζ ξ η ξ η ζ= = .    (289) 

The elements of the contravariant metric tensor are 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ijg

 ⋅ ⋅ ⋅
 

= ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

a a a a a a

a a a a a a

a a a a a a
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2
22 33 23 21 33 23 31 21 32 22 31

2
21 33 23 31 11 33 13 11 32 12 31

2
21 32 22 31 11 32 12 31 11 22 12

1
g g g g g g g g g g g

g g g g g g g g g g g
g

g g g g g g g g g g g

 − − −
 

= − − − 
 − − − 

2

2 2

1 0 0

1
0 0

1
0 0

sin

ξ

ξ η

 
 
 
 

=  
 
 
  
 

.

        (290) 

With this result we can compute the Diffusion Laplacian of a scalar for the ortho-
gonal system 

( )λ ϕ∇ ⋅ ∇  

11 22 331
   

 
g g g g g g

g

ϕ ϕ ϕλ λ λ
ξ ξ η η ζ ζ

      ∂ ∂ ∂ ∂ ∂ ∂= + +      ∂ ∂ ∂ ∂ ∂ ∂       
 

2
2 2 2 2

1 1 1
sin

sin sin

ϕ ϕ ϕξ λ ηλ λ
ξ ξ η η ζ ζξ ξ η ξ η
     ∂ ∂ ∂ ∂ ∂ ∂= + +     ∂ ∂ ∂ ∂ ∂ ∂     

. 

    (291) 

This is the well-known form in spherical coordinates – compare for instance with 
Bird, Stewart and Lightfood (1960), p. 739C. 
 
Elliptic grid generation systems: The most popular grid generating system 
makes use of the Laplace equation. The solution of the Laplace equations (har-
monic functions) obeys minimum and maximum values only at the boundary 
(maximum principle) and is smooth (derivatives of all orders exists).  One dimen-
sional stretching along the three axes correspondingly, delivers also a solution 
which has the similar properties as the solution of the Laplace equation. The later 
is proven to be equivalent to solving the Poison-like equations, Thompson, Warsi 
and Mastin (1985), 

( ), ,xx yy zz Pξ ξ ξ ξ η ζ+ + = ,     (292) 

( ), ,xx yy zz Qη η η ξ η ζ+ + = ,     (293) 

( ), ,xx yy zz Rζ ζ ζ ξ η ζ+ + = ,     (294) 

with boundary conditions prescribed at the surface containing the domain (Dirich-
let boundary value problem). The control functions P, Q and R define the concen-
tration of the grid lines to a prescribed lines or points. Interchanging the dependent 

( ), ,ξ η ζ  and the independent ( ), ,x y z  variables results in 

2 2 2 2 2 2
11 22 33 12 13 23

2 2 2
2g g g g g g

ξ η ξ ζ η ζξ η ζ
 ∂ ∂ ∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂  

r r r r r r
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0P Q R
ξ η ζ
∂ ∂ ∂+ + + =
∂ ∂ ∂

r r r
, 

or rewritten in components form 

2 2 2 2 2 2
11 22 33 12 13 23

2 2 2 2
x x x x x x

g g g g g g
ξ η ζ ξ η ξ ζ η ζ

 ∂ ∂ ∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

0
x x x

P Q R
ξ η ζ
∂ ∂ ∂+ + + =
∂ ∂ ∂

,     (295) 

2 2 2 2 2 2
11 22 33 12 13 23

2 2 2 2
y y y y y y

g g g g g g
ξ η ζ ξ η ξ ζ η ζ

 ∂ ∂ ∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

0
y y y

P Q R
ξ η ζ
∂ ∂ ∂+ + + =
∂ ∂ ∂

,     (296) 

2 2 2 2 2 2
11 22 33 12 13 23

2 2 2 2
z z z z z z

g g g g g g
ξ η ζ ξ η ξ ζ η ζ

 ∂ ∂ ∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

0
z z z

P Q R
ξ η ζ
∂ ∂ ∂+ + + =
∂ ∂ ∂

,     (297) 

where  

2
22 33 23 21 33 23 31 21 32 22 31

2
21 33 23 31 11 33 13 11 32 12 31

2
21 32 22 31 11 32 12 31 11 22 12

1ij

g g g g g g g g g g g

g g g g g g g g g g g g
g

g g g g g g g g g g g

 − − −
 

= − − − 
 − − − 

 (298) 

are the elements of the contravariant metric tensor which is symmetric, Thompson, 
Warsi and Mastin (1985). The elements of the contravariant metric tensor are 
computed as a function of the elements of the covariant metric tensor. The cova-
riant metric tensor is defined as 
 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ijg

⋅ ⋅ ⋅ 
 = ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

a a a a a a

a a a a a a

a a a a a a
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2 2 2

2 2 2

x y z x x y y z z x x y y z z

x x y y z z x y z x x y y z z

x x y y z z

ξ ξ ξ ξ η ξ η ξ η ξ ζ ξ ζ ξ ζ

ξ η ξ η ξ η η η η η ζ η ζ η ζ

ξ ζ ξ ζ ξ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

2 2 2
x x y y z z x y z

ζ η ζ η ζ η ζ ζ ζ ζ

 
 
 
 
 
 
 
 

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

, 

       (299) 

where 

1

x y z

ξ ξ ξ
∂ ∂ ∂= + +
∂ ∂ ∂

a i j k ,     (300) 

2

x y z

η η η
∂ ∂ ∂= + +
∂ ∂ ∂

a i j k ,          (301)   

3

x y z

ζ ζ ζ
∂ ∂ ∂= + +
∂ ∂ ∂

a i j k .     (302) 

In fact all coefficients are functions of the elements in the Jacobian matrix of the 
coordinate transformation ( ), ,x f ξ η ζ= , ( ), ,y g ξ η ζ= , ( ), ,z h ξ η ζ= , 

( ), ,

x x x

y y y

z z z

ξ η ζ

ξ η ζ
ξ η ζ

ξ η ζ

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂=  ∂ ∂ ∂ 
 ∂ ∂ ∂
  ∂ ∂ ∂ 

J .     (303) 

The elements of the Jacobian matrix are called inverse metrics of the coordinate 
transformation. The Jacobian determinant or Jacobian of the coordinate transfor-
mation is 

( ), ,g ξ η ζ= J  

x y z y z x y z y z x y z y z

ξ η ζ ζ η η ξ ζ ζ ξ ζ ξ η η ξ
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − − − + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

. 

        (304) 

For two dimensional case for instance for not existing j-direction set 1j jx ξ∂ = , 

0i j ix ξ ≠∂ = . A simple prescription for computation of ijgg  is  
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3

1

ij
ij mi mj

m

gg A Aα
=

= = ,      (298a) 

Miki and Takagi (1984), where miA  is the mith cofactor of the Jacobian matrix of 

the coordinate transformation, Eq. (303). ( )( )Subdeterminant 1
m i

miA mi
+= − . 

 
Boundary conditions: The surface containing the domain of interest is divided into 
6 non-overlapping patches, iΓ  (i = 1,2,3,4,5,6), building 3 pairs perpendicular to 

each transformed directions. The boundary conditions, that is, the coordinates at 
the 6 patches are prescribed in advance as follows 

( )
( )
( )

, ,

, ,

, ,

i i

i i

i i

x f

y g

z h

ξ η ζ
ξ η ζ
ξ η ζ

  
   =   

      

,   ( ), ,i iξ η ζ ∈Γ ,   ( )1, 2i = ,   (305) 

( )
( )
( )

, ,

, ,

, ,

i i

i i

i i

x f

y g

z h

ξ η ζ
ξ η ζ
ξ η ζ

  
   =   

      

,   ( ), ,i iξ η ζ ∈Γ ,   ( )3, 4i = ,   (306) 

( )
( )
( )

, ,

, ,

, ,

i i

i i

i i

x f

y g

z h

ξ η ζ
ξ η ζ
ξ η ζ

  
   =   

      

,   ( ), , i iξ η ζ ∈Γ ,   ( )5,6i = .   (307) 

Line spacing control functions: The line spacing control functions  

( ) ( ) ( )1 1
1

, , exp
n

l l l l
l

P a sign b Tξ η ζ ξ ξ
=

= − − − ,   (308) 

( ) ( ) ( )2 2
1

, , exp
n

l l l l
l

Q a sign b Tξ η ζ η η
=

= − − − ,   (309) 

( ) ( ) ( )3 3
1

, , exp
n

l l l l
l

R a sign b Tξ η ζ ζ ζ
=

= − − − ,   (310) 

where 

( ) ( ) ( )2 2 2

1 2 3l l l l l lT c c cξ ζ η η ζ ζ= − + − + − ,   (311) 

are recommended by Miki and Takagi (1984). The sets of the coefficients lma  and 

lmc  attracts the ξ , η , and/or ζ =constant planes to the specified plane, coordinate 
line, or grid point. The range of the attraction effect is determined by the decay 
factor lmb . The effect of the coefficient is demonstrated below: 
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Attracted planes  Planes, line, or point attracting neighboring 

planes 
 

1 0la ≠  for ξ =const plane  1 0la ≠ , 2 0la = , 3 0la =  for ξ = lξ  plane 

    1 0lc ≠ , 2 0lc = , 3 0lc =  

2 0la ≠  for η =const plane 1 0la = , 2 0la ≠ , 3 0la =  for η = lη  plane 

    1 0lc = , 2 0lc ≠ , 3 0lc =  

3 0la ≠  for ζ =const plane 1 0la = , 2 0la = , 3 0la ≠  for ζ = lζ  plane 

    1 0lc = , 2 0lc = , 3 0lc ≠  

     
For ( ),η ζ = ( ),l lη ζ  line: 

    1 0la = , 2 0la ≠ , 3 0la ≠   

    1 0lc = , 2 0lc ≠ , 3 0lc ≠   

    For ( ),ξ ζ = ( ),l lξ ζ  line: 

    1 0la = , 2 0la = , 3 0la ≠   

    1 0lc = , 2 0lc = , 3 0lc ≠   

    For ( ),ξ η = ( ),l lξ η  line: 

   1 0la ≠ , 2 0la ≠ , 3 0la =   

    1 0lc ≠ , 2 0lc ≠ , 3 0lc =   

    For ( ), ,ξ η ζ = ( ), ,l l lξ η ζ  point: 

   1 0la ≠ , 2 0la ≠ , 3 0la ≠   

    1 0lc ≠ , 2 0lc ≠ , 3 0lc ≠  
Simplification for 2D plane: For grid generation in 2D plane the grid generating 
system ( ),ξ η  simplifies to 

2 2 2
11 22 12

2 2
2 0

x x x x x
g g g P Q

ξ η ξ η ξ η
∂ ∂ ∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂ ∂ ∂

,  (312) 

2 2 2
11 22 12

2 2
2 0

y y y y y
g g g P Q

ξ η ξ η ξ η
∂ ∂ ∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂ ∂ ∂

,  (313) 

where  

2 2

22 21

2 2
21 11

1 1ij

x y x x y y

g g
g

g gg g x x y y x y

η η ξ η ξ η

ξ η ξ η ξ ξ

    ∂ ∂ ∂ ∂ ∂ ∂ + +   ∂ ∂ ∂ ∂ ∂ ∂      = =   
     ∂ ∂ ∂ ∂ ∂ ∂ + +     ∂ ∂ ∂ ∂ ∂ ∂    

, (314) 
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and 

x y x y
g

ξ η η ξ
∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

.     (315) 

Numerical solution: Central difference numerical scheme is applied for computa-
tion of the partial derivatives assuming 1ξ η ζΔ = Δ = Δ = : 

( )
2

1 12

1
2

4 i i

x
x x x

ξ + −
∂ = − +
∂

,   ( )1 1

1

2 i i

x
x x

ξ + −
∂ = −
∂

,    (316, 317) 

( )
2

1 12

1
2

4 j j

x
x x x

η + −
∂ = − +
∂

,   ( )1 1

1

2 j j

x
x x

η + −
∂ = −
∂

,   (318, 319) 

( )
2

1 12

1
2

4 k k

x
x x x

ζ + −
∂ = − +
∂

,   ( )1 1

1

2 k k

x
x x

ζ + −
∂ = −
∂

,  (320, 321) 

( )
2

1 12

1
2

4 i i

y
y y y

ξ + −
∂ = − +
∂

,   ( )1 1

1

2 i i

x
y y

ξ + −
∂ = −
∂

,   (322, 323) 

( )
2

1 12

1
2

4 j j

y
y y y

η + −
∂ = − +
∂

,   ( )1 1

1

2 j j

x
y y

η + −
∂ = −
∂

,  (324, 325) 

( )
2

1 12

1
2

4 k k

y
y y y

ζ + −
∂ = − +
∂

,   ( )1 1

1

2 k k

y
y y

ζ + −
∂ = −
∂

,  (326, 327) 

( )
2

1 12

1
2

4 i i

z
z z z

ξ + −
∂ = − +
∂

,   ( )1 1

1

2 i i

z
z z

ξ + −
∂ = −
∂

,    (326, 327) 

( )
2

1 12

1
2

4 j j

z
z z z

η + −
∂ = − +
∂

,   ( )1 1

1

2 j j

z
z z

η + −
∂ = −
∂

,   (328, 329) 

( )
2

1 12

1
2

4 k k

z
z z z

ζ + −
∂ = − +
∂

,   ( )1 1

1

2 k k

z
z z

ζ + −
∂ = −
∂

,  (330, 331) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 i j i j i j i j

x x
x x x x

ξ η ξ η + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (332, 333) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 i k i k i k i k

x x
x x x x

ξ ζ ξ ζ + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (334, 335) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 j k j k j k j k

x x
x x x x

η ζ η ζ + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (336, 337) 
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( )
2

1, 1 1, 1 1, 1 1, 1

1

4 i j i j i j i j

y y
y y y y

ξ η ξ η + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (339, 340) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 i k i k i k i k

y y
y y y y

ξ ζ ξ ζ + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (341, 342) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 j k j k j k j k

y y
y y y y

η ζ η ζ + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (343, 344) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 i j i j i j i j

z z
z z z z

ξ η ξ η + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (345, 346) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 i k i k i k i k

z z
z z z z

ξ ζ ξ ζ + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

,  (347, 348) 

( )
2

1, 1 1, 1 1, 1 1, 1

1

4 j k j k j k j k

z z
z z z z

η ζ η ζ + + + − − + − −
∂ ∂ ∂= = − − +
∂ ∂ ∂ ∂

.  (349, 350) 

Replacing in Eq. (312) results in 

1 1 1 1 1 1 1 1 1 1 1 1 1k k j j i i i i j j k kc x c x c x cx c x c x c x d− − − − − − + + + + + ++ + + + + + = , 

1 1 1 1 1 1 1 1 1 1 1 1 2k k j j i i i i j j k kc y c y c y cy c y c y c y d− − − − − − + + + + + ++ + + + + + = , 

1 1 1 1 1 1 1 1 1 1 1 1 3k k j j i i i i j j k kc z c z c z cz c z c z c z d− − − − − − + + + + + ++ + + + + + = , 

where 

33
1 2kc g R+ = + , 22

1 2jc g Q+ = + , 11
1 2ic g P+ = + , 

33
1 2kc g R− = − , 22

1 2jc g Q− = − , 11
1 2ic g P− = − , 

( ) ( )11 22 33
1 1 1 1 1 1k j i i j kc g g g c c c c c c− − − + + += − + + = − + + + + + , 

( )12
1 1, 1 1, 1 1, 1 1, 1i j i j i j i jd g x x x x+ + + − − + − −= − − − +  

( ) ( )13 22
1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1i k i k i k i k j k j k j k j kg x x x x g x x x x+ + + − − + − − + + + − − + − −− − − + − − − + , 

( )12
2 1, 1 1, 1 1, 1 1, 1i j i j i j i jd g y y y y+ + + − − + − −= − − − +  

( ) ( )13 22
1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1i k i k i k i k j k j k j k j kg y y y y g y y y y+ + + − − + − − + + + − − + − −− − − + − − − + , 

( )12
3 1, 1 1, 1 1, 1 1, 1i j i j i j i jd g z z z z+ + + − − + − −= − − − +  
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( ) ( )13 22
1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1i k i k i k i k j k j k j k j kg z z z z g z z z z+ + + − − + − − + + + − − + − −− − − + − − − + , 

The resulting system is solved using SOR methods. Note that the coefficient ma-
trix is the same for all directions. Therefore once the matrix is inverted it can be 
used for the three right hand sites which safes computer time. Do not forget to 
treat properly the boundary conditions by putting into the right hand sites the 
known boundary terms.  

 
Orthogonal systems: Numerical orthogonality is reached by setting the off-
diagonal elements of the contravariant metric tensor equal to zero. This result in 

22 33 11 33 11 22

11 22 33

0
g g g g g gx x x

g g gξ ξ η η ζ ζ
    ∂ ∂ ∂ ∂ ∂ ∂+ + =         ∂ ∂ ∂ ∂ ∂ ∂     

, (351) 

22 33 11 33 11 22

11 22 33

0
g g g g g gy y y

g g gξ ξ η η ζ ζ
    ∂ ∂ ∂ ∂ ∂ ∂+ + =         ∂ ∂ ∂ ∂ ∂ ∂     

, (352) 

22 33 11 33 11 22

11 22 33

0
g g g g g gz z z

g g gξ ξ η η ζ ζ
    ∂ ∂ ∂ ∂ ∂ ∂+ + =         ∂ ∂ ∂ ∂ ∂ ∂     

. (353) 

see Thompson and Warsi (1982). If, in addition to orthogonality, the condition 

11 22 33g g g const= = =  is imposed, then the above three equations reduce to Lap-

lace equations.  
 

For 2D systems the equations set (351-353) reduces to 

1
0r

r

x x
f

fξ ξ η η
  ∂ ∂ ∂ ∂+ =  ∂ ∂ ∂ ∂   

,     (354) 

1
0r

r

y y
f

fξ ξ η η
  ∂ ∂ ∂ ∂+ =  ∂ ∂ ∂ ∂   

,     (355) 

where 

22 11 0rf g g= >       (356) 

is called “distortion function”. It specifies the ratio of the sides of small rectangle 
in the x, y plane which is mapped onto a rectangle in the ξ , η  plane. A reasona-

ble upper limit for rf   is 10. The condition of orthogonality also leads to 

r

x y
f

η ξ
∂ ∂= −
∂ ∂

, r

y x
f

η ξ
∂ ∂=
∂ ∂

.     (357, 358) 

This conditions have to be satisfied also at the boundary. For  
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( ), 1rf ξ η = ,       (359) 

Eqs. (357, 358) become the Cauchy-Riemann equations which are used in con-
formal mapping. Tamamidis and Assanis (1991) recognized that non uniform rf  
over the domain of interest cane be used for controlling the spacing of the nodes 
even generating orthogonal grids. The authors successfully examined the proper-
ties of  

( )
2 2

2 2
,r rf f

G ξ η
ξ η

∂ ∂+ =
∂ ∂

      (360) 

for generating a smooth rf ’s over the domain of interests. ( ),G ξ η  typically in-

volve some combination of sinusoidal, cosinusoidal and exponential functions, 
i.e., 

( ) ( ) ( )1 2,  G const f fξ η ξ η= .     (361) 

An initial approximation can be obtained by setting rf  = 1. The authors generated 
coefficients of the algebraic systems finite difference to Eqs. (354) and (355) hav-
ing the same sign by using for the first order differences: forward finite differenc-
es for xξ  when fξ  is positive, and backward differences when fξ  is negative; 

backward finite differences for xη  when fη  is positive, and forward differences 

when fη  is negative. 

 
Setting 

( ) 1/ 2 1/ 2
11 22 33f g g g g

− −= =      (362) 

the equations set (351-353) can be rewritten as 

22 33 11 33 11 22 0
x x x

fg g fg g fg g
ξ ξ η η ζ ζ
     ∂ ∂ ∂ ∂ ∂ ∂+ + =     ∂ ∂ ∂ ∂ ∂ ∂     

,  (363) 

22 33 11 33 11 22 0
y y y

fg g fg g fg g
ξ ξ η η ζ ζ
     ∂ ∂ ∂ ∂ ∂ ∂+ + =     ∂ ∂ ∂ ∂ ∂ ∂     

,  (364) 

22 33 11 33 11 22 0
z z z

fg g fg g fg g
ξ ξ η η ζ ζ
     ∂ ∂ ∂ ∂ ∂ ∂+ + =     ∂ ∂ ∂ ∂ ∂ ∂     

.  (365) 

Christov (1982) proposed to use ( ), ,f f x y z=  for controlling the spacing of the 

grid by controlling actually the local value of the Jacobian. For 2D, 

22 11 0
x x

fg fg
ξ ξ η η
   ∂ ∂ ∂ ∂+ =   ∂ ∂ ∂ ∂   

,    (366) 
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22 11 0
y y

fg fg
ξ ξ η η
   ∂ ∂ ∂ ∂+ =   ∂ ∂ ∂ ∂   

,    (367) 

Christov proposed to impose a control function of the type 

2 21 x yf z z= + + ,      (368) 

that is simply the slope of a predefined surface ( ),z z x y= . The stronger the slope 

of the chosen surface at a given point the more dense the grid around this point. 
 
The Sorenson method for enforcing orthogonality at the boundaries: Sorenson 
(1989) oriented his development towards creating a multiple interconnected 
blocks. He simplified the P, Q, and R functions to facilitate attractions to the cor-
responding outer boundary only by specifying attenuation factors so as not to in-
fluence the opposite boundary surface e.g.  

( ), ,P ξ η ζ = ( ) ( ) ( ) ( )1 2 max, exp 1 , expp a p aη ζ ξ η ζ ξ ξ− − + − −        

( ) ( ) ( ) ( )3 4 max, exp 1 , expp a p aξ ζ η ξ ζ η η+ − − + − −        

( ) ( ) ( ) ( )5 6 max, exp 1 , expp a p aξ η ζ ξ η ζ ζ+ − − + − −       . (369) 

By appropriate selection of the p, q, r coefficients he enforced the ortogonality at 
the boundary. As example consider face 3. At this face the derivatives ξr , ζr , ξζr , 

ξξr , and ζζr  are computed from the point values known at the surface once for the 

generation process. The derivatives ηr  are found from the desired clustering and 

orthogonality on face 3. The desired orthogonality and clustering is specified by 
the following three relations 0ξ η⋅ =r r , 0ζ η⋅ =r r , 2Sη η⋅ =r r , where S is the 

height to be imposed on the cell on the boundary or in expanded form 

0x x y y z zξ η ξ η ξ η+ + = ,      (370) 

0x x y y z zζ η ζ η ζ η+ + = ,     (371) 

2 2 2 2x y z Sξ η ζ+ + = .      (372) 

Solving the first two equations with respect to xη  and yη  results in 

( ) ( )x z z y z y x y x yη η ξ ζ ζ ξ ξ ζ ζ ξ= − + − ,    (373) 

( ) ( )y z x z x z x y x yη η ξ ζ ζ ξ ξ ζ ζ ξ= − + − ,    (374) 

or comparing with the cofactors of the Jacobian matrix of the coordinate trans-
formation 
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( ) ( )12 32x z A Aη η= − − ,      (375) 

( ) ( )22 32y z A Aη η= − − .     (376) 

Substituting in the third equation and solving with respect to zη  we obatin 

32

2 2 2
12 22 32

SA
z

A A A
η =

± + +
,     (377) 

and consequently 

12

2 2 2
12 22 32

SA
x

A A A
η =

± + +
,     (378) 

22

2 2 2
12 22 32

SA
y

A A A
η =

± + +
.     (379) 

The positive sign is used for right-handed and the negative for left-handed coordi-
nate systems. Now we have the derivatives ηr . These derivatives can be differen-

tiated to obtain the mixed derivatives ηξr , ηζr . All these derivatives are obtained 

as a function of the information stored at the surface and have to be computed 
once over the generation process. The only derivatives lacking is  

( )
( )

, ,1,,1, ,2, ,3,

2,1,

37 8

2

i ki k i k i k

i k

η
ηη ηη

− + −
= −

ΔΔ

rr r r
r ,    (380) 

which results from the Taylor series. Now the governing three equations written 
for the point (i,1,k)  

,1, ,1, ,1,i k i k i kp q r
ξ η ζ
∂ ∂ ∂+ +
∂ ∂ ∂

r r r
 

2 2 2 2 2 2
22

11 33 12 13 232 2 2

1
2

g g

αα α α α α
ξ η ξ ζ η ζξ ζ η

  ∂ ∂ ∂ ∂ ∂ ∂= − + + + + −  ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂   

r r r r r r
 

can be solved with respect to the unknown  coefficients p, q and r. In each succes-

sive iteration the value of the derivatives ( )
,1,i kηηr  and consequently the values of 

p, q and r are updated until convergence is reached. 
 
Practical recommendation: Specify first the 6 non-overlapping patches. Divide the 
peripheral boundary on 4 patches. Generate the grid on each boundary line. Use 
simple 2D generating system and generate approximate 2D grid at each patch. Im-
prove the 2D grid by using elliptic 2D generating system. Use simple algebraic 
system to generate initial guess for the 3D system. Generate 3D grids by using 3D 
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elliptic generating system. If other domain has to be attached to the already gener-
ated grid specify the patch at which the new domain will be attached. Then use the 
same procedure to generate the 3D grid by using the already generated grid on the 
common patch. Plot the grid and control the result. 
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boiling at the wall   277 
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bulk pressure   51 
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canonical form   182, 491, 493 
carnot coefficient   323 
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conservation equation   226 
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detonation waves   419 
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substances   154 

mixture of saturated steam and saturated 
liquid   165 

mixture of solid particles and liquid   
119 

mixture specific heat   285 
mixture volume conservation equation   

263, 523 
mixtures of non-miscible liquids   119 
molar concentration   123 
molecular diffusion   20 
momentum conservation equations   475 
momentum equation   50, 336, 515, 516, 

589 
momentum equations   519, 521 
momentum jump condition   42, 48 
monodispersity   25, 30 
moving coordinate system   747 
multi-blocks   606 
multi-component mixtures of miscible 

and non-miscible components   119 
multiphase flow patterns   3 

 
N 

 
necessary condition for convergence, 

513 
Newton, 176 
Newton method, 141 
Newtonian continuum   57 



778      Index 

Newton-Raphson   123 
Newton-type iteration method   524 
nodes   605 
non-condensibles   277 
non-conservative form   352, 491 
non-conservative form of the  

concentration equations   610 
non-conservative form of the energy  

equation   226 
non-conservative form of the enthalpy 

equation   230 
non-conservative form of the entropy 

equation   247 
non-conservative form of the  

momentum equation   229 
non-miscible components   119, 122 
non-monotonic behavior   540 
nonphysical diffusion   15 
non-slip boundary condition   520 
nonstructured   2 
nozzle flow   354 
nozzle flow with instantaneous heat  

exchange without mass exchange   
348 

nozzles frozen flow   346 
nucleation rate   27 
Nukiama–Tanasawa distribution   30 
number density of particles   24 
numerical diffusion   15 
numerical methods   497 
numerical orthogonality   768 
numerical solution   190 
numerical solution method   444 

 
O 

 
off-diagonal diffusion terms   616 
off-diagonal viscous forces   634 
one dimensional three-fluid flow   335 
order of the chemical reaction   299 
orthogonal coordinate systems   616 
orthogonal systems   768 
orthogonality   728 
orthotropic   753 
oscillation period   372 
outer iterations   534 

 
P 

 
parabolic   493 
parallel vectors   708 
partial decoupling   513 
partial derivatives   127, 132, 731 

partial differential equations   498 
partial pressure   121 
partial pressures   120 
partial pressures of the perfect fluid 

compounds being in chemical  
equilibrium   146 

particle number density conservation 
equation   467 

particle number density derivatives   594 
particle number density equation   336, 

621 
particles number density equation   485 
pdv-exergy   323 
perfect fluid   189 
perfect gas   164, 189 
perfect gases   131 
perpendicular (orthogonal) vectors   700 
Pfaff´s form   178 
phase   2 
phase discontinuity treated with CIP   

545 
Phase equilibrium   148, 150 
physical space   718 
pipe   571 
pipe deformation   339 
pipe library   575 
pipe networks   335, 367, 570 
pipe section   574 
pipes   335 
plane determined by three points   699 
Poison-like equations   761 
Poisson-type equation for multi-phase 

flows   530 
polytrophic exponent   286, 348 
position vector defining a curve   693 
position vector defining a line   693 
potential equation   493 
potential function   705 
Prandtl-Kolmogorov law   262 
pressure equation   521, 522 
pressure equilibrium factor   145 
pressure force   363 
pressure-velocity coupling   519, 625 
principal unit normal vector for space 

curve   697 
principle of conservation of mass   13 
propagation velocity of harmonic  

oscillations   494 
proportions   147 
pseudo gas constant, 154 
pseudo-canonical form, 493 
pseudo-exergy equation, 321, 322 
pump behavior, 389 



Index      779 

pump model   388 
pumps   388 

 
R 

 
Rankine   422 
Rankine-Hugoniot curve   426 
Ransom   73, 396 
reaction progress variable   143 
reaction thrust   363 
reaction velocity   299 
reduction   574 
regular grid’s   605 
regular mesh   606 
regular topology   606 
RELAP   396 
relation between the contravariant and 

the covariant base vectors   736 
relations between the inverse metrics 

and the metrics   738 
relative coordinates   572 
reliefe valves   367 
residual error vector   598 
restatement of the conservative  

derivative operations   740 
restatement of the non conservative  

derivative operations   742 
Reynolds averaging   16 
Reynolds stresses   56 
right handed Cartesian coordinate  

system   691 
risk potential of dispersed-dispersed  

systems   446 
r-momentum equation   584 
rotation around axes   714, 715 

 
S 

 
saturation line   149 
Sauter mean diameter   31 
scalar (dot) product   697 
Scarbourough criterion   513 
Scott and Berthoud   420 
second fundamental metric identity   

465, 753 
second law of thermodynamics   262, 

263 
semi-conservative form for the entropy 

equation   248 
semi-conservative forms   483 

 
 

shock adiabatic   426 
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