
Chapter 7

Cryptanalysis of Chaotic Ciphers

Ercan Solak

Işık University
Istanbul, Turkey
ercan@isikun.edu.tr

1 Introduction

Cryptanalysis is an integral part of any serious effort in designing secure
encryption algorithms. Indeed, a cryptosystem is only as secure as the most
powerful known attack that failed to break it. The situation is not different
for chaos-based ciphers. Before attempting to design a new chaotic cipher, it
is essential that the designers have a thorough grasp of the existing attacks
and cryptanalysis tools.

There is a large variety of chaotic ciphers proposed in the literature. Con-
sequently, their cryptanalyses come up with equally diverse attacks. Each
attack tries to exploit weaknesses that are specific to the particular chaotic
cipher. Thus, it is somewhat difficult to devise common non-trivial attacks
that can be applied against a range of chaotic ciphers. On the other hand,
such diversity of designs works against the security of the chaos-based ciphers.
Rather than using well-analyzed and tested building blocks, there seems to
be a general tendency to try novel and fancier structures, thus opening new
venues for attacks.

If chaos cryptography is to make serious contributions to mainstream cryp-
tography, we need to have more of analysis and less of design. Rather than
trying to come up with new and interesting ways to incorporate chaos into
encryption, the research effort should try to establish ground rules and prim-
itive building blocks for the use of chaos in cryptography. This can only come
through a rigorous cryptanalysis of existing proposals and by identifying the
common weaknesses and pitfalls.

There have been a few noteworthy efforts in this direction. In particu-
lar, [Alvarez and Li, 2006] offer general observations about the flaws and
weaknesses found in many chaotic encryption schemes. [Amigó et al., 2007,
Masuda et al., 2006, Kocarev and Jakimoski, 2003, Dachselt and Schwarz,
2001] identify the building blocks that can be used in chaotic ciphers
and random number generators. [Anstett et al., 2006] draws parallels be-
tween identifiability of dynamical systems and cryptanalysis. [Li et al., 2008]

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 227–256.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

ercan@isikun.edu.tr

228 E. Solak

establishes general attacks that can be launched against permutation-only
chaotic image encryption algorithms.

In many proposals for chaotic ciphers, we observe a common tendency to
use a subset of statistics in order to demonstrate the strength of the encryp-
tion. Although a necessary condition, good statistics are far from establishing
good encryption. Indeed, any mildly sophisticated function produces good
confusion and diffusion when applied in enough number of rounds. What
statistics can not do, however, is hide the algebraic weaknesses inherent in
the cipher. For example, even a linear block cipher will pass some easy sta-
tistical tests. Yet, a linear cipher can trivially be broken.

Therefore, it is crucially important to analyze the algebraic structure of a
chaotic cipher and identify weak transformations.

A particular class of attacks against chaos based ciphers aims at bypassing
the chaotic part of the cryptosystem. In this class, the encryption algorithm is
expressed in an equivalent form in which the chaotic subsystems are replaced
by a set of secret maps or parameters. In this way, the algebraic weaknesses
in the rest of the algorithm are highlighted. This approach makes the whole
system more amenable to cryptanalysis. In this chapter on the cryptanaly-
sis of chaos-based ciphers, we illustrate the power of algebraic attacks on a
number of different chaotic encryption algorithms.

In the next section, we examine the case of “inadvertently” linear ciphers.
Such a cipher uses the nonlinear nature of chaos to generate some key pa-
rameters. However, the transformation from the plain image to the cipher
image is linear.

The final part of the chapter illustrates the power of algebraic analysis in
breaking chaotic ciphers.

2 Chaotic Linear Ciphers

Before we identify a few chaotic ciphers that turns out to be linear, we briefly
show how a linear block cipher can be trivially broken.

Assume P and C are n-bit plaintext and ciphertext blocks, respectively.
If the encryption transformation from P to C is linear, then it can be repre-
sented as a binary matrix multiplication

C = AP, (1)
where the matrix A is the secret mapping. For a known plaintext block P,
an attacker can construct n linear equations

c1 = a11p1 ⊕ a12p2 ⊕ · · · ⊕ a1npn,

c2 = a21p1 ⊕ a22p2 ⊕ · · · ⊕ a2npn,

...
cn = an1p1 ⊕ an2p2 ⊕ · · · ⊕ annpn

for the entries aij of A.

7 Cryptanalysis of Chaotic Ciphers 229

Using a set of n distinct known plaintext-ciphertext pairs, an attacker can
construct n2 linear equations for n2 secret entries of A. Solving these linear
equations, the attacker easily breaks the cipher.

A common weakness in many chaotic ciphers is to use a set of well-known
chaotic systems with secret system parameters to generate a linear transfor-
mation A, which is then used as in (1). This creates a complex relationship
between the chaotic system parameters and the resulting linear transforma-
tion. However, the attacker bypasses this complexity by attacking the linear
transformation rather than trying to reveal the secret system parameters.
The situation is illustrated in Fig. 1.

Chaotic
dynamics

x(0), θ

Initial states
and parameters

as keys

A × C

ciphertext

P plaintext

Fig. 1 A general structure of a chaotic linear block cipher.

Example 1. In the chaos-based image cipher proposed in [Guan et al., 2005],
the encryption process consists of two parts. In the first part, the algorithm
takes an image P and shuffles its pixels using Arnold Cat map. The second
part of the algorithm changes the gray levels of the pixels using Chen’s chaotic
system.

Representing the image as a vector, the shuffling transformation can be
represented as

S = AP,

where A is a secret permutation matrix. For the second step of the encryption,
Chen’s chaotic system is used with secret parameters and initial values to
generate a key vector, K. Thus, the encryption can be written as

C = AP ⊕ K. (2)

Clearly, (2) is an affine linear equation. Assume that the attacker knows two
plaintext-ciphertext image pairs (P1, C1) and (P2, C2). Let us define the
differences as ΔP = P1 ⊕ P2 and ΔC = C1 ⊕ C2. Using (2), the attacker
calculates

ΔC = AΔP

Going from ΔP to ΔC, there is only shuffling by the Arnold Cat map, which
is a linear operation.

230 E. Solak

For a number of known plaintext-ciphertext differences, the attacker can
find the secret A. Once he reveals A, he uses just one known pair (P, C) to
calculate the secret K as

K = C ⊕ AP.

It is possible to improve the attack if one allows for chosen plaintexts. For
more details, see [Çokal and Solak, 2009].

Although the attack is quite simple, it can be applied to a number of chaotic
ciphers with only a few adaptations.

In [Patidar et al., 2009], a plaintext image P is encrypted in four steps.
The first and the last steps involve adding chaotically generated key images
K1 and K2. The second step linearly diffuses the pixel values in horizontal di-
rection. The third step does the same in vertical direction. The two diffusions
can be combined into one matrix multiplication. Thus, the whole encryption
process becomes

C = A(P ⊕ K1) ⊕ K2.

Clearly, this is a linear transformation. Moreover, the parameter A is not
secret. This makes the whole scheme trivially weak. More details on the
attack can be found in [Rhouma et al., 2010].

A general class of chaotic linear ciphers are shuffling-only image ciphers. In
many cases, the shuffling parameters are generated by iterating one or more
chaotic systems starting with secret initial conditions and parameters. In
attacking these systems, the attacker aims to reveal the intermediate shuffling
parameters rather than the chaotic system parameters. A recent example of
such a cipher is proposed in [Huang and Nien, 2009], which is cryptanalyzed
in [Solak et al., 2010b]. A general approach in attacking substitution-only
image ciphers is given in [Li et al., 2008].

3 Algebraic Attacks

The mapping from the chaotic system parameters and initial conditions to its
trajectories is highly nonlinear and complex. Still, when a chaotic system is
used in encryption, the algebraic structures that it induces might be amenable
to cryptanalysis. In the following discussion, we analyze three chaotic ciphers
in order to illustrate the power of algebraic analysis in attacks.

3.1 Reconstructing Small Permutations

We first give a few facts about the powers of permutations over finite sets.

Definition 1. [Fraleigh, 2002] An ordered orbit of a permutation π on a
finite set is the ordered tuple (a0, a1, . . . , an−1) such that π(a0) = a1, π(a1) =
a2, · · · , π(an−2) = an−1, π(an−1) = a0. n is the length of the ordered-orbit.

7 Cryptanalysis of Chaotic Ciphers 231

Theorem 1. [Fraleigh, 2002] A permutation defined on a finite set partitions
the set into disjoint ordered-orbits.

Remark 1. Given a permutation π defined on a set V, determining its orbits
is straightforward. We start from any element a0 ∈ V and form the orbit
elements as (a0, π(a0), π2(a0), . . . , πn−1(a0)) until πn(a0) = a0. We then start
over with an element not included in the orbits found so far. We continue
forming orbits until we exhaust all the elements in the set V .

An example of a permutation over the set {a0, a1, . . . , a10} is given in Fig. 2.
Note that there are two orbits of lengths 5 and 6.

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

Fig. 2 A permutation with two orbits of lengths 5 and 6.

Note that if a0 is an element in an orbit of length n in the permutation π,
then, for all integers i,

πi(a0) = πi modn(a0).

Lemma 1. Let α = (a0, a1, . . . , an−1) be an orbit of length n in the permu-
tation π, where gcd(n, r) = v. Then, α is split into v equal length orbits in
πr.

Lemma 2. Let β = (b0, b1, . . . , bt−1) be the only orbit of length t in the per-
mutation πr. Then,

π(bj) = b(j+r∗)mod t, 0 ≤ j < t,

where r∗ is the multiplicative inverse of r in mod t, i.e. rr∗ ≡ 1 (mod t).

Remark 2. An immediate result of Lemma 1 and Lemma 2 is that if we have
an orbit α = (a0, a1, . . . , an−1) in π such that gcd(n, r) = 1, then in πr, α is
not split but is rather shuffled as

β = (a0, ar mod n, a(2r)mod n, . . . , a((n−1)r)mod n).

232 E. Solak

Lemma 3. Let β = (b0, b1, . . . , bt−1) be one of the q orbits of length t in the
permutation πr. Let v be the least divisor of r larger than 1. Assume that
q < v. Then,

π(bj) = b(j+r∗)mod t, 0 ≤ j < t, (3)

where r∗ is the multiplicative inverse of r in mod t, i.e. rr∗ ≡ 1 (mod t).

Lemma 4. Let β(1) = (b(1)
0 , b

(1)
1 , . . . , b

(1)
t−1) and β(2) = (b(2)

0 , b
(2)
1 , . . . , b

(2)
t−1) be

two orbits of length t in πr. If π(b(1)
i) = b

(2)
j for some i, j then

π(b(1)
(i+k) mod t) = b

(2)
(j+k) mod t, 1 ≤ k < t.

For the proofs of these lemmas, see [Solak and Çokal, 2009].
An illustration of how orbits are shuffled and split in powers of permutation

is given in Fig. 3. The graph shows the orbit structure of π2 of the permutation
π given in Fig. 2. Note that the length 5 orbit of π is only shuffled while its
length 6 orbit is split into two length 3 orbits.

a0

a1

a2

a3

a4

a5

a7

a9

a6

a8

a10

Fig. 3 Orbits of π2 for the permutation π given in Fig. 2.

We know apply these properties of permutations to design algebraic attacks
against two chaotic block ciphers.

3.2 Algebraic Attack on a Cryptosystem Based on
Discretized Two-Dimensional Chaotic Maps

In the chaotic cipher proposed in [Xiang et al., 2007], plaintext and ciphertext
sequences are partitioned into 16-bit blocks Pi, Ci, 1 ≤ i ≤ n, as

Plaintext : P1P2 · · ·Pn,

Ciphertext : C1C2 · · ·Cn.

7 Cryptanalysis of Chaotic Ciphers 233

The key of the cryptosystem is the collection of the parameters (r, m, t, C0,
Ks, Kc). In [Xiang et al., 2007] this collection is defined as the master key.
The master key is composed of the number of rounds r, the shift amount
m, the number of iterations t, the initial value C0, the subkey Ks and the
collection of TDCM parameters Kc. Below, we explain how each part of the
key is used in encryption.

A block key Ki is used in the encryption of plaintext block Pi. Initially,
we assign

K0 = Ks. (4)

Before the encryption of block Pi, Ki is first updated as

Ki =
{

Ki−1 ⊕ Ci−1 if Ci−1 �= Ki−1,
Ki−1 if Ci−1 = Ki−1.

(5)

The encryption of the ith block is given as

Ci = E(Ki, Pi), (6)

where the function E involves the following round operations.

v0 = Pi,

vj = σ(vj−1 ⊕ ROL(Ki, jm)), 1 ≤ j ≤ r, (7)
Ci = vr.

Here, vj is the output of round j. Thus, vr becomes the ciphertext. ROL(·, jm)
denotes the circular left rotation of its argument by jm bits. The amount of
circular left shifts depends on the number of rounds r and is given as

m =
{
�16/r� r ≤ 16,
1 else. (8)

The round function σ is a composition of a number maps and is given as

σ = w ◦ z−1 ◦ TDCMt
Kc

◦ z ◦ S. (9)

In (9), S represents the S-box substitution. S invertibly maps between 16-
bit quantities. The S-box is designed to have desirable nonlinear properties,
and its value is fixed (not secret) for the algorithm.

The map z is an invertible function that maps from 16-bit quantities to
2D vectors of integers. It maps the unsigned integer values corresponding to
each byte of its argument to one of the integer coordinates in 2D discrete
state space. The aim of z is to prepare a 2D initial state out of a given 16-bit
quantity.

TDCMt
Kc

denotes the t-times iteration of TDCM. Kc denotes the collection
of the chaotic system parameters. The choice of the chaotic map is part of the
algorithm design. In [Xiang et al., 2007], the standard map, the generalized

234 E. Solak

cat map, and the generalized baker map are considered. The chaotic map
must be bijective in order to have an invertible encryption operation. The
output of the chaotic system is passed through z−1 to map the final 2D state
of TDCM to a 16-bit number.

The last mapping in w in (9) denotes the byte swap operation.
After the encryption of block i, the block key is once more updated as

Ki ← ROL(Ki, rm). (10)

Since Ki is 16-bits, the effective amount of rotation on Ki in this step is rm
mod 16.

We now give a detailed cryptanalysis of the cipher.
The relation (8) fixes m once r is known. This removes the freedom in

the choice of m, and effectively reduces the key length by 8 bits. Therefore,
the shift amount m must be treated not as a key but rather as an internal
parameter that is derived from the key.

Another reduction in effective key length is due to the way the secret pa-
rameter C0 is used. Before the encryption of the first 16-bit block, the subkey
Ks is updated by using (5). Hence, the value of K1 used in the encryption
of P1 is Ks ⊕ C0. Consequently, we can treat Ks ⊕ C0 as one secret parame-
ter rather than two distinct parameters, Ks and C0. Indeed, any pair of C0

and Ks values that yields the same XOR value results in identical encryption
functions. This fact reduces the effective key length by another 16 bits. In the
subsequent sections, we assume without loss of generality that C0 = 0x0000.

After noting these reductions in the effective key space, we now give an
algebraic break of the cipher. We first demonstrate how an attacker can reveal
Ks without having access to the rest of the key parameters.

In out attacks, we assume that the attacker knows the number of rounds r.
This is not a very restrictive assumption. Since r is represented with 8 bits, it
can only take one of 255 possible nonzero values. The attacks that we develop
in this and the next section have very low computational requirements. In the
case when the attacker does not know the value of r, he tries all 255 possible
values with the attacks described here.

Revealing Ks

To illustrate the method of the attack, we only analyze the case when
rm ≡ 0 mod16. For the details of the attack for the case rm �≡ 0 mod 16,
see [Solak and Çokal, 2008].

We assume that the attacker does not know the TDCM parameters, so he
does not know the function E in (6).

Assume that the first two ciphertext blocks are the same and given as

C1 = C2 = j. (11)

7 Cryptanalysis of Chaotic Ciphers 235

If j = Ks, using (4), (5), (6) and (10), we have

j = E(Ks, P1), j = E(Ks, P2).

So, by the invertibility of E for fixed Ks, we have P1 = P2.
If j �= Ks, we have

j = E(Ks, P1), j = E(Ks ⊕ j, P2).

In this case, most probably P1 �= P2. The difference in two cases indicates
that the equality of P1 and P2 is a good test on whether Ks = j.

The attack on Ks proceeds as follows. The attacker chooses a 16-bit num-
ber j. He requests plaintexts for a two-block ciphertext C1C2 chosen as in
(11). He compares these plaintext blocks P1 and P2. If they are equal, then
j is a candidate for the secret Ks. The attacker repeats this for all the 16-bit
j values and records candidates for Ks. A total of 216 − 1 trials are made.

It may happen that the attacker obtains P1 = P2 even when j �= Ks. This
is because we might have E(K1, P) = E(K2, P) for some K1 �= K2, and P. In
order to eliminate the false keys, the attacker performs the following further
tests.

Assume that the attacker has two candidates j1 and j2 for the subkey Ks.
From his previous attempt at determining the keys, the attacker knows P1

and P2 which satisfy

j1 = E(Ks, P1), j2 = E(Ks, P2). (12)

The attacker now chooses the new ciphertext blocks C1 and C2 as C1 = j1
and C2 = j2. He obtains the corresponding plaintext blocks P 1 and P 2.
There are two cases for the validity of j1. Let us see how P 1 and P 2 differ
for each case.

Case 1: j1 = Ks : Using (4), (5), (6) and (10), we find that

j1 = E(Ks, P 1), j2 = E(Ks, P 2).

Comparing this with (12), we obtain P 1 = P1 and P 2 = P2.
Case 2: j1 �= Ks : This time we find,

j1 = E(Ks, P 1), j2 = E(Ks ⊕ j1, P 2).

Comparing this with (12), we conclude P 1 = P1 and P 2 is a random 16-bit
number.

In both cases, P 1 = P1. However, only in the first case we are guaranteed
to have P 2 = P2. In the second case, we might have P 2 = P2 even when
j1 �= Ks. So, if P 2 �= P2 the test is conclusive and j1 �= Ks. If P 2 = P2 the
test is inconclusive.

This test gives the attacker a method to eliminate the false subkeys
among the candidates. Assume that attacker has determined q candidates,

236 E. Solak

{j1, j2, · · · , jq} for the subkey Ks. To eliminate the false subkeys, he chooses
a pair of candidates ji1 and ji2 and applies the test as explained. In this way,
he eliminates ji1 if the test is conclusive. Otherwise, he chooses a different
pair and repeats the test. The attack on Ks successfully terminates when
there remains only one candidate for the subkey.

Once the attacker knows Ks, he proceeds to reveal the other parameters t
and Kc. We assume that the attacker already knows the number of rounds r.
Hence, by the relation (8), he also knows the shift amount m. The only secret
parameters to be revealed are Kc, the collection of the TDCM parameters
and t, the number of times the TDCM is iterated. When the block key Ki

and r are fixed, the parameters Kc and t characterize the function E.
A brute force attack on Kc and t has to try all their values against a

known plaintext-ciphertext pair. We now give a general attack that requires
on the order of 216 chosen ciphertext/plaintext blocks and very little amount
of computation. Moreover, the computational complexity of our attack does
not depend on the lengths of the keys Kc and t.

Sampling E

We first note that, for a fixed Ki of his choice, the attacker can choose either
one of C or P in the relation

C = E(Ki, P), (13)

and obtain the other. To see how this can be done, let us write the encryption
equations for a sequence of two blocks of plaintext, P1P2.

C1 = E(Ks, P1),
C2 = E(ROL(Ks, rm) ⊕ C1, P2). (14)

Here, we assume that ROL(Ks, rm) ⊕ C1 �= 0.
If C1 is chosen as C1 = Ki ⊕ ROL(Ks, rm), (14) becomes

C2 = E(Ki, P2).

So, the attacker first chooses a single block ciphertext with C1 = Ki ⊕
ROL(Ks, rm) and obtains the plaintext P1. If he wants to choose C and
obtain the corresponding P in (13), he next chooses the ciphertext sequence
C1C and obtains P2 as his desired plaintext block P. If, instead, he wants
to know C for a particular P in (13), he chooses the plaintext sequence P1P
and obtains C2 as his desired ciphertext block C.

Thus, an attacker can freely choose Ki, and sample the function C =
E(Ki, P) at arbitrary points (P, C) of his choice. We will see that this ability
lets the attacker determine the internal secret parameters of the encryption
function E.

Since the functions w, z, S are fixed and the attacker already knows r, m,
and Ki, revealing the secret parameters t, Kc is equivalent to revealing the

7 Cryptanalysis of Chaotic Ciphers 237

function σ in (7). Namely, once the attacker knows σ, he can encrypt/decrypt
any plaintext/ciphertext sequences as if he knew the parameters t and Kc.
Below we describe three attacks that reveal the function σ.

We first note that σ is a permutation over the set {0, 1, . . . , 216 − 1}. We
now show how particular choices of Ki lets an attacker reveal portions of σ.

Permutation orbit attack

Let us choose Ki such that

ROL(Ki, m) = Ki. (15)

Namely, Ki is m-bit rotation invariant.
When we use (15) in (7), we obtain

vj = σ(vj−1 ⊕ Ki), 1 ≤ j ≤ r.

Defining a new permutation π as

π(x) = σ(x ⊕ Ki) (16)

for x ∈ {0, 1, . . . , 216 − 1}, we can express the relation between P and C as

C = π ◦ π ◦ · · · ◦ π︸ ︷︷ ︸
r times

(P) = πr(P).

If the attacker reveals the value Y of π at P so that Y = π(P), he reveals
that the value of σ at P ⊕ Ki is Y, i.e. Y = σ(P ⊕ Ki).

To illustrate the choice of Ki that turns the function E into the r−power of
a permutation, let us take m = 2. In this case, the nonzero Ki values that sat-
isfy (15) are 0101010101010101 (0x5555), 1010101010101010 (0xAAAA) and
1111111111111111 (0xFFFF) . If m = 1, the only nonzero Ki that satisfies
(15) is (0xFFFF). Note that by (5), Ki can never be zero.

Also note that for each value of Ki that satisfies (15), we obtain a different
permutation π.

Using the sampling method given above, the attacker can obtain πr(P) for
every P in {0, 1, . . . , 216 − 1}. Hence, he can reveal the permutation πr.

For a given m, the attacker determines the keys Ki that satisfy (15). As-
sume that there are k such keys. For each such Kj

i , 1 ≤ j ≤ k, the attacker
finds E(Kj

i , P) for all P ∈ {0, 1, . . . , 216 − 1}. This is in fact πr
j that corre-

sponds to Kj
i i.e. πr

j (x) = E(Ki, x), for every x. The attacker then determines
the orbit structure of πr

j . Then he starts partially revealing πj . He performs
the following two steps for each Kj

i .

1. Use lone orbits in πr
j . If there is a lone orbit of length n1 in πr

j , use Lemma
2 to reveal n1 points in πj . From those, reveal n1 points of σ using (16).

238 E. Solak

2. Look for a collection of the same length orbits in πr
j . If the size q of the

collection is less than the least divisor of r larger than 1, then use Lemma
3 to reveal qn2 more points in πj , where n2 is the length of an orbit in the
collection. Again, use (16) to reveal qn2 points in σ.

Let Rj ⊂ {0, 1, . . . , 216 − 1} be the points for which σ(Rj) is revealed using
Steps 1 and 2 above with Kj

i for 1 ≤ j ≤ k. Let R = R1 ∪R2 ∪ · · · ∪Rk. Let
x ∈ R\Rj. Namely, the attacker knows y = σ(x) but this point is revealed in
either Step 1 or Step 2 for a key other than Kj

i . Then, πr
j contains two same

length orbits β1 and β2 such that x⊕Kj
i ∈ β1 and y ∈ β2. These orbits were

not used in the Step 2 for Kj
i above otherwise we would have x ∈ Rj . Hence,

πj(x ⊕ Kj
i) = y. Then, the attacker uses Lemma 4 with β1 and β2 to reveal

some more points on σ. This, in turn, adds points to R. The procedure is
repeated until there are no points x satisfying x ∈ R\Rj.

Furthermore, if the attacker uses any of the attacks explained below and
somehow obtains the new knowledge of a sample point in πj , and the point
maps across two orbits of length n3 in πr

j , then he uses Lemma 4 to reveal
n3 − 1 more points in πj .

Expansion attack

In the previous section we described an attack that partially reveals σ. We
now describe an attack that works with a partially revealed permutation σ.
This attack is applied together with the permutation orbit attack.

Assume that R and U are two disjoint subsets of {0, 1, . . . , 216 − 1} such
that R ∪ U = {0, 1, . . . , 216 − 1}. Also assume that the attacker knows the
value of σ(x) for every x ∈ R and he does not know the value of σ(x) for any
x ∈ U. In other words, R denotes the revealed portion of the domain of σ,
and U denotes the unrevealed portion.

Assume that the attacker knows the triple (C, P, Ki) such that C =
E(Ki, P). Assume that C /∈ σ(R) i.e. he does not know the value which
is mapped by σ to C. He now tries to carry out the calculation (7). He
starts out with v0 = P. He can calculate v1 if v0 ⊕ ROL(Ki, m) ∈ R. Once
he knows v1, he can calculate v2 if v1 ⊕ ROL(Ki, 2m) ∈ R. Assume that
he continues in this fashion, reaches the penultimate step and calculates
vr−1. Obviously, vr−1 ⊕ ROL(Ki, rm) /∈ R because otherwise we would have
C = vr = σ(vr−1 ⊕ROL(Ki, rm)) ∈ σ(R) which contradicts the assumption.
But this means that the attacker has just revealed the value of the map σ at
a new point vr−1 ⊕ ROL(Ki, rm) because he already knows C. Thus, if the
attacker reaches the last step while staying in the partially revealed portion
R, he expands R by one point and shrinks U by one point.

Every time the expansion attack succeeds and the attacker reveals a new
point on the map σ, he uses Lemma 4 to check if this corresponds to mapping
across two different same-length orbits in πr. If so, the revealed portion R

7 Cryptanalysis of Chaotic Ciphers 239

is expanded even more. This, in turn, increases the probability that next
application of the expansion attack succeeds.

Skipping attack

Using (8), we see that when r ≥ 9, we have m = 1. So the attacker can
use only Ki =0xFFFF in the permutation orbit attack. Moreover, when r
is an even number, its smallest divisor is 2 and he can not use Lemma 3.
This adversely affects the size of the revealed set R that can be used in the
expansion attack. We now describe another attack that works with r ≥ 9 and
even. The attack relies on deriving a new permutation by skipping over odd
rounds in the expression of E in (7).

Assume that a nonzero Ki satisfies

ROL(Ki, 2) = Ki. (17)

Using (17) with (7) and substituting odd round outputs into even round
expressions, we obtain

v0 = P,

v2 = σ(σ(v0 ⊕ ROL(Ki, 1)) ⊕ Ki),
v4 = σ(σ(v2 ⊕ ROL(Ki, 1)) ⊕ Ki),

...
vr = σ(σ(vr−2 ⊕ ROL(Ki, 1)) ⊕ Ki),
C = vr.

Defining a new permutation γ as

γ(x) = σ(σ(x ⊕ ROL(Ki, 1)) ⊕ Ki), (18)

we can express the relation between C and P as

C = γr/2(P).

First, the attacker applies the permutation orbit attack with Ki =0xFFFF.
In doing so, he obtains the permutation πr, and using Lemma 2 and Lemma
3, he reveals a portion of σ. Let R denote the revealed portion of the map σ.

The skipping attack proceeds as follows. As in the permutation orbit at-
tack, by choosing every P ∈ {0, 1, . . . , 216−1} and obtaining their correspond-
ing ciphertext block with K1

i =0x5555 and K2
i =0xAAAA satisfying (17), the

attacker finds the permutations γ
r/2
1 and γ

r/2
2 . For each γ

r/2
j , j = 1, 2, the

attacker uses its orbit structure to reveal a portion of γj .
Assume the attacker has determined a pair (x, y) such that y = γj(x) for

some j. Hence, he knows that

240 E. Solak

y = σ(σ(x ⊕ ROL(Kj
i , 1)) ⊕ Kj

i). (19)

There are two ways the attacker can use (19) to reveal a new point on σ.
If x ⊕ ROL(Kj

i , 1) ∈ R and y /∈ σ(R), the attacker reveals the value of the
map σ at σ(x ⊕ ROL(Kj

i , 1)) ⊕ Kj
i as y. On the other hand, if y ∈ σ(R)

and x ⊕ ROL(Kj
i , 1) /∈ R, the attacker reveals the value of the map σ at

x ⊕ ROL(Kj
i , 1) as σ−1(y) ⊕ Kj

i .
Thus, with the skipping attack, the attacker reveals some new points on

the map σ. He subsequently uses Lemma 4 to check if these new points
correspond to mappings across two different orbits in πr that were not used
in the permutation orbit attack. If so, the revealed portion R is expanded
even more.

Example 2. In the first example, we used the cryptosystem with secret pa-
rameters r = 5, m = 3, t = 12, C0 =0x4ED3, Ks =0x8F4C. By the equivalence
explained in above, this is equivalent to Ks =0xC19F=0x4ED3⊕0x8F4C and
C0 =0x0000, We used the standard map as TDCM. The secret TDCM pa-
rameter is Kc = 53246.

Since m = 3, we can apply the permutation orbit attack only with
K1

i =0xFFFF. We obtain the orbit structure of π5
1 as (1, 53712), (1, 6432),

(5, 779), (1, 699), (1, 449), (1, 252), (1, 72), (5, 5). Here a pair (q, n) means
that there are q orbits of length n.

We apply Lemma 2 to lone orbits of length 53712, 6432, 699, 449, 252 and
72 in π5

1 to reveal 61616 entries in σ. This corresponds to 94.02% of the map
σ.

We saw that 1 /∈ σ(R). So, we choose C = 1 in the expansion attack. We
try Ki = 1 and find P = 65082. The expansion attack for these values indeed
succeeds and we find 1 = σ(680).

Now, we go back to the result of permutation orbit attack. Searching for
680⊕0xFFFF in the cycles of π5

1 , we see that it is mapped across two cycles of
length 779. Using this sample point with Lemma 4, we reveal 779 new points
in σ. Thus, the revealed set R gets bigger by 779 new points. Hence, a new
expansion attack is even more likely to succeed. Repeating the attack with
9 more unrevealed ciphertext blocks with the same Ki = 1, we reveal the
whole map σ.

3.3 Algebraic Cryptanalysis of a Chaotic Cipher
Based on Chaotic Map Lattices

In the image encryption algorithm proposed in [Pisarchik et al., 2006], the
plaintext is the vector c ∈ Zm

256 obtained by the usual row-scan of an N ×M
image, where m is the total number of pixels, i.e. m = NM . Here, Z256

denotes the set {0, 1, 2, . . . , 255} of integers which are represented by 8-bit
pixels. The algorithm encrypts plaintext c in three steps; D/A conversion,
chained chaotic iteration and A/D conversion.

7 Cryptanalysis of Chaotic Ciphers 241

1. D/A conversion: each integer pixel value ci is mapped to one of 256 distinct
real values xi in the chaotic attractor Ω = (xmin, xmax) for the logistic map

f(u) = au(1 − u),

using
xi = g1(ci) = xmin + (xmax − xmin)

ci

255
, 1 ≤ i ≤ m, (20)

where xmin = (4a2 − a3)/16 and xmax = a/4.
2. Chained chaotic iteration: the real values xi are transformed using re-

peated chaotic iteration as follows. We first initialize cycle 0 values as
y
(0)
i = xi, 1 ≤ i ≤ m. The transformation for the jth cycle is given as

y
(j)
1 = A(fn(y(j−1)

m) + y
(j−1)
1),

y
(j)
i = A(fn(y(j)

i−1) + y
(j−1)
i), i ≥ 2, 1 ≤ j ≤ r, (21)

where the function A : (2xmin, 2xmax) → Ω guarantees that the LHS of
(21) falls within the attractor. The plot of A is given in Fig. 4.

Fig. 4 The plot of the function A : (2xmin, 2xmax) → (xmin, xmax). The function
wraps around the attractor like modulus.

In (21), r denotes the number of cycles (rounds) in the encryption. Note
that the logistic map f is iterated n times starting with the initial value
y
(j)
i−1 for i ≥ 2 and with y

(j−1)
m for i = 1. The number of iterations n is part

of the secret key.
3. A/D conversion: each y

(r)
i is mapped back to an integer di in Zm

256 using

di = g2(y
(r)
i) = round

[
(y(r)

i − xmin)
255

xmax − xmin

]
. (22)

242 E. Solak

The vector d ∈ Zm
256 is the ciphertext.

In the subsequent discussion, we explain the attack given in [Solak and okal,
2011].

Equivalent representation

Here, we give the equivalent representation of the algorithm so that all the
operations are done in Z256 and the secret quantities are some unknown
permutations.

Note that g1 and g2 denote the D/A and A/D conversion functions in (20)
and (22), respectively. For one round of encryption, we can write (21) as

di = g2(yi) = g2(A(fn(yi−1) + yi)),
= g2(A(fn(g1(di−1)) + g1(ci))), 2 ≤ i ≤ m. (23)

Note that the mapping in (23) is from the pair (di−1, ci) ∈ Z256 × Z256 to
di ∈ Z256. Let us denote this map as s : Z256 × Z256 → Z256.

Given the secret quantities a and n, one can calculate the map s as

s(i, j) = g2(A(fn(g1(i)) + g1(j))), 0 ≤ i, j ≤ 255. (24)

Now, we can write the single round encryption as

d1 = s(cm, c1),
di = s(di−1, ci), 2 ≤ i ≤ m. (25)

Similarly, we can trivially extend this expression for arbitrary number of
rounds r. In this new expression of the algorithm, the equivalent secret quan-
tities are the map s and the number of rounds r. However, the number of
rounds is a small number in the range of 10. Thus, it can be safely assumed
that the attacker knows r. Even when the attacker does not know r, he can
try several values for r and apply the rest of the attack for the tried r. If the
attack succeeds then the attacker has found the correct r.

In the next section, we give the attack that recovers the secret map s,
assuming that r is known. The attack is first given in [Solak and okal, 2011].

Recovering s

Assume that the attacker chooses a two pixel image (c1, c2) as plaintext and
obtains the corresponding ciphertext (d1, d2) for a single round. Using (25)
with m = 2, we obtain

d1 = s(c2, c1), (26)
d2 = s(d1, c2).

7 Cryptanalysis of Chaotic Ciphers 243

Thus, (26) defines a function π : Z256 × Z256 → Z256 × Z256, π((c1, c2)) =
(d1, d2). Since the encryption is invertible, π is a permutation over the set
Z256 × Z256.

Note that if attacker knows a point (d1, d2) = π((c1, c2)) on the permu-
tation, then using (26), he can reveal the map s on two points (c2, c1) and
(d1, c2).

If π is a single round encryption, then r round encryption becomes
πr. Hence, for his chosen plaintext image (c1, c2), the attacker observes
πr((c1, c2)). Choosing all of the 216 possible 2-pixel plaintexts one by one
and obtaining their corresponding ciphertexts, the attacker constructs the
permutation πr. Using the results given at the start of this section, the at-
tacker reveals portions of π. Using the known points on π, the attacker finally
recovers the secret map s.

We now give the details of the attack.

Permutation orbit attack

Once the attacker obtains πr , he calculates its orbit structure using the pro-
cedure in Remark 1. Given the orbit structure of πr, he starts by using the
orbits that are shuffled going from π to πr. The attacker uses such orbits in
two distinct categories.

1. Look for lone orbits in πr: If there is a lone orbit of length t1 in πr, use
Lemma 2 to reveal t1 points in π. From those, reveal at most 2t1 points of
s using (26). Hence, if β = (b0, b1, . . . , bt1−1) is a lone orbit of πr , we can
reveal some of the points on s for 0 ≤ j < t1 as

s(bj,2, bj,1) = b(j+r∗)mod t1,1,

s(b(j+r∗)mod t1,1, bj,2) = b(j+r∗)mod t1,2.

Note that each bj is a pair (bj,1, bj,2), corresponding to a 2-pixel image.
2. Look for a collection of the same length orbits in πr: If the size q of the

collection is less than the least divisor of r larger than 1, then use Lemma
3 to reveal qt2 more points in π, where t2 is the length of an orbit in the
collection. Again, use (26) to reveal at most 2qt2 new points in s.
Using the permutation attack, the attacker recovers a portion of the map
s. If the portion is the whole, then the attack concludes successfully. If
there are still unrevealed portions of s, the attacker performs the following
consistency checks on the orbits not used in the permutation attack.

Consistency check

Suppose there are q > 1 orbits of length t3 among the orbits of πr and that
none of these orbits were used in the permutation orbit attack. We now give
consistency checks that can be applied to these orbits in order to reveal more
points on the partially revealed map s.

244 E. Solak

Let β be one of those q orbits in πr. There are two ways such a β might
occur in πr. One way is that β might have been obtained by the split of a
larger orbit in π. The other possibility is that β was obtained by the shuffling
of an orbit of the same length in π, see Remark 2.

We first test if latter is the case.
Assume that β = (b0, b1, . . . , bt3−1) was obtained by the shuffling of an

orbit of π. In this case, gcd(n3, r) = 1. Note that each bj is a pair (bj,1, bj,2) ∈
Z256 × Z256. By Lemma 2, π(bj) = b(j+r∗)mod t3 , 0 ≤ j < n3. Thus, we
conclude that, for 0 ≤ j < t3,

s(bj,2, bj,1) = b(j+r∗) mod t3,1,

s(b(j+r∗) mod t3,1, bj,2) = b(j+r∗) mod t3,2.

Thus, on the assumption that β was obtained by shuffling, we reveal possibly
2t3 new points of the map s. However, if the assumption was wrong, then we
expect to encounter inconsistencies. The newly revealed points might con-
flict with the already revealed points on s. Also, they might conflict among
themselves.

To better see how two kinds of conflicting values might arise, let us assume
that the attacker already knows x, y, z ∈ Z256 such that s(x, y) = z. If, for
some j, bj,2 = x and bj,1 = y but b(j+r∗)mod t3,1 �= z, then we have the conflict
of the first kind, i.e. the newly revealed point conflicts with the already known
point.

On the other hand, if we have j1 and j2 such that bj1,2 = b(j2+r∗)mod t3,1

and bj1,1 = bj2,2 but b(j1+r∗) mod t3,1 �= b(j2+r∗) mod t3,2, then we have newly
revealed points conflicting among themselves.

The attacker can test both conflicts together. For every set of newly re-
vealed points, he tries to add these to the map. If he fails due to a conflict
with the already known portion, he concludes that β was not obtained by a
simple shuffling, but instead was obtained by the split of a larger orbit in π.

By going through all the orbits not used in the permutation attack, and
testing if they were obtained by simple shuffles, the attacker enlarges the
revealed portion of s.

Now, the attacker is left with sets of orbits which are certainly obtained
by the split of larger orbits in π. Let β(1) and β(2) be two such orbits of the
same length t4. We cannot directly use Lemma 1 because it is still possible
that they were obtained by the split of different orbits in π.

In order to better see how this can happen, assume π has two orbits of
length 10 and 15 and that r = 6. Then, by Lemma 1, in π5, the length 10
orbit will be split into two length 5 orbits and lenth 15 orbit will be split into
three length 5 orbits. Hence, in π5, we see length 5 orbits coming from the
split of different orbits.

Even if β(1) and β(2) come from the split of the same orbit in π, we may
not directly use Lemma 4, because we lack a sample point mapping from one
orbit to another.

7 Cryptanalysis of Chaotic Ciphers 245

Hence, the test for the second case proceeds as follows. The attacker
chooses two same length orbits β(1) and β(2) in πr. Let n4 be the common
length of these two orbits. He assumes that β(1) and β(2) come from the split
of the same larger orbit in π and that there exist two integers 0 ≤ i, j < t4
such that b

(1)
i ∈ β(1), b

(2)
j ∈ β(2) and π(b(1)

i) = b
(2)
j . Fixing i = 0, he tries

every j, 0 ≤ j < t4, each time assuming that π(b(1)
0) = b

(2)
j . If β(1) and β(2)

are consecutive splits of a larger orbit in π, then there is such a j. If the
attacker hits upon the correct j, he uses Lemma 4 and possibly reveals 2t4
new points on the map s as

s(b(1)
0,2, b

(1)
0,1) = b

(2)
j,1 , 0 ≤ j < t4,

s(b(2)
j,1 , b

(1)
0,2) = b

(2)
j,2 , 0 ≤ j < t4.

On the other hand, if the attacker encounters an inconsistency with the
already revealed portion of the map s, he discards j. If all the j’s in 0 ≤ j < t4
are discarded as such, then either β(1) and β(2) do not come from the same
orbit π, or they come from the same orbit but their ordering was wrong, i.e.
they are not consecutive splits.

By trying all the ordered pairs of orbits of the same length, the attacker
is highly likely to eliminate the wrong assumptions with inconsistencies and
reveal whole of the map s.

Complexity of the attack

Once the attacker obtains the permutation πr, it takes only 216 lookups to
construct the orbit structure of πr. The computational complexity of the rest
of the attack depends on the orbit structure of the permutation πr.

For a random permutation over the set {1, 2, . . . , n}, the expected number
of orbits is approximately log n, [Lovasz, 2007, p. 227]. In our case n = 216,
so we expect to have about 11 orbits in π. In the worst case, all orbits are
split into r smaller orbits in πr and we expect to have about 11r split orbits
in πr. If we were to check all pairs of orbits in πr for consistency, we would
perform about 121r2 consistency checks. Consistency checks can be done by a
fixed number of lookups and comparisons. Let C denote the fixed cost of one
consistency check for an orbit pair. For each pairing of two orbits of length L,
we have to perform the consistency check for L shift amounts. The average
orbit length for the original permutation π is n/ logn. Hence, for the average
case with n = 216, we can take L as 5960. The split orbits in πr will have an
average length of 5960/r.

Thus, the average complexity of the attack is 216 +121×rC×5960 lookup
or comparison operations. For a particular case of r = 5, C = 20, the attack
takes about 108 basic operations on average.

246 E. Solak

3.4 Cryptanalysis of Fridrich’s Image Cipher

Fridrich’s cipher proposed in [Fridrich, 1998] is one of the earliest chaotic
image encryption algorithms. The following discussion is a summary of the
cryptanalysis given in [Solak et al., 2010a].

The plaintext P is an M × N grayscale image, where each pixel is repre-
sented using a byte. The image is first vectorized using the usual row-scan.
Let p ∈ Sn represent this vectorized image, where S = {0, 1, . . .255} and
n = NM. Thus, the plaintext is the vector p = [p1 p2 · · · pn].

Each round consists of two steps. In the first step, p is shuffled using a
secret permutation. Let b denote this secret permutation defined on the set
{1, 2, . . . , n}. Let us denote the shuffled vector by f. The relation between
the shuffled vector f and the vectorized plaintext p can be expressed as

fi = pb(i), 1 ≤ i ≤ n. (27)

Namely, the shuffled pixel at position i is obtained from the original pixel
at position b(i).

In the second step of the round, f is passed through a nonlinear function
as

ci = fi + g(ci−1) + hi mod 256, 1 ≤ i ≤ n, (28)

where g : S → S is a fixed nonlinear function and h ∈ Sn is a fixed vector.
In (28), c0 is taken to be a fixed system parameter.

These two step are repeated for R rounds. In [Fridrich, 1998], R = 10 is
suggested for good diffusion and confusion properties.

Combining (27) and (28), we obtain one round encryption as

ci = pb(i) + g(ci−1) + hi mod 256, 1 ≤ i ≤ n. (29)

The decryption for a single round is defined as follows. Let u be the inverse
of b, so that

j = b(i) ⇔ i = u(j). (30)

Using (30) in (29), we obtain

pj = cu(j) − g(cu(j)−1) − hu(j) mod 256. (31)

For i = 1, we have

c1 = pb(1) + g(c0) + h1 mod256.

The secret component of the algorithm is the permutation p. A set of secret
keys are used in a chaotic system to generate this permutation. It is desirable
that the permutation shows good diffusion properties in order to hide local
correlations in an image. For example, in one of the schemes proposed in
[Fridrich, 1998], the original image P is partitioned and Baker map applied

7 Cryptanalysis of Chaotic Ciphers 247

to each partition to obtain the permutation. In this case, the set of keys are
the boundaries where the image is partitioned. It is possible to use other
schemes to generate a permutation. Our attack is general and applies to all
of these cases.

A naive attack might try to reveal the keys that were used to generate the
permutation b. However, anyone who knows the permutation p can decrypt
the images. In our cryptanalysis, we develop methods to reveal the permu-
tation b. Such an approach is more general as it easily covers cases where
different chaotic maps are used to generate the permutation.

Inter-round dependencies in decryption

The function g in (29) forms a chain that relates consecutive ciphertext pixels.
Hence, in encryption for a single round, a change in a plaintext pixel affects
many ciphertext pixels. Indeed, if we change pb(i), by (29), ci changes. Since
we have

ci+1 = pb(i+1) + g(ci) + hi+1 mod 256,

a change in ci, in turn, changes ci+1. Thus, for a single round, a change in
pb(i) affects ci, ci+1, . . . , cn. As a result, a ciphertext pixel depends on many
plaintext pixels.

However, the situation is quite different in decryption and there lies the
weakest link in the algorithm. Using (31), we see that, for a single round, pj

is affected by only two ciphertext pixels, cu(j) and cu(j)−1. Similarly, for two
rounds, pj is affected by at most four ciphertext pixels.

In order to see this more clearly, let us denote the output of the second
round as d1d2 · · · dn. Using (31) with ck as the plaintext pixel that is input
to second round, we obtain

ck = du(k) − g(du(k)−1) − hu(k) mod 256, 1 ≤ k ≤ n. (32)

Substituting k = u(j) in (32), we find

cu(j) = du2(j) − g(du2(j)−1) − hu2(j). (33)

Here, we denote by us, the s times composition of u with itself.
Similarly, for k = u(j) − 1, we have

cu(j)−1 = du(u(j)−1) − g(du(u(j)−1)−1) − hu(u(j)−1). (34)

Thus, we see from (31), (33) and (34) that, for two rounds of decryption, pj

is affected only by the ciphertext pixels

du2(j), du2(j)−1, du(u(j)−1), du(u(j)−1)−1.

Obviously, depending on the particular permutation u, some of these four
pixels might coincide.

248 E. Solak

Note that the plaintext pixel pb(1) is affected by only c1 because c0 is a fixed
system parameter. Hence, for two rounds, pb(1) is affected by the ciphertext
pixels

du(1), du(1)−1.

Example 3. We illustrate the dependencies in the decryption for two rounds.
Here, n = 6 and the permutation u is given as

u =
(

1 2 3 4 5 6
2 4 1 5 6 3

)
. (35)

p1 p2 p3 p4 p5 p6

c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

Fig. 5 The dependency paths for the permutation given in (35). A solid arrow
indicates that the dependency is through u, while a dashed arrow indicates that
the dependency is through u− 1.

The dependency paths are given in Fig. 5. In the figure, the directed arrows
indicate which pixels affect the computation of the destination pixel. For
example, two arrows going from c5 and c4 to p4 means that p4 is affected by
c5 and c4.

The dependency chain from from the ciphertext d to the plaintext p is
given as follows

p1 ← c1, c2 ← d1, d2, d3, d4,

p2 ← c3, c4 ← d1, d4, d5,

p3 ← c1 ← d1, d2,

p4 ← c4, c5 ← d4, d5, d6,

p5 ← c5, c6 ← d5, d6, d2, d3,

p6 ← c2, c3 ← d3, d4, d1.

7 Cryptanalysis of Chaotic Ciphers 249

Note that p3 is affected by only c1 because u(3) = 1. c1 is, in turn, affected
by two ciphertext pixels d1 and d2. Also note that p4 is affected by three
ciphertext pixels rather than four because u(u(4)− 1) = u2(4) − 1 = 5. This
also means that there are two distinct dependency paths going from d5 to p4.

Detecting dependency using chosen ciphertext images

In general, for the decryption in an R round algorithm, a particular plaintext
pixel pj is affected by at most 2R ciphertext pixels. For a 256 × 256 image
encrypted in 10 rounds, we have n = 65536 and 2R = 1024. Hence, only
about 1024

65536 ≈ 2% of ciphertext pixels affect any given fixed plaintext pixel.
Let us denote by z, the ciphertext image after R rounds of encryption. The

attacker wants to know if there is a dependency path from the ciphertext pixel
zi to the plaintext pixel pj . Assume that the attacker knows a plaintext-
ciphertext image pair (p, z). He changes the value of zi and requests the
plaintext for the changed ciphertext. If pj changed in the new plaintext, then
there is a dependency path from zi to pj so that zi affects pj .

Note that, for some changes to zi, pj might remain the same even when
there are dependency paths from zi to pj . This is due the nonlinearity of
encryption/decryption that operates in a finite domain. In order to detect all
the dependency paths, the attacker needs to try more than one changes to
zi. It is highly unlikely that pj remains fixed for all of these changes.

Detecting changes for all i, 1 ≤ i ≤ n, the attacker constructs a binary
matrix T showing the dependency relations between ciphertext and plaintext
pixels in decryption. If Tij = 1, then it means that zi affects pj. Since pj is
affected by at most 2R pixels of z, each column of T contains at most 2R 1’s.
All the other entries are zero.

Example 4. The matrix T for the permutation u used in Example 1 is given
as

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1
1 0 1 0 1 0
1 0 0 0 1 1
1 1 0 1 0 1
0 1 0 1 1 0
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Finding b(1)

Writing (31) for pb(1), we have

pb(1) = c1 − g(c0) − h1 mod 256.

Hence, for one round, pb(1) is affected by only c1, the first pixel of the output
of the first round. The rest of the rounds generate at most 2R−1 distinct

250 E. Solak

dependency paths. Therefore the column b(1) of T contains at most 2R−1

1’s. Thus, the column of the matrix T with the least number of 1’s gives
the attacker a starting point for the attack. Once an attacker constructs the
matrix T, he can reveal b(1) by choosing the column k with the least column
sum. Then he knows that b(1) = k or u(k) = 1.

For example, by inspecting the matrix T in Example 4, the attacker can see
that the third column has the least sum. Thus, he concludes that u(3) = 1.

Tree of dependency

In order to generalize the attack to the rest of u, we define an operation to
denote the dependency relations between the sets.

Given a permutation u on the set {1, 2, . . . n}, define the operation L on a
set A as follows.

L(A) = {y | ∃x ∈ A such that y = u(x) or y = u(x) − 1}.

The set L(A) has natural meaning in terms of decryption. Using (31), we
see that the set L(A) is the set of ciphertext pixels that affect the set A
of plaintext pixels in one round of decryption. In particular, for an integer
k ∈ {1, 2, . . . , n}, L({k}) is given as

L({k}) =
{

{u(k)} if u(k) = 1,
{u(k), u(k)− 1} otherwise (36)

When L operates on a set with a single element k, we drop the set notation
in L({k}) and use instead L(k).

We can naturally compose L with itself to define its higher powers. Thus,
for L2(k), we have

L2(k) = L({u(k), u(k) − 1})
= {u2(k), u2(k) − 1, u(u(k)− 1), u(u(k) − 1) − 1}.

Here, we implicitly assumed that 1 /∈ {u(k), u2(k), u(u(k) − 1)}. If we have
u(k) = 1 and u2(k) �= 1, then, by the definition of L, we have

L2(k) = L(u(k))
= {u2(k), u2(k) − 1}.

Again, the powers of L has a natural interpretation in terms of multi-round
encryption. For an integer k, Li(k) is the set of the indices of ciphertext pixels
that affect the plaintext pk in i round decryption. This set is also the set of
row indices where the kth column of T has nonzero entries.

7 Cryptanalysis of Chaotic Ciphers 251

Example 5. For the permutation given in Example 1, we have

L(1) = {1, 2},
L2(1) = {1, 2, 3, 4},

L2({1, 6}) = {1, 2, 3, 4}.

Overlapping sets of leaves

Using the chosen-plaintext attack given in the beginning of this section, the
attacker constructs the matrix T. This is the same as attacker knowing the
sets LR(k), ∀k ∈ {1, 2, . . . , n}. The attacker uses this knowledge to reveal the
secret permutation u. First, we need the following facts. For the proofs, see
[Solak et al., 2010a].

Lemma 5. Let x, y and z be integers in {1, 2, . . . n} such that they satisfy

u(x) + 1 = u(y),
u(y) + 1 = u(z).

Then, for every positive integer R larger than 1,

LR(y) \ LR(x) ⊂ LR(z).

Lemma 6. Let x and y be integers such that u(x) = 1 and u(y) = 2. Then,
LR(x) ⊂ LR(y).

x

u(x)

u2(x) − 1
...

u2(x)
...

y

u(y) = u(x) + 1

u2(y) − 1
...

u2(y)
...

z

u(z) = u(y) + 1

u2(z) − 1
...

u2(z)
...

︸ ︷︷ ︸
Lr−1(u(z))

︸ ︷︷ ︸
Lr−1(u(z)−1)

︸ ︷︷ ︸
Lr(z)

Fig. 6 The sets LR(a) and LR−1(a). Note that the sets are the leaves of overlapping
dependency trees.

252 E. Solak

The attack

The attack starts with determining the integer x1 that satisfy u(x1) = 1.
For this, the attacker chooses the set LR(x1) that has the least number of
elements. This also corresponds to choosing the column of the matrix T with
the least column sum. It might happen that there are more than one candidate
for x1. For such cases, the attacker repeats the rest of the procedure for each
candidate until he encounters a contradiction that he can use to eliminate
the candidate.

Once the attacker knows x1, he goes on to determine x2 such that u(x2) =
2. Define the set X2 as

X2 = {x | LR(x1) ⊂ LR(x)}.

By Lemma 6, x2 ∈ X2. In the likely case that X2 contains a single element,
the attacker uniquely pins down x2. If there are more then one candidate for
x2, the attacker again repeats the rest of the procedure until he can eliminate
candidates.

Now, the attacker knows x1 and x2 such that u(x1) = 1 and u(x2) = 2.
He then searches for x3 such that u(x3) = 3. In order to pin down x3, the
attacker finds the set defined by

X3 = {x | LR(x2) \ LR(x1) ⊂ LR(x)}.

By Lemma 5, x3 ∈ X3. If X3 contains a single element, then the attacker has
just found x3 that satisfies u(x3) = 3.

The attacker continues in this fashion and uses his knowledge of xi and
xi+1 to reveal xi+2 such that u(xi) = i, u(xi+1) = i + 1 and u(xi+1) = i + 2.
The attack concludes when all the entries of the secret permutation u are
revealed.

In cases when Xi+1 contains z1, z2, . . . zv, the attacker applies the proce-
dure for each zm, 1 ≤ m ≤ v, each time assuming that u(zm) = i + 1.

For false candidates, we expect the iteration to yield an empty set at some
point. Namely, if the set LR(zm) \ LR(xi+1) is not contained in any LR(w),
then u(zm) �= i + 1 and we eliminate the candidate zm.

The iterations of the attack are expressed as a recursion in Algorithm 1.
The recursive function is FindNext() which takes no arguments. The con-
stant data of the algorithm are the sets LR(k), ∀k ∈ {1, 2, . . . , n}. The al-
gorithm manipulates the global variables b and i. The variable i shows the
portion of b that is assumed to have been revealed. Namely, the function
FindNext() assumes that b(1), b(2), . . . , b(i) have already been revealed. Note
that we also assume that the values b(1) and b(2) are initially known.

7 Cryptanalysis of Chaotic Ciphers 253

In Algorithm 1, Line 1, we find the candidates for b(i+1). In doing this, we
exclude the set {b(1), b(2), . . . , b(i)} which is assumed to have been revealed so
far. For each candidate z, Lines 6-10 recursively apply the algorithm assuming
that u(z) = i + 1. The function FindNext() returns in Line 13 when no
candidates are found. It means that the recursion can not go any deeper
because a wrong assumption about the permutation value has been made. In
this case, Line 11 backtracks once and another candidate is tried.

Algorithm 1. FindNext()
Data: LR(k), ∀k ∈ {1, 2, . . . , n}, b(1), b(2).
Result: b
Global Variable: b and i. Initially i← 2.
FindNext();1

begin2

Z ← {
x | LR(b(i)) \ LR(b(i− 1)) ⊂ LR(x)

} \ {b(1), b(2), . . . , b(i)} ;3

i← i + 1 ;4

if Z �= ∅ then5

foreach z ∈ Z do6

b(i)← z ;7

if i = n then8

exit9

;10

FindNext();11

i← i− 112

else13

return14

end15

Example 6. We illustrate the attack with an artificially small image size. We
choose R = 3 and assume an image size of 4 × 4. Therefore, the secret per-
mutation u maps within the set {1, 2, . . .16}. We generated the permutation
randomly and it is given as

u =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 8 6 12 1 11 14 15 7 3 10 2 16 5 4 13

)
.

The other fixed functions g and h are chosen randomly. The attacker cal-
culates the matrix T as

254 E. Solak

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0
1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the ith column of the matrix T, the row indices of the 1’s give the set
L3(i).

First, the attacker reveals b(1). For this, he finds the minimum sum col-
umn which is the column 5. Thus, the attacker reveals that u(5) = 1, or
equivalently that b(1) = 5. From the 5th column, the attacker sees that
L3(5) = {6, 7, 14, 15}. He then uses Lemma 6 and searches for the column
that has 1’s in its 6th, 7th, 14th and 15th rows. This column turns out to be
the 12th one. Hence, he concludes b(2) = 12. Now that the attacker knows
the values of b(1) and b(2). Next, he applies Algorithm 1. Using the ma-
trix T, he calculates that L3(12) \ L3(5) = {13}. Searching through the
columns of T, the attacker finds that columns 1, 7, 10, 11, 16 have 1 in
their 13th rows. Thus, Z = {1, 7, 10, 11, 16}. Now, he tries those as candi-
dates for b(3). First, he assumes b(3) = 1. On this assumption, he calculates
the set L3(1) \L3(12) = {3, 4, 5, 10, 11}. But, there is no column that has 1’s
in its rows corresponding to this set. Hence, b(3) �= 1. Next, he tries b(3) = 7.
He calculates L3(7)\L3(12) = {1, 3, 4, 11, 12}. Again, there is no column that
has 1’s in its rows corresponding to this set. The third candidate is 10, which
happens to be the correct one. Assuming b(3) = 10, the attacker quickly
reveals the rest of the secret permutation b.

4 Conclusion

The rich and complex behavior of chaotic systems attracted many researchers
into designing chaotic ciphers using the inherent noise-like character of
chaotic signals. During the last two decades, we have seen many propos-
als for chaotic ciphers. At the same time, many of these proposals have been
shown to be very weak or in some cases even basically flawed.

7 Cryptanalysis of Chaotic Ciphers 255

We see that in many chaotic ciphers, it is possible to bypass the chaotic
subsystems and attack the intermediate parameters instead. In such a case, it
does not matter how rich and complex the chaotic behavior are. An attacker
always tries to exploit the weakest link in the encryption chain.

In yet many other cases, algebraic structure of the chaotic cipher contains
weaknesses that can be exploited by an attacker. Interestingly, in only rare
cases, the chaos is the weak point. Rather, the break comes through the way
that the chaotic signals are used in encryption.

A healthy co-development of analysis and design is crucial for the chaos
cryptography to become a mature field. The designers should be well aware
of the existing attacks and use strong and well-known structures in their
designs. Also, chaos cryptography needs to incorporate rigorous tools and
methods developed in mainstream cryptography.

References

Alvarez, G., Li, S.J.: Some basic cryptographic requirements for chaos-based cryp-
tosystems. Int. J. Bifurcation Chaos 16(8), 2129–2151 (2006)

Amig, J.M., Kocarev, L., Szczepanski, J.: Theory and practice of chaotic cryptog-
raphy. Physics Letters A 366(3), 211–216 (2007), ISSN 0375-9601

Anstett, F., Millerioux, G., Bloch, G.: Chaotic cryptosystems: Cryptanalysis and
identifiability. IEEE Tran. Circuits and Systems I-Regular Papers 53(12), 2673–
2680 (2006), ISSN 1057-7122

Çokal, C., Solak, E.: Cryptanalysis of a chaos-based image encryption algorithm.
Physics Letters A 373(15), 1357–1360 (2009) ISSN 0375-9601

Dachselt, F., Schwarz, W.: Chaos and cryptography. IEEE Tran. Circuits and Sys-
tems I - Fundamental Theory and Applications 48(12), 1498–1509 (2001), ISSN
1057-7122

Fraleigh, J.B.: A First Course in Abstract Algebra. Addison Wesley, Reading (2002)
Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Interna-

tional Journal of Bifurcation and Chaos 8(6), 1259–1284 (1998)
Guan, Z.-H., Huang, F., Guan, W.: Chaos-based image encryption al-

gorithm. Physics Letters A 346(1-3), 153–157 (2005), ISSN 0375-9601,
doi:10.1016/j.physleta.2005.08.006

Huang, C.K., Nien, H.H.: Multi chaotic systems based pixel shuffle for image en-
cryption. Optics Communications 282(11), 2123–2127 (2009), ISSN 0030-4018,
doi:10.1016/j.optcom.2009.02.044

Kocarev, L., Jakimoski, G.: Pseudorandom bits generated by chaotic maps. IEEE
Tran. Circuits and Systems I - Fundamental Theory and Applications 50(1),
123–126 (2003), ISSN 1057-7122

Li, S., Li, C., Chen, G., Bourbakis, N.G., Lo, K.-T.: A general quantitative crypt-
analysis of permutation-only multimedia ciphers against plaintext attacks. Sig-
nal Processing: Image Communication 23(3), 212–223 (2008), ISSN 0923-5965,
doi:10.1016/j.image.2008.01.003

Lovasz, L.: Combinatorial Problems and Exercises. AMS, Providence (2007)

256 E. Solak

Masuda, N., Jakimoski, G., Aihara, K., Kocarev, L.: Chaotic block ciphers: From
theory to practical algorithms. IEEE Tran. Circuits and Systems I-Regular Pa-
pers 53(6), 1341–1352 (2006), ISSN 1057-7122

Patidar, V., Pareek, N.K., Sud, K.K.: A new substitution-diffusion based image
cipher using chaotic standard and logistic maps. Communications in Nonlin-
ear Science and Numerical Simulation 14(7), 3056–3075 (2009), ISSN 1007-5704,
doi:10.1016/j.cnsns.2008.11.005

Pisarchik, A.N., Flores-Carmona, N.J., Carpio-Valadez, M.: Encryption and de-
cryption of images with chaotic map lattices. Chaos 16(3), 033118 (2006)

Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution-diffusion
based image cipher. Communications in Nonlinear Science and Numerical Simu-
lation 15(7), 1887 (2010)

Solak, E., Cokal, C., Yildiz, O.T., Biyikoglu, T.: Cryptanalysis of fridrich’s chaotic
image encryption. Int. J. Bifurcation Chaos 20(5), 1405–1413 (2010a)

Solak, E., Çokal, C.: Cryptanalysis of a cryptosystem based on discretized two-
dimensional chaotic maps. Physics Letters A 372(46), 6922–6924 (2008)

Solak, E., Çokal, C.: Algebraic break of a cryptosystem based on discretized two-
dimensional chaotic maps. Physics Letters A 373(15), 1352–1356 (2009)

Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic
map lattices. Information Sciences 181(1), 227–233 (2011)

Solak, E., Rhouma, R., Belghith, S.: Cryptanalysis of a multi-chaotic systems based
image cryptosystem. Optics Communications 283(2), 232–236 (2010b)

Xiang, T., Wong, K.-W., Liao, X.: A novel symmetrical cryptosystem based on
discretized two-dimensional chaotic map. Physics Letters A 364(3-4), 252–258
(2007)

	Cryptanalysis of Chaotic Ciphers
	Introduction
	Chaotic Linear Ciphers
	Algebraic Attacks
	Reconstructing Small Permutations
	Algebraic Attack on a Cryptosystem Based on Discretized Two-Dimensional Chaotic Maps
	Algebraic Cryptanalysis of a Chaotic Cipher Based on Chaotic Map Lattices
	Cryptanalysis of Fridrich's Image Cipher

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

