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Nanomaterial32. Nanomaterial Toxicity, Hazards, and Safety

Zuzanna A. Lewicka, Vicki L. Colvin

Manufactured nanoparticles of different chem-
ical compositions are now widely commercially
applied. They are found in places as diverse as
food packaging and automotive bumpers, where
their special nanoscale properties help to lower
cost while improving performance. Given these
widespread applications, the unintended effects
of manufactured nanomaterials on workers, con-
sumers, and the environment have become a focal
point for international research. Initially, the hu-
man health effects of nanoscale materials were
of most interest, but more recently identification
of nanoscale particles in wastewater sludge has
turned attention towards their environmental im-
pacts. Though the topic of nanomaterial safety has
received substantial attention in the literature,
many basic questions about nanoparticle trans-
port, fate, and toxicology remain unanswered.
A central challenge for researchers has been the
definitive characterization of particular manufac-
tured nanomaterials, particularly in commercial
products that have significant human or envi-
ronmental exposure. Careful determination of the
physical size, surface chemistry, internal struc-
ture, and intermediate stability of manufactured
nanomaterials helps investigators compare results,
as well as link unwanted biological outcomes to
particular material features. This chapter provides
an overview of the current exposure and toxicity
studies of manufactured (e.g., engineered) nano-
materials. A special emphasis in this chapter is the
practice used for nanomaterial characterization
as it relates to their biological and environmental
properties.
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Nanotechnology has been defined by the American So-
ciety for Testing and Materials (ASTM) as [32.1]

A term referring to a wide range of technolo-
gies that measure, manipulate, or incorporate

materials and/or features with at least one di-
mension between approximately 1 and 100 nm.
Such applications exploit the properties, dis-
tinct from bulkmacroscopic systems, of nanoscale
components.

32.1 Engineered Nanomaterials – General Overview

Nanoscale materials (or nanomaterials) have been des-
cribed as any material having one or more dimension
between approximately 1 and 100 nm [32.1, 4]. These
materials can be naturally occurring (e.g., volcanic ash),
incidentally produced (e.g., diesel exhaust particles)
or intentionally manufactured (e.g., carbon nanotubes).
Of most relevance to this work is the latter class
– manmade (engineered or manufactured) nanoscale
materials designed with specific properties (e.g., me-
chanical, optical, electrical, and/or magnetic) that differ
from those of bulk materials. Nanomaterials can exist
in various shapes: nanoplates, nanorods, nanotubes or
nanoparticles, as presented in Fig. 32.1. According to
the British Standards Institution (BSI), nanoplates are
objects which have a nanoscale-order thickness while
having two other external dimensions significantly
larger, nanorods have two similar external dimensions
on the nanoscale and the third dimension significantly
larger, nanotubes are hollow nanorods, while nanopar-
ticles are defined as particles with all three dimensions
within the nanoscale [32.4].

Nanoscale materials are often lighter, stronger, and
more reactive than bulk materials and can be applied in
industries as diverse as medicine and aerospace [32.2,
5]. One size-dependent property that often motivates
incorporation of nanoscale materials is the surface
area. As the size of a material decreases, the ratio
of surface molecules or atoms to total molecules or
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Fig. 32.1 Schematic representations of various forms of
nanomaterials, which include nanoparticles (nanoscale in
all three dimensions), nanotubes (nanoscale in two dimen-
sions), and nanoplates (nanoscale in only one dimension);
nanoscale refers to a dimension between 1 and 100 nm
(after [32.2])

atoms increases exponentially [32.6]. Greater surface
area means a larger fraction of material is available
for chemical reactions, a fact that generally increases
nanomaterial overall reactivity as compared with bulk
materials (Fig. 32.2) [32.3]. This translates into im-
proved physical, chemical, and biological properties
which can be incorporated into many improved applica-
tions. Other size-dependent properties may arise from
the confinement of electronic excitations, or the en-
hanced cooperativity of magnetic spins in solids of low
dimensions [32.7, 8].

Given their many unique and size-dependent prop-
erties, it is not surprising that nanomaterial use in
consumer products is increasing rapidly [32.9, 10].
In 2011, the Project on Emerging Nanotechnologies
(PEN) inventory identified over 1300 nanotechnology-
based consumer products on the market from over
24 countries, including the USA, China, Canada, and
Germany [32.10]. The largest group of products (738
products) was within the health and fitness category,
which included cosmetics, clothing, personal-care prod-
ucts, sporting goods, sunscreens, and air and water
filters. However, the database has not been updated
since March 2011. Therefore, the number of consumer
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Fig. 32.2 Trend for size-dependent reactivity change of
a material as the particle transitions from macroscopic
(bulk like) to atomic (after [32.3])
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Fig. 32.3 Annual number of articles published in scientific
journals, broken down by study topic: nanomaterial hazard
versus exposure (after [32.12])

products having engineered nanomaterials as presented
in PEN is only a portion of the nanotechnology-enabled
products currently on the market [32.10, 11].

As their use has expanded to include many ap-
plications that bring them into contact with people
and the environment, significant questions have been
raised about their possible biological and environmen-
tal interactions [32.13, 14]. As noted by Simkó and
Mattsson [32.15], A risk can be deduced from exposure
data together with the hazard assessment that results af-
ter exposure. As shown in Fig. 32.3, work on hazards
has dominated the development of the study of nano-

Carbon 32%

Metal 26%

Oxide 32%

Semiconductor 10%

Fig. 32.4 Percentage of scientific papers addressing the
hazard and exposure of carbon-based, metal oxide, metal,
and semiconductor nanoparticles between 2001 and 2011
(after [32.12])

material risk, representing 90% of papers published in
scientific journals.

Different nanomaterials have been the subject of
varying levels of risk-based analysis. These types in-
clude carbon-based materials such as fullerenes and car-
bon nanotubes, metal oxide nanoparticles and rods (iron
oxide, cerium oxide, titanium dioxide, silicon dioxide,
etc.), metals (gold and silver), as well as semiconduc-
tor nanoparticles or so-called quantum dots (typically
cadmium sulfide or cadmium selenide) [32.16]. In-
terestingly, a literature analysis reveals that of these
materials the metal oxide and carbon-based systems
have been the most examined (Fig. 32.4).

32.2 Occurrence of Engineered Nanoparticles in the Environment

As the number of consumer products containing engi-
neered nanoscale particles grows, so will the chance
of environmental exposure of a wide range of organ-
isms [32.17]; For example, it has been estimated that in
the USA, based on the reported market size for suncare
products, approximately 125 tons of nanoscale TiO2
and ZnO ultraviolet (UV) blocking agents are used (and
released) in commercial products every year [32.18].
Nanoscale TiO2 and ZnO particles are used in sun-
screens because they do not scatter visible light like
their larger counterparts and appear transparent when
applied to the skin [32.19, 20]. Furthermore, Hen-
dren et al. estimated upper and lower bounds for
the annual production quantities for five classes of
engineered nanomaterials in the USA: titanium diox-
ide (TiO2), silver (Ag), cerium oxide (CeO2), carbon
nanotubes (CNTs), and fullerenes, which ranged from

7800–38 000 tons/year for TiO2, 2.8–20 tons/year for
Ag, 35–700 tons/year for CeO2, 55–1101 tons/year for
CNTs, and 2–80 tons/year for fullerenes [32.21]. These
estimates were done based on data from academic
publications, professional reports, company websites,
production process patents, and personal communica-
tion with company representatives. The fact that such
information was not readily available reflects the lack of
labeling and reporting standards for consumer products
that contain nanoscale materials.

Nanoparticles can enter the environment during ei-
ther their manufacture, use, or disposal; studies of
nanoparticle fate and transport have concluded that
the natural sinks for nanoparticles generally are soil
or water [32.22, 23]. So far, no measurements of en-
gineered nanoparticles in the environment have been
able to quantify trace concentrations of these mater-
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Fig. 32.5 Transformation of nanomaterials as they move through the environment (after [32.28])

ials [32.17]. However, some have found qualitative
evidence that nanoscale materials, particularly those
from sunscreens, can be detected in the solid waste gen-
erated by wastewater treatment plants [32.24]. Due to
the lack of quantitative analytical tools for environmen-
tal exposures, much of the information about exposure
has been derived from relatively coarse-grained envi-
ronmental exposure models [32.25–27].

To complicate the study of exposure even further,
a growing body of research focuses on the fact that
nanoparticles can drastically change their behavior and
physical characteristics as they move through the envi-
ronment (Fig. 32.5) [32.28–33].

Changes in physicochemical properties such as sur-
face charge and size can modify environmental fate
and transport. As an example, Guzman et al. showed
that the mobility of nanoscale materials in aqueous
environments is dependent on the size of the nanopar-
ticles. They reported that the point of zero charge

(pzc) of TiO2 nanoparticles changed with their size
and that the aggregation state increased as the pH of
the solution approached the pzc [32.34]. On the other
hand, Labille et al. studied the aging and fate of TiO2
nanoscale particles recommended by the manufacturer
(BASF Chemical Company) as sunscreen pigments and
discovered that, after contact with water, the TiO2
nanocomposite dispersed and formed a stable suspen-
sion available to microorganisms [32.35]. Lin et al.
published a thorough review on the fate and transport of
nanoscale materials in the environment, which included
aggregation and suspension behaviors with emphasis on
the influencing factors, including natural colloids, natu-
ral organic matter, pH, and ionic strength [32.36]. The
authors concluded that there are still many unknowns
regarding the environmental fate, transport, exposure,
ecotoxicity, and lifecycle of engineered nanomaterials
and that future research should focus more on real envi-
ronments and experiments in the field.

32.3 Effects of Nanoparticles on Organisms

Once released into the environment, nanomaterials will
interact with organisms [32.6, 37–39]. Although nano-
material toxicity is an active area of research, the major-

ity of the published data focus on mammalian toxicity
studies using a range of in vitro and in vivo tests to as-
sess the possible toxic behavior of nanoscale materials
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Fig. 32.6 Annual number of articles published in scientific
journals by topic: mammalian, aquatic ecosystem, and soil
ecosystem toxicity studies (after [32.12])

(Fig. 32.6). On the other hand, study of nanomaterial
ecotoxicity, which identifies hazards to the environment
in both aquatic and soil ecosystems, is just emerging.

32.3.1 Ecotoxicity of Nanoparticles
in Aquatic Ecosystems

In 2004, Oberdorster et al. demonstrated for the first
time that 0.5 ppm aqueous carbon-based nanoparticles
(uncoated fullerenes, C60) can cause oxidative damage
and depletion of glutathione (GSH) in vivo in an aquatic
species (juvenile largemouth bass) [32.37]. Since that
initial report, researchers have studied how nanomateri-
als affect other freshwater species and marine organisms
including trout, fish, waterflea, bacteria, algae, and other
aquatic plants [32.40–44]. Farre et al. presented a re-
view of ecotoxicological data on carbon-based nano-
materials, metal and metal oxide nanoparticles, as well
as quantum dots in the aquatic environment [32.40].
The results indicate that nanoparticles may have eco-
toxicological effects which depend sensitively on the
physicochemical properties. Factors such as the chem-
ical composition, concentration, size, shape, surface
coating, charge, as well as mechanical stability can
play a central role in whether a given nanomaterial is
toxic or benign [32.45–50]. Farre et al. and Kahru and
Dubourguier discussed also challenges in nanoecotoxi-
cological research [32.40, 51]. Both groups agreed that
the fate of nanosized materials and in situ investigation
of their impact on organisms are of the highest prior-
ity for validation of models proposed for environmental
risk assessment of nanoparticles. Moreover, physico-
chemical characteristics of particles before, during, and

after experiments were vital to ensure the progress and
comparison of research results. Furthermore, a battery
of tests with different organisms is recommended to
ensure adequate evaluation of the ecological situation;
For example, Kahru and Dubourguier demonstrated
that, among organism groups representing the main
food-chain levels (bacteria, algae, crustaceans, ciliates,
fish, yeasts, and nematodes), algae and crustaceans
(daphnids) were the organism groups most sensitive to
aquatic exposure of nanoparticles [32.51].

32.3.2 Ecotoxicity of Nanoparticles
in Soil Ecosystems

While research on the ecotoxicity of nanoparticles in
aquatic ecosystems is not yet complete, it is an ex-
tensive dataset compared with the very few studies of
nanoparticles in the terrestrial ecosystem (Fig. 32.6).
Soil ecosystems are much more complex than aqueous
ones. Soils contain a wide variety of colloidal mater-
ials, including phyllosilicates, humic acids, iron oxides,
and naturally occurring nanosized particles [32.52,
53]. These complexities make it particularly difficult
to measure and distinguish between naturally occur-
ring materials and engineered nanoparticles. Moreover,
colloidal soil can interact with engineered nanoscale
materials and affect their fate, transport, and trans-
formation [32.36, 54]. For this reason, information
on the interactions of engineered nanoparticles with
soil components is needed to understand the effect of
nanoparticles on terrestrial organisms.

Microbes are an important component of the ter-
restrial ecosystem, yet the antimicrobial activity of
nanoparticles largely has been studied with human
pathogenic bacteria. There is very little information
available on soil microorganisms such as those that pro-
mote plant growth (e.g., rhizobacteria, nitrifying and
denitrifying bacteria) or those that benefit nutrient cy-
cling in soils [32.55]. Fourteen studies reporting the
effects of engineered nanoscale materials on soil mi-
croorganisms published between the years 2007 and
2011 were reviewed by Dinesh et al. [32.55]. They sum-
marized that fullerenes did not cause any significant
toxicity to soil microorganisms while high concentra-
tions (5000 μg/g soil) of multi-walled carbon nanotubes
could significantly suppress the activity and biomass
of soil microorganisms. Metal nanoparticles such as
Al, Si, Pd, Au, and Cu and metal oxides (TiO2 and
ZnO) impacted soil bacterial communities, with silver
nanoparticles being highly toxic to these organisms. It is
important to note that the mentioned studies were done
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using simplified ecosystems, under controlled condi-
tions, far from the actual soil environment. Real-world
studies, using components that reflect the complexity
of the existing environment, are vital in order to as-
sess the actual risk of manufactured nanomaterials in
this environment.

The interactions between engineered nanoparticles
and plants are another important area for study. A re-
view of the toxic effects of engineered nanoparticles
on plant growth was completed by Ma et al. [32.56].
They focused on the toxicity of nanoparticles to plant
seedlings and cells, as well as analyzing uptake, translo-
cation, and accumulation of nanoparticles by plants
and their interactions with plant cells. Most studies of
nanoparticles indicated a certain degree of phytotox-
icity to seedlings affecting, e.g., root elongation and
seed germination; For instance, Canas et al. investigated
the effects of the surface properties of single-walled
carbon nanotubes on root elongation of six crop
species [32.57]. They tested the phytotoxicity of non-
functionalized and functionalized carbon nanotubes on
cucumber, cabbage, carrot, lettuce, tomato, and onion.
Nonfunctionalized nanotubes inhibited root elongation
in tomato but enhanced that of onion and cucumber.
Functionalized nanotubes inhibited root elongation in
lettuce, while cabbage and carrots were not affected
by either form of nanotubes. On the other hand, Kho-
dakovskaya and coworkers did not find any toxic effects
of multi-walled carbon nanotubes on root elongation
of tomato seedlings up to a concentration of 40 mg/l
but observed an increase in seed germination [32.58].
Ma et al. concluded that differences in the toxicity of
nanoparticles to plants may arise from the changing
physicochemical properties of nanoparticles as they are
exposed to the exudates of varying plant species.

Recently, studies have also been performed on ter-
restrial organisms such as the nematode Caenorhabditis
elegans [32.59, 60]. Wang et al. did not observe a sig-
nificant difference in toxicity between nano (TiO2 of
50 nm, ZnO of 20 nm) and bulk materials (> 200 nm),
for example. However, as is the case in many studies,
there was a significant difference between the particle
compositions as a function of size. On the other hand,
Roh et al. demonstrated a relationship between the
diameter of TiO2 nanoparticles and their impact on
nematodes. Smaller-sized (7 nm) titania had a more neg-
ative impact on C. elegans fertility and survival than
larger-sized zinc oxide (20 nm). These kinds of incon-
sistencies in the nanotoxicology literature are more the
exception than the rule. Peralta-Videa et al. reviewed
available literature on the toxicity, fate, and transport

of nanoparticles in terrestrial ecosystems for the years
between 2008 and 2010 [32.17].

Most analyses of the data suggest that direct com-
parison between studies is a challenge because the form
of the nanomaterials – their size, shape, degree of ag-
glomeration, and composition – was not appropriately
defined [32.61]. Thus, studies of nanoscale titania can
reach different conclusions because the specific forms
of nanoscale titania examined can be different. Further-
more, there are no specific standardized protocols or
certified reference materials for nanomaterial testing,
which leads to difficulties in comparing results. Handy
et al. reviewed ecotoxicity test methods for conventional
chemicals and presented strategies and modifications to
these experimental methods and protocols so they can
be applied to nanomaterial testing [32.62].

32.3.3 Routes of Human Exposure
to Nanoparticles and Their
Translocation in the Body

Human toxicity studies of nanoscale materials are far
more common in the research literature (Fig. 32.7).
These studies usually start with a perspective about
the nanomaterial exposure routes, which include inhala-
tion, skin penetration, and ingestion [32.6, 16, 63, 64].
As shown in Fig. 32.7, inhalation studies are the most
prevalent, largely because of the existing work on inci-
dental exposure to exhaust particles.

Respiratory Route
Nanoparticle deposition in the body after inhalation and
the factors influencing the fate of inhaled nanomateri-
als are described in the reviews by Yang et al. [32.65]
and Bakand et al. [32.66]. Once inhaled, these mater-
ials will be carried by diffusional motion from the nose
or mouth through the various diameters of airways (tra-
chea, bronchi, bronchioles) to the alveoli [32.64, 67].
As a result, particles of different sizes will have dif-
ferent effects in different parts of the lungs [32.6, 63].
Lipid- or water-soluble particles will be dissolved by
mucous or serous lining fluid on the walls of the res-
piratory tract. These soluble components can interact
with proteins or subcellular structures and eventually be
transferred to the blood. Finally, metabolic products of
these solutes may reach other organs and produce toxic
effects [32.63]. In case of insoluble particles smaller
than 200 nm, neither tracheal mucociliary transport nor
digestion by defense cells such as alveolar macrophages
would be able to completely remove these particles.
Such small materials may be able to translocate through
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Fig. 32.7 Annual number of articles published in scien-
tific journals by human health topic: respiratory, dermal,
and gastrointestinal routes of nanoparticle exposure (af-
ter [32.12])

the lymphatic pathways into the blood, resulting in sys-
temic exposure of internal organs [32.6, 63, 64].

For example, in vivo studies by Kreyling et al.
showed that about 1% of iridium particles (15 and
80 nm) inhaled by rats accessed the systemic circulation
and deposited material in organs such as liver, spleen,
heart, and brain [32.68]. Moreover, 15 nm particles were
deposited at a rate far greater than 80 nm particles. Fur-
thermore, translocation of carbon nanoparticles into the
brain via the olfactory nerve system has also been re-
ported [32.69]. Metal oxide nanoparticles such as TiO2
entered the brain through the olfactory bulb, as well. In
the presence of TiO2 particles, the level of malondialde-
hyde (MDA), which is a marker of oxidative stress, was
elevated and ultrastructural changes of neurons in the
hippocampus were observed [32.70]. Wang et al. no-
ticed differences in the responses of the central nervous
system to anatase TiO2 particles versus rutile titania,
with lower risk potential for the latter. In summary, dif-
ferent types of inhaled nanoparticles can translocate into
the liver, brain, and other organs through blood ves-
sels and the central nervous system. This exposure can
produce acute and chronic changes within cells and or-
ganisms. Fewer data are available about dermal contact
and ingestion exposures [32.2, 71].

Dermal Route
Currently, there is widespread use of nanotechnolo-
gies in cosmetic products [32.10, 72, 73]. Most relevant
for these topically applied products is the potential for
nanoparticles to translocate across the skin. Studies of
the skin penetration of cosmetic nanoscale materials

have been reviewed by Nohynek et al. [32.74, 75]. Re-
searchers found an agreement that such particles can
accumulate in hair follicle openings and the stratum
corneum but do not reach living cells of the epidermis
and dermis. A negligible tendency for penetration into
intact and healthy skin, independent of species, has also
been reported recently for topically applied nanosized
TiO2, ZnO, and quantum dots [32.76–80].

On the other hand, Ryman-Rasmussen et al. reported
that spherical quantum dots with diameter 4.6 nm were
able to reach the dermis of porcine skin [32.81]. Baroli
et al. have shown, using human skin pieces, that metallic
nanoparticles smaller than 10 nm were able to localize
to the epidermal layers [32.82]. Huand et al. demon-
strated diffusion of 5 nm gold nanoparticles through
the stratum corneum of intact mouse skin [32.83].
Other studies performed by Sonavane et al. have found
that 15, 102, and 198 nm gold nanoparticles penetrated
ex vivo rat skin [32.84]. Furthermore, it has been shown
that the state of the skin can have a profound effect on its
barrier properties; For example, flexed, broken or dis-
eased skin has a greater susceptibility to penetration by
nanoparticles [32.78, 80, 85–89].

As noted in prior areas of safety research, these
studies are difficult to compare. They differ in methods
(for example, tape stripping, scanning or transmission
electron microscopy, fluorescent microscopy), type of
investigated nanoparticles (elemental composition, size,
and shape), and models (e.g., pig, rat, human biop-
sies). In particular, measuring the penetration of any
substance across human skin – whether it is nanoscale
or not – is a challenging experiment, and one that is
fraught with controversy [32.90–93]. It is not surprising
that these unresolved issues in dermal toxicology are re-
flected in the inconsistent data found in investigations of
nanoparticle–skin interactions.

Gastrointestinal Route
Due to the limited number of studies and lack of
complete characterization of the nanomaterials stud-
ied, there is also no consensus about the behavior of
nanomaterials in the gastrointestinal tract [32.2, 94].
Nanomaterials may get into the human body directly
via oral ingestion of food, water or drugs that contain
nanoscale materials [32.6, 64]. Currently, nanotech-
nology is mostly used in functional food compounds
and delivery systems, food packaging, and food se-
curity [32.94, 95]. Food may also be unintentionally
contaminated by nanoscale materials through environ-
mental exposure during production [32.94]. Alterna-
tively, exposure to nanoparticles may occur through
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hand-to-mouth transfer if products, such as cosmet-
ics, are left on hands [32.64, 96]. Nanoparticles may
also be cleaned from the respiratory system through
mucociliary transport, where they are swallowed and
introduced into the gastrointestinal tract [32.63]. Once
in this environment, materials could be eliminated in
urine or feces or penetrate the gastrointestinal tract,
resulting in translocation to other organs [32.97]; For
example, 98% of water-soluble fullerenes when admin-
istrated orally to rats were cleared in the feces within
48 h, whereas the rest were eliminated via urine [32.98].
On the other hand, studies by Jani et al. have shown
that rutile TiO2 particles of nominal size (500 nm), ad-
ministered orally as a suspension to female rats, were
translocated to systemic organs such as the liver and
spleen [32.99]. Furthermore, when mice were exposed
to nanoscale particles of copper via he gastrointestinal
tract, these materials targeted kidney, liver, and spleen,
causing heavy injuries to these organs [32.100].

In summary, current in vivo studies indicate that the
target organ for nanomaterial exposure depends on the
experimental conditions and nanoparticle physicochem-
ical properties. However, a central and still unanswered
question is the rate at which nanoparticles are cleared
or degraded. A review discussing the interaction of
nanoparticles with living systems has been carried
out recently by Lu et al. [32.101]. One model antic-
ipates that, should nanoparticles find their way into
the body, they would be marked with proteins as for-
eign agents and consumed by phagocytes (immune
cells) [32.102]. After delivery to the lymph nodes, they
could be biodegraded into biologically safe components
if their constituent material is itself nontoxic. Phagocy-
tosis is a basic defense mechanism against exogenous
substances. However, if particles are very stable and dif-
ficult to metabolize within the body, they could reside
in the body for long time periods and unknown health
effects may occur.

32.3.4 In Vitro Toxicity of Nanoparticles

In the past few years many investigators have been
developing in vitro model systems using both human

and animal cells to simplify the study of the cel-
lular response to nanoparticles [32.103, 104]. While
in vitro testing provides a limited view of the re-
sponses of only the cell types being tested, it is
quick and relatively inexpensive, and allows eval-
uation of specific mechanisms of action [32.105].
Although nanoparticle-induced cytotoxicity has been
reported by several groups, the exact mechanism for
toxicity is not well understood [32.106–109]. Nonethe-
less, studies point to nanoparticle-enhanced generation
of reactive oxygen species (ROS) that may result
in oxidative stress, inflammation, and consequent
damage to proteins, membranes, and DNA [32.110,
111].

Lewinski et al., who reviewed the cytotoxicity of
carbon-, metal-, and semiconductor-based nanoparti-
cles, concluded that different data have been published
about cytotoxicity due to differences in experimental
procedures as well as differing nanoparticle proper-
ties [32.106]. Incomplete characterization and lack of
protocols and calibration standards in nanoparticle char-
acterization will result in inconsistent and unreliable
in vitro toxicity data; For example, in one study, multi-
walled carbon nanotubes were reported to be toxic and
cause a decrease in mitochondrial membrane poten-
tial [32.112], whereas another study reported that these
nanotubes were nontoxic [32.113]. Such uncertainties
and inconsistencies are likely caused by variations in
nanoparticle characteristics and experimental proce-
dures [32.106, 114–116].

Because the physicochemical properties of nanoma-
terials can influence toxicological endpoints, thorough
characterization is vital to this community [32.29, 105,
117,118]. There is no doubt that nanoscale particles can
in some forms be biologically reactive and lead to cell
damage; what is less clear is whether these cell cul-
ture effects are apparent in animal systems [32.119].
In addition, the risk due to any potentially toxic sub-
stance is not only a function of the hazard but also
of the chance of exposure. However, lack of exposure
data for humans and the environment limits the effective
risk assessment of commercially available nanomateri-
als [32.9, 120].

32.4 Nanoparticle Physicochemical Characteristics of Relevance
for Toxicology

The examples provided in human and ecological toxi-
city studies of engineered nanomaterials highlight that

nanomaterial structure is essential for determining bi-
ological outcomes. This broad hypothesis certainly
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What does the material look like?

• Particle size/size distribution

• Agglomeration state/aggregation

• Shape

What is the material made of?

• Overall composition (including chemical composition and crystal structure)

• Surface composition

• Purity (including levels of impurities)

What factors affect how a material interacts with its surroundings?

• Surface area

• Surface chemistry including reactivity, hydrophobicity

• Surface charge

Overarching considerations

• Stability—how do material properties change with time (dynamic stability), storage,

handling, preparation, delivery, etc.? Include solubility, and the rate of material release

through dissolution.

• Context/media—how do material properties change in different media, i.e. from the

bulk material to dispersions to material in various biological matrices?

(“as administered” characterization is considered to be particularly important)

• Where possible, materials should be characterized sufficiently to interpret the

response to the amount of material against a range of potentially relevant dose

metrics, including mass, surface area and number concentration.

Fig. 32.8 Recommended minimum
physical and chemical parameters
for characterizing nanomaterials in
toxicology studies (after [32.123])

needs refinement, with a specific focus on which
physicochemical properties of nanomaterials are the
most important in defining their hazard [32.119, 121,
122].

To date, no specific regulation for nanomaterials at
the international level exists. The International Stan-
dards Organization (ISO) published nanotechnology
terminology in 2008 as an outcome of ISO/TC 229
Nanotechnologies: ISO/TS 27687 Nanotechnologies
– Terminology and definitions for nano-objects –
Nanoparticle, nanofiber and nanoplate [32.124]. This
international organization continues its work in devel-
oping effective regulation for nanotechnology-related
products, including Guidance on physicochemical char-
acterization of engineered nanoscale materials for
toxicologic assessment (ISO/DTR 13014), but writing
new rules takes time; hence it will take some time before
new standards are completed [32.124].

A minimum set of parameters that accounts for the
most important and identifiable nanomaterial charac-
terization in nanotoxicity studies was discussed and
proposed at the Woodrow Wilson International Cen-
ter for Scholars in Washington,DC in 2008 [32.123].
Although there is some variability across the list of

ideal properties, most authors agree with the minimum
characterization set presented in Fig. 32.8 [32.29, 121,
123, 125, 126]. Definitions of nanoparticle character-
istics and techniques suitable for their measurements
were described in [32.29, 127].

Characterization of nanoscale particles should begin
with the study of as-received samples, which are often
shipped as dry powders [32.127]. This primary char-
acterization is useful, particularly for ensuring batch
similarity, however study of these powders is not suf-
ficient for safety studies. It is vital to investigate the
properties of nanomaterials when they are dispersed in
the media used for toxicity studies. Some material prop-
erties, such as primary particle size and shape, chemical
composition, and crystal structure, are the same in both
dry and dispersed phases. However, the composition
of the fluid in which nanoparticles are dispersed may
affect their agglomeration state, surface charge, and re-
activity [32.119, 125]. Also, many of these changes can
be slow to occur, and thus samples dispersed in fluids
may change over a period of time. Ideally, physico-
chemical studies should be completed at various time
points which reflect the times relevant to the biological
questions [32.29].
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Technique Information

Scanning electron microscopy (SEM) Particle size distributions, shape, agglomeration/aggregation state

Transmission electron microscopy (TEM)
Atomic force microscopy (AFM)

Particle size distributions, shape, agglomeration/aggregation state, surface texture

Brunauer–Emmett–Teller (BET) surface
area analysis

Specific surface area, porosity, average diameter

X-ray diffraction (XRD) Crystal structure, crystallite size

Energy-dispersive spectroscopy (EDS) Overall elemental composition

X-ray photoelectron spectroscopy (XPS) Surface elemental composition

Inductively coupled plasma mass
spectrometry (ICP-MS)

Overall elemental composition

Dynamic light scattering (DLS) Hydrodynamic size, aggregation/agglomeration state, charge on a particle surface

Table 32.1 Common techniques for investigating nanomaterial properties

32.4.1 Characterization Methods

Physicochemical characterization of nanoparticles gene-
rally requires advanced instrumentation. Scanning
and transmission electron microscopies can produce
high-resolution two-dimensional images of nanoparti-
cles [32.128], while atomic force microscopy (AFM)
gives information about nanoparticles in three dimen-
sions [32.129, 130]. Another approach to characteriza-
tion of nanoparticles involves Brunauer–Emmett–Teller
(BET) surface area analysis and x-ray diffraction
(XRD). The BET method can analyze dry powders
and provide the specific surface area of the nanopar-
ticles [32.131], while XRD yields the atomic struc-
ture [32.132]. Energy-dispersive x-ray spectroscopy
identifies the elemental composition of the sam-
ple [32.128], and x-ray photoelectron spectroscopy
(XPS) can be employed to determine the chemical
composition at the nanoparticle surface [32.133]. In-
ductively coupled plasma mass spectrometry (ICP-MS)
is a type of MS which is capable of detecting
nanoparticles in environmental samples [32.134, 135].
Furthermore, measurement of the nanoparticle hy-
drodynamic size and zeta potential is useful for
getting information about the stability of nanopar-
ticle suspensions with respect to time and medium
[32.136, 137]. Common techniques capable of inves-
tigating nanomaterial properties are summarized in
Table 32.1.

32.4.2 Electron and Atomic Force
Microscopy

In vitro and in vivo studies, using carbon, metal ox-
ide, and metal nanomaterials, have all noted various
size- and surface-dependent toxicity effects [32.106,
138–144]. These parameters are critical determinants

of cellular uptake, distribution through the body, and
accumulation in organs.

Direct visualization of nanoparticles by electron or
atomic force microscopy allows exact determination of
primary particle size and shape. They can also indicate
if aggregation or agglomeration is a factor in the sample,
an essential issue for safety studies. The agglomera-
tion/aggregation state is likely to differ depending on
whether it is determined in powder form or in the ex-
perimental media [32.145]; For example, the tendency
for airborne nanoparticles to form clusters may limit
inhalation exposure to free nanoscale particles, but on
the other hand promote locally high concentrations in
sediments. Furthermore, depending on the interparticle
bond strength, such agglomerates could still undergo
deagglomeration once reaching biological fluids. In this
case, the primary particles will be of interest for toxicity
studies. Therefore, characterization of the size, shape,
and agglomeration/aggregation state of nanoparticles in
the context of the experimental exposure media (cell
culture media, dosing solution, aerosol, etc.) is neces-
sary for informative nanotoxicity studies.

Scanning electron microscopy (SEM) offers the
ability to image an area of the order of square mil-
limeters and can be used to observe the formation
and arrangement of nanoparticle clusters. However,
whether the clusters are formed by nanoparticles in
an agglomerated state (weak van der Waals forces
between the particles) or aggregated state (strong at-
tractive interactions between the particles) is difficult
to establish. Quantitative methods to measure the
strength of nanoparticle associations are not routinely
available [32.146]. Additionally, it can sometimes be
a challenge to fully evaluate aggregated or agglomer-
ated nanomaterials. In the example shown in Fig. 32.9a,
some of the individual nanoparticles forming the clus-
ters appear to be visible in higher-magnification SEM
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1 µm 20 nmCoating

a) b)

Fig. 32.9a,b Electron microscopy images of TiO2 nanopar-
ticles coated with SiO2: (a) SEM image showing degree
of agglomeration/aggregation in the sample and (b) high-
magnification TEM image showing surface coating

images. However, given the 20 nm resolution limit of
SEM, it is hard to conclude that nanoscale particles are
made of one crystallite or several smaller nanoparticles.

Transmission electron microscopy (TEM) anal-
ysis provides improved spatial resolution and can,
under some circumstances, confirm the presence of
nanoscale primary particles in clusters and even mea-
sure their size distribution [32.128,147,148]. Moreover,
high-resolution TEM can reveal a coating layer on
nanoparticle surfaces (Fig. 32.9b) [32.149]. Further-
more, TEM of a cryogenically fresh-frozen sample
(cryo-TEM) can produce micrographs of what a bio-
logical system, e.g., cell, encounters when exposed to
nanoparticles [32.150]. Electron microscopy analysis
can be time consuming and expensive, but it provides
valuable information in toxicological testing regarding
the formation of clusters, primary particle size/size dis-
tribution, shapes, and surface coating.

Unlike electron microscopies, AFM does not rely on
electron beams to create an image. AFM offers three-
dimensional visualization of nanoparticles distributed
on a flat surface by measuring the small force be-
tween a sharp probe, which is supported on a flexible
cantilever, and the surface [32.129]. Therefore, unlike
electron microscopies, AFM does not require a vacuum
environment or special sample preparation. Such versa-
tility makes it very useful for many questions relevant
for nanomaterial safety testing, but it lacks the intrinsic
structural sensitivity of electron microscopies [32.130].
Nevertheless, with the appropriate protocols, it can pro-
vide information about nanoparticle size, shape, surface
texture, and roughness [32.129].

32.4.3 Brunauer–Emmett–Teller Analysis
and X-Ray Diffraction

Size-dependent toxic effects of nanoparticles have been
correlated with the increased surface-to-volume ratio

Adsorption
Desorption
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Fig. 32.10 Adsorption–desorption isotherms of nitrogen
measured on TiO2 nanoparticles with surface area of
261 m2/g that at high relative pressures exhibit a hysteresis
loop attributed to the interparticle spaces

of small particles [32.6]. Therefore, the surface area is
a physicochemical parameter often considered to be of
central importance to nanoparticle toxicity. When the
surface area-to-volume ratio increases, there is a greater
portion of nanoparticle surface atoms or molecules
available to react, and reactivity is generally thought to
be a prelude to toxicity [32.127]. This principle has been
demonstrated explicitly in several instances where the
surface area rather than the particle mass was found to
be the best measure of nanomaterial dose [32.151–154].
However, there are also studies that defined the hy-
pothesis of increased toxicity for smaller-surface-area
nanoparticles because nanomaterial toxicity depends on
several physicochemical parameters that include sur-
face area [32.116, 155].

Brunauer–Emmett–Teller (BET) analysis provides
specific surface area (SSA) evaluation of nanoscale ma-
terials by nitrogen multilayer adsorption measured as
a function of relative pressure. Furthermore, the surface
area can be related to primary particle size [32.131].
BET analysis can also be used for an indication about
aggregation/agglomeration state; For example, if the
primary particles form strong aggregates (due to strong
bonds between particles), they have lower surface areas
than that calculated from TEM images [32.156, 157].
The aggregation/agglomeration state of nanoparticles
can also be determined from adsorption–desorption
isotherms of nitrogen measured on nanoparticle sur-
faces (Fig. 32.10), as well as the pore shape, area, and
specific pore volume [32.158–160].

The interior crystal structure also determines the
toxicity of nanoscale materials; For example, the two
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Fig. 32.11 X-ray diffraction patterns of anatase and rutile
TiO2 nanoparticles

most important polymorphs of titania, rutile and anatase
(Fig. 32.11), display different photocatalytic activities,
with anatase acting as a stronger photocatalyst than ru-
tile [32.161]. Studies have shown that this chemical
activity of anatase TiO2 translates into an increase in bi-
ological activity [32.70, 126]. The crystalline structure
of nanoparticles can be identified by x-ray diffrac-
tion, which is based on the constructive interference
of monochromatic x-rays and a crystalline sample. The
crystallite size of nanopowders can be determined from
the most intense peaks of the XRD patterns according
to the Scherrer equation [32.132].

32.4.4 Overall and Surface Elemental
Analysis

Several studies have shown that nanomaterials of
similar size but differing chemical composition can
have varying biological effects [32.115, 116]; For ex-
ample, Lanone et al. demonstrated that, among 24
nanoparticles of similar shape and size but various
elemental composition, copper- and zinc-based nano-
materials had the greatest toxicity to human pulmonary
cells [32.116]. Furthermore, in addition to the pri-
mary material structure, impurities in nanomaterials
may also be responsible for biological effects; For
example, Pulskamp et al. showed that impurities as-
sociated with commercial nanotubes caused toxicity
in cells [32.112]. Nanomaterials may be contaminated
during the preparation process by more toxic, surface-
adsorbed surfactants used, for example, to control the
size and shape of the particles [32.162]. Unfortunately,
manufacturers are not willing to share the details of their
proprietary manufacturing methods; hence, in nanotox-
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Fig. 32.12 EDS spectra of TiO2 nanoscale particles (NPs)
coated with alumina plus simethicone and uncoated ZnO
particles (after [32.18])

icity studies, researchers need to investigate the purity
of nanoparticles independently.

For environmental and health studies, the nanopar-
ticles should be free from reactants used in the
synthetic steps. Otherwise, toxic impurities can dras-
tically change the results of the toxicity study; For
example, for nickel ferrite particles coated with oleic
acid prepared by the polyol method, the cytotoxicity
significantly increased when one or two layers of oleic
acid were deposited as compared with particles without
oleic acid prepared by ball milling [32.163].

Moreover, particle surface coatings intentionally de-
signed to optimize use in applications may end up
defining the overall toxicity of the nanomaterial. Stud-
ies on a number of commercial formulations of TiO2
particles indicate that different surface treatments can
influence the pulmonary toxicity [32.164]. Surface coat-
ings can render noxious particles nontoxic, while less
harmful particles can be made highly toxic; For ex-
ample, in the case of TiO2 nanoparticles, silica is
often used to block access to the titania surface in
a solution environment, and consequently reduce its re-
activity [32.165, 166].

The overall chemical composition of nanopar-
ticles can be analyzed by energy-dispersive x-ray
spectroscopy (EDS) to evaluate impurities; for more
surface-specific information, x-ray photoelectron spec-
troscopy (XPS) is an ideal tool. EDS is commonly
coupled with SEM or TEM, where an electron beam
scans the surface of the sample and causes emission of
x-rays characteristic of the elements present [32.128].
By analyzing the energy of the x-rays from the el-
ements, qualitative analysis of the sample can be
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performed in a few minutes (Fig. 32.12). However, EDS
has some limitations; For example, elements lighter
than sodium are not detectable, and closely spaced lines
may not be resolved due to poor energy resolution of the
detector [32.128]. Furthermore, EDS does not provide
information about chemical bonding. To obtain such
detailed chemical characterization of the nanoparticle
surface, XPS is often performed.

XPS uses x-rays of sufficient energy to eject core
electrons from the sample’s various atoms and then
measures the energy of the ejected electrons. In addition
to chemical state information, XPS spectra can be quan-
tified to provide additional semiquantitative elemental
analysis, offering far greater surface sensitivity than
EDS or conventional elemental techniques [32.133].
XPS is among the most common analytical meth-
ods used in determining the chemical composition of
a nanoscale particle’s surface. Alternative surface chem-
ical analysis tools for characterization of nanoparticles
have been presented recently by Bear et al. [32.129].

Analyses by EDS and XPS can provide important
information in terms of the chemistry of nanoparti-
cles. Unfortunately, in these cases the samples are
analyzed under a vacuum, and thus the results are
difficult to apply to the complex environments rele-
vant to nanomaterial safety. ICP-MS has been used as
a detection method for nanoparticles in environmental
materials [32.134, 135]. It offers sensitive and accurate
determination of chemical elements in aqueous media
as well as biological samples. A common approach
for quantification of nanoparticles by ICP-MS is based
on the determination of the total elemental concentra-
tions in a nanoparticle suspension after sample digestion
by acid. In an ICP-MS system, a high-temperature
argon plasma creates elemental ions, which are sepa-
rated according to their mass-to-charge ratios, enabling
identification and quantification of unknown materials.
Another common technique for nanoparticle character-
ization in solution is dynamic light scattering, which
determines the hydrodynamic size.

32.4.5 Dynamic Light Scattering (DLS)

Dynamic light scattering (DLS) involves monochro-
matic light that interacts with particles undergoing
Brownian motion in a fluid. The motion is size depen-
dent (e.g., larger particles move more slowly through
the fluid), and this causes a shift in the frequency of the
scattered light (Doppler shift). Larger particles, which
have lower velocities, cause lower frequency shifts,
whereas smaller particles that move rapidly through

the fluid cause higher frequency shifts. Therefore, mea-
suring the frequency shift provides the movement of
the particles and their hydrodynamic size distribution.
Moreover, DLS measurements of nanoparticle hydrody-
namic diameter can be used as a method for monitoring
the stability of nanoparticle solutions [32.136]. When
the stability of the nanoparticles is changing and
aggregates/agglomerates form, the DLS spectrum of hy-
drodynamic diameter increases. DLS can also be used
for determining the quality of nanoparticle dispersion
by directly measuring the zeta potential, which is a mea-
sure of particle interaction. The particles will repel
each other and resist the formation of clusters when
their zeta potential is large, above +30 mV or below
−30 mV [32.137].

Well-characterized hydrodynamic size and zeta po-
tential of nanoparticle dispersions are imperative for
toxicological studies. As a result, The International
Alliance for NanoEHS (environment, health, safety)
Harmonization (IANH) decided to perform round-robin
tests on the hydrodynamic size and zeta potential of
monodisperse gold, silica, polystyrene, and agglomer-
ated/aggregated ceria nanoparticles [32.167]. Roebben
et al. concluded that, for highly uniform nanoparticles,
DLS provided an excellent measure of hydrodynamic
diameter. Therefore, the IANH DLS test protocol can
be applied to the characterization of nearly monodis-
perse nanoparticle dispersions in ecotoxicity studies.
However, polydisperse samples, such as ceria that
consisted of nanoparticle aggregates, showed large lab-
to-lab variations in measured hydrodynamic diameters.
Sonication was a difficult process to standardize, and
without this preparation the highly aggregated mater-
ials sedimented to the bottom of solution vials, yielding
nonuniform solutions for DLS analysis. Methods to pro-
duce homogeneous dispersions of nanomaterials should
use sonication cautiously and with detailed procedures
to ensure reproducibility across laboratories [32.167].
There was also a significant difference between round-
robin participants in reported zeta potential data.
Therefore, IANH protocols for zeta potential require
further improvement to enable accurate and precise
measurements.

The surface charge of nanoparticles, which can be
approximated by zeta potential measurement, and sur-
face composition are not the only surface chemistry
properties that need to be measured for safety re-
search. According to Powers et al. surface chemistry
includes also surface energy (or wettability), solubility,
catalytic properties, surface adsorption and desorption
of molecules from solution, etc., and quantification of
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these characteristics can be difficult [32.127]. Pow-
ers et al. listed several common methods for analysis
of nanoparticle surfaces that included, for example,
contact angle and microcalorimetric measurements for
surface energy and reactivity.

In summary, currently, the research literature on
nanomaterial safety is inconclusive due to the lack of
sufficient detail about characterization and the dearth
of standardized laboratory methods for characteriza-
tion. The IANH developed protocols for measuring
nanoparticle hydrodynamic diameter and performed
round-robin experiments to ensure that the protocols are
reproducible. This one example needs to be replicated

and expanded to more critical physiochemical param-
eters. With such standard tools, it would be possible to
integrate the vast amount of safety data to provide a cor-
relation of nanoparticle properties to their toxicological
effects.

One topic not highlighted yet is the importance
of completing characterization studies directly on the
most relevant engineered nanomaterials, i. e., those
found directly in consumer products [32.31]. In the
next section, an overview of the challenges in risk
evaluation of sunscreen nanoparticles is presented as
a case study for nanomaterial characterization within
consumer products.

32.5 Special Case – Sunscreens

In sunscreens, the size-dependent optical properties
of TiO2 and ZnO nanoparticles make them trans-
parent at visible wavelengths; thus, when applied to
the skin, they form clear films as opposed to white,
cloudy applications. Moreover, both materials have
very strong absorbance and scattering at UVB and
UVA wavelengths (290–320 and 320–400 nm, re-
spectively), which makes them effective at protecting
skin from the ultraviolet radiation present in sun-
light [32.20, 168–170]. SEM and TEM images of
TiO2 and ZnO sunscreen particles are presented in
Fig. 32.13.

32.5.1 Regulatory Policy as Related
to Sunscreens

In the USA, product labeling regulations have specifi-
cally addressed the issue of pigment size in the list of
suncare ingredients. Briefly, manufacturers need only
list the chemical composition rather than the diameter,
form, or crystalline structure of the pigment. Histori-
cally, micronized titania and zinc oxide particles have

100 nm100 nm

a) b)

Fig. 32.13a,b TEM images of (a) TiO2 and (b) ZnO sun-
screen nanoparticles (after [32.18])

been used in sunscreens for decades. Because of their
large size, they scatter visible light and produce a white
and chalky appearance when applied. When manufac-
turers began to shrink the particle size of these inorganic
pigments, the US Food and Drug Administration (FDA)
reviewed their requirements for labeling of personal
care product ingredients. They ruled in 1999 that mi-
cronized titania and zinc oxide was an appropriate
terminology for sunscreen pigments and that it was
not necessary to specify whether pigments were truly
nanoscale [32.171]. As a result, consumers do not know
from the label when the products they are using contain
nanoscale materials.

32.5.2 Photocatalytic Activity of TiO2
and ZnO Nanoscale Particles

While the label may not convey the particle size of
sunscreen pigments, this does not mean that such in-
formation is irrelevant. One specific area of concern
has been the native photocatalytic activity of sunscreen
pigments. While they are effective at absorbing ultra-
violet light, some forms of both titania and zinc oxide
are also effective at transforming their photoexcita-
tions into surface-reactive species that generate highly
oxidizing products. As a result, in addition to sun-
care products, nanoscale TiO2 is also of interest in the
ultraviolet-mediated oxidation of organic pollutants and
wastewater contaminants [32.172–176]. These applica-
tions rely on the ability of TiO2 nanoparticles to form
reactive oxygen species (ROS) such as hydroxyl (OH•),
superoxide (O

•−
2 ), and hydroperoxy (HOO•) radicals

and hydrogen peroxide (H2O2) when excited with UV
light [32.177–180].
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Critical for these remediation examples is the ob-
servation that the generation of ROS by certain forms
of nanoscale titania is catalytic: a single particle of tita-
nia can generate many hundreds of ROS species under
constant ultraviolet illumination [32.108]. While less
studied, nanoscale ZnO materials can also catalyze the
photooxidation of organic species in water, and may be
more efficient photocatalysts than TiO2 [32.181–188].
However, since zinc oxide is more soluble than titania,
the lifetime of these materials is more limited than tita-
nia for some applications. However, since zinc oxide is
more soluble than titania, the lifetime of these materials
is more limited than titania for some applications.

32.5.3 Health Effects of Nanoscale Titania
and Zinc Oxide

Reactive oxygen species are generally acutely toxic to
living systems because they rapidly react with many
cell components (e.g., DNA, proteins, and lipids) and
lead to cell damage [32.189–191]. In light of their po-
tential as photocatalytic materials, it is not surprising
that toxicology studies have shown that TiO2 and ZnO
nanoparticles have an adverse effect on cellular func-
tion when illuminated by UV light. Some studies have
shown that TiO2 nanoparticles are toxic only in the
presence of UV light [32.192, 193], while other studies
have shown that in the presence of UV irradiation the
toxicity is higher than in the dark [32.194–198]. ZnO
nanoparticles have also shown photocatalytic effect on
cells [32.197, 199–201].

Whether these acute cell effects are relevant to
a product applied to skin depends in part on whether the
particles translocate across the dermis; studies of TiO2
and ZnO pigments appear to indicate that, for healthy
and intact skin, these nanoscale materials do not pene-
trate the dermis but can end up in hair follicles, sweat
glands, or skin folds [32.74, 75, 202–205]. However,
at the seaside, where sunscreens are more likely to be
used, the action of sun, water, and sand can irritate or
even harm the skin by hydration, infrared (IR) irradia-
tion, peeling or inflammation, consequently enhancing
its permeability [32.206]. Furthermore, recent studies
demonstrated that the state of skin can have significant
effects on its barrier performance [32.78, 80, 85–89].
Therefore, there is still uncertainty regarding skin pen-
etration of sunscreen zinc oxide and titanium dioxide
nanoparticles under a variety of real-life conditions.
Moreover, to fully assess the toxicological impact of
sunscreen nanoparticles, future studies will need to fo-
cus on the potential for ROS generation by TiO2 and

ZnO nanoparticles lodged in hair follicles [32.204]. In
addition to the potential photocatalytic effect on cells,
ZnO and TiO2 nanoparticles may cause loss of the ul-
traviolet protection efficacy of sunscreens, due to the
enhanced photooxidative degradation of organic sun-
screen components [32.165].

Also important in understanding the connection
between chemical and biological reactivity are the
physicochemical characteristics such as particle size
and surface area, crystal structure, surface chemistry,
and particle aggregation/agglomeration tendency; For
example, photochemical reactivity is quite sensitive to
the phase composition of TiO2, with rutile materials be-
ing orders of magnitude less chemically reactive than
equivalently sized anatase systems. This trend in chem-
ical reactivity parallels the results of acute in vitro
cell toxicology studies, which find anatase to be more
toxic than rutile for a range of diameters [32.126].
Additionally, the chemical reactivity of nanoscale ox-
ides can be reduced by modifying their surface with
inert inorganic materials such as silica (SiO2) or alu-
mina (Al2O3), and/or by doping with manganese or
vanadium [32.165, 207–211]. Due to the great variety
of different nanoparticle forms of TiO2 and ZnO that
exhibit different chemical behaviors, it is difficult to
generalize the potential ROS generation capacity of in-
organic pigments used in sunscreens [32.212].

32.5.4 Materials Derived from Consumer
Products and Their Photochemical
Behavior

FDA regulations do not require that labels provide in-
formation about the diameter, form or photoactivity
of inorganic sunscreen ingredients [32.171]; therefore,
consumers and researchers have little information about
what people are exposed to. Compared with studies
of model titania and zinc oxide pigments, there has
been comparatively little systematic study of the prop-
erties of pigments derived directly from commercial
products.

Hidaka et al. showed that ZnO pigments extracted
from sunscreen products commercially available in
Japan, when illuminated by UV, caused DNA plasmid
strand breaks via the generation of ROS [32.199]. The
same pigments were also photoactive toward degrada-
tion of phenol. A similar effect of rapid photodegra-
dation of methylene blue dye by sunscreen-isolated
zinc oxide pigments (uncoated, dimethicone coated, and
mixtures of ZnO and TiO2 particles) was presented
by Rampaul et al. [32.209]. In the area of the poten-
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tial hazard of sunscreen pigments, ZnO has been less
studied than TiO2 [32.213]. Titania is a more com-
monly used photocatalyst than ZnO, and as a result
there has been more concern regarding this material.
DNA damage induced by TiO2 nanoparticles extracted
form sunscreens was first noted in 1997 by Dunford
et al. [32.214]. Then, Rampaul et al. found that some
TiO2 particles isolated from sunscreens caused signifi-
cant cellular damage to cultured human skin and other
animal epithelium cells [32.209]. Recently, Buchalska
et al. tested the photoreactivity of TiO2 sunscreen com-
ponents toward degradation of azur B and oxidation of
α-terpinene and showed high efficiency of singlet oxy-
gen formation [32.215].

These studies largely relied on pure pigments; it is
possible that the other constituents in sunscreens may
modify or augment the nanoparticle effects. Full sun-
screen, including TiO2 pigments, has also been tested
toward the formation of oxygen- and carbon-centered
radicals using spin-trap electron paramagnetic reso-
nance (EPR) spectroscopy by Brezova et al. They con-
cluded that some sunscreens generated ROS [32.178].
These observations were confirmed by Barker and
Branch, who showed that sunscreens containing tita-
nium dioxide and zinc oxide nanoparticles were the
primary cause of the rapid corrosion of paint surfaces
on steel roofing via the production of reactive oxy-
gen species [32.216]. Furthermore, Lewicka and Colvin,
who evaluated the photochemical properties of whole
sunscreen emulsions that contained nanoscale compo-
nents and the inorganic particles derived from these
sunscreens using several assays such as dichlorofluo-
rescein fluorescence, decolorization of Congo red dye,
and 5,5-dimethyl-pyrroline N-oxide (DMPO) spin-trap
electron paramagnetic resonance spectroscopy, showed
that samples with nanoscale ZnO materials were more

photoactive than the samples that contained TiO2
nanoparticles [32.217].

32.5.5 Physicochemical Characteristics
of Sunscreen Nanoscale Materials

A central challenge in assessing the risk of inorganic
pigments used in sunscreens has been the great diversity
of material types present: both titania and zinc oxide are
used, often with different sizes and forms, with different
surface coatings and possibly distinct crystal struc-
tures [32.18]. Recently, Lewicka et al. characterized the
inorganic pigments derived from nine commercial prod-
ucts purchased in the USA [32.18]. Nanoscale pigments
were apparent in evaporated sunscreen residues from
all items that listed TiO2 or ZnO as active ingredients,
and these materials could be isolated further for anal-
ysis via water or alcohol washes. Their dimensions,
shape, phase, and elemental composition were deter-
mined using a suite of methods including TEM, SEM,
XRD, EDS, and inductively coupled plasma optical
emission spectroscopy. Wurtzite zinc oxide pigments
were rod-like in shape with short axes under 40 nm
and longer dimension ranging from tens to hundreds
of nanometers. TiO2 materials were generally rutile
and exhibited needle-like or near-spherical shapes; they
were consistently smaller than the zinc oxide mater-
ials, with average length of 25 nm and widths ranging
from 7 to 16 nm. The physical and chemical features of
pigments derived from commercial sunscreens were no-
tably similar to two commercial sources of TiO2 and
ZnO nanoparticle powders obtained from EMD and
BASF [32.18]. Therefore, in some cases, these pure ma-
terials may serve as surrogates for ongoing research
evaluating the transport, fate, and toxicology of these
widely applied engineered nanomaterials.

32.6 Conclusions

Adequate characterization of manufactured nanomate-
rials in toxicity, ecotoxicity, and exposure studies is
central to clear definition and management of their
risks. Diameter, shape, aggregation state, and surface
area are some of the basic parameters that should
be measured, ideally on the most relevant samples in
media that reflect the biological or environmental ques-
tions of interest. Typically, such characterization should
utilize a variety of techniques that provide comple-
mentary information about nanoparticles before in vitro

or in vivo testing. Moreover, standardized tests and
protocols for nanoparticle characterization need to be
established for accurate assessment of their physio-
chemical properties. Ultimately, such data could be
held in a public-access nanoparticle safety database,
which in addition to listing the material composition
(e.g., ZnO) could also include its characteristics (e.g.,
size, shape) and the results of toxicity tests. Then,
by asking a specific question (e.g., “How hazardous
are ZnO nanoparticles of a certain size and form?”),
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the database would provide the result of an exper-
iment that was done on the safety of this specific
material [32.11]. Even though characterization of nano-
materials can be complicated, time consuming, and

expensive, it is vital in order to define exactly what
manufacturers, consumers, and the environment are ex-
posed to during the production, application, and release
of nanomaterials.
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