

Ljupco Kocarev and Shiguo Lian (Eds.)

Chaos-Based Cryptography

Studies in Computational Intelligence,Volume 354

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 330. Steffen Rendle
Context-Aware Ranking with Factorization Models, 2010
ISBN 978-3-642-16897-0

Vol. 331.Athena Vakali and Lakhmi C. Jain (Eds.)
New Directions in Web Data Management 1, 2011
ISBN 978-3-642-17550-3

Vol. 332. Jianguo Zhang, Ling Shao, Lei Zhang, and
GraemeA. Jones (Eds.)
Intelligent Video Event Analysis and Understanding, 2011
ISBN 978-3-642-17553-4

Vol. 333. Fedja Hadzic, Henry Tan, and Tharam S. Dillon
Mining of Data with Complex Structures, 2011
ISBN 978-3-642-17556-5

Vol. 334. Álvaro Herrero and Emilio Corchado (Eds.)
Mobile Hybrid Intrusion Detection, 2011
ISBN 978-3-642-18298-3

Vol. 335. Radomir S. Stankovic and Radomir S. Stankovic
From Boolean Logic to Switching Circuits and Automata, 2011
ISBN 978-3-642-11681-0

Vol. 336. Paolo Remagnino, Dorothy N.Monekosso, and
Lakhmi C. Jain (Eds.)
Innovations in Defence Support Systems – 3, 2011
ISBN 978-3-642-18277-8

Vol. 337. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 6, 2011
ISBN 978-3-642-17823-8

Vol. 338. Lakhmi C. Jain, EugeneV.Aidman, and
Canicious Abeynayake (Eds.)
Innovations in Defence Support Systems – 2, 2011
ISBN 978-3-642-17763-7

Vol. 339. Halina Kwasnicka, Lakhmi C. Jain (Eds.)
Innovations in Intelligent Image Analysis, 2010
ISBN 978-3-642-17933-4

Vol. 340. Heinrich Hussmann, Gerrit Meixner, and
Detlef Zuehlke (Eds.)
Model-Driven Development of Advanced User Interfaces, 2011
ISBN 978-3-642-14561-2

Vol. 341. Stéphane Doncieux, Nicolas Bredeche, and
Jean-Baptiste Mouret(Eds.)
New Horizons in Evolutionary Robotics, 2011
ISBN 978-3-642-18271-6

Vol. 342. Federico Montesino Pouzols, Diego R. Lopez, and
Angel Barriga Barros
Mining and Control of Network Traffic by Computational
Intelligence, 2011
ISBN 978-3-642-18083-5

Vol. 343. Kurosh Madani,António Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)
Computational Intelligence, 2011
ISBN 978-3-642-20205-6

Vol. 344.Atilla Elçi, Mamadou Tadiou Koné, and
Mehmet A. Orgun (Eds.)
Semantic Agent Systems, 2011
ISBN 978-3-642-18307-2

Vol. 345. Shi Yu, Léon-Charles Tranchevent,
Bart De Moor, andYves Moreau
Kernel-based Data Fusion for Machine Learning, 2011
ISBN 978-3-642-19405-4

Vol. 346.Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and HaohongWang (Eds.)
Multimedia Analysis, Processing and Communications, 2011
ISBN 978-3-642-19550-1

Vol. 347. Sven Helmer,Alexandra Poulovassilis, and Fatos
Xhafa
Reasoning in Event-Based Distributed Systems, 2011
ISBN 978-3-642-19723-9

Vol. 348. BeniaminoMurgante, Giuseppe Borruso, and
Alessandra Lapucci (Eds.)
Geocomputation, Sustainability and Environmental
Planning, 2011
ISBN 978-3-642-19732-1

Vol. 349.Vitor R. Carvalho
Modeling Intention in Email, 2011
ISBN 978-3-642-19955-4

Vol. 350. Thanasis Daradoumis, Santi Caballé,
Angel A. Juan, and Fatos Xhafa (Eds.)
Technology-Enhanced Systems and Tools for Collaborative
Learning Scaffolding, 2011
ISBN 978-3-642-19813-7

Vol. 351. Ngoc Thanh Nguyen, Bogdan Trawiński, and
Jason J. Jung (Eds.)
New Challenges for Intelligent Information and Database
Systems, 2011
ISBN 978-3-642-19952-3

Vol. 352. Nik Bessis and Fatos Xhafa (Eds.)
Next Generation Data Technologies for Collective
Computational Intelligence, 2011
ISBN 978-3-642-20343-5

Vol. 353. Igor Aizenberg
Complex-Valued Neural Networks with Multi-Valued
Neurons, 2011
ISBN 978-3-642-20352-7

Vol. 354. Ljupco Kocarev and Shiguo Lian (Eds.)
Chaos-Based Cryptography, 2011
ISBN 978-3-642-20541-5

Ljupco Kocarev and Shiguo Lian (Eds.)

Chaos-Based Cryptography

Theory,Algorithms and Applications

123

Prof. Ljupco Kocarev
Macedonain Academy of Sciences and Arts
bul. Krste Misirkov 2, P.O. Box 428
1000 Skopje, Republic of Macedonia
E-mail: lkocarev@manu.edu.mk,

lkocarev@ucsd.edu

Dr. Shiguo Lian
France Telecom R&D Beijing
2 Science Institute South Rd, Haidian District
Beijing, 100080, China
E-mail: shiguo.lian@orange-ftgroup.com

ISBN 978-3-642-20541-5 e-ISBN 978-3-642-20542-2

DOI 10.1007/978-3-642-20542-2

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011926008

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Chaos is an interesting phenomenon that often happens in some systems in various
fields, e.g., physics, psychology, biology, etc. Chaos theory provides the means
to explain chaos phenomenon, control chaotic dynamic systems and make use
of chaos properties. Now, chaos has been used in physics, chemistry, neurophysi-
ology, engineering, etc. Especially, chaos' properties, such as randomness and
ergodicity, have been proved to be suitable for designing the means for data pro-
tection. During the past decade, many chaos-based cryptographic techniques have
been studied, such as the chaos-based secret communication, chaos-based
block/stream cipher, chaos-based random number generation, chaos-based hash,
etc. Additionally, some secure applications based on chaos have been investigated,
e.g., chaos-based image encryption or authentication, video/audio scrambling,
multimedia copyright protection, etc.

To the best of our knowledge, this is the first book edited on chaos applications
in cryptography. Chaos-based cryptography is a new research field across two
fields, i.e., chaos (nonlinear dynamic system) and cryptography (computer and
data security). To access the latest research related to chaos applications in cryp-
tography, we launched the book project where researchers from all over the world
provide the necessary coverage of the mentioned field. The primary objective of
this project was to assemble as much research coverage as possible related to the
field by defining the latest innovative technologies and providing the most com-
prehensive list of research references.

The book includes eleven chapters highlighting current concepts, issues and
emerging technologies. Distinguished scholars from many prominent research in-
stitutions around the world contribute to the book. The book covers various as-
pects, including not only some fundamental knowledge and key techniques, but
also typical applications and open issues. For example, the following topics are
investigated in detail: fundamentals of chaos, relation between chaos and cryptog-
raphy, Pseudo-Random Number Generation (PRNG) based on digitized chaos, ci-
pher design based on high-dimensional chaotic maps, chaos-based hash function,
and chaos-based video encryption. Additionally, the cryptanalysis of chaotic ci-
pher and the corresponding lessons are presented in a thorough manner. Finally,
some hardware implementations of chaotic ciphers and the performance evalua-
tion compared with traditional ciphers are proposed in deep. For each of the top-
ics, both the latest research results and open issues or hot topics are reviewed and
analyzed.

VI Preface

The diverse and comprehensive coverage of multiple disciplines in the field of
chaos based cryptography will contribute to a better understanding of all topics,
research, and discoveries in this emerging and evolving field. Furthermore, the
contributions included in this book will be instrumental in the expansion of the
body of knowledge in this field. The coverage of this book provides strength to
this reference resource for both researchers and also decision makers in obtaining
a greater understanding of the concepts, issues, problems, trends, challenges and
opportunities related to this field of study. It is our sincere hope that this publica-
tion and its great amount of information and research will assist our research
colleagues, all faculties, their students, and our organizational decision makers in
enhancing their understanding of this research field. Perhaps this publication will
even inspire its readers to contribute to the current discoveries in this immense
field.

Editors

Prof. Ljupco Kocarev
University of California, USA

Dr. Shiguo Lian

France Telecom R&D (Orange Labs) Beijing, China

Acknowledgments

The editors would like to acknowledge the help of all involved in the collation
process of the book, without whose support the project could not have been satis-
factorily completed. Deep appreciation and gratitude is due to the authors of chap-
ters, whose efforts make the high-quality project.

Special thanks go to the publishing team at Springer, whose contributions
throughout the whole process from inception of the initial idea to final publication
have been invaluable. In particular to Dr. Thomas Ditzinger, who continuously
prodded via e-mail for keeping the project on schedule and to other editors who
help to make the book publishable.

And last but not least, our families, for their unfailing support and encourage-
ment during the months it took to give birth to this book.

February 2011 Editors

Contents

Chapter 1: Introduction to Chaos . 1
Dimitar Solev, Predrag Janjic, Ljupco Kocarev

Chapter 2: Chaos-Based Public-Key Cryptography 27
Igor Mishkovski, Ljupco Kocarev

Chapter 3: Digitized Chaos for Pseudo-random Number
Generation in Cryptography . 67
Tommaso Addabbo, Ada Fort, Santina Rocchi, Valerio Vignoli

Chapter 4: Formation of High-Dimensional Chaotic Maps
and Their Uses in Cryptography . 99
Wallace K.S. Tang, Ying Liu

Chapter 5: Chaos Based Hash Function . 137
Di Xiao, Xiaofeng Liao, Shaojiang Deng

Chapter 6: Chaos-Based Video Encryption Algorithms 205
Zhaopin Su, Shiguo Lian, Guofu Zhang, Jianguo Jiang

Chapter 7: Cryptanalysis of Chaotic Ciphers 227
Ercan Solak

Chapter 8: Lessons Learnt from the Cryptanalysis of
Chaos-Based Ciphers . 257
Gonzalo Alvarez, José Maŕıa Amigó, David Arroyo, Shujun Li

Chapter 9: Hardware Implementation of Chaos Based
Cipher: Design of Embedded Systems for Security
Applications . 297
Camel Tanougast

X Contents

Chapter 10: Hardware Implementation of Chaos-Secured
Optical Communication Systems . 331
Apostolos Argyris

Chapter 11: Performance Evaluation of Chaotic and
Conventional Encryption on Portable and Mobile
Platforms . 375
Rogelio Hasimoto-Beltran, Fadi Al-Masalha, Ashfaq Khokhar

Author Index . 397

Chapter 1
Introduction to Chaos

Dimitar Solev1, Predrag Janjic2, and Ljupco Kocarev3

1 Macedonian Academy of Sciences and Arts, Skopje, Macedonia
dimitar.solev@gmail.com

2 Ericsson Telecommunications Macedonia, BS-Networks
pjanjic@netscape.net

3 Macedonian Academy of Sciences and Arts, Skopje, Macedonia,
Department of Computer Science and Engineering, University “Kiril i Metodij” Skopje,
Macedonia, BioCircuits Institute, University of California San Diego, USA
lkocarev@ucsd.edu

1 Introduction

Chaos is a fascinating phenomenon that has been observed in nature (weather and
climate, dynamics of satellites in the solar system, time evolution of the magnetic
field of celestial bodies, and population growth in ecology) and laboratory (elec-
trical circuits, lasers, chemical reactions, fluid dynamics, mechanical systems, and
magneto-mechanical devices). Chaotic behavior has also found numerous applica-
tions in electrical and communication engineering, information and communication
technologies, biology and medicine. This was mainly due to the wideband character
of the chaotic signals, easy experimental control of chaos and all that being achieved
with an inexpensive lab realization of either the electric circuits or corresponding al-
gorithms if only number series were in focus. Communication and signal processing
applications of chaos, as areas of permanent interest, were roughly established since
1990, after the theories of chaos synchronization and chaos control were worked out
in more details. Today, sound engineering applications of quasi random sequence
generation, modeling of communication channels using chaos, chaotic cryptogra-
phy, digital image encoding, and chaotic transport phenomena in complex networks
all represent areas of permanent research with commercially viable engineering so-
lutions [Kocarev et al 2009].

Here we will try to introduce the reader to the concepts and very basic theory
of non-linear dynamics and chaos so that some of the material to read further is
easier to grasp and understand. Our main guiding assumption is that applications in
the later chapters use or reflect to complex, sometimes chaotic sequences generated
most often by discrete dynamical system.

Without loss of generality or missing anything important we will limit to discrete
dynamical systems, as those are easier to relate to signal processing theory and the
mathematical formalism used there. Where necessary the distinction will be made
with continuous dynamical systems. To keep the text within a reasonable length,
we are putting focus on understanding the basic features of complex dynamics and

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 1–25.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

dimitar.solev@gmail.com
pjanjic@netscape.net
lkocarev@ucsd.edu

2 D. Solev, P. Janjic, and L. Kocarev

mechanisms along which changes of the parameters and initial conditions in simple
systems take predictive solutions and simple oscillations into very complex ones.

2 Dynamical Systems

2.1 Basic Concepts

We approach a model or experimental setup by defining or selecting an observable.
An observable is generated by a dynamical system - set of equations describing the
dynamical evolution of the quantities or observables we are trying to model and dif-
ferent dynamical systems can generate the same observable. Mathematicians often
insist on lowest dimensionality of the system when defining its generic dynamical
properties. As an example, we will try to find out which one-dimensional dynamical
law is realised with the observable i.e. function f (x) = eλ x (in general, it can be any
N-dimensional law). For x ∈ {1,2, ...} we have

f (1) = eλ , f (2) = e2λ , etc (1)

We choose two adjacent values for x, K and K + 1, so we can write:

f (K + 1)
f (K)

= eλ → λ = ln
f (K + 1)

f (K)
(2)

where K = x ∈ [1,2, . . .] Thus we can reconstruct the dynamical law ẋ = λ x that
generated the function. Now, we can explain what the relation ẋ = F(x) actually
means. For a continuous observable, or continually changing phenomenon, a dy-
namical system is a set of coupled ordinary differential equations which determine
how the state of a system evolves over time. When time is integer-valued i.e. we
observe the system in discrete time, a dynamical system’s evolution is governed by
a set of difference equations. A continuous dynamical system can be described as
the set of first-order differential equations:

ẋ(t) = F(x(t)), (3)

where ẋ = d
dt x(t), x ∈ R. The mapping F : Rn → Rn governs the evolution of the

system and it is called a vector field. This vector field is such that at each point
xs(t) the vector F(xs(t)) is tangent to the curve of the solution xs(t). Simply put,
equation (1) desribes an N-dimensional flow. If we were to define a map (where
time is integer-valued), equation (1) becomes:

xn+1 = F(xn), (4)

where n ∈ Z or n ∈ Z+. The N-dimensional vector x(t) ∈ Rn represents the state of
the system and the constituents of x(t) = (x1,x2, . . . ,xm) are called state variables.
Usually, F depends on a set of parameters p = (p1, p2, ..., pk), p ∈ Ck, Ck ⊆ Rn

but most of the time there is no need to explicitly state this dependence. The space
determined by x is called state space or phase space and is considered to be Euclid-
ian space, but generally it could be an N-dimensional manifold.

1 Introduction to Chaos 3

The state of the system x(0) or x0 when t = 0 is called the initial conditions and
the set of all points starting from this state is called a trajectory or an orbit. Note
that there are differences between orbits of a map and those of a flow. For a flow, the
orbit is a continuous curve, but for a map, the orbit is a set of disconnected points,
like a set of consecutive stroboscopic snapshots of an orbit of a flow with the same
evolution rule (see Fig. 1.1).

The system we encountered earlier on: ẋ(t) = λ x is a classical example of a
linear system. Solving dx/dt = λ x, gives x(t) = x0eλ t and explains why we used the
exponential function as an example. We are more interested, however, in studying
nonlinear systems simply because most systems we observe, or try to model are in
fact nonlinear: fluid dynamics, neural dynamics, general relativity etc.

The keen reader would have already noticed that we did not say whether F
changes over time. So, we define an autonomous dynamical system as a system
where F(x) does not explicitly depend on time. If F is indeed non-autonomous,
such that F(x,t), the system should be regarded as a second-order system, and its
analysis is beyond the scope of this chapter.

Poincaré maps give us the ability to analyze N-dimensional flow using associated
N−1 dimensional map. N−1 dimensional Poincaré map of a system is an invertible
discrete mapping between the successive points on the surface of section obtained
using N − 1 dimensional hyperplane to intersect the N-dimensional flow in Rn. In
other words, the Poincaré map maps the N − 1 coordinates of the n-th crossing, to
those of the (n−1)-th crossing of the flow of the continuous system. Assuming we
can reconstruct the map or approximate it with a known one, from analysis point of
view, we benefit from:

• simplicity of mostly algebraic manipulations of the map
• dealing with system of lower dimension
• invertible map, if we need to iterate backward in time

As a simple example, see (Fig. 1).

� � �

S

xn

xn+1 xn+2

Fig. 1 The curve represents the orbit of an arbitrary flow and the intersection points are the
‘stroboscopic captures’ of the orbit of the flow, giving us the orbit of the map. The Poincaré
surface of section (denoted S) in this example is a 2-dim plane that intersects the arbitrary
3-dim flow. Thus from a N dimensional flow, we get a N-1 dimensional map.

4 D. Solev, P. Janjic, and L. Kocarev

An interesting and useful property of Poincaré maps is that the characteristic mul-
tipliers of the map, corresponding either to a fixed point or a periodic orbit of the
N-dimensional flow, does not depend on the selection of the surface of section S, or
the local coordinates on it.

2.2 Complex Behaviour in One-Dimensional Maps

One-dimensional discrete systems have been quite extensively studied because they
are the simplest systems capable of complex and chaotic behaviour. The usual nota-
tion for a one-dimensional map is:

xn+1 = f (xn) (5)

where f : X→X is the mapping from the state space to itself. Since a one-dimensional
map is a discrete system we can say that it can be iterated. This means that for a seed
state x0, simply by applying the evolution rule over and over again (i.e. iterating) we
can obtain every other future state of the system that follows from those specific
initial conditions: x1 = f (x0),x2 = f (x1) = f (f (x0)), . . . ,xn = f n(x0), where f n is
the N-fold iteration of the map or equivalently the composition:

f n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(6)

As an example, entering a value on the calculator and pressing the sine button over
and over again represents the iteration of the map xn+1 = sin(xn). The results from
the n-th iteration, become the input for the n+1-th iteration and so on and so forth (a
dynamical system is just like a recursive function in programming).

Before we can precisely define what an orbit of a map is, it is important that we
define the notions of homeomorphisms and diffeomorphisms (which also hold for
dynamical systems in general). For a mapping M : X→Y to be a homeomorphism
it must be a bijection (one-to-one and onto), be continuous and also M−1 must be
continuous. Similarly, we say that M : X→Y is a diffeomorphism if M is a homeo-
morphism and differentiable and the inverse M−1 is also differentiable. One inter-
esting remark is that if there exists a diffeomorphism between two n-dimensional
dynamical systems then they are equivalent.

Now for a given map xn+1 = f (xn), we can define the forward orbit O+(x) of the
state x as the set of points: O+(x) = {x, f (x), f 2(x), . . .} = f n(x),n ∈ Z+. If f is a
homeomorphism, we may define the full orbit of x, O(x), as the set of points f n(x)
for n ∈ Z, and the backward orbit O−, as the set of points x, f−1(x), f−2(x), . . .
The reason we distinguished between these types of orbits is that when we study
maps, we can not always follow the backward orbits i.e. go backwards in time. Non-
invertible maps are an example of such systems and in the next section we provide
a thorough discussion of the issue of invertibility and how it is related to chaos.

One extremely convenient way of depicting orbits in discrete iterated maps is
by cobwebbing. This graphical technique consists of overlaying the plot y = x over

1 Introduction to Chaos 5

the plot of the map xn+1 = f (xn). Beginning from some initial value x0 we draw a
vertical line to the graph of the map (the parabola in our case) and from this point
we draw a horizontal line to the graph of y = x. Thus we obtain the results from the
first iteration of the map and the starting point for the next one. We repeat the same
procedure for as many times as we need. For an example, see figure 1.2(a).

2.3 Example: The Logistic and the Hénon maps

One of the most studied examples of a one-dimensional system capable of various
dynamical regimes including chaos is the logistic map:

xn+1 = rxn(1− xn) (7)

where r is the control parameter. The logistic map represents nothing more than
an idealized population model [May, 1976]. Crucial to the behavior of the map is
the control parameter r and we will examine the qualitative changes in the map’s
dynamics by varying the value of r. Similarly to the logistic map, the Hénon map
is probably the most popular example of an invertible two-dimensional map. The
Henon map is the system: {

xn+1 = a− x2
n + yn

yn+1 = bxn
(8)

where a and b are dimensionless parameters. Both maps are invaluable to the study
of chaotic motion and we will rely on them in the subsequent sections.

2.4 Issue of Invertibility

We say that a map f (xn) is invertible if for a given state xn+1 there exists a unique
pre-image xn such that xn = f−1(xn+1), where f−1 is the inverse of f . The logistic
map is quite clearly non-invertible because there exist two pre-images xn for any
arbitrary xn+1 (except for the critical point at x = 0.5). From the relation xn+1 =
rxn(1− xn) for xn we obtain:

xn =
r±

√
r2 −4rxn+1

2r
(9)

which means that we have two preimages for xn+1 thus we can confirm our statement
about the non-invertibility of the logistic map. For comparison lets have another look
of the Henon map we saw earlier:{

xn+1 = a− x2
n + yn

yn+1 = bxn
(10)

6 D. Solev, P. Janjic, and L. Kocarev

xn

xn+1

10.5

1

0.5

x0

�

(a) Cobweb of the logistic map for r =
3.565 and initial conditions x0 = 0.2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Depiction of the chaotic regime in the
Hénon map with a = 1.4 and b = 0.3

Fig. 2 Figure (a) depicts a high period orbit for the logistic map and the map is still in the
periodic regime. The first three iterations i.e. how the cobweb is created, are marked with
arrows. On Figure (b) is depicted the chaotic Hénon map. Both are examples of complex
orbits, with the only difference that the logistic map depicted here is en-route to chaos.

We make the simple substitution:{
xn = f (xn)− Jyn

yn+1 = bxn
(11)

where f (xn) = a− x2
n and J = −1. Now we can express the pre-images as:{

xn = yn+1
b

yn = J−1
[

f
(yn+1

b

)
− xn+1

] (12)

This shows that the Henon map is invertible. We will see later that in addition to
invertibility, dimensionality of the map also puts a limit on the repertoire of solutions
we can observe. From the logistic map we saw that the minimum dimensionality for
non-invertible maps to be chaotic is N = 1, whereas the Henon map is an example
that we need at least two degrees of freedom for invertible maps to be chaotic. For
flows i.e. systems of differential equations N≥3 must hold for the system to be
chaotic [Hirsch and Smale, 1974].

2.5 Fixed Points and Attracting Sets

A fixed point x∗ of the map xn+1 = f (xn) is such that f (x∗) = x∗. If there exists
n > 0 such that f n(x∗) = x∗ and f k(x∗)�=x∗ where 0≤k≤n then we say that the point
x∗ is a periodic point of period n. The smallest period for which a point is periodic
is called the prime period. A period-n orbit is made up of n periodic points and if

1 Introduction to Chaos 7

the state of the system belongs to a periodic orbit, it will alternate between those
periodic points in succession. There exists another type of orbits one that neither
corresponds to the steady states (fixed points) of the system, nor are periodic. This
type of chaotic, irregular orbits will be discussed in detail in the next section.

Finding the fixed points in a one-dimensional map is quite simple, for the logistic
map we only need to solve x = rx(1− x), so the solutions are:

x1/2 =
−(1− r)± (1− r)

2r
(13)

An alternative way of finding the fixed points of a one-dimensional map is to find
the intersection points of its graph with the diagonal y = x. A central aspect of fixed
points is their character: they can be attracting or repelling, which means that nearby
orbits respectively converge to or diverge from them. For discrete iterated maps,
attracting fixed points are the simplest examples of attracting sets or attractors (the
next simplest being period-n orbits). An attracting set for a map is best described
as a closed subset of the map’s phase space, such that solutions for many different
initial conditions converge/asymptote to it as time increase.

2.6 Stability of Fixed Points

In general terms, the stability of a fixed point depends on the derivative of the map
at that fixed point. To see this, we inject a small change or perturbation to the fixed
point x∗ = f (x∗) which we label δn. We want to compute the perturbation in the next
iteration, so we have δn+1 = f (x∗ + δn)− x∗. By using Taylor expansion we get:

δn+1 = f (x∗ + δn)− x∗ = f (x∗)+ f ′(x∗)δn − x∗+ O(δ 2
n) (14)

Because δ is sufficiently small, the term O(δ 2
n) does not influence the character of

the stability so it is correct to approximate it to zero. Thus, the perturbation after n
iterations is: δn ≈ (μ∗)nδ0, where μ∗ is the multiplier of the fixed point:

μ∗ = f ′(x∗) (15)

For |μ∗| < 1 (resp. |μ∗| > 1) we say that the fixed point x∗ is stable (resp. unstable)
and we refer to μ as the multiplier of the fixed point. If |μ | �= 1 then we say that
the fixed point is hyperbolic. On the other hand, for μ = 1 we are unsure of the
character of the fixed point and for this value of μ the system undergoes a change we
will explain in details later on. The notion of hyperbolicity also applies for periodic
points and is explained in the next section. For μ = 0 we say that the fixed point is
superstable since all the perturbations are dampened quicker than exponentially.

2.7 Stability of Periodic Orbits

Let us consider the period-p orbit O(xp) and we know that xi = f p(xi) holds for i =
0,1, . . . , p− 1 Again, using the same technique, we introduce a slight perturbation

8 D. Solev, P. Janjic, and L. Kocarev

to xi and take that value as initial conditions for our analysis: x0 = xi + δ0. Because
of these perturbations, the p-th iterate will differ from xi for some δp so we have:
xi + δp = f p(xi + δ0). Again, we use Taylor expansion to obtain:

xi + δp = f p(xi + δ0) = f p(xi)+ (f p)′(xi)δ0 + O(δ 2
0) (16)

Using the chain rule of derivatives (because f p is a composition of functions) and
not taking into account the higher orders of δ0 (because δ0 is sufficiently small), we
arrive at: δp = λpδ0, where λp is:

λp = f ′(x0) f ′(x1). . . f ′(xp−1) (17)

and it is equal for all points xi, i = 0,1, . . . , p− 1 belonging to the period-p orbit.
When we follow the perturbed point xi + δp another p iterates around the orbit the
result is xi +λpδp = xi +λ 2

pδ0, so we can generalize it to: δnp = λ n
p δ0. This equation

quantifies the deviation as we go along the periodic orbit. For |λp|> 1 this deviation
grows by a factor of λp for every circle around the orbit and the periodic orbit
acts as a repeller, we move further away from it. When |λp| < 1 every time round
the periodic orbit the deviation decreases i.e. the orbit acts as an attractor since all
initial conditions in its neighbourhood asymptote to it. For λp = 0 we say that the
orbit is super-stable, since there is neither converges to it, neither diverges from it.
λp can be referred to as the stability coefficient or multiplier for the periodic orbit.
Generalizing our discussion of hyperbolicty, we can safely say that a fixed point is
a special case of a periodic point i.e its prime period is 1. If the multiplier |λp| �= 1
for a point of period p, then we say that it is hyperbolic and if |λp| = 1 is satisfied,
then that periodic point is non-hyperbolic and we cannot say for certain whether it
is stable or not. When this latter condition is met, a system is at a ‘turning point’,
which is followed by a change in the dynamics.

xn

xn+1

10.5

1

0.5

x0

12

3

4

�

��

�

�

Fig. 3 Stable period-4 orbit of the logistic map, for initial conditions x = 0.15. An example
of an asymptotic set, after the transients have died out, as the map is iterated further, the orbit
will successively visit the points 1 → 2 → 3 → 4 which also can be marked on the diagonal
y = x. Note that for any initial conditions, the asymptotic set would be the same, since it only
depends on the control parameter r

1 Introduction to Chaos 9

2.8 Invariant Sets and Manifolds

All interesting phenomena in nonlinear dynamical systems occur on invariant sets,
i.e. subsets of the phase space which remains as they are and constitute in a sense
the structure of more complex attracting sets. So we attribute such invariant sets to
a given attractor, either a fixed point, an orbit or a chaotic attractor.

More precisely, we can define an invariant set of the dynamical system xn+1 =
f (xn) as the subset S of the phase space X such that from x0 ∈ S follows f n(x0) ∈ S
for all n. With this formulation we actually say that the subset S will be mapped into
itself for any arbitrary number of iterations f nS ⊆ S. A logical conclusion is that any
individual orbit O(x0) is also an invariant set. Obviously, the simplest examples of
invariant sets are fixed points.

Manifolds represent special class of invariant sets with unique properties. The
notion of a manifold can easily be explained simply by looking at the set of trajec-
tories of neighbouring points. The stable manifold W s of a point x0 can be defined
as an invariant set of points whose image after an arbitrary long time (i.e. infinite
number of iterations) would be the same as x0’s:

W s(x0) = {x : f k(x) → x0,k → +∞} (18)

Similarly, an unstable manifold Wu of a point x0 is an invariant set of points whose
orbits converge to that of x0 when we iterate backward in time i.e. x0’s and x’s
preimages had been the same before an infinite number of iterations:

W u(x0) = {x : f k(x) → x0,k →−∞} (19)

As the orbits follow closely geometry of the invariant sets, once getting close to
them, one can realize the origin of the very irregular temporal dynamic of the

Fig. 4 (a)The manifolds W u and W s intersect at a point other than x0, this is the homoclinic
point x0 (b) One homoclinic point implies that there exist infinite such points, i.e. intersections
of the unstable manifold with the stable one. This is correlated to the folding action of a map:
as we perform infinite iterations of the map f k(x0) → x0 as k →±∞, W u is infinitely folded,
creating an infinite number of intersections with W s a result emerging from the complex
dynamics of the system. Image taken from [Kuznetsov,1998]

10 D. Solev, P. Janjic, and L. Kocarev

solutions of the given system. The homoclinic structures are typical for parameter
values for which the originally simple invariant sets has gone along certain scenario
of structural changes.

A good deal of the theory of invariant sets and manifolds is common for both
flows and maps, especially for hyperbolic equilibria and periodic orbits. However,
not everything form the theory of smooth manifolds in differential dynamical sys-
tems is as such applicable in abstract sense to a manifold defined for a discrete map,
or in certain cases the statements are valid for the close vicinities of the fixed points.
For more detailed discussion of the the differences, in the context of complex dy-
namical behavior the reader can refer to [Gilmore 2002] [Kuznetsov, 1998].

3 Chaotic Behavior

3.1 Main Features of Chaotic Dynamics

Instead of going into strict mathematical definition of chaotic behaviour, we will
discuss in more detail the main features and manifestations of chaos, as well as
the transitions from more regular to chaotic solutions. Main features of a nonlinear
dynamical system, exhibiting deterministic chaos for given values of the parameters,
are the following:

• Sensitive dependence on initial conditions - where small changes in the ini-
tial values of variables grows in time, and produce unpredictable difference
as we compute further, the orbit or path

• Irregular motion in phase space - illustrated by very complex, sometimes
noise-like patterns of oscillations of the solutions within a bounded, compact
sets. The particularity of chaos is that such complex oscillations are fully
reproducible for same numeric precision in the initial conditions and param-
eter values. Such quasi-stochastic behavior can be qualified by the specific
character of the associated measures and invariant densities

• Qualitative change of the character of the solutions - illustrated by a one or
more subsequent bifurcations, structural changes of the phase set to which
chaotic solutions converge as we evolve the system in time. Such attrac-
tors, i.e. chaotic attractors sometimes do not resemble at all the topological
structure of other solutions, for example the period orbits. This is result of a
global structural change of the phase space. Compact, simply connected sub-
sets, along certain parameter ranges undergo series of non-smooth changes
in their geometry and topology, mainly due to subsequent stretching and
folding cascades. Such attractors are also called strange attractors, due to
their specific geometry and self-similar structure on different time-scales.

Lets start with an example of chaotic orbit in logistic map. We will define necessary
terms and concepts, related to chaos, as we come across them. As we mentioned
earlier we are interested in seeing how orbits qualitatively change as the control

1 Introduction to Chaos 11

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

n

xn

1

10 20 30 40 50 60 70 80 90 100

(a) r = 3.565

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

� � � �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

n

xn

1

10 20 30 40 50 60 70 80 90 100

(b) r = 4

Fig. 5 Two distinct regimes for the logistic map are shown through 100 iterations of the
logistic map (xn,n), where n is the number of the iteration. The plots reveal the inherently
different behaviors of the map. In the periodic regime, a repetition of the states i.e. periodicity
can clearly be seen, whereas in the chaotic regime we witness irregular, random-like aperiodic
motion

parameter r is varied and we will explain the concepts of bifurcations and chaotic
motion. As we stated earlier, the logistic map has two fixed points:

x1 = 0, x2 = 1− 1
r

(20)

and the corresponding multipliers of these fixed points are:

μ1 = r, μ2 = 2− r (21)

Using the formulae for the multipliers we can determine how r affects the dynamics
of the logistic map. For r > 1 we can clearly see that x1 is unstable. On the other
hand, for 1 < r < 3 we have that x2 is stable since |2− r|< 1. So x2 is an attracting
fixed point in this range for r. It can easily be shown that for r ∈ (1,3), orbits with
period p ≥ 2 do not exist, and that any initial condition 0 ≤ x0 ≤ 1 converges to the
attractor x2, so we can say that the interval x ∈ [0,1] is the basin of attraction of
x2. What happens for 0 < r < 1? Or with initial conditions x0 < 0 or x0 > 1? For
r ∈ (0,1) we have that the fixed point x = 0 is stable (|μx = r| < 1), so that any
arbitrary initial conditions in the interval [0,1] will converge to it. For this value,
the fixed point x = 1− r−1 is unstable. Also, if r > 1, and we have negative initial
conditions x0 < 0 or initial conditions such as x0 > 1 then M(x) < x, so we conclude
that such initial conditions generate orbits which tend to −∞ as we go forward in
time.

12 D. Solev, P. Janjic, and L. Kocarev

3 3.2 3.4 3.6 3.8 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Bifurcation diagram of the logistic
map for r ∈ [2.9,4]

3.45 3.5 3.55 3.6 3.65
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

(b) A zoomed in section of the chaotic re-
gion r > 3.57 from (a), exposing the self-
similar structure of the diagram

Fig. 6 The period-doubling bifurcation leads to chaos in the logistic map. From the diagram
itself we can see how the map behaves for different values of r and the transition from periodic
regime to chaos: sensitive dependence on initial conditions is manifested in mapping a small
interval onto the whole domain of the map, coupled with the existence of orbits of infinite
period (irregular motion). Finally, the self-similar structure explains the fractal arrangement
and the folding process of the chaotic attractor.

Let us discuss the diagrams in Fig. 1.6 for a while. As discussed earlier, we
can explicitly state the parameter dependence of a dynamical system, so we can
alternatively represent it in the form:

(x,r), x ∈ Rn,r ∈ Ck. (22)

For the logistic map:
(x,r) ∈ R1 ×C1, (23)

hence the two-dimensional diagram. One of the most notable things in the dia-
grams is that by increasing the parameter r, orbits split in an ordered fashion. This
splitting/pitch-forking represents a qualitative change in the dynamic behaviour of
the map. The period-1 orbit “bifurcates” into a period-2 orbit (right diagram). The
reason we used quotation marks is that by bifurcation we don’t just assume split-
ting, but any qualitative change in the dynamics of a system and a proper definition
will follow shortly after. This types of diagrams, where we observe the changes of
the character of the solution, as parameter changes, are called bifurcation diagrams.
Note that this splitting continues indefinitely, and it is called the period-doubling
cascade i.e. as n ∈ Z,n → ∞ a period-2n orbit is created. This cascade is the main
culprit of the emergence of chaos in the logistic map. A quick glance at the left
diagram, at r∞ = 3.57, the diagram becomes fuzzy. At this point, orbits of infinite
period are created, impliying infinitely many bifurcations. This accumulation point
is closely related to a constant named the Feigenbaum number which is explained
in a subsequent section (where we explain the period-doubling bifurcation in more
detail).

1 Introduction to Chaos 13

From r∞ to r = 4 we say that the map is in chaotic regime. But as we can see there
is more to the bifurcation diagram than the simple distinction between periodic and
chatoic behavior. There are “windows” that are easily noticeable and correlate to
whole intervals of [0,1] being mapped to only 3 values, period-3 windows. There’s
an endless cascade of period-3n orbits as well, finely interlaced with the period-2n

orbits. For values r > 4 all the orbits escape to infinity.
We now focus on more in detail of the main characteristics of chaos, as outlined

at the beginning of this chapter.

3.2 Sensitive Dependence on Initial Conditions

We say that the map f : X → X has sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ X and any neighborhood σ of x, there exists
y ∈ σ and n ≥ 0 such that | f n(x)− f n(y)|> δ . For a map this means that for a given
point x, there exist at least one arbitrarily close point whose image after n iterations
will differ by δ from the image of x. Using our previous analysis of stability we
concluded that an infinitesimal perturbation will behave like |δxn| = |μnδx0|. For
example, the tent map (equation 1.18, figure 1.12) has a constant slope |μ | = 2
throughout, so for it, |μn|= 2n. Let’s say that we have two point x,y ∈ A = (0,1) and
that y = x+δ0 holds, where δ0 > 0 and it will be our initial separation. Following a
similar analysis to that of the stability of periodic orbits, for the separation δm after
m iterations of the map, we can write δm = |μm|δ0, from which it is obvious that
δm > δ0, because μ , m > 1. We can think of the sensitivity to initial conditions in
another way. We assume that a point x0 belongs to a subinterval of A with a diameter
of 2−k. Under the action of the map,after k iterations the subinterval will be mapped
onto the entire state space of the map (the whole interval A) and the state of the
system xk could be anywhere in A. Although at the beginning we know that the
initial point is within a small subinterval, for xn, n ≥ k we are absolutely uncertain
about the location of xn.

This sensitivity to initial conditions can be quantified by Lyapunov exponents.
Similarly as above, we have some initial conditions x0 +δ0, where δ0 is very small.
If we can express the separation δn after n iterations as δxn ≈ eλ n|δx0|, then λ is
a Lyapunov exponent. For any one-dimensional map there is only one Lyapunov
exponent:

λ = lim
n→∞

1
n

n−1

∑
i=0

ln
|δn+1|
|δn|

= lim
n→∞

1
n

n−1

∑
i=0

ln |(f i)′(x0)| (24)

Sensitivity to initial conditions (and chaotic motion in general) is associated with
a strictly positive Lyapunov exponent because the distance between nearby points
grows exponentially. If we try to compute the Lyapunov exponent of the tent map,
we easily arrive at λ = log2. In essence, Lyapunov exponents give us a measure of
the divergence of infinitesimally close orbits.

14 D. Solev, P. Janjic, and L. Kocarev

3.3 Bifurcations

Bifurcation is a qualitative change in the dynamics of a given dynamical system
as a control parameter is varied. The logistic map exhibits two characteristic bifur-
cations: a transcritical and a period-doubling bifurcation, which is also known as
a flip bifurcation and this bifurcation is the main culprit for chaotic motion in the
logistic map. We say that a bifurcation occurs if the phase portrait of a dynamical
system change for some parameter r. In other words, if the dynamics of the system
for r1 = r −ψ , ψ > 0 are no longer the same as those for r2 = r + ψ , ψ > 0, we
say that for that distinct value of r a bifurcation occurred, resulting in qualitatively
different phase portraits for the respective values of r. For a bifurcation to happen,
a certain number of conditions have to be met, out of which the most important are
the values of the parameters. In the logistic map, we only tweak one parameter, so
we can say that bifurcations in the logistic map are first-order or codimension-1.

One extremely convenient way to describe the dynamics of a system is through
phase portraits. This type of graphical representation does not require the computa-
tion of higher iterates and the subsequent plotting of each one of their graphs. For
one-dimensional maps we can depict the orbits in R1 instead of R2 for the graph
plot. On this phase line (obviously for 2-dim systems we would have a phase plane)
all the information about all the iterates can be shown simultaneously.

�� �

�

r = 1

r < 1

r > 1

Fig. 7 Phase portraits of the logistic map for various values of r. The white circle denotes an
unstable (repelling) fixed point and the black circle denotes a stable (attracting) fixed point.
As the parameter is increased, we can see how one fixed point (x∗ = 0) loses its stability
and another fixed point (x∗ = 1− r−1) is created. This actually represents the transcritical
bifurcation explained in the section that follows.

In addition to the bifurcation diagram of the logistic map, phase portraits will
help us illustrate the different types of bifurcations that occur in the map and we
will see how fixed points “move” along the curve of the map resulting in different
dynamics.

3.4 Transcritical bifurcation

When we discussed the stability of the fixed point x∗ = 0, we saw that for r = 1
which we will denote (rtc), it loses its stability. As we increase r from 0, at rtc = 1
the diagonal is tangent to the parabola and up until this point the multiplier μ =
f ′(x∗) = r−2rx∗ for x∗ = 0 is below 1. As we further increase r, the parabola rises

1 Introduction to Chaos 15

� xn

xn+1

0.5 1

0.5

1

(a) r < 1

xn

xn+1

0.5 1

0.5

1

(b) r = 1

��

�

xn

xn+1

0.5 1

0.5

1

(c) r > 1

Fig. 8 Transcritical bifurcation: (a) for r < 1 the parabola is under the diagonal y = x and the
fixed point x∗ is stable. (b)The diagonal is tangent to the parabola and x∗ is non-hyperbolic.
(c) For r > 1 the parabola is over the diagonal and there are two fixed points: x∗ = 0 lost its
stability and there is a new stable fixed point x∗ = 1− r−1

above the diagonal and this gives birth to a new fixed point x∗ = 1− r−1 (which is
stable for 1 < r < 3) at the expense of the stability of x∗ = 0 which becomes unstable.
This is an example of a transcritical bifurcation. See figure (transcritical.png) as an
example.

3.5 Period Doubling Bifurcation

We actually began the analysis of the period-doubling bifurcation when we dis-
cussed the emergence of chaotic behaviour earlier on. We saw that for r < 3 a
period-1 regime is present, but actually there are two period-1 orbit At r = 3 some-
thing interesting happens. The period-1 orbit loses its stability and gives rise to a
stable period-2 orbit. this is called the period doubling bifurcation. In general, at a
period-doubling bifurcation any period-n orbit will become unstable and give birth
to a period-2n orbit, and remain present as an unstable orbit. Let’s analyze the sta-
bility coefficients for r = rpd = 3. μ1 = 3 and μ2 = −1. What this means is that we
are left with two orbits, the former being an unstable period-1 orbit and the latter
being stable period-2 orbit. This unstable orbit does not vanish, but is present in all
subsequent dynamical regimes. The period-2 orbit can also be considered as a fixed
point of the twofold iteration of the logistic map i.e.

f 2 = f (f (x)) = [rx(1− x)][1− rx(1− x)] (25)

So to compute the two periodic points x1,x2 we need to solve:

x = f 2(x) = r[rx(1− x)][1− rx(1− x)] (26)

Both fixed points of f are solutions to the equation, so we reduce it from quartic to
quadratic:

b(x) =
f (f (x))− x

f (x)− x
= r2x2 − (r2 + r)x + r + 1 = 0 (27)

16 D. Solev, P. Janjic, and L. Kocarev

for which we can compute the solutions:

x1/2 =
r + 1± r

√
(r−3)(r + 1)
2r

(28)

Since r must be positive for the logistic map, that leaves us with rpd = 3 for the
value at which the period-2 orbit appears and the orbit exists for any value r > rpd

but as we later see, its stability changes. The multiplier of the period-2 orbit can be
obtained as calculating either one of the multipliers of the fixed points of f 2 since
they are equal:

μ1,2 = [f 2(x1)]′ = [f 2(x2)]′ = f ′(x2) f ′(x1) = r2(1−2x1)(1−2x2) (29)

which for r = rpd = 3 evaluates to μ = 1. The logistic map continues to act in
this way as we further increase r. As we saw earlier, xfix2 is stable for 1 < r ≤
rpd = 3 and as r goes beyond 3, the orbit gradually loses its stability, the multiplier
changes from 1 to -1, and at some point rpd4 it bifurcates, thus giving birth to a stable
period-4 orbit. So this behaviour repeats itself over and over again, like and endless
cascade, generating orbits such that for the range rn−1 < r ≤ rn, the period 2n orbit
is stable, for n → ∞. The range of r for which a period 2n orbit is stable decreases
almost geometrically with n. Interestingly enough, it is a constant and it is called the
Feigenbaum number [Feigenbaum, 1978, 1980a]:

rn − rn−1

rn+1 − rn
→ 4.669201 = δ , as n → ∞ (30)

Period doubling bifurcation sequence leading to a chaotic solution, represents only
one of the scenarios for transition to chaos, or a route to chaos, also called Feigen-
baum route or scenario.

r0 r1 r2 r∞ r

x

(a)

�

stable

(b)

��

�

�
stable

unstable

stable

(c)

Fig. 9 (a) A simplistic display of the period-doubling bifurcation. (b) and (c) Represent a
section from the second iterate of the logistic map f 2. It becomes more curved as r is in-
creased and intersects the diagonal at three points instead of one. At r = 3 the fixed point
x∗ = 1− r−1 loses its stability and gives birth to two stable fixed points. As the parameter is
increased further, the same happens to those fixed points as well.

1 Introduction to Chaos 17

3.6 Local vs. Global Analysis

The bifurcations we discussed are examples of local bifurcations. These bifurca-
tions are caused by the variation of the value of a parameter such that it changes the
stability of a fixed point i.e. at this point the multiplier of the fixed point is |μ | = 1.
Also, by varying the ‘bifurcation’ parameter around the bifurcation point allows us
to confine the changes in the phase portrait of the system to arbitrarily small neigh-
bourhood of the bifurcating fixed points, so that is why these types of bifurcations
are called local. On the other hand, global bifurcations occur when we have larger
attracting sets (like periodic orbits) collide with fixed points. The result is that now
the changes in the phase portrait cannot be limited to the near vicinity of the bi-
furcation point. Because of the arbitrarily large influence of these changes, these
bifurcations are referred to as ‘global’.

The Hartman-Grobman theorem is one of the invaluable tools used in the local
analysis of dynamical systems. This theorem can be written in a form convenient
for iterated maps and it states that a discrete map xn+1 = f (xn) sufficiently near a
fixed point x = x∗ locally has the same phase portrait as the linear map

xn+1 = μ(xn − x∗) (31)

provided that the multiplier μ = f ′(x∗) at the fixed point is such that μ �= 1 (i.e. it is
hyperbolic).

�

λ(x − x∗)

x∗

x

f(x)

Fig. 10 The Hartman-Grobman theorem states that the dynamics around a hyperbolic point of
a non-linear map can be approximated to the dynamics of a simpler linear map. This greatly
facilitates the analysis of complex systems.

A bifurcation is said to be generic if the character of the bifurcation cannot be
changed by introducing arbitralily small perturbations to either the phase space or
the parameter space. Let us denote the mapping f : M → M as M(x,r), where x
is the state and r is the control parameter. If we substitute M(x,r) + ψg(x,r) for
M(x,r), where g is smooth, for sufficiently small ψ the qualitative behaviour of
the bifurcation does not change. There are only three generic bifurcation for one-
dimensional maps: the period-doubling bifurcation, the tangent bifurcation and the
transcritical bifurcation. Non-generic bifurcations require special conditions to be
met in order for them to occur.

18 D. Solev, P. Janjic, and L. Kocarev

3.7 Stretching and Folding

In general, the asymptotic dynamics of many chaotic systems which are dissipative,
is limited to an arbitrarily small segment or region of the state space. Therefore,
any stretching that occurs must be counteracted with an antagonistic squeezing so
that orbits must remain in a bounded region (expansion ⇐⇒ contraction). The
stretching and the squeezing can be combined by folding processes and one of the
best examples is the Smale’s horseshoe map [Smale 1967]. We take a square S and
stretch it along the vertical direction (fig(a)), while compressing it in the horizontal
direction (fig(b)). Then we fold the deformed rectangle in the middle and place
the horseshoe on top of the original square S during which, the striped area of the
horseshoe is mapped outside the square S. The intersection of the original square
with the horseshoe is the two vertical strips:

f (s)∩S = V0 ∪V1 (32)

Iterating f−1, we take the same steps only in reverse order (d-a). The conclusion
is that the vertical strip Vi actually comes from a horizontal strip Hi = f−1(Vi) and
thus

f−1(S)∩S = H0 ∪H1 (33)

Now that we know how the stretching and folding processes work, we transfer our
discussion to one-dimensional maps. We saw earlier that for r = 4 the logistic map

Fig. 11 (a)The square is stretched at more than twice its height. (b) The square is squeezed
at less then a half of its width. (c) The resulting rectangle is folded at the middle. (d)The
horseshoe is placed over the original square. This completes one iteration of the Smale’s
horseshoe map. Image taken from [Kuznetsov,1998]

1 Introduction to Chaos 19

xn

xn+1

0.5 1

0.5

1

(a)

xn

xn+1

0.5 1

0.5

1

(b)

xn

xn+1

0.5 1

0.5

1

(c)

Fig. 12 (a) Graph of the tent map (1.18) alongside the diagonal y = x. (b) Graphs of high-
order iterates of the tent map: the twin-peak structure represents the second iterate h2 and the
more complex structure is the fourth iterate h4.

is chaotic. For this value the whole interval A = (0,1) is mapped onto itself i.e.
the map is surjective. Moreover, every x ∈ A is actually the image of two different
point x1,x2 ∈ A. Because of the surjectivity, A is also an invariant set (f (A) → A).
To simplify our analysis we will use a transformation of the logistic map. We will
resort to a change of coordinates, namely x = sin2(πy) and using some trigonometric
substitutions we arrive at:

yn+1 = h(yn) = 1−2

∣∣∣∣yn −
1
2

∣∣∣∣ (34)

which is a piecewise linear map and it is called the tent map because of its graph (fig
...). What is immediately noticeable is that the tent map looks like a spiky version of
the logistic map and this feature means that computation of the higher-order iterates
is greatly simplified. Because it is piecewise linear and symmetric at x = 1/2, the
slope is constant |h′(y)| = 2 on the whole interval A = (0,1) on which the map is
defined. We can split the interval A into two subintervals A = A0 ∪A1, such that
h(A0) = h(A1) = A.

From Fig. 1.12 (b) we can see that the iterations of the tent map resemble the
ribs of an accordion watched through a square window. The higher the iterate, the
more ribs are “folded in”. This is due to the stretching and folding mechanisms of
the tent map. The two peaks in the graph of h2 are a result of how h maps each of
A0 and A1 onto the whole interval A, so the graphs of h2 of Ai i = 1,2 are the same
as the graph h on A, with the obvious restriction that they are defined on twice as
narrow interval: |A1| = |A2| = 1/2|A|. Basically, this means that a hn iterate of the
map will uniformly stretch a subinterval Ai |Ai| = 1/2n to the whole interval A in
N ≤ n iterations, doubling the length Ai at each iteration. As we iterate further, the
doubling of the length of the interval continues, but the orbits must stay bounded
within the invariant set A. What we have is that all the time the interval A will
continue to map onto itself, a process known as folding. From now on, the motion
of the map will follow a pattern consisting of alternating stretching and folding:

20 D. Solev, P. Janjic, and L. Kocarev

• The whole interval will be stretched twice its length
• The resulting interval will be folded in half, so it fits the invariant set on

which the map is defined.

Now we can clearly see two very important features (which we mentioned earlier)
of chaotic maps. First, sensitivity to initial conditions simply because the stretch-
ing means exponential divergence of neighbouring orbits (factor of two for each
iterate of the tent map). The folding process keeps the orbits bounded. Second, non-
invertibility, which is caused by the folding action, because the whole invariant in-
terval is folded onto itself resulting into an image having two distinct preimages.

0 1 2

0 0.5 1

stretch

fold

Fig. 13 The stretching and folding processes in the tent map. First the interval is stretched to
twice its length, and then it is folded onto itself. These two properties are inherent to chaos:
for a map to be chaotic it must be expanding, but for the orbits to remain bounded there must
be folding as well

3.8 Strange Attractors

We saw earlier that the tent and logistic maps are chaotic on their entire phase space,
but this is not the case with other systems, which are only chaotic within a small
bounded subset of their phase space. In general, a map is said to be dissipative if it
does not preserve phase space volumes on each iterate. This means that a bounded
region of the phase space will shrink as the map is iterated and this is associated with
the presence of an attractor within that region. All three mechanisms: stretching,
folding and squeezing are inherent to chaotic dynamics and they cause the geometry
of an attractor to be quite more complex than that of the attractors we have seen
so far. To illustrate this, we will use the Hénon map and will treat it in a similar
fashion to [Ott, 1993]. Figures (a) through (c) show that as we iteratively zoom in
the attractor and observe it at smaller scales, each of the structures we observe are
similar to one another (a number of parallel lines). If we continue to zoom in, we
will conclude that the attractor has a self-similar structure on an arbitrarily small
scale. This is in fact the main feature of a fractal which is a geometrical object that

1 Introduction to Chaos 21

2 1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)
0 8 0 85 0 9 0 95 1 1 05 1 1

0.7

0.75

0.8

0.85

0.9

0.95

(b)
0 865 0 87 0 875 0 88 0 885 0 89 0 895 0 9

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

(c)

Fig. 14 (a) The Hénon attractor. (b) A magnification of the region around the attractor
[0.883896,0.883896] i.e. the upper dot. (c) A further magnification of the region the attractor.
From (b) and (c) we can see the self similar structure of fractal attractors.

possesses a non-integer dimension (hence the name). Fractal attractors are called
strange attractors and often the dynamics on a strange attractor are chaotic, but there
are also example of non-chaotic strange attractors. Strange non-chaotic attractors are
actually self-similar fractal sets for which sensitive dependence on initial conditions
does not hold. The Hénon attractor is a set of infinite number of lines, so on one
hand it has a dimension greater than one, but on the other it doesn’t have a surface
so it cannot be of dimension two. The actual value of the fractal dimension of the
Hénon attractor is D0 � 1.26.

3.9 Symbolic Dynamics

The other reasons of introducing the Smale’s horseshoe map is that it is very impor-
tant (actually it was originally conceived for) in the study of symbolic dynamics. In
the rest of the section we follow the formalism as in [Gilmore and LeFranc, 2002]

Symbolic dynamics is a useful technique for analyzing the motion of dynamical
systems. It relies on following orbits and marking regions of the state space they visit
and associating different symbols to these different partitions of the state space. Let
us assume that a unimodal one-dimensional map is defined on the interval A. The
most simple splitting of this interval would be to divide it in two parts A0 and A1.
Since the splitting points should be chosen such that the boundaries of the partitions
are the critical points of the map, this binary partitioning is quite appropriate (uni-
modal maps have only one critical point). But in the general case, we decompose
the interval A into N disjoint intervals Aα , α = 0 . . .N −1,ordered from left to right,
such that:

A = A0 ∪A1 ∪ . . .AN−1 (35)

Note that this kind of partitioning only holds for one-dimensional maps. After split-
ting the interval into a union of disjoint Aα intervals, like in Fig. 15 (b), at each
iteration, we adhere/adjoin a symbol α ∈ A = 0, . . . ,N −1 depending on which in-
terval the current state/point belongs to. Note that A is actually an alphabet of the
N symbols that α can assume. Now we can define the coding function s(x):

22 D. Solev, P. Janjic, and L. Kocarev

s(x) = α ⇐⇒ x ∈ Aα (36)

Now, we can create a representation Σ(x) of an arbitrary orbit O = f n(x) =
{x, f (x), f 2(x), . . .} such that Σ(x) is the infinite sequence of the symbols denot-
ing which intervals the orbits visits in succession:

Σ(x) = s(x),s(f (x)),s(f 2(x)), . . . ,s(f i(x)), . . . (37)

This sequence is called the itinerary of x. We denote the set of all possible sequences
in the alphabet A as A N, and

Σ(A) = {Σ(x); x ∈ A}

We can define the shift operator σ as

Σ = {s0,s1,s2, . . . ,si, . . .} σ−→ {s1,s2,s3, . . . ,si, . . .} = σΣ (38)

So, applying the shift operator σ on the symbolic sequence Σ(x) ∈ Σ(A) is the same
as applying f on x:

Σ(f (x)) = σΣ(x) (39)

Visually, we can draw a commutative diagram such as:

x
f ��

Σ
��

f (x)

Σ
��

{si}i∈N
σ �� {si+1}i∈N

There is one important remark to be made. Note that we only shifted the sym-
bolic sequences to the right. This corresponds to moving forwards in time, and
for non-invertible maps is quite sufficient (the only orbits we can compute are
O+ = { f n(y)n≥0}. So the sequences are one-sided and extend to +∞ (forward in
time). Thus, σ is non-invertible. We can in fact define operators that are inverse to
σ i.e. σ−1

α that insert a symbol (α in this case) to the head of the symbolic sequence:

Σ = {s0,s1,s2, . . . ,si, . . .}
σ−1

α−−→ {α,s0,s1,s2, . . . ,si−1, . . .} = σ−1
α Σ (40)

In general, f−1(f (x)) = f (f−1(x)) = x, but for the shift operator this is not the case,
since first we lose a symbol (which can take N-values) and then we replace it with
a fixed symbol α , so we end up with: σ(σ−1

α = Id �= σ−1
α (σ). The way we decided

to symbolize the orbits, presents quite a convenient way to mark periodic orbits, so
we have a periodic sequence such that: Σ = {si} with si = si+p for all i ∈ N, and it
can easily be concluded that they satisfy σ pΣ = Σ , which we can see that using the
commutative diagram is: f p(x) = x.

1 Introduction to Chaos 23

xn

xn+1

1

1

A0 A1

(a)

A0 A1 A2 A3 A4

x

f(x)

(b)

Fig. 15 (a) Partitioning of the tent map. Since it has only one critical point at x = 0.5 we
can divide its domain in two disjoint intervals and associate the symbols of 0 and 1 to them.
(b) presents a more complex case where the map has more than one maxima and minima so
additional symbols have to be used. Note that the symbols are adhered to each subinterval
from left to right

3.10 Invariant Densities and Measures

We discussed in several occasions the complex, random-like and irregular character
of chaotic solutions, or signals, if we encounter them as a time-series in experiments.
Due to the distinct properties of the geometry of their attracting sets, attempting
to obtain the asymptotic solutions in the full phase space is obviously important,
but when temporal sequences become very complicated and the dimensionality is
three or higher, one can not say much about the time-averaged behaviour of the
solution, if finite length sequences of such solutions would eventually appear along
the motion or response of realistic apparatus or a device.

This practically means that despite we deal with a system which is essentially
governed by deterministic laws, we will benefit if we can obtain statistical charac-
terization of the behavior for the whole range of equally probable initial conditions
and specific parameter values. We would like to stress, that here we do not talk of
purely random and stochastic components like transient disturbances, additive noise
or channel noise, but the irregular behavior of the chaotic solutions.

The focus of statistical analysis of dynamical systems is on invariant probability
measures and invariant density, if the later can be defined.

By defining density ρ(x) we assign to any of the points x0 of the range of x(t)
a scalar frequency representing how often chaotic trajectory comes arbitrary close
to x0. When we define the density on the attracting set, and especially on chaotic
attractor we talk of invariant density. There are some times singularities in defining
the invariant densities, typically only on countably many points for a critical value
of the map.

24 D. Solev, P. Janjic, and L. Kocarev

A good example is the logistics map for r = 4 where critical point x = 1/2 is
iterated to the unstable fixed point xp = 1, which is then mapped to the stable xp = 0,
and stays there. Figure 1.16.a shows the density of logistic map after change of
coordinates used in Ch.3.7, for r = 4, with singularities at the ends of the interval.
In this case with the mentioned change of the coordinates it is possible to get ρ(x)
in analytic form. In practice we compute the densities as histograms of sufficiently
long trajectories, well after the initial transients, and eventually smooth them out
numerically.

For values lower than r = 4 where the logistic map or its higher order iterates are
along the period-doubling route to fully developed chaos, the number of unstable
fixed points or unstable periodic orbits is growing, fractioning the interval [0,1]
into subintervals. On the ends of such subintervals invariant density will always
show a singular behavior, as approximately shown on Fig. 1.16.b, for r = 3.8 [Shaw.
1981]. For the case of fully developed chaos one can expect erratic looking nowhere
smooth graph of peak values, due to the invariant set reducing to a strange attractor
of Lebesgue measure zero (having no parts with positive natural length). In such
limiting case, for r=4, we are getting the smooth density of fully developed chaos,
i.e. Fig. 16.a.

Instead of dealing with invariant densities which are essentially a point-wise
property we can analyse the corresponding invariant measures μ , in general case
related by

dμ(x) = ρ(x)dx (41)

when the density can be defined. There are different ways to define appropriate
measure, although we can say that both invariant measures and invariant densities
are proven to exist for chaotic attractors of one-dimensional maps, under very gen-
eral conditions. For more detailed treatment of measures in chaotic dynamical sys-
tems please refer to [Ruelle, 1989]. In higher-dimensional dynamical systems the
existence of invariant measures is more complicated, and it is generally an open
problem.

The central idea is to relate time averages of arbitrary long time-series of an
experimental observable φ [x(t)], to the phase space averages at the chaotic attractor,
weighted by the invariant measure, i.e.

lim
T→∞

1
T

T

∑
n=0

φ(Mn(xi)) =
∫

φ [x(t)]dμ(x). (42)

Furthermore, where the above holds almost everywhere, or in other words for typ-
ically chosen xi from the invariant set, except for the countably many points of
Lebesgue measure zero, we say that dynamical system is ergodic. For quite com-
plete discussion of properties of invariant measures and densities of the logistic map
refer to [Ott, 1993] while more complete treatment of invariant measures on chaotic
attractors can be found in [Ruelle, 1989].

1 Introduction to Chaos 25

10
�

(a)

x

ln ρ

−1

0

1

2

10

�

(b)

Fig. 16 Examples of invariant densities. a) Invariant density of logistic map for r = 4, show-
ing a typical smooth behavior of fully developed chaos except at the singularities on the ends
of the interval. b) Erratic character of the density for r = 3.8 [Shaw, 1981], along period-
doubling cascade, where [0,1] interval is being fragmented to subintervals resulting into
countably infinite singular points (the end s of each subinterval).

References

1. Kocarev, L., Galias, Z., Lian, S. (eds.): Intelligent Computing Based on Chaos Series:
Studies in Computational Intelligence, vol. 184. Springer, Heidelberg (2009)

2. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Benjamin/Cummings,
Menlo Park (1986)

3. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurca-
tions of Vector Fields. Springer, New York (1983)

4. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems and Linear Alge-
bra. Academic Press, New York (1974)

5. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, Heidelberg
(2004)

6. Gilmore, R., Lefranc, M.: The Topology of Chaos, Alice in Stretch and Sqeezeland.
Wiley, NY (2002)

7. Edward, O.: Chaos in Dynamical Systems. Cambridge University Press, New York
(2002)

8. Feigenbaum, M.J.: Quantitative Universality for a Class of Nonlinear Transformations.
J. Stat. Phys. 19(25), A978

9. Feigenbaum, M.J.: The Metric Universal Properties of Period Doubling Bifurcations and
the Spectrum for a Route to Turbulence. Ann. New York. Acad. Sci. 357, 330–336 (1980)

10. Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)
11. Grebogi, C., Ott, E., Yorke, J.: Chaos, Strange Attractors and Fractal Basin Boundaries

in Nonlinear Dynamics. Science 238(585), A987d
12. Shaw, R.: Strange Attractors, Chaotic Behavior, and Information Flow. Z. Naturforsch A

36(80), A981
13. Ruelle, D.: Chaotic Evolution and Strange Attractors. Cambridge University Press,

New York (1989)

Chapter 2
Chaos-Based Public-Key Cryptography

Igor Mishkovski1 and Ljupco Kocarev2

1 Department of Electronics, Politecnico di Torino, Corso Duca degli Abruzzi 24,
I-10129, Turin, Italy
igor.mishkovski@polito.it

2 Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92093-0402, USA
lkocarev@ucsd.edu

Abstract. In this chapter we give an overview and the state of the art in the field
of Chaos-based cryptography. The public key cryptosystems based on Chebyshev
polynomials enjoy some nice chaotic properties, which makes them suitable for use
in both encryption and digital signature. The cryptosystem can work either on real
or integer numbers. The cryptosystem that works on real numbers is not secure and
permits to recover the corresponding plaintext from a given ciphertext. In addition, it
also allows forgeries if the cryptosystem is used for signing messages. On the other
hand, ElGamal-like and RSA-like algorithms when using Chebyshev polynomials
on integer numbers are secure as the aforementioned encryption algorithms. The
chaos-based cryptography is discussed from a point of view which we believe is
closer to the spirit of both cryptography and chaos theory than the way the subject
has been treated recently by many researchers.

1 Introduction

The study of chaotic systems and their possible applications to Cryptography has
received considerable attention during the last years in a part of the scientific com-
munity. Chaotic systems are characterized by sensitive dependence on initial con-
ditions, similarity to random behavior, and continuous broad-band power spectrum.
Chaos has potential applications in several functional blocks of a digital commu-
nication system: compression, encryption, and modulation. In early days (from
1992 to 1996) the main research goal was to develop schemes in which a single
chaotic system is used for both modulation and encryption. This approach eventu-
ally evolved into two distinct research areas: chaos-based modulation [1], [2] and
chaos-based cryptography [3], [4].

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 27–65.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

igor.mishkovski@polito.it
lkocarev@ucsd.edu

28 I. Mishkovski and L. Kocarev

Cryptography is generally acknowledged as the best method of data protection
against passive and active fraud [5]. An overview of recent developments in the de-
sign of conventional cryptographic algorithms is given in [5]. The tight relationship
between chaos and cryptography is given in the Shanon’s paper on cryptography [6]:

“Good mixing transformations are often formed by repeated products of two sim-
ple non-commuting operations. Hopf has shown, for example, that pastry dough can
be mixed by such a sequence of operations. The dough is first rolled out into a thin
slab, then folded over, then rolled, and then folded again, etc.”

More detailed relationship between chaos and cryptography, is given in [7]. Table 1
contains a partial list of these properties. Despite the given relationship, a deep rela-
tion between chaos and cryptography has not yet been establish. In Table 2 we give
the main similarities and differences between chaotic systems and cryptographic
algorithms. Table 2 summarizes similarities and differences between chaotic maps
and cryptographic algorithms. Chaotic maps and cryptographic algorithms (or more
generally maps defined on finite sets) have some similar properties: sensitivity to a
change in initial conditions and parameters, random-like behavior and unstable peri-
odic orbits with long periods. Encryption rounds of a cryptographic algorithm lead
to the desired diffusion and confusion properties of the algorithm. Iterations of a
chaotic map spread the initial region over the entire phase space. The parameters
of the chaotic map may represent the key of the encryption algorithm. An impor-
tant difference between chaos and cryptography is that encryption transformations
are defined on finite sets, while chaos has meaning only on real numbers. More-
over, for the time being, the notions of cryptographic security and performance of
cryptographic algorithms have nocounterpart in chaos theory.

Table 1 Comparison between chaos and cryptography properties.

Chaotic property Cryptographic property Description

Ergodicity Confusion The output has the same distribu-
tion for any input

Sensitivity to initial condi-
tions/control parameter

Diffusion with a small change
in the plaintext/secret key

A small deviation in the input can
cause a large change at the output

Mixing property Diffusion with a small change
in one plain-block of the whole
plaintext

A small deviation in the local
area can cause a large change in
the whole space

Deterministic dynamics Deterministic pseudo-
randomness

A deterministic process can
cause a pseudo-random behavior

Structure complexity Algorithm (attack) complexity A simple process has a very high
complexity

Short summary of the three types of cryptographic objects and their chaos-based
implementation follows. Three most common cryptographic objects are: block-
encryption algorithms (private-key algorithms), pseudo-random number generators
(additive stream ciphers), and public-key algorithms.

2 Chaos-Based Public-Key Cryptography 29

Table 2 Similarities and differences between chaotic systems and cryptographic algorithms.

Cryptographic algorithms Chaotic systems

Phase space: finite set of integers Phase space: (sub)set of real numbers
Algebraic methods Analytic methods
Rounds Iterations
Key (Boolean) - Discrete keyspace Parameters (real) - Continuous keyspace
Diffusion Sensitivity to a change in initial condi-

tion/parameters
Digital realizations by integer arithmetic Digital realization by non integer arithmetic

which approximates continuous continuous-
value systems

Security and performance ?

Block ciphers transform a relatively short string (typically 64, 128, or 256 bits)
to a string of the same length under control of a secret key. Several block encryp-
tion ciphers based on chaotic maps have been proposed in the literature, in which
a discretization (a process that describes the way a chaotic map is implemented
in the computer) is not realized by rounding the chaotic map according to the
computer arithmetic, but rather is constructed explicitly. Pichler and Scharinger [8]
proposed cryptographic systems based on chaotic permutations constructed by ex-
plicitly discretizing the two-dimensional bakers map. Fridrich [9] extended their
ideas to chaotic permutations on any size of two-dimensional lattices. Her permuta-
tions benefit from the expanding property along one axis, technically avoiding the
contracting property along the other axis. The authors of [10] used two well-known
chaotic maps, exponential and logistic, to construct a class of block encryption al-
gorithms. In [11], they analytically derived the lower bound of a number of active
S-boxes in their algorithms, computed upper bounds for differential and linear prob-
abilities, and therefore, proved the resistance of the algorithms proposed [10] to dif-
ferential and linear attacks. Masuda and Aihara [12] considered a discrete version
of the skew-tent map, which exploits important chaotic properties such as the sen-
sitive dependence on initial conditions and the exponential information decay. They
discussed the difference between the discretized map and the original map, explain-
ing the ergodic- and chaotic-like properties of the discretized map. In [13] authors
propose software base approach of chaos based cryptography superior to the real-
ization of Lorenz dynamics on electronics circuit. These approach does not suffer
from parameter drifts, stability and it is not prone to the reconstruction of dynamics,
i.e. is not vulnerable to attacks as the circuit based approach. The systems dynamics
are hidden using trajectory folding and their results show that both the encryption
and the decryption are fast and implementable.

A pseudo-random number generator is a deterministic method, usually described
with a mapping, to produce from a small set of ”random” numbers, called the seed,
a larger set of random-looking numbers called pseudo-random numbers. Chaotic
systems may be used to generate pseudo-random numbers. For example, in a se-
ries of papers [14], the authors proposed a chaos-derived pseudo-random number

30 I. Mishkovski and L. Kocarev

generator. They numerically observed that the average cycle and transient lengths
grow exponentially with the precision of implementation, and from this fact de-
duced that using high-precision arithmetic one can obtain pseudo-random number
generators (PRNGs) which are still of cryptographic interest. Statistical properties
of binary sequences generated by a class of ergodic maps with some symmetrical
properties are discussed in [15]. The authors derived a sufficient condition for this
class of maps to produce a sequence of independent and identically distributed bi-
nary random variables. However, the authors did not discuss the implementation of
these maps on finite-state machines and the consequences this implementation may
have on the randomness of the generated sequences. In [16], the authors proposed a
class of chaos-based pseudo-random bit generators.

Certain applications in cryptography require the use of a truly random number
generator (RNG), which is a device which outputs a sequence of statistically in-
dependent and unbiased numbers. It is widely accepted that the core of any RNG
must be an intrinsically random physical process. Thus, it is no surprise that the
proposals and implementations of RNGs range from tossing a coin, to measur-
ing thermal noise from a resistor and shot noise from a Zener diode or a vacuum
tube, measuring radioactive decay from a radioactive source, and sampling a sta-
ble high-frequency oscillator with an unstable low-frequency clock, to mention
only a few proposals. For chaos-based generators of truly random numbers, see,
for example, [17], [18], [19], [20]. Papers [18], [19] are devoted to the analysis
of the application of a chaotic piecewise-linear one-dimensional map as an RNG.
Piecewise linearity of the map enables the authors to mathematically find param-
eter values for which a generating partition is Markov and the RNG behaves as
a Markov information source, and then to mathematically analyze the information
generation process and the RNG. The map is implemented in a 0.8m standard com-
plementary metal oxide semiconductor (CMOS) process utilizing switched current
techniques.

Public-key algorithms [5], also called asymmetric algorithms, are designed so
that:

1. the encryption key is different from the decryption key;
2. the encryption key can be made public; and
3. the decryption key cannot, at least in any reasonable amount of time, be calcu-

lated from the encryption key.

There are many public-key algorithms; the three most widely used public-key
cryptosystems are: RSA, ElGamal, and Rabin [5]. In this chapter we investigate
public-key encryption algorithms using Chebyshev maps [21], [22], define on the
set [-1, 1], and implemented using floating-point arithmetic, which in [23] are shown
that are not secure. Furthermore, we show the Elgamal-like and RSA-like public-
key algorithm using Chebyshev maps, presented in [24]. In this case, our analysis of
the periodic orbits in sequences of integers generated by Chebyshev maps is based
on the arithmetic properties of toral automorphisms, another well-known class of
chaotic maps. This kind of chaotic-based cryptography is secure and practical, and
can be used for both encryption and digital signature.

2 Chaos-Based Public-Key Cryptography 31

However, despite the huge number of papers published in the field of chaos-based
cryptography (some of them cited here), the impact that this research has made on
conventional cryptography is rather marginal. This is due to two reasons:

• First, almost all chaos-based cryptographic algorithms use dynamical systems
defined on the set of real numbers, and therefore are difficult for practical real-
ization and circuit implementation.

• Second, security and performance of almost all proposed chaos-based methods
are not analyzed in terms of the techniques developed in cryptography. More-
over, most of the proposed methods generate cryptographically weak and slow
algorithms.

2 Public-Key Encryption

Cryptography has come to be understood to be the science of secure communication.
The publication in 1949 by C. E. Shannon of the paper ”Communication Theory
of Secrecy Systems” [6] ushered in the era of scientific secret-key cryptography.
However, Shannons 1949 paper did not lead to the same explosion of research in
cryptography that his 1948 paper had triggered in information theory [25]. The real
explosion came with the publication, in 1976, by W. Diffie and M. E. Hellman of
their paper, ”New Directions in Cryptography” [26]. Diffie and Hellman showed
for the first time that secret communication was possible without any transfer of
a secret key between sender and receiver, thus establishing the turbulent epoch of
public-key cryptography. Moreover, they suggested that computational complexity
theory might serve as a basis for future research in cryptography. In a public-key
encryption system [5] Alice has a public key e and a corresponding private key d. In
secure systems, the task of computing d given e is computationally infeasible. The
public key defines an encryption transformation Ee, while the private key defines
the associated decryption transformation Dd . Bob, wishing to send a message m
to Alice, obtains an authentic copy of Alice’s public key e, uses the encryption
transformation to obtain the cipher-text c = Ee(m), and transmits c to Alice. To
decrypt c, Alice applies the decryption transformation to obtain the original message
m = Dd(c).

Since 1976, numerous public-key algorithms have been proposed; the three most
widely used public-key crypto-systems are: RSA, Rabin, and ElGamal. The security
of the RSA system, named after its inventors R. Rivest, A. Shamir, and L. Adle-
man, is based on the intractability of the integer factorization problem. In the Rabin
public-key encryption scheme, the problem faced by a passive adversary is compu-
tationally equivalent to factoring. The security of the ElGamal public-key system
is based on the intractability of the discrete logarithm problem. Public-key encryp-
tion schemes are typically substantially slower than symmetric-key encryption al-
gorithms. For this reason, public-key encryption is most commonly used in practice
for encryption of small data items and/or for transport of keys, subsequently used
for data encryption by symmetric-key algorithms.

32 I. Mishkovski and L. Kocarev

Recall first the basic ElGamal algorithm. The ElGamal public-key algorithm can
be viewed as Diffie-Hellman key agreement in key transfer-mode [5]. Consider a
class of functions defined as π(x) = xp(modN), where N is a prime number, x is a
generator of the multiplicative group Z∗N , and 1 ≤ p ≤ N−2. Any two functions π
and πq commute under composition:

πp(πq(x)) = πpq(x) (1)

The Diffie-Hellman key agreement protocol describes how Alice and Bob agree on
their common secret key. Alice generates a number p, computes y = π(x) and sends
(x,y) to Bob. Bob creates a number q, computes z = πq(x) and sends z to Alice.
The secret key, which can be shared by both Alice and Bob, is computed as follows.
Alice computes the secret key k as k = π(z). Bob computes the secret key k as
k = πq(y).

In the ElGamal public-key scheme, Alice generates a large random prime N and a
generator x of the multiplicative group Z∗N of integers modulo N. She also generates
a random integer s ≤ N − 2 and computes A = xs(modN). Alice’s pubic key is
(x,N,A); Alice’s private key is s. To encrypt a message m, Bob selects a random
integer r ≤ N− 2, computes B = xr(modN) and X = mAr(modN), and sends the
cipher-text c = (B,X) to Alice. To recover the message m from c, Alice uses the
private key s to recover m by computing m = B−sX(mod N). The decryption allows
recovery of the original message because B−smAr ≡ x−rsmxrs ≡ m(mod N).

Recall now the RSA algorithm. Let N = pq and φ = (p−1)(q−1), where p and
q are two large random (and distinct) primes p and q. Alice selects a random integer
e, 1 < e < φ , such that gcd(e,φ) = 1 and computes the unique integer d, 1 < d < φ ,
such that ed ≡ 1(modφ). Alice’s public key is (N,e); Alice’s private key is d. To
encrypt a message m, Bob computes c = me(mod N) and sends to Alice. To recover
the message m from c, Alice should use the private key d to recover m = cd(mod
N). Let πp(x) = xp(modN). The decryption in the RSA algorithm works for two
reasons: the functions πe and πd commute under composition, and p is a periodic
point of the function πEd for every m: med ≡ m(modN). The last follows from
the following observation. Since ed ≡ 1(mod φ), there exists an integer k such that
ed = 1 + kφ . Now, if gcd(m, p) = 1, then by Fermat’s theorem mp−1 ≡ 1(mod p).
Raising both sides of this congruence to the power of k(q−1) and then multiplying
both sides by m yields med ≡ m(mod p). By the same argument med ≡ m(modq).
Finally, since p and q are distinct primes, it follows that med ≡ m(modN).

3 Chaotic Maps

3.1 Chebyshev Maps

A Chebyshev polynomial map Tp : R→ R of degree p is defined using the following
recurrent relation:

Tp+1(x) = 2xTp(x)−Tp−1(x). (2)

2 Chaos-Based Public-Key Cryptography 33

with T0 = 1 and T1 = x. The first few Chebyshev polynomials are

T2(x) = 2x2−1,

T3(x) = 4x3−3x,

T4(x) = 8x4−8x2 + 1.

One of the most remarkable properties of the Chebyshev polynomials is thesemi-
group property [27]:

Tr(Ts(x)) = Trs(x). (3)

An immediate consequence of this property is that Chebyshev polynomials com-
mute under composition, i.e.,

Ts(Tr) = Tr(Ts). (4)

The interval [−1,1] is invariant under the action of the map Tp : Tp([−1,1]) =
[−1,1]. Thus, the Chebyshev polynomial restricted to the interval [−1,1] is the well-
known chaotic map for all p > 1: it has a unique absolutely continuous invariant
measure

μ(x)dx =
dx

π
√

1− x2
,

with positive Lyapunov exponent λ = ln p. For p = 2, the Chebyshev map reduces
to the well-known logistic map.

For both ElGamal and RSA algorithms, property (1) is crucial for encrypting and
decrypting the information. Now we address the following question: Are there other
functions with the semigroup property (1)? We consider only polynomials. Two
polynomials, P and Q, are called permutable if P(Q(x)) = Q(P(x)) for all x. If we
write P◦Q to indicate composition P(Q(x)), then P and Q are permutable if P◦Q =
Q◦P. A sequence of polynomials, each of positive degree, containing at least one of
each positive degree and such that every two polynomials are permutable, is called
a chain. The Chebyshev polynomials T1(x),T2(x), ... , form a chain. The powers
π j(x) ≡ x j, j = 1,2, ... , form a chain as well. Suppose that λ (x) = ax + b,a �= 0,
so that λ−1(x) = (x− b)/a. If P and Q commute, it is clear that λ−1 ◦P ◦ λ and
λ−1 ◦Q◦λ also commute. We say that P and λ−1 ◦P◦λ are similar.

The answer to the above question for polynomials is given by the following the-
orem [27]: If P and Q commute, either both are iterates of the same polynomial or
both are similar, with respect to the same λ , to either Chebyshev polynomials or
powers. Thus, the sequences Tj and π j are the only chains, up to similarities.

3.2 Torus Automorphisms

In this section we briefly discuss some general properties of automorphisms of the
two-dimensional torus. An automorphism of the 2-torus is implemented by a 2×2

34 I. Mishkovski and L. Kocarev

matrix M with integer entities and determinant±1. The requirement that the matrix
M has integer entities ensures that M maps torus into itself. The requirement that the
determinant of the matrix M is ±1 guarantees invertibility. Here we consider only
strictly unimodular automorphisms, for which detM = 1.

Let M be a 2-torus automorphism[
x′

y′

]
= M

[
x
y

]
(mod 1), (5)

where x,y ∈ [0,1]. Let k be a trace (which is an integer) of the automorphism M,
f (z) = z2 − kz + 1 its characteristic polynomial, and λ one of its roots (say, the
largest one):

λ =
k +
√

k2−4
2

.

It is well known that for k > 2 (we will consider only positive k) the automorphism
M has strong chaotic properties and, in particular, it has a dense set of unstable pe-
riodic orbits. The detailed structure of periodic orbits of the 2-torus automorphisms
has been studied by Percival and Vivaldi [28].

Periodic orbits of a toral automorphism consist of those points having rational
coordinates ξ = p1/q1, η = p2/q2, pi, qi integers. Let pi, qi be co-primes (their
greatest common divisor is 1) and let q be the least common multiple of q1 and q2.
Clearing denominators, we let M act on Z2, the lattice of integral vectors, and then
take into account the periodicity of the torus by identifying points whose coordi-
nates differ by multiplies of q, i.e., we consider the factor group Z2/gZ2. Thus, the
dynamics of periodic orbits is dynamics over a finite set of integers.

The work [28] illustrated the close link existing between arithmetic in algebraic
number fields and strongly chaotic dynamics. The main conclusions of [28] may be
summarized as follows:

• A 2-torus automorphism has three different types of (periodic) orbit structure,
according to the classification of rational primes: inert, split, and ramified primes
[29].

• The orbits which correspond to inert primes are almost without structure. The
split primes have two distinct ideal factors, which correspond to orbits confined
to invariant sublattices. For this reason, two ideal orbits which exist on split prime
lattices are the ”most ergodic” orbits and, thus, equilibrium averages computed
with them minimize statistical fluctuations.

• Both inert and split prime lattices are found infinitely often and, moreover, with
the same frequency in both cases. These are consequences of Dirichlet’s theorem
on the existence of infinity many primes in any arithmetic progression [30].

• The ramified prime lattices support orbits which are exceptionally regular. How-
ever, there is only a finite number of ramified primes, so that this apparently
contradictory phenomenon of regularity in chaos is in fact very rare.

2 Chaos-Based Public-Key Cryptography 35

4 Floating Point Implementation of Cryptosystem Based on
Chebyshev Polynomials

This public-key cryptosystem based on Chebyshev polynomials can be viewed as
a generalization of the ElGamal public-key cryptosystem [31] and it is proposed
in [21]. The floating point implementation of this cryptosystem, the prove of its
correctness, its implementation and the security analysis are provided in [23].

4.1 Cryptosystem

The cryptosystem is composed of three algorithms: a Key Generation algorithm, an
Encryption algorithm, and a Decryption algorithm.

Key Generation Algorithm: Key generation is done in three steps:

Alice, in order to generate the keys, does the following:

1. Generates a large integer s.
2. Selects a random number x ∈ [−1,1] and computes Ts(x).
3. Alice sets her public key to (x,Ts(x)) and her private key to s.

Encryption Algorithm: Encryption requires five steps:

Bob, in order to encrypt a message, does the following:

1. Obtain Alice’s authentic public key (x,Ts(x)).
2. Represents the message as a number M ∈ [−1,1].
3. Generates a large integer r.
4. Computes Tr(x),Tr·s(x) = Tr(Ts(x)) and X = M ·Tr·s(x).
5. Sends the ciphertext C = (Tr(x),X) to Alice.

Decryption Algorithm: Decryption requires two steps:

Alice, to recover the plaintext M from the ciphertext C, does the following:

1. Uses her private key s to compute Ts·r = Ts(Tr(x)).
2. Recovers M by computing M = X/Ts·r(x).

36 I. Mishkovski and L. Kocarev

4.2 Correctness of the Cryptosystem

The algorithm is correct due to the semi-group property of the Chebyshev polyno-
mials. Indeed, encryption provides:

X = M ·Tr(Ts(x)).

Since Chebyshev polynomials commute under composition, it follows that

X = M ·Ts(Tr(x)).

Therefore
M = X/Ts·r(x).

4.3 Implementation

Both encryption and decryption involve the evaluation of Chebyshev polynomials. If
we evaluate Chebyshev polynomials directly, applying the recursive definition, then
the computation of Tn(x) takes linear time in n. However, it is possible to further
reduce the computation to a logarithmic number of steps [32], by noticing that

T2·n(x) = T2(Tn(x))
T2·n+1(x) = 2 ·Tn+1(x) ·Tn(x)− x

and re-organizing the computation. More precisely, we can use the recursive relation
for evaluating Chebyshev polynomials

T0 = 1
T1 = x

Tn(x) =
{

2 ·T2
n/2(x)−1, if n is even

2 ·T(n−1)/2(x) ·T(n+1)/2(x)− x, n odd.

Another important issue that must be considered when implementing the above
cryptosystem is the finite precision of the arithmetics. In [21] the authors pointed
out that the semi-group property of Chebyshev polynomials, stated by (3), holds
only if the values s and r, chosen by Alice and Bob, are such that s < s0 and r < r0,
where s0 and r0 are constant values depending on the arithmetics precision used in
implementing the encryption and decryption algorithms. They gave a table where,
for certain precisions, expressed in terms of bits, some possible upperbound for and
hold. For example, a 2048-bit precision implies constants s0 and r0 smaller than
2970. Such upperbounds where empirical determined. No general relation linking
the arithmetic precision of the operations to the values of s0 and r0 is currently
known.

2 Chaos-Based Public-Key Cryptography 37

4.4 Security Analysis of Cryptosystem

In this section, we show that the above cryptosystem is not secure. Given a cipher-
text an adversary, by exploiting the same definition of Chebyshev polynomials and
after some algebra, can recover the cleartext. In [21], it was presumed to be secure
based on the following observation: as pointed out the scheme resembles ElGamal
encryption scheme. The security of ElGamal encryption scheme is based on the in-
tractability of the discrete logarithm problem in Z∗n, i.e., given n, x and xp, find p.
In the above scheme, given x and Tp(x), the value Tp(x) is the value of a polyno-
mial of order p, not just a power xp. Hence, computing the order of the polynomial
p, given only one pair (x,Tp(x) seems to be much harder than computing p from
a power. Thus, recovering s given x and Ts(x) seems only possible by computing
Tp(x) for all p > 2 and, then, comparing for which p the equality Tp(x) = Ts(x)
holds.

Unfortunately, there are some fundamental differences between the two schemes:
the ElGamal scheme is implemented over Z∗n and uses modular arithmetic. Then,
given x and xp the discrete logarithm is uniquely determined while, as we will show
later, there are several Chebyshev polynomials passing through the same point.

4.4.1 How to Recover the Plaintext

In this section, we present an attack which enables an adversary to recover from a
given ciphertext the corresponding cleartext.

First of all, we will use the trigonometric functions cos(x) and arccos(x) defined
as

cos : R→ [−1,1] and arccos : [−1,1]→ [0,π].

The cos(x) function has period 2π .
Notice that Chebyshev polynomials can be alternatively defined as follows.
Definition IV.1: Let n be an integer, and let x be a variable taking value over the

interval [-1, 1]. The polynomial Tn(x) : [−1,1]→ [−1,1] is defined as

Tn(x) = cos(n · arccos(x)). (6)

A simple trigonometric argument shows that this is equivalent to (2).
Description of the Attack: Let (x,Ts(x)) be Alice’s public key. In order to encrypt

a message M, Bob chooses a large integer r and computes

Tr(x), Tr·s(x) = Tr(Ts(x)), and X = M ·Tr·s(x).

Then, he sends the cipher-text C = (Tr(x),X) to Alice.
Unfortunately an adversary, given Alice’s public key (x,Ts(x)) and the ciphertext

(Tr(x),X), can recover M by doing the following steps:

38 I. Mishkovski and L. Kocarev

1. Compute an r′ such that Tr′(x) = Tr(x).
2. Evaluate Tr′·s(x) = Tr′(Ts(x)).
3. Recover M = (X/Tr′·s(x)).

The attack is always successful because, if r′ is such that Tr′(x) = Tr(x), then:

Tr·s(x) = Ts·r

= Ts(Tr(x)) = Ts(Tr′(x))
= Ts·r′(x) = Tr′·s(x)
= Tr′(Ts(x)).

Let us show how such an r′ can be computed. Let N be the set of natural numbers
and let Z be the set of integers. According to Definition IV.1, it holds that Tr(x) =
cos(r · arccos(x)). Let

P =

{
±arccos(Tr(x))+ 2kπ

arccos(x)

∣∣∣∣∣ k ∈ Z

}
.

Notice that some r′ belonging to the set P might not be integers. However, the
following result shows that P contains all possible integers r′ defining polynomials
Tr′(x) passing through Tr(x).

Lemma IV.1: For each pair (x,Tr(x), the integer r′ satisfies Tr′(x) = Tr(x) if and
only if r′ ∈ P∩N.

Proof: Let r′ ∈ P∩N. Assume that

r′ =
arccos(Tr(x))+ 2k′π

arccos(x)

for a certain k′. By using Definition IV.1, it holds that

Tr′(x) = cos(r′ arccos(x))

= cos

(
arccos(Tr(x))+ 2k′π

arccos(x)
· arccos(x)

)

= cos(arccos(Tr(x))+ 2k′π)
= cos(arccos(Tr(x)))
= Tr(x).

Hence, if r′ ∈P∩N, then Tr′(x)= Tr(x). If r′= (−arccos(Tr(x))+2k′π)/(arccos(x))
we can apply exactly the same argument.

On the other hand, assume that Tr′(x) = Tr(x) for a certain r′ ∈ N. Then,

Tr′(x) = cos(r′ arccos(x)) = Tr(x).

2 Chaos-Based Public-Key Cryptography 39

Applying the arccos function to both members, we get

arccos(cos(r′ arccos(x))) = arccos(Tr(x)). (7)

Let y = arccos(w). Due to the equality cos(−β) = cos(β), for every angle β , and
due to the periodicity of the cos function, all angles β such that cos(β) = w are
given by β =±y + 2kπ , for k ∈ Z. Therefore, identity (7) holds if and only if

r′ arccos(x) =±arccos(Tr(x))+ 2k′π

where k′ ∈ Z. Dividing both members by arccos(x), we get:

r′ =
±arccos(Tr(x))+ 2k′π

arccos(x)

i.e., r′ ∈ P∩N. Thus, the lemma holds.
Using the above result, denoting by

a =
arccos(Tr(x))

arccos(x)
and b =

2π
arccos(x)

(8)

the adversary has to find an integer k ∈ Z and a positive integer u ∈ N solutions to
one of the two equations

a + k ·b = u or −a + k ·b = u (9)

given a and b.
Let (a mod 1) and (b mod 1) be the fractional parts of and a and b. The actual

problem becomes solving

(a mod 1)+ k · (b mod 1) = z

or
−(a mod 1)+ k · (b mod 1) = z

How to find k in a real implementation. Assume that we use a finite precision
implementation in base B ≥ 2, and that L is the maximum number of digits of
(a mod 1) and (b mod 1). Then, multiplying all terms by BL, we can rewrite the
above equations in equivalent form as

(a mod 1) ·BL + k · (b mod 1) ·BL = z ·BL

and
−(a mod 1) ·BL + k · (b mod 1) ·BL = z ·BL

Denoting by a′ the integer (a mod 1) ·BL and by b′ the integer (b mod 1) ·BL, the
solutions to the above equations are exactly the solutions to the linear modular
equations

40 I. Mishkovski and L. Kocarev

b′ · k ≡ a′ mod BL and b′ · k≡−a′ mod BL. (10)

However, notice that we can restrict our attention to just one of the above modular
equations. Indeed, since b′ ·k ≡−a′ mod BL is equivalent to b′ · (−k)≡ a′ mod BL,
once we have solved b′ ·k≡ a′ mod BL, we easily derive the solutions to the second
one. More precisely, if k is solution to b′ · k ≡ a′ mod BL then −k is solution to
b′ · k≡−a′ mod BL.

We can get efficiently the set of solutions to linear modular equations of the form
b′k≡ a′ mod BL (see, for example, [9, ch. 33]). Denoting by 〈b′〉= {b′ j mod BL| j ∈
ZBL} the subgroup of elements of Z∗BL generated by b′, it is easy to see that the
modular equation has solutions if and only if a′ ∈ 〈b′〉. Moreover, denoting by d the
gcd(b′,BL), the above membership condition is equivalent to d|a′. The set of distinct
solutions to b′k≡ a′ mod BL (if there exist) has cardinality d and is given by

x j = x0 + j · B
L

d
mod BL, for j = 1, ...,d−1

where the first solution x0 can be obtained directly by applying the extended Eu-
clidean algorithm. Indeed, such an algorithm, on input (b′,BL), outputs a triple
(d,s′,t ′) of integers where d = b′s′+BLt ′, and it is easy to check that x0 = s′(a′/d) is
solution to b′k ≡ a′ mod BL. From a computational point of view, the above proce-
dure is efficient since the running time of the extended Euclidean algorithm requires
O(logBL) steps in the worst case.

Coming back to our setting, notice that the equations given in (10) have solutions
by construction. More precisely, there are d = gcd(b′,BL) exactly distinct solutions
for each of them, which can be easily found applying the above method. Clearly,
just one solution suffices to the adversarys goal.

4.4.2 An Example

We show how an adversary, given Alices public key (x,Ts(x)) and the ciphertext
C = (Tr(x),X), where X = M · Trs(x), constructed by Bob in order to send M to
Alice, computes the value Trs(x). Then, dividing X by Trs(x), he recovers M.

Let us start by generating Alices public-key parameters.
Let B = 10, π = 3.141592654,x = 0.64278761 and s = 106000. Then, arccos(x)=

(5/18)π , and Ts = cos(s · arccosx) = cos(106000 · (5/18)π)= 0.173648178.
Hence, Alices public key is given by the pair

(x,Ts(x)) = (0.64278761,0.173648178).

Assume that Bob, in order to encrypt a message M, chooses r = 81500. Then

Tr(x) = cos(r · arccosx)

= cos

(
81500 · 5

15
π

)
= −0.939692621

2 Chaos-Based Public-Key Cryptography 41

and

Tr(Ts(x)) = cos(r · arccos(Ts(x)))

= cos

(
81500 · 4

9
π

)
= 0.766044443

By applying the strategy described before, an adversary computes an r′ such that
Tr′(Ts(x)) = Tr(Ts(x)). Since it holds that

arccos(Tr(x)) =
8π
9

and arccos(x) =
5π
18

the set of possible integer indexes r′ is given by

P =

{
±arccos(Tr(x))

arccos(x)
+

2πk
arccos(x)

∣∣∣∣∣ k ∈ Z

}
= {±3.2 + 7.2k | k ∈ Z}.

Hence, the adversary has to find a solution to one of the following two equations:

3.2 + 7.2k1 = u1 and −3.2 + 7.2k2 = u2 (11)

where u1,u2 ∈ N. By considering only the fractional parts, the problem becomes
solving one of

0.2 + 0.2k1 = z1 or −0.2 + 0.2k2 = z2

where z1,z2 ∈N. Since L = 1, then BL = 10, and the above equations are equivalent
to

2 + 2k1 = 10z1 and −2 + 2k2 = 10z2

whose solutions are exactly the solutions to the modular equations

2k≡ 8 mod 10 and 2k ≡ 2 mod 10. (12)

Let us consider the first one. This equation has solutions since gcd(2,10) = 2 and
2|8. Precisely, there are 2 solutions, given by k = 4 + i5, for i = 0,1, where 4 is
the solution x0 obtained directly by means of the Extended Euclidean Algorithm.
By choosing one of them, for example 4, the corresponding index r′, computed
evaluating the first one of (11) is 32. Then, it holds that

T32(Ts(x)) = cos(32 · 4
9

π) = 0.766044443.

Hence, the adversary has computed Trs(x). The cleartext sent by Bob is computed
by the adversary as X/T32s(x).

42 I. Mishkovski and L. Kocarev

For completeness, notice the two solutions to the second equation are {6,1} and
are obtained by computing −4 mod 10 and −9 mod 10. By choosing one of them,
for example 1, the corresponding index r′, computed evaluating the second of (11)
is 4. Then, it holds that

T4(Ts(x)) = cos(4 · 4
9

π) = 0.766044443.

Hence, the adversary has computed Trs(x). The cleartext sent by Bob is computed
by the adversary as X/T4s(x).

5 Floating Point Implementation of Cryptosystem Based on
Jacobian Elliptic Chebyshev Rational Maps

As suggested in [21], instead of using Chebyshev polynomials, the cryptosystem
we have previously analised can be also realized by using the Jacobian Elliptic
Chebyshev Rational Maps, studied in [33] and [34]. This section is dedicated to the
implementation of this type of cryptosystem and attacks that can be identified for
these cryptosystems. This work was done and explained in details in [23].

5.1 Jacobian Elliptic Chebyshev Rational Maps

The Jacobian Elliptic Chebyshev Rational Maps are rational functions defined as
follows [34].

Definition 5.1: Let p be a positive integer, let ω ∈ [−1,1] be a real number, and let
k ∈ [0,1] be a real number called modulus. Jacobian Elliptic Chebyshev Rational
Maps are defined by

Rp+1(ω ,k) =
2ω

1− k2(1−Rp(w,k)2)(1−ω2)
Rp(w,k)−Rp−1(w,k)

where R0(w,k) = 1 and R1(w,k) = ω .
Notice that, when the modulus k = 0 the Jacobian Elliptic Chebyshev Rational

Map Rp(ω ,0) is exactly a Chebyshev polynomial, i.e., Rp(ω ,0) = Tp(ω).
Jacobian Elliptic Chebyshev Rational Maps enjoy the semigroup property. In-

deed, for each integers r,s≥ 2 , and for each w,k, it holds that

Rr(Rs(ω ,k),k) = Rr·s(ω ,k). (13)

Hence, these maps commute under composition, i.e.,

Rr(Rs(ω ,k),k) = Rs(Rr(ω ,k),k).

2 Chaos-Based Public-Key Cryptography 43

5.2 Cryptosystem

The cryptosystem is composed of three algorithms: a Key Generation algorithm, an
Encryption algorithm, and a Decryption algorithm.

Key Generation Algorithm: Key Generation takes place in three steps:

Alice, in order to generate the keys, does the following:

1. Generates a large integer s.
2. Selects two random numbers ω ∈ [−1,1] and k ∈ [0,1], and computes

Rs(ω ,k).
3. Alice sets her public key to (ω ,k,Rs(ω ,k)) and her private key to s.

Encryption Algorithm: Encryption requires five steps:

Bob, in order to encrypt a message, does the following:

1. Obtain Alice’s authentic public key (ω ,k,Rs(ω ,k)).
2. Represents the message as a number M ∈ [−1,1].
3. Generates a large integer r.
4. Computes Rr(ω ,k),Rr·s(ω,k) = Rr(Rs(ω ,k),k) and X = M ·Rr·s(ω ,k).
5. Sends the ciphertext C = (Rr(ω ,k),X) to Alice.

Decryption Algorithm: Decryption requires two steps:

Alice, to recover the plaintext M from the ciphertext C, does the following:

1. Uses her private key s to compute Rs·r(ω ,k) = Rs(Rr(ω ,k),k).
2. Recovers M by computing M = X/Rs·r(ω ,k).

Notice that, the value of k, which defines the form of the map, could be the same
for all users of the system.

5.3 Correctness of the Cryptosystem

The cryptosystem is correct due to the semi-group property of the Jacobian Elliptic
Chebyshev Rational Maps. Indeed, encryption provides:

X = M ·Rr(Rs(ω ,k),k).

44 I. Mishkovski and L. Kocarev

Since the maps commute under composition, it follows that

X = M ·Rs(Rr(ω ,k),k).

Therefore
M = X/Rs·r(ω ,k).

5.4 Jacobian Elliptic Functions and Jacobian Elliptic Chebyshev
Rational Maps

Jacobian elliptic Chebyshev rational maps can be equivalently defined by means of
the Jacobian elliptic functions [34].

Let ω ∈ [−1,1], let k ∈ [0,1], and let ρ ∈ [0,2π] be the angle, referred to as the
amplitude of ω , defined by

ω =
∫ ρ

0

dθ
(1− k2 · sin2(θ))

1
2

.

Then, the Jacobian elliptic functions sn(ω ,k) and cn(ω ,k) are defined as follows:

sn(ω ,k) = sin(ρ) and cn(w,k) = cos(ρ)

and Let k′ =
√

(1− k2). The above functions are doubly-periodic, having a real
period and an imaginary one. More precisely, denoting by

K =
∫ π

2

0

dθ
(1− k2 · sin2(θ)) 1

2

and

iK′ = i
∫ π

2

0

dθ
(1− k′2 · sin2(θ)) 1

2

where i is the imaginary unit, we get that sn(ω ,k) has periods 4K and 2iK′;
while cn(ω ,k) has periods 4K and 2K + 2iK′. We restrict our attention to the real
periodicity.

For any fixed k, the function cn−1(v,k), inverse of the Jacobian elliptic function
cn(ω ,k), relatively to the interval [0,2K], is given by

cn−1(v,k) =
∫ ρ

0

dθ
(1− k2 · sin2(θ)) 1

2

where ρ = arccos(v).
Then, we can state the following alternative definition for the Jacobian elliptic

Chebyshev rational maps.

Definition 5.2: Let p ≥ 2 be an integer, let k ∈ [0,1] be a real number, and let ω ∈
[−1,1]. The Jacobian elliptic Chebyshev rational maps with modulus k are defined
by

Rp(ω ,k) = cn(p · cn−1(ω ,k),k).

2 Chaos-Based Public-Key Cryptography 45

5.5 Efficient Computation of cn(ω,k), sn(ω,k) and cn−1(v,k)

The functions cn(ω ,k), sn(ω ,k), and cn−1(v,k), all defined in terms of elliptic in-
tegrals, can be efficiently computed by means of the Arithmetic-Geometric Method,
(A.G.M. method, for short). Roughly speaking, such a method works as follows:
starting with (a0,b0), it proceeds to determine number triples

(a1,b1,c1),(a2,b2,c2), ...,(an,bn,cn)

according to the following scheme of arithmetic and geometric mean:

a j+1 = (1/2)(a j + b j)

b j+1 = (a j ·b j)(1/2)

c j+1 = (1/2)(a j−b j).

Assume that we use an arithmetic in base B with N-digit precision of the opera-
tions. The procedure stops at the n-th step when an = bn, i.e., when cn = 0. Notice
that such an equality is achieved when the relative error εn = 1−(bn/an) is less than
the degree of accuracy fixed by the implementation i.e., B−N . It has been estimated
(see, for example [35]) that the relative error ε j = 1− (b j/a j) decays approxima-

tively as ε j ≈ (1/8)e−2 j
, from which it easily follows that the method converges

after roughly logN steps.
To compute the functions cn(ω ,k) and sn(ω ,k), we apply the A.G.M method

starting with a0 = 1, and b0 = k′. Once the A.G.M method stops, we compute the an-
gle (in degrees) φn = 2nanω(180/π). Then, applying, for j = n, ...,1, the recurrence
relation sin(2φ j−1− φ j) = (c j/a j)sinφ j, we compute the angles φn−1,φn−2, ...,φ0.
Finally,

sn(ω ,k) = sinφ0 and cn(ω ,k) = cosφ0.

On the other hand, to evaluate cn−1(v,k), f or j = 0, ...,n− 1, by applying the
recurrence relation tan(γ j+1− γ j) = (b j/a j) tanγ j , where γ0 = ρ , we compute the
angles γ1, ...,γn, and then

cn−1(v,k) =
γn

2nan
.

Notice that the quarter-period K can be easily computed as well, since it is a
special case of the computation of cn(ω ,k) (just set the angle ρ = 2π). The reader
is referred to [36] for further details on the A.G.M method, and on the computation
of sn(ω ,k), cn(ω ,k) and cn−1(v,k). Moreover, an efficient implementation of the
above functions can be found in [37].

5.6 Security Analysis of Cryptosystem

Apart the complexity of the mathematical objects we are dealing with, the attack we
have applied against the public-key scheme based on Chebyshev polynomials still
works against the cryptosystem based on Jacobian elliptic Chebyshev rational maps.

46 I. Mishkovski and L. Kocarev

5.6.1 How to Recover the Plaintext

Let (ω ,k,Rs(ω ,k)) be Alices public key. In order to encrypt a message M, Bob
chooses a large integer r and computes

Rr(ω ,k), Rr·s(ω ,k) = Rr(Rs(ω ,k),k) and X = M ·Rr·s(ω ,k).

Then, he sends the ciphertext C = (Rr(ω ,k),X) to Alice.
Unfortunately an adversary, given Alice’s public key (ω ,k,Rs(ω ,k)) and the ci-

phertext C = (Rr(ω ,k),X), can recover M as follows:

The adversary, to get the message, does the following

1. Compute an r′ such that Rr′(ω ,k) = Rr(ω ,k).
2. Evaluate Rr′·s(ω ,k) = Rr′(Rs(ω ,k),k).
3. Recover M = (X/Rr′·s(ω ,k)).

The attack is always successful because, if r′ is such that Rr′(ω ,k) = Rr(ω ,k),
then:

Rr·s(ω ,k) = Rs·r(ω ,k)
= Rs(Rr(ω ,k),k)
= Rs(Rr′(ω ,k),k)
= Rs·r′(ω ,k)
= Rr′·s(ω ,k)
= Rr′(Rs(ω ,k),k).

Let us show how such an r′ can be computed. According to Definition V.2, it
holds that

Rr(ω ,k) = cn(r · cn−1(ω ,k),k).

Hence applying the cn−1 function to both members of the equality, and using the
periodicity of cn(ω ,k) and the property cn(ω ,k) = cn(−ω ,k) we get that

±cn−1((Rr(ω ,k),k)+ z ·4K = r · cn−1(ω ,k)

for z ∈ Z. Notice that we are only considering the real periodicity, since we are not
interested in imaginary solutions. Let

P =

{
±cn−1(Rr(ω ,k),k)+ z ·4K

cn−1(ω ,k)

∣∣∣∣∣ z ∈ Z

}
.

We can show that P contains all possible integers r′ defining maps Rr′(ω ,k) passing
through Rr(ω ,k), for certain r,ω and k. The proof proceeds along the same lines of
proof provided for Lemma IV.1. We omit it since it is essentially the same.

2 Chaos-Based Public-Key Cryptography 47

Lemma 5.1: For each triple (ω ,k,Rr(ω ,k)), the integer r′ satisfies Rr′(ω ,k) =
Rr(ω ,k) if and only if r′ ∈ P∩N.

Setting a = (cn−1(Rr(ω ,k),k))/(cn−1(ω ,k)) and b = (4K/cn−1(ω ,k),k) as in
(8), we apply exactly the same steps we have done in Subsection 4.4.1 describing
the attack against the cryptosystem based on Chebyshev polynomials. Hence, an
adversary can recover the plaintext from the ciphertext.

5.6.2 An Example

We show how an adversary, given Alices public key (ω ,k,Ts(ω ,k)) and the cipher-
text C = (Rr(ω ,k),X), where X = M ·Rrs(ω ,k), constructed by Bob in order to send
M to Alice, computes the value Rrs(ω ,k). Then, dividing X by Rrs(ω ,k), he recovers
M.

Let us start by generating Alices public-key parameters.
Let B = 10, ω = 0.435946, k = 0.3 and s = 2342. Then, Rs(ω ,k) = cn(s ·

cn−1(ω ,k),k) = 0.245756. Hence, Alices public key is given by the triple

(ω ,k,Rs(ω ,k)) = (0.435946,0.3,0.245756). (14)

Assume that Bob, in order to encrypt a message M, chooses r = 1876. Then

Rr(ω ,k) = cn(r · cn−1(ω ,k),k) =−0.938538

and
Rr(Rs(ω ,k),k) = cn(r · cn−1(Rs(ω ,k),k),k) = 0.613408.

By applying the strategy described in Subsection 5.6.1, an adversary computes an r′

such that Rr′(Rs(ω ,k),k) = Rr(Rs(ω ,k),k). The set of possible integer indexes r′ is
given by

P =

{
±cn−1(Rr(ω ,k),k)+ z ·4K

cn−1(ω ,k)

∣∣∣∣∣ z ∈ Z

}
= {±2.6 + 5.8k | k ∈ Z}.

Hence, the adversary has to find a solution to one of the following two equations:

2.6 + 5.8k1 = u1 and −2.6 + 5.8k2 = u2 (15)

where u1,u2 ∈ N. By considering only the fractional parts, the problem becomes
solving one of

0.6 + 0.8k1 = z1 or −0.6 + 0.8k2 = z2

where z1,z2 ∈N.
Since L = 1, then BL = 10, and the above equations are equivalent to

6 + 8k1 = 10z1 and −6 + 8k2 = 10z2 (16)

48 I. Mishkovski and L. Kocarev

whose solutions are exactly the solutions to the modular equations

8k≡ 4 mod 10 and 8k ≡ 6 mod 10.

Let us consider the first one. This equation has solutions since gcd(8,10) = 2 and
2|4. Precisely, there are 2 solutions, given by k = 3 + i5, for i = 0,1, where 3 is
the solution x0 obtained directly by means of the Extended Euclidean Algorithm.
By choosing one of them, for example 3, the corresponding index r′, computed
evaluating the first one of (15) is 20. Then, it holds that

R20(Rs(ω ,k),k) = cn(20 · cn−1(Rs(ω ,k),k),k) = 0.613408.

Hence, the adversary has computed Rrs(ω ,k). The cleartext sent by Bob is computed
by the adversary as X/R20s(ω ,k).

5.7 Key Agreement by Using Rational Maps

Rational maps enjoying the semi-group property can be also used to design a Diffie-
Hellman like key agreement scheme. Umeno [38] was the first author who suggested
such a method. Let us briefly recall the following definitions, given in [5].

Definition 5.3: Key establishment is any process whereby a shared secret key be-
comes available to two or more parties, for subsequent cryptographic use.

Definition 5.4: A key agreement protocol or mechanism is a key establishment tech-
nique in which a shared secret is derived by two or more parties as a function of
information contributed by, or associated with, each of these, ideally such that no
party can predetermine the resulting value.

Let us look at the following key agreement protocol.
Let X be a public real value, and let F(·, ·) be a rational map enjoying the semi-

group property, i.e., F(p,F(q,x)) = F(pq,x).

Bob, in order to agree on a common key with Alice, does the following:

1. Generates a large integer p.
2. Computes Y = F(p,X).
3. Sends Y to Alice.

Alice, in order to agree on a common key with Bob, does the following:

1. Generates a large integer q.
2. Computes Y ′ = F(q,X).
3. Sends Y ′ to Bob.

Then, Alice and Bob compute the common value Z = F(q,Y) =
F(q,F(p,X)) = F(p,F(q,X)) = F(p,Y ′).

2 Chaos-Based Public-Key Cryptography 49

It is easy to check that if the rational map used in the above scheme is a Cheby-
shev Polynomial or a Jacobian Elliptic Chebyshev Rational map then, since X is
public and F(p,X) and F(q,X) are sent in clear over the channel, an adversary who
taps the channel, with no knowledge of the secret values p and q, can employ the
same attack we have described before for the public-key cryptosystem, and compute
the common key.

5.8 Entity Authentication Based on Chebyshev Polynomials

Chebyshev Polynomials have also been used to design an authentication scheme.
Entity authentication is defined as follows [5].

Definition 5.5: Entity authentication is the process whereby one party is assured
(through acquisition of corroborative evidence) of the identity of a second party
involved in a protocol, and that the second has actually participated (i.e., is active
at, or immediately prior to, the time evidence is acquired).

In [39], a scheme based on Chebyshev Polynomials, by means of which a user
can efficiently authenticate himself to a server in order to log in, was proposed.
It strongly resembles the public-key cryptosystem described in [21]. Apart minor
implementation details, the scheme works as follows.

Let m ∈ [−1,1] be a real value, and denote by T i
s (·) the map Ts(·) iterated i times,

i.e., T i′
s (·) = Ts(Ts(Ts...Ts(·))...) = Tsi(·).

Setup Phase - Server Side

1. The server generates a random number r.
2. Computes and sends Tr(m) to the user.

Setup Phase - User Side

1. The user chooses a random number s.

i-th Authentication Phase

1. The user computes T i
s (m), and auth = T i

s (Tr(m)), and sends both values to
the server.

2. The server computes auth′ = Tr(T i
s (m)) and checks whether auth = auth′.

Then, if check is satisfied, the access is granted.

It is easy to see that, if m and Tr(m) are public, an adversary who gets the mes-
sages associated with the first log in request, can apply the same attack we have
described before in order to get an integer s′ such that Ts′(m) = Ts(m). Then, at
the i-th session, he can authenticate himself as the real user by computing T i

s′(m),
and auth = T i

s′(Tr(m)). Indeed, it is easy to show, arguing by induction on i, that
T i

s′(m) = T i
s (m).

50 I. Mishkovski and L. Kocarev

Therefore, it holds that

auth = T i
s′(Tr(m))

= Tr(T i
s′(m))

= Tr(T i
s (m))

= T i
s (Tr(m))

= auth′.

Thus, the scheme is not secure. One way to avoid the above attack is to make m
and Tr(m) private to the user and the server. Unfortunately, the scheme is not secure
even if m and Tr(m) are private. Indeed, even in this scenario, an adversary with
no knowledge of the private values m and Tr(m), who just listen to two consecutive
authentication phases, can subsequently authenticate himself to the server as it were
the real user. More precisely, assume that the adversary gets T i−1

s (m), T i−1
s (Tr(m))

and T i
s (m), T i

s (Tr(m)). Then, the attack works as follows:

The adversary does the following:
1. Computes an integer w such that Tw(T i−1

s (m)) = T i
s (m).

2. For any l ≥ 1, to authenticate himself at the (i+ l)-th session,
(a) Computes T i+l

s (m) = T l
w(T i

s (m)) and auth = T i+l
s (Tr(m)) =

T l
w(T i

s (Tr(m))).
(b) Sends the pair (T i+l

s (m),auth).

Notice that the adversary does not need to know the index i of the session. He
just needs two consecutive authentication messages.

In order to understand why the attack works, notice that an integer w such that can
Tw(Tsi−1(m)) = Tsi(m) be computed by applying the same attack we have described
before against the cryptosystem. Then, we can proceed by induction on l to show
that

T i+l
s (m) = T l

w(T i
s (m))

and
auth = T i+l

s (Tr(m)) = T l
w(T i

s (Tr(m))).

Let l = 1. It is easy to see that

T i+1
s (m) = Ts(Tsi(m))

= Ts(Tw(Tsi−1(m)))
= Tw(Ts(Tsi−1(m)))
= Tw(Tsi(m)).

Then, notice that

Tw(Tsi−1(Tr(m))) = Tsi(Tr(m)).

2 Chaos-Based Public-Key Cryptography 51

Indeed

Tw(Tsi−1(Tr(m))) = Tw(Tr(Tsi−1(m)))
= Tr(Tw(Tsi−1(m)))
= Tr(Tsi(m))
= Tsi(Tr(m)).

Therefore

T i+1
s (Tr(m)) = Ts(Tsi(m))

= Ts(Tw(Tsi−1(Tr(m))))
= Tw(Ts(Tsi−1(Tr(m))))
= Tw(Tsi(Tr(m))).

Assume that
Tsi+(l−1)(m) = Tw(l−1)(Tsi(m))

and

Tsi+(l−1)(Tr(m)) = Tw(l−1)(Tsi(Tr(m))).

By applying the inductive hypothesis, it holds that

T i+l
s (m) = Ts(Tsi+(l−1)(m))

= Ts(Tw(l−1)(Tsi(m)))
= Ts(Tw(l−1)(Tw(Tsi−1(m))))
= Twl (Tsi(m)).

and

T i+l
s (m) = Ts(Tsi+(l−1)(Tr(m)))

= Ts(Tw(l−1)(Tsi(Tr(m))))
= Ts(Tw(l−1)(Tw(Tsi−1(Tr(m)))))
= Twl (Tsi(Tr(m))).

Thus, the attack works.

6 Integer Implementation of Cryptosystem Based on
Chebyshev Polynomials

In this section we give three reasons why to use integer arithmetic instead of
using floating-point arithmetic when implementing cryptosystem based on Cheby-
shev polynomials. In order to do this we present a modified Chebyshev polynomial,
given in [24], and show how this polynomial can be implemented in software when
its parameters are large integers. Furthermore, using the work in [24] we present

52 I. Mishkovski and L. Kocarev

an implementation and give examples of ElGamal and RSA public-key encryption
using modified Chebyshev polynomials.

6.1 Floating-Point Arithmetic versus Integer Arithmetic

Chaotic systems are defined on real numbers. Any encryption algorithm which uses
chaotic maps when implemented on a computer (finite-state machine) becomes a
transformation from a finite set onto itself. Because of its wide dynamic range, the
floating-point implementation seems to be the most appropriate for software realiza-
tions (implementation) of Chebyshev polynomials. However, there are three reasons
for not using floating-point arithmetic in public-key encryption.

First, floating-point numbers are not uniformly distributed over any given inter-
val of the real axis [40]. Furthermore, one may observe the existence of redundant
number representations. Indeed, due to the normalized calculations in floating-point
arithmetic, some floating-point numbers represent the same real signal value.

Second, noninvertibility of Chebyshev polynomials and their floating-point im-
plementation imply a restriction on the length of the message. Indeed, the public-key
encryption scheme proposed recently in [21], [22] can be viewed as a generaliza-
tion of ElGamal public-key scheme using Chebyshev polynomials. We summarize
the algorithm as follows. Alice generates a large integer s, selects a random number
x ∈ [−1,1], and computes Ts(x). Alice’s public key is (x,Ts(x)), while her private
key is s. Bob represents the message as a number M ∈ [−1,1], generates a large
integer r, and computes Tr(x), Trs = Tr(Ts(x)), and X = MTrs. He sends the cipher-
text c = (Tr(x),X) to Alice. To recover plain-text M from c, Alice should use the
private key s to compute Tsr = Ts(Tr(x)), and recovers M by computing M = X/Tsr.
Let ls , lr , lM be the lengths (in bits) of s, r, and M, respectively, and let N-bit
precision arithmetic be used in a software implementation of the algorithm. Then
lm≤ N− ls− lr [21], [22].

Third, the authors think that the most important reason is that there are no an-
alytical tools for understanding the periodic structure of the periodic orbits in the
floating-point implementation of chaotic maps (when implemented on a computer
all chaotic maps are periodic: all trajectories are eventually periodic). On the other
hand, when using integers one may hope that a possible link between number theory
and chaos theory has been established, as in the case of the toral automorphisms, to
understand the structure of the orbits.

6.2 Modified Chebyshev Polynomials

In this section we use the following map, Tp : 0,1, ...,N−1→ 0,1, ...,N−1 defined
as

y = Tp(x)(mod N) (17)

where x and N are integers, to extend ElGamal and RSA public-key algorithms to
Chebyshev maps. We call (17) a modified Chebyshev polynomial.

2 Chaos-Based Public-Key Cryptography 53

The modified Chebyshev polynomials can replace powers in ElGamal and/or
RSA public-key algorithms only if they commute under composition and if one
can compute the period of their orbits. The following two theorems show that these
properties hold for modified Chebyshev polynomials.

Theorem 6.1. Modified Chebyshev polynomials commute under composition, that
is,

Tp(Tq(x)(mod)N))(mod N) = Tpq(x)(mod N).

Theorem 6.2. Let N be an odd prime and let x ∈ Z such that 0 ≤ x < N. Then the
period of the sequence Tn(x)(mod N), for n = 0,1,2..., is a divisor of N2−1.

The first theorem can easily be verified; the proof of the second theorem is given
in the Appendix.

We now present an example. Several trajectories of the map (17), when N = 19,
are given below:

x = 0,1,0,18,0,1,0,18,0, ...,

x = 1,1,1,1,1, ...,

x = 2,1,2,7,7,2,1,2,7,7,2, ...,

x = 3,1,3,17,4,7,0,12,15,2,16,18,16,2,15,12,0,7,4,17,3, ...,

x = 4,1,4,12,16,2,0,17,3,7,15,18,15,7,3,17,0,2,16,12,4, ...,

x = 5,1,5,11,10,13,6,9,8,14,18,14,8,9,6,13,10,11,5,

The periods of all trajectories of the map (17), with N = 19, are listed in Table 3.
They are always divisors of 18×20 = 23325. One can easily show that for any odd
prime N the periods of the trajectories starting from the initial points x = 0, x = 1,
and x = N−1 are always 4, 1, 2, respectively.

Table 3 Periods of the sequences Tn(x)(mod 19)n≥0 for each x = 0,1,2, ...,18

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period 4 1 5 20 20 18 18 5 18 3 6 9 10 9 9 20 20 10 2

6.3 Software Implementation

In a public-key algorithm encryption, decryption, signing, and verifying signatures
all involve multiplying with a large number. We now present an algorithm for com-
puting Tp(x)(mod N) when N and p are large numbers. Equation (2) can be rewrit-
ten as [

Tp

Tp+1

]
=
[

0 1
−1 2x

][
Tp−1

Tp

]
= A

[
Tp−1

Tp

]
, (18)

or, after some algebra, as [
Tp

Tp+1

]
= Ap

[
T0

T1

]
. (19)

54 I. Mishkovski and L. Kocarev

Matrix exponentiation can be done effectively by the square and multiply algorithm.
Using notation

I =
[

1 0
0 1

]
,

the pseudo-algorithm for calculating the matrix exponent Ap is

Ap = I;
for(i = p.numBits(); i > 0; i–)
{

Ap = (Ap)2;
(p.bitAt(i) == 1)

Ap = ApA;
}.

Bit positions are enumerated starting at 1. The algorithm represents the matrix ver-
sion of the number exponentiation algorithm that is used in the commercial asym-
metric encryption algorithms.

The Tp(x)(modN) calculation speed is tested on an Intel Pentium 1700 MHz
processor with 512 MB RAM, using equation (19). The test includes Java [41] and
GNU multiple precision library [42] implementation. For N and p of order 1024
bits, calculating Tp(x)(mod N) takes

Java : ≈ 700 ms
GMP : ≈ 70 ms.

6.4 ElGamal Public-Key Encryption with Chebyshev Polynomials

The ElGamal public-key encryption scheme can be viewed as a DiffieHellman key
agreement in key transfer-mode [5]. Its security is based on the intractability of the
discrete logarithm-problem and the DiffieHellman problem. The basic ElGamal and
generalized ElGamal encryption schemes are described in [5]. Here we generalize
the ElGamal encryption scheme for modified Chebyshev polynomials.

6.4.1 Description of the Algorithm

The ElGamal public-key cryptographic system consists of two algorithms: an algo-
rithm for key generation and an algorithm for encryption.

Algorithm for key generation.
Alice should do the following:

1. Generate a large random prime N and an integer x such that x < N.
2. Generate a random integer s < N and compute A = Ts(x)(mod N).
3. Alices pubic key is (x,N,A); Alices private key is s.

2 Chaos-Based Public-Key Cryptography 55

Algorithm for ElGamal public-key encryption.

1. Encryption. To encrypt a message m, Bob should do the following:
a. Obtain Alices authentic public key (x,N,A).
b. Represent the message as an integer m in the range {0,1, ...,N−1}.
c. Select a random integer r < N.
d. Compute B = Tr(x)(mod N) and X = mTr(A)(mod N).
e. Send the cipher-text c = (B,X) to Alice.

2. Decryption. To recover the message m from c, Alice should do the follow-
ing:
a. Use the private key s to compute C = Ts(B)(mod N).
b. Recover m by computing m = XC−1(mod N).

Proof that decryption works. This follows from the fact that

Ts(B) = Ts(Tr(x)) = Tr(Ts(x)) = Tr(A).

6.4.2 Example

We now present an example with artificially small parameters.

Key generation. Alice chooses the prime N = 1749940627, integers x = 25749480
and s = 7207480595, and computes A = 173359085. Alices public key is (N =
1749940627,x= 25749480,A = 173359085),while her private key is s = 7207480595.

Encryption. To encrypt a message m = 11223344, Bob chooses an integer r =
6431562606 and computes B = 1399079193 and X = 878048528. He sends the
cipher text c = (B,X) = (1399079193,878048528) to Alice.

Decryption. To recover the message m from c, Alice computes C = 1376040233 and
m = 11223344.

6.4.3 Security

If x > 1, the Chebyshev polynomial Tn(x) can be written as

Tn(x) = cosh(ncosh−1(x)).

Thus, if y = Tn(x)(modN), then, after some algebra, we find n = log
x+
√

x2−1
(y +√

y2−1). In the case where both square roots,
√

x2−1 and
√

y2−1, exist in
GF(N), one has a conventional discrete log problem. On the other hand, if at least
one of the square roots exists in the quadratic extension field GF(N2), this leads
to a quadratic extension field generalization of the discrete log problem. Thus, the
security of our modified ElGamal public-key algorithm is the same as the security
of the original ElGamal algorithm.

56 I. Mishkovski and L. Kocarev

6.5 RSA Public-Key Encryption with Chebyshev Polynomials

The RSA cryptosystem, named after its inventors, R. Rivest, A. Shamir, and L.
Adleman, is the most widely used public-key cryptosystem. It may be used to pro-
vide both secrecy and digital signatures and its security is based on the intractability
of the integer factorization problem. This section describes the generalization of an
RSA encryption scheme for the modified Chebyshev polynomials. As in the case
of an RSA cryptosystem, our system can be used for both encryption and digital
signature and its security is based on the intractability of the integer factorization
problem.

6.5.1 Description of the Algorithm

The RSA public-key cryptographic system consists of two algorithms: an algorithm
for key generation and an algorithm for encryption.

Algorithm for key generation.
Alice should do the following:

1. Generate two large random (and distinct) primes p and q, each roughly the
same size.

2. Compute N = pq and φ = (p2−1)(q2−1).
3. Select a random integer e, 1 < e < φ , such that gcd(e,φ) = 1.
4. Compute the unique integer d, 1 < d < φ , such that ed ≡ 1(mod φ).
5. Alice’s public key is (N,e); Alice’s private key is d.

Algorithm for encryption.

1. Encryption. To encrypt a message m, Bob should do the following:
a. Obtain Alices authentic public key (N,e).
b. Represent the message as an integer in the range [1,N−1].
c. Compute c = Te(m)(mod N) and send to Alice.

2. Decryption. To recover the message m from c, Alice should do the follow-
ing:
a. Use the private key d to recover m by computing m = Td(c)(mod N).

The integers e and d in RSA key generation are called the encryption exponent
and the decryption exponent, respectively, while N is called the modulus.

Proof that decryption works.It was shown in Section 6.2 that if p is an odd prime
number and 0 ≤ g < p, then the period of the sequence Tn(g)(mod p), n = 0,1, ...,
is a divisor of p2−1. Since ed ≡ 1(mod φ), there exists an integer k such that ed =
1 + kφ . Thus, we find

2 Chaos-Based Public-Key Cryptography 57

Td(Te(x))≡ Tde(x)≡ T1+kφ (x)≡ T1(x)≡ x(mod p).

By the same argument,

Td(Te(x)) ≡ Tde(x)≡ T1+kφ (x)≡ T1(x)≡ x(mod q).

Finally, since p and q are distinct primes, we may use the Chinese remainder theo-
rem to show that

Td(Te(x))≡ Tde(x)≡ T1+kφ (x)≡ T1(x)≡ x(mod N).

6.5.2 Example

We now present an example with artificially small parameters.

Key generation. Alice chooses the primes p = 21787 and q = 3793 and computes
N = 82638091 and φ = 6829053595064064. Alice chooses e = 65537 and, us-
ing the extended Euclidean algorithm, finds d = 2150406320724737. Alices pub-
lic key is the pair (N = 82638091,e = 65537), while her private key is d =
2150406320724737.

Encryption. To encrypt a message m = 11223344, Bob computes

c = T65537(11223344)(mod82638091) = 12355612.

Decryption. To decrypt c, Alice computes

Td(c)(mod N) = T2150406320724737(12355612)(mod82638091) = 11223344.

7 Conclusion

In this chapter we have shown different chaotic cryptosystems based on real and in-
teger numbers, proposed in [21, 23] and [24]. The public-key cryptosystem based on
real numbers even if it is efficient and based on fascinating and elegant idea, we have
shown that is not secure, since an adversary can efficiently recover the plaintext from
a given ciphertext. The cryptosystem proposed in [21] can be implemented by using
any chaotic map for which F can be written as Fp(x) = f (p · f−1(x)), and such that
Fp(Fs(x)) = Fp·s(x), i.e., it enjoys the semi-group property. Jacobian Elliptic Cheby-
shev Rational Maps represent another class of maps enjoying such a property. We
have shown that the attack described in Section 5 can still be applied if these maps
are used. In [23] it was shown that the attack described in Section 5 can still be ap-
plied if these maps are used. Moreover, in [23] the authors analyzed a DiffieHellman
like key agreement scheme based on rational maps and they pointed out that if Jaco-
bian Elliptic Chebyshev Rational Maps are used, then the scheme is not secure, in the
sense that a passive adversary can compute the common key. We stress here that for
the class of rational mappings enjoying the semi-group property, which comes from

58 I. Mishkovski and L. Kocarev

multiplication formulas of periodic functions, Weierstrasss theorem [43] says that
this class is limited to Jacobian elliptic functions and Chebyshev polynomials [44].
Therefore, the conclusion of the first part of this chapter has a certain universality:
rational maps enjoying the semi-group property, which comes from multiplication
formulas of periodic functions, are not secure for public-key encryption.

In the next part of this chapter we are concerned with public-key encryption algo-
rithms using modified Chebyshev polynomials, which are both secure and practical
and can be used for both encryption and digital signature. In [24] it was shown that El-
Gamal and RSA algorithms can be extended for Chebyshev polynomials. A fast algo-
rithm for computing Chebyshev polynomials is suggested. The public-key algorithms
and their properties depend, in a crucial way, on the properties of the discretized ver-
sions of two well-known chaotic maps: Chebyshev maps and toral automorphisms.

References

1. Kolumban, G., Kennedy, M.P., Kis, G., Jako, Z.: FM-DCSK: A novel method for chaotic
communications. In: Proceedings of the 1998 IEEE International Symposium on Circuits
and Systems, ISCAS 1998, vol. 4, pp. 477–480 (1998)

2. Sushchik, M., Rulkov, N., Larson, L., Tsimring, L., Abarbanel, H., Yao, K., Volkovskii,
A.: Chaotic pulse position modulation: A robust method of communicating with chaos.
IEEE Commun. Lett. 4(4), 128–130 (2000)

3. Kocarev, L.: Chaos-based cryptography: A brief overview. IEEE Circuits Systems Mag-
azine 1(3), 6–21 (2001)

4. Dachselt, F., Schwarz, W.: Chaos and cryptography. IEEE Trans. Circuits Systems I:
Fund. Theory Appl. 48(12), 1498–1509 (2001)

5. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, Boca Raton (1997)

6. Shanon, C.E.: Communication theory of secrecy systems. Bell Sys. Tech. J. 28, 656–715
(1949)

7. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos based cryptosys-
tems. International Journal of Bifurcation and Chaos 16, 2129–2151 (2006)

8. Pichler, F., Scharinger, J.: Finite dimensional generalized Baker dynamical systems for
cryptographic applications, Lect. In: Albrecht, R., Moreno-Dı́az, R., Pichler, F. (eds.)
EUROCAST 1995. LNCS, vol. 1030, pp. 465–476. Springer, Heidelberg (1996)

9. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Internat. J. Bi-
fur. Chaos 8(6), 1259–1284 (1998)

10. Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on
chaotic maps. IEEE Trans. Circuits Systems I: Fund. Theory Appl. 48(2), 163–169 (2001)

11. Jakimoski, G., Kocarev, L.: Differential and linear probabilities of a block-encryption
cipher. IEEE Trans. Circuits Systems I: Fund. Theory Appl. 50(1), 121–123 (2003)

12. Masuda, N., Aihara, K.: Cryptosystems with discretized chaotic maps. IEEE Trans. Cir-
cuits Systems I: Fund. Theory Appl. 49(1), 28–40 (2002)

13. Lawande, Q.V., Ivan, B.R., Dhodapkar, S.D.: Chaos Based Cryptography: A New Ap-
proach to Secure Communications, BARC Newsletter, Bombay (2005)

14. Matthews, R.A.J.: On the derivation of a ‘chaotic’ encryption algorithm. Cryptologia 13,
29–42 (1989); Wheeler, D.D.: Problems with chaotic cryptosystems. Cryptologia 13,
243–250 (1989); Wheeler, D.D., Matthews, R.A.J.: Supercomputer investigations of a
chaotic encryption algorithm. Cryptologia 15(2), 140–152 (1991)

2 Chaos-Based Public-Key Cryptography 59

15. Kohda, T., Tsuneda, A.: Statistics of chaotic binary sequences. IEEE Trans. Inform. The-
ory 43, 104–112 (1997)

16. Kocarev, L., Jakimoski, G.: Pseudorandom bits generated by chaotic maps. IEEE Trans.
Circuits Systems I: Fund. Theory Appl. 50(1), 123–126 (2003)

17. Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications
in cryptography. IEEE Trans. Circuits Systems I: Fund. Theory Appl. 47(5), 615–621
(2000)

18. Stojanovski, T., Kocarev, L.: Chaos-based random number generators-part I: Analysis.
IEEE Trans. Circuits Systems I: Fund. Theory Appl. 48(3), 281–288 (2001)

19. Stojanovski, T., Pihl, J., Kocarev, L.: Chaos-based random number generators PART II:
Practical realization. IEEE Trans. Circuits Systems I: Fund. Theory Appl. 48(3), 382–
385 (2001)

20. Gerosa, A., Bernardini, R., Pietri, S.: A fully integrated chaotic system for the generation
of truly random numbers. IEEE Trans. Circuits Systems I: Fund. Theory Appl. 49(7),
993–1000 (2002)

21. Kocarev, L., Tasev, Z.: Public-key encryption based on Chebyshev maps. In: 2003 IEEE
International Symposium on Circuits and Systems, ISCAS 2003, Bangkok, Thailand,
May 25-28 (2003)

22. Kocarev, L., Tasev, Z., Makraduli, J.: Public-key encryption and digital-signature
schemes using chaotic maps. In: 16th European Conference on Circuits Theory and De-
sign, ECCTD 2003, Krakow, Poland, September 1-4 (2003)

23. Bergamo, P., D’Arco, P., De Santis, A., Kocarev, L.: Security of Public-Key Cryptosys-
tems Based on Chebyshev Polynomials. IEEE Transactions on Circuits and Systems—I:
Regular Papers 52(7) (2005)

24. Kocarev, L., Makraduli, J.: Public-key Encryption Based on Chebyshev Polynomials.
Circuits Systems Signal Processing 24(5), 497–517 (2005)

25. Shannon, C.E.: Bell Syst. Tech. J., 27(379) (1948); 27(623) (1948)
26. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform. The-

ory 22, 644–654 (1976)
27. Rivlin, T.J.: Chebyshev Polynomials. Wiley, New York (1990)
28. Percival, I., Vivaldi, F.: Arithmetical properties of strongly chaotic motions. Physica

D 25(1-3), 105–130 (1987)
29. Cohn, H.: A Second Course in Number Theory. Wiley, New York (1962)
30. Hasse, H.: Number Theory. Springer, Berlin (2002)
31. El Gamal, T.: A public-key cryptosystem and a signature scheme based on discrete log-

arithms. IEEE Trans. Inf. Theory IT-31(4), 469–472 (1985)
32. Fateman, R.J.: Lookup tables, recurrences, and complexity. In: Proc. Int. Symp. Sym-

bolic and Algebraic Computation. ISSAC 1989, pp. 68–73 (1989)
33. Umeno, K.: Method of constructing exactly solvable chaos. Phys. Rev. E 55, 5280–5284

(1997)
34. Kohda, T., Fujisaki, T.: Jacobian elliptic Chebyshev rational maps. Phys. D 148, 242–254

(2001)
35. Yacas (Yet Another Computer Algebra System),

http://homepage.mac.com/yacas/manual/Algochapter4.html
36. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York

(1970)
37. Wachspress, E.L.: Evaluating elliptic functions and their inverses. Computers and Math-

ematics with Applications (39), 131–136 (2000)
38. Wachspress, E.L.: System, apparatus, and method for outputting pseudorandom noise

sequences, and data recording medium, Japanese Patent no. 3 455 483 (July 25, 2003),
see also the US Patent no. 6 654 404, http://www.uspto.gov

http://homepage.mac.com/yacas/manual/Algochapter4.html
http://www.uspto.gov

60 I. Mishkovski and L. Kocarev

39. Xiao, D., Liao, X., Tang, G., Li, C.: Using chebyshev chaotic map to construct infinite
length hash chains. In: Proc. Int. Conf. Communications, Circuits and Systems, vol. 1,
pp. 11–12 (2004)

40. Knuth, D.E.: The Art of Computer Programming, vol. 2. Addison-Wesley, Reading
(1998)

41. http://java.sun.com
42. http://www.swox.com/gmp/
43. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Univ. Press,

Cambridge (1935)
44. Umeno, K.: Exactly solvable chaos and addition theorems of elliptic functions, RIMS

Kokyuroku no. 1098 (1999)

A Appendix

A.1 Ideal Theory in Quadratic Fields

In this Appendix we briefly summarize the ideal theory in quadratic fields, following
[29], [30].

Quadratic integers. The solutions of the linear equations with integral coefficient,
ax + b = 0, form the field of rational numbers. If the leading coefficient is equal to
1, a = 1, the solutions are integers. Following Dedekind, quadratic irrationals are
defined as the solutions of quadratic equations with integral coefficients, whereas
quadratic equations whose leading coefficient is 1 yield quadratic integer. Thus (1+√

5)/2 and 2i are quadratic integers, since they satisfy the equations x2− x−1 = 0
and x2 +4 = 0, respectively. Quadratic integers coincide with the eigenvalues of 2×
2 integral matrices. Sometimes, when the possibility of confusion arises, ordinary
integers will be called rational integers.

Norm, units, and primes. By analogy with complex conjugates, we define the con-
jugate of a quadratic irrational z = (a + b

√
D)/c as z′ = (a−b

√
D)/c. The number

zz′ = N(z) is called the norm of z. Then N(z) = N(z′) and N(zv) = N(z)N(v).We
shall be interested exclusively in real fields, where the norm of the number has
nothing to do with its actual magnitude, and can even be negative. The norm of a
quadratic integer is a rational integer.

The divisors of all rational integers are just 1 and−1, which are called units. The
units of a quadratic field are precisely those quadratic integers of the field having
unit norm. In real fields there is an infinity of units, forming a cyclic multiplicative
group. So every unit can be expressed as a power of the generator of the group,
which is called the fundamental unit. For instance, the golden mean (1+

√
5)/2 and

2143295 + 221064
√

94 are fundamental units in their respective fields.
A quadratic integer z that is not a unit is called a prime if a factorization z = uv

is possible only when one of the two factors is a unit. For instance, z = 2 +
√

7 is a
prime. Then one would hope that any integer can be factored in essentially only one
way as a product of primes. The richness and difficulty of the arithmetic of quadratic
integers depends largely on the fact that unique factorization generally fails.

http://java.sun.com
http://www.swox.com/gmp/

2 Chaos-Based Public-Key Cryptography 61

Quadratic residues. The values of a for which the congruence in x,

x2 ≡ a(mod p), (20)

is solvable are called quadratic residues of the odd prime p. The quadratic residue
character is denoted by the Legendre symbol (a

p) [also written (a/p)], where

(a/p) = 1, if x2 ≡ a(mod p) solvable and (a, p) = 1,

(a/p) = 0, if (a, p) = p, (21)

(a/p) = −1, if x2 ≡ a(mod p) unsolvable.

Thus, [1 +(a/p)] is the number of solutions to equation (20) for any a.

Modules. We define a module as a set of quantities closed under addition and sub-
traction. Thus, when a module contains an element ξ , it contains 0(= ξ − ξ) as
well as negatives−ξ (= 0−ξ) and integral multiples (ξ +ξ written as 2ξ ,ξ +ξ +
ξ written as 3ξ , etc.). We shall use capital letters M, N, D, etc., to denote modules.
We consider combinations of a finite set of vectors Vi ,

u = x1V1 + x2V2 + ...+ xsVs (22)

where the xi range over all integers. The set of those u forms a module M and the
vectors Vi are called a basis of the module, written

M = [V1,V2, ...,Vs].

Field. A field is a set of quantities taken from the complex numbers closed under
the rational operations, namely addition, subtraction, multiplication, and division
(excluding division by zero). In quadratic number theory, the field we consider is
taken to be the set of surds (a + b

√
D)/c for a, b, c integral, D fixed and not a per-

fect square, and c �= 0. It can be seen that addition, subtraction, multiplication, and
division of such quantities lead to quantities of the same form. This field is written
symbolically as R(

√
D), meaning that the set of surds is generated by adjoining

√
D

to the rationals. The field R(
√

D) is called a field over rationals. We now extract
from D its (positive or negative) square-free kernel D0, so that D = m2D0. Note that√

D and
√

D0 generate the same field. We define

ω0 =
{√

D0, if D0 �≡ (mod 4),
(1 +

√
D0)/2, if D0 ≡ (mod 4).

(23)

Thus, the basis of quadratic integers in R(
√

D) is [1,ω0]. This module is desig-
nated by the symbol

D = [1,ω0].

62 I. Mishkovski and L. Kocarev

For example, the basis of R(
√

2) is [1,
√

2], the basis of R(
√

5) is [1,(1 +
√

5)/2],
while R(

√
8) has the same basis as R(

√
2). In general, the field R(

√
m2D0) is inde-

pendent of m, and so is D and its basis.
The rational integer d, defined as

d =
{

D0, if D0 ≡ (mod 4),
4D0, if D0 �≡ (mod 4). (24)

is called a field discriminant. All numbers sharing the same discriminant d form a
field.

Integral domain. A set of quantities taken from complex numbers which is closed
under addition, subtraction, and multiplication (ignoring division) is called a ring.
If a ring contains the rational integers, it is called an integral domain. The quadratic
integers of a fixed field R(

√
D0) form a domain which we call D.

If the integral domain D of all quadratic integers of R(
√

D) contains an integral
domain D∗. which does not consist wholly of rationals, then D∗ is characterized by
some fixed positive rational integer n as the set of integers of D which are congruent
to a rational integer modulo n. The integral domain D∗ corresponding to n is written
Dn. Thus D1 = D. Note also that Dn = [1,nω0].

Ideals. We start with Dn, a quadratic integral domain. We define an ideal A in Dn as
a module in Dn with a special property that if α,β ∈A and ξ ∈Dn, then α±β ∈A

(property valid for modules) and αξ ∈ A (property distinguishing ideals). Starting
with α , a fixed element of Dn, we define the principal ideal in Dn

A = (α)

as the set of αξ where ξ in Dn. The ideal (1) is called the unit ideal. We define the
sum of ideals as the ideal A+B = α + β , where α ∈ A and β ∈ B. We next define
the product of two ideals A and B as the ideal C ”generated by all products” αβ .
We now say ideal A divides ideal C in Dn (or A|C if and only if an ideal B exists in
Dn for which C = AB).

An indecomposable ideal in Dn is an ideal Q in Dn other than the unit ideal,
which has no ideal in Dn as a divisor other than Q and Dn. The integral domain D1

has unique factorization into indecomposables if and only if all ideals are principals.
A prime ideal in Dn is an ideal P in Dn other than the unit ideal, with the property

that for any two ideals in Dn, A and B, if P|AB, then P|A or P|B. Every prime ideal
P belongs to a rational prime p determined uniquely by P|(p).

The rational prime p factors in the quadratic field R(
√

D) (D is a square-free
integer), according to the following rules based on d, the discriminant of the field,
and (d/p), the Kronecker symbol,

(p) = (p) or p is inert (does not factor) if and only if (d/p) =−1,

(p) = P1P2 or p splits into two different factors if and only if (d/p) = 1, (25)

(p) = P2 or p ramifies if and only if (d/p) = 0.

2 Chaos-Based Public-Key Cryptography 63

A.2 Dynamics and Arithmetics

In this section we briefly summarize the arithmetic properties of toral automor-
phisms, following [28]. Consider the dynamics of the following map:[

xn+1

yn+1

]
=
[

0 1
−1 k

][
xn

yn

]
(mod N). (26)

where x, y, kare integers and N, is prime. We further assume that 0 < x0, y0 < N,
and 2 < k < N.

Let us consider a fixed value of the trace k, and let

λ =
k +
√

k2−4
2

be the eigenvalue of the matrix in equation (26). This determines an integral domain
D1 to which the eigenvalue belongs. Let d be the field discriminant, i.e., let d =
D0 ≡ (mod 4) or d = 4D0 �≡ (mod 4) where D0 is the square-free kernel of k2−4.

Consider now the unit ideal in D1 (i.e., D1 itself): D1 = (1) = [1,ω0] where ω0

is given by equation (23). Multiplying this ideal by λ we obtain the same ideal,
but with a different basis. Its elements are integral linear combinations of the basis
elements 1 and ω0 given by the equation

λ [1,ω0] = [m11 + ω0m21 + ω0m22],

where the numbers mi j are rearranged as a matrix

M′ =
[

m11 m22

m12 m22

]
. (27)

Since λ is a unit of norm +1, the matrix M′ is strictly unimodular (its determinant
is equal to +1). We now identify the point (x,y) ∈ Z2 with z = x + yω0, i.e., z is a
quadratic integer in the ideal (1). From (27) one obtains

λ z = λ x + λ yω0 = x′+ y′ω0

One can see that multiplication by λ corresponds to the action of the transpose M
of M′ on Z2 : M(x,y) = (x′,y′). In constructing the matrix M from (27), we have used
the largest solution λ of the equation λ 2−kλ +1 = 0. This choice is not restrictive,
since the smallest solution λ ′, which is conjugate to λ , would just correspond to the
inverse matrix M−1, as is easily verified. Note also that one can derive an explicit
expression for M. Let k2−4 = m2D0 and let D0 be a square-free kernel. Thus, for k
odd, M reads

M =
[

h (h2 + mh−1)/m
m h + m

]
,

64 I. Mishkovski and L. Kocarev

where h = (k−m)/2, while for k even, M reads

M =
[

h (h2−1)/m
m h

]
,

where h = m/2.
We now determine, for each value of k, the properties of the orbits generated

by M, a task which is greatly simplified by our choice of identifying Z2 with the
unit ideal in D1. Then, one can determine the properties of the orbits generated by
other 2×2 matrices with integer entries and determinant +1. It turns out, however,
that the orbit structure depends to a great extent on the eigenvalue λ alone, which
depends only on one parameter, the trace k.

In order to take into account the periodicity of the torus, we use a ”two-
dimensional” modular arithmetic, identifying quadratic integers which differ by el-
ements of the ideal (N) = [N,Nω0]. In other words, we identify the points of square
lattices with side N. To do so, we need a generalization of the concept of congru-
ence, since if z = x + yω0 both x and y must be taken modulo N. We say that two
quadratic integers v, z are congruent module an ideal A, and write v≡ z(mod A), if
v− z is contained in A.

The period of an orbit through the point (x,y) is given by the smallest integer T
satisfying the congruence

λ T ≡ z(mod (N)), z = x + yω0.

Note that since λ is a unit, (λ)A = A for any ideal A; thus, A is an invariant
sublattice of Z2. On the other hand, since one performs arithmetic modulo (N),
the only invariant ideals on the torus are divisors of (N). To perform the ideal fac-
torization of (N) (if N is an integer), we first determine its rational prime factors,
N = p1 p2...pn, where pi are rational primes. This corresponds to the ideal factor-
ization (N) = (p1)(p2)...(pn). However, in our case, N is a prime number. In the
following, an orbit which belongs to some ideal factor of (N) different from (1) will
be called an ideal orbit, otherwise we shall speak of a free orbit. Bellow we state
some results, which are proved in [28].

1. If (d/N) =−1, (N) is inert. All orbits are free and have the same period T , which
is a divisor of N + 1. If T = (N + 1)/m, then there are m(N−1)free orbits.

2. If (d/N) = −1, (N) splits. All orbits have the same period T , which divides
N−1. If T = (N−1)/m, then there are m(N−1) free orbits and 2m ideal orbits.

3. If (d/N) =−1, (N) ramifies. The periods of orbits are computed as follows. Let
λ = (k +b

√
D0) (with k and b both even if D0 �≡ 1(mod 4)). We have two cases:

a. If k ≡ 2(modN), there are N− 1 ideal fixed points and N− 1 free orbits of
period N.

b. If k≡−2(mod N), there are (N−1)/2 ideal orbits of period 2 and (N−1)/2
free orbits of period 2N.

2 Chaos-Based Public-Key Cryptography 65

A.3 Proof of Theorem 6.2

In this section we give a proof of Theorem 6.2. Consider the following matrix:

C =
[

0 1
−1 2g

]
.

We write λ = g + g2−1 for its largest eigenvalue. Let g2−1 = m2D0, where D0 is
a square-free kernel. We define an integer d as follows:

d =
{

D0, if D0 ≡ (mod4),
4D0, if D0 �≡ (mod4).

The proof of Theorem 6.2 follows directly from the following theorem:
Let N be an odd prime and let g ∈ Z be such that 0≤ g < N. Let T be the period

of the sequence Tn(g)(mod N) for n = 0,1,2.... Then:

(i) if x2 ≡ d(mod N) is solvable, then T is a divisor of N−1; otherwise
(ii) if x2 ≡ d(mod N) is unsolvable, then T is a divisor of N + 1.

The proof of this theorem, however, follows from the results of the previous Section
A.2 if g≥ 2. We need only to consider the cases g = 0 and g = 1. As mentioned in
Section 6.2 the periods of the trajectories starting from the initial points g = 0 and
g = 1 are always 4 and 1, respectively. Thus, for all odd primes N, the period of the
sequence Tn(g)(mod N) is a divisor of N2−1.

Chapter 3

Digitized Chaos for Pseudo-random
Number Generation in Cryptography

Tommaso Addabbo, Ada Fort, Santina Rocchi, and Valerio Vignoli

Information Engineering Department
University of Siena – Italy
addabbo@dii.unisi.it

1 Introduction

Random numbers play a key-role in cryptography, since they are used, e.g.,
to define enciphering keys or passwords [1]. Nowadays, the generation of
random numbers is obtained referring to two types of devices, that are often
properly combined together: True Random Number Generators (TRNGs),
and Pseudo Random Number Generators (PRNGs). The former are devices
that exploit truly stochastic physical phenomena [2, 3, 4, 5, 6], such as the
electronic noise or the chaotic dynamics of certain nonlinear systems: for these
devices the output sequences have an intrinsic degree of unpredictability, that
is measured referring to the theoretical tools provided by Information Theory
(e.g., in terms of the Shannon entropy) [7,4]. On the other hand, PRNGs are
deterministic periodic finite state machines whose aim is to emulate, within
the period, the random behavior of a truly random source of numbers. From
a theoretical point of view, due to their deterministic nature, PRNGs are
potentially predictable by observing their generated sequences [8, 9, 10, 1].
Nevertheless, in literature some families of PRNGs are classified to be ‘secure’,
meaning that their algorithmic structure involves calculations that in average,
referring to the prediction task, require an amount of computation time that is
asymptotically unfeasible with the size of the problem, when referring to both
the computational equipment at disposal and the known computing fastest
algorithms [1,11]. It is worth noting that a given generator, even if belonging
to an asymptotically secure family of PRNGs, can generate short periodic
(and unsecure) sequences for several values of the initial seed1. Therefore,
apart from the cryptographic robustness of their algorithmic structure, a
cryptographic PRNG must generate sequences that are acceptable from a
statistical point of view, i.e., that pass a certain number of standard statistical
tests [1, 12].

1 E.g., the well known Blum, Blum, Shub generator kn+1 = k2
n mod N can gener-

ate short periodic sequences (short compared to N).

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 67–97.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

addabbo@dii.unisi.it

68 T. Addabbo et al.

In this work we propose to take certain chaotic systems as a reference for
the design of PRNGs based on nonlinear congruences. In detail, in Section 2
we report a brief comparison between linear and nonlinear PRNGs. Since our
aim is to derive nonlinear congruential generators from certain chaotic maps,
in Section 3 we overview some theoretical fundamentals about TRNGs based
on statistically stable mixing dynamical systems, focusing on the family of the
Rényi maps. In Section 4 we discuss the link that exists between the dynamics
of chaotic and pseudo-chaotic systems: to explain how the two dynamics are
related it is necessary to project some results achieved within the Ergodic
Theory (valid for chaotic systems) on the world of digital pseudo-chaos. To
this aim, we have proposed a weaker and more general interpretation of the
Shadowing Theory proposed by Coomes et al. [13], focusing on probability
measures, rather than on single chaotic trajectories. In Section 5 we study
how to digitize the Rényi maps, discussing how to set a minimum period
length of the digitized trajectories. In Section 6 we present two alternative
methods for the design of PRNGs based on nonlinear recurrences derived
from the Renyi map, reporting the results of the NIST SP800.22 standard
statistical test suite [12].

2 Linear vs. Nonlinear Congruential Generators

Conventional cryptographic systems are based on finite state machines, and
the problem of generating random numbers can be analyzed referring to finite
subsets of integers. Accordingly, let ΛM = {0, . . . , M} be the set of the first
(M +1) non-negative integers. We define the j-plet k0, . . . , kj−1 ∈ ΛM as the
initial seed of the generator, and we define a congruential generator as an
iterative method for generating the sequence {ki ∈ ΛM , i ∈ N}, where

kn = G(kn−1, . . . , kn−j) mod M, n > j, (1)

for a certain function G : ΛjM → N. The congruential generator is called
linear if the function G is a linear combination of the previous j numbers
in the sequence (with coefficients in ΛM), otherwise it is said nonlinear. The
simplest example of a linear generator of the form (1) is the Linear Con-
gruential Generator (LCG) kn = akn−1 + c mod M , whereas for the Linear
Feedback Shift Register (LFSR) with primitive polynomial x3 + x + 1 we
have M = 2, Λ2 = {0, 1} and G(kn−1, kn−2, kn−3) = kn−1 + kn−3 [10].
Examples of nonlinear congruential generators are the Nonlinear Feedback
Shift Registers (NLFSRs), the polynomial congruential generators in which
G(kn−1) = apk

p
n−1 + ap−1k

p−1
n−1 + . . . + a0, and the Inversive Congruential

Generator with G(kn−1) = ak−1
n−1 + c [14, 15, 16, 1, 17]. Alternatively, we will

show that the function G can be obtained by digitizing a chaotic map.
Regardless of the linearity of G, a generator with finite memory like those

of the form (1) can be implemented in a finite state machine, being the state of

3 Digitized Chaos for Pseudo-random Number Generation 69

0

2000

4000
0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

0

500

1000

1500

2000

2500

3000

3500

4000

k0

k1

k 2

k0

k1
k 2

(a) (b)

Fig. 1 The distribution of vectors (k2, k1, k0) for the linear congruential genera-
tor kn = 1333kn−1 + 3 mod 212 (subplot (a)) and for the nonlinear congruential
generator kn = k3

n−1 − k2
n−1 + 7 mod 212 (subplot (b)).

the machine at the time-step n the j-tuple σn = (kn−1, . . . , kn−j) ∈ Σ = Λjn.
Since the cardinality of Σ is finite and due to the deterministic nature of the
machine evolution, for any initial seed σ0 ∈ Σ the sequence {σi, i ∈ N} is
eventually periodic with period μ(σ0), and it enters the loop after a transient
of η(σ0) steps [10]. As a result, the same happens to the sequences of pseudo-
random numbers, being the generated number at the time-step n dependent
of the state σn. A generator that for any σ0 generates a sequence with period
equal to the cardinality of Σ is called a maximum cycle generator.

The problem of relating the length of the cycles μ with the initial seed
σ0 and the generator parameters (e.g., for a linear generator the coefficients
in the linear combination G), is an issue of high interest in cryptography.
Indeed, it is desirable to know a priori that a given sequence of pseudo-
random numbers will not enter a too-short predictable cycle. For generators
based on linear recurrences the problem has been studied in depth, and well
known design criteria are at disposal to obtain maximum cycle devices. On
the other hand, for most families of nonlinear generators the problem seems
to be intractable, with few exceptions [18, 1].

When dealing with cryptographic applications, linear methods for gener-
ating pseudo-random sequences (like LFSRs, LCGs or their proper combina-
tions) are highly not recommended, since efficient algorithms are at disposal
to predict the sequence on the basis of a relatively short sequence observa-
tion [8, 9]. This cryptographic weakness is reflected by the fact that meth-
ods based on linear recurrences may generate numbers lying on regular lat-
tices [19]. In detail, (d+1)-tuples of generated numbers (kn, kn−i1 , . . . , kn−id)
in the sequence form vectors that belong to a lattice structure in Nd+1, as

70 T. Addabbo et al.

shown in the subplot (a) of Fig. 1. In the subplot (b) of the same figure it
is shown that this does not happen for nonlinear generators, for which the
distributions of generated points can reveal irregular structures that – it must
be underlined – in most cases are far from being uniformly distributed.

Concluding this brief comparison overview, linear recurrences allow for
the definition of maximum cycle generators, with regular distributions of
generated numbers (even ‘too regular’ for some applications [19,15]), involv-
ing very efficient hardware or software implementations, and they are highly
not recommended in cryptography [1]. These drawbacks can be overcome
by nonlinear generators, but in this case only for few exceptions maximum
cycles generators could be designed [18,15], their hardware or software imple-
mentations are less efficient and the distributions of generated numbers can
be particularly not uniform. Nevertheless, as shown in this work, solutions
derived from chaotic systems can help in defining nonlinear cryptographic
PRNGs with both efficient implementation and good statistical properties.

3 Statistically Stable Mixing Systems

Since our aim is to derive nonlinear congruential generators from certain
chaotic maps, in this Section we overview some fundamentals that will be
used afterwards. The theory presented hereafter has been simplified to match
the aim of this work, adopting the following notation and terminology. With
reference to the Lebesgue integration theory, the notation Lp(I) denotes the
set of functions f : I → R such that

∫
I |f(x)|pdx < ∞, with 0 < p ∈ N,

whereas L∞(I) is the set of almost everywhere bounded measurable functions.
We recall that Lp(I) and L∞(I) can be made Banach spaces with reference to
the norms ‖f‖p = (

∫
I
|f(x)|pdx)

1
p and ‖f‖∞ = inf{M ∈ R+ such that {x ∈

I : |f(x)| > M} has zero measure}, respectively. We define Π as the set of
all finite partitions of intervals of [0, 1), i.e., if Q ∈ Π then Q = {Ii, i =
1, . . . , q, with q > 0}, with Ii ∩ Ij = ∅ for i �= j and ∪qi=1Ii = [0, 1). Among
the elements of Π we highlight the partition Pn = {I0, . . . , I2n−1} made of
the 2n equal and disjoint intervals that divide [0, 1).

We define the special set of probability density functions (pdfs) of bounded
variations [20] as

DBV = {f ∈ L1([0, 1)) : ‖f‖1 = 1, f ≥ 0, f is of bounded variation}. (2)

The set DBV is a wide set containing all those pdfs of practical interest and
physical meaning.

The chaotic systems taken into account in this work are those ruled by the
maps defined as in the following

Definition 1. The map S : [0, 1) → [0, 1) is piecewise affine expanding
(PWAE) if and only if it is onto and there exists a partition Q ∈ Π,

3 Digitized Chaos for Pseudo-random Number Generation 71

with Q = {I0, . . . , Iq−1}, such that S|Ii is a linear function of the form
S|Ii(x) = γix + βi, with γ, βi ∈ R and |γi| > 1 (i = 0, . . . , q − 1).

3.1 Statistical Stability and Correlation Decay

We say that a pdf φ∗ ∈ L1 is invariant for the map S if for any subset
A ⊆ [0, 1) it results ∫

A

φ∗(x)dx =
∫
S−1(A)

φ∗(x)dx,

which implies P (S(x) ∈ A) = P (x ∈ A). By assuming x0 ∈ [0, 1) as a random
variable with pdf φ0, let us focus on the sequence {Sp(x0), p ∈ N}. Even if S
is deterministic xp = Sp(x0) is a stochastic variable and we denote with φp
its associated pdf. In this paper we refer to the following

Definition 2. A PWAE map S is said to be statistically stable if ∀φ0 ∈ DΠ

there exists an unique invariant pdf φ∗ ∈ L1([0, 1)) such that

lim
p→∞ ‖φp − φ∗‖∞ = 0. (3)

According to the above definition, for a statistically stable PWAE map as
far as p→∞ the pdf of the random variable Sp(x0) approaches an invariant
(stationary) pdf φ∗ that only depends on the map S, regardless of the distri-
bution of the initial condition x0. The evolution of densities {φp, p ∈ N} can
be analyzed by means of the Frobenious-Perron operator ΘS : DΠ → DΠ

φp+1 = ΘSφp(x) =
∑

y=S−1(x)

φp(y)∣∣∣dSdy (y)
∣∣∣ . (4)

An efficient numerical method for analyzing the convergence rate of the se-
quence of pdfs can be found in [21, 22]. As shown in the next sections, in
practical cases that are of interest for random number generation the tran-
sient (3) vanishes in few steps.

A consequence of statistical stability is the decay of the autocorrelation
function associated to the stochastic process {Sp(x0), p ∈ N} [23]. Once as-
suming the process stabilized on its invariant density φ∗ the autocorrelation
function rxx is given by

rxx(m) = E{xSm(x)} =
∫ 1

0

xSm(x)φ∗(x)dx. (5)

72 T. Addabbo et al.

3.2 True Random Number Generation with Rényi
Maps

Let us consider a special case of PWAE maps, i.e., the family of Rényi trans-
formations

Sβ(x) = βx mod 1, β > 1, β ∈ R, (6)

where we assume the modulus operator extended to the real numbers, i.e.,
βx mod 1 = βx− �βx�. In the following, we denote with b = �β� the integer
part of β, whereas we denote with γ = β mod 1 its fractional part. If the
parameter β assumes integer values b ∈ N (i.e., γ = 0) the Rényi map has the
uniform pdf as its unique stationary pdf [20]. In such case the Frobenious-
Perron operator can be explicitly written as

φp+1 = ΘSb
φp(x) =

1
b

b−1∑
i=0

φp

(
x + i

b

)
, (7)

and it can be easily used for evaluating the limit (3) starting from an arbitrary
pdf φ0. Moreover, since Smb (x) = bmx mod 1, the autocorrelation function
(5) results equal to

rxx(p) = E{xiSpb (xi)} =
bp−1∑
i=0

∫ i+1
bp

i
bp

x(bpx− i)dx =

=
bp−1∑
i=0

(
(i + 1)3

2b2p
− i(i + 1)2

2b2p
− i3

3b2p
+

i2

2b2p

)
=

3bp + 1
12bp

.

(8)

According to the previous result, as far as bm → ∞ the autocorrelation
approaches 0.25, i.e., the sequence of numbers {xkm, k ∈ N} becomes a se-
quence of uncorrelated random variables uniformly distributed in [0, 1). The
hyperbolic curve

rxx(m)− 1
4

=
1

12bm
(9)

represents the correlation decay associated to the chaotic sequence, assuming
the chaotic state pdf stabilized on its invariant uniform pdf.

Ideal Random Number Generators

If the Rényi map Sb is stabilized on its invariant uniform pdf, it is possible
[20, 24] to generate a sequence {ψi, i ∈ N} of i.i.d. uniform random integers
ψi ∈ {0, . . . , b− 1} by partitioning the domain with the b intervals

Ji =
[

i

b
,
i + 1

b

)
, i = 0, . . . , b− 1, (10)

and coding the sequence {Sib(x0), i ∈ N} with the rule

3 Digitized Chaos for Pseudo-random Number Generation 73

ψi = m⇔ Sib(x0) ∈ Jm. (11)

The partition made of the intervals (10) is called the natural generating sym-
bolic partition.

The above technique defines the way to generate a symbolic sequence from
any chaotic trajectory, obtaining an information source of i.i.d. uniformly dis-
tributed b random integers, i.e., the above technique defines an ideal TRNG.
We recall that for an ideal TRNG having as alphabet the first M nonnegative
integers it must result:

E{ψ} =
M−1∑
i=0

i

M
=

M − 1
2

, (12)

and in general, for k ≥ 1,

E{ψm1 . . . ψmk
} =

(M − 1)k

2k
. (13)

It is interesting noting that if we apply the generation rule (11) referring
to a symbolic partition made of M intervals that are different from those
of the form (10), in general we obtain a Markovian information source that
generates sequences biased and affected by memory [20,24,4]. In other words,
we obtain a not ideal TRNG not satisfying (12) and (13), and we stress that
in general the obtained Markovian source can have infinite memory [23, 25].

Nevertheless, since the uniform pdf is the invariant pdf for the Rényi map
Sb, the biasing between numbers can be eliminated using a symbolic partition
made of intervals with equal length, obtaining (12) to be satisfied. Neverthe-
less, as shown in the following example, this trick may not help in eliminating
the correlation between the generated numbers.

Example

Let us consider the Rényi chaotic map

S3(x) = 3x mod 1. (14)

If the state x0 is not uniformly distributed, a vanishing transient occurs for
the state pdf to reach the stationary invariant pdf. More in detail, regardless
of the pdf φ0 ∈ DΠ associated to x, the greater is p and the more the random
variable y = Sp3 (x) is uniformly-distributed, as stated in (3). In other words,
∀ε > 0 there exists p such that

‖φp − u‖∞ < ε, (15)

where u : [0, 1) → {1} is the uniform pdf. The number of iterations p nec-
essary to satisfy the above inequality in general depends on φ0 and ε, but

74 T. Addabbo et al.

0

1

2

3

4

5

6

7

8

φ0(x)

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

φ1(x)

φ2(x)

φ6(x)

φ3(x)

p

||φp − u||
1

Fig. 2 The pdfs associated to the random variables y = Sp
3 (x), for p = 0, 1, 2, 3, 6.

After 6 iterations the distance ‖φ5 − u‖∞ is lower than 10−3: the convergence rate
is exponential, as confirmed in the log-scale plot of ‖φp − u‖∞. The pdfs were
calculated exploiting a modified version of the accurate approach described in [21,
22].

in cases of practical interest, since the convergence rate is exponential, few
iterations suffice to obtain a reasonably accurate approximation of the uni-
form pdf u [3, 20]. Indeed, 8 iterations of the map S3 suffices to satisfy the
inequality (15) with values of ε in the order of 10−4, even when φ0 is quite
different from the uniform pdf (see, e.g., Fig. 2).

As far as the map S3 is used to define a TRNG, the statistical charac-
teristics of the obtained information source depends on the chosen symbolic
partition. To make clear this idea, in Fig. 3, we represented the two Markov
chains that model the symbolic dynamics obtained by partitioning the do-
main [0, 1) with the partition P1 =

{[
0, 1

2

)
,
[
1
2 , 1

)}
– case (a) – and the

natural generating symbolic partition
{[

0, 1
3

)
,
[
1
3 , 2

3

)
,
[
2
3 , 1

)}
– case (b). In

the case (a) the obtained TRNG is not ideal. Indeed, by denoting with I1 the
interval [12 , 1) we have

3 Digitized Chaos for Pseudo-random Number Generation 75

E{ψm1 . . . ψmk
} =

∑
ψm1∈{0,1}

...
ψmk

∈{0,1}

ψm1 . . . ψmk
P (ψm1 . . . ψmk

) =

= P (ψm1 = 1, . . . , ψmk
= 1) = P

(
x ∈

k⋂
i=1

S−mi
3 (I1)

)
=

=
∫
⋂

k
i=1 S

−mi
3 (I1)

u(x)dx = λ

(
k⋂
i=1

S−mi
3 (I1)

)
,

(16)

where λ represents the Lebesgue measure. When k = 1 in (16), we obtain the
mean value

E{ψ} =
1
2
, (17)

that satisfies (12) for M = 2. When k = 2 in (16), by denoting with m =
m2 −m1, we obtain the autocorrelation function

Rxx(m) = E{ψiψi+m} =
1
4

+
1

2 · 3m , (18)

that only asymptotically satisfies (13) for M = 2 , if m → ∞, i.e., if the
generated symbols becomes progressively uncorrelated. In general, the same
can be shown for any order k ≥ 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
x0

S 3
(x

)

0

1

2
1/3

1/3

1/3

1/3

1/31/
31/

3 1/3

1/3

0 1
1/3

1/3

2/3 2/3

(a)

(b)

(a)

(b) 0 1 2

0 1

CHAOTIC DYNAMICS SYMBOLIC DYNAMICS

Fig. 3 The Rényi map S3(x) = 3x mod 1 and the Markov chains modeling
the symbolic dynamics obtained by partitioning the domain with the partition
P1 =

{[
0, 1

2

)
,
[

1
2
, 1
)}

– case (a) – and the natural generating symbolic partition{[
0, 1

3

)
,
[

1
3
, 2

3

)
,
[

2
3
, 1
)}

– case (b). The state transition probabilities of the Markov
chains are reported beside the arrows.

76 T. Addabbo et al.

−15 −10 −5 0 5 10 15
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

m

r x
x(

m
)

−
0.

25

Fig. 4 The autocorrelation decay (9) for the sequence {Sp
3 (x), p ∈ N}, plotted in

logarithmic scale.

On the other hand, when the Rényi map S3 is partitioned with its natural
generating symbolic partition, adopting the same theoretical approach it can
be easily shown that the obtained TRNG is ideal: the three integers that
may be generated are i.i.d. and their generation probabilities are equal to
1/3, with a k-th order joint probability P (ψ1, ψ2, . . . , ψk) =

∏k
i=1

1
3 = 1

3m ,
satisfying both (12) and (13) for any order k.

It is worth noting that the result (18) is in accordance with the correlation
decay property (9) between x and Sm3 (x). Indeed, it is expected that if x and
Sm3 (x) are not correlated, also the two numbers generated with the rule (11)
are not correlated. The autocorrelation function depicted in Fig. 4 shows that
a few under-sampling steps suffice to have a negligible residual correlation
between x and Sm3 (x).

Preliminary conclusions

The above discussion lead to two different strategies for generating random
numbers with the chaotic Rényi maps:

A) To divide the domain [0, 1) with the natural generating symbolic parti-
tion associated to the map Sb, in order to obtain an ideal TRNG issuing
b random integers;

B) To divide the domain [0, 1) with an arbitrary partition Pn of 2n inter-
vals, in order to obtain a not-ideal TRNG issuing 2n random integers. In
such case the symbols are uniformly distributed, but they are affected by
a correlation of any order that has a vanishing decay. Accordingly, an ideal
TRNG issuing 2n random integers can be approximated with any accu-
racy by under-sampling the sequence {Sib(x), i ∈ N} by a factor p, that is
referring to the sequence {Sipb (x), i ∈ N}.

3 Digitized Chaos for Pseudo-random Number Generation 77

x
x~

T(x)

T(x)
~ ~

ξ(x)

Fig. 5 The effect of the finite-precision computation of a generic function T .

Furthermore, we stress that if b can be divided by q, then b/q unions of q
partitioning intervals can be used to obtain an ideal TRNG that can generate
random integers in the set {0, . . . , b/q}. For example, any Rényi map Sb with
b even can be used to define an ideal TRNG with alphabet {0, 1}, referring
to the partition P1. The process is similar to generating even or odd numbers
throwing a fair six-sided die.

4 Pseudo-chaotic Systems

In this work we propose to exploit the ergodic dynamics of PWAE chaotic
maps for the design of nonlinear PRNGs with good statistical properties and
that involve low-complexity implementations. To this aim, we start analyzing
the links that exist between chaos and pseudo-chaos. Pseudo-chaos is obtained
when a chaotic dynamical system is simulated using finite precision arithmetic
algorithms [26,27,28]. In detail, referring to a generic chaotic map T : [0, 1)→
[0, 1), the pseudo-chaotic approximation of T is obtained in two steps. In the
first step any point x ∈ [0, 1) is represented by a finite-precision point x̃
belonging to a finite set Λ ⊂ [0, 1), called the discrete domain. Accordingly
we have the definition of the finite-precision point x̃ : [0, 1)→ Λ, as a function
of x. In the second step the function T is approximated by a finite-precision
approximating function T̃ : Λ→ Λ such that∣∣∣T (x)− T̃ (x̃)

∣∣∣ = ξ(x) < 1, (19)

where the function ξ quantifies the quality of the approximation. Summariz-
ing, the overall pseudo-chaotic approximation is defined by the composition
T̃ ◦ x̃ : [0, 1)→ Λ. If the function ξ assumes reasonably small values for all x,
it is often said that T̃ ‘shadows’ T .

Trying to relate the properties of the two systems T and T̃ can be a
difficult task, depending on their nonlinear functional forms. For example,
adopting a dynamical evolution point of view, Coomes et al. in [13] proved

78 T. Addabbo et al.

some major results valid for hyperbolic diffeomorphisms, that represent a
fundamental reference within the Shadowing Theory for chaotic systems. We
adopt a different point of view, since we are interested in relating the proba-
bility measures associated to T and T̃ . In detail, for a given subset I ⊆ [0, 1),
we are interested in the quantity

E(I, ξ) =
∣∣∣P (T (x) ∈ I)− P (T̃ (x̃) ∈ I)

∣∣∣ , (20)

where the set I is understood to be a sub-interval of [0, 1). Since T is mea-
surable, the previous quantity can be also written as

E(I, ξ) =
∣∣∣P (x ∈ T−1(I))− P (x̃ ∈ T̃−1(I ∩ Λ))

∣∣∣ . (21)

Due to the calculating approximation, in general it can happen that

T̃−1(I ∩ Λ)− (T−1(I) ∩ Λ) �= ∅, (22)

i.e., there are points mapped in I by the function T̃ that do not belong to
T−1(I). About this issue, we have the following

Proposition 1 (Proved in [29]). Let I ⊆ [0, 1) be an interval with end-
points a < b, and let us assume that ∀x ∈ T−1(I) it results∣∣∣T (x)− T̃ (x̃)

∣∣∣ < α = sup
x∈T−1(I)

ξ(x). (23)

Accordingly, by denoting with φ the pdf of T (x), if b− a ≥ 2α then it results∫ b−α

a+α

φ(x)dx ≤ P
(
T̃ (x̃) ∈ I

)
≤
∫ b+α

a−α
φ(x)dx. (24)

It is worth noting that the above Proposition has a general validity, and
that if the condition (23) holds in the whole interval [0, 1), then the result
(24) holds for any interval I ⊆ [0, 1) with length greater than 2α. This is the
case provided by the Shadowing Theory, that is valid for certain continuous
maps [13]; in this work we allow the chaotic map to be not continuous, as
discussed in the following.

4.1 Almost-Uniform Measure-Preserving Chaotic
Transformations

Under the hypotheses of Proposition 1, in this subsection we refine the the-
oretical result (24) assuming the random variable T (x) almost uniformly-
distributed, i.e., we assume

‖φ− u‖∞ ≤ ε,

3 Digitized Chaos for Pseudo-random Number Generation 79

where u : [0, 1) → {1} is the uniform pdf over [0, 1). Accordingly, for any
interval I ⊆ [0, 1) with endpoints a < b it results

(b− a)(1 − ε) ≤
∫
I

φ(x)dx ≤ (b − a)(1 + ε). (25)

If we now assume the interval I to have Lebesgue measure 1
2k , i.e., b−a = 1

2k ,
using (25) the inequality (24) can be rewritten as(

1
2k
− 2α

)
(1− ε) ≤ P

(
T̃ (x̃) ∈ I

)
≤
(

1
2k

+ 2α

)
(1 + ε),

which implies

− ε

2k
− 2α(1− ε) ≤ P

(
T̃ (x̃) ∈ I

)
− 1

2k
≤ ε

2k
+ 2α(1 + ε).

Focusing on the worst case, we finally have∣∣∣∣P (
T̃ (x̃) ∈ I

)
− 1

2k

∣∣∣∣ ≤ ε

2k
+ 2α(1 + ε), (26)

which leads to the relative error∣∣∣P (
T̃ (x̃) ∈ I

)
− 1

2k

∣∣∣
1
2k

≤ ε + 2k+1α(1 + ε). (27)

4.2 Random Perturbations

We stress that the above results hold even assuming the function T̃ to be
stochastic, i.e., perturbed by a small additive random noise. In such case
the quantity |T (x) − T̃ (x̃)| is a random variable, and the Proposition 1 and
(26) hold provided to define α as the supremum of |ξ(x) + ν|, being ν the
stochastic fluctuation. As it will be made clearer in the following, we will
consider pseudo-random perturbations of the pseudo-chaotic map T̃ , to make
the resulting nonlinear generator immune from short periodic cycles.

5 Nonlinear Recurrences Derived from the Rényi Map

There is an infinite number of different ways to define the digitized version of
a chaotic system. In this section we propose a method for digitizing the Rényi
maps, in order to obtain PRNGs based on nonlinear recurrences. Assuming
n ∈ N, with n > 1, we define the discrete domain as the following set of
dyadic rationals

Λ2n =
{ q

2n
∈ Q : 0 ≤ q < 2n

}
.

80 T. Addabbo et al.

β

Fig. 6 The definition rules for the pseudo-chaotic Rényi map.

Given the Rényi map Sb(x) = bx mod 1, for any arbitrary small positive
γ � 1 we define the digitized map S̃β : Λ2n → Λ2n as

S̃β

(q

2n
)

=
1
2n

(�(b + γ)q� mod 2n) =
1
2n

(bq + �γq� mod 2n) (28)

The link between x and x̃ is defined assuming the truncation strategy to
approximate x, i.e., if x ∈ [0, 1) it results

x̃ =
q(x)
2n

=
�2nx�

2n
. (29)

Accordingly, any point x can be written as x = x̃ + ξ(x) = q(x)
2n + ξ(x),

where ξ(x) ∈ [0, 2−n). Summarizing, Sb and S̃b are linked by the definition
rules shown in Fig. 6. We spend few words on the role of the above intro-
duced parameters γ and n. First of all, we stress that the digital architecture
implementing (28) is a n-bit state machine, and for this reason we call the
parameter n the digital resolution of the pseudo-chaotic system [28,30]. Fur-
thermore, it can be noticed that due to the modular calculations in (28) for
any integer b the pseudo-chaotic version of Sb(x) = bx mod 1 agrees with the
pseudo-chaotic version of Sb+2n(x) = (b + 2n)x mod 1 (for a same value of γ
in (28)). Moreover, it must be highlighted that if 0 ≤ γ < 1

2n−1 then for any
0 ≤ q < 2n the quantity �γq� is equal to zero: in such case the expression
(28) defines a linear congruential generator. Accordingly, in order to make
(28) a nonlinear congruential generator it must be

1
2n − 1

≤ γ � 1. (30)

As it will be shown in the next Section, adopting the point of view discussed
in Section 4 the greater are n and 1/γ and the better the dynamics of S is
shadowed by S̃.

5.1 Properties of the Digitized Rényi Maps

In this Section we theoretically discuss some of the relationships that exist
between the Rényi chaotic maps and their pseudo-chaotic versions (28). We
face this problem in two steps. First, we discuss the link between the Rényi

3 Digitized Chaos for Pseudo-random Number Generation 81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δ 2Δ 3Δ

Additional
slope

x

 S
3.
1
(x

)

Fig. 7 The Rényi map S3.1 (solid line) and the Rényi map S3 (dashed line).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δ 2Δ 3Δ

x

 |S
3.
1
(x

) −
 S

3
(x

)|

Fig. 8 The absolute error |S3.1(x) − S3(x)| between the two Rényi maps S3.1 and
S3.

82 T. Addabbo et al.

map Sβ = (b + γ)x mod 1 and the Rényi map Sb(x) = bx mod 1, and then
we analyze how (28) approximates Sb(x).

Accordingly, let us begin to analyze the link between Sβ and Sb.
Referring to the Figs.7 and 8, it can be noticed that the higher absolute

error |Sβ(x) − Sb(x)| is made around the discontinuity points of the maps,
i.e., within the union of intervals

M =
b⋃
i=1

[
i

β
,
i

b

)
. (31)

The length of the i-th of these intervals is i · Δ, where Δ = β−b
βb , and it

can be easily verified that the absolute error in [0, 1)/M is not greater than
b
(
1− b

β

)
. Despite the effects of the discontinuities, for small values of γ the

dynamics of Sβ(x) and Sb(x) within a limited time period follow trajectories
that are close to each other for most values of x, in the sense specified by the
following

Theorem 1. Let us consider the interval

K1 = [0, 1− δ1) ,

where δ1 =
(

1− b

β

)
bp+1 − b

b− 1
and p ∈ N. For any x ∈ S−p

b (K1) it results

∣∣∣Spβ(x) − Spb (x)
∣∣∣ ≤ (1− b

β

)
bp+1 − b

b− 1
. (32)

For proving the theorem, we first need the

Lemma 1. Let us consider two points x1, x2 belonging to the same interval
I = [ib ,

i+1
β), with 0 ≤ i ≤ b. Accordingly the two points do not belong to M

and the two maps Sb and Sβ have constant slope in I. It results

|Sβ(x1)− Sb(x2)| ≤ b|x1 − x2|+ b

(
1− b

β

)
. (33)

Proof. We have |Sβ(x1)− Sb(x2)| = |Sβ(x1)− Sb(x1) + Sb(x1)− Sb(x2)| ≤
|Sβ(x1)− Sb(x1)|+ |Sb(x1)− Sb(x2)|. The first term is not greater than the

maximum absolute error |Sβ(x)−Sb(x)| in [0, 1)/M , that is b
(
1− b

β

)
. On the

other hand, since Sb is linear over I, we have |Sb(x1)− Sb(x2)| = b|x1 − x2|,
and the lemma is proved. �
We can now prove the Theorem 1.

Proof of Theorem 1. Let us assume that the two points Sjβ(x) and Sjb (x) for
j = 0, 1, . . . , p − 1 belong to same intervals Ij = [ijb ,

ij+1
β), with 0 ≤ ij ≤ b.

From the previous Lemma we have

3 Digitized Chaos for Pseudo-random Number Generation 83

∣∣∣Sj+1
β (x) − Sj+1

b (x)
∣∣∣ ≤ b

∣∣∣Sjβ(x)− Sjb (x)
∣∣∣+ b

(
1− b

β

)
,

and proceeding by induction it is easy to prove that for j > 0∣∣∣Sjβ(x) − Sjb (x)
∣∣∣ ≤ (

1− b

β

) j∑
r=1

br =
(

1− b

β

)
bj+1 − b

b− 1
. (34)

The above inequality agrees with (32) by setting j = p, and the proof is
completed if we show that if x ∈ S−p

b (K1) then the two points Sjβ(x) and
Sjb (x) for j = 0, 1, . . . , p − 1 belong to same intervals Ij = [ijb ,

ij+1
β), with

0 ≤ ij ≤ b.
Accordingly, we define the set Pb = { ib , 0 < i ≤ b} and we note that for

j = 0 the previous condition is satisfied if the distance of x from the greater
nearest point in Pb is not smaller than (1 − b

β): this is a sufficient condition
for x not to belong to the set M defined in (31). For the second step, since
we know from (34) that |Sβ(x) − Sb(x)| < b(1− b

β), a sufficient condition to
have both of the points Sβ(x), Sb(x) in a same interval I1 is to have Sb(x) not
closer than b(1− b

β)+(1− b
β) to the greater nearest point in Pb. Generalizing,

for j = 0, . . . , p− 1 both of the points Sjβ(x), Sjb (x) lye in a same interval Ij

if Sjb (x) is not closer than(
1− b

β

) j∑
r=0

br =
(

1− b

β

)
bj+1 − 1

b− 1

to the greater nearest point in Pb.
Let us now focus on the set K1: we will show that for m = 1, . . . , p the set

S−m
b (K1) contains only points that satisfy the previous sufficient conditions.

In detail, we note that the set S−1
b (K1) is made of b intervals of the form

[ib ,
i
b + 1−δ1

b) for 0 ≤ i < b, that is, each point in S−1
b (K1) is not closer than

δ1
b to the greater nearest point in Pb. Following the same reasoning, it is easy
to check that each point in S−m

b (K1) is not closer than δ1
bm to the greater

nearest point in Pb. Accordingly, in order to satisfy the previously discussed
sufficient conditions, it suffices that

δ1

bp−j
≥
(

1− b

β

)
bj+1 − 1

b− 1
, (35)

that is satisfied for j = 0, . . . , p− 1 if

δ1 = (1− b

β
)
bp+1 − b

b− 1
, (36)

concluding the proof. �

84 T. Addabbo et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

γ = 0.0100

0

0.5

1

1.5

γ = 0.0500

0

0.2

0.4

0.6

0.8

1

1.2

γ = 0.0001

γ = 0.0050

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1
x

0 0.2 0.4 0.6 0.8 1
x

φ*
(x

)
φ*

(x
)

φ*
(x

)
φ*

(x
)

φ*
(x

)

φ*
(x

)

γ = 0.0020

γ = 0.0010

Fig. 9 The estimation of the invariant pdf for the Rényi maps S3+γ , for sev-
eral values of γ. From the Ergodic Theory of dynamical systems it results
limβ→b

∥∥φ∗
β − u

∥∥
1

= 0, where u is the uniform pdf in [0, 1) [21,20].

The previous result indicates that for any p ∈ N if γ → 0 the trajectory
of {Sjβ(x)} converges to the trajectory {Sjb (x)} uniformly over {0, . . . , p}.
Moreover, we stress that the invariant measure induced by the uniform pdf
of the Rényi map Sb agrees with the Lebesgue measure of intervals, and in
such case the Lebesgue measure of S−p

b (K1) is equal to 1− δ1. Accordingly,
for γ → 0 δ1 goes to zero and the property (32) holds almost everywhere in
[0, 1).

This fact is somehow reflected by the shape of the invariant pdf associated
to Sβ . In detail, the Ergodic Theory [20, 7] provides the tools for showing
that

lim
β→b

∥∥φ∗
β − u

∥∥
1

= 0, (37)

i.e., the invariant pdf associated to Sβ converges in L1([0, 1)) to the invariant
pdf of Sb, that is the uniform pdf. As it can be seen in Fig. 9, the presence
of the additional slope highlighted in Fig. 7 causes an accumulation of the
pdf around the point 0, and the effect vanishes as soon as γ goes to zero. A

3 Digitized Chaos for Pseudo-random Number Generation 85

rigorous theoretical approach to analyze this topic and to demonstrate the
above limit is reviewed and discussed in [21, 20].

As a second step of our analysis, we investigate the link between S̃β and Sb.
The procedure is similar to that one previously discussed, with the difference
that we have to take into account, defining the map S̃β , the effects of the
truncations. In detail, we have the following

Theorem 2. Let us consider the interval

K2 = [δ2, 1− δ2) ,

with

δ2 =
2βp+1

(β − 1)2n
+
(

1 +
b

β

)
bp+1 − b

b− 1
, (38)

and p, n ∈ N. For any x ∈ S−p
b (K2) it results

∣∣∣Spb (x) − S̃pβ(x̃)
∣∣∣ <

βp+1 − 1
(β − 1)2n

+
(

1− b

β

)
bp+1 − b

b− 1
. (39)

Proof. See the Appendix.

The previous theorem represent the main result of this work, since it explicitly
relates the dynamics of the pseudo-chaotic map S̃β with the dynamics of the
original chaotic Rényi map Sb. Interestingly, we highlight two aspect. First,
by increasing n the effect of the digitization vanishes exponentially. Moreover,
we recall from the discussion at the beginning of this Section that to have a
nonlinear congruential generator the parameter γ = β−b must be not smaller
than 1

2n−1 . Accordingly, the larger is n and the more the parameter β can
be set close to b. The larger is n, the more β can be set close to b and the
more the interval K2 covers the entire domain. Accordingly, by playing with
n and β one can design a pseudo-chaotic map whose dynamics is arbitrarily
close the the original chaotic Rényi map Sb, obtaining nonlinear recurrences.

Example

Let us consider the Rényi map S3, and let us define its digitization by means
of the 32 bit pseudo-chaotic map

S̃3+γ

(m

232

)
=

1
232

⌊
(3 + γ)m mod 232

⌋
, (40)

where γ = 6.8866647779941558837890625 · 10−6 and β = 0x3.0000738A.
Adopting the binary fixed point representation, β can be written as

11.0000 0000 0000 0000 0111 0011 1000 1010. (41)

86 T. Addabbo et al.

As discussed in the next Section, the binary representation of β plays a key-
role to determine the computation complexity involved by the PRNG based
on the pseudo-chaotic Rényi maps. From Theorem 2 we have that∣∣∣Sp3 (x) − S̃p3+γ(x̃)

∣∣∣ ≤ (3 + γ)p+1 − 1
(3 + γ)232

+
(

1− 3
3 + γ

)
3p+1 − 3

2
≈

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2.328 · 10−10, if p = 0,
...

2.755 · 10−5, if p = 2,
...

7.528 · 10−3, if p = 7 . . .

(42)

The above inequalities hold for any point x such that Sp(x) ∈ K2 ≈
[0.0075, 0.9925), that is calculated for p = 7. As a result, if we set T = S7

3

and α = 7.528 · 10−3, referring to the partition P3, from (27) we obtain that
for any interval Ij of the partition that also belongs to K2∣∣∣P (

T̃ (x̃) ∈ Ij

)
− 1

8

∣∣∣
1
8

≤ ε + 16 · 7.528 · 10−3(1 + ε). (43)

If we assume ε in the order of 10−3 (i.e., according to a worst case indicated
by the numerical analysis, see Fig. 2), the above inequality yields that the
probability for the state x̃ to belong to any interval Ij ⊂ K2 of the partition
P3 after 7 iterations of the digitized Rényi map differs from 1/8 by a relative
error that is smaller than 12%, even if, in the worst case, the distribution of
the initial state was very different from the uniform distribution. If the initial
state is better uniformly distributed, the number of iterations decreases and
the bounds decrease exponentially.

Theorem 2 does not tell us what may happen outside the interval K2,
at the borders of the phase space [0, 1): if x /∈ T−p(K2) the ‘shadowing
error’ made by the digitized map T̃ after p iterations can be much greater
than the upper bound (24), due to the effects of the map discontinuities.
Actually, in practical cases this fact has negligible consequences on the short-
term statistical behavior of the digitized map, since its dynamics is typically
observed adopting a coarse-grained resolution, greater than α (e.g., in this
example we adopted an observation interval with length 1/8, being α in the
order of 10−3).

Nevertheless, we stress that our point of view is statistical: we are not
interested in following trajectories exactly; rather, we are interested in emu-
lating the long-term statistical behavior of the original system. To this aim,
we must introduce the pseudo-random perturbation of the digitized state tra-
jectories, in order to emulate the trajectory instability of chaotic systems and
to avoid the digitized system entering periodic stable orbits.

3 Digitized Chaos for Pseudo-random Number Generation 87

5.2 Pseudo-random Perturbation of Digitized Chaotic
Systems: Setting the Period Length

It is well known that periodic trajectories are dense in chaotic attractors [31].
However, they are instable and the probability for a chaotic motion to enter
a periodic orbit is zero. That is not what happens in a digitized system, for
which all the trajectories are eventually periodic. In this work we propose to
emulate the instability of chaotic trajectories by pseudo-randomly perturbing
the digitized state x̃. To this aim, we remark that if the perturbation magni-
tude remains particularly small the shadowing property previously discussed
still holds, as highlighted in Section 4.2.

Referring to the approach of Lasota in [25] the presence of noise in a chaotic
system can be modeled as it follows. At each time step the chaotic sample
xp+1 deviates from its ideal value due to a statistically independent noise νp
added to the sample xp, i.e.,

xp+1 = T (xp + νp). (44)

As a result, in a chaotic system the presence of noise can cause the trajectories
to diverge, e.g., bringing the perturbed state xp + νp outside the basin of
attraction of the chaotic attractor: this is not the case for a chaotic map like
the Rényi map, defined as in (6). In general, the resulting process describes
a discrete-time random walk in the phase space [0, 1), that may not admit a
stable stationary probability density function [25]. If the noisy samples {νp}
are i.i.d. random variables statistically independent from the {xm} samples,
it results that

φp+1 = Θ̃T (φp ⊗ fν), (45)

where fν is the pdf associated to the noisy samples, whereas the operator
Θ̃T is the extension of the Frobenius Perron operator ΘT defined in (4) to
the whole set of densities of bounded variations in L1([0, 1)). It is worth
noting that xp only depends on the noisy samples νp−1, νp−2, . . . and if φ =
Θ̃T (φ ⊗ fν) then the pdf φ is stationary and invariant for the stochastic
dynamical system (44). The characterization of the evolution of densities
induced by (45) for systems like (44) is still an open theoretical problem,
and depending on the considered case even the existence of an invariant
density can be an undetermined issue [32,25]. Nowadays, the consequence of
the stochastic perturbations on the dynamics is typically studied resorting
to ‘computer simulations’, and this is exactly what we do by digitizing the
Rényi map and by adding a small perturbation noise to the digitized state.

Since our aim is to reproduce the instability of chaotic trajectory, we set
the noise magnitude as small as possible, i.e., equal to the digitized resolution
1/2n. Accordingly, as discussed in the following Section, we perturb the less
significant bit (LSB) of the digitized state x̃ by performing the xor operation
with the output bit of a LFSR. Simulation results show that the chief statis-
tical behavior of the original Rényi map are preserved (See, e.g., Fig. 10).

88 T. Addabbo et al.

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

|r
xx

 (
m

)
−

0.
25

|

m

Short Periodic Trajectory Perturbed Trajectory

Theoretical

Fig. 10 The effect on the correlation decay of the LSB perturbation. The two
trajectories were obtained using the digitized map (40), starting from the same
initial condition. The autocorrelation functions were estimated on 100000 samples.

Even considering the pseudo-random perturbation, the resulting overall
computing method is deterministic and the digitized dynamics is still even-
tually periodic with a period length that can be set greater than a minimum,
according to the following

Proposition 2. Let us consider the binary periodic sequences y(p), z(p) and
w(p) = y(p)⊕ z(p), for p ∈ N, and let Py , Pz, Pw be their respective periods.
If Pz > 1 is prime, then Pw = mPz, with m ≥ 1.

Proof. Since Pz > 1, it is immediate to verify that Pw > 1. If Pw < PyPz
an integer q exists such that PyPz = qPw + PyPz mod Pw, with 0 ≤
PyPz mod Pw < Pw. On the other hand, w(p) = y(p)⊕ z(p) = y(p+PyPz)⊕
z(p + PyPz) = w(p + PyPz) = w(p + qPw + PyPz) = w(p + PyPz mod Pw).
Since Pw is the smallest integer such that w(p) = w(p + Pw), it must be
PyPz mod Pw = 0. Accordingly it results PyPz = hPw, that is Pw = PyPz

h . If
Pz is prime, h divides Py and Pw = mPz . �
Referring to the above notation, we can set w(p) as the LSB of x̃p, y(p) as
the less significant bit of S̃(x̃(p− 1)) and z(p) as the output bit of an LFSR.
According to the above proposition, if the LFSR has prime period Pz , then
the perturbed trajectories of x̃ have period that is not smaller than Pz. By
recalling that a LFSR of order k has period Pz = 2k − 1, we remark that
Pz is a Mersenne prime if we set k = 31 or k = 61, obtaining Pz equal to
2147483647 ≈ 2.15 · 109 and 2305843009213693951 = 2.3 · 1018, respectively.
These choices assure that the period of the generated digitized sequences can
be made long enough for our cryptographic purposes, regardless of the initial
condition of the nonlinear recurrence (28).

3 Digitized Chaos for Pseudo-random Number Generation 89

5.3 On the Hardware/Software Implementation of the
Digitized Rényi Map

We spend few comments about the hardware/software implementation of
the digitized Rényi map, noting that the only operations involved in the
calculation are 2n-modular additions (to calculate the multiplication), with
a truncation of the result to the n most significant bits. The number of
additions is equal to the number of ‘1’ in the binary representation of β,
and the addition operations can be easily performed referring to efficient
solutions like carry-save adders [30]. In the example previously discussed, ten
2n-modular additions suffices.

6 PRNGs Derived from the Rényi Map: Design and
Testing

When dealing with PRNGs and statistical tests, one point must be clear: for
any given PRNGs it is always possible to define a ‘never-passing’ test. This
is because of the deterministic and periodic nature of PRNGs, that always
introduces some undesired defects in the statistical characteristics of the gen-
erated sequences. Nevertheless, the results discussed in this paper indicate
that for any given finite-time statistical test there is an infinite number of
PRNGs based on the pseudo-chaotic Rényi map (28) that pass that test. This
is because of the two following remarks:

1. with any Rényi chaotic map Sb (with integer b) it is always possible to
obtain an ideal TRNG, by adopting a proper symbolic coding of its dy-
namics [20];

2. by playing with the parameters n and γ one can use a map S̃β to approx-
imate the chaotic Rényi map Sb according to any arbitrary accuracy over
finite time-windows.

The above point 2. can be faced adopting the two different strategies identified
in the preliminary conclusions A) and B), discussed in Section 3.2, taking in
mind that the required accuracy of the approximation depends on the target
application (e.g., it depends on the statistical tests taken into account). Before
introducing two specific examples related to these two mentioned approaches,
it is worth discussing how to perform the domain partitioning.

6.1 Domain Partitioning in Digitized Chaotic
Systems

The simplest approximated way to generate numbers referring to the rule
(11) is to compare the digitized state x̃ with the endpoints of a symbolic par-
tition: in general, up to M − 1 comparisons are required for a partition made
of M intervals. This operation introduces the problem of comparing dyadic

90 T. Addabbo et al.

rationals, since even the partition endpoints must be represented according
to a digitization strategy. For example, the endpoints 1/3 and 1/6 of the
natural generating symbolic partition of the map S3 can not be represented
adopting a conventional binary fixed point representation of numbers, and
the same happens for the endpoints associated to other maps Sb with b �= 2m.

On the other hand, it is very easy to apply the generation rule (11) when
the partition is of the form Pk, i.e., a partition made of 2k equal intervals. In
such case, no comparison is necessary since the most k significant bits of the
state x̃ indicate the number of the belonging interval in the partition, i.e., the
generated number of the PRNG. Adopting the same reasoning discussed in
the preliminary conclusions of the Section 3.2, the partition Pk can be used
without introducing correlation between symbols if b is of the form q2k, with
q ∈ N+.

PRNGs design – approach (A)

According to the approach A) discussed in Section 3.2, we divide the domain
[0, 1) adopting a refinement of the natural generating symbolic partition as-
sociated to the map Sb, in order to approximate an ideal TRNG issuing b
random integers. Since we refer to partitions of the form Pk, we have to dig-
itize maps Sb with b = m · 2k, for any m ∈ N, m > 1. As an example, in
Table 1 we reported the NIST SP800.22 test [12] results for a PRNG based
on T̃ = S̃β, with n = 64 bits and β = 0x4.000000000001838A (b = 4). At
each time step the 2 most significant bits of x̃ were output (Pk = P2). The
minimum pass rate for each statistical test with the exception of the Ran-
dom Excursion Variant test is approximately 0.960150 for a sample size of
100 binary sequences (2 million bits each). The minimum pass rate for the
Random Excursion Variant test is approximately 0.954323 for a sample size
= 70 binary sequences (2 million bits each).

PRNGs design – approach (B)

According to the approach b) discussed in Section 3.2, we divide the domain
[0, 1) with an arbitrary partition Pn of 2n intervals, in order to approximate
a not-ideal TRNG. In such case the 2n random integers are uniformly dis-
tributed, but they are affected by a correlation that has a vanishing decay.
Accordingly, an ideal TRNG issuing 2n random integers can be approximated
with any accuracy by under-sampling the sequence {Si(x), i ∈ N} by a factor
p, that is referring to the sequence {Sip(x), i ∈ N}. As an example, we report
the NIST SP800.22 test results for a PRNG based on T̃ = S̃8

β , with n = 32
bits and β = 0x7.000000AA0 (b = 7, p = 8). Referring to the map T̃ , at
each time step the 8 most significant bits of x̃ were output (Pk = P8). The
tests were performed on a sample size of 100 binary sequences (2 million bits
each), as in the previous example.

3 Digitized Chaos for Pseudo-random Number Generation 91

Table 1 NIST800.22 test results for the PRNG based on T̃ = S̃β, with n = 64 bits
and β = 0x4.000000000001838A. At each time step the 2 most significant bits of
x̃ were output.

--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--

generator is <N64K2P1_4.000000000001838A_2Mb_100Seq.dat>
--
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--
7 6 15 14 13 14 9 14 5 3 0.032923 0.9900 Frequency

11 14 10 7 5 13 10 14 10 6 0.419021 0.9800 BlockFrequency
11 6 6 14 13 10 14 11 5 10 0.350485 0.9900 CumulativeSums
8 9 8 6 14 13 15 7 10 10 0.494392 0.9800 CumulativeSums
8 8 14 8 7 8 9 16 12 10 0.514124 1.0000 Runs
9 7 13 11 8 7 8 14 11 12 0.759756 1.0000 LongestRun
4 10 11 16 13 11 11 10 6 8 0.319084 1.0000 Rank
7 6 16 9 11 14 7 11 13 6 0.249284 0.9900 FFT

mean: 0.459514 0.9916 NonOverlTemplate (*)
standard deviation: 0.292429 0.0095

8 9 10 7 15 7 12 12 10 10 0.779188 0.9900 OverlappingTemplate
9 8 11 10 5 16 15 15 5 6 0.071177 0.9800 Universal

10 13 11 10 9 9 7 10 9 12 0.978072 0.9900 ApproximateEntropy
mean: 0.441598 0.9911 RandomExcursions (*)

standard deviation: 0.278924 0.0106
mean: 0.612595 0.9960 RandomExcVariant (*)

standard deviation: 0.225489 0.0082
8 8 14 10 7 13 8 11 8 13 0.739918 1.0000 Serial

12 10 13 12 10 7 5 8 12 11 0.739918 0.9800 Serial
11 11 8 8 11 6 18 7 12 8 0.289667 0.9900 LinearComplexity
--
(*) Test with multiple results: mean value and standard deviation were reported.
--

Comments on the test results

We stress that the above presented good results are typical, even if changing
the parameter γ to a different small value, provided to satisfy (30). We have
tried at random dozens of PRNGs with n = 32, 64 and b = 3, 4, 5, 6, 7, 8, with
different values of γ, obtaining similar results. If b = 4 (or 8) we output the
2 (or 3) most significant bits of x̃ at each time step. For the other values,
we set an under-sampling rate equal to p = 8, whereas outputting the most
significant byte (8 bits). As a general trend, it seems that for the kind of
generators proposed in this paper the most sensitive test is the Non Overlap-
ping Template. The focus of this test, according to the default parameters,
is the number of occurrences of 148 different non-periodic patterns of 9-bits.
In some cases it happened that the passing rate for some patterns dropped
to 96.0% when analyzing 100 sequences of 2 million bits each (the theoretical
requested minimum passing rate is 96.0150%). Nevertheless, apart from this
minor and occasional statistical imperfection, in all of the evaluated PRNGs
none of the tests in the NIST SP800.22 standard were badly failed (the worst
PRNG found had a 94.0% passing rate in one test).

92 T. Addabbo et al.

Table 2 NIST800.22 test results for the PRNG based on T̃ = S̃8
β, with n = 32 bits

and β = 0x7.000000AA0. Every eight iterations of S̃8
β the 8 most significant bits of

x̃ were output.

--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--

generator is <N32K8P8_7.000000AA0_2Mb_100Seq.dat>
--
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--
7 10 10 7 10 14 10 6 15 11 0.574903 0.9900 Frequency

10 11 9 10 8 9 12 10 8 13 0.983453 1.0000 BlockFrequency
8 6 14 10 10 8 10 15 5 14 0.304126 1.0000 CumulativeSums
8 11 6 11 8 11 8 12 9 16 0.616305 0.9900 CumulativeSums

15 9 8 5 17 7 12 10 11 6 0.145326 1.0000 Runs
15 12 11 9 9 7 9 13 9 6 0.657933 0.9800 LongestRun
9 10 15 8 8 9 8 3 18 12 0.075719 0.9800 Rank

14 7 7 13 10 10 10 5 17 7 0.181557 0.9900 FFT
mean: 0.495993 0.9895 NonOverlTemplate (*)

standard deviation: 0.295015 0.0094
10 16 13 8 9 8 16 7 9 4 0.137282 0.9700 OverlappingTemplate
12 10 11 13 9 13 9 12 9 2 0.401199 0.9900 Universal
9 8 9 9 10 10 11 17 8 9 0.719747 0.9700 ApproximateEntropy

mean: 0.368254 0.9896 RandomExcursions (*)
standard deviation: 0.281558 0.0126

mean: 0.368254 0.9896 RandomExcVariant (*)
standard deviation: 0.281559 0.0126

11 11 11 12 10 12 6 4 12 11 0.657933 0.9900 Serial
11 11 14 7 10 9 6 12 11 9 0.834308 1.0000 Serial
8 14 7 9 10 10 12 14 11 5 0.574903 1.0000 LinearComplexity

--
(*) Test with multiple results: mean value and standard deviation were reported.
--

7 Conclusions

In this work we have proposed the design of PRNGs based on nonlinear
recurrences derived from the Rényi chaotic map. Starting from a weaker in-
terpretation of the Shadowing Theory proposed by Coomes et al. we have
theoretically framed the relationship that exists between the Rényi chaotic
maps and their digitized versions. Exploiting the ergodic properties of the
original systems we have proposed a method for the design of nonlinear re-
currences whose statistical behavior can be analyzed in terms of chaotic dy-
namics approximation. In order to overcome the problem of the shortness in
the period length of the digitized trajectories, we have proposed to perturb
the pseudo-chaotic dynamics in such a way to emulate the orbit instabil-
ity peculiar to chaotic systems. Statistical tests confirm the validity of the
approach, that is general and define an infinite family of PRNGs that can
be used to approximate the statistical behavior of an ideal TRNG with an
arbitrary accuracy.

3 Digitized Chaos for Pseudo-random Number Generation 93

References

1. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

2. Petrie, C., Connelly, A.: A noise-based IC random number generator for ap-
plications in cryptography. IEEE Transaction on Circuits and Systems I 47(5),
615–621 (2000)

3. Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: A variability-tolerant
feedback technique for throughput maximization of TRBGs with predefined
entropy. Journal of Circuits, Systems and Computers 19(4), 1–17 (2010)

4. Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: A feedback strategy
to improve the entropy of a chaos-based random bit generator. IEEE Transac-
tion on Circuits and Systems – part I 53(2), 326–337 (2006)

5. Callegari, S., Rovatti, R., Setti, G.: Embeddable ADC-based true random num-
ber generator for cryptographic applications exploiting nonlinear signal process-
ing and chaos. IEEE Trans. on Signal Processing 53(2), 793–805 (2005)

6. Bucci, M., Germani, L., Luzzi, R., Tommasino, P., Trifiletti, A., Varanonuovo,
M.: A high-speed IC random-number source for smartcard microcontrollers.
IEEE Transaction Circuits and Systems I 50(11), 1373–1380 (2003)

7. Walters, P.: An Introduction to Ergodic Theory. Springer, Heidelberg (1982)
8. Boyar, J.: Inferring sequences produced by pseudo-random number generators.

Journal of the ACM 36(1), 129–141 (1989)
9. Plumstead, J.B.: Inferring a sequence produced by a linear congruence. In:

CRYPTO, pp. 317–319 (1982)
10. Knuth, D.: The art of computer programming, 2nd edn., vol. 2. Addison-Wesley,

Reading (1981)
11. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number

generator. SIAM Journal on Computing 15(2), 364–383 (1986)
12. NIST Special Publication 800-22 Rev.1a: A statistical test suite for random and

pseudorandom number generators for cryptographic applications (April 2010)
13. Coomes, B., Kocak, H., Palmer, K.: Shadowing in Discrete Dynamical Sys-

tems. In: Six Lectures on Dynamical Systems, pp. 163–211. World Scientific,
Singapore (1996)

14. Eichenauer-Herrmann, J.: Pseudorandom number generation by nonlinear
methods. International Statistical Reviews 63, 247–255 (1995)

15. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, Dordrecht (1995)

16. Eichenauer-Herrmann, J.: Inversive congruential pseudorandom numbers avoid
the planes. Mathematics of Computation 56, 297–301 (1991)

17. Golomb, S.W.: Shift Register Sequences. Aegean Park, Laguna Hills (1982)
18. Eichenauer, J., Topuzǒglu, A.: On the period length of congruential pseudo-

random number sequences generated by inversions. Journal of Computational
and Applied Mathematics 31, 87–96 (1990)

19. Beyer, W.A., Roof, R.B., Williamson, D.: The lattice structure of multiplicative
congruential pseudo-random vectors. Mathematics of Computation 25(114),
345–363 (1971)

20. Boyarsky, A., Góra, P.: Laws of Chaos. Birkhäuser, Basel (1997)

94 T. Addabbo et al.

21. Addabbo, T., Fort, A., Rocchi, S., Papini, D., Vignoli, V.: Invariant measures of
tunable chaotic sources: Robustness analysis and efficient computation. IEEE
Transactions on Circuits and Systems - I 56(4), 806–819 (2009)

22. Addabbo, T., Fort, A., Papini, D., Rocchi, S., Vignoli, V.: An efficient and
accurate method for the estimation of entropy and other dynamical invari-
ants for piecewise affine choatic maps. International Journal of Bifurcation and
Chaos 19(12), 4175–4195 (2009) (accepted)

23. Setti, G., Mazzini, G., Rovatti, R., Callegari, S.: Statistical modeling of discrete-
time chaotic processes: basic finite-dimensional tools and applications. Proc. of
the IEEE 90(5), 662–690 (2002)

24. Stojanovski, T., Kocarev, L.: Chaos-based random number generator – part I:
Analysis. IEEE Transactions on Circuits and Systems I 48(3), 281–288 (2001)

25. Lasota, A., Mackey, M.C.: Chaos, Fractals and Noise - Stochastic Aspects of
Dynamics, 2nd edn. Springer, Heidelberg (1994)

26. Amigó, J., Kocarev, L., Tomovski, I.: Discrete entropy. Physica D 228, 77–85
(2007)

27. Kocarev, L., Szczepanski, A.J.: Discrete chaos–I: Theory. IEEE Transaction on
Circuits and Systems – I 53(6), 1300–1309 (2006)

28. Addabbo, T., Alioto, M., Fort, A., Pasini, A., Rocchi, S., Vignoli, V.: A class
of maximum-period nonlinear congruential generators derived from the Rényi
chaotic map. IEEE Transactions on Circuits and Systems - I 54(4), 816–828
(2007)

29. Addabbo, T., Fort, A., Kocarev, L., Rocchi, S., Vignoli, V.: Pseudo-chaotic
lossy compressors for true random number generation. IEEE Transaction on
Circuits and Systems I (2010) (accepted) doi: 10.1109/TCSI.2011.2108050

30. Addabbo, T., De Caro, D., Fort, A., Petra, N., Rocchi, S., Vignoli, V.: Effi-
cient implementation of pseudochaotic piecewise linear maps with high digi-
tization accuracies. International Journal of Circuit Theory and Applications
39(4) (April 2010)

31. Devaney, R.: An Introduction to Chaotic Dynamical System, 2nd edn. Addison-
Wesley, Reading (1989)

32. Pareschi, F., Setti, G., Rovatti, R.: Noise robustness condition for chaotic maps
with piecewise constant invariant density. In: Malek, M., Reitenspiess, M.,
Kaiser, J. (eds.) ISAS 2004. LNCS, vol. 3335, pp. 681–684. Springer, Heidelberg
(2005)

Appendix

Proof of Theorem 2

We first need the following

Lemma 2. Let q0
2n ∈ Λn and z > q0

2n . If the restriction of the Rényi map Sβ
to the interval J =

[
q0
2n , z

)
is continuous, for any x ∈ J and for any m ∈ N,

with q0 ≤ m ≤ �2nz�, it results∣∣∣Sβ(x) − S̃b

(m

2n
)∣∣∣ < β

∣∣∣x− m

2n

∣∣∣+ 1
2n

.

3 Digitized Chaos for Pseudo-random Number Generation 95

Proof. We note that if Sβ is continuous over J , then it has a constant slope:
for any x1, x2 ∈ J we have |Sβ(x2)−Sβ(x1)| = β|x2−x1|. Moreover, we note

that for any m
2n ∈ Λn it results

∣∣∣Sβ (m2n

)
− S̃β

(
m
2n

)∣∣∣ < 1
2n , indeed

S̃β

(m

2n
)

=
�βm mod 2n�

2n
≤ βm mod 2n

2n
= Sβ

(m

2n
)

<

<
�βm mod 2n�+ 1

2n
= S̃β

(m

2n
)

+
1
2n

.

(46)

Accordingly,∣∣∣Sβ(x) − S̃β

(m

2n
)∣∣∣ =

∣∣∣Sβ(x)− Sβ

(m

2n
)

+ Sβ

(m

2n
)
− S̃β

(m

2n
)∣∣∣ ≤

≤
∣∣∣Sβ(x) − Sβ

(m

2n
)∣∣∣+ ∣∣∣Sβ (m

2n
)
− S̃β

(m

2n
)∣∣∣ < β

∣∣∣x− m

2n

∣∣∣+ 1
2n

,

concluding the proof. �
We can now prove the main Theorem.

Proof of Theorem 2. We will prove the theorem focusing on the inequality∣∣∣Spb (x) − S̃pβ(x̃)
∣∣∣ ≤ ∣∣∣Spb (x)− Spβ(x)

∣∣∣+ ∣∣∣Spβ(x) − S̃pβ(x̃)
∣∣∣ , (47)

and noting that K2 ⊂ K1. Let us assume the Rényi map continuous on
intervals containing the points Sjβ(x) and S̃jβ(x̃), for j = 0, 1, . . . , p− 1. From
the Lemma 2 we have∣∣∣Sj+1

β (x) − S̃j+1
β (x̃)

∣∣∣ < β
∣∣∣Sjβ(x)− S̃jβ(x̃)

∣∣∣+ 1
2n

,

and proceeding by induction it is easy to prove that

∣∣∣Sjβ(x)− S̃jβ(x̃)
∣∣∣ < βj |x− x̃|+ 1

2n

j−1∑
r=0

βr = βj |x− x̃|+ βj − 1
(β − 1) · 2n . (48)

Due to the truncation strategy (29) we have |x̃−x| < 1/2n, and the previous
inequality becomes

∣∣∣Sjβ(x) − S̃jβ(x̃)
∣∣∣ <

βj+1 − 1
(β − 1)2n

. (49)

Since K2 ⊂ K1 we can use the result (32), and by setting j = p the
ineq. (47) is verified. The proof is completed if we show that if x ∈ S−p

b (K2)
then some intervals exist containing the points Sjβ(x) and S̃jβ(x̃), for j =
0, 1, . . . , p− 1, and in which the Rényi map is continuous (this allows the use
of the previous Lemma).

96 T. Addabbo et al.

Accordingly, we define the set Pβ = { iβ , 0 < i ≤ b} and we note that for
j = 0 the previous condition is satisfied if the distance of x from the nearest
point in Pβ is not smaller than 1

2n : this is a sufficient condition to avoid a
discontinuity point of Sβ lying between x and x̃. For the second step, since
we know from (49) that |Sβ(x) − Sb(x)| < β+1

2n , a sufficient condition to have
both of the points Sβ(x), S̃β(x̃) in a same interval between two discontinuity
points of Sβ is to have Sβ(x) not closer than 1

2n + β+1
2n to the nearest point

in Pβ . Generalizing, for j = 0, . . . , p−1 both of the points Sjβ(x), Sjb (x) lye in
a same interval between two discontinuity points of Sβ if Sjβ(x) is not closer
than

1
2n

(
1 +

j∑
r=0

br

)
=

βj+1 + β − 2
(β − 1)2n

(50)

to the nearest point in Pβ .
By using the result (32), the above condition is verified if Sjb (x) is not

closer than
βj+1 + β − 2

(β − 1)2n
+
(

1− b

β

)
bj+1 − b

b− 1
(51)

to the nearest point in Pβ . Again, the latter condition is verified if Sjb (x) is
not closer than(

1− b

β

)
+

βj+1 + β − 2
(β − 1)2n

+
(

1− b

β

)
bj+1 − b

b− 1
=

=
βj+1 + β − 2

(β − 1)2n
+
(

1− b

β

)
bj+1 − 1

b − 1

(52)

to the nearest point in Pb.
Let us now focus on the set K2: we will show that for m = 1, . . . , p the set

S−m
b (K2) contains only points that satisfy the previous sufficient conditions.

In detail, we note that the set S−1
b (K2) is made of b intervals of the form

[ib + δ2
b , ib + 1−δ2

b) for 0 ≤ i < b, that is, each point in S−1
b (K2) is not closer

than δ2
b to the nearest point in Pb. Following the same reasoning, it is easy

to check that each point in S−m
b (K2) is not closer than δ2

bm to the nearest
point in Pb. Accordingly, in order to satisfy the previously discussed sufficient
conditions, it suffices that

δ2

bp−j
≥ βj+1 + β − 2

(β − 1)2n
+
(

1− b

β

)
bj+1 − 1

b− 1
, (53)

that is

δ2 ≥ bp−j
βj+1 + β − 2

(β − 1)2n
+
(

1− b

β

)
bp+1 − bp−j

b− 1
. (54)

3 Digitized Chaos for Pseudo-random Number Generation 97

On the other hand for j = 0, . . . , p− 1,

bp+1 − bp−j

b− 1
<

bp+1 − b

b − 1
, (55)

and

bp−j
βj+1 + β − 2

(β − 1)2n
≤ βp−j

βj+1 + β

(β − 1)2n
=

βp+1
(
1 + β−j)

(β − 1)2n
<

2βp+1

(β − 1)2n
. (56)

As a result, if δ2 = 2βp+1

(β−1)2n +
(
1 + b

β

)
bp+1−b
b−1 the inequality (54) is verified

and the proof is completed. �

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 99–136.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 4
Formation of High-Dimensional Chaotic Maps
and Their Uses in Cryptography

Wallace K.S. Tang1 and Ying Liu2

1 Department of Electronic Engineering, City University of Hong Kong
2 Department of Information Science and Electronic Engineering, Zhejiang University

Abstract. Being a particular class of nonlinearity, chaos nowadays becomes one
of the most well known and potentially useful dynamics. Although a chaotic
system is only governed by some simple and low order deterministic rules, it pos-
sesses many distinct characteristics, such as deterministic but random-like
complex temporal behavior, high sensitivity to initial conditions and system pa-
rameters, fractal structure, long-term unpredictability and so on. These properties
have been widely explored for the last few decades and found to be useful for
many engineering problems such as cryptographic designs, digital communica-
tions, network behaviour modeling, to name a few. The increasing interests in
chaos-based applications have also ignited tremendous demand for new chaos ge-
nerators with complicate dynamics but simple designs. In this chapter, two differ-
ent approaches are described for the formation of high-dimensional chaotic maps
and their dynamical characteristics are studied. As reflected by the statistical re-
sults, strong mixing nature is acquired and these high-dimensional chaotic maps
are ready for various cryptographic usages. Firstly, it is used as a simple but effec-
tive post-processing function which outperforms other common post-processing
functions. Based on such a chaos-based post-processing function, two types of
pseudo random number generators (PRNGs) are described. The first one is a 32-
bit PRNG providing a fast and effective solution for random number generation.
The second one is an 8-bit PRNG system design, meeting the challenge of low bit-
precision system environment. The framework can then be easily extended for
some practical applications, such as for image encryption. Detailed analyses on
these applications are carried out and the effectiveness of the high-dimensional
chaotic map in cryptographic applications is confirmed.

1 Introduction

Chaotic maps are with a long history in nonlinear dynamical studies, closely
relating to the modeling of natural processes. For example, logistic map is a
discrete-time version of the logistic equation describing the population growth

100 W.K.S. Tang and Y. Liu

proposed by Pierre Verhulst in 1845 [38,39]; Hénon map is a simplified model
[13] of the Poincaré section of Lorenz system, a model of natural convection rolls
derived by Edward Lorenz in 1963; the horseshoe map was introduced by Stephen
Smale [34] when Van der Pol oscillator was studied.

The distinct properties of chaos, especially its extreme sensitivity to tiny varia-
tions of initial conditions and system parameters, have granted it to be a good can-
didate for cryptographic algorithms. In fact, chaos-based algorithm (CBA) has
shown some exceptionally good properties in many aspects regarding security,
complexity, speed, computing power and computational overhead, etc [22,44].
Unlike conventional cryptographic algorithms which are mainly based on discrete
mathematics, CBA is relied on the complex dynamics of chaotic maps which are
deterministic but simple in structures.

The huge potential of chaotic maps in various applications has also ignited
great demands of new chaotic maps with more complicate and nicer dynamical na-
ture. By referring to the dimensionality of the maps, they are generally categorized
as one-dimensional, two-dimensional and so on (some examples of chaotic maps
are given in Appendices). The designs of low-dimensional chaotic maps are basi-
cally relied on the non-linear or piecewise-linear transformations, so that the ne-
cessity expansion and contraction can be obtained in the same invariant set. In
contrast, the formation of high-dimensional chaotic maps is rather ad hoc. There-
fore, it is desirable if some systematic ways can be obtained for the derivation of
chaotic maps with any desired dimension.

One of the possible approaches is based on the anti-control or chaotification of
non-chaotic system. It is proved that an n-dimensional discrete-time linear system
can be driven to chaos by feeding nonlinear controls, such as sinusoidal function
[45], hyperbolic tangent function [18], cubic function and so on.

High-dimensional chaotic maps can also be obtained by weakly coupling some
low-dimensional ones [12], or by the formation of the coupled map lattices
[16,37,42,43] and the globally coupled map [2,26,29,46]. However, the character-
istics of the resultant maps may largely vary from their corresponding low-
dimensional ones.

In this chapter, we are interested in extending the low-dimensional chaotic
mapping function to high-dimensional space. It is suggested in [11] that, high di-
mensional chaotic map can be obtained by replacing the scalar values of the trans-
formation matrix of a conventional Cat map by symmetric m-matrices with natural
entries. A more general approach, known as multi-dimensional generalization, is
to be presented with the proof of some important properties, such as area-
preservative and positive Lyapunov exponent. Another possible way to form a
chaotic map with any dimension is known as spatial extension. It is inspired by the
design given in [6,23] where 3-dimensional Cat map and 3-dimensional baker map
are described. The new design concept is to extend the space domain of some low-
dimensional maps, and apply the mapping in a sub-space manner over the entire
high-dimensional space. The dynamical characteristics of the high-dimensional
chaotic maps formed by multidimensional generalization and spatial extension are
then investigated and their practical usages in cryptography are also explored.

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 101

2 Formulation of High-Dimensional Chaotic Maps

2.1 Multidimensional Generalization

Recall the conventional two-dimensional Cat map given as below:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

=
⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+
+

)(

)(

1

1

)1(

)1(
:

2

1

2

1

kx

kx

abb

a

kx

kx
f mod 1 (1)

where 1,0 ≤< ba are real-value parameters, an m-dimensional Cat map can be
devised as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

)(

)(

)(

)1(

)1(

)1(

2

1

2

1

kx

kx

kx

M

kx

kx

kx

mm

MM
mod 1 (2)

where

⎥
⎦

⎤
⎢
⎣

⎡
+

=
abqb

ap

MMIM

MI
M (3)

with q=(m-p); pI and qI are identity matrices of sizes p and q, respectively; aM

and bM are p × q and q × p non-zero matrices. The entries of aM and bM can be

freely chosen, providing that M is full rank. It is remarked that the formation of M
in (3) can be considered as replacing 1, a and b in (1) by the corresponding matrix
elements I, aM and ,bM respectively. Just like the conventional Cat map, it can

be proved that the high-dimensional map given in (2) is area-preservative and its
largest Lyapunov exponent (LE) is always positive.

Proposition 3.1: The determinant of

⎥
⎦

⎤
⎢
⎣

⎡
=

DC

BA
M

equals to)det()det()det(1BCADAM −−×= where A and D are square matrices.

Proof: The proof can be found in [5].

Theorem 1: The mapping defined in (2) is area preservative.

Proof: Based on Proposition 3.1, the determinant of M can be expressed as:

1

)det()det(

)det()det(

))det(()det()det(1

=
×=

−+×=
−+×= −

ln

ababln

anbabln

II

MMMMII

MIMMMIIM

Hence, the determinant of (3) is equal to 1 and the map is area preservative.

102 W.K.S. Tang and Y. Liu

Theorem 2: The largest LE of (2) is positive.
Proof: It is shown that there exists a positive LE if ,0≠aM 0≠bM and M is full

rank. As M is full rank, there are m linear independent eigenvectors mppp ,,, 21 L

corresponding to the eigenvalues mλλλ ,,, 21 L . There exist a modal matrix P and

a spectral matrix D, such that 1−= PDPM , where

][P 21 mppp L= and

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

m

D

λ

λ
λ

000

00

00

2

1

MOMM

L

L

As 1det =M , the products of the eigenvalues ∏
=

=
m

i
i

1

1λ . If 11 =λ for all i,

IPPPDPM === −− 11 . Since 0≠aM and ,0≠bM ,IM ≠ and hence contra-

diction. As a result, ,ID ≠ and there exists at least one 1>jλ . Therefore, there

is a positive LE 0ln >= jj λσ .

Example 1: let ⎥
⎦

⎤
⎢
⎣

⎡
=

6.05.04.0

3.02.01.0
aM and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

75.065.0

55.045.0

35.025.0

bM , from (3), one ob-

tains

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

645.1505.0365.075.065.0

465.0365.1265.055.045.0

285.0225.0165.135.025.0

6.05.04.010

3.02.01.001

M and hence a five-dimensional Cat

map is obtained. The phase portrait of 1x and 2x is depicted in Fig. 1, and the

largest LE is computed as 1.0356.

Fig. 1. The phase portrait of x1 and x2 of the 5-dimensional map obtained by multidimen-
sional generalization

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 103

2.2 Spatial Extension

The main design concept of spatial extension is to apply the mapping in all the
combinations of sub-spaces over the entire high-dimensional space. Consider an
n-dimensional map defined by:

TTf
nddd →:

21 L (4)

where
nddd SSST ××= L

21
, a m-dimensional map, g, with m > n can then be con-

structed based on f,
SSg

nddd →:
21 L (5)

with
mn dddd SSSSS ×××××= LL

21
, such that g performs similar mapping as

f on the space T while the other dimensions kept unchanged. An m-dimensional
map, ,: SSG f → is hence defined as

mnmnnmnnnnf gggggG ,),1(1,,,2,1,,2,11,1,,2,1,,2,1 LLLLL oLoooLoo +−+−+−= (6)

It should be noticed that this presents a general method which is applicable for de-
signing different kinds of high-dimensional maps. In addition, the nice properties
in the corresponding low-dimensional maps can be maintained. For illustration,
some examples are described below.

Example 2: In this example, a high-dimensional Cat map is derived by the spatial
extension technique. Referring to the two-dimensional Cat map given in (1), an
m-dimensional Cat map can then be obtained by:

1 mod)())(()1(kxAkxGkx mf ==+

(7)

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
+

=

mmm

m

m

bab

a

bab

a

bab

a

A

111

1

131313

13

121212

12

1000

01000

0010

001

10000

10

0010

001

10000

100

001

001

MOMMM

L

L

L

MOMMM

ML

L

L

MOMMM

ML

L

L

.

1,00

100

0010

0001

10000

10

010

0001

,1,11

,1

232323

23

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−−−

−

mmmmmm

mm

bab

a

bab

a

L

L

L

MMMOM

L

L

MOMMM

ML

L

L

 (8)

mA is a m×m matrix constructed by multiplying mC2 matrices,

mmm AAAAA ,12311312 −LL where 1,0 ≤< ijij ba and ijA describes the transformation

104 W.K.S. Tang and Y. Liu

ith- and jth-dimensions of the space. The following theorems prove that the map
(7) is area-preservative and its largest LE is always positive.

Theorem 3: The map in (7) is area-preservative.

Proof: Consider the matrix 12A with aaij = and bbij = , that is:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
+

=

10000

100

001

001

12

MOMMM

ML

L

L

abb

a

A
 (9)

The determinant of 12A is computed as:

11)det(1212 =−+== ababAA

by the use of cofactor expansion.
Notice that any matrix ijA can be obtained by interchanging the rows and col-

umns of the matrix 12A . For example, 23A can be obtained by swapping rows and

columns of 12A for four times. It can be hence deduced that 1)det(=ijA (Accord-

ing to the fact that interchange of any two rows and any two columns only
changes the sign of the determinant for all i, j ∈[1, m]). Therefore, the determinant
of mA is given as:

1,11312 == − mmm AAAA L

implying that the map (7) is area-preservative. It should also be emphasized that
the determinant of mA is independent of ija and ijb .

Theorem 4: The largest LE of the map (7) is positive.

Proof: To determine the LE of the map, the eigenvalues of mA are considered.

Since the product of the eigenvalues of a matrix is equal to the determinant of the
matrix, by assuming that the eigenvalues of mA are λi for i = 1, 2,…, m, we have

1||
1

==∏
=

m

i
mi Aλ (10)

Based on the formulation of mA , λi = 1 if and only if aij = bij = 0 or IAm = . If

there exist aij , bij ≠ 0 for i, j ∈[1, m], there is at least one eigenvalue, say λk >1.

Otherwise, if λi < 1 for all i, 1
1

<∏
=

m

i
iλ which contradicts (10). The largest LE σk of

the map is then obtained by:
0 ||ln >= kk λσ (11)

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 105

For illustration, a 3-dimensional Cat map can be expressed as:

1 mod))(()1(3 xAkxGkx f ==+)(k
(12)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

232323

23

131313

13

121212

12

3

10

10

001

10

010

01

100

01

01

bab

a

bab

a

bab

a

A (13)

Let aij = bij = 1 for all i, j ∈[1, 3], we have |Am|=1 and the LEs are 1.9719, -1.4146,
-0.5573. It should also be highlighted that a larger positive LE is obtained as com-
pared with that of the two dimensional map. Moreover, no eigenvalue of (13)
equals to ±1, implying that it is also a hyperbolic toral automorphism. Figure 2
shows the extension and contraction effects on different subspaces while Fig. 3
shows the results after iterating the map for k-times over a unit cubic.

(a) initial condition

(b) x1-x2 plane

(c) x1-x3 plane

(d) x2-x3 plane

Fig. 2 Mapping of a 3-dimensional Cat map (12) on each plane

Example 3: The advantage of using spatial extension is that it can be applied to
low-dimensional map without the expression of transformation matrix. This is il-
lustrated by the following example with the generation of high-dimensional Baker
map. Again, the basic concept is to apply the two-dimensional Baker map on the
m(m-1)/2 subspaces. For example, a 3-dimensional Baker map can be considered
as applying the Baker mapping onto each plane of a unit cube, as shown in Fig. 4.
The evolution of the map is illustrated in Fig. 5 for reference.

106 W.K.S. Tang and Y. Liu

(a) initial condition

(b) k = 1

(c) k = 2

(d) k = 10

Fig. 3 Iterations of 3-dimensional Cat map

(a) initial condition

(b) x1-x2 plane

(c) x1-x3 plane

(d) x2-x3 plane

Fig. 4 Mapping of a 3-dimensional Baker map on each plane

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 107

(a) initial condition

(b) k = 1

(c) k = 2

(d) k = 10

Fig. 5 Iterations of a 3-dimensional Baker map

3 Properties of the High-Dimensional Chaotic Maps

Many of the interests in chaos research are motivated by its potential applications
for which its distinct characteristics have crucial contributions. Although the high-
dimensional maps generated by multidimensional generalization and spatial exten-
sion in Sect. 2 exhibit similar chaotic characteristics as their low-dimensional
counterparts, however, due to the differences between their formations, the corre-
sponding dynamical behaviours may not be the same, and they will be discussed
below. Note that herein, Types I and II denote the high dimensional Cat map con-
structed by spatial extension and multidimensional generalization, respectively.

3.1 Recurrence Plot

A recurrence plot (RP) is a plot showing for a given moment at which a phase
space trajectory visits roughly the same area in the phase space [4]. It is useful to
visually check the periodic properties of the map and to reveal the correlations be-
tween data, serving as an evaluating measure of randomness.

Considering a sequence { nxxx L10 , }, a vector iy of dimension m ≥ 2 and de-

lay d ≥ 1 can be constructed by

),,,,()1(2 dmididiii xxxxy −+++= L (14)

108 W.K.S. Tang and Y. Liu

The RP is then obtained by plotting a point if the following condition is satis-
fied

tyy ij <− (15)

where t is a predefined threshold distance.
The RPs of the proposed Type I and Type II 3D chaotic maps are shown in Fig.

6 with t = 0.15 and d = 1 and there are total 5000 data points each. No clear pat-
tern is noticed in either type, indicating that consecutive samples are much far
apart and uncorrelated. To further investigate the complexity of the RP, recurrence
qualification analysis based on the toolbox provided in [40] can be used. Based on
the data sets, there are 49 epochs with window size L = 100 and a data shifting of
100 points. The results show that the percent recurrences and the longest diagonal
line segments in each epoch are all equal to zero for both sequences, meaning that
the percent determinism and the entropy go to infinity. Therefore, these chaotic
maps are of high complexities.

 (a) Type I (b) Type II

Fig. 6 Recurrence Plot with t=0.15 (a) 3D Cat map generated by spatial extension (b) 3D
Cat map generated by multidimensional generalization.

For comparison, Fig. 7 depicts RPs obtained by some other chaotic maps
including:

Type A: Chaotification of a discrete-time system [18]

Example: ()kbukAxkx +=+)()1(where ∑
=

−=
3

1

))(tanh()(
i

iii kxku βα ,

with

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

78.078.091.0

100

010

A ,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1

0

0

b , α=[-0.619 1.022 -0.462] and 3110 ××= 1β .

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 109

Type B: Coupling of two chaotified discrete-time systems (six-dimension) [12]

Example:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+−−−=+
−−=+

=+
+−−−=+

−−=+
=+

)()()()()1(

))()(()()1(

)()1(

)()()()()1(

))()(()()1(

)()1(

6655446

36265

54

3322113

63132

21

kukxakxakxakx

kxkxkxkx

kxkx

kukxakxakxakx

kxkxkxkx

kxkx

B

A

ε

ε

where ∑
=

−=
3

1

))(tanh()(
i

iiiA kxku βα , ∑
=

−=
6

4

))(tanh()(
i

iiiB kxku βα

a = [0.91 -0.78 -0.78], b = [0.99 -0.84 -0.86], α1-3= [-0.619 1.022 -0.462],
α4-6= [-0.627 1.028 -0.454], β1-6 = 10, and ε1, ε2 =0.01.

Type C: Globally coupled map (GCM) based on logistic map [26]

Example: ∑
=

+−=+
3

1

))((
3

))(()1()1(
j

jii kxfkxfkx
εε for i = 1, 2, 3 and ε = 0.01

 (a) Type A (b) Type B

(c) Type C

Fig. 7 RPs generated by (a) chaotification of discrete-time system (b) coupling of two cha-
otic systems (c) GCM

From Fig. 7, some patterns are clearly observed. Moreover, Types A to C usu-
ally process lower LEs, as shown in the Table I, although they all possess chaotic
properties such as sensitivity to the initial condition and exhibiting “random-like”
dynamics.

110 W.K.S. Tang and Y. Liu

Table 1 LEs of various high-dimensional chaotic maps

Chaotic mapsCalculation approach Largest LE Remarks

Type A, B ∑
−

∞→
=

1

0

)('ln
1

lim
T

T
i xf

T
σ

0.2067,

0.2200
Numerical calculations

Type C 001)1ln(, σεσσσ +−== i 0.6931 Derived from logistic map [46]

Type I ii λσ ln= 1.0356 Derived from eigenvalues

Type II ii λσ ln= 1.9719 Derived from eigenvalues

3.2 Complexity Analysis

Entropy is a measure to evaluate the complexity or irregularity of a time series based
on statistics. It quantifies an aspect of the time series under consideration in a robust
and statistical manner. In the following study, two complexity measures, namely the
sample entropy (SampEn) and the symbolic entropy (SyEn), are applied. The com-
putation of these two entropies can be referred to [21,31] and references therein.

Figures 8 (a) and (b) depict the obtained SampEn and SyEn of Type I and II
with different dimensions, respectively. Each result is the mean value based on 10
sets of time series, each with 10000 samples.

By comparing with the SampEn and SyEn for traditional 2D Cat map which are
0.5783 and 0.8228, respectively, the high-dimensional chaotic maps generated by
the proposed methods possess higher complexity. It is also observed that both
SampEn and SyEn demonstrate similar trend against the dimensions for both types
of chaotic maps. Their complexities increase significantly with the system dimen-
sion, and finally reach maximums.

Fig. 8 (a) SampEn of different chaotic maps with m=2, r=0.01 (b) SyEn of different chaotic
maps with m=8, L=5.

3.2 Mixing Nature

In addition to the above properties, another nice and important chaotic feature is
its mixing nature. Here, it is verified in a statistical approach. Considering the

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 111

chaotic map as a black box and randomly choosing a set of initial conditions
)0(1x (with)0(,,3,2 mx L fixed) which is normal distributed, it is possible to catego-

rize the final values of state)(1 kx after k iterations into b non-overlapping classes.

If the frequency counts of these classes are uniformly distributed, the chaotic map
under test is considered to possess nice mixing property.

For illustration, a set of initial conditions of 1x , denoted as S1, is assumed as

shown in Fig. 9(a). The data is randomly generated with mean 0.8 and standard
deviation (SD) 0.001.

Let N=20000, b=100, after iterating a 5-dimensional Cat map (spatial one) with
different number of iterations (k=1, 10, 20), the frequency count of each bin are
depicted in Fig. 9(b)-(d). From the results, it is observed that, even though the ini-
tial states are limited within only a few bins, the final states tends to be uniformly
distributed among all bins after some iterations, that is

()

bN

NnYkx i
n 1},...,2,1,)({# 1 →=∈

 (16)

The independence relationship between the initial and final states is further con-
firmed by comparing the results with several set of S1 with different mean values,
as shown in Fig. 10.

It should be remarked that the mixing nature of the high-dimensional Cat maps
is much better than those obtained by other methods. To further confirm the

(a) initial set

(b) k=1

(a) k=10

(b) k=20

Fig. 9 Distribution of S2 after k iterations

112 W.K.S. Tang and Y. Liu

mixing effect, the final histograms are testified by the chi-squared statistics with
the hypothesis stated as below:

H0: The frequency count histogram after k iterations is uniformly distributed over
the bins.

Consider

∑
=

−=
b

i i

ii
test e

eo

1

2
2)(χ

(17)

where b is the number of classes, io and ie are the observed and expected occur-

rence frequencies in a particular class. For example, with a significance level of

0.05 and b = 100, 2
05.0,99χ is equal to 123.23. If ,2

05.0,99
2 χχ <test the null hypothesis

is not rejected and hence the distribution of the histogram is assumed to be uniform.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10 (a), (c) and (e) are the initial condition sets with mean 0.2, 0.6 and 0.9, respectively;
and (b), (d) and (f) are the corresponding states after ten iterations.

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 113

Tables 2 and 3 show the testing results with 100 sets of initial values for b=100

and b=200)91.232(2
05.0,199 =χ , respectively.

Table 2 Mean of 2
testχ from 100 sets of initial values with b=100

Dimension k=1 k=10 k=20

2 169840.72 50670.65 20738.67

3 179346.79 1944.62 213.90

4 183508.05 136.79 106.20

5 172629.90 107.16 109.77

Table 3 Mean of 2
testχ from 100 sets of initial values with b=200

Dimension k=1 k=10 k=20

2 317202.71 60802.03 19007.91

3 305006.44 3121.64 395.48

4 308887.50 295.412 202.36

5 303624.27 202.09 204.67

As shown in Tables 2 and 3, 2
,

2
dftest αχχ < which is independent of the choice of

b, when k ≥ 20 and the dimension of map is greater than 3. The hypothesis is NOT
rejected, or in other words, it is considered as uniform. With such uniformity, it is
believed that the statistical relationship between the initial conditions and final
values is broken by the transformation, and the proposed high-dimensional is con-
sidered to be mixing, with a finite number of iterations and particular dimensions.

Obviously, the mixing effect of the high-dimensional chaotic map is dependent
on the dimensions of the map and the number of iterations. Such a relationship
is revealed with a 3-dimensional view of test results given in Figs. 11 for b=100.

For the ease of referencing, a horizontal plane indicating 2
,dfαχ is drawn. Any

bar above this reference plane implies that the distribution of the histogram is non-
uniform, i.e., the mixing effect is not good enough. Similar results can be obtained
if different values of b are used.

Figure 12 shows a magnified version of Fig. 11. It clearly shows that for a cer-
tain dimension, a better mixing effect can be obtained by increasing the number of
iterations. Similarly, when the number of iterations is fixed, the mixing nature de-
pends on the dimension of the chaotic map.

Table 4 shows the appropriate dimensions and the corresponding numbers of it-
erations for which sufficient mixing effect can be achieved. For example, a
4-dimensional Cat map will need at least 11 iterations to achieve an acceptable
mixing effect. While for a 5-dimensional Cat map, only 6 iterations are needed.

114 W.K.S. Tang and Y. Liu

Fig. 11 The chi-square test results with b=100

To demonstrate the mixing effects, some illustrations are given in Fig. 14 and
15. Consider an arbitrary 5-dimesional Cat map, with initial values randomly se-
lected in the domain of [0, 0.1], Fig. 13 depicts the final values after six iterations
(i.e. k=6) for which an acceptable effect is demonstrated. Another example is also
shown in Fig. 15 with m= 9 and k= 3, which is the most effective one in terms of
computational cost.

Fig. 12 The chi-square test result with b=100

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 115

Table 4 Parameters of the maps with sufficient mixing effect

Dimension (m) No. of iterations (k) 2

xχ (b = 100)
2

xχ (b = 200)

4 11 110.62 206.33

5 6 115.43 209.98

6 5 112.49 206.74

7 4 113.61 204.63

8 4 109.25 201.30

9 3 109.75 205.95

10 3 109.48 201.92

11 3 107.49 203.25

12 2 110.12 202.08

 (a) initial states (b) K=6

Fig. 13 Mixing effect of a five-dimensional Cat map

 (a) initial states (b) K=3

Fig. 14 Mixing effect of a nine-dimensional Cat map

116 W.K.S. Tang and Y. Liu

For comparison, Tables 5 and 6 show the results of its counterpart, namely,
high-dimensional Cat map constructed by multidimensional generalization and
high-dimensional Baker map constructed by spatial extension. For consistency,
the parameters of all the maps are randomly chosen between 0 and 1.

Table 5 Results of the statistical test of high-dimensional Cat map constructed by multidimen-
sional generalization

Dimension (m) No. of iterations (k) 2
xχ (b = 100) 2

xχ (b = 200)

4 27 113.19 208.27

5 17 112.99 209.75

6 13 119.08 218.56

7 10 119.89 215.13

8 9 117.98 209.42

9 8 113.51 212.78

10 8 120.55 216.66

11 7 122.79 218.21

12 6 123.20 219.74

Table 6 Results of the statistical test of high-dimensional baker map constructed by spatial
extension

Dimension (m) No. of iterations K 2
xχ (b = 100) 2

xχ (b = 200)

4 10 109.55 203.78

5 7 105.51 201.89

6 7 107.40 202.12

7 5 110.19 201.48

8 3 109.38 204.70

9 3 109.64 204.39

10 2 106.31 202.71

11 2 111.44 204.32

12 2 106.75 202.57

By comparing the results in Tables 4 and 5, a larger number of iterations is no-
ticed if high-dimensional Cat map constructed by multidimensional generalization
is considered. This is mainly due to the formation of the transformation matrix. The
inclusion of identity matrix in multidimensional generalization will result a weaker
mixing effect as some dimensions may not be involved in the mapping. Therefore,
spatial extension is more appropriate if a good mixing nature is necessary.

From Table 6, it is observed that the high-dimensional Baker map requires sim-
ilar number of iterations to achieve a good mixing effect, as compared with the

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 117

high-dimensional Cat map. However, the implementation of high-dimensional Cat
map is much easier than the high-dimensional baker map.

4 Cryptographic Applications

As illustrated in Sect. 3, the high-dimensional Cat map generated by spatial exten-
sion process better characteristics and can be easily implemented. Therefore, it is
adopted in the design of the following cryptographic applications.

4.1 32-Bit Chaos-Based Random Number Generator

The first application is for the design of a PRNG and the block diagram of the
proposed design is given in Fig. 15. It mainly consists of two parts: a chaotic skew
tent map for the generation of bit sequence, and the high-dimensional Cat map for
post-processing.

Fig. 15 A cascade structure for chaos- based PRNG

The skewed tent map is chosen as it is simple and fast in computation. Consider
the below discrete tent map:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+

≤
+

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=+

otherwise
ˆ1

ˆ12

ˆ
12

ˆ
0if

ˆ

ˆ

ˆ 1

p

x
g

p
x

p

x
g

x
n

L

L
nn

n
 (18)

where)12(2/)12(ˆ +−= Lkp with 12,,22,2,2,1 11 ++= −− LLLk LL to ensure

12

ˆ
ˆ

+
≠

L
nx

p and 1,5.0,0≠p , }{ L
nx 2,,2,1ˆ L∈ , 0x̂ is the initial value and g(•) is

the approximation function (rounding, flooring or ceiling). The bit sequence is
generated by directly expressing the value of nx̂ in binary number of L bits:

}{ˆ 21 Ljn bbbbx LL= (19)

where }1,0{∈jb and Lj ,,2,1 L= .

118 W.K.S. Tang and Y. Liu

Since the bit sequence generated from the skewed tent map is unavoidably af-
fected by the quantization process, some kinds of post-processing is required. The
sequence is hence divided into blocks, each contains m’s L-bit integers. The
blocks are then transformed by the map (7) and the output is used as the random
keystream. Based on the result shown in Table 5, a 5-dimensional Cat map is cho-
sen. Some further improvements can also be made by adding a data feedback de-
scribed as below:

L

c

c

c

c

c

c

x

x

d

A

d

z

z

2mod

45

)1(46

1

45

)1(46

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−+

−

+

−+

M

M

(20)

where 4525242311312 AAAAAAAA s LLL= is a 55× matrix constructed by mul-

tiplying 25C matrices, each ijA mixes the i-th and j-th dimensions as in the ex-

tended Cat Map and c is the block’s identity number),2,1(L=c .

In order to testify the randomness of the keystream, the statistic test suite, de-
signed by the National Institute of Standards and Technology (NIST) in Special
Publication 800-22 [33], is used. It contains an extensive set of statistical tests,
evaluating three major categories of random natures:

1. Random Walk Nature: frequency test (FT), block frequency test (BFT), cu-
mulative sums test (CST), random excursions test (RET), random excursions
variant test (REVT).

2. Pattern Checking: runs test (RT), longest run of ones test (LROT), nonover-
lapping template matching test (NTMT), overlapping template matching test
(OTMT), Maurer’s universal statistical test (MUST), approximate entropy test
(AET), serial test (ST).

3. Complexity and Compression: Marsaglia’s rank test (MRT), spectral test
(SPT), linear complexity test (LCT).

The acceptable percentage of passing a test is determined by:

S
Pa

)1(
)1(

αασα −±−=

where]01.0,001.0(∈α , σ is the standard deviation and S is the sample size. In

our experiments, 300 sequences (300=S), each with 1,000,000-bit long, are
tested. Together with the chosen standard parameters, α = 0.01 and σ = 3, we have
Pa = 97.28%. If the successive percentage of any test is smaller than Pa, the se-
quences are considered to be not good enough.

Table 7 summarizes the passing rates of the sequences with and without post-
processed by the high-dimensional Cat map. It can be observed that 10 out of 16
of the tests are failed if the sequence is tested directly. However, a noticeable im-
provement is observed after post-processing, and all the tests are passed.

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 119

Table 7 Passing rate of the random sequences generated by system in Fig .15

 Without post-processing With post-processing

Tests tent bit sequence VNC XOR SR SHA-1 5DC 5DCFB

FT 96.67% 98.67% 98.67% 98.67% 98.67% 99.00% 99.67%

BFT 64.67% 83.67% 53.00% 99.00% 99.00% 99.33% 99.00%

CST(a) 95.00% 98.67% 98.67% 98.67% 98.33% 99.00% 99.33%

CST(b) 94.33% 98.67% 98.00% 98.67% 99.00% 99.00% 99.33%

RET 99.26% 98.81% 98.90% 98.41% 99.18% 98.57% 98.70%

REVT 99.01% 98.91% 99.72% 98.98% 98.82% 99.22% 99.22%

RT 97.33% 98.00% 99.00% 99.67% 99.00% 98.67% 98.67%

LROT 98.33% 97.33% 97.00% 98.67% 99.67% 98.67% 99.33%

NTMT 98.00% 97.35% 92.82% 98.98% 99.00% 99.14% 98.95%

OTMT 96.00% 98.00% 96.33% 98.33% 99.00% 98.00% 100.00%

MUST 87.33% 96.33% 96.67% 97.33% 99.00% 99.00% 99.33%

AET 97.67% 74.33% 33.67% 99.00% 98.67% 99.33% 98.67%

ST 98.17% 96.50% 86.50% 99.00% 98.67% 99.00% 99.17%

MRT 88.33% 98.67% 89.67% 99.00% 98.33% 99.00% 99.33%

SPT 61.00% 98.67% 89.67% 99.33% 98.33% 98.33% 99.33%

LCT 99.67% 99.00% 99.67% 98.67% 99.33% 98.00% 98.67%

VNC: Von Neumann corrector [15]; XOR: XOR based post-processing [30].
SR: shift-register based post-processing [30]; 5DC: 5-D Cat map (7).
5DCFB: 5-D Cat map with feedback (19).

The bit output rates in a 2.6GHz Pentium-4 machine with different post-
processing function are compared in Table 8. It is noticed that a quite slow rate is
obtained when Von Neumann corrector or XOR-based post-processing function is
used because of the decimation rate of 1:4. The shift-register based post-
processing is also slow when it is implemented in software since it is mainly a
hardware design. Of course, the speed may be greatly improved if the whole de-
sign is implemented in hardware.

With a rather complex structure, SHA-1 has a moderate bit rate. The 5-D Cat
map is the fastest bit rate because only 25 multiplication and 20 addition opera-
tions are needed for each 160 bits output. The speed reduces slightly when data
feedback is introduced, but it is still very fast as compared with the others.

120 W.K.S. Tang and Y. Liu

Table 8 Bit output rate of Tent bit sequence with different post-processing

 Tent’s map bit sequence with post-processing

 VNC XOR SR SHA-1 5DC 5DCFB

Bit rate(Mbps) 13.92 34.02 21.43 59.97 141.51 135.02

4.2 8-Bit Chaos-Based Random Number Generator Design

A similar design as given in Fig. 15 is also applicable for low precision environ-
ment, except that the quantization error makes the usage of chaotic map as initial
keystream become inappropriate. Taking 8-bit precision as an example, there ex-
ists only 256 states in such a finite machine and hence it is impossible to generate
a fair enough bit sequence for usage and the short cycle length problem becomes
very serious.

On the other hand, chaotic circuit can be adopted for bit generation. Figure 16
shows the block diagram of the design and the operational procedures are as fol-
lows. Firstly, bit stream is obtained by sampling a system state of a chaotic circuit,
and then after post-processing, a random bit sequence can be obtained [36].

Fig. 16 Block diagram of chaos-based RNG design

In this example, a very simple chaotic circuit proposed in [10] is adopted. It is a
modified Chua’s circuit, as expressed below:

() ()

()

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−=

+−=

−−=

032
3

321
2

2

112
1

1

1

1

RIV
dt

dI
L

IVV
Rdt

dV
C

VfVV
Rdt

dV
C

 (21)

where () 3
2

max

V
V

G
VGVf a

a −= denotes the cubic-like voltage-current characteristic

of the nonlinear resistor with slopes aG and ± maxV are the outer zeroes.

The electronic circuitry proposed in [10] is redrawn in Fig. 17 where the shaded
part is to realize ()Vf . The double-scroll chaotic attractor can be obtained as

shown in Fig. 18.

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 121

Fig. 17 Realization of modified Chua’s circuit in electronic circuit

Fig. 18 Double scroll attractor (horizontal axis: 1V/dic; vertical axis: 0.5V/div)

The use of this circuit has the following advantages:

1. The circuit is extremely simple and only consists of a few passive compo-
nents and two pairs of dual complementary MOS transistors.

2. A chaotic attractor is observed, and hence non-periodic bit sequence can be
obtained after data sampling.

3. Based on the work of [8] for the implementation of Chua’s circuit in inte-
grated circuit, it is possible to realize this modified circuit using the similar
technology. Moreover, the cubic function implemented in MOS transistors
can also be easily included.

In our design, the state of 2V in (21) is sampled by analog-to-digital converter

(MAX118) with a sampling rate of 50KHz and used as the bit sequence. However,
even though the sampled data is non-periodic, the data sequence is still biased and
not good enough as a PRNG due to the existence of fundamental frequency in the
oscillator. This is confirmed with the non-uniform frequency spectrum as shown
in Fig. 19.

Therefore, the sampled data is postprocessing by a 5-dimensional Cat map (19).
The block diagram of the entire system and a prototype are shown in Figs 20 (a)

122 W.K.S. Tang and Y. Liu

and (b), respectively. It should be remarked that the software design for postproc-
essing is light-weighted. The program size is just 266 bytes, including the data
control and communication via RS232. In fact, the post-processing function only
occupies 126 bytes of program memory and 35 bytes internal RAM.

Fig. 19 FFT of Sampled data of 2V

(a)

(b)

Fig. 20 (a) Block diagram (b) prototype of RNG with 8-bit controller

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 123

Again, to testify the statistical performance of the output, NIST tests are carried
out and the results are tabulated in Table 10. A significant improvement is noticed
after post-processing and all the tests are now passed.

Table 10. Statistical performance of bit sequences obtained by system in Fig. 20

Tests Before post-processing After post-processing

FT 0.00% 99.00%

BFT 0.00% 98.33%

CST(a) 0.00% 99.00%

CST(b) 0.00% 99.00%

RET 0.00% 99.05%

REVT 0.00% 98.79%

RT 0.00% 99.33%

LROT 0.00% 99.33%

NTMT 12.70% 98.91%

OTMT 0.00% 99.33%

MUST 0.00% 99.00%

AET 0.00% 99.00%

ST 0.00% 99.67%

MRT 94.00% 97.67%

SPT 1.00% 99.00%

LCT 99.33% 99.33%

4.3 Chaos-Based Image Encryption

Based on the 32-bit chaos-based PRNG given in Sect. 4.1, a fast image encryption
algorithm in the stream cipher architecture [20] can be designed as shown in Fig. 21.
As an image usually consists of a large number of bytes, for example, an image in
24-bit true color with 512×512 pixels has a size of about 786 Kbytes, a fast encryp-
tion scheme and hence a fast keystream generator are demanded. Therefore,
finite precision representation and fixed point arithmetic are adopted. This kind
of implementation will also favor for the future hardware development of the
algorithm.

Since the chaos-based PRNG is governed by a skew tent map and a m-
dimensional Cat map, the output sequence is depended on the values of p, x0, Am
(i.e. {aij} and {bij}). These values can be derived from the user key by a chaos-
based hash function, constructed by another high-dimensional Cat map. Through
iterations, a hash value, which is highly dependent on the input (i.e. the user key),
is obtained and used to determine the system parameters needed in the PRNG.
This hash function will produce an avalanche change in the obtained hash value
and the process increases the complexity of deducing the key from the pseudoran-
dom keystream.

124 W.K.S. Tang and Y. Liu

1. Construct the parameters needed for PRNG with a 192-bit user key.
2. Transform the image into a 32-bit data stream (refer to Fig. 21). Taking an

image in 24-bit true color with 512×512 pixels as an example, if each pixel
consists of 24-bit in RGB format, a stream of total 196,608 data (each data is
in 32 bits and denoted as di) is formed by cascading the bits obtained from
pixels.

3. Mask each data di by the keystream with the following encryption function:

32
1 2 mod)(−++= iiii ckdc (22)

where ki is the output from PRNG and ci is the encrypted data output with c0
=0. The inclusion of ci-1 further changes the encrypted keystream based on
previous data. The function (21) may be repeated by continuing ki to increase
the complexity of confusion after all pixels in the plain image are processed.
In our design, ki=2 (this will be justified later in Sect. 4.3.1-A)

4. Convert the encrypted data stream back into RGB format for storage or
transmission. At this moment, the original image is encrypted to a cipher-
image.

The procedures of decryption are similar to those of encryption, where the major
difference is to replace (22) by the following function:

32
1 2mod)ˆ(ˆ

−−−= iiii dkcd (23)

where id̂ is the decrypted sequence. By iterating with the same number of times

as in encryption, the original image should be obtained correctly (ii dd =ˆ) with

the same ik .

Fig. 21 Chaos-Based Image Encryption Scheme

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 125

4.3.1 Performance Analysis

A good encryption scheme should resist all kinds of known attacks. In this section,
some security analyses are performance where most of the tests follow the sugges-
tions given in [6,27].

A. Cipher cycle
As a general requirement for all the image encryption schemes, the encrypted im-
age should be greatly different from its original form. To quantify this require-
ment, two measures, including the number of pixel change rate (NPCR) and uni-
fied average changing intensity (UACI) [6,27], are adopted.

The NPCRR,G,B is used to measure the number of pixels in difference of a color
component between two images. Let C(i, j) and C’(i, j) be the i-th row and j-th
column pixel of two images C and C’, respectively, the NPCRR,G,B can be defined
as:

%100

),(

NPCR ,
BG,R,

,, ×=
∑

N

jiD
ji

BGR (24)

where N is the total number of pixels in the image and DR,G,B(i, j) is defined as

⎩
⎨
⎧

′≠
′=

=
),(),(1

),(),(0
),(

,,,,

,,,,
BG,R, jiCjiC

jiCjiC
jiD

BGRBGR

BGRBGR

(25)

with CR,G,B(i, j) and C’R,G,B(i, j) representing the values of the corresponding color
component Red (R), Green (G) or Blue (B) in the two images, respectively.

Considering two random images, the expected value of NPCRR,G,B is found to
be:

[] %100)21(NPCR ,,
,, ×−= − BGRL
BGR E (26)

where BGRL ,, is the number of bits used to represent the color component of Red,

Green or Blue. For example, for two random images with 512×512 pixels and 24-
bit true color (8 bit for each RGB color component, and hence LR=LG=LB=8),

[] [] []BGR NPCRNPCRNPCR EEE == = 99.609375%.

Another quantity, UACIR,G,B, is to measure the average intensity differences in
a color component and can be defined as:

%100)
12

),(),(
(

1
UACI

,

,,,,

,, ,,
×

−

′−
= ∑

ji
L

BGRBGR

BGR BGR

jiCjiC

N
 (27)

126 W.K.S. Tang and Y. Liu

In the case of two random images, the expected value of BGR ,,UACI can be com-

puted by:

[]
()

%100
12

1
2

1

UACI
,,

,,

,,

12

1
2

,, ×
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

=
∑

−

=

BGR

BGRL

BGR

L

i
L

BGR

ii

 E (28)

and [] [] []BGR UACIUACIUACI EEE == =33.46354%, assuming each color com-

ponent is coded with 8 bits.
The NPCRR,G,B and UACIR,G,B of two cipher images, from two images with one

bit difference in the corresponding color component using the same password, are
obtained. Their typical values are plotted against the number of iterations, as
shown in Figs. 22(a) and (b), respectively. It can be observed that a relatively
good result can be obtained in all three color components if the number of cipher
rounds is two or larger. Therefore, in the following experiments, two cipher cycles
are adopted in order to obtain the fastest encryption scheme.

 (a) (b)

Fig. 22 (a) NPCR and (b) UACI for R,G, B color components

B. Visual Testing
Firstly, we demonstrate the performance of the algorithm with a visual test. Figure
23 depicts three examples, where each image is in 24-bit color with 512×512 pix-
els. By comparing the original and the encrypted images in Fig. 22, no visual in-
formation can be observed in the encrypted image. Moreover, the encrypted
images are visually indistinguishable even with a big difference in the color tone
found in the original images.

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 127

 (a) Original image (Peppers) (b) Encrypted image (Peppers)

 (c) Original image (Sailboat) (d) Encrypted image (Sailboat)

 (e) Original image (Splash) (f) Encrypted image (Splash)

Fig. 23 Examples of the original and the encrypted images

128 W.K.S. Tang and Y. Liu

C. Statistical Analysis
In order to resist the statistical attacks, which are quite common, the encrypted
images should possess certain random properties. Some more sophisticated tests
suggested in [6,27] are then carried out.

Firstly, the color histograms of the encrypted image are checked. To appear
random, the histograms should be uniform distributed in all three color compo-
nents (RGB). Figures 24 and 25 depict the histograms for Peppers and its en-
crypted image (Similar histograms are obtained for other encrypted images). A flat
color histogram is resulted from the encrypted image based on the proposed
encryption scheme in all the cases. Its uniformity is further justified by the Chi-
squared test similar to the one described in Sect. 3.2. Consider the number of lev-
els is 256 in each color component, it is found that 2

05.0,255
2 χχ <test = 293.25 for a

significance level of 0.05. The testing result is given in Table 11.

 (a) (b)

(c)

Fig. 24 Color histograms of the original image Peppers (a) Red (b) Green (c) Blue

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 129

 (a) (b)

(c)

Fig. 25 Color histograms of the encrypted image Peppers (a) Red (b) Green (c) Blue

Table 11 Chi-squared testing results of color histograms of encrypted images

Color Encrypted Images

 Peppers Sailboat Splash

Red 261.79 218.93 242.85

Green 250.87 266.01 254.53

Blue 234.13 244.81 251.57

For an ordinary image, pixel is usually highly correlated with its adjacent pixels
either in horizontal, vertical or diagonal directions. These high-correlation proper-
ties can be quantified as the correlation coefficient for comparison. Taking the ho-
rizontal correlation as an example, for each pixel of the image, a duplet (pi, qi), can
be found, where qi is the horizontal adjacent pixel of pi. Obviously, there may be
more than one duplet for each pixel, and the horizontal correlation coefficient [6]
is computed as:

)()(

),cov(

qDpD

qp
r =

(29)

130 W.K.S. Tang and Y. Liu

where ∑
=

−=
M

i
i pp

M
pD

1

2)(
1

)(, ∑
=

−−=
M

i
ii qqpp

M
qp

1

))((
1

),cov(, M is the total

number of duplets (pi, qi) obtained from the image, and p and q are the mean

values of pi and qi, respectively. For an image with r × s pixels (r and s indicate
the number of pixels in horizontal and vertical directions, respectively), Md=2r(s-
1). By the similar approach, the vertical and diagonal correlation coefficients of an
image can be defined.

Table 12 shows the three correlation coefficients of the encrypted images. It
can be observed that the encrypted image obtained from the proposed scheme re-
tains small correlation coefficients in all directions. The results are also compared
with a random image (the value of each pixel is randomly generated by the rand()
function in C) and similar values are noted.

Table 12 Correlation coefficients of adjacent pixels of encrypted images

Correlation
Coefficient

Random Image Peppers Sailboat Splash

Horizontal 0.0006326 0.0006604 0.0006860 0.0006644

Vertical 0.0006110 0.0006141 0.0006620 0.0006768

Diagonal 0.0019646 0.0019644 0.0018721 0.0020112

In order to avoid the known-plaintext attack and the chosen-plaintext attack, the
changes in the cipher image should be significant even with a tiny change in the
original one. According to the proposed encryption process, this small difference
should be diffused to the whole ciphered data. They can in fact be reflected by the
NPCRR,G,B as shown in Fig. 22 and hence it is omitted here.

D. Security Key Analysis
The user key is in 192 bits and the key space is about 6.277×1057, which is large
enough to resist the brute-force attack with the current computer technology.
Moreover, the key space can easily be expanded in order to satisfy the future re-
quirement with the use of higher dimensional map.

Table 13 Pixel difference between images encrypted by keys with 1-bit difference

Image Pixel difference (mean NPCR)

Peppers 99.60352%

Sailboat 99.60772%

Splash 99.60645%

To have a good encryption scheme, it should also be key-sensitive, meaning
that a tiny change in the key will cause a significant change in the encrypted out-
put. The average pixel differences of the encrypted images over 100 random keys

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 131

(for each key, all the cases with one-bit difference are computed) are tabulated in
Table 13. It can be observed that the values are very close to the expected value of
pixel difference on two randomly generated images (99.609375%). Figure 26 il-
lustrate an example of two encryped images generated from two security keys
with only 1-bit difference.

(a) (b)

(c) (d)

Fig. 26 Difference between encrypted images (Peppers) (a) Original image (b) and (c) En-
crypted images with user key with 1-bit difference (d) difference between (b) and (c)

E. Speed Performance
The speed of the proposed encryption algorithm is much faster than those existing
algorithms. Its average speed is about 40 MB/s with a Pentium IV 2.8 GHz per-
sonal computer. Table 14 shows the result of the average encryption speed as
compared with some well-known encryption algorithms in Crypto++ Library [7],
running on the same machine. It is also compared with Chen’s method [6], which
is originally developed in the MATLAB platform. On the same MATLAB plat-
form, the speed of Chen’s method is about 1.816 MB/s while the speed of the pro-
posed system is up to 13.36 MB/s. With such a speed, this image encryption
scheme can be used in Internet applications over broadband network, where the
encryption and decryption time should be short relative to the transmission time.

132 W.K.S. Tang and Y. Liu

Table 14 Encryption speed of the chaos-based encryption scheme and other well-known
algorithms

Algorithm Speed (MB/s)

Chaos-based encryption scheme 40.029

DES 6.483

AES (192-bit key) 11.645

AES (256-bit key) 11.380

5 Conclusions

In this chapter, two different methods, namely multidimensional generalization
and spatial extension, have been introduced for the formation of high-dimensional
chaotic maps. Based on some existing low-dimensional chaotic maps, it is demon-
strated that chaotic maps with any dimensions can be obtained. The useful fea-
tures, such as area-preservation and possession of positive Lyapunov exponents,
are also inherited and also confirmed with mathematical proofs.

The studies of those generated high-dimensional chaotic maps are continued by
investigating their chaotic characteristics. Yet, all of chaotic maps possess the typi-
cal chaotic nature, such as sensitive dependence of parameters and initial condi-
tions and possessing at least one positive Lyapunov exponents, it is noticed that the
newly generated maps possess more complex dynamics and better mixing nature.

The nice mixing characteristics of these high-dimensional chaotic maps have
granted it to be an effective post-processing function. This in turns provides a ma-
jor element for the design of the 32-bit chaos-based random number generator. By
generating the bit sequence with a discretized tent map, and after post-processing,
a very nice random number sequence is obtained. Its randomness is verified with
different statistical criteria and also the stringent NIST test suite which commonly
used to verify the random number sequences used in cryptographical applications.
Similar structure can also be used to meet another challenge of designing a ran-
dom number generator for very low-precision system. By replacing the discretized
tent map with a simple chaotic circuit, a nice random number can still be obtain-
able. The experimental results show that a very nice random number generator can
be realized and the generated bit sequences fulfill all the statistical requirements,
including the tests in NIST.

Finally, an image encryption scheme is developed. A stream cipher is designed
by cascading a one-dimensional map for the initial sequence generation and a high-
dimensional Cat map for post-processing. Thorough analyses have been carried out
and a fast and effective chaos-based image encryption scheme is confirmed.

Acknowledgments

The first author greatly appreciates the contributions from his students Mr. Kwok Hong Sze
and Ms. Tang Kwok Wah.

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 133

References

[1] Arnold, V.I., Aver, A.: Ergodic problems of classical mechanics. W. A. Benjamin,
New York (1968)

[2] Atay, F.M., Jost, J.: Delays, connection topology, and synchronization of coupled
chaotic maps. Phys. Rev. Lett. 92(4), 144101 (2004)

[3] Billings, L., Bollt, E.M.: Probability density functions of some skew tent maps.
Chaos, Solitons and Fractals 12, 365–376 (2001)

[4] Bourke, P.: Recurrence Plots (1998),
http://local.wasp.uwa.edu.au/pbourke/fractals/recurrence/

[5] Brookes, M.: Matrix Reference Manual (2005),
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

[6] Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D
chaotic cat maps. Chaos, Solitons and Fractals 21, 749–761 (2004)

[7] Crypto++ Library, http://www.cryptopp.com
[8] Cruz, J.M., Chua, L.O.: An IC chip of Chua’s circuit. IEEE Trans.Circuits and Sys-

tems II: Analog and Digital Processing 40(10), 614–625 (1993)
[9] Dai, S., Wu, Q., Pei, W., Yang, L., He, Z.: Lissajous chaotic map. In: Int. Conf. on

Neural Networks and Signal Processing, vol. 1, pp. 772–775 (2003)
[10] Donoghue, K.O., Kennedy, M.P., Forbes, P., Wu, M., Jones, S.: A fast and simple

implementation of Chua’s oscillator with cubic-like nonlinearity. Int. J. Bifurcation
and Chaos 15(9), 2959–2971 (2005)

[11] Falcioni, M., Palatella, L., Pigolotti, S., Vulpiani, A.: Properties making a chaotic
system a good pseudo random number generator. Phys. Rev. E 72, 16220 (2005)

[12] Grassi, G., Mascolo, S.: A systematic procedure for synchronizing hyperchaos via
observer design. J. of Circuits, Systems and Computers 11(1), 1–16 (2002)

[13] Hénon, M.: A two-dimensional mapping with a strange attractor. Communications
Math. Phys. 50, 69–77 (1976)

[14] Holmgren, R.A.: A first course in discrete dynamical systems. Springer, New York
(1996)

[15] Jun, B., Kocher, P.: The Intel random number generator. Cryptography Research,
White Paper Prepared for Intel Corporation (April 1999),
http://www.cryptography.com/resources/whitepapers/
IntelRNG.pdf

[16] Kaneko, K.: Theory and applications of coupled map lattices. John Wiley & Sons,
Chichester (1993)

[17] Kohda, T., Tsuneda, A.: Statistics of chaotic binary sequences. IEEE Trans. Informa-
tion Theory 43, 104–112 (1997)

[18] Kwok, H.S., Tang, K.S.: Chaotification of discrete-time systems using neurons. Int.
J. of Bifurcation and Chaos 14(4), 1405–1411 (2004)

[19] Kwok, H.S., Tang, K.S.: Applications of high-dimensional cat map and its mixing
nature. In: Int. Symp. Nonlinear Theory and its Applications, pp. 687–690 (2006)

[20] Kwok, H.S., Tang, K.S.: A fast image encryption scheme based on high-dimensional
chaotic map. Chaos, Solitons and Fractals 32(4), 1518–1529 (2007)

[21] Li, S., Li, Q., Li, W., Mou, X., Cai, Y.: Statistical properties of digital piecewise lin-
ear chaotic maps and their roles in cryptography and pseudo-random coding. In: Ho-
nary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 205–221.
Springer, Heidelberg (2001)

[22] Li, S., Zheng, X.: Cryptanalysis of a Chaotic Image Encryption Method. In: IEEE Int.
Symp. Circuits and Systems, vol. 2, pp. 708–711 (2002)

134 W.K.S. Tang and Y. Liu

[23] Lian, S., Mao, Y., Wang, Z.: 3D extensions of some 2D chaotic maps and their usage
in data encryption. In: The Fourth Int. Conf. on Control and Automation, pp. 819–
823 (2003)

[24] Liu, Y., Sun, L., Zhu, Y., Beadle, P.: Novel method for measuring the complexity of
schizophrenic EEG based on symbolic entropy analysis. IEEE-EMBS 1, 37–40 (2005)

[25] Lorenz, E.N.: The essence of chaos. University of Washington Press, Seattle (1993)
[26] Lu, H., Wang, S., Wu, G.: Pseudo-random number generator based on coupled map

lattices. Int. J. of Modern Phys. B 18(17-19), 2409–2414 (2004)
[27] Mao, Y.B., Chen, G., Lian, S.G.: A novel fast image encryption scheme based on the

3D chaotic baker map. Int. J. of Bifurcation and Chaos 14(10), 3613–3624 (2004)
[28] Misiurewicz, M.: Strange attractors for the Lozi-mappings, nonlinear dynamic. New

York Acad. of Sciences 357, 348–358 (1980)
[29] Morita, S.: Bifurcations in globally coupled chaotic maps. Phys. Lett. A 211(5), 258–

264 (1996)
[30] Pareschi, F., Rovatti, R., Setti, G.: Simple and effective post-processing stage for

random stream generated by a chaos-based RNG. In: Int. Symp. Nonlinear Theory
and its Applications, pp. 383–386 (2006)

[31] Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate
entropy and sample entropy. Am. J. Physiol. 278, 2039–2049 (2000)

[32] Schuster, H.G., Just, W.: Deterministic chaos: an introduction. Wiley-VCH,
Weinheim (2005)

[33] Security Requirements for Cryptographic Modules, Federal Information Processing
Standards 140-2 (2001)

[34] Smale, S.: Differentiable dynamical systems. Bulletin of the Amer. Math. Soc. 73,
747–817 (1967)

[35] Sprott, J.C.: Chaos and time-series analysis. Oxford University Press, Oxford (2003)
[36] Tang, K.W., Kwok, H.S., Tang, K.S., Man, K.F.: A chaos-based random number ge-

nerator for 8-bit micro-controller system. Int. J. Bifurcation and Chaos 18(3), 851–
867 (2008)

[37] Tian, C., Chen, G.: Chaos in the sense of Li-Yorke in coupled map lattices. Physica
A 376, 246–252 (2007)

[38] Verhulst, P.F.: Recherches mathématiques sur la loi d’accroissement de la popula-
tion. Nouv. mém. de l’Academie Royale des Sci. et Belles-Lettres de Bruxelles 18,
1–41 (1845)

[39] Verhulst, P.F.: Deuxième mémoire sur la loi d’accroissement de la population. Mém. de
l’Academie Royale des Sci., des Lettres et des Beaux-Arts de Belgique 20, 1–32 (1847)

[40] Visual Recurrence Analysis (2007),
http://www.myjavaserver.com/nonlinear/vra/download.html

[41] Weisstein, E.W.: Baker’s map, MathWorld- A Wolfram Web Resource,
http://mathworld.wolfram.com/BakersMap.html

[42] Willeboordse, F.H.: The spatial logistic map as a simple prototype for spatiotemporal
chaos. Chaos 13(2), 533–540 (2003)

[43] Yang, W., Ding, E., Ding, M.: Universal scaling law for the largest Lyapunov expo-
nent in coupled map lattices. Phys. Rev. Lett. 76(11), 1808–1811 (1996)

[44] Yen, J., Guo, J.: A new chaotic key-based design for image encryption and decryp-
tion. In: IEEE Int. Conf. Circuits and Systems, vol. 4, pp. 49–52 (2000)

[45] Zhang, H., Chen, G.: Single-input multi-output state-feedback chaotification of gen-
eral discrete systems. Int. J. of Bifurcation and Chaos 14(9), 3317–3323 (2004)

[46] Zhao, L., Elbert, E.N.: A network dynamically coupled chaotic maps for scene seg-
mentation. IEEE Trans. on Neural Networks 12(6), 1375–1385 (2001)

4 Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography 135

Appendix I: Examples of One-Dimensional Chaotic Maps

One-Dimensional Chaotic Maps Illustration

Logistic [14]:

))(1)(()1(kxkaxkx −=+ where x∈[0, 1]

Skew tent [3]:

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<
−

−

≤≤
=+

1)(if
1

)(1

)(0 if
)(

)1(
kxp

p

kx

pkx
p

kx

kx where x∈[0, 1]

Chebyshev [17]:

))((coscos()1(1 kxakx −=+ where x∈[-1, 1]

Sine [35]:

))(sin()1(kxAkx π=+ where x∈[0, 1]

Sawtooth [32]:

1 mod)(2)1(kxkx =+ where x∈[0, 1]

136 W.K.S. Tang and Y. Liu

Appendix II: Examples of Two-Dimensional Chaotic Maps

Two-Dimensional Chaotic Maps Illustration

Cat map [1]:

1 mod
)(

)(

21

11

)1(

)1(
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

ky

kx

ky

kx

where [)1,0, ∈yx

Baker map [41]:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤⎥
⎦

⎤
⎢
⎣

⎡
+
−

<≤⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
+
+

1)(
2

1
 if

2/12/)(

1)(2
2

1
)(0 if

2)(

)(2

)1(

)1(

kx
ky

kx

kx
ky

kx

ky

kx

where [)1,0, ∈yx

Hénon [13]:
)()1(

)()(1)1(2

kxky

kbykaxkx

=+
+−=+

Lozi [28]:
)()1(

)()(1)1(

kxky

kbykxakx

=+
+−=+

Appendix III: Examples of Three-Dimensional Chaotic Maps

Three-Dimensional Chaotic Maps

Lorenz three-dimensional [25,35]:

)()1(

)()1(

)()()()1(

kykz

kxky

kzkykxkx

=+
=+

−=+

Modified Lissajous [9]:

))((sin)(

))1((sinsin()1(

))((sinsin()1(

1

1

1

kyckz

kxbky

kxakx

−

−

−

=

+=+

=+

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 137–203.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 5
Chaos Based Hash Function

Di Xiao, Xiaofeng Liao, and Shaojiang Deng

College of Computer Science and Engineering, Chongqing University,
Chongqing 400044, China

Abstract. This chapter focuses on the construction of chaos-based hash function.
Hash function is a special kind of one-way function which takes a variable-length
input and returns a fixed-length value. As one of the cores of Cryptography, hashing
is a basic technique widely used in information security. Utilizing chaos to con-
struct hash function is a promising direction which attracts more and more attention.
In this chapter, some preliminaries on hash function are firstly given in brief. Then,
the systemic descriptions of different chaos-based construction approaches are
presented in the order of the simple chaotic map-based hash function, the complex
map-based hash function, the composite map-based hash function, the chaotic
neural network-based hash function, the parallel hash function as well as the com-
bined chaotic cryptographic and hashing scheme. Meanwhile, the detailed analyses
of some typical chaos-based hash functions are described. Finally, by borrowing
some principles from classical Cryptography, we summarize some instructions on
chaos-based hash function secure construction which is beneficial to the hash
function design based on chaos in the future.

1 Hash Function

A hash function takes a message of arbitrary length, and creates a message digest of
fixed length. Hash functions may be split into two classes: unkeyed hash functions,
whose specification dictates a single input parameter (a message); and keyed hash
functions, whose specification dictates two distinct inputs (a message and a secret
key). The hash value is sometimes referred to as a hash-code or message digest.
Since the hash value is the function result of all the bits of the input message, any
tiny change in the single bit of the message will lead to huge changes in the final
hash value. Hash functions play a fundamental role in the field of Information
Security. For example, hash functions actually provide an error detection function,
which is utilized for data integrity authentication. Besides, to smoothly realize the
digital signature scheme in E-Commence or E-Government, a message is typically

138 D. Xiao, X. Liao, and S. Deng

hashed first, and then the hash value, as a representative of the message, is signed in
place of the original message.

Generally, a hash function has the following properties [1]:

① Compression: its input may be of arbitrary finite bit length, and its output is
of fixed bit length, such as 128-bit or 256-bit.

② Preimage resistance: for essentially all pre-specified outputs, it is compu-
tationally infeasible to find any input which hashes to that output, i.e., to find any
preimage x′ such that ()h x y=′ when given any y for which a corresponding input
is not known.

③ 2nd-preimage resistance—it is computationally infeasible to find any
second input which has the same output as any specified input, i.e., given x , to find
a 2nd-preimage x x≠′ such that () ()h x h x=′ .

④ Collision resistance: it is computationally infeasible to find any two distinct
inputs ,x x′ which hash to the same output, i.e., such that () ()h x h x=′ .

Fig. 1 The Merkle-Damgard scheme of iterated hash function

The Merkle-Damgard scheme, shown in Fig. 1, is the basis for many widely
used hash functions today, such as MD5, SHA [2]. First of all, the message length
and padding are appended to the message to create an augmented message which
can be evenly divided into 0 1 1, , , LY Y Y −L , blocks of b bits, where b is the size of

the block to be processed by the compression function f . The message length is

embedded in the last block, which can increase the attack difficulty. To attack a
hash function successfully, the attacker has to ensure both the hash value and the
length of the forged message are equal to the original one. A compression function
f is used repeatedly. In each round, the compression function f has two inputs:

one is the n -bit output 1iCV − of the last round; the other is the b -bit input block

1iY − of the current round. At the same time, the output of the current round is the

n -bit iCV , which is also used as the input of the next round. Before starting the

iteration, the initial vector IV should be set. The output of the last round is the final
hash value. The scheme can be described as follows:

5 Chaos Based Hash Function 139

0CV IV n= = -bit initial value;

1 1(,), 1i i iCV f CV Y i L− −= ≤ ≤ ;

() LH M CV= .

(1)

To design a hash function, the core task is to design a compression function
which is collision resistant. In the conventional hash function, the compression
function is realized through the complicated method based on logical XOR opera-
tion or multi-round iterations of some available cipher. Since the security and effi-
ciency of conventional hash function totally depend on the basic cipher, more
complicated computation is required. Although each step of the former is simple,
the processing round number will also be huge, even the message is very short.
Since 2005, the collision research on hash function has achieved breakthrough.
Some potential flaws in the collision resistance of widely used hash functions, such
as MD5, SHA-1, are disclosed [3,4], which makes hash function become the
common focus of both academia and enterprises.

As a ubiquitous phenomenon in nature, chaos is a kind of deterministic ran-
dom-like process generated by nonlinear and deterministic dynamic systems. Uti-
lizing chaos to construct hash function is a promising direction which attracts more
and more attentions. The inherent merits of chaos, such as the sensitivity to tiny
changes in initial conditions and parameters, mixing property, ergodicity, unstable
periodic orbits with long periods and one-way iteration, have laid the potential
theoretical foundation for excellent hash function construction.

Different classification criterions are summarized from different perspectives
based on the systematic study on the known chaos-based hash functions:

① The processing unit of message: Partition the pending message into a number
of fixed-length processing units and map them into decimal numbers by means of
linear transform. In some character-wise algorithms, the processing unit includes 8
bits, and thus no extra padding is needed. While in some block-wise algorithms, the
processing unit includes some specific-length bits, such as 512, and thus the
pending message has to be padded in a correct manner that its length is a multiple of
a specific fixed-length.
② The chaotic model: Choose a specific chaotic model, set its initial value and

parameter as the algorithm secret key and start iteration. Until now, various chaotic
models have been introduced into hash function construction, such as simple
chaotic map, complex chaotic map, composite map and chaotic neural network, etc.
③ The modulated method: The message units are modulated into the chaotic

iteration by influencing the chaotic phase space, parameter space or iteration times.

The known chaos-based hash functions are generally the combination of the above
hash construction methods. In the following, we will give the systemic descriptions
of different chaos-based construction approaches.

140 D. Xiao, X. Liao, and S. Deng

2 Simple Chaotic Map-Based Hash Function

2.1 Typical Algorithm One

2.1.1 The Algorithm Description

In [5], a simple one-way hash function is proposed based on Logistic map
2() 1f X Xμ= − ∗ . This is a character-wise algorithm whose processing unit in-

cludes 8 bits, and thus no extra padding is needed. The message units are modulated
into the chaotic parameter space and the initial value is set. The detailed procedure
is as follows:

1） Translate the pending message to the corresponding ASCII numbers, and then
map these ASCII numbers into a array by computing 1.746 0.001* ()i iAsc mμ = + .

The array length is the character number N of message. Each item of the array can
be chosen as the parameter to ensure the system is chaotic.

2） Input iμ into the chaotic system 2() 1 *f X Xμ= − , and iterate it 32-time to

get the sequence { }iX , which has 32 items.

Table 1 Transform Xi into binary sequence

[7/8,1] [6/8,7/8] [5/8,6/8] [4/8,5/8] [3/8,4/8] [2/8,3/8] [1/8,2/8] [0,1/8]

1111 1110 1101 1100 1011 1010 1001 1000

[-1/8,0] [-2/8,-1/8] [-3/8,-2/8] [-4/8,-3/8] [-5/8,-4/8] [-6/8,-5/8] [-7/8,-6/8] [-1,-7/8]

0111 0110 0101 0100 0011 0010 0001 0000

3） By looking up Table 1, each { }iX is transformed to a 4 32 128× = -bit binary

sequence iS .

4） By XORing the binary sequences corresponding to each iX , the final 128-bit

hash value can be obtained.

2.1.2 Security Analysis

In the above algorithm, the message units are transformed to the chaotic parameter,
and the chaotic initial value is set. By iterating the system, the chaotic sequences are
produced and transformed to the binary sequences, and then the final hash value can
be generated by XORing the binary sequences. This is a very simple hash

5 Chaos Based Hash Function 141

construction, which is suitable for software implementation. Only floating number
multiplication is utilized. It is not like the conventional hash function which re-
quires complicated computation and huge memory space.

However, there exists a serious security drawback in this algorithm. The cause
of this drawback lies in the fact that the processing of each message unit is inde-
pendent to each other. That is to say, for i th message unit, it is firstly transformed to
the chaotic parameter iμ . Then, starting from the set chaotic initial value, the

chaotic map is iterated to generate the chaotic sequence { }iX and the correspond-

ing binary sequence iS . Finally, all the binary sequences are XORed together to

obtain the final hash value of the paragraph of message. The commutativity of XOR
operation results in the collision drawback of the algorithm: any change in the order
of the message unit of the message will not affect the final hash value. For example,
the final hash value of the original message-“ ABCDEFG ” is the same as that of the
modified message-“ GFEDCBA ”.

In order to overcome this drawback, the improvement should introduce some
connection among the processing of message units, or make the result have a close
relation with the orders of message units. One practical idea is to use the iteration
result of the previous message unit as the initial iteration value of the next message
unit.

2.2 Typical Algorithm Two and Its Variant

2.2.1 The Description of the Typical Algorithm Two

In [6], a one-way hash function is proposed based on Henon map
2

2 3 11 ()n n n na b a a ca− − −= + − − . This is a character-wise algorithm whose processing

unit includes 8 bits, and thus no extra padding is required. The message units are
modulated into the chaotic phase space, and the parameters 0.3, 1.08b c= = are

set. When the parameters are set as 0.3, 1.07 1.09b c= ≤ ≤ , and the initial value

within [-1.5, 1.5], the system occurs chaotic attractor. The detailed procedure is as
follows:

1) Translate the pending message to the corresponding ASCII numbers, and then
map these ASCII numbers into an array S whose element is a number which be-
longs to [-1.2, 1.2] and length is the character number N of message. This mapping
is achieved by means of linear transform.

2) The first two items
21, SS are used to generate the chaotic initial values:

1 2
1 2

2.4 2.4
1.2, 1.2.

255 255

S S
a a

× ×
= − = − (2)

142 D. Xiao, X. Liao, and S. Deng

3) Start iteration: Set the iteration time to be

([/] 1),r R N R= × + where 64.R = (3)

(a) j from 3 to r , compute

2
2 11 0.3() 1.08 ,j j ja a c a− −= + − − (4)

If Nj ≤ , set 2.4 / 255 1.2,jc S= −

If Nj > , set .3−= jac

(b)set rrr ababab === −− 31221 ,, ， j from 4 to R3 , compute

2
2 3 11 0.3() 1.08 .j j j jb b b b− − −= + − − (5)

4) Transform
RRR bbb 32 ,, to the corresponding binary format, extract 40, 40, 48

bits after the decimal point, respectively, and juxtapose them from left to right to get
a 128-bit final hash value.

In this algorithm, the message array S is utilized to generate the chaotic initial
value and the c value of the iteration procedure, which introduces the influence of
message into the iteration procedure.

2.2.2 Security Analysis of the Typical Algorithm Two

Unfortunately, this algorithm is weak in collision resistance. In the following, we
will analyze the cause of this drawback. When we modulate the message unit into
the chaotic phase space (as an initial value) and start iteration, a chaotic orbit will
occur. However, if we choose other orbit values from the above chaotic orbit as the
new initial iteration value and start iteration, the same orbit will occur definitely.
The following is a collision instance [7]:

For a three-byte message 1 2 3S s s s= , the length is 3N = . Let

2.4
() 1.2

255

s
f s = − , (6)

then the initial iteration value is

1 1 2 2(), ();a f s a f s= =

Set

2
1 2 2 1(, ,) 1 0.3() 1.08j j j j ja g a a c a c a− − − −= = + − − , (7)

5 Chaos Based Hash Function 143

then the iteration sequence is as follows:

3 2 1 2 1 3

4 3 2 1

1 2 3

(, ,) (, , ())

(, ,)

(, ,)r r r r

a g a a c g a a f s

a g a a a

a g a a a− − −

= =⎧
⎪ =⎪
⎨
⎪
⎪ =⎩

L
. (8)

For a four-byte message 1 2 3 4 1 2 3 1S s s s s s s s s= = ， the length is 4N = . By (6)， the

initial value is obtained as

1 1 2 2(), ();a f s a f s= =

By (7)， the iteration sequence is as follows:

3 2 1 2 1 3

4 3 2 4 3 2 1

1 2 3

(, ,) (, , ())

(, , ()) (, ,)

(, ,)r r r r

a g a a c g a a f s

a g a a f s g a a a

a g a a a− − −

= =⎧
⎪ = =⎪
⎨
⎪
⎪ =⎩

L
 (9)

By comparing (8) and (9), it is easy to see that 1 2 3 4, , ,a a a a of the two sequences

are equal to each other. By using mathematical induction, it can be proven that

5 , , ra aL of the two sequences are also equal to each other. That is to say, the two

sequences are exactly the same.
If the iteration times are set as the same, namely

([3 /] 1) ([4 /] 1)R R R R× + = × + (it is easy to satisfy this condition.), the subse-

quent sequences are definitely the same. Therefore, the final hash values are the
same, and this causes collision.

Actually, the above analysis can be generalized as the following collision con-
struction proposition: Let 1 2 2 1N N NS s s s s s− −= L be a paragraph of message, another

paragraph of message 1 2 2 1 2N N N NS s s s s s s− − −=′ L can be constructed to have the

same final hash value () ()H S H S= ′ , if their iteration times are set as the same,

namely ([/] 1) ([(1) /] 1)R N R R N R× + = × + + .

2.2.3 The Description of the Variant Algorithm One

In [8], by introducing the extended chaotic model into the above original hash
algorithm, an improved one-way hash function based on the extended chaotic map
switch is proposed. The basic idea of the extended chaotic model is to use a uniform
equation to represent several chaotic maps under the precondition that the value

144 D. Xiao, X. Liao, and S. Deng

domains of these chaotic maps are the same. For example, since the value domains
of Logistic map, Cubic map and Tent map are all within [-1，1], their extended
chaotic model can be constructed as:

).12mod))(1((

)(||)(
2

32116

054
3

3
2

2101

−+−++

−+++++==

−

+

nn

nnnnnnn

xbbxba

bxsignaxaxaxaxaaxgx (10)

Let (0,1, ,6)ia i = L and (0,1,2,3)jb j = be different values, Eq. (10) can represent

the specific chaotic map, respectively. For instance, if 0 21, 2a a= = − and the rest

, 0i ja b = , 1 ()n nx g x+ = is actually Logistic map; if 1 33, 4a a= = − and the rest

, 0i ja b = , 1 ()n nx g x+ = actually Cubic map.

The detailed procedure of the one-way hash function based on the extended
chaotic map switch is as follows:

1） Translate the pending message to the corresponding ASCII numbers, and then
map these ASCII numbers into an array S by means of linear transform whose
element is a number which belongs to [-1，1] and length is the character number N
of message.

2） The first two items 1 2,S S are used to generate the chaotic initial values:

1 2
1 2

2 2
0.8, 0.8,

1 1

S S
a a

k k

× ×
= − = −

− −
 (11)

where 256=k .
3） Start iteration: Set the iteration time to be

([/] 1),r R N R= × + (12)

where 32.R =
(a) j from 3 to r , compute as follows:

If / 5j r≤ , set 6 1 31, 0.3, 2917a b b= = = ， and the rest , 0i ja b = ， then the ex-

tended chaotic model is actually

2
2 1(1 0.3() 2917) mod 2 1j j jx x c x− −= + − + − , (13)

If j N≤ , set 2 / (1) 0.8,jc S k= − −

If j N> , set .Nc x=

Similarly, when / 5 2 / 5r j r≤ ≤ ， 2 / 5 3 / 5r j r≤ ≤ ， 3 / 5 4 / 5r j r≤ ≤ ，

4 / 5r j r≤ ≤ , different values of ,i ja b are set to obtain different chaotic maps,

respectively. For other extended chaotic models, the above method can also be
utilized to modulate message into the iteration parameter.

5 Chaos Based Hash Function 145

(b) Continue iterating: j from 3 to 3R , compute as follows:

If the current extended model is（ 13） , set rrr xxxxxc === −− 2112 ,, ,

compute

2
2 1(1 0.3() 2917) mod 2 1.j j jx x c x− −= + − + − (14)

For other extended chaotic models, it is similar.

4） Transform RRR xxx 32 ,, to the corresponding binary format, extract 40, 40,

48 bits after the decimal point, respectively, and juxtapose them from left to right to
get a 128-bit final hash value.

2.2.4 Security Analysis of the Variant Algorithm One

By carefully comparing the above original algorithm and the variant one, it is easy
to find out that their essential ideas are the same. The difference lies in the iteration
procedure. In the variant algorithm, the extended chaotic map switch is carried out
based on iteration times. Unfortunately, this variant algorithm is still weak in col-
lision resistance. The cause of this drawback is similar to that of the original one.
The following is a collision instance [7]:

For a two-byte message 1 2S s s= , the length is 2N = . Let

2
() 0.8,

255

s
f s

×
= − (15)

then the initial iteration value 1 1 2 2(), ()a f s a f s= = ；

Set

1 2(, ,)j j ja g a a c− −= , (16)

where ()g ∗ is the current chaotic map (the uniform equation of the five chaotic

maps in [8]). The iteration sequence is as follows:

3 2 1 2 1 2

4 3 2 2

1 2 2

(, ,) (, , ())

(, , ())

(, , ())r r r

a g a a c g a a f s

a g a a f s

a g a a f s− −

= =⎧
⎪ =⎪
⎨
⎪
⎪ =⎩

L
. (17)

For a three-byte message 1 2 3 1 2 2S s s s s s s= = ， the length is 3N = , where its 3rd

byte is set as 3 2s s= . By (15)， the initial value is derived as

1 1 2 2(), ();a f s a f s= =

146 D. Xiao, X. Liao, and S. Deng

By (16)， the iteration sequence is as follows:

3 2 1 2 1 3 2 1 2

4 3 2 2

1 2 2

(, ,) (, , ()) (, , ())

(, , ())

(, , ())r r r

a g a a c g a a f s g a a f s

a g a a f s

a g a a f s− −

= = =⎧
⎪ =⎪
⎨
⎪
⎪ =⎩

L
 . (18)

Since the iteration subsection in step 3) of the variant algorithm one is only
related to ([2 /] 1) ([3 /] 1),r R R R R= × + = × + the iteration subsections of

the above two conditions are the same. Furthermore, the chaotic map in each sub-
section is also the same to each other. By comparing (17) and (18), it is easy to see
that the two sequences are equal to each other. And the subsequent sequences are
definitely the same. Therefore, the final hash values are the same, and this causes
collision.

2.3 Typical Algorithm Three

In the proposed algorithm of [9], two-dimensional and four-dimensional Cat
Chaotic Maps （ ）CATCM are utilized.

Two-dimensional generalized CATCM is defined as:

1 1 1

2 2 2

(1) () ()1
(mod1) (mod1)

(1) () 1 ()

x k x k x ka
A

x k x k b ab x k

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (19)

where 1 2, , (), ()a b x k x k are integers in [0, 2 1]L − .

Ten-dimensional generalized CATCM is defined as:

1 1

2 2

3 3

10 10

(1) ()

(1) ()

(1) () (mod 2),

(1) ()

L

x k x k

x k x k

x k A x k

x k x k

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

M M

 (20)

5 Chaos Based Hash Function 147

where 12 13 1 10 23 24 2 10 9 10A A A A A A A A= L L L is a 10 10× matrix and

1312

12 12 12

13 13 13

9,10

9,10 9,10 9,10

1 0 0 01 0 01 0 0

1 0 0 0 1 0 0

0 1 00 0 1 0
0 1 0 0

0 0 1

0 0 10 0 0 1 0 0 0 1

aa

b a b

b a b
A

a

b a b

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ +

= ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

LL

M M M ML L

M M M ML
L

LM M M M M M M M

LM M M M M M M M

LL L

,

where 1 2 10, , (), () , ()ij ija b x k x k x kL are integers in[0, 2 1]L − .

The 128-bit secret key of the algorithm is divided to four 32-bit numbers
),,,(dcba . Two-dimensional CATCM is used to generate the parameters ijij ba ,

of ten-dimensional CATCM as follows:

1 1

2 2

(1) ()1
(mod 2),

(1) 1 ()
L

y k y kc

y k d cd y k

+⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎣ ⎦⎣ ⎦ ⎣ ⎦

 (21)

where 1 2(0) , (0)y a y b= = and 32L = .

2.3.1 The Algorithm Description

The parameters of the ten-dimensional CATCM are generated based on the algo-
rithm key, and the partial initial values are also set. The message is divided into
n -bit block, where)4(*32 −= mn =32*6=192. This is a block-wise algorithm and

the message is modulated into the chaotic phase space.

1) Append the bit pattern of “10” repetitively to the message until its length is in
a multiple of n. Separate the padded message into blocks, pBBB ,,, 21 L , each

with n -bit and np is the total length of the padded message.

2) During the processing of the 1st block 1B , set the initial values:

1 2 3 4(1) 01 23 45 67, (1) 89 , (1) 98, (1) 76 54 32 10x x ab cd ef x fe dc ba x= = = = ,

divide 1B into six sub-blocks and use them as the initial values of

5 6 7 8 9 10(1), (1), (1), (1), (1), (1)x x x x x x . Iterate (20) once to obtain

1 2 10(2), (2), , (2)x x xL .

3) During the processing of the 2nd block
2B , keep the values of

1 2 3 4(2), (2), (2), (2)x x x x , divide 2B into six sub-blocks and use them as the

initial values of
5 6 7 8 9 10(2), (2), (2), (2), (2), (2)x x x x x x . Iterate (20) once

to obtain
1 2 10(3), (3), , (3)x x xL .

148 D. Xiao, X. Liao, and S. Deng

4) Repeat the above process until the last block pB has been processed. Juxta-

pose 1 2 3 4(1), (1), (1), (1)x p x p x p x p+ + + + from left to right to get a 128-bit

final hash value.

2.3.2 The Performance Analysis and Improvement

According to the performance data provided in [9], this algorithm can generally
meet the performance requirement of hash function. But 1-bit change in message
leads to only 58.353-bit change in the 128-bit final hash value, which is far from
the ideal number 64-bit. Ref. [10] gave the detailed analysis of this point. The
modulus operation is used in the original algorithm, which may cause different
impact on the high and low bits in the binary sequence of message. As we know,
the modulus operation is insensitive to high bits of the binary sequence but sensi-
tive to low bits, so it may lead to collision. For two big numbers with different low
bits, its modulus results are different; while for two big numbers with different
high bits, its modulus results may be the same. Therefore, the collision resistance
of this algorithm is low.

In order to improve the collision resistance of this algorithm, the sensitivity of
hash value to different message bits should be made approximately even. Ref. [10]
proposed the following improved algorithm to overcome the above potential flaws.
For the convenience of comparison, only the different parts between the original
algorithm and the improved one are stressed as follows:

The first modification is in step 1): Append the bit pattern of “10” repetitively
with length l, such that (m + l) mod N = N − 64 (N is the length of hash value) and
then append 64-bit denoting the length of the original message.

The second modification is embedded in step 2) and 3): For each (1, ,)iB i p= L ,

after generating 1 2 10(), (), , (), 1,2, ,x i x i x i i p=L L , each elements of 32-bit length,

the following sub-steps are processed as the post-processing:

(a) For each 32-bit (), 1, 2, ,10jx i j = L , get the corresponding
' (), 1,2, ,10
j

x i j = L , which is the reverse binary format of ()jx i , and then compute
" '() () ()j j jx i x i x i= ⊕ .

(b) For each 32-bit " (), 1,2, ,10
j

x i j = L , the XOR operation between the last

16-bit binary format of " (), 1,2, ,10
j

x i j = L and the top 16-bit binary format

of " (), 1,2, ,10
j

x i j = L is processed as the top 16-bit binary format

of " (), 1,2, ,10
j

x i j = L and cascade the last 16-bit binary format

5 Chaos Based Hash Function 149

of " (), 1,2, ,10
j

x i j = L to generate the new " (), 1,2, ,10
j

x i j = L . Replace the current

values of (), 1, 2, ,10jx i j = L with " (), 1,2, ,10
j

x i j = L .

Simulation results have shown that the improved performance is significant.

2.4 Typical Algorithm Four

In [11], Yi combined chaotic iteration with DM(Davies-May) scheme and used
75-time iterations of a chaotic tent map as a block cipher to generate the hash value.
This algorithm divides message into blocks for further processing. The message
units are modulated into the chaotic iteration by influencing both the chaotic phase
space and parameter space.

In this algorithm, a chaotic tent map)(ixFα with parameter α is defined as

follows:

1
1

1
1

, 0
()

1
, 1

1

i
i

i
i

i

x
x

F x
x

x
α

α
α

α
α

−
−

−
−

⎧ ≤ ≤⎪⎪= ⎨ −⎪ ≤ ≤
⎪ −⎩

, (22)

where 0 1α< < .

By using ()iF xα , a map Gα is defined as follows:

() 1 1(), 0 1
:

,
A i i

i

F x x
G x

others

α
α β

− −< <⎧⎪= ⎨
⎪⎩

, (23)

where ()A α is an affine mapping from [0,1) to a sufficiently small interval around

0.5, and 0 1β< < is a constant. nG
α

 represents
n

G G Gα α α

6447448
o Lo .

2.4.1 Algorithm Description

1) First of all, a message M with arbitrary length is padded so that the size of the
message is a multiple of l . Then the padded message is broken into blocks

110 ,,, −rMMM L , each has l bits (where the last l -bit block rM represents

the length of M in bits).
Transform l -bit block)(21 iliii pppM L= (where ri ,,1,0 L=) into a pair of

binary fractions)~,(ii mm , where iliii pppm L21.0= and 1)1(.0~
iliili pppm L−= .

150 D. Xiao, X. Liao, and S. Deng

2) Let 0=i and input a pair of common initial binary fractions),(00 ts , where

lssss 002010 .0 L= , ltttt 002010 .0 L= . They need not to be kept secret.

3) Hash the quadruple binary fractions)~,,,(iiii mmts into a pair of binary

fractions),(11 ++ ii ts with a hash round function H . In order to describe the hash

round function, two symbols + and ⊗ are defined as

min(,)

()(mod1)

(max(,))x y

x y x y

x y G x y

+ = +
⊗ =

. (24)

In the hash round function H , 0()nG x
α

 is used as a block cipher， and in 0()nG xα ,

0 ,i i i ix s m t mα= + = + % . Let

0() ()
i i

n n
i i it m

z G x G s m
α +

= = +
%

 (25)

the hash round function H can be decomposed into two hash round functions

1 2,H H as:

1 1

2 1

:

: ()

i i i

i i i i

H t s z

H s t m z

+

+

= +

= ⊗ +%
. (26)

4） Let 1+= ii . If ri ≤ ， then go to step 3).
5） Output 2 l -bit hash value)(2121 ll bbbaaah LL= , according to the pair of

binary fractions).0,.0(211211 LLLL lrlr bbbtaaas == ++ which are the

output of the last iteration.

2.4.2 Performance Analysis

1) Statistical analysis of 0()nG x
α

0()nG x
α

 plays a critical role in the hash round function. It is evolved from the

chaotic tent map and its features are determined by two parameters ,nα .

(a) Uniform distribution
It is proved in [11]: For any 0 1α≤ < , the distribution of 1 0()x G xα= for ran-

domly chosen 00 1x< < is the standard uniform distribution (0,1)U . It is also

proved in [11]: For any 0 1α≤ < and any n , the distribution of 0()n
nx G x

α
= for

randomly chosen 00 1x< < is the standard uniform distribution (0,1)U .

5 Chaos Based Hash Function 151

(b) The determination of the minimum number of iterations
Ref. [11] has proved that the distribution of 0()nG xα α+Δ for even tiny αΔ is inde-

pendent of the distribution of 0()nG xα if the number of iterations 73n ≥ . There-

fore, 75n = is chosen as the the minimum number of iterations in this hash
algorithm.

2) Security analysis

This hash algorithm essentially belongs to the iterated hash function. Any attack on
the hash round function implies an attack of the same type on the iterated hash
function with the same computation complexity. In this algorithm,)(0xG n

α is

thought as a “block cipher,” and two sub-round functions
1 2,H H are both similar

to the well-known DM scheme. Therefore,
1 2,H H are both believed to have

almost the same computational complexities for the attack as DM scheme. In other
words, this hash function has at least the same computational security against the
attack as DM scheme.

2.5 Typical Algorithm Five

We proposed a simple algorithm for one-way Hash function construction based on
the chaotic map with changeable-parameter in [12]. A piecewise linear chaotic map
with changeable-parameter P is chosen, and the message is modulated into the
chaotic iteration by affecting the chaotic parameter space. The initial chaotic value
is set and the processing unit is 8-bit character. In this algorithm, cipher block
chaining mode (CBC) is introduced to ensure that the parameter P in each iteration
is dynamically determined by both the last-time iteration value and the corres-
ponding message bit in different positions. The final hash value is derived by means
of the linear transform on the iteration sequence. Theoretical analysis and computer
simulation indicate that this algorithm can meet the performance requirements of
hash function in an efficient and flexible manner.

2.5.1 Algorithm Description

One dimension piecewise linear chaotic system is defined as:

() / , 0 ()

(()) / (0.5), () 0.5
(1) (())

(1 ()) / (0.5), 0.5 () 1

(1 ()) / , 1 () 1,

P

X t p X t p

X t P P P X t
X t F X t

X t P P X t P

X t P P X t

≤ <⎧
⎪ − − ≤ <⎪+ = = ⎨ − − − ≤ < −⎪
⎪ − − ≤ ≤⎩

 (27)

152 D. Xiao, X. Liao, and S. Deng

where X∈ ， ，[0 1] P∈ (0，0.5) (see Fig.2). By [13],)}({ tX is ergodic in

[0, 1], and the auto-correlation function of {X(t)} is δ -like. The Frobenius-
Perron operator of invariant density f*(x) in the system is

)1())5.0()1(5.0()5.0())5.0(()5.0()())((xppfpxfppxpfpxppfxfPr −+−∗−+−+−+−+= ∗∗∗∗∗ .

Since f*(x)=1,)}({ tX is uniformly distributed in [0, 1]. These inherent merits lay

the theoretical foundation for hash function construction.

Fig. 2 A piecewise linear chaotic map

Secretly chooses 0 0[0, 1], (0, 1)X H∈ ∈ as the keys. CBC mode is introduced

into the algorithm to dynamically change the parameter P during iteration on the
joint foundation of the last-time iteration value and the corresponding different
message bit. The 3-unit iterations, 1 ~ , (1) ~ 2 , (2 1) ~ 3st th th th th thN N N N N+ + ,

ensure that each bit of the final hash value will be related to all the bits of message.
The detailed algorithm can be described as follows:

1) Translate the pending message to the corresponding ASCII numbers, and then
map these ASCII numbers into an array C by means of linear transform whose
element is a number which belongs to [0，1] and length is the character number N
of message.

2） The iteration process is as follows:

1st: 1 1 0 1 1 0() / 4 (0,0.5), () (0,1);PP C H X F X= + ∈ = ∈

2nd~Nth: 1 1() / 4 (0,0.5), () (0,1);i i i i Pi iP C X X F X− −= + ∈ = ∈

(N+1)th:
11 1 1() / 4 (0,0.5), () (0,1);

NN N N N P iP C X X F X
++ + −= + ∈ = ∈

5 Chaos Based Hash Function 153

(N+2)th~2Nth: (2 1) 1 1() / 4 (0,0.5), () (0,1);i N i i i Pi iP C X X F X− + − −= + ∈ = ∈

(2N+1)th:
2 12 1 1 0 2 1 1() / 4 (0,0.5), () (0,1);

NN N p iP C H X F X
++ + −= + ∈ = ∈

(2N+2)th~3Nth: (2) 1 1() / 4 (0,0.5), () (0,1).i i N i i pi iP C X X F X− − −= + ∈ = ∈

Note that, if a certain iteration value
iX is equal to 0 or 1, then an extra iteration is

carried out. The property of chaos can ensure that this kind of extra iteration time is
very few.

3) Transform
NNN XXX 32 ,, to the corresponding binary format, extract 40, 40,

48 bits after the decimal point respectively, and combine them to get a 128-bit final
Hash value.

2.5.2 Performance Analysis

For different chaotic hash algorithms, their performance analysis methods are sim-
ilar to each other. We take this algorithm as a sample to demonstrate the detailed
hash performance analysis. Due to page limitation, for other hash algorithms, we
only emphasize its unique performance and omit the rest performances.

1) Hash results of messages

Hash simulation experiments have been done under the following different 6
conditions:

Condition 1: The original message is “As a ubiquitous phenomenon in nature, chaos
is a kind of deterministic random-like process generated by nonlinear dynamic
systems. The properties of chaotic cryptography includes: sensitivity to tiny
changes in initial conditions and parameters, random-like behavior, unstable pe-
riodic orbits with long periods and desired diffusion and confusion properties, etc.
Furthermore, benefiting from the deterministic property, the chaotic system is easy
to be simulated on the computer. Unique merits of chaos bring much promise of
application in the information security field.”.

Condition 2: Change the first character A in the original message into B.

Condition 3: Change the word unstable in the original message into anstable.

Condition 4: Change the full stop at the end of the original message into a comma.

Condition 5: Add a blank space to the end of the original message.

Condition 6: Change the secret key X0=0.232323 to X0=0.232325.

The corresponding hash values in hexadecimal format are:

Condition 1: 64AF14F9F6A10F6218247D71E4B73C2C

Condition 2: B65812A2AF70B57C38901D9C8A88C62D

154 D. Xiao, X. Liao, and S. Deng

Condition 3: E52461DF5D1D93313040D7778F269B6B

Condition 4: 6575ABF7BE7527B75E6F95E55F1A40AE

Condition 5: B641F329EB27D9EE75184D8CA08C0BB0

Condition 6: 8AE38465D60B268062F512C9D58EB170.

The graphical display of binary sequences is shown in Fig.3.

Fig. 3 Hash values under different conditions

The simulation result indicates that the one-way property of the proposed algo-
rithm is so perfect that any difference of the message or key will cause huge changes
in the final Hash value.

2) Statistic analysis of diffusion and confusion

In order to hide message redundancy, Shannon introduced diffusion and confusion.
Diffusion means spreading out of the influence of a single plaintext bit over many
ciphertext bits so as to hide the statistical structure of the plaintext. Confusion refers
to the use of transformations that complicate dependence of the statistics of ci-
phertext on the statistics of plaintext. They are two general principles to guide the
design of a practical cipher, including Hash function. For the Hash value in binary
format, each bit is only 1 or 0. So the ideal diffusion effect should be that any tiny
changes in initial conditions lead to the 50% changing probability of each bit.

We have performed the following diffusion and confusion test: A paragraph of
message is randomly chosen and hash value is generated; then a bit in the message
is randomly selected and toggled and a new hash value is generated. Two hash
values are compared and the number of changed bit is counted as iB . This kind of

5 Chaos Based Hash Function 155

Fig. 4 Distribution of changed bit number

test is performed N times, and the corresponding distribution of changed bit
number is shown as Fig.4, where N =2048.

Obviously, the changed bit number corresponding to 1 bit changed message
concentrates around the ideal changed bit number-64 bit. It indicates that the algo-
rithm has very strong capability for diffusion and confusion. Usually, four statistics
are defined as follows:

Mean changed bit number:

1

1
,

N

i
i

B B
N =

= ∑ (28)

Mean changed probability:

(/128) 100%,P B= × (29)

Mean changed bit number of B :

2

1

1
() ,

1

N

i
i

B B B
N =

Δ = −
− ∑ (30)

Mean changed bit number of P :

2

1

1
(/128) 100%.

1

N

i
i

P B P
N =

Δ = − ×
− ∑ (31)

156 D. Xiao, X. Liao, and S. Deng

Through the tests with 2048,1024,512,256=N , respectively, the correspond-

ing data are listed in Table 2.

Table 2 Number of changed bit Bi

 N=256 N=512 N=1024 N=2048 Mean

B 64.4414 63.8008 63.8398 63.8501 63.9830

P/% 50.34 49.84 49.87 49.88 49.9825

BΔ 5.5218 5.7081 5.7078 5.7898 5.6819

PΔ /% 4.31 4.46 4.46 4.52 4.4375

Based on the analysis of data in Table 2, we can draw the conclusion: the mean

changed bit number B and the mean changed probability P are both very close to
the ideal value 64 bit and 50%. While BΔ and PΔ are very little, which indicates
the capability for diffusion and confusion is very stable.

3) Analysis of collision resistance and birthday attacks resistance

Collision resistance and birthday attacks are similar in idea. They are essentially a
probability problem that two random input data xx ≠′ are found such that they are
hashed to the same output. In our proposed algorithm, CBC mode is introduced to
ensure that the parameter P in each-time iteration is decided by both the last-time
iteration value and the corresponding message bit in different positions. This in-
herent structure expedites the avalanche effect, which will ensure that each bit of
the final hash value will be related to all the bits of message, and even a single bit
change in message or key will be diffused and result in great changes in the final
hash value.

We have performed the following test to do quantitative analysis on Collision
resistance [14]: first, the hash value for a paragraph of message randomly chosen is
generated and stored in ASCII format. Then a bit in the message is selected ran-
domly and toggled. A new hash value is then generated and stored in ASCII format.
Two hash values are compared and the number of ASCII character with the same
value at the same location in the hash value is counted. Moreover, the absolute
difference of two hash values is calculated using the formula:

|)()(| '

1
i

etetd
N

i
i −= ∑

=

, where ie and '
ie be the ith ASCII character of the original

and the new Hash value, respectively, and the function t(*) converts the entries to
their equivalent decimal values. This kind of collision test is performed 2048 times,
with the secret key 858485.0,232323.0 00 == Hx . The maximum, mean, minimum

values of d and Mean/character are listed in Table 3. A plot of the

5 Chaos Based Hash Function 157

Table 3 Absolute differences of two Hash values

distribution of the number of ASCII characters with the same value at the same
location in the Hash value is given in Fig.5. Notice that the maximum number of
equal character is only 3 and the collision is very low.

Fig. 5 Distribution of the number of ASCII characters with the same value at the same lo-
cation in the Hash value

4) Security of Key

In the proposed algorithm,
0 0[0, 1], (0, 1)X H∈ ∈ of the piecewise linear chaotic

map are chosen as the secret keys. The key space is huge enough to resist any ex-
haustive key search. Moreover, for the sensitivity to tiny changes in initial condi-
tions and parameters, it is absolutely impossible to inversely deduce the value of

00 , HX from the iteration values.

5) Analysis of Speed

First, the proposed algorithm is proportional to the length of the original message,
and no padding is required, while most of the other known algorithms always need

Absolute difference d Maximum Minimum Mean Mean/character

File1 2221 696 1506 94.125

158 D. Xiao, X. Liao, and S. Deng

to do padding for the length requirement. When the original message is very short,
the other algorithms still have to do lots of computation while the proposed algo-
rithm only need a little.

Second, the proposed algorithm has the parellel property. Three iteration values

NNN XXX 32 ,, generate 40, 40, 48 bits of the final Hash value, respectively, which

corresponds to the parallel computation of 5, 5, 6 Bytes.
Furthermore, one dimension piecewise linear chaotic map is chosen in our al-

gorithm. On the one hand, its dynamical property is enough for the algorithm se-
curity; on the other hand, its structure is so simple that only one multiplication
(division) and several additions (subtractions) are operated in each-iteration, which
reduces the algorithm complexity and guarantees the high efficiency.

Generally, the numbers of the required multiplicative operations for each ASCII
character (8-bit) message during the hash process are computed for speed’s com-
parison among different algorithms. Since each multiplicative operation consumes
much more time than each additive operation, this kind of comparison is objective,
in spite of different implementing platforms. The required multiplicative operation
for each character in this algorithm is six times. Compared with other similar al-
gorithms, it is the fastest one.

6) Flexibility

Through simply modifying the way to process
NNN XXX 32 ,, , the length of the

final Hash value will be easily changed. Compared with the conventional hash
algorithm such as MD5 with fixed 128-bit length, the proposed algorithm can adapt
to the practical demand better.

3 Complex Map-Based Hash Function

3.1 Typical Algorithm One (Using Hyper-Chaotic Map)

3.1.1 Algorithm Description

In [15], based on the basic idea of the algorithm in Section 2.2, by replacing Henon
map in the original algorithm with the hyper-chaotic map, a one-way hash function
based on two-dimensional hyper-chaotic map is proposed. This is still a charac-
ter-wise algorithm whose processing unit includes 8 bits, and thus no any extra
padding is required. The message units are modulated into the chaotic phase space.

1） Translate the pending message to the corresponding ASCII numbers, and then
map these ASCII numbers into an array S by means of linear transform whose
element is a number which belongs to [-1, 1] and length is the character number N of
message.

5 Chaos Based Hash Function 159

2） The first two items 21 , SS are used to generate the chaotic initial values:

1 2
1 2

2 2
0.8, 0.8.

255 255

S S
a a

× ×
= − = − (32)

3） Start iteration: set the iteration time to be

([/]),r R N R K= × + (33)

where ,R K are both integers larger than 0.

(a) j from 3 to r , compute (Using the extended chaotic model)

2
2 1((1 0.3() 2917) mod 2) 1,j j ja a c a− −= + − + − (34)

If j N≤ , set 2 / 255 0.8,jc S= −

If j N> , set 3.jc a −=

(b) By means of linear transform, 1,r ra a− are transformed to be
' '

1 11.045 0.55, 1.245 0.615r r r ra a a a− −= − = + ； （ Using the hyper-chaotic map）

Set ' '
1 1 2,r rx a x a−= = , m from 2 to 3R , compute

2
1

1

1.66 1.3

1.1 0.3
m m m

m m m

x y y

y x y

+

+

= −

= − +
. (35)

4） Transform 2 3 2 3, , , , ,R R R R R Rx x x y y y to the corresponding binary format,

extract 40, 40, 48, 40, 40, 48 bits after the decimal point, respectively. Then by
extracting 15th-34th bits from each 40 bits and extractihg 13th-36th bits from each 48
bits, 20, 20, 24, 20, 20, 24 bits are obtained and juxtaposed from left to right to get a
128-bit final hash value.

3.1.2 Security Analysis

By carefully comparing the original algorithm in Section 2.2 and the above one, it is
easy to find out that their essential ideas are the same. The difference is that the
hyper-chaotic map is introduced into step 3) (b). Naturally, this algorithm is still
weak in collision resistance. The cause of this drawback is similar to that of the
original one-“when we modulate the message unit into the chaotic phase space (as
an initial value) and start iteration, a chaotic orbit will occur. However, if we choose
other orbit values from the above chaotic orbit as the new initial iteration value and
start iteration, the same orbit will occur definitely.” The following is a collision
instance [7]:

The only thing that we need to do is to replace the above (6) and (7) with the
following two formulas:

160 D. Xiao, X. Liao, and S. Deng

2
() 0.8,

255

s
f s

×
= − (36)

2
1 2 2 1(, ,) ((1 0.3() 2917) mod 2) 1,j j j j ja g a a c a c a− − − −= = + − + − (37)

Then the subsequent analysis and conclusion are the same.

3.2 Typical Algorithm Two (By Influencing the Parameter of
Spatiotemporal Chaos)

Recently, spatiotemporal chaos has been attracting more and more interests from
researchers. Spatiotemporal chaos has its advantages in cryptography. Spatiotem-
poral chaotic system is a high-dimensional chaotic system, which has a number of
positive Lyapunov exponents that guarantee the complex dynamics of system.
Compared with a single chaotic system, it is more difficult or even impossible to
predict the time series of spatiotemporal chaos. Besides, the lattices are coupled
each other. It is more difficult to deduce the last lattice orbit value based on the
known current orbit values, namely its one-way property is stronger.

In [16], a hash function is constructed by using the plaintext to affect the para-
meter of spatiotemporal chaos. The plaintext is partitioned into blocks and then
processed block-wisely.

The chaotic system and its operations are as follows:

1(1) (1) [(1)] [(), (1)]n n ny f y f y N aε ε+ = − + (38)

n = 0, 1, ..., P-1.

1

1
() (1) [()] { [()] [(), ()]}

2n n n ny i f y i f y i f y N a iε ε+ = − + + (39)

i = 2, 3, ... , N-1.

1

1
1

1
' () (1) [()] [(), ()]

1

N

n n n
i

y N f y N f y i b i
N

ε ε
−

+
=

= − +
− ∑ (40)

' 32
1 1() { [()]} / 2n ny N S I y N+ += ⋅ (41)

() 4 (1), (,) (3.75 / 4)* (1), [0,1]f y y y f y a a y y a= − = + − ∈ , (42)

5 Chaos Based Hash Function 161

where f[y(N), a(i)] denotes the coupling from the Nth map to the ith map, while
1

1
[(), ()]

N

ni
f y i b i

−

=∑ represents the average coupling to the Nth map from all other

maps.
The operation I in Eq. (41) represents a transformation from a real number to a

32-bit integer one:

50 32(') 2 'mod 2I y y= . (43)

The operation S denotes a transformation from a 32-bit integer to another 32-bit
one. This transformation can be divided to three steps as shown in Fig. 6:

1） The integer I(y') is represented in a binary form

32
' 32 '

1

' 2 , {0,1}i
i i

i

Y Y Y−

=

= ∈∑ , (44)

which produces a binary sequence

' ' '
1 2 32' (, ,...,)Y Y Y Y= .

2）The 32-bit binary sequence Y ′ is divided to four blocks, each has 8 bits:

)]4(),3(),2(),1([YYYYY ′′′′=′ ,

where

' ' '
1 2 8'(1) (, ,...,)Y Y Y Y= , ' ' '

9 10 16'(2) (, ,...,)Y Y Y Y= , ' ' '
17 18 24'(3) (, ,...,)Y Y Y Y= ,

' ' '
25 26 32'(4) (, ,...,)Y Y Y Y= .

3）These four blocks are transformed to four new blocks (each has 8 bits) as

(1) '(1) '(2) '(3) '(4)Y Y Y Y Y= ⊕ ⊕ ⊕ , () '(), 2,3,4Y i Y i i= = . (45)

The four blocks of (), 1, 2,3,4Y i i = are combined together to form again a

32-bit integer.

3.2.1 Algorithm Description

1） Choose the initial variables for lattices. One can choose any arbitrary y0(1),
y0(2), ... , y0(N) within (0, 1).

2） The message m is padded to t blocks, each has)1(64 −= NL bits, and the

block number t is equal to the message length divided by L . In the following, we

162 D. Xiao, X. Liao, and S. Deng

Fig. 6 S Operation

will consider operations for a single arbitrary block X of the L -bit: X = (X1, X2, ...,
X64(N-1)). The L -bit message block X is divided to 2(N−1) smaller 32-bit blocks:
X＝[X(1), X(2), ..., X(2N-2)], where X(i) = (X32(i-1)+1, X32(i-1)+2, ..., X32i), i=1,2, ...,
2N-2. Each X(i) has the corresponding integer value:

32
32

32(1)
1

() 2 j
i j

j

X i X −
− +

=

=∑ . (46)

3） X(i) are finally transformed to real parameters a(i), b(i) in (39) and (40) as:

32() () / 2a i X i= , 32() (1) / 2b i X N i= − + , i = 1,2, ..., N-1. (47)

4） We perform P iterations of Eq. (38)-(42) with the parameter set a(i) and b(i),
and obtain the final state yp(i)， i=1, 2, ..., N. If all the blocks of message m have not
been processed, then set y0(i) = yp(i)， i=1, 2, ..., N, and input the next block and go
to step 3).

5） The hash value is produced from the final state yp(i) of the t th block as

32
32

32(1)
1

2 [()]j
i j p

j

h S I y i−
− +

=

= ⋅∑ . (48)

Every state variable outputs 32 bits, and the whole hash value has the length of
32N bits.

The above hash function is illustrated in Fig. 7.

5 Chaos Based Hash Function 163

(a)

(b)

Fig. 7 Chaos-based hash function (a) Dynamical iteration (b) Hash value output

3.2.2 Security Analysis

In this algorithm, the plaintext block is transformed to be the parameter of spati-
otemporal chaos. Through the iteration of the chaotic system and the coupling
among the lattices, the influence of plaintext on the system phase is strengthened so
that the generated hash value has close relation to the plaintext. Mapping the
plaintext to the parameter of spatiotemporal chaos or using the plaintext to affect the
parameter of spatiotemporal chaos is a typical scheme to construct a hash function.
This scheme can construct the sensitivity of hash value to the message. It has strong
security. Since the plaintext affects the chaotic state indirectly through the chaotic
parameter, the difficulty to find collision is increased. As shown in the performance
simulation, the above algorithm enjoys good performance and security property.
However, there are also some drawbacks as follows:

1) This algorithm is not suitable for hardware implementation.
2) The choosing principle of some parameter is not clear. By optimizing the

parameter range, it is promising to improve its performance and security.

164 D. Xiao, X. Liao, and S. Deng

3.3 Typical Algorithm Three (By Adjusting the State of
Spatiotemporal Chaos)

In [17], two ideas are combined to construct hash function based on spatiotemporal
chaos. The first idea is using plaintext to control or adjust the state of spatiotemporal
chaos, iterating the chaotic system and extracting the final orbit values to generate
hash value; the second idea is adopting the structure similar to the traditional hash
function, as shown in Fig. 1. The algorithm structure of the proposed hash function
based on the two-dimensional coupled map lattices (2D CML) is shown in Fig.8.
Several-time iterations of 2D CML is used as the compression function; the original
plaintext is divided into blocks G1, G2, ...,GR, and they are transformed to be the
state of some lattices. In this way, message is modulated into 2D CML. Hash value
is obtained by extracting the final state of the lattices.

Fig. 8 The structure of Hash function based on the 2D CML

3.3.1 Analysis and Parameter Set of the 2D CML Mode

A general nearest-neighbor 2D CML can be described as

, , 1, 1, , 1 , 1
1 (1) () [() () () ()]

4
i j i j i j i j i j i j
n n n n n nx f x f x f x f x f x

εε + − + −
+ = − + + + + , (49)

where n=1, 2, … is the time index or state index; i=1,2, … , M is the lattice row
index; j=1, 2, … , N is the lattice column index; f is a local chaotic map
and (0,1)ε ∈ is a coupling constant. To reduce the computational complexity, we

use the following model to construct Hash function:

, , 1, , 1
1 (1) () [() ()]

2
i j i j i j i j
n n n nx f x f x f x

εε + +
+ = − + + . (50)

The periodic boundary conditions, , ,M i j i j
n nx x+ = and , ,i N j i j

n nx x+ = , are used in 2D

CML. Here the Logistic map is taken as the local map, given as () (1)f x x xμ= − ,

where (3.57,4)μ ∈ is a constant.

It is well known that the system is chaotic when the largest Lyapunov exponent
(LLE) is larger than 0. And the larger the LLE is, the more chaotic the system is.

5 Chaos Based Hash Function 165

Since μ,ε, M, N may affect the LLE of system, we calculate it with one parameter
varied and other three parameters fixed, and observe the influence of variable pa-
rameter on the LLE [18]. According to the result of numerical calculation, some
conclusions can be drawn below:

1) The LLE increases as the parameterμincreases;
2) The parameterεhas slightly influence on LLE. And whenμ= 4, the LLE

firstly decreases as the parameterεincreases, then keeps almost the same, finally
increases slightly.

3) When M≥4 and N≥8 , there is almost no effect on the LLE as the size of 2D
CML increases.

Based on the conclusion drawn above, we takeμ= 4,ε= 0.05, M = 4, N = 8 in
Eq.(50), that is,

, , , 1, 1, , 1 , 1
1 3.8 (1) 0.1[(1) (1)]i j i j i j i j i j i j i j

n n n n n n nx x x x x x x+ + + +
+ = − + − + − . (51)

3.3.2 Algorithm Description and Determining the Minimum Iteration
Number

INPUT: bitstring y of arbitrary bitlength;

OUTPUT: 128-bit Hash value.

1) Definition of constants. Define sixteen 8-bit initial values (IVs) which are ex-
pressed in hexadecimal format, that is : IV[1...16] =
[01,23,45,67,89,AB,CD,EF,FE,DC,BA,98,76,54,32,10]. And set

1,
1 ([] 0.8) / 256jx IV j= + , 3,

1 ([8] 0.8) / 256jx IV j= + + , (52)

where j = 1, 2 , ... , 8.

2) Preprocessing. Pad y such that its bit length is a multiple of 128. Here we append
some 0-bits to the last block if necessary. Then translate the padded y to the cor-
responding ASCII numbers and map these ASCII numbers into array C whose
element is a number∈ (0,1). The map is achieved by linear transform:

[] ([] 0.8) / 256C i A i= + , (53)

where A[i] is the ith ASCII number of y and C[i] is the ith element of array C. Di-
vide the array C into R groups, each group consisting of l elements(here l = 16):

1 2

[1] [2],..., [], [1],..., [2],..., [(1) 1],..., [].

RG G G

C C C C l C l C l C R l C Rl= + − +14424431442443 14444244443

(54)

For the convenience of description, we define Gm = Gm[1] Gm[2]... Gm[l] and
Gm[i]=C[(m-1)*l+i] , m = 1, 2, ... , R .

3) Processing. Input Gm, m=1,2,..., R into 2D CML and begin iteration. The detailed
procedure is shown in Fig. 9.

166 D. Xiao, X. Liao, and S. Deng

n = 1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

Step 1: G1

n = 2

x1,1 x1,2 ... x1,8

x2,1 x2,2 ... x2,8

x3,1 x3,2 ... x3,8

x4,1 x4,2 ... x4,8

...

n = 17

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

n = 17

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

G2 Step 2:

n = 18

x1,1 x1,2 ... x1,8

x2,1 x2,2 ... x2,8

x3,1 x3,2 ... x3,8

x4,1 x4,2 ... x4,8

...

n = 33

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

...

n = 16(a-1)+1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

Ga Step a:

n = 16(a-1)+2

x1,1 x1,2 ... x1,8

x2,1 x2,2 ... x2,8

x3,1 x3,2 ... x3,8

x4,1 x4,2 ... x4,8

...

n = 16a+1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

n = 16(R-1)+1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

GR Step R:

n = 16(R-1)+2

x1,1 x1,2 ... x1,8

x2,1 x2,2 ... x2,8

x3,1 x3,2 ... x3,8

x4,1 x4,2 ... x4,8

...

n = 16R+1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

...

...

n = 16(b-1)+1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

G2R-b+1

n = 16(b-1)+2

x1,1 x1,2 ... x1,8

x2,1 x2,2 ... x2,8

x3,1 x3,2 ... x3,8

x4,1 x4,2 ... x4,8

...

n = 16b+1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

G1

x1,1 x1,2 ... x1,8

x2,1 x2,2 ... x2,8

x3,1 x3,2 ... x3,8

x4,1 x4,2 ... x4,8

...

...

Step b:

n = 32R+1

x1,1 x1,2 ... x1,8
x2,1 x2,2 ... x2,8
x3,1 x3,2 ... x3,8
x4,1 x4,2 ... x4,8

Step 2R:

n = 16(2R-1)+1 n = 16(2R-1)+2

iterates the 2D CML for 16 times and changes the state from n to n+16

Fig. 9 The details from step 1 to step 2R

5 Chaos Based Hash Function 167

Step 1 ~ Step R : Define],1[Ra ∈ as step index. In step a , the lattice values in the

second and fourth rows are modified according to formula (55):

2,
(1) 1 []j

K a ax G j− + = , 4,
(1) 1 [8]j

K a ax G j− + = + (j =1, 2, ... , 8). (55)

Then according to Eq.(51), iterate the 2D CML for K times and change the sys-
tem from state K(a-1)+1 to state Ka+1.

Step (R+1) ~ Step 2R: Define [1,2]b R R∈ + as step index. In step b, the lattice
values in the second and fourth rows are modified according to formula (56):

2,
(1) 1 2 1[]j

K b R bx G j− + − += , 4,
(1) 1 2 1[8]j

K b R bx G j− + − += + (j = 1, 2, ... , 8). (56)

Then according to Eq. (51), iterate the 2D CML for K times and change the
system from state K(b-1)+1 to state Kb+1. In the end, the final state of 2D CML is
2KR+1.

4)Transform the final lattice values in the first and third rows of 2D CML, that

is ,
2 1
i j

KRx + (i = 1, 3; j=1,2,...,8), to the corresponding binary format and extract 8 bits

(from 9th to 16th bit after decimal point) from each x . Finally, juxtapose these bits
from left to right to get a 128-bit hash value.

Let us discuss how to determine the minimum iteration number K in step 3)
through 2χ test. Let m = 11, S=1000, αΔ = 1/256, the result of 2χ test is shown in

Fig. 10.

Fig. 10 Result of χ2 test

168 D. Xiao, X. Liao, and S. Deng

If the 2χ values are smaller than the upper 5% critical point of 2χ of which the

number of the degrees of freedom is 2(1)m − , the independence is not rejected at

level of significance 0.05. From Fig. 10, we can see that the independence is not
rejected when K>43 because the upper 5% critical point of 2

100χ is 124.3. Leaving

an assurance margin, we choose K= 45 as the number of iterations.

4 Composite Map-Based Hash Function

In [19], a composite discrete chaotic system is designed and a keyed hash function
is proposed. In this algorithm, the initial value of the composite discrete chaotic
system is set and the plaintext is divided into blocks. During the iteration, the
chaotic maps are determined by the plaintext block (The message units are actually
modulated into the chaotic parameter space).

First, two functions are defined within [0，1]:

0 () | 2 1 |f x x= − , (57)

1() 1 | 2 1|.f x x= − − (58)

Two iteration systems 1 ()(0,1)n r nx f x r+ = = and the composite discrete chaotic

system 0 1((), (),)f x f x R can be obtained. Ref. [19] has proven their properties:

1） 1 ()(0,1)n r nx f x r+ = = is a chaotic iteration system.

2） Their invariant density functions are 0 () 2x xρ = and 1() 2 2x xρ = − ,

respectively.
3） They are complementary.

 4） The auto-correlation functions of two iteration systems

1 ()(0,1)n r nx f x r+ = = can both satisfy
2

() () (0)
3

n
fr frC n C= .

5） The binary sequence R exists, which can ensure the auto-correlation
functions of the composite discrete chaotic system 0 1((), (),)f x f x R satisfies

() (0)C n δ= .

4.1 Algorithm Description

The detailed hash function algorithm based on the composite discrete chaotic sys-
tem)),(),((10 Rxfxf is as follows:

5 Chaos Based Hash Function 169

Without loss of generality, let the plaintext M be binary sequence, 128N ≥ be
the bit-length of hash value. First of all, the original message M is padded such
that its length is a multiple of N . Then after padding, M is constituted by blocks
with N bits, 1 2(, , ,)sM M M M= L , and each block is indicated as

1 2 N
i i i iM m m m= L . The initial vector 10 {0}NH = is set. The basic idea of the algo-

rithm is: The chosen secret key 0x is set as the initial value of the composite dis-

crete chaotic system. Let 0 1H M⊕ be the composite sequence. By iterating the

composite chaotic system, the orbit 1{ }N
iy can be obtained and then transformed

into a binary sequence which is the hash value 1H of 1M . Similarly, 1 Nx y= is set

as the initial value and let 1 2H M⊕ be the composite sequence. Then the hash

value 2H can be obtained. By repeating the above procedure until the last plaintext

block, the hash value sH of M can be obtained. As shown in Fig. 11, the algo-

rithm structure can be described as follows:

1 1(,) (,), 1,2, , ;i i i i iH x F x H M i s− −= ⊕ = L

() sH M H= ,
(59)

Fig. 11 The hash function based on the composite discrete chaotic system

where),(∗∗F represents the procedure to obtain the hash value of a plaintext

block, which is essentially the iteration procedure of the composite discrete chaotic
system.

During the iteration, the orbit N
iy 1}{ is transformed to a binary sequence by

computing ⎣ ⎦ 2mod2)(xxT r
r = , where r is a natural number. F is actually a boo-

lean function based on the composite chaotic system, which can be described fur-
ther as follows:

1） From 1i = to i s= :

a） 0 1.iy x −=

170 D. Xiao, X. Liao, and S. Deng

b） 1 1, (), (), 1,2, , .j j j
i i j q j i r jq H m y f y H T y j N− −= ⊕ = = = L

c） 0 .Ny y=

d） 1, (), (), 1,2, , .j j
i j q j i r jq H y f y H T y j N−= = = = L

2） 1 2 , .N
i i i i i NH H H H x y= =L

4.2 The Performance Analysis

Ref. [19] has carried out the performance analysis. Because of the sensitivity and
randomicity of the iteration process, there is a very complicated nonlinear connec-
tion between the hash value and the corresponding message, and then every bit of
the hash value is related to all the bits of the message M . Any tiny changes in the
message will lead to huge changes in the hash value. Besides, if the secret key has
tiny changes, the difference is strengthened and diffused by the composite chaotic
system to a totally different hash value. What’s more, Ref. [19] has also proven that

)(MH distributes uniformly in)()2(NGF .

5 Chaotic Neural Network-Based Hash Function

Compared with the simple chaotic map, Chaotic Neural Network (CNN) has
stronger spatiotemporal complexity. Its confusion and diffusion properties have
been used to design encryption algorithms, such as the stream cipher and the block
cipher. Furthermore, the structure with multi-input and single-output leads to good
compression. At the same time, given the inner structure parameters, it is easy to
compute the output when the input is given; while for the sensitivity to tiny changes
in the initial conditions and parameters of chaotic map, it is very hard to find the
input when the output is given. The inherent merits of chaotic neural network make
them suitable for hash function design.

5.1 Typical Algorithm One

In [20], a hash function is proposed based on a two layer neural network whose
input layer and output layer have eight neurons and four neurons, respectively. The
message is divided into blocks, and the message is modulated into the chaotic phase
space.

5.1.1 Algorithm Description

The original message M is padded such that its length is a multiple of 256. Then
after padding, M is divided into blocks with 256 bits, 110 ,,, −nMMM L . Each

5 Chaos Based Hash Function 171

block will be processed by CNN, respectively. The output iC of the i th CNN

can be used as the secret key K of the 1+i th Block Hash function to generate the
weight, the bias and the transfer function parameter of this CNN. As shown in Fig.
12, the whole structure of the algorithm based on CBC (Cipher Block Chaining)
mode can be described in (60).

1

(,), 1,2, , 1

() (),
i i i

n

C CNN K M i n

H M G C −

= = −⎧
⎨ =⎩

L
 (60)

where the function G juxtaposes four 32-bit fractions of 1−nC from left to right to

get a 128-bit hash value.

F

Fig. 12 CBC Hash function mode

The chaotic neural network structure of the Block Hash function is illustrated in
Fig. 13. It is composed of two layers: eight-neuron input layer and four-neuron
output layer. The piecewise linear chaotic map （ ） （PWLCM 61） is utilized as the
transfer function of each layer.

Θ

Fig. 13 The chaotic neural network structure of the Block Hash function

172 D. Xiao, X. Liao, and S. Deng

/ , 0

() / (0.5), 0.5
(,)

(1) / (0.5), 0.5 1

(1) / , 1 1,

x Q x Q

x Q Q Q x
f x Q

Q x Q x Q

x Q Q x

≤ <⎧
⎪ − − ≤ <⎪= ⎨ − − − ≤ < −⎪
⎪ − − ≤ ≤⎩

 (61)

The detailed algorithm is as follows:

1） The 256-bit block iM is re-divided into 32 units, each with 8-bit. Then four

8-bit units constitute a group. There are totally eight groups, namely,

0,0 0,3 1,0 1,3 7,0, 7,3, , , , , , , ,P P P P P PL L L L .

2） According to the weight 8 16 24 32
1 [1/ 2 1/ 2 1/ 2 1/ 2]W = , four 8-bit units

,0 ,1 ,2 ,3, , , 0,1, ,7i i i iP P P P i = L in each group can be transformed into the corres-

ponding 32-bit fraction , 0,1, ,7iP i = L within [0, 1] by computing
8 16 24 32

,0 ,1 ,2 ,3[/ 2 / 2 / 2 / 2]i i i i iP P P P P= + + + .

3） Input , 0,1, ,7iP i = L into the eight neurons of the input layer as the initial

values of the transfer function, set the transfer function parameter 1/ 3Q = , and the

iteration time 40τ = . For the input

0,0 0,3 1,0 1,3 7,0, 7,3[, , , , , , , ,]TP p p p p p p= L L L L , where 8
, {0,1, , 2 1}i jp ∈ −L , the

output 0 1 7[, , ,] , [0,1]T
iU u u u u= ∈L can be obtained by

(,1 / 3)i iu f Pτ= ， {0,1, 7}i ∈ L . (62)

4) The output layer realizes good compression and makes the plaintext and
secret key diffused and confused to a large extent. Each neuron i in the output layer
has connection with all the neurons in the input layer. Let 2 (,) (0, 1)W i j ∈ be the

weight of the connection between Neuron j in the input layer and Neuron i in the

output layer, [0, 1]iΘ ∈ be the bias of each neuron i and (0, 0.5)iQ ∈ be

the transfer function parameter. During the process of the each message block, the
parameter vectors 2 , ,W QΘ are generated by the current key K based on a

One-way Coupled Map Lattice (OCML) as follows: The 128-bit key K is divided
into four 32-bit integers and transformed into four fractions 1 2 3 4, , ,k k k k within

[0，1]. The four fractions 1 2 3 4, , ,k k k k are used as the initial values, and OCML

is iterated continuously. An orbit value is obtained in every 30-time iteration, and
all together ten orbit values are obtained. The former eight four-dimensional orbit

5 Chaos Based Hash Function 173

values are set as the weight 2W ; the latter two four-dimensional orbit values are set

as the bias Θ and the transfer function parameter Q , respectively (totally 40

values).

1 1 4

2 2 1

3 3 2

4 4 3

(1) (1) (()) (())

(1) (1) (()) (())

(1) (1) (()) (())

(1) (1) (()) (())

x i g x i g x i

x i g x i g x i

x i g x i g x i

x i g x i g x i

ε ε
ε ε
ε ε
ε ε

+ = − +
+ = − +
+ = − +
+ = − +

, (63)

where function g is Logistic map))(1)((4)1(ixixix −=+ , and the coupling

constant 3/1=ε .

5) Let iW2 be the i th row of the weight matrix 2W . For the output U of the

input layer, the output TccccC],,,[3210= of the four neurons in the output

layer can be obtained by

2(mod(, 1),)i
i i ic f W U Qτ= • + Θ ， {0, 1, ,3}i ∈ L , (64)

where iteration time 40=τ . The obtained four outputs in the output layer are
juxtaposed from left to right to get a 128-bit hash value.

5.1.2 Security Analysis

In [21], the authors noticed the chaotic map in this algorithm had symmetry prop-
erty, and analyzed the collision weakness of the plaintext pair and the key pair.

1） The plaintext pair collision
The transfer function (,)f x Q of the neuron has symmetry property, namely

(,) (1 ,)f x Q f x Q= − . Therefore, if two groups- 0 1 2 3, , ,a a a a and 0 1 2 3, , ,b b b b sa-

tisfy 8 16 24 32 8 16 24 32
0 1 2 3 0 1 2 3/ 2 / 2 / 2 / 2 1 (/ 2 / 2 / 2 / 2)a a a a b b b b+ + + = − + + + ,

then the plaintext pair- 0 1 2 3 1,0 1,1 1,2 1,3 7,0 7,1 7,2 7,3, , , , , , , , , , , ,a a a a P P P P P P P PL and

0 1 2 3 1,0 1,1 1,2 1,3 7,0 7,1 7,2 7,3, , , , , , , , , , , ,b b b b P P P P P P P PL will obtain the same hash value

under the same secret key.
The detailed analysis is as follows: For the two plaintexts, in the above step 3),

the obtained orbit values after one-time iteration are the same. Similarly, the ob-
tained orbit values after forty-time iterations are the same. Since the output of the
output layer has connection only with the secret key and the output of the input
layer, the final hash value will be the same under the same secret key.

174 D. Xiao, X. Liao, and S. Deng

2） The key pair collision
The Logistic map () 4 (1)g x x x= − has symmetry property, namely

() 4 (1)g x x x= − . Therefore, if two 32-bit integers ,a b satisfy 32 32/ 2 1 / 2a b= − ,

then the key pair- 2 3 4, , ,a k k k and 2 3 4, , ,b k k k will obtain the same hash value for

the same plaintext.
The detailed analysis is as follows: For the two secret keys, in the above step 4),

the obtained orbit values after one-time iteration are the same. Therefore, the ob-
tained parameters 2 , ,W QΘ are the same. Finally, the obtained hash values are

the same for the same plaintext.

5.2 Typical Algorithm Two

In [22], a hash function is proposed based on a three-layer neural network whose
input layer, hidden layer and output layer have eight neurons, eight neurons and
four neurons, respectively. The message is divided into blocks, and the message is
modulated into the chaotic phase space.

The original message M is padded such that its length is a multiple of 1024.
Then after padding, M is divided into blocks, 110 ,,, −nMMM L , each with

1024-bit. The processing is illustrated in Fig. 14. The hash value
iMH of iM block

is modulated by its key
1−iMK . Thus, the final hash value is

2 1 3 2 1 0 11() ()
n n n n n nM M M M M M M M MH K H K H H K H H H
− − − − − −

= ⊕ = ⊕ ⊕ = = ⊕ ⊕ ⊕ ⊕L L . (65)

Block

Hash

HM0 KM0

...

K

M0 M1 Mn-1...

M

Block

Hash

HM1 KM1
Block

Hash

KMn-2 HMn-1 HM

Fig. 14 The multi-block hash mode

The chaotic neural network structure of the Block Hash function is illustrated in
Fig. 15. It is composed of three layers: the input layer, the hidden layer and the
output layer. The piecewise linear chaotic map （ ） （PWLCM 61） is utilized as the
transfer function of each layer.

5 Chaos Based Hash Function 175

p0

... ...

C0

...

...

...

...

D0

D1

D7

p1

p2

p3

p4
C1

p5

p6

p7

p28

C7
p29

p30

p31

H0

H1

H2

H3

HDCP

...

...

...

Fig. 15 The chaotic neural network structure of the Block Hash function

During the process of the ith message block iM , the parameters

222111000 ,,,,,,,, QBWQBWQBW of the neural network are generated by the

current key
1−iMK , where iii QBW ,, are the weight, the bias and the transfer

function parameter of the i th neuron layer, respectively. The total numbers of these
parameters are 151. The key

1−iMK is divided into four sub-keys:

127979639565642633332131100 ,,, kkkKkkkKkkkKkkkK LLLL ==== .

They are quantized and used to generate all the parameters as follows:

0 0 1

1 2 3

0 1

() (,),

() (,),

() (() ()) mod1.

T k

T k

s

X k f K K

X k f K K

K k X k X k

+

+

=

=
= +

 (66)

where)150,,1,0)((L=kkK s is the k th sub-key， and the iteration time 50≥τ .

The module operation is defined as

⎩
⎨
⎧

≤−
≤

=
21,1

10,
1mod

p

p

aa

aa
a .

In the input layer, there are eight neurons, and each neuron has four 32-bit inputs.
By computing the following Eq. (67), the input data are transformed into the output
data.

176 D. Xiao, X. Liao, and S. Deng

3

0, 0,0 0
0

07

10, 0,1 0
4

731

0, 0,7 0
28

(,)

(,)

(,)

T
i i

i

T
i i

i

T
i i

i

f w P B Q

C

Cf w P B Q
C

C

f w P B Q

=

=

=

⎡ ⎤
+⎢ ⎥

⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎢ ⎥+⎢ ⎥⎣ ⎦

∑

∑

∑

M
M

, (67)

where][31,01,00,00 wwwW L= is the weight, 0B is the bias, and 0Q is the

parameter of the transfer function. And the iteration time 50≥τ
Similarly, the following computations are carried out in the hidden layer and the

output layer, respectively:

7

1,0, 1,0 1
0

07

11,1, 1,1 1
0

77

1,7, 1,7 1
0

(,)

(,)

(,)

T
i i

i

T
i i

i

T
i i

i

f w C B Q

D

Df w C B Q
D

D

f w C B Q

=

=

=

⎡ ⎤
+⎢ ⎥

⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎢ ⎥+⎢ ⎥⎣ ⎦

∑

∑

∑

M
M

, (68)

7

2,0, 2,0 2
0

07

12,1, 2,1 2
0

37

2,3, 2,3 2
0

(,)

(,)

(,)

T
i i

i

T
i i

i

T
i i

i

f w D B Q

H

Hf w D B Q
H

H

f w D B Q

=

=

=

⎡ ⎤
+⎢ ⎥

⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦
⎢ ⎥+⎢ ⎥⎣ ⎦

∑

∑

∑

M
M

, (69)

where 21,WW are the weights, 21, BB are the biases, and 21, QQ are the parameter

of the transfer functions. And the iteration time 50≥τ .
The obtained four outputs in the output layer are juxtaposed to get a 128-bit hash

value.

5 Chaos Based Hash Function 177

6 Parallel Keyed Hash Function Construction Based on Chaotic
Maps

Although a variety of chaos-based hash functions have been proposed, none of them
works efficiently in parallel computing environment. In [23, 24], we have proposed
an algorithm for parallel keyed hash function construction, whose structure can
ensure the uniform sensitivity of hash value to the message. By means of the me-
chanism of both changeable-parameter and self-synchronization, the keystream
establishes a close relation with the algorithm key, the content and the order of each
message block. The entire message is modulated into the chaotic iteration orbit, and
the coarse-graining trajectory is extracted as the hash value. Theoretical analysis
and computer simulation indicate that the proposed algorithm can satisfy the per-
formance requirements of hash function. It is simple, efficient, practicable, and
reliable. These properties make it a good choice for hash on parallel computing
platform.

6.1 Algorithm Structure

The widely used hash functions are implemented in the Merkle-Damgard scheme,
shown in Fig.1. The message length and padding are appended to the message to
create an augmented message which can be evenly divided into 110 ,,, −LYYY L ,

blocks of b bits, where b is the size of the block to be processed by the compres-
sion function f . A compression function f is used repeatedly. In each round, the

compression function f has two inputs: one is the n-bit output 1−iCV of the last

round; the other is the b -bit input block 1−iY of the current round. At the same

time, the output of the current round is the n-bit iCV , which is also used as the

input of the next round. Before starting the iteration, the initial vector IV should
be set. The output of the last round is the final hash value.

The processing of the current message unit can not start until the previous one
has been processed. This restricts their applications on the platform, which supports
parallel processing. Besides, the sensitivities of hash value to the message units at
different positions of the message are uneven. In order to solve this problem, all the
iterations have to be repeated several times as we have done in [12]. However, in
this way, the efficiency has inevitably been reduced greatly. In this section, we
propose a non-traditional algorithm for parallel keyed hash function construction,
whose structure can ensure the uniform sensitivity of hash value to the message.

Let 128≥N be the bit-length of hash value. First of all, the original message M
is padded such that its length is a multiple of N (The detail is described in the latter
algorithm description). Then after padding, M is constituted by blocks,

),,,(21 sMMMM L= , each with N bits, and each block is indicated as
N
iiii MMMM L21= . The initial vector NH 1}0{0 = is set.

178 D. Xiao, X. Liao, and S. Deng

The whole structure of the non-iterated type algorithm can be illustrated in Fig.
16 and described in Eq. (70).

0 1 2

(, ,), 1,2, ,

() (, , , ,),
i i

s

K F key i M i s

H M Hash Mixer H K K K

= =⎧
⎨ =⎩

L

L
 (70)

Fig. 16 Whole structure of the non-iterated type hash algorithm

where F is a round function, iM is the ith message block, i is the order of each

block, key is the secret key, iK is the ith intermediate hash value, and ()H M is the

final hash value. There are two phases in this algorithm. The 1st phase is to generate
the keystream iK corresponding to each block iM under the control of

(, ,)ikey i M . The 2nd phase is to use the hash mixer to obtain the final hash value

()H M based on the generated 0 1 2, , , , sH K K KL . The Hash Mixer consists of two

parts. The first part is to obtain the intermediate hash value sH by

0 1 2s sH H K K K= ⊕ ⊕ ⊕L . The second part is to introduce the complicated non-

linear connections among the different parts of the intermediate hash value sH

through some confusion approach.

6.2 Algorithm Description and Its Characteristics

In the proposed algorithm, Piecewise Linear Chaotic Map （ ）PWLCM and
4-dimensional Cat Chaotic Map （ ）CATCM will be utilized.

PWLCM is defined as:

() / , 0 ()

(()) / (0.5), () 0.5
(1) (())

(1 ()) / (0.5), 0.5 () 1

(1 ()) / , 1 () 1

u

x k u x k u

x k u u u x k
x k F x k

x k u u x k u

x k u u x k

≤ <⎧
⎪ − − ≤ <⎪+ = = ⎨ − − − ≤ < −⎪
⎪ − − ≤ ≤⎩

 (71)

5 Chaos Based Hash Function 179

where)5.0,0(],1,0[)(∈∈ ukx are the iteration trajectory value and parameter

of PWLCM, respectively.)}({ kx is ergodic and uniformly distributed in [0, 1], and

the auto-correlation function of)}({ kx is δ -like.

2-dimensional CATCM is defined as:

1 1 1

2 2 2

(1) () ()1 1
(mod1) (mod1).

(1) () 1 2 ()

x k x k x k
A

x k x k x k

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (72)

where)(),(21 kxkx are real numbers in]1,0[. The map is area-preserving since

the determinant of its transformation matrix 1|| =A .

By introducing two control parameters, a and b , the above 2-dimensional
CATCM can be generalized as follows:

1 1 1

2 2 2

(1) () ()1
(mod1) (mod1).

(1) () 1 ()

x k x k x ka
A

x k x k b ab x k

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (73)

Similarly, 4-dimensional CATCM is defined as:

11

22

33

4

()(1)

()(1)
(mod1),

()(1)

()(1) m

x kx k

x kx k
A

x kx k

x kx k

+ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥+
⎢ ⎥⎢ ⎥

+⎣ ⎦ ⎣ ⎦

 (74)

where 342423141312 AAAAAAA = is a 44 × matrix and

12

12 12 12
12

1 0 0

1 0 0

0 0 1 0

0 0 0 1

a

b a b
A

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

13

13
13 13 13

1 0 0

0 1 0 0

0 1 0

0 0 0 1

a

A
b a b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎣ ⎦

,

 23
23

23 23 23

1 0 0 0

0 1 0

0 1 0

0 0 0 1

a
A

b a b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎣ ⎦

,…… 34
3,4

3,4 3,4 3,4

1 0 0 0

0 1 0 0

0 0 1

0 0 1

A
a

b a b

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

.

(75)

While reserving the mixing property and the sensitivity to initial conditions and
parameters, the above 2-dimensional CATCM can be discretized as follows:

180 D. Xiao, X. Liao, and S. Deng

1 1 1

2 2 2

(1) () ()1
(mod) (mod).

(1) () 1 ()

x k x k x ka
A N N

x k x k b ab x k

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (76)

where)(),(,, 21 kxkxba are integers in]1,0[−N .

Similarly, 4-dimensional CATCM can be discretized in the same way.
The secret key of the algorithm includes: the initial condition]1,0[)0(∈x and

initial parameter)5.0,0(0 ∈u of PWLCM; the initial condition and parameters

),,,(dcba of 2-dimensional CATCM, which are integers in]16,0(and used to

generate the parameters of 4-dimensional CATCM as follows:

1 1

2 2

(1) ()1
(mod16),

(1) 1 ()

y k y kc

y k d cd y k

+⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥+ +⎣ ⎦⎣ ⎦ ⎣ ⎦

 (77)

where byay ==)0(,)0(21
. By iterating Eq. (77) for 6-time, the iteration values are

assigned as the parameters of the 4-dimensional CATCM,

,, ijij ba ijji >== ,4,3,2,3,2,1 .

6.2.1 Algorithm Description

Let 128N ≥ be the bit-length of hash value without loss of generality. First of all,
the original message M is padded such that its length is a multiple of N : let m be
the length of the original message M ; the padding bits 2(100 0)L with length n

(such that () mod 64, 1m n N N n N+ = − ≤ ≤) are appended. The left 64-bit is

used to denote the length of the original message M . If m is greater than 264, then
64mod 2m . Then after padding, M is constituted by blocks with N bits,

1 2(, , ,)sM M M M= L , and each block is indicated as 1 2 N
i i i iM M M M= L . The

initial vector 10 {0}NH = is set.

The detailed process of the ith message block iM (1, 2, ,i s= L) in ith round

is described as follows (see Fig. 17).

iM is re-divided into L units as Eq. (78), each unit with 8 bits (actually a

character).

0 1

1 2 8 9 10 16 7 6, ,

L

N N N
i i i i i i i i i i

w w w

M M M M M M M M M M− −= L L L L
14424431442443 144424443

.
(78)

5 Chaos Based Hash Function 181

1) While 128=N , iM is actually divided into 16 units, 1621 ,,, www L ,

which is further assigned as 4 parallel groups for processing. Here,

1621 ,,, www L should be pre-mapped into 1621 ,, wrwrwr L in)5.0,0(by

means of linear transform 16,,2,1,
10242

0 L=+= i
wu

wr i
i , where)5.0,0(0 ∈u

is the initial parameter of PWLCM.
Group 1- 4321 ,,, wrwrwrwr : Start from the initial condition)0(x , and iterate

PWLCM 10-time sequentially with the parameter sequence
},,,,,,,,,{ 0012344321 uuwrwrwrwrwrwrwrwr . The final iteration value is set as

)(1 ix ;

Group 2- 8765 ,,, wrwrwrwr : Start from the initial condition)0(x , and iterate

PWLCM 10-time sequentially with the parameter sequence
},,,,,,,,,{ 0056788765 uuwrwrwrwrwrwrwrwr . The final iteration value is set as

)(2 ix ;

Group 3- 1211109 ,,, wrwrwrwr : Start from the initial condition)0(x , and iterate

PWLCM 10-time sequentially with the parameter sequence
},,,,,,,,,{ 0091011121211109 uuwrwrwrwrwrwrwrwr . The final iteration value is set

as)(3 ix ;

Group 4- 16151413 ,,, wrwrwrwr : Start from the initial condition)0(x , and iterate

PWLCM 10-time sequentially with the parameter sequence
},,,,,,,,,{ 001314151616151413 uuwrwrwrwrwrwrwrwr . The final iteration value is

set as)(4 ix .

2) The order “ i ” of each message block is utilized to transform matrix A of

4-dimensional CATCM to)(iAA in the following way:

Let)4,3,2,1(=jjα denote the jth row vector of matrix A , then

),,,()(43121 ααααα ×+=
s

i
iAA , namely, “ si / ” multiple of the 1st row vector

1α is added to the 2nd row vector 2α . For the property of determinant,

1|||)(| == AiAA , therefore)(iAA is still area-preserving.

3))(),(),(),(4321 ixixixix obtained in Step 1) are set as the initial conditions,

and then the transformed 4-dimensional CATCM is iterated twice
sequentially.

182 D. Xiao, X. Liao, and S. Deng

1 1

2 2

3 3

4 4

(1) ()

(1) ()
() (mod1)

(1) ()

(1) ()

x k x k

x k x k
AA i

x k x k

x k x k

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= ×
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥

+⎣ ⎦ ⎣ ⎦

. (79)

The final iteration values are set as)(),(),(),(4321 ixxixxixxixx . Transform them

to the corresponding binary format, extract 32, 32, 32, 32 bits after the decimal

point, respectively, and juxtapose them from left to right to get a 128-bit iK , the

keystream of the ith round.
After all the the keystreams iK , si ,,,2,1 L= , are obtained, the detailed

processing in the hash mixer is described as follows. First, the intermediate hash
value sH is generated by ss KKKHH ⊕⊕⊕= L210 . Then, the value sH

is re-divided into 16 integers as Eq. (80), and each integer has 8 bits.

0 1 16

1 2 8 9 10 16 121 122 128, ,s s s s s s s s s s

b b b

H H H H H H H H H H= L L L L
14424431442443 1442443

.
(80)

The 16 integers, 1621 ,,, bbb L , are first arranged in the order of left to right and

top to bottom to form a 44 × matrix B . Then compute

(mod 256)BB A B= × , (81)

where Matrix A is the 4-dimensional CATCM generated by the 2-dimensional
CATCM with the secret key. If necessary, we can also make the 4-dimensional cat
map A be generated independently by the 2-dimensional CATCM with the

Fig. 17 The processing of the ith block iM

5 Chaos Based Hash Function 183

different secret key. In the order of left to right and top to bottom, the 16 elements of
the obtained Matrix BB are transformed to the corresponding binary format, re-
spectively, and juxtaposed from left to right to get the 128-bit final hash value

)(MH .

Note that the most important point is that the generation of the keystream
iK

must be under the control of the corresponding),,(iMkey i
, namely,

iK must

have a close relation with the algorithm key, the content and the order of current
message block iM , which can guarantee the security of the algorithm.

6.2.2 Characteristics of the Algorithm

The proposed algorithm has three remarkable characteristics: the parallel mode, the
mechanism of both changeable-parameter and self-synchronization, and the uni-
form sensitivity of hash value to the message.

1) Parallel mode
The parallel mode is embodied in two aspects: on the one hand, from the whole
structural point of view, after the message M is divided into blocks

sMMM ,,, 21 L , the processes among blocks can be performed in a parallel mode

(see Fig.16 and Eq. (70)). At the same time, the confusion operation by
4-dimensional CATCM can also be performed in a parallel mode. On the other
hand, within each message block, the 4-group iterations of PWLCM can also be
processed in a parallel mode, and 4-dimensional CATCM is utilized to be a mixer
(see Fig.17).

2) Changeable-parameter and self-synchronizing keystream
During the hashing process of each message block iM (si ,,,2,1 L=), the
message unit at different positions will cause the parameter of chaotic maps to
change dynamically. On the one hand, perturbation is introduced in a simple way to
avoid the dynamical degradation of chaos; on the other hand, self-synchronizing
stream is realized, which ensures that the generated keystream iK is closely related

to the algorithm key, the content and order “ i ”of each message block

iM (si ,,,2,1 L=). The mechanism of both changeable-parameter and

self-synchronization makes each bit of the final hash value have a close relation to
all the bits of the message. It lays the solid foundation for the security of the pro-
posed algorithm: different message block iM leads to different keystream iK ; and

even the same message block iM , when the order “ i ” changes, the corresponding

keystream iK will be also totally different.

184 D. Xiao, X. Liao, and S. Deng

3) Uniform sensitivity of hash value to the message.
Through the analysis on recurrent formula Eq.(70) of the final hash value, we can
find out that the effect of each message block iM on the final hash value)(MH is

equivalent, any change in message block iM (si ,,,2,1 L=) will lead to the

consequential change in the corresponding iK (si ,,,2,1 L=) and then the final

hash value)(MH . This thoroughly overcomes the flaw in some former hash algo-
rithms that the sensitivities of hash value to the message units at different positions
of the message are wavy.

6.3 Performance Analysis

In [23, 24], series of strict performance analysis and simulations are carried out,
including distribution of hash value, sensitivity of hash value to the message and
secret key, statistic analysis of diffusion and confusion, analysis of collision resis-
tance, resistance against forgery attack, security of key, analysis of speed, and
implementation and flexibility, etc.

Most of the performance analysis methods are similar to that given in Section
2.5. Due to page limitation, in this section, we only emphasize its unique perfor-
mances and omit the rest performances.

6.3.1 Security of Key

The security of key includes two aspects. One is the key non-recovery property. It
must be computationally infeasible to recover key, given one or more mes-
sage-MAC pairs （)(, jj MHM ） . The other is the size of the key space, which

characterizes the capability of resisting brute-force attack.
In the hashing process of our algorithm, the sensitivity to tiny changes in initial

conditions and parameters, and the mechanism of both changeable-parameter and
self-synchronization are fully utilized. It makes the algorithm having strong
one-way property, and there exist complicated nonlinear and sensitive dependence
among message, hash value and secret key. Therefore, we believe that it is immune
from key recovery attack.

To investigate the key space size, the following evaluations are performed. Let
the tiny change of the initial value)0(x of PWLCM be larger than 10-16, for ex-

ample,)0(x is changed from 0.232323 to 0.2323230000000001, the corresponding
changed bit number of hash value obtained is around 64. Similarly, let the tiny

change of the initial parameters 0u of PWLCM be larger than 10-16, for example,

0u is changed from 0.454445 to 0.4544450000000001, the corresponding changed

bit number of hash value obtained is also around 64. However, if the tiny changes of
)0(x and 0u are set as 10-17, no corresponding bit of the hash value changes.

Therefore, the sensitivity to)0(x and 0u are both considered as 10-16. As for the

5 Chaos Based Hash Function 185

other part key),,,(dcba , the parameters and initial values of the 2-dimensional
CATCM, when the change of them is 1, the corresponding changed bit number of
hash value is also around 64. Considering the value ranges of components,

]1,0[)0(∈x ,)5.0,0(0 ∈u ,]16,0(),,,(∈dcba , it can be derived that the size

of the key space is larger than 2121. Although some weak key combinations
)),0((0ux of PWLCM and some possible combinations),,,(dcba of the

2-dimensional CATCM may be sacrificed, a conclusion can still be drawn that the
key space is large enough to resist the brute-force attack.

6.3.2 Analysis of Speed

For speed comparison among different algorithms, the numbers of the required
multiplicative operations for each ASCII character (8-bit) message during the hash
process are listed in Table 4. Although the confusion approach by 4-dimensional
CATCM is added after the XOR operation, the effect on the entire efficiency
of the algorithm is very slight, especially with the increasing of the message block
number s .

The calculation of our proposed algorithm is as follows:
Each message block iM has 16-character message units, which are divided into

four groups. Each group has four characters. First, in each group, linear transform
needs 4-time multiplicative operations, and 10-time iterations of PWLCM need
10-time multiplicative operations. Therefore, the four groups need 56-time multip-
licative operations. Second, to transform A to)(iAA of 4-dimensional CATCM

by the order “ i ” of each message block needs 8-time multiplicative operations.
Finally, the consecutive two-iteration of the transformed 4-dimensional CATCM
needs 32-time multiplicative operations. In summary, the required multiplicative
operation for each character in our proposed algorithm is (56+8+32)/16=6. On the
other hand, the added confusion approach by 4-dimensional CATCM needs extra
64-time multiplicative operations for the operation between two 44× matrixes.
However, the 64-time multiplicative operations are undertaken by the total number
of message block, and each block has 16- character message units. Therefore, only
4/ s * has to be added, which is very slight.

Table 4 Required multiplicative operation for each character of algorithms

 Ref. [12] Ref. [11] Ref. [25] This
algorithm

Multiplication 6 11.7 32（ by
software） /8

(by
hardware）

6+4/ s *

 * s represents the number of message block with the length of 128-bit.

186 D. Xiao, X. Liao, and S. Deng

Furthermore, since the proposed algorithm can support parallel mode, not only

the parallel processes among message blocks, but also 4-group parallel iterations of
PWLCM within each message block, its efficiency is predominant, especially
compared with other hash algorithm in sequential mode.

7 Combined Chaotic Cryptographic and Hashing Scheme

In some security applications, both encryption/decryption and hashing are required
to perform simultaneously. To fulfill this kind of requirement, we proposed a
combined chaotic cryptographic and hashing algorithm based on chaos [26]. This
algorithm originates from a combined chaotic cryptographic and hashing scheme
based on dynamic look-up table proposed by Wong in [14], which can also be
regarded as one of the variants of the cryptosystem based on the ergodicity property
of chaotic systems proposed by Baptista [27] in 1998. However, shortly after
Wong’s scheme was proposed, G. Alvarez et al [28] pointed out the security
problem of this scheme and described a keystream attack on it. In [26], we have
analyzed the cause of vulnerability of the original dynamic look-up table based
chaotic encryption scheme in detail, and then have also proposed the corresponding
enhancement measures. Theoretical analysis and computer simulation indicate that
the modified scheme is more secure than the original one. At the same time, it holds
the combined merit of the original scheme. Besides, other idea for improvement is
also presented to improve the efficiency and the ratio of ciphertext/plaintext of the
combined algorithm.

7.1 Wong’s Algorithm and Its Security Analysis

7.1.1 Description of Wong’s Algorithm [14]

The chaotic map chosen in the scheme is the simple Logistic map governed by the
following equation:

1 (1),n n nX bX X+ = − (82)

where]1,0[∈nX and the value of the coefficient b should ensure the map is run-

ning in a chaotic regime. A paragraph of plaintexts is divided into a number of
message blocks. There is only one character in each block and the plaintext is thus
the ASCII code of the character.

In the initialization phase, the initial value
0X and the coefficient b should be

chosen as the secret key. Moreover, an initial look-up table should be set at the same
time. In Fig.18, there are 256 entries numbered from 0-255 in the look-up table, and
each entry contains an ASCII character. If the range],[maxmin XX is chosen as

[0.2000，0.8000], the interval width is ε =(Xmax-Xmin)/256=0.0023. Each interval is
associated with a particular unit of the look-up table. For instance, there are

5 Chaos Based Hash Function 187

Fig. 18 Look-up Table

mappings of interval [0.2000, 0.2023] to the first unit, interval [Xmin+iε ,
Xmin+(i+1)ε] to the ith unit, and so on.

For the encryption of the ith message block in the encryption phase, we begin to
iterate the logistic map with the current X value until the orbit first falls into the
region corresponding to the ASCII code of this message block. The current number
of iterations will be regarded as the ciphertext. To enhance the anti-attack capability
of the scheme, the iteration will continue if the current number of iterations is

smaller than a pre-defined minimum number of iterations minT . This rule can be
straightforwardly applied to the remaining message blocks in the plaintext. Before
encrypting the next message block, we have to update the look-up table dynami-
cally by exchanging the ith entry ei with another entry ej. The number j is deter-
mined by the following formula:

min

max min

,
X X

v N
X X

⎢ ⎥−
= ×⎢ ⎥−⎣ ⎦

 (83)

() mod ,j i v N= + (84)

where N=256 is the entry number in the scheme. We have to perform a modulus
operation so that the value of j is always smaller than N.

In the chaotic cryptosystem described above, the final look-up table will be
obtained after the whole paragraph of plaintexts is encrypted. This table, while
completely determined by the content of the plaintexts, is much shorter than the
plaintext, and is totally different for different messages. According to the definition
of the one-way hash function, the algorithm is a valid hash function. Therefore, it
has essentially completed the encryption and hashing in a combined manner.

To ensure good collision resistance of the hash function, the swapping of
multiple p (1≥p) pairs of entries in the look-up table is allowed during the

188 D. Xiao, X. Liao, and S. Deng

encryption of each message block, and the multiple r (1≥r) runs of continuous
encryption on the whole message is introduced. Starting from the current entry
number i, the p–pair swapping rule is as follows:

),mod)23(()mod)22((),mod)12(()mod)1((),mod)((NviNviNviNviNvii ++↔++++↔+++↔

).mod)1(()mod)1)1(((, NppviNpvpi −++↔−+−+L

(85)
Once the message has been encrypted, the whole process is repeated (r-1)

times, 1≥r . However, only the ciphertext obtained from the first run need to be
transmitted to the receiver, the remaining (r-1) runs are for only the good perfor-
mance of the hash function.

As the ciphertext is the number of iterations required, we can start the decryption
phase by iterating the corresponding Logistic map with bX ,0 and the initial

look-up table for the required number of iterations. Based on the mapping of the
interval to the entry in the look-up table, the first block of plaintext can be obtained.
Before decrypting the next ciphertext block, we have to update the look-up table in
the same way as in the encryption process. This rule can be applied to the remaining
ciphertext blocks in turn. Finally, we can decrypt all the ciphertext and get the final
look-up table, too. The final look-up table is the hash value and so the scheme has
also completed the decryption and hashing in a combined way.

7.1.2 Attack [28]

1）Attack On the Dynamic Look-up Table (hash function):
The attack on the dynamic look-up table lies on the fact that the attacker can easily
predict the new positions of the characters even without the exact knowledge of the
value of current orbit X . For instance, if there are only two characters, S2={s1, s2},
when the orbit falls into the first interval [)5.0,2.0 , 5.02.0 <≤ x , then Eq. (83)
becomes:

12
6.0

2.0
0

minmax

min <⎥⎦
⎥

⎢⎣
⎢ ×−=⎥

⎦

⎥
⎢
⎣

⎢
×

−
−

=≤ x
N

XX

XX
v ,

thus v=0 and Eq. (84) is equivalent to: 2modij = .

When the orbit falls into the second interval [)8.0,5.0 , 8.05.0 <≤ x , then v=1 and

Eq. (84) becomes: 2mod)1(+= ij .

Similarly, if there are four characters, },,,{ 43214 ssssS = , then 0=v when the

orbit falls into [)35.0,2.0 , 1=v when the orbit falls into [)5.0,35.0 , 2=v when the

orbit falls into [)65.0,5.0 , and 3=v when the orbit falls into [)8.0,65.0 .

5 Chaos Based Hash Function 189

The generalized relationship for higher order characters exists as follows:

1 20, 2, , 1.i i i nk s v k s v k s v n= ↔ = = ↔ = = ↔ = −L (86)

In conclusion, the updated table depends solely on the plaintext, and not the key
(

0X and b). When encrypting the same plaintext using different keys, the same

updating evolution will take place in the look-up table. Regardless of the key used,
the same message will always yield the same hash value, which is to the advantage
of the attacker.

2）Attack on the encryption
The scheme is essentially a stream cipher. When the secret key (X0 and b) is given, a
keystream L21kkk = can be generated using (82). The plaintext string

L21 ppp = is encrypted according to the rule:

1 1 2 2 1 2() () .k kc e p e p c c= =L L (87)

The ciphertext string c can be easily decrypted after getting the keystream

L21kkk = based on the secret key and undoing the encryption operation kie .

The focus of the attack described in [28] is to recover the keystream
L21kkk = . G. Alvarez et al pointed out that the cipher is immune from Chosen

ciphertext attack and Ciphertext only attack, but Chosen plaintext attack and
Known plaintext attack can totally or partially break the cryptosystem. Similar to
the attack on the look-up table, the cause of vulnerability is that the look-up table
evolution can be easily predicted without the exact knowledge of the value of cur-
rent orbit X . Details of the attack can be found in [28].

7.2 Modified Scheme and Its Performance Analysis

7.2.1 Description of the Modified Scheme

The following modified scheme is proposed to prevent the cryptanalysis based on
the existing vulnerability.

Logistic map (82) is still chosen to generate the chaotic orbit, where the secret
key K is chosen as X0=0.232323, b0=3.99995 and N=256. In the initialization phase,
the same preparation will be performed as in the original algorithm.

For the encryption of the ith message block in the encryption phase, we begin to
iterate the logistic map with the current 1−iX value until the orbit first falls into the

region corresponding to the ASCII code of this message block. The current number
of iterations will be regarded as the ciphertext. To enhance the anti-attack capability
of the scheme, the iteration will continue if the current number of iterations is
smaller than a pre-defined minimum number of iterations Tmin. Before encrypting
the next message block, we still have to update the look-up table dynamically by

190 D. Xiao, X. Liao, and S. Deng

exchanging the ith entry ei with another entry ej. However, the formula for finding
j is changed as follows:

First, the 2nd, 3rd and 4th digits of the current value of
iX after the decimal point

are extracted to construct a new decimal integer Y .
Then

mod 256v Y= , (88)

() mod 256.j i v= + (89)

According to the basic property of mod operation

((mod) (mod)) mod () mod .a n b n n a b n+ = + (90)

These two steps can be combined as one step:

() mod 256.j i Y= + (91)

We have to perform a modulus operation so that the value of j is always smaller
than 256.

Similar to the original scheme in ensuring good collision resistance of the hash
function, the modified scheme is generalized by allowing the swapping of p pairs
of entries in the look-up table during the encryption of each message block, and by
allowing r runs of encryption on the whole message continuously, where

1,1 ≥≥ pr :

(() mod 256), ((1) mod 256) ((2 1) mod 256)i i Y i Y i Y↔ + + + ↔ + +
, (((1) 1) mod 256) ((1) mod 256).i p Y p i pY p+ − + − ↔ + + −L

(92)

Only the ciphertext obtained from the first run need to be transmitted to the re-
ceiver, the remaining (r-1) runs are only for the good performance of the hash
function.

In this modified scheme, the final look-up table is also the hash value of the
plaintext. Therefore, we can draw a conclusion that the modified scheme has kept
the remarkable characteristic to perform encryption and hashing in a combined
manner.

In the decryption phase, only the formula for updating the look-up table is
changed as in the encryption phase. The other parts are just the same as the original
scheme. As a result, the modified scheme has also completed decryption and
hashing simultaneously.

7.2.2 Performance Analysis

1) Resistance analysis of the dynamic look-up table (hash function)
The attack on the dynamic look-up table of the original scheme lies on the fact that
the attacker can easily predict the new positions of the characters even without the
exact knowledge of the value of current orbit X . In our modified scheme, it is Y

5 Chaos Based Hash Function 191

that decides the look-up table evolution and it is obtained by extracting the 2nd, 3rd
and 4th digits after the decimal point of the current X value. This improvement
establishes a relationship between the exchanging entries with the current orbit
value, which totally avoids the cryptanalysis described above. Since the current
orbit value has close relation with the secret key (

0X and b), the updating evolu-

tion relies not only on the plaintext but also on the secret key.

2) Resistance analysis of the encryption
Similarly, the reason why Chosen plaintext attack and Known plaintext attack can
totally or partially break the original cryptosystem is that the look-up table evolu-
tion can be easily predicted without the exact knowledge of the value of current
orbit X . Our improvement has established a close link between the exchanging
entries and the current orbit value. It gets rid of the cryptanalysis described in [28]
and so similar attacks become impossible.

3) Security of Key
In the modified scheme, 0X ∈[0，1] and the coefficient 0b are chosen as the

secret key. The key space is huge enough to resist any exhaustive key search.
Moreover, it is absolutely impossible to inversely deduce the value of 00 ,bX from

the iteration values due to the high sensitivity to tiny changes in initial conditions
and parameters.

4) Encryption and hashing experiments
Under two different conditions, the modified scheme is used to perform compara-
tive experiments on a selected plaintext sample: “Key establishment is any process
whereby a shared secret key becomes available to two and more parties, for sub-
sequent security communications. A key agreement protocol is a key establishment
technique in which a shared secret key is derived by two or more parties as a
function of information contributed by, or associated with, each of these, ideally
such that no party can predetermine the resulting value. As a ubiquitous pheno-
menon in nature, chaos is a kind of deterministic random-like process generated by
nonlinear dynamic systems. The properties of chaos includes: sensitivity to tiny
changes in initial conditions and parameters, random-like behavior, ergodicity,
unstable periodic orbits with long periods and desired diffusion and confusion
properties, etc. Furthermore, the iteration process is one-way. Unique merits of
chaos bring much promise of application in the information security field. Basi-
cally, there are two general ways to design chaos-based ciphers: using chaotic
system to”.

Condition 1: The secret key is set as
0X =0.1777、 0b =3.9999995, run-time r =2,

swapping pairs p =10, minimum number of iterations Tmin=200.

Condition 2: Only change the secret key
0b =3.9999995 to

0b =3.9999996.

192 D. Xiao, X. Liao, and S. Deng

(a) (b)

Fig. 19 Plaintext-Ciphertext from Two Conditios

(a) (b)

Fig. 20 Hash values from Two Conditions

The modified scheme can perform both encryption and hashing smoothly under
the two different conditions. Fig. 19 is a plot of the Plaintext-Ciphertext result,
where (a) is obtained from Condition 1 while (b) is from Condition 2. Fig. 20 is a
plot of the hash values, where the horizontal axis represents the ordinal number
0-255 of the look-up table and the vertical axis represents the ASCII value of the
character in the corresponding entry. Fig. 20(a) is obtained from Condition 1 while
Fig. 20(b) is from Condition 2. Obviously, when the secret key K has tiny changes,
the ciphertexts and hash values of the two experiments are totally different. In the
hash values, 254 entries in the look-up table are different within all the 256 entries,
which proves that the modified scheme is very sensitive to the secret key.

5) Analysis of collision resistance and birthday attacks resistance
Collision and birthday attacks are similar in idea. They are essentially a probability
problem that two random input data are found to give the same hash output. In our

5 Chaos Based Hash Function 193

modified scheme, the look-up table evolution has close relation with the exact value
of the current orbit X, and the swapping of multiple pairs of entries in the look-up
table within multiple runs of encryption are allowed. These operations will ensure
that each bit of the final hash value is related to all the bits of the message. Even a
single bit change in message or key will be diffused and results in great changes in
the final hash value.

Similar to [14], we have performed the following tests for the quantitative anal-
ysis on the collision resistance: first, the hash value for a paragraph of randomly
chosen message is generated and stored in ASCII format. Then a bit in the message
is selected randomly and toggled. A new hash value is then generated and stored in
ASCII format. The two hash values are compared and the number of ASCII cha-
racters with the same value at the same location is counted. Moreover, the absolute
difference of the two hash values is calculated using the formula

|)()(| '

1
i

N

i
i etetd −=∑

=

, where ie and '
ie be the ith ASCII character of the original and

the new hash value, respectively, and the function t(*) converts the entries to their
equivalent decimal values. This kind of collision test is performed 2000 times, with
the secret key 9999995.3,1777.0 00 == bX , and run-time 2=r ,swapping pairs

10=p . The maximum, mean, minimum values of d and mean/character are listed
in Table. 5. A plot of the distribution of the number of ASCII characters with the
same value at the same location in the hash is shown in Fig. 21. Notice that the
maximum number of equal characters is only 5 and the collision level is very low.

Fig. 21 Distribution of the number of ASCII characters with the same value at the same
location in the hash

194 D. Xiao, X. Liao, and S. Deng

Table 5 Absolute differences of two hash values

Absolute
difference d

Maximum Minimum Mean Mean/character

 23944 18666 21946 85.7266

6) Efficiency Analysis
The difference between the Wong algorithm and the modified one lies in the way to
find j when updating the look-up table dynamically by exchanging the ith entry ei
with another entry ej.

In Wong algorithm, the number j is determined by the following formula:

min

max min

,
X X

v N
X X

⎢ ⎥−
= ×⎢ ⎥−⎣ ⎦

 (83)

() mod .j i v N= + (84)

In the modified algorithm, the 2nd, 3rd and 4th digits of the current value of iX after

the decimal point are extracted to construct a new decimal integer Y , and then Y is
used to decide j :

mod 256v Y= , (88)

() mod 256.j i v= + (89)

These two steps can be combined as one step:

() mod 256.j i Y= + (91)

Hence, the efficiency of the modified algorithm is similar to the original one.
The actual efficiency depends on the values of p and r . They may be set

flexibly to fulfill the requirement. When 10,2 == pr , the encryption and decryp-

tion speed achieved is 6.75KB/sec and 12.42KB/sec by implementing the modified
scheme using C++ programming language running on a personal computer with
Pentium IV 1.7GHz processor and 256 MB RAM.

If we compare the encryption/decryption speed or hashing speed separately
between the proposed algorithm and some traditional ones, it seems that the pro-
posed algorithm is slower. However, the remarkable characteristic of the proposed
algorithm is that it performs encryption/decryption and hashing in a combined way.
There are lots of applications of cryptography where not only the encryption and
decryption of the plaintext are required, but also the hashing operation. We may
apply the above algorithm to these occasions so that the efficiency can be improved.

5 Chaos Based Hash Function 195

7.3 Other Ideas for Improvement

Both Wong algorithm and the modified one have two major drawbacks: The first
one is their low efficiency, which inevitably limits their actual application. Second,
as their ratio of ciphertext /plaintext is 2, it will increase transmission burden and
shorten the unicity distance, which is harmful to the algorithm security from the
perspective of information theory.

To overcome the above drawbacks, a novel combined cryptographic and hash
algorithm based on chaotic control character is proposed in [29]. The control cha-
racter is generated by chaotic iteration. The pre-process of plaintext is performed in
accordance with the control character, and then the corresponding index value of
the item in the look-up index table is taken as its ciphertext. At the same time, the
chaotic trajectory is changed continuously according to the control character, which
can avoid the dynamical degradation of chaos to some extent. Besides, the look-up
index table is updated by utilizing the control character continuously, and the index
item of the final look-up index table can be considered as the hash value of the
whole paragraph of plaintext. Therefore, the proposed algorithm still keeps the
remarkable characteristic to perform encryption and hash in a combined manner.
Compared with Wong’s and our modified algorithms, the proposed one has de-
creased the ratio of ciphertext/ plaintext to 1, and improved the efficiency greatly.

7.3.1 Description of the New Algorithm

The new algorithm no longer divides the chaotic attractor into ranges and assigns
the association between the ranges and the plaintext blocks. A notable characteristic
of its structure is to introduce a look-up index table. Fig. 22 is the initial look-up
index table. The right part of the table represents the plaintext space. When the
length of plaintext block is set as nbit , the corresponding plaintext space is

0 1 2 1
{ , , , }nM s s s

−
= L , where is i= . The left part of the table represents the index

space 0 1 2 1
{ , , , }n

nT T T T
−

= L , where iT i= . In nature, the look-up index table is a

bijective map : nT Mϕ → between the plaintext space and the index space.
The chaotic map chosen in the algorithm is Piecewise Linear Chaotic Map

（ ）PWLCM governed by the following equation:

1

/
:

(1) / (1)
i i

i
i i

x b x b
F x

x b x b−

⎧ ≤⎪= ⎨ − − >⎪⎩
. (93)

1) Encryption and decryption
The secret key of the algorithm is

0{ , }Key x b= , where bx ,0 are the initial

value and control parameter of PWLCM, respectively. The plaintext is composed of

196 D. Xiao, X. Liao, and S. Deng

0T

1T

M

M

iT

2 1nT
− 2 1ns

−

M

M

M

M

2 1
n

−

1
0

i

Fig. 22 The look-up index table

r blocks, each with nbit , namely 1 2, , , rm m m m= L . The detailed encryption

process is as follows (see Fig.23(a)):

(1) The initialization of the look-up index table. First set 0 ()i iT sϕ = ,

0,1,2, , 2 1ni = −L , where is M∈ , and iterate PWLCM N -time (2nN = is the

item number of the table) with the initial value 0x to obtain a chaotic sequence

0 1 1{ , , , , , }i Nx x x x −L L , and then utilize the sequence to permute the look-up index

table into a new one 1ϕ in the following way: Turn the chaotic sequence

0 1 1{ , , , , , }i Nx x x x −L L into the corresponding integer sequence

0 1 1{ , , , , , }i Ny y y y −L L by round operation, then exchange the thi index item with

the corresponding th
iy one in turn.

(2) Set 1i = , 1
0 0x x= , and 0C g= , where (0 2 ,)ng g g Z +≤ ≤ ∈ is a constant

and can be chosen arbitrarily.
(3) Iterate PWLCM 10it = times with the initial value 0

ix , and obtain the

chaotic orbit value 0()it ix F x=% （ ）see Section 2.3 ;

(4) Calculate % 2n
iD x⎢ ⎥= ×⎣ ⎦ , transform it to the corresponding binary format

1 2 2()i nD d d d= L , and extract its odd bits and even bits to obtain the particular

control character iP and iQ , respectively, namely 1 3 2 1 2()i nP d d d −= L and

2 4 2 2()i nQ d d d= L , where {0,1}jd ∈ , 1,2, 2 ,
2

n
j α α= =L ;

5 Chaos Based Hash Function 197

(5) If i iP Q= , set 0
ix x= % and go to (3); if i iP Q< , set 1i im m C −= ⊕% ; if

i iP Q> , set i im m D= ⊕% ;

(6) Search the look-up index table by m% , and set the index value of the cor-
responding item m% as the ciphertext iC , namely 1()

IC iT mφ−= % ;

(7) If i r= , iterate PWLCM with the initial value 0
ix to obtain a chaotic se-

quence with the length of N , permute the look-up index table in a similar way in
(1), and use the index item of the final look-up index table as the hash value of the
whole paragraph of plaintext, then the algorithm ends. Otherwise, update the
look-up index table to 1iϕ + （ see Section 2.2） , set 1i i= + ,

()0 / 2 / 2i n nx x m x m⎢ ⎥= + − +⎣ ⎦% % , and go to (3).

The detailed decryption process is as follows (see Fig.23(b)):

(1)-(4) are the same as the counterparts in the encryption process;
(5) Set)(~

iCi Tm ϕ= ;

(6) If i iP Q= , set 0
ix x= % and go to (3); if i iP Q< , the thi plaintext block is

1
~

−⊕= ii Cmm ; if
i iP Q> , the thi plaintext block is

ii Dmm ⊕= ~ ;

(7) This step is the same as (7) in the encryption process. When the algorithm
ends, the index item of the final look-up index table is considered as the corres-
ponding hash value.

2) Obtain the hash value (Update the look-up index table)
In order to obtain the hash value, two kinds of updating processes of the look-up
index table are necessary. The first kind of updating is within the processing of each

block of the plaintext. It is essentially transforming the old iϕ to the new 1iϕ + ,

where 1,i iϕ ϕ+ are both bijective maps between the plaintext space and the index
space. The detailed updating process is shown in Fig. 24. During the encryption of
each plaintext block, starting from

icT (the index item corresponding to the current

plaintext block in the look-up index table), the iQ –pair swapping rule with the

interval iP is as follows:

mod modiC N j NT T↔ ,
()mod () modi i iC P N j P NT T+ +↔ , ... ,

()mod ()modi i i i iC Q P N j Q P NT T+ × + ×↔ , where 2nN = , n is the length of each

198 D. Xiao, X. Liao, and S. Deng

0 01, ,ii x x→ ←
010,it C g→ ←

, ,i i iD P Q

0()it ix F x←%

i iP Q=
0
ix x← %

i iP Q<

1i im m C −← ⊕% i im m D← ⊕%

0
ix

it

m% iC

i r=

1iϕ +

1,i i= +

0
ix

 ()0 /2 /2i n nx x m x m⎢ ⎥= + − +⎣ ⎦% %

0 01, ,ii x x→ ←
010,it C g→ ←

, ,i i iD P Q

0()it ix F x←%

i iP Q=
0
ix x← %

i iP Q<

0
ix

it

i r=

1iϕ +

1,i i= +

0
ix

()i Cm Tϕ←%

1i im m C −← ⊕% i im m D← ⊕%

 ()0 /2 /2i n nx x m x m⎢ ⎥= + − +⎣ ⎦% %

(a) encryption process (b) decryption process

Fig. 23 Encryption/ decryption process

plaintext block, and
⎩
⎨
⎧

=+
≠+

=
0~1

0~~

mC

mmC
j

i

i . Assume that ()
i ii C CT Sϕ = , then after

updating,
1()

ii C jT Sϕ + = .

The second kind of updating is run after all the plaintext blocks have been
processed. Iterate PWLCM N -time (2nN = is the item number of the table) with

5 Chaos Based Hash Function 199

the current initial value 0
ix to obtain a chaotic sequence 0 1 1{ , , , , , }i Nx x x x −L L ,

turn the chaotic sequence 0 1 1{ , , , , , }i Nx x x x −L L into the corresponding integer

sequence 0 1 1{ , , , , , }i Ny y y y −L L by round operation, and then exchange the thi

index item with the corresponding th
iy one in turn.

The updating process of the look-up index table is closely related to the algo-
rithm key and the plaintext, which on the one hand ensures the algorithm security of
the encryption/decryption, on the other hand results in the fact that the obtain of the
look-up index table is determined by the content of the plaintext and different
plaintext leads to different final look-up index table. According to the definition of
one-way hash function, the index item of the final look-up index table can be used
as the hash value of the whole paragraph of plaintext. Therefore, it is certainly a
combined cryptographic and hash algorithm which keeps the remarkable characte-
ristic of Wong’s and our former algorithms to perform encryption/decryption and
hash in a combined manner.

0T

1T

M

M

CT

C PT +

M
M

jT

M
j PT +

M
2 1nT

−

0s

1s

M

M

Cs

C Ps +

M
M

js

M
j Ps +

M
2 1ns

−

0T

1T

M

M

CT

C PT +

M
M

jT

M
j PT +

M
2 1nT

−

C Ps +

M

M

M

M

M

M

j Ps +

2 1ns
−

Fig. 24 Update the look-up index table

7.3.2 Performance Analysis

In [29], series of strict performance analysis and simulations are carried out. Due to
page limitation, in this section, we only emphasize its unique performance and omit
the rest performance.

1) The ratio of ciphertext/plaintext
In this algorithm, the control character is generated by chaotic iteration. The
pre-process of plaintext is performed with the control character, and then the index
value of the item in the look-up index table corresponding to the “pre-processed

200 D. Xiao, X. Liao, and S. Deng

plaintext” is regarded as its ciphertext. Obviously, the ratio of ciphertext/plaintext is
constantly equal to 1, which is favorable for decreasing transmission burden and
lengthening the unicity distance.

2) Analysis of efficiency
For speed comparison among different algorithms, the numbers of the required
multiplicative operations for each ASCII character (8-bit) message during the hash
process are obtained. Since each multiplicative operation consumes much more
time than each additive operation, this kind of comparison is objective, in spite of
different implementing platforms.

Compared with Wong’s and our modified algorithms [14, 26], the proposed one
keeps the remarkable characteristic of performing encryption/decryption and hash
in a combined manner; moreover, it improves the efficiency greatly. The efficien-
cies of Wong’s and our former algorithms depend on the run-time and the
item-number of the look-up table. If the two parameters are set as 2 and 10 respec-
tively, and the minimum number of iteration is set as min 200T = , then over

800-time multiplicative operations are needed for encrypting an 8-bit plaintext
block. However, if our proposed algorithm are utilized to process a paragraph of
plaintext composed of r 8-bit blocks, only)/)2*(10(rN+ -time (N is the item

number of the table), namely slightly more than 10-time multiplicative operations
are needed for encrypting a 8=n -bit plaintext block. The efficiency is sharply
improved about 80-time.

8 Some Instructions on Chaos-Based Hash Function
Construction

Although there are already many chaos-based hash functions, the systematic ap-
proach to the design and security evaluation of chaos-based hash function is rare
[30]. Due to the lack of better dialogue between the chaos and cryptography
communities, the disobedience of the security principles or the mis-utilization of the
chaotic characteristics may result in insecure even naive design from cryptographic
point of view. In the following, let us briefly review the general method of one kind
of chaos-based hash functions firstly:

Step 1: Partition the pending message into a number of fixed-length processing
units and map them into decimal numbers by means of linear transform. In some
character-wise algorithms [12, 14], the processing unit includes 8 bits, and thus no
extra padding is needed. While in some block-wise algorithms [23, 25], the
processing unit includes some specific-length bits, such as 512, and thus the
pending message has to be padded in a correct manner that its length is a multiple of
a specific fixed-length.

Step 2: Choose a specific chaotic model, set its initial value and parameter as the
algorithm secret key and start iteration. Until now, various chaotic models have
been introduced into hash function construction, such as simple chaotic maps [11,
12, 14, 23], complex chaotic maps [16, 25] and chaotic neural networks [21, 22].

5 Chaos Based Hash Function 201

The message units processed in Step 1 are modulated into the chaotic iteration by
affecting the chaotic phase space, parameter space or iteration times.

Step 3: Choose several specific iteration values, transform them to the corres-
ponding binary format, extract some bits and juxtapose them to get the hash value.

From the above general construction method, we notice that the final hash value
is transformed from several iteration values which are chosen from a specific
chaotic orbit. If we set a certain initial iteration value and start iteration, a chaotic
orbit will be obtained. However, if we choose other obit values from the above
chaotic orbit as the new initial iteration value and start iteration, the same orbit will
occur definitely. Therefore, it is possible for a carelessly designed chaos-based hash
function to result in a collision problem. In order to securely construct one-way
hash function based on chaotic map, it is necessary for us to summarize some at-
tentions and borrow some principles from classic cryptography. They are listed as
follows:

1) It is better to modulate the message into the chaotic parameter space rather
than the phase space or iteration times.

2) If the pending message has to be padded, not only the repeated “1” or “0” bit,
but also some information about the original message needs to be included. For
example, a very standard way to have padding for hash function is appending 1
followed by a suitable size sequence of 0 and binary representation of length, which
is used in the traditional hash function MD5 or SHA. Actually, there are some
specific researches on suffix-free padding rules for hash function.

3) The iteration mode of the above chaos-based hash functions is similar to the
well-known DM scheme. Therefore, chaos-based hash function can borrow some
principles from DM scheme. In chaos-based hash function, the processing of a
specific message unit should be related to that of its next message unit to some
extent. To meet this rule, the iteration result of the previous message unit is usually
used as the initial iteration value of the next message unit. This is a kind of se-
quential realization mode. Sometimes, if the high efficiency is highly desired, the
order of each message unit can be utilized to introduce the connection among blocks
as we have done in [23, 24]. By this way, a parallel mode is realized.

4) The constructions should give information about the performance of the
proposed functions. Any crypto-primitive author should obligatorily give experi-
mental measurements of his crypto-function. For example, the speed is measured in
cycles/byte, or in Kbps, Mbps, Gbps. Other characteristics of the hash function are
also good to know: How much memory is needed? Is it possible to be parallelized?
Is it possible to be implemented in hardware, in RFID, etc.?

5) To make it easy for someone to repeat (or implement) the proposed design, the
proposed functions should give clearly the test vectors and reference code (usually
in pseudocode).

202 D. Xiao, X. Liao, and S. Deng

Acknowledgements

The work described here was supported by the National Natural Science Foundation of China
(Grant Nos. 60873201, 60973114, 61070246) and the Program for New Century Excellent
Talents in University of China (Grant No.NCET-08-0603).

References

1. Schneier, B.: Applied Cryptography, 2nd edn. Wiley, New York (1996)
2. Stallings, W.: Cryptography and Network Security: Principles and Practice. Prentice

Hall, New Jersey (1999)
3. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions MD4

and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. Eurocrypt, pp.
1–18. Springer, Heidelberg (2005)

4. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

5. Chen, Z., Huang, Y.: Chaotic one way hash function. Communications Technology (7),
96–98 (2001) (in Chinese)

6. Liu, J., Xie, J., Wang, P.: One way hash function construction based on chaotic map-
pings. Journal of Tsinghua University (Sci. & Tech.) 40(7), 55–58 (2000) (in Chinese)

7. Wang, J., Wang, Y., Wang, M.: The collision problem of one kind of methods for con-
structing one-way Hash function based on chaotic map. Acta Physica Sinica 55(10),
5048–5054 (2006) (in Chinese)

8. Wang, X., Zhang, J., Zhang, W.: One way hash function construction based on the ex-
tended chaotic maps switch. Acta Physica Sinica 52(11), 2737–2742 (2003) (in Chi-
nese)

9. Kwok, H., Tang, W.: A Chaos Based Cryptographic Hash function for Message Au-
thentication. International Journal of Bifurcation and Chaos 15(12), 4043–4050 (2005)

10. Deng, S., Li, Y., Xiao, D.: Analysis and improvement of a chaos-based Hash function
construction. Communications in Nonlinear Science and Numerical Simulation 15(5),
1338–1347 (2010)

11. Yi, X.: Hash function based on the chaotic tent map. Transactions on Circuits and
Systems 52(6), 354–357 (2005)

12. Xiao, D., Liao, X., Deng, S.: One-way Hash function construction based on the chaotic
map with changeable-parameter. Chaos Solitons & Fractals 24(1), 65–71 (2005)

13. Baranousky, A., Daems, D.: Design of one-dimensional chaotic maps with prescribed
statistical properties. International Journal of Bifurcation and Chaos 5(6), 1585–1598
(1995)

14. Wong, K.: A combined chaotic cryptographic and hashing scheme. Physics Letters
A 307, 292–298 (2003)

15. Peng, F., Qiu, S., Long, M.: One-way Hash function construction based on
two-dimensional hyper-chaotic mappings. Acta Physica Sinica 54(10), 4562–4568
(2005) (in Chinese)

16. Wang, S., Hu, G.: Hash function based on chaotic map lattices. Chaos 17, 023119
(2007)

17. Wang, Y., Liao, X., Xiao, D.: One-way hash function construction based on 2D coupled
map lattices. Information Sciences 178(5), 1391–1406 (2008)

5 Chaos Based Hash Function 203

18. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a
time series. Physica D 16, 285–317 (1985)

19. Li, H., Feng, D.: Composite nonlinear discrete chaotic dynamical systems and keyed
hash function. Chinese Journal of Computers 26(4), 460–464 (2003) (in Chinese)

20. Liu, G., Shan, L., Dai, Y., Sun, J., Wang, Z.: One-way Hash function based on based on
chaotic neural network. Acta Physica Sinica 55(11), 5688–5693 (2006) (in Chinese)

21. Wang, J., Wang, M., Wang, Y.: The collision of one keyed hash function based on
chaotic map and analysis. Acta Physica Sinica 57(5), 2737–2742 (2008) (in Chinese)

22. Lian, S., Sun, J., Wang, Z.: Secure hash function based on neural network. Neuro-
computing 69, 2346–2350 (2006)

23. Xiao, D., Liao, X., Deang, S.: Parallel keyed hash function construction based on
chaotic maps. Physics Letters A 372(26), 4682–4688 (2008)

24. Xiao, D., Liao, X., Wang, Y.: Improving the security of a parallel keyed hash function
based on chaotic maps. Physics Letters A 373(47), 4346–4353 (2009)

25. Zhang, J., Wang, X., Zhang, W.: Chaotic keyed hash function based on feedfor-
ward–feedback nonlinear digital filter. Physics Letters A 362, 439–448 (2007)

26. Xiao, D., Liao, X., Wong, K.: Improving the security of a dynamic look-up table based
chaotic cryptosystem. IEEE Transactions on Circuits and Systems 53(6), 502–506
(2006)

27. Baptista, M.: Cryptography with chaos. Physics Letters A 240, 50–54 (1998)
28. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of dynamic look-up

table based chaotic cryptosystems. Physics Letters A 326, 211–218 (2004)
29. Deng, S., Li, Y., Xiao, D.: A novel combined cryptographic and hash algorithm based on

chaotic control character. Communications in Nonlinear Science and Numerical Simu-
lation 14(11), 3889–3900 (2009)

30. Xiao, D., Liao, X., Wang, Y.: Collision analysis of one kind of chaos-based hash func-
tion. Physics Letters A 374(10), 1228–1231 (2010)

Chapter 6

Chaos-Based Video Encryption
Algorithms

Zhaopin Su1, Shiguo Lian2, Guofu Zhang1, and Jianguo Jiang1

1 School of Computer and Information, Hefei University of Technology, China
szp@hfut.edu.cn

2 France Telecom R&D Beijing, China
shiguo.lian@ieee.org

1 Introduction

In recent years, with the development of network technology and multime-
dia technology, multimedia data, especially video data, are used more and
more widely in human society. Some multimedia data applied in entertain-
ment, politics, economics, militaries, industries or education, etc., are nec-
essary to be protected by providing confidentiality, integrity, and ownership
or identity. To protect video contents, cryptology, which appears to be an
effective way for information security, has been employed in many practi-
cal applications[1][2][3]. However, traditional ciphers like DES [4], IDEA [5],
RSA[6] and AES[7], are often used for text or binary data, while not suitable
for direct video encryption because of the following reasons.

Firstly, as digital videos are usually very large-sized and bulky, encrypting
such bulky data with traditional ciphers incurs significant overhead, and it is
too expensive for real-time video applications, which require real-time opera-
tions,such as displaying, cutting, copying, bit-rate control or recompression.

Secondly, in the case of digital videos, consecutive frames are similar and
most likely only few pixels would differ from frame to frame, and such an ex-
tremely high data redundancy makes the conventional ciphers fail to obscure
all visible information [8].

Additionally, for many practical applications, we would like to have very
light encryption that preserves some perceptual information. For example, in
a pay-per-view video system [9], a degraded but visible content could poten-
tially influence a consumer to order certain paid services. This is impossible
to achieve with traditional ciphers alone, which most likely degrades the data
to a perceptually unrecognizable content.

Very recently, an increasing attention has been devoted to the usage of
chaotic theory [10][11][12][13][14][15][16] to implement the encryption pro-
cess. The main advantage of such encryption lies in the observation that a
chaotic signal looks like noise for non-authorized users ignoring the mecha-
nism for generating it. Secondly, time evolution of the chaotic signal strongly

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 205–226.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

szp@hfut.edu.cn
shiguo.lian@ieee.org

206 Z. Su et al.

depends on the initial conditions and the control parameters of the generat-
ing functions: slight variations in these quantities yield quite different time
evolutions. In other words, this means that initial states and control param-
eters can be efficiently used as keys in an encryption system. What’s more,
generating of chaotic signal is often of low cost, which makes it suitable for
the encryption of large bulky data[17].

Due to these recognized potential benefits, chaos-based video encryption
algorithms are of high interest up to now, and have made great progress. This
chapter focuses on chaos-based video encryption algorithms, by reviewing
different types of works, investigating the state of the art progress, analyzing
the performance evaluation and comparison, and presenting some challenges
and open issues.

The organization of this chapter is as follows. In Section 1, backgrounds
of chaos-based video encryption algorithms are given. Some requirements of
video encryption are described in Section 2. Section 3 introduces the common
video coding standards. Section 4 is a comprehensive review on today’s chaos-
based video encryption technology of different types. Section 5 and Section
6 compares and discusses the algorithms listed in Section 4, respectively.
Some open issues and challenges are presented in Section 7. The last section
concludes the chapter.

2 Some Requirements of Video Encryption

Due to some characteristics of digital video, such as large data volumes, high
redundancy, interactive operations, and real-time responses, an ideal video
encryption algorithm should satisfy some requirements.

1) Security: for video encryption, security is the primary requirement. Gen-
erally speaking,an encryption algorithm is regarded as secure if the cost for
cracking it is no smaller than the one paid for the authorization of video
content. For example,in broadcasting,the news may be of no value after an
hour.Thus,if the attacker can not break the encryption algorithm during an
hour, then the encryption algorithm may be regarded as secure in this appli-
cation [18]. Therefore, the usage of chaotic maps in video encryption should
guarantee the security of a video.
2) Invariance of compression ratio and constant bit rate: In some applica-
tions, it is required that the encryption transformation preserves the size of
video data, which is called invariance of compression ratio. An algorithm
with invariance of compression ratio can maintain the same storage space or
transmission bandwidth, which is called constant bit rate. Sometimes, the
encryption stage is allowed to slightly increase the size of a bit stream. In
this case,video encryption algorithms should not change compression ratio or
at least keep the changes in a small range.
3)Format compliance: In many applications, video data are often encoded or
compressed before transmission, which produces the data streams with some

6 Chaos-Based Video Encryption Algorithms 207

format information. The format information will be used by the decoder to
recover the video data successfully. It is desired that the encryption algo-
rithm preserves the multimedia format. In other words, after encrypting the
encoded multimedia, ordinary decoders can still decode it without crashing.
This property of an encryption algorithm is often called format compliance.
When feeding the decoder with the format compliant encrypted data, the
produced output seems distorted and randomized[8]. Generally, encrypting
the data except the format information will keep the multimedia format.
This will support some direct operations (e.g., decoding, playing, bit-rate
conversion, etc.) and improve the error robustness in some extent.
4) Transmission error tolerance: Since the real-time transport of video data
often occurs in noisy environments, which is especially true in the case of wire-
less channels [19][20], the delivered video is prone to bit errors. So, a perfect
video encryption algorithm should be insensitive and robust to transmission
errors.
5) Demand of real-time: As the demand of real-time of the video transmission
and access, encryption and decryption algorithm can not bring much delay to
transmission and access. Therefore, the encryption and decryption algorithm
must be fast enough to meet the requirements of real-time video applications.
6) Multiple levels of security: A user may be willing to sacrifice some de-
gree of security for the ability to perform more complex video processing. A
given cryptosystem provides a certain level of security. Most available cryp-
tographic systems are fully or partially scalable, in the sense that one can
choose different security levels. Scalability is usually achieved by allowing
variable key sizes or by allowing different number of iterations, or rounds. A
higher level of security is achieved with larger key sizes or larger number of
rounds[21][22].
7) Low overhead: Encryption techniques should have minimal overhead in
terms of bandwidth requirements and processing power. A low overhead en-
cryption algorithm will provide the end hosts with as much processing power
for ensuring high quality video presentation to the user[8]. In addition, provid-
ing a secure stream should not significantly increase the bandwidth required
to transmit it.
8) Allow degradation: For transmission of secure video streams, the user may
be willing to accept a certain degree of degradation in quality in order to
achieve a reasonable transport cost for the video session. When degradation
is applied to a multimedia content, the content is usually still perceptible to
some degree[8]. For instance, in some applications, such as video on demand,
database search, etc., it could be desirable to encourage customers to buy the
content. For this purpose, one may still see the objects in a degraded video,
but the visual quality should be unacceptable for entertainment purposes, so
that he prefers to pay to access the full-quality unencrypted content.

208 Z. Su et al.

3 Some Video File Formats

Due to the huge size of digital videos, they are usually transmitted in com-
pressed formats such as MPEG-x or H.26x. In this section, we will introduce
some of them in brief.

3.1 MPEG-x

MPEG (Moving Picture Experts Group) compression standards[23] compress
data to form small bits that can be easily transmitted and then decompressed.
MPEG achieves its high compression rate by storing only the changes from
one frame to another, instead of each entire frame. The video information
is then encoded using a technique called Discrete Cosine Transform (DCT).
MPEG uses a type of lossy compression, since some data are removed. But
the diminishment of data is generally imperceptible to the human eye. MPEG
has standardized the following compression standards [23]:

MPEG-1[24]: MPEG-1 is the first MPEG compression standard for audio
and video. It was basically designed to allow moving pictures and sound to
be encoded into the bit-rate of a Compact Disc. It is used on Video CD,
SVCD and can be used for low-quality video on DVD Video. It was used
in digital satellite/cable TV services before MPEG-2 became widespread. To
meet the low bit requirement, MPEG-1 downsamples the images, as well as
uses picture rates of only 24-30 Hz, resulting in a moderate quality.

MPEG-2[25]: MPEG-2 offers resolutions of 720x480 and 1280x720 at 60
fps (frames per second), with full CD-quality audio. This is sufficient for all
the major TV standards, including NTSC, and even HDTV. MPEG-2 is used
by DVD-ROMs. MPEG-2 can compress a 2 hour video into a few gigabytes.
While decompressing an MPEG-2 data stream requires only modest com-
puting power, encoding video in MPEG-2 format requires significantly more
processing power.

MPEG-3[26]: Was designed for HDTV but was abandoned in place of using
MPEG-2 for HDTV.

MPEG-4[27]: is a graphics and video compression algorithm standard that
absorbs many of the features of MPEG-1 and MPEG-2 and other related stan-
dards, and uses further coding tools with additional complexity to achieve
higher compression factors than MPEG-2. MPEG-4 files are designed to
transmit video and images over a narrower bandwidth and can mix video
with text, graphics and 2-D and 3-D animation layers.

6 Chaos-Based Video Encryption Algorithms 209

3.2 H.26x

H.26x family is video compression coding standard in the domain of the
ITU-T Video Coding Experts Group (VCEG), and consists of the following
standards:

H.261[28]: H.261 was originally designed for transmission over ISDN (Inte-
grated Services Digital Network) lines on which data rates are multiples of 64
kbit/s. The coding algorithm was designed to be able to operate at video bit
rates between 40 kbit/s and 2 Mbit/s. The standard supports two video frame
sizes: CIF (352x288 luma with 176x144 chroma) and QCIF (176x144 luma
with 88x72 chroma) using a 4:2:0 sampling scheme. It also has a backward-
compatible trick for sending still picture graphics with 704x576 luma resolu-
tion and 352x288 chroma resolution.

H.262[29]: is the second part of the MPEG-2 standard.
H.263[30]: originally designed as a low-bitrate compressed format for video-

conferencing and developed as an evolutionary improvement based on expe-
rience from H.261, MPEG-1 and MPEG-2 standards.

H.264[31]: is a block-oriented motion-compensation-based codec standard,
and contains a number of new features that allow it to compress video much
more effectively than older standards and to provide more flexibility for ap-
plication to a wide variety of network environments. H.264 is used in such
applications as players for Blu-ray Discs, videos from YouTube and the iTunes
Store, web software such as the Adobe Flash Player and Microsoft Silverlight,
broadcast services for DVB and SBTVD, direct-broadcast satellite television
services, cable television services, and real-time video conferences.

4 Chaos-Based Video Encryption Algorithms

In the past decade, chaos-based video encryption has been a topic of great
interest. According to the relation between compression process and encryp-
tion, these proposed algorithms can be classified into two types: encrypting
the raw video data, and encrypting the video data in compression process.

4.1 Encrypting the Raw Video Data

This type of chaos-based video encryption algorithm encrypts the raw video
data directly with chaotic maps. Among them, some encrypt the raw data
completely without considering region-of-interest, [32][33][34][35][36] and some
consider the region-of-interest partially or selectively [41][42].

4.1.1 Encryption without Considering Region-of-Interest

Encryption without considering interest regions means to encrypt the video
data as binary large objects, pixels, or sets of frames, without taking into con-

210 Z. Su et al.

Original

Image

 of a

video

r phase

g phase

b phase

random phase

Scrambled r

phase

Scrambled g

phase

Scrambled b

phase

Scrambled

image

Fig. 1 Phase scrambling methods

sideration video objects or any other kind of regions of semantic information.
Thus, it treats the regions fairly without special considerations.

Li et al [32] proposed a chaotic video encryption scheme (CVES) based
on multiple digital chaotic systems, which is independent of any video com-
pression algorithms. In CVES, video data is encrypted frame by frame. First,
each plain-block is first XORed by a chaotic signal pseudo-randomly gen-
erated from chaotic maps based on perturbation-based algorithm [37], and
then substituted by a pseudo-random S-box generated from all chaotic orbits
of the chaotic maps. Their detailed analysis have shown that CVES has fair
speed and security, and can be realized easily by both hardware and soft-
ware. Furthermore, CVES can be easily extended to other real-time secure
applications.

Ganesan et al [33] described a public key encryption (PKE) of images and
videos based on chebyshev maps, shown as Eq. (1) [38]. In the work, videos in
simple terms are considered as a collection of images, and each video is made
up of frames and each frame is like a still image. Encrypting video is equal to
encrypting each frame by Arnold scrambling [39]. If in a video, the number
of frames is too large, the authors propose the use of Phase Scrambling [40]
for video encryption instead of Arnold scrambling. The method of Phase
Scrambling (See Fig. 1) adds the same random phase structure to the original
r, g and b phase structures respectively to randomize the phase of the r, g
and b layers of an image. The scrambling operation’s security is not high
enough to resist known-plaintext or select-plaintext attacks.⎧⎨

⎩
Tn(x) = 2 · x · Tn−1(x) − Tn−2(x), n ≥ 2
T0(x) = 1
T1(x) = x

(1)

Kezia et al [34] also treated video data as a set of frames, and used a high
dimensional Lorenz chaotic system to encrypt each frame by confusing the
position of the pixels (hence called LCS). If the frames are large in size, then
it is broken into macro-blocks for the encryption. Moreover, their concept
of multi-key based on logistic map, whose values cannot be predicted in the
long-run, is also employed where each frame is encrypted by a unique key

6 Chaos-Based Video Encryption Algorithms 211

instead of changing the key for a particular number of frames. The position
confusion operation is weak when it is used alone for data encryption.

Mao et al[35] and Lian et al. [36] first extended the standard two-
dimensional baker map to a three-dimensional setting, then constructed a
fast and secure encryption scheme (FSES) (see Fig. 2). In their scheme, to
make known-plaintext attack infeasible, an XOR plus modulo (mod) opera-
tion (see Eq. (2)) is inserted between every two adjacent rounds of chaotic
map based confusion. This kind of scheme combines confusion and diffusion,
and aims to obey traditional block cipher’s principles.

C(k) = φ(k)⊕ {[I(k) + φ(k)] mod N} ⊕ C(k − 1) (2)

An image

of a video

pile up

to 3D

3D

Baker

Map

diffusion
spread

out to 2D

Encrypted

image

Key 1 Key 2

Fig. 2 Encryption scheme based on 3D baker map

The chaos-based video encryption algorithms mentioned above deal with
video data as binary large objects, pixels, or sets of frames, without taking
into account of regions-of-interest. These regions may need better protection
or can be the only regions that need protection, depending on the practical
applications.

4.1.2 The Encryption Considering Regions-of-Interest

Generally speaking, for the video data, a region of interest means human
video objects or any other kind of regions of semantic information. In many
practical applications, it is not necessary or suitable to encrypt all video data,
while just regions of interest. In this issue, researchers have proposed some
encryption algorithms.

Tzouveli et al. [41] proposed a human video object encryption system
(HVOE) based on the chaotic logistic map (see Fig. 3). In their system,
face regions are first efficiently detected, and afterwards body regions are
extracted using geometric information of the location of face regions. Then,
the pixels of extracted human video objects are encrypted using an iterative
cipher module, which is based on logistic map and a feedback mechanism
responsible for mixing the current encryption parameters with encrypted in-
formation of the previous step. The encryption of each plain pixel depends on
the key, the value of the previous cipher pixel and the output of the logistic
map. This method can save a great amount of computational resources and
time devoted for encrypting the whole contents of a video file. This method’s

212 Z. Su et al.

Original

image

 of a video

Face

detection

Body

extraction

Each pixel

of the body

iterative cipher

module

Key

+
Encrypted

pixel
Encrypted

image

Fig. 3 Human video object encryption system

security depends on the chaotic sequence’s randomness and the detection of
face region.

Ntalianis et al.[42] proposed a video object based chaotic encryption sys-
tem (VOCE) (Fig. 4). Initially, stereoscopic pairs are analyzed and video
objects are automatically extracted based on the appropriate fusion of color
information according to depth constraints. Next, for each video object, mul-
tiresolution decomposition is performed and the pixels of the lowest resolu-
tion level are encrypted using a chaotic cipher module combining a simple
chaotic stream cipher and two simple chaotic block ciphers (with time vari-
ant S-boxes) to implement a complex product cipher. Finally, the encrypted
regions are propagated to the higher resolution levels and the encryption
process is repeated until the highest level is reached. The system presents
robustness against known cryptanalytic attacks, enables layered access of
multimedia content and the overall security can be enhanced due to region
topology. This scheme’s security depends on the encryption algorithm and
the video object detection.

Encrypting the raw video data before encoding or compression process
removes a lot of redundancy, which results in a very poor compression ratio.
Additionally, it changes video data format, so that the encrypted video cannot

Original

image

 of a video

video

object

extraction

multiresolution

decomposition

pixels of the lowest

resolution level

chaotic

pseudo-random

bit generator

Keys

chaotic stream

cipher 1

chaotic block

cipher 1

chaotic block

cipher 2

encrypted

regions

Full

resolution

YesNo encrypted

image

Fig. 4 Chaos-based video object encryption system in [42]

6 Chaos-Based Video Encryption Algorithms 213

be displayed without decrypting it firstly. So, some researchers have proposed
that the encryption should be implemented in compression process.

4.2 Encrypting the Video Data in Compression
Process

Encrypting the video data in compression process means realizing encryption
in the encoding process before entropy coding, i.e. CAVLC(Context-adaptive
variable-length coding), CABAC(Context-adaptive binary arithmetic cod-
ing), VLC(variable length coding), RLC(run length coding), Golomb, Huff-
man, etc. Till now, some algorithms have been proposed for MPEG, and some
for H.26x.

4.2.1 Encryption for MPEG

For MPEG, the representative works are done by Yang et al [43], Lian et al.
[44][45] and Hamdi et al. [46].

Yang et al. [43] used double coupling logistic maps (shown as Eq. (3)) to
scramble the DCT coefficients of every I-frame of the video, and then used
another chaotic map (shown as Eq. (4)) to encrypt the DCT coefficients of
the scrambled I-frame (hence called DCLM). The process of encryption is
shown in Fig. 5. In the whole process, five keys are introduced, and the key
space is large, which makes brute-force attack difficult. Moreover, as I-frames
do not refer to any other frame and are the beginning of decoding, their
changes can greatly influence the B-frames and P-frames, which makes the
DCLM effective in video protection. Besides, DCLM, only encrypting the
DCT coefficients of I-frames, brings little consumed time, and is feasible for
real-time applications. However, considering that there are some macro blocks
in B-frame or P-frame, which are encoded without referring to I-frame, these
blocks will be left unencrypted. Thus, some video contents may be intelligible,
and thus the encryption scheme is not secure enough.{

xn+1 = μxxn(1− xn)
yn+1 = μyyn(1− yn)

(3)

x(i + 1) = 1− μx2(i) (4)

Lian et al. [44] constructed an efficient image/video encryption scheme
(EES) based on 2D coupled map lattice (CML) [47], which is a kind of spa-
tiotemporal chaos. The chaotic lattices are used to generate pseudo-random
sequences and then encrypt some sensitive parameters during the video com-
pression process. For example, for MPEG2 videos, only the intra-blocks in
each frame are encrypted. Fig. 6 gives the architecture of the encryption
scheme. In compression, after pre-encoding (i.e., color space transformation),

214 Z. Su et al.

DCT

coefficients of

each I-frame

DCT coefficients

of scrambled

 I-frame

double coupling

logistic maps

+
encrypted

I-frame

chaotic map

+

Fig. 5 The video encryption in [43]

block partitioning (each block is in 88 size), DCT transformation and quanti-
zation, the blocks are encrypted by the proposed cipher one by one, and the
cipher-blocks are then post-encoded (i.e., zig-zag scan and VLC). The pro-
posed scheme satisfies the requirement of secure encryption principles, the
encrypted videos are secure in perception, the encryption operation does not
change the compression ratio apparently, and increases little computational
cost compared with video compression. The scheme’s cryptographic security
depends on the randomness of the chaotic sequences generated by 2D coupled
map lattice.

Pre-encode
Original

video

block

partition

DCT transformation

+ quantization

block encryptionPost-encode
encrypted

video

Fig. 6 Architecture of the encryption scheme

Lian et al. [45] presented a video encryption algorithm which combines
encryption process with MPEG-2 encoding process (hence called VEM2). In
the algorithm, I-frame, B-frame and P-frame of MPEG-2 video are encrypted
with different methods, respectively. That is, for I-frames, the macroblocks
are inter-permuted by color-plane confusion. For each intra-macroblock, the
DCT coefficients are permuted by coefficient confusion. The DCT coefficients’
signs of each intra-macroblock and motion vectors of each inter-macroblock
are modulated by chaotic sequence generated by the chaotic sequence gener-
ator proposed in [48]. All these encryption processes are controlled by a key
generation and distribution system based on Logistic map [49]. The analysis
and experiments have shown that the VEM2 is secure against brute-force
attack and known-plaintext attack. Moreover, the VEM2 is of low compu-
tational complexity, costs little time, supports direct bit-rate control and is
more robust to transmission errors.

6 Chaos-Based Video Encryption Algorithms 215

In addition, Hamdi et al. [46] also proposed a progressive Chaotic Video
Encryption Scheme (PCVE) for MPEG-4 coding. In their scheme, multi-
dimensional chaotic maps [50] are used to build chaotic multi-resolution trans-
forms, which can introduce randomness in the selection of wavelet filters and
de-correlate the video data. The major advantage of PCVE is that a client
can access to multiple resolutions of the streamed video. These resolutions
vary according to the security level of the client as well as the networking
and processing capabilities. Moreover, the PCVE may be secure against sta-
tistical attacks and known-plaintext cryptanalysis. Additionally, it is of low
computational complexity, and does not affect the compression performance
ensured by the MPEG-4 coder. Besides, The bit rate control functionality
makes it compatible with video transmission in wireless networks.

4.2.2 Encryption for H.26x

For H.26x, the representative works are done by Jian et al [51] and Chiaraluce
et al. [52].

For H.263, Jian et al [51] proposed chaos-based encryption algorithm (CBEA)
for the H.263 video-conference coding standard. A sawtooth-like chaotic map
is first used to generate a pseudo-random bit sequence(PRBS). Then, accord-
ing to the PRBS, all of the DC coefficients, part of the AC coefficients of I
blocks as well as Motion Vectors (MVs) are encrypted in the video coding. The
full encryption algorithm is shown in Fig. 7, where the cipher operations have
been seamlessly integrated into the H.263 encoding process, i.e., before RLC
and packaging. Although the encryption processing doesn’t interfere the mo-
tion features of the videos, the algorithm may introduce slight computational
overhead and slight data inflation in video encoding. The scheme’s security
depends on the chaotic sequence’s randomness.

Entropy

coding

encryptionDCT+quantization
Video

data

PRBS

Motion estimation encryption

Zig-Zag scan

+RLC Encoded

stream

Fig. 7 Chaos-based encryption algorithm in [51]

Chiaraluce et al. [52] presented a selective encryption algorithm (SEA) for
the H.263+ videos, which employs suitably arranged three different chaotic
functions (see Fig. 8) to encrypt the video data selectively. In Fig. 8, video
data include the most significant bit in the DC coefficients of DCT (Discrete
Cosine Transform), the AC coefficients of I-MB’s (Intra MacroBlocks), the
sign bit of the AC coefficients of the PMB’s (Predicted MacroBlocks) and the

216 Z. Su et al.

sign bit of the Motion Vectors. And CM1 is the skew tent map [53], CM2 is
a saw-tooth likewise map [54], and CM3 is the logistic map [49]. The outputs
of the CM1 and CM2 are added, and then the addition is scaled to be an
integer between 0 and 255. Each scaled integer is used as the initial condition
of the third map to generate a 64-size key stream to mask the plaintext with
XOR operation. In order to increase the security level against known/chosen-
plaintext attacks, it was suggested to change the key every 30 frames. The
algorithm introduces a modest delay, offers good security and the ability to
reconstruct perfectly the image, and gets a good compromise between the
need to improve security while maintaining a limited additional processing
time. These properties make it suitable for video applications that have real
time or almost real time requirements.

CM1

Initial

state

scaling CM3

XOR

control

parameter

CM2

Initial

state

control

parameter

+ +

Video data

Encrypted

video stream

Fig. 8 Block diagram of the encryption diagram in [52]

4.3 Encrypting the Compressed Video Data

Encrypting the compressed video data means realizing encryption after
entropy-encoding and before package. The representative works are done by
Lian et al.[55][56] and Qian et al. [57].

Lian et al. [55] constructed a chaotic stream cipher with random feedback
mode based on a discrete piecewise linear chaotic map [58], and then en-
crypted both the intra-macroblocks (all the macroblocks in I-frame and some
intra-encoded macroblocks in P/B-frame) and the motion vectors’ signs seg-
ment by segment (hence called CSCF), which is shown in Fig. 9. The whole
encryption process is achieved after VLC and before packaging. The encryp-
tion scheme is of high key sensitivity, secure in perception, format compliant,
and error robust. Besides, the encryption/decryption process does not affect
the compression/decompression process greatly. The cryptographic security
depends on the chaotic sequence’s randomness.

In [56], a fast video encryption scheme is proposed combining with MPEG-
4 codec (hence called VEM4). In the scheme, the file format information, such
as file header, packet header, and so on, are left unencrypted in order to sup-
port such operation as bit-rate control; the motion vectors, subbands, code
blocks or bit-planes are partially encrypted by a stream cipher based on a

6 Chaos-Based Video Encryption Algorithms 217

encode
Original

video

intra-macroblocks+

motion vectors' signs
encryption

pseudo-random

sequence generator

chaotic stream cipher

package
encrypted

video stream
VLC

Fig. 9 Encryption scheme in [55]

modified chaotic neural network [59][60][61][62]. Moreover, for each encoding-
pass, the chaotic binary sequence is generated from different initial-condition
based on logistic map. Thus, if one encoding-pass cannot be synchronized be-
cause of transmission errors, the other ones can still be decrypted correctly.
The encryption scheme is of high security in perception, of low computation
complexity, and secure against brute-force attack, statistic attack or differ-
ential attack. And it keeps compression ratio and file format unchanged,
supports direct bit-rate control, and keeps the error-robustness unchanged.
The scheme’s cryptographic security depends on the chaotic sequence’s ran-
domness.

Qian et al. [57] proposed a multiple chaotic system (MCS) for MPEG-2
which combines the partial encryption with block permutation and confu-
sion. In their system, three chaotic or hyperchaotic maps, namely Logis-
tics Map [63], 2-D Baker Map [64] and 4-D hyperchaotic Map [65], are in-
troduced for stream partial encryptions, block permutation, confusion after
block permutation, respectively. Moreover, stream ciphers encrypt only DC
coefficients by XOR operation after DCT and quantization when compressing
the video data, and block permutation and confusion are carried out after the
video compression, respectively (See Fig. 10). The algorithm is secure, effi-
cient, and of low computational complexity. Besides, it nearly brings no data
expansion.

confusion
Partial

encryption
DCT permutationcompression

Encoded

stream

A frame of

Video data

Fig. 10 multiple chaotic system in [57]

5 Performance Evaluation

Some performances are often considered to evaluate a video encryption
scheme, e.g., security analysis, encryption speed, compression ratio and error
robustness.

218 Z. Su et al.

5.1 Security Analysis

Security of an algorithm is generally evaluated by the perceptual experiments,
key apace analysis, key sensitivity analysis, and the ability against attacks.

The perceptual experimental result is achieved by a group of comparison
between frames of the original video and those of the encrypted one. Be-
sides, some works decrypt the encrypted video to examine the effects of their
encryption.

Key space of an encryption algorithm is generally defined as the number
of encryption/decryption key pairs that are available in the cryptosystem.
Assume ki denotes a key and K represents a finite set of possible keys, the key
space can be expressed as K = {k1, k2, ..., kr}, where r is the number of key.
To make brute-force attack infeasible, the size of key space should be large
enough. For chaos-based encryptions, the chaotic sequence generator should
produce chaotic ciphers with good randomness, which can be tested by long
period, large linear complexity, randomness and proper order of correlation
immunity [67].

Key sensitivity of a chaotic cipher refers to the initial states sensitivity
and control parameters sensitivity of chaotic map. A typical key sensitivity
test is performed according to the following steps: First, assume a frame of
a video is encrypted by using the key ”K1=0123456789”. Then, the same
frame is encrypted by using the key ”K2=1123456789”, which changes the
least significant bit of K1. Finally, the above two encrypted frames, encrypted
by K1 and K2 respectively, are compared, and cross-correlation curve between
the two encrypted frames is analyzed.

A good cipher can avoid potential attacks. In general, brute-force attack is
analyzed by key apace analysis. Known-plaintext attack and chosen-plaintext
attack can be tested by comparing the original frame of a video and the
decrypted one. Differential attack test can be achieved through measuring the
percentage p of different pixel numbers (see Eq. (5) and Eq. (6)) between two
encrypted images, I1 and I2 (the width and height is W and H , respectively),
whose corresponding plain-images have only one pixel’s difference.

p =

∑
i,j

D(i, j)

W ·H · 100%, i = 0, 1, · · · , W − 1j = 0, 1, · · · , H − 1 (5)

D(i, j) =
{

0, I1(i, j) = I2(i, j)
1, otherwise (6)

5.2 Encryption Speed Test

The encryption time is tested in three manners: absolute encryption time,
relative encryption time ratio, and computation complexity analysis. Abso-
lute encryption time refers to the assumed time for encrypting a video, and

6 Chaos-Based Video Encryption Algorithms 219

its measuring unit is second. Relative encryption time ratio refers to the time
ratio between encryption and compression. Computation complexity of an
encryption scheme depends on the cost of the chaos-based cipher and the
video data volumes to be encrypted.

If the computational cost or assumed time of a video encryption scheme is
very little compared with video compression, it is considered to be suitable
for real-time applications.

5.3 Compression Ratio Test

In general, the compression ratio is tested by comparing the original com-
pressed data volumes and encrypted and compressed data volumes. Consider-
ing that the compression coder often produces the data stream with a given
bit-rate, the compression ratio test may be measured by the video quality
under certain bit rate. The common measurement of video quality is PSNR
(Peak Signal-to-Noise Ratio) shown as Eq. (7) and Eq. (8), where B is sam-
pling frequency, I and I ′ represent an original mn frame and the encrypted
one, respectively.

PSNR = 10 · log10

(
(2B − 1)2

MSE

)
(7)

MSE =
1

m · n ·
m−1∑
i=0

n−1∑
j=0

[I(i, j)− I ′(i, j)]2 (8)

5.4 Error-Robustness Test

If an encryption scheme does not change file format, and a slight change in
one pixel does not spread to others, it is of lower sensitivity to transmission
errors.

The general test method for error-robustness is analyzing the relationship
(usually expressed by a curve) between the quality PSNR of the decrypted
frames and the number of bit-error happened in the encrypted frames. Be-
sides, error-robustness can be tested through correct decryption of an en-
crypted video, even if a frame is corrupted or lost in its transmission.

6 Performance Comparison

In this section, we compare the performance of different encryption algo-
rithms mentioned above. Here, various aspects listed in Section 2 are consid-
ered, and contrast results are shown in Table 1.

220 Z. Su et al.

Table 1 Comparison of chaos-based video encryption algorithms

Security ICR FC TET Real-Time MLS LO AD

CVES[32] H No No No Yes No Yes No
PKE[33] L No No No Yes No Yes No
LCS [34] L No No Yes Yes No Yes No
FSES[35] H No No No Yes No Yes No

HVOE[41] L No No No Yes No Yes No
VOCE[42] M No No No Yes Yes Yes Yes

DCLM[43] L No Yes No Yes No Yes No
EES[44] M Yes Yes No Yes No Yes No
VEM2[45] M Yes Yes Yes Yes No Yes No
PCVE[46] M Yes Yes No Yes Yes Yes Yes
CBEA[51] M Yes Yes No Yes No Yes No
SEA[52] M No Yes No Yes No Yes No

CSCF[55] M Yes Yes Yes Yes No Yes Yes
VEM4[56] M Yes Yes Yes Yes No Yes No
MCS[57] H Yes Yes No Yes No Yes No

ICR:Invariance of compression ratio; FC: Format compliance
TET: Transmission error tolerance; MLS: Multiple levels of security

LO: low overhead; AD: Allow degradation; L: Low security; M: Middle security;
H: High security.

From Table 1, we get the following conclusions:

1) The encryption algorithms, CVES, PKE, LCS and FSES, encrypt the video
data completely, without considering interest regions. Their security depends
on the proposed chaotic ciphers. Generally, if the ciphers are well-designed,
they are often of higher security, higher complexity, and higher overhead
than other types. So, they are more suitable for secure video storing than for
real-time transmission.
2) The encryption algorithms considering interest regions (HVOE, VOCE)
encrypt only the interest regions, and leave the rest (such as background)
unprotected. They are of lower computation complexity and lower overhead,
and more suitable for real-time applications than that without considering
interest regions. Their cryptographic security depends on the adopted chaotic
cipher and the region selection. These algorithms that encrypt the raw video
data directly can not preserve invariance of compression ratio, and change
the video format, so that the encrypted video cannot be displayed without
decrypting it firstly. Besides, they do not consider the compression process,
especially lossy compression, which may result degradation after video de-
coding, and bring difficulty to decryption.
3) The algorithms that encrypt the video data in compression process belong
to partial or selective encryption, and are often of lower complexity than those
encrypt the raw video data directly. However, some of them (DCLM, SEA)

6 Chaos-Based Video Encryption Algorithms 221

change the compression ratio for they change the statistical characteristics of
DCT coefficients. Interestingly, some of them can keep file format unchanged.
Thus, these algorithms support direct bit rate control, that is, they permit
to re-compress the encoded and encrypted video before decrypting it firstly,
and save much time for secure transcoding. Therefore, they are more suitable
for real-time applications, such as wireless multimedia network or multimedia
transmission over narrow bands.
4)The algorithms that encrypt the compressed video data can not only pre-
serve invariance of compression ratio and format compliance, but also be of
low overhead. Additionally, it is of low-cost and is easy to be realized. For
these advantages, it is suitable for real-time required applications, such as
video transmission or video access. However, as the video stream after en-
tropy encoding may have a certain structure or syntax, the encryption scheme
may destroy the structure of the video stream. And thus, these algorithms,
without considering the rules of package before transmission, may bring error
spreading when the transmission error happens.
5) For the algorithms in Table 1, many of them don’t give any illustration
whether their algorithms are insensitive and robust to transmission errors
except LCS, VEM2, CSCF and VEM4.

7 Discussions

From the above survey on the issues of chaos-based video encryption, we
can learn many valuable experiences on how to design a video encryption
scheme based on chaotic maps. However, there are still some questions to be
discussed:

Now, the security of different chaos-based encryption algorithms is eval-
uated by different means, including the perceptual results, key apace, key
sensitivity, ability against attacks, and so on. How to assess a chaos-based
cipher and also the video specific encryption algorithm in a general manner
is still an open issue.

Most of existing chaos-based video encryption schemes provide different
levels of video security. Various practical applications may demand different
encryption approaches with certain security levels. Consequently, how to de-
fine the security levels in detail and how to choose the appropriate security
level for certain application will be interesting topics.

Encrypting more video data results in higher level of security, meanwhile,
it also produces more computational complexity and costs much more time.
Therefore, how to get a good tradeoff between security and time-efficiency is
another important issue.

As is known that, encryption algorithms are often sensitive to transmission
errors, for a slight change in cipher text often causes great changes in the
decoded data. The existing chaos-based video encryption schemes lack of
error-robustness test in practical transmission environments. Thus, how to

222 Z. Su et al.

design a chaos-based video encryption scheme with strong error-robustness
is also an challenging task.

8 Conclusions

Video encryption plays a more and more important role in today’s multimedia
world. And chaos theory provides a fast and practical solution for the design
of digital cipher for video encryption. Many efforts have been devoted to
study the security issue, and some valuable algorithms can be used as the
fundamentals of future research.

Although chaos-based video encryption appears to be promising, it is not
yet mature. More efforts are needed for its further development toward prac-
tical applications with high security, invariance of compression ratio, format
compliance, strong transmission error tolerance, real-time, multiple levels of
security, low overhead and allow degradation.

References

1. Lian, S.: Multimedia Content Encryption: Techniques and Applications. Auer-
bach Publication, Taylor & Francis Group (2008)

2. Lian, S., Zhang, Y.: Handbook of research on secure multimedia distribution.
IGI Global (formerly Idea Group, Inc.), Hershey, Pennsylvania (2009)

3. Lian, S., Wang, Z.: Compare of Several Wavelet Coefficient Confusion Methods
Applied in Multimedia Encryption. In: Proceedings of the 3rd International
Conference on Computer Networks and Mobile Computing (ICCNMC 2003),
pp. 372–376. IEEE Computer Society, Shanghai (2003)

4. Tuchman, W.: A brief history of the data encryption standard. ACM Press,
Addison-Wesley Publishing Co., New York (1997)

5. Dang, P.P., Chau, P.M.: Implementation IDEA algorithm for image encryption.
In: Mathematics and Applications of Data/Image Coding, Compression, and
Encryption III. Proceedings of SPIE, vol. 4122, pp. 1–9 (2000)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algo-
rithms, 2nd edn. MIT Press, McGraw-Hill, Cambridge (2001)

7. Zeghid, M., Machhout, M., Khriji, L., Baganne, A., et al.: A modified AES
based algorithm for image encryption. International Journal of Computer Sci-
ence and Engineering 1(1), 70–75 (2007)

8. Furht, B., Muharemagic, E., Socek, D.: Multimedia encryption and watermark-
ing. Springer, Heidelberg (2005)

9. Ballest, A.M.: Real-time pay-per-view of protected multimedia content v:2.0.
Ph.D.Dissertation, Universitat Polit‘ecnica de Catalunya, Barcelona (2004)

10. Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. West-
view Press, San Francisco (2003)

11. Alligood, K.T., Sauer, T., Yorke, J.A.: Chaos: an introduction to dynamical
systems. Springer, Heidelberg (1997)

12. Yang, T., Wu, C.W., Chua, L.O.: Cryptography based on chaotic systems.
IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Ap-
plications 44, 469–472 (1997)

6 Chaos-Based Video Encryption Algorithms 223

13. Solak, E.: Cryptanalysis of observer based discrete-time chaotic encryption
schemes. International Journal of Bifurcation and Chaos 15(2), 653–658 (2005)

14. He, J., Qian, H., Zhou, Y., Li, Z.: Cryptanalysis and improvement of a block
cipher based on multiple chaotic systems. Mathematical Problems in Engineer-
ing 2010, 1–14 (2010)

15. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Breaking two secure com-
munication systems based on chaotic masking. IEEE Transaction on Circuit
and SystemsII: Express Briefs 51, 505–506 (2004)

16. Kocarev, L., Galias, Z., Lian, S.: Intelligent Computing Based on Chaos.
Springer, Heidelberg (2009)

17. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based
cryptosystems. International Journal of Bifurcation and Chaos 16, 2129–2151
(2006)

18. Lian, S., Sun, J., Liu, G., Wang, Z.: Efficient video encryption scheme based
on advanced video coding. Multimed. Tools Appl. 38, 75–89 (2008)

19. Gschwandtner, M., Uhl, A., Wild, P.: Transmission error and compression ro-
bustness of 2D chaotic map image encryption schemes. EURASIP Journal on
Information Security 2007, 1–16 (2007)

20. Lin, C.F., Chung, C.H., Chen, Z.L., et al.: A chaos-based unequal encryption
mechanism in wireless telemedicine with error decryption. Wseas Transactions
on Systems 7(2), 49–55 (2008)

21. Li, Y., Cai, M.: H.264-based multiple security levels net video encryption
scheme. In: Proceedings of International Conference on Electronic Computer
Technology, pp. 8–11. IEEE press, Macau (2009)

22. Rohwer, K., Krout, T.: Multiple levels of security in support of highly mobile
tactical internets-ELB ACTD. In: Proceedings of Military Communications
Conference on Communications for Network-Centric Operations: Creating the
Information Force, vol. 1, pp. 81–86. IEEE press, McLean (2001)

23. Chariglione, L.: MPEG and Multimedia Communications. IEEE Transactions
on Circuits and Systems for Video Technology 7(1), 5–18 (1997)

24. Srinivasan, U., Pfeiffer, S., Nepal, S., Lee, M., Gu, L., Barrass, S.: A survey of
MPEG-1 audio, video and semantic analysis techniques. Multimedia Tools and
Applications 27(1), 105–141 (2005)

25. Kleihorst, R.P., Vander Werf, A., Bruls, W.H.A., Verhaegh, W.F.J., Waterlan-
der, E.: MPEG2 video encoding in consumer electronics. Journal of Vlsi Signal
Processing Systems 15, 5–20 (1997)

26. Pan, D.: A tutorial on mpeg/audio compression. IEEE MultiMedia 2, 60–74
(1995)

27. Richardson Iain, E.G.: H.264 and MPEG-4 video compression: video coding for
next-generation multimedia. John Wiley & Sons, Ltd., New York City (2003)

28. Girod, B., Steinbach, E., Faerber, N.: Comparison of the H.263 and H.261 video
compression standards. In: Rao, K.R. (ed.) Standards and Common Interfaces
for Video Information Systems. Critical Reviews of Optical Science and Tech-
nology, Philadelphia, Pennsylvania (1995)

29. Vetrivel, S., Suba, K., Athisha, G.: An overview of h.26x series and its ap-
plications. International Journal of Engineering Science and Technology 2(9),
4622–4631 (2010)

30. Girod, B., Steinbach, E., Faerber, N.: Performance of the H.263 video compres-
sion standard. The Journal of VLSI Signal Processing 17(2-3), 101–111 (1997)

224 Z. Su et al.

31. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the
H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Sys-
tems for Video Technology 13(7), 560–576 (2003)

32. Li, S.J., Zheng, X., Mou, X., Cai, Y.: Chaotic encryption scheme for real-time
digital video. In: Real-Time Imaging VI, San Jose, CA, USA. Proceedings of
SPIE, vol. 4666, pp. 149–160 (2002)

33. Ganesan, K., Singh, I., Narain, M.: Public key encryption of images and videos
in real time using chebyshev maps. In: Proceedings of the 2008 Fifth Inter-
national Conference on Computer Graphics, Imaging and Visualisation, pp.
211–216. IEEE Computer Society, Washington, DC, USA (2008)

34. Kezia, H., Sudha, G.F.: Encryption of Digital Video Based on Lorenz Chaotic
System. In: Proceedings of the 16th International Conference on Advanced
Computing and Communications, pp. 40–45. IEEE Computer Society Press,
Tamilnadu (2008)

35. Mao, Y., Chen, G., Lian, S.: A novel fast image encryption scheme based on the
3d chaotic baker map. International Journal of Bifurcation and Chaos 14(10),
3613–3624 (2004)

36. Lian, S., Mao, Y., Wang, Z.: The 3-dimension extension of baker map and
its application in multimedia encryption. Chinese Journal of Control & Deci-
sion 19(6), 714–717 (2004) (Chinese)

37. Sang, T., Wang, R., Yan, Y.: Perturbance-based algorithm to expand cycle
length of chaotic key stream. Electronics Letters 34(9), 873–874 (1998)

38. Bergamo, P., D’Arco, P., Santis, A., Kocarev, L.: Security of public key cryp-
tosystems based on Chebyshev polynomials. IEEE Transactions on Circuits
and Systems-I 52, 1382–1393 (2005)

39. Prasad, V.V.R., Kurupati, R.: Secure image watermarking in frequency domain
using arnold scrambling and filtering. Advances in Computational Sciences and
Technology 3(2), 236–244 (2010)

40. Nishchal, N.K., Joseph, J., Singh, K.: Fully phase based encryption using frac-
tional Fourier transform. Opt. Eng. 42, 1583–1588 (2003)

41. Tzouveli, P., Ntalianis, K., Kollias, S.: Security of human video objects by
incorporating a chaos-based feedback cryptographic scheme. ACM Multimedia,
10–16 (2004)

42. Ntalianis, K.S., Kollias, S.D.: Chaotic video objects encryption based on mixed
feedback, multiresolution decomposition and time-variant S-boxes. In: Proceed-
ings of ICIP (2) 2005, pp. 1110–1113. IEEE, Genoa (2005)

43. Yang, S., Sun, S.: A video encryption method based on chaotic maps in DCT
domain. Progress in Natural Science 18(10), 1299–1304 (2008)

44. Lian, S.: Efficient image or video encryption based on spatiotemporal chaos
system. Chaos, Solitons and Fractals 40, 2509–2519 (2009)

45. Lian, S., Wang, Z., Sun, J.: A fast video encryption scheme suitable for network
applications. In: Proceedings of 2004 International Conference on Communica-
tions, Circuits and Systems (ICCCAS 2004), pp. 566–570. IEEE press, Chengdu
(2004)

46. Hamdi, M., Boudriga, N.: A progressive chaotic mpeg-4 video encryption
scheme for wireless networks. In: Proceedings of the 2009 IEEE International
Conference on Communications, pp. 5420–5424. IEEE Press, Piscataway (2009)

47. Wang, S., Kuang, J., Li, J., et al.: Chaos-based communication in a large com-
munity. Phys. Rev. 66(6), 1–4

6 Chaos-Based Video Encryption Algorithms 225

48. Kuo, C.J., Chen, M.S.: A new signal encryption technique and its attack study.
In: Proceedings of IEEE International Conference on Security Technology, pp.
149–153. IEEE press, Taipei (1991)

49. Su, Z., Jiang, J., Lian, S., et al.: Hierarchical Selective Encryption for G.729
Speech Based on Bit Sensitivity. Journal of Internet Technology 11(5), 599–607
(2010)

50. Hamdi, M., Boudriga, N.: Four dimensional chaotic ciphers for secure image
transmission. In: Proceedings of IEEE International Conference on Multimedia
and Expo, pp. 437–440. IEEE press, Hannover (2008)

51. Jian, H., Mao, Y., Wang, Z.: A novel chaos-based video encryption algorithm.
Applied Computational Intelligence, 641–648 (2004)

52. Chiaraluce, F., Ciccarelli, L., Gambi, E., Pierleoni, P., Reginelli, M.: A new
chaotic algorithm for video encryption. IEEE Transactions on Consumer Elec-
tronics 48(4), 833–844 (2002)

53. Freitas, A.C.M.: Statistics of the maximum for the tent map. Chaos. Solitons
& Fractals 42(1), 604–608 (2009)

54. Bird, N., Vivaldi, F.: Periodic orbits of the sawtooth maps. Physica D: Nonlin-
ear Phenomena 30(1-2), 164–176 (1988)

55. Lian, S., Sun, J., Wang, J., Wang, Z.: A chaotic stream cipher and the usage
in video protection. Chaos, Solitons and Fractals 34, 851–859 (2007)

56. Lian, S., Liu, Z., Ren, Z., Wang, H.: Secure Media Distribution Scheme Based
on Chaotic Neural Network. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C.
(eds.) ISNN 2007. LNCS, vol. 4492, pp. 79–87. Springer, Heidelberg (2007)

57. Qian, Q., Chen, Z., Yuan, Z.: Video compression and encryption based-on mul-
tiple chaotic system. In: Proceedings of the 3rd International Conference on
Innovative Computing Information and Control, pp. 561–564. IEEE Computer
Society, Washington, DC, USA (2008)

58. Papadimitriou, S., Bountis, T., Mavroudi, S., Bezerianos, A.: A probabilistic
symmetric encryption scheme for very fast secure communication based on
chaotic systems of difference. Int. J. Bifurcat Chaos 11(12), 3107–3115 (2001)

59. Socek, D., Culibrk, D.: On the security of a clipped. Hopfield neural network-
based cryptosystem. In: Proceedings of the 7th Workshop on Multimedia and
Security, pp. 71–76. ACM press, New York (2005)

60. Xiao, D., Liao, X.-F.: A combined hash and encryption scheme by chaotic
neural network. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS,
vol. 3174, pp. 13–28. Springer, Heidelberg (2004)

61. Lian, S., Chen, G., Cheung, A., Wang, Z.: A Chaotic-Neural-Network-Based
Encryption Algorithm for JPEG2000 Encoded Images. In: Yin, F.-L., Wang, J.,
Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 627–632. Springer, Heidelberg
(2004)

62. Lian, S.: Multimedia Content Protection Based on Chaotic Neural Networks.
In: Nedjah, N., Abraham, A., de Macedo Mourelle, L. (eds.) Computational
Intelligence in Information Assurance and Security. Springer, Heidelberg (2007)

63. Su, Z., Jiang, J., Lian, S., et al.: Selective encryption for g.729 speech using
chaotic maps. In: Proceedings of International Conference on Multimedia Infor-
mation Networking and Security, vol. 1, pp. 488–492. IEEE computer society,
Wuhan (2009)

64. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Inter-
national Journal of Bifurcation and Chaos 8(6), 1259–1284 (1998)

226 Z. Su et al.

65. Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback
control. Int. J. of Bifurcation and Chaos 15(10), 3367–3375 (2005)

66. Millerioux, G., Bloch, G., Amigo, J.M., Bastos, A., Anstett, F.: Real-time video
communication secured by a chaotic key stream cipher. In: Proceedings of the
European Conference on Circuit Theory and Design ECCTD 2003, pp. 245–
248. IEEE, Krakow (2003)

67. Rueppel, R.A.: Analysis and design of stream ciphers. Springer, Heidelberg
(1986)

Chapter 7

Cryptanalysis of Chaotic Ciphers

Ercan Solak

Işık University
Istanbul, Turkey
ercan@isikun.edu.tr

1 Introduction

Cryptanalysis is an integral part of any serious effort in designing secure
encryption algorithms. Indeed, a cryptosystem is only as secure as the most
powerful known attack that failed to break it. The situation is not different
for chaos-based ciphers. Before attempting to design a new chaotic cipher, it
is essential that the designers have a thorough grasp of the existing attacks
and cryptanalysis tools.

There is a large variety of chaotic ciphers proposed in the literature. Con-
sequently, their cryptanalyses come up with equally diverse attacks. Each
attack tries to exploit weaknesses that are specific to the particular chaotic
cipher. Thus, it is somewhat difficult to devise common non-trivial attacks
that can be applied against a range of chaotic ciphers. On the other hand,
such diversity of designs works against the security of the chaos-based ciphers.
Rather than using well-analyzed and tested building blocks, there seems to
be a general tendency to try novel and fancier structures, thus opening new
venues for attacks.

If chaos cryptography is to make serious contributions to mainstream cryp-
tography, we need to have more of analysis and less of design. Rather than
trying to come up with new and interesting ways to incorporate chaos into
encryption, the research effort should try to establish ground rules and prim-
itive building blocks for the use of chaos in cryptography. This can only come
through a rigorous cryptanalysis of existing proposals and by identifying the
common weaknesses and pitfalls.

There have been a few noteworthy efforts in this direction. In particu-
lar, [Alvarez and Li, 2006] offer general observations about the flaws and
weaknesses found in many chaotic encryption schemes. [Amigó et al., 2007,
Masuda et al., 2006, Kocarev and Jakimoski, 2003, Dachselt and Schwarz,
2001] identify the building blocks that can be used in chaotic ciphers
and random number generators. [Anstett et al., 2006] draws parallels be-
tween identifiability of dynamical systems and cryptanalysis. [Li et al., 2008]

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 227–256.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

ercan@isikun.edu.tr

228 E. Solak

establishes general attacks that can be launched against permutation-only
chaotic image encryption algorithms.

In many proposals for chaotic ciphers, we observe a common tendency to
use a subset of statistics in order to demonstrate the strength of the encryp-
tion. Although a necessary condition, good statistics are far from establishing
good encryption. Indeed, any mildly sophisticated function produces good
confusion and diffusion when applied in enough number of rounds. What
statistics can not do, however, is hide the algebraic weaknesses inherent in
the cipher. For example, even a linear block cipher will pass some easy sta-
tistical tests. Yet, a linear cipher can trivially be broken.

Therefore, it is crucially important to analyze the algebraic structure of a
chaotic cipher and identify weak transformations.

A particular class of attacks against chaos based ciphers aims at bypassing
the chaotic part of the cryptosystem. In this class, the encryption algorithm is
expressed in an equivalent form in which the chaotic subsystems are replaced
by a set of secret maps or parameters. In this way, the algebraic weaknesses
in the rest of the algorithm are highlighted. This approach makes the whole
system more amenable to cryptanalysis. In this chapter on the cryptanaly-
sis of chaos-based ciphers, we illustrate the power of algebraic attacks on a
number of different chaotic encryption algorithms.

In the next section, we examine the case of “inadvertently” linear ciphers.
Such a cipher uses the nonlinear nature of chaos to generate some key pa-
rameters. However, the transformation from the plain image to the cipher
image is linear.

The final part of the chapter illustrates the power of algebraic analysis in
breaking chaotic ciphers.

2 Chaotic Linear Ciphers

Before we identify a few chaotic ciphers that turns out to be linear, we briefly
show how a linear block cipher can be trivially broken.

Assume P and C are n-bit plaintext and ciphertext blocks, respectively.
If the encryption transformation from P to C is linear, then it can be repre-
sented as a binary matrix multiplication

C = AP, (1)
where the matrix A is the secret mapping. For a known plaintext block P,
an attacker can construct n linear equations

c1 = a11p1 ⊕ a12p2 ⊕ · · · ⊕ a1npn,

c2 = a21p1 ⊕ a22p2 ⊕ · · · ⊕ a2npn,

...
cn = an1p1 ⊕ an2p2 ⊕ · · · ⊕ annpn

for the entries aij of A.

7 Cryptanalysis of Chaotic Ciphers 229

Using a set of n distinct known plaintext-ciphertext pairs, an attacker can
construct n2 linear equations for n2 secret entries of A. Solving these linear
equations, the attacker easily breaks the cipher.

A common weakness in many chaotic ciphers is to use a set of well-known
chaotic systems with secret system parameters to generate a linear transfor-
mation A, which is then used as in (1). This creates a complex relationship
between the chaotic system parameters and the resulting linear transforma-
tion. However, the attacker bypasses this complexity by attacking the linear
transformation rather than trying to reveal the secret system parameters.
The situation is illustrated in Fig. 1.

Chaotic
dynamics

x(0), θ

Initial states
and parameters

as keys

A × C

ciphertext

P plaintext

Fig. 1 A general structure of a chaotic linear block cipher.

Example 1. In the chaos-based image cipher proposed in [Guan et al., 2005],
the encryption process consists of two parts. In the first part, the algorithm
takes an image P and shuffles its pixels using Arnold Cat map. The second
part of the algorithm changes the gray levels of the pixels using Chen’s chaotic
system.

Representing the image as a vector, the shuffling transformation can be
represented as

S = AP,

where A is a secret permutation matrix. For the second step of the encryption,
Chen’s chaotic system is used with secret parameters and initial values to
generate a key vector, K. Thus, the encryption can be written as

C = AP ⊕ K. (2)

Clearly, (2) is an affine linear equation. Assume that the attacker knows two
plaintext-ciphertext image pairs (P1, C1) and (P2, C2). Let us define the
differences as ΔP = P1 ⊕ P2 and ΔC = C1 ⊕ C2. Using (2), the attacker
calculates

ΔC = AΔP

Going from ΔP to ΔC, there is only shuffling by the Arnold Cat map, which
is a linear operation.

230 E. Solak

For a number of known plaintext-ciphertext differences, the attacker can
find the secret A. Once he reveals A, he uses just one known pair (P, C) to
calculate the secret K as

K = C ⊕ AP.

It is possible to improve the attack if one allows for chosen plaintexts. For
more details, see [Çokal and Solak, 2009].

Although the attack is quite simple, it can be applied to a number of chaotic
ciphers with only a few adaptations.

In [Patidar et al., 2009], a plaintext image P is encrypted in four steps.
The first and the last steps involve adding chaotically generated key images
K1 and K2. The second step linearly diffuses the pixel values in horizontal di-
rection. The third step does the same in vertical direction. The two diffusions
can be combined into one matrix multiplication. Thus, the whole encryption
process becomes

C = A(P ⊕ K1) ⊕ K2.

Clearly, this is a linear transformation. Moreover, the parameter A is not
secret. This makes the whole scheme trivially weak. More details on the
attack can be found in [Rhouma et al., 2010].

A general class of chaotic linear ciphers are shuffling-only image ciphers. In
many cases, the shuffling parameters are generated by iterating one or more
chaotic systems starting with secret initial conditions and parameters. In
attacking these systems, the attacker aims to reveal the intermediate shuffling
parameters rather than the chaotic system parameters. A recent example of
such a cipher is proposed in [Huang and Nien, 2009], which is cryptanalyzed
in [Solak et al., 2010b]. A general approach in attacking substitution-only
image ciphers is given in [Li et al., 2008].

3 Algebraic Attacks

The mapping from the chaotic system parameters and initial conditions to its
trajectories is highly nonlinear and complex. Still, when a chaotic system is
used in encryption, the algebraic structures that it induces might be amenable
to cryptanalysis. In the following discussion, we analyze three chaotic ciphers
in order to illustrate the power of algebraic analysis in attacks.

3.1 Reconstructing Small Permutations

We first give a few facts about the powers of permutations over finite sets.

Definition 1. [Fraleigh, 2002] An ordered orbit of a permutation π on a
finite set is the ordered tuple (a0, a1, . . . , an−1) such that π(a0) = a1, π(a1) =
a2, · · · , π(an−2) = an−1, π(an−1) = a0. n is the length of the ordered-orbit.

7 Cryptanalysis of Chaotic Ciphers 231

Theorem 1. [Fraleigh, 2002] A permutation defined on a finite set partitions
the set into disjoint ordered-orbits.

Remark 1. Given a permutation π defined on a set V, determining its orbits
is straightforward. We start from any element a0 ∈ V and form the orbit
elements as (a0, π(a0), π2(a0), . . . , πn−1(a0)) until πn(a0) = a0. We then start
over with an element not included in the orbits found so far. We continue
forming orbits until we exhaust all the elements in the set V .

An example of a permutation over the set {a0, a1, . . . , a10} is given in Fig. 2.
Note that there are two orbits of lengths 5 and 6.

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

Fig. 2 A permutation with two orbits of lengths 5 and 6.

Note that if a0 is an element in an orbit of length n in the permutation π,
then, for all integers i,

πi(a0) = πimodn(a0).

Lemma 1. Let α = (a0, a1, . . . , an−1) be an orbit of length n in the permu-
tation π, where gcd(n, r) = v. Then, α is split into v equal length orbits in
πr.

Lemma 2. Let β = (b0, b1, . . . , bt−1) be the only orbit of length t in the per-
mutation πr. Then,

π(bj) = b(j+r∗)mod t, 0 ≤ j < t,

where r∗ is the multiplicative inverse of r in mod t, i.e. rr∗ ≡ 1 (mod t).

Remark 2. An immediate result of Lemma 1 and Lemma 2 is that if we have
an orbit α = (a0, a1, . . . , an−1) in π such that gcd(n, r) = 1, then in πr, α is
not split but is rather shuffled as

β = (a0, armodn, a(2r)modn, . . . , a((n−1)r)modn).

232 E. Solak

Lemma 3. Let β = (b0, b1, . . . , bt−1) be one of the q orbits of length t in the
permutation πr. Let v be the least divisor of r larger than 1. Assume that
q < v. Then,

π(bj) = b(j+r∗)mod t, 0 ≤ j < t, (3)

where r∗ is the multiplicative inverse of r in mod t, i.e. rr∗ ≡ 1 (mod t).

Lemma 4. Let β(1) = (b(1)
0 , b

(1)
1 , . . . , b

(1)
t−1) and β(2) = (b(2)

0 , b
(2)
1 , . . . , b

(2)
t−1) be

two orbits of length t in πr. If π(b(1)
i) = b

(2)
j for some i, j then

π(b(1)
(i+k) mod t) = b

(2)
(j+k) mod t, 1 ≤ k < t.

For the proofs of these lemmas, see [Solak and Çokal, 2009].
An illustration of how orbits are shuffled and split in powers of permutation

is given in Fig. 3. The graph shows the orbit structure of π2 of the permutation
π given in Fig. 2. Note that the length 5 orbit of π is only shuffled while its
length 6 orbit is split into two length 3 orbits.

a0

a1

a2

a3

a4

a5

a7

a9

a6

a8

a10

Fig. 3 Orbits of π2 for the permutation π given in Fig. 2.

We know apply these properties of permutations to design algebraic attacks
against two chaotic block ciphers.

3.2 Algebraic Attack on a Cryptosystem Based on
Discretized Two-Dimensional Chaotic Maps

In the chaotic cipher proposed in [Xiang et al., 2007], plaintext and ciphertext
sequences are partitioned into 16-bit blocks Pi, Ci, 1 ≤ i ≤ n, as

Plaintext : P1P2 · · ·Pn,
Ciphertext : C1C2 · · ·Cn.

7 Cryptanalysis of Chaotic Ciphers 233

The key of the cryptosystem is the collection of the parameters (r, m, t, C0,
Ks, Kc). In [Xiang et al., 2007] this collection is defined as the master key.
The master key is composed of the number of rounds r, the shift amount
m, the number of iterations t, the initial value C0, the subkey Ks and the
collection of TDCM parameters Kc. Below, we explain how each part of the
key is used in encryption.

A block key Ki is used in the encryption of plaintext block Pi. Initially,
we assign

K0 = Ks. (4)

Before the encryption of block Pi, Ki is first updated as

Ki =
{

Ki−1 ⊕ Ci−1 if Ci−1 �= Ki−1,
Ki−1 if Ci−1 = Ki−1.

(5)

The encryption of the ith block is given as

Ci = E(Ki, Pi), (6)

where the function E involves the following round operations.

v0 = Pi,

vj = σ(vj−1 ⊕ ROL(Ki, jm)), 1 ≤ j ≤ r, (7)
Ci = vr.

Here, vj is the output of round j. Thus, vr becomes the ciphertext. ROL(·, jm)
denotes the circular left rotation of its argument by jm bits. The amount of
circular left shifts depends on the number of rounds r and is given as

m =
{
�16/r� r ≤ 16,
1 else. (8)

The round function σ is a composition of a number maps and is given as

σ = w ◦ z−1 ◦ TDCMt
Kc

◦ z ◦ S. (9)

In (9), S represents the S-box substitution. S invertibly maps between 16-
bit quantities. The S-box is designed to have desirable nonlinear properties,
and its value is fixed (not secret) for the algorithm.

The map z is an invertible function that maps from 16-bit quantities to
2D vectors of integers. It maps the unsigned integer values corresponding to
each byte of its argument to one of the integer coordinates in 2D discrete
state space. The aim of z is to prepare a 2D initial state out of a given 16-bit
quantity.

TDCMt
Kc

denotes the t-times iteration of TDCM. Kc denotes the collection
of the chaotic system parameters. The choice of the chaotic map is part of the
algorithm design. In [Xiang et al., 2007], the standard map, the generalized

234 E. Solak

cat map, and the generalized baker map are considered. The chaotic map
must be bijective in order to have an invertible encryption operation. The
output of the chaotic system is passed through z−1 to map the final 2D state
of TDCM to a 16-bit number.

The last mapping in w in (9) denotes the byte swap operation.
After the encryption of block i, the block key is once more updated as

Ki ← ROL(Ki, rm). (10)

Since Ki is 16-bits, the effective amount of rotation on Ki in this step is rm
mod 16.

We now give a detailed cryptanalysis of the cipher.
The relation (8) fixes m once r is known. This removes the freedom in

the choice of m, and effectively reduces the key length by 8 bits. Therefore,
the shift amount m must be treated not as a key but rather as an internal
parameter that is derived from the key.

Another reduction in effective key length is due to the way the secret pa-
rameter C0 is used. Before the encryption of the first 16-bit block, the subkey
Ks is updated by using (5). Hence, the value of K1 used in the encryption
of P1 is Ks ⊕ C0. Consequently, we can treat Ks ⊕ C0 as one secret parame-
ter rather than two distinct parameters, Ks and C0. Indeed, any pair of C0

and Ks values that yields the same XOR value results in identical encryption
functions. This fact reduces the effective key length by another 16 bits. In the
subsequent sections, we assume without loss of generality that C0 = 0x0000.

After noting these reductions in the effective key space, we now give an
algebraic break of the cipher. We first demonstrate how an attacker can reveal
Ks without having access to the rest of the key parameters.

In out attacks, we assume that the attacker knows the number of rounds r.
This is not a very restrictive assumption. Since r is represented with 8 bits, it
can only take one of 255 possible nonzero values. The attacks that we develop
in this and the next section have very low computational requirements. In the
case when the attacker does not know the value of r, he tries all 255 possible
values with the attacks described here.

Revealing Ks

To illustrate the method of the attack, we only analyze the case when
rm ≡ 0 mod16. For the details of the attack for the case rm �≡ 0 mod 16,
see [Solak and Çokal, 2008].

We assume that the attacker does not know the TDCM parameters, so he
does not know the function E in (6).

Assume that the first two ciphertext blocks are the same and given as

C1 = C2 = j. (11)

7 Cryptanalysis of Chaotic Ciphers 235

If j = Ks, using (4), (5), (6) and (10), we have

j = E(Ks, P1), j = E(Ks, P2).

So, by the invertibility of E for fixed Ks, we have P1 = P2.
If j �= Ks, we have

j = E(Ks, P1), j = E(Ks ⊕ j, P2).

In this case, most probably P1 �= P2. The difference in two cases indicates
that the equality of P1 and P2 is a good test on whether Ks = j.

The attack on Ks proceeds as follows. The attacker chooses a 16-bit num-
ber j. He requests plaintexts for a two-block ciphertext C1C2 chosen as in
(11). He compares these plaintext blocks P1 and P2. If they are equal, then
j is a candidate for the secret Ks. The attacker repeats this for all the 16-bit
j values and records candidates for Ks. A total of 216 − 1 trials are made.

It may happen that the attacker obtains P1 = P2 even when j �= Ks. This
is because we might have E(K1, P) = E(K2, P) for some K1 �= K2, and P. In
order to eliminate the false keys, the attacker performs the following further
tests.

Assume that the attacker has two candidates j1 and j2 for the subkey Ks.
From his previous attempt at determining the keys, the attacker knows P1

and P2 which satisfy

j1 = E(Ks, P1), j2 = E(Ks, P2). (12)

The attacker now chooses the new ciphertext blocks C1 and C2 as C1 = j1
and C2 = j2. He obtains the corresponding plaintext blocks P 1 and P 2.
There are two cases for the validity of j1. Let us see how P 1 and P 2 differ
for each case.

Case 1: j1 = Ks : Using (4), (5), (6) and (10), we find that

j1 = E(Ks, P 1), j2 = E(Ks, P 2).

Comparing this with (12), we obtain P 1 = P1 and P 2 = P2.
Case 2: j1 �= Ks : This time we find,

j1 = E(Ks, P 1), j2 = E(Ks ⊕ j1, P 2).

Comparing this with (12), we conclude P 1 = P1 and P 2 is a random 16-bit
number.

In both cases, P 1 = P1. However, only in the first case we are guaranteed
to have P 2 = P2. In the second case, we might have P 2 = P2 even when
j1 �= Ks. So, if P 2 �= P2 the test is conclusive and j1 �= Ks. If P 2 = P2 the
test is inconclusive.

This test gives the attacker a method to eliminate the false subkeys
among the candidates. Assume that attacker has determined q candidates,

236 E. Solak

{j1, j2, · · · , jq} for the subkey Ks. To eliminate the false subkeys, he chooses
a pair of candidates ji1 and ji2 and applies the test as explained. In this way,
he eliminates ji1 if the test is conclusive. Otherwise, he chooses a different
pair and repeats the test. The attack on Ks successfully terminates when
there remains only one candidate for the subkey.

Once the attacker knows Ks, he proceeds to reveal the other parameters t
and Kc. We assume that the attacker already knows the number of rounds r.
Hence, by the relation (8), he also knows the shift amount m. The only secret
parameters to be revealed are Kc, the collection of the TDCM parameters
and t, the number of times the TDCM is iterated. When the block key Ki

and r are fixed, the parameters Kc and t characterize the function E.
A brute force attack on Kc and t has to try all their values against a

known plaintext-ciphertext pair. We now give a general attack that requires
on the order of 216 chosen ciphertext/plaintext blocks and very little amount
of computation. Moreover, the computational complexity of our attack does
not depend on the lengths of the keys Kc and t.

Sampling E

We first note that, for a fixed Ki of his choice, the attacker can choose either
one of C or P in the relation

C = E(Ki, P), (13)

and obtain the other. To see how this can be done, let us write the encryption
equations for a sequence of two blocks of plaintext, P1P2.

C1 = E(Ks, P1),
C2 = E(ROL(Ks, rm) ⊕ C1, P2). (14)

Here, we assume that ROL(Ks, rm) ⊕ C1 �= 0.
If C1 is chosen as C1 = Ki ⊕ ROL(Ks, rm), (14) becomes

C2 = E(Ki, P2).

So, the attacker first chooses a single block ciphertext with C1 = Ki ⊕
ROL(Ks, rm) and obtains the plaintext P1. If he wants to choose C and
obtain the corresponding P in (13), he next chooses the ciphertext sequence
C1C and obtains P2 as his desired plaintext block P. If, instead, he wants
to know C for a particular P in (13), he chooses the plaintext sequence P1P
and obtains C2 as his desired ciphertext block C.

Thus, an attacker can freely choose Ki, and sample the function C =
E(Ki, P) at arbitrary points (P, C) of his choice. We will see that this ability
lets the attacker determine the internal secret parameters of the encryption
function E.

Since the functions w, z, S are fixed and the attacker already knows r, m,
and Ki, revealing the secret parameters t, Kc is equivalent to revealing the

7 Cryptanalysis of Chaotic Ciphers 237

function σ in (7). Namely, once the attacker knows σ, he can encrypt/decrypt
any plaintext/ciphertext sequences as if he knew the parameters t and Kc.
Below we describe three attacks that reveal the function σ.

We first note that σ is a permutation over the set {0, 1, . . . , 216 − 1}. We
now show how particular choices of Ki lets an attacker reveal portions of σ.

Permutation orbit attack

Let us choose Ki such that

ROL(Ki, m) = Ki. (15)

Namely, Ki is m-bit rotation invariant.
When we use (15) in (7), we obtain

vj = σ(vj−1 ⊕ Ki), 1 ≤ j ≤ r.

Defining a new permutation π as

π(x) = σ(x ⊕ Ki) (16)

for x ∈ {0, 1, . . . , 216 − 1}, we can express the relation between P and C as

C = π ◦ π ◦ · · · ◦ π︸ ︷︷ ︸
r times

(P) = πr(P).

If the attacker reveals the value Y of π at P so that Y = π(P), he reveals
that the value of σ at P ⊕ Ki is Y, i.e. Y = σ(P ⊕ Ki).

To illustrate the choice of Ki that turns the function E into the r−power of
a permutation, let us take m = 2. In this case, the nonzero Ki values that sat-
isfy (15) are 0101010101010101 (0x5555), 1010101010101010 (0xAAAA) and
1111111111111111 (0xFFFF) . If m = 1, the only nonzero Ki that satisfies
(15) is (0xFFFF). Note that by (5), Ki can never be zero.

Also note that for each value of Ki that satisfies (15), we obtain a different
permutation π.

Using the sampling method given above, the attacker can obtain πr(P) for
every P in {0, 1, . . . , 216 − 1}. Hence, he can reveal the permutation πr.

For a given m, the attacker determines the keys Ki that satisfy (15). As-
sume that there are k such keys. For each such Kj

i , 1 ≤ j ≤ k, the attacker
finds E(Kj

i , P) for all P ∈ {0, 1, . . . , 216 − 1}. This is in fact πrj that corre-
sponds to Kj

i i.e. πrj (x) = E(Ki, x), for every x. The attacker then determines
the orbit structure of πrj . Then he starts partially revealing πj . He performs
the following two steps for each Kj

i .

1. Use lone orbits in πrj . If there is a lone orbit of length n1 in πrj , use Lemma
2 to reveal n1 points in πj . From those, reveal n1 points of σ using (16).

238 E. Solak

2. Look for a collection of the same length orbits in πrj . If the size q of the
collection is less than the least divisor of r larger than 1, then use Lemma
3 to reveal qn2 more points in πj , where n2 is the length of an orbit in the
collection. Again, use (16) to reveal qn2 points in σ.

Let Rj ⊂ {0, 1, . . . , 216 − 1} be the points for which σ(Rj) is revealed using
Steps 1 and 2 above with Kj

i for 1 ≤ j ≤ k. Let R = R1 ∪R2 ∪ · · · ∪Rk. Let
x ∈ R\Rj. Namely, the attacker knows y = σ(x) but this point is revealed in
either Step 1 or Step 2 for a key other than Kj

i . Then, πrj contains two same
length orbits β1 and β2 such that x⊕Kj

i ∈ β1 and y ∈ β2. These orbits were
not used in the Step 2 for Kj

i above otherwise we would have x ∈ Rj . Hence,
πj(x ⊕ Kj

i) = y. Then, the attacker uses Lemma 4 with β1 and β2 to reveal
some more points on σ. This, in turn, adds points to R. The procedure is
repeated until there are no points x satisfying x ∈ R\Rj.

Furthermore, if the attacker uses any of the attacks explained below and
somehow obtains the new knowledge of a sample point in πj , and the point
maps across two orbits of length n3 in πrj , then he uses Lemma 4 to reveal
n3 − 1 more points in πj .

Expansion attack

In the previous section we described an attack that partially reveals σ. We
now describe an attack that works with a partially revealed permutation σ.
This attack is applied together with the permutation orbit attack.

Assume that R and U are two disjoint subsets of {0, 1, . . . , 216 − 1} such
that R ∪ U = {0, 1, . . . , 216 − 1}. Also assume that the attacker knows the
value of σ(x) for every x ∈ R and he does not know the value of σ(x) for any
x ∈ U. In other words, R denotes the revealed portion of the domain of σ,
and U denotes the unrevealed portion.

Assume that the attacker knows the triple (C, P, Ki) such that C =
E(Ki, P). Assume that C /∈ σ(R) i.e. he does not know the value which
is mapped by σ to C. He now tries to carry out the calculation (7). He
starts out with v0 = P. He can calculate v1 if v0 ⊕ ROL(Ki, m) ∈ R. Once
he knows v1, he can calculate v2 if v1 ⊕ ROL(Ki, 2m) ∈ R. Assume that
he continues in this fashion, reaches the penultimate step and calculates
vr−1. Obviously, vr−1 ⊕ ROL(Ki, rm) /∈ R because otherwise we would have
C = vr = σ(vr−1 ⊕ROL(Ki, rm)) ∈ σ(R) which contradicts the assumption.
But this means that the attacker has just revealed the value of the map σ at
a new point vr−1 ⊕ ROL(Ki, rm) because he already knows C. Thus, if the
attacker reaches the last step while staying in the partially revealed portion
R, he expands R by one point and shrinks U by one point.

Every time the expansion attack succeeds and the attacker reveals a new
point on the map σ, he uses Lemma 4 to check if this corresponds to mapping
across two different same-length orbits in πr. If so, the revealed portion R

7 Cryptanalysis of Chaotic Ciphers 239

is expanded even more. This, in turn, increases the probability that next
application of the expansion attack succeeds.

Skipping attack

Using (8), we see that when r ≥ 9, we have m = 1. So the attacker can
use only Ki =0xFFFF in the permutation orbit attack. Moreover, when r
is an even number, its smallest divisor is 2 and he can not use Lemma 3.
This adversely affects the size of the revealed set R that can be used in the
expansion attack. We now describe another attack that works with r ≥ 9 and
even. The attack relies on deriving a new permutation by skipping over odd
rounds in the expression of E in (7).

Assume that a nonzero Ki satisfies

ROL(Ki, 2) = Ki. (17)

Using (17) with (7) and substituting odd round outputs into even round
expressions, we obtain

v0 = P,

v2 = σ(σ(v0 ⊕ ROL(Ki, 1)) ⊕ Ki),
v4 = σ(σ(v2 ⊕ ROL(Ki, 1)) ⊕ Ki),

...
vr = σ(σ(vr−2 ⊕ ROL(Ki, 1)) ⊕ Ki),
C = vr.

Defining a new permutation γ as

γ(x) = σ(σ(x ⊕ ROL(Ki, 1)) ⊕ Ki), (18)

we can express the relation between C and P as

C = γr/2(P).

First, the attacker applies the permutation orbit attack with Ki =0xFFFF.
In doing so, he obtains the permutation πr, and using Lemma 2 and Lemma
3, he reveals a portion of σ. Let R denote the revealed portion of the map σ.

The skipping attack proceeds as follows. As in the permutation orbit at-
tack, by choosing every P ∈ {0, 1, . . . , 216−1} and obtaining their correspond-
ing ciphertext block with K1

i =0x5555 and K2
i =0xAAAA satisfying (17), the

attacker finds the permutations γ
r/2
1 and γ

r/2
2 . For each γ

r/2
j , j = 1, 2, the

attacker uses its orbit structure to reveal a portion of γj .
Assume the attacker has determined a pair (x, y) such that y = γj(x) for

some j. Hence, he knows that

240 E. Solak

y = σ(σ(x ⊕ ROL(Kj
i , 1)) ⊕ Kj

i). (19)

There are two ways the attacker can use (19) to reveal a new point on σ.
If x ⊕ ROL(Kj

i , 1) ∈ R and y /∈ σ(R), the attacker reveals the value of the
map σ at σ(x ⊕ ROL(Kj

i , 1)) ⊕ Kj
i as y. On the other hand, if y ∈ σ(R)

and x ⊕ ROL(Kj
i , 1) /∈ R, the attacker reveals the value of the map σ at

x ⊕ ROL(Kj
i , 1) as σ−1(y) ⊕ Kj

i .
Thus, with the skipping attack, the attacker reveals some new points on

the map σ. He subsequently uses Lemma 4 to check if these new points
correspond to mappings across two different orbits in πr that were not used
in the permutation orbit attack. If so, the revealed portion R is expanded
even more.

Example 2. In the first example, we used the cryptosystem with secret pa-
rameters r = 5, m = 3, t = 12, C0 =0x4ED3, Ks =0x8F4C. By the equivalence
explained in above, this is equivalent to Ks =0xC19F=0x4ED3⊕0x8F4C and
C0 =0x0000, We used the standard map as TDCM. The secret TDCM pa-
rameter is Kc = 53246.

Since m = 3, we can apply the permutation orbit attack only with
K1
i =0xFFFF. We obtain the orbit structure of π5

1 as (1, 53712), (1, 6432),
(5, 779), (1, 699), (1, 449), (1, 252), (1, 72), (5, 5). Here a pair (q, n) means
that there are q orbits of length n.

We apply Lemma 2 to lone orbits of length 53712, 6432, 699, 449, 252 and
72 in π5

1 to reveal 61616 entries in σ. This corresponds to 94.02% of the map
σ.

We saw that 1 /∈ σ(R). So, we choose C = 1 in the expansion attack. We
try Ki = 1 and find P = 65082. The expansion attack for these values indeed
succeeds and we find 1 = σ(680).

Now, we go back to the result of permutation orbit attack. Searching for
680⊕0xFFFF in the cycles of π5

1 , we see that it is mapped across two cycles of
length 779. Using this sample point with Lemma 4, we reveal 779 new points
in σ. Thus, the revealed set R gets bigger by 779 new points. Hence, a new
expansion attack is even more likely to succeed. Repeating the attack with
9 more unrevealed ciphertext blocks with the same Ki = 1, we reveal the
whole map σ.

3.3 Algebraic Cryptanalysis of a Chaotic Cipher
Based on Chaotic Map Lattices

In the image encryption algorithm proposed in [Pisarchik et al., 2006], the
plaintext is the vector c ∈ Zm256 obtained by the usual row-scan of an N ×M
image, where m is the total number of pixels, i.e. m = NM . Here, Z256

denotes the set {0, 1, 2, . . . , 255} of integers which are represented by 8-bit
pixels. The algorithm encrypts plaintext c in three steps; D/A conversion,
chained chaotic iteration and A/D conversion.

7 Cryptanalysis of Chaotic Ciphers 241

1. D/A conversion: each integer pixel value ci is mapped to one of 256 distinct
real values xi in the chaotic attractor Ω = (xmin, xmax) for the logistic map

f(u) = au(1 − u),

using
xi = g1(ci) = xmin + (xmax − xmin)

ci
255

, 1 ≤ i ≤ m, (20)

where xmin = (4a2 − a3)/16 and xmax = a/4.
2. Chained chaotic iteration: the real values xi are transformed using re-

peated chaotic iteration as follows. We first initialize cycle 0 values as
y
(0)
i = xi, 1 ≤ i ≤ m. The transformation for the jth cycle is given as

y
(j)
1 = A(fn(y(j−1)

m) + y
(j−1)
1),

y
(j)
i = A(fn(y(j)

i−1) + y
(j−1)
i), i ≥ 2, 1 ≤ j ≤ r, (21)

where the function A : (2xmin, 2xmax) → Ω guarantees that the LHS of
(21) falls within the attractor. The plot of A is given in Fig. 4.

Fig. 4 The plot of the function A : (2xmin, 2xmax) → (xmin, xmax). The function
wraps around the attractor like modulus.

In (21), r denotes the number of cycles (rounds) in the encryption. Note
that the logistic map f is iterated n times starting with the initial value
y
(j)
i−1 for i ≥ 2 and with y

(j−1)
m for i = 1. The number of iterations n is part

of the secret key.
3. A/D conversion: each y

(r)
i is mapped back to an integer di in Zm256 using

di = g2(y
(r)
i) = round

[
(y(r)
i − xmin)

255
xmax − xmin

]
. (22)

242 E. Solak

The vector d ∈ Zm256 is the ciphertext.
In the subsequent discussion, we explain the attack given in [Solak and okal,

2011].

Equivalent representation

Here, we give the equivalent representation of the algorithm so that all the
operations are done in Z256 and the secret quantities are some unknown
permutations.

Note that g1 and g2 denote the D/A and A/D conversion functions in (20)
and (22), respectively. For one round of encryption, we can write (21) as

di = g2(yi) = g2(A(fn(yi−1) + yi)),
= g2(A(fn(g1(di−1)) + g1(ci))), 2 ≤ i ≤ m. (23)

Note that the mapping in (23) is from the pair (di−1, ci) ∈ Z256 × Z256 to
di ∈ Z256. Let us denote this map as s : Z256 × Z256 → Z256.

Given the secret quantities a and n, one can calculate the map s as

s(i, j) = g2(A(fn(g1(i)) + g1(j))), 0 ≤ i, j ≤ 255. (24)

Now, we can write the single round encryption as

d1 = s(cm, c1),
di = s(di−1, ci), 2 ≤ i ≤ m. (25)

Similarly, we can trivially extend this expression for arbitrary number of
rounds r. In this new expression of the algorithm, the equivalent secret quan-
tities are the map s and the number of rounds r. However, the number of
rounds is a small number in the range of 10. Thus, it can be safely assumed
that the attacker knows r. Even when the attacker does not know r, he can
try several values for r and apply the rest of the attack for the tried r. If the
attack succeeds then the attacker has found the correct r.

In the next section, we give the attack that recovers the secret map s,
assuming that r is known. The attack is first given in [Solak and okal, 2011].

Recovering s

Assume that the attacker chooses a two pixel image (c1, c2) as plaintext and
obtains the corresponding ciphertext (d1, d2) for a single round. Using (25)
with m = 2, we obtain

d1 = s(c2, c1), (26)
d2 = s(d1, c2).

7 Cryptanalysis of Chaotic Ciphers 243

Thus, (26) defines a function π : Z256 × Z256 → Z256 × Z256, π((c1, c2)) =
(d1, d2). Since the encryption is invertible, π is a permutation over the set
Z256 × Z256.

Note that if attacker knows a point (d1, d2) = π((c1, c2)) on the permu-
tation, then using (26), he can reveal the map s on two points (c2, c1) and
(d1, c2).

If π is a single round encryption, then r round encryption becomes
πr. Hence, for his chosen plaintext image (c1, c2), the attacker observes
πr((c1, c2)). Choosing all of the 216 possible 2-pixel plaintexts one by one
and obtaining their corresponding ciphertexts, the attacker constructs the
permutation πr. Using the results given at the start of this section, the at-
tacker reveals portions of π. Using the known points on π, the attacker finally
recovers the secret map s.

We now give the details of the attack.

Permutation orbit attack

Once the attacker obtains πr , he calculates its orbit structure using the pro-
cedure in Remark 1. Given the orbit structure of πr, he starts by using the
orbits that are shuffled going from π to πr. The attacker uses such orbits in
two distinct categories.

1. Look for lone orbits in πr: If there is a lone orbit of length t1 in πr, use
Lemma 2 to reveal t1 points in π. From those, reveal at most 2t1 points of
s using (26). Hence, if β = (b0, b1, . . . , bt1−1) is a lone orbit of πr , we can
reveal some of the points on s for 0 ≤ j < t1 as

s(bj,2, bj,1) = b(j+r∗)mod t1,1,

s(b(j+r∗)mod t1,1, bj,2) = b(j+r∗)mod t1,2.

Note that each bj is a pair (bj,1, bj,2), corresponding to a 2-pixel image.
2. Look for a collection of the same length orbits in πr: If the size q of the

collection is less than the least divisor of r larger than 1, then use Lemma
3 to reveal qt2 more points in π, where t2 is the length of an orbit in the
collection. Again, use (26) to reveal at most 2qt2 new points in s.
Using the permutation attack, the attacker recovers a portion of the map
s. If the portion is the whole, then the attack concludes successfully. If
there are still unrevealed portions of s, the attacker performs the following
consistency checks on the orbits not used in the permutation attack.

Consistency check

Suppose there are q > 1 orbits of length t3 among the orbits of πr and that
none of these orbits were used in the permutation orbit attack. We now give
consistency checks that can be applied to these orbits in order to reveal more
points on the partially revealed map s.

244 E. Solak

Let β be one of those q orbits in πr. There are two ways such a β might
occur in πr. One way is that β might have been obtained by the split of a
larger orbit in π. The other possibility is that β was obtained by the shuffling
of an orbit of the same length in π, see Remark 2.

We first test if latter is the case.
Assume that β = (b0, b1, . . . , bt3−1) was obtained by the shuffling of an

orbit of π. In this case, gcd(n3, r) = 1. Note that each bj is a pair (bj,1, bj,2) ∈
Z256 × Z256. By Lemma 2, π(bj) = b(j+r∗)mod t3 , 0 ≤ j < n3. Thus, we
conclude that, for 0 ≤ j < t3,

s(bj,2, bj,1) = b(j+r∗) mod t3,1,

s(b(j+r∗) mod t3,1, bj,2) = b(j+r∗) mod t3,2.

Thus, on the assumption that β was obtained by shuffling, we reveal possibly
2t3 new points of the map s. However, if the assumption was wrong, then we
expect to encounter inconsistencies. The newly revealed points might con-
flict with the already revealed points on s. Also, they might conflict among
themselves.

To better see how two kinds of conflicting values might arise, let us assume
that the attacker already knows x, y, z ∈ Z256 such that s(x, y) = z. If, for
some j, bj,2 = x and bj,1 = y but b(j+r∗)mod t3,1 �= z, then we have the conflict
of the first kind, i.e. the newly revealed point conflicts with the already known
point.

On the other hand, if we have j1 and j2 such that bj1,2 = b(j2+r∗)mod t3,1

and bj1,1 = bj2,2 but b(j1+r∗) mod t3,1 �= b(j2+r∗) mod t3,2, then we have newly
revealed points conflicting among themselves.

The attacker can test both conflicts together. For every set of newly re-
vealed points, he tries to add these to the map. If he fails due to a conflict
with the already known portion, he concludes that β was not obtained by a
simple shuffling, but instead was obtained by the split of a larger orbit in π.

By going through all the orbits not used in the permutation attack, and
testing if they were obtained by simple shuffles, the attacker enlarges the
revealed portion of s.

Now, the attacker is left with sets of orbits which are certainly obtained
by the split of larger orbits in π. Let β(1) and β(2) be two such orbits of the
same length t4. We cannot directly use Lemma 1 because it is still possible
that they were obtained by the split of different orbits in π.

In order to better see how this can happen, assume π has two orbits of
length 10 and 15 and that r = 6. Then, by Lemma 1, in π5, the length 10
orbit will be split into two length 5 orbits and lenth 15 orbit will be split into
three length 5 orbits. Hence, in π5, we see length 5 orbits coming from the
split of different orbits.

Even if β(1) and β(2) come from the split of the same orbit in π, we may
not directly use Lemma 4, because we lack a sample point mapping from one
orbit to another.

7 Cryptanalysis of Chaotic Ciphers 245

Hence, the test for the second case proceeds as follows. The attacker
chooses two same length orbits β(1) and β(2) in πr. Let n4 be the common
length of these two orbits. He assumes that β(1) and β(2) come from the split
of the same larger orbit in π and that there exist two integers 0 ≤ i, j < t4
such that b

(1)
i ∈ β(1), b

(2)
j ∈ β(2) and π(b(1)

i) = b
(2)
j . Fixing i = 0, he tries

every j, 0 ≤ j < t4, each time assuming that π(b(1)
0) = b

(2)
j . If β(1) and β(2)

are consecutive splits of a larger orbit in π, then there is such a j. If the
attacker hits upon the correct j, he uses Lemma 4 and possibly reveals 2t4
new points on the map s as

s(b(1)
0,2, b

(1)
0,1) = b

(2)
j,1 , 0 ≤ j < t4,

s(b(2)
j,1 , b

(1)
0,2) = b

(2)
j,2 , 0 ≤ j < t4.

On the other hand, if the attacker encounters an inconsistency with the
already revealed portion of the map s, he discards j. If all the j’s in 0 ≤ j < t4
are discarded as such, then either β(1) and β(2) do not come from the same
orbit π, or they come from the same orbit but their ordering was wrong, i.e.
they are not consecutive splits.

By trying all the ordered pairs of orbits of the same length, the attacker
is highly likely to eliminate the wrong assumptions with inconsistencies and
reveal whole of the map s.

Complexity of the attack

Once the attacker obtains the permutation πr, it takes only 216 lookups to
construct the orbit structure of πr. The computational complexity of the rest
of the attack depends on the orbit structure of the permutation πr.

For a random permutation over the set {1, 2, . . . , n}, the expected number
of orbits is approximately log n, [Lovasz, 2007, p. 227]. In our case n = 216,
so we expect to have about 11 orbits in π. In the worst case, all orbits are
split into r smaller orbits in πr and we expect to have about 11r split orbits
in πr. If we were to check all pairs of orbits in πr for consistency, we would
perform about 121r2 consistency checks. Consistency checks can be done by a
fixed number of lookups and comparisons. Let C denote the fixed cost of one
consistency check for an orbit pair. For each pairing of two orbits of length L,
we have to perform the consistency check for L shift amounts. The average
orbit length for the original permutation π is n/ logn. Hence, for the average
case with n = 216, we can take L as 5960. The split orbits in πr will have an
average length of 5960/r.

Thus, the average complexity of the attack is 216 +121×rC×5960 lookup
or comparison operations. For a particular case of r = 5, C = 20, the attack
takes about 108 basic operations on average.

246 E. Solak

3.4 Cryptanalysis of Fridrich’s Image Cipher

Fridrich’s cipher proposed in [Fridrich, 1998] is one of the earliest chaotic
image encryption algorithms. The following discussion is a summary of the
cryptanalysis given in [Solak et al., 2010a].

The plaintext P is an M × N grayscale image, where each pixel is repre-
sented using a byte. The image is first vectorized using the usual row-scan.
Let p ∈ Sn represent this vectorized image, where S = {0, 1, . . .255} and
n = NM. Thus, the plaintext is the vector p = [p1 p2 · · · pn].

Each round consists of two steps. In the first step, p is shuffled using a
secret permutation. Let b denote this secret permutation defined on the set
{1, 2, . . . , n}. Let us denote the shuffled vector by f. The relation between
the shuffled vector f and the vectorized plaintext p can be expressed as

fi = pb(i), 1 ≤ i ≤ n. (27)

Namely, the shuffled pixel at position i is obtained from the original pixel
at position b(i).

In the second step of the round, f is passed through a nonlinear function
as

ci = fi + g(ci−1) + himod 256, 1 ≤ i ≤ n, (28)

where g : S → S is a fixed nonlinear function and h ∈ Sn is a fixed vector.
In (28), c0 is taken to be a fixed system parameter.

These two step are repeated for R rounds. In [Fridrich, 1998], R = 10 is
suggested for good diffusion and confusion properties.

Combining (27) and (28), we obtain one round encryption as

ci = pb(i) + g(ci−1) + hi mod 256, 1 ≤ i ≤ n. (29)

The decryption for a single round is defined as follows. Let u be the inverse
of b, so that

j = b(i) ⇔ i = u(j). (30)

Using (30) in (29), we obtain

pj = cu(j) − g(cu(j)−1) − hu(j) mod 256. (31)

For i = 1, we have

c1 = pb(1) + g(c0) + h1 mod256.

The secret component of the algorithm is the permutation p. A set of secret
keys are used in a chaotic system to generate this permutation. It is desirable
that the permutation shows good diffusion properties in order to hide local
correlations in an image. For example, in one of the schemes proposed in
[Fridrich, 1998], the original image P is partitioned and Baker map applied

7 Cryptanalysis of Chaotic Ciphers 247

to each partition to obtain the permutation. In this case, the set of keys are
the boundaries where the image is partitioned. It is possible to use other
schemes to generate a permutation. Our attack is general and applies to all
of these cases.

A naive attack might try to reveal the keys that were used to generate the
permutation b. However, anyone who knows the permutation p can decrypt
the images. In our cryptanalysis, we develop methods to reveal the permu-
tation b. Such an approach is more general as it easily covers cases where
different chaotic maps are used to generate the permutation.

Inter-round dependencies in decryption

The function g in (29) forms a chain that relates consecutive ciphertext pixels.
Hence, in encryption for a single round, a change in a plaintext pixel affects
many ciphertext pixels. Indeed, if we change pb(i), by (29), ci changes. Since
we have

ci+1 = pb(i+1) + g(ci) + hi+1 mod 256,

a change in ci, in turn, changes ci+1. Thus, for a single round, a change in
pb(i) affects ci, ci+1, . . . , cn. As a result, a ciphertext pixel depends on many
plaintext pixels.

However, the situation is quite different in decryption and there lies the
weakest link in the algorithm. Using (31), we see that, for a single round, pj
is affected by only two ciphertext pixels, cu(j) and cu(j)−1. Similarly, for two
rounds, pj is affected by at most four ciphertext pixels.

In order to see this more clearly, let us denote the output of the second
round as d1d2 · · · dn. Using (31) with ck as the plaintext pixel that is input
to second round, we obtain

ck = du(k) − g(du(k)−1) − hu(k) mod 256, 1 ≤ k ≤ n. (32)

Substituting k = u(j) in (32), we find

cu(j) = du2(j) − g(du2(j)−1) − hu2(j). (33)

Here, we denote by us, the s times composition of u with itself.
Similarly, for k = u(j) − 1, we have

cu(j)−1 = du(u(j)−1) − g(du(u(j)−1)−1) − hu(u(j)−1). (34)

Thus, we see from (31), (33) and (34) that, for two rounds of decryption, pj
is affected only by the ciphertext pixels

du2(j), du2(j)−1, du(u(j)−1), du(u(j)−1)−1.

Obviously, depending on the particular permutation u, some of these four
pixels might coincide.

248 E. Solak

Note that the plaintext pixel pb(1) is affected by only c1 because c0 is a fixed
system parameter. Hence, for two rounds, pb(1) is affected by the ciphertext
pixels

du(1), du(1)−1.

Example 3. We illustrate the dependencies in the decryption for two rounds.
Here, n = 6 and the permutation u is given as

u =
(

1 2 3 4 5 6
2 4 1 5 6 3

)
. (35)

p1 p2 p3 p4 p5 p6

c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

Fig. 5 The dependency paths for the permutation given in (35). A solid arrow
indicates that the dependency is through u, while a dashed arrow indicates that
the dependency is through u − 1.

The dependency paths are given in Fig. 5. In the figure, the directed arrows
indicate which pixels affect the computation of the destination pixel. For
example, two arrows going from c5 and c4 to p4 means that p4 is affected by
c5 and c4.

The dependency chain from from the ciphertext d to the plaintext p is
given as follows

p1 ← c1, c2 ← d1, d2, d3, d4,

p2 ← c3, c4 ← d1, d4, d5,

p3 ← c1 ← d1, d2,

p4 ← c4, c5 ← d4, d5, d6,

p5 ← c5, c6 ← d5, d6, d2, d3,

p6 ← c2, c3 ← d3, d4, d1.

7 Cryptanalysis of Chaotic Ciphers 249

Note that p3 is affected by only c1 because u(3) = 1. c1 is, in turn, affected
by two ciphertext pixels d1 and d2. Also note that p4 is affected by three
ciphertext pixels rather than four because u(u(4)− 1) = u2(4) − 1 = 5. This
also means that there are two distinct dependency paths going from d5 to p4.

Detecting dependency using chosen ciphertext images

In general, for the decryption in an R round algorithm, a particular plaintext
pixel pj is affected by at most 2R ciphertext pixels. For a 256 × 256 image
encrypted in 10 rounds, we have n = 65536 and 2R = 1024. Hence, only
about 1024

65536 ≈ 2% of ciphertext pixels affect any given fixed plaintext pixel.
Let us denote by z, the ciphertext image after R rounds of encryption. The

attacker wants to know if there is a dependency path from the ciphertext pixel
zi to the plaintext pixel pj . Assume that the attacker knows a plaintext-
ciphertext image pair (p, z). He changes the value of zi and requests the
plaintext for the changed ciphertext. If pj changed in the new plaintext, then
there is a dependency path from zi to pj so that zi affects pj .

Note that, for some changes to zi, pj might remain the same even when
there are dependency paths from zi to pj . This is due the nonlinearity of
encryption/decryption that operates in a finite domain. In order to detect all
the dependency paths, the attacker needs to try more than one changes to
zi. It is highly unlikely that pj remains fixed for all of these changes.

Detecting changes for all i, 1 ≤ i ≤ n, the attacker constructs a binary
matrix T showing the dependency relations between ciphertext and plaintext
pixels in decryption. If Tij = 1, then it means that zi affects pj. Since pj is
affected by at most 2R pixels of z, each column of T contains at most 2R 1’s.
All the other entries are zero.

Example 4. The matrix T for the permutation u used in Example 1 is given
as

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1
1 0 1 0 1 0
1 0 0 0 1 1
1 1 0 1 0 1
0 1 0 1 1 0
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Finding b(1)

Writing (31) for pb(1), we have

pb(1) = c1 − g(c0) − h1 mod 256.

Hence, for one round, pb(1) is affected by only c1, the first pixel of the output
of the first round. The rest of the rounds generate at most 2R−1 distinct

250 E. Solak

dependency paths. Therefore the column b(1) of T contains at most 2R−1

1’s. Thus, the column of the matrix T with the least number of 1’s gives
the attacker a starting point for the attack. Once an attacker constructs the
matrix T, he can reveal b(1) by choosing the column k with the least column
sum. Then he knows that b(1) = k or u(k) = 1.

For example, by inspecting the matrix T in Example 4, the attacker can see
that the third column has the least sum. Thus, he concludes that u(3) = 1.

Tree of dependency

In order to generalize the attack to the rest of u, we define an operation to
denote the dependency relations between the sets.

Given a permutation u on the set {1, 2, . . . n}, define the operation L on a
set A as follows.

L(A) = {y | ∃x ∈ A such that y = u(x) or y = u(x) − 1}.

The set L(A) has natural meaning in terms of decryption. Using (31), we
see that the set L(A) is the set of ciphertext pixels that affect the set A
of plaintext pixels in one round of decryption. In particular, for an integer
k ∈ {1, 2, . . . , n}, L({k}) is given as

L({k}) =
{

{u(k)} if u(k) = 1,
{u(k), u(k)− 1} otherwise (36)

When L operates on a set with a single element k, we drop the set notation
in L({k}) and use instead L(k).

We can naturally compose L with itself to define its higher powers. Thus,
for L2(k), we have

L2(k) = L({u(k), u(k) − 1})
= {u2(k), u2(k) − 1, u(u(k)− 1), u(u(k) − 1) − 1}.

Here, we implicitly assumed that 1 /∈ {u(k), u2(k), u(u(k) − 1)}. If we have
u(k) = 1 and u2(k) �= 1, then, by the definition of L, we have

L2(k) = L(u(k))
= {u2(k), u2(k) − 1}.

Again, the powers of L has a natural interpretation in terms of multi-round
encryption. For an integer k, Li(k) is the set of the indices of ciphertext pixels
that affect the plaintext pk in i round decryption. This set is also the set of
row indices where the kth column of T has nonzero entries.

7 Cryptanalysis of Chaotic Ciphers 251

Example 5. For the permutation given in Example 1, we have

L(1) = {1, 2},
L2(1) = {1, 2, 3, 4},

L2({1, 6}) = {1, 2, 3, 4}.

Overlapping sets of leaves

Using the chosen-plaintext attack given in the beginning of this section, the
attacker constructs the matrix T. This is the same as attacker knowing the
sets LR(k), ∀k ∈ {1, 2, . . . , n}. The attacker uses this knowledge to reveal the
secret permutation u. First, we need the following facts. For the proofs, see
[Solak et al., 2010a].

Lemma 5. Let x, y and z be integers in {1, 2, . . . n} such that they satisfy

u(x) + 1 = u(y),
u(y) + 1 = u(z).

Then, for every positive integer R larger than 1,

LR(y) \ LR(x) ⊂ LR(z).

Lemma 6. Let x and y be integers such that u(x) = 1 and u(y) = 2. Then,
LR(x) ⊂ LR(y).

x

u(x)

u2(x) − 1
...

u2(x)
...

y

u(y) = u(x) + 1

u2(y) − 1
...

u2(y)
...

z

u(z) = u(y) + 1

u2(z) − 1
...

u2(z)
...︸ ︷︷ ︸

Lr−1(u(z))
︸ ︷︷ ︸

Lr−1(u(z)−1)︸ ︷︷ ︸
Lr(z)

Fig. 6 The sets LR(a) and LR−1(a). Note that the sets are the leaves of overlapping
dependency trees.

252 E. Solak

The attack

The attack starts with determining the integer x1 that satisfy u(x1) = 1.
For this, the attacker chooses the set LR(x1) that has the least number of
elements. This also corresponds to choosing the column of the matrix T with
the least column sum. It might happen that there are more than one candidate
for x1. For such cases, the attacker repeats the rest of the procedure for each
candidate until he encounters a contradiction that he can use to eliminate
the candidate.

Once the attacker knows x1, he goes on to determine x2 such that u(x2) =
2. Define the set X2 as

X2 = {x | LR(x1) ⊂ LR(x)}.

By Lemma 6, x2 ∈ X2. In the likely case that X2 contains a single element,
the attacker uniquely pins down x2. If there are more then one candidate for
x2, the attacker again repeats the rest of the procedure until he can eliminate
candidates.

Now, the attacker knows x1 and x2 such that u(x1) = 1 and u(x2) = 2.
He then searches for x3 such that u(x3) = 3. In order to pin down x3, the
attacker finds the set defined by

X3 = {x | LR(x2) \ LR(x1) ⊂ LR(x)}.

By Lemma 5, x3 ∈ X3. If X3 contains a single element, then the attacker has
just found x3 that satisfies u(x3) = 3.

The attacker continues in this fashion and uses his knowledge of xi and
xi+1 to reveal xi+2 such that u(xi) = i, u(xi+1) = i + 1 and u(xi+1) = i + 2.
The attack concludes when all the entries of the secret permutation u are
revealed.

In cases when Xi+1 contains z1, z2, . . . zv, the attacker applies the proce-
dure for each zm, 1 ≤ m ≤ v, each time assuming that u(zm) = i + 1.

For false candidates, we expect the iteration to yield an empty set at some
point. Namely, if the set LR(zm) \ LR(xi+1) is not contained in any LR(w),
then u(zm) �= i + 1 and we eliminate the candidate zm.

The iterations of the attack are expressed as a recursion in Algorithm 1.
The recursive function is FindNext() which takes no arguments. The con-
stant data of the algorithm are the sets LR(k), ∀k ∈ {1, 2, . . . , n}. The al-
gorithm manipulates the global variables b and i. The variable i shows the
portion of b that is assumed to have been revealed. Namely, the function
FindNext() assumes that b(1), b(2), . . . , b(i) have already been revealed. Note
that we also assume that the values b(1) and b(2) are initially known.

7 Cryptanalysis of Chaotic Ciphers 253

In Algorithm 1, Line 1, we find the candidates for b(i+1). In doing this, we
exclude the set {b(1), b(2), . . . , b(i)} which is assumed to have been revealed so
far. For each candidate z, Lines 6-10 recursively apply the algorithm assuming
that u(z) = i + 1. The function FindNext() returns in Line 13 when no
candidates are found. It means that the recursion can not go any deeper
because a wrong assumption about the permutation value has been made. In
this case, Line 11 backtracks once and another candidate is tried.

Algorithm 1. FindNext()
Data: LR(k), ∀k ∈ {1, 2, . . . , n}, b(1), b(2).
Result: b
Global Variable: b and i. Initially i ← 2.
FindNext();1

begin2

Z ← {
x | LR(b(i)) \ LR(b(i − 1)) ⊂ LR(x)

} \ {b(1), b(2), . . . , b(i)} ;3

i ← i + 1 ;4

if Z 	= ∅ then5

foreach z ∈ Z do6

b(i) ← z ;7

if i = n then8

exit9

;10

FindNext();11

i ← i − 112

else13

return14

end15

Example 6. We illustrate the attack with an artificially small image size. We
choose R = 3 and assume an image size of 4 × 4. Therefore, the secret per-
mutation u maps within the set {1, 2, . . .16}. We generated the permutation
randomly and it is given as

u =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 8 6 12 1 11 14 15 7 3 10 2 16 5 4 13

)
.

The other fixed functions g and h are chosen randomly. The attacker cal-
culates the matrix T as

254 E. Solak

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0
1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the ith column of the matrix T, the row indices of the 1’s give the set
L3(i).

First, the attacker reveals b(1). For this, he finds the minimum sum col-
umn which is the column 5. Thus, the attacker reveals that u(5) = 1, or
equivalently that b(1) = 5. From the 5th column, the attacker sees that
L3(5) = {6, 7, 14, 15}. He then uses Lemma 6 and searches for the column
that has 1’s in its 6th, 7th, 14th and 15th rows. This column turns out to be
the 12th one. Hence, he concludes b(2) = 12. Now that the attacker knows
the values of b(1) and b(2). Next, he applies Algorithm 1. Using the ma-
trix T, he calculates that L3(12) \ L3(5) = {13}. Searching through the
columns of T, the attacker finds that columns 1, 7, 10, 11, 16 have 1 in
their 13th rows. Thus, Z = {1, 7, 10, 11, 16}. Now, he tries those as candi-
dates for b(3). First, he assumes b(3) = 1. On this assumption, he calculates
the set L3(1) \L3(12) = {3, 4, 5, 10, 11}. But, there is no column that has 1’s
in its rows corresponding to this set. Hence, b(3) �= 1. Next, he tries b(3) = 7.
He calculates L3(7)\L3(12) = {1, 3, 4, 11, 12}. Again, there is no column that
has 1’s in its rows corresponding to this set. The third candidate is 10, which
happens to be the correct one. Assuming b(3) = 10, the attacker quickly
reveals the rest of the secret permutation b.

4 Conclusion

The rich and complex behavior of chaotic systems attracted many researchers
into designing chaotic ciphers using the inherent noise-like character of
chaotic signals. During the last two decades, we have seen many propos-
als for chaotic ciphers. At the same time, many of these proposals have been
shown to be very weak or in some cases even basically flawed.

7 Cryptanalysis of Chaotic Ciphers 255

We see that in many chaotic ciphers, it is possible to bypass the chaotic
subsystems and attack the intermediate parameters instead. In such a case, it
does not matter how rich and complex the chaotic behavior are. An attacker
always tries to exploit the weakest link in the encryption chain.

In yet many other cases, algebraic structure of the chaotic cipher contains
weaknesses that can be exploited by an attacker. Interestingly, in only rare
cases, the chaos is the weak point. Rather, the break comes through the way
that the chaotic signals are used in encryption.

A healthy co-development of analysis and design is crucial for the chaos
cryptography to become a mature field. The designers should be well aware
of the existing attacks and use strong and well-known structures in their
designs. Also, chaos cryptography needs to incorporate rigorous tools and
methods developed in mainstream cryptography.

References

Alvarez, G., Li, S.J.: Some basic cryptographic requirements for chaos-based cryp-
tosystems. Int. J. Bifurcation Chaos 16(8), 2129–2151 (2006)

Amig, J.M., Kocarev, L., Szczepanski, J.: Theory and practice of chaotic cryptog-
raphy. Physics Letters A 366(3), 211–216 (2007), ISSN 0375-9601

Anstett, F., Millerioux, G., Bloch, G.: Chaotic cryptosystems: Cryptanalysis and
identifiability. IEEE Tran. Circuits and Systems I-Regular Papers 53(12), 2673–
2680 (2006), ISSN 1057-7122

Çokal, C., Solak, E.: Cryptanalysis of a chaos-based image encryption algorithm.
Physics Letters A 373(15), 1357–1360 (2009) ISSN 0375-9601

Dachselt, F., Schwarz, W.: Chaos and cryptography. IEEE Tran. Circuits and Sys-
tems I - Fundamental Theory and Applications 48(12), 1498–1509 (2001), ISSN
1057-7122

Fraleigh, J.B.: A First Course in Abstract Algebra. Addison Wesley, Reading (2002)
Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Interna-

tional Journal of Bifurcation and Chaos 8(6), 1259–1284 (1998)
Guan, Z.-H., Huang, F., Guan, W.: Chaos-based image encryption al-

gorithm. Physics Letters A 346(1-3), 153–157 (2005), ISSN 0375-9601,
doi:10.1016/j.physleta.2005.08.006

Huang, C.K., Nien, H.H.: Multi chaotic systems based pixel shuffle for image en-
cryption. Optics Communications 282(11), 2123–2127 (2009), ISSN 0030-4018,
doi:10.1016/j.optcom.2009.02.044

Kocarev, L., Jakimoski, G.: Pseudorandom bits generated by chaotic maps. IEEE
Tran. Circuits and Systems I - Fundamental Theory and Applications 50(1),
123–126 (2003), ISSN 1057-7122

Li, S., Li, C., Chen, G., Bourbakis, N.G., Lo, K.-T.: A general quantitative crypt-
analysis of permutation-only multimedia ciphers against plaintext attacks. Sig-
nal Processing: Image Communication 23(3), 212–223 (2008), ISSN 0923-5965,
doi:10.1016/j.image.2008.01.003

Lovasz, L.: Combinatorial Problems and Exercises. AMS, Providence (2007)

256 E. Solak

Masuda, N., Jakimoski, G., Aihara, K., Kocarev, L.: Chaotic block ciphers: From
theory to practical algorithms. IEEE Tran. Circuits and Systems I-Regular Pa-
pers 53(6), 1341–1352 (2006), ISSN 1057-7122

Patidar, V., Pareek, N.K., Sud, K.K.: A new substitution-diffusion based image
cipher using chaotic standard and logistic maps. Communications in Nonlin-
ear Science and Numerical Simulation 14(7), 3056–3075 (2009), ISSN 1007-5704,
doi:10.1016/j.cnsns.2008.11.005

Pisarchik, A.N., Flores-Carmona, N.J., Carpio-Valadez, M.: Encryption and de-
cryption of images with chaotic map lattices. Chaos 16(3), 033118 (2006)

Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution-diffusion
based image cipher. Communications in Nonlinear Science and Numerical Simu-
lation 15(7), 1887 (2010)

Solak, E., Cokal, C., Yildiz, O.T., Biyikoglu, T.: Cryptanalysis of fridrich’s chaotic
image encryption. Int. J. Bifurcation Chaos 20(5), 1405–1413 (2010a)

Solak, E., Çokal, C.: Cryptanalysis of a cryptosystem based on discretized two-
dimensional chaotic maps. Physics Letters A 372(46), 6922–6924 (2008)

Solak, E., Çokal, C.: Algebraic break of a cryptosystem based on discretized two-
dimensional chaotic maps. Physics Letters A 373(15), 1352–1356 (2009)

Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic
map lattices. Information Sciences 181(1), 227–233 (2011)

Solak, E., Rhouma, R., Belghith, S.: Cryptanalysis of a multi-chaotic systems based
image cryptosystem. Optics Communications 283(2), 232–236 (2010b)

Xiang, T., Wong, K.-W., Liao, X.: A novel symmetrical cryptosystem based on
discretized two-dimensional chaotic map. Physics Letters A 364(3-4), 252–258
(2007)

Chapter 8

Lessons Learnt from the Cryptanalysis
of Chaos-Based Ciphers

Gonzalo Alvarez1, José Maŕıa Amigó2, David Arroyo3, and Shujun Li4

1 Instituto de F́ısica Aplicada, Consejo Superior de Investigaciones Cient́ıficas
Serrano 144, 28006 Madrid, Spain

2 Centro de Investigación Operativa, Universidad Miguel Hernández
Avda. de la Universidad s/n. 03202 Elche (Alicante) Spain

3 Instituto de Acústica, Consejo Superior de Investigaciones Cient́ıficas
Serrano 144, 28006 Madrid, Spain

4 Fachbereich Informatik und Informationswissenschaft, Universität Konstanz
Universitätsstrasse 10, 78457 Konstanz, Germany

1 Introduction

The idea of using chaotic transformations in cryptography is explicit in the
foundational papers of Shannon on secrecy systems (e.g., [96]). Although the
word “chaos” was not minted till the 1970s [71], Shannon clearly refers to this
very concept when he proposes the construction of secure ciphers by means
of measure-preserving, mixing maps which depend ‘sensitively’ on their pa-
rameters. The implementation of Shannon’s intuitions had to wait till the
development of Chaos Theory in the 1980s. Indeed, it was around 1990 when
the first chaos-based ciphers were proposed (e.g., [78], [46]). Moreover, in 1990
chaos synchronization [91] entered the scene and shortly thereafter, the first
applications to secure communications followed [56, 37]. The idea is remark-
ably simple: mask the message with a chaotic signal and use synchronization
at the receiver to filter out the chaotic signal. The realization though had to
overcome the desynchronization induced by the message itself. After this ini-
tial stage, the number of proposals which exploited the properties of chaotic
maps for cryptographical purposes, grew in a spectacular way.

As any topic developed in a rush tempo, chaos-based (or ‘chaotic’) cryp-
tography has suffered, and to a minor extent it is still suffering from annoying
shortcomings. Some of them even breach basic principles of cryptography but,
alas, persist in the publications after the many years and the many warnings
[6, 15, 17]. In this chapter we are going through the most common errors and
bad practices that have been marring chaos-based cryptography. Formulated
in a positive way, we shall highlight a number of principles and practices that
should be prior to any serious proposal in this field. These general principles
may be classified in four groups.

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 257–295.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

258 G. Alvarez et al.

• Design aspects (e.g., specification of the key space, existence of weak keys,
etc.)

• Dynamic-theoretical aspects (e.g., use of maps with robust chaos, etc.)
• Computational aspects (e.g., computational efficiency, study of numerical

degradation, etc.)
• Security-related aspects (i.e., whether a cipher is resistant to known at-

tacks, etc.)

Needless to say, resistance of a new cipher against known attacks is no guar-
antee of security, but it is obviously a necessary condition; the same applies
to the various statistical tests for pseudo-randomness. The security of each
cipher has to be discussed on a case-by-case basis and it depends very much
on its specifics. Contrarily to the commonplace in chaotic cryptography that
the more “messy” the encryption process, the more secure the resulting ci-
pher, the security of a cipher should rely on general principles, well-tested
architectures and efficient implementations. This is the aim of this work, i.e.,
to emphasize the main problems of recent chaos-based cryptosystems in or-
der to establish a methodology to avoid them. Although it is not possible to
conclude the unconditional security of an encryption system, we can asses
its practical security by means of common tools and practices in the crypt-
analysis of chaotic cryptography. Furthermore, this analysis can be used to
define the requirements of chaotic cryptography from a theoretical point of
view. In particular, we shall advocate below for a chaos-based cryptography
on integer numbers or, more generally, finite fields as a general framework
where chaos-based cryptography can merge with conventional cryptography
while preserving its identity.

This paper is organized as follows. The first section deals with the main
problems of chaos-based cryptography, which are the conclusion of our work
in the field of the cryptanalysis of chaotic cryptosystems. As a result of the
study of those problems, in the second section we introduce a set of rules
to avoid them and to design secure chaotic cryptosystems (by means of the
critical contexts drawn through the discussion in the first section). The co-
herence between chaos-based cryptography and conventional cryptography
requires to go into a common theoretical background, which is the core of
the last two sections. Once the fundamental limitations of naive chaotic cryp-
tography have been recognized, one can take a practical approach and try
to make the most of it. After all, the properties of the numerical (actually,
periodical) orbits of chaotic maps can be good enough in practice; as a matter
of fact, this has been the general approach till now. This being the case, the
last section concludes our paper by proposing the theoretical aspects of chaos-
based cryptography. In particular, we go into the question of how chaos-based
cryptography can be understood (and even defined) in the realm of finite-
precision (hence, discrete) mathematics. We want to stress right away that
a chaos-based (or rather ‘chaos-inspired’) cryptography on the integers, thus
without numerical degradation, is possible and, of course, preferable to the

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 259

use of real-number approximations. In fact, some examples of chaos-based ci-
phers on integer numbers are mentioned in Sec. 2 and 3 —this is the approach
we recommend.

2 Main Problems in Chaos-Based Cryptography

The number of chaos-based ciphers proposed in the literature is too large
for us to attempt here a review of them. The interested reader is referred to
[17] for a brief but sufficient overview. Rather than discussing this or that
implementation of chaos-based cryptography, we will only delve into the basic
ideas that unify all of them.

Roughly speaking, there are two classes of chaotic cryptosystems. The first
one is based on chaotic systems implemented in digital (i.e., discrete-time
and discrete-space) domain. This type of chaos-based ciphers are usually
known as digital chaos-based cryptosystems or digital chaotic ciphers. One
typical type of digital chaotic ciphers amounts to numerically computing a
great number of iterations of a discrete chaotic system, using the message
and/or the key as initial data (see [46, 43] and references therein). This is
basically also the strategy in [18], [102], where periodic approximations of
chaotic automorphisms are used to define substitutions (so-called S-boxes)
resistant to linear and differential cryptanalysis. The ciphers which exploit
the ergodicity of chaotic maps, like the one originally proposed in [31] and its
posterior improvements, may be thought in this class as well. There are also
some ciphers built on top of chaos-based pseudo-random number generators
(PRNGs) like those proposed in [70, 19].

The second class amounts to scrambling a message via a chaotic system
evolving in continuous-space (but maybe discrete-time) domain. Analog cryp-
tosystems based on chaos synchronization belong to this second class. Var-
ious cryptosystems of this class, corresponding to distinct ways of hiding a
message, have drawn the attention of researchers over the years. The most
important schemes following such a principle are additive masking, chaotic
switching, parameter modulation, and message-embedding (a.k.a. direct mod-
ulation). Additive masking was first suggested in [56], [37] and [109]. Chaotic
switching is also referred to as chaos shift keying (CSK). A description with
deep insights can be found in [61], even though the idea of CSK was proposed
a couple of years before [38]. Essentially, chaotic switching is a special type
of chaotic parameter modulation: binary modulation. As a generalization of
chaotic switching, the parameter involved in a parameter modulation system
can be both discrete [89, 38] or continuous [42, 51], rather than only 0 or 1 in
chaotic switching. The message-embedding technique is given different names
in the literature: embedding [72, 82], non autonomous modulation [112] or
direct chaotic modulation [47]. A slight different method based on message-
embedding is the hybrid message-embedding. It was first proposed in [113]
but the terminology “ hybrid” was actually introduced in [88]. Most analog

260 G. Alvarez et al.

chaos-based cryptosystems are based on a single communication channel be-
tween the sender and the receiver, which is used to transmit the driving signal
and the encrypted message to achieve synchronization between the slave and
master systems. Some researchers also proposed to use two communication
channels to enhance security, where one channel is used for synchronization
and the other is for encryption [83, 54]. In Fig. 1, we show the basic struc-
tures of the three analog chaos-based cryptosystems: chaotic masking, chaotic
switching and chaotic modulation.

Master
System

Plaintext Signal m(t)

+
Slave

System

+ m′(t)

x(t) s(t)

−x′(t)

(a) Chaotic masking

Master
System 0

Master
System 1

m(t) = {m(t) ∈ {0, 1}}t=0

Slave
System

×

s(t)

x0(t)

x1(t)

m(t) = 0

m(t) = 1

x′(t)

m′(t)

(b) Chaotic switching (CSK)

Master
System

m(t) Controller

Slave
System

s(t)

x′(t)
m′(t)

(c) Chaotic modulation

Fig. 1 Basic structures of the three analog cryptosystems based on chaos synchro-
nization.

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 261

In any of the families of chaos-based cryptosystems the core of the design
process is the selection of a good chaotic system for an encryption algo-
rithm [55]. From a general point of view it is not possible to define chaotic
cryptosystems satisfying the chaotic-system-free property [64]. This being the
case, the selection of a certain encryption scheme demands the identification
of a group of chaotic systems with a certain set of dynamical properties.
Furthermore, the hardware implementation of the chaotic encryption algo-
rithm must guarantee its security, but also its efficiency. According to our
experience in the field of the cryptanalysis of chaos-based cryptosystems, the
most critical problems in chaotic cryptography arise from three elements: the
selection of a chaotic system, the choice of an encryption architecture, and
the implementation of the encryption. Next those problems are listed and
discussed, according to our previous works in [67, 24, 21].

2.1 Problems with the Selection of the Chaotic System

Problem 1. Definition of the key leading to non-chaotic behavior.
In some chaos-based cryptosystems the control parameters (or part of it)
of the underlying chaotic systems are determined by the secret key. If the
link between the secret key and the control parameters is not established
carefully, then it is possible that the underlying chaotic system evolves in an
non-chaotic way, which further erodes the confusion and diffusion properties
required by the resulting cryptosystem.

The chaotic systems used as base of cryptosystems are defined in a parametric
way such that their dynamics depend on one or several control parameters.
Moreover, those chaotic systems are dynamical systems which show a chaotic
behavior for certain values of the associated control parameters. Therefore,
the design of a cryptosystem based on any of those dynamical systems must
be done by guaranteeing the use of the set of values of the control parameters
leading to chaos. Otherwise, the underlying dynamical system associated with
the cryptosystem will not be chaotic anymore, which implies a reduction of
the level of entropy in the ciphertext (i.e., the output of the cryptosystem) and
also a decreasing of the influence on the ciphertext of a change in the plaintext
(i.e., the input of the cryptosystem). This problem is specially relevant when
the design of the cryptosystem is based on a dynamical system with chaotic
behavior only for a set of disjoint parts of the whole space of the control
parameters. This is the case of the logistic map and the Hénon map, which
have been used in [93, 73, 106] and in [34] respectively without a thorough
analysis of their dynamics, as we have pinpointed in [29, 27, 25, 26]. As
a conclusion, it is highly advisable to use dynamical systems with chaotic
behavior for all the values of the control parameter(s). That is, robust chaotic
systems [30] should be used instead of non-robust ones.

Problem 2. Nonuniform probability distribution function. In some
chaos-based encryption architectures the confusion and/or diffusion proper-

262 G. Alvarez et al.

ties depend on the probability distribution function of the orbits derived from
the underlying chaotic systems. If that distribution is not uniform and de-
pendent on the values of control parameters, then the quality of the diffusion
process is reduced.

The iteration of a chaotic map can be used to generate pseudo-random se-
quences to encrypt the plaintext. The encryption procedure could be per-
formed in different ways, but all of them demand the equiprobability of all
the states contained in the pseudo-random sequences. If this requirement is
not satisfied, then the conditional entropy of the ciphertext with respect to
the plaintext may not be large enough so that some information will be leaked
about relationships between the output and the input of the target cryptosys-
tem (see the entropy attack in [11], and the cryptanalysis in [10]). This effect
is specially significant for image encryption, as pointed out recently in [63].
As a remedy, chaotic maps with a uniform probability distribution function
should be selected as base of this kind of cryptosystems, being the family of
piecewise linear chaotic maps [68] a good option.

Problem 3. Return map reconstruction. The ciphertext of some cryp-
tosystems makes it possible to reconstruct a return map of the underlying
chaotic system. If such a return map is meaningful, then an attacker may be
able to infer the values of the control parameters that govern the evolution
of the chaotic system.

The most direct way to estimate the control parameters from a chaotic orbit
is to plot xn+1 versus xn, which is actually the chaotic map itself. If this
representation shows a simple function between xn+1 and xn, then it could
be possible to infer the control parameter. In [97] a chosen-ciphertext attack
is used to build a discretized version of the logistic map which further leads
to the estimation of the control parameter. One solution against this kind of
attack is to shuffle/truncate the chaotic orbit before using it for encryption,
which randomizes the plot of the return map.

The reconstruction of the return map is specially meaningful in the context
of analog chaos-based cryptography. Encryption techniques based on chaotic
masking or chaotic switching can be circumvented by constructing some re-
turn maps of the master system of an analog chaotic cryptosystem [92], as it
has been shown in [65, 66].

Problem 4. Low sensitivity to secret key. The most common problem
(and one of the most serious ones) about analog chaos-based cryptosystems
is the low sensitivity to the secret key. The low sensitivity is a necessary
requirement for real implementations of any analog chaos-based cryptosystem
because it is impossible to ensure exact matching of the master and slave
systems. Unavoidable noise and manufactural component deviation involved
in chaotic circuits are the two main factors causing this security problem
[107, 116].

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 263

Problem 5. Erosion of computational efficiency due to the struc-
tural complexity of the underlying chaotic systems. The structural
complexity of a chaotic system is a critical element when evaluating its suit-
ability for cryptographic applications. With this bottom line in [21, Sec. 1.3.3]
we emphasized that structural complexity can be minimized by selecting
chaotic systems defined in discrete time. Indeed, in discrete time chaos can
be achieved for phase space of Dimension 1, whereas it has to be at least of
Dimension 3 when considering continuous time.

2.2 Problems with the Encryption Architecture

Problem 6. Part of the key should not leak the rest of the key.
In some cryptosystems the secret key is composed of different subkeys. If
the knowledge of some subkeys allows the recovery of the rest of the key,
then a partial key recovery attack can be performed. Therefore, the design
of a cryptosystem must guarantee that the different subkeys composing the
secret key are uncorrelated.

In the context of a secure and robust encryption system it is assumed that
partial knowledge of the key does not reveal information about the rest of the
key and, as a result, the cryptosystem performance is not harmed [6, Rule
7]. This rule is not satisfied in the scenarios drawn by [31, 34, 20], partial
knowledge of the key can be used to obtain the rest of the key [11, 26, 95].

Case study 2.1 ([26]). Cryptanalysis of the cryptosystem proposed in [34]

In [34] the Hénon map is used as the heart of a chaos-based cryptosystem,
which entails a security problem that we have highlighted in [26]. The ana-
lytical definition of the Hénon map is:

xk+1 =
[

uk+1

vk+1

]
=

[
1− δ · u2

k + vk
β · vk

]
, (1)

with δ, β ∈ R. In the cryptosystem defined in [34] the plaintext is divided into
blocks {pk}N−1

k=0 , where each block has M bits. The encryption of the plain-
blocks is carried out for k = 0, . . . , N−1 in turn. For the k-th plain-block pk,
the corresponding cipher-block is xk+1, which is calculated through Eq. (1)
by setting

δ = ψ (pk) · μ1 (vk) , (2)
β = μ2 (vk) , (3)

where ψ(x) is a bijective function assuring that δ is a valid parameter of
Eq. (1) and μi(x), i ∈ {1, 2}. Based on the general form of the proposed
cryptosystem, the authors of [34] present a concrete configuration: M = 48,
ψ(x), μ1(x) and μ2(x) are set in Eqs. (4), (5), (6) respectively.

ψ (x) = 1.77 · 10−2 + 1.39 · 10−15 · x, (4)

264 G. Alvarez et al.

μ1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.27 + x
10.2 , if |x| ≤ 0.1 + x

1.3

1.28 + x
10.2 , if 0.1 + x

1.3 < |x| ≤ 0.2 + x
1.3

1.29 + x
10.2 , if 0.2 + x

1.3 < |x| ≤ 0.3 + x
1.3

1.30 + x
10.2 , otherwise

(5)

μ2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.29 + x
10 , if |x| ≤ 0.1 + x

1.1

0.30 + x
10 , if 0.1 + x

1.1 < |x| ≤ 0.2 + x
1.1

0.31 + x
10 , if 0.2 + x

1.1 < |x| ≤ 0.3 + x
1.1

0.32 + x
10 , otherwise

(6)

Next we show how a known-plaintext attack can be employed to reconstruct
Eq. (5), Eq. (6), and v0 (initial condition of the underlying Hénon map defined
in Eq. (1)) when Eq. (4) is known. Given two plaintexts {p1,k}N−1

k=0 , {p2,k}N−1
k=0 ,

then

u1,1 = 1− ψ(p1,0) · μ1(v0) · u2
0 + v0, (7)

u2,1 = 1− ψ(p2,0) · μ1(v0) · u2
0 + v0, (8)

and

u1,k+1 = 1− ψ(p1,k) · μ1(vk) · u2
1,k + vk, (9)

u2,k+1 = 1− ψ(p2,k) · μ1(vk) · u2
2,k + vk, (10)

vk = μ2(vk−1) · uk−1, (11)

where k ≥ 1. Subtracting Eq. (9) from Eq. (10):

μ̃1(vk) =
u2,k+1 − u1,k+1

ψ(p1,k) · u2
1,k − ψ(p2,k) · u2

2,k

. (12)

From Eq. (11):

μ̃2(vk−1) =
u1,k+1 − 1 + ψ(p1,k) · μ̃1(vk) · u2

1,k

uk−1
. (13)

If the quantization error is ignored, we have μ̃1(vk) = μ1(vk) and μ̃2(vk−1) =
μ2(vk−1). As a consequence, it is possible to reconstruct μ1(vk) and μ2(vk)
repeating this procedure for k = 1, . . . , N . In order to prove the proposed
known-plaintext attack, 10000 points for μ1(vk) and μ2(vk) were calculated
for u0 = 0.4, v0 = 0.9402036 and u0 = 0.4, v0 = −0.5123493. In Fig. 2 it is
shown how it was possible to get an estimation of μ1(vk), μ2(vk) shape. This
is due to the fact that the first component of the Hénon map employed in
the encryption process is sent through the communication channel without
applying any masking transformation.

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 265

0 0.1 0.2 0.3 0.4 0.5
1.27

1.28

1.29

1.3

1.31

1.32

1.33

μ 1

Real function

Guessed function

v

(a)

0 0.1 0.2 0.3 0.4 0.5
1.27

1.28

1.29

1.3

1.31

1.32

1.33

μ 1

Real function

Guessed function

v

(b)

0 0.1 0.2 0.3 0.4 0.5
0.29

0.3

0.31

0.32

0.33

0.34

μ 2

Real function

Guessed function

v

(c)

0 0.1 0.2 0.3 0.4 0.5
0.29

0.3

0.31

0.32

0.33

0.34

μ 2

Real function

Guessed function

v

(d)

Fig. 2 Recovered and original functions for the PRSK mechanism when they are
designed as in [34] (a) μ1(v) for v0 = 0.9402036; (b) μ1(v) and v0 = −0.5123493;
(c) μ2(v) for v0 = 0.9402036 ; and (d) μ2(v) and v0 = −0.5123493.

Problem 7. Key estimation from the ciphertext. A bad definition of
the ciphertext derived from a chaos-based cryptosystem could allow the es-
timation of the initial condition(s) and/or the control parameter(s) of the
underlying chaotic system. This problem is present in some chaos-based cryp-
tosystems whose ciphertext is given by fragments of orbits, sampled versions
of the orbits, or discretized versions of the orbits of the underlying chaotic
systems. Moreover, parameter estimation is a critical problem of cryptosys-
tems based on chaotic parameter modulation, since adaptive synchronization
techniques can be used to get an approximation of the control parameters of
the underlying chaotic systems by minimizing the synchronization errors.

An m-dimensional discrete-time chaotic map is defined by the rule of
evolution

xn+1 = fλ(xn),

and, as a result, the ciphertext cannot be the orbits of the map since it may
allow the estimation of λ from m + 1 or a bit more consecutive units of

266 G. Alvarez et al.

ciphertext. This is the case of the cryptosystem proposed in [73], and which
we have cryptanalyzed in [27].

Furthermore, if the invariant set of the chaotic map has a size dependent
on the control parameters, even sampled versions of the orbits may allow
the estimation of the control parameters through a ciphertext-only attack
[10]. We have analyzed this situation in [29] for the cryptosystem proposed
in [93]. In addition, the theory of symbolic dynamics may also reveal the
weakness of a cryptosystem if the ciphertext allows getting the symbolic
sequences of the underlying chaotic system. In [25] we have shown through a
chosen-ciphertext attack how to derive the symbolic sequence of the logistic
map driving the encryption procedure defined in [106]. Once we have the
symbolic sequence, we can infer the values of the control parameter and
initial condition of the underlying logistic map according to the theory of
applied symbolic dynamics described in [3]. Nevertheless, a constant size for
the invariant set of a chaotic map is a necessary but not sufficient condition to
avoid the estimation of the control parameter from the corresponding orbits.
In this respect, and according to [22], chaotic orbits should be analyzed also
by means of their associated order patterns. Finally, another critical context
is depicted when measures of statistical distance can be applied to distinguish
between keystreams, as we have shown in [23].

For most analog chaos-based secure communication systems, the cipher-
text is not very sensitive to the secret key, which is caused by a simple rela-
tionship between synchronization error and key mismatch: the larger the key
mismatch is, the larger the synchronization error will be, and vice versa. This
means that an iterative algorithm can be used to determine the value of the
secret parameters, which corresponds to the concept of adaptive synchroniza-
tion. A lot of work has been reported about adaptive synchronization when
the master systems’ parameters are unknown to the receiver/attacker. Some
of the work can directly be used or easily extended to break analog chaos-
based secure communication systems [39, 103, 104]. In addition to methods
based on adaptive synchronization, there are also other ways one can use to
estimate the secret parameters (i.e., the key) of chaos-based cryptosystems.
For instance, due to the nature of Lorenz and Chua Chaotic Systems, the
secret parameters can be determined from the driving signal and its deriva-
tives (mainly differentials of different orders) [32, 105, 74]. For some specific
schemes, it is also possible to derive part of the secret parameters by ana-
lyzing the return maps of the master systems [65]. When chosen-ciphertext
attacks are possible, i.e., when the attacker can access the decryption machine
for some time, the attacker may set the driving signal to a fixed constant C
in order to get the values of all secret parameters [50].

Case study 2.2 ([27]). Cryptanalysis of the cryptosystem described in [73]

In [73] the encryption procedure is carried out by decomposing the input
plaintext signal into two different subbands and masking each of them with a

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 267

pseudo-random number sequence generated by iterating the chaotic logistic
map. The decomposition of the input plaintext signal xn is driven by

tn = K
∑
∀j

xjh2n−j , (14)

t′n = K ′ ∑
∀j

xjh
′
2n−j . (15)

Then, the masking stage generates the ciphertext signal (vn, v′n) according to
the following equations:

vn = tn + α(t′n), (16)
v′n = t′n − α′(vn), (17)

where α(u) = u + sn (α′(u) = u+ s′n) and sn (s′n) is the state variable of the
logistic map.

The secret key of the cryptosystem is composed of the initial conditions
and the control parameters of the two logistic maps involved, i.e., s0, s′1, λ
and λ′.

In a known-plaintext attack the cryptanalyst possesses a plaintext signal
{xn} and its corresponding encrypted subband signals {vn} and {v′n}. Be-
cause {hn}, {h′

n}, K and K ′ are public, we can get {tn} and {t′n} from {xn}.
Then we can get the values of {sn} and {s′n} as follows:

sn = vn − tn − t′n, (18)
s′n = t′n − vn − v′n. (19)

For n = 0, the values of the subkeys s0 and s′0 have been obtained. Fur-
thermore, we can obtain the control parameters by just doing the following
operations:

λ =
sn+1

sn(1− sn)
,

λ′ =
s′n+1

s′n(1− s′n)
.

Problem 8. Direct extraction of plaintext. In the context of analog
chaos-based cryptography, in some cases it is feasible to infer the plaintext
message signals from the driving signals without estimating the secret key
or the carrier signals. Techniques such as power-spectral filtering (or power
energy analysis) and return map analysis have been used for this purpose.

Regarding power-spectral filtering, even when the power spectra of some
chaotic systems seem to be good, significant spectrum peaks can be found in
the spectra by removing the symmetries of the chaotic attractors [62, 86, 85].
For instance, the spectrum of x(t) in the Lorenz System is relatively good,

268 G. Alvarez et al.

but that of |x(t)| has a significant peak. When the plaintext message signal
is hidden in the driving signal, the narrow-band spectrum means that the
driving signal may be directly filtered to recover the message signal [114, 8].
On the other hand, for some parameter modulation systems the power energy
of the driving signal varies according to the value of the transmitted signal.
This makes it possible to obtain a smoother version of the message signal by
observing the average power energy of the driving signal in a sliding time-
window [12]. Exact recovery of the plain message signal is possible for chaotic
switching systems, because each bit has to be held for a considerably long
time to ensure that chaos synchronization is established.

In addition to power filtering, cryptanalysts have figured out some other
techniques that can be used to extract the plaintext directly from the cipher-
text, which include generalized synchronization, short-time period analysis
and switching event detection. For chaotic switching systems and some pa-
rameter modulation systems, there is a simple relationship between the syn-
chronization error and the value of the transmitted signal. This link can be
interpreted as a way to extract the plaintext message signal directly [8, 115].
With respect to the study of short-time period, if the spectrum of the driving
signal (or some modification of it) involved has a significant peak, generally
there exists a simple relationship between the peak frequency and the values
of the control parameters. In this case, one can try to extract the short-time
period as a measurement of the peak frequency modulated by the plaintext
message signal. According to the change of the extracted short-time periods,
the plaintext message signal can be extracted exactly (for chaotic switching
systems) or approximately (for some parameter modulation systems) [111, 4].
Finally, for chaotic switching and parameter modulation systems the dynam-
ics of the master systems will change significantly when the value of the mod-
ulating signal (i.e., the plaintext message signal) changes. By detecting and
tracking these switching events, it may be possible to recover the modulating
signal [101].

Case study 2.3 ([4]). Short-time period analysis based cryptanalysis of a
cryptosystem proposed in [40]

In [40], the author proposes a symmetric secure communication system based
on parameter modulation of a chaotic oscillator acting as a transmitter. The
receiver is a chaotic system synchronized by means of an adaptive observer.
Two sample implementations are given: one with the Lorenz attractor and
another with Chua’s attractor. In this case study the latter will be broken,
to illustrate how our method works with a different double-scroll attractor.
It works equally well for Lorenz attractor, though.

Chua’s circuit dynamics can be described by the following equations:

ẋ1 = α(−x1 + x2)− f1(x1),
ẋ2 = x1 − x2 + x3, (20)
ẋ3 = −βx2.

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 269

where f1(x) = bx + 0.5(a − b)(|x + 1| − |x − 1|). In the example the
system is implemented with the following parameter values, (α, β, a, b) =
(10, 18,−4/3,−3/4). The encryption process is defined by modulating the
parameter β with the binary encoded plaintext, so that it is β + 1.25 if the
plaintext bit is “1” and β − 1.25 if the plaintext bit is “0”. The duration
of the plaintext bits must be much larger than the convergence time of the
adaption law. The uncertain system can be rewritten in a compact form as:⎡

⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣−10 10 0

1 −1 1
0 β 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ +

⎛
⎝ f1(x1)

0
0

⎞
⎠ +

⎡
⎣ 0

0
1

⎤
⎦x2θ, (21)

y = C · x = x3, (22)

C = [0 0 1], (23)

θ = Δβ = ±1.25. (24)

To launch an attack based on short-time period analysis, we first transform
x3(t) to |x3(t)|, which has a significant peak in the frequency domain and thus
a short-time periodicity linked to the plaintext bits. The short-time period
of |x3(t)| can be measured as the distance between adjacent cross-zero points
(or from the dominant frequency peak in the short-time FFT domain). The
resultant signal is denoted by p(t). Then, p(t) is filtered by removing singular
peaks and DC component to get p∗(t). Next, an averaging filter is used to get
a smoother signal fp∗(t). Finally, this smoother signal is binarized to recover
the plaintext signal. The signals involved in the process are shown in Fig. 3.

Problem 9. Efficiency of the cryptosystem depending on the value
of the key. If the encryption and decryption times depend on the key or a
subkey, then a timing attack can be performed to estimate the (sub)key.

Some encryption architectures perform the transformation of the plaintext
into the ciphertext through several encryption rounds. Additionally, in each
encryption round a chaotic map is iterated n times. Since the encryption and
decryption times have to be constant and independent of the value of the key,
it is not a good practice to select the number of encryption rounds and n as
part of the key. Otherwise, a timing attack [60, 33] based on the analysis of
the encryption and decryption time can be used for the partial estimation of
the secret key, which is a serious security flaw.

Case study 2.4 ([29]). Timing attack on a cryptosystem proposed in [93]

Let us exemplified a timing attack by recalling the cryptosystem proposed in
[93]. In every encryption round of the cryptosystem under consideration, the
logistic map is iterated n times, where n is a subkey. This means that, for a

270 G. Alvarez et al.

0 200 400 600 800 1000 1200
10

20

30

0 200 400 600 800 1000 1200
−10

0

10

0 200 400 600 800 1000 1200
10

20

30

0 200 400 600 800 1000 1200
−5

0

5

0 200 400 600 800 1000 1200
−100

0

100

0 200 400 600 800 1000 1200
0

1

2

a

b

c

d

e

f

i(
t)

x
3
(t
)

p
(t
)

p
∗
(t
)

f
p
∗
(t
)

i∗
(t
)

time(sec)

Fig. 3 Breaking a cryptosystem based on Chua’s circuit: a) original binary infor-
mation signal, i(t); b) the transmitted state variable signal or ciphertext, x3(t);
c) the short-time period signal, p(t); d) the clipped signal, p∗(t), after removing
singular peaks and DC component; e) the low-pass filtered signal, fp∗(t), revealing
the modulation signal; f) recovered message signal, i∗(t), after adequate detection.

certain number of encryption rounds (j) and a certain value of the control
parameter λ, the encryption speed decreases as n increases. Similarly, because
the encryption/decryption procedure is composed of j repeated cycles, the
encryption speed will also become slower if the value of j increases. To be more
precise, for a given plain-image, we can expect the existence of the following
bi-linear relationship between the encryption/decryption time (EDT) and the
values of n and j:

EDT (n, j) ≈ (c× n + d0)× j + d1, (25)

where c corresponds to the common operations consumed on each chaotic
iteration, d0 to the operations performed in each cycle excluding those about
chaotic iterations, and d1 to those operations performed on the initializa-
tion process and the postprocessing after all the j cycles are completed. In

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 271

addition, because λ is just the control parameter of the chaotic map, it is
expected that EDT will be independent of its value.

With the aim of verifying this hypothesis, some experiments have been
made under the following scenario. An image with random pixel values of size
256 × 256 was encrypted for different values of λ, n and j. The encryption
time corresponding to each key is shown in Fig. 4, from which one can see
that Eq. (25) is verified.

The above experimental results ensure the feasibility of a timing attack to a
subkey of the cryptosystem under study: by observing the encryption time, it
is possible to estimate the value of n if j is known and vice versa. Without loss
of generality, assuming an attacker Eve knows the value of n, but not that of
j, let us demonstrate how the timing attack can be performed in practice. In
this case, the relationship between EDT and the value of j can be simplified
as EDT (n, j) = cn× j + dn, where cn = c×n and dn = d0× j + d1. Then, if
Eve gets a temporary access to the encryption (or decryption) machine, she
can carry out a real timing attack in the following steps:

1. She observes the whole process of encryption (or decryption) to get the
encryption (or decryption) time tj and also the size of the ciphertext (i.e.,
the size of the plaintext).

2. By choosing two keys with different values of j, she encrypts1 a plaintext
(or decrypts a ciphertext) of the same size and gets t1 and t2.

3. She derives the values of cn and dn by substituting t1 and t2 into
EDT (n, j) = cn × j + dn.

4. She estimates the value of j to be ĵ = round((tj − dn)/cn).
5. She verifies the estimated value ĵ by using it to decrypt the observed

ciphertext. If the recovered plaintext is something meaningful, the attack
stops; otherwise, she turns to search the correct value of j in a small
neighborhood of ĵ until a meaningful plaintext is obtained.

As a result of the previous analysis, the number of encryption rounds and the
number of iterations of the map should be public parameters of the chaos-
based cryptosystem instead of part of the key.

Problem 10. Faulty derivation of the parameters of the chaotic sys-
tem from the key. In some chaos-based cryptosystems the key is used to
derive the values of the parameters necessary to iterate a chaotic system and
finally encrypt the information. If this mapping implies a reduction of the
key space, i.e., that it is only used a subset of the possible values of those
parameters, then a brute-force attack on the values of the parameter could
be much less demanding than an attack on the secret key.

One important step in the design of a chaos-based cryptosystem is to decide
what the key is. One possibility is to use the control parameters and the
1 Please note that this can be done on her own computer, as long as she has the

encryption/decryption software installed.

272 G. Alvarez et al.

0 50 100
0

50

100

150

n × j
0 50 100

0

50

100

150

n × j

0 50 100
0

50

100

150

n × j
0 50 100

0

50

100

150

n × j

T
im

e
in

se
co

n
d
s

T
im

e
in

se
co

n
d
s

T
im

e
in

se
co

n
d
s

T
im

e
in

se
co

n
d
s

Control parameter λ=3.9771765651Control parameter λ=3.8743936381

Control parameter λ=3.8294707872Control parameter λ=3.8204607418

Fig. 4 Encryption time for images of size 256 × 256 and different values of the
number of iterations n and the number of encryption rounds.

initial conditions of the underlying chaotic systems as the secret key or as
part of the secret key. Another option is to establish the values of the control
parameters and the initial conditions of the maps from the secret key through
a certain function. In this sense, it must be assured that the image set of that
function is the whole set of possible values of the control parameters and the
initial conditions. Otherwise, a brute-force attack can be performed on the
reduced space of control parameters and initial condition values with a lower
computational cost than the one on the key space. A cryptosystem with this
problem was introduced in [87] and was later cryptanalyzed in [9].

Problem 11. Encryption procedure equivalent to a map dependent
only on the key. If the transformation of the plaintext into the ciphertext
is determined by a procedure equivalent to a map only dependent on the key,
then known/chosen-plaintext attacks may be performed to reconstruct the
transformation procedure.

In some encryption schemes the transformation of the plaintext into the ci-
phertext is led either by a procedure derived using only the key, or by a

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 273

sampling process on a sequence of values generated using only the key. In
those situations, it could be possible to estimate either the key or to make up
some function somehow equivalent to the encryption procedure. For example,
if the encryption procedure consists of searching plaintexts in pseudo-random
sequences generated by iterating a chaotic map, since the pseudo-random se-
quence remains unchanged unless the key is modified, then it is possible to
reconstruct the pseudo-random sequence through a chosen-plaintext attack
(see [14, 13]). This problem also exists in those schemes where the encryp-
tion procedure consists of a permutation-only stage which is fixed unless the
control parameters and initial conditions change, i.e., unless the the secret
key is updated. In order to clarify this matter, let us consider again the
cryptosystem defined in [44].

Case study 2.5 ([28]). Cryptanalysis of the cryptosystem defined in [44]

As mentioned above, the cryptosystem under consideration consists of two
stages: a shuffling stage and a masking stage. Assuming that the size of the
plain-image I is M × N and the cipher-image is I′, the encryption scheme
proposed in [44] can be described by the following two procedures.

• Shuffling procedure
In this procedure, the plain-image I is permuted to form an intermediate
image I∗ according to a total shuffling matrix P∗, which is derived by
pseudo-randomly permuting the rows and columns of the original position
matrix P = [(i, j)]. The pseudo-random row and column permutations are
generated by iterating the logistic map with λ = 4 from a given initial
condition x0.

• Masking procedure
In this procedure, the intermediate image I∗ is further masked by a
keystream {B(i)}MN

i=1 as follows: ∀i = 1 ∼ MN , I ′(i) = I∗(i) ⊕ B(i) ⊕
I ′(i−1), where I(i), I ′(i) denote the i-th pixels of I∗ and I′ (counted from
left to right and from top to bottom), respectively, and I ′(0) = 128.

The keystream {B(i)}MN
i=1 is generated by iterating Lorenz [75] and Chen [35]

Systems and doing some postprocessing on all the variables of state. When
a variation of stream cipher is created, as in the case under study, obtaining
the keystream is totally equivalent to obtaining the key whenever different
plain-images are encrypted using the same key. Upon this hint, in [28] we
have carried out a chosen-plaintext attack to recover both the keystream and
the shuffling matrix of the cryptosystem described in [44]. Let us choose a
plain-image I1 such that ∀i, j = 1 ∼ MN , I1(i) = I1(j) = θ. In this case,
the shuffling part does not work, so we have I∗1 = I1. Then, we can recover
the keystream as follows: ∀i = 1 ∼ MN , B(i) = I1(i) ⊕ I ′1(i) ⊕ I ′1(i − 1).
After removing the masking part, we can try to recover the shuffling matrix.
According to the general cryptanalysis on permutation-only ciphers in [69],
only �log256(MN)� chosen plain-images are needed to recover the shuffling
matrix P∗. In total we need �log256(MN)�+1 chosen plain-images to perform
this chosen-plaintext attack.

274 G. Alvarez et al.

As a conclusion, the encryption function that transforms a unit of plaintext
into a unit of ciphertext should depend on the key and on the whole plaintext.

(a) (b) (c)

Fig. 5 Illustration of the low sensitivity to the change of the plain-image: (a) the
first plain-image I0; (b) the second plain-image I1 (only the center pixel is different
from I0); (c) the differential cipher-image I′0 ⊕ I′1.

Problem 12. Low sensitivity to the change of plaintext. In some en-
cryption architectures plaintexts with slightest differences are associated to
very similar ciphertexts, which is a clear violation of the diffusion property.

This problem is specially relevant when considering the encryption of images.
This being the case, the encryption scheme must guarantee that two images
differing in just one pixel determine two totally different cipher-images. This
requirement is not satisfied if encryption is performed through just one en-
cryption round, as it occurs with the cryptosystem proposed in [44] (Case
study 2.5). For that cryptosystem, given two plain-images I0 and I1 with
only one pixel difference at the position (i, j), the difference will be permuted
to a new position (i∗, j∗) according to the shuffling matrix P∗. Then, because
all plain-pixels before (i∗, j∗) are identical for the two plain-images, the ci-
phertexts will also be identical. This shows the low sensitivity of the image
encryption scheme to changes in the plain-image. Figure 5 gives an example
of this problem. It can be seen how the differential cipher-image is equal to
zero for any pixel before (i∗, j∗) and equal to a constant value after that
position.

2.3 Implementation Problems

Problem 13. Degradation of the efficiency of digital chaos-based
cryptosystems based on chaotic systems. In digital chaos-based cryp-
tography the encryption procedure is performed in discrete time and discrete
space. Therefore, if the underlying chaotic system is defined in continuous
domain, then it is necessary to apply some numerical methods to obtain the
chaotic orbits. The application of these numerical methods increases the time
to compute the orbits, and thus reduces the encryption efficiency.

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 275

The rule of evolution of continuous-time chaotic systems requires to solve a
system of differential equations [49, p. 160]. From a general point of view, the
solution of those differential equations cannot be accomplished analytically,
and thus numerical methods must be applied. Numerical methods for the
resolution of differential equations are highly time consuming. As a result,
for a given encryption architecture with the underlying chaotic system defined
in continuous-time, the encryption time is greater than the encryption time
obtained when the chosen dynamical system is a chaotic map.

Case study 2.6 ([28]). Evaluation of the encryption time of the chaos-based
cryptosystem proposed in [44].

For the sake of argument, let us recall our cryptanalytic work [28] on the
chaos-based cryptosystem proposed in [44]. This cryptosystem is intended to
encrypt images through the concatenation of a shuffling and masking proce-
dures. The shuffling procedure is based on the iteration of the logistic map,
whereas masking is built upon the iteration of two continuous-time chaotic
systems: Lorenz [75] and Chen Systems [35]. The Lorenz System is given by

dx1

dt
= αx1 + αx2,

dx2

dt
= −x1x3 + βx1 − x2,

dx3

dt
= x1x2 − ρx3, (26)

where α, β, and ρ are control parameters. The Lorenz system is chaotic for
a set of parameters α = 10, β = 28, and ρ = 8/3. On the other hand, the
Chen System is defined as

dx1

dt
= η(x2 − x1),

dx2

dt
= (σ − η)x1 − x1x3 + σx2,

dx3

dt
= x1x2 − δx3, (27)

being chaotic for a different set of parameters such as η = 35, σ = 28,
and δ = 3. Because the chaotic iterations of Lorenz and Chen Systems in-
volve complicated numerical differential functions, the encryption speed is
expected to be very slow compared with other traditional ciphers. To asses
this fact, we derived a modified encryption scheme from the original one by
replacing Lorenz and Chen Systems with the logistic map, and then com-
pared the encryption speeds of the two cryptosystems. Both cryptosystems
were implemented using MATLAB on a PC with a 1.6 GHz processor and
512 MB of RAM. For images of size 256× 256, the typical encryption time
for the original cryptosystem in [44] was around 5.8 s, while the modified
cryptosystem based on the logistic map required on average around 1.2 s to

276 G. Alvarez et al.

encrypt an image. The experiments have clearly shown that using continu-
ous chaotic systems can drastically reduce the encryption speed. Since there
are also no other obvious merits in using continuous chaotic systems rather
than a simple discrete-time chaotic map, the use of Lorenz and Chen Systems
in the image encryption scheme under study is unnecessary. Instead, these
continuous-time chaotic systems can be replaced by a simpler discrete-time
chaotic map without compromising the security. This statement is a general
rule when designing encryption procedures working in discrete time.

Problem 14. Non-invertible encryption procedure. The iteration of
the chaotic systems sustaining chaos-based cryptosystems implies working
with real numbers. Since the implementation of chaos-based cryptosystems
is done with finite precision arithmetic, round-off operations could lead to a
non-invertible encryption procedure.

One critical point when working with dynamical systems and the analysis of
their dynamics is the selection of a proper simulation framework. Indeed, the
computer-based analysis of dynamical systems could lead to some conclusions
different from those expected from theory. This divergence also influences and
conditions chaos-based cryptosystems, as pointed out in [76] for the case of
CSK. Thus, if the characteristics and problems of finite-precision are not
handled properly, then it is possible that the orbits generated as base of the
encryption procedure can not be regenerated exactly during the decryption
stage and, consequently, the original plaintext can not be recovered even
when the key is known. This problem is not only relevant for fixed-point
arithmetic but also for floating-point one. Indeed, the round-off quantization
errors could lead to the occurrence of a non-invertible function for encryption
and, as a result, the decryption process will be impossible.

Case study 2.7 ([29, 26, 7]). Non-invertible cryptosystems defined in [93,
34, 94].

The cryptosystems introduced in [93, 34, 94] are examples of the consequences
of not handling conveniently the limitations of finite precision arithmetics, as
we have pinpointed in [29, 26, 7]. To clarify the problem under consideration,
let us recall the scope depicted in [93], whose goal is to encrypt images. The
cryptosystem described in [93] generates a ciphertext consisting of a number
of real values. Encryption is performed through j encryption rounds, being
{xic(r)}Ji=1 (c = R, G and B, r ∈ {1, 2, . . . , j − 1}) the output in the r-th
encryption round corresponding to color component c of the i-th pixel of the
image of length J = M×N . All the operations to encrypt an image in [93] are
performed using floating-point arithmetic. The output of the r-th round is
given as xic(r) = xn+xic(r−1), where xn is the resulting value of iterating the
logistic map n times from x0. Hence, if during the decryption process we want
to recover xic(r− 1) (the original value of the i-th element in the last round),
we have to iterate n times the logistic map from x0 to get xn and, after that, to
substract this value from xic(r). However, the resulting value of this previous

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 277

operation might not match the actual value of xic(r− 1), due to the wobbling
precision problem that exists when dealing with floating-point operations
[48, p. 39]. This wobbling precision problem also causes the resulting guessed
value of xic(r−1) to depend on the cryptosystem implementation. Therefore,
if an image is encrypted on one platform and decrypted on another, and
the implementations of floating-point arithmetics on both platforms are not
compatible with each other, then the decrypted image might not match the
original one. In [93] the cryptosystem was implemented using Microsoft Visual
C# .NET 2005 and no comment was given about the wobbling precision
problem in the decryption process. However, we have experimentally verified
that this problem indeed exists when the cryptosystem is implemented using
MATLAB on a PC with a 3 GHz processor and 2 GB RAM. A very useful
measure of the performance of the decryption procedure is the Mean Square
Error or MSE. For P and P ′ being a plain image and the decrypted image
respectively, the MSE for the color component c is defined as

MSEc =
m∑
i=1

(P i
c − P ′i

c)
2/J, (28)

where c ∈ {R, G, B}, J = M × N is the number of pixels of the im-
ages considered and the sequences

{
P i
c

}J
i=1

and {P ′
c}
J
i=1 are the result of

scanning P and P ′ in the raster order. Consequently, for a well designed
encryption/decryption scheme the MSE should be 0 for each color compo-
nent. Unfortunately, for the cryptosystem under study, the values of MSE
for all three color components are generally not equal to 0 due to the wob-
bling precision problem associated to the floating-point arithmetic. In order
to evaluate the underlying decryption error of the cryptosystem defined in
[93], a 512× 512 plain-image “Lena” was encrypted and decrypted using the
same key (n, j, λ) = (30, 1, 3.9). The results showed that the three MSEs
obtained for the red, green and blue components of the decrypted image
with respect to the original one were 6.49, 0.018, 0.057, respectively. For
another key (n, j, λ) = (30, 3, 3.9), the obtained MSEs were 206.96, 123.45,
58.65, respectively. Figure 6 shows the decrypted image and the error im-
age when the cryptosystem was implemented in MATLAB using a third key
(n, j, λ) = (5, 2, 3.9).

Problem 15. Dynamical degradation. The implementation of chaotic
systems in finite precision in digital computers leads often to dynamical prop-
erties completely different from the theoretical and expected ones. If this de-
viation is not considered during the design of chaos-based cryptosystems, it
could imply a reduction of the performance and even a compromise of the
security of the resulting cryptosystem.

This problem is closely related to the previous one, although the point of
interest moves to degradation of dynamical properties of the implemented
chaotic system with respect to the theoretical model. Consequently, the

278 G. Alvarez et al.

Fig. 6 Simulations with MATLAB (a) Ciphertext of the plain-image “Lena” (b)
Recovered image of “Lena” using the same key (c) The error image between the
original and the recovered “Lena”.

design of an encryption scheme using a chaotic system must be done by
considering its practical implementation (not only the theoretical model). In
[5] some consequences of the dynamical degradation of a chaotic map are
shown in the context of cryptography, whereas in [68] one can find a thor-
ough analysis of the dynamical degradation of a specific chaotic map and
some ways to overcome this problem.

Problem 16. Lack of details in the description. According to Kerck-
hoffs’ principle [80, p. 14], the security of a cryptosystem can not be based
on the secrecy of its encryption and decryption procedures. In other words,
when dealing with the security of cryptosystems, everything is known except
the key. Furthermore, the key of any cryptosystem has to be easy to establish
and to exchange, and the key space must be defined in an explicit and clear
way.

The consecution of security through obscurity is something to avoid when
designing an encryption scheme. All the operations involved in the encryp-
tion/decryption procedures must be unmistakably explained, and the secret
key must be clearly specified along with an exact estimation of the size of
the key space. The security of the cryptosystem must be only related to the
difficulty of recovering the key, and it can not depend on the lack of knowl-
edge about the inner operation of the encryption and decryption procedures.
Moreover, this lack of details implies a lack of security because without a
careful investigation by the cryptography community, many security holes
might not be able to be distinguished by the designers themselves.

Case study 2.8 ([26, 28]). Non-exhaustive definition of the encryption and
decryption scheme implying loss of chaoticity or randomness of keystreams
[34, 44].

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 279

In [21, Sec. 2.2] we have analyzed the loss of chaoticity in the cryptosystem
defined in [34]. Indeed, in that cryptosystem part of the key is given by a set
of functions changing the values of the control parameters of a Hénon map
as the plaintext is encrypted. The authors of [34] do not define explicitly and
rigorously those functions, which could result in a security flaw, as we have
shown in [26] for the set of functions given by Eqs. (4)-(6). Another example
of the kind of problem under consideration can be found in some encryption
schemes built upon continuous-time chaotic systems. Certainly, when working
with this type of chaotic systems it is necessary to use numerical methods to
compute the chaotic orbits. The decryption procedure requires to generate
the same chaotic orbits as in the encryption stage and, consequently, its
computation must be done using the same numerical method and the same
time step. Moreover, the influence of both the numerical method and the time
step on the performance of the cryptosystem must be thoroughly evaluated.
Let us take up again the cryptosystem defined in [44]. The masking stage of
that cryptosystem is driven by a keystream derived from the orbits of Lorenz
and Chen Systems. In [44], the authors did not say anything about the time
step τ of iterating the Lorenz and Chen systems. However, the randomness
of the keystream is tightly dependent on the value of the time step. As an
extreme example, if τ = 10−20, we will get a keystream of identical elements
(according to the algorithm described in Sec. 2.3 of [44]).

3 Design Rules for Chaos-Based Cryptography

According to the above problems, we proceed with the concretion and sys-
tematization of the guidelines to observe when designing a chaos-based digital
cryptosystem. These guidelines, that can be interpreted as the extension of
the set of rules provided in [6].

Rule 1. Exhaustive and rigorous definition of the chaotic encryp-
tion and decryption algorithms.

The design of any encryption system must be guided by Kerckhoffs’ princi-
ples, and thus the consecution of security through obscurity must be totally
discarded. The designed cryptosystem must be easily reproducible, in order
to make its implementation, use and further analysis easy. Indeed, guaran-
teeing the security of an encryption procedure is a quite complex and elusive
problem, so the more people participate in the analysis, the more complete
the security assessment will be. Regarding specifically chaos-based cryptosys-
tems, the design rule here referred implies that:

a) The encryption/decryption algorithms must assure control parameters de-
termining the chaotic behavior of the selected maps.

b) The final cryptosystems must be evaluated by means of the classical crypt-
analytic framework [21, Sec. 1.2.2].

280 G. Alvarez et al.

c) It must be confirmed that an attacker cannot get enough information
about the underlying chaotic orbits, and thus she cannot carry out an
estimation of control parameters and/or initial condition.

Rule 2. Exhaustive and rigorous definition of the key and the key
space.

In chaos-based cryptography it is mandatory to specify clearly and carefully
the relationship between the secret key and the parameters determining the
temporal evolution of the underlying chaotic maps, i.e., the control parame-
ters and the initial conditions. In some cryptosystems either the control pa-
rameters or the initial conditions or both are part of the secret key, whereas
in others they are just design parameters and, consequently, publicly known.
Another possibility is that the secret key determines the values of the con-
trol parameter(s) and initial condition(s). In all situations it must be verified
that the underlying dynamical systems involved in the considered chaos-based
cryptosystem evolve as required, i.e., in a chaotic way. In other words, the
values of the control parameters used during encryption and decryption must
determine a positive value of the largest component of the Lyapunov Expo-
nent (LE). In this respect, this rule is related to the diffusion property, since
it is intended to make the relationship between the key (or the plaintext)
and the ciphertext as complex as possible. The goal is to erase any possible
pattern or redundancy in the ciphertext, and thus to avoid inference of the
secret key from the ciphertext. In the context of chaos-based cryptography,
diffusion is connected to the local rate of divergence of orbits. As a result,
chaotic maps with high values of LE must be selected. It is also possible to
use chaotic maps with small LE if the encryption of each unit of plaintext is
performed iterating several times the chaotic map. Nevertheless, it implies a
reduction of the efficiency of the cryptosystem, and thus it is preferable to
discretize the key space to guarantee the avalanche effect, i.e., the result of
encrypting a plaintext with two slightly different keys must produce totally
different ciphertexts. The tools for verification of the avalanche effect are the
same used in the assessment of parameter mismatch (next rule), i.e., the sta-
tistical distance and the MRE (MultiResolution Entropy) . The discretization
of the key space implies a reduction of its size, which could result in a degra-
dation of the protection against brute-force attacks. A possible solution to
this problem is to discretise the orbits of the chaotic maps instead of the key
space. As we have shown in [21, Sec. 2.2] for the skew tent map, this strategy
determines an increasing of the LE and, consequently, of diffusion.

On the other hand, the determination of LE entails some inaccuracies [90]
and, consequently, it is highly advisable to analyze the chaoticity of orbits
using auxiliary tools as the entropy measures referred in [21, Secs. 2.4 and
2.5]. Finally, either LE or the different entropy measures can bring to light a
somehow one-to-one relationship between the rate of divergence of orbits and
the control parameter(s). In this case, if a chaos-based cryptosystem allows
an estimation of the rate of divergence, then it could be possible to estimate

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 281

the control parameter(s), which represents a vulnerability of the cryptosytem
being the control parameter(s) part or determined by the secret key.

Rule 3. Selection of chaotic maps with high sensitivity to control
parameter mismatch.

The size of the key space of any cryptosystem must be large enough to avoid
the feasibility of a brute-force attack. This is a common requirement of all
encryption systems, and it has to be fulfilled in accordance with the com-
putational capacity of any possible attacker. As it is pointed out in [6, Rule
15], today’s computer speed requires a key space of size larger than 2100.
As indicated by the previous rule, in digital chaos-based cryptography the
specification of the key space is mainly guided by the calculation of the LE.
Consequently, the resolution in the computation of the LE is a measure of
the maximum number of possible keys, and thus an approximation of the
size of the key space. To get a number of keys larger than 2100 ≈ 1030, the
resolution must be 10−30. However, with that resolution, thousands of keys
would become equivalent, unless there is a strong sensitivity to parameter
mismatch. It implies that the concretion of the key space must be accompa-
nied of an exhaustive analysis of the orbits generated for each value of the
control parameters. Indeed, it must be tested that the orbits are different
enough to assure that the encryption procedure possesses confusion and dif-
fusion properties. Useful tools in this regard are the statistical distance [21,
Sec. 2.6] and the MRE [21, Sec 2.5.2].

Rule 4. The selected chaotic map should not allow total character-
ization of its dynamics from partial knowledge of this dynamics.

The total characterization of the dynamics of a chaotic map requires the
knowledge of the initial condition and the control parameter(s). When con-
sidering a chaos-based cryptosystem, it could be possible for an attacker to
guess either the initial condition or control parameter(s). Upon the guessed
information, the attacker could use some of the general attack strategies [21,
Sec. 1.2.2] to get some additional information about the orbits of the under-
lying chaotic map. For some chaotic maps, this additional information and
the guessed information drive to the estimation of the rest of parameter(s)
describing the dynamics of the map. For example, if the chaotic map selected
for an encryption architecture is a unimodal map, and the encryption ar-
chitecture allows to infer the symbolic sequences of the map through some
attack, then the knowledge of the control parameter allows to recover the
initial condition.

Rule 5. Analysis of the performance of chaotic orbits as source of
entropy.

From the point of view of cryptography, the appealing of chaos is mainly
motivated by its random-like behavior. Actually, “the battle” of any cryp-
tographer is to look for sources of uncertainty that can be further used to

282 G. Alvarez et al.

conceal the information. The design of a cryptosystem is the specification
of a series of transformation procedures based on sources of indetermination
and applied on the source of information. In chaos-based cryptography, all
or some of the transformation procedures use chaos as source of indetermi-
nation. Since the security of the whole cryptosystem lies on the efficiency of
each transformation procedure, the entropy must be evaluated. Again, the
assessment can be done upon tools as those described in [21, Secs. 2.6 and
2.5.2]. Furthermore, this assessment can also be refined by considering every
transformation procedure as a Pseudo Random Number Generator (PRNG).
Upon this consideration, evaluation can be fulfilled using the battery of sta-
tistical tests of the National Institute of Standard & Technology (NIST) [84].
Nevertheless, if chaos is used as base of a stream cipher, then it is also nec-
essary to analyze the possibility of reconstructing the symbolic dynamics in
order to verify the feasibility of estimation for the control parameter(s) and
initial condition(s) as it is done in [21, Chapters 3 and 4].

Rule 6. Chaotic maps with uniform invariant density functions
and measure of the invariant set independent of the control pa-
rameters should be used.

If this requirement is satisfied, then the chaotic cryptosystem possesses the
confusion property. If the underlying dynamical system evolves, as expected,
chaotically, then it possesses the ergodic property and thus orbits are statis-
tically independent of the control parameter(s) and initial condition(s). As a
result, the ciphertext should be statistically undistinguishable from the out-
put of a truly random function, and should be statistically the same for all
the keys.

Rule 7. The ciphertext space must be defined in such a way that
the reconstruction of the dynamics of the underlying chaotic maps
is not possible.

Ciphertexts of chaos-based cryptosystems must not leak information about
the symbolic dynamics, the return map or any other shortcut to reconstruct
the dynamics of the underlying chaotic maps.

Rule 8. The encryption/decryption time must not depend on the
value of the secret key of a chaos-based cryptosystem.

If it is necessary to perform encryption through several rounds and several
iterations of the underlying chaotic maps, then the number of encryption
rounds and the number of iterations must be publicly known. They can not
be considered as part of the secret key, since a mere analysis of the encryp-
tion/decryption time allows an estimation of those values.

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 283

Rule 9. Resistance to classical attacks.

The cryptanalysis of chaos-based cryptosystems combined techniques from
the theory of dynamical systems and from the cryptanalysis of conventional
cryptography. In this concern, it must be verified the robustness of the cryp-
tosystem against known-plaintext, chosen-plaintext, known-ciphertext (or
ciphertext-only), and chosen-ciphertext attacks [100, p. 95]. Specialized at-
tacks must also be evaluated [99]. For digital chaos-based block ciphers resis-
tance to differential [102] and linear cryptanalysis [53] must be proved.

Rule 10. Resistance to application-specific attacks.

The encryption of information with special features must be defined carefully
in order to avoid the leaking of such features in the ciphertext. This is the case
of digital images and videos. In digital images (videos) there exists strong
correlation between different pixels (transform coefficients), which can be
used to develop some effective correlation-based attacks.

4 Chaos-Based Cryptography: A Conclusion But Not
the End of the Road

Recalling the main conclusions of our works in the field of cryptanalysis, a
theoretical framework is next proposed in order to fulfill the set of rules pre-
viously explained. This theoretical basis is conceived as a manner to achieve
at least the same level of security and efficiency of conventional cryptogra-
phy, but using the theory of chaotic dynamical systems as core instead of the
theory of numbers.

Nowadays, the information (whether analog or digital) is processed by
computers. This means that however chaos enters the encryption (key-stream
generation, masking, etc.), the finite precision of the computer (or any other
finite-state machine for this matter) will degrade chaotic orbits to periodic
orbits — occasionally of a very long period. Although this may be acceptable
from a practical point of view, it is not from a theoretical one. Put in other
words, the concept and virtues of chaos are not exportable without change
to the realm of discrete and finite mathematics.

If there is no chaos in a finite-state space, what is then a “chaotic” cipher?
To answer this question in a satisfactory way, one has to go away from the
real numbers (there are no real numbers in the real world) and use algorithms
on integer numbers or finite fields, while preserving the spirit of chaos-based
cryptography. A paradigmatic example was given by Pichler and Scharinger,
and reproduced in [43], where several chaotic maps were discretized and used
for image encryption. Let us remember it at this point.

284 G. Alvarez et al.

Let I2 = [0, 1]× [0, 1] ⊂ R2 endowed with the Lebesgue measure, and let
B : I2 → I2 be the baker map,

B(x, y) =
{

(2x, 1
2y), 0 ≤ x < 1

2 ,
(2x− 1, 1

2y + 1
2), 1

2 ≤ x ≤ 1.

The baker map is a chaotic bijection of the unit square I2 onto itself. This
map stretches the left rectangle [0, 1/2)×[0, 1) horizontally onto the “bottom”
rectangle [0, 1)× [0, 1/2), while the right rectangle [1/2, 1)× [0, 1) is similarly
mapped onto the “top” rectangle [0, 1)× [1/2, 1).

Pichler and Scharinger generalized this map in the following way [43]. The
unit square I2 is now divided into k vertical rectangles [Fi−1, Fi) × [0, 1),
i = 1, ..., k, Fi = p1 + ... + pi, F0 = 0, with p1 + ... + pk = 1. The generalized
baker map stretches each rectangle horizontally by the factor of 1/pi, while it
is contracted vertically by the factor of pi. Finally, all transformed rectangles
are stacked on top of each other. Formally,

B(x, y) =
(

1
pi

(x− Fi), piy + Fi

)

for
(x, y) ∈ [Fi, Fi + pi)× [0, 1).

If we denote this map by B(p1,...,pk), then the standard baker map corresponds
to B(1/2,1/2). The generalized baker map inherits all important properties of
the baker map such as sensitivity to initial conditions and parameters, mixing
and bijectiveness.

One possibility of discretizing B(p1,...,pk) on an integer lattice is the fol-
lowing. Let N be an integer, and let n1, ..., nk be integers such that each ni
divides N , and n1 + ... + nk = N . Denoting Ni = n1 + ... + ni, the lattice
point (r, s), with Ni−1 ≤ r < Ni, N0 = 0, and 0 ≤ s < N , is mapped by the
discretized generalized baker map B(n1,...,nk) to2

B(n1,...,nk)(r, s) =
(

N

ni
(r −Ni) + s mod

N

ni
,
ni
N

(
s− s mod

N

ni

)
+ Ni

)
.

Coming back to the question, what a chaotic cipher on a finite-state space
should be, the answer (intentionally vague) proposed in [15] and repeated in
the next section, was inspired by this and similar examples. Other technique,
studied in [59] in the framework of discrete chaos, furnish permutations by
truncation of chaotic orbits. Since the discretized map, whatever the dis-
cretization method used, is desired to somehow inherit the properties of the
continuous chaotic map, the former should become increasingly close to the
latter in the ‘continuous’ limit. In the case of the discretized baker map, the
2 The cipher proposed in [43] based on the discretized generalized baker map, was

cryptanalyzed in [98].

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 285

continuous limit refers to an ever finer coarse-graining of the unit square. In
the framework of discrete chaos, the continuous limit refers to ever longer
orbits segments, and the closeness refers to the convergence of the discrete
LE(s) of the permutation to the LE(s) of the chaotic map.

4.1 Chaos-Based Cryptography on Integer Numbers
and Finite Fields

The idea underlying the above construction of the discretized generalized
baker map (namely, to define a permutation via discretization of a chaotic
map) provides an approach to chaos-based cryptography that is compliant
with the standards of conventional cryptography. This idea was captured
with different degrees of generality in [16, 102] (definition of permutations
via periodic approximations of automorphisms) and also in [15] (definition of
chaotic cryptographic primitives). The minimal framework we need for this
formulation is that of measure theory.

We say that (X,A, μ) is a measure space if X is a non-empty set, A is a
sigma-algebra of subsets of X and μ is a measure on (X,A). If μ(X) < ∞,
(X,A, μ) is called a finite-measure space. Typically, X will be a compact
topological or even metric space (think of a finite interval of Rn or of an n-
torus). We say that P = {A1, ..., AN} ⊂ A is a partition of X if ∪Nn=1An = X
and Ai∩Aj = ∅ for all i �= j. A norm of P is a measure of its ‘coarseness’ (e.g.,
maximal length, maximal diameter, etc. of the elements of P). In order to
streamline the notation, we will usually refer only to X , with the underlying
A and μ being understood. Furthermore, chaos refers to dynamical systems
and these call for measure-invariant self-maps on finite-measure spaces, i.e.,
maps f : X → X such that f−1A ∈ A and μ(f−1A) = μ(A) for all A ∈ A.

A generalization of the discretized generalized baker map is the following
[36]. Suppose f is an automorphism of the finite-measure space (X,A, μ),
i.e., f is a one-to-one map of X onto itself such that both f and f−1 are
μ-invariant. We consider sequences of finite partitions {Pn} of the space X ,
Pn = {P (n)

k : 1 ≤ k ≤ qn}, such that limn→∞ Pn = E (the partition of
X into separate points) and sequences of automorphisms {fn} such that fn
preserves Pn (i.e., fn sends every element of Pn into an element of the same
partition). We say that an automorphism f of the space (X,A, μ) possesses
an approximation by periodic transformations with speed ϑ(n), if there exists
a sequence of automorphisms fn preserving Pn such that

qn∑
k=1

μ
(
f(P (n)

k) fn(P
(n)
k)

)
< ϑ(qn), n = 1, 2,

where stands for symmetric set difference and ϑ is a function on the inte-
gers such that ϑ(n) → 0 monotonically. The sequence (Pn, fn) is a discrete
approximation of (X, f).

286 G. Alvarez et al.

A further generalization brings us to the concept of discrete approximation.
This time we leave deliberately open the way the ‘discrete approximation’
converges to the continuous map.

Definition 1. [15] Let X be a finite-measure space and f : X → X a map.
Let XΔ = {A1, ..., AN(Δ)} be a family of partitions of X, labelled by a param-
eter Δ, say, the partition norm, such that limΔ→0 XΔ = E, the partition of
X into separate points. Furthermore, given a family of maps fΔ : XΔ → X,
define the extensions f̄Δ : X → X as f̄Δ(x) = fΔ(An) if x ∈ An ∈ XΔ.
We say that (XΔ, fΔ) is a discrete approximation of (X, f) if, moreover,
limΔ→0 f̄Δ = f in some relevant sense (depending on the structure we put
on X).

This definition of discrete approximation is an idealization of what actu-
ally happens when computing real functions with computers. Intuitively, dis-
crete approximation of chaotic maps are expected to generate permutations
with ‘nice’ mixing properties and, therefore, appropriate for cryptographic
applications.

Definition 2. [15] Discrete approximations of chaotic systems (X, f) in form
of permutations (ZM , FM) are called chaotic cryptographic primitives. Fur-
thermore, we say that a cryptographic algorithm is chaotic if some of its
building blocks is a chaotic cryptographic primitive.

Thus, a stream cipher whose keystream is generated by a chaotic primitive is a
chaos-based cryptosystem. Let us present a few examples of chaotic primitives
(see also [15, 17]).

Example 1. The Renyi map, φβ : [0, 1)→ [0, 1), is defined as

φβ(x) = βx mod1,

where 1 < β ∈ R. A discretized (or digitalized) Renyi map f can be defined
on the set {0, 1, ..., 2n − 1} by

f(k) = �β · k�mod 2n.

The derivation proceeds via the approximation of real numbers in [0, 1) by
dyadic rationals. The discretized Renyi map was used in [1] to generate ran-
dom numbers.

Example 2. The Chebyshev polynomial maps Tn : R → R of degree n =
0, 1, ... are defined by the recursion

Tn(x) = 2xTn−1(x) − Tn−2(x) for n ≥ 2,

with T0(x) = 1, T1(x) = x. The interval [−1, 1] is invariant under the action
of the map Tn: Tn([−1, 1]) = [−1, 1]. Alternatively, one can define

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 287

Tn(x) = cos(n arccosx), −1 ≤ x ≤ 1.

The Chebyshev polynomial Tn restricted to [−1, 1] is a well-known chaotic
map for all n ≥ 2: it has a unique absolutely continuous invariant measure,

μ(x) =
1

π
√

1− x2
,

and LE lnn > 0 with respect to μ. For n = 2, the Chebyshev map reduces
to the logistic map.

It is straightforward to prove that Chebyshev polynomials have the semi-
group property:

Tr(Ts(x)) = Ts(Tr(x)) = Trs(x).

Let p be a prime number so as Zp is a field. The Chebyshev map over the
finite field Zp, Fn,p : {0, 1, . . . , p− 1} → {0, 1, . . . , p− 1}, is defined as

Fn,p(ξ) = Tn(ξ) (modp).

The semi-group property of the ‘discrete’ (or finite state) Chebyshev maps
Fn,p can be used in key-exchange protocols or even in public-key algorithms
[79, 58, 57]. However, this kind of maps (as any other) does not guarantee se-
curity itself, and a convenient key-exchange protocol along with an adequate
encryption procedure should be provided to achieve not only security, but
also computational efficiency (see the cryptanalysis of [110] in [2]).

Other examples of chaotic primitives used in ciphers published in the liter-
ature, include the discrete logistic map and toral automorphisms (see, e.g.,
[58, 77]).

As a last example, let us discuss a synchronization-based cipher.

Example 3. Message-embedding is an encryption algorithm in which the
message mt is directly injected (or “embedded”) in a chaotic dynamic fθ :
J → J , where J ⊂ Rq and θ = (θ1, ..., θD) is an, in general, multi-component
parameter which acts as the secret key or is part of the secret key of the cipher.
In the simplest versions, encryption takes place at the sender according to
one of the following schemes:

(I)
{

xt+1 = fθ(xt, mt)
yt = hθ(xt, mt)

and (II)
{

xt+1 = fθ(xt, mt)
yt = h′

θ(xt)
, (29)

the difference being the so-called relative degree r [81]; r = 0 in case (I) and
r > 0 in case (II). hθ is called the output function of the sender, since yt is the
message conveyed from the sender to the receiver through the communicaction
channel. In general, hθ : J → Rq

′
with q′ ≤ q (ideally q′ = 1). The receiver is

a kind of ‘mirrored’ dynamical system, generated by a family of maps f̃θ and
endowed with output functions h̃θ. The retrieval of the message (plaintext) at
the receiver is achieved in two steps: (i) synchronization [45, 108], based on a

288 G. Alvarez et al.

suitable choice of f̃θ, and (ii) estimation of mt by means of a suitable function
which depends on the internal state x̂t of the receiver and the output yt, the
only information transmitted from the sender to the receiver.

Two mechanisms have been proposed in the literature to recover mt: (i) the
inverse system approach [41] and, in case of noisy channels, (ii) the unknown
input observer approach (UIO) [52, 82]. In both cases, the equations governing
the receiver are: {

x̂t+r+1 = f̃θ(xt+r , yt, ..., yt+r)
m̂t+r = gθ(x̂t+r , yt, ..., yt+r)

,

with r ≥ 0 and g such that

m̂t+r = gθ(x̂t+r , yt, ..., yt+r) = mt when x̂t+r = xt.

The existence of an inverse system or an UIO is guaranteed under the as-
sumption that the system (29-I) or (29-II) is left invertible. In our setting,
left invertibility means that there exists an integer R ≥ 0 such that the input
mt is uniquely determined by the knowledge of the state xt along with the
output sequence yt, ..., yt+R.

Message-embedding is very attractive because synchronization is assured
without any restriction on the variation rate of mt. For cryptographic applica-
tions it is sometimes convenient to decompose the dynamic fθ in two actions
in order to eventually incorporate boolean and arithmetic operations. Such
is the case of the hybrid message-embedding technique, where the chaotic
dynamic is decomposed as follows:

(I’)

⎧⎨
⎩

ut = νe(xt, mt)
xt+1 = qθ(xt, ut)
yt = rθ(xt, ut)

and (II’)

⎧⎨
⎩

ut = νe(xt, mt)
xt+1 = qθ(xt, ut)
yt = r′θ(xt)

, (30)

for sender systems with relative degree r = 0 (I’) and r > 0 (II’). ut is
sometimes called the pre-ciphertext in hybrid message-embedding.

Message-embedding and hybrid message-embedding can be used with let-
ters taken from finite fields (and boolean operations in the hybrid scheme)
[81]. Under the further assumption of flatness [81], they have been proved
to be structurally equivalent to a self-synchronizing stream cipher —a well-
tested architecture in conventional cryptography. We conclude that the secu-
rity of these chaos-based ciphers relies on the security of the corresponding
chaotic primitives (fθ in (29), and qθ and/or νe in (30)).

References

1. Addabbo, T., Alioto, M., Fort, A., Pasini, A., Rocchi, S., Vignoli, V.: A
class of maximum-period nonlinear congruential generators derived from the
reńyi chaotic map. IEEE Transactions on Circuits and Systems–I: Regular
Papers 54(4), 816–828 (2007)

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 289

2. Alvarez, G.: Security problems with a chaos-based deniable authentication
scheme. Chaos, Solitons & Fractals 26(1), 7–11 (2005)

3. Alvarez, G., Arroyo, D., Nunez, J.: Application of Gray code to the cryptanal-
ysis of chaotic cryptosystems. In: 3rd International IEEE Scientific Conference
on Physics and Control (PhysCon 2007), September 3-7, Potsdam, Germany
(2007), http://lib.physcon.ru/?item=1358

4. Alvarez, G., Li, S.: Estimating short-time period to break different types
of chaoitc modulation based secure communications. arxiv:nlin.CD/0406039
(2004), http://arxiv.org/abs/nlin/0406039

5. Alvarez, G., Li, S.: Breaking an encryption scheme based on chaotic baker
map. Physics Letters A 352(1-2), 78–82 (2006)

6. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based
cryptosystems. International Journal of Bifurcation and Chaos 16(8), 2129–
2151 (2006)

7. Alvarez, G., Li, S., Hernandez, L.: Analysis of security problems in a medical
image encryption system. Computers in Biology and Medicine 37(3), 424–427
(2007)

8. Alvarez, G., Li, S., Montoya, F., Romera, M., Pastor, G.: Breaking projective
chaos synchronization secure communication using filtering and generalized
synchronization. Chaos, Solitons & Fractals 24(3), 775–783 (2005)

9. Alvarez, G., Montoya, F., Pastor, G.: Cryptanalysis of a discrete chaotic cryp-
tosystem using external key. Physics Letters A 319, 334–339 (2003)

10. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of a chaotic
encryption system. Physics Letters A 276, 191–196 (2000)

11. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of an ergodic
chaotic cipher. Physics Letters A 311, 172–179 (2003)

12. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modu-
lated chaotic secure communication system. Chaos, Solitons & Fractals 21(4),
793–797 (2004)

13. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of dynamic
look-up table based chaotic cryptosystems. Physics Letters A 326, 211–218
(2004)

14. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Keystream cryptanalysis
of a chaotic cryptographic method. Computer Physics Communications 156,
205–207 (2004)

15. Amigó, J., Kocarev, L., Szczepanski, J.: Theory and practice of chaotic cryp-
tography. Physics Letters A 366(3), 211–216 (2007)

16. Amigó, J.M., Szczepanski, J.: Approximations of dynamical systems and
their applications to cryptography. International Journal of Bifurcation and
Chaos 13, 1937–1948 (2003)

17. Amigó, J.M.: Chaos-Based Cryptography. In: Kocarev, L., Galias, Z., Lian,
S. (eds.) Intelligent Computing Based on Chaos. Studies in Computational
Intelligence, vol. 184, pp. 291–313. Springer, Heidelberg (2009)

18. Amigó, J.M., Szczepanski, J., Kocarev, L.: A chaos-based approach to the
design of cryptographically secure substitutions. Physics Letters A 343, 55–60
(2005)

http://lib.physcon.ru/?item=1358
http://arxiv.org/abs/nlin/0406039

290 G. Alvarez et al.

19. Argenti, F., Benzi, S., Re, E.D., Genesio, R.: Stream cipher system based
on chaotic maps. In: Proceedings of SPIE Mathematics and Applications of
Data/Image Coding, Compression, and Encryption III, vol. 4122, pp. 10–17.
SPIE (2001)

20. Ariffin, M., Noorani, M.: Modified Baptista type chaotic cryptosystem via
matrix secret key. Physics Letters A 372, 5427–5430 (2008)

21. Arroyo, D.: Framework for the analysis and design of encryption strategies
based on discrete-time chaotic dynamical systems. Ph.D. thesis, ETSIA of the
Polytechnic University of Madrid, Madrid, Spain (2009),
http://digital.csic.es/handle/10261/15668

22. Arroyo, D., Alvarez, G., Amigó, J.M.: Estimation of the control parameter
from symbolic sequences: Unimodal maps with variable critical point. Chaos:
An Interdisciplinary Journal of Nonlinear Science 19 (2009), Art. no. 023125

23. Arroyo, D., Alvarez, G., Amigó, J.M., Li, S.: Cryptanalysis of a family of self-
synchronizing chaotic stream ciphers. Communications in Nonlinear Science
and Numerical Simulation 16(2), 805–813 (2011)

24. Arroyo, D., Alvarez, G., Li, S.: Some hints for the design of digital chaos-
basedcryptosystems: lessons learned from cryptanalysis. In: Second IFAC Con-
ference on Analysis and Control of Chaotic Systems, Queen Mary, University
of London (2009)

25. Arroyo, D., Alvarez, G., Li, S., Li, C., Fernandez, V.: Cryptanalysis of a new
chaotic cryptosystem based on ergodicity. International Journal of Modern
Physics B 23(5), 651–659 (2009)

26. Arroyo, D., Alvarez, G., Li, S., Li, C., Nunez, J.: Cryptanalysis of a discrete-
time synchronous chaotic encryption system. Physics Letter A 372(7), 1034–
1039 (2008)

27. Arroyo, D., Li, C., Li, S., Alvarez, G.: Cryptanalysis of a computer cryptog-
raphy scheme based on a filter bank. Chaos, Solitons & Fractals 41, 410–413
(2009)

28. Arroyo, D., Li, C., Li, S., Alvarez, G., Halang, W.A.: Cryptanalysis of an
image encryption scheme based on a new total shuffling algorithm. Chaos,
Solitons & Fractals 41(5), 2613–2616 (2009)

29. Arroyo, D., Rhouma, R., Alvarez, G., Li, S., Fernandez, V.: On the security
of a new image encryption scheme based on chaotic map lattices. Chaos: An
Interdisciplinary Journal of Nonlinear Science 18 (2008), Art. no. 033112

30. Banerjee, S., Yorke, J.A., Grebogi, C.: Robust chaos. Physical Review Let-
ters 80, 14 (1998)

31. Baptista, M.S.: Cryptography with chaos. Physics Letters A 240(1-2), 50–54
(1998)

32. Beth, T., Lazic, D.E., Mathias, A.: Cryptanalysis of cryptosystems based on
remote chaos replication. In: EUROCRYPT 1994. LNCS, vol. 950, pp. 318–
331. Springer, Heidelberg (1994)

33. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings
of the 12th USENIX Security Symposium, pp. 1–14. USENIX Association
(2003)

34. Chee, C.Y., Xu, D.: Chaotic encryption using dicrete-time synchronous chaos.
Physics Letters A 348(3-6), 284–292 (2006)

35. Chen, G., Ueta, T.: Yet another chaotic attactor. International Journal of
Bifurcation and Chaos 9(7), 1465–1466 (1999)

http://digital.csic.es/handle/10261/15668

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 291

36. Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic theory. Springer, New York
(1982)

37. Cuomo, K., Oppenheim, A.V., Strogatz, S.: Synchronization of Lorenz-based
chaotic circuits with applications to communications. IEEE Transactions on
Circuits and Systems–II: Analog and Digital Signal Processing 40(10), 626–
633 (1993)

38. Dedieu, H., Kennedy, M., Hasler, M.: Chaos shift keying: modulation and de-
modulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE
Transactions on Circuits and Systems–II: Analog and Digital Signal Process-
ing 40, 634–641 (1993)

39. Dedieu, H., Ogorzalek, M.J.: Identifiability and identification of chaotic sys-
tems based on adaptive synchronization. IEEE Transactions on Circuits and
Systems–I: Fundamental Theory and Applications 44(10), 948–962 (1997)

40. Feki, M.: An adaptive chaos synchronization scheme applied to secure com-
munication. Chaos, Solitons & Fractals 18(1), 141–148 (2003)

41. Feldmann, U., Hasler, M., Schwarz, W.: Communication by chaotic signals:
the inverse system approach. International Journal of Circuit Theory and
Applications 24, 551–579 (1996)

42. Fradkov, A.L., Markov, A.Y.: Adaptive synchronization of chaotic systems
based on speed gradient method and passification. IEEE Transactions on
Circuits and Systems–I: Fundamental Theory and Applications 44, 905–912
(1997)

43. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. In-
ternational Journal of Bifurcation and Chaos 8, 1259–1284 (1998)

44. Gao, T., Chen, Z.: Image encryption based on a new total shuffling algorithm.
Chaos, Solitons & Fractals 38(1), 213–220 (2008)

45. González-Miranda, J.: Synchronization and control of chaos. Imperial College
Press, London (2004)

46. Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by
iterating a chaotic map. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 127–140. Springer, Heidelberg (1991)

47. Hasler, M.: Synchronization of chaotic systems and transmission of informa-
tion. International Journal of Bifurcation and Chaos 8(4), 647–659 (1998)

48. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn.
SIAM, Philadelphia (1961)

49. Hirsch, M.W., Smale, S.: Differential equations, dynamical systems, and linear
algebra. Academic Press, Inc., San Diego (1974)

50. Hu, G., Feng, Z., Meng, R.: Chosen ciphertext attack on chaos communication
based on chaos synchronization. IEEE Transactions on Circuits and Systems–
I: Fundamental Theory and Applications 50(2), 275–279 (2003)

51. Huijberts, H., Nijmeijer, H., Willems, R.: System identification in communi-
cation with chaotic systems. IEEE Transactions on Circuits and Systems–I:
Fundamental Theory and Applications 47, 800–808 (2000)

52. Inoue, E., Ushio, T.: Chaos communication using unknown input observers.
Electronics and Communications in Japan Part III: Fundamental Electronic
Science 84(12), 21–27 (2001)

53. Jakimoski, G., Kocarev, L.: Chaos and cryptography: Block encryption ci-
phers based on chaotic maps. IEEE Transactions on Circuits and Systems–I:
Fundamental Theory and Applications 48(2), 163–169 (2001)

292 G. Alvarez et al.

54. Jiang, Z.P.: A note on chaotic secure communication systems. IEEE Transac-
tions on Circuits and Systems–I: Fundamental Theory and Applications 49(1),
92–96 (2002)

55. Kocarev, L.: Chaos-based cryptography: A brief overview. IEEE Circuits and
Systems Magazine 1(2), 6–21 (2001)

56. Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Transimission of
digital signals by chaotic synchronization. International Journal of Bifurcation
and Chaos 2(4), 973–977 (1992)

57. Kocarev, L., Makraduli, J., Amato, P.: Public-key encryption based on Cheby-
shev polynomials. Circuits, Systems, and Signal Processing 24, 497–517 (2005)

58. Kocarev, L., Sterjev, M., Fekete, A., Vattay, G.: Public-key encryption with
chaos. Chaos: An Interdisciplinary Journal of Nonlinear Science 14(4), 1078–
1082 (2004)

59. Kocarev, L., Szczepanski, J., Amigo, J., Tomovski, I.: Discrete chaos–I: The-
ory. IEEE Transactions on Circuits and Systems–I: Regular Papers 53(6),
1300–1309 (2006)

60. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

61. Kolumban, G., Kennedy, M., Chua, L.O.: The role of synchronization in dig-
ital communications using chaos - Part II: Chaotic modulation and chaotic
synchronization. IEEE Transactions on Circuits and Systems–I: Fundamental
Theory and Applications 45(11), 1129–1140 (1998)

62. Letellier, C., Gouesbet, G.: Topological characterization of reconstructed at-
tractors modding out symmetries. Journal de Physique II 6(11), 1615–1638
(1996)

63. Li, C., Li, S., Alvarez, G., Chen, G., Lo, K.-T.: Cryptanalysis of two chaotic
encryption schemes based on circular bit shift and XOR operations. Physics
Letters A 369, 23–30 (2007)

64. Li, S.: Analyses and new designs of digital chaotic ciphers. Ph.D. thesis, School
of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an,
China (2003), http://www.hooklee.com/pub.html

65. Li, S., Alvarez, G., Chen, G.: Breaking a chaos-based secure communication
scheme designed by an improved modulation method. Chaos, Solitons & Frac-
tals 25(1), 109–120 (2005)

66. Li, S., Alvarez, G., Chen, G.: Return-map cryptanalysis revisited. Interna-
tional Journal of Bifurcation and Chaos 16(5), 1557–1568 (2006)

67. Li, S., Alvarez, G., Li, Z., Halang, W.: Analog chaos-based secure communica-
tions and cryptanalysis: a brief survey. In: Kurths, J., Fradkov, A., Chen, G.
(eds.) 3rd Int. IEEE Scientific Conference on Physics and Control (PhysCon
2007), Potsdam, Germany, p. 92 (2007), Full edition available at
http://www.hooklee.com/Papers/PhysCon2007.pdf

68. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise
linear chaotic maps. International Journal of Bifurcation and Chaos 15(10),
3119–3151 (2005)

69. Li, S., Li, C., Chen, G., Bourbakis, N.G., Lo, K.T.: A general quantitative
cryptanalysis of permutation-only multimedia ciphers against plaintext at-
tacks. Signal Processing: Image Communication 23(3), 212–223 (2008)

http://www.hooklee.com/pub.html
http://www.hooklee.com/Papers/PhysCon2007.pdf

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 293

70. Li, S., Mou, X., Cai, Y.: Pseudo-random bit generator based on couple chaotic
systems and its applications in stream-ciphers cryptography. In: Pandu Ran-
gan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 316–329.
Springer, Heidelberg (2001)

71. Li, T.Y., Yorke, J.A.: Period three implies chaos. The American Mathematical
Monthly 82, 985–992 (1975)

72. Lian, K.Y., Liu, P.: Synchronization with message embedded for generalized
Lorenz chaotic circuits and its error analysis. IEEE Transactions on Cir-
cuits and Systems–I: Fundamental Theory and Applications 47(9), 1418–1424
(2000)

73. Ling, B.W.-K., Ho, C.Y.-F., Tam, P.K.-S.: Chaotic filter bank for computer
cryptography. Chaos, Solitons & Fractals 34, 817–824 (2007)

74. Liu, L., Wu, X., Hu, H.: Estimating system parameters of Chua’s circuit from
synchronizing signal. Physics Letters A 324(1), 36–41 (2004)

75. Lorenz, E.: Deterministic nonperiodic flow. Journal of the Atmospheric Sci-
ences 20, 130–141 (1963)

76. Manjunath, G., Fournier-Prunaret, D.: A qualitative analysis of decipher-
ing errors in chaos shift keying. International Journal of Bifurcation and
Chaos 19(6), 2085–2092 (2009)

77. Masuda, N., Jakimoski, G., Aihara, K., Kocarev, L.: Chaotic block ciphers:
from theory to practical algorithms. IEEE Transactions on Circuits and
Systems–I: Regular Papers 53(6), 1341–1352 (2006)

78. Matthews, R.: On the derivation of a chaotic encryption algorithm. Cryptolo-
gia 13, 29–42 (1989)

79. Maze, G.: Algebraic methods for constructing one-way trapdoor functions.
Ph.D. thesis, University of Notre Dame (2003)

80. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

81. Millérioux, G., Amigó, J.M., Daafouz, J.: A connection between chaotic and
conventional cryptography. IEEE Transactions on Circuits and Systems–I:
Regular Papers 55(6), 1695–1703 (2008)

82. Millerioux, G., Daafouz, J.: Unknown input observers for message-embedded
chaos synchronization of discrete-time systems. International Journal of Bi-
furcation and Chaos 14(4), 1357–1368 (2004)

83. Millerioux, G., Mira, C.: Coding scheme based on chaos synchronization from
noninvertible maps. International Journal of Bifurcation and Chaos 8, 2019–
2029 (1998)

84. NIST: A statistical test suite for random and pseudorandom number genera-
tors for cryptographic applications. NIST Special Publication 800-22 Revision
1A (2010), http://csrc.nist.gov/rng/rng2.html

85. Orúe, A., Alvarez, G., Pastor, G., Romera, M., Montoya, F., Li, S.: A new
parameter determination method for some double-scroll chaotic systems and
its applications to chaotic cryptanalysis. Communications in Nonlinear Science
and Numerical Simulations 15(11), 3471–3483 (2010)

86. Orúe, A., Fernandez, V., Alvarez, G., Pastor, G., Romera, M., Montoya, F.:
Determination of the parameters for a Lorenz system and application to break
the security of two-channel chaotic cryptosystems. Physics Letters A 372(34),
5588–5592 (2008)

87. Pareek, N.K., Patidar, V., Sud, K.K.: Discrete chaotic cryptography using
external key. Physics Letters A 309, 75–82 (2003)

http://csrc.nist.gov/rng/rng2.html

294 G. Alvarez et al.

88. Parker, A., Short, K.M.: Reconstructing the keystream form a chaotic en-
crypiton scheme. IEEE Transactions on Circuits and Systems–I: Fundamental
Theory and Applications 48(5), 624–630 (2001)

89. Parlitz, U., Chua, L.O., Kocarev, L., Halle, K.S., Shang, A.: Transmission of
digital signals by chaotic synchronization. International Journal of Bifurcation
and Chaos 2(4), 973–977 (1992)

90. Pastor, G., Romera, M., Montoya, F.: A revision of the Lyapunov exponent
in 1D quadratic maps. Physica D 107, 17–22 (1997)

91. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Physical Re-
view Letters 64(8), 821–824 (1990)

92. Pérez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Physical
Review Letters 74(11), 1970–1973 (1995)

93. Pisarchik, A.N., Flores-Carmona, N.J., Carpio-Valadez, M.: Encryption and
decryption of images with chaotic map lattices. Chaos: An Interdisciplinary
Journal of Nonlinear Science 16(3) (2006), Art. no. 033118

94. Rajendra, U., Bhat, S., Kumar, S., Min, L.: Transimission and storage of
medical images with patient information. Comput. Biol. Med. 33, 303–310
(2003)

95. Rhouma, R., Solak, E., Arroyo, D., Li, S., Alvarez, G., Belghith, S.: Comment
on ”modified Baptista type chaotic cryptosystem via matrix secret key”. Phys.
Lett. A 372, 5427 (2008); Physics Letters A 373(37), 3398–3400 (2009)

96. Shannon, C.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 656–715 (1949)

97. Skrobek, A.: Approximation of a chaotic orbit as a cryptanalytical method on
Baptista’s cipher. Physics Letters A 372(6), 849–859 (2008)

98. Solak, E., Çokal, C., Yildiz, O.T., Biyikoğlu, T.: Cryptanalysis of
Fridrich’s chaotic image encryption. International Journal of Bifurcation and
Chaos 20(5), 1405–1413 (2010)

99. Stamp, M., Low, R.M.: Applied cryptanalysis: breaking ciphers in the real
world. John Wiley & Sons, Inc., Hoboken (2007)

100. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Boca Raton
(1995)

101. Storm, C., Freeman, W.J.: Detection and classification of nonlinear dynamic
switching events. Physical Review E 58, 1159–1162 (2002)

102. Szczepanski, J., Amigó, J., Michalek, T., Kocarev, L.: Cryptographically se-
cure substitutions based on the approximation of mixing maps. IEEE Trans-
actions on Circuits and Systems–I: Regular Papers 52, 443–453 (2005)

103. Tao, C., Du, G.: A new approach to breaking down chaotic secure communica-
tion. International Journal of Bifurcation and Chaos 13(9), 2689–2698 (2003)

104. Tao, C., Du, G., Zhang, Y.: Decoding digital information from the cas-
caded heterogeneous chaotic systems. International Journal of Bifurcation and
Chaos 13(6), 1599–1608 (2003)

105. Vaidya, P.G., Angadi, S.: Decoding chaotic cryptography without access to
the superkey. Chaos, Solitons & Fractals 17(2-3), 379–386 (2003)

106. Wang, X., Duan, C., Gu, N.: A new chaotic cryptography based on ergodicity.
International Journal of Modern Physics B 22(7), 901–908 (2008)

107. Wang, X., Zhan, M., Lai, C.H., Hu, G.: Error function attack of chaos syn-
chronization based encrypiton schemes. Chaos: An Interdisciplinary Journal
of Nonlinear Science 14(1), 128–137 (2004)

8 Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers 295

108. Wu, C.W.: Synchronization in coupled chaotic circuits and systems. World
Scientific, New Jersey (2002)

109. Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with
applications to secure communications systems. International Journal of Bi-
furcation and Chaos 3(6), 1619–1627 (1993)

110. Xiao, D., Liao, X., Wong, K.W.: An efficient entire chaos-based scheme for
deniable authentication. Chaos, Solitons & Fractals 23(4), 1327–1331 (2005)

111. Yang, T.: Recovery of digital signals from chaotic switching. International
Journal of Circuit Theory and Applications 23(6), 611–615 (1995)

112. Yang, T.: A survey of chaotic secure communication systems. Intenational
Journal of Computational Cognition 2(2), 81–130 (2004)

113. Yang, T., Wu, C.W., Chua, L.O.: Cryptography based on chaotic systems.
IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Ap-
plications 44(5), 469–472 (1997)

114. Yang, T., Yang, L.–B., Yang, C.-M.: Breaking chaotic secure communications
using spectrogram. Physics Letters A 247(1-2), 105–111 (1998)

115. Yang, T., Yang, L.-B., Yang, C.-M.: Breaking chaotic switching using gener-
alized synchronization. IEEE Transactions on Circuits and Systems–I: Fun-
damental Theory and Applications 45(10), 1062–1067 (1998)

116. Zhang, Y., Tao, C., Jiang, J.J.: Theoretical and experimental studies of pa-
rameter estimation based on chaos feedback synchronization. Chaos: An In-
terdisciplinary Journal of Nonlinear Science 16(4) (2006), Art. no. 043122

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 297 – 330.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 9
Hardware Implementation of Chaos Based
Cipher: Design of Embedded Systems for
Security Applications

Camel Tanougast

Laboratory of Sensors and Microelectronics,
Paul Verlaine University of Metz
7 rue Marconi, 57070 Metz Technopôle - France

Abstract. In the information and communication security fields, system designers
are faced with many challenges in both the trade-off cost/performance/power and
architecture design. This is especially true for embedded system designs, often op-
erating in nonsecure environments, while at the same time being constrained by
such factor as computational capacity, memory size, and in particular power con-
sumption. One challenge is the design of hardware architecture in order to obtain
the appropriate security and the best tradeoff between hardware resources and the
best throughputs rate for embedded applications. This chapter broadly outlines a
disciplined approach to design and implementation 3D chaotic systems as Lorenz,
Lü, Colpitts, Chen systems and so in embedded applications. The approach com-
bines the numerical resolution method paradigm of 3D differential equations cha-
racterizing some chaotic systems with the design hardware architecture paradigm.
The model of Runge-Kutta’s numerical method to resolve 3D chaotic system re-
quirements used as key generator for data encryption applications is detailed. This
chapter describes this approach and presents a case study where the Lorenz’s
chaotic system is implemented on a FPGA Chip.

1 Introduction

Since the discovery of deterministic chaos, the field of non-linear dynamical
systems has found applications in areas as diverse as biophysics, meteorology, hy-
drodynamics, chemical engineering, optics, cryptology and communications cryp-
tosystem, especially since the first description of chaos synchronization by Pecora
and Carroll [1]. A large number of chaos-based secure communication schemes
have been proposed in the last decades [2, 3]. Typically, chaotic systems are cha-
racterized by ergodicity, sensitive dependence on initial conditions and random-like
behaviors, properties which seem pretty much the same as required
by cryptographic primitive characteristics such as “diffusion” and “confusion”.

298 C. Tanougast

Among the systems showing a chaotic behavior, we find 3D continuous-time
chaotic systems as systems of Lorenz, Lü, Colpitts, Chen, Rössler, Sprott, and so
on. These chaotic structures seem to be abundant and complex dynamical behaviors
which can be used for designing of chaotic hardware key generation for secure
communication systems.

A digital implementation of chaotic generators presents some advantages and
provides accuracy and large possibility of integration in embedded applications
especially for data encryption and secures communications between embedded
systems. Unlike, in analogue implementations which exhibit some practical diffi-
culties to ensure information recovery and to deal with the problem of the chaotic
synchronization since the component values vary with age, temperature, etc., a
digital implementation avoids the parameter mismatch between the transmitter and
the receiver. Actually, programmable hardware fabric like FPGA (Field Pro-
grammable Logic Array) is taking an increasingly significant place in the embed-
ded digital system design paradigm, this is due to the excellent trade-off between
computing power and flexibility of processing it provides.

This chapter broadly outlines a disciplined approach to design and implementa-
tion 3D chaotic systems as Colpitts, Chen, Lorenz, Lü systems and so in embedded
applications. The design approach combines the numerical resolution method pa-
radigm of 3D differential equations characterizing some chaotic systems
with the design hardware architecture paradigm. The model of Runge-Kutta’s nu-
merical method allows resolving 3D chaotic system requirements used as key ge-
nerator for data encryption applications. This chapter describes this approach and
presents a case study where the Lorenz’s chaotic system is implemented on a
FPGA Chip.

The rest of the chapter is organized as follows: In Section 2 the related work is
described. Section 3 gives an overview, a description and characterization of 3D
chaotic systems used for embedded encryption applications. Section 4 presents an
overview of the analog hardware implementations and discuss of the synchroniza-
tion problems. Section 5 discuss of the architecture exploration for the chaos be-
havioral digital hardware implementation. Section 6 gives the background of the
digital design based on a numerical resolution method of the 3D chaotic systems
as well as the FPGA technology design. In this section, we discuss in detail the
various step involved in the design of a chaotic system, and illustrate it with the
Lorenz’s chaotic system designing in FPGA. The performances and real time mea-
surements are detailed and the chaotic synchronization of two chaotic generators
using a Feed-Back Synchronization approach is also presented. The feasibility and
the efficiency of the secure image encryption application based on the
synchronized embedded chaotic generators are also given in the Section 7. The se-
curity of the encryption scheme is evaluated through both cryptanalysis and
experiments. Finally, Section 8 summaries and concludes the chapter.

2 Related Works

In 1963, Lorenz found the first chaotic strange attractor in a continuous nonlinear
three-dimensional autonomous system, which is classed as a double-scroll attractor

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 299

[4]. This discovery became the start point of extensive studies focused on chaos
phenomena. Indeed, it has been found that a chaotic system exhibits a richness
chaotic behavior according to the values of its bifurcation parameters. Therefore,
the electrical engineering community realized that chaos could be useful in secure
communication systems because chaos is extremely sensitive to the initial condi-
tions and parameters [5, 6]. The chaotic behavior is described and characterized
either by one, double, three, four- scrolls or more scrolls strange attractor. For ex-
ample, the Rössler’s system, Linz’s and Sprott’s systems exhibit one-scroll attrac-
tor [7, 8] while Chua’s system exhibits one or more scroll-attractor [9]. Thus,
chaos-based encryption has suggested a new and efficient way to deal with the
problem of fast and highly secure data encryption [10, 11]. Indeed, these systems
are very sensitive to small variations of their initial conditions and parameters and
these systems can be synchronized between their and used for secure communica-
tions [12, 13].

To design chaotic generators, the main approach uses the analogue technique.
During the last decades, many methods based on analogue circuits are used to im-
plement chaotic generators. Generally, these generators are implemented using
analogue nonlinear circuits (diodes, op-amps, transistor, etc.) associated with ana-
logue components (resistor, inductance, capacitor, etc.). For instance, the Figure 1
presents analog circuit model of the Lorenz's chaotic system based on op-amps
employed to provide look backing active integrator modeling the Lorenz's diffe-
rential equation [13, 14].

Fig. 1 Analog circuit model of the Lorenz’s chaotic system [14]

Others methods based on analogue circuits are used to implement chaotic gene-
rators such as switched capacitor or analogue CMOS technology [14-17]. Howev-
er, the physical parameters of these analogue devices need to be constant in
order to ensure a permanent synchronization between both emitter and receiver.
Indeed, these methods exhibit some practical difficulties since the component

300 C. Tanougast

values vary with age, temperature, etc. Therefore, one must implement both the
transmitter and the receiver with very high accurate components to ensure infor-
mation recovery, since the recovery characteristics are very sensitive to parameter
mismatch between the transmitter and the receiver. In addition, it is very difficult
to deal with the problem of the chaotic synchronization. Hence, analogue imple-
mentation is very difficult thought it is possible to overcome this difficulties to
some extent. To overcome this problem, a second method based a digital hardware
implementation of chaotic generators can be used since the problem of parameter
mismatch between the transmitter and the receiver does not exist. Nevertheless,
the difficulty of the information recovery depends only on the channel noise sen-
sibility. In this case, the chaotic synchronization becomes less complex than the
case of an analogue implementation counterpart. Moreover, with an analogue im-
plementation, the circuitry responsible for chaos generation (at least the explicit
form of the non linear differential equation system) should be given with specific
details; while for a digital implementation, the following details should be pro-
vided: the finite computing precision, the adopted digital arithmetic (fixed-point or
floating-point), the hardware/software configuration.

3 Chaotic Generators Based Encryption

Data security is a significant subject for which various encryption algorithmic so-
lutions have been proposed [18]. Encryption methods using chaotic dynamics are
used. In the case of chaotic encryption techniques, a sequence, which is generated
by a discrete or continuous chaotic system, is used as a key for ciphering a plain
text [19,20]. An overview of the secure communication approach consists to im-
plement a cipher key generator based on a tri-dimensional data chaotic generator
used for encryption a plaintext. This leads to the problem of synchronization be-
tween encryption and decryption processes. Figure 2 illustrates this secure com-
munication approach. For embedded secure applications, the challenge based on
this approach is to design synchronized key generators based on differential equa-
tion system characterized by a chaotic regime.

Fig. 2 Illustration of the embedded chaotic cryptosystems for communications

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 301

3.1 Tri-dimensional Chaotic Systems: Chaos Behavioral
Modeling and Software Simulation

Currently, we distinguish two types of chaotic systems. First one we find the dis-
crete chaotic systems such as the Henon and Logistic map, modeling by the equa-
tions 1 and 2, respectively.

Xn+1 = 1 + Yn – a.Xn
2 (1.a)

Yn+1 = b.Xn (1.b)

Xn+1 = A.Xn(1 - Xn) (2)

And others hand, we have the continuous chaotic systems characterized by a sys-
tem of differential equation systems [21, 22]. For example, we can cited the Jerk’s
dynamic system defined by the following third order differential equation:

() xGxxa x +−−= &&&&&& (3)

where a is parameter of the system. G(x) is a nonlinear function. Depending on the
expression of G(x), there is a family of the Jerk’s dynamic system. For example,
consider us the Jerk’s chaotic system defined by the nonlinear function G(x) = bx2

– 1. The nonlinearity is expressed by the term x2. Let us rewrite equation (3) in a
equivalent form of a three dimensional system:

12

bxyaz
dt

dz

z
dt

dy

y
dt

dx

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−+−−=

=

=

(4)

The solution of this nonlinear equation system depends mainly on the initial con-
ditions specified by the initial values of x= x0, y = y0 and z = z0. A numerical solu-
tion of this system using Matlab simulation tool [23] with parameters values a =
0.57, b = 0.56 and initial conditions (x0 = y0 = z0 = 0), gives the corresponding
chaotic signals x, y and z and the 3D attractor of the chaotic system shown in
Figure 3. The Jerk's 3D attractor is characterized by one spiral scroll.

Fig. 3 Jerk's Chaotic Signals and 3D attractor

302 C. Tanougast

Most of the continuous chaotic systems can be expressed by an equivalent form
of a three dimensional system. Among then we can cited the tri-dimensional (3D)
chaotic system such as Lorenz’s, Cheng’s, Lü’s, Colpitts, Chua’s, Rössler’s, Linz
and/or Sprott’s systems. These 3D systems provide chaotic behaviours depending
on the initial condition and parameters values characterizing these systems. For
example, the Lü’s system knowing as a bridge between the Lorenz’s and Chen’s
systems [21, 22, 24, 25], and represented by the simplified nonlinear equation sys-
tem (5), can presented a chaotic behavior.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

+=

=

bzxy
dt

dz

cyxz
dt

dy

xya
dt

dx

-

-

)-(

 (5)

A numerical solution of this system with Lü’s parameters values a = 36, b = 3 and
c = 20 and initial conditions (x0 = 0, y0 = 5, z0 = 25), gives the corresponding cha-
otic signals x, y and z and the two different attractors of the chaotic system shown
in Figure 4.

Fig. 4 Simulation results of Lü’s chaotic signals and attractors in phase planes (x-y), (y-z).

4 Analog Hardware Implementation

Over the last several decades, many electronic circuits based passive or active ana-
logue components exhibiting chaos have been proposed [26]. These circuits are
considered as simplest nonautonomous (driven) or autonomous circuits con-
structed using the most common components. Thus, the Linsay‘s driven inductor-
varactor resonator is one of the first simple chaotic circuit [27]. One of the most
recent claims to simplest autonomous chaos is Piper and Sprott‘s op-amps inte-
gration or gain block based chaotic resonators [28]. These realizations implement

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 303

the Jerk’s chaotic system (also see Section 3.1) defined by the nonlinear function
G(x) = b(sgn(x) – x) and characterized by the equation (6) where the signum func-
tion sgn(x) can be approximated by using an op-amp without negative feedback.

⋅
−−−−=))(sgn(xxbxxax &&&&&& (6)

The circuits (see Figure 5) use op-amps employ as comparators to provide signum
nonlinearity and linear time-invariant passive components. The first (designated
CCC, Figure 5.a) uses four resistors, three capacitors and two op-amps. In this cir-
cuit, Rc-R-C1-U1a forms the active integrator, while R1-C2-R2-C3 forms the passive
second-order integrator. The second (designated CLC, Figure 5.b) uses two resis-
tors, two capacitors, one inductor and two op-amps. Here, L-C2 forms the second
order passive integrator.

Fig. 5 Piper and Sprott’s autonomous chaotic circuits

4.1 Application to COLPITTS System

In this section, we consider the Colpitts system claim as a simple nonautonomous
chaos based on single-transistor chaotic resonator. A Colpitts oscillator [17,29-
31], is one of a number of electronic oscillator circuits which exhibits a rich dy-
namical behavior like many other third-order oscillator configurations available in
the literature [29, 31]. In particular, for the Colpitts oscillator there is extensive
numerical and experimental evidence of continuous chaotic behavior [31] that can
be used in secure communication systems. Indeed, this system is non-symmetric
and is therefore generic, and possesses an intrinsic nonlinearity given by the expo-
nential characteristic of the active device [29, 30].

Generally, an oscillator is composed of an amplifier based transistor FET (Field
Effect Transistor) or BJT (Bipolar Junction Transistor) associated with a resonant
network based on self capacity (LC) mounting which is often used to operate at the
limit of frequencies at some KHz to a few hundreds MHz. For this purpose, the
Colpitts oscillator is the most widely used LC based oscillator. One of the key fea-
tures of this type of oscillator is its simplicity and robustness since it is not difficult

304 C. Tanougast

to obtain satisfactory results with little effort. A Colpitts oscillator can be seen as an
electrical dual of a Hartley oscillator. Thus, the Colpitts circuit comprises:

• An oscillating circuit (LC).
• A capacitive tension divider.
• A transistor amplifier.

The principle circuit of the Colpitts oscillator is shown in Figure 6. The amplifier
consists of a bipolar transistor (BJT) assembled in a common-base configuration.
The circuit resonator consists of one inductance (L) and two capacitances (C1 and
C2) which are connected between the collector and the base of the transistor. This
is used to determine the frequency of oscillation. A fraction of the voltage of the
circuit (LC) is turned over to the transmitter. This return is obtained by a capaci-
tive voltage divider. The circuit bias is provided by the voltage Vcc and the current
source I0, the latter being characterized by a Norton-equivalent conductance G0
[29]. The Colpitts oscillator is commonly designed to generate periodic oscilla-
tions. However with specific settings of the circuit parameters and appropriate cir-
cuitry modifications the bipolar junction transistor based oscillator delivers chao-
tic waveforms.

(b)

IE IC

IB

RE
αF IE

VCE

VBE

E C

B

Vcc

R

L

IL

IC

IE

IB
C

E

C1

C2

VC1

VC2

+

-

+

-

Vout

I0

VCE

VBE

(a)

B

Fig. 6 Circuit model of the Colpitts oscillator: (a) circuit schematics; (b) transistor in a BC
configuration.

The simulation of the Colpitts system only has bifurcations and chaotic pheno-
mena but also diversified stability phenomena, such as multiple periods and stag-
nant dots. More precisely, by varying the value of the resistance R; we obtain a pe-
riodic solution. Thereafter, we passed by a periodic solution of p-finite order.
Finally, the chaotic behavior is generated. Figure 7 presents the circuit simulation
results showing a Colpitts chaotic behavior. It gives the output chaotic signal Vcout
for a particular value of R (denoted as x) and one attractor in the phase plane (x - z),

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 305

where z corresponds to Vcout for a another value of R. The structure of this type of
chaotic system is quite complex and depends on the variables and parameters of the
system. These various stages usually lead to chaos by period-doubling in the Col-
pitts oscillator. From these simulation results and for certain parameter values (pas-
sive components), the Colpitts system can exhibit different steady-state behaviors
depending on the initial conditions of the system. This is a typical situation in non-
linear dynamical systems where, in general, different stable solutions, equilibrium
points, limit cycles, chaotic attractors, and so on may coexist.

Fig. 7 Colpitts chaotic signal and one chaotic trajectory (attractor of chaotic phenomena).

4.2 Synchronization Problems

The synchronization becomes vital for accurate recovery of the transmitted signal
in encrypted communications based on chaotic generators. Some researchers in
the area have been then interested to investigate chaos synchronization in various
fields including secure communications. Many methods and techniques for syn-
chronizing chaos have been proposed in literature based on nonlinear observers,
parameters estimation, control models [12, 32], etc. However, when implemented
on analog circuit platform, it is impossible to preset the system without any errors.
Indeed, the parameters of chaotic system may change with voltage and tempera-
ture (internal noise). Since chaotic systems are sensitive to parameters, most of the
synchronization scheme will fail due to parameter mismatch. To overcome this
problem, a numerical generation of chaos can be used since the problem of para-
meter mismatch does not exist. For instance, a real-time digital hardware
implementation of the Feed-Back chaotic synchronization (FCS) between two
chaotic signal generators allows one chaos synchronization. This approach can be
used for synchronizing any three-dimensional continuous chaotic systems (Chua’s
system, Lü’s system, Colpitts system, etc.) used as hardware key cipher generator
for encrypted communications [33] (more details in the Section 6.9).

5 Digital Hardware Implementation

Digital implementation of chaotic generators provides accuracy and large possibil-
ity integration in embedded systems which control many of the common devices
in use today, and allowing many possibilities for embedded applications especially

306 C. Tanougast

for data encryption and secures communications between embedded systems. In
this context, advances in VLSI technology have been employed to the manufactur-
ing of reconfigurable logic including FPGA chips and helped their rapid growth in
logic capacity, performance and popularity. In this section we consider the archi-
tecture exploration for a digital hardware implementation of the 3D chaotic gene-
rator based on numerical resolution of differential equation systems characterizing
the most continuous chaotic systems.

5.1 Digital Implementation Based on Numerical Resolution of 3D
Chaotic Systems

For resolve the 3D differential equation, we can use the well-known fourth order
Runge-kutta numerical resolution method (RK-4) which produces a more accurate
estimate of the solution [34, 35]. Let us consider the following first order nonlin-
ear differential equations system which can expressed one 3D chaotic system:

()

()

()
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

=

zyxQ
dt

dz

zyxG
dt

dy

zyxF
dt

dx

,,

,,

,,

 (7)

where x(t0)= x0, y(t0)= y0 et z(t0)= z0 and F, G, Q are nonlinear functions. The RK-4
method uses several intermediate points to calculate the next value starting (xn+1,
yn+1, zn+1) from the initial value (x0, y0, z0) and the step length h in t as it is speci-
fied by the following equations:

 kkkk
h

xx nn)22(
6 32101 ++++=+

 (8)

 mmmm
h

yy nn)22(
6 32101 ++++=+

 (9)

 nnnn
h

zz nn)22(
6 32101 ++++=+

 (10)

where at the initial t0 instant:

 xtFk nn),(0 = (11)

 ytGm nn),(0 = (12)

 ztQn nn),(0 = (13)

at t0 + h/2 instant:

 k
h

x
h

tFk nn)
2

,
2

(01 ++=
 (14)

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 307

 m
h

y
h

tGm nn)
2

,
2

(01 ++= (15)

 n
h

z
h

tQn nn)
2

,
2

(01 ++= (16)

 k
h

x
h

tFk nn)
2

,
2

(12 ++= (17)

 m
h

y
h

tGm nn)
2

,
2

(12 ++= (18)

 n
h

z
h

tQn nn)
2

,
2

(12 ++= (19)

and at t0 + h instant:

 hkxhtFk nn),(23 ++= (20)

 hmyhtGm nn),(23 ++= (21)

 hnzhtQn nn),(23 ++= (22)

5.2 Architecture Exploration

Security is a primary requirement of any communication application. In modern
security problems, the need for secure cryptographic algorithms that are hardware
implemental is increasingly important issue while allowing to satisfy the following
two metrics in digital system design: the throughput rate and the area or the
amount of hardware resources required to match this throughput rate. Efficient
hardware design is essentially a resource allocation problem. The goal is, given
the constraints, to find the optimal balance between required silicon area, opera-
tion throughput, energy consumption and design time to implement a system. The
objective of an architecture exploration is to find an efficient matching between
an algorithm and architecture. The aim is to realize an optimal implementation
that satisfies the constraints (real time, logic area etc.).

The intrinsic parallelism of the cryptic algorithms is still well adapted to a
hardware implementation. Digital hardware techniques can be used to implement
efficiency chaotic generators by using digital devices such as microcontrollers,
Digital Signal Processors (DSPs), Application-Specific Integrated Circuits (AS-
ICs), digital processors or Field Programmable Gate Array (FPGA) technologies.
The choice of the implementation in a digital system is driven by many criteria
and heavily dependent on the application area.Thus, a chaotic generator for cipher
encryption can be implementing both software (by coding in C, C++, SystemC,
etc.) to be executed on processors and hardware (by designing and coding in
hardware

308 C. Tanougast

description languages such as VHDL and Verilog). Table 1 gives the main contrast
features of digital implementations based on digital software or hardware
technologies.

Table 1 Features of implementations in ASICs, FPGAs and processors.

 Processors (Soft-
ware)

FPGA (Hard-
ware)

ASICs (Hard-
ware)

Silicon area Fixed variable Fixed and low
speed moderate Fast Very fast
consump-

tion
moderate high weak

Word size Fixed variable variable
Flexibility Yes Yes No
Design cy-

cle
short moderate long

Performed
at the user site

yes yes no

ASICs are designed all the way from the behavioural description to the physical
layout and then sent for a fabrication in a semiconductor foundry. The technology
of digital circuits as well as the tools available for the design, the use and the im-
plementation of the algorithms has played a significant role to achieve a high
throughput, but with a high cost in terms of resources used. The high operating
frequency as well as the great amount of resources available in an ASIC, makes it
possible to implement such algorithms. Nevertheless, their high cost of design and
the long time to market, pushed the designers to find others technologies. FPGA
technology then seemed to be an attractive alternative especially since this tech-
nology allows a good performances with a great design flexibility. FPGA is inter-
esting in the way that it ensures a better computing performance in comparison
with a CPU core and allows the flexibility and a lower cost compared to Silicon
IPs or ASICs (see Table 1)). The most obvious is the possibility to frequently up-
date the digital hardware functions. But we can also use the dynamic resources al-
location feature in order to instantiate each operator only for the strict required
time. This permits to enhance the silicon efficiency by reducing the reconfigurable
array’s area. In this context, the use of FPGA technology makes it possible to op-
timise the hardware resources required while allowing a real time computing.

In the next section, we will consider the FPGA based low-level design of the
3D chaotic systems allowing optimized hardware implementations in terms of
hardware resources (logic area, specific compute blocks, size memory, etc.) and
performances (frequency and throughput).

6 Digital Programmable Hardware Implementation Using
FPGAs

An FPGA can be exploited for the secure and efficient implementation of symme-
tric cryptographic algorithms and protocols. These reconfigurable devices intend

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 309

to fill the gap between hardware and software, achieving potentially much higher
performance than software, while maintaining a higher level of flexibility than
hardware. Several behavioral structures of chaotic systems have been imple-
mented in FPGA technology. Among them, we find mainly Lorenz, Chua or Chen
systems [36, 37] which can be used for designing chaotic hardware key generation
for data encryption systems. These previous digital chaos implementations are not
optimized since these works have used non optimal hardware description language
code generation using Simulink/Matlab automatic code generation tools. The
Figure 8 presents one hardware implementation model based automatic generator
of the Lorenz’s chaotic system from the Simulink/Matlab tool associated to Xi-
linx's FPGA design tool (Xilinx System Generator). The main drawback of this de-
sign approach is that the high level aspect of this method keeps the user far away
from realities of the physical implementation (low-level architecture). Thus, the
result in terms of performance and density of resources used remains out of the
designer reach.

Fig. 8 Simulation model based automatic generator of the Lorenz’s chaotic system [37].

6.1 FPGA Technology

An Field programmable Gate Arrays, introduced in 1985 by the company Xilinx,
is a programmable device consisting:

- A set of programmable logic cells (called Logic blocks or CLBs) based on n-
inputs function generator (usually denoted as Look-Up Tables (LUTs)) associated
with registers through local select interconnects. Some CLBs can include complex
arithmetic and logic units depending the type or family of the FPGA technology
used (commonly referred to as the size granularity of the Logic Cells).

310 C. Tanougast

- A programmable interconnection network and input and output cells around the
device (Figure 9).

The resulting structure is vendor-dependant (Altera, Actel, Xilinx companies, etc.).
According to the arrangement of the Logic Cells and interconnection paradigm of
the Logic Cells on the device, FPGAs can be classified in several categories such
as symmetrical array, hierarchy-based, row-based, and so on. The Figure 9
presents an overview of a symmetrical array based FPGA currently used (Xilinx's
Virtex FPGA technology). The Logic blocks are connected together using the pro-
grammable interconnection and through Switch Matrix which are used to connect
vertical and horizontal lines, thus making routing possible on the FPGA. Locally
around the periphery of the device, input and output cells (referred as I/O compo-
nents) allow for the communication of the design inside the FPGA with off-chip
modules. These I/O components can be configured as a input, output or bidirec-
tional interface pin. All components of an FPGA can be programmed once or
several times depending on the technology used (SRAM, EPROM, ANTIFUSE).
Modern FPGAs contain embedded components such as memory blocks, multip-
liers and even processors cores (for example, two PowerPC processor cores in the
Xilinx's Virtex II Pro devices) [38].

Fig. 9 General structure of an symmetrical array based FPGA

A digital function to be implemented in FPGA is partitioned in modules, each
of which can be implemented in Logic Blocks. After the design description and
functional simulation, the design can be logic synthesized at Register transfer
Level (RTL). LUT-based technology mapping is then used to implement the func-
tions as well as their interconnections in the FPGA by using the CAD tools. LUTs
are the modules used in the FPGA to implement the logic and arithmetic operators
of the RTL description. The place and route inside the FPGA as well as the gener-
ation of configuration data of the device is done also by the FPGA development
tool. Consequently, FPGA designs can be performed by the user in the field.

In this remainder of this section, we assume a reader with basic knowledge in
FPGA design and consider a Xilinx Virtex-II FPGA. Such devices embed CLBs,

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 311

RAM, multipliers and two PowerPC cores. The CLBs is composed of the logic
units (denoted as Slices) that is generally used to evaluate an FPGA design’s area
requirements. Figure 10 depicts the structure of a Slice, mainly made up of two 4-
inputs LUTs, two registers and feedback interconnections. Depending on the logic
synthesis, any of Slice can be configured as RAM storage, linear shift register or
any 4-1 Boolean function (logic or arithmetic operators). The LUTs with the regis-
ters in the Slice architecture facilitates the use of pipelining techniques to increase
the clock frequency (and then throughput) of FPGA designs. Indeed, pipelining is
an economic form of parallelism especially in FPGAs with flip-flops that are al-
ready present in each cell whether they are used or not. Where long circuit paths
would preclude the use of a high-speed clock, registers can be placed along those
paths thus decreasing the maximum distances between synchronizing registers. In
other words, the number of levels of logic is reduced. However, the addition of
such “pipeline stages” does increase the latency of the design, i.e., the number
of clock cycles needed for a given set of input data to propagate through the entire
design.

The hardware implementation of a stream cipher circuit using a FPGA follows
the next steps. The hardware implementation is designed and coded in VHSIC
Hardware Description Language (VHDL) with structural description logic way.
With the aim of achieving high throughput rates with low hardware resource re-
quirements. The description to implement is simulated for the correct operation
with test vectors returned by the software implementation. The VHDL code given
the structural architecture is synthesized in Virtex-II Xilinx [38] FPGA technology
for demonstration purposes. The software tool used for these implementations is
ISE of Xilinx [39].

Fig. 10 Virtex-II Pro general Slice.

312 C. Tanougast

6.2 Case Study: Lorenz’s System

In this of this sub-section, we will consider the FPGA design of the Lorenz’s cha-
otic data generator. The system of Lorenz is a famous and widely used example of
chaotic system. It is represented by the following nonlinear equation system [40]:

)-(xy
dt

dx σ=

(23.a)

yrxxz
dt

dy
-- +=

(23.b)

bzxy
dt

dz
-= (23.c)

where σ, r and b are parameters. The solution of this nonlinear equation system
depends mainly on the initial conditions specified by the initial values of x= x0, y
= y0 and z = z0. A numerical solution of this system can be found with the fourth
order Runge-Kutta method (RK-4) (as described in the Section 5.1) with the fol-
lowing value coefficients (h = 0.01, coef = 1/6) of the numerical resolution. By us-
ing Matlab simulation tool, this 3D differential equation system has a chaotic be-
havior which can be used to control the generation of the cipher key (more details
in the next Section 7) with Lorenz’s parameters values σ = 10, r = 28 and b = 8/3
and initial conditions (x0 = 0, y0 = 5, z0 = 20). Figure 11 gives the corresponding
chaotic signals x, y and z and the two different attractors of the Lorenz’s chaotic
system obtained by software simulations. The second and the third parts relates
to the phase plane (x-y) and the phase plane (y-z), respectively. These modeling
and simulation are useful as references for an hardware implementation (see
Section 6.8).

-20 -15 -10 -5 0 5 10 15 20

-25

-20

-15

-10

-5

0

5

10

15

20

25

y

x

5 10 15 20 25 30 35 40 45
-25

-20

-15

-10

-5

0

5

10

15

20

25

z

y

Fig. 11 Matlab simulation results of Lorenz’s Chaotic Signals and attractors in phase plane
(x-y) and (y-z).

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 313

6.3 RTL Architecture

Generally, feature and available hardware resources are not always optimally ex-
ploited by the synthesis and implementation tools during an high-level system de-
scription. For an efficient hardware implementation, it is important to have them
in mind and required during the low-level description. A Register Transfer Level
(RTL) consists at a low–level hardware description required for an efficient im-
plementation.

A Register Transfer Level (RTL) architecture of the Lorenz’s data generator
consists of the implementation of the RK-4 method to resolve the Lorenz’s diffe-
rential equations system. An overview of the RTL architecture for a Lorenz’s cha-
otic generator is given in Figure 12. This random key architecture is based on
fixed parameters σ, r and b and consists of the structural feedback of the three
main blocks: F1, F2 and F3. These three functional units realize the equations
(23.a), (23.b) and (24.c), respectively. These units are composed simply by an ad-
der, a substractor and a multiplier logic arithmetic operators in accordance with
the set RK-4 solution of equation (23). The data-path processing architectures of
these units are depicted in Figure 13.

Fig. 12 RTL architecture of the Lorenz’s chaotic generator.

Fig. 13 RTL architecture of the F1, F2 and F3 functional units, respectively.

314 C. Tanougast

6.4 Logic Hardware Modeling and Simulation

The functional simulation of the Lorenz’s RTL architecture could be simulated for
the correct functional operation with test vectors returned by a software imple-
mentation. This validation consists to model and describe directly the RK-4 me-
thod with the VHDL. It should be noted that the continuous chaotic signals are
real. To get around this problem in the VHDL language, an implementation based
on a finite solution numbers with a fixed point representation of real data on 32
bits (16Q16) can be adopted. i.e. all data are fixed point format with 16 bits integ-
er and 16 bits fraction. Unlike the floating format approach, the fixed-point arith-
metic allows a very useful and attractive trade off between high speed, low area
cost and data transmission security.

A RTL description simulation with ModelSim tool [41] allows to test the effec-
tiveness of the Lorenz’s chaotic generator architecture. Figure 14 presents the si-
mulation results where the chaotic signals x, y and z are represented with 32 bits
using the followings RK-4 value coefficients (h = 0.01, coef = 1/6), with Lorenz’s
parameters values σ =10, r = 28 and b = 8/3 and (x0 = 0, y0 = 5, z0 = 20) as the ini-
tial conditions. It can be seen that the functional hardware simulation results are
very similar those of the RK-4 numerical resolution by using Matlab software si-
mulation tool (see Figure 11).

Fig. 14 ModelSim simulation results of Lorenz’s chaotic generator.

6.5 Evaluation on the Effect of the Digital Error Types

To gauge the robustness and effect evaluation of the discretization errors several
hardware implementation could be designed in VHDL with structural description
logic and using a configurable 2n-bit fixed-point format with n integer bit and n
fraction bit (noted nQn) for real data representation of the continuous chaotic sig-
nals. Since a configurable technology solution like FPGA is not constrainted to a
precision of a particular microprocessor (see Table 1), an evaluation on the effect

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 315

of the discretization errors allows to quantify the benefice to perform the trade-off
between required resources and secure level for embedded applications.

A low precision or round-off error in the real data representation cannot preserve
the dynamic of the generated chaotic signals. More precisely, the dynamic and
chaos properties are not conserved by the effect of the discretization. Autocorrela-
tion is the cross-correlation of a signal for finding repeating patterns, such as the
presence of a periodic signal which has been buried under noise. The Autocorrela-
tion test for different size fixed point data format allows to evaluate the randomness
of the generated chaotic keys by the Lorenz's hardware architecture. In our case
study, the autocorrelation of a random process describes the correlation between
values of the process at different points in time by analyzing the series of values.
The ideal result for a completely non correlated generated keys (denoting non-
periodic system) is a centred single peak at the origin. Figure 15 gives the autocor-
relation for the generated chaotic keys for two size fixed point format (16Q16 and
8Q8). The statistical quality of the chaotic keys 16Q16 is then considered as supe-
rior. As shown by the autocorrelation function for the 16Q16 and 8Q8 sizes of
fixed-point format, one observe that increasing the size of the fixed-point format is
decreasing over the peak behind begins to move up. Indeed, secondary peaks
comes to a 8Q8 size begin to appear which implies a periodicity in the generated
sequence. Therefore, the robustness increases proportionally of the nQn size value.
This tend proves that a 16Q16 size format is sufficient for an efficiency robustness
in term of generated key value while finding an optimized implementation. And
other hand, for lower nQn format values, the robustness decreases while preserving
the dynamic chaos range of the generated signals until one limit of nQn length.

Fig. 15 Autocorrelation results for 16Q16 and 8Q8 format chaotic signals of Lorenz’s
architecture.

6.6 Logic Synthesis Results

Performances of an hardware implementation could be measured with the follow-
ing metrics: hardware cost (in LUTs, registers, slices, RAM, specific computing
blocks, etc.), operating frequency (in MHz), throughput (in Mbit/sec) and an effi-
ciency measurement, e.g., throughput /hardware cost. FPGA synthesis and imple-
mentation tools allow low level description of a hardware design to be translated

316 C. Tanougast

into the programming file for an FPGA. At this step of implementation, one eval-
uation performance can be achieved.

The synthesis results after place and route, and performance analysis of the Lo-
renz's RTL implementation are shown in Table 2. This table specifies the hardware
resources in terms of the Slice or the Slice Flip-Flops numbers and the speed
performance.

Table 2 Implementation results with a Virtex II FPGA for the Lorenz’s chaotic System.

Device utilization summary - XC2v1000fg456-4 FPGA
Number of Slices 1926 out of 5120
Number of Slice Flip Flops 791 out of 10240
Number of 4 input LUTs 2718 out of 10240
Number of bonded IOBs 11 out of 324
Number of MULT18X18s 40 out of 40
Number of GCLKs 1 out of 16
Maximum Frequency 15.598 MHz

As can be seen, the hardware implementation exhibits good performances in
terms of the frequency and resource costs required. The implementation on a Xil-
inx Virtex II device uses only 1926 CLB-Slices, 40 multipliers and no block
RAMs. The results show that a real time Lorenz’s chaotic generator can be effi-
ciency implemented with FPGA technology. Indeed, it can stated that an attractive
trade off between high speed and low logic resources can be achieved. To evaluate
the behaviour of the proposed system, it is necessary to use some evaluation met-
rics. The metrics used for the evaluation results for this system are the Throughput
rate and the Time latency. The Throughput rate is defined as the number of bits
key in a unit of time for a stream encrypted (or decrypted). More precisely, the
number of bits key per unit time duration of the clock period.

clkfqThroughput ∗=
(24)

where fclk is the operating clock frequency and q is the bit representation of one
random key. In the case study and from the performance results (see Table 2), a
maximal Throughput rate of 124 Mbps is achieved. This rate is computed after the
initialization phase. Latency is defined as the time necessary to generate a single
random key after the start of the generator. Time latency is calculated as:

clkf

pipelinestagenu
Latency

__= (25)

where nu_stage_pipeline corresponds to the number of the pipeline stages in the
design. The presented implementation of the Lorenz’s chaotic system requires
6 clock cycles to generate one random key (more details, see the Controller state
machine used and described in the Section 6.7) corresponding to a Time latency
of 388 ns.

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 317

6.7 Physical Implementation: Floorplanning, Placement and
Routing

In this of this section, we consider the XUP Xilinx Virtex-II Pro Development plat-
form for physical hardware implementation. The XUP System consists of a high
performance Virtex-II Pro FPGA (XCV2PFF896-7) surrounded by peripheral
components that can be used to create a complex hardware system. Figure 16
shows a block diagram of the XUP Virtex-II Pro Development System, while
Figure 17 gives a photo of the XUP Xilinx Virtex-II Pro platform [42]. Noted that
an audio CODEC (AC97) and stereo power amplifier are included on the XUP
platform provide all of the analog functionality [43].

Fig. 16 XUP Virtex-II Pro Development System Block Diagram.

Fig. 17 Photo of the XUP Xilinx Virtex-II Pro platform.

318 C. Tanougast

An overview of the hardware implementation of the RTL architecture of the Lo-
renz’s system using Virtex-II Xilinx FPGA technology and implemented in the
XUP Virtex-II Pro Development board is depicted in Figure 18.

Fig. 18 Digital Hardware architecture of Lorenz’s chaotic system.

The hardware chaotic generator has:

-Two inputs: one global clock system (denoted as Clk) and a reset input (denoted
as reset).
- Three outputs denoted as (s0, s1, s2) and corresponding to the generated Lorenz’s
chaotic system signals (x, y, z).

The architecture system consists of two main modules: Control_Unit and Lo-
renz_Generator sub-modules. The Control_Unit sub-module is a Moore Finite
State Machine (or Moore FSM) which manages and schedules the different opera-
tions and functions of our proposed chaotic system. Lorenz_Generator sub-
module generates the random Keys using the RK-4 method as described in Section
5.1, which implements Lorenz’s nonlinear equation system defined par the set of
equation (23) and designed by the RTL architecture presented in Figure 12. The
implemented FSM of the Controller module, which schedules the RK-4 numerical
resolution, is described in the Figure 19. The FSM is composed of 6 states (de-
noted as ST0 to ST5) and it driven by the global clock system without edge condi-
tions. These states are described as follows:

ST0 : Initial state. The outputs are resetting. The Lorenz_Generator sub-module is
initialized with the initial conditions such as (x = x0, y = y0 et z = z0).
ST1 : Runge-Kutta's k0, m0 and l0 parameters are computing in according of the
equations (11), (12) and (13). The first intermediate results are x1, y1 et z1 are then
determined.

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 319

ST0

S0 = S1 = S2 = 0
x = x0, y = y0

z = z0

ST2

k1, m1, l1
x2, y2, z2

ST3

k2, m2, l2
x3, y3, z3

ST4

k3, m3, l3
x, y, z

ST5

S0 = x
S1 = y
S2 = z

ST1

k0, m0, l0
x1, y1, z1

Fig. 19 Finite State machine of the controller sub-module.

ST2 to ST4 : Schedule the iterative computing. The intermediate numerical values
of the fourth order Runge-kutta's resolution are executed. During these steps, the
Runge-Kutta's resolution of Lorenz's nonlinear functions F, G and Q (defined by
the equation 7) are computed by the Lorenz_Generator sub-module.
ST5 : Last state where the Lorenz's signals (x, y, z) are assigned to the outputs of
the system.

All steps are repeated so that chaotic digital signals are obtained at the output.
Once the chaotic signals (x, y and z) with 32 bit wordlenght are obtained, they are
converted to analogue format as a sequence of 8 bits using a Digital to Analog
converter (DAC) and this process is repeated so that real-time chaotic signals are
obtained at the output of the DAC for visualization on an oscilloscope [44].

The performance of implemented architecture mainly depends on the accuracy
of the size of fixed point data representation. The implementation on a Xilinx Vir-
tex-II Pro device uses up to 1926 CLB-Slices (see Table 2) when the fixed-point
data format is 16Q16 while using only 419 CLB-Slices for an 8Q8 format. Figure
20 gives the placement and routing on Virtex II-Pro FPGA Chip of the proposed
16Q16 - Lorenz's architecture.

320 C. Tanougast

a) Placement FloorPlan b) Routing FloorPlan

Fig. 20 Placement and routing on Virtex II-Pro Chip of the Lorenz’s 16Q16 architecture.

6.8 Real Time Measurements

This section considers the real time measurements of the chaotic signal gener-
ated by the hardware implementation. Figure 21 gives a view of the experimen-
tal hardware implementation and measurements of the Lorenz’s chaotic signals.
Real time measurements and digital acquisition can be made. The x, y and z
real-time chaotic signal results of the Lorenz’s generator, obtained by a direct

Fig. 21 Photo of the experimental hardware implementation and measurements of the Lo-
renz’s chaotic signals.

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 321

implementation within XUP Xilinx Virtex-II Pro platform (after the download of
the configuration bitstream file), are given in Figures (22.a), (22.b) and (22.c),
respectively.

These snapshots are given by a Tektronix digital oscilloscope [44]. These re-
sults can be compared with those obtained using Matlab (see Figure 11) and Mod-
elSim (see Figure 14) simulation tools to ascertain whether these results are simi-
lar. The measured real-time attractors (x-z) and (x-y) are presented in Figures
(22.d) and (22.e), respectively. These results clearly confirm and validate that the
implemented chaotic system work well in the chaotic mode.

 (a)

 (b)

 (c)

(d)

(e

Fig. 22 Real-time results of Lorenz’s chaotic generator: (a) x chaotic signal, (b) y chaotic
signal and (c) z chaotic signal, (d) (x-y) attractor, (e) (y-z) attractor.

6.9 Feed-Back Chaotic Synchronization

The feasibility and efficiency of the encryption scheme could be demonstrated
from the synchronization of two Lorenz’s chaotic systems (used as hardware key
cipher generator for encrypted communications) where one correspond to a Mas-
ter chaotic system embedded in one FPGA circuit (Transmitter side) and the
second is the Slave chaotic system also embedded in an FPGA (Receiver side).

A real-time hardware implementation of the Feed-Back chaotic synchroniza-
tion (FCS) between two chaotic signal generators using FPGA technology can be
made. Figure 23 depicts the principle, structure and implementation of FCS allow-
ing also to evaluate the synchronization error rate.

322 C. Tanougast

Fig. 23 Illustration of the FCS hardware implementation.

In this implementation, the Master Lorenz model of the set of equations (23),
and the Slave system are nudged toward values obtained from the Master run as
shown in the set of equations (26):

)-(ss
s xy

dt

dx σ=

(26.a)

smsm
s yrxzx

dt

dy
-- +=

(26.b)

bzyx
dt

dz
sm

s -=

(26.c)

where the subscript m represents the Master system),,(mmm zyx and s

represents the Slave system),,(sss zyx . We consider that the two trajectories

)(txm and)(txs are synchronized if :

∞→
=−

t

txtx sm 0)()(lim
 (27)

The role of the FCS is to transmit the chaotic drive signal)(txm , which is then in-

jected into the two subsystems),(mm zy and),(ss zy (as illustrated in Figure 23).

At the receiver side, the Slave system regenerates the chaotic signal)(txs and

produces a synchronization error rate between the received drive and the regener-
ated drive signals. An overview of the Register Transfer Level (RTL) architecture
for the Master chaotic system is given in Figure 24. More precisely, this figure
depicts our data-path processing architecture which is based on fixed parameters
σ , r and b as specified in the previous Section 6.3.

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 323

Fig. 24 RTL architecture of the Master chaotic system.

Similarly, an RTL architecture of the slave chaotic system is depicted in Figure 25.
The parameters of the Slave chaotic system are similar to those of the Master one
but the three main blocks F1, F2 and F3. implement equations (26.a), (26.b) and
(26.c), respectively.

Fig. 25 RTL architecture of the Slave chaotic system.

Fig. 26 Measurement result of the synchronization error rate.

324 C. Tanougast

The synchronization error is depicted in Figure 26. The synchronization be-
tween the Master and Slave chaotic systems is achieved after 470 samples. The
time of the simulation corresponding of the maximum frequency allowed by the
hardware synthesis (see Table 2).

The transmitter and the receiver real-time attractors measurements obtained by
a direct implementation are depicted in Figures (27.a) and (27.b), respectively.

 (a) (b)

Fig. 27 Real-time (x-y) chaotic attractor of the Lorenz's model: (a) Transmitter attractor, (b) Re-
ceiver attractor.

These snapshots give the measured real-time (x-y) attractors from the drive sig-
nal Xm and the regenerated Xs at the transmitter and receiver, respectively.

7 Application Image Encryption Scheme

We consider in this section a cipher key scheming based on the Lorenz’s chaotic
system for designed an embedded cryposystem for real-time image encryption.
According to the basic principle of cryptology, a cryptosystem should be sensitive
to the key, i.e., the cipher-text should have close correlation with the key. To ac-
complish this requirement, we must use an efficient (ideally, truly random) key
generation mechanism and mix the key thoroughly into the plaintext through the
encryption process. The Lorenz’s chaotic generator is employed in the key genera-
tion scheme in order to control the generation of the cipher key. The generated key
used in this encryption scheme is a binary sequence of 32 bits. The complete im-
age encryption/decryption scheme consists of two steps of operation as shown in
Figure 28.

Step 1. Chaotic key selection. A key is generated from the previous key and one
sequence of 32 bits as the key is selected in a chaotic way.

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 325

Step 2. Perform XOR or NXOR operation. According to the key binary sequence
generated, each image pixels are then XORed with the selected key.

Therefore, the decipher procedure is similar to that of the encipher process illus-
trated above but with a reverse operation sequence to that described in Steps 1 and
2 above. Since both decipher and encipher procedures have similar structures, they
have essentially the same algorithmic complexity and time of operation.

Key

Lorenz’s
chaotic

generator

Lorenz’s
chaotic

generator

Encrypter Decrypted

Image
original

Encrypted
image

Decrypted
image

xor xor

Key

Data
synchronization

Fig. 28 Block diagram of the image encryption based chaotic key generator.

Figure 29 gives the encryption results applied on 256x256 image based on the
Lorenz’s cipher key generator with the initial conditions [x0=0, y0= 5, z0=25]. An
efficient encryption scheme should resist all kinds of known attacks, such as
known-plain-text, cipher-text only, statistical, brute-force attacks and so on. In the
case study, it should be sensitive to the cipher keys. This means that encryption
scheme must sensitive to initial conditions of the chaotic generator. Some security
analysis can be performed on the image encryption scheme, including the most
important ones like key analysis, statistical analysis; in order to assess the useful-
ness of the cipher technique in terms of security. A key space analysis and testing
can be carefully performed and completely carried out with the results obtained
summarized as follows. A typical initial conditions key sensitivity can be per-
formed, according to the following steps:

1. First, a 256 x·256 image is encrypted by using the initial conditions of the Lo-
renz’s key generator [x0=0, y0= 5, z0=25].
2. The least significant bit of the initial conditions of key generator is changed.
The initial conditions modified ([x0=0.125, y0= 5, z0=25] in the considered exam-
ple) is used to encrypt the same image becomes.
3. The above two ciphered images, encrypted by the two slightly different initial
conditions key, are compared.

326 C. Tanougast

Encrypted Image with initial conditions
[x0=0, y0= 5, z0=25]

Original Image

Fig. 29 Encryption image base the Lorenz’s chaotic Key cipher generator.

Figure 30 shows the test results. The result outcome has shown that the two en-
crypted images with the two slightly different initial conditions are very different
with more than 99 % of difference rate in terms of pixel grey-scale values, al-
though there is only one bit difference in the two initial conditions of key chaotic
generator. Thus, when a 32-bit key from an initial condition is used to encrypt an
image while another trivially modified initial condition key is used to decrypt the
ciphered image, the decryption also completely fails. A statistical analysis per-
formed on the image encryption algorithm demonstrates its efficiency against sta-
tistical attacks. This is shown by the histograms and on the correlation of adjacent
pixels in the ciphered image. Figure 31 gives the histogram of the original and en-
crypted image. One can see that the histogram of the ciphered image is fairly uni-
form and is significantly different from that of the original image.

 Histogram of Original Image Histogram of Encrypted Image

Fig. 31 Histograms of the plain-image and the cipher-image.

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 327

Encrypted Image with initial conditions
[x0=0, y0= 5, z0=25]

128 156 135 122 38 12
96 207 204 121 110 33
77 136 148 42 98 102
254 234 20 97 113 15
209 100 55 221 46 222
155 208 7 80 182 141
….

Values of the Grey level pixels with
initial conditions [x0=0, y0= 5, z0=25]

Encrypted Image with initial conditions
[x0=0.125, y0= 5, z0=25]

128 157 244 114 241 182
30 33 78 136 212 247
171 111 174 17 181 144
84 79 111 212 2 104
201 118 150 121 112 165
66 46 70 16 35 222
….

Values of the Grey level pixels with
initial conditions [x0=0.125, y0= 5, z0=25]

Difference encrypted images

0 1 109 248 203 170
190 82 130 15 102 214
94 231 26 231 83 42
86 101 91 115 145 89
248 18 95 156 66 199
167 94 63 192 109 81
….

Values of the Grey level pixels of the
difference image

Fig. 30 Test of the initial conditions sensitive of the chaotic key generator.

8 Summary

This chapter presents hardware implementations of a random key generator based
on a 3D chaotic systems for embedded data stream encryption systems. The pre-
sented random key generator architecture based on the architecture modeling of
the Runge-Kutta method (RK-4) is particularly attractive since it provides low-cost
security communication solutions for embedded systems. This hardware design
approach is validated by showing that real-time Lorenz’s chaotic signals obtained
with the RTL architecture are similar to the software simulation counterparts.
Moreover, cipher embedded systems can take several advantages of the use of
FPGAs. Indeed, the experimental results using Xilinx Virtex technology have

328 C. Tanougast

demonstrated that the presented design approach can lead to designs with small
logic area, satisfactory throughput rates and low latency for embedded applica-
tions. It has also shown that an implementation working with a reduction of the
fixed-point 8Q8 integer precision setting, the hardware architecture continued to
remain a chaotic system. The preservation of the chaotic dynamic property of the
implemented hardware chaotic system can be explored by studying the trade-off
allowing to obtain the appropriate secure for some embedded applications. This
chapter concludes that the digital hardware implementation of synchronized chaos
cipher (based on a Feed-Back Chaotic technique) for embedded security applica-
tions is simple, exhibits attractive, good performances and can be used for the im-
plementation of others 3D chaotic systems such as Chen’s system, Chua’s system,
Lü’s system, Rössler’s system, Colpitts’ system, and so on. Therefore, this work
will permit to use in choice these chaotic generators in secure digital chaotic
communication systems.

Finally, an image encryption application based on new random key generator
scheme, which uses synchronized Lorenz’s chaotic systems is also presented. The
proposed scheme incorporates the chaotic key generation and its use to design a
fast and secure symmetric image encryption, thereby increasing its resistance to
various attacks such as the statistical and Key analysis attacks. Thorough experi-
mental tests have been carried out with detailed numerical analysis, demonstrating
the security and fast speed of the new image encryption scheme. This scheme is
particularly suitable for real-time internet image encryption and transmission ap-
plications and is particularly attractive since it provides low-cost image encryption
solutions for embedded systems.

Acknowledgments. I would like to express my gratitude to my colleagues Mohamed Salah
Azzad, Said Sadoudi and Ahmed Bouridane.

References

1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Physical Review Let-
ters 64(8), 821–824 (1990), doi:10.1103/PhysRevLett.64.821

2. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with
application to communications. Physical Review Letters 71(1), 65–68 (1993)

3. Zhang, Y., Tao, C., Du, G., Jiang, J.J.: Physical Review Letters E 71, 016217 (2005)
4. Lorenz, T.E.N.: Deterministic nonperiodic flow. Journal of the Atmospheric

Sciences 20(2), 130–141 (1963)
5. Yang, T.: A survey of chaotic secure communication systems. International Journal of

Computational Cognition 2(2), 81–130 (2004)
6. Abel, A., Schwartz, W.: Chaos Communications- Principles, Schemes and Systems

analysis. In: Proc. of the IEEE Inst. for Fundamentals of Electr. Eng. & Electron.,
Dresden Univ. of Technol, vol. 90, pp. 691–710 (2002)

7. Kvarda, P.: Investigating the Rössler attractor using Lorenz plot and Lyapunov expo-
nents. Radioengineering 11(3), 22–23 (2002)

8. Indrusiak, L.S., Dutra e Silva Jr., E.C., Glesner, M.: Advantages of the Linz-Sprott
weak nonlinearity on the FPGA implementation of chaotic systems: a comparative
analysis. In: Proc. Int. Symp. Signals, Circuits and Sys., vol. 2, pp. 753–756 (2005)

9 Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems 329

9. Chua, L.0.: Chua’s circuit: Ten years later. IEICE Trans. Fundamentals E77-A, 1811–
1822 (1994)

10. Kocarev, L., Halle, K., Eckert, K., Chua, L.: Experimental demonstration of secure
communication via chaotic synchronization. Int. J. Bifur. Chaos 2, 709–713 (1992)

11. Tao, Y.: Chaotic secure communication systems history and new results. Telecom.
Rev. 9, 597 (1999)

12. Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz-Based
Chaotic Circuits with Applications to Communications. IEEE Transactions on Circuits
and Systems-11: Analog and Digital Signal Processing 40(10), 626–633 (1993)

13. Parlitz, U., Chua, L.O., Kocarev, L., et al.: Transmission of digital signals by chaotic
synchronization. Int. J. Bifurcations Chaos 2, 973–977 (1992)

14. Matsumoto, T.: Chaos in electronic circuits. IEEE Inst. of Elec. and Elecs Eng. 75(8),
1033–1046 (1987)

15. Giannakopoulos, K., Souliotis, G., Fragoulis, N.: An integratable chaotic oscillator
with Current Amplifiers. In: IEEE Int Symp. on Signals, Circuits and Systems, July
13-14, vol. 1, pp. 1–4 (2007)

16. Ozoguz, S., Ates, O., Elwakil, A.S.: An integrated circuit chaotic oscillator and its ap-
plication for high speed random bit generation. In: ISCAS 2005, vol. 5, pp. 4345–4348
(2005)

17. Cha, C.Y., Lee, S.G.: Complementary Colpitts Oscillator in CMOS Technology. IEEE
Transaction on Microwave Theory and Techniques 53(3) (March 2005)

18. Tanougast, C., Weber, S., Millerioux, G., Bouridane, A., Daafouz, J.: VLSI architec-
ture and FPGA implementation of a hybrid message embedded self-synchronizing
stream cipher. In: 4th IEEE Int. Symp. on Elec. Design, Test and Applications, pp.
386–389 (2008)

19. Sadoudi, S., Tanougast, C., Azzaz, M.S., Dandache, A., Bouridane, A.: Real-time
FPGA Implementation of Lü’s Chaotic Generator for Cipher Embedded System. In:
ISSCS 2009, Iasi, Romania, July 9-10 (2009)

20. Azzaz, M., Tanougast, C., Sadoudi, S., Dandache, A., Monteiro, F.: Real Time Image
Encryption Based Chaotic Synchronized Embedded Cryptosystems. In: 8th IEEE In-
ternational NEWCAS Conference, IEEE Circuits and Systems Society, Montréal, Can-
ada, June 20-23 (2010)

21. Linz, S.J., Sprott, J.C.: Elementary chaotic flow. Phys. Lett. A 259, 240 (1999)
22. Sprott, J.C., Linz, S.J.: Algebraically simple chaotic flows. Int. J. of Chaos Theory and

Applications 5.3 (2000)
23. Mathworks, Matlab Software, Version 7.3, Mathworks (2006)
24. Chen, H.H., Chiang, J.S., Lin, Y.L., Lee, C.I.: Chaos synchronization of general Lo-

renz, Lü, and Chen systems. Hsiuping Journal 15, 159–166 (2007)
25. Lü, J., Chen, G.: A new chaotic attractor coined. Int. Journal of Bifurcation and

Choas 12(3), 659–661 (2002)
26. Giannakopoulos, K., Souliotis, G., Fragoulis, N.: An integratable chaotic oscillator

with Current Amplifiers. In: IEEE Int Symp. on Signals, Circuits and Systems, July
13-14, vol. 1, pp. 1–4 (2007)

27. Lindsay, P.S.: Period doubling and chaotic behavior in a driven anharmonic oscillator.
Phys. Rev. Lett. 47(19), 1349–1352 (1981)

28. Piper, J.R., Sprott, J.C.: Simple autonomous chaotic circuits. IEEE Trans. on Circuits
and Systems-II 57(9) (2010)

330 C. Tanougast

29. Maggio, G.M., De Feo, O., Kennedy, M.P.: Nonlinear analysis of the Colpitts oscilla-
tor and applications to design. IEEE Trans. on Circuits and Systems I: Fundamental
Theory and Applications 46, 1118–1130 (1999)

30. Wegener, C., Maggio, G.M., Kennedy, M.P.: An approximate one-dimensional model
for the chaotic Colpitts oscillator. In: Proc. Nonlinear Dynamics of Electronic Systems,
pp. 441–446 (1996)

31. Kennedy, M.P.: Chaos in the Colpitts oscillator. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 41, 771–774 (1994)

32. Chen, H.H., Chiang, J.S., Lin, Y.L., Lee, C.I.: Chaos synchronization of general
Lorenz, Lü, and Chen systems. Hsiuping Journal 15, 159–166 (2007)

33. Azzaz, M.S., Tanougast, C., Sadoudi, S., Bouridane, A., Dandache, A.: An FPGA im-
plementation of a Feed-Back Chaotic Synchronization for secure communications. In:
7th International Symposium on Communication Systems Networks and Digital Signal
Processing, pp. 239–243 (2010)

34. William Press, H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Reci-
pes in C, The Art of Scientific Computing. Cambridge University Press, Cambridge
(1992)

35. Cartwright, J.H.E., Piro, O.: The Dynamics of Runge-Kutta Methods. Int. J. Bifurca-
tion and Chaos 2, 427–449 (1992)

36. Sobhy, M.I., Aseeri, M.A., Shehata, A.E.R.: Real Time Implementation of Continuous
(Chua And Lorenz) Chaotic Generator Models Using Digital Hardware. In: Proc. of
the Third International Symposium on Communication Systems Networks and Digital
Processing, pp. 38–41 (1999)

37. Aseeri, M.A., Sobhy, M.I., Lee, P.: Lorenz Chaotic Model Using Field Programmable
Gate Array (FPGA). In: Midwest Symposium on Circuit and Systems, pp. 686–699
(2002)

38. Xilinx, VirtexII-pro complete Datasheet, Xilinx (2007)
39. Xilinx, Integrated Software Environment (ISE), Version 10.1, Xilinx (2008)
40. Azzaz, M.S., Tanougast, C., Sadoudi, S., Dandache, A.: Real-time FPGA Implementa-

tion of the Lorenz Chaotic Generator for Ciphering Telecommunications. In: Joint
IEEE International Circuits and Systems and TAISA Conférence (2009)

41. Mentor Graphics, Modelsim SE User’s Manuel, Sofware, Version 6. 4, Mentor Graph-
ics (2008)

42. Xilinx, Xilinx University Program Virtex-II Pro Development System, Xilinx, UG069
(v1.1) (April 9, 2008)

43. Analog Devices, LC2MOS Complete, 8-Bit Analog I/0 Systems, AD7569/AD7669,
Analog Devices (1996)

44. Tektronix, Digital Real-TimeTM Oscilloscopes TDS340A, TDS360 et TDS380,
Tektronix (2006)

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 331 – 373.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 10
Hardware Implementation of Chaos-Secured
Optical Communication Systems

Apostolos Argyris

Department of Informatics and Telecommunications, National & Kapodistrian
University of Athens, Panepistimiopolis, 15784, Ilisia, Greece
argiris@di.uoa.gr

Abstract. In the present chapter, the implementation and performance of contem-
porary chaotic optical communication systems is presented, focusing on the physi-
cal layer encryption methods proposed so far. In communication systems that
encrypt high-speed data within broadband chaotic carriers, authorized users share
identical chaotic oscillators that are capable – after synchronization – of emitting
exactly the same broadband chaotic optical signal. Several techniques - based on
all-optical, electro-optical or photonic integrated circuits - that increase fiber com-
munication security will be presented, while their drawbacks and limitations will be
criticized. The efficiency of data encryption at the transmitter and the recovery per-
formance from an authorized receiver are also presented through diverse fiber
transmission experiments. In these experiments the security discrimination level
between authorized and eavesdropping receivers are discussed. Finally, ultra-fast
physical random number generators based on chaotic optical signals, as well as the
potential of exploiting them in secure communication systems, are investigated.

1 Security in Optical Communications at the Physical Layer

In the present era of information technology and computer network communica-
tions, cryptography is a field of particular importance. Various cryptographic me-
thods are routinely used to protect all types of data, from private via-web conversa-
tions to electronic fund transfers and classified communications, independently of
the physical medium used for the communication. Current cryptographic tech-
niques are based on number theoretic or algebraic concepts. Secret key cryptogra-
phy uses a secret key, such as the DES and AES algorithms, in which both sender
and receiver use the same key to encrypt and decrypt. This is a fast computational
method; however getting the secret key to the recipient in the first place is a prob-
lem that is often handled by a public-key procedure. On the other hand, public-key
cryptography is used to protect sensitive data during transmission over various
channel types that support personalized communication [26,82] and includes tasks
such as message encryption, key exchange, digital signatures, and digital certifi-
cates [67]. The above algorithmic types of cryptography secure the upper layers of

332 A. Argyris

any type of communications, regardless the transmission medium. In the last dec-
ade strong research activity has been recorded in the securing data transmission by
taking into account the properties of the transmission medium and incorporating
specific advantages that might exist in order to strengthen the security of the util-
ized communication channel. The specific chapter focuses on the properties of fi-
ber-optic communication systems that allow an “upgrade” in the protection of the
link, by using optical chaos as a “physically generated cipher”. Despite fiber optic
networks' reputation for being more secure than standard wiring or airwaves, the
truth is that fiber cabling is just as vulnerable to eavesdropping as wired or wireless
networks. Tapping into fiber optic cables with relatively inexpensive and appropri-
ate equipment, an experienced hacker can perform a successful attack. Optical net-
work attacks are accomplished by extracting light from the ultra-thin glass fibres by
gaining access to the fiber optic cable. Although most of this cabling is difficult to
access — it's underground, undersea, encased in concrete etc. — plenty of cables
are readily accessible for eavesdroppers. Some cities, for example, have detailed
maps of their fiber-optic infrastructure posted online in an effort to attract local
organizations to include themselves into the network. After gaining access to the
cable itself, the next step is to extract light and, eventually, data from the cable.
Bending seems to be the easiest method, being practically undetectable since there
is no interruption to the light signal. Such potential hacking attempts on the fiber
infrastructure of optical networks have motivated the development of systems that
provide transmission security: the component of this type of communications secu-
rity results from the application of measures designed to protect transmissions from
interception and exploitation by means other than cryptanalysis. Two main catego-
ries of this type of security have been established so far: “quantum cryptography”
that exploits the quantum nature of light and “chaos encryption” that exploits the
potential of the optical emitters to operate under chaotic conditions.

1.1 Quantum Cryptography

Quantum cryptography is a technique for two parties to form a key on an open
optical network [17,34,105]. Such keys can subsequently be used for the encryp-
tion of data sent on the network between the two parties. An attraction of quantum
cryptography is that fundamental laws of quantum mechanics guarantee its securi-
ty. It allows the detection of unauthorized eavesdropping, as well as providing a
guarantee of security when there is no eavesdropper present. This is not possible
using any other form of key distribution, which relies either upon the difficulty of
factorizing large numbers, or the assumed privacy of the network. In optical quan-
tum cryptography the bits used to form the key are carried by single photons tra-
velling either, along an optical fiber, or in an optical free space link. Information
can be encoded on the photons in a variety of ways, such as by their polarization
or phase. Because the information is carried by a single photon, it is not possible
for a hacker to tap in and remove part of the signal. Since single photons don't
split, if the hacker measures the photons on the fiber, they will not be received at
the other end, alerting the intended recipient to the presence of the hacker. Fur-
thermore, the technique is also secure from a slightly more sophisticated type of

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 333

eavesdropping where the hacker first measures the photons and then retransmits
them. This is because the laws of quantum mechanics tells us quantum bits (or qu-
bits) of information, such as encoded single photons, have the peculiar characteris-
tic that they are disturbed by measurement. This fact allows the legitimate receiver
of the message to test whether it has been intercepted or altered by a hacker on the
channel.

Quantum cryptography belongs to the class of the hardware-key cryptography
and thus can be used only to exchange a secret key and is not suitable for real time
data encryption, at least up to now [99]. The reason is related to the low bit-rate
(in the order of tens of KHz) and the incompatibility with some key components
of the optical communication systems – the optical amplifiers – that are needed for
long distance transmission links.

1.2 Optical Chaos Encryption

A different approach to strengthen the security of optical high-speed data transmit-
ted in fiber networks has been investigated extensively the last decade. In this ap-
proach data are encoded at the physical layer (hardware encryption) using chaotic
carriers generated by lasers operating in the non-linear regime. The objective of
chaos hardware encryption is to encode the information signal within a chaotic car-
rier generated by components whose physical, structural and operating parameters
form the secret key. Once the information encoding is carried out, the chaotic carri-
er is sent for transmission to the authorized receiver. Decoding is achieved directly
in real-time through the “chaos-synchronization” process, within which the optical
carrier with its chaotic signature is cancelled. The principle of operation
 of the chaos-based optical communications systems is schematically depicted in
fig. 1.

Fig. 1 Block diagram of an optical communication system based on optical chaos
encryption.

334 A. Argyris

A more analytical description for the above process follows below. In conven-
tional communications systems an optical oscillator – usually a semiconductor
laser – generates a coherent optical carrier on which the information is encoded
using one of the many existing modulation schemes. On the contrary, in the pro-
posed approach of the chaos based communications the transmitter consists of the
same oscillator forced to operate in the chaotic regime – e.g. by applying external
optical feedback – producing thus an optical carrier with extremely broadband
spectrum (up to tens of GHz). The information – typically based on an on-off key-
ing bit stream – is encoded on this chaotic carrier using different techniques (e.g. a
simple yet efficient method is to use an external optical modulator electrically dri-
ven by the information bit stream while at its input is coupled the optical chaotic
carrier). The amplitude of the encrypted message in all cases is kept small in re-
spect to the amplitude fluctuations of the chaotic carrier, so that it would be prac-
tically impossible to extract this encoded information using conventional tech-
niques like linear filtering, frequency domain analysis or phase-space
reconstruction. Especially the latter assumes a high complexity of the chaotic car-
rier and is directly dependent on the method that the chaos dynamics are generat-
ed. At the receiver side of the system a second chaotic oscillator is used, as iden-
tical to that of the transmitter. This identity refers to the semiconductor laser
structural, emission (emitting wavelength, slope efficiency, current threshold, etc.)
and intrinsic (linewidth enhancement factor, non-linear gain, photon lifetime, etc.)
parameters, as well as to the feedback loop characteristics (cavity length, cavity
losses, possible non-linearity, etc.) and the operating parameters (bias currents,
feedback strength, etc.). The above set of hardware-related parameters constitutes
the key of the encryption procedure.

The message extraction procedure is based on the so called “synchronization”
process. In the context of chaos communication terminology, synchronization
expresses that the irregular time evolution of the chaotic emitter’s output in the
optical power can be perfectly reproduced by the receiver, provided that both
transmitter and receiver chaotic oscillators are identical in terms of the above set
of parameters. Even minor discrepancies between the two oscillators can result in
degraded synchronization, which means deviation from a perfect reproduction of
the emitter’s chaotic carrier.

The key issue for efficient message decoding resides in the fact that the receiver
synchronizes to the chaotic oscillations of the emitter’s carrier without being
affected by the encoded message, also referred in literature as “chaos filtering ef-
fect”. Based on the above considerations, the receiver’s operation can be easily
understood. Part of the incoming message with the encoded information is injected
into the receiver. Assuming all those conditions that lead to a sufficiently good
synchronization quality, the receiver generates at its output a chaotic carrier
almost identical to the injected, without the encoded information. Therefore, by
subtracting the chaotic carrier from the incoming chaotic signal with the encoded
information, the transmitted information is revealed.

Chaos-based secure communications systems provide some major advantages.
They support real-time high-bit rate message encoding since the data encoding
process does not introduce any additional delay relative to that of the conventional

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 335

optical communication systems. The same holds for the receiver at least for bit
rates up to 10 Gb/s since the synchronization process relies on the ultrafast dy-
namics of semiconductor lasers (in the all-optical case) or the time response of the
fast photodiodes and other nonlinear elements (in the optoelectronic approach).
This is a significant advancement relative to the conventional software based ap-
proaches, where real time encoding of the bit stream - exploiting fast processors
and sufficiently long bit series key - would result in much lower effective bit rate,
increased complexity and cost of the system. Moreover, chaos-encrypted optical
communications can act complementarily to software encryption, providing a
higher level of security. Compared to the quantum cryptography, the chaos-based
approach provides the apparent advantage of significantly faster data transmission
speed. Additionally, it provides enhanced security, since a potential eavesdropper
has two main ways to attempt to extract the chaos encoded information. The first
one is to reconstruct the chaotic attractor in the phase space using strongly corre-
lated points densely sampled in time. In this case, the number of needed samples
increases exponentially with the chaos dimension. Taking into account the attrac-
tor dimension of the generated chaotic optical carriers, which in some cases (op-
toelectronic approach) its Lyapunov dimension is of the order of a few hundreds,
and considering the characteristics of today’s recording electronics this solution
seems to be impossible. The second one is to identify the key for reconstruction of
the chaotic time series. In the case of the chaotic encryption, the key is the
hardware used and the full set of operating parameters. This means that if a semi-
conductor laser coupled to an external cavity is, e.g., the chaotic oscillator in the
emitter, the eavesdropper must have an identical laser diode, with identical exter-
nal resonator providing the same amount of feedback and to know the complete
set of operating parameters. Finally, chaos optical encryption allows compatibility
with the installed network infrastructure since there is no fundamental reason to
preclude its application on installed optical network infrastructure. With proper
compensation of fiber transmission impairments the chaotic signal that arrives at
the receiver triggers the synchronization process successfully. All feasibility
experiments showed that the use of erbium-doped fiber amplifiers (EDFAs)
might induce some power penalty in the decoded data due to noise addition, but
in any case does not prevent from synchronizing and extracting the encrypted
information.

The concept of chaos synchronization was firstly proposed theoretically by Pe-
cora and Carroll in 1990 [78]. This pioneering work triggered a burst of activities
covering in the early ‘90s mainly electronic chaotic oscillators [24]. The first theo-
retical work and preliminary reports and possibility of synchronization between
optical chaotic systems came out in the nineties [5,23,68]. Since then the activities
in the area of optical chaotic oscillators increased exponentially. Numerous re-
search groups worldwide reported a large amount of theoretical and experimental
work, covering mainly fundamental aspects related to synchronization of optical
non-linear dynamical systems [9,59,74,96,102]. Special focus was given to semi-
conductor laser-based systems [38,88], but there was also work on fiber-ring laser
systems [1] and optoelectronic schemes [2,36]. The applicability of the concept in
optical communication systems was initially proved by encoding and recovery of

336 A. Argyris

single frequency tones, starting from frequencies of a few KHz [53] up to several
GHz [77]. However, it’s worth mentioning that single frequency encoding is much
less demanding in terms of chaos complexity than pseudorandom bit sequences
used in conventional communication systems. In 2002, a 2.5 Gb/s NRZ pseudo-
random bit sequence has been referred to be masked in a chaotic carrier, produced
by a 1.3 μm DFB diode laser subjected to optoelectronic feedback, and recovered
in a back-to-back configuration without including any fiber transmission [58]. The
achieved bit-error rate values of that system were of the order of 10-4. The above
performance was improved in 2005 by an EU consortium [41], that announced a
successful encryption of a 3 Gb/s pseudorandom message into a chaotic carrier,
while the system’s decoding efficiency was characterized by low BER values of
the order of 10-9[54]. The same consortium demonstrated also a 1,55μm all-optical
communication system with chaotic carriers, characterized by low BER values for
the decoding message at gigabit rates [7]. A transmission system based on the
above configuration has been implemented in laboratory conditions [8], as well as
in an installed optical fiber network with length over 100 km [10]. These works
provided so far chaos-based methods appropriate for high bit-rate data encryption
but not as an integrated, compact solution. The possibility of a realistic implemen-
tation of networks with advanced security and privacy properties based on chaotic
encryption depend strongly on the availability of either hybrid optoelectronic or
photonic integrated components. Such systems have been very recently demon-
strated, employing efficient photonic integrated circuits (PICs) [11], operating at
2.5Gb/s and including transmission links over 100 km [13,14]. The latter could be
further integrated in communication cards compatible with conventional computer
and communication systems. This is exactly the future need covered by new de-
signs of development of the proper technology for the fabrication of components
appropriate for robust and secure chaotic communication systems enabling crucial
miniaturization and cost reduction as well. Finally, advanced optoelectronic confi-
gurations that employed phase modulation techniques, operated efficiently up to
10 Gb/s, including fiber transmission links [56].

2 Optical Chaos Generators in Optical Communications

Since the technology of optical communications and networks is currently based
on laser emitters fabricated by semiconductor materials, our study is focused on
such compounds capable of emitting optical signals with complex dynamics. In
the paragraphs that follow, a compendious description of these chaos generators is
provided, highlighting those properties that lead to chaos dynamics.

2.1 Non-linear Dynamics in Semiconductor Lasers

In semiconductor edge emitting lasers simultaneous emission in several longitu-
dinal modes is common. For this reason, many strategies have been devised in or-
der to guaranty single-longitudinal mode operation which is useful for single
mode transmission in fiber-optic links. Large side-mode suppression ratio can be

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 337

achieved using distributed feedback reflector (DFB) lasers, distributed Bragg ref-
lector (DBR) lasers, and vertical-cavity surface-emitting lasers (VCSELs). The
temporal evolution of the electric field’s amplitude of this solitary longitudinal
mode emitted by a semiconductor laser is described by means of a time-delayed
rate equation. This field equation has to be complemented by specifying the evolu-
tion of the total carrier population N(t). In the case of single-longitudinal mode
operation the evolution of the field and carrier variables is governed by the follow-
ing equations:

[])()()(
2

1)(1 tFtEttG
ia

dt

tdE
Ep +⋅−⋅−= − (1)

)()()(
)()(

tFtEtG
t

tN

e

I

dt

tdN
N

n

+⋅−+= (2)

2
0

)(1

))((
)(

tEs

NtNg
tG

⋅+
−⋅

= (3)

where E(t) is the complex slowly varying amplitude of the electric field at the os-
cillation frequency ω0, N(t) is the carrier number within the cavity and tp is the
photon lifetime of the laser. The detailed derivation of these equations can be
found in [4,85]. In eq. (2) I/e is the number of injected electron-hole pairs by cur-
rent biasing the laser, tn is the rate of spontaneous recombination (as also known
as carrier lifetime), and G(t)|E(t)|2 describes the processes of the stimulated re-
combination. The above set of equations take into account gain suppression effects
through the non-linear gain coefficient s, and also Langevin noise sources FE(t),
FN(t). These spontaneous emission processes are described by white Gaussian
random numbers [94] with zero mean value:

<FE(t)> = 0 (4)

and delta- correlation in time:

)(4)()(1* ttNttFtF spnEE ′−⋅⋅⋅⋅=′⋅ − δβ (5)

The spontaneous emission factor βsp, represents the number of spontaneous emis-
sion events that couples with the lasing mode. The noise term in the carrier equa-
tion FN(t), coming from spontaneous emission as well as shot noise contribution,
is generally small and thus usually neglected.

Semiconductor lasers are very sensitive to external optical light. Even small
external reflections and perturbations may result in sufficient sources of unstable
operating behavior [73,101]. For this reason almost all types of commercial
semiconductor lasers that apply to the standard telecommunications systems are
provided with an optical isolation stage that suppresses severely optical perturba-
tions by the external environment. However, in applications – such as chaos
communications – where the raise of instabilities plays a key role, the isolation
stage is omitted and the semiconductor lasers are driven intentionally to unstable
operation.

338 A. Argyris

Fig. 2 Block diagram of a laser subjected to optical feedback.

Semiconductor lasers with applied optical feedback are very interesting con-
figurations not only from the viewpoint of nonlinear dynamics they exhibit, but al-
so for their potential for applications. Optical feedback is practically the process in
which a small part of the laser’s output field reflected by a mirror in distance L is
re-injected into the laser’s active region (fig. 2). The optical feedback system is a
phase-sensitive delayed-feedback autonomous system for which all three known
routes, namely, period-doubling, quasi-periodicity, and route to chaos through in-
termittency can be found. Many lasers exhibit the same or similar dynamics: edge-
emitting semiconductor lasers such as Fabry–Perot, MQW, and DFB lasers exhibit
similar chaotic dynamics, even though the parameter ranges for achieving the spe-
cific dynamics may differ. The measure of the feedback strength is usually ex-
pressed in literature by the C parameter [3]:

21 a
t

Tk
C

in

f +=

 (6)

where kf is the feedback fraction, T=2L/cg is the round-trip time for light in the ex-
ternal cavity, cg is the speed of light within the medium of the external cavity and
L is the distance between the laser facet and the external mirror, α is the linewidth-
enhancement factor that plays an important role in semiconductor lasers, and tin is
the round-trip time of light in the internal laser cavity. A semiconductor laser with
optical feedback shows various dynamic behaviors depending on the system pa-
rameters and the instabilities of the laser [92]. For insignificant feedback fractions
of the laser’s field amplitude (up to 0.01%) the laser maintains its continuous
wave operation. By increasing the feedback fraction to values up to 0.1% and at
the same time C>1 generation of external cavity modes gives rise to mode hop-
ping among internal and external modes. For a narrow region around 0.1% feed-
back (depending on laser dynamics) the mode-hopping noise becomes suppressed
and the laser may oscillate with a narrowed linewidth. Increasing to moderate or
strong feedback values (around 1% to 10%) the relaxation oscillation becomes
undamped and the laser linewidth is greatly broadened to GHz bandwidth. It is
then when the laser shows chaotic behavior and evolves into unstable oscillations
in the so called “coherence collapse” regime. Finally, in extremely strong feed-
back regimes, usually defined for a feedback ratio higher than 10%, the internal
and external cavities behave like a single cavity and the laser oscillates in a single
mode. The linewidth of the laser in the case is narrowed greatly. The investigated
dynamics were considered for a DFB laser with an emitting wavelength of 1.55
μm thus that above regions may be of consistency for other types of lasers for

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 339

slightly different values of the feedback fraction. However the dynamics for other
lasers show always similar trends.

For chaos applications in communications, the coherence collapse regime is of
great significance since it is where the laser generates chaotic dynamics. A semi-
conductor laser with optical feedback for this regime is modeled by the Lang–
Kobayashi equations [3,51,57] that include the optical feedback effects in the laser
rate equations model. When C>1, many modes for possible laser oscillations are
generated, and the laser becomes unstable. The instabilities of semiconductor las-
ers depend on the number of excited modes or equivalently the value of C. The
stability and instability of the laser oscillations have been theoretically studied in
numerous works by the linear stability analysis around the stationary solutions for
the laser variables [71,95].

The dynamics of semiconductor lasers with optical feedback depend on the sys-
tem parameters; the key parameters which can be controlled are the feedback
strength kf, the length of the external cavity L formed between the front facet of
the laser and the external mirror, as well as the bias injection current I. For varia-
tion of the external mirror reflectivity, the laser exhibits a typical chaotic bifurca-
tion very similar to a Hopf bifurcation; however the route to chaos depends on the
above crucial parameters [73]. Another type of instabilities produced by applying
optical feedback is sudden power dropouts and gradual power recovery in the laser
output power, the so-called “low frequency fluctuations” (LFFs) [28,47,70,75,84].
LFFs are typical phenomena observed in a low bias injection current condition,
just above the threshold current of the laser. Usually this type of carrier consists of
frequencies up to one GHz at maximum, thus message encryption could be ap-
plied only for such a limited bandwidth.

On the other hand, the spectral distribution of the chaotic carrier depends on the
relaxation oscillation frequency of a semiconductor laser, which is directly deter-
mined by the biasing current of the laser. By increasing the optical feedback the
chaotic carrier expands beyond the relaxation frequency of the laser, eventuating
in a broadband fully developed chaotic carrier that may expand up to several tens
of GHz. It has also been proved so far that the laser oscillates stably for a higher
bias injection current. Thus, larger optical feedback strength is usually required to
destabilize the laser at a higher bias injection current. The external cavity length
also plays an important role in the chaotic dynamics of semiconductor lasers.
There are several important scales for the length and change of the external mirror
in the dynamics. Chaotic dynamics may be observed even for a small change of
the external mirror position comparable to the optical wavelength λ [44]. For a
small change, the laser output shows periodic undulations (with a period of λ/2)
and exhibits a chaotic bifurcation within this period. When the external reflector is
a phase-conjugate mirror, the phase is locked to a fixed value and the laser appears
to be insensitive to small changes in the external cavity length and its dynamics
are only defined by the absolute position of the external mirror [71]. This is ob-
served for every external mirror position as far as the coupling between the exter-
nal and internal optical field is coherent. When the external mirror is positioned
within the distance corresponding to the relaxation oscillation frequency (on the

340 A. Argyris

order of several centimeters) and the mirror moves within a range of millimeters,
the coupling between the internal and external fields is strong and the laser shows
a stable oscillation. When the external mirror is positioned over a distance equiva-
lent to the relaxation oscillation frequency of a laser but it is within the coherence
length of the laser (on the order of centimeter to several meters), the laser is great-
ly affected by the external optical feedback. In this region, the number of modes
related to the C parameter is large and the laser shows various dynamical beha-
viors even at moderate feedback rate [44]. This region is also important for the
study of fundamental dynamics and their applications, since external feedback
length of many practical systems is on the order of several to tens of centimeters
and providing chaos generating devices for various applications. Finally, when the
external mirror is positioned at a distance beyond the coherence length of the sem-
iconductor laser, it still exhibits chaotic oscillations, but the effects have a partially
coherent or incoherent origin [89]. Instabilities and chaos generation are also in-
duced by this type of incoherent feedback, which can originate not only from the
laser itself but also from optical injection from another laser source.

Considering the case of a relatively weak optical feedback, the rate equation (1)
that describes the semiconductor laser electric field can be altered appropriately in
order to describe also the external cavity. In the case of single-longitudinal mode
operation and application of a weak optical feedback condition the evolution of
the field is governed now by the following equation:

[])()()()(
2

1)(
01 tFeTtEktEttG

ia

dt

tdE
E

i
fp +⋅−⋅+⋅−⋅−= Τ− ω

(7)

The carrier equation (2) does not need any modification with respect to the free-
running case. This basic equation that includes the applied optical feedback was
introduced by Lang and Kobayashi in 1980 [51]. From the mathematical point of
view a delay term in a differential equation yield an infinite dimensional phase-
space, since a function, defined over a continuous interval [0,Τ] has to be specified
as initial condition. The understanding of delayed feedback systems has been
boosted during the last years using semiconductor lasers. Fundamental nonlinear
dynamical phenomena, such as, period doubling and quasi-periodic route to chaos
have been characterized in these systems. Also high-dimensional chaotic attractors
have been identified. Furthermore the analogy between delay differential equa-
tions and one-dimensional spatial extended systems have been established [33]
and exploited for the characterization of the chaotic regimes [65].

Fig. 3 Block diagram of a laser subjected to optical injection by a second driving laser.

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 341

However, there are alternative ways to cause instabilities and chaos dynamics
in semiconductor lasers, besides optical feedback. In an optical injection system
(fig. 3), the optical output of an independent driving laser is fed into the laser of
importance in order to destabilize it and under specific conditions force it to oscil-
late in the chaotic regime [57,87]. Crucial parameters that determine the latter op-
eration are the optical injection strength of the optical field – with values that are
adequate to achieve injection locking condition – and the frequency detuning be-
tween the two lasers – which is usually below the region of ±10GHz. Compared to
the rate equations for the solitary laser, an additional term representing the injec-
tion field from the driving laser is added to the field equation. This modification
completely changes the dynamics of the system by adding one more dimension. In
this case of a weak optical injection condition the evolution of the field is mod-
ified accordingly:

[])()()()(
2

1)(1 tFtEktEttG
ia

dt

tdE
Eextdrp +⋅+⋅−⋅−= − (8)

where kdr is the coupling coefficient of the driving laser to the master laser and Eext
is the injected electrical field of the driving laser. In contradiction to the optical
feedback case, in which the time-delayed differential equations provide infinite
degrees of freedom, optical injection provides low-complexity attractors.

Fig. 4 Block diagram of a laser subjected to optoelectronic feedback.

A semiconductor laser with an applied delayed optoelectronic feedback loop is
also an efficient technique of broadband chaos generation [90]. In such a configu-
ration, a combination of photodetector and a broadband electrical amplifier is used
to convert the optical output of the laser into an electrical signal that is fed back
through an electrical loop to the laser by adding it to the injection current (fig.4).
Since the photodetector responds only to the intensity of the laser output, the feed-
back signal contains the information on the variations of the laser intensity disre-
garding any phase information. Therefore, the phase of the laser field is not part of
the feedback loop dynamics and consequently the dynamics of this system. The
fact that part of the feedback loop is an electric path, the bandwidth response of
this path may provide a filtered feedback. This can be justified by the limited
bandwidth of the photoreceiver, the electric amplifier, as well as the electric
cables. Additionally, an electrical filter may be also incorporated within this path,

342 A. Argyris

with a pre-selected transfer function and bandwidth, enhancing thus the number of
parameters that determine the final form of the generated chaotic output.

2.2 Non-linear Dynamics in Photonic Integrated Circuits

Based on the above chaos generation techniques various configurations of trans-
mitters have been proposed and implemented based on standard optical compo-
nents, providing high-dimensional chaotic carriers capable of message encryption.

The miniaturization of the above configurations through photonic integration
appears very attractive, albeit scarce, considering the efficiency of specifically de-
signed photonic integrated circuits (PICs) to generate non-linear dynamics. In [30]
monolithic colliding pulse mode-locked lasers exhibited nonlinear behavior, from
CW operation to self-pulsations and mode-locking, for the full range of the control
parameters. In [16] a semiconductor laser, followed by a phase section and an ac-
tive feedback element, form a very short complex photonic circuit that provides
several types of dynamics and bifurcations under optical feedback strength and
phase control. However, only multiple-mode beating operation may transit the dy-
namics beyond a quasi-periodic route to chaos with possible chaotic components.
A simplified version of the aforementioned PIC, omitting though the active feed-
back element, was found to generate only distinct-frequency self-pulsations [100].
The implementation of an integrated colliding-pulse mode-locked semiconductor
laser showed also nonlinear dynamics and low-frequency chaos, by controlling
appropriately only the laser’s injection current [108]. Finally, a photonic inte-
grated circuit (fig. 5), capable to generate high-dimensional broadband chaos has
also been recently proposed, designed and tested [11]. It consists of four succes-
sive sections: a DFB InGaAsP semiconductor laser, a Gain/Absorption section, a
phase section and a 1cm long passive waveguide. The overall resonator length is
defined by the internal laser facet and the chip facet of the waveguide which is
highly reflective coated and provides an increased effective feedback round-trip
time, therefore enhancing the probability to encounter fully chaotic behavior. The
dynamics generated by this PIC could be easily controlled via phase conditions
and feedback strength, establishing therefore this device as a compact integrated
fully-controllable chaos emitter.

Fig. 5 Photonic integrated chaos-emitter for secure optical communications applications.
DFB: Distributed feedback laser, G/AS: Gain – absorption section, PS: Phase section, AR:
Anti-reflective coating, HR: Highly reflective coating.

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 343

3 Chaos Synchronization in Transmitter/Receiver
Configurations

When exploiting chaotic carriers in communication systems, these carriers should
be finally vanished after transmission, in order to retain the information. Thus, a
crucial process is the carrier reproduction at the receiver. As discussed earlier, this
process is achieved through chaotic carrier synchronization.

In chaos synchronization, when semiconductor lasers are employed as chaos
generators, the dynamical variables used for the driving signal are not always se-
parable from others and some are simply not extractable from a laser. When the
output field of the master laser is transmitted and coupled to the slave laser, both
its magnitude and phase contribute to the receiver’s chaos generation. It is not
possible to only transmit and couple the magnitude but not the phase, or only the
phase but not the magnitude. Thus, for optical injection and optical feedback sys-
tems, the frequency, phase, and amplitude of the optical fields of both transmitter
and receiver lasers are all locked in synchronism. Therefore, unless the phase is
not part of the dynamics of the lasers, such as in the case of systems with optoe-
lectronic feedback, the synchronization between two laser systems depends on the
coupling of the two variables, the magnitude and phase of the laser field, at the
same time. Furthermore, the carrier density is not directly accessible externally
and therefore cannot be used as a driving signal to couple lasers. However, in laser
systems that exhibit chaos dynamics, not only master–slave configurations but al-
so mutually injected systems [31] can be used for chaos synchronization systems.
The latter are not suited for chaos communications and thus are beyond the scope
of the present analysis. Another issue that is of great interest but will be dealt in
next paragraphs is the fact that for a synchronized chaotic communication system,
the message encoding process – whatever this is – may have a significant impact
on the quality of synchronization and thus on the message recoverability at the re-
ceiver end. It has been shown that high-quality synchronization can be maintained
only when proper encoding schemes that maintain the symmetry between the
transmitter and the receiver is employed. Additionally, in transmission systems,
the transmission impairments should be minimized in order not to disturb the syn-
chronization process.

3.1 Chaos Synchronization of Semiconductor Lasers with Optical
Feedback

The condition that should always be satisfied for synchronizing chaotic wave-
forms – that are produced by two nonlinear systems – is that the deviations of the
corresponding parameters that characterize each system must be insignificant.
Practically, two categories of chaotic configurations of all-optical systems have
been developed for efficient synchronization based on their robustness (fig. 6)
[74,103]. The first one consists of two identical external-cavity semiconductor las-
ers for the transmitter and the receiver respectively (closed-loop scheme), while in
the second approach, an external-cavity laser transmitter produces the chaotic car-

344 A. Argyris

rier and a single laser diode similar to the transmitter is used as the receiver (open-
loop scheme) [22,59,74,103]. The closed-loop scheme proves to be more robust in
terms of synchronization; however it requires precise matching of the external
cavity of the lasers to maintain a good synchronization quality [22,103]. On the
contrary, the open-loop scheme is less robust with simpler receiver architecture
[22,74,103]. It requires a large coupling strength between the transmitter and the
receiver, however, there is no requirement of perfectly matched lasers’ and there is
no external-cavity receiver to be matched to that of the transmitter.

Fig. 6 Block diagram of: a closed-loop synchronization configuration between two semi-
conductor lasers both subjected to optical feedback (top), and an open-loop synchronization
configuration between two semiconductor lasers, with only the master laser being subjected
to optical feedback (bottom).

The rate equations that describe the coupled behavior between a transmitter
and a receiver, based on the Lang-Kobayashi model are:

[])()()()()(
2

1)(
0

,
1

, tFtEkeTtEktEttG
ia

dt

tdE
Eextinj

i
iifiipi

i +⋅+⋅−⋅+⋅−⋅−= Τ− ω (9)

)()()(
)()(

,

tFtEtG
t

tN

e

I

dt

tdN
Nii

in

ii +⋅−+= (10)

2

,0

)(1

))((
)(

tEs

NtNg
tG

i

ii
i

⋅+

−⋅
= (11)

where i={t,r} denotes the solution for the transmitter or the receiver, kinj is the
electrical field injection parameter applied to the receiver laser and Eext is the am-

plitude of the injected electric field. The term)(tEk extinj ⋅ is applicable only in

the rate equation of the receiver. For the case of open loop, no optical feedback is
applied on the receiver, thus kf,r =0.

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 345

3.2 Types of Synchronization

Following the form of the Lang-Kobayashi rate equations that describe the dy-
namical operation of the transmitter and the receiver, two different types of syn-
chronous responses of the receiver have been distinguished, referring to the weak
and the strong injection condition, respectively [61,74,103].

The first one is the “complete chaos synchronization” in which the rate equa-
tions, both for the transmitter and the receiver, are written by the same or equiva-
lent equations. In complete chaos synchronization, the frequency detuning
between the transmitter and receiver lasers must be almost zero and the other pa-
rameters must also be nearly identical [72]. This type of synchronization in semi-
conductor laser systems is realized when the optical injection fraction is small
(typically less than a few percent of the chaotic intensity variations) [74,103]. The
synchronized solution emerges from the mathematical identity of the equivalent
equations that describe the operation of the emitter and the receiver. Thus, these
systems can be considered as very secure from eavesdroppers in communications,
since the constraints on the parameter mismatches are very severe. The time lag
that exists in this type of synchronization is defined by the propagation time
between the transmitter and the receiver, as well as the roundtrip time of the
transmitter’s external cavity. The conditions under which the rate equations for the
receiver laser are mathematically described by the equivalent delay differential
equations as those for the transmitter laser are the following:

)()(TtEtE tr +=
 (12)

)()(TtNtN tr += (13)

injtr kkk −= (14)

Specifically, the receiver laser anticipates the chaotic output of the transmitter and
it outputs the chaotic signal in advance with time as understood from (12), so that
the scheme is also called “anticipating chaos synchronization” [66,88]. This type
of synchronization is not easy to be implemented in real-world chaos communica-
tion systems that employ transmission. Various impairments such as amplification
noise and chromatic dispersion are synchronization error sources, even if identical
chaotic oscillators are chosen.

In the case of a much stronger injection (typically over 10% of the laser’s elec-
tric field amplitude fluctuations), another type of synchronization is achieved,
based on a driven response of the receiver to the transmitter’s chaotic oscillations,
called “isochronous chaos synchronization” [60,62,74,103]. An optically injected
laser in the receiver system will synchronize with the transmitter laser based on
the optical injection locking or amplification effect. The optical injection locking
phenomenon in semiconductor lasers depends on the detuning between the fre-
quencies of the master and slave lasers. In general, it is not easy to set the oscilla-
tion frequencies between the transmitter and receiver lasers exactly the same and a
frequency detuning inevitably occurs. However, there exists a frequency pulling
effect in the master-slave configuration as long as the detuning is small and the

346 A. Argyris

receiver laser shows a synchronous oscillation with the transmitter laser. This
has been recently observed for a wide range of frequency detuning between the
transmitter and the receiver [60]. The time lag of the synchronization process is
now equal to the propagation time only – which is, in most cases, considered to
be zero in simulations for simplicity reasons – thus there is no need for a well-
defined roundtrip time of the transmitter’s external cavity. Generally, this type of
synchronization is characterized by a tolerance to laser parameter mismatches and
consequently it can be more easily observed in experimental conditions [60]. The
relation between the electric fields of the two lasers in this type of synchronization
is written as in [31]:

)()(tEAtE tr ⋅= (15)

The receiver laser responds immediately to the received chaotic signal from the
transmitter, with amplitude multiplied by an amplification factor A. This scheme is
sometimes also called “generalized chaos synchronization”. Most experimental
results in laser systems including semiconductor lasers reported up to now were
based on this type of chaos synchronization. However, in the final stage at the re-
ceiver where message recovery is the key, the cancellation of the above chaotic
carriers in a communication configuration can be easily performed by attenuating
the output of the receiver laser by the same amount of the amplification factor A.

3.3 Measuring Synchronization

The most common approaches to quantitively measure the synchronization quality
of a chaotic system are the synchronization error σ and the correlation coefficient
Ccorr. The synchronization error between the transmitter and the receiver chaotic
outputs is defined as [2,58,59]:

)(

)()(

tP

tPtP

t

rt −
=σ (16)

where Pt(t) and Pr(t) are the optical powers of the output waveforms of the trans-
mitter and the receiver respectively, in the linear scale (eg. mW). The averaging is
performed in the time domain. Small values of σ indicate low synchronization er-
ror and thus high synchronization quality.

The correlation coefficient [58,62,91,103], on the other hand, is defined as:

[] []
22

)()()()(

)()()()(

tPtPtPtP

tPtPtPtP
C

rrtt

rrtt
corr

−⋅−

−⋅−
= (17)

where the notation is the same as before. The correlation coefficient values lie be-
tween -1 ≤ Ccorr ≤ 1, so large values of |Ccorr| indicate high synchronization quality.
In both these definitions it is assumed that there is no time lag between the chaotic
outputs of the transmitter and the receiver, which means that the time-traces must
be temporally aligned before estimating the synchronization quality, as seen in

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 347

Fig. 7 Synchronized experimental output time-traces of a chaotic emitter and its matched
receiver in an open-loop system based on the isochronous solution (time-series of receiver
is vertically shifted for viewing purposes). The correlation coefficient is estimated to be
equal to 95.5%, for the case of kinj =4· kf,t.

fig. 7. The latter is of great importance, since different types of synchronization
(generalized and anticipating) correspond to different time lags between the chao-
tic carriers [50,59,63,74].

In all the theoretical works presented so far that use the Lang-Kobayashi ap-
proach are based on the time evolution of semiconductor laser non-linear dynam-
ics, the time step of the numerical methods implemented to simulate this model is
usually as small as 10-13 s, in order for the numerical methods to converge. Since
the bandwidth of chaotic carriers usually may extend up to few tens of GHz, all
the spectral content of the carriers is included in the time-series data by using such
a time step.

However in the hardware implemented chaotic communication systems, the
measurements and the recording of chaotic waveforms in the time domain are per-
formed with oscilloscopes of limited bandwidth. Additionally, many of the com-
ponents used in such systems (photoreceivers, filters, etc.) have a limited-
bandwidth spectral response profile. Consequently, an alternative approach of
measuring the synchronization error of a chaotic communication system is by
transforming eq. (16) to the spectral domain. By subtracting the transmitter’s and
the receiver’s chaotic spectra in a certain bandwidth Δf, we also get a quantitive
estimation of the synchronization quality of the system, the spectral synchroniza-
tion error σΔf [9]:

ft

rt

f
fP

fPfP

Δ

Δ

−
=

)(

)()(
σ (18)

where Pt(f) and Pr(f) are the optical power values of the chaotic carriers in the li-
near scale (mW), at frequency f and the averaging is performed in the frequency

348 A. Argyris

domain. Eq. (18) provides additional information, since the synchronization error
measured is associated with the spectral bandwidth Δf. In this case, one could con-
strain the synchronization study of the system only in the above spectral region of
importance. For example, if 1Gb/s message bit sequences are to be encrypted in a
baseband modulation format, the region of the first GHz is of great importance in
terms of synchronization, since the rest of the spectral components of the carrier
will be filtered in the final message recovery process. As emerges from different
systems when studying the synchronization properties of chaotic carriers, the syn-
chronization efficiency is different for the various frequencies of the carrier. For
example, in a system that generates broadband chaos dynamics, there might be
conditions that provide a very good synchronization in the low frequency region
and beyond that only poor synchronization efficiency; however, using different
conditions, one might achieve – in the same system – a moderate synchronization
performance for the whole spectral bandwidth. Thus, a more suitable form of (18)
when dealing with experimentally taken data in the spectral domain is the loga-
rithmical transformation of the synchronization σΔf that could also be defined as
chaotic carrier “optical cancellation cΔf”[9]:

ff dBc ΔΔ −= σlog10)((19)

)()()()()()(dBmfPfPdBmfPdBc
frtftf ΔΔΔ −−= (20)

Eq. (18) gives practically the difference between the mean optical power of the
transmitter and the subtraction signal, measured in a logarithmical scale (dBm)
and in a specific spectral bandwidth Δf.

When dealing with electrical powers of the above signals eqs. (19) and (20)
are transformed accordingly, following the square law dependence that describes
the relationship in a photodetector’s signal between its electrical and optical pow-
er, providing the chaotic carrier “electrical cancellation cΔf

E” [9]:

f
E

f dBc ΔΔ −= σlog20)((21)

)()()()()()(dBmfPfPdBmfPdBc
f

E
r

E
t

f

E
t

E
f

ΔΔ
Δ −−= (22)

Pt
E(f) and Pr

E(f) are the electrical power values of the transmitter and the receiver
output in a specific frequency f. The averaging in (1.20) and (1.22) is performed in
the frequency domain and refers to the frequency bandwidth Δf.

4 Chaos-Secured Optical Communication Systems

Several hardware configurations have been presented so far that employ a satisfac-
tory synchronization process between chaotic emitters and receivers capable of
Gb/s data encryption and decryption. What is remarkable about the chaos optical
communication systems deployed so far is that they use commercially available
optical telecommunication components and technology, they can operate at data
rates up to 10 Gbit/s and can be feasibly integrated into existing underground sys-

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 349

tems, as well as become upgraded at any time without altering the optical network
infrastructure. Such systems, built in the last years, have been based on utilizing er-
bium-doped fiber amplifiers (EDFAs), semiconductor lasers or electro-optic mod-
ulators as the non-linear optical component for chaos optical generation. Addition-
ally, some of these systems have been test in real-world environment in field trial
tests. In this section, the encoding techniques that have been used in such systems
are described, while the most important demonstrations are also analyzed.

4.1 Data Encoding Techniques

A very important issue that should be decided when building chaos-secured opti-
cal communication systems is the data encryption method that will be adopted.
The major concern in all encoding schemes is not to disturb the synchronization
process, since the encrypted message is always an unwanted perturbation in the
fragile synchronized system. All schemes used so far differ in the way the mes-
sage is encoded within the chaotic carrier, although the decoding process is the
same for all schemes, based on subtracting the output of the receiver’s laser from
the received signal. Some of these methods are described below.

4.1.1 Additive Chaos Modulation (ACM)

In the ACM encoding method, data m(t) are applied by externally modulating the
electric field ETR of the chaotic carrier generated by the emitter laser, according to
the expression:

Μ⋅⋅+= φi
MTR eEtmE))(1((23)

resembling the typical coherent amplitude modulation (AM) scheme [37,76,107].
The phase φΜ of the chaotic carrier with the message encoded on it, part of which
is injected to the receiver for the synchronization process, is the same with that of
the chaotic carrier without any information. Thus, the presence of the encrypted
message on the chaotic carrier is only a small perturbation in amplitude and not in
phase which turns to be crucial for the efficient synchronization process of a
phase-dependent system. In such a case, the modulated signal does not contribute
or alters the chaotic dynamics of the transmitter.

4.1.2 Multiplicative Chaos Modulation (MCM)

In MCM encoding method, the message is also applied by external modulation;
however the modulation is applied within the external cavity of the transmitter,
providing a message-dependent chaotic carrier generation process.

4.1.3 Chaos Masking (CMS)

In the CMS encoding method, the message is applied on an independent optical
carrier which is masked by the chaotic optical carrier [48]. Both carriers should
correspond to exactly the same wavelength, the same polarization state and the
message carrier should be suppressed enough in respect to the chaotic carrier in

350 A. Argyris

order to ensure an efficient message encryption. Since now the message is a totally
independent electric field which is added to the chaotic carrier according to the
expression:

msgi

msg
i

M eEeE
φφ ⋅+⋅ Μ

 (24)

The phase of the total electric field injected now to the receiver consists of two in-
dependent components. The phase of the message φmsg acts, in this case, as a per-
turbation in the phase-matching condition of a well-synchronized system. The
above phase mismatch in the CMS method results in a significant perturbation in
the synchronization process and for this reason this encoding method is not consi-
dered efficient.

4.1.4 Chaos Shift Keying (CSK)

In the CSK method, the bias current of the emitter’s laser is modulated resulting
two different states of the same attractor associated to the two levels of the biasing
current [69,76]. The current of the emitter’s laser is given by the equation:

msgBM ItmII ⋅+=)((25)

with m(t) = ½ (or – ½) for a “1” (or a “0”) bit and IB >> Imsg, in order to keep the
synchronization error in small values.

4.1.5 Phase Shift Keying (PSK)

The strong dependence of synchronization on the relative phase between the ex-
ternal cavities of ML and SL, may be also employed for message encoding [6].
Indeed, a phase variation of the ML external cavity, which is small enough to be
undetectable by observation of the chaotic waveform or of its spectrum, can sub-
stantially affect the correlation between the two laser outputs. Thus, if the ML
phase is modulated by a message, the latter can be extracted by transferring the
induced variation of the correlation coefficient into amplitude modulation. This
can be easily done by taking the difference between the phase-modulated chaotic
waveform coming from the transmitter and the chaotic waveform from the receiv-
er, as in the standard masking scheme.

4.1.6 Sub-Carrier Chaos Encryption

All the above encoding techniques referred to baseband encryption within the
chaotic carriers. However, the power spectral distribution of a generated chaotic
carrier is not always suitable for base-band message encryption. For example, in
cases where short external optical cavities are employed the most powerful spec-
tral components of the carrier arise on the external cavity mode (ECM) frequen-
cies. By applying sub-carrier message encryption in those frequencies where the
chaotic carrier has powerful spectral components, a higher signal-to-noise ratio of
the encrypted signal may be applied without any compromises in the quality of
encryption, providing a better message recovery performance in comparison to the
base-band techniques [12,18].

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 351

4.2 EDFA-Based Chaotic Optical Communication Systems

The pioneering chaotic laser system, developed by Van Wiggeren and Roy, em-
ployed chaotic carriers with bandwidth around 100 MHz, which yields a data rate
comparable with that used in radio-frequency communications [102]. In the pro-
posed configuration the transmitter consisted of a fiber ring laser that included an
EDFA (fig. 8). The optical signal that was generated by an EDFA was re-injected
into the same EDFA after circling the fiber ring. In such a configuration, the fiber
laser is driven by its own output but at some time delay leading finally to a chaotic
behavior. This type of response is common to time-delayed dynamical systems of
any kind. The message to be transmitted was another optical signal coupled into
the fiber ring of the transmitter, and was injected into the laser together with the
time-delayed laser signal. In such way, the information signal also drives the laser
and thus it becomes mixed with the dynamics of the transmitter. As the combined
information/laser signal travels around the transmitter ring, part of it is extracted
and transmitted to the receiver. At the receiver the signal is split into two parts.
One part is fed into an EDFA almost identical to the one used in the transmitter,
which ensures that the signal is synchronized with the dynamics of the ring-fiber
laser in the transmitter. Then it is converted into an electrical signal by a photodi-
ode, providing a duplicate of the pure laser signal at some time delay. The other
part was fed directly into another photodiode providing a duplicate of the laser-
plus-information signal. After taking account of the time delays, the chaotic laser
signal is subtracted from the signal containing the information, removing the
chaos and leaving the initial message. In this work the information applied was a
10MHz square wave and finally the signal decoded by the receiver matched well
the transmitted one.

Fig. 8 The optical chaos communication setup proposed by Van Wiggeren and Roy.

352 A. Argyris

4.3 All-Optical Chaotic Optical Communication Systems

In more recent works, researchers have increased the bandwidth of the chaotic car-
riers as well as the encrypted message bit rates. In [49] a sinusoidal message
transmission up to 1.5 GHz was performed based on synchronization of chaos in
experimental nonlinear systems of semiconductor lasers with optical feedback.
The message is almost entirely suppressed in the receiver output, even if the mes-
sage has non-negligible power in the transmitter. Also in [24], encoding, transmis-
sion and decoding a of a 3.5GHz sinusoidal message in an external-cavity chaotic
optical communication scheme operating at 1550 nm has been demonstrated.
Beyond these preliminary communication setups that employed only sinusoidal
carriers to prove the principle of operation of the chaos communication fundamen-
tals, contemporary optical chaotic systems tested with pseudorandom bit se-
quences have been recently demonstrated, also implying the feasibility of this en-
cryption method to secure high-bit rate optical links. The latter are in principle
more demanding in synchronization efficiency, since the chaotic carriers should
be proficiently synchronized not only in a single frequency but in a wider spectral
region – the one that covers the encrypted message. Such systems are presented in
the following paragraphs.

Fig. 9 Experimental setup of an all-optical communication transmission system based on
chaotic carriers. PC: polarization controller, OI: optical isolator, PD: photoreceiver, ATT:
attenuator.

An all-optical chaotic communication system built on the concept of an open-
loop receiver is shown in fig. 9 and is the basis of the system presented in [10] by
Argyris et al.. In this work, two distributed feedback semiconductor lasers (DFB)
that were neighboring chips in the same fabrication wafer with almost identical
characteristics have been selected as the transmitter and the receiver lasers. Both

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 353

lasers emitted at the same exactly wavelength of 1552.1nm. The biasing of the
lasers close to their threshold value ensured a powerful chaotic carrier even at the
low frequency regime, guarantying a sufficient encryption of the baseband mes-
sage. The chaotic carrier was generated within a 6m long fiber-optic external cavi-
ty formed between the master laser and a digital variable reflector that determined
the amount of optical feedback sent back. In the specific experiment the feedback
ratio was set to moderate values (up to a few percent) in order to be efficient to
cause broadband chaos dynamics. Polarization alignment was very significant
through the whole system. The data encrypted in this configuration were non-
return-to-zero pseudorandom sequences with small amplitudes and code lengths
up to 231-1 and were applied by externally modulating the chaotic carrier using a
Mach-Zehnder LiNbO3 modulator (ACM encoding technique).

In this work, the chaotic optical carrier with the encrypted data was optically
amplified and transmitted through a total length of 100km fiber span. The appro-
priate dispersion compensation fiber modules were used in order to eliminate the
chromatic dispersion, while two EDFAs were used to compensate the transmission
losses. Optical filtering was applied after EDFA modules in order to reject most of
the amplified spontaneous emission (ASE) noise of the EDFA.

At the receiver’s side, the synchronization process and the message extraction
took place. The transmitted output was unidirectionally injected into the slave la-
ser, in order to force the latter to synchronize and reproduce the emitter’s chaotic
waveform. The appropriate optical power of the injected signal into the receiver’s
laser was several times the optical feedback of the emitter. Generally, lower values
of optical injection power prove to be insufficient to force the receiver to syn-
chronize satisfactorily, while higher values of injection power lead to reproduction
not only of the chaotic carrier but of the message too. The chaotic waveforms of
the transmitter and the receiver were detected by two fast photodetectors that con-
verted the optical input into electronic signal. The receiver’s signal photodetector
included a π-phase shift to the electrical output related to the optical one. Conse-
quently, by combining with a microwave coupler the two electrical chaotic signals
– the transmitter’s output and the inverted receiver’s output – an effective subtrac-
tion is actually carried out. In the transmitter’s optical path an optical variable at-
tenuator was used to achieve equal optical power between the two outputs, while a
variable optical delay line in the receiver’s optical path determined temporal
alignment of both signal waveforms. The subtraction product from such a system
is the amplified message, along with the residual high-frequency components of
chaotic carrier which are eventually rejected by an electrical filter of the appropri-
ate bandwidth.

The encryption quality is determined for a given bit-rate by the message ampli-
tude. Its value is set so that the filtered encrypted message at any point of the link
and at the receiver’s input has a very high BER value (in this work no less than
6·10-2). The BER value measured for the recovered message was 10-7, for a mes-
sage bit-rate of 0.8Gb/s and for the above encryption level. As the bit-rate is in-
creased to a multi-Gb/s scale, the BER values are also increased monotonically.
This is partially attributed to the filtering properties of the message at the receiver.
The message filtering effect has been confirmed to be larger for lower frequencies
and decreases as message spectral components approach the relaxation oscillation

354 A. Argyris

frequency of the laser in the gigahertz regime, similar to the response of steady-
state injection-locked lasers to small-signal modulation. Another important reason
that justifies this limited performance is that the decoding process is based on sig-
nal subtraction and not on signal division, since only the former can be imple-
mented with the traditional methods. The emitted signal is of the form of
[1+m(t)]·Et (t), while the receiver reproduces the chaotic carrier Er(t) = Et(t). Thus,
the output is not the encrypted message m(t) but the product: m(t)·Et (t).One should
remember that the spectral components of the message are determined by the mes-
sage bit-rate, while the chaotic carrier spectral components extend to tens of GHz.
Thus, when applying low bit-rate messages, after the appropriate filtering, the re-
ceived product contains the whole power of the message and only a small part of
the carrier. By increasing the message bit-rate – and consequently the bandwidth of
the received product – the proportion between the power of the chaotic carrier and
the power of the message increases, deteriorating the final performance.

Fig. 10 Eye diagrams for a 231-1, 1Gb/s encrypted message with BER~6·10-2 (left) and de-
crypted message with BER~10-8 (right).

A follow-up of the above work was to use fully controllable broadband chao-
tic oscillators based on PICs. Such PICs were identified to be capable of exhibit-
ing an outstanding performance in closed-loop synchronization architectures with
extreme stability [13]. The philosophy of the presented communication system is
twofold. On one hand, the emitter sends a completely hidden data stream within a
chaotic carrier along the transmission link, and this is achieved – for a specific
chaotic carrier – by restricting the message amplitude up to a maximum value. On
the other hand, the receiver task is to cancel the chaotic carrier and recover data
with a native bit-error rate as low as needed in order to acquire error rates below
10-12 using coding techniques. Practically, the BER improvement was achieved by
an additional processing unit that employed a fast transceiver which enabled FEC
methods. The reported results provided secure 2.5 Gb/s data exchange with bit-
error-rates below 10-12. Such low BER values were achieved only for authorized
users, even for very small encrypted message amplitudes, through forward error
correction (FEC) techniques [86,106]. The FEC method used in that system posed
a digital bit-error-rate threshold (equal to R=1.8·10-3) in its operation, discriminat-
ing decisively the data recovery efficiency between authorized and unauthorized
users. Thus unauthorized hardware receivers, either by direct detection of trans-
mission line or by employing unmatched – compared to the PIC emitter –, will be
able to recover data with BER values as low as this digital threshold R.

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 355

4.3.1 Single-Channel Transmission Field Demonstrators

Based on the above experimental configurations, the next step taken was to test
such encryption systems in real world conditions, by sending chaos-encrypted data
in a commercially available fiber network. Such an attempt was the transmission
experiment published in [10]. The utilized infrastructure included an installed opt-
ical network of single mode fiber that covered the wider metropolitan area of
Athens, Greece and had a total length of 120km. A dispersion compensation fiber
(DCF) module, set at the beginning of the link (pre-compensation technique), can-
celed the chromatic dispersion induced by the single mode fiber transmission.
Two amplification units that consist of erbium-doped fiber amplifiers and optical
filters were used within the optical link for compensation of the optical losses and
amplified spontaneous emission noise filtering, respectively.

The system’s efficiency on the encryption and decryption performance was
studied, as previously, by bit-error rate (BER) analysis of the encrypted/decoded
message. The message amplitude was adjusted so that the BER values of the fil-
tered encrypted message do not exceed in any case the value 6·10-2, preventing
any message extraction by linear filtering. In fig. 11 (right), spectra of the en-
crypted (upper trace) and the decrypted - after the transmission link - (lower
trace), 1Gb/s message are shown. The good synchronization performance of the
transmitter-receiver setup leads to an efficient chaotic carrier cancellation and
hence to a satisfactory decoding process. The performance of the chaotic transmis-
sion system has been studied for different message bit rates up to 2.4Gb/s and for
code lengths up to 223-1 (fig. 11, left). All BER values have been measured after
filtering the electric subtraction signal, by using low-pass filters with bandwidth
adjusted each time to the message bit rate. For sub-gigahertz bit-rates the recov-
ered message exhibits BER values always lower than 10-7, while for higher bit-
rates a relatively high increase was observed. This behavior characterized the
back-to-back and the transmission setup, with relatively small differences in the
BER values, revealing only a slight degradation of the system performance due to
the transmission link.

Fig. 11 Left: BER performance of encrypted (squares), back-to-back decoded (circles) and
after transmission link decoded (triangles) message. Right: RF spectra of an encrypted and
recovered 1 Gb/s pseudorandom message.

356 A. Argyris

4.3.2 Multiple-Channel Transmission Field Demonstrators

The presented so far optical chaos communication systems have been demonstrat-
ed in single channel transmission experiments. However, contemporary optical
networks consume the large bandwidth potential of fibers by supporting a large
number of channels lying at distinct wavelengths densely spaced to each other.
Preliminary studies have appeared to this direction [109] in order to numerically
study the potential of operating in wavelength division multiplexed (WDM)
transmission systems. This potential has been very recently deployed in chaos-
encrypted installed systems with Gb/s data, including three neighboring channels
according to the Telecommunication Standardization Sector (ITU-T) standards.
The work presented in [14] was the first experimental evaluation of a dense-WDM
(DWDM) communication system that includes chaotic optical channels with en-
crypted 1.25 Gb/s data streams, along with conventional channels that carry 10
Gb/s digital data sequences. The implementation of the chaos-secured communi-
cation channel was based on photonic monolithic integrated chaotic oscillators
was on the basis of the system investigated in section 4.1, utilizing PICs [11,13].
The inclusion of additional channels in the installed transmission medium changes
the performance of the chaotic channel’s synchronization and decoding efficiency.
Inter-channel interference is important for the decoding process of the chaos-
encrypted channel. When the channel spacing was set to 0.8nm, the relative input
polarization state of the neighboring channels affected significantly the decoding
performance. When the polarization of each channel was set orthogonal to its
neighbors, the interference effects were minimized. In the latter case, the recovery
performance was identified to be almost equivalent to the back-to-back perfor-
mance. On the contrary, if the polarization was set to be parallel to its neighbors,
the decoding of the chaos-encrypted channel was downgraded significantly. In
conclusion, chaotic communication channels that operated in a DWDM transmis-
sion environment were susceptible to transmission impairments. Cross-phase
modulation played a significant role in the synchronization process of the chaos
encrypted channel and was the factor that determined the final performance. Nev-
ertheless, for wavelength spacing above 0.8nm, these impairments induce a toler-
able penalty and allow the proficient operation of this channel, independently of
the polarization states of the channels. If orthogonal polarization states of adjacent
channels were chosen the above spacing tolerance was further reduced to 0.65nm.

4.4 Optoelectronic Chaotic Optical Communication Systems

An optoelectronic oscillator is a system in which the intensity of a continuous-
wave laser is modulated by an electronically driven nonlinear optical device be-
fore being fed into a long length of optical fiber, which introduces delay. After
propagation in the fiber, the delayed light is detected electronically, and this out-
put is then used as an input to drive the modulation of the laser once again. The
properties of the delayed output thus feed back into the system to modify the in-
put, which in turn generates a new output and so on, in a periodic (oscillatory)
manner. This is clearly not a simple system and, indeed, such oscillators exhibit a

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 357

wide range of rich dynamics. Several configurations have been implemented so far
based on these optoelectronic oscillators, either encoding the message in ampli-
tude or in phase. Such systems will be presented in the next paragraphs. [52]

4.4.1 Amplitude Data Encoding

In the system described by Gastaud et al. [32] the emitter was a laser diode whose
output was modulated in a strongly nonlinear way by an electro-optic feedback
loop through an integrated electro-optic Mach–Zehnder interferometer (MZ)
(fig. 12). In this approach, the non-linear medium is not a semiconductor laser, but
the MZ modulator. The system is known as a delay dynamical system because the
delay in the optical fiber is long in comparison to the response time of the modula-
tor [36,53]. The architecture of this type of chaotic systems is inspired by the pio-
neering work of Ikeda [43]. In order to mask the information within the chaotic
waveform produced by the optoelectronic feedback loop, a binary message was
encoded on the beam produced by a third laser operating in the same wavelength.
Half of the message beam was coupled directly into the electro-optic feedback
loop, while half of it was sent to the receiver, while the other half was combined
with the message and circulated around the feedback loop. The receiver of this
communication system consisted of an identical optoelectronic feedback loop that
has been split apart. A fraction of the incoming signal was sent to a photoreceiver
and converted into voltage. The rest of the signal propagated through an optical fi-
ber, which delayed the signal by an amount identical to the delay produced by the
long fiber in the transmitter, and the resulting signal was used to drive an identical
MZ modulator. An auxiliary laser beam passed through this modulator and was
converted to a voltage via a photoreceiver. This voltage was subtracted from the
voltage proportional to the incoming signal. The resulting difference signal practi-
cally contains the original message; the chaos part of the signal has been removed
from the waveform with high rejection efficiency.

Fig. 12 Experimental setup of an optoelectronic communication transmission system based
on chaotic carriers.

358 A. Argyris

The message must reside in the frequency region of the chaotic carrier, in or-
der to be indistinguishable in the frequency domain. Moreover, to avoid coherent
interaction between message and chaos, the message and chaos polarization states
should be orthogonal to each other. In order to prevent eavesdropping through po-
larization filtering, a fast polarization scrambler performing random polarization
rotation should be used before transmitting the combined output. The system can
be mathematically described by differential difference equations (DDEs) [43].
Specifically, the transmitter dynamics including the applied message, obey the fol-
lowing second-order DDE [19]:

[])())((cos)(
1 2

0

TtmdTtxdssx
dt

dx
x

t

t
−⋅++−⋅=++ ∫ φβ

θ
τ

 (26)

where x(t)=πV(t)/(2Vπ) is the normalized voltage applied to the RF electrode of the
MZ and φ=πVB/(2Vπ,DC) corresponds to the operation point of the MZ determined
by the voltage applied to the bias electrode. The message d·P·m(t) has power equal
to zero for “0” bits and power d·P for “1” bits. The parameter d is a measure of the
message-to-chaos relative power and determines the masking efficiency of the sys-
tem. The parameter β is the overall feedback parameter of the system and is usually
called as the bifurcation parameter. β values in the range between 2.5 and 10 lead to
an intense nonlinear dynamical operation of the MZ providing a hyper-chaotic opt-
ical signal at the output of the transmitter. The parameters τ, θ are the high and low
cut-off characteristics times respectively of the electronic components of the feed-
back. The encrypted message is also a part of the signal entering into the optoelec-
tronic feedback, meaning that the chaotic oscillations will depend on the message
variations to such an extent determined by parameter d. The chaotic receiver is also
governed by a similar second-order DDE, which would be identical to (26) pro-
vided that the channel effect is negligible and that the parameters of the compo-
nents at the receiver side are identical to those of the transmitter module:

)()(
1

0

TtPdssy
dt

dy
y R

t

t
−⋅=++ ∫ β

θ
τ (27)

where PR is the normalized to the received P optical power. In such a configura-
tion, as long as the transmission effects become significant, PR will differ from
cos2(x(t-T)+φ)+d·m(t-T) which is the originally transmitted normalized power,
expecting synchronization degradation and poor performance in terms of the sig-
nal-to noise ratio of the decoded message.

An efficient temporal chaos replication between the transmitter and the receiver
has been observed using this configuration, with an electrical cancellation of chaos
equal to cΔf

E =18dB for the first 5 GHz. The message is obtained by direct mod-
ulating an external laser using an NRZ pseudorandom bit sequence (PRBS) of 27-1
bits up to 3 Gbit/s. This encryption scheme allowed for a BER of the decoded
message equal to 7·10-9 [32].

4.4.2 Phase Data Encoding

Chaos communications based on optoelectronic feedback has been studied and
demonstrated as an alternative approach and indeed has been successfully used in

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 359

field experiments at comparable bit rates through optical intensity modulation
[32]. Phase modulation systems have been studied numerically in the recent past
[20] and have proved to be rather efficient in terms of high-bit rate data encryp-
tion; however, only recently Lavrov et al. reported on optical chaos encoding and
decoding, involving a nonlinear delayed phase modulation architecture [55,56].

Lavrov’s et al. [56] phase-chaos communication system is depicted in fig. 13. It
describes a standard communication system based on differential phase shift key-
ing (DPSK) modulation. In such a system, any wavelength division multiplexing
(WDM) channel can be selected through the use of the proper external laser
source, independently of the subsequent chaos communication processing. In this
work, a message phase modulator MΦM performed the binary DPSK phase mod-
ulation ϕm corresponding to the message to be transmitted. MΦM could be equiva-
lently placed before seeding the chaotic oscillator, or inside this oscillator. The
chaotic masking consisted of the superposition of the message phase modulation
and the chaos masking phase modulation, the latter being thus partly determined
also by the message phase modulation. If the message phase modulation was per-
formed outside the oscillation loop, the chaotic masking would be independent of
the message phase modulation. The phase chaos generator (ΦCG) [13] thus per-
formed the masking of the DPSK message. At the receiver side, phase chaos can-
cellation (ΦCC) was processed from the input light beam, after which a standard
DPSK demodulation MΦD recovered the original binary message. Note that if
ΦCG and ΦCC were omitted, the communication link becomes practically a stan-
dard optical DPSK transmission system.

4.4.3 Single-Channel Transmission Field Demonstrators

The above approach by Lavrov et al. provided the first experimental demonstra-
tion of 10 Gb/s chaos communication, and was tested also in field trials [56]. Two
successive field experiments were conducted within 2009. For this reason the
emitter and receiver of fig. 13 were fixed onto breadboards, so that they could be
tightly fixed in handluggage-size transportation cases. The first field experiments
were performed on the “Frères Lumière” all-optical fiber ring network installed in
the city of Besançon, France. BER as low as 3×10−10 (2×10−7) were obtained at 10
Gb/s for fully (partially) encrypted data and for transmission within a fiber ring
over 22 km. Dispersion issues were critical, and successful data recovery was only
possible with accurately tuned dispersion compensation modules. Additionally,
polarization control had to be applied appropriately. Long-term stable operation of
the encoding and decoding required the use of control systems for the operating
point of the DPSK demodulators. The second experiment was performed on a
more recent and advanced optical network in the metropolitan area of Athens,
Greece. In this case the fiber loop path was close to 120 km and involved two
EDFAs and two dispersion compensation units. The achieved BER value was of
the order of 10−6 (2·10−4) at 10 Gb/s for fully (partially) encrypted data. By reduc-
ing the message bit rate to 3 Gb/s BER values less than 10−10 have been measured.
These first 10 Gb/s field experiments were however not involving all the currently
available optical signal processing techniques for 10 Gb/s link optimization.

360 A. Argyris

Fig. 13 Point-to-point transmission setup using optoelectronic phase chaos. Transmitter
performs standard DPSK binary message modulation (MΦM) and chaotic phase masking
(ΦCG). The phase modulated light beam is sent to the receiver through an installed network
fiber link. The receiver performs first the chaos cancellation or demodulation (ΦCD)
through phase chaos synchronization, and then standard DPSK demodulation retrieves the
binary signal in the electrical domain (PM: phase modulator, DPSK: differential phase shift
keying demodulator, OA: optical attenuator, PD: photodiode, SMF: single mode fiber
channel, EDFA: erbium doped fiber amplifier, DCM: dispersion compensation module, PC:
polarization controller).

5 Optical-Chaos-Based Ultra-Fast Physical Random Bit
Generators for Secure Communications

A rather different than the previously reported applications of broadband chaotic
optical signals is discussed in this section. Optical chaos generators can contribute
to the implementation of secure communication systems not only via transmission
of complex chaotic analog signals; they can provide the seed for generating ultra-
fast physical random sequences for cryptographic applications.

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 361

Random number generators play a fundamental role in most algorithms and
systems for cryptographic applications. Communications based on secret and pub-
lic key cryptography, user authentication, as well as electronic lottery-based appli-
cations rely on the quality of the randomness and the generation speed provided
by these generators. Two types of random number generators can be distin-
guished, namely true random number generators (TRNGs) and pseudorandom
number generators (PRNGs) [42]. TRNGs produce random bits from random
physical phenomena or noise sources [21,25,27,35,40,93]. Such non-deterministic
generators have limited efficiency in number generation rates due to limitations of
the mechanisms for extracting bits from the physical procedures. On the contrary,
PRNGs are initiated by a relatively short key (seed) and their output is expanded
into a long sequence of random bits using computational deterministic algorithms
[29]. PRNGs were viewed until recently as a largely solved problem, but emerging
technologies, such as cloud computing security and ultra-fast quantum key distri-
bution, start to alter the scene. In cases where the “entropy pool” - from which the
seed comes up - is inadequate, no matter how strong the encryption is, a malicious
hacker could succeed in guessing correct. Thus, the question that rises is whether
computers can produce or exploit truly random numbers that can't be guessed or
replicated, and – at the same time – the bit rate generation can rise significantly in
order to support these challenging modern applications.

Very recently, research in quantum noise TRNGs demonstrated configurations
that could increase significantly the bit-rate generation efficiency, potentially over
100 Mbps [80,104]. However, even such bit-rates are much slower than the ones
achieved by the recently proposed technique using broadband chaotic signals
emitted from semiconductor lasers (SLs) with optical feedback. Optical chaos-
based techniques provide truly random numbers as a result of partnership between
quantum fluctuations and chaotic dynamics at the macroscopic level. Due to large
amplitude signals the chaotic fluctuations can be easily detected, since they
emerge from truly random photon quantum fluctuations enhanced by the nonlinear
dynamical system of a semiconductor laser subjected to optical feedback. The
specific implementations, which will be analyzed in the following sections, are
thus non-deterministic although originating from chaos.

5.1 Analog Signal Generation

In order for a chaotic waveform to be considered as a potential seed for ultra-fast
random number generation processes, it should have a bandwidth (in the electronic
domain) of at least several GHz, high optical power, uniform spectral distribution
and absence of residual periodicities. The statistical properties of the light emitted
by semiconductor optical chaos generators are determined by the intrinsic characte-
ristics of the semiconductor lasers (e.g. the relaxation frequency) and the characte-
ristics of the external cavity (e.g. the strength of optical feedback, the roundtrip
time of the external cavity). The adjustment of the above parameters may lead this
oscillator to operate under completely diverse dynamic regimes, from stable opera-
tion and periodic solutions to complex non-linear dynamics and broadband chaos.
The application of strong optical feedback makes this unit to act as a chaotic optical

362 A. Argyris

oscillator, described by deterministic coupled time-delayed differential equations.
However, the onset of the oscillator emission is not based on a predefined or pre-
dictable initial condition, but on the microscopic quantum noise of nonlinear ampli-
fication and mixing mechanisms of the semiconductor laser.

Since the described optical chaos generators exploit physical processes for
emitting broadband optical signals, the characteristic frequencies of these
processes may be evident in the output signal. Such periodicities emerge from at
least two characteristic frequencies: one associated to the semiconductor laser (re-
laxation oscillation frequency) and the other one associated to the external cavity
round-trip time. Such drawbacks of the analog chaotic signal are dealt in the rele-
vant works so far either be optical de-correlation techniques, or by post-processing
after sampling.

5.2 Single-Bit Sampling Systems

In the pioneering work of Uchida et al. [98] it was the first time that chaotic lasers
have been used to demonstrate high-rate generation of random bit sequences with
verified randomness. Specifically, a 1.7 Gb/s TRNG was presented based on the
binary digitization of two independent chaotic SLs, finally combined under a XOR
operation. The use of such chaotic optical signals in SLs led to achieve efficient
and stable generation of random bits at high frequencies. High-bandwidth chaotic
lasers have previously been used to demonstrate the transmission of messages
hidden in complex optical waveforms. The scheme that authors used employed
two semiconductor lasers with chaotic intensity oscillations. The output intensity
of each laser was converted to an AC electrical signal by photodetectors, ampli-
fied and converted to a binary signal using a 1-bit analog-to-digital converter
(ADC) driven by a fast clock. The ADC first converted the input analog signal in-
to a binary signal by comparing with a threshold voltage, and then sampled the bi-
nary signal at the rising edge of the clock. The binary bit signals obtained from the
two lasers were combined by a logical exclusive-OR (XOR) operation to generate
a single random bit sequence. No other digital post-processing was applied. A sin-
gle-laser chaotic signal could not be adopted as the random source since the peri-
odicities of the external cavity modes (ECMs) of each chaotic waveform would
cause bias in the final result [98].

Fig. 14 A schematic diagram of Uchida’s et al. TRNG.

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 363

Fig. 15 Single-bit analog-to-digital conversion, providing a sampled binary sequence. The
threshold voltage Vth should be carefully determined in order not to cause any bias between
the “0”s and “1”s.

5.3 Multi-Bit Sampling Systems

Initiated by the above work, several configurations followed targeting on increas-
ing the bit-rate generation, as well as simplifying the used architectures. Kanter et
al. in [81] increased the speed of the proposed TRNG to 12.5Gb/s. In this work au-
thors used a single, off the shelf, multimode semiconductor laser, with absolutely
no special requirements, operating in the coherence collapse regime due to feed-
back from an external. Due to feedback the laser is chaotic, with a broadened las-
ing frequency spectrum and intensity fluctuating in time. Only one incommensu-
rate ratio between the external cavity length and an external clock rate was
required. The detected laser output was sampled by an 8-bit ADC and was used to
generate a Boolean sequence in the following way: the difference between con-
secutive sampled 8-bit values was obtained and the m least significant bits (LSBs)
of the difference value served as the next m random bits of the sequence. This me-
thod was characterized as insensitive to variations of parameters such as the aver-
age laser power and did not require the tuning or determination of a decision thre-
shold value.

Fig. 16 A schematic diagram of Kanter’s et al. TRNG.

364 A. Argyris

Within the year 2010, Hirano et al. [39] adopted the multi-bit sampling at 12.5
GSa/s and, by using bandwidth-enhanced chaos in semiconductor lasers, demon-
strated a 75 Gb/s TRNG. In this work, chaotic fluctuation of laser output was gen-
erated in a semiconductor laser with optical feedback and its chaotic output was
injected into a second semiconductor laser in order to enhance its bandwidth up to
16 GHz, and random bit generation at rates.

In the same year, Kanter et al. have reported that bit sequences with verified
randomness can be generated at higher bit rates up to 300 Gb/s using a single
chaotic semiconductor laser by retaining a number of the LSBs of the value of a
high derivative of the digitized chaotic laser intensity [45]. However, the band-
width of the laser chaos is only a few GHz in their scheme. This suggests that the
reported bit rate exceeds the capacity of the laser chaos to generate non-
deterministic random bits. Moreover, extracting more bits from high derivatives
could be more susceptible to the effects of physical noise in the AD converter - a
potential additional source of randomness which is separate from the laser chaos.
A strong motivation for using direct sampling of optical chaos for random number
generation is to reduce the dependence on digital electronic operations, which may
be difficult to implement at high frequencies, and which in principle cannot in-
crease the rate for generation of nondeterministic bits.

Finally, compact photonic integrated circuits (PICs) that exploited broadband
chaotic signals were used by Argyris et al. to generate TRBS at 140 Gb/s [15].
The proposed generator was a simple configuration, consisting of the PIC,
a photodetector and a 40GSa/s oscilloscope, without including any optical
de-correlation methods (fig. 17). Depending on the operating conditions of
the PIC and by using MSB elimination post-processing, real time bit sequences
were extracted from an oscilloscope’s Ethernet output port. The proposed configu-
ration provided a significant advance in terms of simplicity, performance and es-
pecially robustness. The PIC employed in this work is the same presented before
in Section 2.2. The oscilloscope’s 8-bit A/D converter, along with the internal 16-
bit digital-to analog convertor (DAC) and the rest processing units, provided a
noise-enhanced, 16-bit output binary sequence for each sample. An external
down-sampling to 10GSa/s was applied – only one out of four samples was consi-
dered – in order to eliminate any effect of interpolation samples of the oscillos-
cope. In such a way the initial bandwidth of the chaotic signal was preserved.

Fig. 17 A TRBG based on the emitted chaotic signal from the PIC.

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 365

Fig. 18 Multi-bit sampling of a chaotic analog signal. Only k LSBs out of the 16-bit digitized re-
presentation of each sample are exploited and included in the final output sequence.

5.4 Random Bit Generation and Verification

In order to claim and prove the randomness of a bit sequence strict conditions
must be fulfilled. The most representative statistical tests performed for this reason
are included in the NIST SP800-22 (last revision in April 2010) test suite [42]. In
this suite at least 1000 samples of 1Mbit sequences – constructed by the appropri-
ate number of the k LSBs adopted in each case – are evaluated. Pass criteria are
determined by the sequence length and the significance level. A significance level
α = 0.01 is set for the p-values of each sequence test, with a desirable uniformity
P-value larger than 0.0001. For the 1000 samples, the proportion of sequences that
satisfy p-value > α, is estimated to be 0.99±0.0094. Another statistical test suite
for random number generators that is commonly used is the so-called “Diehard”
tests [64]. The Diehard test suite consists of 18 statistical tests and are performed
using 74 Mbit sequences and significance level of α = 0.01.

For example, a randomness mapping of the PIC-based TRBG of [15] in
terms of operating conditions is illustrated in fig. 19. In this work, the characteri-
zation has been performed versus the biasing laser current and the number of
LSBs of each sample included in the output sequence – from k=1 to k=16. The
randomness is verified when all 15 statistical tests of the NIST test suite are
passed. In the specific work, all NIST tests were passed, even when including 14
LSBs – for specific operating conditions – representing a final bit-rate generation
of 140Gb/s.

366 A. Argyris

Fig. 19 Mapping of the TRBG performance in terms of bit-rate and number of NIST randomness
tests passed. The characterization has been performed vs. the biasing laser current and the num-
ber of LSBs of each sample included in the output sequence. Black color grade regions designate
operating conditions where all NIST randomness tests are successful.

A representative analysis of the NIST statistical tests results, for the worst value
of the obtained p-values for each test, is presented in table 1, as submitted in the
work of [15].

Table 1 Typical results of NIST SP800-22 (rev.1a) statistical test suite.

STATISTICAL TEST P-VALUE (min) PROPORTION RESULT

Frequency 0.375313 0.986 Passed

Block frequency 0.674543 0.990 Passed

Runs 0.773405 0.988 Passed

Longest Run 0.087162 0.988 Passed

Rank 0.291091 0.991 Passed

Discrete Fourier transform 0.134355 0.984 Passed

Non-overlapping templates 0.002186 0.986 Passed

Overlapping templates 0.989425 0.990 Passed

Universal 0.705466 0.991 Passed

Linear complexity 0.883171 0.989 Passed

Serial 0.123038 0.995 Passed

Approximate entropy 0.607993 0.993 Passed

Cumulative sums 0.514124 0.991 Passed

Random excursions 0.023140 0.9886 Passed

Random excursions variant 0.015993 0.9869 Passed

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 367

An analogous analysis of the Diehart statistical tests [64] results, has been
presented in the work [39], indicating the worst value of the obtained p-values for
each test (Table 2).

Table 2 Typical results of the statistical test suite Diehard. “KS” indicates that a single P-value is
obtained by the Kolmogorov-Smirnov (KS) test [39]. For the tests which produce multiple P-
values without the KS test, the worst case is shown.

STATISTICAL TEST P-VALUE (min) RESULT

Birthday spacing 0.882291 Success (KS)
Overlapping 5-permutaion 0.483639 Success

binary rank for 31 × 31 matrices 0.658636 Success
binary rank for 32 × 32 matrices 0.391334 Success

binary rank for 8 × 8 matrices 0.367852 Success (KS)

Bit stream 0.056500 Success

Overlapping-Paris-Spares-Occupancy 0.000700 Success

Overlapping-Quadruples-Spares-Occupancy 0.015800 Success

DNA 0.015800 Success
Count-the-1’s on a stream of bytes 0.049820 Success

Count-the-1’s for specific bytes 0.353940 Success
Parking lot 0.260828 Success (KS)

Minimum distance 0.326556 Success (KS)
3D spheres 0.059882 Success (KS)

Speeze 0.458916 Success
Overlapping sums 0.965410 Success (KS)

Runs 0.181109 Success (KS)
Craps 0.812245 Success

5.5 Chaos-Based TRNGs Applied to Cryptography

In the typical scenarios of secured channels the communicating parties have to
hold a common key in the form of a bit string which is known only to the two par-
ties. Physical mechanisms based on quantum mechanics have been suggested re-
cently for a secure key-exchange protocol with the important and unique ability of
the two communicating parties to detect the presence of any third party trying to
gain knowledge of the key. The first layer of the quantum protocol is based on
quantum ingredients such as entangled pairs of photons and results in correlated
keys for both partners. The second classical layer consists of information reconcil-
iation and privacy amplification (error correcting code and source coding). These
result in identical keys for the communicating pair while leakage of information to
an eavesdropper is eliminated; however, such procedures lower the rate at which
random bits can be generated. By exploiting the previously reported ultra-fast ran-
dom number generators based on optical chaos, Kanter et al. proposed a secure
synchronization method of two high bandwidth RBGs over a public channel using
a classical mechanism [46]. The focus of this work was to propose a secure syn-
chronization zero lag synchronization (ZLS) of two mutually coupled chaotic las-

368 A. Argyris

ers. The ZLS mechanism is not sufficiently secure in its simple form
to act as a key-exchange protocol, and it serves only as an information carrier to
generate correlated random bit sequences. Identical random bit sequences could be
constructed from these correlated sequences via information reconciliation and
privacy amplification. Furthermore, the proposed mechanism allows the secure
generation of a synchronized random bit string amongst a small network of com-
municating parties [46].

This application foretells that ultra-fast random number generators are expected
to play a significant role in the future security of high-speed communications.
Compact chaos-on-chip devices, which will be integrated in computer cards or
motherboards with direct access to Ethernet ports, will provide each user an unli-
mited source of random codes for every potential application.

6 Conclusions

Chaos data encryption in optical communications proves to be an efficient alterna-
tive of securing fiber transmission lines in the physical layer. The first implemen-
tations of communication systems deployed so far provide strong evidence of the
feasibility of this method to strengthen the security of fiber-based high-speed net-
works. Error-free data decoding in bit-rates up to 2.5 Gb/s in all-optical and 10
Gb/s in electro-optical systems has been a fulfilled target, not only by using fiber-
based chaos generators but also completely photonic integrated devices that could
be easily adaptive to emitter/receiver commercial network cards. The WDM
transmission demonstrations showed the applicability of the method to support
numerous users in multiple access networks. Chaos data encryption is a relatively
recent method for securing optical communication networks in the hardware layer.
Of course, this method is not foreseen to substitute the cryptographic methods de-
veloped so far in an algorithmic level that shield efficiently any type of communi-
cations nowadays. However, it could provide an additional level of transmission
security when fiber-optic networks are the physical medium between the commu-
nicating parts. Finally, communication systems and networks could also benefit
from the broadband chaotic signals that these systems support in a diverse way.
By applying appropriate digital signal processing techniques on these signals ul-
tra-fast physical random bit generators become available, at bit rates that no other
physical mechanism can provide.

References

1. Abarbanel, H.D.I., Kennel, M.B., Buhl, M., et al.: Chaotic dynamics in erbium-doped
fiber ring lasers. Phys. Rev. A 60, 2360–2374 (1999)

2. Abarbanel, H.D.I., Kennel, M.B., Illing, L., et al.: Synchronization and communica-
tion using semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Elec-
tron 37, 1301–1311 (2001)

3. Agrawal, G.P., Dutta, N.K.: Semiconductor lasers. Van Nostrand Reinhold, New
York (1993)

4. Agrawal, G.P., Dutta, N.K.: Semiconductor lasers, 2nd edn. Kluwer Academic Pub-
lishers, Massachusetts (2000)

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 369

5. Annovazzi-Lodi, V., Donati, S., Scire, A.: Synchronization of chaotic injected laser
systems and its application to optical cryptography. IEEE J. Quantum Electron 32,
953–959 (1996)

6. Annovazzi-Lodi, V., Benedetti, M., Merlo, S., et al.: Message encryption by phase
modulation of a chaotic optical carrier. IEEE Photon Technol. Lett. 19, 76–78 (2007)

7. Argyris, A., Kanakidis, D., Bogris, A., et al.: Experimental evaluation of an open-
loop all-optical chaotic communication system. IEEE J. Sel. Topics Quantum Elec-
tron 10, 927–935 (2004)

8. Argyris, A., Kanakidis, D., Bogris, A., et al.: First experimental demonstration of an
all-optical chaos encrypted transmission system. In: Proc. ECOC 2004, Tu4.5.1, pp.
256–257 (2004)

9. Argyris, A., Kanakidis, D., Bogris, A., et al.: Spectral synchronization in chaotic opti-
cal communication systems. IEEE J. Quantum Electron 41, 892–897 (2005)

10. Argyris, A., Syvridis, D., Larger, L., et al.: Chaos-based communications at high bit
rates using commercial fiber-optic links. Nature 438, 343–346 (2005)

11. Argyris, A., Hamacher, M., Chlouverakis, K.E., et al.: A photonic integrated device
for chaos applications in communications. Phys. Rev. Lett. 100, 194101 (2008)

12. Argyris, A., Bogris, A., Hamacher, M., et al.: Experimental evaluation of subcarrier
modulation in all-optical chaotic communication systems. Opt. Lett. 35, 109–111 (2010)

13. Argyris, A., Grivas, E., Hamacher, M., et al.: Chaos-on-a-chip secures data transmis-
sion in optical fiber links. Opt. Express 18, 5188–5198 (2010)

14. Argyris, A., Grivas, E., Bogris, A., et al.: Transmission effects in wavelength division
multiplexed chaotic optical communication systems. IEEE J. Lightwave Technol. 28,
3107–3114 (2010)

15. Argyris, A., Deligiannidis, S., Pikasis, E., et al.: Implementation of 140 Gb/s true
random bit generator based on a chaotic photonic integrated circuit. Opt. Express 18,
18763–18768 (2010)

16. Bauer, S., Brox, O., Kreissl, J., et al.: Nonlinear dynamics of semiconductor lasers
with active optical feedback. Phys. Rev. E 69, 016206 (2004)

17. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin
tossing. In: Int. Conf. Comput. Systems & Signal Processing 1984, India, pp. 175–
179 (1984)

18. Bogris, A., Chlouverakis, K.E., Argyris, A., et al.: Subcarrier modulation in all-
optical chaotic communication systems. Opt. Lett. 32, 2134–2136 (2007)

19. Bogris, A., Argyris, A., Syvridis, D.: Analysis of the optical amplifier noise effect on
electrooptically generated hyperchaos. IEEE J. Quantum Electron 47, 552–559 (2007)

20. Bogris, A., Rizomiliotis, P., Chlouverakis, K.E., et al.: Feedback phase in optically
generated chaos: A secret key for cryptographic applications. IEEE J. Quantum Elec-
tron 44, 119–124 (2008)

21. Bucci, M., Germani, L., Luzzi, R., et al.: A high-speed oscillator-based truly random
number source for cryptographic applications on a Smart Card IC. IEEE Trans. Com-
put. 52, 403–409 (2003)

22. Chen, H.F., Liu, J.M.: Open-loop chaotic synchronization of injection-locked semi-
conductor lasers with gigahertz range modulation. IEEE J. Quantum Electron 36, 27–
34 (2000)

23. Colet, P., Roy, R.: Digital communication with synchronized chaotic lasers. Opt.
Lett. 19, 2056–2058 (1994)

24. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with
applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

370 A. Argyris

25. Danger, J.L., Guilley, S., Hoogvorst, P.: High speed true random number generator
based on open loop structures in FPGAs. Microelectron J. 40, 1650–1656 (2009)

26. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf.
Theory 22, 644–654 (1976)

27. Dynes, J.F., Yuan, Z.L., Sharpe, A.W., et al.: A high speed, post-processing free,
quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)

28. Fischer, I., Van Tartwijk, G.H.M., Levine, A.M., et al.: Fast pulsing and chaotic itine-
rancy with a drift in the coherence collapse of semiconductor lasers. Phys. Rev.
Lett. 76, 220–223 (1996)

29. Ferguson, N., Schneier, B.: Practical cryptography. John Wiley & Sons, Chichester
(2003)

30. Franck, T., Brorson, S.D., Moller-Larsen, A., et al.: Synchronization phase diagrams
of monolithic colliding pulse mode-locked lasers. IEEE Photon Technol. Lett. 8, 40–
42 (1996)

31. Fujino, H., Ohtsubo, J.: Synchronization of chaotic oscillations in mutually coupled
semiconductor lasers. Opt. Rev. 8, 351–357 (2001)

32. Gastaud, N., Poinsot, S., Larger, L., et al.: Electro-optical chaos for multi-10 Gbit/s
optical transmissions. Electr. Lett. 40, 898–899 (2004)

33. Giacomelli, G., Politi, A.: Relationship between delayed and spatially extended dy-
namical systems. Phys. Rev. Lett. 76, 2686–2689 (1996)

34. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74,
145–195 (2002)

35. Gleeson, J.T.: Truly random number generator based on turbulent electroconvection.
Appl. Phys. Lett. 81, 1949 (2002)

36. Goedgebuer, J.P., Levy, P., Larger, L., et al.: Optical communication with synchro-
nized hyperchaos generated electooptically. IEEE J. Quantum Electron 38, 1178–
1183 (2002)

37. Halle, K.S., Wu, C.W., Itoh, M., et al.: Spread spectrum communication through
modulation of chaos. Int. J. Bifurcation & Chaos 3, 469–477 (1993)

38. Heil, T., Mulet, J., Fischer, I., et al.: On/off phase shift-keying for chaos-encrypted
communication using external-cavity semiconductor lasers. IEEE J. Quantum Elec-
tron 38, 1162–1170 (2002)

39. Hirano, K., et al.: Fast random bit generation with bandwidth-enhanced chaos in sem-
iconductor lasers. Opt. Express 18, 5512–5524 (2010)

40. Holman, W.T., Connelly, J.A., Dowlatabadi, A.B.: An integrated analog/digital ran-
dom noise source. IEEE Trans. Circuits Syst. I 44, 521–528 (1997)

41. http://nova.uib.es/project/occult
42. http://csrc.nist.gov/publications/fips/

fips140-2/fips1402.pdf (2001)
43. Ikeda, K.: Multiple-valued stationary state and its instability of the transmitted light

by a ring cavity system. Opt. Commun. 30, 257–261 (1979)
44. Ikuma, Y., Ohtsubo, J.: Dynamics in compound cavity semiconductor lasers induced

by small external cavity length change. IEEE J. Quantum Electron 34, 1240–1246
(1998)

45. Kanter, I., Aviad, Y., Reidler, I., et al.: An optical ultrafast random bit generator. Na-
ture Photon 4, 58–61 (2010)

46. Kanter, I., Butkovski, M., Peleg, Y., et al.: Synchronization of random bit generators
based on coupled chaotic lasers and application to cryptography. Opt. Express 18,
18292–18302 (2010)

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 371

47. Kao, Y.H., Wang, N.M., Chen, H.M.: Mode description of routes to chaos in exter-
nal-cavity coupled semiconductor lasers. IEEE J. Quantum Electron 30, 1732–1739
(1994)

48. Kocarev, L., Halle, K.S., Eckert, K., et al.: Experimental demonstration of secure
communications via chaotic synchronization. Int. J. Bifurcation & Chaos 2, 709–713
(1992)

49. Kusumoto, K., Ohtsubo, J.: 1.5-GHz message transmission based on synchronization
of chaos in semiconductor lasers. Opt. Lett. 27, 989–991 (2002)

50. Kusumoto, K., Ohtsubo, J.: Anticipating synchronization based on optical injection-
locking in chaotic semiconductor lasers. IEEE J. Quantum Electron 39, 1531–1536
(2003)

51. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injec-
tion laser properties. IEEE J. Quantum Electron 16, 347–355 (1980)

52. Larger, L., Dudley, J.M.: Nonlinear dynamics: Optoelectronic chaos. Nature 465, 41–
42 (2010)

53. Larger, L., Goedgebuer, J.P., Delorme, F.: Optical encryption system using hyper-
chaos generated by an optoelectronic wavelength oscillator. Phys. Rev. E 57, 6618–
6624 (1998)

54. Larger, L., Goedgebuer, J.P., Udaltsov, V.: Ikeda-based nonlinear delayed dynamics
for application to secure optical transmission systems using chaos. C. R. Physique 5,
669–681 (2004)

55. Lavrov, R., Peil, M., Jacquot, M., et al.: Electro-optic delay oscillator with nonlocal
nonlinearity: Optical phase dynamics, chaos, and synchronization. Phys. Rev. E 80,
026207 (2009)

56. Lavrov, R., Jacquot, M., Larger, L.: Nonlocal nonlinear electro-optic phase dynamics
demonstrating 10 Gb/s chaos communications. IEEE J. Quantum Electron 46, 1430–
1435 (2010)

57. Liu, J.M., Simpson, T.B.: Four-wave mixing and optical modulation in a semiconduc-
tor laser. IEEE J. Quantum Electron 30, 957–965 (1994)

58. Liu, J.M., Chen, H.F., Tang, S.: Synchronized chaotic optical communications at high
bit-rates. IEEE J. Quantum Electron 38, 1184–1196 (2002)

59. Liu, Y., Chen, H.F., Liu, J.M., et al.: Communication using synchronization of opti-
cal-feedback-induced chaos in semiconductor lasers. IEEE Trans. Circuits Syst. I 48,
1484–1490 (2001)

60. Liu, Y., Takiguchi, Y., Aida, T., et al.: Injection locking and synchronization of peri-
odic and chaotic signals in semiconductor lasers. IEEE J. Quantum Electron 39, 269–
278 (2003)

61. Locquet, A., Rogister, F., Sciamanna, M., et al.: Two types of synchronization in un-
idirectionally coupled chaotic external-cavity semiconductor lasers. Phys. Rev. E 64,
045203 (2001)

62. Locquet, A., Massoler, C., Mirasso, C.R.: Synchronization regimes of optical-
feedback-induced chaos in unidirectionally coupled semiconductor lasers. Phys. Rev.
E 65, 056205 (2002)

63. Locquet, A., Masoller, C., Megret, P., et al.: Comparison of two types of synchroniza-
tion of external-cavity semiconductor lasers. Opt. Lett. 27, 31–33 (2002)

64. Marsaglia, G.: DIEHARD: A battery of tests of randomness (1996),
 http://stat.fsu.edu/

65. Masoller, C.: Spatio-temporal dynamics in the coherence collapsed regime of semi-
conductor lasers with optical feedback. Chaos 7, 455–462 (1997)

372 A. Argyris

66. Masoller, C.: Anticipation in the synchronization of chaotic semiconductor lasers
with optical feedback. Phys. Rev. Lett. 86, 2782–2785 (2001)

67. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

68. Mirasso, C.R., Colet, P., Garcia-Fernandez, P.: Synchronization of chaotic semicon-
ductor lasers: Application to encoded communications. IEEE Photon Technol. Lett. 8,
299–301 (1996)

69. Mirasso, C.R., Mulet, J., Masoller, C.: Chaos shift keying encryption in chaotic ex-
ternal-cavity semiconductor lasers using a single-receiver scheme. IEEE Photon
Technol. Lett. 14, 456–458 (2002)

70. Mork, J., Tromborg, B., Christiansen, P.L.: Bistability and low-frequency fluctuations
in semiconductor lasers with optical feedback: a theoretical analysis. IEEE J. Quan-
tum Electron 24, 123–133 (1998)

71. Murakami, A., Ohtsubo, J., Liu, Y.: Stability analysis of semiconductor laser with
phase-conjugate feedback. IEEE J. Quantum Electron 33, 1825–1831 (1997)

72. Murakami, A., Ohtsubo, J.: Synchronization of feedback-induced chaos in semicon-
ductor lasers by optical injection. Phys. Rev. A 65, 033826 (2002)

73. Ohtsubo, J.: Feedback induced instability and chaos in semiconductor lasers and their
applications. Opt. Rev. 6, 1–15 (1999)

74. Ohtsubo, J.: Chaos synchronization and chaotic signal masking in semiconductor las-
ers with optical feedback. IEEE J. Quantum Electron 38, 1141–1154 (2002)

75. Pan, M.W., Shi, B.P., Gray, G.R.: Semiconductor laser dynamics subject to strong
optical feedback. Opt. Lett. 22, 166–168 (1997)

76. Parlitz, U., Chua, L.O., Kocarev, L., et al.: Transmission of digital signals by chaotic
synchronization. Int. J. Bifurcation & Chaos 2, 973–977 (1992)

77. Paul, J., Lee, M.W., Shore, K.A.: 3.5-GHz signal transmission in an All-optical chao-
tic communication scheme using 1550-nm diode lasers. IEEE Photon Technol.
Lett. 17, 920–922 (2005)

78. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64,
821–824 (1990)

79. Petermann, K.: Laser diode modulation and noise. Kluwer, Dordrecht (1998)
80. Qi, B., Chi, Y.M., Lo, H.K., et al.: High-speed quantum random number generation

by measuring phase noise of a single-mode laser. Opt. Lett. 35, 312–314 (2010)
81. Reidler, I., Aviad, Y., Rosenbluh, M., et al.: Ultrahigh-speed random number genera-

tion based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 24102 (2009)
82. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)
83. Rukhin, A., et al.: A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications. NIST Special Publication 800-22, Revi-
sion 1a (2010)

84. Sano, T.: Antimode dynamics and chaotic itinerancy in the coherent collapse of semi-
conductor-lasers with optical feedback. Phys. Rev. A 50, 2719–2726 (1994)

85. Sargent III, M., Scully, M.O., Lamb, J.E.: Laser physics. Addison-Wesley, Massa-
chusetts (1974)

86. Shu, L., Costello Jr., D.J.: Error control coding: fundamentals and applications. Pren-
tice-Hall, New Jersey (1983)

87. Simpson, T.B., Liu, J.M.: Period-doubling cascades and chaos in a semiconductor la-
ser with optical injection. Phys. Rev. A 51, 4185–4185 (1995)

10 Hardware Implementation of Chaos-Secured Optical Communication Systems 373

88. Sivaprakasam, S., Shahverdiev, E.M., Spencer, P.S., et al.: Experimental demonstra-
tion of anticipating solution in chaotic semiconductor lasers with optical feedback.
Phys. Rev. Lett. 87, 4101–4103 (2001)

89. Takiguchi, Y., Liu, Y., Ohtsubo, J.: Low-frequency fluctuation and frequency-locking
in semiconductor lasers with long external cavity feedback. Opt. Rev. 6, 399–401
(1999)

90. Tang, S., Liu, J.M.: Message encoding-decoding at 2.5 Gbits/s through synchroniza-
tion of chaotic pulsing semiconductor lasers. Opt. Lett. 26, 1843–1845 (2001)

91. Tang, S., Liu, J.M.: Synchronization of high-frequency chaotic optical pulses. Opt.
Lett. 26, 596–598 (2001)

92. Tkach RW, Chraplyvy AR (1986) Regimes of feedback effects in 1.5 μm distributed
feedback lasers. J Lightwave Technol LT-4:1655–1661

93. Tokunaga, C., Blaauw, D., Mudge, T.: True random number generator with a metas-
tability-based quality control. IEEE J. Solid-State Circ. 43, 78–85 (2008)

94. Toral, R., Chakrabarti, A.: Generation of Gaussian distributed random numbers by us-
ing a numerical inversion method. Comp. Phys. Commun. 74, 327–334 (1993)

95. Tromborg, B., Osmundsen, J.H., Olesen, H.: Stability analysis for a semiconductor
laser in an external cavity. IEEE J. Quantum Electron QE-20, 1023–1031 (1984)

96. Uchida, A., Liu, Y., Davis, P.: Characteristics of chaotic masking in synchronized
semiconductor lasers. IEEE J. Quantum Electron 39, 963–970 (2003)

97. Uchida, A., Heil, T., Liu, Y., et al.: High-frequency broad-band signal generation us-
ing a semiconductor laser with a chaotic optical injection. IEEE J. Quantum Elec-
tron 39, 1462–1467 (2003)

98. Uchida, A., et al.: Fast physical random bit generation with chaotic semiconductor
lasers. Nature Photon 2, 728–732 (2008)

99. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al.: Entanglement-based
quantum communication over 144 km. Nature Phys. 3, 481–486 (2007)

100. Ushakov, O., Bauer, S., Brox, O., et al.: Self-organization in semiconductor lasers
with ultrashort optical feedback. Phys. Rev. Lett. 92, 043902 (2004)

101. Van Tartwijk, G.H.M., Agrawal, G.P.: Laser instabilities: a modern perspective. Prog.
Quantum Electron 22, 43–122 (1998)

102. Van Wiggeren, G.D., Roy, R.: Communications with chaotic lasers. Science 279,
1198–1200 (1998)

103. Vicente, R., Perez, T., Mirasso, C.R.: Open- versus close-loop performance of syn-
chronized chaotic external-cavity semiconductor lasers. IEEE J. Quantum Elec-
tron 38, 1197–1204 (2002)

104. Wayne, M.A., Kwiat, P.G.: Low-bias high-speed quantum random number generator
via shaped optical pulses. Opt. Express 18, 9351–9357 (2010)

105. Wiesner, S.: Conjugate coding. ACM Sigact News 15, 78–88 (1983)
106. Wilson, S.G.: Digital Modulation and Coding. Prentice-Hall, New Jersey (1996)
107. Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with applications

to secure communication systems. Int. J. Bifurcation & Chaos 3, 1619–1627 (1993)
108. Yousefi, M., Barbarin, Y., Beri, S.: New role for nonlinear dynamics and chaos in in-

tegrated semiconductor laser technology. Phys. Rev. Lett. 98, 044101 (2007)
109. Zhang, J.Z., Wang, A.B., Wang, J.F., et al.: Wavelength division multiplexing of

chaotic secure and fiber-optic communications. Opt. Express 17, 6357–6367 (2009)

L. Kocarev and S. Lian (Eds.): Chaos-Based Cryptography, SCI 354, pp. 375 – 395.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 11
Performance Evaluation of Chaotic and
Conventional Encryption on Portable and
Mobile Platforms

Rogelio Hasimoto-Beltran1, Fadi Al-Masalha2, and Ashfaq Khokhar2

1 Center for Research in Mathematics (CIMAT)
 hasimoto@cimat.mx
2 University of Illinois at Chicago (UIC)
 {falmas2,ashfaq}@uic.edu

Abstract. Protection of private user information in computers and communica-
tion networks has been one of the major concerns during the last decade. It has
become even more critical due to pervasive use of smart mobile devices, and is
exacerbated due to their limited processing and battery power needed to manage
complex encryption schemes, particularly for real-time multimedia applications
(audio and video). Secure multimedia communication systems require processing
of huge amounts of information at speeds ranging from Kilobits/sec (Kbs) to the
order of Megabits/sec (Mbs). Provisioning of security for such large volumes of
data in mobile devices may be simply infeasible when the complexity of related
operations is beyond the processing limit of such devices. In this chapter we eva-
luate the performance of different encryption schemes, including AES implemen-
tations and non-conventional chaotic encryption on different architectures. Our
experiments reveal that chaos-based schemes outperform the conventional AES
implementation in terms of CPU usage, encryption speed, and energy consump-
tion. Particularly they consume 300-400% less CPU power, and have over 250%
faster encryption speed. However, the performance also depends on the floating
point capability of the platform; a suitable scheme may be chosen depending on
the CPU power of platform. The performance results reported in this chapter are
based on experiments on contemporary desktops, laptops, netbooks, and cell
phones (Nokia N800 and N900).

1 Introduction

Two decades of active learning in chaos-based cryptography have fructified in
identifying some of the weaknesses and strengths of digital chaos theory applica-
tion in secure communication. One of the main concerns is that when chaos is

376 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

represented digitally, it suffers degraded distribution and reduced cycle length,
which severely affects the vulnerability of chaos based encryption systems [1-4].
On the positive side, however, digital chaos maintains the good properties re-
quired in cryptography, the most prominent being sensitivity to parameters, sensi-
tivity to initial conditions, and unpredictable trajectories [5].

Different solutions have been investigated to deal, to some extent, with the
digital degradation of chaos, including: periodic perturbations of the state variable
and/or parameter [3, 14, 23-24], the use of higher dimensional maps or multiple
one-dimensional maps [25-27], numerical and analytical cycle detection [28-31],
etc. Perturbation based schemes are among the most popular because of their abil-
ity to generate a totally different chaotic trajectory without considerably affecting
the performance of the encryption system.

With this broader understanding of digital chaos, the chaotic encryption com-
munity is undertaking the development of robust and high performance schemes
suitable for more demanding applications, such as multimedia communications
(audio, image and video transmission) [6-8], running under a wide range of plat-
forms, including those with limited processing power, e.g., handheld or mobile
devices [6]. Handheld devices using rechargeable battery units represent one of
the most convenient ways to access private information wirelessly (bank accounts,
bill paying, online browsing, video streaming, etc.) on anytime-anywhere basis.
These advantages come with intrinsic security risks; data transfer is ubiquitous,
and may be intercepted by malicious intruders. Protecting private user information
has been one of the major concerns during the last decade, and more recently the
efforts are being concentrated on mobile devices. This problem is further exacer-
bated by the growing prevalence of multimedia applications, where, at times,
secure streaming of large video/audio streams is desired.

There are two particular issues in securing information on mobile devices: 1)
lack of processor power to manage complex encryption schemes, particularly for
live streaming, and 2) limited battery power to manage not only the encryption
process, but also energy consuming computations such as video/audio encod-
ing/decoding. The problem gets worse in a more constrained environment such as
sensor networks [10], where memory storage is limited and battery power is diffi-
cult to replenish. Therefore, it is imperative that the encryption process must be
computationally simple (without compromising security) and fast to satisfy
current mobility or real time streaming demands.

Chaotic schemes for mobile or handheld devices can offer a good trade-off
between security and performance according to users’ needs and CPU power limi-
tations. However, one of the main issues in chaotic encryption is the use of float-
ing-point arithmetic, which may require additional hardware (and compatible
arithmetic operations between different processors) in order to run efficiently.
This concern is becoming less important because of the fact that current handheld
device technology in most cases includes a floating-point unit. For example, the
Texas Instrument OMAP3 3430 technology is used by the Motorola Droid, Mile-
stone, Palm Pre, Samsung i8910, and Nokia N900 cellular phones. Note that

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 377

hardware efficiency concerns are also valid for conventional encryption schemes
[11, 21]. For example, every implementation of AES (Advance Encryption Stan-
dard) is carefully targeted for a particular CPU architecture to speed up the most
demanding operations such as integer multiplication, memory access, bit shifting
and XOR [11].

We foresee chaos-based encryption as a viable alternative to traditional encryp-
tion schemes especially for real-time multimedia applications. In this chapter we
study the performance of chaos-based encryption [9] and different AES imple-
mentations on different computing platforms, such as desktops, laptops, netbooks,
and cell phones (Nokia N800 and N900). Several variables are analyzed in the ex-
periments such as encryption speed, CPU usage, and energy consumption. These
experiments provide a guideline to chaotic and conventional cryptography usabil-
ity under different hardware and application scenarios.

2 Chaotic and Conventional Encryption Schemes

This section describes the theoretical aspects of conventional and chaotic encryp-
tion schemes employed in the performance evaluation. In the case of AES, we
study the latest implementation proposed by Bernstein at al. [11], and other popu-
lar implementations of AES developed by Gladman [12], and PolarSSL [13]. In
the case of chaotic encryption, there are several good candidates to be included in
the evaluation process; however the scheme in [9] was selected for the following
reasons: a) it is a general purpose scheme for all media types (text, image, audio,
and video), b) authors report one of the best encryption speeds on different plat-
forms and operating systems, and c) it provides a good balance between security
and performance. Also, code availability was an important point in making the fi-
nal decision.

For the sake of completeness, we provide a detail description of the chaos-
based encryption proposed by Hasimoto [9]. For the case of AES, we only provide
a brief description of AES [20, 21], since it is a widely known scheme.

2.1 Chaotic Encryption System

As stated in the previous section, the digital degradation of chaos is a major con-
cern in developing robust chaotic encryption systems. Different solutions to this
problem have been employed in [9] to increase the system cycle length, the most
important are: a) an N-array of independently iterated maps, b) an intermittent 3-
level hierarchical perturbation scheme to change the system dynamics, and c) a
double feedback model that spreads out plaintext changes over the array of maps,
producing a totally different system trajectory. All these solutions work together to
provide system interdependencies, wherein the entire system (chaotic maps, ci-
phertext, feedback) reacts to any plaintext change in the case of attacks.

378 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

Fig. 1 Flow diagram of the Chaotic Map based Encryption/Decryption scheme.

The addition of system interdependencies is important for the overall security
of the system. The general idea is as follows. Maps inter-dependency is created by
taking a small fraction of the global feedback (total history of previous ciphertext
values) during the encryption process to perturb the trajectories of the N maps.
This implies that, any bit change in the plaintext will be propagated into every
single ciphertext and chaotic map (with now different dynamics). This represents
the first level of the hierarchical perturbation. The second level perturbation is

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 379

more drastic in the sense that it completely changes the system map variables (and
parameter if specified). These two perturbations are necessary to immediately
change the dynamics of the system when it gets trapped in a fixed point or short
length periodic window. The third level perturbation represents a whole system
perturbation, where the original system-key is updated. A general diagram of the
scheme is presented in Fig.1. A detailed description of the scheme in [9] is pre-
sented in the following subsections.

2.1.1 Logistic Map

The scheme in [9] is based on the logistic map represented by:

1 1(1), [1,4], [0,1]n n nX X X Xλ λ− −= − ∈ ∈ (1)

with corresponding bifurcation diagram depicted in Fig.2. As the parameter λ
increases from 1 to 4, the map experiences a period doubling to chaos [25]. In par-
ticular for λ ≥ 3.5699 (known as accumulation point) it presents a chaotic behav-
iour, however there are many periodic windows (with all kind of periods) that ap-
pear abruptly. A very well known and prominent period-3 window appears at

8284.381 =+=λ . Short period windows of the logistic map are avoided during
the encryption process, because they reveal statistical information useful for at-
tackers to break into the system. This problem can be alleviated by perturbing the
cycling chaotic signal with period T every Δ iterations, for Δ ≤ T [14]. The pertur-
bation drives the signal away from its cycle after I number of iterations, where I
depends directly on the perturbation magnitude [1]. Therefore, the new period in
the perturbed cycle becomes σΔ(2L -1) >> 2L , where σ is a positive integer and Δ
is the perturbation period. Fixed points (f(X) = X) are also present at 0=X and

λλ /)1(−=X , which define a regular pattern in the logistic map [15].

Fig. 2 Logistic map bifurcation diagram

380 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

2.1.2 System Initialization

Hasimoto’s scheme [9] is symmetric, that is the system-key (K) of size B bits,
for 128B ≥ and multiple of 32n = is shared between cipher and decipher.
K is employed for both the initialization of logistic maps (variables and parame-
ters) and a system Seed for a Pseudo-Random Number Generator (PRNG).
A PRNG is used to generate all random variables supporting the N-map system,
such as current number of active maps, initial global and local feedbacks, and sys-
tem perturbation frequencies. Note that any good PRNG can be used in the
scheme.

The value of Seed is calculated as follows:

(1) ... (/)n nSeed K K B n= ⊕ ⊕ (2)

where Kn(i) is the ith n-bit element of K (considered as an array of B/n elements)
and ⊕ is the eXclusive-OR (XOR) operator. The N-array of chaotic maps for

/N B n= is defined as (see Fig.3):

/2

/2
,0 /2

/2 /4
/2 /2

(2 1) / 2 ,

[(2) / 2 (2) /10 () / 2] [0.3187]
3.68 ,

10
1,2,...,

n

n
i n

hn n
n n

i

X K i

K i K i a b

MAX
i N

λ

= −

+ + ⊕
= + ⋅

=

 (3)

Fig. 3 System-key (K) partition for the creation of N variables (Xi,0) and corresponding pa-
rameters(λi).

where Xi,0 and iλ are the ith map initial variable and parameter respectively, with

,00.2 0.8iX≤ ≤ (except Xi,0 ≈ 0.5) and 3.68 3.9987iλ≤ ≤ for i jλ λ≠ and i j≠ ,

hn/2 is the number of digits in the largest decimal number represented by n/2 bits,
a b⊕ term is the XOR between the half-most and half-least significant bits

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 381

of Kn/2(2i) respectively, yielding an n/4 bits outcome, and MAX is the maximum

value of /2/2 /4
/2 /2[(2) / 2 (2) /10 () / 2] 10nhn n

n nK i K i a b+ + ⊕ . The valid interval for

λ is set between the merge point of the two main bifurcation bands found in the in-
terval 3.0 3.68λ< < and (strictly speaking) the highest real number less than 4.0
represented by the precision of the corresponding machine.

In order to increase the sensitivity of the system to a magnitude change in the
system-key, Xi,0 is iterated an RT=PRNG(Seed) random number of times over a
Network of Coupled Chaotic Maps (NCM) governed by a coupling transformation
over some defined neighborhood in the array [9]. New states represent the
weighted interaction between each individual map (local term) and the coupling
transformation (linear/nonlinear interaction term). When the weight of the cou-
pling is weak, the system can be regarded as a local map perturbed by contribu-
tions from other sites, thus maintaining its main individual properties. On the other
hand, when the weight of the coupling is large, the system reaches an asymptotic
collective behavior characterized by intermittent periodic chaotic cycles (cycling
chaos). Dellnitz, 1995 [16], found that when an individual map is active (presents
chaotic behavior); the rest of the system elements remains quiescent.

The NCM is defined as:

, , 1 , 1 1, 1 , 1

1, 1 , 1 , 1
1

(1)[(1)] (,...,),

1
(,...,)

i j i i j i j j N j

N

j N j i j
i

X X X H X X

H X X X
N

ε λ ε− − − −

− − −
=

= − − +

= ∑
 (4)

where j is the current map state iteration and H is the coupling function with cou-
pling parameterε . H takes the average of previous iteration map variables over all
maps. Eq. (4) guarantees that a one-bit change in K, will affect all maps variables
and therefore the system’s output (ciphertext). The output of Eq. (4) after RT itera-
tions becomes the initial state for each map in the encryption process, that
is ,0 , 1iX i N≤ ≤ .

2.1.3 Cipher/Decipher Scheme

The N-map array is used as an N circular list of ciphers, but only a subset
defined by a cipher window , {((1) mod) 1| 1}m kW i N k i k m= − + ≤ ≤ + − , for

[() mod] 1m PRNG Seed N= + and {1,2,..., }k N∈ is considered in the encryp-

tion process at a time (Fig.4). k represents the minimum index of Wm,k at a
given time and 1 m N≤ ≤ is the size of the window. For simplicity, the elements
of Wm,k are renamed by W(i), for 1 i m≤ ≤ and some N. W(i) represents the
ith element of Wm,k, i.e. if W3,5 = {5,1,2} and N=5, then W(1)=5, W(2)=1,
W(3)=2.

382 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

Fig. 4 Array of N chaotic maps viewed as a circular list. Current map window represents
the active maps in the encryption process.

Let j and l represent the system state (iteration) and plaintext-ciphertext abso-
lute indexes respectively ((1))l j m i= − + . For a fixed state j, the m ciphers in

Wm,k are defined by the following equation:

(), (), (),

((1) mod), ((2) mod),

(1), (), 1

(['] mod 2) '

([' '] mod 2)

([] mod 2),

1 , (1)

n
l W i j l W i j W i j

n
W i m j W i m j

n
W i j W i j

C C P X X

X X

C C

i m l j m i

+ +

− −

= = + ⊕

⊕ +

⊕ +

≤ ≤ = − +

 (5)

where Pl is the lth plaintext input, '
(),W i jX is the corresponding integer representa-

tion of (),W i jX using n bits, CW(i-1),j 1()lC −= is the previous ciphertext output (i-1)

in current iteration (jth), and CW(i),j-1 is the previous ciphertext output of the same ith
map, but from the j-1 iteration. CW(i-1),j and CW(i),j-1 represent the global and local
feedback respectively (Fig.5). The initial global feedback CW(i-1),j for the jth itera-
tion takes in the last ciphertext output of the previous iteration (CW(m),j-1) to spread
the system changes on to future ciphertexts and current m logistic map variables
(see next subsection). A total of mn bits are encrypted per iteration state j (n en-
crypted bits per map). Wm,k is periodically rotated one map at a time by setting

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 383

1k k= + (see Fig.4); when (N-k+1) < m, the cipher index wraps around taking
the corresponding first, second, up to the m-(N-k+1) initial maps (when k=N the
current cipher window is , { ,1,2,..., 1}m NW N m= −).

To increase the encryption system security, ciphertext output Cl = CW(i).j is
masked using two maps’ variables:

' ' '
(), ((1) mod),(') mod 2 ,M n

l l T T W i j W i m jC C X X X X += + = ⊕ (6)

Therefore, decipher cannot use M
lC directly to find its corresponding plaintext da-

ta, it needs to know '
TX .

Fig. 5 Diagram representation of global and local feedback

The corresponding decryption system can be written as:
'() mod 2M n

l l TC C X= − ;

(), (1), (), 1

' '
((1) mod), ((2) mod), (),

[' ([] mod 2)

([] mod 2)] mod 2 ,

1 , (1)

n
l l W i j W i j W i j

n n
W i m j W i m j W i j

P C X C C

X X X

i m l j m i

− −

+ +

= ⊕ ⊕ +

⊕ + −

≤ ≤ = − +

 (7)

Initial global and local feedbacks are calculated by:

0,0

,0

();

1,...,

();i i

global C PRNG Seed

for i N

local C PRNG Seed

= =
=

= =
 (8)

384 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

2.1.4 Three-Level Perturbation Scheme

Under external perturbations (plaintext or system-key attacks), the global feedback
in Eq. (5) will drive the original system trajectory into a different chaotic state.
There are two problems though; the transition change is slow and the chaotic sys-
tem (N-array) does not participate in the trajectory change (chaotic parameters
and variables stay unchanged). In order to speed up the system reaction time under
external perturbations, a three-level periodic perturbation scheme is proposed. The
first two perturbation levels are related to the system variables and the third one is
related to the system-key. In the first perturbation level, the trajectory of every
map is slightly modified to increase its cycle length [14, 17]; in the second pertur-
bation level the current system variable is randomly changed creating a totally
new trajectory for the system; and, in the third perturbation level the system-key
value is renewed using current system map variables. Third-level perturbation
represents a reset operation, since the entire encryption/decryption system parame-
ters are completely modified.

The first-level perturbation for the ith logistic map is expressed as:

8

/8

(), 1
1

(), 1 (), 1

()
, 1

10

n

W m j
l

W i j W i j h

C l

XP X i m
−

=
− −= + ≤ ≤

∑
 (9)

where CW(m),j-1(l) is the lth byte of the global feedback at the state j-1, and h8 is the
number of digits in the largest decimal number represented by 8 bits. We post-
process (), 1W i jXP − so that its first digit after the decimal point remains the same as

in (), 1W i jX − ; therefore 1
(), 1 (), 1() 10W i j W i jabs XP X −

− −− < (the perturbation signal must

be smaller than the chaotic signal to keep the good statistical properties of chaos
dynamics). Note that every single changed detected by the global feedback, it is
passed on to the array of chaotic maps. In the case of a differential attack, Eq. (9)
exacerbates every single plaintext change by disturbing not only future ciphertext
outputs through global and local feedback, but also the map variables in the cur-
rent cipher window. The combined effects (feedback and perturbation) generate
different trajectories for any pair of plaintexts when iterated by the system. An ad-
ditional benefit of involving CW(m),j in the perturbation process, is that in the long
run it has uniform distribution (see section 3), an important requirement for per-
turbation schemes [14].

Only one chaotic map may be enough if the chaotic signal reaction to Eq. (9)
were instantaneous. Unfortunately, it takes a certain number of iterations (depend-
ing on the perturbation magnitude) for a chaotic map to diverge from its original
signal trajectory. This reaction time may be dangerous under a differential or
plaintext attack if only one map is used in the encryption process (attacker may
find out current map’s parameters). To avoid this problem in one-dimensional
chaotic encryption systems, Pareek, et.al, [18] iterated the logistic map a random
number of times. This solution affected considerably the system execution time

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 385

and did not solve the security problem since the scheme was broken by [19]. The
use of m different chaotic maps producing m ciphertext values increases the num-
ber of variables to solve for the attacker during the reaction time without affecting
the system’s performance. Since we are not considering all possible chaotic flaws
in the logistic map, in the low probable case where the first-level perturbation
magnitude is very small for the entire m-array of chaotic maps (increasing the
chaotic reaction time) or when the m-array is in a short cycle state, then a second-
level perturbation comes in to play to complicate things up for the attacker by re-
setting the system map variables. This is the same as resetting the maps’ variables
maintaining the same parameters.

The second-level perturbation adds CW(m),j-1 to each map variable and cross-
iterate the outcome throughout the maps. For the W(i)th map in state j-1, the new
perturbed system variable (), 1W i jXP − is obtained by:

(), (), 1 (), (), 1

()

(), 1

1,

() ()

1,

. .(1)

W m k W i j W m k W i j

W l

W i j

For i m

C X floor C X

For l m

XP

γ

γ γ λ γ

γ

− −

−

=
= + − +

=
= −

=

 (10)

That is, new system variables are influenced by all maps in Wm,k and their corre-
sponding local feedback. For the next iteration XW(i),j-1 = XPW(i),j-1.

Since we are working with very long multimedia sequences (from minutes to
hours) and not checking for either bad chaotic points (periodic window, fixed
points, etc.) or perturbation frequency values, the system may face low chaotic
variation due to the low perturbation frequencies and/or small perturbation magni-
tudes in the first and second perturbation levels. To avoid this kind of vulnerabil-
ity, the third-level perturbation enters in action by replacing the system-key using
current map variables:

' '
1, , , ,[]j N jK K concatenate X X= ⊕ (11)

Immediately, the system (under a differential attack) turns into a chaotic behavior
and the system becomes protected. By using current map variables in the new K, it
is assured that any single change in the past be spread out into future ciphertext
generations. The new system-key goes through the same process as in the original
one (see Eq. (2)), including chaotic parameter and variable restrictions.

The perturbation cycles represented by PTl, 31 ≤≤ l , are selected randomly
to increase the system-key space in the case of brute force attack (the opponent
tries every possible system-key combination until the right one is found). We de-
fine the perturbation cycles as follows: PT1 = [PRNG(Seed) modulus 10] + 15,
PT2 = n1 .PT1, and PT3 =n2 .PT2, for n1 = [PRNG(Seed) modulus 64]+2 and n2
=[PRNG(Seed) modulus 128]+3. Less frequent perturbations have greater impact
on the system’s parameters. The value of PT1 is related to the sensitivity of the

386 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

logistic map to a magnitude change of 1/28 in the initial condition. For B=128 bits,
the minimum magnitude change of two system variables is ~10-3, which requires
about 10-15 map iterations for their trajectories to diverge chaotically [18]. This
result is important for the cipher in order to produce different trajectories when in-
put values differ in the least significant bits.

2.1.5 Security Analysis

The scheme described above has the following characteristics:

a) Distribution of ciphertexts is uniform and independent of the input plain-
text distribution (Fig.6).

b) Different systems keys and different plaintext produce totally different ci-
phertext, as shown in Figs. 7 and 8, respectively. On the average, 99.6% of
the total bytes and 50% of the total bits are changed during the encryption
process, fulfilling a basic requirement for secure cryptosystems.

c) Plaintext and corresponding ciphertext are statistically uncorrelated.

In the case of a brute force attack, a search of at least 2B key possibilities is needed
for B > 128 bits.

Fig. 6 Histogram of plaintext (left column) and corresponding ciphertext for two different
system-keys (center and right columns).

Fig. 7 Sensitivity to system-key changes. Plaintext (circled continuous line) encrypted with
two slightly different system-keys (least significant bit changed).

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 387

Fig. 8 Sensitivity to plaintext changes without perturbation scheme. Ciphertexts produced
by chosen plaintexts with the least significant bit changed.

2.2 Advanced Encryption Standard (AES)

AES is the encryption standard adopted by the U.S. government in 2001, for the
encryption of electronic data. It is based on the original proposal of Rijndael [20]
with cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in
blocks of 128 bits. Following the description in [21], AES operates on an internal
state of 128 bits, which is initially set to the plaintext block, and after transforma-
tions, becomes the output ciphertext block. The state is organized in a 4x4 array of
8-bit bytes, which is transformed according to a round function Nr times. The
number of rounds is Nr = 10 for 128-bit keys, Nr = 12 for 192-bit keys, and Nr =
14 for 256-bit keys. In order to encrypt, the state is first initialized, then the first
128-bits of the key are xored into the state, after which the state is modified Nr - 1
times according to the round function, followed by the slightly different final
round.

The round function consists of four steps: SubBytes, ShiftRows, MixColumns
and AddRoundKey�(except for the final round which omits the MixColumns
step). Each step operates on the state, at each round r, as follows:

1. SubBytes: substitutes every entry (byte) of the state with an S-box entry,
2. ShiftRows: cyclically left shifts every row i of the state matrix by i; 0 ≤ i ≤ 3,
3. MixColumns: multiplies each column, taken as a polynomial of degree less

than 4 with coefficients in 82
F , by a fixed polynomial modulo x4 + 1,

4. AddRoundKey: XORs the r-th round key into the state.

Each transformation has an inverse from which decryption follows in a straight-
forward way by reversing the steps in each round: AddRoundKey (inverse of it-
self), InvMixColumns, InvShiftRows, and InvSubBytes.

The key expansion into the Nr 128-bit round keys is accomplished using
a key scheduling algorithm, the details of which can be found in [21]. The

388 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

design of the key schedule allows for the full expansion to precede the round
transformations, which is advantageous if multiple blocks are encrypted using
the same key, while also providing the option for on-the-y key generation. On-
the-fly key generation proves useful in memory constrained environments such
as microcontrollers.

For 32-bit (and greater word length) processors, in [20] Daemen and Rijmen
detail a fast implementation method that combines the SubBytes, ShiftRows, and
MixColumns transformations into four 256-entry (each entry is 4 bytes) lookup
tables, Ti, 0 ≤ i ≤ 3. Following [21], the “T-table" approach reduces the round
transformations to updating the j-th column according to:

' ' ' ' 3
0, 1, 2, 3, 0 ,, , , , 0 3

i

T

j j j j i i i j CS S S S T S for j= +⎡ ⎤⎡ ⎤ = ⊕ ≤ ≤⎣ ⎦ ⎣ ⎦ (12)

Where
kjS ,

is the byte in the jth row and kth column of the state, and Ci is a constant

equivalently doing the ShiftRows in-place. After the columns are updated, the re-
maining transformation is AddRoundKey (which is a 4-byte look-up and xor per
column). Note, however, since the Ti’s are simply rotations of each other, some
implementations of (1) benefit from using a single table and performing the neces-
sary rotations.

2.2.1 Berstein’s Implementation of AES

It is important to point out that AES implementations are targeted to specific CPU
architectures. In [11], authors describe a new AES implementation that takes ad-
vantage of the architecture-dependent reduction of instructions used to compute
AES and the microarchitecture-dependent reduction of cycles used for those in-
structions. Authors report new software speed records than previous AES imple-
mentations for different CPUs: Motorola PowerPC G4 7410, ppc32 architecture,
Intel Pentium 4 f12, x86 architecture, Sun UltraSPARC III, sparcv9 architecture,
Intel Core 2 Quad Q6600 6fb, amd64 architecture, and AMD Athlon 64 X2 3800+
15/75/2, amd64 architecture. Even though no new techniques were proposed, Ber-
stein scheme combines previously known techniques to reduce the number of
CPU integer instructions, load instructions, etc used for AES. In particular, they
employed (whenever possible) a combined shift-and-mask instructions, combined
second-byte extraction instructions, padded instructions, combined load-XOR, etc.
to reduce the overall number of instructions required by AES.

Along with Berstein’s implementation, two other AES implementations
are employed in the performance evaluation, Gladman’s [12] and PolarSSL [13]
implementations. In particular, PolarSSL is a light-weight open source crypto-
graphic and Secure Socket Layer/Transport Layer Security (SSL/TLS) library
written in C language with embedded systems in mind. It has been ported to a
large number of architectures, including ARM, Power-PC, MIPS and Motorola
68000 [13].

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 389

3 Performance Evaluation

3.1 Methodology

To evaluate the performance of different encryption schemes reviewed in the pre-
vious section, we have developed implementations of these schemes on the fol-
lowing computing platforms: Dell desktop, Lenovo laptop, Asus netbook, Nokia
N800 and N900, all running a 32-bit architecture. Table 1 shows specifications of
each platform, the asterisk means a testbed with floating-point processor unit.
These platforms are chosen to reflect diversity in computation energy, battery ca-
pacity, and mobility characteristics. We evaluate and compare each scheme in
terms of CPU usage and encryption speed.

Table 1 Specifications of Different Platforms used in Experiments.

Testbed
CPU
Type

Clock
Speed

Memory
Operating

System

*Desktop
Intel

DuoCore 2
2.2 Ghz 3 GB Ubuntu 8.3

*Laptop
Intel

DuoCore 2
2.2 Ghz 2 GB Ubuntu 9.1

*NetBook
Intel
Atom

1.6 Ghz 1 Gb
Ubuntu
Netbook

Nokia N800
TI Omap

2420
333 Mhz 128 MB Maemo

*Nokia
N900

TI Omap3
3430

600 Mhz 256 MB Maemo OS 5

We installed Ubuntu Linux distribution on all devices except Nokia N800
which runs Maemo [22] distribution. Maemo is a mobile operating system for No-
kia PDAs based on Debian GNU/Linux operating system. Ubuntu implements bat-
tery management using the Advanced Configuration and Power Interface (ACPI),
which exports battery data via the /proc/acpi/battery file system. The data values
exported by ACPI expressed by millivolts and milliamps which can be converted
to Watt. Given the current voltage and amps of battery using ACPI values, we
compute energy consumed (in Watt Hour).

We conducted energy consumption tests on two devices only, i.e., laptop and
netbook, as these are equipped with batteries, while we conducted encryption
speed and CPU usage on all the four devices. We could not perform energy con-
sumption tests on Nokia devices due to unavailability of power monitoring tools.
Table 2 shows battery specification of laptop and netbook used in energy drain
tests.

390 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

Table 2 Features of Rechargeable Batteries used in Experiments

 Laptop Netbook
Battery

Capacity
4752 mAh 4400 mAh

Voltage 11100 mV 11100 mV
Type Lion Lion

We adopted the following methodology to measure energy consumption. Each
device is first fully charged, and each encryption schemes is modified so that it
runs in an infinite loop. For each scheme, we periodically polled (every 60 sec-
onds) the Linux ACPI values and computed energy usage. To measure the actual
energy used by encryption operation, each device is first fully charged and then
left on idle running. We periodically polled (every 60 seconds) the Linux ACPI
values and computed the energy consumption. The difference of the idle energy
and energy consumed during encryption operation is reported as the energy con-
sumed by the encryption scheme.

3.2 Results

Berstein’s implementation of AES accepts a key size of 128-bits. The initial set up
for Hasimoto’s chaotic schemes is a key size of B=384 bits, generating a 12-map
array of logistic maps, where each map encrypts n=32 bits (N=384/32=12 maps)
with double feedback for the dispersion of plaintext changes. The scheme only in-
cludes the first level perturbation scheme.

For the sake of clarity, speed and CPU usage on each platform are analyzed
first, followed by battery dissipation and CPU usage. Fig.9 compares the CPU us-
age at a constant rate for different streaming rates; this means that all implementa-
tions are processing the same amount of data over the same period of time. The
Chaotic encryption is ~4 times (400%) better in terms of CPU usage than Bern-
stein’s and Gladman’s AES implementations for the netbook and laptop platforms;
on the desktop Bernstein’s AES improved its performance, but still ~2 (200%)
times worse than chaotic encryption. OpenSSL’s performance was poor in all the
tests. As shown in Fig.10, the Chaotic encryption is by far the fastest scheme on
mid-level systems (desktop, laptop and netbook), with an average of 2.6 (260%)
times better performance than the fastest AES implementation as of 2008 [11]
(Bernstein). On Nokia N800 platform, Gladman’s obtained the best performance.
Among AES implementation, Bernstein’s implementation is clearly the best
choice for laptops and desktops, while Gladman’s implementation for netbooks
and both Nokia’s architectures N800 and N900. This is in accordance to the plat-
forms both implementations were targeted to.

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 391

Fig. 9 Performance results on different platforms in terms of encryption CPU usage.

In the Nokia N800 device, Gladman’s was the best, closely followed by Bern-
stein’s and Hasimoto’s chaotic scheme. We were expecting worse numbers for
chaotic encryption since the core of the process consist of floating-point computa-
tion, and Nokia N800 lacks math coprocessor in its TI Omap2420 CPU. For Nokia
N900, Hasimoto’s scheme takes again the lead with more than 300% better per-
formance than Berstein’s and Gladman’s implementations. The performance of
the chaotic scheme increased ~21 times from the Nokia N800 to N900, versus ~5
times for Bersteins’s and Gladman’s implementations. This result reveals the de-
pendency of chaotic schemes on hardware based floating-point computation.

392 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

Fig. 10 Performance results on different platforms in terms of encryption speed.

Fig.11 shows the battery energy consumption on battery operated devices.
Fig.11a shows the performance of encryption schemes in terms of energy usage
and the amount of data encrypted. A linear behavior for all implementation is ob-
served with AES implementation having the greatest slopes or energy consump-
tion. For example, Bernstein’s implementation encrypts 280 GBytes of data and
consumes over 32 Watt Hour of battery energy. On the other hand, chaotic scheme
encrypts 800 GBytes of data and consume in the same 32 Watt Hour of the en-
ergy. Fig. 11b shows energy consumed for different data sizes. Overall, Chaotic
encryption can process 300%-400% more information with the same energy
consumption than the AES implementations. While the trend is similar across

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 393

platforms, the differences are much sharper in the case of netbook. We attributed
this fact to the energy characteristics of the Atom processor that is more optimized
for the energy. These results show that choice of the encryption scheme for a de-
sired rate should depend on the hardware and battery capabilities of the platform.

Fig. 11 Performance results in terms of power consumed: a) encryption running for a fixed
time period (60 minutes) and corresponding bytes encrypted, b) encrypting different data
sizes.

4 Final Remarks

We have evaluated conventional (AES) and chaotic encryption schemes in terms
of encryption speed, CPU usage, and battery consumption for different platforms
having different characteristics. These included from high-end desktops to hand-
held devices. Both encryption technologies can deal with real-time multimedia
communications, but chaotic encryption performance was surprisingly good, out-
performing latest implementations of AES. Even though chaotic encryption in [9]
may not offer a robust security as provided by AES, it represents an excellent tra-
deoff between the security and performance needed in handheld devices and mul-
timedia encryption servers (where many streams need to be encrypted). For AES

394 R. Hasimoto-Beltran, F. Al-Masalha, and A. Khokhar

to get the reported performance, it needs to be optimized for a particular CPU ar-
chitecture; chaotic encryption program in [9] on the other side was not optimized
and the same program was used for all platforms.
For best results, chaotic encryption needs a hardware-based floating point unit.
This requirement can be reduced if chaos based encryption process is combined
with other useful techniques such as permutation as in [6].

References

1. Li, S., Mou, X., Ji, Z., Zhang, J., Cai, Y., Ji, Z., Zhang, J.: On the security of a chaotic
encryption scheme: problems with computerized chaos. Comput. Phys. Com-
mun. 153(1), 52–58 (2003)

2. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear
chaotic maps. Int. Journ. Bifurcat. Chaos 15(10), 3119–3151 (2005)

3. Binder, P.M., Jensen, R.V.: Simulating chaotic behavior with finite-state machines.
Physical Review A 34(5), 4460–4463 (1986)

4. Álvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosys-
tems. Int. J. Bifurcat. Chaos 16(8), 2129–2151 (2006)

5. Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circ. Syst. Mag. 1(3),
6–21 (2001)

6. Al-masalha, F., Khokhar, A., Hasimoto-Beltran, R.: Scalable Encryption of Variable
Length Coded Video Bit Streams. In: The 35th IEEE Conference on Local Computer
Networks, LCN 2010 (2010)

7. Li, S., Zheng, X., Mou, X., Cai, Y.: Chaotic encryption scheme for real-time digital
video. In: Real-Time Imaging VI. Proc. of the SPIE, vol. 4666, pp. 149–160 (2002)

8. Lian, S., Sun, J., Wang, Z., Dai, Y.: A fast video encryption scheme based-on chaos.
In: 8th IEEE International Conference on Control, Automation, Robotics and Vision
(2004)

9. Hasimoto-Beltran, R.: High-performance multimedia encryption based on chaos.
Chaos 18, 023110 (2008)

10. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D., Eason, G.: SPINS: Security
Protocols for sensor Networks. Wireless Networks 8, 521–534 (2002),
doi:10.1023/A:1016598314198

11. Bernstein, D.J., Schwabe, P.: New AES Software Speed Records. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–336.
Springer, Heidelberg (2008)

12. Gladman, B.: AES and combined encryption/authentication modes (2006),
http://fp.gladman.plus.com/AES/

13. PolarSSL, http://polarssl.org
14. Sang, T., Wang, R., Yan, Y.: Perturbance-based algorithm to expand cycle length cha-

otic key stream. Electron. Lett. 34, 873 (1998)
15. Clinton, J.S.: Chaos and Time-series Analysis. Oxford University Press, Oxford

(2006)
16. Dellnitz, M., Field, M., Golubitsky, M., Hohmann, A., Ma, J.: Cycling chaos. IEEE

Trans. Circuits Syst. I: Fundam. Theory Appl. 42, 821 (1995)
17. Cernak, J.: Digital generators of chaos. Phys. Lett. A 214, 151 (1996)

11 Performance Evaluation of Chaotic and Conventional Encryption on Portable 395

18. Pareek, N.K., Patidar, V., Sud, K.K.: Discrete chaotic cryptography using external
key. Phys. Lett. A 309, 75 (2003)

19. Álvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of a discrete chaotic
system using external key. Phys. Lett. A 319, 334 (2003)

20. National Institute of Standards and Technology (NIST): FIPS-197: Advanced Encryp-
tion Standard (AES), http://www.csrc.nist.gov/publications/fips/
fips197/fips/-197.pdf

21. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption. In:
Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer, Heidel-
berg (2010)

22. Maemo, http://maemo.org/
23. Hu, H., Xu, Y., Zhu, Z.: A method of improving the properties of digital chaotic sys-

tem. Chaos, Solitons Fractals 38, 439–446 (2008)
24. Cernak, J.: Digital generators of chaos. Phys. Lett. A 214, 151–160 (1996)
25. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D

chaotic cat maps. Chaos, Solitons Fractals 21, 749 (2004)
26. Fridrich, J.: Symmetric ciphers based on Two-dimensional chaotic maps. Int. J. Bifur-

cation Chaos 8, 1259–1284 (1998)
27. Mao, Y., Chen, G., Lian, S.: A novel fast image encryption scheme based on the 3D

chaotic baker map. Int. J. Bifurcat. Chaos 14(10), 3613–3624 (2004)
28. Xu, D., Li, Z., Bishop, S.R., Galvanetto, U.: Estimation of periodic-like motions of

chaotic evolutions using detected unstable periodic patterns. Patt. Recog. Lett. 23,
245–252 (2002)

29. Davidchack, R.L., Lai, Y.-C.: Efficient algorithm for detecting unstable periodic orbits
in chaotic systems. Phys. Rev. E 60, 6172–6175 (1999)

30. Saiki, Y.: Numerical detection of unstable periodic orbits in continuous-time dynami-
cal systems with chaotic behavior. Nonlin. Processes Geophys. 14, 615–620 (2007)

31. Pei, X., Dolan, K., Moss, F.: Counting unstable periodic orbits in noisy systems: A
scaling relation connecting experiment with theory. Chaos 8, 853–860 (1998)

Author Index

Addabbo, Tommaso 67
Al-Masalha, Fadi 375
Alvarez, Gonzalo 257
Amigó, José Maŕıa 257
Argyris, Apostolos 331
Arroyo, David 257

Deng, Shaojiang 137

Fort, Ada 67

Hasimoto-Beltran, Rogelio 375

Janjic, Predrag 1
Jiang, Jianguo 205

Khokhar, Ashfaq 375
Kocarev, Ljupco 1, 27

Lian, Shiguo 205
Liao, Xiaofeng 137

Li, Shujun 257
Liu, Ying 99

Mishkovski, Igor 27

Rocchi, Santina 67

Solak, Ercan 227
Solev, Dimitar 1
Su, Zhaopin 205

Tang, Wallace K.S. 99
Tanougast, Camel 297

Vignoli, Valerio 67

Xiao, Di 137

Zhang, Guofu 205

	Title page
	Preface
	Contents
	Introduction to Chaos
	Introduction
	Dynamical Systems
	Basic Concepts
	Complex Behaviour in One-Dimensional Maps
	Example: The Logistic and the H´enon maps
	Issue of Invertibility
	Fixed Points and Attracting Sets
	Stability of Fixed Points
	Stability of Periodic Orbits
	Invariant Sets and Manifolds

	Chaotic Behavior
	Main Features of Chaotic Dynamics
	Sensitive Dependence on Initial Conditions
	Bifurcations
	Transcritical bifurcation
	Period Doubling Bifurcation
	Local vs. Global Analysis
	Stretching and Folding
	Strange Attractors
	Symbolic Dynamics
	Invariant Densities and Measures

	References

	Chaos-Based Public-Key Cryptography
	Introduction
	Public-Key Encryption
	Chaotic Maps
	Chebyshev Maps
	Torus Automorphisms

	Floating Point Implementation of Cryptosystem Based on Chebyshev Polynomials
	Cryptosystem
	Correctness of the Cryptosystem
	Implementation
	Security Analysis of Cryptosystem

	Floating Point Implementation of Cryptosystem Based on Jacobian Elliptic Chebyshev Rational Maps
	Jacobian Elliptic Chebyshev Rational Maps
	Cryptosystem
	Correctness of the Cryptosystem
	Jacobian Elliptic Functions and Jacobian Elliptic Chebyshev Rational Maps
	Efficient Computation of $cn(ω, k), sn(ω, k)$ and $cn^−1(v, k)$
	Security Analysis of Cryptosystem
	Key Agreement by Using Rational Maps
	Entity Authentication Based on Chebyshev Polynomials

	Integer Implementation of Cryptosystem Based on Chebyshev Polynomials
	Floating-Point Arithmetic versus Integer Arithmetic
	Modified Chebyshev Polynomials
	Software Implementation
	ElGamal Public-Key Encryption with Chebyshev Polynomials
	RSA Public-Key Encryption with Chebyshev Polynomials

	Conclusion
	References

	Digitized Chaos for Pseudo-random Number Generation in Cryptography
	Introduction
	Linear vs. Nonlinear Congruential Generators
	Statistically Stable Mixing Systems
	Statistical Stability and Correlation Decay
	True Random Number Generation with R´enyi Maps

	Pseudo-chaotic Systems
	Almost-Uniform Measure-Preserving Chaotic Transformations
	Random Perturbations

	Nonlinear Recurrences Derived from the R´enyi Map
	Properties of the Digitized R´enyi Maps
	Pseudo-random Perturbation of Digitized Chaotic Systems: Setting the Period Length
	On the Hardware/Software Implementation of the Digitized R´enyi Map

	PRNGs Derived from the R´enyi Map: Design and Testing
	Domain Partitioning in Digitized Chaotic Systems

	Conclusions
	References

	Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography
	Introduction
	Formulation of High-Dimensional Chaotic Maps
	Multidimensional Generalization
	Spatial Extension

	Properties of the High-Dimensional Chaotic Maps
	Recurrence Plot
	Complexity Analysis
	Mixing Nature

	Cryptographic Applications
	32-Bit Chaos-Based Random Number Generator
	8-Bit Chaos-Based Random Number Generator Design
	Chaos-Based Image Encryption

	Conclusions
	References

	Chaos Based Hash Function
	Hash Function
	Simple Chaotic Map-Based Hash Function
	Typical Algorithm One
	Typical Algorithm Two and Its Variant
	Typical Algorithm Three
	Typical Algorithm Four
	Typical Algorithm Five

	Complex Map-Based Hash Function
	Typical Algorithm One (Using Hyper-Chaotic Map)
	Typical Algorithm Two (By Influencing the Parameter of Spatiotemporal Chaos)
	Typical Algorithm Three (By Adjusting the State of Spatiotemporal Chaos)

	Composite Map-Based Hash Function
	Algorithm Description
	The Performance Analysis

	Chaotic Neural Network-Based Hash Function
	Typical Algorithm One
	Typical Algorithm Two

	Parallel Keyed Hash Function Construction Based on Chaotic Maps
	Algorithm Structure
	Algorithm Description and Its Characteristics
	Performance Analysis

	Combined Chaotic Cryptographic and Hashing Scheme
	Wong’s Algorithm and Its Security Analysis
	Modified Scheme and Its Performance Analysis
	Other Ideas for Improvement

	Some Instructions on Chaos-Based Hash Function Construction
	References

	Chaos-Based Video Encryption Algorithms
	Introduction
	Some Requirements of Video Encryption
	Some Video File Formats
	MPEG-x
	H.26x

	Chaos-Based Video Encryption Algorithms
	Encrypting the Raw Video Data
	Encrypting the Video Data in Compression Process
	Encrypting the Compressed Video Data

	Performance Evaluation
	Security Analysis
	Encryption Speed Test
	Compression Ratio Test
	Error-Robustness Test

	Performance Comparison
	Discussions
	Conclusions
	References

	Cryptanalysis of Chaotic Ciphers
	Introduction
	Chaotic $Linear$ Ciphers
	Algebraic Attacks
	Reconstructing Small Permutations
	Algebraic Attack on a Cryptosystem Based on Discretized Two-Dimensional Chaotic Maps
	Algebraic Cryptanalysis of a Chaotic Cipher Based on Chaotic Map Lattices
	Cryptanalysis of Fridrich’s Image Cipher

	Conclusion
	References

	Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers
	Introduction
	Main Problems in Chaos-Based Cryptography
	Problems with the Selection of the Chaotic System
	Problems with the Encryption Architecture
	Implementation Problems

	Design Rules for Chaos-Based Cryptography
	Chaos-Based Cryptography: A Conclusion But Not the End of the Road
	Chaos-Based Cryptography on Integer Numbers and Finite Fields

	References

	Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems for Security Applications
	Introduction
	Related Works
	Chaotic Generators Based Encryption
	Tri-dimensional Chaotic Systems: Chaos Behavioral Modeling and Software Simulation

	Analog Hardware Implementation
	Application to COLPITTS System
	Synchronization Problems

	Digital Hardware Implementation
	Digital Implementation Based on Numerical Resolution of 3D Chaotic Systems
	Architecture Exploration

	Digital Programmable Hardware Implementation Using $FPGAs$
	FPGA Technology
	Case Study: Lorenz’s System
	RTL Architecture
	Logic Hardware Modeling and Simulation
	Evaluation on the Effect of the Digital Error Types
	Logic Synthesis Results
	Physical Implementation: Floorplanning, Placement and Routing
	Real Time Measurements
	Feed-Back Chaotic Synchronization

	Application Image Encryption Scheme
	Summary
	References

	Hardware Implementation of Chaos-Secured Optical Communication Systems
	Security in Optical Communications at the Physical Layer
	Quantum Cryptography
	Optical Chaos Encryption

	Optical Chaos Generators in Optical Communications
	Non-linear Dynamics in Semiconductor Lasers
	Non-linear Dynamics in Photonic Integrated Circuits

	Chaos Synchronization in Transmitter/Receiver Configurations
	Chaos Synchronization of Semiconductor Lasers with Optical Feedback
	Types of Synchronization
	Measuring Synchronization

	Chaos-Secured Optical Communication Systems
	Data Encoding Techniques
	EDFA-Based Chaotic Optical Communication Systems
	All-Optical Chaotic Optical Communication Systems
	Optoelectronic Chaotic Optical Communication Systems

	Optical-Chaos-Based Ultra-Fast Physical Random Bit Generators for Secure Communications
	Analog Signal Generation
	Single-Bit Sampling Systems
	Multi-Bit Sampling Systems
	Random Bit Generation and Verification
	Chaos-Based TRNGs Applied to Cryptography

	Conclusions
	References

	Performance Evaluation of Chaotic and Conventional Encryption on Portable and Mobile Platforms
	Introduction
	Chaotic and Conventional Encryption Schemes
	Chaotic Encryption System
	Advanced Encryption Standard (AES)

	Performance Evaluation
	Methodology
	Results

	Final Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

