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Preface

The EvoApplications conference brings together many researchers working in
all aspects of Evolutionary Computation. Evolutionary Computation is based
on the essential operators of natural evolution, i.e., reproduction, variation and
selection. Researchers working in the field of Evolutionary Computation use
these operators to solve all kinds of problems in optimization, machine learning
and pattern recognition. The present volume presents an overview of the latest
research in Evolutionary Computation. Areas where evolutionary computation
techniques have been applied range from telecommunication networks to complex
systems, finance and economics, games, image analysis, evolutionary music and
art, parameter optimization, scheduling and logistics. These papers may provide
guidelines to help new researchers tackling their own problem using Evolutionary
Computation.

The current volume represents roughly half of the papers accepted by EvoAp-
plications 2011. The conference EvoApplications has been in existence since 2010
but actually originated from EvoWorkshops in 1998. Thus, for over 13 years, this
event has brought together researchers from all around the world for an exchange
of ideas. The EvoApplications conference itself adapts to the need of the par-
ticipating researchers, with old events disappearing and new events appearing
covering hot research topics. Some events have matured into conferences such as
EuroGP in 2000, EvoCOP in 2004, and EvoBIO in 2007.

EvoApplications is part of EVO*, Europe’s premier co-located events in the
field of evolutionary computing (EC). EVO* was held from the 27th to the 29th
of April 2011 in the beautiful city of Torino (Italy), which, having been the first
capital city of Italy, held major celebrations for the 150th anniversary of national
unity. Evo* 2011 included, in addition to EvoApplications, EuroGP, the main
European event dedicated to genetic programming; EvoCOP, the main European
conference on evolutionary computation in combinatorial optimization; EvoBIO,
the main European conference on EC and related techniques in bioinformatics
and computational biology. The proceedings for all of these events, EuroGP 2011,
EvoCOP 2011 and EvoBIO 2011, are also available in the LNCS series (volumes
6621, 6622, and 6623, respectively).

Moreover, thanks to the large number of submissions received, the proceedings
for EvoApplications 2011 are divided into two volumes. The present volume, which
contains contributions for EvoCOMNET, EvoFIN, EvoHOT, EvoMUSART,
EvoSTIM and EvoTRANSLOG; and volume one (LNCS 6624), which contains
contributions for EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE,
EvoNUM and EvoSTOC.

The central aim of the EVO* events is to provide researchers, as well as
people from industry, students, and interested newcomers, with an opportunity
to present new results, discuss current developments and applications, or to
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simply become acquainted with the world of EC. Moreover, it encourages and
reinforces possible synergies and interactions between members of all scientific
communities that may benefit from EC techniques.

EvoApplications 2011 consisted of the following individual events:

– EvoCOMNET, the 8th European Event on the Application of Nature-Inspired
Techniques for Telecommunication Networks and Other Parallel and Dis-
tributed Systems

– EvoCOMPLEX, the 2nd European Event on Evolutionary Algorithms and
Complex Systems

– EvoFIN, the 5th European Event on Evolutionary and Natural Computation
in Finance and Economics

– EvoGAMES, the 3rd European Event on Bio-inspired Algorithms in Games
– EvoHOT, the 6th European Event on Bio-inspired Heuristics for Design Au-

tomation
– EvoIASP, the 13th European Event on Evolutionary Computation in Image

Analysis and Signal Processing
– EvoINTELLIGENCE, the 2nd European Event on Nature-Inspired Methods

for Intelligent Systems
– EvoMUSART, the 9th European Event on Evolutionary and Biologically

Inspired Music, Sound, Art and Design
– EvoNUM, the 4th European Event on Bio-inspired Algorithms for Continu-

ous Parameter Optimization
– EvoSTIM, the 6th European Event on Scheduling and Timetabling
– EvoSTOC, the 8th European Event on Evolutionary Algorithms in Stochas-

tic and Dynamic Environments
– EvoTRANSLOG, the 5th European Event on Evolutionary Computation in

Transportation and Logistics

EvoCOMNET addresses the application of EC techniques to problems in dis-
tributed and connected systems such as telecommunication and computer net-
works, distribution and logistic networks, interpersonal and inter-organizational
networks, etc. To address the challenges of these systems, this event promotes the
study and the application of strategies inspired by the observation of biological
and evolutionary processes, which usually show the highly desirable character-
istics of being distributed, adaptive, scalable and robust.

EvoCOMPLEX covers all aspects of the interaction of evolutionary algo-
rithms (and metaheuristics in general) with complex systems. Complex sys-
tems are ubiquitous in physics, economics, sociology, biology, computer science
and many other scientific areas. Typically, a complex system is composed of
smaller aggregated components, whose interaction and interconnectedness are
non-trivial. This leads to emergent properties of the system, not anticipated by
its isolated components. Furthermore, when the system behavior is studied from
a temporal perspective, self-organization patterns typically arise.

EvoFIN is the only European event specifically dedicated to the applications
of EC, and related natural computing methodologies, to finance and economics.
Financial environments are typically hard, being dynamic, high-dimensional,
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noisy and co-evolutionary. These environments serve as an interesting test bed
for novel evolutionary methodologies.

EvoGAMES aims to focus the scientific developments onto computational
intelligence techniques that may be of practical value for utilization in existing
or future games. Recently, games, and especially video games, have become an
important commercial factor within the software industry, providing an excellent
test bed for application of a wide range of computational intelligence methods.

EvoHOT focuses on all bio-inspired heuristics applied to the electronic de-
sign automation. The event’s goal is to show the latest developments, industrial
experiences and successful attempts to evolve rather than design new solutions.
EvoHOT 2011 allowed one both to peek into the problems that will be faced in
the next generation of electronics, and to demonstrate innovative solutions to
classic CAD problems, such as fault tolerance and test.

EvoIASP, the longest-running of all EvoApplications which celebrated its
thirteenth edition this year, has been the first international event solely dedicated
to the applications of EC to image analysis and signal processing in complex
domains of high industrial and social relevance.

EvoINTELLIGENCE is devoted to the use of nature-inspired methods to cre-
ate intelligent systems. The scope of the event includes research in evolutionary
robotics, artificial life and related areas. EvoIntelligence research also includes
research in creating intelligent behavior that can be found in everyday devices
such as a digital video recorder or smart phone.

EvoMUSART addresses all practitioners interested in the use of EC tech-
niques for the development of creative systems. There is a growing interest in
the application of these techniques in fields such as art, music, architecture and
design. The goal of this event is to bring together researchers that use EC in
this context, providing an opportunity to promote, present and discuss the lat-
est work in the area, fostering its further development and collaboration among
researchers.

EvoNUM aims at applications of bio-inspired algorithms, and cross-fertiliza-
tion between these and more classic numerical optimization algorithms, to con-
tinuous optimization problems in engineering. It deals with theoretical aspects
and engineering applications where continuous parameters or functions have to
be optimized, in fields such as control, chemistry, agriculture, electricity, building
and construction, energy, aerospace engineering and design optimization.

EvoSTIM presents an opportunity for EC researchers in the inter-related
areas of planning, scheduling and timetabling to come together, present their
latest research and discuss current developments and applications.

EvoSTOC addresses the application of EC in stochastic and dynamic en-
vironments. This includes optimization problems with changing, noisy and/or
approximated fitness functions and optimization problems that require robust
solutions. These topics recently gained increasing attention in the EC commu-
nity and EvoSTOC was the first event that provided a platform to present and
discuss the latest research in this field.
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EvoTRANSLOG deals with all aspects of the use of evolutionary computa-
tion, local search and other nature-inspired optimization and design techniques
for the transportation and logistics domain. The impact of these problems on the
modern economy and society has been growing steadily over the last few decades,
and the event aims at design and optimization techniques such as EC approaches
allowing the use of computer systems for systematic design, optimization and
improvement of systems in the transportation and logistics domain.

Continuing in the tradition of adapting the list of the events to the needs
and demands of the researchers working in the field of EC, two events were
resumed this year: EvoHOT, the 6th European Event on Bio-inspired Heuristics
for Design Automation, and EvoSTIM, the 6th European event on Scheduling
and Timetabling.

The number of submissions to EvoApplications 2011 was again high, cumu-
lating 162 entries (with respect to 143 in 2009 and 191 in 2010). The following
table shows relevant statistics for EvoApplications 2011, where the statistics for
the 2010 edition are also reported:

Event
2011 Previous edition

Submissions Accept Ratio Submissions Accept Ratio
EvoCOMNET 15 8 53% 17 12 71%
EvoCOMPLEX 11 5 45% 12 6 50%
EvoENVIRONMENT - - - 5 4 80%
EvoFIN 8 6 75% 17 10 59%
EvoGAMES 17 11 65% 25 15 60%
EvoHOT 7 5 71% - - -
EvoIASP 19 7 37% 24 15 62%
EvoINTELLIGENCE 5 3 60% 8 5 62%
EvoMUSART 43 24 56% 36 16 44%
EvoNUM 9 5 56% 25 15 60%
EvoSTIM 9 4 44% - - -
EvoSTOC 8 5 63% 11 6 54%
EvoTRANSLOG 11 4 36% 11 5 45%
Total 162 87 54% 191 109 57%

As for previous years, accepted papers were split into oral presentations and
posters. However, this year, the paper length for these two categories was the
same for all the events. The low acceptance rate of 54% for EvoApplications 2011,
along with the significant number of submissions, is an indicator of the high qual-
ity of the articles presented at the events, showing the liveliness of the scientific
movement in the corresponding fields.

Many people helped make EvoApplications a success. We would like to thank
the following institutions:

– The University of Torino - School for Biotechnologies and Molecular Biotech-
nology Center, for supporting the local organization
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– The Human Genetics Foundation of Torino (HuGeF), the Museum of Human
Anatomy (“Luigi Rolando”) and the Museum of Criminal Anthropology
(“Cesare Lombroso”) for their patronage of the event

– The Centre for Emergent Computing at Edinburgh Napier University, UK,
for administrative help and event coordination

We want to especially acknowledge our invited speakers: Craig Reynolds (Sony
Computer Entertainment, USA) and Jean-Pierre Changeux.

Even with an excellent support and location, an event like EVO* would
not have been feasible without authors submitting their work, members of the
Programme Committees dedicating energy in reviewing those papers, and an
audience. All these people deserve our gratitude.

Finally, we are grateful to all those involved in the preparation of the event,
especially Jennifer Willies for her unfaltering dedication to the coordination of
the event over the years. Without her support, running such a type of conference
with a large number of different organizers and different opinions would be un-
manageable. Further thanks to the local organizer Mario Giacobini for making
the organization of such an event possible and successful. Last but surely not
least, we want to especially acknowledge Penousal Machado for his hard work as
Publicity Chair and webmaster (assisted by Pedro Miguel Cruz and João Bicker),
and Marc Schoenauer for his continuous help in setting up and maintaining the
MyReview management software.

April 2011 Cecilia Di Chio Christian Prins
Anthony Brabazon Juan Romero

Gianni Di Caro Giovanni Squillero
Rolf Drechsler Ernesto Tarantino

Muddassar Farooq Andrea G. B. Tettamanzi
Jörn Grahl Neil Urquhart

Gary Greenfield A. Şima Uyar
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Nicolas Monmarchè University of Tours, France
Gary Nelson Oberlin College, USA
Luigi Pagliarini Pescara Electronic Artists Meeting and

University of Southern Denmark, Italy
Alejandro Pazos University of A Coruna, Spain
Somnuk Phon-Amnuaisuk University Tunku Abdul Rahman, Malaysia
Rafael Ramirez Pompeu Fabra University, Spain
Juan Romero University of A Coruna, Spain
Brian Ross Brock University, Canada
Artemis Sanchez Moroni Renato Archer Research Center, Brazil
Antonino Santos University of A Coruna, Spain
Benjamin Schroeder Ohio State University, USA
Jorge Tavares University of Coimbra, Portugal
Stephen Todd IBM, UK
Paulo Urbano Universidade de Lisboa, Portugal
Anna Ursyn University of Northern Colorado, USA
Maria Verstappen Independent Artist, The Netherlands
Rodney Waschka II North Carolina State University, USA
Gerhard Widmer Johannes Kepler University Linz, Austria

EvoNUM Programme Committee

Eva Alfaro Instituto Tecnológico de Informática, Spain
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XX Organization

Hans-Georg Beyer Vorarlberg University of Applied Sciences,
Austria

Ying-ping Chen National Chiao Tung University, Taiwan
Carlos Cotta Universidad de Malaga, Spain
Marc Ebner Universität Würzburg, Germany
Gusz Eiben Vrije Universiteit Amsterdam, The Netherlands
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Investigation of Hyper-Heuristics for Designing
Survivable Virtual Topologies in Optical WDM

Networks

Fatma Corut Ergin, A. Şima Uyar, and Ayşegül Yayimli

Istanbul Technical University
fatma.ergin@marmara.edu.tr,
{etaner,gencata}@itu.edu.tr

Abstract. In optical WDM networks, a fiber failure may result in a seri-
ous amount of data loss, hence, designing survivable virtual topologies is
a critical problem. We propose four different hyper-heuristic approaches
to solve this problem, each of which is based on a different category of
nature inspired heuristics: evolutionary algorithms, ant colony optimiza-
tion, simulated annealing, and adaptive iterated constructive search are
used as the heuristic selection methods in the hyper-heuristics. Exper-
imental results show that, all proposed hyper-heuristic approaches are
successful in designing survivable virtual topologies. Furthermore, the
ant colony optimization based hyper-heuristic outperforms the others.

Keywords: Optical networks, WDM, survivable virtual topology de-
sign, hyper-heuristics.

1 Introduction

In today’s world, the steady increase in user demands of high speed and high
bandwidth networks causes researchers to seek out new methods and algorithms
to meet these demands. The most effective medium to transmit data is the fiber.
Optical networks [8] are designed for the best usage of the superior properties
of the fiber, e.g. high speed, high bandwidth, physical strength, etc. Today, with
the help of the wavelength division multiplexing (WDM) technology, hundreds
of channels can be built on a single fiber. WDM is a technology in which the
optical transmission is split into a number of non-overlapping wavelength bands,
with each wavelength supporting a single communication channel operating at
the desired rate. Since multiple WDM channels can coexist on a single fiber, the
huge fiber bandwidth can be utilized.

A wavelength-routed WDM network provides end-to-end optical connections
between two nodes in the network that are not necessarily connected directly
by a fiber in the physical layer. These optical connections are called lightpaths.
Two nodes become virtually neighbors when a lightpath is set up between them.
More than one lightpath, each operating on different wavelengths, can be routed
on the same fiber. All the lightpaths set up on the network form the virtual

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 1–10, 2011.
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2 F.C. Ergin, A. Şima Uyar, and A. Yayimli

Fig. 1. a. Physical Topology, b. Virtual Topology, c. Survivable Mapping, d. Unsur-
vivable Mapping

topology (VT). Given the physical parameters of the network (physical topology,
optical transceivers on the nodes, number of wavelengths that can be carried on
the fibers, etc.) and the mean traffic intensities between the nodes, the problem
of determining the lightpaths to be set up on the physical topology is known as
the VT design problem.

In a WDM network, failure of a link (fiber) may result in the failure of several
lightpaths routed through this link, which leads to several terabits of data loss.
Survivable VT design aims to provide a continuous connectivity, using less re-
sources. The continuous connectivity is ensured by designing the VT such that
the VT remains connected in the event of a single link failure.

Assume that we have a physical network topology as in Figure 1.a and the
virtual network topology to be routed on this physical topology is designed as
in Figure 1.b. To obtain a survivable design of this VT, the mapping may be as
in Figure 1.c. In this survivable mapping, a single failure on any physical link
does not disconnect the VT. However, if the routing of only one lightpath is
changed, e.g., as in Figure 1.d, we end up with an unsurvivable mapping. In this
case, if a failure occurs on the physical link between nodes 4 and 5, the nodes
connected with lightpaths b and g will not be able to communicate and node 5
will be disconnected from the rest of the network.

Survivable VT design consists of four subproblems: determining a set of light-
paths (forming the VT), routing these lightpaths on the physical topology, so
that any single fiber cut does not disconnect the VT, assigning wavelengths, and
routing the packet traffic. Each of these subproblems can be solved separately.
However, they are not independent problems and solving them one by one may
degrade the quality of the final result considerably. Furthermore, the survivable
VT design is known to be NP-complete [2]. Because of its complexity, for real-life
sized networks, it is not possible to solve the problem optimally in an accept-
able amount of time using classical optimization techniques. In this study, we
try to solve the survivable VT design problem as a whole using different hyper-
heuristic (HH) [1] approaches. A HH is a method used to select between the
low-level heuristics (LLH) at each step of an optimization process. This way, the
best features of different heuristics can be combined.
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In this study, we propose four HH approaches to design a survivable VT for a
given physical topology, while minimizing resource usage. The proposed HHs use
four different methods for heuristic selection: evolutionary algorithms (EA) [4],
simulated annealing (SA) [6], ant colony optimization (ACO) [3], and adaptive
iterated constructive search (AICS) [6]. From these methods, SA and EA are
perturbative search methods, while AICS and ACO belong to the group of con-
structive search algorithms. Furthermore, SA and AICS are single point search
methods, whereas, EA and ACO work on a population of solution candidates.

The rest of the paper is organized as follows: The survivable VT design prob-
lem is defined in Section 2. In Section 3, a detailed explanation of the approaches
we propose to solve the problem is given. The experimental results are presented
in Section 4. Section 5 concludes the paper.

2 Survivable Virtual Topology Design Problem

In optical networks, any damage to a physical link (fiber) on the network causes
all the lightpaths routed through this link to be broken. Since huge amounts
of data (e.g. 40 Gb/s) can be transmitted over each of these lightpaths, a fiber
damage may result in a serious amount of data loss. Several different protection
mechanisms have been proposed [7] for the fiber and/or other network equipment
failures. Basically, there are two approaches for the fiber failure: 1) Survivability
on the physical layer 2) Survivability on the virtual layer.

In the first approach, each connection passing through the fiber, i.e. the light-
path, is protected by assigning backup lightpaths that are disjointly routed from
the connection’s first lightpath. On the other hand, the second approach ensures
the VT to be connected even in the failure of any single physical link. The first
approach provides survivability by providing extra routes for each lightpath in
the VT, however, with a cost of a high number of unemployed network resources.
Thus, it offers an expensive solution for applications which may not need a high
level of protection. The second approach, which has attracted attention espe-
cially in recent years, is a cost effective solution. Today, most applications are
tolerant to latencies of several minutes of repair time needed by the packet layer
(web search, file transfer, messaging, etc.), as long as the network connection is
not terminated. This approach uses less network resources than the first one,
thus, it enables service providers to offer a more economic service to their users.

Solving the survivable VT design problem as a whole is NP-complete [2].
Therefore, most of the previous studies on this problem consider only the sur-
vivable VT mapping subproblem [5]. There are only two studies in literature
which try to solve all the subproblems together: a tabu search heuristic [9] and
an ILP formulation [2]. The tabu search heuristic in [9] is constrained with small
nodal degrees (up to 5) of VTs. Similarly, because of the problem complexity,
the ILP method in [2] can solve very small problem instances of up to 4 node
physical topologies, optimally.
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2.1 Formal Problem Definition

The survivable VT design problem is defined as follows:
Given:

– Physical topology: Nodes and physical links that connect the nodes,
– Average traffic rates between each node pair,
– Maximum number of lightpaths that can be established on a node, i.e. the

number of transceivers per node,
– Lightpath bandwidth capacity

Find:

– A collection of lightpaths to be established as a VT
– A survivable mapping (routing of the lightpaths over the physical topology,

and wavelength assignment)
– A suitable routing of the packet traffic over the VT

The detailed ILP formulation for the survivable VT design problem can be found
in [2]. Based on this formulation, the objective is to minimize the resource usage
of the network, i.e. the total number of wavelength-links used in the physical
topology. A wavelength-link is defined as a wavelength used on a physical link.
For example, in Figure 1.c, 2 wavelength-links are used on the link between nodes
1 and 2, 1 wavelength-link is used on the link between nodes 1 and 3, ..., and a
total of 9 wavelength-links are used in the physical topology.

3 Proposed Solution to the Survivable Virtual Topology
Design Problem

To solve the survivable VT design problem, we use four HH approaches, each
of which is based on a different type of nature inspired heuristic (NIH), used as
the heuristic selection method. These NIHs are: evolutionary algorithms (EA),
ant colony optimization (ACO), adaptive iterated constructive search (AICS),
and simulated annealing (SA). Each method belongs to a different category of
search approaches:

1. EA: population based, perturbative search
2. ACO: population based, constructive search
3. SA: single point perturbative search
4. AICS: single point, constructive search

Given the traffic matrix, the first step is to determine a suitable VT. For this
subproblem, we selected three commonly used VT design heuristics as LLHs. At
each step of the solution construction, a LLH is used to choose the next set of
node pairs to establish a lightpath in between. The first LLH chooses the nodes
which have the maximum single direction traffic demand between them. The
second LLH considers the maximum bidirectional total traffic demand between
node pairs. The third LLH chooses a node pair randomly. These three LLHs will
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be abbreviated as MAX SNG, MAX TOT, and RND, respectively for the rest
of the paper. The lightpaths are established, such that, the in and out degrees
of the nodes do not exceed the maximum number of transceivers on each node.
In a preliminary study, we used two more LLHs to determine the nodes to
add a lightpath. The first one chooses the node pairs with the minimum single
direction traffic demand between them and the second one chooses those with
the minimum bidirectional total traffic demand in between. The results showed
that these LLHs do not improve the solution quality. Therefore, in this study we
do not work with these LLHs.

The VT routing and wavelength assignment (mapping) subproblem is solved
in our previous work [5] using ACO, which provides high quality solutions in a
relatively small amount of time. Therefore, we use the same ACO approach to
solve this subproblem in this study, too.

Traffic routing is applied in a straightforward way. The shortest path routing
heuristic [8] is used for routing the packet traffic.

In HHs, the quality of the solutions is determined through a fitness function. In
this study, the fitness of a solution is measured as the total number of wavelength-
links used throughout the network, which is referred to as resource usage. The
objective of the survivable VT design problem is to minimize this resource usage
while considering the survivability and the capacity constraints. Resource usage
is calculated by counting the number of physical links that are used by the
lightpaths. An infeasible solution can either be penalized by adding a value to
the fitness function, or can be discarded. In our HH algorithms, if a solution
is found to be infeasible during the phases of creating a VT and routing the
lightpaths, it is discarded. In the next stage, if the traffic cannot be routed over
the physical topology, a penalty value proportional to the amount of traffic that
cannot be routed, is added to the fitness of the solution.

A solution candidate is represented as an array of integers showing the or-
der of LLHs to select lightpaths to be established. Since there are 3 different
LLHs, the integers can have values between 1 and 3. When a lightpath between
two selected nodes is established, the lightpath is assumed to be bidirectional.
Therefore, a tranceiver at both ends is used. The length of the solution ar-
ray is equal to the maximum number of lightpaths that can be established,
i.e. number of transceivers on each node ∗ number of nodes/2. For example,
in a network with 6 nodes and 3 transceivers per node, each solution candidate
is of length 6*3/2=9. If a solution candidate is represented with an array of
[2 1 1 3 2 3 2 2 2], this means that, first a lightpath will be selected using the
second LLH, then the next two using the first, continuing with the third, second,
... LLHs. While adding the lightpaths, the transceiver capacity constraint is han-
dled. If the lightpath added according to the corresponding LLH results in using
more than the existing number of transceivers in one or both ends, this light-
path is not added to the VT and the algorithm continues with the next LLH
in the solution array. The lightpath capacity is 40 Gb/s and the traffic flows
between the nodes is routed through the established lightpath between them.
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Algorithm 1. General flow for the survivable VT design algorithm
Input: physical topology and traffic matrix
Output: a survivable VT

1: repeat
2: use HHs to generate a VT
3: use ACO to find a survivable mapping of lightpaths on the physical topology
4: use shortest path heuristic to route traffic on the physical topology
5: calculate fitness of the solution candidate
6: apply NIH operators
7: until a predefined number of solutions are generated

The algorithm establishes lightpaths until either the end of the solution array is
reached or until no traffic remains in the traffic matrix.

For each solution candidate produced by the HH, the corresponding VT is
determined using the method explained above. Then, if the generated VT is
not at least 2-connected (at least 2 link-disjoint paths for packet traffic exist
between each node pair), new lightpaths are added subject to the transceiver
capacity until the VT becomes 2-connected. For the nodes that have a degree
lower than two, a new lightpath is added between this node and the node with
the highest traffic demand in between. Next, the best mapping for the VT is
found using ACO [5]. Then, the packet traffic is routed through the shortest
paths starting from the node pair with the largest traffic demand. Finally, the
fitness is calculated as the total amount of resource usage, i.e. the number of
wavelength-links used throughout the network. The general flow of the algorithm
is given in Algorithm 1.

3.1 Evolutionary Algorithms as a HH

We use a steady-state EA with duplicate elimination. After generating an initial
set of random solution candidates, the EA operators, i.e. tournament selection,
uniform crossover, and gene mutation, are applied and new solution candidates
are generated. Gene mutation is defined as changing a LLH in the selected point
of the string with another randomly determined LLH. Initial population of so-
lution candidates (individuals) is generated randomly.

3.2 Ant Colony Optimization and Adaptive Iterated Constructive
Search as HHs

ACO and AICS are very similar in the way they solve the problem. We can
say that AICS is a form of ACO which uses only one ant. We use the elitist
ant system (EAS) as the ACO variation, based on the results of our previous
study [5], which show that this variation performs better than the others on the
survivable VT mapping subproblem. However, there is only one ant in AICS,
and the AS is applied as the ACO variation.
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Initially, each ant iteratively adds a random LLH to its partial solution. The
solution construction terminates when a solution array with a length equal to
the maximum number of lightpaths is generated. No constraint is applied to the
solution in the construction phase. Since there is no heuristic information, the
solution construction only depends on the pheromone trail. The pheromone trails
τij we use in this paper refer to the desirability of using the jth LLH to add the
ith lightpath. Pheromone trails are initialized using the initial random solutions
of the ants. Then, they are modified each time that all ants have constructed a
solution.

3.3 Simulated Annealing as a HH

We use a non-standard SA where the neighborhood operator is modified over
time. The neighborhood operator is defined similar to the mutation operator in
the EA-based HH, where with a given mutation probability, a randomly chosen
LLH on the solution candidate is replaced by another LLH. The difference is
that, we define a larger mutation probability in the beginning of the SA. The
mutation probability is decreased by a predefined factor each time after 5 solution
candidates are generated. This allows us to have a high exploration rate in the
beginning of the search while focusing on exploitation towards the end. In our
study, we used the formula given in [10] to calculate the initial temperature.

4 Experimental Results

We present the experimental results for a 24-node 43-link telco network [8], which
is a fairly large-sized network for this problem. For the experiments, we use 20
different traffic matrices, randomly generated according to a frequently-used
traffic generation method [8], where, 70% of the traffic is uniformly distributed
over the range [0, 0.5 Gb/s] and 30% of the traffic is uniformly distributed over
the range [0, 5 Gb/s]. The lightpath channel capacity is chosen as 40 Gb/s, which
is typical in real-world networks.

First, we performed tests to see the performance of each LLH separately on the
problem. For this test, only one LLH is used to generate the complete solution.
Tests are run once for each LLH and traffic matrix pair.

Next, for the second group of experiments, we perform tests to find good
parameter settings for the approaches used as heuristic selection methods in the
HHs. We run the program 20 times for each tried parameter set.

As a result of parameter setting tests of EA, we selected 10 as the population
size, and 1/l, as the mutation probability, where l is the solution array length, and
0.8 as the crossover probability. The tests show that no significant improvement
is obtained after a total of 100 individuals are created in the EA. Therefore, each
run is terminated after 100 individuals are generated.

For the AICS parameters, the test results show that the value of q0 does not
affect the solution quality significantly. However, a slightly better solution quality
is achieved with a q0 value of 0.8. We selected 0.1 as the ρ value. To perform a fair
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comparison between methods, the termination condition is selected as creating
100 solution candidates. Since ACO is similar to AICS in which more than one
ants are used, again, the q0 value is selected as 0.8, the ρ value as 0.1, and the
program is terminated after 100 solutions are generated. We selected 5 as the
number of ants.

In SA parameter setting tests, the initial temperature selection is performed
similar to [10]. As a result of the tests, we use an initial temperature of 195.
The termination condition is again the same, i.e. 100 solution generations. The
cooling rate is selected as 0.85, since this rate decreases the temperature to 5% of
the initial temperature in 100 steps. The initial mutation probability is selected
as 30/l, where l is the solution array length, and is decreased with a factor of 0.85
in every 5 steps of solution generation. The large initial mutation probability is
selected because of the large size of the solution array. If we start with a small
mutation probability, the SA algorithm will search in a small neighborhood of the
starting point, which may lead to getting stuck in local minima. The mutation
rate is gradually decreased to avoid a random exploration in the search space.
We decrease the mutation probability until it reaches a value of 1/l.

After the parameter tuning of each approach, tests to explore their perfor-
mance are conducted. In this set of experiments, we include a Random heuristic
as a baseline for the performance comparisons. In Random, 100 random solution
strings are generated, which are composed of randomly selected LLHs. For each
traffic matrix, the solution candidate with the best fitness is selected as the solu-
tion. The tests are run 20 times for each traffic matrix. Each run uses a random
initial seed. The results of the experiments are given in Table 1. Success rate
of an approach is defined as the percentage of feasible solutions found. In the
table, SR stands for success rate. The TMi values in the first column of the table
indicate that, the results in the corresponding row are the results obtained using
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Fig. 2. The box-whisker plot of the results obtained using HHs and Random heuristic
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traffic matrix i. In the next four columns of Table 1, the results for the four HHs
designed in this study are given. The fifth column lists the results of the Random
heuristic. The last three columns contain the resuls of LLHs applied separately.
In the table, the values in the first five columns are the averages of resource
usages obtained after 20 runs for each traffic matrix using the corresponding
method. The last three columns are the results of using only the corresponding
single LLH in the solution. The NA values in the table mean that a feasible
solution was not found in any of the runs. The corresponding box-whisker plots
are given in Figure 2.

From Table 1, we see that all the HHs perform better than the single LLHs.
The success rates for the LLHRND, Random and all the HHs are 100%, while,
this rate is 70% for LLHMAX SNG and LLHMAX TOT . The best results ob-
tained for each traffic matrix is marked in bold in the table. While in three of
the traffic matrices, a single LLH produces the best result, it should be noted
that the success rate for these LLHs is not 100%. The results show that, ACO
finds the best result for 13 out of 20 traffic matrices, while the next method is
AICS with 5 best results. To test the statistical significance of the results of the
HHs and Random, we applied a two-way ANOVA and a Tukey HSD post hoc

Table 1. Resource usage results for different traffic matrices using different approaches

EA ACO AICS SA Random LLHMAX SNG LLHMAX TOT LLHRND

TM1 169 177 181 180 176 186 200 222
TM2 158 152 149 163 165 148 160 229
TM3 163 148 149 168 166 155 NA 219
TM4 160 146 152 160 162 172 172 226
TM5 154 149 151 156 157 170 159 220
TM6 172 156 156 173 170 183 188 212
TM7 175 169 172 185 180 NA 169 203
TM8 167 159 162 173 173 167 169 222
TM9 157 157 151 166 163 NA NA 235
TM10 172 161 159 176 174 194 198 221
TM11 156 137 145 165 161 NA 155 222
TM12 158 146 145 164 164 149 NA 218
TM13 157 158 158 156 155 182 NA 236
TM14 150 135 135 156 154 152 170 229
TM15 168 148 155 176 173 NA 161 236
TM16 163 145 147 165 165 NA NA 219
TM17 178 175 182 177 182 195 188 215
TM18 152 162 156 160 163 NA NA 213
TM19 154 139 140 156 157 178 180 223
TM20 170 163 166 175 177 163 177 221

Average 163 154 156 168 167 171 175 222
SR 1.0 1.0 1.0 1.0 1.0 0.7 0.7 1.0
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test at a confidence level of 0.95. The results show that ACO and AICS produce
results which are statistically significantly better than SA, EA, and Random,
while a statistically significant difference cannot be observed between ACO and
AICS. Therefore, we can say that, constructive search techniques are more suc-
cessful for this problem. Furthermore, based only on averages, we conclude that
a population based scheme is preferable to a single point one.

5 Conclusion

The HH approaches proposed in this study for survivable VT design is able to
solve the problem for large-sized networks having intensive traffic demands with
a 100% success rate. The results show that, using HHs can combine the best
features of the LLHs and give better results. Furthermore, the HH approach
based on ACO outperforms the other HH approaches based on EA, AICS and
SA. This suggests that, a population based, constructive search approach as a
HH is more suitable for this problem. As future work, the ILP solution to the
problem with small-size networks will be investigated and results of the HHS
will be compared to the optimum values.
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Abstract. Over the last decade, wireless networks have experienced
an impressive growth and now play a main role in many telecommu-
nications systems. As a consequence, scarce radio resources, such as
frequencies, became congested and the need for effective and efficient
assignment methods arose. In this work, we present a Genetic Algorithm
for solving large instances of the Power, Frequency and Modulation As-
signment Problem, arising in the design of wireless networks. To our
best knowledge, this is the first Genetic Algorithm that is proposed for
such problem. Compared to previous works, our approach allows a wider
exploration of the set of power solutions, while eliminating sources of nu-
merical problems. The performance of the algorithm is assessed by tests
over a set of large realistic instances of a Fixed WiMAX Network.

Keywords: Wireless Network Design, Large-scale Optimization, Ge-
netic Algorithms.

1 Introduction

During the last years, wireless communications have experienced an explosive
growth thus rapidly leading to a dramatic congestion of radio resources. In such
complex scenario, the trial-and-error approach commonly adopted by practition-
ers to design networks has clearly shown its limitations. Telecommunications
companies and authorities are thus searching for more effective and efficient de-
sign approaches, also looking on Optimization (as shown by the recent call for
tenders for developing a Digital Video Broadcasting simulator by the Italian
Communications Regulatory Authority [2]). Many models and solution meth-
ods have been proposed for solving the problem of designing a wireless network.
However, solving to optimality the overall problem is still a big challenge in the
case of large instances. In this paper we present a Genetic Algorithm for solving
the Power, Frequency and Modulation Assignment Problem, a relevant problem
that arises in the design of wireless networks and captures specific features of
Next Generation Networks.
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2 The Wireless Network Design Problem

For modeling purposes, a wireless network can be described as a set of trans-
mitters B that provide for a telecommunication service to a set of receivers T .
A receiver t ∈ T is said to be covered or served if it receives the service within
a minimum level of quality. Transmitters and receivers are characterized by a
location and a number of radio-electrical parameters (e.g., power emission and
frequency). The Wireless Network Design Problem (WND) consists in establish-
ing the location and suitable values for the parameters of the transmitters with
the goal of maximizing the number of covered receivers or a revenue associated
with coverage.

In this work we consider a generalization of the so-called Power and Fre-
quency Assignment Problem (PFAP), a version of the WND that is known to
be NP-hard [12]. In addition to power emission and frequency, we also consider
the transmission scheme (burst profile) as parameter to be established, model-
ing a feature of Next Generation Networks, such as WiMAX [3,6]. We indicate
this generalization of the PFAP by the name Power, Frequency and Modulation
Assignment Problem (PFMAP).

In the PFMAP two decisions must be taken: (1) establishing the power emis-
sion of each transmitter on each available frequency and (2) assigning served
receivers to activated transmitters specifying the frequency and the burst profile
used to transmit. To model these decisions, as first step we introduce the set F
of available frequencies and the set H of available burst profiles. Each frequency
f ∈ F has a constant bandwidth D and each burst profile h ∈ H is associated
with a spectral efficiency sh, which is the bandwidth required to satisfy one unit
of traffic demand generated by a receiver.

Then we can introduce two typologies of decision variables, namely:

– a continuous power variable pf
b ∈ [0, Pmax] ∀ b ∈ B, f ∈ F representing the

power emission of a transmitter b on frequency f ;

– a binary service assignment variable xfh
tb ∈ {0, 1} ∀ t ∈ T, b ∈ B, f ∈ F, h ∈

H defined in the following way:

xfh
tb =

⎧⎨
⎩

1 if receiver t ∈ T is served by transmitter b ∈ B
on frequency f ∈ F through burst profile h ∈ H

0 otherwise

Given a frequency f ∈ F , every receiver t ∈ T picks out signals from every
transmitter b ∈ B and the power P f

b (t) that t receives from b on f is proportional
to the emitted power pf

b by a factor atb ∈ [0, 1], i.e. P f
b (t) = atb · pf

b . The factor
atb is called fading coefficient and summarizes the reduction in power that a
signal experiences while propagating from b to t [14].

Among the signals received from transmitters in B, a receiver t can select a
reference signal (or server), which is the one carrying the service. All the other
signals are interfering. We remark that, since each transmitter in B is associated
with a unique signal, in what follows we will also refer to B as the set of signals
received by t.
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A receiver t is regarded as served by the network, specifically by server β ∈ B
on frequency f ∈ F through burst profile h ∈ H , if the ratio of the serving
power to the sum of the interfering powers (signal-to-interference ratio or SIR)
is above a threshold δh (SIR threshold) whose value depends on the used burst
profile h [14]:

atβ · pf
β

N +
∑

b∈B\{β} atb · pf
b

≥ δh . (1)

Note that in the denominator we highlight the presence of the system noise
N > 0. By simple algebra operations, inequality (1) can be transformed into the
following linear inequality, commonly called SIR inequality:

atβ · pf
β − δh

∑
b∈B\{β}

atb · pf
b ≥ δh · N . (2)

As we do not know a priori which transmitter b ∈ B will be the server of a
receiver t ∈ T and which frequency f ∈ F and burst profile h ∈ H will be used,
given a receiver t ∈ T we have one SIR inequality (2) for each potential server
β ∈ B and potentially usable frequency f and burst profile h. To ensure that t
is covered, at least one of such inequalities must be satisfied. This requirement
can be equivalently expressed through the following disjunctive constraint:

∨
∀(β,f,h):β∈B,f∈F,h∈H

⎛
⎝atβ · pf

β − δh

∑
b∈B\{β}

atb · pf
b ≥ δh · N

⎞
⎠ . (3)

Adopting a standard approach used in Mixed-Integer Programming (see [13]),
the above disjunction can be represented by a family of linear constraints in
the p variables by introducing a large positive constant M , the so-called big-M
coefficient. Specifically, given a receiver t ∈ T we use the assignment variable
xfh

tβ to introduce the following constraint for each potential 3-ple (β, f, h):

atβ · pf
β − δh

∑
b∈B(t)\{β}

atb · pf
b + M · (1 − xfh

tβ ) ≥ δh · N . (4)

It is easy to check that if xfh
tβ = 1 then (4) reduces to the simple SIR constraint

(2). If instead xfh
tβ = 0 and M is sufficiently large1, then (4) is satisfied by any

feasible power vector p and becomes redundant.
By using constraints (4) and by introducing a parameter rt to denote revenue

associated with receiver t ∈ T (e.g., population, number of customers) , we can
define the following natural formulation (BM-PFMAP) for the PFMAP [6,7]:

max
∑
t∈T

∑
b∈B

∑
f∈F

∑
h∈H

rt · xfh
tb (BM − PFMAP )

1 For example, we can set M = δh · N + δh

∑
b∈B\{β} atb · Pmax.
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s.t. atβ · pf
β − δh

∑
b∈B\{β}

atb · pf
b + M · (1 − xfh

tβ ) ≥ δh · N

t ∈ T, b ∈ B, f ∈ F, h ∈ H (5)∑
b∈B

∑
f∈F

∑
h∈H

xfh
tb ≤ 1 t ∈ T (6)

∑
t∈T

∑
h∈H

dt · 1
sh

· xfh
tβ ≤ D b ∈ B, f ∈ F (7)

pf
b ∈ [0, Pmax] b ∈ B, f ∈ F (8)

xfh
tb ∈ {0, 1} t ∈ T, b ∈ B, f ∈ F, h ∈ H (9)

The objective function is to maximize the total revenue obtained by serving
receivers and constraint (6) ensures that each receiver is served at most once.
Each receiver generates a traffic demand dt and each frequency has a bandwidth
equal to D. Constraint (7) ensures that the sum of traffic demands (re-sized by
the spectral efficiency sh of the used burst profile) generated by the receivers
served by a transmitter does not exceed the bandwidth of the frequency. Finally,
(8) and (9) define the decision variables of the problem.

Drawbacks of the natural formulation. The natural formulation (BM-
PFMAP) expands a basic model that is widely used for the WND in different
application contexts, such as DVB, (e.g., [12]), UMTS (e.g., [1,11]) and WiMAX
([6,7]). In principle, such basic model and (BM-PFMAP) can be solved by com-
mercial solvers such as IBM ILOG CPLEX [10]. However, it is well-known (see
[7]) that: (i) the fading coefficients may vary in a wide range leading to (very)
ill-conditioned coefficient matrices that make the solution process numerically
unstable; (ii) the big-M coefficients generate poor quality bounds that dramati-
cally reduce the effectiveness of standard solution approach [13]; (iii) the result-
ing coverage plans are often unreliable and may contain errors (e.g., [7,11]). In
practice, the basic model and (BM-PFMAP) can be solved to optimality only
when used for small-sized instances. In the case of large real-life instances, even
finding feasible solutions can represent a difficult task, also for state-of-the-art
commercial solvers like CPLEX. Though these drawbacks are well-known, it is
interesting to note that just a relatively small part of the wide literature devoted
to WND has tried to overcome them. We refer the reader to [6] for a review of
works that have tried to tackle these drawbacks.

2.1 Contribution of This Work and Review of Related Literature

In this paper, we develop our original contribution by starting from a recent
work, [7], that proposes a family of strong valid inequalities for tackling the
drawbacks of (BM-PFMAP) that we have pointed out. The idea at the basis of
[7] is to quit modeling emission power as a continuous variable pb and to use
instead a set of discrete power levels P = {P1, . . . , P|P|}, with P1 = 0 (switched-
off value), P|P| = Pmax and Pi > Pi−1, for i = 2, . . . , |P|. This basic operation
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allows the authors to define a family of lifted GUB cover inequalities that are
used in a solution algorithm that drastically enhances the quality of solutions
found.

The solution algorithm proposed in [7] is motivated by a trade-off that arises
from discretization: larger sets of discrete levels lead in principle to better solu-
tions, but on the other hand the corresponding 0-1 Linear Program gets larger
and harder to solve. The computational experience shows that very good solu-
tions can be found by considering small sets with well-spaced power values, but
that no improvement is obtained within the time limit when a number of levels
higher than six is considered.

In the present work, we investigate the possibility of using a Genetic Algorithm
(GA) [8] as a fast heuristic to widen the exploration of the discrete power solution
space: the aim is to exploit the entire set of discrete power levels and thus to
evaluate power configurations with levels not included in the best solutions found
in [7]. In particular, our aim is to improve the capacity of solving large realistic
instances by finding higher value solutions. We thus design a GA that takes into
account the specific features of the PFMAP and we test its performance on the
same set of realistic WiMAX instances used in [7].

Heuristics have been extensively used to tackle large instances of different
versions of the WND problem. Two relevant cases are provided by [1], where a
two-stage Tabu Search algorithm is proposed to solve the base station location
and power assignment problem in UMTS networks, and by [12], where a GRASP
algorithm is proposed to solve the PFAP arising in the planning of the Italian
National DVB network. The use of GA to solve versions of the WND is not
a novelty as well and many works can be found in literature. However, to our
best knowledge, no GA has been yet developed to solve the PFMAP and the
algorithm that we propose is the first for solving this level of generalization of
the WND. Until now, GAs were indeed developed to solve just single aspects
of the PFMAP: (i) the transmitter location problem (e.g., [4]); (ii) the service
assigment problem (e.g., [9]); (iii) the frequency assignment problem (e.g., [5]);
(iv) the power assignment problem (e.g., [15]). Moreover, we remark that our
algorithm is the first to be designed with the specific aim of improving the
capacity of solving instances, while tackling the numerical problems pointed out
in Section 2. We now proceed to present our original contributions for the WND.

3 A Genetic Algorithm for the PFMAP

A Genetic Algorithm (GA) is a heuristic method for solving optimization prob-
lems that resembles the evolution process of a population of individuals (for a
comprehensive introduction to the topic we refer the reader to [8]). At any itera-
tion, a GA maintains a population whose individuals represent feasible solutions
to the problem. The solution is encoded in a chromosome associated with each
individual. The genetic strength of an individual is evaluated by a fitness func-
tion that establishes the quality of the corresponding solution to the problem.
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A GA starts by defining an initial population, that iteration after iteration
changes by crossover, mutation and death of individuals, according to a nat-
ural selection Darwinistic mechanism.

We develop a GA for the PFMAP that presents the following general structure:

1. Creation of the initial population
2. UNTIL the arrest condition is not satisfied DO

(a) Selection of individuals who generate the offspring
(b) Generation of the offspring by crossover
(c) Mutation of part of the population
(d) Death of part of the population

We now characterize the elements and the phases presented above for the algo-
rithm (GA-PFMAP) that we propose to solve the PFMAP.

3.1 Characterization of the Population

Individual representation. As we have explained in Section 2.1, our aim is to
conduct a wider exploration of the power solution space, trying to
obtain solutions with higher value. To this end, we establish that the chro-
mosome of an individual corresponds to a power vector p of size |B| · |F |.
Specifically, the chromosome presents one locus for each transmitter b ∈ B and
frequency f ∈ F and each locus stores the power pf

b emitted by b on f , namely
p = (p1

1, . . . , p
|F |
1 , p1

2, . . . , p
|F |
2 , . . . , p

|F |
|B|). Such power belongs to the set of discrete

power levels P , i.e. pf
b ∈ P = {P1, . . . , P|P|}.

We remark that establishing the power emission pf
b ∀ b ∈ B, f ∈ F does not

completely characterize a solution of the PFMAP. We indeed have to fix the value
of the assignment variables xfh

tb and thus we need to set some assignment rule.
First, note that given a power vector p = (p1

1, p
2
1, . . . , p

|F |
|B|) and a receiver t ∈ T

we can compute the power P f
b (t) that t receives from b on f , ∀b ∈ B, f ∈ F .

Through P f
b (t), if we fix the server β ∈ B of t, we can check if there exists a

SIR inequality (2) that is satisfied for some frequency f ∈ F and burst profile
h ∈ H . We establish the following assignment rule: as server of t we choose the
transmitter b that ensures the highest received power P f

b (t) on some f . This in
fact ensures the highest serving power. Once that the server β is chosen, we can
identify the SIR inequalities (2) that are satisfied by p when t is served by β for
some f ∈ F and h ∈ H . If the SIR inequality is satisfied for a multiplicity of
frequencies and/or burst profiles, we first choose as serving frequency f̂ the one
that ensures the highest value for the left-hand-side of (2) and then we choose as
burst profile ĥ the one that ensures the highest spectral efficiency (see Section 2).
Thus for t served by β we have xf̂ ĥ

tβ = 1 and xfh
tβ = 0 ∀f ∈ F \ {f̂}, h ∈ H \ {ĥ}.

Note that this last rule may assign a receiver t to a transmitter β that violates
the capacity constraint (7) of β on the chosen frequency f̂ . If this is the case,
we choose the second best couple of frequency and burst profile according to
the rule. If this not possible, the third best and so on. In the end, if there is no
capacity left for any valid couple (f, h), t is not considered covered by β.
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Fitness function. As the aim of the WND is to maximize coverage, we adopt a
fitness function that evaluates the coverage ensured by an individual. Specifically,
the fitness COV (p) of an individual is equal to the number of receivers that are
covered when the power vector is p and service assignment is done according to
the previously introduced rules.

Initial population. Our aim is to consider all the feasible discrete power levels
from the beginning. Therefore, the initial population is represented by the power
vectors that are obtained by activating a single transmitter b ∈ B on a single
frequency f ∈ F at each of the discrete power levels Pl ∈ P . For every b ∈
B, f ∈ F , the corresponding individuals included in the initial population are
thus: (0, 0, . . . , pf

b = P2, . . . , 0, 0) · · · (0, 0, . . . , pf
b = P|P|, . . . , 0, 0) . Note that

we exclude the individual corresponding to all transmitters turned off, i.e. pf
b =

P1 = 0 ∀b ∈ B, f ∈ F . We thus have |B| · |F | · |L − 1| initial individuals. We
denote the set of individuals representing the population at a generic iteration
of the algorithm by P .

3.2 Evolution of the Population

Selection. In order to select the individuals who give birth to the new genera-
tion, we adopt a tournament selection approach: given the set P of individuals
constituting the current population and a value 0 < α < 1, we first define a
number k ∈ Z

+ of groups including �α · |P |� individuals who are randomly ex-
tracted from P . Then we extract m < �α · |P |� individuals with the best fitness
from every group. These are the individuals who generate offspring by crossover.

Crossover, mutation and death. The individuals selected for crossover are
randomly paired up to constitute �k · m/2� couples. Each couple generates two
offspring by mixing its chromosome. Given a couple of parents with power vectors
p1, p2, the crossover operation consists in mixing power levels that are in the
same position of p1 and p2 to generate two offspring with (possibly) higher
fitness power vectors p3, p4.

Before presenting the crossover procedure, we need to define a measure that
evaluates the impact of crossover on coverage. To this end, let ΔCOV(p, pf

b =Pl) ∈
Z denote the variation in the number of covered receivers caused by changing
the power value pf

b in position (b, f) of vector p to the value Pl, while main-
taining all the other power values unchanged. We can then propose the fol-
lowing crossover procedure, that concentrates the effort of creating a higher
fitness individual on p3. At the beginning of the crossover, p3 and p4 have all
elements equal to 0. Then, by following this ordering of indices (b, f) : b ∈, f ∈
F : (1, 1) (1, 2) . . . (1, |F |) (2, 1) . . . (2, |F |) . . . (|B|, 1) . . . (|B|, |F |), each null
value inherits the power value in the same position of one of the two parents.

We now present the crossover rule for a generic position (β, φ). For indices
(b, f) : b < β, f < φ, the crossover was already executed and thus the offspring
vectors p3, p4 present power levels inherited by the parents p1, p2. Power levels
of p3, p4 in positions (b, f) : b ≥ β, f ≥ φ are instead still equal to zero. The rule
to establish the power value inherited by p3, p4 in (β, φ) is the following:
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p3φ
β =

{
p1φ

β if ΔCOV(p3, p3φ
β = p1φ

β) ≥ ΔCOV(p3, p3φ
β = p2φ

β)
p2φ

β otherwise

p4φ
β =

{
p1φ

β if ΔCOV(p3, p3φ
β = p1φ

β) < ΔCOV(p3, p3φ
β = p2φ

β)
p2φ

β otherwise

This ensures that, at any step of the crossover procedure, offspring p3 inherits
the power level of the parent that allows the most favourable variation ΔCOV
in coverage.

In addition to crossover, we also allow to alter the power vector of single indi-
viduals by mutation. This introduces new genetic information in the population
and helps to widen the solution space exploration and to avoid entrapment in
local optima. At any iteration, a number of individuals �γ · |P |� with 0 < γ < 1 is
randomly chosen. Then, still by random selection, |F | power levels corresponding
with different frequencies are reduced to the immediately lower power level al-
lowed in P . This mutation rule is set with the aim of defining new power vectors
that have lower powers but ensure the same coverage. The reduction in power
is generally desirable as a signal that is useful for a receiver may be interfering
for a different receiver.

Finally, after crossover and mutation, the weakest individuals die and are
removed from P . Specifically, we choose to select and remove the 2 · �k · m/2�
individuals with the worst fitness function. The size of P is thus maintained
constant over all the iterations.

4 Computational Experience

We test the performance of our GA on a set of 15 realistic instances, developed
with the Technical Strategy & Innovations Unit of British Telecom Italia (BT
Italia SpA). All the instances refers to a Fixed WiMAX Network [3], deployable
in an urban area corresponding to a residential neighborhood of Rome (Italy).
The instances consider various scenarios with up to |T | = 529 receivers, |B| = 36
transmitters, |F | = 3 frequencies, |H | = 4 burst profiles (see Table 1). This leads
to large formulations (BM-PFMAP) that are very hard to solve. For a detailed
description of the instances, we refer the reader to [7].

For each instance, we run the proposed algorithm (GA-PFMAP) 50 times
with a time limit of 1 hour by using a machine with a 1.80 GHz Intel Core 2
Duo processor and 2 GB of RAM. Each tournament selection involves k = 20
groups that include a fraction α = 0.05 of the population P . The best m = 8
individuals of each group are selected for crossover and, after the generation of
the new individuals, mutation affects a fraction γ = 0.1 of the population.

In Table 1, we compare the value of the best solution obtained through the
three approaches that we consider, namely the direct solution of (BM-PFMAP)
by ILOG Cplex 10.1, the solution of the Power-Indexed formulation by the algo-
rithm WPLAN [7] and the solution of (BM-PFMAP) by the proposed algorithm
(GA-PFMAP). Results for (BM-PFMAP) and WPLAN are derived from [7].
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Table 1. Comparisons between (BM) and WPLAN formulations

|T*|
ID |T| |B| |F| |H|

(BM-PFMAP) WPLAN [7] (GA-PFMAP)
S1 100 12 1 1 63 (78) 74 70
S2 169 12 1 1 99 (100) 107 103
S3 196 12 1 1 108 113 113
S4 225 12 1 1 93 111 115
S5 289 12 1 1 77 86 88
S6 361 12 1 1 154 170 175
S7 400 18 1 1 259 (266) 341 319
R1 400 18 3 4 370 400 400
R2 441 18 3 4 302 (303) 441 441
R3 484 27 3 4 99 (99) 427 434
R4 529 27 3 4 283 (286) 529 462
Q1 400 36 1 4 0 67 72
Q2 441 36 1 4 191 211 222
Q3 484 36 1 4 226 463 466
Q4 529 36 1 4 145 (147) 491 491

The presence of two values in some lines of the column of (BM-PFMAP) indi-
cates that the coverage plans returned by Cplex contain errors and some receivers
are actually not covered. We remark that (GA-PFMAP) provides solutions that
always ensure a higher coverage than (BM-PFMAP) and without coverage er-
rors. Making a comparison with WPLAN, we instead note that (GA-PFMAP),
though in some cases finds solutions with lower coverage, for most of the cases
is able to find solutions that ensure an equal or higher number of covered re-
ceivers than WPLAN. This is particularly evident for instances that seems to be
very hard to solve through (BM-PFMAP). The algorithm is thus effective and
is worth of further investigations.

5 Conclusion and Future Work

We presented a Genetic Algorithm (GA) to tackle large realistic instances of
a relevant problem arising in wireless network design. We showed that a GA
helps to improve the value of solutions found through a wider exploration of the
power space. A future research path could be represented by the integration of
a refined GA into an exact solution method. It is indeed common experience
that the combination of fast heuristics with Mixed-Integer Linear Programming
leads to a great reduction in the running times w.r.t pure exact optimization
methods. A sensitivity analysis of the GA parameters and a study on the impact
of different starting conditions and selection strategies would also constitute
important subjects of investigations.
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Abstract. In ant-based routing protocols, the routing exponent controls
how ants hop from node to node to discover routes based on pheromone
values. It has been shown that stable multi-route solutions for small
routing exponent values are dynamically connected to stable single-route
solutions for large routing exponent values. These stable single-route
solutions correspond to paths that have the smallest hop count. In this
paper, we leverage this idea to improve the performance of ant-based
routing protocols by dynamically adjusting the routing exponent. The
results are validated via simulation.

1 Introduction

Swarm intelligence is a term that refers to the action of a locally coordinated
group of individuals that can achieve a complex objective or behavior. Often
the local coordination algorithms are inspired by ecological systems including
social insects, self-organizing colonies of single-celled organisms or movements
of larger animals such as flocks of birds. Each individual possesses incomplete
information about the problem to be solved, and coordination is achieved typ-
ically through interaction with a subset of individuals in the swarm. Through
these interactions, complex, near-optimal behavior can emerge [1]. One success-
ful application of swarm intelligence is the use of ant-based protocols to route
data through networks.

Ant-based routing protocols use control packets, called “ants,” to explore
networks, discover routes and reinforce the best routes. Throughout this paper,
we will use the terms “ant” and “control packet” interchangeably. True ants in
the biological world mark foraging trails with chemical pheromone that can be
detected by other ants. The pheromone evaporates over time, so that inefficient
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routes fade from disuse. More efficient popular routes are reinforced as ants
deposit more pheromone along them. Similarly, in ant-based protocols, virtual
pheromone is stored on the nodes as the ants traverse the network. In short,
the key to the routing protocol is a spatially distributed, mathematical model
of pheromone deposition and evaporation. Research has shown that ant-based
routing protocols provide an effective solution to the routing problem of both
wired networks [2] and mobile ad hoc networks [3–5]. In this paper, we will use
a mathematical framework for studying routing protocol dynamics to improve
their performance.

A modeling framework introduced in [6] to describe the evolution of
pheromones in ant-based routing protocols using dynamical systems theory cor-
rectly predicts stationary states of realistic network protocols. In this study, it
was shown that some of the principles gained from rigorous analysis of small
networks, transfer to larger networks that are much more difficult to be mathe-
matically analyzed. In particular routing exponents that are much smaller than
unity, lead to multi-route solutions and exponents that are much larger than
unity lead to single-route solutions. However, not all single route solutions are
optimal in the sense that they require more than the minimum number of hops
to travel from a sender node to a receiver node. Also, it was shown that if one
treats the routing exponent β as a parameter, stable multi-route solutions were
dynamically connected to the optimal single route solution on small networks.
In this paper, we will leverage this idea to develop a strategy, analogous to sim-
ulated annealing, to improve the performance of ant-routing protocols on large
networks by dynamically adjusting the routing exponent.

This paper is organized as follows. In Section 2, we describe a modeling frame-
work, which is the mathematical foundation of dynamic routing exponent strat-
egy. In Section 3, we introduce this strategy by two specific examples, a 5-node
network and a 50-node network using Matlab and QualNet simulations, and
then validate its effectiveness by performing experimental comparisons. Section
4 concludes the paper.

2 Preliminaries of Ant-Based Routing

In this paper, a network is viewed as a directed graph. Each link is weighted by
pheromone values, which determine how ants will travel in the network along
multi-hop routes. Using pheromone tables on each node, ant-based routing proto-
cols deploy ants to discover possible routes between pairs of nodes, and optimize
routing tables to enhance shorter, desirable routes via pheromone deposition
and discard longer, less efficient routes via evaporation of pheromone. In our
mathematical modeling framework, the behaviors of ant-based routing are char-
acterized by three general rules: route discovery, route reinforcement (deposition)
and route decay (evaporation).

Route discovery is accomplished by the random motion of ants through the
network as they hop from node to node. An ant at node i will move to node j
with probability pij
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pij =
(τij)β∑

h∈Ni
(τih)β

(1)

where τij represents the pheromone values on the link from node i to node j, Ni

is the set of all connected neighbors of nodes i and β is the routing exponent. The
protocol uses two different types of ants. Ants traveling from source s, seeking
route to destination d. are called “forward ants.” If the network consists of m
nodes, we define y(n) be the m-dimensional vector probability density of ants
over the network at the nth time step. The forward ants traverse the network
following the Markov process according to a transition matrix P (n)(β) = [pji] at
the nth time step,

y(n+1) = P (n)(β)y(n) (2)

because both probability density and pheromone values on each link are evolving
only depend on present state by every discrete synchronous step. Here the kth

component of the density vector y(n) is the probability of finding an ant on the
kth node of the network. Once a forward ant reaches the destination, it becomes
a “backward ant,” and will trace back to the source from the destination, de-
positing pheromone along the route it takes. The routing protocol defines how
the matrix P = [pji] evolves from one iteration to the next through pheromone
deposition and evaporation. We denote the matrix P at discrete time step n as
P (n). From the previous analysis, we know that the routing exponent β controls
whether single-path routes are selected or multi-path routes are selected. For a
complete description and analysis of the protocol, see [6]. In this section, we will
review the essential features and properties of the protocol.

A full-fledged routing protocol is very difficult to analyze because it has many
parameters and features to respond to different contingencies. Instead, we will
study and implement a very simple routing protocol and explore it using an
analytic framework. Since ant-based routing is a dynamic process, we identify
two critical time increments. The increment h1 is the amount of time between
evaporation events on each node. The increment h2 is the amount of time be-
tween deployment of ants from a source node s. We assume that h1 ≤ h2. The
routing protocol can be described as follows:

1. N ants are released from the source node. The source node resets its clock
to t = 0.

2. Each ant moves through the network following (1) and maintaining a node-
visited stack until it arrives at the destination node.

3. An ant reaching the destination node will retrace its steps back to the source.
If the ant’s route from source to destination is cycle-free (i.e. no node is
visited twice), the ant deposits pheromone along the links it traverses. Oth-
erwise, no pheromone is deposited. Typically, the amount of pheromone de-
posited on a link is inversely proportional to the hop count of the route
traveled between source s and destination d.

4. When a backward ant arrives at the source, it is destroyed.
5. When the source node clock reaches t = h2, return to step 1.

Independent of all the ant activity, pheromone will decay along all links.
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Fig. 1. Stationary states calculated using the stochastic model. Solutions S1, S5 and
S7 were calculated with β = 0.5 and Λ = 0.3. Solution S1p was calculated with β = 2
and Λ = 0.3.

In [6], an analytic model for the behavior of this ant-based routing protocol
is derived:

τ
(n+1)
ij = (1 − h1κ1)(h2/h1)τ

(n)
ij︸ ︷︷ ︸

evaporation

+ h2κ2

∞∑
k=1

1
kp

p̃sd
ij (k)

︸ ︷︷ ︸
deposition

, (3)

where κ1 is an evaporation rate, κ2 is a deposition rate and p̃sd
ij (k) is the proba-

bility of an ant following a k-hop route from source node s to destination node d
passing through link ij without any cycles. The link undergoes h2/h1 evapora-
tion events between step 1 and step 5, and it is understood that many transitions
of (2) occur for every one transition of (3). Also, the summation is the expected
inverse hop count,

〈
1

Hsd

〉
for a single ant. This is a natural way to reinforce

shorter routes more than longer routes because the amount of pheromone de-
posited along the route is inversely proportional to the path cost.

If we think of the ant-based protocol as a nonlinear dynamical system, we can
understand network performance by examining stationary solutions and their
linear stability. A stationary state occurs when (2) and (3) are independent of
the time step n and satisfy the system,

Λτij =
∞∑

k=1

1
k
p̃sd

ij (k) (4)

where τij is an equilibriumpheromone distribution andΛ = κ1
κ2

is calledpheromone
deposition number. Note that p̃sd

ij (k) depends upon τij . Since this is a nonlinear
system, solutions are not necessarily unique. In fact, a single β, Λ pair may have
many stationary solutions. The eigenvalues and eigenvectors of the Jacobian of
this system reveals whether or not a given stationary solution is stable. Earlier
work presented a phase diagram for a representative 5-node network [6].
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Fig. 2. Continuous dependence of solutions on β for the simple 5-node network con-
figuration used in Figure 1

The previous work shows that some of the principles and features gained from
rigorous study of small networks are consistent with larger and more complicated
networks that are much more difficult to analyze. In particular, for the simple
5-node network and a larger 50-node network, small routing exponents β 	 1
lead to stable, multi-route solutions whereas large exponents β 
 1 lead to
stable single-route solutions. Examples are shown in Figure 1 where solution S1
is stable but solutions S1p, S5 and S7 are unstable in the parameter regimes used
to generate the solutions. However, solutions with the same qualitative structure
as S5 and S7 are stable when β = 2.

Moreover, stable multi-route solutions are dynamically connected to the op-
timal single route solution on the 5-node network. As shown in Figure 2, if
we follow the structure of certain stationary solutions, we see that the stable
multiple-route solution S1 is dynamically connected to the optimal single-route
solution S5. On the other hand, the unstable multiple route solution S1p is
connected to the suboptimal, unstable single-route solution S7. One possible ex-
planation is that shorter routes are reinforced more readily when the system is
more deterministic which is the case when β is large.

These results and observations on large networks suggest that we can improve
ant-based routing by dynamically adjusting the routing exponent. Large values
of β offer the advantage of stability and determinism, but there is no guarantee
that the single-route selected will be optimal. The earlier study suggests that
the system will naturally evolve into the optimal single-route state if we start
with a stable multi-route solution with β small and then steadily increase β to
a large value.

3 Dynamic Routing Exponents

In this section, we first validate the efficiency of this technique of dynamically
adjusting the routing exponent on a 5-node network. Then, we leverage this idea
to show that on large networks, it is also possible to improve the performance of
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ant-routing protocols. We implement our algorithm in Matlab, without a physical
communication model so there are no packet drops, and in QualNet with realistic
protocol and communication models. Table 1 summarizes the parameter settings
used by both Matlab and QualNet simulations. In the QualNet simulation, each
topology is modeled as a point-to-point mesh network with link bandwidth of
100 Mbps and link propagation delay of 1 millisecond. The ant-based routing
protocol operates in the network layer, and encapsulates ants in the IP packets.

Table 1. Table of parameters used in network simulations

Total time of Simulation 199.99
N 200
β 0.5 → 2
κ1 0.3
κ2 1
Λ 0.3
h1 1
h2 1

3.1 5-Node Network

To demonstrate the concept of using dynamic routing exponents, we apply this
idea on the 5-node network where the dynamics are well understood. (We note
that a phase portrait was calculated in [6]). We initiate simulation with random
pheromone values over the network. Rather than using a fixed value, β will slowly
vary from 0.5 to 2.0 as follows.

β =

⎧⎪⎨
⎪⎩

0.5, t < 50 (allow multiroute solution to stabilize)
0.5 + t−50

20 , 50 ≤ t ≤ 80 (move network toward single route sol’n)
2.0, t > 80 (proceed with optimal solution)

(5)

This function allows the routing protocol to relax into a multiroute solution be-
fore slowly moving the system toward an optimal or near-optimal single-route
solution. Thus, we expect the network to move toward S1 when 0 < t ≤ 50
and then move toward S5. This is precisely what we observe in Figure 3, which
demonstrates dynamic pheromone distribution on four critical routes of the sim-
ple 5-node networks shown in Figure 1.

3.2 50-Node Network

With the same configurations summarized in Table 1, the Matlab simulation for
a 50-node network has successfully validated the anticipated result that routing
exponent β = 0.5 leads to the formation of multiple route solution, while β = 2,
on the other hand, corresponds to the existence of the single route solutions. We
consider optimal solutions to be solutions with the minimum possible hop-count.
Single route stable solutions found with large routing exponents are observed to
be close to optimal, but not typically optimal. In Figure 4, we see two typical
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Fig. 3. Pheromone values as a function of time using dynamic routing exponents for
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Fig. 4. Two stationary solutions with β = 0.5 on the left, β = 2 on the right, both with
Λ = 0.3. Node s is shown by red spot and node is shown by green spot. Pheromone
values are normalized by the maximum pheromone value over the entire network.

stable solutions. Since the shortest path possible connecting source and desti-
nation in this network is 6-hops, the single route is nearly optimal (7 hops) but
not optimal.

Now we will explore our dynamic routing exponent strategy (5) by translating
the design principles for the small network to 50-node network settings. Again,
the simulations begin with random pheromone values. Among the total time
of simulation of ant-based routing protocol, we capture several key instants,
shown by Figure 5, that illustrate the reorganization of pheromone values over
the network driven by the dynamic routing exponent β. Similar to the 5-node
network case, the system initially settles into a multi-route solution as shown in
Figure 5(a). As β increases, the network evolves toward single route solutions
with intermediate stages shown in Figures 5(b,c). Beyond this point, the system
is in a stable, optimal, 6-hop solution as shown in Figure 5(d). In addition,
Figure 6 depicts one instance of the evolution of average hop count over time as
β changes linearly from 0.5 to 2 between simulation time instances 50 and 80.
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Fig. 5. Distribution of normalized pheromone values at some important moments of
simulation. At time 50, a multi route state is achieved and beta starts to vary. The
solution settles down at time 80, when β stops to vary.

3.3 Experimental Comparison and Impact of Λ

We implemented an empirical analysis to quantify how the performance of ant-
based routing protocols can be improved by dynamically adjusting routing ex-
ponent from a value less than unity to that larger than unity. We performed
the same experiment on the 50-node network 100 times using different random
initial conditions and compared the performance using β = 2 (standard prac-
tice for protocols like AntHocNet) to using the dynamic β strategy. All other
network parameters are the same. All the simulations are executed with ran-
dom initial pheromone distribution and pheromone deposition number Λ = 0.3
(recall Λ = κ1

κ2
). Our simple comparison, shown in Figure 7, demonstrates a

considerable benefit when using the dynamic β strategy. The difference between
the average length of a single route solution for the β = 2 strategy compared to
the variable β strategy at the end of simulation is almost 2 hops (mean value:
8.01→ 6.11) for the Matlab simulations and 4 hops (mean value: 10.2 → 6.2) for
the QualNet simulations.

Our experimental results indicate that the dynamic β strategy is still some-
what dependent on initial pheromone levels though not nearly so much as the
constant β strategy. If the system is too far from a stable multi-route solu-
tion that includes an optimal path, the dynamic β strategy will not be able to
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smoothly move the network into an optimal configuration. This explains why
the mean remains above 6 in the dynamic β trials in Figure 7.

Finally, we test the performance of dynamic routing exponent technique under
different values of Λ, an equally crucial parameter as β in our model. Since
κ1 corresponds to the rate of evaporation while κ2 corresponds to the rate of
deposition, Λ controls the ratio of evaporation to deposition. We anticipate larger
values of Λ to reduce the impact of deposition and so reduce the benefit of the
overall technique as we try to drive the system toward an optimal solution. To
illustrate this, we performed the experimental study on the 50-node network for
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Λ = 0.1, 0.2, . . . , 1.0. Figure 8 shows that when Λ < 0.5, the results are acceptable
as the average length of the optimized single route is roughly 6. However, when
Λ > 0.5, the average hop count of the optimized single routes increases linearly
and reach 7.5 when Λ = 1, which is consistent with our expectation.

4 Conclusions

We have introduced and explored a new strategy that dynamically adjusts the
routing exponent in ant-based protocols. The new strategy was motivated by an
analytic framework that provided a complete description of the nonlinear dynam-
ics of a small network. From this description, we observe that stable multi-route
solutions for small β are dynamically connected to stable single-route solutions
for large β. These stable single-route solutions correspond to paths that have
the smallest hop count. We give two examples using simulations in both Mat-
lab and QualNet, a simple, 5-node network and a larger 50-node network. For
the 5-node network, the results are exactly compatible with the previous rig-
orous study. For the 50-node network, we leverage principles from the simpler
5-node network and successfully validate them via Matlab and QualNet simula-
tion. In particular, we find the dynamic β protocol performs significantly better
than the static β = 2 protocol in a large series of tests using random initial
pheromone values. Finally, we explore the impact of Λ, the key parameter that
determines the relative importance of evaporation and deposition. As expected,
we find that the effectiveness of the dynamic β strategy will be impaired when
Λ is large. However, for moderate Λ, our new dynamic β routing protocol finds
shorter routes than traditional ant-based routing methods.
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Abstract. Wireless Mesh Networks (WMNs) are envisioned as a flexible
alternative for providing Internet access. In this context, one of the key
challenges is to improve the capacity. One approach is to spread the load
along multiple paths. Results achieved in wired networks using ant-based
systems for this purpose make them attractive candidates. However, ap-
plying similar techniques directly to WMNs may be counter-productive
due to the characteristics of multi-hop wireless communications, in par-
ticular interferences. In this paper, a novel hybrid approach, based on
recording the Internet gateway used by ants and marking pheromone
trails accordingly, is presented. Results are promising and indicate that
adaptive and efficient load distribution can be achieved.

1 Introduction

Wireless Mesh Networks (WMNs) are multi-hop wireless backhaul networks pro-
viding Internet connectivity through a limited number of gateways. WMNs are
envisioned as broadband access networks and differ in many respects from other
types of multi-hop wireless networks, e.g. Mobile Ad-hoc NETworks (MANETs).
Nodes are static, grid-powered, and may be equipped with multiple interfaces.
The traffic is expected to be concentrated along paths to/from gateways, and the
traffic volume to be high. In this context, the provision of high performance, de-
pendability and security is a major concern. Exploiting to this end the inherent
redundancy of such networks is a challenging research issue [1,16].

Multipath routing is one approach to take advantage of the path diversity in
a network. It has been applied to various types of networks and is addressed in
a large body of literature. See [15,19] and the references therein for examples
of multipath routing protocols for wireless networks. It consists, as opposed to
single path routing, in finding, maintaining and using multiple paths between
source and destination pairs to improve performance, dependability and/or se-
curity. In particular, and this is the focus of this paper, increased capacity may
be obtained by spreading the load along multiple paths. However, this requires
some policies to select paths and efficiently distribute the traffic amongst them.
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Ant-based routing protocols are intrinsically multipath and provide, with
pheromone trail values, a basis to select paths and split the traffic. Ant-based
routing refers to the application of the Ant Colony Optimization (ACO) meta-
heuristic [9] to path management in telecommunication networks. In this con-
text, ants are control packets that are used to repeatedly sample paths between
source and destination pairs. At each node, the pheromone trails reflect the
knowledge acquired by the colony. The pheromone trail value associated with a
given neighbour indicates the relative goodness of this neighbour to reach a spe-
cific destination. Good solutions emerge as the result of the collective pheromone
trail laying and following behaviour of ants. Ant-based systems are distributed,
adaptive and robust and, hence, constitute an attractive alternative to tradi-
tional path management systems. See for instance [11] for a survey of existing
ant-based routing protocols.

In AntNet[8], for instance, load distribution is achieved by applying, at each
node and for each data packet, a random proportional forwarding decision rule
based on the local pheromone distribution. In this way, the load is effectively
distributed on multiple paths proportionally to their estimated quality, and a
performance increase is observed compared to deterministic unipath routing.
However, this method has been designed for wired networks and applying it
directly to multi-hop wireless networks may be counter-productive due to the
nature of wireless communications, i.e. limited bandwidth, shared medium, intra-
and inter-flow interferences, etc. In particular, [10] suggests that deterministic
best cost routing performs better in MANETs. The presence of multiple gateways
makes the situation different in WMNs and opens up for new approaches.

In this paper, a novel hybrid policy for adaptive stochastic multipath load
distribution based on pheromone trails in WMNs is introduced. It relies on
letting ants mark pheromone trails according to the gateways they sample. These
markings are then used to select neighbours, and the load is distributed amongst
the selected neighbours proportionally to their relative pheromone trail value.
Most of the previous works on ant-based routing for multi-hop wireless networks
consider generic MANETs and compare the performance achieved to that of
traditional MANET routing protocols. This work specifically targets WMNs and
compares the achieved load distribution with the optimal distribution. Related
work, outside the field of ant-based routing, includes gateway-driven probabilistic
load-balancing schemes [14] and Wardrop routing in wireless networks [18].

The rest of this paper is organized as follows. Section 2 reviews existing ap-
proaches to data forwarding based on pheromone trails. Their limitations in the
context of WMNs are then characterized in Sect. 3, and the novel hybrid policy
is presented and evaluated. Finally, concluding remarks are given in Sect. 4.

2 Data Forwarding Based on Pheromone Trails

The ability of ants, as a colony, to find good solutions to complex problems relies
on the indirect communication between ants mediated by pheromones. In nature,
pheromones are volatile chemical substances laid by ants while walking that
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modifies the environment perceived by other ants. In the context of ant-based
routing, ants are control packets and pheromones are values stored at each node
in the network. Ants are used to find and maintain paths between source and
destination pairs. Each ant performs a random search directed by the pheromone
trails and deposits pheromones on the path it samples, establishing new trails
or reinforcing existing ones. Similarly to what happens in nature, good solutions
emerge as the result of the iterative indirect interactions between ants.

Pheromone trails reflect the knowledge acquired by the colony. The focus of
this paper is on how to use this information to select neighbours and distribute
the data traffic. Existing forwarding policies based on pheromones trails can be
classified into two categories: (i) Random Proportional forwarding (RPκ), which
is a stochastic multipath approach, and (ii) Highest Pheromone trail value for-
warding (HP), which is a deterministic unipath approach. A last option would
be to apply a deterministic multipath forwarding policy, e.g. OMS [4]. However,
to the best of our knowledge, such an approach has never been applied in the
context of ant-based routing. In the following, τ

(s,d)
tv ,vi denotes the pheromone trail

value at node v towards node i after tv updates for the source and destination
pair (s, d), and N (s,d)

v the subset of neighbours i of node v for which τ
(s,d)
tv ,vi � ϕ.

ϕ � 0 denotes a cut-off level used to ignore trails with low pheromone concen-
trations. The superscripts (s, d) are hereafter omitted to improve readability.

2.1 Random Proportional Forwarding (RPκ)

The RPκ forwarding policy follows closely the “ACO philosophy”. The forward-
ing rule used for data packets is similar to the one used for ants. Formally, the
probability of forwarding a packet to node i at node v is given by:

ptv,vi =
τκ
tv ,vi∑

j∈Nv
τκ
tv ,vj

, ∀i ∈ Nv , (1)

where κ � 0 is a configuration parameter controlling the bias towards good
solutions. Figure 1 illustrates the effect of κ. The higher κ is, the more the
best neighbours are used. At the two ends of the scale, RP0 corresponds to
purely random (uniform) forwarding and RP∞ to stochastic equal-cost multipath
forwarding1. For κ < ∞, no specific neighbours are selected; a data packet may
be forwarded to any neighbour i ∈ Nv such that τt,vi > 0.

RPκ is used by most of the ant-based routing protocols, and in particular
by AntNet [8] and AntHocNet [12]. In AntNet, κ is chosen close to 1 (from
1.2 [8] to 1.4 in [7]). Ants are assumed to converge to the optimal solution, and
the data traffic is distributed accordingly. The rationale for choosing κ > 1 is
to avoid forwarding packets along low-quality paths (AntNet uses ϕ = 0). For
AntHocNet, the value reported for κ varies from originally 2 [6] to reach 20 in [12].
This increase is supported by the results of a sensitivity analysis presented in [10],
which suggest that better performance is achieved in MANETs as κ → ∞.
1 In [10], κ → ∞ is used to refer to deterministic highest pheromone forwarding; this

is true only in the case there are no two equally high pheromone trail values.



34 L. Paquereau and B.E. Helvik

κ increases

p |κ=1

p |κ

κ = 0
κ = 1

κ = 1.4
κ = 20

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Fig. 1. Transformation of the forwarding probabilities in the case where |Nv| = 2

2.2 Highest Pheromone Trail Value Forwarding (HP)

HP simply consists in choosing at each node v the neighbour i with the highest
pheromone trail value, that is

i = arg max
j∈Nv

τtv ,vj . (2)

Such a forwarding policy is used by PERA [2] for instance.
HP is a deterministic unipath forwarding policy. Note, however, that the out-

put of (2) may vary after a pheromone update. Ant-based routing protocols
applying HP are neither unipath nor static, but multipath adaptive routing pro-
tocols. Ants discover and maintain multiple paths, thus allowing the system to
adapt to possible changes in terms of quality or topology. Simply, the same
forwarding choice is made locally between two pheromone updates.

3 Exploiting Multiple Paths in Wireless Mesh Networks

3.1 Existing Forwarding Policies

In this section, the forwarding policies presented in Sect. 2 are evaluated by sim-
ulation in the context of WMNs. See Fig. 2(a) for an illustration. The objective
is to get detailed insights and compare the different schemes in terms of achieved
goodput and load distribution.

A homogeneous 802.11-based (no RTS/CTS), single channel, single rate,
WMN is considered. Nodes are equipped with omni-directional antennas and
organized in a regular grid as shown in Fig. 2(b). A two-ray ground radio prop-
agation model is used, and the distance δ between nodes is chosen so that a
given node is able to reach directly either 4 or 8 of the surrounding nodes. These
reachability patterns are denoted + and ×+, respectively. All the data traffic is
assumed to be directed to or from the gateways. For this study, only a single
Mesh Router (MR) (node 22) sends traffic towards a destination outside the
WMN. The data traffic is generated by a Constant Bit Rate (CBR) source send-
ing packets of 512 bytes over UDP. All the results reported below are averages
of 20 replications and error bars indicate 95% confidence intervals.
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Fig. 2. Infrastructure WMN

The ant-based system used for this evaluation is OCEAN2, an opportunistic
version of the Cross-Entropy Ant System (CEAS) [17]. See for instance [13] for a
recent introduction to CEAS. OCEAN excludes low-quality neighbours from Nv

by applying an adaptive pruning rule identical to the one used when forwarding
ants (ϕ > 0); see [17] for details. This mechanism serves the same purpose as
choosing κ slightly greater than 1 in AntNet. Therefore, RP1.4 is not considered
in the comparison.

The cost metric used is the expected transmission count (ETX) [5]. The ETX
of a link is an estimate of the number of transmissions needed to successfully
transmit a unicast packet. It is computed as the inverse of the delivery ratio of
dedicated locally broadcasted probes packets3. The ETX of path is the sum of
the ETX of each link. Assuming perfect links, at low load, ETX is equivalent to
hop-count. As the load gets closer to the capacity, ETX increases due to packet
losses caused by interferences. ETX is one of simplest quality-aware cost metric
proposed for WMNs. See for instance [3] for a survey of other proposed metrics.

Single Gateway. Figure 3 shows the goodput achieved applying the different
forwarding policies for different input loads when a single gateway (node 1) is
available. Of interest here is the goodput achieved when the offered load exceeds
the capacity. The maximum achievable goodput is included as a reference. Under
saturated conditions, the highest goodput is obtained using only the best path,
here 〈22, 15, 8, 1〉 in both cases. In the +-case, Fig. 3(a), the goodput is similar
for all forwarding strategies and close to the upper-bound. On the other hand, in
the ×+-case, Fig. 3(b), the goodput achieved using RP1 is significantly lower than
the maximum and than the goodput obtained applying the other policies. The
reason is the existence of a set of braided paths of equal length. Applying RP1,

2 The configuration parameters used for OCEAN are: β = 0.95, ρ = 0.01 and α = 0.1.
Ants are generated at the rate of 1 per second and 10% of the generated ants are
explorer ants. See [13] and [17] for further details.

3 In the experiments presented in this paper, nodes send one probe packet per second
and delivery ratios are computed as simple moving averages over the last 20 seconds.
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Fig. 3. Goodput (source: 22; gateway: 1)

the load is distributed on these paths, which increases the level of interferences
and results in a decreased performance. Applying HP, a single path is used,
thus limiting the amount of interferences and resulting in a goodput close to the
maximum. Finally, using κ as high as 20 amounts here in practice in applying HP.
These observations are in-line with the results for MANETs presented in [10].

Multiple Gateways. When multiple gateways are available, and especially
when there exist disjoint, or partly disjoint, paths between the source and
the gateways, the conclusions are different. Correctly distributing the load al-
lows the system to achieve a higher goodput. Hence, the different policies are
now evaluated not only with respect to the achieved goodput, but also to the
achieved balance. Figures 4 and 5 show the results obtained when two gateways
(nodes 1 and 26) are available. When the input load exceeds the capacity, in both
cases, the highest goodput is obtained by sending traffic along 〈22, 15, 8, 1〉 and
〈22, 23, 24, 25, 26〉. The surface obtained by forwarding data packets stochasti-
cally on either of these paths is included as a reference. The best policy is the one
closest to the ridgeline for all input loads. The 3D-view is shown in the +-case
to ease the understanding. Results are otherwise presented using contour maps,
Fig. 4(a) and 5(a), and section plots, Fig. 4(b) and 5(b), for representative input
loads, namely 0.9, 1.3 and 2.5 Mbps. These loads correspond to the cases where
either of the gateways, only gateway 1, and none of the gateways can be used
alone to transmit all the input load, respectively. Results obtained applying the
RS-policy are also included. This policy will be introduced in Sect. 3.2.

Applying HP, only the best path, and thus a single gateway, is used between
two pheromone trails updates. Under saturated conditions, the system oscil-
lates between using one gateway or the other, and the resulting average load
distribution is far from optimal. The achieved goodput corresponds to a linear
combination of the saturation goodputs of the best paths to each of the gate-
ways and is significantly lower than the maximum. Hence, the system fails to
take advantage of, and even suffers from, the presence of multiple gateways.

Applying RPκ, the system may use both gateways simultaneously. When
κ = 1, the achieved load distribution is close to optimal, which demonstrates that
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ants do converge to the best solution. In the ×+-case, however, the distribution is
not as close to the optimum as in the +-case. The reason is that OCEAN tends
to reinforce, and thus converge to, a solution privileging most disjoint paths4,
here through 14 and 30. In both cases, the achieved goodput is higher than
what it would be using a single gateway. In the +-case, it is close to the maxi-
mum. In the ×+-case, it is significantly lower than the maximum (also considering
the maximum using paths through 14 and 30) due to interferences, similarly to
what is observed when a single gateway is available. Finally, increasing κ in-
creases the weight put on the best paths and, hence, here, towards the closest
gateway, and results in a distribution farther from the optimum and a reduced
goodput.

4 The results obtained using the unicast version of CEAS, not included here due to
space limitations, show that the system is able to converge to the optimal balance.
However, this comes at the cost of significantly increased overhead and convergence
time, which outweigh the benefits of achieving optimal load distribution.
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3.2 Random Proportional Forwarding Using Selected Trails (RS)

Based on the above observations, a novel hybrid forwarding policy (RS) captur-
ing the best of both existing policies is introduced. The idea is to forward packets
on at most one path towards a given gateway to limit the intra-flow interferences,
while still enabling the system to benefit from the presence of multiple gateways
when there exist disjoint, or partly disjoint, paths to the gateways. For that
purpose, ants record the gateway they sample and mark the pheromone trail ac-
cordingly. When forwarding data packets, these markings are used at each node
to select only the neighbours with the highest pheromone trail values towards
each of the locally known gateways. Packets are then forwarded stochastically
amongst the selected neighbours proportionally to their relative pheromone lev-
els. Note that the local forwarding choice does not presume anything about the
ultimate gateway that will be used. More than which gateway, it is the forward-
ing direction that matters.

The probability of forwarding a data packet to node i at node v is

ptv ,vi = I(i ∈ Gv) · τtv ,vi∑
j∈Gv

τtv ,vj
, ∀i ∈ Nv , (3)

where I denotes the indicator function of Gv and Gv is the set of neighbours of
v such that i ∈ Gv ⇔ τtv ,vi � τtv ,vj , ∀j ∈ N gi

v , where N g
v ⊆ Nv is the set of

neighbours of v which pheromone trail at v has last been reinforced by an ant
backtracking from gateway g, and gi is the gateway-marking of the pheromone
trail towards i at v.

When only one gateway is available, RS is equivalent to RP∞, i.e. often HP
in practice, and thus maximizes the achievable goodput. Figures 4 and 5 show
the results obtained when multiple gateways are available re-using the same
evaluation settings as in Sect. 3.1. The load distribution achieved applying RS
is similar to what is achieved applying RP1 and close to optimal. The achieved
goodput is higher and also close to the maximum, showing that RS effectively
reduces intra-flow interferences.

3.3 Convergence Time and Stability

The previous sections concentrate on achieving the maximum goodput and
the optimal load distribution. In the context of path management in dynamic
telecommunication networks, finding a good and stable solution in short time
is at least as important as finding the optimal solution, and there is often a
trade-off between the quality of the solution and the time to find it. How the dif-
ferent forwarding policies perform in these respects is briefly discussed below by
looking at how the system adapts to changes. Note that the actual convergence
speed scales with the ant generation rate and depends on the configuration of
the system. These effects are not studied here. The focus is on comparing the
different forwarding policies.

The change considered here is a second MR (node 0) starting to send data
traffic while the network is operating in a steady state. The evaluation settings
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are otherwise the same as in Sect. 3.1. Two gateways available (nodes 1 and 26).
The ×+-reachability pattern is used. Both sources send CBR packets at 1.1 Mbps.
When only 22 is sending, all the packets go through 1. When both MRs are
sending, the maximal goodput for 22 is obtained by sending part of the traffic
through 26. Figure 6(a) shows how the goodput for data generated at 22 varies
in time. The fastest convergence is achieved applying HP. However, the achieved
goodput is also the lowest because only the best path is used at a time and the
system oscillates between using one gateway or the other. Fig. 6(b) shows the
autocorrelation of the gateway used by data packets generated at 22 and received
at the destination between t = 3000 [s] and 3500 [s], and characterizes the route
flapping when applying HP. Note that the oscillation period is related to the link
quality measurement period, here 20 seconds. Applying RP1, the convergence
is slower because the load is in a first time distributed on multiple paths, but
all towards 1. Once the system has converged, the load is sent through both
gateways resulting in a higher and much more stable goodput. Finally, applying
RS, the system achieves a goodput similar to what is obtained applying RP1,
while improving the convergence time by avoiding to spread the load on paths all
leading to the same congested area. This comes however at the cost of a weaker
stability caused by oscillations in the paths to each of the gateways.

4 Concluding Remarks

In this paper, a novel ant-based multipath forwarding policy for WMNs is intro-
duced. The main idea is to reduce intra-flow interferences by using at most one
path to a given gateway at a time. In the context of WMNs, and as opposed to
in MANETs, spending resources (time and bandwidth) for proactive optimiza-
tion makes sense, and ant-based techniques are attractive candidates. One of the
main trends to address routing issues in WMNs has been the development of
complex multi-dimensional cost metrics, while still relying on traditional routing
mechanisms. The approach followed here, on the contrary, is to rely on the (ant-
based) routing system instead. Results are promising and indicate that adaptive
and efficient load distribution can be achieved. Future work includes testing on
a wider range of scenarios and comparing with other load distribution schemes.
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Abstract. One of the most favorable technology for exploiting the huge
bandwidth of optical networks is known as Wavelength Division Multi-
plexing (WDM). Given a set of demands, the problem of setting up all
connection requests is known as Routing and Wavelength Assignment
(RWA) problem. In this work, we suggest the use of computational swarm
intelligent for solving the RWA problem. A new heuristic based on the
law of gravity and mass interactions (Gravitational Search Algorithm,
GSA) is chosen for this purpose, but adapted to a multiobjective con-
text (MO-GSA). To test the performance of the MO-GSA, we have used a
real-world topology, the Nippon Telegraph and Telephone (NTT, Japan)
network and six sets of demands. After performing several comparisons
with other approaches published in the literature, we can conclude that
this algorithm outperforms the results obtained by other authors.

Keywords: Gravitational Search Algorithm, Routing and Wave-length
Assignment, Wavelength Division Multiplexing, Multiobjective Optimiza-
tion.

1 Introduction

Currently, the number of users that use data networks has grown exponentially
and their needs have evolved, requiring more bandwidth in their communication
applications. The most favorable technology for exploiting the huge bandwidth of
optical networks is known as Wavelength Division Multiplexing (WDM). This
technique multiplies the available capacity of an optical fiber by adding new
channels, each channel on a new wavelength of light. Everything points to the
future of Internet will be based on WDM technology. Nowadays, several telecom-
munication companies in USA, Europe and Japan are testing and using several
prototypes.

When it is necessary to interconnect a set of connection requests a problem
comes up, this problem is known as Routing and Wavelength Assignment (RWA)
problem. The optical connections carried end-to-end from a source node to a
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destination node over a wavelength on each intermediate link are known as
lightpaths) [11]. Depending on the demands, we can distinguish two varieties of
the RWA problem: Static-RWA and Dynamic-RWA. In Static-RWA the set of
demands is known in advance, so the goal is to establish all demands minimizing
the network resources. On the other hand, in the Dynamic-RWA problem, a
lightpath is set up for each single request and after a finite period of time is
erased. In this paper, we have focused on solving the Static RWA problem due
to it is the most common one. Nowadays, WANs (Wide Area Networks) have
static RWA because they are oriented to precontracted services [4].

In this work, we use a new heuristic based on the law of gravity and mass
interactions, the Gravitational Search Algorithm (GSA) ([7]), but adapted to
a multiobjective context (MO-GSA). To test the performance of the MO-GSA,
we have used a real-world topology, the Nippon Telegraph and Telephone (NTT,
Japan) network and six sets of demands. After performing several comparisons
with other approaches published in the literature, we can conclude that this
algorithm outperforms the results obtained by other authors.

The organization of the paper is as follows. In Section 2, we present the
mathematical formulation of the Static-RWA problem. In Section 3, the proposed
metaheuristic is outlined. Finally, several comparisons with other approaches
published in the literature are shown in Section 4, and the relevant conclusions
are drawn in Section 5.

2 Static RWA Problem Formulation

In this paper, an optical network is modeled as a direct graph G = (V, E, C),
where V is the set of nodes, E is the set of links between nodes and C is the set
of available wavelengths for each optical link in E.

– (i, j) ∈ E : Optical link from node i to node j.
– cij ∈ C : Number of channels or different wavelengths at link (i, j).
– u = (su, du) : Unicast request u with source node su and destination node

du, where su, du ∈ V .
– U : Set of demands, where U = { u | u is an unicast request}.
– |U | : Cardinality of U .
– uλ

i,j : Wavelength (λ) assigned to the unicast request u at link (i, j).
– lu : Lightpath or set of links between a source node su and a destination

node du; with the corresponding wavelength assignment in each link (i, j).
– Lu : Solution of the RWA problem considering the set of U requests.

Notice that Lu = {lu|lu is the set of links with their corresponding wavelength
assignment}. Using the above definitions, the RWA problem may be stated as a
Multiobjective Optimization Problem (MOOP) [2], searching the best solution
Lu that simultaneously minimizes the following two objective functions:

1. Number of Hops (y1):

y1 =
∑

u∈U

∑
(i,j)∈lu

Φjwhere

{
Φj = 1 if (i, j) ∈ lu
Φj = 0 if otherwise

}
(1)
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U Lightpath y1 y2

(2,6) 2 - λ1 - 4 - λ1 - 5 - λ1 - 6 3 0
(3,2) 3 - λ1 - 1 - λ1 - 2 2 0
(2,5) 2 - λ2 - 1 - λ2 - 5 2 0
(4,3) 4 - λ2 - 5 - λ2 - 3 2 0
(1,6) 1 - λ1 - 5 - λ2 - 6 2 1

y1=11 y2=1

Fig. 1. A simple example of the Static Routing and Wavelength Assignment problem

2. Number of wavelength conversions (y2):

y2 =
∑

u∈U

∑
j∈V ϕjwhere

{
ϕj = 1 if j ∈ V switches λ
ϕj = 0 if otherwise

}
(2)

Furthermore, we have to fulfill the wavelength conflict constraint : Two different
unicast transmissions must be allocated with different wavelengths when they are
transmitted through the same optical link (i, j). We use these objective functions
with the aim of comparing with other authors ([1] and [5]).

An example helps to understand the problem formulation and the objective
functions of the Static-RWA problem. Given the optical network topology of
Figure 1, suppose the following set of demands: (2,6), (3,2), (2,5), (4,3) and (1,6);
and two different wavelengths at link (cij = 2). As we can see in Figure 1, the
following demands (2,6), (3,2), (2,5) and (4,3) do not present any wavelength
conversion; however, the demand (1,6) presents one wavelength conversion in
node 5. Furthermore, we present all necessary calculations to obtain the value
of the two objective functions, Number of Hops (y1) and Number of Wavelength
Conversions (y2). The solution could not be the best one; this example only tries
to help to understand the problem formulation and the objective functions.

3 Multiobjective Gravitational Search Algorithm

The aim of this section is to present the algorithm used in this work for solving
the Static-RWA problem. In first place, we present a brief description about the
individuals, and subsequently, we describe the innovative multiobjective version
of the Gravitational Search Algorithm (MO-GSA).

3.1 Representation of the Individuals

In this paper, the individuals of the algorithms have been designed as is shown
in Figure 2. For each demand of the set, we execute a modified version of the
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Fig. 2. Individual that provides the solution: y1=11, y2=1. It is obtained executing
the modified version of the Yen´s algorithm with kmax=5 for every demand of the set:
{(2,6), (3,2), (2,5), (4,3) and (1,6)}.

Yen´s algorithm [12]. In our version, we have introduced an heuristic to assign
the wavelengths. This heuristic tries to assign always the same wavelength (λ)
which was previously assigned (previous hop).

If it is not possible, or it is the first assignation, the heuristic choices the
first free λ. Using this modified version of the Yen´s algorithm, we create a list
with as maximum kmax possible routes (including wavelengths) and we select
one of them. This selection is stored in a vector, as it is shown in Figure 2. This
procedure is repeated for every demand of the set.

3.2 Description for MO-GSA

The Gravitational Search Algorithm (GSA) is a population based algorithm cre-
ated by Rashedi et al. [7]. This new optimization algorithm is based on the law of
gravity and mass interactions. In this proposal, the searcher agents (individuals)
are a collection of masses which interact with each other based on the Newtonian
gravity laws of motion.

Since the RWA problem is a MOOP, we have to adapt the GSA to a multiob-
jective context. We have used concepts of well-known multiobjective algorithms
such as Non-Dominated Sorting Genetic Algorithm (NSGA-II, [3]) and Pareto
Archived Evolution Strategy (PAES, [6]). From the NSGA-II we have taken the
FastNonDominatedSort which sorts the population into different nondomina-
tion levels such as the typical NSGA-II. From PAES, we have taken the idea
of a nondominated solution archive (NDS archive), using the same acceptance
function.

In Algorithm 1, we present the pseudocode for our multiobjective version
of the Gravitational Search Algorithm (MO-GSA). In this particular problem,
Static-RWA problem, we have considered |U | (number of demands), as the num-
ber of dimensions, hence, the positions to update are the cells of the correspond-
ing path vector associated to an individual (see Figure 2) .

The algorithm starts with the random generation of N individuals (line 4 in
Algorithm 1) through running our modified version of Yen´s algorithm for each
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Algorithm 1. Pseudocode for MO-GSA
1. NDSarchive ⇐ ∅
2. Kbest ⇐ N
3. /* Generate Initial Population P = {X1, X2, ..., XN } */
4. P ⇐ generateRandomPopulation(N)
5. while not time-limit do
6. /* Evaluate the fitness for each individual */
7. P ⇐ fastNonDominatedSort(P )
8. P ⇐ CrowdingDistanceAssignment(P )
9. P ⇐ calculateMOFitness(P )

10. /* Update G, MOF itnessbest and MOF itnessworst of the population P */

11. G ⇐ G0e
−α t

T

12. MOF itnessbest ⇐ maxi∈{1,...,N} Xi.MOFitness

13. MOF itnessworst ⇐ mini∈{1,...,N} Xi.MOFitness

14. /* Calculate mass and acceleration for each individual */
15. for i=1 to N do

16. Xi.q ⇐ Xi.MOF itness−MOF itnessworst
MOF itnessbest−MOF itnessworst

17. end for
18. for i=1 to N do

19. Xi.mass ⇐ Xi.q∑N
j=1 Xj.q

20. end for
21. for d=1 to |U| do
22. for i=1 to N do
23. for j=1 to Kbest do
24. Rij ⇐ ‖Xi, Xj‖2 // Euclidean Distance between Xi and Xj

25. Xi.F
d
j ⇐ G × Xi.mass×Xj.mass

Rij+ε
× (Xj .pathV ectord − Xi.pathV ectord)

26. end for
27. Xi.forced ⇐ ∑N

j∈Kbest,j �=i rand[0, 1] × Xi.F d
j

28. Xi.accelerationd ⇐ Xi.forced

Xi.mass
29. end for
30. end for
31. /* Update velocity and position of every demand of each individual */
32. for d=1 to |U| do
33. for i=1 to N do
34. Xi.velocityd ⇐ rand[0, 1] × Xi.velocityd + Xi.accelerationd

35. Xi.pathV ectord ⇐ Xi.pathV ectord + Xi.velocityd

36. end for
37. end for
38. NDSarchive ⇐ updateNDSarchive(P )
39. Kbest ⇐ Decrease(Kbest)
40. /* Check if occur stagnation */
41. if stagnation then
42. P ⇐ Mutation(P )
43. end if
44. end while

demand of the set, generating for each individual a path vector and storing them
in population P . Each isolated individual (during the random generation of P )
is added to the NDS archive.

After generating the pool of agents, we classify the population into different
pareto fronts, by ranking the individuals (from 1 to N) and sorting them by
rank (line 7). Furthermore, we calculate the crowding distance of each individual
(line 8) with the aim of calculating the MOFitness (line 9). In equation 3, the
calculation to obtain the MOFitness of an individual is shown which needs to
be maximum. For example, if we compare the worst individual with rank 1 and
lowest value of crowding distance (≈ 0) and the best individual with rank 2 and
highest crowding distance (∞), they present a MOFitness value of 1/3 and 1/4
respectively.

MOFitness(Xi) = (2Xi.rank +
1

1 + Xi.crowding distance
)−1 (3)

Subsequently, we update the gravitational constant (G), the best and the worst
MOFitness. To update G, we have used the same equation proposed in [7] by the
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authors (see line 11), where t is the actual generation, T is the total number of
generations and α is used to measure the reduction of G. Since the MOFitness
must be maximum, we have to update the best and the worst MOFitness using
the best (highest value of MOFitness) individual and the worst individual (lowest
value of MOFitness).

Next, we calculate the mass and acceleration of each agent of the population.
The masses are simply calculated by the MOFitness evaluation. A heavier mass
means a more efficient agent (lines 15-20). In first place, we have to calculate, for
each dimension, the force acting on each individual Xi from all other individuals
that belong to the set Kbest, by using the equation presented in line 25. The
set Kbest is suggested by the authors in [7], to improve the performance of the
heuristic. In that way, the agents will be affected only by the k best individuals
of the population. The value of Kbest is set to N (population size) at the begin-
ning, and it is decreased linearly (line 39) as time goes by. To give a stochastic
characteristic to the GSA algorithm, the total force (line 27) that acts on Xi in
a dimension d must be a randomly (in the interval [0,1]) weighted sum of dth

components of the forces exerted from the Kbest individuals. By using the total
force in a dimension d and the mass associated to an individual, we calculate
the acceleration suffered by the individual in the dimension d (line 28).

Once calculated the mass and acceleration of each individual, we have to cal-
culate the corresponding velocity (in each dimension) with the aim of improving
the position of the individual. The velocity of an individual is considered as a
fraction of its current velocity added to its acceleration. In lines 32-37, we show
the appropriate equations to update the velocity and position of each individual
of the population.

In line 38, we add to the NDS archive the whole population, in that way, we are
able to return a pareto front when the algorithm finishes its execution. We have
added an improvement to the original GSA, a mutation in case of stagnation
(lines 41-43). The mutation is applied only in case of several generations without
changes in the NDS archive. Finally, the MO-GSA restarts a new generation until
the time limit for the experiment is expired (line 5).

4 Empirical Results

In this section we show several comparisons with other approaches published in
the literature.

Two novel multiobjective evolutionary algorithms for solving the Static RWA
problem have been published recently: the classical Differential Evolution, but
adapted to multiobjective context with the Pareto Tournaments concept (DEPT,
[8]) and a multiobjective version of the Variable Neighborhood Search algorithm
(MO-VNS, [9]). In this work, we have also applied the standard multiobjective
Non-Dominated Sorting Genetic Algorithm (NSGA-II, [3]) to the Static RWA
problem with the aim of comparing with MO-GSA.

Other authors has also tackled the Static RWA problem. In [1], the au-
thors make a comparison between typical heuristics in telecommunication field
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Table 1. Runtimes, reference points (rmin and rmax) to calculate the hypervolume
and Short-Names for each test instance

|U | cij Runtime (s) rmin rmax Short Name

NTT 10 10 6 (0, 0) (220, 20) NTT1
20 65 (0, 0) (530, 70) NTT2
40 110 (0, 0) (790, 190) NTT3

|U | cij Runtime (s) rmin rmax Short Name

NTT 8 10 6 (0, 0) (230, 20) NTT4
20 65 (0, 0) (520, 110) NTT5
30 70 (0, 0) (560, 80) NTT6

Table 2. Best configuration found for: DEPT, MO-VNS, NSGA-II and MO-GSA

DEPT
K-shortest-paths (k) 10
Population Size (N) 25
Crossover Probability (cr) 20%
Mutation Factor (f) 50%
Selection Schema (s) Best/1/Bin

MO-VNS
K-shortest-paths (k) 10

NSGA-II
K-shortest-paths (k) 10
Population Size (N) 25
Crossover Probability (cr) 70%
Crossover Schema SPX
Elitism Probability (e) 75%
Mutation Probability (f) 10%

MO-GSA
K-shortest-paths (k) 10
Population Size (N) 25
Gravitational Constant (G0) 100
Alpha (α) 20
Mutation Probability (f) 25%

and different varieties of Multiobjective Ant Colony Optimization algorithms
(MOACO) for solving the Static RWA problem. The typical heuristics purposed
in [1] are: 3SPFF (3-Shortest Path routing, First-Fit wavelength assignment), 3SPLU
(3-Shortest Path routing, Least-Used wavelength assignment), 3SPMU (3-Shortest
Path routing, Most-Used wavelength assignment), 3SPRR (3-Shortest Path routing,
Random wavelength assignment), SPFF (Shortest Path Dijkstra routing, First-Fit
wavelength assignment ), SPLU (Shortest Path Dijkstra routing, Least-Used wave-
length assignment), SPMU (Shortest Path Dijkstra routing, Most-Used wavelength
assignment) and SPRR (Shortest Path Dijkstra routing, Random wavelength assign-
ment). On the other hand, the different varieties of MOACOs in [5] and [1] are:
BIANT (Bicriterion Ant), COMP (COMPETants), MOAQ (Multiple Objective Ant
Q Algorithm), MOACS (Multi-Objective Ant Colony System), M3AS (Multiobjec-
tive Max-Min Ant System), MAS (Multiobjective Ant System), PACO (Pareto Ant
Colony Optimization) and MOA (Multiobjective Omicron ACO). For further infor-
mation about these approaches, refer to [1] and [5].

To carry out the comparisons, we have used a real-world network topology,
the Nippon Telegraph and Telephone (NTT, Japan) network, and six sets of
demands obtained from [10] (see Table 1). After performing a parameter tuning
of each approach (DEPT, MO-VNS, NSGA-II and MO-GSA), the best con-
figuration found for each one is shown in Table 2. The methodology used for
adjusting the parameters of the algorithms is the following: 30 independent runs
and an statistical analysis using ANOVA tests, in this way, we can say that the
parameter tuning was statistically relevant.

However, in [1], the comparison is carried out using only the following sets of
demands: NTT2, NTT3, NTT4 and NTT5. Therefore, when we compare with
[1], we will use only these instances, comparing with the best results indicated
in [1].

To compare the approaches, we have used two multiobjective metrics, Hyper-
volume [14] and Coverage Relation [13]. To calculate the hypervolume is neces-
sary the use of two reference points, rmin( xmin, ymin) and rmax(xmax, ymax),
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Table 3. Comparison among several algorithms published in the literature (DEPT [8],
MO-VNS [9], NSGA-II [3], 3SPLU [1], MOA [5], BIANT [1] and MAS [5]) and our
approach (MO-GSA) using the average Hypervolume of 30 independent runs

(a)

NTT1

DEPT 69.55%
MO-VNS 69.55%
NSGA-II 69.55%
MO-GSA 69.55%

(b)

NTT2

3SPLU 62.96%
MOA 56.01%
DEPT 69.43%
MO-VNS 68.81%
NSGA-II 69.81%
MO-GSA 69.73%

(c)

NTT3

3SPLU 63.18%
BIANT 57.52%
DEPT 63.48%
MO-VNS 62.73%
NSGA-II 62.54%
MO-GSA 63.96%

(d)

NTT4

3SPLU 70.87%
3SPRR 70.87%
SPLU 70.87%
SPRR 70.87%
M3AS 70.87%
MOA 70.87%
DEPT 70.87%
MO-VNS 70.87%
NSGA-II 70.87%
MO-GSA 70.87%

(e)

NTT5

3SPLU 66.81%
MAS 64.79%
MOA 63.37%
DEPT 68.66%
MO-VNS 67.92%
NSGA-II 68.02%
MO-GSA 68.79%

(f)

NTT6

DEPT 64.31%
MO-VNS 61.79%
NSGA-II 64.62%
MO-GSA 65.21%

where x is the number of hops (y1) and y is the number of wavelength switchings
(y2). In Table 1 we show the different reference points for each data set. The
rmax point for every data set was calculated from the experience.

Firstly, we compare the MO-GSA with the approaches mentioned above,
using the hypervolume concept. As we can see in Table 3(a), all approaches
obtained the same value of hypervolume, obtaining the optimal pareto front.
In Table 3(b), the MO-GSA obtains slightly lower hypervolume than the stan-
dard NSGA-II, however, it obtains a significantly higher hypervolume than the
approaches from other authors (3SPLU and MOA). In Table 3(c), we can see
that the MO-GSA obtains better hypervolume than any other approach. As
occurs before, in Table 3(d), all approaches obtains the same hypervolume. Fi-
nally, in Tables 3(e) and Table 3(f), we can notice that the MO-GSA overcomes
the results of hypervolume achieved by any other heuristic. We can conclude
that the MO-GSA provides, in almost all data sets, superior or equal value of
hypervolume to the value obtained by the rest of approaches.

Secondly, we present a direct comparison (Coverage Relation) of the outcomes
achieved by the algorithms presented above. This metric measures the fraction
of non-dominated solutions evolved by an algorithm B, which are covered by the
nondominated points achieved by an algorithm A in average. Once performed the
first comparison, we decide to make the second comparison using almost all data
sets, except NTT1 and NTT4, due to the fact that all approaches have obtained
the same pareto front. In Table 4(a), we can see that the pareto front obtained
by MO-GSA dominates the fronts obtained by the best MOACO (MOA) and by
the best typical heuristic (3SPLU). Furthermore, its front covers the 100%, 80%
and 80% the fronts obtained by DEPT, MO-VNS and NSGA-II, respectively.
In Table 4(b), the DEPT and NSGA-II covers the 33.33% of the surface of
MO-GSA, by contrast, the MO-GSA is able to covers completely the surface of
BIANT, 3SPLU and MO-VNS and 50% and 75% of DEPT and NSGA-II. In
Table 4(c), we can notice that the MO-GSA front is better or equal than all
the other fronts obtained by the other algorithms. We can see that the front
obtained by 3SPLU does not dominate the front obtained by the MO-GSA, and
vice versa. Finally, in Table 4(d) we show a Coverage Relation among the DEPT,
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Table 4. Comparison among several algorithms published in the literature (DEPT [8],
MO-VNS [9], NSGA-II [3], 3SPLU [1], MOA [5], BIANT [1] and MAS [5]) and our
approach (MO-GSA) using the Coverage Relation metric (A � B)

(a)

NTT2

A MOA 3SPLU DEPT MO-VNS NSGA-II
B MO-GSA

0% 0% 0% 33.33% 0%

A MO-GSA
B MOA 3SPLU DEPT MO-VNS NSGA-II

100% 100% 100% 80% 80%

(b)

NTT3

A BIANT 3SPLU DEPT MO-VNS NSGA-II
B MO-GSA

0% 0% 33.33% 0% 33.33%

A MO-GSA
B BIANT 3SPLU DEPT MO-VNS NSGA-II

100% 100% 50% 100% 75%

(c)

NTT5

A MAS MOA 3SPLU DEPT MO-VNS NSGA-II
B MO-GSA

0% 0% 0% 0% 100% 0%

A MO-GSA
B MAS MOA 3SPLU DEPT MO-VNS NSGA-II

62.50% 50% 0% 100% 100% 100%

(d)

NTT6

A DEPT MO-VNS NSGA-II
B MO-GSA

50% 16.67% 50%

A MO-GSA
B DEPT MO-VNS NSGA-II

80% 100% 80%

MO-VNS, NSGA-II and MO-GSA, we can check that the pareto front obtained
by MO-GSA covers a 80%, 100% and 80% of the surface of the front obtained
by DEPT, MO-VNS and NSGA-II, respectively.

To sum up, after performing a exhaustive comparison among the best typical
heuristics proposed in [1], the best MOACOs proposed in [1] and [5], DEPT,
MO-VNS and NSGA-II, we can say that the MO-GSA obtains very promising
results. It obtains better results than almost twenty heuristics.

5 Conclusions and Future Work

In this paper, a real-world optical networking problem has been solved by us-
ing an innovative multiobjective version of the Gravitational Search Algorithm
(MO-GSA). A real-world topology has been used in the experimental section,
the Nippon Telegraph and Telephone (NTT, Japan) network and six sets of de-
mands. After performing several comparisons with several approaches published
in the literature, we can conclude saying that the MO-GSA outperforms the re-
sults obtained by any other approach in almost all data sets. As future work, we
intend to apply this innovative multiobjective algorithm to the Dynamic RWA
problem. Furthermore, it would be interesting to develop different swarm in-
telligent algorithms (as those based on bee colonies) with the aim of making
comparisons with MO-GSA.
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Abstract. In network coding based multicast, coding operations are expected to 
be minimized as they not only incur additional computational cost at 
corresponding nodes in network but also increase data transmission delay. On 
the other hand, delay constraint must be concerned particularly in delay 
sensitive applications, e.g. video conferencing. In this paper, we study the 
problem of minimizing the amount of coding operations required while meeting 
the end-to-end delay constraint in network coding based multicast. A population 
based incremental learning (PBIL) algorithm is developed, where a group of 
best so far individuals, rather than a single one, is maintained and used to 
update the probability vector, which enhances the global search capability of 
the algorithm. Simulation results demonstrate the effectiveness of our PBIL.  

Keywords: multicast; network coding; population based incremental learning. 

1   Introduction 

Network coding has been attracting an increasing research attention since 2000 [1]. 
Instead of simply replicating and forwarding data packets at the network layer, 
network coding allows any intermediate node, if necessary, to perform mathematical 
operations to recombine data packets received from different incoming links. By 
doing so, the maximized multicast throughput is always obtained [2]. 

In most of the previous research on network coding, coding is performed at all 
coding-possible nodes without concerning issues raised in real life applications. One 
such issue is that, to obtain an expected multicast throughput, coding may only be 
necessary at a subset of coding-possible nodes [3,4,5]. As they consume public 
resources, e.g. buffer and computational resources, coding operations should be 
minimized to leave more public resources for other network applications. Another 
issue in real time applications is that transmission delays, especially in delay sensitive 
applications, e.g. video conferencing and distributed game, should be bounded. It is 
therefore important to minimize coding operations while meeting the end-to-end 
delay requirement. However, such problem has not drawn enough research attention. 

Several algorithms have been proposed to minimize coding resources, however, 
without concerning the delay constraint. In [6] and [7], original topologies were 
decomposed and transformed into secondary graphs, based on which greedy methods 
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were developed to reduce the amount of coding operations. In [8], linear programming 
formulations based on a model allowing continuous flows were proposed to optimize 
various resources used for network coding. In addition, Kim et al investigated 
centralized and distributed genetic algorithms (GAs) with problem-specific operators 
to minimize the required network coding resources [3,4,5].  

Population based incremental learning (PBIL), a combination of evolutionary  
algorithm and competitive learning, was first introduced in 1994 [9]. Without using 
crossover and mutation, PBIL retains the stochastic search nature of GA by simply 
maintaining a probability vector. Since its introduction, PBIL has shown to be very 
successful on numerous benchmark and real-world problems [10]. 

In this paper, we propose the first PBIL algorithm for the problem of minimizing 
network coding resources with the delay bound in network coding based multicast. 
We put forward a new probability vector update scheme based on statistical 
information of a set of best so far individuals. In addition, we observed that the use of 
the all-one vector in the initialization of PBIL greatly helps to guide the search 
towards promising solutions. Simulation results demonstrated that our PBIL is highly 
effective for the problem concerned. 

2   Problem Description 

A communication network can be modeled as a directed graph G = (V, E), where V 
and E denote the set of nodes and links, respectively [2]. We assume each link e has a 
unit capacity. A delay constrained single-source network coding based multicast 
scenario can be defined as a 5-tuple set (G, s, T, R, Ω), where the information needs to 
be transmitted at data rate R from the source node s∈V to a set of sinks T = 
{t1,…,td}⊂V in the graph G (V, E), satisfying a given end-to-end delay constraint Ω. 
Rate R is achievable if there is a transmission scheme that enables each sink tk, k = 
1,…,d, to receive information at data rate R [4,5]. As each link has a unit capacity, a 
path from s to tk thus has a unit capacity. If we manage to set up R link-disjoint paths 
{P1(s, tk),…,PR(s, tk)} from s to each sink tk∈T, we make the data rate R achievable. 
We concern linear network coding which is sufficient for multicast [2]. 

In this paper, a subgraph is referred to as a network coding based multicast 
subgraph (NCM subgraph, denoted by GNCM(s, T)) if there are R link-disjoint paths 
Pi(s, tk), i = 1,…,R, from s to each sink tk in this subgraph. We refer to a non-sink 
node with multiple incoming links as a merging node [4,5]. Only merging nodes and 
their outgoing coding links have the potential to serve as coding nodes and coding 
links, respectively [4,5]. To determine if an outgoing link of a merging node becomes 
a coding link, we only need to check if the information via this link is dependent on at 
least two incoming links of the merging node. 

For a given multicast scenario, the number of coding links is more precise to 
indicate the total amount of coding operations [7]. We hereinafter investigate how to 
construct a NCM subgraph GNCM(s, T) with the minimal number of coding links while 
achieving the expected data rate and satisfying the end-to-end delay constraint Ω. 
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We define the following notations in our paper: 

• xij: a variable associated with the j-th outgoing link of the i-th merging node, i = 
1,…,M, j = 1,…,Zi, where M is the total number of merging nodes and the i-th 
node has Zi outgoing links. xij = 1 if the j-th outgoing link of the i-th node serves 
as a coding link; xij = 0 otherwise. 

• Ncl(GNCM(s,T)): the number of coding links in a NCM subgraph GNCM(s, T). 
• R(s, tk): the achievable rate from s to tk. 
• R: the defined data rate (an integer) at which s expects to transmit information. 
• e(na, nb): a directed link from node na to node nb. 
• Pi(s, tk): the i-th established path from s to tk, i = 1,…,R in GNCM(s, T). 
• Wi(s, tk) = {e | e∈Pi(s, tk)}: the link set of Pi(s, tk). 

• kts
iP → (na, nb): the subpath from node na to node nb on the path Pi(s, tk). Along 

a path, we assume that node nj-1 is the parent node of node nj, j = 2,…,p, n1 = s 
and np = tk. 

• D(ω): the delay of the term ω. D(ω) represents the data processing delay of a 
node ω; or it is the propagation delay of a link ω. If ω is a path P(ni,nj), D(ω) is 
the end-to-end delay from node ni to node nj; if ω is a NCM subgraph 
GNCM(s,T), D(ω) denotes the maximal path delay in GNCM(s,T). 

Based on the above notations, we define the problem of delay constrained coding 
resource minimization as to minimize the number of coding links while achieving the 
desired multicast throughput and meeting the delay restriction, shown as follows: 

Minimize:       ∑ ∑= =
=
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  D(GNCM(s, T)) ≤ Ω                      (4) 

where, 

   D(GNCM(s, T)) = max{D(Pi(s, tk)) | i = 1, 2, …, R, ∀ tk∈T }     (5) 

Objective (1) defines our problem as to find a NCM subgraph with the minimal 
number of coding links; Constraint (2) defines that the practical achievable data rate 
from s to every sink must be at least R so that R paths can be constructed for each 
sink; Constraint (3) restricts that for each tk the R constructed paths Pi(s, tk), must have 
no common link; Constraint (4) defines that the maximal delay of the constructed 
NCM subgraph cannot be greater than the pre-defined delay bound Ω; The delay of 
the NCM subgraph is defined in (5) as the maximal delay among all paths. Note  
that in this paper we only consider the transmission delay from s to tk along each path 
Pi(s, tk). The decoding delay to obtain the original information in each sink is omitted.  

Along a path Pi(s, tk), there are in general four types of nodes: the source, the sink, 
forwarding node(s) and coding node(s). If a node nj is a sink or a forwarding node, we 
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ignore its data processing delay, i.e. D(nj) = 0. The delay of the path from s to the sink 
or the forwarding node is thus defined as follows: 

)),(()),(()),(( 11 jjj
ts

ij
ts

i nneDnsPDnsPD kk
−−

→→ +=                         (6) 

If a number of data packets are required to be coded together at a coding node, coding 
operation cannot start until the arrival of the last data packet. If a node nj is a coding 
node, we assume that among the R·d paths in GNCM(s, T) there are Y paths that pass 
through nj. Obviously, along each of the Y paths there is a subpath from s to nj. We 
denote the delays of the Y subpaths by D1(s, nj), D2(s, nj), …, DY(s, nj). The delay of 
the subpath from s to coding node nj is defined as follows: 

cjrj
ts

i YrnsDnsPD k Δ+==→ },...,1|),(max{)),((                           (7) 

where Δc is the time consumed by the coding operation. We assume any coding 
operation consumes the same time Δc. 

3   The Proposed PBIL 

As an estimation of distribution algorithm, PBIL maintains a real-valued probability 
vector which, when sampled, generates promising solutions with high probabilities. 
The procedure of the standard PBIL with elitism [9] is shown in Fig.1. In the 
probability vector P(t) = {P1

t, P2
t,…, PL

t} at generation t, where L is the solution 
length, and Pi

t, i = 1, 2, …, L, is the probability of generating ‘1’ at the i-th position of 
a solution. At each generation, P(t) is sampled to form a set S(t) of N individuals (i.e. 
solutions) which are evaluated and assigned a fitness value using a given fitness 
function. Let α be the learning rate. The best so far individual B(t) = {B1

t, B2
t,…, BL

t} 
is then selected to update P(t) as follows: 

Pi
t = (1.0 − α) ⋅ Pi

t + α ⋅ Bi
t,   i = 1, 2, …, L                                  (8) 

After the P(t) is updated, a bit-wise mutation operation may be adopted to maintain 
the diversity and avoid local optima [9]. We denote by pm and σ the mutation 
probability and the amount of mutation at each locus Pi

t, respectively. For each locus 
Pi

t, a uniformly distributed random number rndi in [0.0, 1.0] is generated. If rndi < 
pm, Pi

t is mutated by the following formula: 

Pi
t = (1.0 − σ) ⋅ Pi

t + rnd({0.0, 1.0}) ⋅ σ                                         (9) 

where rnd({0.0, 1.0}) is 0.0 or 1.0, randomly generated with a probability 0.5. 
After mutation, a sampling set is generated by the new P(t). Step 6 to 11 is 

repeated until the termination condition is met. Along with the evolution, P(t) 
gradually converges to an explicit solution. 

In this paper, we propose a new probability vector update scheme where a number 
of best so far individuals are adopted. In addition, an all-one vector is employed at the 
beginning of the algorithm to guide the search towards feasible solutions. 
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1) Initialization 
2)   Set t = 0; 
3) for i = 1 to L, do set Pi

t = 0.5 
4) Generate a sampling set S(t) of N 

individuals from P(t) 
5) repeat 
6) Set t = t + 1 
7) Evaluate the samples in S(t-1) 
8) Find the best individual B(t) from 

B(t-1)∪S(t-1) 
9) Update P(t) by Eq.(8) 
10) Mutate P(t) by Eq.(9) 
11) Generate set S(t) by sampling P(t) 
12) until termination condition is met 

1) Find the H best individuals from S(t-1) 
and sort them in sequence {C1, C2,…, 
CH}, where f(C1)≤ f(C2) ≤…≤ f(CH) 

2) for i = 1 to H do 
3) Find the worst individual BMAX in the 

set of best so far individuals SBSF, 
where f(BMAX) = max{ f(B1), f(B2), 
…, f(BH)} 

4)   if f(Ci) ≤ f(BMAX) do 
5)       BMAX = Ci;  
6)       f(BMAX) = f(Ci); 
7)   end if 
8) end for 
9) Update P(t) by Eq.(10) and Eq.(11) 

            Fig. 1. Procedure of PBIL                            Fig. 2. The new probability update scheme 

3.1   The New Probability Vector Update Scheme  

Contrary to the traditional PBIL [9] that updates P(t) by shifting it towards the best 
individual B(t), our PBIL concerns a set of best so far individuals SBSF = {B1,…, BH}, 
where H ≥ 1 is a constant number. Initially, P(t) is sampled H times to create H 
individuals to form SBSF. At each generation, when a number of fitter individuals 
appear, we update SBSF by replacing those with worse fitness values in SBSF by the 
fitter ones. Then, the statistical information of SBSF, i.e. PBSF, is extracted and used to 
update P(t), as shown in formula (10) and (11). 

∑ =
⋅=

H

1H

1
k kBSF BP                                           (10) 

P(t) = (1.0 − α) ⋅ P(t) + α ⋅ PBSF                        (11) 

Given an individual X, we denote its corresponding fitness value by f(X). The 
procedure of the new probability vector update scheme at generation t is shown in 
Fig.2. Note that this new update scheme generalizes the update scheme in standard 
PBIL. When H = 1, it is equivalent to a standard PBIL where only one best so far 
individual, i.e. B1, is maintained in SBSF. 

3.2   The Use of All-One Vector 

As the problem concerned is highly constrained, P(t) in the initialization of PBIL may 
not be able to create feasible individuals, and thus deteriorates the effectiveness and 
efficiency of PBIL. Kim et al [4,5] significantly improved the performance of their 
GA by inserting an all-one vector into initial population to enable that all merging 
nodes are active, and their GA begins with at least one feasible solution. 

Inspired by the above idea, we employ all-one vector(s) in the probability vector 
update scheme to improve the performance of the proposed PBIL. The all-one vector 
compensates for the absence of feasible individuals in SBSF in the initialization of our 
algorithm. For example, if there are u (0 < u ≤ H) infeasible individuals in SBSF, these 
individuals are replaced by u all-one vectors. Note that, different from the problem 
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concerned in [4,5], our problem also considers the delay constraint. Therefore, all-one 
vector may still be infeasible as the delay constraint may not be met. 

3.3   The Structure of the Proposed PBIL 

We use the graph decomposition method proposed in [4,5] to transform the given 
network G into a secondary graph GD. In PBIL, each individual X corresponds to a 
secondary graph GD. Each bit of X is associated with one of the newly introduced 
links between the so-called auxiliary nodes in GD. Bit ‘1’ and ‘0’ means its 
corresponding link exists and does not exist in the secondary graph GD, respectively.  

Fitness evaluation measures each obtained GD. For an individual X, we first check 
if a feasible NCM subgraph GNCM(s,T) can be found from its corresponding GD. For 
each sink tk∈T, we use the Goldberg algorithm[11], a classical max-flow algorithm, 
to compute the max-flow between the source s and tk in the corresponding GD. If all d 
max-flows are at least R, for each sink tk we select R least-delay paths from all link-
disjoint paths obtained from s to tk. All the selected paths are mapped to GD to form 
the GNCM(s, T). If the maximal path delay in the GNCM(s,T) satisfies the delay 
constraint, i.e. D(GNCM(s,T)) ≤ Ω, we set the number of coding links in GNCM(s,T) to 
f(X). If GNCM(s,T) cannot be found or it violates the delay constraint, X is infeasible 
and we set a very large fitness value Ψ to f(X) (in this paper, Ψ = 50).  

The procedure of the proposed PBIL is shown in Fig.3. The termination criteria are 
subject to two conditions: 1) a coding-free subgraph is obtained, or 2) the algorithm 
reaches a pre-defined number of generations. 

 
1) Initialization 
2) Set t = 0; 
3) For i = 1, 2, …, L, set Pi

t = 0.5 
4) Generate a sampling set S(t) of N individuals from P(t) 
5) Generate a set SBSF of H individuals by sampling P(t) 
6) Replace infeasible individuals in SBSF by all-one vectors 
7) repeat 
8) Set t = t + 1 
9) Evaluate the samples in S(t-1) 
10) Update P(t) by using the probability vector update scheme (Fig.2) 
11) Mutate P(t) by Eq.(9) 
12) Generate a set S(t) of N samples by P(t) 
13) until termination condition is met 

Fig. 3. Procedure of the proposed PBIL 

4   Numerical Experiments and Discussions 

We evaluate the performance of the following two algorithms: 

• GA: the simple GA with binary link state encoding, tournament selection, 
uniform crossover, simple mutation and all-one vector inserted into initial 
population [5]. 

• PBIL-H(num): the proposed PBIL with the new probability vector update 
scheme and the use of all-one vector(s), where num is the integer set to H. 
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Simulations have been carried out upon two networks, i.e. a 15-copies network (with 
R = 2) adopted in [5] and a random directed network (with 60 nodes, 150 links, 11 
sinks, and R = 5). The propagation delay over each link D(e) is uniformly distributed 
from 2ms to 10ms and the time consumed for coding Δc is set to 2ms. For each 
topology, we set two different delay constraints, a severe one and a loose one, i.e. for 
the 15-copies topology, 136ms and 300ms, respectively; for the 60-nodes topology 
71ms and 300ms, respectively. The solution lengths in 15-copies and 60-nodes are 
176 bits and 235 bits, respectively. In all scenarios, the population size and the pre-
defined termination generation is set to 40 and 300, respectively. In GA, tournament 
size, crossover and mutation probabilities are set to 2, 0.8 and 0.01, respectively. In 
PBIL-H(num), α = 0.1, pm = 0.02, and σ = 0.05. To study how H affects the 
performance of our PBIL, we set 1, 8, 16, 24, 32, and 40 to num, respectively. All 
experimental results were collected by running each algorithm 20 times. The 
performance analysis is based on the following criteria: 

• The evolution of the average fitness. Note that the termination condition here 
is that algorithm stops after 200 generations. 

• The successful ratio (SR) of finding a coding-free subgraph (i.e. subgraph 
without coding performed). Note that the optimal solutions in our experiments 
are solutions that produce coding-free subgraphs. 

• The average best fitness (ABF). It is the average value of the obtained best 
fitness values in 20 runs. 

• The average computational time (ACT) to run an algorithm.  

Table 1 shows the results of GA and PBIL-H(1) on the 15-copies and 60-nodes 
networks. GA is beaten by PBIL-H(1) in every case, showing to be ineffective in 
solving the problems concerned. In terms of SR, the maximum value GA obtains is 
60% while PBIL-H(1) has at least 80%. In particular, for 15-copies network, GA even 
cannot reach coding-free subgraph(s). In contrast, the performance of PBIL-H(1) is 
stabilized and with high-quality, which shows PBIL-H(1) is more effective compared 
with GA. We also see that PBIL-H(1) performs better than GA  with respect to ABF 
and sometimes the superiority is substantial, e.g. in severely constrained cases. 

Fig.4 compares the average fitness obtained by PBIL-H(num) for the 15-copies and 
60-nodes networks. We find that the convergence characteristics of these algorithms 
are affected by H, i.e. the number of best so far individuals kept in SBSF, in such a way 
that the larger H, the slower convergence. As aforementioned, the statistical 
information of SBSF is used to update the probability vector. With more individuals in 
SBSF, the contribution to adjust the probability vector from a single individual in SBSF 
becomes less. Therefore, a larger H is more likely to slow down the convergence of 
the proposed algorithm. However, PBILs with a smaller H may suffer from rapid 
diversity loss and converge to local optima. 

Table 1. Results by GA and PBIL-H(1) 

15-copies network 60-nodes networkEvaluation Criteria 
Ω = 136 ms Ω = 300 ms Ω = 71 ms Ω = 300 ms 

GA 0.0 0.0 5.0 60.0SR (%) 
PBIL-H(1) 100.0 95.0 80.0 80.0
GA 50.0 9.05 47.5 1.00ABF 
PBIL-H(1) 0.0 0.05 0.20 0.20
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                (a) DelayC = 136 ms in 15-copies                                   (b) DelayC = 300 ms in 15-copies 

 
          (c) DelayC = 71 ms in 60-nodes                                     (d) DelayC = 300 ms in 60-nodes 

Fig. 4. Average fitness vs. generation. DelayC denotes the delay bound. 

On the same network with different delay bounds, the performances of PBIL-H(num) 
deteriorate on severely constrained cases. For example, PBIL-H(1) for the 60-nodes 
network with smaller delay bound in Fig.4(c) obtains a worse average fitness than that 
of the same network with larger delay bound in Fig.4(d). Obviously, this is due to that 
there are less feasible solutions in the solution space of the severely constrained  
topologies compared to that of loosely constrained cases. 

Fig.5 shows the effect of H to SR and ACT in the 15-copies and 60-nodes networks. 
In Fig.5(a) and (b), we notice that the larger the value of H, the higher the SR, and the 
larger ACT. In the case of severe delay constraint, the ACT of PBIL-H(num), num = 1, 
8, 16, 24, 32 and 40, become increasingly worse. This phenomenon demonstrates the 
tradeoff between diversification and intensification. The more the best so far 
individuals are maintained in SBSF, the better the diversity is kept, thus avoiding pre-
maturity. However, larger H, on the other hand, slows down the convergence, where 
PBIL cannot efficiently exploit and find an optimal solution from a certain area of the 
solution space yet consumes a large amount of computational time. Concerning SR in 
Fig.5(c), we also notice that the larger the value of H, the higher the SR in cases with 
different delay constraints. On the other hand, in Fig.5(d), the ACT falls first and rises 
up then. This is because with H increasing, the global exploration ability of the 
algorithm is gradually improved, leading to the ACT to obtain optimal solutions being 
reduced. However, during the process, the convergence of PBIL becomes flattened, 
inherently prolonging the ACT. At the beginning, the reduction of ACT caused by high 
global exploration is more than the addition of ACT caused by slow convergence, so 
the actual ACT decreases. Once the reduction of ACT is less than its addition, the 
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                          (a) SR vs. H in 15-copies                                      (b) ACT vs. H in 15-copies 

 
                          (c) SR vs. H in 60-nodes                                          (d) ACT vs. H in 60-nodes 

Fig. 5. The effect of H 

actual ACT undoubtedly grows up. From above analysis, we find that if H is properly 
selected, e.g. set H = 8 in 15-copies network and H = 24 in 60-nodes network, rapid 
convergence and global search capability can be achieved simultaneously. 

5   Conclusions 

In this paper, we investigate for the first time the delay constrained minimization 
problem on network coding operations. A population based incremental learning 
algorithm with a new probability vector update scheme and all-one vector(s) is 
proposed. The new update scheme makes use of a group of best so far individuals to 
adjust the probability vector. The number of best individuals needs to be carefully 
devised so that high performance and low computational time are achieved at the 
same time. Besides, all-one vectors are adopted to drive the probability vector  
towards feasible solutions at early evolutionary generations, which greatly improve 
the performance of our proposed algorithm. Simulation results demonstrate that the 
proposed algorithm is highly effective in solving the problem concerned. 
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Abstract. The paper presents new Java programs scheduling algorithms
for execution on clusters of Java Virtual Machines (JVMs), which involve
extremal optimization (EO) combined with task clustering. Two new
scheduling algorithms are presented and compared. The first employs
task clustering to reduce an initial program graph and then applies ex-
tremal optimization to schedule the reduced program graph to system
resources. The second algorithm applies task clustering only to find an
initial solution which is next improved by the EO algorithm working on
the initial program graph. Both algorithms are also compared to an EO
algorithm which does not use the clustering approach.

Keywords: distributed systems, scheduling, evolutionary algorithms.

1 Introduction

Extremal Optimization (EO) developed in 1999 by Boettcher and Percus [2]
offers an evolutionary optimization method, which features fast convergence and
very small memory requirements. EO works based on developing a single solution
composed of a number of components, each of which is a variable of the problem.
In this respect, EO is strongly competitive to genetic algorithms. Two separate
fitness functions are used to evaluate the components and the global solution
quality. In EO, the worst component is randomly updated, so that the solution
is transformed into a new acceptable solution. A probabilistic version of EO has
been designed [3] which aims in avoiding the local minimum phenomenon.

Optimization of the execution time of Java programs has already attracted
researchers’ attention [7]. The optimization is done at program runtime with the
use of centralized or distributed load monitoring. Java program task scheduling
on Grids is also reported in [4]. It requires adequate computational and com-
munication load metrics proposed in [12]. Optimal execution of Java programs
should take into account an optimized initial schedule of Java distributed ap-
plication. This problem has not been sufficiently covered in current literature,

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 61–70, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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although some papers propose an initial optimization including Java objects
static clustering [9] or distributed byte-code clustering [10] in a set of JVMs.

This paper follows our earlier research reported in [5] where we have studied
the use of the probabilistic EO for initial mapping of Java programs to dis-
tributed systems of multi-core processors. Our algorithms have confirmed that
the quality of schedules provided by EO is similar to that of the algorithms
based on the Earliest Task First heuristics (ETF). In this paper, we present
improved versions of the initial Java program placement algorithm, which uses
the probabilistic EO approach. The original feature of our algorithms is that
we preceded the EO essential optimization phase by an initial clustering of the
program macro data flow graphs. Two approaches to the use of task clustering in
EO have been studied. With the first approach, task clustering is performed to
find a reduced version of an initial program macro data flow graph, which is next
processed by the EO algorithm to provide the final program schedule. With the
second approach, the clustering algorithm is used to find only the initial solution
for the EO, i.e. a mapping of the program tasks to processor nodes; however, the
program graph considered by the EO is the initial macro data-flow graph of the
program. The two approaches are compared by experiments based on graph ex-
ecution simulator. The experiments have shown that the second approach gives
a better quality results. Environment monitoring (system observation) predicts
CPU and network services availability based on current CPU load and network
utilization which are used in the proposed algorithms.

In our experiments, we have used the ProActive Java framework for cluster
and Grid computing [1] as distributed programs execution management support.
It provides a distributed Java API and a set of tools for program management
in different environments such as desktop, SMP, LAN, clusters and Grid.

The rest of the paper is composed of 4 parts. The first part presents the
program representation and the executive system features. Next, the extremal
optimization principles are outlined. Then, the proposed and discussed versions
of the extremal optimization for Java program scheduling are described. Finally,
experiment results with programs optimized for execution on cluster of JVMs
based on multicore processors are presented.

2 Program Representation and System Environment

In the paper, we are interested in initial deployment optimization of distributed
Java programs, which can be represented as directed acyclic graphs (DAGs). An
application program is described by a weighted directed acyclic graph Gdag =
{P, E}, where P is a set of communicating task nodes, and E is a set of
data transfer edges between tasks. Each task pk, k ∈ {1 . . . |P |} has a weight
γk which represents the number of instructions to be executed. These weights
are determined either during the sample execution of the program for some
representative data or are provided by application developer. An edge weight
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ψkm represents the amount of data to be sent from task k to another m-th task.
Similarly, these weights can be sampled or provided explicitly by a developer.
A program is executed according to the macro data-flow model. Tasks start their
execution when all needed data arrived through task incoming edges. When task
is finished, it sends produced data to the succeeding tasks. The graphs are static
and deterministic. We assume that, to preserve the DAG constraints, all loops
are unrolled or encircled inside the body of a single task.

The target executive system consists of N computing resources (nodes). Each
node, identified by an integer value in the range [0, N − 1], is a multicore pro-
cessor. We assume that all cores in a single node i, whose number is denoted
as κi, are homogeneous. The current status of system resources is given by the
node power αi which is the number of instructions computed per time unit in
a core of the node i and average load of each core lki (Δt) in a particular time
span Δt: lki (Δt) ranges in [0.0, 1.0], where 0.0 means a core with no load and 1.0
a core loaded at 100%. Thus (1− lki (Δt))αi represents the power of the core k of
the node i available for the execution of the tasks scheduled by our algorithm.
The communication bandwidth between any pair of nodes i and j is denoted
as βij . The current status of the system is supposed to be contained in tables
based either on statistical estimations in a particular time span or gathered by
tracking periodically and by forecasting dynamically resource conditions.

ProActive framework. In the presented work, execution of distributed Java
programs is done employing the ProActive framework for cluster and Grid com-
puting [1]. ProActive is a Java middleware library (available under GPL open
source license) providing an API for parallel, distributed, and multi-threaded
computing, also with support for mobility and security. It is based on the Active
Objects design pattern and allows for simplified and uniform programming of
Java applications distributed on Local Area Networks (LANs), Clusters, Internet
Grids and Peer-to-Peer Intranets.

A distributed ProActive application is composed of a set of active objects.
An Active Object is implemented as a standard Java object with an attached
thread of control. Incoming method calls are stored in a queue of pending re-
quests in each active object, which decides in which order to serve them. Thus,
method calls sent to active objects are asynchronous with transparent future
objects and the synchronization handled by a wait-by-necessity mechanism. The
communication semantics depends upon the signature of the method, with three
possible cases: synchronous invocation, one-way asynchronous invocation, and
asynchronous invocation with future result.

The program DAG representation corresponds to ProActive distributed ap-
plication in which a task node is a thread of an Active Object and an edge
is a method call in another Active Object. The execution of an Active Object
method, which constitutes the task, can start when this object collected all nec-
essary data. During execution, an Active Object communicates only with local
objects. At the end of execution, the method sends data to the node successors.
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3 Extremal Optimization Algorithm Principles

Extremal Optimization is an important nature inspired optimization method. It
was proposed by Boettcher and Percus [2] following the Bak–Sneppen approach
of self organized criticality dynamic [11]. It represents a method for NP–hard
combinatorial and physical optimization problems [3, 2]. It is also a competi-
tive alternative to other nature–inspired paradigms such as Simulated Anneal-
ing, Evolutionary Algorithms, Swarm Intelligence and so on, typically used for
finding high–quality solutions to such NP–hard problems. Differently from the
well–known paradigm of Evolutionary Computation (EC), which assigns a given
fitness value to the whole set of the components of a solution based upon their
collective evaluation against a cost function and operates with a population of
candidate solutions, EO works with one single solution S made of a given num-
ber of components si, each of which is a variable of the problem and is thought
to be a species of the ecosystem. Once a suitable representation is chosen, by
assuming a predetermined interaction among these variables, a fitness value φi

is assigned to each of them. Then, at each time step the overall fitness Φ of S
is computed and this latter is evolved, by randomly updating only the worst
variable, to a solution S′ belonging to its neighborhood Neigh(S).

This last is the set of all the solutions that can be generated by randomly
changing only one variable of S by means of a uniform mutation. However, EO is
competitive with respect to other EC techniques if it can randomly choose among
many S′ ∈ Neigh(S). When this is not the case, EO leads to a deterministic
process, i.e., gets stuck in a local optimum. To avoid this behavior, Boettcher
and Percus introduced a probabilistic version of EO based on a parameter τ , i.e.,
τ–EO. According to it, for a minimization problem, the species are firstly ranked
in increasing order of fitness values, i.e., a permutation π of the variable labels i
is found such that: φπ(1) ≤ φπ(2) ≤ . . . φπ(n), where n is the number of species.
The worst species sj is of rank 1, i.e., j = π(1), while the best one is of rank n.
Then, a distribution probability over the ranks k is considered as follows: pk/k−τ ,
1 ≤ k ≤ n for a given value of the parameter τ . Finally, at each update a generic

Algorithm 1. General EO algorithm
initialize configuration S at will
Sbest ← S
while maximum number of iterations Niter not reached do

evaluate φi for each variable si of the current solution S
rank the variables si based on their fitness φi

choose the rank k according to k−τ so that the variable sj with j = π(k) is selected
choose S′ ∈ Neigh(S) such that sj must change
accept S ← S′ unconditionally
if Φ(S) < Φ(Sbest) then

Sbest ← S
end if

end while
return Sbest and Φ(Sbest)
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rank k is selected according to pk so that the species si with i = π(k) randomly
changes its state and the solution moves to a neighboring one S′ ∈ Neigh(S)
unconditionally. The only parameters are the maximum number of iterations
Niter and the probabilistic selection value τ . For minimization problems τ–EO
proceeds as in the Algorithm 1.

4 Extremal Optimization Applied to Java Program
Optimization

Improved versions of the initial Java program placement algorithm, which uses
the probabilistic EO approach are the main goals of this paper. The target
problem is defined as follows: assign each task pk, k ∈ {1 . . . |P |} of the program
to a computational node i, i ∈ [0, N − 1] in such a way that the total program
execution time is minimized, assuming the program and system representation
as described in section 2. Since tasks address non-dedicated resources, their own
local computational and communication loads must be considered to evaluate
the computation time of the tasks of the program to be scheduled. There exist
several prediction methods to face the challenge of non–dedicated resources.

The original feature of new algorithms is that we introduced an additional clus-
tering step before the essential, EO-based optimization phase. Two approaches
to the use of the task clustering before the EO phase have been investigated.
In the first approach, task clustering is performed to find a reduced version of
an initial program macro data flow graph, which is next processed by the EO
algorithm to provide the final program schedule. This approach aims at reduc-
tion of the overall execution time of the EO phase through reducing the size of
the program graph. In the second approach, the clustering algorithm is used to
find only the initial solution for the EO, i.e. a mapping of the program tasks to
processor nodes; however, the graph considered by the EO is the initial macro
data-flow graph of the program. The second approach aims at improving the
quality of the final schedule of the program.

Using the aforementioned two approaches to an initial program graph clus-
tering step, we propose the following extremal optimization algorithm variants:

EO-clust – an EO algorithm using the clustering to find a reduced version of
the program graph, which will be next considered as an input to the EO
algorithm,

EO-ini-cl – an EO algorithm using the clustering to find only a better ini-
tial solution for the EO while it starts with considering a full introductory
program graph.

Both algorithms are based on the same EO heuristics, as shown in Algorithm 1.
In the clustering algorithm, we have applied the DSC heuristics (see [13] for
details), which is proven to be both efficient and fast.

A scheduling solution S is represented by a vector μ = (μ1, . . . , μP ) of P
integers ranging in the interval [0, N − 1], where the value μi = j means that
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Algorithm 2. Program graph execution simulation
Mark entry task of the graph as ready at the time 0
for each core c of all processors: Availability time(c) ← 0
while not all tasks are visited do

t ← the ready task with the earliest starting time
n ← μt {the node of task t}
c ← the core of n which has the earliestAvailability time
Place task t on core c of node n
Starting time(t) ← max(Availability time(c), Ready time(t))
TaskCompletion time(t) ← Starting time(t) + Execution time(t)
Availability time(c) ← TaskCompletion time(t)
Mark t as visited
for all succesor task st

i of task t do
DRT ← TaskCompletion time(t) + Communication time(t, st

i)
if DRT > Ready time(st

i) then
Ready time(st

i) ← DRT
end if
if TaskCompletion time(t) > LastParent time(st

i) then
LastParent time(st

i) ← TaskCompletion time(t)
end if
if all data of st

i arrived then
mark st

i as ready
end if

end for
end while
return max(Availability time)

the solution S under consideration maps the i–th task pi of the application onto
processor node j. The number of processor cores is not represented inside the
solution encoding, however, it is taken into account when estimating the global
and local fitness functions while solving the scheduling problem. This will be
explained below.

The global fitness in the applied EO examines the time of execution of a
scheduled program. The execution time of the scheduled program is provided
by a program graph execution simulator (Algorithm 2). The simulator assigns
time annotations to program graph nodes based on the processor computing
power availability and communication link throughput available for a given pro-
gram execution. Algorithm 2 determines also the TaskCompletion time(t) and
LastParent time(t) values for each task, which are then used during computing
the local fitness function.

In the applied EO the local fitness function (LFF) of a task is the complete
delay of task execution comparing the execution under ”optimal” conditions, i.e.
when there is no communication overhead nor resource contention between tasks
and the task is executed on the fastest processor. We call this delay the total
execution delay.
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Fig. 1. Computation of delay and total delay values for given task t

LFF (t) = TaskCompletion time(t) − LastParent time(t) − FastestExecution(t)

where FastestExecution(t) is the execution time of task t on the fastest processor.
All parameters necessary for computing the value of the local fitness function

are obtained during the execution of program graph simulation procedure (see
Algorithm 2 and Fig. 1).

5 Experimental Results

During the evaluation of proposed extremal optimization algorithms we mea-
sured the actual execution times of application programs in a computational
cluster. The application programs, represented as graphs, have been optimized
before execution using an investigated algorithm.

To obtain the comparative results, we have used an additional EO algorithm
which does not involve the clustering phase (EO) and a list scheduling algorithm
with the Earliest Task First (ETF) heuristics. The ETF implementation is based
on the description from [6]. We executed scheduled synthetic programs on a
cluster of 7 homogeneous dual core processor nodes for program graph scheduling
and program execution under ProActive. The values of αi, βi, κi and lki (Δt) for
the cluster are measured using a benchmark tool, which is the part of our runtime
framework. After an EO algorithm tuning, Niter parameter has been set to 5000,
and τ to 3.0.

During our experiments we have examined two sets of synthetic graphs and the
graph of a medical application – ART algorithm (reconstruction of tomographic
scans [8]). The first set of synthetic graphs consists of seven randomly generated
graphs (gen-1...3, gen-3a...d), with layered structure, Fig. 2(a). Each task (node)
of this graph represents a mixed float- and integer-based generic computation
(random generation of matrix of doubles, then floating-point matrix-by-vector
multiplication, then rounding to integers and integer sort) with execution time
defined by node weight (the weight controls the number of iterations of the
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Fig. 2. The structure of a synthetic exemplary application graph

generic computation). The second set of synthetic graphs consists of two hand-
made graphs with known optimal mappings (gen-m1, gen-m2 ), with a general
structure similar to the structure of randomly generated graphs, Fig. 2(b).

Comparison of real execution times of an exemplary application, scheduled
by different methods is presented in Fig. 3 and Fig. 4. The different variants
of EO method obtained similar quality of initial mappings of applications. For
synthetic graphs, the best results are obtained by EO-ini-cl algorithm, however
the EO method is only marginally worse. For ART application graph, the EO-
ini-cl method is the best among different EO variants. The typical execution
time difference, comparing the EO and ETF algorithms, is below 10% (the only
exception is gen-m1 graph, for which only EO-ini-cl and ETF were able to
find the optimal solution). The experimental results show that EO technique is
able, in general, to achieve the same quality of results as classical scheduling
and mapping approaches like ETF algorithms. It is a good result, taking into
account the simplicity of the basic principle of extremal optimization.

In another experiment we empirically extrapolated the actual time complex-
ity of presented algorithms. For this purpose we used a set of large, randomly
generated graphs (the number of nodes from 350 to 7000), which were sched-
uled by extremal optimization and ETF algorithms. The actual running times
confirmed the theoretical complexity of EO and ETF methods, which is approx-
imately C(n) for EO and C(n2) for ETF (where n is the size of the graph).
Although time complexity of EO methods is lower than that of ETF, the actual
running times of different kinds of the EO algorithms for small graphs were much
longer than the running times of ETF algorithm. It could be considered as the
main drawback of the EO method. Among investigated EO variants, all have
similar execution time, since the additional clustering step introduces only small
run-time overhead due to the dominant sequence tracking. The clustering phase
applied to the EO-ini-cl algorithm has improved problem solution quality. For
the EO-clust algorithm, it has reduced the EO problem solving time from 1.23
to 2.9 times (the average reduction factor for all investigated graphs was 2.27).

Experimental results indicate that extremal optimization technique can be
useful for large mapping and scheduling problems when we will pay special
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Fig. 3. The real execution times of the scheduled synthetic program graphs for different
scheduling algorithms

Fig. 4. The real execution times of ART program graphs for different scheduling
algorithms

attention to run-time optimization of EO algorithm. For small sizes of application
graphs, it is enough to use classic scheduling methods, as ETF list scheduling.

At the time of writing of this paper, we were still continuing experimental
research using the presented algorithms. During these experiments, we expect to
enlarge both the size and diversity of the test graph set. Future works are aimed
at the optimization of the execution speed of EO-based heuristics.

6 Conclusions

The paper has presented new Java programs scheduling algorithms for execution
on clusters of Java Virtual Machines (JVMs). They combine extremal optimiza-
tion with task clustering. Two new scheduling algorithms were compared. The
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algorithm which has applied task clustering only to find an initial solution which
was next improved by the EO algorithm working on the initial program graph
produced better schedules.

The described extremal optimization algorithms have produced schedules
whose quality was comparable to those of the ETF algorithms. The execution
times of the synthetic programs corresponding to the scheduled graphs were close
to the execution times in a real system.
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Abstract. In this paper, a novel combination of cross-layer strategies
for addressing timeliness, handling latency times on a data-centred way,
and improving energy management in a non-mobile WSN scenario, is
proposed.In this way, a set of performance metrics (for timeliness, la-
tencies and energy management) are introduced and used for evaluating
Periodic Scheduling and Simplified Forwarding strategies. The WSN is
modelled as an four states Asynchronous Cellular Automaton with irreg-
ular neighbourhoods. Therefore, only information from local neighbour-
hood is needed for communication between nodes. Our results show that
the proposed strategies and performance metrics are useful for sensing
data accurately, without excessive oversampling.

1 Introduction

A Wireless Sensor Network (WSN) is a kind of distributed system, in which
nodes are provided with a CPU, a wireless transceiver and a set of sensors.
WSN nodes have computing capabilities, can communicate with each other to
execute a given task, and are deployed in an area, where a phenomenon takes
place.

Cellular Automata (CA) are a natural way to model WSN. CA are biologically
inspired models of cellular growth, proposed in the early 1950s by Stanislaw Ulam
and John Von Neumann. A WSN can be seen as an automaton, in which local
states change, depending on information gathered from a set of neighbours. The
use of CA to model WSN allows interesting features, but some limitations as
well; a node, just like a cell, has a limited number of immediate neighbours, and
changes its state according to the states of its neighbours, or its own state. For
example, efficient network clustering and long term global energy administration
were obtained, using an irregular automaton that learns clusters in [1].

Using a synchronous cellular automaton, on real WSN scenarios, require
the whole network to stop every process, in order to allow each node to per-
form the calculation of its next state. Such situation is not desirable, because
global coordination is required, and the advantage of CA lies in the absence of
global supervision. Asynchronous CA are a more realistic representation of the
way transitions are performed on WSN. Li in [2], compares Synchronous and
Asynchronous CA-based models of WSN.

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 71–80, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The absence of global coordination will allow WSN to perform real unattended
monitoring and control. For unattended control, references of performance on
each required feature, are needed. There are several ways to measure perfor-
mance on WSN features, depending on certain features [3]. One way, is to use
performance metrics.

Examples performance features are Energy Management, Latency Times, and
Precision on delivered information (accuracy, timeliness). By far, the most pop-
ular performance feature in WSN literature is Energy Management, since either
directly or indirectly, all WSN-related work has to do something with energy [4].
Latencies and robustness are also somewhat popular, especially the first one.
Latencies refer to waiting times in communication. They have been explored
for a long time, and usually dealt with from the point of view of the network
layer [5]. Geographic information is also used for improving Latencies and Ro-
bustness [6]. Literature about protocols that address timeliness or accuracy, is
not as frequent. Most approaches tend to regard timeliness and accuracy indi-
rectly, if ever discussed [7].

In this paper, Energy Management, Latencies and Timeliness are addressed
in a data-centred way, with a scheduling strategy we present (POLA), in which
the WSN is modelled as an Asynchronous Cellular Automaton. To measure such
features in a data-centred context, performance metrics for each feature are pre-
sented in Section 2; in Section 3, the scheduling strategy, in which WSN nodes
behave as cells of a Cellular Automaton, is presented; in Section 4, experimental
settings and simulation results are presented; here, POLA is tested on differ-
ent datasets, and compared to Periodic Scheduling with Simplified Forwarding,
by using the performance metrics proposed in Section2. Finally, in Section 5,
contributions, conclusions, and future directions are stated.

2 Proposed Performance Metrics

There are many ways to evaluate performance on WSN features. Three features
are evaluated in this paper: Timeliness, Latencies and Energy Management. This
metrics define a framework to compare WSN strategies; such framework can be
used with any existing protocol to evaluate cross-layer features.

In the context of this paper, Timeliness refers to how accurately is a vari-
able sensed on a temporal context, or how timely measuring intervals are. On
any application, data is generated at certain intervals. If too much samples are
taken, then energy is wasted on oversampling, but the chance of catching a rapid
and unexpected change in data generation intervals, is increased. To measure
how much over- or under- sampling occurred, we propose to use the Hamming
Distance between the expected number of samples, and the actual number of
samples (Hamming in Table 1).

The Hamming metric however, does not hold information on how well the
envelope of the data was captured by the system. This is achieved by the Nor-
malized Difference between Trapezoidal Regions (Ntrap) metric, in Table 1. The
Trapezoidal rule in equation 1, is used to estimate the area of the region under
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Table 1. Expressions for Timeliness Metrics

Hamming Ntrap ASTshifting

Sg - Ss
Trap(g)−Trap(s)

Trap(g)
1
T

∑L
k=0(α − δ(k))

the envelope of each sample set; then, the absolute difference between regions is
normalized to the area of the trapezoidal region of Generated samples.

Even when proper sampling is performed by considering Hamming and Ntrap,
those samples may be shifted some time units, from the moment they should
have been taken. Measuring how much shifting occurred is especially important
when sampling intervals are not equally spaced. To measure an average of how
much shifting occurred, a new metric is proposed in this paper, named Average
Sampling Time Shifting (ASTshifting), in Table 1.

Trap(x) =
1

IntervalSize

Sx−α∑
k=0

|(α)(Dx(k) − Dx(k + α))| (1)

Sx is the number of samples in the time interval in which the metric is going to
be evaluated; it can be an expected number of samples, or a number of samples
retreived by an Application Layer. Dx(k) is the data sample released by Data
Generator on instant k. Dx(k) is the data sample gathered by Application Layer
on instant k. α is the period in which a new sample is released by the Data
Generator. α is replaced by δ(k) when applying the metric, to represent the
varible interval in which Application layer senses; for every instant k, there is
a δ(k) value that depends on the change rate of sensed data. T is the total
simulation time of the test, and L is the total number of samples emitted by a
Data Generator, or Sensed by an Application Layer (the smaller is chosen).

On event-driven scenarios, which are common on WSN applications, events
are generated each time a node polls for data (not always periodically). Consid-
ering this, latency measurements in event driven scenarios, make sense only if
measured in close observation of sensing events. To evaluate how well an event
driven strategy performs on latencies, the Hop Count Mode (HCmode) and
Maximum Hop Count (MHC) are used. The HCmode is obtained by finding the
highest value in the Hop Count Histogram of a run. The MHC, is the biggest
Hop Count value reached by a message issued to a Sink node, from a node that
senses. In the context of this paper, a Hop refers to the next node that receives
a message (it can be a final destination, or a node in between).

As for Energy Management, the metrics are Overall Communication Energy
(OCEe), and Mean and Variance for the Vector of Individual Communication
Energy (ICEe). Units are Joules. OCEe, is the sum of all consumptions related
to communication tasks, in the whole network. It represents a global perspective
of how much energy a strategy spends, in terms of communication packets. In
POLA, is the sum of the OCE of all packet types described in Section 3.

Equation 2 must be used with each packet type of the protocol. The sum is
multiplied by two, because transmission uses energy in the node that sends, and
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the node that receives data. Here, Packet size (Pcksize) is the size of the pack-
ets sent by the network layer; Bit rate (Bitrate) is a parameter in the physical
layer of the enabling technology that allows access to the media; Clock Delays
(Dclk), are the sum of all delays related to transmission and reception of infor-
mation; Instantaneous Power Consumption (Ip) is the amount of power used by
communications, in a time interval.

OCEp

2
=

Packets−1∑
k=0

(
PckSize

Bitrate

[bits]
[ bits

s ]
+ DClk[s]) ∗ Ip[

J

s
] (2)

As for the mean and variance of the vector of ICEe, each element in the vector, is
the sum of all energetic consumptions associated to communication tasks in an
individual node, (sending and receiving data). Each element in the vector can be
calculated by summing consumptions of sent and received packets of each node,
replacing Packets − 1 in the right side of Equation 2 with sentPckts − 1 and
receivedPckts − 1.

3 Data-Centred Scheduling

The Data-Centred Scheduling strategy presented in this paper, is named POLA,
and is designed to work in a non-mobile environment. The similarity between CA
and WSNs, was used to design the POLA scheduling strategy as a state machine
for every node. Nodes are placed as cells in the grid of an Asynchronous CA,
with irregular neighbourhoods.

Each cell is composed by two layers that interact through messages: Ap-
plication Layer (APP) and Network Layer (NWK). Each cell in the CA has
four states: initialization, data sensing, data forwarding, and neighbourhood up-
dates. The Initialization state, allows POLA to fetch input parameters, most of
them related to adaptation rates, and features of the data, and buffer size for
slope calculation: APP fetches its input parameters which are: Higher and Lower
thresholds (Thrh and Thrl), Data buffer size (buff ), Step size (Step) and Initial
sensing rate (ISrate). Then, APP sends an initialization message to NWK. An
Initial sensing rate (ISrate), defines when will be sensed the first sample. Sensing
rates may be adjusted each time data is sensed, depending on data slopes. Then,
NWK sends a NWKinit message into the wireless medium, and waits for some
seconds. During that time, the NWK is expecting to receive acknowledgements
(ACK) of the neighbours that listened to the message, or to receive NWKinit

messages. If NWKinit or acknowledgement messages are received, NWK adds
the senders as neighbours, and responds to NWKinit messages with acknowl-
edgements. If the neighbourhood is full, a ”full” message is sent in response, in
the type identifier field of an ACK, so that the other nodes get the chance to
remove the ”full” node, since it can not accept any more neighbours.

Data Sensing states happen internally and independently of other nodes, af-
fected exclusively by data change rates, in the APP. A data unit is sensed and
stored into a buffer of size buff, that behaves as a FIFO queue. The next sensing
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interval is obtained by comparing the slope of the buffer, which is the change
rate of the sensed data at that time, with the higher threshold (Thrh) and the
lowest threshold (Thrl). If the value of the slope is between those two thresholds,
then sensing rates continue as they where; if the value of the slope is higher than
(Thrh), it means that there has been a rapid increase of the measured variable’s
values and more frequent observations better follow those changes, therefore the
sensing rate is increased in Step units, which means the next sensing period will
be the result of substracting Step from the actual sensing period.

After data is sensed, it must be directed to a Sink node. That is the task of
the Data Forwarding state. Some nodes are expected to have a Sink node in their
neighbourhood, otherwise data could not be forwarded to Sink nodes. A node
knows if it or its immediate neighbours have access to a Sink node, because
it stores a vector of Sink Flags, which contain a true or false value, when a
neighbour has or does not has direct access to a Sink node. Even if the POLA
strategy is designed for a static scenario, there may be situations where one or
several nodes are unreachable for a long time, like the case where a node runs
out of energy, or removed for some reason.

Checking the neighbourhood for integrity, prevents messages from not being
delivered when the next expected hop, is not available. A Neighbourhood Update
state, checks for changes in the neighbourhood of a node, at randomly defined in-
tervals between two application-defined values (minUpd-maxUpd), and updates
the neighbour list. Updating the neighbourhood implicates a communication
process with the new neighbours. If a node no longer responds with an Acknowl-
edgement (ACK) to the Neighbourhood Update message (rU) and a new node
appears, the new node takes the place of the old node on the list.

POLA has four types of packages: Datapacket (has a sink flag, data, own
address and the address of the other node), Ack/NeighUpdate packet (has a
type identifier, a sinkflag, own address and the address of the next node), and
NWKinit packet (has a type identifier, and the next time in which an applica-
tion message will be sent). Address Fields are 12 bits long. Nodes in the WSN
are the cells of the grid in the CA. Sink nodes only receive information, and
return acknowledge messages, when initialization or neighbourhood updates are
performed. States change depending on internal circumstances of each node and
its neighbourhood.

4 Experiments and Results

In this section, the performance of POLA and Simplified Forwarding (SF) NWK
with Periodic Sensing Scheduling (PSS) APP, are compared using the perfor-
mance metrics presented in this paper, on different input datasets. In SF, data
is sent to the neighbour that first acknowledges a ping in order to forward it to
a Sink node.

Three different datasets are used for such comparison; two of them are gath-
ered from physical measurements, and one of them is artificially generated using
a Script. The first two datasets, are real measurements of Temperature and Wind
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Table 2. Features of the three Datasets: Number of samples, Range of Data, Mean and
Standard Deviation, Max and Average Slope. Minimum slopes are zero on all cases.

Dataset Samples Range Mean StDev MxSlope AvgSlope
Temperature 517 2.2-33.3 18.9 5.81 20.9 4.66
Wind Speeds 517 0.4-9.4 4.02 1.79 8.1 1.76
Artificial 304 0.1-106.8 35.2 31.05 3.2 1.40

speeds, as described in [8]. Data was gathered in the Montesinho natural park
in Portugal, between January 2000 to December 2003. Features of each dataset
are described in Table 2. Here, the feature Max Slope is the highest immediate
change rate in the dataset, and is an absolute value, meaning it can be a posi-
tive or negative slope. The first scenario, is meant to evaluate Timeliness. The
Second Scenario, is meant to evaluate Latencies and Energy Management.

4.1 Settings and Results of the First Scenario

This Scenario evaluates Timeliness, and only involves the Application Layer.
In this test, a node that schedules sensing intervals with the APP of POLA,
is compared to a PSS Application Layer. Data is sensed by Application Layer.
Original data (which the node is supposed to sense in the most accurate way),
is recorded separately. Scheduling of sensing intervals in POLA depends only on
data change rates, and since PSS has no elements of randomness, this test is
deterministic, and no repetitions are required on each run.

Each run of this test, is performed in 48 simulated units, which can be
treated as any time unit. All three datasets are evaluated on the same parameter
space. Some values are expected to work differently on each dataset, because each
dataset has different change rates and distributions of values. POLA requires
five parameters for this test: Data Buffer size, with values 3,5,10,15,20; Step
size, from 0.1 to 0.5, in steps of 0.1; Higher threshold, from 1 to 4, in steps of 1;
Lower Threshold, from 0.2 to 1, in steps of 0.2; and Initial Sensing Rate, from
0.1 to 1.1, in steps of 0.2. The range for the Data Generator Period is from 0.1
to 1.1, in steps of 0.2. Such space generates 18.000 runs. In order to compare the
APP of POLA, with the APP of PSS, applicable parameters are used with the
same ranges: Initial Sensing Rate (it becomes the only sensing rate in Periodic
Scheduling), and Data Generator Period. PSS requires 36 runs, because each of
those parameters has six different values.

After applying all Timeliness metrics, near-median behaviours in POLA made
a better use of oversampling, unlike near-median behaviours of PSS. Figure 1
shows how oversampling looks in near-median runs of POLA, for the Temper-
ature Dataset. Notice that changes in sample densities can be observed for the
POLA strategy, depending on change rates of nearby data, while on PSS, sam-
ple density is unique for each run. Therefore, POLA is able to adapt its sensing
rates to change rates of data, reducing the energy and computational resources
wasted in a PPS strategy.
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(a) Temperature, POLA

Fig. 1. Adaptive use of Oversampling in a Near-Median run (POLA). Gray: Generated
Data. Black: Sensed Data. Temperature Dataset.

Table 3. Median values and Quartile Ranges of Hamming and NTrap (POLA)

Dataset Hamming Quartile rng NTrap Quartile rng
Wind Speeds 50 30 - 140 0.055 0.02 - 0.12
Temperature 25 -12 - 99 0.02 0.008 - 0.038
Artificial 43 17 - 75 0.015 0.005 - 0.038

Near-median values of Hamming and NTrap are in Table 3. In Hamming, the
best Median case was obtained on the Temperature dataset, were the median of
the Hamming Distance is of about 25 samples; since the dataset has 517 samples,
this means that the average Hamming distance, is smaller than 6 percent of all
samples. In NTrap, the best case was obtained on the Artificially Generated
Dataset, were the median value of the NTrap was smaller than 0.02 percent of
the dataset, followed by the Temperature Dataset, with a similar value. Values
obtained on the Wind Speeds dataset also had a small median value, of 0.05
percent, however the range of the quartiles spreaded until 0.12 percent.

In the Histogram of the ASTshifting, values are better when they are closer to
the zero of the horizontal axis. Distributions are better if they are not scattered,
and have more near-zero values. The best case for this metric, was in the Wind
Speeds Dataset, in Figure 2. The highest value was the second closest to zero.
Moreover, around half of the ASTshifting, were smaller than a tenth of simulation
time.
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Fig. 2. Distribution of ASTshifting, WindSpeeds Dataset

4.2 Settings and Results of the Second Test Scenario

In the Second Test Scenario, a static network of 20 nodes is built and run for
48 time units. Performance metrics for Latencies and Energy Management are
applied. This is repeated for each parameter. In SF, data is sent to the neighbour
that first acknowledges a ping in order to forward it to a Sink node.

The POLA strategy for NWK is non-deterministic, as well as PSS with SF.
The parameter space from the previous section implies an enormous number of
runs, many of which are not representative (far from the median). Then, the
need of building a representative parameter space, had risen. A subset from the
parameter space of the previous tests was selected, based on parameters whose
values overlap on the median values of all precision performance metrics. Such
values are shown in Table 4.

For Latency metrics, the Median was chosen to represent the HCM, and the
Mode was chosen to represent the MHC. The median of the HCM for POLA was
of 1 Hop, while in PSS with SF, was of 2 hops. The mode for MHC in POLA was
of 4 hops, while in PSS with SF, was of 17 hops for the Temperature dataset,
and of over 40 hops for the rest.

Table 4. Parameter Values for the POLA strategy, used in Test 2

Dataset DataBuffSize StpSize Thrh ThrL InitSensRate
Wind Speeds 20 0.5-0.9 stp 0.2 1-4 stp 1 0.2-1 stp 0.2 0.5
Temperature 15,20 0.5 1-4 stp 1 0.2-1 stp 0.2 0.7
Artificial 3,15 0.1-0.5 stp 0.2 1-4 stp 1 0.4, 0.6, 0.8 0.3-1.1 stp 0.4
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Table 5. Median Overall Communication Energy Expenditure (OCEe), All Datasets,
Test 2

Dataset MedianOCEe(POLA) MedianOCEe (PerSch with Simplif FW)
Wind Speeds 2635 5050
Temperature 1790 2450
Artificial 3450 3200

For Energy Management metrics, results of the OCEe for the POLA strategy
and PSS with SF, on all three datasets, are shown in Table 5. The Median of
OCEe, holds information on the most expectable case of Energy Expenditures.
In the case of Table OCEe, the POLA strategy reached smaller consumptions
than PSS with SF. In the case of the Wind Speeds dataset, such consumptions in
POLA were near half the consumptions of the other strategy. In the Artificially
Generated dataset, PSS with SF achieved slightly smaller consumptions than
POLA.

As for the Means of the ICEe Vector, for the Windspeeds Dataset, even the
highest mean values for ICEe, are below the values of PSS with SF, and ranges
do not overlap at all. This phenomena is repeated for the Temperature Dataset,
except for the small mean value at 340 of the POLA Histogram of this dataset,
however, the most significant value of the Histogram is located below the range of
PSS with SF. As for the Variances of the ICEe, the Dataset with the most evenly
distributed consumption values in the network, is the Temperature dataset under
the POLA strategy, followed by the Wind Speeds Dataset, in POLA, again. It can
be noticed that on all cases, the POLA strategy achieved a more even distribution
of energy consumption in the network, even on the Artificially Generated dataset.
Such feature helps the network keep a steady number of nodes for longer times.

5 Conclusions and Future Work

In this paper, a data-centred scheduling strategy (POLA), where the WSN was
modelled as an Asynchronous Cellular Automaton, was presented, as well as
some performance metrics for Energy Management, Latencies and Timeliness.

Our results show that POLA performs well in Precision Metrics, even when
Parameter Settings are not suited in the best possible values. Moreover, Periodic
Scheduling used too much oversampling to satisfy performance metrics, while
POLA adapted to change rates of data, preventing excessive oversampling from
happening, and satisfying Precision metrics.

For Energy Management, POLA maintained not only a lower OCEe on most
datasets, but on all cases, a more evenly distributed energy consumptions on
the nodes of the network. As for Latencies, regardless of the used metric, POLA
outperformed Periodic Scheduling with Simplified Forwarding, especially on the
MHC, where the difference got to be of more than ten times the value.
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Our future work will concentrate in incorporating mobility, making some
improvements with the help of evolutionary techniques and artificial curiosity
models, and focusing on rescue applications.
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Abstract. This work presents an evolutionary solution that aims to test
the influence of the choice of numeraire on financial time series modeling.
In particular, the method used in such a problem is to apply a very
powerful natural computing analysis tool, namely evolutionary neural
networks, based on the joint evolution of the topology and the connection
weights together with a novel similarity-based crossover, to a couple of
very liquid financial time series expressed in their trading currency and
several alternative numeraires like gold, silver, and a currency like the
euro, which is intended to be stable ‘by design’, and compare the results.

1 Introduction

Many successful applications of natural computing techniques to the modeling
and prediction of financial time series have been reported in the literature [5,6,7].

To our knowledge, the vast majority, if not the totality of such approaches, as
well as of the modeling approached based on more traditional methods, consider
the financial time series under investigation expressed in the currency it is usually
traded against, e.g., US stock indices in US dollars, the FTSE 100 in British
Pounds, the Continental European stock indices in euros, the Nikkei in yens,
crude oil and most other commodities in dollars, and so on and so forth. In other
word, the implicit assumption of the natural trading currency as the numeraire
for the time series is quietly made, without even considering alternative choices.

However, recently, Turk [10], among others, has observed that, e.g., the price
of crude oil, expressed in gold units, has remained essentially unchanged since
the end of World War II, even though its price in US dollars (against which
it is generally traded) has varied wildly since the dollar abandoned the gold
parity. This suggests that precious metals, especially those historically used for
monetary purposes, like gold and silver, may serve better than fiat currencies do
as a numeraire.

In particular, the truth Turk’s observation unveils that the US dollar, or any
other fiat currency of choice, does not measure any absolute unit of value. This
is in part reflected by its ever-changing purchase power, although the definition
of the purchase power of a currency must be based on the more or less arbitrary
selection of a basket of goods, and the values of the goods in any basket may
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oscillate due to the law of demand and supply. The fact is, by definition, that a
unit of a fiat currency is an abstract promise to pay issued by a central bank,
without even specifying what should be paid in exchange for that unit; therefore,
its value depends on the reliability, reputation, and solvability of the issuer, which
may vary at any time depending on the economical, political, and social situation.

If one accepts the above argument, a direct consequence is that, when an-
alyzing a financial time series expressed in its trading currency, one is in fact
analyzing the combined effect of changes in price of the security under investiga-
tion and of changes in the value of the currency used as numeraire, which might
partially or completely obfuscate the patterns that are sought for.

One might try to use a basket of currencies as the numeraire for expressing a
financial time series, but all currencies one might select are subject to the same
oscillations. Nor is the use of official deflators a satisfactory replacement: as a
matter of fact, there is no guarantee that the periodic revisions of the baskets
used by census bureaus do not serve the agendas of the governments that, directly
or indirectly, control them, and, at any rate, deflators only reflect the long-term
tendency, averaged on a yearly basis, not the day-by-day fluctuations.

The basic research question we want to investigate in this paper is

Does the numeraire used to express a financial time series have any
influence on its predictability?

The method by which we will try to answer this research question is to apply
a very powerful natural computing analysis tool, namely evolutionary neural
networks, to a couple of very liquid financial time series expressed in their trading
currency and several alternative numeraires like gold, silver, and a currency like
the euro, which is intended to be stable “by design”, and compare the results.
The hypothesis we are seeking to accept or reject may be formulated as follows:

A financial time series is more predictable if it is expressed in a nu-
meraire whose value is more stable (ideally constant) in time.

Why use gold, silver, and euros as alternative numeraires? The case for gold and
silver is twofold: on one hand, gold and silver have served as money from the dawn
of history until the collapse of the gold standard in the last century; still today,
gold is held as a reserve good by the most prominent central banks and used by
private investors as a hedge against financial downturns; on the other hand, the
supply of these two precious metals is extremely stable and as inelastic as it can
be; a research by the World Gold Council [9] found that the purchasing power
of gold remained stable in five different countries over extremely long timespans;
therefore, they appear as two excellent candidates for the purpose of measuring
value. As for the euro, we decided to consider it for many reasons: first of all,
the euro was designed and is managed by the European Central Bank having
stability as the primary goal; second, it is chasing the dollar as the alternative
international trade and reserve currency; third, it is a currency and not a com-
modity like gold and silver; fourth, it is the currency of many Europeans, and its
use looks appropriate for a paper sent to a European workshop.
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This paper is organized as follows: Section 2 presents the problem and the
technical indicators used to define the dataset, while a brief description of the
evolutionary approach considered in this work is reported in Section 3. The re-
sults obtained from the experiments carried out by applying the evolutionary
algorithm are presented in Section 4, together with a discussion of the perfor-
mances obtained. Finally, Section 5 provides some concluding remarks.

2 Problem Description

The modeling problem we employ to test our hypothesis on the influence of the
numeraire on the predictability of a financial time series is the most straightfor-
ward problem, consisting of predicting the amount of price variation of a financial
instrument in the next period t, given the financial instrument’s past history up
to period i. In particular, the amount of price variation will be expressed in the
form of a log-return ri+1 = log xi+1

xi
.

This prediction problem may be naturally regarded as an optimization prob-
lem, where we wish to minimize the mean square error of a multilayer perceptron
whose input neurons provide information about the financial instrument’s past
history up to period i and whose output neuron provides an estimate of ri+1.

To this aim, the input values for the predictor are given by the values of 11
technical indicators in period i for the financial instrument considered, corre-
sponding to some of the most popular indicators used in technical analysis.

There are several different technical indicators used by practitioners, and the
choice of those selected for this approach is made, at the beginning, also by se-
lecting, together with the most widely used, the most representative of different
categories (e.g. moving averages, oscillators) [8]. The rationale for this choice
is that these indicators summarize important features of the time series of the
financial instrument considered, and they represent useful statistics and tech-
nical information that otherwise should be calculated by each individual of the
population, during the evolutionary process, increasing the computational cost
of the entire algorithm. The list of all the inputs provided to neural network
predictors is shown in Table 1.

Generally, technical indicators can be directly incorporated as model inputs,
or, alternatively, they can be preprocessed to produce an input by taking ratios
or through the use of rules. The last case is a combinatorial problem and tradi-
tional modeling methods can provide an infinite number of possibilities, in some
cases problematic. This suggests that an evolutionary algorithm in which the
model structure and model inputs are not defined a priori will have potential for
generating trading operations drawn from individual technical indicators [4].

One target value is then defined for each day i of the time series consid-
ered with a value defined by Equation 1, representing the price variation of the
considered financial index at the next day:

targeti = ln
ClosingPrice(i + 1)

ClosingPrice(i)
; (1)
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Table 1. Input Technical Indicators

Index Input Tech. Ind. Description

1 MA5(i)/Closing Price(i) 5-Day Moving Avg to Closing Price Ratio
2 EMA5(i)/Closing Price(i) 5-Day Exp. Moving Avg to Closing Price Ratio
3 MA20(i)/Closing Price(i) 20-Day Moving Avg to Closing Price Ratio
4 EMA20(i)/Closing Price(i) 20-Day Exp. Moving Avg to Closing Price Ratio
5 MA200(i)/Closing Price(i) 200-Day Moving Avg to Closing Price Ratio
6 EMA200(i)/Closing Price(i)) 200-Day Exp. Moving Avg to Closing Price Ratio
7 MACD(i) Moving Avg Conv./Div.
8 SIGNAL(i) Exp. Moving Avg on MACD
9 Momentum(i) Rate of price change
10 ROC(i) Rate Of Change
11 RSI(i) Relative Strength Index

All the data are preprocessed by applying a gaussian distribution with mean
equal to 0 and standard deviation equal to 1.

3 The Neuro Genetic Algorithm

The overall algorithm is based on the evolution of a population of individuals,
represented by Multilayer Perceptrons neural networks (MLPs), through a joint
optimization of their structures and weights, here briefly summarized; a more
complete and detailed description can be found in the literature [3]. The al-
gorithm uses the error back-propagation (BP) algorithm to decode a genotype
into a phenotype NN. Accordingly, it is the genotype which undergoes the ge-
netic operators and which reproduces itself, whereas the phenotype is used only
for calculating the genotype’s fitness. The rationale for this choice is that the
alternative of applying BP to the genotype as a kind of ‘intelligent’ mutation
operator, would boost exploitation while impairing exploration, thus making the
algorithm too prone to being trapped in local optima.

The population is initialized with different hidden layer sizes and different
numbers of neurons for each individual according to two exponential distribu-
tions, in order to maintain diversity among all of them in the new population.
Such dimensions are not bounded in advance, even though the fitness function
may penalize large networks. The number of neurons in each hidden layer is
constrained to be greater than or equal to the number of network outputs, in or-
der to avoid hourglass structures, whose performance tends to be poor. Indeed,
a layer with fewer neurons than the outputs destroys information which later
cannot be recovered.

3.1 Evolutionary Process

The initial population is randomly created and the genetic operators are then
applied to each network until the termination conditions are not satisfied.

At each generation, the first half of the population corresponds to the best
�n/2� individuals selected by truncation from a population of size n, while the
second half of the population is replaced by the offsprings generated through
the crossover operator. Crossover is then applied to two individuals selected
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from the best half of the population (parents), with a probability parameter
pcross, defined by the user together with all the other genetic parameters, and
maintained unchanged during the entire evolutionary process.

It is worth noting that the pcross parameter refers to a ‘desired’ crossover prob-
ability, set at the beginning of the evolutionary process. However, the ‘actual’
probability during a run will usually be lower, because the application of the
crossover operator is subject to the condition of similarity between the parents.

Elitism allows the survival of the best individual unchanged into the next gen-
eration and the solutions to get better over time. Then, the algorithm mutates
the weights and the topology of the offsprings, trains the resulting network, cal-
culates fitness on the test set, and finally saves the best individual and statistics
about the entire evolutionary process.

The application of the genetic operators to each network is described by the
following pseudo-code:

1. Select from the population (of size n) �n/2� individuals by truncation and
create a new population of size n with copies of the selected individuals.

2. For all individuals in the population:
(a) Randomly choose two individuals as possible parents.
(b) Check their local similarity and apply crossover according to the crossover

probability.
(c) Mutate the weights and the topology of the offspring according to the

mutation probabilities.
(d) Train the resulting network using the training set.
(e) Calculate the fitness f on the test set.
(f) Save the individual with lowest f as the best-so-far individual if the f

of the previously saved best-so-far individual is higher (worse).
3. Save statistics.

The SimBa crossover starts by looking for a ‘local similarity’ between two indi-
viduals selected from the population. If such a condition is satisfied the layers
involved in the crossover operator are defined. The contribution of each neuron
of the layer selected for the crossover is computed, and the neurons of each layer
are reordered according to their contribution. Then, each neuron of the layer
in the first selected individual is associated with the most ‘similar’ neuron of
the layer in the other individual, and the neurons of the layer of the second
individual are re-ranked by considering the associations with the neurons of the
first one. Finally a cut-point is randomly selected and the neurons above the
cut-point are swapped by generating the offspring of the selected individuals.

Weights mutation perturbs the weights of the neurons before performing any
structural mutation and applying BP to train the network. All the weights and
the corresponding biases are updated by using variance matrices and evolution-
ary strategies applied to the synapses of each NN, in order to allow a control
parameter, like mutation variance, to self-adapt rather than changing their values
by some deterministic algorithms. Finally, the topology mutation is implemented
with four types of mutation by considering neurons and layer addition and elimi-
nation. The addition and the elimination of a layer and the insertion of a neuron
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are applied with three independent probabilities, indicated as p+
layer, p−layer and

p+
neuron, while the elimination of a neuron is carried out only if the contribution

of that neuron is negligible with respect to the overall network output.
For each generation of the population, all the information of the best individ-

ual is saved.
As previously considered [2,1], the evolutionary process adopts the convention

that a lower fitness means a better NN, mapping the objective function into
an error minimization problem. Therefore, the fitness used for evaluating each
individual in the population is proportional to the mean square error (mse) and
to the computational cost of the considered network. This latter term induces a
selective pressure favoring individuals with reduced-dimension topologies.

The fitness function is calculated, after the training and the evaluation pro-
cesses, by the Equation 2

f = λkc + (1 − λ) ∗ mse, (2)

where λ corresponds to the desired tradeoff between network cost and accuracy,
and it has been set experimentally to 0.2 to place more emphasis on accuracy,
since the NN cost increase is checked also by the entire evolutionary algorithm. k
is a scaling constant set experimentally to 10−6, and c models the computational
cost of a neural network, proportional to the number of hidden neurons and
synapses of the neural network.

Following the commonly accepted practice of machine learning, the problem
data is partitioned into training, test and validation sets, used, respectively for
network training, to stop learning avoiding overfitting, and to test the general-
ization capabilities of a network. The fitness is calculated over the test set.

4 Experiments and Results

We selected two of the most liquid US market indices, namely the Standard
& Poors 500 (SP500) and the Dow Jones Industrial Average (DJIA), taking
into account the daily closing prices of the time series of the last decade (from
October 2000 to October 2010). All data are divided into three subsets, according
to the percentages of 50%, 25% and 25%, respectively, for the training, test, and
validation set. The latter corresponds to the most recent data, while the oldest
are used to define the training set.

Four versions of the datasets for either of these two financial indices are con-
sidered, obtained by expressing the prices in four distinct numeraires: besides the
US dollar, their usual currency, we also used the euro and two precious metals
already used in the past for monetary purposes, namely gold and silver. For each
of the numeraires considered, a set of experiments has been carried out, and the
performances of the models obtained have been compared.

All the experiments consider the same parameters setting used in previous
work [1], that produced the optimal average accuracies. In particular, the topol-
ogy parameters p+

layer, p−layer, and p+
neuron have all been set to 0.05, while the

crossover parameter pcross has been set to 0.7.
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We performed 20 runs for each experiment, with 40 generations and a pop-
ulation size of 60 individuals for each run. The number of epochs used to train
the neural network represented by each individual by BP is 250.

We carried out two groups of experiments: the first is carried out by consid-
ering the overall dataset for training, test, and validation, while the second is
carried out by considering, separately, the two halves of each dataset. Each of
the two halves of the entire dataset covers a period of about five years: the most
recent one spans the period from October 2005 (the second half) to October
2010, while the oldest one refers to the period from October 2000 to October
2005 (the first half).

4.1 Results

The results of the first group of experiments are reported in Table 2, while those
of the second group of experiments are reported in Tables 4 and 6. All the tables
show the errors obtained, respectively, on the DJIA and SP500 datasets: the
second and third columns contain the error reported by the best individual over
the 20 runs, and the difference w.r.t. the USD, which is used as a baseline. The
fourth and the fifth columns contain the same data above, but referred to the
average error obtained by the best individuals of each run; finally, the last column
contains the standard deviation of the average error. To make it easier to read
the tables, both the errors and the standard deviations have been multiplied
by 103.

To test the significance of the results we applied Student’s t-test. Table 3 shows
the significance levels for all the numeraire combinations for both datasets on
the first group of experiments, while Tables 5 and 7 show the significance levels
obtained on the second group.

From Table 2, we can notice that, for both indices, the use of the three al-
ternative numeraires leads to models that outperform those that consider USD.
The improvement is particularly striking with silver and gold. Such performance
is closely followed by EUR. We can also notice that the adoption of gold and
silver as numeraire leads to more robust solutions.

On the SP500 dataset, the best performance is obtained by using silver as
numeraire.

Table 2. Errors on the DJIA and SP500 indices over the entire dataset

Dataset Best Individual Average Standard Deviation
Error Diff. w.r.t. USD Error Diff. w.r.t. USD

DJIA USD 4.16 - 4.20 - 0.00376
DJIA EUR 2.46 - 40.87% 2.75 - 34.52% 0.00948

DJIA SILVER 1.65 - 60.34% 1.66 - 60.48% 0.00100
DJIA GOLD 1.17 - 71.88% 1.17 - 72.14% 0.00009

SP500 USD 4.28 - 4.29 - 0.00067
SP500 EUR 2.65 - 38.08% 2.92 - 31.93% 0.01530

SP500 SILVER 1.53 - 64.25% 1.53 - 64.34% 0.00006
SP500 GOLD 1.84 - 57.01% 1.86 - 56.64% 0.00174
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Table 3. Percentage of significance level of Student’s t-test over the entire dataset

DowJones Index SP500 Index
USD vs. EUR 90.95% 85.66%

USD vs. SILVER 99.99% 100.00%
USD vs. GOLD 99.99% 99.99%

EUR vs. SILVER 84.96% 86.96%
EUR vs. GOLD 96.80% 72.99%

SILVER vs. GOLD 95.22% 71.00%

Table 4. Errors on the DJIA and SP500 indices over the recent half dataset

Dataset Best Individual Average Standard Deviation
Error Diff. w.r.t. USD Error Diff. w.r.t. USD

DJIA USD 0.58 - 0.70 - 0.00617
DJIA EUR 0.37 - 36.21% 0.39 - 44.29% 0.00153

DJIA SILVER 1.54 + 165.52% 1.71 + 144.29% 0.00496
DJIA GOLD 0.29 - 50.00% 0.30 - 57.14% 0.00388

SP500 USD 0.66 - 0.81 - 0.00789
SP500 EUR 1.68 + 154.55% 1.71 + 111.11% 0.00149

SP500 SILVER 0.46 - 30.30% 0.48 - 40.74% 0.00246
SP500 GOLD 0.38 - 42.42% 0.40 - 50.62% 0.00050

Table 5. Percentage of significance level of Student’s t-test over the recent half dataset

DowJones Index SP500 Index
USD vs. EUR 37.09% 79.00%

USD vs. SILVER 80.47% 34.36%
USD vs. GOLD 41.35% 46.79%

EUR vs. SILVER 97.01% 98.95%
EUR vs. GOLD 13.15% 99.98%

SILVER vs. GOLD 95.41% 17.52%

Table 6. Errors on the DJIA and SP500 indices over the oldest half dataset

Dataset Best Individual Average Standard Deviation
Error Diff. w.r.t. USD Error Diff. w.r.t. USD

DJIA USD 1.03 - 1.04 - 0.00143
DJIA EUR 0.25 - 75.73% 0.26 - 75.00% 0.00039

DJIA SILVER 0.34 - 66.99% 0.34 - 67.31% 0.00012
DJIA GOLD 0.12 - 88.35% 0.12 - 88.46% 0.00002

SP500 USD 1.00 - 1.01 - 0.00073
SP500 EUR 0.23 - 77.00% 0.28 - 72.28% 0.00451

SP500 SILVER 0.36 - 64.00% 0.37 - 63.37% 0.00021
SP500 GOLD 0.14 - 86.00% 0.16 - 84.16% 0.00150

The t-test on the results of the first group of experiments shows a very high
significance for all combinations that include the USD baseline, except for DJIA-
USD vs. DJIA-EUR, whose significance level is about 86%.

The results of the second group of experiments confirm those obtained on the
first group, except for the silver numeraire on the half recent dataset of DJIA,
and by the EUR numeraire on the half recent dataset of SP500. However, for
both datasets, the solutions found are more robust than the USD baseline.

Also the percentage of significance level of the t-test over the second group
of experiments produces similar results to those obtained from the complete
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Table 7. Percentage of significance level of Student’s t-test over the oldest half dataset

DowJones Index SP500 Index
USD vs. EUR 98.46% 82.68%

USD vs. SILVER 98.07% 99.35%
USD vs. GOLD 99.80% 98.19%

EUR vs. SILVER 39.63% 14.08%
EUR vs. GOLD 62.17% 16.37%

SILVER vs. GOLD 98.06% 50.35%

datasets. Indeed, for all numeraires, the errors found are smaller than the USD
baseline, for both DJIA and SP500. Furthermore, while the improvements of
performance obtained on the most recent halves are only marginally significant
(see Table 5), the improvements obtained over the recent datasets are highly
significant (see Table 7).

4.2 Discussion

At first sight, the results look very interesting, as they appear to suggest that,
with a few exceptions, the indices considered become more predictable if ex-
pressed in an alternative numeraire.

If one takes the significance tests into account, though, conclusions are to be
drawn much more carefully. On the entire dataset, there are two clear winners,
namely gold and silver, and one clear loser, the US dollar. The euro is only
marginally better than the US dollar and marginally worse than the two precious
metals. On the most recent five-year dataset, there is no statistically significant
winner among gold, the euro, and the US dollar, but there is a clear loser, silver,
whose performance is disastrous. On the least recent five-year dataset, there
appears to be a clear ranking of numeraires, namely gold > euro > silver > US
dollar, although the significance test tells us that the only statistically significant
difference is between the two precious metals and the US dollar.

Therefore, if we were to use these results to select one numeraire for use
in the analysis of financial time series, there would be just one sensible and
consistent choice, namely to use gold. This is the only numeraire that would
have consistently given significantly better results than the US dollar (the natural
numeraire) for both instruments and for all three time-frames considered.

5 Conclusion and Future Work

We asked whether the numeraire used to express a financial time series has
any influence on its predictability, and we attempted to answer this question
by applying a very powerful natural computing analysis tool to a couple of
very liquid financial time series expressed in their trading currency and several
alternative numeraires.

The experimental evidence suggests that the hypothesis that a financial time
series is more predictable if it is expressed in a numeraire whose value is more
stable is to be accepted, if only in the perhaps less ambitious formulation that
indicates gold, in particular, as the alternative numeraire.
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One may object, with reason, that two financial time series, albeit probably
among the most liquid of the world, are not a sufficient base for drawing such a
general conclusion. As a matter of fact, more evidence is needed to turn such a
preliminary indication into an established fact. Therefore, a possible extension
of our work would be to test this hypothesis on a larger sample of financial
instruments, representative of the markets of various regions of the globe.
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Abstract. This paper extends a previous market microstructure model,
which investigated fraction dynamics of trading strategies. Our model
consisted of two parts: Genetic Programming, which acted as an inference
engine for trading rules, and Self-Organizing Maps (SOM), which was
used for clustering the above rules into trading strategy types. However,
for the purposes of the experiments of our previous work, we needed to
make the assumption that SOM maps, and thus strategy types, remained
the same over time. Nevertheless, this assumption could be considered
as strict, and even unrealistic. In this paper, we relax this assumption.
This offers a significant extension to our model, because it makes it more
realistic. In addition, this extension allows us to investigate the dynamics
of market behavior. We are interested in examining whether financial
markets’ behavior is non-stationary, because this implies that strategies
from the past cannot be applied to future time periods, unless they have
co-evolved with the market. The results on an empirical financial market
show that its behavior constantly changes; thus, agents’ strategies need
to continuously adapt to the changes taking place in the market, in order
to remain effective.

Keywords: Genetic Programming, Self-Organizing Maps, Market Mi-
crostructure, Market Behavior.

1 Introduction

There are several types of models in the agent-based financial markets literature.
One way of categorizing them is to divide them into the N -type models and the
Santa-Fe Institute (SFI) like ones [2]. The former type of models focuses on the
mesoscopic level of markets, by allowing agents to choose among different types
of strategies. A typical example is the fundamentalist-chartist model. Agents in
this model are presented with these two strategy types and at any given time
they have to choose between these two. A typical area of investigation of these
models is fraction dynamics, i.e., how the fractions of the different strategy types
change over time. However, what is not presented in most of these models is
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novelty-discovering agents. For instance, in the fundamentalist-chartists exam-
ple, agents can only choose between these two types; they cannot create new
strategies that do not fall into either of these types. On the other hand, the SFI-
like models overcome this problem by focusing on the microscopic level of the
markets. By using tools such as Genetic Programming [7], these models allow
the creation and evolution of novel agents, which are not constrained by pre-
specified strategy types.1 However, this kind of models tends to focus on price
dynamics, rather than fraction dynamics [2].

In a previous work [3], we combined properties from the N -type and SFI-
like models into a novel model. We first used Genetic Programming (GP) as a
rule inference engine, which created and evolved autonomous agents; we then
used Self-Organizing Maps (SOM) [6] as a clustering machine, and thus re-
created the mesoscopic level that the N -type models represent, where agents
were categorized into different strategy types. We then investigated the short-
and long-term dynamics of the fractions of strategies that existed in a financial
market. Nevertheless, that study rested upon an important assumption, i.e.,
the maps derived from each time period were comparable with each other. This
comparability assumption itself required that the types (clusters), as well as their
operational specification, would not change over time. If this were not the case,
the subsequent study would be questioned. This was mainly due to one technical
step in our analysis called translation. The purpose of translation was to place
the behavior of agents observed in one period into a different period and to
recluster it for the further cross-period comparison. We could not meaningfully
have done this without something like topological equivalence, which could not
be sustained without the constancy of the types.

However, this assumption can be considered as strict and unrealistic. Strategy
types do not necessarily remain the same over time. For instance, if a chartist
strategy type exists in time t, it is not certain it will also exist in t+1. If market
conditions change dramatically, the agents might consider other strategy types as
more effective and choose them. The chartist strategy would then stop existing.

In this paper, we relax the above assumption, since our current work does
not require cross-period comparisons. Our model thus becomes more realistic.
In addition, we shift our focus from fraction dynamics to behavior dynamics:
we examine the plausibility of an observation made under artificial markets [1],
which suggests that the nature of financial markets constantly changes. This
implies that trading strategies need to constantly co-evolve with the markets;
if they do not, they become obsolete or dinosaurs [1]. We hence test if this
observation holds in the ‘real’ world, under an empirical financial market. This
will offer important insights regarding the behavior dynamics of the markets.

The rest of this paper is organized as follows: Section 2 presents our model,
and Sect. 3 briefly presents the GP algorithm we use. Section 4 then presents
the experimental designs, Sect. 5 reviews the testing methodology, and Sect. 6
presents the results of our experiments. Finally, Sect. 7 concludes this paper.

1 We refer the reader to [2], which provides a thorough review on both N-type and
SFI-like models, along with a detailed list of them.
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2 Model

2.1 Genetic Programming as a Rule-Inference Engine

The use of GP is motivated by considering the market as an evolutionary and
selective process.2 In this process, traders with different behavioral rules partic-
ipate in the markets. Those behavioral rules which help traders gain lucrative
profits will attract more traders to imitate, and rules which result in losses will
attract fewer traders. An advantage of GP is that it does not rest upon any pre-
specified class of behavioral rules, like many other models in the agent-based fi-
nance literature [2]. Instead, in GP, a population of behavioral rules is randomly
initiated, and the survival-of-the-fittest principle drives the entire population to
become fitter and fitter in relation to the environment. In other words, given the
non-trivial financial incentive from trading, traders are aggressively searching
for the most profitable trading rules. Therefore, the rules that are outperformed
will be replaced, and only those very competitive rules will be sustained in this
highly competitive search process.

Hence, GP can help us infer what are the rules the traders follow, by simu-
lating the evolution of the microstructure of the market. Traders can then be
clustered based on realistic, and possibly complex behavioral rules.The GP al-
gorithm used to infer the rules is presented in detail, later, in Sect. 3.

2.2 Self Organizing Maps for Clustering

Once a population of rules is inferred from GP, it is desirable to cluster them
based on a chosen similarity criterion so as to provide a concise representation
of the microstructure. The similarity criterion which we choose is based on the
observed trading behavior.3 Based on this criterion, two rules are similar if they
are observationally equivalent or similar, or, alternatively put, they are similar
if they generate the same or similar market timing behavior.4

Given the criterion above, the behavior of each trading rule can be repre-
sented by its series of market timing decisions over the entire trading horizon,
for example, 6 months. Therefore, if we denote the decision “enter the market”
by “1” and “leave the market” by “0”, then the behavior of each rule is a binary
vector. The dimensionality of these vectors is then determined by the length of
the trading horizon. For example, if the trading horizon is 125 days long, then
the dimension of the market timing vector is 125. Once each trading rule is con-
cretized into its market timing vector, we can then easily cluster these rules by
applying Kohonen’s Self-Organizing Maps to the associated clusters.

2 See [8] for his eloquent presentation of the Adaptive Market Hypothesis.
3 Other similarity criteria could take place, too, such as risk averseness. However, in

this paper we wanted to focus on the behavioral aspects of the rules.
4 One might question the above similarity criterion, since very different rules might be

able to produce the same signals. This does not pose a problem in this work, since
we are interested in the behavior of the market (and thus the rules’ behavior). We
are not interested in the semantics aspect of the rules.
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Fig. 1. Example of a 3 × 3 Self-Organizing Map

Figure 1 presents a 3×3 SOM. Here, 500 artificial traders are grouped into nine
clusters. In a sense, this could be perceived as a snapshot of a nine-type agent-
based financial market dynamics. Traders of the same type indicate that their
market timing behavior is very similar. The market fraction or the size of each
cluster can be seen from the number of traders belonging to that cluster. Thus,
we can observe that the largest cluster has a market share of 71.2% (356/500),
whereas the smallest one has a market share of 0.2% (1/500).

3 GP Algorithm

Our GP is inspired by a financial forecasting tool, EDDIE [4], which applies
genetic programming to evolve a population of market-timing strategies, which
guide investors on when to buy or hold. These market timing strategies are for-
mulated as decision trees, which, when combined with the use of GP, are referred
to as Genetic Decision Trees (GDTs). Our GP uses indicators commonly used
in technical analysis: Moving Average (MA), Trader Break Out (TBR), Filter
(FLR), Volatility (Vol), Momentum (Mom), and Momentum Moving Average
(MomMA).5 Each indicator has two different periods, a short- and a long-term
one (12 and 50 days). Figure 2 presents a sample GDT generated by the GP.

Depending on the classification of the predictions, there are four cases: True
Positive (TP), False Positive (FP), True Negative (TN), and False Negative
(FN). We then use the following 3 metrics, presented in Equations (1)-(3):

5 We use these indicators because they have been proved to be quite useful in previous
works like [4]. However, the purpose of this work is not to provide a list of the ultimate
technical indicators.
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Fig. 2. Sample GDT generated by the GP

Rate of Correctness
RC =

TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure
RF =

FP

FP + TP
(3)

The above metrics combined give the following fitness function:

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF, respectively, and are
given in order to reflect the preferences of investors. For instance, a conservative
investor would want to avoid failure; thus a higher weight for RF should be used.
For our experiments, we chose to include GDTs that mainly focus on correctness
and reduced failure. Thus these weights have been set to 1, 1

6 and 1
2 , respectively.

Given a set of historical data and the fitness function, GP is then applied to
evolve the market-timing strategies in a standard way. After evolving a number of
generations, what survives at the last generation is, presumably, a population of
financial agents whose market-timing strategies are financially rather successful.

4 Experimental Designs

The experiments are conducted for a period of 17 years (1991-2007) and the data
are taken from the daily closing prices of the market index of STI (Singapore).
For statistical purposes, we repeat our experiments for 10 times.
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Each year is split into 2 halves (January-June, July-December), so in total,
out of the 17 years, we have 34 periods.6 The first semester of a year is denoted
with an ‘a’ at the end (e.g., 1991a), and the second semester of a year is denoted
with a ‘b’ (e.g., 1991b). The GP systems is therefore executed 34 times, i.e.,
one time per period. Table 1 presents the GP parameters for our experiments.
The GP parameters for our experiments are the ones used by Koza [7]. Only the
tournament size has been lowered, because we were observing premature conver-
gence. Other than that, the results seem to be insensitive to these parameters.

Table 1. GP Parameters

GP Parameters

Max Initial Depth 6
Max Depth 17
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01

After generating and evolving strategies for each one of the 34 periods, we
then use SOM to cluster these strategies into types. We do this for every one
of the 34 periods. Thus, we end up with 34 different SOMs, one per semester,
which represent the market in different time periods over the 17-year horizon.

Finally, we define as ‘base period’, the period during which GP creates and
evolves GDTs. We also define ‘future period(s)’, as the period(s) which follow(s)
the base period (in chronological order).

5 Testing Methodology

In order to investigate whether the behavior of markets is non-stationary, we
recluster the GDTs of each base period, to all future periods’ clusters.7 By
applying the same GDTs (strategies) to clusters of future periods, we can observe
how well these strategies fit in the new environments (clusters). The logic behind
this is the following: when we first evolved and clustered the GDTs (base period),
these GDTs were placed in clusters that represented their respective strategies.
For instance, if there was a strategy type (cluster) that represented ‘chartists’,
then all GDTs which followed a chartist strategy were placed in that cluster.
When we then take the GDTs from a base period and recluster them to strategy

6 At this point the length of the period is chosen arbitrarily as 6 months. We leave it
to a future research to examine if and how this time horizon can affect our results.

7 The process of reclustering is explained later in this section.
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types of future periods, it is not guaranteed that there will again be a cluster that
represents chartists. If the market constantly changes, there is a possibility that
this type of strategies does not exist any more in the future periods. Thus, the
GDTs find themselves unadapted to the new environment (clusters) and have to
choose another cluster, which represents them as closely as possible. This cluster
will be the one that has the centroid with the smallest Euclidean distance8 from
the market-timing vectors of these GDTs. Of course, since now the SOM of the
future period is formed by different clusters, the GDTs might not fit in as well
as they did in the base period. In order to measure this ‘unfitting’, we use a
‘dissatisfaction rate’, i.e., how dissatisfied these GDTs will be when placed into
a future period’s cluster that does not represent their strategy. If the market
is non-stationary, the GDTs’ dissatisfaction rate will be high, as a result of the
changes that took place in the market. The dissatisfaction rate is defined as the
Euclidean distance of a GDT’s market-timing vector to the centroid of the cluster
in which it is placed, after the reclustering procedure. Under a non-stationary
market behavior, the following statement should hold:

The average dissatisfaction rate of the population of GDTs from future periods
should not return to the range of dissatisfaction of the base period.
Hence, we will test the above statement against the STI index.

Let us now explain the process of reclustering. We start with 1991a as the base
period. Each evolved GDT is moved to the next period, 1991b, and reclustered
into one of the clusters of that period. In order to ‘decide’ which cluster to
choose, the GDT compares the Euclidean distance of its market timing vector
to the centroid of each cluster; it is then placed into the cluster with the smallest
Euclidean distance. The same procedure follows for all GDTs of the population.
At the end, the population of evolved GDTs from the base period of 1991a will
have been reclustered into the clusters of period 1991b. The same procedure is
followed in all future periods. This means that the GDTs from 1991a are also
reclustered into 1992a, 1992b, ..., 2007b. Finally, the same process is done for all
other base periods (i.e., 1991b, 1992a, ..., 2007a).

Once the process of reclustering is complete, we calculate the dissatisfaction
rate of each GDT in the population. Next, we calculate the population’s average
dissatisfaction rate. We do the same for all 34 periods. Given a base period, the
population average dissatisfaction of all periods is normalized by dividing those
population average dissatisfaction rates by the population average dissatisfaction
rate in the base period. Hence, each base period has its normalized average
dissatisfaction rate equal to 1. In order to prove that the market is non-stationary,
we need to show that the normalized average dissatisfaction rate of the GDTs
increases in the future periods, and never returns to its initial value of 1, which
was during the base period. If, on the other hand, this rate reaches 1 or below,
it is an indication of a cyclic market behavior, since the GDTs have found the
same conditions with the base period, and as a result feel as ‘satisfied’ as before.

8 One may wonder if the choice of the Euclidean distance as a distance metric, when
the vectors of the GDTs are binary, is an appropriate one. However, this does not
pose a problem, because the vectors of the clusters’ centroids are real valued.
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Finally, we define as dinosaurs the population of GDTs that has been reclus-
tered from a base period to future periods. The reason of calling them in this
way is because these GDTs have not adapted to the new market environment
(clusters of the SOMs from future periods) and are thus ineffective. If these
GDTs’ normalized average dissatisfaction rate drops to less than or equal to 1,
we call them returning dinosaurs, because they have become effective again.9

6 Results

As explained, returning dinosaurs denote a cyclic market behavior. To examine if
dinosaurs return, we iterate through each base period and calculate the minimum
normalized average dissatisfaction rate for each future period. This gives us an
indication of how many returning dinosaurs, if any, exist. If, for instance, 1991a
is the base period, then there is a series of 33 population dissatisfaction values
for its future periods. We obtain the minimum value among these 33 values, in
order to check how close to 1 this future period is. This process is then repeated
for 1991b and its 32 future periods, and so on, until base period 2007a. We thus
end up with a 1 × 33 vector, which presents the minimum dissatisfaction per
base period and thus shows whether any returning dinosaurs exist. In addition,
we are interested in investigating whether different number of clusters (strategy
types) can affect the test results. We thus run tests under 2 to 9 clusters, for the
following SOM dimensions: 2×1, 3×1, 2×2, 5×1, 3×2, 7×1, 4×2, and 3×3. The
graphs of the minimum dissatisfaction vectors for the STI index are presented
in Fig. 3. Each line represents the results of a different SOM dimension. The
horizontal line indicates a dissatisfaction of 1, and is given as a reference.

What we can see from Fig. 3 is that there are no base periods with a mini-
mum normalized dissatisfaction rate below 1. In fact, the closest to 1 this rate
gets is around 2 (1998a). The first row of Table 2 presents the average of the
minimum dissatisfaction rate per cluster and verifies this observation. As we can
see, the minimum dissatisfaction rate is on average 3.56 for the 2× 1 SOM, and
it gradually increases, as the number of clusters increases, reaching 5.79 for the
3×3 SOM. Hence, the minimum dissatisfaction rate is on average quite far away
from 1, which as we mentioned is the threshold for a returning dinosaur.

In addition, the second row of Table 2 informs us that the average dissatisfac-
tion rate per cluster is even higher, and ranges from 5.17 (2 clusters) to 8.88 (9
clusters). It is thus obvious that on average, no dinosaurs return. But even if we
want to take into account the outliers (minimum dissatisfaction rate-Fig. 3 and
Table 2), we can see that while the rate can get relatively low, it never reaches
1. This leads us to argue that dinosaurs do not return or return only as lizards.
More specifically, the strategies (GDTs) found the new environments (clusters)

9 In a previous work [5], where we investigated the markets’ behavior dynamics by only
using GP but not SOM, we did not use this ‘strict’ definition of returning dinosaurs.
This led us to conclude that returning dinosaurs existed. However, if we had also
used the current paper’s definition, the results from [5] would not have dramatically
differed from the current paper.
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Fig. 3. Minimum normalized population dissatisfaction rate among all future periods
for each base period for the STI index. Each line represents a different SOM dimension.

Table 2. Average Minimum Dissatisfaction (A.M.D.-row 1) and Average Dissatisfac-
tion (A.D.-row 2) Rate per Cluster

2 × 1 3 × 1 2 × 2 5 × 1 3 × 2 7 × 1 4 × 2 3 × 3

Mean of A.M.D. 3.56 3.83 4.09 4.61 4.79 5.34 5.41 5.79
Mean of A.D. 5.17 5.65 6.11 6.98 7.19 8.30 8.33 8.88

very different from the ones in their base period and were very ‘dissatisfied’. The
strategies that had not adapted to the market changes could not fit in the new
environment. The above observation allows us to conclude that STI’s behavior
constantly changes. However, this behavior can sometimes resemble older ones.
When this happens, old strategies might perform relatively well again (i.e., di-
nosaurs return as lizards). Nevertheless, strategies that have not co-evolved with
the market, cannot reach performance levels as the ones they once had in their
base period (i.e., no returning dinosaurs). Market conditions have changed and
unless these strategies follow the changes, they become dinosaurs and thus inef-
fective.

One final observation we can make is that the number of clusters does not
affect the test’s results. The dissatisfaction rate of each market follows always
the same pattern, regardless the number of clusters. No returning dinosaurs are
observed, under any number of the trading strategy types tested.

7 Conclusion

To conclude, this paper presented a significant extension to a previous market
microstructure model [3], and also discussed preliminary results on the behavior
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dynamics of financial markets. Our experimental work was inspired by an an
observation made under artificial agent-based financial markets [1]. This obser-
vation says that the nature and constituents of agents, and thus their strate-
gies, constantly change; if these strategies do not continuously adapt to the
changes in their environments, then they become obsolete (dinosaurs). The re-
sults showed that on average, the dataset tested in this paper, STI (Singapore),
did not demonstrate the existence of returning dinosaurs, and thus verified the
existence of the non-stationary property in financial markets’ behavior. The im-
plications of this are very important. Strategies from the past cannot be success-
fully re-applied to future periods, unless they have co-evolved with the market.
If they have not, they become obsolete, because the market conditions change
continuously. They can occasionally return as lizards, meaning that these strate-
gies can sometimes demonstrate relatively good performance, but they cannot
become again as successful, as they once were. The next step of our research is to
explore other markets and see if the above results are a universal phenomenon.
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Abstract. Macro-economic models describe the dynamics of economic
quantities. The estimations and forecasts produced by such models play
a substantial role for financial and political decisions. In this contribu-
tion we describe an approach based on genetic programming and sym-
bolic regression to identify variable interactions in large datasets. In
the proposed approach multiple symbolic regression runs are executed
for each variable of the dataset to find potentially interesting models.
The result is a variable interaction network that describes which vari-
ables are most relevant for the approximation of each variable of the
dataset. This approach is applied to a macro-economic dataset with
monthly observations of important economic indicators in order to iden-
tify potentially interesting dependencies of these indicators. The result-
ing interaction network of macro-economic indicators is briefly discussed
and two of the identified models are presented in detail. The two mod-
els approximate the help wanted index and the CPI inflation in
the US.

Keywords: Genetic programming, Finance, Econometrics.

1 Motivation

Macro-economic models describe the dynamics of economic quantities of
countries or regions, as well as their interaction on international markets. Macro-
economic variables that play a role in such models are for instance the unem-
ployment rate, gross domestic product, current account figures and monetary
aggregates. Macro-economic models can be used to estimate the current eco-
nomic conditions and to forecast economic developments and trends. There-
fore macro-economic models play a substantial role in financial and political
decisions.

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 101–110, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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It has been shown by Koza that genetic programming can be used for econo-
metric modeling [6], [7]. He used a symbolic regression approach to rediscover
the well-known exchange equation relating money supply, price level, gross na-
tional product and velocity of money in an economy, from observations of these
variables.

Genetic programming is an evolutionary method imitating aspects of biolog-
ical evolution to find a computer program that solves a given problem through
gradual evolutionary changes starting from an initial population of random pro-
grams [7]. Symbolic regression is the application of genetic programming to find
regression models represented as symbolic mathematical expressions. Symbolic
regression is especially effective if little or no information is available about the
studied system or process, because genetic programming is capable to evolve
the necessary structure of the model in combination with the parameters of the
model.

In this contribution we take up the idea of using symbolic regression to gen-
erate models describing macro-economic interactions based on observations of
economic quantities. However, contrary to the constrained situation studied in
[6], we use a more extensive dataset with observations of many different economic
quantities, and aim to identify all potentially interesting economic interactions
that can be derived from the observations in the dataset. In particular, we de-
scribe an approach using GP and symbolic regression to generate a high level
overview of variable interactions that can be visualized as a graph.

Our approach is based on a large collection of diverse symbolic regression
models for each variable of the dataset. In the symbolic regression runs the most
relevant input variables to approximate each target variable are determined. This
information is aggregated over all runs and condensed to a graph of variable in-
teractions providing a coarse grained high level overview of variable interactions.

We have applied this approach on a dataset with monthly observations of eco-
nomic quantities to identify (non-linear) interactions of macro-economic variables.

2 Modeling Approach

The main objective discussed in this contribution is the identification of all po-
tentially interesting models describing variable relations in a dataset. This is a
broader aim than usually followed in a regression approach. Typically, modeling
concentrates on a specific variable of interest (target variable) for which an ap-
proximation model is sought. Our aim resembles the aim of data mining, where
the variable of interest is often not known a-priori and instead all quantities are
analyzed in order to find potentially interesting patterns [3].

2.1 Comprehensive Symbolic Regression

A straight forward way to find all potentially interesting models in a data set
is to execute independent symbolic regression runs for all variables of the dataset
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building a large collection of symbolic regression models. This approach of com-
prehensive symbolic regression over the whole dataset is also followed in this
contribution.

Especially in real world scenarios there are often dependencies between the ob-
served variables. In symbolic regression the model structure is evolved freely, so
any combination of input variables can be used to model a given target variable.
Even if all input variables are independent, a given function can be expressed
in multiple different ways which are all semantically identical. This fact makes
the interpretation of symbolic regression models difficult as each run produces
a structurally different result. If the input variables are not independent, for
instance a variable x can be described by a combination of two other variables
yandz, this problem is emphasized, because it is possible to express semanti-
cally equivalent functions using differing sets of input variables. A benefit of the
comprehensive symbolic regression approach is that dependencies of all variables
in the dataset are made explicit in form of separate regression models. When
regression models for dependencies of input variables are known, it is possible
to detect alternative representations.

Collecting models from multiple symbolic regression runs is simple, but it
is difficult to detect the actually interesting models [3]. We do not discuss in-
terestingness measures in this contribution. Instead, we propose a hierarchical
approach for the analysis of results of multiple symbolic regression runs. On a
high level, only aggregated information about relevant input variables for each
target variable is visualized in form of a variable interaction network. If a specific
variable interaction seems interesting, the models which represent the interaction
can be analyzed in detail.

Information about relevant variable interactions is implicitly contained in the
symbolic regression models and distributed over all models in the collection. In
the next section we discuss variable relevance metrics for symbolic regression
which can be used to determine the relevant input variables for the approxima-
tion of a target variable.

2.2 Variable Relevance Metrics for Symbolic Regression

Information about the set of input variables necessary to describe a given depen-
dent variable is often valuable for domain experts. For linear regression model-
ing, powerful methods have been described to detect the relevant input variables
through variable selection or shrinkage methods [4]. However, if non-linear mod-
els are necessary then variable selection is more difficult. It has been shown that
genetic programming implicitly selects relevant variables [8] for symbolic regres-
sion. Thus, symbolic regression can be used to determine relevant input variables
even in situations where non-linear models are necessary.

A number of different variable relevance metrics for symbolic regression have
been proposed in the literature [12]. In this contribution a simple frequency-
based variable relevance metric is proposed, that is based on the number of
variable references in all solution candidates visited in a GP run.
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2.3 Frequency-Based Variable Relevance Metric

The function relevancefreq(xi) is an indicator for the relative relevance of vari-
able xi. It is calculated as the average relative frequency of variable references
freq%(xi, Popg) in population Popg at generation g over all G generations of one
run,

relevancefreq(xi) =
1
G

G∑
g=1

freq%(xi, Popg). (1)

The relative frequency freq%(xi, Pop) of variable xi in a population is the number
of references freq(xi, Pop) of variable xi over the number of all variable references,

freq%(xi, Pop) =

∑
s∈Pop RefCount(xi, s))∑n

k=1

∑
s∈Pop RefCount(xk, s)

, (2)

where the function RefCount(xi, s) simply counts all references to variable xi in
model s.

The advantage of calculating the variable relevance for the whole run instead
of using only the last generation is that the dynamic behavior of variable rele-
vance over the whole run is taken into account. The relevance of variables typi-
cally differs over multiple independent GP runs, because of the non-deterministic
nature of the GP process. Therefore, the variable relevancies of one single GP
run cannot be trusted fully as a specific variable might have a large relevance in
a single run simply by chance. Thus, it is desirable to analyze variable relevance
results over multiple GP runs in order to get statistically significant results.

3 Experiments

We applied the comprehensive symbolic regression approach, described in
the previous sections, to identify macro-economic variable interactions. In the
following sections the macro-economic dataset and the experiment setup are
described.

3.1 Data Collection and Preparation

The dataset contains monthly observations of 33 economic variables and indexes
from the United States of America, Germany and the Euro zone in the time span
from 01/1980 – 07/2007 (331 observations). The time series were downloaded from
various sources and aggregated into one large dataset without missing values.

Some of the time series in the dataset have a general rising trend and are
thus also pairwise strongly correlated. The rising trend of these variables is not
particularly interesting, so the derivatives (monthly changes) of the variables are
studied instead of the absolute values. The derivative values (d(x) in Figure 1)
are calculated using the five point formula for the numerical approximation of
the derivative [10] without prior smoothing.
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Table 1. Genetic programming parameters

Parameter Value
Population size 2000
Max. generations 150
Parent selection Tournament (group size = 7)
Replacement 1-Elitism
Initialization PTC2 [9]
Crossover Sub-tree-swapping
Mutation 7% One-point, 7% sub-tree replacement
Tree constraints Dynamic depth limit (initial limit = 7)
Model selection Best on validation
Stopping criterion ρ(Fitnesstrain, Fitnessval) < 0.2
Fitness function R2 (maximization)
Function set +, -, *, /, avg, log, exp, sin
Terminal set constants, variables, lagged variables (t-12) . . . (t-1)

3.2 Experiment Configuration

The goal of the modeling step is to identify the network of relevant variable
interactions in the macro-economic dataset. Thus, several symbolic regression
runs were executed to produce approximation models for each variable as a
function of the remaining 32 variables in the dataset. In this step symbolic
regression models are generated for each of the 33 variables in separate GP
runs. For each target variable 30 independent runs are executed to generate a
set of different models for each variable.

The same parameter settings were used for all runs. Only the target vari-
able and the list of allowed input variables were adapted. The GP parameter
settings for our experiments are specified in Table 1. We used rather standard
GP configuration with tree-based solution encoding, tournament selection, sub-
tree swapping crossover, and two mutation operators. The fitness function is the
squared correlation coefficient of the model output and the actual values of tar-
get variables. Only the final model is linearly scaled to match the location and
scale of the target variable [5]. The function set includes arithmetic operators
(division is not protected) and additionally symbols for the arithmetic mean, the
logarithm function, the exponential function and the sine function. The terminal
set includes random constants and all 33 variables of the dataset except for the
target variable. The variable can be either non-lagged or lagged up to 12 time
steps. All variables contained in the dataset are listed in Figures 1 and 2.

Two recent adaptations of the algorithm are included to reduce bloat and
overfitting. Dynamic depth limits [11] with an initial depth limit of seven are
used to reduce the amount of bloat. An internal validation set is used to reduce
the chance of overfitting. Each solution candidate is evaluated on the training
and on the validation set. Selection is based solely on the fitness on the training
set; the fitness on the validation set is used as an indicator for overfitting. Models
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which have a high training fitness but low validation fitness are likely to be over-
fit. Thus, the Spearman’s rank correlation ρ(Fitnesstrain, Fitnessval) of training-
and validation fitness of all solution candidates in the population is calculated
after each generation. If the correlation of training- and validation fitness in the
population drops below a certain threshold the algorithm is stopped.

The dataset has been split into two partitions; observations 1–300 are used for
training, observations 300–331 are used as a test set. Only observations 13–200
are used for fitness evaluation, the remaining observations of the training set are
used as internal validation set for overfitting detection and for the selection of
the final (best on validation) model.

4 Results

For each variable of the dataset 30 independent GP runs have been executed
using the open source software HeuristicLab. The result is a collection of 990
models, 30 symbolic regression models for each of the 33 variables generated in
990 GP runs. The collection of all models represents all identified (non-linear)
interactions between all variables. Figure 1 shows the box-plot of the squared
Pearson’s correlation coefficient (R2) of the model output and the original values
of the target variable on the test set for the 30 models for each variable.

4.1 Variable Interaction Network

In Figure 2 the three most relevant input variables for each target variable are
shown where an arrow (a → b) means that variable a is a relevant variable
for modeling variable b. In the interaction network variable a is connected to b
(a → b) if a is among the top three most relevant input variables averaged over
all models for variable b, where the variable relevance is calculated using the
metric shown in Equation 1. The top three most important input variables are
determined for each of the 33 target variables in turn and GraphViz is used to
layout the resulting network shown in Figure 2.

The network of relevant variables shows many strong double-linked variable
relations. GP discovered strongly related variables, for instance exports and im-
ports of Germany, consumption and existing home sales, building permits and
new home sales, Chicago PMI and non-farm payrolls and a few more. GP also
discovered a chain strongly related variables connecting the producer price in-
dexes of the euro zone, Germany and the US with the US CPI inflation.

A large strongly connected cluster that contains the variables unemployment,
capacity utilization, help wanted index, consumer confidence, U.Mich. expecta-
tions, U.Mich. conditions, U.Mich. 1-year inflation, building permits, new home
sales, and manufacturing payrolls has also been identified by our approach.

Outside of the central cluster the variables national activity index, CPI in-
flation, non-farm payrolls and leading indicators also have a large number of
outgoing connections indicating that these variables play an important role for
the approximation of many other variables.
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Fig. 1. Box-plot of the squared Pearson’s correlation coefficient (R2) of the model
output and actual values on the test set for each variable
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Fig. 2. Variable interaction network of macro-economic variables identified through
comprehensive symbolic regression and frequency-based variable relevance metrics.
This figure has been plotted using GraphViz.
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4.2 Detailed Models

The variable interaction network only provides a course grained high level view
on the identified macro-economic interactions. To obtain a better understanding
of the identified macro-economic relations it is necessary to analyze single models
in more detail. Because of space constraints we cannot give a full list of the best
model identified for each variable in the data set. We selected two models for
the Help wanted index and CPI inflation instead, which are discussed in more
detail in the following sections.

The help wanted index is calculated from the number of job advertisements in
major newspapers and is usually considered to be related to the unemployment
rate [2], [1]. The model for the help wanted index shown in Equation 3 has a R2

value of 0.82 on the test set. The model has been simplified manually and con-
stant factors are not shown to improve comprehensibility. The model includes
the manufacturing payrolls and the capacity utilization as relevant factors. In-
terestingly, the unemployment rate which was also available as input variable
is not used, instead other indicators for economic conditions (Chicago PMI, U.
Mich cond.) are included in the model. Interestingly the model also includes the
building permits and wholesale price index of Germany.

Help wanted index = Building permits + Mfg payroll + Mfg Payroll(t − 5)
+ Capacity utilization + Wholesale price index (GER)
+ Chicago PMI + U. Mich cond.(t − 3)

(3)

Figure 3 shows a line chart for the actual values of the help wanted index in the
US and the estimated values of the model (Equation 3) over the whole time span
covered by the dataset.

50 100 150 200 250 300

1

1.5

2

Help wanted index

Original Estimated

Fig. 3. Line chart of the actual value of the US Help wanted index and the estimated
values produced by the model (Equation 3). Test set starts at index 300.

The consumer price index measures the change in prices paid by customers
for a certain market basket containing goods and services, and is measure for the
inflation in an economy. The output of the model for the CPI inflation in the US
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shown in Equation 4 is very accurate with a squared correlation coefficient of 0.93
on the test set. This model has also been simplified manually and again constant
factors are not shown to improve comprehensibility. The model approximates the
consumer price index based on the unemployment, car sales, New home sales,
and the consumer confidence.

CPI inflation = Unemployment + Domestic car sales + New home sales
+ log(New home sales(t − 4) + New home sales(t − 2)

+ Consumer conf.(t − 1) + Unemployment(t − 5))
(4)

Figure 4 shows a line chart for the actual values of the CPI inflation in the US
and the estimated values of the model (Equation 4) over the whole time span
covered by the dataset. Notably the drop of the CPI in the test set (starting at
index 300) is estimated correctly by the model.

50 100 150 200 250 300

1

1.5

2

CPI inflation

Original Estimated

Fig. 4. Line chart of the actual value of the US CPI inflation and the estimated values
produced by the model (Equation 4)

5 Conclusion

The application of the proposed approach on the macro-economic dataset re-
sulted in a high level overview of macro-economic variable interactions. In the
experiments we used dynamic depth limits to counteract bloat and an internal
validation set to detect overfitting using the correlation of training- and valida-
tion fitness. Two models for the US Help wanted index and the US CPI inflation
have been presented and discussed in detail. Both models are rather accurate
also on the test set and are relatively comprehensible.

We suggest using this approach for the exploration of variable interactions in a
dataset when approaching a complex modeling task. The visualization of variable
interaction networks can be used to give a quick overview of the most relevant
interactions in a dataset and can help to identify new unknown interactions.
The variable interaction network provides information that is not apparent from
analysis of single models, and thus supplements the information gained from
detailed analysis of single models.
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Abstract. We investigate how, by combining natural computation and
agent based simulation, it is possible to model financial time series. The
agent based simulation can be used to functionally reproduce the struc-
ture of a financial market while the natural computation technique finds
the most suitable parameter for the simulator. Our experimentation on
the DJIA time series shows the effectiveness of this approach in modeling
financial data. Also we compare the predictions made by our system to
those obtained by other approaches.

Keywords: Agent based modeling, natural computation, financial mar-
kets, prediction of the DJIA time series.

1 Introduction

The modeling of financial time series is a challenging research task for scientists
working in several fields including Economics, Statistics, and Computer Science.
In particular, computer scientists have recently developed novel research areas
like Agent Based Modeling [2,6,15] and Agent-based Computational Economics
[8,13,22] whose methodologies have found challenging applications in the study of
financial markets. However, considering that financial markets remain substan-
tially unpredictable, research contributions on their behavior are actively sought
for. In this paper, we will focus our attention on a learning simulation system able
to learn an agent based model (the simulation component) of a financial time se-
ries by exploiting a natural computation technique (the learning component).

Existing research on modeling financial markets in the artificial intelligence
community usually falls into one of the following approaches:

a) evaluating or learning trading strategies for some given financial instruments
(commodities, bonds, shares, derivatives, etc.), for instance [4,5,9,20];
b) building virtual markets in order to study phenomena like price bubble, as
an instance [1,8,21];
c) and modeling the values/prices (and their evolution) for some financial assets,
for instance [12,14].
The research reported in this paper belongs to the last category of investigation:
here we will show how a Learning Financial Agent Based Simulator (L-FABS) can

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 111–119, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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approximate the time series of the DJIA index under many experimental settings.
We will also compare its performances with respect to other approaches.

The rest of the paper is organized as follows: Section 2 and 3 describe the
component of our system. In Section 4, the experimental evaluation of the system
is reported, while in Section 5 modeling approaches used by other researchers in
modeling financial time series are compared to our system. Finally, in Section 6
the conclusions are drawn.

2 The Simple Financial Agent Based Simulator

Before describing the architecture of our system, we want to point out the two
main assumptions that we have made about the economic behavior of an individ-
ual. We hypothesize that each investment decision for each individual depends
on two main factors:
a) his/her propensity to take some risks today, by buying a financial asset, in
exchange for a future uncertain reward, when perceiving the cash flows gener-
ated the asset: dividends or sale of the asset. To provide an example, this is the
situation faced by a investor that has to decide if she/he prefers to invest in a
Treasury Bond (very safe, but generating a low return), or in a corporate bond
(less safe than a treasury bond, but generating an higher total return), or in
stocks (even higher risk of losing the capital, if the company were to fail, but
generating the highest return). We believe that the investment decision will be
strongly influenced by the investor’s risk/reward profile which we will model as
a risk/reward propensity rate in the system.
b) the common and public consensus about the future behavior of the market.
Public knowledge about the economic outlook diffused by financial news, eco-
nomic reports, etc. will influence the investment decision of every one operating
in the market. If the economic outlook is believed to be negative, on average
people will tend to sell some of their riskier assets. If the economic outlook is be-
lieved to be positive, investors tend to buy some riskier assets. In the paper, we
call market sentiment, or just sentiment, the common perception of the economy
outlook and we will include it in our system.

We start now describing the basic component of our simulator: the Finan-
cialAgent. The FinancialAgent implements the simple decision making process
underlying the investment decision of buying, selling or holding an asset. The
pseudo code for S-FABS is:

FinancialAgent(AgentId, Sentiment)
Retrieve TotalAssets, InvestedAssets, and RiskRewardRate for AgentId
BuyThreshold = RiskRewardRate × Sentiment
SellThreshold = (1 - ((1 - BuyThreshold) / 2)
Extract a random number Number in the interval (0,1)
If Number < BuyThreshold Then // buy some assets

InvestedAssets = InvestedAssets + 2% × TotalAssets
If Number > SellThreshold Then // sell some assets

InvestedAssets = InvestedAssets - 2% × TotalAssets
Update TotalAssets, InvestedAssets for AgentId
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Said in plain words, a Financial Agent will decide to buy some assets with
probability P(X<BuyThreshold), it will hold to its assets with probability
P(BuyThreshold<X<SellThreshold), and it will sell some of its assets with prob-
ability P(SellThreshold<X). The probability to sell some assets is half that of
buy in order to account for the bias toward investing over selling that is shown
by investors in real world. As it can be seen in the algorithm, the probabilities
are also dependent on the current level of sentiment about the economy. In fact
the probability to buy assets increases along with the sentiment, while the prob-
ability to sell assets decreases when the sentiment is raising and vice versa. In
addition, the code will take care to retrieve and update the status of each finan-
cial agent that is here represented by the variables: TotalAssets, InvestedAssets,
and RiskRewardRate.

Given the FinancialAgent pseudo code, the algorithm for simulating an in-
dividual, a simulation of the entire financial market can be obtained by cre-
ating several FinancialAgents, each one with its own status in terms of own
assets, invested assets and risk/reward propensity, and then performing a se-
quence of investment rounds where each agent decides if buying, selling, or
holding taking into account the current Sentiment value. At the end of each
round, it is possible to measure the percentage of invested assets, this percent-
age can then be used as an estimated for one data point of the target time
series. If the simulation is repeated for n rounds, the output will represent an
estimate for an n-length time series. After explaining what the financial simu-
lator S-FABS does, the algorithm follows. S-FABS take as input the vector of
risk/rewards propensity rates for each Financial Agent. During each round, the
risk/rewards propensity rates are used in combination with the current value
of the economic sentiment by each Financial Agent. We will comment on the
value of the Sentiment variable in the experimental section of the paper as
it will be subject of learning under some of the experimental set ups. The
same consideration hold for the risk/reward propensity rate for each type of
investor.

S-FABS(the vector of RiskReward rates of the agents)
Repeat for a given number of days

Calculate the Sentiment for the current day
For each agent AgentID do

FinancialAgent(AgentID, Sentiment)
Predicted Value for the current day = Total Invested Assets / Total Assets

A final point about the Financial Agents in S-FABS. In our study, we employ
four types or classes of Financial Agents to capture the richness in investment
decisions and in size of financial transactions that occur in real financial
markets. The four types of investors we model are: individual investors
(and the likes), banks (and the likes), hedge funds (and the likes), and central
banks (and the likes). They differ in term of the size of the assets they can invest
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in financial markets and for their risk/reward appetite. In addition, their numer-
ical presence is also different. Here are the values we used during our simulations:

Investor type Total Assets (in millions) Over 100 Investors
Individual 0.1 30

Funds 100 20
Banks 1000 49

Central Banks 10000 1

The figures in the table are to read only as a rough approximation for the average
composition of the investors operating in the financial markets. Specific reasons
for choosing four types of investors and for setting their parameters include:
common view about who operates in the markets, the desire to keep the model
simple while showing how it can preserve the diversity of the investors, and
personal conversations with investment managers [3].

3 The Complete Learning Simulator: Combining
Simulated Annealing with S-FABS

In this section, we describe how a learning capability can be added to S-FABS,
by using Simulated Annealing, so that it may find the best model for a given
time series. Learning in S-FABS consists of finding the vector of the parame-
ters which control the simulation. In particular, learning consists of finding the
vector of risk/reward propensity rates (plus any additional parameter object of
experimentation) that approximates a given time series with a minimum error.
This chosen learning framework allows for decoupling the learning phase from
the simulation phase thus making possible to select as a learning techniques any
of the many machine learning algorithms able to find a vector of values while
minimizing a given error function. Examples of suitable machine learning algo-
rithms include among the others: genetic algorithms [7,17], decision trees [18],
neural networks [19], simulated annealing [11]. Given the possibility to select
any of these learning methods, we decided to use Simulated Annealing because
it emerges from the literature that evolutionary learning produces good results
even when little or any domain knowledge is available. Because of page limit, we
just say here that the exploited Simulated Annealing algorithm and its param-
eter settings are those described in [11].

For the error function to be minimized, we need to select one that can eval-
uate how well two time series are similar: the Mean Average Percentage Error
(MAPE) is a suitable choice. The MAPE is commonly used in Statistics when
two data samplings have to be compared in term of a non dimensional measure
such as an percentage of the absolute difference between the data. The Mean
Average Percentage Error is defined as:

MAPE(X, Y ) =
1
N

N∑
i=1

∣∣∣∣xi − yi

xi

∣∣∣∣
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Given two time series X and Y, the lower the MAPE value, the closer the two
are. The MAPE value will provide a useful indication of how well a learning
system has been able to approximate a target time series thus expressing the
learning error of a found model.

4 Empirical Evaluation of L-FABS

In order to empirically evaluate L-FABS, we need to select some financial time
series as datasets to work with. As usual with machine learning systems, we will
train L-FABS on a part of the dataset, the learning set, and then we will use
the remaining part of the dataset as test set to assess the performances of the
learned model. The selected dataset consists of:

Dataset - learning set: DJIA close value data from 3 Jan 1994 to 17 Dec 2003 and
test set: DJIA close value data from 18 Dec 2003 to 23 Oct 2006. The dataset
has been freely acquired from the finance section of yahoo.com.

The reason for selecting this dataset is that it has been used to test other
learning algorithms so the obtained approximation results can act as compara-
tive measures for evaluating how our systems performed with respect to other
approaches.

In the performed experiments, we will evaluate S-FABS when estimating the
next value of the time series (the value of the next trading day) and the seven
days ahead value of the time series. The seven days ahead prediction has been
selected as it is the most far ahead prediction made by other learning systems
and thus can serve as an interesting comparison data.

Before explaining the obtained results, the function for determining the
market mood, the Sentiment, has to be defined. We want to stress here that
our approach does not impose any restriction on how the market mood is
determined. For our experiments, we implemented the Sentiment function as
follows to keep it as simple and as general as possible:

function Sentiment(time, mavgDays)
begin=time-1
end=time-mavgDays
if (MAVG(PredictedData, begin, end) <

MAVG(RealData, begin, end))
then return(α)
else return(β)

The MAVG function is defined as:

MAVG(index,t,n) =
n−1∑
k=0

index(t − k)/n

The variables RealData and PredictedData give access to the time series of the
real and predicted values. The values α and β will assume the constant values
of 0.65 and 0.30 (as empirically determined in an earlier work [16]) in a set of
experiments, while will be determined by the learning algorithm itself in another
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set of experiments. According to our definition of the Sentiment, the outlook
of the real market is considered bullish if the moving average (MAVG) of the
predicted time series is lower than the moving average of the real data. If this is
the case, the Sentiment value is set to an high value so that a bullish mood is
communicated to the Financial Agents in S-FABS. The opposite happens if the
predictions of the system have been higher than the real data. In our experiments
will invoke the Sentiment function as either Sentiment(round,1), case identified
in the following with S1, or Sentiment(round,5), case identified with S2. In case
S1, only the previous day values of the two time series is used, while in case S2,
the averages of the latest previous five days in the two time series are used to
estimate the market mood.

We are now ready to discussed the experimental findings as reported in tables
1 and 2. The reported results are averaged over 10 runs of the same experimental
setting and show the forecast errors are measured by MAPE on the test sets. In
tables 1 and 2, we show the performances of L-FABS by allowing the learning
algorithm to run for 200 and 400 rounds respectively. The columns in the tables
stand for: ”values for α and β” reports the values for the α and β parameters to be
used in the Sentiment function as described above; ”Sentiment” indicates if the
Sentiment value is calculated with modality S1 or S5; ”Day to predict” indicates
the number of days ahead for which a prediction of the time series is made; and,
finally, the measured errors on the test set are reported in terms of the MAPE.
Also the table is divided in two parts: the first four rows are experiments with
constant values for the α and β parameters, while the last four rows represents
experiments where the α and β are learned by the simulated annealing together
with the risk/reward propensity rates for each investor type. This means that the
experimental set up in row one is similar to the experimental setting of row five
with the only difference that the learning task given to the learning algorithm
(the simulated annealing) in row one is to find only the vector of risk/reward
propensity rates whereas in row five the objective of learning is to find both the
vector of risk/reward propensity rates plus the value for the α and β parameters.
From the experimental findings it appears that the predictions of close values

for the next day of the DJIA are more accurate than the predictions made for
the seven days ahead values. This finding confirms the intuitive experience that
the farther a prediction is moved into the future, the less accurate it will be.

Table 1. Experimental results on dataset DJIA using 200 rounds of SA

values for α and β Sentiment Day to predict MAPE %
0.65, 0.30 S1 1 0.76
0.65, 0.30 S5 1 0.74
0.65, 0.30 S1 7 1.48
0.65, 0.30 S5 7 1.51
0.40, 0.31 S1 1 0.62
0.31, 0.29 S5 1 0.67
0.51, 0.47 S1 7 1.35
0.43, 0.44 S5 7 1.52
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Table 2. Experimental results on dataset DJIA using 400 rounds of SA

values for α and β Sentiment Day to predict MAPE %
0.65, 0.30 S1 1 0.74
0.65, 0.30 S5 1 0.69
0.65, 0.30 S1 7 1.48
0.65, 0.30 S5 7 1.47
0.55, 0.48 S1 1 0.57
0.51, 0.48 S5 1 0.58
0.50, 0.43 S1 7 1.39
0.53, 0.43 S5 7 1.45

Also it emerges that using only the previous day close for estimating the market
mood, Sentiment S1, is as good as using the moving average of the latest five
days close values for the index, case S5, in making a good prediction. Comparing
the results in the first four rows with the latter four rows in the table, it is also
evident that when the system is let learning the parameters α and β, which
specify how large is the Sentiment value in case of positive or negative feelings,
L-FABS is able to produce slightly better forecasts.

It is also important to note that the MAPE errors across the several experi-
mental settings tend to stay very close for similar experimental setup, compare
experiments across the tables 1 and 2. This is an important feature in a learning
systems and it is called robustness that is the ability to display a consistent good
behavior across a range of different parameter settings.

5 Experimental Comparison of L-FABS to Other Systems

For providing an exhaustive evaluation of L-FBAS, we will compare its per-
formances with respect to those obtained on the same dataset by alternative
approaches for which enough implementation details have been given in the lit-
erature [14] so they can act as an useful benchmark. In table 3, we compare
the prediction errors, as given by the MAPE measure, for the DJIA time series,
corresponding to the Dataset DJIA of the previous section, by using a Particle
Swarm Optimization algorithm (PSO) [10] and a Multi-Layer Perceptron (MLP)
[23], whose parameters have been set up as in [14], with our agent based approach
L-FABS. The results for L-FABS are relative to a Sentiment determined as in
case S1 and using 400 rounds of simulated annealing.

Just at a first glance, the results in table 3, shows that the forecasting errors
of L-FABS are better than those obtained by of PSO and MLP. Moreover, it is
evident, as observed in the previous section, that the forecasting error increases
when farther into the future the prediction is to be made. And this holds for all
the systems. This observation can be interpreted as evidence that the information
contained in the time series up to the current time has a decreasing usefulness
in predicting future values the farther we move ahead in time. This finding also
confirms what we expect to happen in real world financial markets.
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Table 3. Experimental results averaged on 10 runs for time series DJIA

Day to predict PSO MAPE % MLP MAPE % L-FABS MAPE %
1 0.65 1.06 0.57
7 1.47 5.64 1.39

6 Conclusions

In the paper, we have described how an agent based modeling techniques com-
bined with natural computation, simulated annealing, could result in a learning
simulative system, L-FABS, able to find the model for a given financial time
series. The agent based simulation can be used to functionally reproduce the
structure of a financial market while the natural computation technique finds
the most suitable parameter for the simulation. We have empirically evaluated
the system, under several parameter settings, on the DJIA time series and the
predictive power of the learning simulator has also been compared with respect
to existing approaches. The main result of our paper is that: a conceptually
simple learning simulator, combining agent based modeling and simulated an-
nealing, can closely approximate the DJIA time series and provide forecasts for
it comparable to those obtained by more sophisticated approaches.
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Abstract. This paper investigates the effects of early stopping as a
method to counteract overfitting in evolutionary data modelling using
Genetic Programming. Early stopping has been proposed as a method
to avoid model overtraining, which has been shown to lead to a signifi-
cant degradation of out-of-sample performance. If we assume some sort
of performance metric maximisation, the most widely used early training
stopping criterion is the moment within the learning process that an un-
biased estimate of the performance of the model begins to decrease after
a strictly monotonic increase through the earlier learning iterations. We
are conducting an initial investigation on the effects of early stopping in
the performance of Genetic Programming in symbolic regression and fi-
nancial modelling. Empirical results suggest that early stopping using the
above criterion increases the extrapolation abilities of symbolic regres-
sion models, but is by no means the optimal training-stopping criterion
in the case of a real-world financial dataset.

1 Introduction

Overfitting is a commonly studied problem which arises in machine learning
techniques such as Genetic Programming. A model is described as overfitting
the training data if, despite having a high fit on the training examples, there
exists another model which has better fitness on the data as a whole, despite not
fitting the training data as well [9]. There are different reasons why overfitting
can occur. The existence of noise in training samples can cause a model to be
fit to the data which is more complex than the true underlying model [14]. For
symbolic regression, an example would be fitting a high order polynomial to noisy
data, which happens to pass through all training points, when the true function
is in fact a lower order polynomial. Another cause of overfitting is bias in the
training data. Overfitting is more likely to occur when the training sample size is
small. The more data available to train on, the more likely we are to discover the
true underlying model, and the less likely we are to settle on a spurious result.
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Overfitting is also more likely to occur in the presence of complexity. Complex
models (for example symbolic regressions of multiple explanatory variables) are
more likely to induce overfitting. Learning algorithms that are run for a long
time are also more likely to trigger overfitting, than if they had been run for a
shorter time period [1].

This paper aims to begin to explore the issue of overfitting in Grammatical
Evolution [12,6] (a form of grammar-based Genetic Programming [8]), and pro-
vides case studies of overfitting in three symbolic regression problems, and a
financial modelling example drawn from an instance of credit risk classification.

2 Model Induction

The underlying data generating process is unknown in many real-world financial
applications. Hence, the task is often to deduce or “recover” an underlying model
from the data. This usually isn’t an easy task since both the model structure
and associated parameters must be uncovered. Most theoretical financial asset
pricing models make strong assumptions which are often not satisfied in real-
world asset markets. They are therefore good candidates for the application of
model induction tools, such as Grammatical Evolution, which are used to recover
the underlying data generating processes [3].

Of course to use a model induction method effectively, that is, to ensure that
the evolved models generalise beyond the training dataset, we must pay attention
to overfitting. This study aims to highlight this important open issue in the field
of Genetic Programming [13] and its implications for financial modelling.

3 Background

3.1 Model Generalisation

A crucial aspect of data-driven modelling is related to model generalisation, and
many financial applications of evolutionary methods do not apply techniques to
minimise overfitting. Model generalisation concerns the ability of the induced
model to correctly represent the underlying structure of the data so as to make
accurate predictions when presented with new data from the problem domain.
Unfortunately, data-mining methodologies that iteratively refine a model on a
set of training instances, as is the case of evolutionary methods, inherently suffer
from model overfitting; they produce solutions with poor generalisation abilities.
There has been a large amount of statistics and sibling machine learning method-
ologies to counteract the phenomenon of overfitting and produce models with
competent out-of-sample performance.

3.2 Model Overtraining Avoidance through Early Stopping

A well-exercised technique for promoting the generalisation of an induced model
is the procedure of early training stopping [16,9,7]. For most learning algorithms
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the training error decreases monotonically during training. If an independent
validation dataset is used to measure the model’s accuracy on unseen data, the
validation error tends also to decrease in step with the training error as the model
gradually approximates the underlying function. However, it is very often the
case that the training data contain spurious and misleading regularities due to
sampling. In the later stages of the training process, the model begins to exploit
these idiosyncrasies in the training data and the validation error tends to increase
again while the training error continues to decrease. This example of overfitting
is described in [5]. One approach to avoid overfitting is to use the independent
validation dataset as part of a heuristic that dictates the halting of the training
process at the first minimum of the validation error. Under such a regime, the
learner is trained using the training instances, however, in each learning iteration
it is evaluated for both training and validation accuracy. Typically, the error on
the validation set decreases along with the training error, but then tends to
increase, an indication that the model may be overfitting the training instances,
suggesting that the training phase should be stopped. It has been shown that
halting the training phase before a minimum of the training error has been
reached, represents a way of limiting the complexity of the induced model [2].

3.3 Grammatical Evolution: A Brief Introduction

In Grammatical Evolution [12,6], the process of evolution first involves the gen-
eration of a population of randomly generated binary (or integer) strings, the
genotype. In the case of binary genomes, each set of B bits (where tradition-
ally B=8) is converted into its equivalent integer representation. These integer
strings are then mapped to a phenotype, or high-level program or solution, us-
ing a grammar, which encompasses domain knowledge about the nature of the
solution. Therefore, a GE genome effectively contains the instructions of how to
build a sentence in the language specified by the input grammar. Grammatical
evolution is a form of what is known as grammar-based Genetic Programming [8],
and has been applied to a broad range of problems, including many successful
examples in financial modelling [4].

The grammar used in the experiments we performed can be found in Fig. 1.
The grammar is composed of non-terminal and terminal symbols. Terminals (for
example arithmetic operators) appear in the solution, whereas non-terminals
can be further expanded into terminals and non-terminals. Here we can see that
knowledge of the solution (that it will be constructed from arithmetic operators,
mathematical functions, variables and constants) is encoded in the grammar.
The mapping process involves the use of an integer from the genotype to choose
a rule from the production rule currently being mapped. This process proceeds
as follows. The first integer from the genotype is divided by the number of rules
in the start symbol ( <expr> in our example). The remainder from this division
is used to select a rule from the grammar (for example, if the first integer was
8, the result of dividing 8 by the number of choices available for the <expr>
production rule, which is 5, would result in the choice of the third rule - which is
<pre-op>(<expr>). The next integer in the genotype would then be used in the
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same way to map between <pre-op> and one of its constituent rules, and the
third integer in the genotype would be used to map between <expr> and one of its
constituent rules. This process continues until either all integers in the genotype
have been used up, or our mapping process has resulted in the production of a
phenotype (that is a structure comprised of only terminal symbols) [12].

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> ) |

<pre-op> ( <expr> ) | <protected-op> | <var>

<op> ::= + | * | -

<protected-op> ::= div( <expr>, <expr>)

<pre-op> ::= sin | cos | exp | inv | log

<var> ::= X | 1.0

Fig. 1. Grammar used in Symbolic Regressions

4 Experimental Setup

4.1 Symbolic Regression

Grammatical Evolution was used to fit models to 3 symbolic regression prob-
lems. Equations 1 through 3 show the target functions. The training dataset
was comprised of 10 randomly generated points. The test dataset (which was
not used to train the model) was comprised of 20 randomly generated points,
10 of which were drawn from the same range as the training data (to test how
well the model interpolates, and to serve as a proxy for a validation dataset, see
Section 5.1), and 10 of which were drawn from outside the range from which the
training data were drawn (to test how well the model extrapolates).

Y = 0.6X3 + 5X2 − 10X − 25 (1)

Training dataset range: [ -5, 5]. Test dataset ranges: [ -10, 10].

Y = 0.3X × sin 2X (2)

Training dataset range: [ -1, 1]. Test dataset ranges: [ -2, 2].

Y = exp X − 2X (3)

Training dataset range: [ -2, 2]. Test dataset ranges: [ -4, 4].

These functions and ranges were chosen so that the target function would be
trained using a biased sample. The bias resulted from training in a range in which
the target function closely resembled an alternative function. Over a wider range
than that from which the training data was drawn, the target function looked
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dramatically different from this alternative (for example, function 2 looked very
like a quadratic in the training range (see Fig. 7), but as can be seen, it is truly
a sine function). In this way, we engineered a situation in which overfitting was
likely to take place. In each case, Grammatical Evolution was run on a population
size of 100 individuals, for 50 generations, using Grammatical Evolution in Java
[11]. The grammar used is shown in Fig. 1.

Fitness was evaluated by computing the mean squared error of the training
points when evaluated on each individual (therefore the lower the fitness value,
the better the evolved function fitted the training data).

MSE =
∑n

i=1 |targetY − phenotypeY |2
n

(4)

4.2 The Case of a Financial Dataset

We also test the early stopping approach to model overfitting on a real world
financial dataset from the UCI Machine Learning repository [10]. The financial
dataset represents a binary classification problem of categorising credit card
applications between those which are approved or rejected. The dataset contains
690 number of instances, and each instance has 15 attributes.

We employed GE to evolve non-linear discriminant functions that use the
threshold value of zero to differentiate among the classes. The context-free gram-
mar is represented below.

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | <var>

<op> ::= + | * | - | /

<var> ::= instance attributes

Fig. 2. Grammar used in the financial credit classification problem

The GP algorithm employs a panmictic, generational, elitist genetic algo-
rithm. The algorithm uses tournament selection with a tournament size of 7.
The population size is set to 500 individuals, and the number of generations to
100. Ramped-half-and-half tree creation with a maximum depth of 6 is used to
perform a random sampling of DTs during run initialisation. Throughout evo-
lution, expression-trees are allowed to grow up to depth of 15. The evolutionary
search combines standard subtree crossover with subtree mutation; a probabil-
ity governing the application of each, set to 0.6 in favour of subtree crossover.
We used the classification accuracy (CA) as the fitness function, but in order
to convert it to a minimisation problem we assigned fitness using 1.0− CA. We
split the original dataset into two random equally-sized subsamples with equal
distribution of classes, serving as the training and validation (out-of-sample)
datasets.
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Fig. 3. Target Function 1

0 10 20 30 40 50

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

 Fitnesses Over 51 Generations − Symbolic Regression 2

Generation

F
itn

es
s

Fitness of Best Individual: Training Data
Fitness of Best Individual: Interpolation Test Data
Fitness of Best Individual: Extrapolation Test Data

(a)

0 10 20 30 40 50

0
5

10
15

 Fitnesses Over 51 Generations − Symbolic Regression 2

Generation

F
itn

es
s

Fitness of Best Individual: Training Data
Fitness of Best Individual: Interpolation Test Data
Fitness of Best Individual: Extrapolation Test Data

(b)

Fig. 4. Target Function 2, Example 1

5 Results and Discussion

5.1 Symbolic Regression

Figs. 3(a) through 6(b) are plots of the fitness of the best individual at each
generation as evaluated on the training data, against the fitness of the best indi-
vidual at each generation as evaluated on the test datasets, for four illustrative
runs - one run each of target functions 1 and 3, and two runs of target function
2. Table 1 contains details on the fitness as evaluated on the test dataset, for 9
runs. It shows that stopping evolution before the specified number of generations
had elapsed, would have led to the model extrapolating better beyond the range
in which it was trained.

Early stopping has been described in Section 3.2. The validation dataset is
not used to train the model, but instead is used to test the fitness of the model
every once in a while (for example each generation, or at five generation inter-
vals). If the fitness of the best individual as evaluated on the validation dataset
disimproves, this is taken as an indication that the evolved model is overfitting
the data, and evolution is stopped. (Test data is used as before to evaluate the
fitness of the evolved model on out-of-sample data, after evolution has termi-
nated, either prematurely (if early stopping has been deemed necessary), or after
the specified number of generations has elapsed.)
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Fig. 5. Target Function 2, Example 2

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

 Fitnesses Over 51 Generations − Symbolic Regression 2

Generation

F
itn

es
s

Fitness of Best Individual: Training Data
Fitness of Best Individual: Interpolation Test Data

(a)

0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

 Fitnesses Over 51 Generations − Symbolic Regression 2

Generation

F
itn

es
s

Fitness of Best Individual: Training Data
Fitness of Best Individual: Interpolation Test Data
Fitness of Best Individual: Extrapolation Test Data

(b)

Fig. 6. Target Function 3

Table 1. Interpolation, Extrapolation fitnesses - Generations at which deteriorations
took place

Target Function Number 1 1 1
Generation Interpolation Fitness First Disimproved (GIFFD) 4 10 4
Interpolation Fitness Better Generation GIFFD-1, or End of Run? End of Run End of Run GIFFD-1
Extrapolation Fitness Better Generation GIFFD-1, or End of Run? GIFFD-1 GIFFD-1 GIFFD-1
Best stopping point (Generation(s) of Lowest Extrapolation Fitness)? 14 7 - GIFFD-1 12

Target Function Number 2 2 2
Generation Interpolation Fitness First Disimproved (GIFFD) 14 3 4
Interpolation Fitness Better Generation GIFFD-1, or End of Run? End of Run End of Run End of Run
Extrapolation Fitness Better Generation GIFFD-1, or End of Run? GIFFD-1 End of Run GIFFD-1
Best stopping point (Generation(s) of Lowest Extrapolation Fitness)? 38 - 43 49 - End of Run 5 - 8

Target Function Number 3 3 3
Generation Interpolation Fitness First Disimproved (GIFFD) 26 7 19
Interpolation Fitness Better Generation GIFFD-1, or End of Run? End of Run End of Run GIFFD-1
Extrapolation Fitness Better Generation GIFFD-1, or End of Run? GIFFD-1 GIFFD-1 GIFFD-1
Best stopping point (Generation(s) of Lowest Extrapolation Fitness)? 18 - GIFFD-1 7 - 10 8 - GIFFD-1

Since we explicitly chose target functions and ranges with an inherent bias,
these symbolic regressions triggered overfitting, as expected. Table 1 shows the
generation at which the fitness, as evaluated on the part of the test dataset used
to measure the ability of the evolved model to interpolate in the training range
(henceforth referred to as interpolation fitness), first disimproved. In 8 of the
9 runs described, the fitness as evaluated on the part of the test dataset used
to measure the ability of the evolved model to extrapolate beyond the training
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Fig. 7. (a) Generation 1 (b) Generation 5 (c) Generation 11 (d) Generation 23 (e)
Generation 38 (f) Generation 44

range (henceforth referred to as extrapolation fitness), was better the generation
immediately before the interpolation fitness first disimproved, than at the end
of the run. Had we stopped evolution at this point, we would have produced
a model that extrapolated better beyond the training range, than the model
produced at the end of the run.

The data points from the test dataset drawn from the same range as the train-
ing dataset (and used to measure how well the evolved model is interpolating
within the training range), can also be used as a proxy for a validation dataset.
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[15] show that when training artificial neural networks, the first time the error
on the validation set increases is not necessarily the best time to stop training,
as the error on the validation set may increase and decrease after this first
disimprovement. Such a pattern seems to exist in the runs we performed. In 5 of
the 8 runs where early stopping would have made sense, the optimal generation
at which to stop (the generation with the lowest extrapolation fitness value) came
later than the generation at which the interpolation fitness first disimproved.

To give further insight into the evolutionary process that underlie the changes
in fitness observed for the training and test data sets, the phenotype was plotted
against the target function in the extrapolation range, at each generation. Fig. 7
shows a selection of these generational graphs for the first run of function 2.

Comparing Figs. 7 and 4(b), we can clearly see the correspondences between
changes in the graphed phenotype over the generations, and changes in the
fitness as evaluated on the extrapolation test data. Between generations 1 and
22, the extrapolation test fitness is either disimproving, or not improving by
much. At generation 23 fitness improves significantly, and at generation 38, an
extremely fit individual has been evolved, both with respect to the training and
test set. The model extrapolates well. However, come generation 44, a much less
fit function has been evolved. It’s fitness on the training data has improved, but
it’s fitness on the extrapolation test data has drastically disimproved. If we look
back at Fig. 4(b), we can clearly see both an extremely low value in the fitness
on the extrapolation test data at generation 38, and an explosion in the value of
the fitness on the extrapolation test data at generation 44.

5.2 Financial Dataset

We performed 100 independent evolutionary runs. Table 2 presents average per-
formances of the best-of-generation individuals, on both training and valida-
tion sets, throughout the evolutionary process. Results suggest that there is
no particular evidence of model overfitting; the validation performance curve
monotonically decreases up until generation 80, at which point a slight degree
of overtraining becomes apparent. This is evidenced by the average percentage
change in the validation performance, which reaches a negative number between
generations 80 and 90 (Table 3). The model performance in the case of early
stopping at the generation that the validation error becomes a local minimum

Table 2. Training and Test Learning Curves for the classification problem. Averages
of 100 evolutionary runs. Standard deviation in parentheses.

Gen. 10 Gen. 20 Gen. 30 Gen. 40 Gen. 50
Training performance 0.25 (0.01) 0.24 (0.01) 0.23 (0.01) 0.22 (0.01) 0.22 (0.01)

Validation performance 0.29 (0.02) 0.29 (0.02) 0.28 (0.02) 0.28 (0.02) 0.28 (0.02)
Gen. 60 Gen. 70 Gen. 80 Gen. 90 Gen. 100

Training performance 0.21 (0.01) 0.21 (0.01) 0.21 (0.01) 0.20 (0.01) 0.20 (0.01)
Validation performance 0.28 (0.02) 0.27 (0.02) 0.27 (0.02) 0.28 (0.02) 0.28 (0.02)
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Table 3. Percentage change in Training and Testing performance. Averages of 100
evolutionary runs. Standard deviation in parentheses.

Gen. 10-20 Gen. 20-30 Gen. 30-40 Gen. 40-50 Gen. 50-60

Training performance change (%) 5.2% (0.03) 3.7% (0.03) 2.7% (0.02) 1.7% (0.02) 1.7% (0.02)
Validation performance change (%) 2.0% (0.07) 1.9% (0.07) 0.7% (0.05) 0.6% (0.04) 0.2% (0.03)

Gen. 60-70 Gen. 70-80 Gen. 80-90 Gen. 90-100

Training performance change (%) 1.4% (0.01) 1.2% (0.01) 1.3% (0.01) 0.9% (0.01)
Validation performance change (%) 0.2% (0.03) 0.3% (0.03) -0.6% (0.03) 0.6% (0.03)

Table 4. Performance statistics during early stopping. Averages of 100 evolutionary
runs. Standard deviation in parentheses.

Early Stopping Generation 5.88 (6.07)
Early stopping training performance 0.27 (0.02)

Early stopping validation performance 0.31 (0.03)

for the first time, is summarised in Table 4. It is apparent that stopping at
approximately generation 6 results in a model with validation performance of
0.31, which is clearly not the optimal point at which to stop, given that the best
validation performance is 0.27, attained by generation 80 (Table 2).

Overall, this empirical result suggests that early training stopping at the first
point where the validation error reaches a local minimum (assuming fitness min-
imisation) is by no means a reliable indication of overtraining. Future research
needs to address the issue of early stopping with more sophisticated stopping
criteria.

6 Conclusions and Future Work

In this study we set out to highlight a significant open issue in the field of Ge-
netic Programming, namely generalisation of evolved solutions to unseen data,
which has real world implications for all model induction methods, and can have
serious financial implications when considered in the domain of financial mod-
elling. Empirical investigations on four benchmark problems are undertaken.
Three of the problems were drawn from the popular Genetic Programming do-
main of symbolic regression and the fourth problem was an instance of credit
classification.

In summary the results illustrate the important role which the detection of
overfitting during training can play, in order to improve the generalisation of
the evolved models. What is also clear from these results is that further lessons
need to be drawn from the machine learning literature on effective early stop-
ping strategies, and the myriad of other strategies which have been adopted to
avoid overfitting. The results on both classes of problem domain investigated
here demonstrate that early stopping could be an effective strategy to improve
generalisation, however, following a naive early stopping heuristic can lead to
stopping too early.
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On the Performance and Convergence Properties of 
Hybrid Intelligent Schemes: Application on Portfolio 

Optimization Domain 

Vassilios Vassiliadis, Nikolaos Thomaidis, and George Dounias 

Abstract. Hybrid intelligent algorithms, especially those who combine nature-
inspired techniques, are well known for their searching abilities in complex 
problem domains and their performance. One of their main characteristic is that 
they manage to escape getting trapped in local optima. In this study, two hybrid 
intelligent schemes are compared both in terms of performance and convergence 
ability in a complex financial problem. Particularly, both algorithms use a type of 
genetic algorithm for asset selection and they differ on the technique applied for 
weight optimization: the first hybrid uses a numerical function optimization 
method, while the second one uses a continuous ant colony optimization algorithm. 
Results indicate that there is great potential in combining characteristics of nature-
inspired algorithms in order to solve NP-hard optimization problems. 

Keywords: Genetic Algorithm, Continuous ACO, Portfolio Optimization. 

1   Introduction 

Nowadays, complex constrained problems in various domains pose a great challenge 
both in academics and decision making. Traditional methodologies, from statistics 
and mathematics, fail to deal properly with these problems, and in most cases they 
converge to local optima. In recent years, there has been an ongoing trend in applying 
metaheuristic methodologies from the field of artificial intelligence due to the unique 
characteristics which enable them to tackle hard-solving problems.   

Hybrid algorithms comprise two or more intelligent metaheuristic techniques. 
Their main advantage lies on the combination of characteristics of various intelligent 
schemes. Hybrid algorithms are well recognized for their searching strategies in 
complex solution domains as well as their ability in avoiding getting stuck in local 
optima.  

As far as the problem domain is concerned, the financial portfolio optimization 
problem poses a challenge for several optimization techniques. The main goal is to 
efficiently construct portfolios of assets, as well as finding their optimal weights, 
which satisfy certain objective(s) and at the same time are subject to many constraints, 
in some cases. 

In this study, two hybrid schemes are compared in terms of performance and 
convergence properties. Both techniques apply a genetic algorithm for asset selection. 
Regarding weight optimization the first algorithm uses a non-linear programming 
technique and the second one applies a continuous ant colony optimization (ACO) 
algorithm. The aim, in this study, is to provide some evidence concerning the 
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performance of nature-inspired algorithms, i.e. ACO, in continuous optimization 
problems, i.e. weight optimization. Regarding the portfolio management problem, the 
objective is to maximize the Sortino ratio with a constraint on the tracking error 
volatility of the portfolio. This problem formulation incorporates a non-linear objective 
function, as well as a non-linear constraint. Finally, the main contribution of this study 
lies in providing proof, based on simulation results, regarding the convergence ability 
and performance of the aforementioned methodologies. What is more, this paper 
highlights, in a way, the usefulness of nature-inspired algorithms in dealing with hard 
optimization problems. 

This paper is organized as follows. In section 1, some brief introductory comments 
are provided. In section 2, evidence from the literature, regarding selected studies 
which are related to the subject, are presented. In section 3, a brief analysis for the 
proposed algorithms is provided. In section 4, the mathematical formulation of the 
portfolio optimization problem is shown. In section 5, results from the computational 
study are provided and analyzed. Finally, in section 6, some useful concluding 
remarks and future research directions are shown. 

2   Literature Review 

In what follows, a brief analysis of related works is going to be presented. In any case, 
this analysis is not considered to be exhaustive. However, it could be representative of 
the specific field. 

In [6], a hybrid scheme, combining simulated annealing with principles from 
evolutionary strategies, was applied to the classical Markowitz’s portfolio 
optimization model. What is more, benchmark results from other two techniques, 
namely a simulated annealing algorithm and a special case of genetic simulated 
annealing method, were provided. Test data comprised of two sets, i.e. the German 
Index (DAX30) and the British Index (FTSE100). Results indicated that the 
incorporation of characteristics from evolutionary strategies may enhance the 
performance of local search algorithms. In [4], a genetic algorithm was combined 
with a quadratic programming approach, and this hybrid scheme was applied to a 
formulation of the passive portfolio management, where the objective was to 
minimize the tracking error volatility. What is more, authors provided benchmark 
results from a method, which applied random search for asset selection. Results 
indicated the superiority of the hybrid technique, and also that the optimal portfolios 
can efficiently track the benchmark index (Dutch AEX). In more related works, a 
hybrid scheme, combining an ACO algorithm for asset selection and the LMA 
algorithm for weight optimization, was applied to the active portfolio management 
problem under a downside risk objective [10]. The dataset comprised of stocks from 
the FTSE100 index. Also, two benchmark techniques were applied, namely an ACO 
algorithm with an encoding scheme and a random-selection algorithm for asset 
selection. Based on preliminary results, the performance of the hybrid scheme seems 
to be inferior compared to the algorithm, which combined an ACO with a weight 
encoding scheme. In [9], a particle swarm optimization algorithm was applied to three 
formulations of the active portfolio management problem, with a constraint to the 
tracking error volatility. The PSO algorithm aimed at selecting the assets, whereas a 
weight encoding heuristic was applied for weight optimization. Finally, in [2], an 
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ACO algorithm for asset selection was combined with a FA (firefly) algorithm for 
weight optimization. This hybrid scheme was applied to a portfolio optimization 
problem, where the objective was to maximize the Sortino ratio with a constrained on 
tracking error volatility. The dataset comprised of stocks from S&P’s 500 index. 
Moreover, this scheme was compared with a Monte-Carlo algorithm and a financial 
heuristic. Results indicated the superiority of the proposed methodology. 

All in all, the following remarks could be stated. Firstly, several techniques, which 
incorporate nature-inspired algorithms, have been applied to the portfolio 
optimization problem. Some examples are the application of particle swarm 
optimization and ant colony optimization algorithms in portfolio selection. Regarding 
the problem domain, several formulations of the portfolio optimization problem have 
been studied. Finally, as far as the main results from these studies are concerned, there 
is no clear conclusion of the superiority of hybrid nature-inspired methodologies. This 
could be indicative for more experimentation of these techniques.  

3   Methodology 

In this study, two hybrid intelligent methodologies are compared. The common 
component of these approaches is a real-valued genetic algorithm [3] which is applied 
in the discrete solution space in order to form high-quality portfolios of assets. In our 
approach, the genetic algorithm is comprised of three stages. At first the population 
(portfolios) is initialized in a random way. Afterwards, for a specified number of 
generations, n-best members of the population, based on their fitness value, are 
selected. As a next step, either crossover or mutation is applied to the selected 
members in order to form the descendants (new portfolios). Finally, the initial 
population is updated in a way that only high-quality portfolios, based on their fitness 
value, are included. 

However, apart from constructing portfolios of assets, the capital invested in each 
of these assets should be determined. This is achieved by applying two different 
methodologies, specialized in continuous optimization. At the first hybrid, a non-
linear programming methodology, based on mathematical principles1, is applied so as 
to find a vector of weights which minimizes the given objective function under certain 
constraints [1]. At the second hybrid scheme, the ACO metaheuristic for continuous 
problems is used [8]. This type of continuous ACO works as follows. At first step, the 
population is randomly initialized. Then, for each generation, an artificial ant (vector 
of weight) is selected, based on its fitness value. In this step, a roulette wheel process 
is applied as well, in order to ensure that not always the best ant is selected (in this 
way, we avoid getting stuck in sub-optimal solutions). Then, for each of the k-th 
dimensions of the problem (where dimensionality corresponds to the cardinality of the 
problem), pop (where pop is the size of population) weights, which follow the normal 
distribution, are generated. As the mean of the distribution, the weight of the selected 
ant for this dimension is used. Also, as the standard deviation of the distribution, a 
metric concerning the deviation between the weights of other ants and the one of the 
selected ant, again for this dimension, is used. Finally, the pheromone update phase 

                                                           
1  The local search algorithm that we use is based on the Levenberg – Marquardt method which 

combines the Gauss – Newton and the steepest descent method. 
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takes place, where high-quality solutions replace worst solutions in the population. In 
this formulation of the ACO algorithm, the pheromone matrix is replaced by an 
archive, where solutions are stored. The pheromone update process refers to the 
replacement of ‘bad’ solutions with ‘good’ ones, in this archive. So, in a sense, 
eventually all the population leads to good-quality solutions region.  

In what follows, pseudocodes of the processes described above, are presented. 

Function Genetic Algorithm 
Parameter Initialization 
Population Initialization 
For i=1:generations 

    Randomly choose genetic operator 
Apply genetic selection (choose n-best members of 
population) 
Apply Crossover or Mutation for producing new members 
Calculate weights/evaluate fitness value 
Adjust population in order to keep best members 

End 

Fig. 1. Genetic Algorithm 

Function Continuous ACO 
Parameter Initialization 
Population Initialization 
Define archive of solutions 
For i=1:generations 

Apply Roulette Wheel for selection of an artificial ant, 
based on its rank in the solution archive (fitness value) 
For j=1:All_dimensions 

Define mean of normal distribution (value of artificial 
ant in j-th dimension) 

Define sigma of normal distribution (distance between 
each ant and the selected ant in j-th dimension) 

Sample pop-numbers randomly generated in normal 
distribution 

  End 
  Evaluate new solutions 

Update solution archive (keeping best solutions in it) 
End 

Fig. 2. Continuous ACO 

4   Application Domain 

As it was mentioned above, the portfolio optimization problem deals with finding a 
combination of assets, as well as the corresponding amount of capital invested in 
them, with the aim of optimizing a given objective function (investor’s goal) under 
certain constraints. There are various formulations of the objective function, linear or 
not. Each one of them resides to a different type of problems. 
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Passive portfolio management is adopted by investors who believe that financial 
markets are efficient, i.e. it is impossible to consistently beat the market. So, the main 
objective is to achieve a similar level of returns and risk, as possible, of a certain 
benchmark. One passive portfolio management strategy is index tracking, i.e. 
construction of a portfolio, using assets from a universe of assets (like a stock index), 
with the attempt to reproduce the performance of the stock index itself [4]. In this 
study, a constraint on tracking error volatility, i.e. a measure of the deviation between 
the portfolio’s and benchmark’s return, is imposed. 

The objective of the portfolio optimization problem is to maximize a financial 
ratio, namely the Sortino ratio [5]. The definition of the Sortino ratio is based on the 
preliminary work of Sharpe (Sharpe ratio) [7], who developed a reward-to-variability 
ratio. The main concept was to create a criterion that takes into consideration both 
assets’ expected return and volatility (risk). However, in recent years, investors 
started to adopt the concept of “good volatility”, which considers returns above a 
certain threshold, and “bad volatility”, which considers returns below a certain 
threshold. A minimum dispersion of returns which fall below a certain threshold is 
desirable by investors. So, Sortino ratio considers only the volatility of returns, which 
fall below a defined threshold. 

The mathematical formulation of the financial optimization problem is presented 
below:                                       (1) 

s.t. 
 ∑ 1                                                               (2) 1 1                                                             (3) 

                                                   (4) k N                                                                         (5) 

where, 
E(rP), is the portfolio’s expected return 
rf, is the risk-free return 
θ0(rP), is the volatility of returns which fall below a certain threshold and equals                                                   (6) 

wi, is the percentage of capital invested in the ith asset 
rB, is the benchmark’s daily return 
rth, is the threshold return 
H, is the upper threshold for the tracking error volatility 

, is the probability density function of the portfolio’s returns.  
k, is the number of assets of the portfolio (cardinality constraint) 
 

It has to be mentioned that the constraint on the tracking error volatility was 
incorporated in the objective function using a penalty term. 
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5   Computational Study 

In order to evaluate the performance of the hybrid schemes, a number of independent 
simulations were conducted. Due to the stochastic behavior of nature-inspired 
intelligent algorithms, statistical properties of the distribution of the independent runs 
can provide a better insight on the performance and abilities of these techniques. Data 
sample comprised of 93 daily returns for 49 companies listed in the FTSE/ATHEX 
index, as well as the index itself, for the time period 04/01/2010-29/05-2010. In this 
time period, the market was bearish. 

In Table 2, both the settings for the parameters of the hybrid schemes and the 
optimization problem are shown. Selection of these configuration settings was based 
both on findings from previous simulation experiments and on the fact that they 
yielded satisfactory results. 

Table 1. Parameter Settings 

Parameters for Genetic Algorithm  
Population 200 
Generations 30/50 
Crossover Probability 0.90 
Mutation Probability 0.35 
N-best percentage 0.10 
 
Parameters for Optimization  
Problem 

 

Cardinality2 10/20/30 
Lower threshold for weights -1 
Upper threshold for weights 1 
Iterations for non-linear programming 1 
H 0.0080 
Penalty term 0.8 
 
Parameters for Continuous ACO  
Population 50 
Generation 80 
Evaporation rate 0.85 
q3 0.1 

 
As it can be observed from Table 2, the performance of the hybrid schemes was 

studied for various generations and cardinalities. In Table 3, some useful statistics are 
presented.  

In order to have a good insight regarding the distribution of the fitness value  
in each case, percentiles of the distributions were provided for various confidence 
levels. The notion of this statistical measure can be described as follows. If percentile 
of X is a in 0.05 confidence level, then there is a probability of 5% that X will get 
values less than a. In a sense, it is required that the values of the percentile for a given 
 

                                                           
2  Settings for the various cardinalities were common to both hybrid algorithms. 
3  Parameter which defines the influence of the solutions. Very small values means that only the 

best solutions are considered. 
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Table 2. Statistical results for hybrid schemes 

k=10/gen=30 Percentiles of distribution 
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 014 1.9246 2.2555 2.4228 2.5859 2.8664 
Hybrid Scheme 025 1.8863 2.2209 2.3683 2.4939 2.7793 

 
k=10/gen=50      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.0668 2.3724 2.5360 2.7354 3.1765 
Hybrid Scheme 02 2.0995 2.3638 2.4849 2.5969 2.7861 

 
k=10/gen=100      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.2492 2.5246 2.6533 2.8228 3.1622 
Hybrid Scheme 02 2.1682 2.5186 2.5982 2.6872 2.9363 

 
k=20/gen=30      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.3665 2.6317 2.8352 3.0143 3.4405 
Hybrid Scheme 02 2.3355 2.7645 3.0017 3.2435 3.6756 

 
k=20/gen=50      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.6089 2.8773 3.0781 3.3194 3.7955 
Hybrid Scheme 02 2.6939 3.1301 3.3304 3.5233 3.9625 

 
k=20/gen=100      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.8364 3.1448 3.4262 3.6725 3.9741 
Hybrid Scheme 02 3.1430 3.4844 3.6689 3.8074 4.1844 

 
k=30/gen=30      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.1771 2.3470 2.4681 2.6050 2.9030 
Hybrid Scheme 02 2.4721 2.7015 2.8598 2.9621 3.3474 

 
k=30/gen=50      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.3260 2.5367 2.6621 2.8104 3.0979 
Hybrid Scheme 02 2.8266 3.2055 3.4233 3.6566 4.0059 

 
k=30/gen=100      
 0.025 0.25 0.50 0.75 0.975 

Hybrid Scheme 01 2.4642 2.6840 2.8641 3.0165 3.3468 
Hybrid Scheme 02 3.3520 3.6608 3.8159 3.9968 4.3562 

 

                                                           
4 Hybrid 01: Genetic Algorithm with LMA. 
5 Hybrid 02: Genetic Algorithm with Continuous ACO. 
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distribution should be quite large (large values mean that the distribution leans to the 
right) and also the difference between the X0.05 and X0.95 should be small at the same 
time. This ensures that our distribution leans to the right, and at the same time has no 
long left tail. For example, in the case of cardinality 10 and 30 generations, the 
percentiles of the distribution of the first hybrid scheme indicate that there is 2.5% 
probability that fitness value will take values less than 1.9246, whereas in the case of 
the second hybrid scheme there is 2.5% probability that the fitness value will take 
values below 1.8863. Practically, the left tail of the first hybrid’s distribution is 
shorter than the second’s, which is a desirable attribute.  

Based on the above results, the following main points could be stated. In the case of 
the 10-asset cardinality problem, the first hybrid slightly outperformed the second one 
in all different generations. Regarding the 20-asset cardinality problem, the first hybrid 
outperformed the second one only in the case of 30 generations. In all other cases, as 
well in all cases of the 30-asset portfolio optimization problem, the second hybrid 
scheme yielded better results. This could be intuitive concerning the performance of 
the second hybrid scheme, which combines a genetic algorithm for asset selection and 
a continuous ACO algorithm for weight optimization. In essence, this metaheuristic 
performs better in high dimensions of the portfolio optimization problem, i.e. where 
the cardinality is large. In our situation, the market comprises of 49 assets. As a result, 
constructing efficient portfolios using almost half the number of assets in the market 
(for cardinality 30) is a remarkable result. In general, the outcomes of Table 3 indicate 
that a hybrid algorithm comprising of nature-inspired intelligent algorithm for 
continuous space optimization performs better than a numerical optimization algorithm 
in high dimensional instances of the portfolio optimization problem. 

However, in order to obtain a better insight of the performance of the hybrid 
schemes, some heuristic rules are provided for benchmarking. More specifically, two 
financial rules are applied. Based on the first rule (Heuristic 01), equally-weighted 
portfolios of k-assets are formed. Assets are selected based on their fitness value 
(Sortino ratio). Based on the second rule (Heuristic 02), an equally-weighted portfolio 
is formed using all the assets in the market. Applying another simple rule (Heuristic 
03), equally-weighted portfolios are constructed randomly, i.e. random selection of 
assets for these portfolios. Results are shown in Table 4. 

Table 4. Results from various heuristics 

 Fitness Value 
k=10  
Heuristic 01 0.0270 
Heuristic 03 -0.1823 
 
k=20  
Heuristic 01 -0.0575 
Heuristic 03 -0.2238 
 
k=30  
Heuristic 01 -0.1291 
Heuristic 03 -0.2056 
 
Heuristic 02 -0.2109 



 On the Performance and Convergence Properties of Hybrid Intelligent Schemes 139 

Based on the results of Table 4, it is clear that simple heuristic rules come up with 
unsatisfactory results, in terms of fitness value. 

As it can be seen from the results present above, hybrid intelligent schemes 
outperformed some simple financial heuristic rules. In a sense, these can considered 
as naïve benchmarks, which are not as sophisticated as the proposed hybrid 
metaheuristics. However, these rules may implement simple rules of thumb. In 
essence, hybrid schemes, which incorporate intelligent concepts and metaheuristic 
techniques, are able to yield better solution, due to the fact that their searching 
strategy can handle complex solution spaces.  

6   Conclusions 

In this study, two hybrid metaheuristics were briefly analyzed and compared on a NP-
hard optimization problem, i.e. the financial portfolio management. The aim of this 
work was to provide some evidence regarding the capabilities of a hybrid scheme, 
which combines a genetic algorithm and a nature-inspired metaheuristics (ACO). 
Moreover, the main motivation of employing this kind of hybrid scheme lies on the 
great potential of nature-inspired algorithms in searching complex continuous space 
efficiently. 

Experimental results highlight the good performance of the proposed hybrid 
scheme in high dimensionality problems, as compared to the benchmark hybrid 
scheme which combines a genetic algorithm with a LMA technique. Moreover, the 
proposed hybrid algorithm yielded better results compared to simple rules of thumb. 
As far as the financial implications of this study are concerned, it seems that, in a 
market (universe of stocks) with 49 stocks, constructing portfolios with 30 assets 
(almost half the number of the total stocks in the market) yields good results. What is 
more, it can be observed that as the cardinality of the portfolio rises, the fitness value 
(Sortino ratio-the investment goal) increases. 

Regarding the performance of the hybrid algorithm which combines the genetic 
algorithm with the ACO metaheuristic, it could be stated that the searching ability of 
the continuous technique has great potential, compared to the LMA algorithm.  

As far as the future research is concerned, the issue of investigating other nature-
inspired hybrid algorithms is quite promising. Another important aspect is the 
application of more intelligent (meta)heuristic rules for benchmarking, i.e. rules from 
financial experts. Last but not least, it could be interesting to apply the aforementioned 
hybrid techniques in larger stock markets in order to analyze the performance of the 
algorithm in higher cardinalities. 
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Abstract. The continuos shrinking of semiconductor’s nodes makes
semiconductor memories increasingly prone to electrical defects tightly
related to the internal structure of the memory. Exploring the effect of
fabrication defects in future technologies, and identifying new classes of
functional fault models with their corresponding test sequences, is a time
consuming task up to now mainly performed by hand. This paper pro-
poses a new approach to automate this procedure exploiting a dedicated
genetic algorithm.

Keywords: Memory testing, march test generation, defect based testing.

1 Introduction

Semiconductor memories have been used for long time to push the state-of-
the-art in the semiconductor industry. The Semiconductor Industry Association
(SIA)1 forecasts that in the next 15 years up to 95% of the entire chip area will
be dedicated to memory blocks. Precise fault modeling and efficient test design
are therefore pivotal to keep test cost and time within economically acceptable
limits.

Functional Fault Models (FFMs) coupled with efficient test algorithms such
as march tests (the reader may refer to [1] to understand the concept of march
test) have been so far enough to deal with emerging classes of memory defects
[1]. FFMs do not depend on the specific memory technology and allow automa-
tion of test sequences generation [3]. Exploring the effect of fabrication defects
in future technologies, and identifying new classes of FFMs with their relevant
test sequences, is a time consuming task up to now mainly performed by hand.
However, the continuos shrinking of semiconductor’s nodes makes semiconductor
memories increasingly prone to electrical defects tightly related to the internal
structure of the memory [8,7]. Automating the analysis of these defects is manda-
tory to guarantee the quality of next generation memory devices.
1 http://www.itrs.net/
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Automatic defect level memory test generation is an area of test generation
and diagnosis that still needs to be fully explored. Cheng et al. [4] presented
FAME, a fault-pattern based memory failure analysis framework that applies
diagnosis-based fault analysis to narrow down potential causes of failure for a
specific memory architecture. Results of the analysis are then used to optimize a
given test sequence (march test) considering only the observed faults. Similarly,
Al-Ars at al.[2] proposed a framework for fault analysis and test generation in
DRAMs that uses Spice to model the memory under test and the target defects.
Spice simulations are used to perform fault analysis starting from well known test
algorithms available in literature. The main drawback of these methods is that
they allow the optimization of existing test sequences rather than the generation
of new and optimized set of stimuli.

This paper tries to overcome these problems proposing a software framework
for defect level march test generation . The generation process exploits a genetic
algorithm able to highlight faulty behaviors in a defective memory and to gen-
erate the related test sequences by means of electrical simulations. The use of a
genetic algorithm allows an efficient exploration of a huge space of march test
alternatives guaranteeing high defect coverage.

2 Generation Framework Architecture

Figure 1 overviews the architecture of the proposed framework. The core block
of the system is the Genetic March Test Generator (GMTG), a genetic algorithm
used to drive the march test generation process.

Fig. 1. March test generation framework

We use electrical Spice models to precisely model the memory behavior and
the characteristics of the fabrication process (fault-free memory of Figure 1). In
a similar way, memory defects are modeled as electrical components (e.g., resis-
tors, parameter changes, etc.) on the fault-free memory obtaining a collection of
defective memories (DMi) named Defective Memory Set (DMS). Each defective
memory is characterized by a single defect.

The GMTG operates trying to highlight erroneous behaviors caused by the
inserted defects, and providing a march test for their detection. The comparison
between the fault-free and the defective memory models is performed by analyz-
ing their electrical simulations (simulator block of Figure 1) when the target test



Genetic Defect Based March Test Generation for SRAM 143

sequence is applied. To allow adaptation to different types of memories, descrip-
tion levels, description languages, and simulators, an interface layer is placed
between the GMTG and the simulator to virtualize the specific commands and
results format.

3 Genetic March Test Generator

The following pseudocode describes the way the GMTG algorithm works while
generating a march test for a specific set of defects.

GMTG (): begin

1: solution = "";

2: foreach (DM_i in DMS) {

3: generation=0; generate initial population based on current solution;

4: simulate (DM_i , population);

5: while (generation < MAX_GEN) {

6: coverage = check_coverage(solution,DM_i);

7: if (coverage) break;

8: evolve (population, offspringsize)

9: validate (population);

10: simulate (DM_i , population);

11: evaluate_fitness(population);

12: solution = update (population,solution);

13: generation ++;}

14: if (generation==MAX_GEN) exit_without_solution();}

15: show_solution (solution);

end

The algorithm starts with an empty solution (row 1). Each defect DMi is exam-
ined separately with an iterative process (row 2). This slightly modifies the algo-
rithm structure w.r.t. traditional genetic algorithms. For each defect a random
population of individuals is generated. Individuals of the population (chromo-
somes) represents candidate march tests, and the individual with higher fitness
represents the candidate solution. When generating the population for a new
defect, all new individuals will contain the genes of the current solution plus
new additional genes to guarantee the coverage of the already analyzed defects.
Rows 5 to 13 are the actual genetic process with each iteration representing
the evolution of the population from a generation to the next one. First the
coverage of the current solution w.r.t. the target defect is evaluated (row 6). If
the current solution already detects a faulty behavior in the defective model the
generation stops and moves to the next model (row 7). If not, the population
is evolved applying different genetic operators explained later in this section
(row 8). offspring size represents the number of individuals to substitute in
the current population. The new population is validated to guarantee that each
chromosome correctly represents a march test (row 9). Chromosomes that do
not pass the validation can be either discarded or genetically modified to fit the
constraints. The population is then simulated w.r.t. the target defect (row 10),
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the fitness of each individual is computed (row 11), the new candidate solution is
selected (row 12) and the process continues. If the evolution reaches a maximum
number of iterations without identifying a suitable solution the generation fails
and the algorithm ends (row 14).

3.1 Chromosome Encoding

The proposed genetic algorithm works with chromosomes representing candidate
march tests. According to [10] there are six Degrees Of Freedom (DOF) that can
be exploited to increase the detection capabilities of march tests. These DOFs are
considered in our chromosome encoding to enhance the efficiency of the GMTG.
Each chromosome is composed of a sequence of genes representing basic memory
operations used to build a march test. Each gene is encoded using a binary string
including the following basic fields:

– start marker (1 bit): when asserted, it denotes the beginning of a new march
element within the current gene;

– addressing order (1 bit): defined in correspondence of the beginning of a
march element to identify its addressing order ( 1: direct addressing order
⇑, 0: inverse addressing order ⇓);

– stop marker (1 bit): when asserted denotes that the current gene concludes
a march element;

– operation: a sequence of bits encoding the memory operation to apply. The
list of available memory operations depends on the target memory (basic
operations we considered are write, read, and idle). During the generation
process, the simulator interface (see Figure 1) translates each operation into
the correct sequence of signals for the memory;

– data: defined in case of write operations, it represents the value to write into
the memory (0 or 1 in case of single bit memories);

– addressing sequence: is the sequence of addresses associated with the direct
and reverse addressing order. This field exploits the first two degrees of
freedom proposed in [10]:(i) the addressing sequence can be freely chosen
as long as all addresses occur exactly once and the sequence is reversible
(DOF1); (ii) the addressing sequence for initialization can be freely chosen
as long as all addresses occur at least once (DOF2). In this work we consider
two possible sequences: (i)
• column mode 〈c〉:each memory cell in a given row of the memory cell

array is scanned before moving to the next row;
• row mode 〈r〉: each cell in a given column of the memory cell array is

scanned before moving to the next column.
Additional and more complex addressing sequences can be defined and added
to the encoding schema to increase the space of possible solutions and to
enhance the detection capabilities of the generated algorithms;

– data pattern: this field allows to exploits another degree of freedom defined in
[10]: the data within a read/write operation does not need to be the same for
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all memory addresses as long as the detection probabilities for basic faults are
not affected (DOF4). Basically this DOF allows to change the data written
into the memory while moving to the different cells of the array. We consider
four possible data patterns (solid 〈sol〉: all cells are written with the same
value, checkboard 〈ckb〉: cells are written with alternate values, alternate
row 〈alr〉: rows of the memory are filled with alternate values, and alternate
column 〈alc〉: columns of the memory are filled with alternate values).

Each chromosome encodes at least a write operation needed to initialize the
memory array with a well known value and possibly sensitize a faulty behavior
and a read operation to observe the faulty behavior. The number of sensitiz-
ing operations can be then incremented to deal with more complex defects or
combination of defects.

3.2 Population Validation

During the evolution from a generation to the next one, the application of the
genetic transformations may lead to chromosomes with undesired properties, i.e.,
chromosomes that do not represent valid march tests. To avoid this situation,
when new individuals are generated their structure must be validated. Incorrect
individuals are not killed but whenever possible their structure is healed apply-
ing a set of transformations. These transformations work on the start and stop
markers of genes based on the following rules:

– if a gene has the stop marker asserted, the start marker of the next gene of
the chromosome must be asserted;

– if a gene has a start marker asserted, the stop marker of the previous gene
of the chromosome must be asserted;

– the start marker of the first gene and the stop marker of the last gene of a
chromosome must always be asserted.

We decided to introduce these transformations instead of simply discarding indi-
viduals with erroneous genetic content to avoid discarding genetic material that
may contain interesting characteristics for the final solution.

3.3 Fitness Function

The fitness function is the key element used to drive the evolution process and
in particular to select those chromosomes that most likely lead to valid solutions
of the problem. The idea is to identify a function that privileges the ability of an
individual of sensitizing faulty behaviors, i.e., the ability of producing different
electrical signals at the nodes of the fault-free and defective memories. This
imposes to define a fitness function able to evaluate analog differences among
signals.

The computation of the fitness is based on the concept of probe nodes, i.e.,
I/O nodes of a memory cell (i.e., bit lines) or output nodes of a sense amplifier.
The electrical signals (i.e., voltage) produced at each probe node of the target
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memory during the electrical simulation of the test sequence associated to a
chromosome are traced. These values are then analyzed and combined into a
value of fitness according to Eq. 1:

f(x) =
Tmax∑
t=0

Nprobe−1∑
i=0

Di,t (1)

where x is the target chromosome, t the simulation time and Nprobe the number
of analyzed probe nodes. Di,t represents the absolute value of the difference
between the voltage at probe node i in the fault-free memory and the voltage at
the probe node i in the defective memory, at simulation time t. These differential
values are combined together considering all probe nodes and simulation times
by the two sums of Eq. 1. The proposed function has two main drawbacks:

– it can easily lead to populations with very small differences between the in-
dividuals (premature convergence). This actually turns the evolution process
into a random selection among chromosomes reducing the efficiency of the
genetic approach;

– it can produce among a high number of similar individuals, a single chromo-
some (super chromosome) with fitness much higher than all the remaining
ones. This is again negative since the evolution will be completely polarized
by this chromosome and the space of solutions will not be correctly explored.

To leverage these problems, we introduced a linear normalization able to cor-
rectly distribute the fitness values. The population is sorted by decreasing fitness
values. Chromosomes in the sorted list receive a new scaled fitness fs(x) accord-
ing to Eq. 2.

fs(x) = C − n · L (2)

where C is a constant value, L represents the linear normalization step (a param-
eter of the method), and n is the position of the chromosome in the sorted list.

3.4 Evolution

During the generation process, when the current solution does not provide the
required defect coverage the current population is evolved substituting a set of in-
dividuals with new ones with different characteristics. In our framework, in addi-
tion to traditional genetic operators (e.g., crossover [5]) we apply additional rules
during the evolution. First of all, if a certain sequence of genes in the chromosome
has been used to detect a certain defect, it cannot be modified while analyzing
a new defect. This in turns requires to add new genes to the sequence in order
to have a certain degree of freedom in the modification of the individuals. This
is performed introducing a new genetic operator named increase chromosome
length able to increase by one the number of genes composing the chromosomes
of the population. The problem in this case is the selection of the type of gene
to insert and, in particular, the type of memory operation the new gene has to
encode. Based on the fact that some fault models (i.e., dynamic faults) are sensi-
tized by long sequences of identical operations, the approach we adopted inserts



Genetic Defect Based March Test Generation for SRAM 147

new genes repeating the last operation in the sensitizing sequence of each chro-
mosome. Moreover, the new gene is always inserted as part of the last march
element.

3.5 Coverage Conditions

For each defective memory model DMi the GMTG ends the generation process
when either a chromosome able to sensitize and detect a faulty behavior appears
in the population, or a maximum computation effort is reached. Every time a
new solution is identified the electrical simulations of the fault-free and target
defective memories are compared to identify if the given test sequence is able
to detect a new erroneous behavior. In particular, the analysis focuses on the
portions of the simulation (samples) corresponding to the genes encoding read
operations. The logic value returned by the observations is calculated (taking into
account the electrical parameters of the target memory) for the fault-free and
the defective memory. When the two values differ, a faulty behavior is detected
and the generation ends.

4 Experimental Results

The capability of the proposed framework has been validated on a 3×3 SRAM
consisting of an array of 9 classical 6 transistors cells implemented using the
130nm Predictive Technology Model2. The use of a reduced 3×3 matrix allows
to maintain the simulation time under control. Nevertheless, this simplification
still allows to obtain realistic results since it has been demonstrated in [1] that
defects are usually localized in a range of a few cells. Electrical simulations have
been performed using the commercial HSPICETM simulator while the GMTG
has been implemented in about 3,500 lines of C code executed on a 1.8GHz
AMD TURIONTM laptop equipped with 1GB of RAM and running the Linux
operating system. A preliminary set of experiments allowed us to derive the set
of tuning parameters for the GMTG3.

Figure 2 (a) and Figure 2 (b) propose the architecture of a single memory
cell including our target collection of defects. Figure 2 (a) proposes seven typical
resistive defect locations deeply analyzed in literature [6,7], whereas Figure 2 (b)
proposes the set of short defects analyzed in [9]. During our experiments these
defects have been injected in the first cell of the memory matrix.

Table 1 shows the results obtained by considering both resistive defects (DFT)
and shorts (DFS) in isolation. For resistive defects, the minimum value of re-
sistance able to produce a faulty behavior (Rmin) is reported while for shorts,
we considered a resistive value of 1.0Ω. All simulations have been performed
at a temperature of 27◦C. For each defect the generated test sequence and the
generation time are also provided. The obtained results show that we have been

2 http://www.eas.asu.edu/~ptm
3 MAX GEN=200, population=10, offspring size=5, C=250, L=25.

http://www.eas.asu.edu/~ptm
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(a) (b)

Fig. 2. Memory cell with target resistive defects (a) and short defects (b)

able to automatically generate dedicated march tests for resistive defects DFR1,
DFR2, DFR3, DFR5, DFR6, DFR2 and for all short defects with a very low
effort in terms of execution time. The generated test sequences are consistent
with the studies performed in [6] for resistive defects and in [9] for shorts, thus
confirming the effectiveness of the proposed approach.

Table 1. March tests for single defects. Simulations have been performed using T =
27◦C. Defects are measured in MΩ, while the execution time is expressed in s.

DFR Rmin Time Test Sequence DFS Time Test Sequence

DFR1 0.025 178 〈c〉〈ckb〉 {⇑ (W0, W1, R1); } DFS1 180 〈c〉〈ckb〉 {⇑ (W0, W1, R1); }
DFR2 0.020 175 〈r〉〈sol〉 {⇑ (W0, W1, R1); } DFS2 180 〈r〉〈sol〉 {⇑ (W0, W1, R1); }
DFR3 0.007 171 〈c〉〈alc〉 {⇑ (W1, R1, R1); } DFS3 180 〈c〉〈sol〉 {⇑ (W0, W1, R1); }
DFR44 64.0 416 〈c〉〈ckb〉 {⇑ (W0, R0);⇑ (R0); } DFS4 180 〈r〉〈sol〉 {⇑ (W0, W1, R1); }
DFR5 2.0 177 〈r〉〈alr〉 {⇑ (W1, W0, R0); } DFS5 180 〈r〉〈alr〉 {⇑ (W0, W1, R1); }
DFR6 2.0 168 〈c〉〈alc〉 {⇑ (W1, W0, R0); } - -

DFR2 2.0 150 〈c〉〈alc〉 {⇑ (W1, W0, R0); } - -

Table 2. March tests for multiple defects. Execution time is expressed in s.

#Exp Time Test sequence

EXP1 510 〈r〉〈sol〉 {⇑ (W0, W1, R1);⇓ (W0, R0); }
EXP2 2050 〈c〉〈sol〉 {⇑ (W0, W1, R1, W0, R0); }
EXP3 2062 〈c〉〈ckb〉 {⇑ (W0, W1, R1);⇓ (W0, W0);⇑ (R0);⇑ (W1);⇑ (R1);⇓ (R1); }

Slightly more complex is the situation for DFR4. Experiments performed at
simulation temperature of 27◦C were not able to identify any faulty behavior.
This is again coherent with the results of [6]. We thus performed different ex-
periments changing the operational temperature. By setting the temperature to
125◦C and the defect size to 64.0MΩ, we have been able to produce a defective
behavior and to obtain a corresponding test sequence as shown in Figure 3.

4 Defect DFR4 has been simulated using T = 125◦C.
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Fig. 3. Electrical simulation for DFR4 with T = 125◦C and R = 64.0MΩ

The result obtained with DFR4 is particularly interesting. Looking at the
results proposed in [6], the authors identified for the same type of defect, injected
in their target memory, a dynamic faulty behavior instead of a data retention
fault. Once again, this result stresses the importance of resorting to an automatic
tool able to automatically generate test sequences customized on the target
memory.

In addition to the previous experiments we performed a set of three experi-
ments with groups of defects summarized by the results of Table 2. EXP1 consid-
ers a target defect list composed of DFR2 and DFR2. According to the results
of Table 1 these two defects introduce a Transition Fault into the memory. Look-
ing at the generated test sequence in Table 2 we exactly obtained a march test
able to detect the Transition Fault. The second experiment (EXP2) considers
the same collection of defects of EXP1 plus DFS3. Again the result of the three
defects can be modeled as a Transition Fault and the generated march test is
able to detect this type of fault. Finally, EXP3 adds DFR3 to the defects con-
sidered in EXP2. The generated sequence is able to detect the transition fault
introduced by the first three defects and also the read fault introduced by DFR3.
However, in this case, it is clear that the generated sequence contains redundant
operations. This situation is a direct consequence of the use of a genetic approach
to generate the test. Nevertheless, a post elaboration can be applied in order to
optimize the generated sequences.

5 Conclusion

This paper proposed a set of preliminary results toward the solution of the prob-
lem of defect based automatic march test generation. The proposed approach
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is based on a genetic algorithm able to identify faulty behaviors in a defective
memory and to generate the corresponding test sequences. The use of a genetic
approach allows an efficient exploration of a huge space of march test alter-
natives, guaranteeing high defect coverage and thereby reducing the time test
engineers need to explore test alternatives. Experimental results show the effec-
tiveness of the approach that proved to be able to reproduce results of previous
studies with an acceptable execution time and without human intervention.
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Abstract. Reversible circuits, i.e. circuits which map each possible in-
put vector to a unique output vector, build the basis for emerging appli-
cations e.g. in the domain of low-power design or quantum computation.
As a result, researchers developed various approaches for synthesis of
this kind of logic. In this paper, we consider the ESOP-based synthesis
method. Here, functions given as Exclusive Sum of Products (ESOPs)
are realized. In contrast to conventional circuit optimization, the qual-
ity of the resulting circuits depends thereby not only on the number of
product terms, but on further criteria as well. In this paper, we present
an approach based on an evolutionary algorithm which optimizes the
function description with respect to these criteria. Instead of ESOPs,
Pseudo Kronecker Expression (PSDKRO) are thereby utilized enabling
minimization within reasonable time bounds. Experimental results con-
firm that the proposed approach enables the realization of circuits with
significantly less cost.

Keywords: Evolutionary Algorithms, Reversible Logic, Synthesis, Ex-
clusive Sum of Products, Pseudo Kronecker Expressions, Optimization.

1 Introduction

Reversible logic [11,1,21] realizes n-input n-output functions that map each pos-
sible input vector to a unique output vector (i.e. bijections). Although reversible
logic significantly differs from traditional (irreversible) logic (e.g. fan-out and
feedback are not allowed), it has become an intensely studied research area in
recent years. In particular, this is caused by the fact that reversible logic is the
basis for several emerging technologies, while traditional methods suffer from the
increasing miniaturization and the exponential growth of the number of transis-
tors in integrated circuits. Researchers expect that in 10-20 years duplication of
transistor density every 18 months (according to Moore’s Law) will come to a
halt (see e.g. [24]). Then, alternatives are needed. Reversible logic offers such an
alternative as the following applications show:

– Reversible Logic for Low-Power Design
Power dissipation and therewith heat generation is a serious problem for to-
day’s computer chips. Landauer and Bennett showed in [11,1] that (1) using

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 151–161, 2011.
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traditional (irreversible) logic gates always leads to energy dissipation re-
gardless of the underlying technology and (2) that circuits with zero power
dissipation must be information-lossless. This holds for reversible logic, since
data is bijectively transformed without losing any of the original information.
Even if today energy dissipation is mainly caused by non-ideal behaviors of
transistors and materials, the theoretically possible zero power dissipation
makes reversible logic quite interesting for the future. Moreover, in 2002 first
reversible circuits have been physically implemented [5] that exploit these
observations in the sense that they are powered by their input signals only
and did not need additional power supplies.

– Reversible Logic as Basis for Quantum Computation
Quantum circuits [14] offer a new kind of computation. Here, qubits instead
of traditional bits are used that allow to represent not only 0 and 1 but also a
superposition of both. As a result, qubits can represent multiple states at the
same time enabling enormous speed-ups in computations. Even if research
in the domain of quantum circuits is still at the beginning, first quantum
circuits have already been built. Reversible logic is important in this area,
because every quantum operation is inherently reversible. Thus, progress in
the domain of reversible logic can directly be applied to quantum logic.

Further applications of reversible logic can be found in the domain of optical
computing [3], DNA computing [1], and nanotechnologies [12].

Motivated by these promising applications, various synthesis approaches for
reversible logic have been introduced in the past. They rely on different function
representations like truth-tables [13], permutations [16], BDDs [23], or positive-
polarity Reed-Muller expansion [9].

In the following, we focus on a method based on Exclusive Sum of Products
(ESOPs) representations [6]. Here, the fact is exploited that a single product
of an ESOP description directly corresponds to an appropriate reversible gate.
The cost of the respective gates strongly depends thereby on the properties of
the products. Accordingly, the quality of the resulting circuits relies not only on
the number of product terms of the ESOP, but on further criteria as well. This
is different to conventional logic optimization and, thus, requires an appropriate
treatment.

In this paper, an approach is introduced which optimizes a given Pseudo Kro-
necker Expression (PSDKRO) with respect to these criteria. PSDKROs repre-
sent a subclass of ESOPs enabling minimization within reasonable time bounds.
In order to optimize the PSDKROs, the evolutionary algorithm introduced in [7]
is utilized. We describe how this algorithm can be extended to address the new
cost models. Experimental results show that this leads to significant improve-
ments in the costs of the resulting circuits. In fact, in most of the cases, the
respective costs can be decreased by double-digit percentage points.

The remainder of this paper is structured as follows. The next section intro-
duces the necessary background on reversible circuits as well as on ESOPs and
PSDKROs. Afterwards, the ESOP-based synthesis method is briefly reviewed
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in Section 3. Section 4 describes the proposed optimization approach. Finally,
experimental results are presented in Section 5 and conclusions are drawn in
Section 6, respectively.

2 Background

To keep the paper self-contained, this section briefly reviews the basic concepts
of reversible logic. Afterwards, ESOPs and PSDKROs are introduced.

2.1 Reversible Circuits

Reversible circuits are digital circuits with the same number of input signals and
output signals. Furthermore, reversible circuits realize bijections only, i.e. each
input assignment maps to a unique output assignment. Accordingly, computa-
tions can be performed in both directions (from the inputs to the outputs and
vice versa).

Reversible circuits are composed as cascades of reversible gates. The Toffoli
gate [21] is widely used in the literature and also considered in this paper. A
Toffoli gate over the inputs X = {x1, . . . , xn} consists of a (possibly empty) set
of control lines C = {xi1 , . . . , xik

} ⊂ X and a single target line xj ∈ X \ C.
The Toffoli gate inverts the value on the target line if all values on the control
lines are assigned to 1 or if C = ∅, respectively. All remaining values are passed
through unaltered.

Example 1. Fig. 1(a) shows a Toffoli gate drawn in standard notation, i.e. control
lines are denoted by , while the target line is denoted by ⊕. A circuit composed
of several Toffoli gates is depicted in Fig. 1(b). This circuit maps e.g. the input
101 to the output 010 and vice versa.

Since the number of gates in a cascade is a very poor measure of the cost of
a reversible circuit, different metrics are applied (sometimes depending on the
addressed technology). In this work, we consider quantum cost and transistor
cost. While the quantum cost model estimates the cost of the circuit in terms of
the number of elementary quantum gates [14], the transistor cost model estimates
the cost of the circuit in terms of the number of CMOS transistors [20]. Both
metrics define thereby the cost of a single Toffoli gate depending on the number
of control lines. More precisely:

x1 x1

x2 x2

x3 x3 ⊕ x1x2

(a) Toffoli gate

1 0

0 1

1 0

(b) Toffoli circuit

Fig. 1. Toffoli gate and Toffoli circuit
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Table 1. Cost of reversible circuits

(a) Quantum cost

c (n − c + 1) ≥ cost

0 1
1 1
2 5
3 13
4 2 26
4 0 29
5 3 38
5 1 52
5 0 61
6 4 50
6 1 80
6 0 125

c (n − c + 1) ≥ cost
7 5 62
7 1 100
7 0 253
8 6 74
8 1 128
8 0 509
9 7 86
9 1 152
9 0 1021

> 9 c − 2 12(c + 1) − 34
> 9 1 24(c + 1) − 88
> 9 0 2c+1 − 3

(b) Transistor cost

s cost
0 0
1 8
2 16
3 24
4 32
5 40
6 48
7 56
8 64
9 72
10 80

> 10 8 · s

– Quantum cost model: The quantum cost of a Toffoli gate is given in Table 1(a)
(using the calculations according to [17]), where c denotes the number of
control lines for the gate and n denotes the number of circuit lines. Note
that the quantum cost depend not only on the number c of control lines,
but also on the number (n − c + 1) of lines neither used as control line or
target lines. The more lines are not in the set of control lines, the cheaper
the respective gate can be realized.

– Transistor cost model: The transistor cost of Toffoli gate increases linearly
with 8 · s where s is the number of control lines in the gate (see Table 1(b)).

The cost of a circuit is the sum of the costs of the individual gates. For example,
the gate shown in Fig. 1(b) has quantum cost of 14 and transistor cost of 56.

2.2 Exclusive Sum of Products and Pseudo Kronecker Expressions

Exclusive Sum of Products (ESOPs) are two-level descriptions of Boolean func-
tions. Each ESOP is composed of various conjunctions of literals (called prod-
ucts). A literal either is a propositional variable or its negation. To form the
ESOP, all products are combined by Exclusive ORs. That is, an ESOP is the
most general form of two-level AND-EXOR expressions.

Since the minimization of general ESOPs is computationally expensive, several
restricted subclasses have been considered in the past, e.g. Fixed Polarity Reed-
Muller Expressions (FPRMs) [15] and Kronecker Expressions (KROs) [4]. As an
interesting alternative, Pseudo Kronecker Expressions (PSDKROs) have been
proposed, since the resulting forms are of moderate size, i.e. close to ESOPs,
and the minimization process can be handled within reasonable time bounds.
The following inclusion relationship can be stated for ESOPs and PSDKROs:
FPRM ⊆ KRO ⊆ PSDKRO ⊆ ESOP .
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Let f0
i (f1

i ) denote the cofactor of the Boolean function f : B
n → B with

xi = 0 (xi = 1) and f2
i := f0

i ⊕ f1
i , where ⊕ is the Exclusive OR operation.

Then, f then can be represented by:

f = xif
0
i ⊕ xif

1
i (Shannon; abbr. S) (1)

f = f0
i ⊕ xif

2
i (positive Davio; abbr. pD) (2)

f = f1
i ⊕ xif

2
i (negative Davio; abbr. nD) (3)

A PSDKRO is obtained by applying either S, pD, or nD to a function f and
all subfunctions until constant functions are reached. If the resulting expressions
are expanded, a two-level AND-EXOR form called PSDKRO results.

Example 2. Let f(x1, x2, x3) = x1x2 + x3. If f is decomposed using S, we get:

f0
x1

= x3 and f1
x1

= x2 + x3

Then, decomposing f0
x1

using pD and f1
x1

using nD, we get:

(f0
x1

)0x3
= 0 and (f0

x1
)2x3

= 1

(f1
x1

)1x2
= 1 and (f1

x1
)2x2

= 1 ⊕ x3

Finally, again pD is applied for (f1
x1

)2x2
:

((f1
x1

)2x2
)0x3

= 1 and ((f1
x1

)2x2
)2x3

= 1

Thus, by expanding the respective expressions, the following PSDKRO descrip-
tion for f results:

f = x1x3 ⊕ x1 ⊕ x1x2 ⊕ x1x2x3

3 ESOP-Based Synthesis

In this work, evolutionary algorithms are applied in order to improve the ESOP-
based synthesis method originally introduced in [6]. For a given function
f : B

n → B
m, this approach generates a circuit with n + m lines, whereby the

first n lines also work as primary inputs. The last m circuit lines are respectively
initialized to a constant 0 and work as primary outputs. Having that, gates are
selected such that the desired function is realized. This selection exploits the fact
that a single product xi1 , . . . xik

of an ESOP description directly corresponds to
a Toffoli gate with control lines C = {xi1 , . . . xik

}. In case of negative literals,
NOT gates (i.e. Toffoli gates with C = ∅) are applied to generate the appropriate
values. Based on these ideas, a circuit realizing a function given as ESOP can
be derived as illustrated in following example.

Example 3. Consider the function f to be synthesized as depicted in Fig. 2(a)1.
The first product x1x3 affects f1. Accordingly, a Toffoli gate with control
1 The column on the left-hand side gives the respective products, where a “1” on the

ith position denotes a positive literal (i.e. xi) and a “0” denotes a negative literal
(i.e. xi), respectively. A “-” denotes that the respective variable is not included in
the product. The right-hand side gives the respective primary output patterns.
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x1 x2 x3 f1 f2 f3

1 - 1 1 0 0
0 1 - 1 1 0
1 1 - 0 0 1
0 0 - 0 0 1
0 1 0 0 1 0

(a) ESOP

x1 –
x2 –
x3 –
0 f1

0 f2

0 f3

(b) Basic approach

x1 –
x2 –
x3 –
0 f1

0 f2

0 f3

(c) W/ reordering

Fig. 2. ESOP-based synthesis

lines C = {x1x3} and a target line representing the primary output f1 is added
(see Fig. 2(b)). The next product x1x2 includes a negative literal. Thus, a NOT
gate is needed at line x1 to generate the appropriate value for the next mappings.
Since x1x2 affects both, f1 and f2, two Toffoli gates with control lines C = {x1x2}
are added next. Afterwards, a further NOT gate is applied to restore the value
of x1 (needed again by the third product). This procedure is continued until all
products have been considered. The resulting circuit is shown in Fig. 2(b).

Note that thereby the order in which the respective products are traversed may
have a slight impact on the resulting circuit cost. For example, the line x1 in
the circuit from Example 3 is unnecessarily often inverted. This can be avoided
by treating the respective products in a different order as shown in Fig. 2(c).
Here, the two product terms with positive literals only were considered first. Af-
terwards, the products including x1, x1x3, and, finally, x1x2 have been handled.
This leads to a reduction in the number of NOT gates by 3. In the following, a
reordering scheme as introduced in [6] is applied to generate the circuits.

Overall, having an ESOP description of the function f to be synthesized, a
reversible circuit realizing f can easily be created using the reviewed approach.
However, the quality of the resulting circuits strongly depends on the following
properties of the given ESOP:

– The number of products (since for each product, a Toffoli gate is added to
the circuit),

– the number of primary outputs affected by a product (since for each affected
primary output, a Toffoli gate is added to the circuit), and

– the number of literals within a product (since for each literal, a control line
needs to be added which causes additional cost as shown in Table 1).

These criteria contradict with the optimization goals applied in common Boolean
optimization approaches (e.g. EXORCISM [19]), where usually only the number
of product terms is reduced. In contrast, considering ESOP-based synthesis, a
function description including more products might be better if instead the num-
ber of literals within these products is smaller. Then, although even more gates
have to be added, these gates are of less cost. Determining a “good” ESOP rep-
resentation trading-off these contradictory criteria is thereby a non-trivial task.
The next section introduces an evolutionary algorithm addressing this problem.
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4 EA-Based Optimization

In order to optimize a given ESOP description with respect to the criteria outlined
in the previous section, the approach introduced in [7] is utilized. This approach
optimizes PSDKRO descriptions – as mentioned above, a subclass of ESOPs en-
abling efficient optimization. In this section, we briefly review the essential parts
of the algorithm and describe the extensions to address the new cost models.

4.1 General Flow

In [7], PSDKROs are optimized using Reduced Ordered Binary Decision Dia-
grams (ROBDDs) [2]. Having a BDD representing the function to be optimized,
a depth-first traversal over all nodes is performed. Then, a PSDKRO is derived
exploiting the fact that for each decomposition (i.e. for each S, pD, and nD)
two out of three possible successors f0

i , f1
i , and f2

i are needed. That is, in order
to generate the PSDKRO, for each node the costs of these three sub-functions
are determined. Since ROBDDs are applied, f0

i and f1
i already are available. In

case of f2
i , the respective function representation is explicitly created. Having

the respective costs, the two cheapest sub-functions are applied leading to the
respective decomposition type for the PSDKRO.

Using this algorithm, a PSDKRO results which is optimal with respect to a
given ordering of the ROBDD. However, modifying the variable ordering likely
has an effect on the cost of the PSDKRO. Thus, determining a variable ordering
leading to the best as possible PSDKRO representation remains as optimization
task. Therefore, an evolutionary algorithm described as follows is applied.

4.2 Individual Representation

The ordering of the input variables in the expansion influences the cost of the
PSDKRO. To obtain the minimum cost for all orderings, n! different combi-
nations have to be considered, where n denotes the number of input variables.
That is, a permutation problem is considered. This can easily be encoded in
EAs by means of vectors over n integers. Each vector represents a permutation,
i.e. a valid ordering for the ROBDD, and works as individual in the EA. The
population is a set of these elements.

4.3 Operators

In the proposed EA-approach, several procedures for recombination, mutation,
and selection are applied. Due to page limitations, they are introduced in a
brief manner. For a more detailed treatment, references to further readings are
provided.

Crossover and Mutation. To create an offspring of a current population two
crossover operators and three mutation operators are used alternately.

For recombination Partially Matched Crossover (PMX) [8] and Edge Recom-
bination Crossover (ERX) [22] are applied equally. In our application, both
operators create two children from two parents.
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PMX: Choose two cut positions randomly. Exchange the parts between the
cut positions in the parent individuals to create two children. Validate the
new individuals in preserving the position and order of as many variables as
possible.

ERX: Create an adjacency matrix which lists the neighbors of each variable in
both parents. Beginning with an arbitrary variable, next the variable with
the smallest neighbor set is chosen iteratively. Already chosen variables are
removed from all neighbor sets.

For mutation three operators are used as follows:

SWAP: Randomly choose two positions of a parent and exchange the values of
these positions.

NEIGHBOR: Select one position i < n randomly and apply SWAP with posi-
tions i and i + 1.

INVERSION: Randomly select two positions i and j and invert all variables
within i and j.

Selection. During the experimental evaluation, several selection procedures
have been applied and the following turned out to be usually advantageous. As
parent selection a deterministic tournament between q uniformly chosen individ-
uals is carried out. The best individual is chosen as a parent used for recombi-
nation or mutation, respectively.

To determine the population for the next generation, PLUS-selection (μ + λ)
is applied. Here, the best individuals of both, the current population μ and the
offspring λ, are chosen equally. By this, the best individual never gets lost and
a fast convergency is obtained.

4.4 Termination Criterions

The optimization process is aborted if no improvement is obtained for 20∗ ln(n)
generations or a maximum number of 500 generations, respectively. The default
termination criterions are chosen based on experiments in a way that the EA
provides a compromise between acceptable runtime and high quality results.

4.5 Parameter Settings

In general, all parameters and operators described above are parameterizable by
the user. However, by default the size of the population is chosen two times larger
than the number of primary inputs of the considered circuit. For the creation of
the offspring, recombination is applied with a probability of 35% while mutation
is used with a probability of 65%. By this, mutation also can be carried out on
newly elements created by recombination.

4.6 Overall Algorithm and Fitness Function

At the beginning of an EA run, an initial population is generated randomly. Each
of the individuals corresponds to a valid variable ordering of the ROBDD. In
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each generation an offspring of the same size of the parent population is created
according to the operators described above. With respect to the fitness, the best
individuals of both populations are chosen to be in the next generation. If a
termination criterion is met, the best individual is returned.

As discussed above, the applied fitness function is thereby different. Instead of
minimizing the number of products, further criteria need to be considered. To in-
corporate this into the EA, the respective cost functions from Table 1 is encoded
and integrated in the selection procedure. More precisely, for each individual, the
resulting PSDKRO (or ESOP, respectivley) description is traversed and the cost
are added according to the quantum cost model or the transistor cost model, re-
spectively. The resulting value is used as fitness for the considered individual.

Example 4. Consider the function 5xp1 from the the LGSynth benchmark li-
brary. This PSDKRO description originally has pinitial = 48 products which is
also the optimal result using the original approach from [7]. However, the quan-
tum cost are qcinitial = 1081. In contrast, if the proposed configuration is applied,
a PSDKRO with an increase in the number of products to pqcmin = 50 results.
But, a circuit with quantum cost of only qcqcmin = 865 can be derived. This
shows that a decreasing number of products not coincidently means decreasing
quantum cost or transistor cost, respectively.

5 Experimental Evaluation

The proposed approach has been implemented in C++ utilizing the EO li-
brary [10], the BDD package CUDD [18], and the RevKit toolkit [17]. As bench-
marks, we used functions provided in the LGSynth package. All experiments
have been carried out on an AMD 64-Bit Opteron 2,8 GHz with 32GB memory
running linux.

The obtained results are summarized in Table 2. The first columns give the
name of the respective benchmarks as well as the number of their primary in-
puts (denoted by PIs) and primary outputs (denoted by POs). Afterwards,
the cost of the circuits generated from the initial PSDKRO representation (de-
noted by Init. Cost) and generated from the optimized PSDKRO representation
(denoted by Opt. Cost) are provided. Furthermore, the resulting improvement
(given in percent and denoted by Impr.) as well as the needed run-time (given
in CPU seconds and denoted by Time) is listed. We distinguish thereby between
the optimization with respect to quantum cost and the optimization with respect
to transistor cost.

As can be seen, exploiting evolutionary algorithms significantly helps to reduce
the cost of reversible circuits. For the majority of the benchmarks, double-digit
improvement rates are achieved in less than an hour – in many cases just a cou-
ple of minutes is needed. If transistor cost is considered, the reductions are some-
what smaller. This was expected as this cost model is linear in comparison to the
exponential quantum cost model (see Table 1). In the best case, quantum cost
(transistor cost) can be reduced by 44.7% (37.4%) in less than 10 minutes (20
minutes).



160 R. Drechsler, A. Finder, and R. Wille

Table 2. Experimental evaluation

Benchmark Quantum Cost Transistor Cost
Name PIs POs Init. Cost Opt. Cost Impr % Time s Init. Cost Opt. Cost Impr % Time s

5xp1 7 10 1181 865 26.8 177.0 1424 1080 24.2 205.6
rd84 8 4 2072 2062 0.5 133.3 2528 2528 0.0 130.2
sym9 9 1 16535 16487 0.3 42.8 5088 5088 0.0 40.7
sym10 10 1 37057 35227 4.9 45.7 8408 7984 5.0 45.4
add6 12 7 5112 5084 5.5 370.1 5232 5232 0.0 348.6
alu2 10 6 5958 4476 24.9 188.2 4824 3960 17.9 165.0
alu4 14 8 79311 43850 44.7 594.1 56752 36784 35.2 494.6
apex4 9 19 59175 50680 14.4 315.3 54400 48552 10.8 338.3
b9 41 21 4237 3800 10.3 1331.2 4040 3632 10.1 1307.7
b12 15 9 1082 1049 3.0 417.8 1176 1112 5.4 412.1
con1 7 2 188 162 13.8 30.4 264 224 15.2 40.2
clip 9 5 5243 4484 14.5 151.8 4472 3808 14.8 164.4
duke2 22 29 11360 10456 8.0 1849.3 10016 9248 7.7 1846.8
log8mod 8 5 1118 941 15.8 102.3 1312 1160 11.6 101.6
misex1 8 7 475 466 1.9 190.0 608 608 0.0 185.0
misex3 14 14 82914 67206 18.9 940.8 72528 58464 19.4 890.5
misex3c 14 14 100481 85330 15.1 1016.6 88144 74544 19.4 850.0
sao2 10 4 6005 5147 14.3 141.6 3200 2704 15.5 154.4
spla 16 46 50399 49419 1.9 2498.5 42424 41672 1.8 2392.4
sqrt8 8 4 605 461 23.8 108.1 672 512 23.8 98.7
squar5 5 8 292 251 14.0 18.7 488 448 8.2 17.0
t481 16 1 275 237 13.8 56.1 352 320 9.1 55.2
table3 14 14 46727 35807 23.4 825.7 40208 30800 23.4 843.2
table5 17 15 54729 34254 37.4 1253.0 45408 28440 37.4 1147.7
ttt2 24 21 2540 2445 3.7 1216.2 2720 2584 5.0 1181.4
vg2 25 8 22918 18417 19.6 564.2 18280 14432 21.1 566.0

6 Conclusions

In this paper, an evolutionary algorithm is applied in order to improve ESOP-
based synthesis of reversible circuits. By this, PSDKROs are considered which
are a subclass of ESOPs. Reversible circuits received significant attention in the
past – not least because of the promising applications in the domain of low-power
design or quantum computation. ESOP-based synthesis is an efficient method
for synthesis of this kind of circuits. Applying the proposed approach, the results
obtained by this method can be improved significantly – in most of the cases by
double-digit percentage points.
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Abstract. Microprocessor testing is becoming a challenging task, due to the 
increasing complexity of modern architectures. Nowadays, most architectures 
are tackled with a combination of scan chains and Software-Based Self-Test 
(SBST) methodologies. Among SBST techniques, evolutionary feedback-based 
ones prove effective in microprocessor testing: their main disadvantage, 
however, is the considerable time required to generate suitable test programs. 

A novel evolutionary-based approach, able to appreciably reduce the 
generation time, is presented. The proposed method exploits a high-level 
representation of the architecture under test and a dynamically built Finite State 
Machine (FSM) model to assess fault coverage without resorting to time-
expensive simulations on low-level models. Experimental results, performed on 
an OpenRISC processor, show that the resulting test obtains a nearly complete 
fault coverage against the targeted fault model. 

Keywords: SBST microprocessor testing. 

1   Introduction 

In the last years, the market demand for a higher computational performance in 
embedded devices has been continuously increasing for a wide range of application 
areas, from entertainment (smart phones, portable game consoles), to professional 
equipment (palmtops, digital cameras), to control systems in various fields 
(automotive, industry, telecommunications). The largest part of today’s Systems-on-
Chip (SoCs) includes at least one processor core. Companies have been pushing 
design houses and semiconductor producers to increase microprocessor speed and 
computational power while reducing costs and power consumption. The performance 
of processor and microprocessor cores has impressively increased due to 
technological and architectural aspects. Microprocessor cores are following the same 
trend of high-end microprocessors and quite complex units may be easily found in 
modern SoCs. 

Technology advancements impose new challenges to microprocessor testing: as 
device geometries shrink, deep-submicron delay defects are becoming more 
prominent [5], thereby increasing the need for at-speed tests; as core operating 
frequency and speed of I/O interfaces rise, more expensive external test equipment is 
required. 
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The increasing size and complexity of microprocessor architectures directly 
reflects in more demanding test generation and application strategies. Modern designs 
contain intricate architectures that increase test complexity. Indeed, pipelined and 
superscalar designs demonstrated to be random pattern resistant [2]. The use of 
hardware-based approaches, such as scan chains and BIST, even though consolidated 
in industry for integrated digital circuits, has proven to be often inadequate, since 
these techniques introduce excessive area overhead [1], require extreme power 
dissipation during the test application [13], and are often ineffective when testing 
delay-related faults [12]. 

As a consequence, academy is looking for novel paradigms to respond to the new 
testing issues: one promising alternative to hardware-based approaches is to exploit 
the processor to execute carefully crafted test programs. The goal of these test 
programs is to uncover possible design or production flaws in the processor. This 
technique, called Software-Based Self-Test (SBST), has been already used in 
different problems with positive results. 

In this paper, we propose a SBST simulation-based framework for the generation 
of post-production test programs for pipelined processors. The main novelty of the 
proposed approach is its ability to efficiently generate test programs, exploiting a high 
level description of the processor under test, while the evolution of the generation is 
driven by the transition coverage of a FSM created during the evolution process itself.  

The rest of the paper is organized as follows: section 2 provides background on 
SBST and SBST-related evolutionary computation. Section 3 describes the proposed 
methodology. Section 4 outlines the case study and reports the experimental results, 
and section 5 drafts some conclusions of our work.   

2   Background 

2.1   SBST 

SBST techniques have many advantages over other testing methodologies, thanks to 
their features: the testing procedure can be conducted with very limited area overhead, 
if any; the average power dissipation is comparable with the one observable in 
mission mode; the possibility of damages due to excessive switching activity, non-
negligible in other methods, is virtually eliminated; test programs can be run at the 
maximum system speed, thus allowing testing of a larger set of defects, including 
delay-related ones; the approach is applicable even when the structure of a module is 
not known or cannot be modified. 

SBST approaches proposed in literature do not necessarily aim to substitute other 
established testing approaches (e.g., scan chains or BIST) but rather to supplement 
them by adding more test quality at a low cost. The objective is to create a test 
program able to run on the target microprocessor and test its modules, satisfying the 
target fault coverage requirements. Achieving this test quality requires a proper test 
program generation phase, which is the main focus of most SBST approaches in 
recent literature. The quality of a test program is measured by its coverage of the 
design errors or production defects, its code size, and time required for its execution. 

The available approaches for test program generation can be classified according to 
the processor representation that is employed in the flow. High-level representations 
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of the processor Instruction Set Architecture (ISA) or state transition graphs are 
convenient for limiting the complexity of the architecture analysis, and provide direct 
correlation with specific instruction sequences, but cannot guarantee the detection of 
structural faults. Lower-level representations, such as RT and gate-level netlists, 
describe in greater detail the target device and allow to focus on structural fault 
models, but involve additional computational effort.  

A survey on some of the most important techniques developed for test program 
generation is presented in [9]. Due to modern microprocessors’ complex architectures, 
automatic test program generation is a challenging task: considering different 
architectural paradigms, from pipelined to multithreaded processors, the search space 
to be explored is even larger than that of classic processors. Thus, it becomes crucial to 
devise methods able to automate as much as possible the generation process, reducing 
the need for skilled (and expensive) human intervention, and guaranteeing an unbiased 
coverage of corner cases. 

Generation techniques can be classified in two main groups: formal and simulation-
based. Formal methodologies exploit mathematical techniques to prove specific 
properties, such as the absence of deadlocks or the equivalence between two 
descriptions. Such a proof implicitly considers all possible inputs and all accessible 
states of the circuit. Differently, simulation-based techniques rely on the simulation of 
a set of stimuli to unearth misbehaviors in the device under test. A simulation-based 
approach may therefore be able to demonstrate the presence of a bug, but will never be 
able to prove its absence: however, the user may assume that the bug does not exist 
with level of confidence related to the quality of the simulated test set. The generation 
of a qualifying test set is the key problem with simulation-based techniques. Different 
methodologies may be used to add contents to such test sets, ranging from 
deterministic to pseudo-random.  

Theoretically, formal techniques are able to guarantee their results, while simulation-
based approaches can never reach complete confidence. However, the former require 
considerable computational power, and therefore may not be able to provide results for 
a complex design. Moreover, formal methodologies are routinely applied to simplified 
models, or used with simplified boundaries conditions. Thus, the model used could 
contain some differences with respect to the original design, introducing a certain 
amount of uncertainty in the process [8]. 

Nowadays, simulation-based techniques dominate the test generation arena for 
microprocessors, with formal methods bounded to very specific components in the 
earliest stages of the design. In most of the cases, simulation-based techniques exploit 
feedback  to iteratively improve a test set in order to maximize a given target measure. 
Nevertheless, simulation of low-level descriptions could require enormous efforts in 
terms of computational time, memory occupation and hardware. 

The main drawback of feedback-based simulation methods, is the long elaboration 
time required during the evolution. When dealing with a complete processor core, for 
example in [10], the generation time increases when low abstraction descriptions are 
used as part of the evolution: the growth of computation times is mainly due to the 
inclusion of fault simulation in the process. For every possible fault of the design, 
the original circuit is modified including the considered fault; then, a complete 
simulation is performed in order to understand whether the fault changes the circuit 
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outputs. Even though lots of efforts are spent on improving this process [6], several 
minutes are still required to perform a fault simulation on a processor core with 
about 20k faults.  

2.2   EAs on SBST 

Several approaches that face test program generation by exploiting an automated 
methodology have been presented in recent years: in [11] a tool named VERTIS, 
able to generate both test and verification programs based on the processor’s 
instruction set architecture only, is proposed. VERTIS generates many different 
instruction sequences for every possible instruction being tested, thus leading to very 
large test programs. The test program generated for the GL85 processor following 
this approach is compared with the patterns generated by two Automatic Test Pattern 
Generator (ATPG) tools: the test program achieves a 90.20% stuck-at fault coverage, 
much higher than the fault coverage of the ATPG tools, proving the efficacy of 
SBST for the first time. The VERTIS tool works with  either  pseudo-random 
instruction sequences and random data, or with test instruction sequences and 
heuristics to assign values to instruction operands specified by the user in order to 
achieve good results. In more complex processors, devising such heuristics is 
obviously a non-trivial task. 

In [7], an automated functional self-test method, called Functional Random 
Instruction Testing at Speed (FRITS), is presented. FRITS is based on the generation 
of random instruction sequences with pseudorandom data.  The authors determine the 
basic requirements for the application of a cache-resident approach: the processor 
must incorporate a cache load mechanism for the test program downloading and the 
loaded test program must not produce either cache misses or bus cycles. The authors 
report some results on an Intel Pentium® 4 processor: test programs automatically 
generated by the FRITS tool achieve 70% stuck-at fault cover-age for the entire chip, 
and when these programs are enhanced with manually generated tests, the fault 
coverage increases by 5%. 

Differently from the previously described functional methods, in [3] the authors 
propose a two-steps methodology based on evolutionary algorithms: firstly a set of 
macros encrypting processor instructions is created, and in a second step an 
evolutionary optimizer is exploited to select macros and data values to conform the 
test program. The proposed approach is evaluated on a synthesized version of an 8051 
microprocessor, achieving about 86% fault coverage. Later, in [2], a new version of 
the proposed approach is presented. The authors exploit a simulation-based method 
that makes use of a feedback evaluation to improve the quality of test programs: the 
approach is based on an evolutionary algorithm and it is capable of evolving small test 
programs that capture target corner cases for design validation purposes. The 
effectiveness of the approach is demonstrated by comparing it with a pure instruction 
randomizer, on a RTL description of the LEON2 processor. With respect to the purely 
random method, the proposed approach is able to seize three additional intricate 
corner cases while saturating the available addressed code coverage metrics. The 
developed validation programs are more effective and smaller in code size. 
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3   Proposed Approach 

The previously described test generation cases show that evolutionary algorithms can 
effectively face real-world problems. However, when exploiting a low-level 
description of the processor under evaluation, simulation-based approaches require 
huge elaboration times. 

We propose a methodology able to exploit a high-level description of a pipelined 
processor core in the generation process: the required generation time is thus reduced 
with respect to techniques that use a low-level description during the generation 
phase, such as the gate-level netlist, as reported in [10]. In the proposed approach, it 
must be noticed that the processor netlist is only used at the end of the generation 
process to assess the methodology results, performing a complete fault simulation.  

The generation process is supported by the on-time automated generation of a FSM 
that models the excited parts of the processor core and drives the evolution process by 
indicating the unreached components on the processor core. In addition, we consider 
also high-level coverage metrics to improve the evolution. 

It is possible to simply define a pipelined microprocessor as the interleaving of 
sequential elements (data, state and control registers), and combinational logic blocks. 
The inputs of the internal combinatory logic blocks are dependent on the instruction 
sequence that is executed by the processor and on the data that are processed. 

One way to model a microprocessor is to represent it with a FSM. Coverage of all 
the possible transitions in the machine ensures thoroughly exercising the system 
functions. Additionally, the use of the FSM transition coverage has the additional 
advantage that it explicitly shows the interactions between different pipeline stages. 
Thus, we define the state word of a pipelined processor FSM model as the union of all 
logic values present in the sequential elements of the pipeline, excluding only the 
values strictly related to the data path. Consequently, the FSM transits to a new state 
at every clock cycle, because at least one bit in the state word is changed due to the 
whole interaction of the processor pipeline.  

Figure 1 shows the proposed framework. The evolutionary core, called µGP3 [15], 
is able to generate syntactically correct assembly programs by acquiring information 
about the processor under evaluation from an user-defined file called Constraint 
Library. When the process starts, the evolutionary core generates an initial set of 
random programs, or individuals, exploiting the information provided by the library 
of constraint. Then, these individuals are cultivated following the Darwinian concepts 
of natural evolution. Every test program is evaluated resorting to external tools that 
simulate the high level description of the processor core, resorting to a logic simulator 
at RTL, and generate a set of high-level measures. Contemporary, during the logic 
simulation, the FSM status is captured at every clock cycle, and for every evaluated 
test program the visited states and the traveled transitions are reported back to the 
evolutionary core as part of the evaluation of the goodness of an individual, called 
fitness value.  The interaction between the different elements composing the fitness 
value guarantees good quality regarding the fault coverage against a specific fault 
model at gate level. Fitness values gathered during the logic simulation, for example 
code coverage metrics such as Statement coverage (SC), Branch coverage (BC), 
Condition coverage (CC), Expression coverage (EC), Toggle coverage (TC), are 
suitable for guiding the evolution of test programs. Simultaneously, maximizing the 
number of traversed transitions of the FSM model, assures a better result at gate level. 
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Fig. 1. Test generation framework. 

Only the best individual is fault simulated in order to assess its fault coverage 
properties, reducing generation times. In the following paragraphs, we briefly 
describe in more detail the most significant elements present in the described 
framework.  

3.1   μGP3 

μGP3 represent individuals, in this case candidate test programs, as constrained tagged 
graphs; a tagged graph is a directed graph every element of which may own one or 
more tags, and that in addition has to respect a set of constraints. A tag is a name-
value pair used to add semantic information to graphs, augmenting the nodes with a 
number of parameters, and also to uniquely identify each element during the 
evolution. Graphs are initially generated in a random fashion; subsequently, they may 
be modified by genetic operators, such as the classical mutation and recombination. 
The genotype of an individual is described by one or more constrained tagged graphs.  

The purpose of the constraints is to limit the possible productions of the 
evolutionary tool, also providing them with semantic value. The constraints are 
provided through a user-defined library that supplies the genotype-phenotype 
mapping for the generated individuals, describes their possible structure and defines 
which values the existing parameters (if any) can assume. To increase the generality 
of the tool, constraint definition is left to the user. 

In this specific case the constraints define three distinct sections in an individual: a 
program configuration part, a program execution part and a data part or stimuli set. 
The first two are composed of assembly code, the third is written as part of a VHDL 
testbench. Though syntactically different, the three parts are interdependent in order 
to obtain good solutions. 

Individual fitness values are computed by means of one or more external evaluator 
tools. The fitness of an individual is represented by a sequence of floating point 
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numbers optionally followed by a comment string. This is currently used in a 
prioritized fashion: one fitness A is considered greater than another fitness B if the n-
th component of A is greater than the n-th component of B and all previous 
components (if any) are equal; if all components are equal then the two fitnesses are 
considered equal.  

The evolutionary tool is currently configured to cultivate all individuals in a single 
panmictic population. The population is ordered by fitness. Choice of the individuals 
for reproduction is performed by means of a tournament selection; the tournament 
size τ is also endogenous. The population size μ is set at the beginning of a run, and 
the tool employs a variation on the plus (µ+λ) strategy: a configurable number λ of 
genetic operators are applied on the population. All new unique individuals are then 
evaluated, and the population resulting from the union of old and new individuals is 
sorted by decreasing fitness. Finally, only the first μ individuals are kept. 

The possible termination conditions for the evolutionary run are: a target fitness 
value is achieved by the best individual; no fitness increase is registered for a 
predefined number of generations; a maximum number of generations is reached.  

3.2   FSM Extractor 

The proposed methodology is based on modeling the entire processor core as a FSM 
which is dynamically constructed during the test generation process. Thus, differently 
from other approaches, the FSM extraction is fully automated, and demands minimum 
human effort: the approach only requires the designer to identify the memory 
elements of the pipeline registers in the RTL processor description that will determine 
state characteristics of the FSM. The key point behind the FSM extractor is to guide 
the evolution trough a high-level model of the processor core that summarizes the 
capacity of excitation of the considered test program. The FSM information extractor 
receives from the external evaluator (e.g., a logic simulator) the activity of the 
pipeline registers of the processor core at every clock cycle, then, it computes for 
every clock cycle the processor state word and extracts the visited states and the 
traversed transitions.  

Given the dynamic nature of the FSM construction, it is not possible to assume as 
known the maximum number of reachable states, not to mention the possible 
transitions. For this reason, it is impossible to determine the transition coverage with 
respect to the entire FSM. 

The implemented evaluator, that includes the logic simulator and the FSM 
information extractor, collects the output of the simulation and dynamically explores 
the FSM; it assesses the quality of test program considering the transition coverage on 
the FSM and the code coverage metrics. The fitness fed back to the evolutionary tool 
is composed of many parts: the FSM transition coverage followed by all other high-
level metrics (SC, BC, CC, EC, TC). 

Let us consider the mechanisms related to hazard detection and forwarding 
activation in a pipelined processor: in order to thoroughly test them, it requires to 
stimulate the processor core with special sequences of strongly dependent instructions 
able to activate and propagate possible faults on these pipelined mechanisms. Facing 
this problem by hand requires a very good knowledge about the processor core to 
carefully craft a sequence of instructions able to actually excite the mentioned 
pipelined elements. Additionally, this process may involve a huge quantity of time.  
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On the other hand, state-of-the-art test programs usually do not target such pipeline 
mechanisms, since their main concern is exciting a targeted functional unit through 
carefully selected values, and not to activate the different forwarding paths and other 
mechanisms devoted to handle data dependency between instructions [4]. 

As a matter of fact, it is possible to state that a feedback based approach able to 
collect information about the interaction of the different instructions in a pipelined 
processor as the one described before, allows the evolution of sequences of dependent 
instructions that excite the mentioned pipeline mechanisms. 

4   Case Study and Experimental Results 

The effectiveness of the EA-based proposed methodology has been experimentally 
evaluated on a benchmark SoC that contains the OpenRISC processor core and some 
peripheral cores, such as the VGA interface, PS/2 interface, Audio interface, UART, 
Ethernet and JTAG Debug interface. The SoC uses a 32 bit WISHBONE bus rev. B 
for the communication between the cores. The operating frequency of the SoC is 150 
MHz. The implemented SoC is based on a version publicly available at [14].  

The OpenRISC processor is a 32 bit scalar RISC architecture with Harvard 
microarchitecture, 5 stages integer pipeline and virtual memory support. It includes 
supplementary functionalities, such as programmable interrupt controller, power 
management unit and high-resolution tick timer facility. The processor implements a 
8Kbyte data cache and a 8Kbyte instruction cache 1-way direct mapped; the 
instruction cache is separated from the data cache because of the specifics of the 
Harvard microarchitecture. 

In our experiments we decide to tackle specifically the processor integer unit (IU) 
that includes the whole processor pipeline. This unit is particularly complex and 
important in pipelined processors, since it is in charge of handling the flow of 
instructions elaborated in the processor core. 

The pipelined processor is described by eight verilog files, counting about 4,500 
lines of code. Table 1 describes some figures that are used to compute RTL code 
coverage and toggle metrics. Additionally, the final line shows the number of stuck-at 
faults (S@ faults) present in the synthesized version of the targeted module. 

The state word is defined as the union of all memory elements composing the 
processor pipeline, excluding only the registers that contain data elements. Data 
registers are excluded because we are mainly interested in the control part of the 
pipeline, and not in the data path. 

Table 1. IU information facts 

OR1200 IU 

Lines 4,546 
Statements 466 
Branches 443 
Condition 53 
Expression 123 
Toggle 3,184 
S@ faults  13,248 
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Thus, considering the registers available in every stage of the processor pipeline, a 
state word contained 237 bits is saved at every clock cycle during the logic simulation 
of a test program allowing us to dynamically extract the processor FSM.  

In order to monitor the elements contained in the state word of the pipeline at every 
clock cycle, we implemented a Programming Language Interface module, called PLI, 
that captures the information required during the logic simulation of the RTL 
processor. The PLI module is implemented in C language, counting about 200 lines of 
code. The module is compiled together with the RTL description of the processor 
core, exploiting a verilog wrapper. 

Once a test program is simulated, a script perl extracts the information regarding 
the number of visited states as well as the number of traversed transitions obtained by 
the considered program. This information is collected together to the high-level 
coverage metrics provided by the logic simulator and the complete set of values is fed 
back to the evolutionary engine in the form of fitness value of the test program. 

The configuration files for the evolutionary optimizer are prepared in XML and 
count about 1,000 lines of code. Finally, additional perl scripts are devised to close 
the generation loop. 

A complete experiment targeting the OR1200 pipeline requires about 5 days. At 
the end of the experiment, an individual counting 3,994 assembly lines that almost 
saturate the high level metrics is created; the same individual obtains about 92% fault 
coverage against the targeted fault model.  

Compared to manual approaches reported in [4], that achieve about 90% fault 
coverage in the considered module, the results obtained in this paper improve the fault 
coverage by about 2%, and can be thus considered promising. 

5   Conclusions 

Tackling microprocessor testing with evolutionary algorithms proved effective in 
many works in literature, but this methodologies share a common disadvantage: the 
time needed to evolve a suitable test program is considerable. 

In order to solve this problem, a novel evolutionary-based test approach is 
proposed. The approach exploits a high-level description of the device under test, 
along with a dynamically built FSM model, to esteem the fault coverage of the 
candidate test programs. Thus, a reliable evaluation of the goodness of the programs 
is obtained without resorting to time-expensive simulations on low-level models. 

The proposed framework is assessed on a OpenRISC processor. Experimental 
results show a total of 92% fault coverage against the targeted fault model. 
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Abstract. Shape optimization is numerically very intensive due to multidisci-
plinary objectives and constraints, many shape variables, non linear models, 
geometric infeasibility of candidate designs, etc. It involves participation of 
numerical optimizers, computer- aided geometric modelers and subject-related 
simulators as well as their coupling at the process- and data levels. This paper 
develops a simple experimental workflow which employs existing commercial 
software for computer-aided design, finite element analysis and evolutionary 
optimization modules. It sets up parallel execution of multiple simulators to 
reduce the execution time, which is implemented inexpensively by means of a 
self-made .net- based cluster. Shape optimization is introduced in the generic 
context of ‘enhanced’ reverse engineering with optimization whereby the initial 
solution can be obtained by 3D optical scanning and parameterization of an 
existing solution.  

1   Introduction 

There are very strict requirements in contemporary product development: the resulting 
products need to perform competitively according to given excellence benchmarks, 
they should be modest in terms of investment and operational costs, their respective 
time-to-market should be very short. As these largely conflicting requirements are very 
difficult to accomplish, some of the new conceptual approaches that have recently 
reached satisfactory levels of maturity seem complementary and potentially effective 
as modules in the overall product development process, Fig. 1. 

Shape optimization is the key element in the design of a product, as it defines the 
shape that best provides for the required functionality within the given environment. 
In some cases it follows the phase of topology optimization, other approaches 
combine the two phases. The corresponding material distribution problem is obtained, 
where a given amount of material is to be distributed in the domain such that the 
structural response is optimized. The material distribution problem is a two-field 
problem of finding the optimal distributions over the design domain of the material 
distribution field (or material properties field) and the corresponding displacement 
field (or generally structural response field). It can be solved by 0/1 integer 
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Fig. 1. Reverse engineering with shape optimization 

programming or relaxed by the SIMP method. Subsequently the boundaries are 
obtained by numerical fitting and smoothening. Other approaches model the 
boundaries of the domain (external and internal) rather than the material distribution 
within the domain and typically apply parametric curves or surfaces. In any case, 
shape synthesis by means of optimization is responsible for generating the geometry 
of the object which directly determines its functionality and performance. By linking 
the shape synthesis process with numerical simulators of the interaction with the 
environment, virtual prototyping is fully provided for. 

Shape optimization numerically implements the search for the ‘best’ feasible 
solution based on the requested functionality and excellence criteria, given the 
mathematical models describing these elements, [1,2]. Such design synthesis should 
result in shapes that provide the requested functionalities and maximize the given 
excellence criteria under given conditions. This paper develops the elements and 
layout for a simple experimental computational workflow to carry out shape 
optimization by deploying existing software as part of the overall process. It includes 
geometric modeling applications (CAD), [3,4], evolutionary optimizers (such as GA, 
genetic algorithms [5,6]), and simulation programs to evaluate the performance of 
candidate designs (finite-element-analysis, FEA), [7-9]. The experimental workflow 
also provides for coordination of computational processes and data exchange amongst 
the individual programs. 

The optimizer searches the design space steered by excellence criteria and design 
constraints which are evaluated by calling the respective simulators such as FEA. The 
design space is spanned by shape parameters (parametric curves or surfaces) as 
independent variables. The candidate designs being synthesized by the evolutionary 
optimizer are assigned to the simulators for the purpose of evaluation of objective 
functions and constraints.  
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The overall optimum design procedure is here developed according to Fig. 2, 

 

Fig. 2. EA / GA based shape optimization 

The standard formulation of the optimum design problem reads: determine x ε Rn 
such that  

{ }min ( )

( ) 0 , 1,

( ) 0 , 1,
j

j

f x

g x j p

h x j r

≤ =

= =

 (1)

where x are the shape variables, f (x) the objective function, and g(x) and h(x) the 
constraints.  

2   Digitizing and Representation of Shape, Parameterization 

Before the methodology is developed, the problem definition needs to be structured 
properly. This paper develops a generic computational workflow for shape 
optimization that can be set up using standard off-the-shelf programs (such as 
simulators) and in-house developed middleware (such as synchronization, 
parallelization, data-mining). The shape optimization will not start from scratch as 
existing objects will serve as initial solutions instead and make this process one of 
reverse engineering with optimization. These shapes can be scanned in 3D and 
parameterized by fitting mathematical surfaces, the control points of which also 
provide the set of shape variables. Subsequently, evolutionary algorithms are deployed 
to optimize such initial shape for best performance within a custom-developed cluster 
that implements parallelization for increased numerical efficiency. 
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Digitizing 3D shape based on optical methods, triangulation, and in particular 
stereo-photogrammetry, is discussed by many authors, for example [10]-[12]. 
Recently, there are also off-the-shelf systems available (eg. [13]) which provide the 
corresponding technology in high resolution and accuracy. Parameterizations of the 
resulting 3D point clouds typically by applying B-splines or NURBS ([3],[4]) are the 
subject of many papers related to corresponding best fitting procedures, for example 
[14]-[19]. 

The initial solution is obtained by 3D optical scanning of the geometry of the 
existing object. Fig. 3 shows the single-camera set-up with c denoting the camera and 
w the world coordinate systems respectively.  

 

Fig. 3. Optical scanning for physical point P: image point p, camera (c) and world (w) coordinate 
systems, translation (T) and rotation (R), single camera view 

If a stereo-camera set-up is used, two sets of image coordinates (x, y) for any point 
P are obtained, which make 3D image reconstruction possible. 3D reconstruction (2) 
recovers 3D Euclidean coordinates from stereo measurements (l, r denote the left and 
right cameras respectively) and can be done fully only if all extrinsic and intrinsic 
system parameters are known and calibrated. 

( , )l r ⇒p p P  (2) 

In our lab we use the ATOS 3D digitizing system, Fig. 4, where light patterns are 
projected onto the surface of the object to provide for spatial identification of a large 
number of points on the surface. The sequenced stripe patterns provide for time-based 
coding of position.  

The 3D scanning step provides dense point clouds as output. The overall geometry 
of the object is partitioned into segments, some of which will be shape-optimized. In 
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Fig. 4. 3D digitizer with structured light and (conceptually) parameterization of portion of shape 
by best-fitting a parametric surface to resulting points cloud (after polygonization) 

order to do this, the corresponding point clouds will be parameterized. This implies 
that generic geometric modeling primitives will be selected to represent such 
segments and subsequently those generic primitives will be particularized for the 
respective points cloud by least-square fitting. 

Complex shapes can only be represented by using many shape control parameters, 
[20], since sufficient local control of geometry is needed. In the context of 
interpolation, many geometric parameters link to correspondingly many internal 
degrees of freedom in parametric representation and consequently to high- degree 
curves or surfaces in 3D. Different parametric shape entities exist within the 
framework of geometric modeling, [3,4].  

This paper develops a scheme based on chained piecewise Bezier curves and 
surfaces, 

,
0 0

( ) ( ) (1 )
n n

i n i
i n i i

i i
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u B u u u

i
−

= =

⎛ ⎞= ⋅ = ⋅ ⋅ − ⋅⎜ ⎟
⎝ ⎠
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where B are the basis functions (in this case Bernstein polynomials) of degree n with 
the parameter (0,1)u ∈ , x(u) are the parametric equations of the spatial curve, and Pi 
are the (n+1) control nodes. The deployment of piecewise curves provides for locality 
in shape representation and makes the respective chaining numerically simple to 
implement since P(u) passes through the end nodes and has its end- slopes defined by 
the respective two end points.  
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Fig. 5. Chaining of piecewise curves 

The numerical procedure developed here interpolates additional points at connections 
of piecewise segments to impose the requested C1 continuity, (Fig. 5), 

1 1( , , )iG i i iP f P P P− +=  (4) 

Alternatively, B-spline curves and surfaces can be used. A B-spline curve of degree d 
is defined for a set of (n+1) control points Pi as 
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The basis functions N are defined recursively using a non-decreasing sequence of 
scalars- knots ui such that 0 1i n d≤ ≤ + +  with 
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Analogously, B-spline surfaces are defined as 
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where 1 and 2 denote the two directions. 
In order to have the original shape of the object as the initial solution, its scanned 

shape (points cloud according to (2)) is the basis for fitting of geometric primitives in 
(3)-(7). This fitting provides the initial values of the shape optimization variables- 
control points in (3), (5), (7).  

A simple fitting methods of a B-spline on (m+1) data points Qk (recorded points 
cloud, processed by polygonization) assumes that they are ordered with increasing 
sample times sequence sk between 0 and 1 to correspond to parameter values. 
Polygonization reduces the scanned point clouds with overlapping regions to non- 
overlapping meshes of points of preselected density and linear faces connecting them. 
If the approach is 2D fitting, then planar sections can be generated from the scanned 
object. 
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2D fitting for given data points Q is implemented by determining the control points 
P such that the least square error 

2
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is miminized. The minimum of the quadratic error E in (8), which is a function of the 
control points, is obtained from the necessary conditions for the respective stationary 
value by differentiating with respect to the control points P.  

If a B-spline surface is to be fitted directly on the 3D data points Q, then the 
minimum of (9) provides the values of the control points P, 

21 2 1 2

1, 1 1 2, 2 2 1 2 1 2
1 0 2 0 1 0 2 0

1
( ) ( ) ( )

2

m m n n

i d k i d k i i k k
k k i i

E N u N v
= = = =

⎛ ⎞= ⋅ ⋅ −⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑P P Q  (9)

3   Shape Optimization, Development of Optimum Design 
Workflow  

Developing an integral application encompassing all elements of Fig. 2 would create  
a large application, difficult to develop, maintain and use. The more reasonable  
option (low cost, scalability, easy maintenance, transferability of data, mild learning 
curve, etc) is the modular approach which uses existing applications as elements of the 
workflow, which is developed according to Fig. 1. The necessary development includes 
programs and scripts which handle the process- and data flows (including data-mining) 
within the workflow. In the cases presented here, an existing GA-based optimizer, [5],  
is upgraded and applied along with commercial FEA simulators, [8], and in-house 
geometric modeling tools for Bezier curves and surfaces based on (3) and (4) 
(alternatively B-splines (5)-(7) can be used). FEA is applied to evaluate feasibility and 
excellence of the candidate designs and it is invoked by the optimizer as an external 
service provider. The in-house developed workflow programs and scripts, [21,22], act 
as intermediaries and perform or monitor a number of tasks such as synchronization 
of asynchronous processes, data-flows and transfers, data-mining, evaluation of 
constraints and objectives, rejection of infeasible designs and termination of 
unsuccessful instances of simulators, etc.  

The experimental workflow in Fig. 6 is developed by implementing an in-house 
GA application, ADINA FEA simulator and in-house developed middleware 
(developed in the C# language with .net 3.5 and the Windows Communication 
Foundation WCF), while native ASCII files are used for data storage.  

The client implements the optimizer based on GA, [23,24], and the basic objective 
function framework which engages the services of many networked server computers, 
[25], which run listener programs and expose FEA simulators services. When called 
by the client, the respective server listener program invokes the execution of the 
locally installed instance of the FEA simulator on the respectively assigned input files 
and produces output files correspondingly. The client data- mines the corresponding 
output files for the results needed, such as stresses at the Gauss quadrature points of 
all elements. 
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Fig. 6. Set-up of the sequential- parallel experimental workflow for optimum design 

The networked servers exposing the FEA (and other) services are invoked parallely 
in the asynchronous mode by the client. The client can also request partial services of 
the applications running at the servers, as the requests are communicated by message-
passing or sendkeys sequences. Unsucessful instances of services not producing the 
output files or those producing incorrect outputs are identified, dismissed and 
terminated by the client.  

The Service class running under .net and WCF uses the ServiceHost class to 
configure and expose a service for use by client applications, Binding and service 
Endpoints, ServiceContract class to specify messages in the conversation, 
OperationContract class to define operations within a service contract in WCF, 
Process class to encapsule locally running applications at servers, SendKeys class to 
pass messages to remote applications, FindWindow, SetForegroundWindow and 
SetActiveWindow APIs to access basic Windows functionality, IntPtr handles to 
remotely access processes which host applications and windows, and Delegate 
references which point to methods and provide for asynchronus execution of services.  

4   Test Example 

The test case presented here is a simple 2D problem (Fig. 7) for which the respective 
optimum shape solution is known. This simple standard example is applied to 
demonstrate the application of the procedure and the workflow. In particular, a 2D 
plate with a hole in plane stress conditions is loaded bi-axially (2:1 loading ratio) with 
minimum mass as the excellence criterion and subject to the constraint of the 
maximum permissible (local) values of the Von Mises stress, Fig. 7. 
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Fig. 7. Plane stress plate (a) with a hole, (b) model and initial shape, (c) optimized shape with 
displacements 

The mass and stresses values are data- mined from the output files of the FEA 
simulator, (Fig. 6). The mass of the candidate design in each iteration of the shape 
optimizer is evaluated from the corresponding candidate design geometry such that 
the areas of all the finite elements in the FE mesh are aggregated. The stresses are 
data- mined for all Gauss integration support points for all finite elements of the 
mesh, which provides for evaluation of both average and extreme values that can 
consequently be used in the constraint equations and penalized.  

The phenotype in Fig. 2 implies all the parameters that define the geometry of the 
candidate design, which also includes boundaries which are fixed (or partially fixed 
by boundary conditions) and therefore not subject to shape optimization. On the other 
hand, the genotype only codes the free design variables of the geometry. In the test 
case in Fig. 7, the radii of the control points at prescribed angular increments and 
alternatively y-coordinates for prescribed x-increments were used as free variables 
and coded in the genotype. Decoding the genotype and combining it with fixed values 
provides the phenotype that fully defines the piecewise Bezier curve (3) which 
models the shape of the free boundary to be shape-optimized, and which is updated 
into the corresponding FEA input file for each candidate design, Fig. 6. 

The external penalty formulation was used with 5-9 shape variables, (3), GA 
populations of up to 100 and up to three elite members, rank- based scaling, uniform 
selection, scattered cross-over with probability 0.8, Gaussian mutation, and standard 
values of other parameters. Normalized minimum mass was combined with penalized 
normalized Von Mises stresses. Other GA operators, for example proportional 
scaling, roulette selection, heuristic cross-over and different probabilities for cross-
over and mutation were applied as well, but this did not result in major differences in 
the convergence of the process. 

Table 1 presents the impact of parallelization (Fig. 6) of the FEA simulators, 
whereby the central GA optimization procedure hosted at the client computer is 
served by up to 18 FEA locally installed simulators at server computers and invoked 
by listener programs running on the server computers. The combinations of the 
numbers of engaged server computers and sizes of populations were selected such 
that the inpact of paralelization could be benchmarked. These combinations are 
illustrative in terms of the number of individuals of some GA population per server 
computer which corresponds to the number of FEA simulator runs (and data mining 
operations) per server for each GA generation. 
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Table 1. Benchmarking of the impact of parallelization with the experimental workflow in  
Fig. 6, test case in Fig. 7, normalized relative execution times 

Population size / Number of servers Optimization execution time 

6 / 1 5.56 

12 / 1 11.01 

18 / 1 16.16 

6 / 6 1 

12 / 12 1 

18 / 18 1 

 
The ratios in Table 1 can also be extended to more parallel server computers 

engaged in the workflow. The table clearly indicates that the optimization execution 
times are close to proportional to the ratio of population size per number of servers, 
which corresponds to the number of FEA runs to be sequentially executed by each 
server computer for each GA generation. In the cases where the population size is not a 
multiple of the number of servers, there would exist an unbalanced workload for the 
individual servers, which would cause wait (idle) times for less busy servers before the 
next generation of GA individuals is submitted to them. Table.1 also indicates that  
the central optimization procedure (GA algorithm), obviously time-wise dominated by 
the FEA simulations, does not contribute significantly to the overall execution time.  

The main objective of this paper is to demonstrate how an efficient generic 
workflow for evolutionary shape optimization can be built inexpensively using existing 
program components such as FEA simulators. The workflow developed in this paper 
includes custom-made programs for parameterization, client-server communication to 
enable remote execution, asynchronous execution for parallelization, and data- mining 
scripts for the transfer and localization of data. The shape optimization procedure is 
improved by developing a procedure to use an existing design as the initial solution by 
3D scanning and parameterizing its geometry. The workflow essentially implements 
the elements of Fig. 1 and Fig. 2 in an integrated manner.  

5   Conclusion 

An experimental workflow for shape optimization problems is developed along with a 
PC cluster implementation for sequential- parallel execution. The workflow employs 
commercial applications for optimization and finite element analysis, while the shape 
parameterization and representation is developed based on chained Bezier curves, 
while alternatively B-splines can also be used. The necessary workflow control scripts 
and programs are developed in C# within MS .net and WCF platforms. The results 
demonstrate this to be a viable, flexible and inexpensive framework for shape 
optimization. The initial solution for shape optimization can be the optically scanned 
shape of an existing object after triangulation, polygonization and parameterization 
which make this approach an enhanced reverse engineering system based on GA. 
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Abstract. Brushless Motors are frequently employed in control systems.
The reliability of the brushless motor control circuits is highly critical
especially in harsh environments. This paper presents an Evolvable Hard-
ware (EHW) platform for automated design and adaptation of a brush-
less motors control circuit. The platform uses the principles of EHW to
automate the configuration of FPGA dedicated to the implementation of
the motor control circuit. The ability of the platform to adapt to a certain
number of faults was investigated through introducing single logic unit
faults and multi-logic unit faults. Results show that the functionality of
the motor control circuit can be recovered through evolution. They also
show that the location of faulty logic units can affect the ability of the
evolutionary algorithm to evolve correct circuits, and the evolutionary
recovery ability of the circuit decreases as the number of fault logic units
is increasing.

Keywords: Evolutionary Algorithms, Evolvable Hardware, Fault Tol-
erance, Motor Control Circuits.

1 Introduction

Brushless motors are frequently employed in the speed regulation of many driving
systems. The performance and sustained reliability of the motor control circuit
are of great importance. Usually the control circuits designed in SCM or DSP
are easily damaged in extreme environmental conditions, such as electromagnetic
interference and high-energy radiation.

Recently, fault tolerant systems are widely used in space applications where
hardware deteriorates due to damages caused by aging, temperature drifts and
high-energy radiation. In this case, human intervention is difficult or impossible;
the systems must therefore maintain functionality themselves. Conventional fault
tolerant systems employ techniques such as redundancy, checking-pointing and
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concurrent error detection. These techniques all rely on the presence of additional
redundancy and add considerable cost and design complexity. In most cases, it
can’t satisfy the application requirements [1].

As a promising research field, Evolvable Hardware (EHW) [2–4] may provide
alternative approaches and new mechanisms for the design of fault tolerant sys-
tems. EHW is based on the idea of combining reconfigurable hardware devices
with an evolutionary algorithm (EA) to perform reconfiguration autonomously
[3], which refers to the characteristics of self-organization, self-adaptation and
self-recovery. With the use of evolutionary computation, evolvable hardware has
the capability of autonomously changing its hardware architectures and func-
tions. It can maintain existing function in the context of degradations or faults
in conditions where hardware is subject to faults, temperature drifts, high-energy
radiation, or aging.

As to logic or digital circuits, gate-level evolution usually takes logic gates
as the basic units or building-blocks. Many researchers in this field prefer ex-
trinsic evolution at gate-level [5] because it is generally applicable to various
circuits and its outcomes are comparatively formal and consequently analyz-
able. Many encouraging results for gate-level evolution of logic circuits have
been demonstrated [5–7]. Nanjing University of Aeronautics and Astronautics
performed the online fault tolerant evolution of digital circuits and analogy cir-
cuits on FPGA and FPTA respectively [8–10]. The Jet Propulsion Laboratory
(JPL) performs research in fault tolerant and space survivable electronics for
the National Aeronautics and Space Administration (NASA). JPL has had ex-
periments to illustrate evolutionary hardware recovery from degradation due to
extreme temperatures and radiation hardware environments [11, 12]. Their ex-
periment results demonstrate that the original functions of some evolved circuits,
such as low-pass filters and the 4-bit DAC, could be recovered by reusing the
evolutionary algorithm that altered the circuit topologies [11, 12].

This paper presents an evolvable hardware platform for the automated design
and adaptation of brushless motor control circuits. The platform employs an EA
to autonomously configure the FPGA dedicated to the implementation of the
motor control circuit. The ability of the platform to adapt to a certain number
of faults was investigated through introducing single logic unit faults and multi-
logic unit faults.

2 Fault Tolerant Platform

The brushless motor achieves the phases changing operation with electronic cir-
cuit. The system structure is illustrated in Fig. 1. It includes three parts, the
motor control circuit, the drive module and the brushless motor itself [13, 14].
The brushless motor checks the position of the rotors by using 3 location sen-
sors. It produces three position feedback signals S0, S1 and S2. When the Rotor
rotates 360 degrees along the same direction, the position signal S0, S1 and
S2 have a total of six states combination. The motor control circuit triggers
each switch (M0, M1, M2, M3, M4, M5) in the drive module in accordance with a
certain order.
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Fig. 1. The motor control system [13]

The motor control circuit fault tolerant evolutionary environment is shown
in Fig. 2. The platform comprises of FPGA, EA evolutionary module, VHDL
coding conversion module and FPGA development tool software environment.

Alter EP1K50 FPGA, which is capable of partial dynamic reconfiguration,
was adopted as the experiment hardware. It provides a Joint Test Action Group
(JTAG) system interface connected to the computer parallel port, through which
the circuit configuration bits can download to FPGA to validate its functionality.

The evolutionary module is the core part of the system. Circuit structure is
represented by a chromosome. The simulated evolution is used to evolve a good
set of architecture bits that determine the functions and interconnections of the
logic units in FPGA.

The VHDL coding conversion module together with Quartus II can realize
the conversion from the chromosome representation to a circuit structure.

Fig. 2. EHW platform for the motor control circuit fault recovery implementation



Fault-Tolerance Simulation of Brushless Motor Control Circuits 187

3 Evolutionary Circuit Design

Evolutionary algorithms are used for the brushless motor control circuit design.
Circuit representation, fitness evaluation, and parameters choice are crucial in-
gredients of effective evolutionary circuit design [4].

3.1 Chromosome Representation

A correct circuit representation is the base for effective design. Fig. 3 shows
the computational model for gate-level evolution of the brushless motor control
circuit. The evolution area is an array of 8*5. Because the first column works
as inputs and the last as outputs, the two columns won’t participate in the
evolution. The actual evolutionary area is the form of a rectangular array that
consists of logic units in 8 rows by 3 columns. Each logic unit has 2 inputs, one
output and can perform 4 functions: AND, OR, NAND, NOR.

Fig. 3. The computational model of motor control system

The configuration array which represents interconnections and functions of
the logic units is shown as following:

C0,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,l

b1,1 b1,2 . . . b1,l

w1,1 w1,2 . . . w1,l

w2,1 w2,2 . . . w2,l

...
...

...
...

wm,1 wm,2 . . . wm,l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Ck−1,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ak,1 ak,2 . . . ak,l

bk,1 bk,2 . . . bk,l

w1,1 w1,2 . . . w1,l

w2,1 w2,2 . . . w2,l

...
...

...
...

wl,1 wl,2 . . . wl,l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2 ≤ k ≤ K − 1) . (2)
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CK−1,K =

⎡
⎢⎢⎢⎣

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
...

...
...

wl,1 wl,2 . . . wl,n

⎤
⎥⎥⎥⎦ . (3)

The configuration array includes two parts, the functional array expressed as
ai,j in the first two rows and the connectivity array expressed as wi,j in the rest
rows. Each logic unit comprised 4 functions can be encoded in binary column
vector format (ak,i, bk,i)

T , As the output interfaces, there is no corresponding
function array in column H4.

In formulation (1), C0,1 represents the configuration array between column H0

and H1. Here the value of m is 3 according to 3 inputs in column H0; the value
of l is 8 according to 8 logic units in column H1. wi,j represents the connection
relationship of logic unit in column H1 with each logic unit in previous column
H0. the value of wi,j is ’1’ or ’0’. In formulation (2), Ck−1,k represents the
configuration array between columns Hk−1 and Hk. Here the value of K is 4
according to the maximun column number H4. The value of l is 8 according
to 8 logic units in each column H1, H2 and H3. In formulation (3), CK−1,K

represents the connectional array between columns HK−1 and HK . the value of
n is 6 according to the 6 bit outputs.

3.2 Fitness Evaluation

For problems of gate-level evolution, design objectives mainly include expected
functions, efficiency of resource usage (in terms of gate count) and operating
speed of circuits (estimated with Maximal Propagation-Delay (MPD)). Although
a functionally correct circuit with fewer logic gates and fewer number of gates
contained in the longest signal chain of the circuit is usually preferable, the main
purpose in this paper is to investigate the capacity of fault recovery using EHW
in case of faults. Therefore, the design objective only concerns with the expected
functions or behaviors. Thus, the functional fitness value of the evolved circuit
is calculated as

F =
n∑

i=1

m∑
j=1

Ci,j Ci,j =
{

1 outdata = epdata
0 outdata �= epdata

(4)

where outdata is output value of currently evaluated circuit; epdata is output
value of expected circuit.

3.3 Adaptation Strategy for EA Parameters

Some EA parameters, especially Pc and Pm, have large effects on EA’s perfor-
mances; and their optimal values are usually impossible to be predefined to suit
various problems[6, 15]. In our approach, Pc and Pm are varied with the indi-
viduals’ distribution and EA’s genetic processes so as to maintain diversity in
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the population and sustain the convergence capacity of the EA. Diversity in the
population is estimated by using

δt = e
fmax−fmin

favg (0 < δt < 1) . (5)

Pc and Pm are designed to adapt themselves in the following ways

Pc =
{

Pc0 0 < δt ≤ k1
Pc1 + (Pc0−Pc1)(1−δt)

1−k1 k1 < δt < 1
. (6)

Pm =
{

Pm0 0 < δt ≤ k2
Pm0 + (Pm1−Pm0)(δt−k2)

1−k2 k2 < δt < 1
. (7)

where, Pc0 and Pm0 are initial values of Pc and Pm respectively, it is usually
feasible to let Pc = 0.8 and Pm = 0.1 due to the above adaptation strategy; k1

and k2 are user-defined constants, we chose to let k1 = k2 = 0.3. According to
the above equations, Pc and Pm will respond to changes of individuals’ diversity
reflected by δt.

4 Fault-Tolerance Experiments

The objective of the experiments was to recover the functionality of the motor
control circuit implemented on an FPGA. In this experiment, faults were intro-
duced by setting all connections with the corresponding fault logic unit to ’0’.
Different numbers of faults were introduced for experiments. Firstly, we evolved
a motor control circuit in case all 24 logic units available; Secondly, single faults
in different position of the circuit and multi-faults in column H2 were introduced
respectively; and then evolutionary process was carried out to recover the circuit
topology with the same functionalities. In each evolutionary process, the pro-
gram stopped when the best individual’s fitness was 36 or the generations were
3000.

4.1 None Fault Experiment

In case of 24 logic units available, 50 runs of the program were executed in our
evolutionary platform. The experiment results are shown in Table 1. One of the
evolutionary processes is shown in Fig. 4; The corresponding evolved circuit is
depicted in Fig. 5.

Table 1. Experimental results of 50 runs

Criterion Generation Fitness Evolution Time (s) Number of Logic Unit
Average Values 493.4 30.67 96.72 17.3

Standard Deviation 95.72 2.29 22.67 0.52
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Fig. 4. Diagram of the population fitness. The top line is the best individual’s fitness
at each generation and the bottom is the average fitness.

Fig. 5. The evolved motor control circuit structure

4.2 Single Logic Unit Fault

The aim is to test that the platform has good fault recovery ability for single
logic unit fault. When fault is introduced to logic unit in H2 column, the re-
covery rate is 100%; that is to say, the circuit evolved can recover from single
logic unit fault completely. But when fault is introduced to H1 and H3 column,
the correct circuit can’t be evolved correctly all the time after 3000 generations
evolution. Furthermore the average fitness decreases and the average evolution-
ary generations increase. That is because the fault unit is near the inputs and
outputs position; the location of fault logic unit has crucial impact on fault re-
covery ability. It will greatly affect the ability of the EA to evolve high quality
circuit in limited generations. Faults close to the inputs or outputs will have
a more detrimental effect than those distributed in the centre column. Table 2
summarizes the experimental results with a single fault introduced.
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Table 2. Experimental results with single fault introduced

Position Average Average Evolution Recovery Number of
of Fault Generation Fitness Time (s) Rate Logic Unit

H2 506.3 30.53 96.42 100% 17.4
H1 823.4 27.46 183.67 90% 16.5
H3 1137.8 28.17 251.30 70% 18.7

4.3 Multi-logic Unit Fault

Here increasing number of logic unit faults in H2 column are introduced to
illustrate fault-tolerance ability of the motor control circuit respectively. The
experiment results are shown in Table 3.

Table 3. Experimental results with increasing numbers of fault introduced

Number Average Average Evolution Recovery Number of
of Fault Generation Fitness Time (s) Rate Logic Unit

1 506.3 30.53 98.42 100% 17.6
2 737.8 27.46 172.67 100% 16.5
3 1258.4 28.17 281.30 70% 16.4
4 2475.3 27.12 475.42 30% 15.2
5 3000.0 20.43 709.57 0% -

Table 3 indicates that the fault tolerant ability of FPGA decreases as the
number of fault logic units is increasing. Especially, When four logic unit faults
occur, the recovery rate is 30%; the average fitness diminishes and the average
number of evolutionary generations increase rapidly. The average number of logic
units used to implement the circuit reduces as the number of faults increases.

From the experimental results above, we know that the number of fault logic
units is closely related to the fault tolerant ability; that is to say, with the
number of fault logic units increasing, evolutionary recovery of the same cir-
cuit needs more evolutionary generations, and the average fitness and recovery
rate decrease evidently. The reason is that the increasing number of fault logic
units makes the signal paths which are used to accurately transfer signals be-
come less. consequently, to evolve the objective circuit topologies become more
difficult. We also find that if 5 logic units cause faults, the correct functional
circuit can’t be evolved; that is to say, the most permissive faults are 4 logic
units.

An example configuration of the motor control circuit evolved with 4 logic
unit faults is illustrated in Fig. 6. It is emphasized that the objective of this
work was not explicitly to design more efficient circuits but to show that it is
possible to evolve an alternative circuit in case of fault occur in the original
circuit, so that the functionality can be recovered.
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Fig. 6. The evolved motor control circuit with four logic unit faults introduced

5 Conclusion

A fault tolerant hardware platform for the automated design of brushless motor
control circuit has been presented. The platform uses the principle of EHW to
automate the configuration of FPGA dedicated to the implementation of the
motor control circuit. Our experiments show that it is possible to recover the
function of motor control circuit through evolution when faults are introduced.
Furthermore, the ability of the platform to adapt to increasing numbers of faults
was investigated. Results show that the functional circuit can be derived from
single logic unit faults and multi-logic unit faults; the most permissive faults are
four logic units. Of course, the location of faulty logic units will influence the
ability of EA to evolve high quality circuits, faults directly on logic units which
are connected to the inputs and outputs will have a more detrimental effect than
those distributed in the centre of the topological structure. This is similar to an
earlier observation [16]. It also shows that the evolutionary recovery ability of
the motor control circuit decreases as the number of fault logic units increasing.

The real attractiveness and power of EHW comes from its potential as an
adaptive hardware while operating in a real physical environment [4, 17]. Fur-
ther work will focus on on-line evolution in electromagnetic interference environ-
ments, which poses a great challenge, although online learning approaches [18]
can be employed in our EHW system.
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Abstract. In this research, we propose a novel parallelizable architec-
ture for the optimization of various sound synthesis parameters. The
architecture employs genetic algorithms to match the parameters of dif-
ferent sound synthesizer topologies to target sounds. The fitness func-
tion is evaluated in parallel to decrease its convergence time. Based on
the proposed architecture, we have implemented a framework using the
SuperCollider audio synthesis and programming environment and con-
ducted several experiments. The results of the experiments have shown
that the framework can be utilized for accurate estimation of the sound
synthesis parameters at promising speeds.

Keywords: computer music, parameter estimation, evolutionary com-
putation, parallel computing.

1 Introduction

Any attempt for sound analysis is also a form of endeavor for some sort of
parameter estimation [16, pg 596]. The analysis task might be undertaken for
obtaining the properties of some source sound that is to be re-synthesized with
different sound synthesis methods, or for observing those very qualities with
the purpose of fitting them into a theoretical model. For instance, Roads [16,
pg 596] points out that the Fourier Analysis can be considered as a parameter
estimation method, because the results returned by such an analysis (namely
magnitude and phase dissections for the analyzed signal) can be considered as
parameters for a sine wave re-synthesis method that will approximate the source
content veridically. However, we approach the problem of parameter estimation
for effectively reducing the amount of data that is required to approximate a
given sound with different synthesis methods in order to be able to control and
alter various perceptual qualities of the resulting sounds from a higher level of
abstraction, in an intuitive and interactive manner.

In this paper, we introduce the use of a parallelizable evolutionary architec-
ture to optimize the parameters of sound synthesizers. The architecture is imple-
mented as a modular evolutionary framework conceived inside the SuperCollider
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(SC) programming language that specializes in audio synthesis and algorithmic
composition [12,13]. The framework uses genetic algorithms (GA) to automat-
ically optimize the set of parameters required to approximate any given target
sound, using an arbitrary sound synthesizer topology created by the user. In
order to test the efficiency of the framework, we have experimented with a per-
cussion and a multiple modulator frequency modulation synthesizer for various
target sounds. Finally, we have described ideas for opportunities on creative us-
ages of evolutionary methodologies, which perform at interactive speeds in a
highly connective real-time sound synthesis and algorithmic composition envi-
ronment. The primary contribution of this work is the promising convergence
time, which is obtained through the parallel architecture implemented using the
SC environment and the simplified fitness function that preserves the perceptual
quality.

2 Related Works

Evolutionary methodologies have been previously investigated by researchers to
solve the problem of tone matching and parameter estimation for several differ-
ent synthesizer topologies. Manzolli et al. [11] introduced the evolution of wave-
forms to the corresponding psychoacoustic attributes of target sounds. Horner et
al. utilized evolutionary methods for parameter matching using Wavetable Syn-
thesis [6], Frequency Modulation Synthesis (FM) [9,7,8], and Group Synthesis
[2]. Garcia [5] used a genetic programming approach for automating the design
of sound synthesizer algorithms represented in the form of acyclic tree graphs.
Johnson [10] benefited from interactive genetic algorithms (IGA) where an user
conducted interactive approach was investigated to search the parameter space
and direct the parameters of the Csound FOF synthesizer.

The vast majority of the studies in this area aim to justify the suitability
and efficiency of the proposed methods for the aforementioned task. For that
reason, the software tools used in those works are quite specialized in demon-
strating the traits of the particular proposition in which the research focuses
upon (with the exception of [1] and [4] using Csound and Pure Data). Conse-
quently, they lack connectivity with other pieces of digital music performance
software; thus, obtaining and using them for compositional, live performance
and other creative purposes in a practical manner is difficult.

3 Architecture

The proposed architecture consists of a host environment for sound synthesis, a
modular evolutionary framework (EVWorkBench) and a parameter estimation
system (EVMatch).

The host environment is implemented using [13] audio synthesis and pro-
gramming language of SC (referred as sclang). The sound synthesis requests are
handled at server-side (scsynth) within the SC environment through compiled
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unit generator graph functions (Fig. 1). This architecture allows a single sclang
client to control multiple instances of local and networked scsynth servers via
the Open Sound Control (OSC) protocol [17].

Client (sclang)

Server Side (scsynth)

User Supplied

Synth

A Synth Playing

Target Sample

Synth for Rating

Similarity

Results via

OSC

Parameters from

gene pool

Fig. 1. Server-side Fitness Evaluation through OSC protocol

The initialization of the parameters and application of genetic operators are
handled by the wrapped EVWorkBench class. In this way, the stages of the op-
timization workflow (such as initialization, selection, crossover and mutation)
are separated to create a modularized framework where various evolutionary ap-
proaches can easily be experimented. Furthermore, the layered learning (having
increasingly demanding fitness functions) [14] and fine tuning of the bounds of
mutation operators throughout evolution are supported through interpreted and
interactive language of the host environment

The EVMatch class is responsible for compilation of the synthesis definition
(referred as SynthDef) provided by the user, transmission of the compiled Syn-
thDef to the supplied servers (local and networked), the evaluation and optimiza-
tion of the parameters in the gene pool, and distribution of the computational
load of the evaluation across the servers registered with the instance.

In this work, the optimization is performed inside the parameter spaces of
static synthesizer topologies supplied by the user for a target sound. However,
it is also possible to encode synthesizer topologies as chromosomes and evolve
sound synthesis algorithms as described by [5]. The speed of optimization can
be increased by affecting the convergence time of the search using the direct
control of the selection pressure (e.g. the tournament size) that can be tuned for
different search domains and desired time constraints.

3.1 GA Optimization

To begin optimization, the user supplies a target sound file with desired at-
tributes, a synthesizer definition, parameter names and default values of the
parameters, which forms the initial population. After this initialization, the GA
loop (Fig. 2) happens in generations for evolving towards better solutions of
parameter sets. In each iteration, GA synthesize sounds for each set of param-
eter and compare the attributes of the output sound to the target sound by
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Parameter Set
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Apply Genetic

Operators

New Generation

of Parameters

Fig. 2. The GA Loop

calculating the fitness of them. Then, multiple individuals are stochastically
selected from the current population based on their fitness to breed a new gen-
eration. After selection, crossover and mutation operators are applied to the
gene pool. This loop continues until satisfactory fitness level, which is set by the
user, has been reached for the population. In addition to a target fitness value,
the user can decide the fitness of the fittest member of the last generation by
listening or can limit the maximum number of generations to be iterated.

Reproduction. The tournament selection [15] is preferred concerning the re-
lationship between the convergence rate of the GA and selection pressure, and
suitability of tournament selection for noisy GA chains. Tournament selection
involves running several tournaments among a few individuals chosen at ran-
dom from the population. After each tournament, the one with the best fitness
(the winner) is selected for crossover. Afterwards, a multi-point crossover opera-
tor where the number of split points determined proportionally to the crossover
probability is applied.

4 Fitness Evaluation

The fitness evaluation provides fitness scores for each member of the gene pool
that will influence the selection stage that will then steer the evolutionary pro-
cess. The fitness function that we use for the parameter estimation compares
the attributes of the sound output by the synthesizer running with each set of
parameters inside the gene pool with attributes of the target sound.

The fitness evaluation results in a fitness rating that reveals the extent of
similarity between two sounds. For the fitness rating, we have computed the
analytical spectral distance of magnitudes between the complex spectrums is
used as similarity measure of the source (synthesized) and target sound. In our
implementation, we’ve used the analytical distance metrics proposed by [5] dis-
regarding the phase information and focusing only on the magnitudes. The sim-
plification of the fitness function decreases the convergence time dramatically
while it preserves the perceptual quality of the synthesized sound, as it rather
depends on the given synthesizer topology.
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MSEMag =
1

Frames

Frames∑
j=1

Bins∑
i=1

[
(|Xij | − |Tij |)2Wmij

]
(1)

Wmij = O + (1 − O)
log |Tij | − min (log |Tij |)

|min (log |Tij |) − max (log |Tij |)| (2)

The Eq. 1 calculates the mean squared error (MSE) between the magnitude
spectrograms of synthesized and target sounds. The weight matrix WMij (Eq. 2)
helps for curtailing the errors at spectral regions with more energy. The influence
of the weight matrix in MSE calculation can be adjusted with O.

5 Parallelization

The fitness evaluation is parallelizable because calculations for determining the
fitness scores for all members of the gene pool in a generation can be run concur-
rently as the fitness function only needs the chromosome of a single individual
in order to work. In our work, the evaluation of the entire population is divided
between servers that are registered to the instance of the parameter estimation.
Thus, the workload is efficiently partitioned for independent processing across
available logical processors in a single system, and computers available in a net-
work. Thus, it handles the synchronization and the distribution of the load across
registered servers automatically. The parallelization of the parameter matching
enables users to work with sound at interactive speed that is suitable for digital
music performances. For that reason, we have used the client-server architecture
(referred as scsynth) of the SC that enables parallelization of the computational
tasks regarding real-time sound synthesis and analysis across the CPU cores of
a single machine as well as multiple networked computers.

6 Experiments

In order to determine the efficiency of the framework, we have conducted various
tests in typical usage scenarios including a percussion synthesizer and multiple
modulator frequency modulation topography. All of the experiments are pro-
cessed using a mobile “Intel Core 2 Duo 2.4 Ghz (Penryn)” processor by utilizing
both cores.

6.1 Percussion Synthesizer (PS)

To create electronic drum and percussion sounds, we have implemented a per-
cussion synthesizer (PS) (Fig 3) that is composed of a sine oscillator with a
frequency envelope acting as a simple membrane, and a filtered noise generator
envelope for helping cymbal sounds or attack noises. The sum of both envelopes
is fed back to the phase input of the sine oscillator (feedback PM) and it reaches
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Fig. 4. Linear frequency scale spectrogram for an acoustic tom drum sample, and the
output of the parameter matched by the percussion synthesizer
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the output after a distortion stage (tanh distortion). Almost all stages of the PS
(including envelope arguments, PM amount, distortion amount, filter settings)
are parameterized.

Although the PS is capable of producing a variety of electronic drum and
percussion sounds, the parameter search space is not very complex for relevant
sounds (such as percussive sounds that are possibly created with other drum
synthesizers). However, sounds with acoustic origins have more complex spec-
trums; thus, PS would not be able to produce perfectly their distinctively com-
plex spectra. Yet, we have observed that PS is capable of making cross-genre
translations between sounds using our architecture. For example, PS was capable
of converging to characteristic cymbal sounds that are similar to ones typically
programmed for a drum synthesizer when it is fed with actual cymbal record-
ings for translation of that sound to an electronic version. Spectrogram views
of two target (acoustic tom and snare drum samples) and synthesized sound
pairs are provided in Fig. 4 and 5, where the GA converges to a fit solution in
approximately 15 seconds.

6.2 Multiple Modulator Frequency Modulation (Parallel MM-FM)

A parallel MM-FM topography (Fig. 6), where 3 sine oscillators are modulat-
ing a single carrier oscillator, is implemented to test the framework in more
complex search spaces. Base frequencies, modulation amounts and indexes are
parametrized and no integer multiple relationships in carrier and modulator

SINE
OSC

SINE
OSC

ENV
GEN

Start
End

TimeMod. Freq.
Mod. Deviation

SINE
OSC

ENV
GEN

Start
End

TimeMod. Freq.
Mod. Deviation

SINE
OSC

ENV
GEN

Start
End

TimeMod. Freq.
Mod. Deviation

ENV
GEN

Attack
Sustain
Release

+Carrier. Freq.

OUT

+

Fig. 6. Topology of the parallel MM-FM synthesizer with 3 modulators
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Fig. 7. Logarithmic frequency scale spectrogram output for a recorded piano sample
and the output of the parameter matched synthesis by the MM-FM synthesizer
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Fig. 8. Logarithmic frequency scale spectrogram output for a recorded rhodes keyboard
sample and the output of the parameter matched synthesis by the MM-FM synthesizer

Time (s)

F
re

qu
en

cy
 (

H
z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

171

294

505

868

1491

2563

4405

7570

13010

Time (s)

F
re

qu
en

cy
 (

H
z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

171

294

505

868

1491

2563

4405

7570

13010

Fig. 9. Logarithmic frequency scale spectrogram output for a recorded human voice
producing the “ee” vowel and the output of the parameter matched synthesis by the
MM-FM synthesizer

frequencies is implied in the design. The MM-FM synthesizer is capable of pro-
ducing variety of complex harmonic and inharmonic spectra. Various harmonic
target sounds have been experimented using variety of GA settings; yet, the
average convergence time is considerably higher (around 3 minutes) than PS be-
cause the search space is significantly more complex. When C:M ratio is locked
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to integer multiple relationships (without frequency envelopes), convergence
time decreases substantially; however, the produced sounds become much less
interesting. Spectrogram views for various target (including piano, rhodes key-
board and human voice samples) and synthesized sound pairs are provided in
Figures 7, 8 and 9 respectively.

7 Discussion

The implementation was intended to be apposite for general-purpose search op-
timization tasks; thus, the parameter estimation system does not rely on a par-
ticular synthesis technique or synthesizer topology to be functional. Hence, the
complexity of the search space is influenced directly by parameter ranges defined
for the synthesizer in relation with the target sound. Paying special attention to
providing possible parameter ranges is not strictly necessary, as the GA search
will eliminate unintelligible parameters for a given topology. However, directing
the algorithm to a set of possibly related parameter ranges would greatly de-
crease the complexity of the search; thus, better results might be obtained in a
fixed time window. Using such setup, it might be possible to compute a param-
eter setting, which yields good results with virtually any sound produced by an
instrument, given a few sound samples of it.

However in practical terms, there is no guarantee for an arbitrary provided
method to approximate a target sound satisfactorily [16, pg 596] and usually the
GA alone may not able to eliminate sets of parameters that do not represent
feasible solutions. Fortunately, experimenting small or large scale synthesizer
topologies is relatively easy thanks to unit generators provided within the SC
distribution. Thus, synthesizers are available for sound generation immediately
after defining the unit generator graph function. The process is so robust that
live programming and control of synthesizers are handled real-time in live cod-
ing performances by various computer musicians [3]. The simplicity in dynamic,
interactive and almost improvisatory synthesizer creation yields to some inter-
esting opportunities like easy experimentation with cross-genre transformation
of sounds and errant approaches to parameter estimation between seemingly
unfit synthesizers and targets for creative purposes.

8 Conclusion

In this work, we have proposed a general-purpose evolutionary framework, which
is integrated into the SuperCollider (SC) software platform, to perform flexi-
ble parameter estimation for digital sound synthesizers. The system is able to
provide solutions for parameter estimation tasks at interactive speeds typically
necessitated for live performance and composition workflows. The modular and
flexible structure of the framework may open wide-range of opportunities for
musicians and researchers in the field.
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Abstract. This study evolves and categorises a population of concep-
tual designs by their ability to handle physical constraints. The design
process involves a trade-off between form and function. The aesthetic
considerations of the designer are constrained by physical considerations
and material cost. In previous work, we developed a design grammar
capable of evolving aesthetically pleasing designs through the use of an
interactive evolutionary algorithm. This work implements a fitness func-
tion capable of applying engineering objectives to automatically evaluate
designs and, in turn, reduce the search space that is presented to the user.

1 Introduction

Design can be described as a purposeful yet explorative activity [7]. Initially the
designer must explore the search space to find a concept or form that is capable
of fulfilling the design specification. Once the form has been chosen, the design
process focuses on satisfying the constraints of the original design specification.
At the centre of this process there is a conflict between form and function. While
these two attributes of a design are not mutually exclusive, there can be a trade
off when realising a design.

In this paper we look at the specific case of architectural design. For a structure
to be created it requires the combined effort of both architects and engineers.
The heuristics an architect uses to evaluate a design are not the same as a
structural engineer. Architects evaluate all aspects of the design, from broader
issues of internal and external relationships to more detailed aesthetic measures
such as material use, texture and light. Engineers evaluate the integrity of the
structure itself. To oversimplify, architects are concerned with spaces, engineers
are concerned with forces.

This study is a continuation of our previous work that primarily focused on the
aesthetic qualities of conceptual design [19]. Through the use of design grammars
and an interactive fitness function we have shown that Grammatical Evolution
(GE) [18] is capable of creating surprising and innovative designs. Conversely,
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the focus of structural evolutionary design has primarily been concerned with
engineering constraints. The objective nature of engineering constraints lend
themselves to implementation as a fitness function and allow a design to be
optimised accordingly [15].

Our work combines the formal approach of architecture with the constraints of
engineering. The advantages of this approach are twofold. First, conceptual de-
signs can be optimised to increase their functionality and strength while reducing
the amount of material used. This will, in turn, make the designs more credible
and realisable. Second, assigning an objective fitness to a design also provides
a mechanism for grouping designs. The user may then select which areas of the
search space they find the most interesting and thus accelerate convergence on
aesthetically pleasing designs.

This paper is organised as follows. Section 2 is a summary of related research in
this area. A description of our approach to design generation and analysis is given
in Section 3. The two experiments carried out using this system are described
in Section 4 and Section 5 and their results are examined. Our conclusions and
future work are discussed in Section 6.

2 Previous Work

Computers are ubiquitous in design but they are typically used as an analytical
aid rather than as a generative tool. Computer applications are employed after
the conceptual design process has been completed. With a few notable excep-
tions, the computer is not used to explore the search space of possible designs.
This section discusses previous work in design generation.

2.1 Conceptual Evolutionary Design

A direct approach that allows the designer to explore the design search space is to
implement a parametric system. The user inputs their design and then modifies
individual components of that design. EIFForm was a successful attempt at
implementing parametric design and the results have been used to design a
structure in the inner courtyard of Schindler house [22]. Parametric design tools
have now been introduced into more mainstream design software. There is the
Grasshopper plug-in for the Rhino modelling system [9] and Bentley Systems
have implemented a program called Generative Components [6].

An evolutionary approach to conceptual design exploration is implemented
in GENR8 [20]. This system uses GE and Hemberg Extended Map L-Systems
(HEMLS) to generate forms. The user can influence the growth of the L-System
through the use of tropism and fitness weighting. Objects can be placed in the
environment that either attract or repel the design. Each design is evaluated to a
series of metrics, symmetry, undulation, size smoothness, etc. The user is able to
weight these metrics according to their preference. Our approach builds on this
work. We use a grammar for generating designs and a combination of automatic
and users evaluation to drive the evolutionary process.
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2.2 Evolutionary Structural Design

Structural engineers seek to find ways for a structure to resist the applied stresses
while also reducing material usage and cost. Evolutionary Computation (EC)
naturally lends itself to these problems and, accordingly, there has been a large
amount of work in this area. Many of the earliest EC applications were focused on
optimising structures [15]. The computational cost of structural analysis meant
that early papers focused on greatly simplified structures, such as two dimen-
sional trusses [11]. As computational power increased, so did the scope of the
applications. Structures such as bridges [25], electricity pylons [23], and even
whole buildings [14] have been optimised using EC. A list of applications is cov-
ered extensively in the literature of Kicinger [15]. Structural optimisation falls
into three categories. The overall layout of the system (topology), the optimal
contour for a fixed topology (shape) and the size and dimensions of the com-
ponents (sizing). Our work focuses on the topological optimisation, although
the modular nature of our approach could be adapted for optimising the other
categories. This possibility is discussed in greater detail in Section 6.

2.3 Interactive Evolutionary Computation

Interactive Evolutionary Computation (IEC) was developed as a means of as-
signing fitness when no objective metric could be defined. Human interaction has
allowed EC to be applied to problems such as music and computer graphics, and
to act as an exploratory tool as opposed to its primary function as an optimiser.
A more complete list of interactive applications can be found in [1] and [24].

3 Experimental Setup

Our system is comprised of four parts, an evolutionary algorithm, a design gram-
mar, structural analysis software and a multi-objective fitness function. This
section describes our approach to generating and evaluating designs.

3.1 Grammatical Evolution

Grammatical Evolution is an evolutionary algorithm that is based on GP [18].
It differs from standard GP by representing the parse-tree based structure of
GP as a linear genome. It accomplishes this by using a Genotype-Phenotype
mapping of a chromosome represented by a variable length bit or integer string.
The chromosome is made up of codons eg:(integer based blocks). Each codon in
the string is used to select a production rule from a Backus Naur Form(BNF)
grammar. Production rules are selected from the grammar until all non-terminal
rules are mapped and a complete program is generated. The advantage of using
a grammar is that it is possible to generate anything that can be described as a
set of rules. Grammars are capable of generating strings, mathematical formu-
las, pieces of programming code and even whole programs. The grammar used
for our experiments is described in Section 3.2. Another advantage of applying
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GE to design is that generative processes, like the mapping process in GE, are
required for the production of designs that can scale to a high level of complex-
ity [13].

3.2 Design Grammar

The grammar was originally conceived based on a brief provided to third year
students in the UCD architecture and structural engineering course of 2010. The
brief specified that the bridge was to be composed of timber, had an optional
arch, a width of 2 metres and bridge a span of 10 metres. In our previous ex-
periment, evaluation was provided solely from user interaction. The grammar
was created with no consideration for the structural soundness of the resulting
bridges. Despite this, it was possible to compare the relative performance of
bridges in the grammar by applying a pre-determined loading.

The size of the grammar meant that it could not be appended to the paper.
The grammar is available online at [16]. The grammar creates graphs using
networkx [10], a python class for studying complex graphs and networks. Three
desirable characteristics for a design generator are modularity, regularity and
hierarchy [12]. We implement these characteristics using the novel method of
higher order functions. Our work in this area is discussed in greater detail in [17].
For structural analysis to be performed on the bridges, a mechanism was required
for specifying the loads on the structure. Our approach was to add attributes
to the existing grammar. This allowed us to label components depending on the
function that created them. Labelling meant that forces could be assigned to the
structures automatically and accordingly, that different forces could be applied
to different parts of the bridge. An example of this can be seen in Figure 1.

3.3 Structural Analysis

The ability to analyse structures as computable models is achieved by using Fi-
nite Element Methods [8]. Instead of calculating the partial differential equation
for a whole design, a continuous structure is discretised into an approximat-
ing system of ordinary differential equations. The approximation can then be
solved using numerical approximation methods for differentiation such as Eu-
ler’s method or the Rung-Kutta method. Our designs are particularly suited to
Finite Element Analysis (FEA) as the structures are already discretised into a
series of interconnected beams. To analyse our designs we are using San Le’s
Free Finite Element Analysis (SLFFEA) [21]. This software is freely available
for download and has been used by engineering companies in industry.

3.4 Multi-Objective Fitness Function

Design usually involves satisfying several (possibly contradictory) objectives.
Multi-objective evolutionary algorithms (MOEAs) have been shown to be a use-
ful approach for finding the best compromise when tackling a multi-objective
problem [26]. Instead of weighting the objectives and allowing an evolutionary
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(a) Force being applied to the handrail (b) Force being applied to the walkway

Fig. 1. Different Magnitudes of Stresses Being Applied to the Handrail and Walkway

algorithm to converge on a single global optimum, the algorithm builds a pareto-
front of the individuals that maximise the given objectives. Using fronts can aid
the design process by presenting the user with several pareto-equivalent designs
and letting them select the design that most closely matches their requirements.
We are using a GE implementation of the NSGA2 algorithm [3] as our selection
mechanism. The algorithm uses a fast non-dominated sorting algorithm to cal-
culate which individuals are on the front and then group the other individuals
in the population relative to this group. Normally MOEA applications are only
concerned with the individuals on the pareto-front, we intend to investigate in
Section 5 whether the grouping property of the NSGA2 algorithm could also be
of benefit for guiding the search process.

4 Optimising Designs Using Structural Analysis

This experiment aimed to test whether an evolutionary search was capable of
generating designs that minimised the stress in a structure and reduced the
amount of material used. It was carried out using the implementation described
in Section 3 and the bridge grammar described in Section 3.2. The experimental
settings were: Population size = 100, Generations = 50, No. of Runs = 30,
Mutation Rate = 1.5%, Crossover Rate = 70%, Selection Scheme = Tournament,
Tournament Size = 3, Replacement Scheme = NSGA2.

The material from which the bridge was constructed was small scale air dried
oak sections with a moisture content of 20% or more. The structural quali-
ties of this wood were taken from the British Standards BS-EN-338-2003 as a
grade D30 class of timber [2]. The material qualities were then assigned to the
bridge beams for SLFFEA analysis. For stresses on a structure to be calcu-
lated, we must first assign fixed points and loaded beams. Normally this is done
manually by the user. Our approach automated this by using attributes in the
grammar, as described in Section 3.2. The bridges were subjected to a uniformly
distributed load (UDL) of 5kN/m upon the walkway itself and a separate 1kN/m
load was applied to the handrails. The loads for the bridge were taken from [4].
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While we tried to replicate a load that a bridge might be subjected to during
actual usage, the main purpose was to compare how well the bridges performed
relative to other bridges generated by the design grammar.

There were two constraints placed on the designs, one of which was stress
based and one that was based on material usage. The stress constraint in the
fitness function calculated the maximum stress on each beam in the design, this
was then averaged over the whole structure and the selection pressure aimed at
reducing it. If a beam failed then the bridge was assigned a default fitness of
100,000. This meant that high stress designs were removed from the population
and the fitness pressure aimed at reduced stresses over the structure as a whole.
The material constraint aimed at reducing the number of beams used in a struc-
ture. This fitness metric is opposed to the stress constraint as one method for
reducing the average stress on the beams is by adding more unnecessary beams.
By adding a penalty for the total weight of material used, it can force the al-
gorithm to simplify the design. Reducing the total weight of material used also
translates into direct savings when manufacturing an instance of the design.

4.1 Optimisation Results

The results for the experiment are shown in Figures 2 and 3. It is clear that the
fronts are moving toward a pareto-optimality over the course of 50 generations,
as shown in Figure 2. There is a 43% reduction in the material used (Figure 3(a))
and a reduction of the average maximum stress placed on the structure of 41%
(Figure 3(b)) after 50 generations. The results show that using structural analysis
and an MOEA can significantly reduce the stresses and self weight of a design.

The results show that our system is capable of evolving structures that increas-
ingly satisfy the constraints specified in our multi-objective fitness function. This
is very important for trying to move a design from a mere concept to something
that could be actualised. This is a challenge that faces engineers and architects
on a daily basis and a GE based approach such as this has the potential to help
solve this problem.

5 Categorising Designs Using Structural Analysis

Our intention in implementing this software is not to exclusively optimise designs
but to allow the architect to interactively evolve designs that they find aestheti-
cally pleasing. To this end, it is imperative to bias the algorithm towards designs
that the user finds interesting and appealing. The design process is not about
optimisation and, as such, designers are often interested in designs that do not
lie on the pareto front.

In this experiment we used the settings described previously except that we
only allowed each run to be executed for a single generation. Instead of using the
NSGA2 algorithm to optimise the bridge designs, it is used to group the bridge
designs by realisability. The grouping created by the fast non-dominated sort are
shown in different colors in Figure 5. The user selects the design grouping they
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Fig. 2. Scatter plot with a density estimation function that shows the progression of
front over 50 generations
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Fig. 3. The fitness minimisation average of the population over 50 generations

find the most interesting and so direct the pareto-front using selection pressure.
By categorising designs by their place on the fitness landscape we can accelerate
convergence onto more appealing areas of the search space.

In our experiment, we randomly selected designs from the first two fronts
and the last two non-empty fronts.To generate images of the designs we used an
open source mesh viewer developed by the INRIA called medit [5]. An online
survey was then conducted on the designs. The survey consisted of presenting
two designs,side by side, and asking the user to select which design they found
most aesthetically pleasing, as shown in Figure 4. If you wish to see more of the
designs, there is a link to the survey at [16]. If the user had no preference for
a particular design they can indicate this with the no preference button. The
presentation of the images were randomised so that there was no bias for which
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(a) (b) (c) (d)

Fig. 4. Sample bridges from the survey and survey layout (d)
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Fig. 5. Color differentiated fronts produced by the NSGA2 fast non-dominated sorting
algorithm at generation 1 (a) and generation 50 (b)

side the images appear on. The survey was carried out by post-graduate students
and volunteers from the school of architecture. This survey was authorised by
the ethics committee and the head of the school of Architecture.

5.1 Categorisation Results

The survey was completed by 28 individuals and consisted of 2800 evaluations.
The users showed a preference of 55.9% for bridges from the end of the non-
dominated sort compared to a 36.84% preference for non-dominated bridges
from the front of the sort. The users had no preference on 7.26% of the designs.
This shows an aesthetic preference for designs that do not fulfill the engineering
constraints. The results imply that the engineering constraints that we chose for
this experiment are in opposition to aesthetic preferences. Although aesthetic
preference is a purely subjective quality, the inclination towards unconstrained
designs could be because of their unusual and unexpected configurations rather
than the “ordinary” nature of structurally sound designs.What is most interest-
ing about this result was that there was no selection pressure on the population.
The fast non-dominating sort was applied to randomly generated individuals.
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As can be seen in Figure 5(a) compared to 5(b), this is the worst case scenario.
If a population was evolved over several generations the difference between in-
dividuals greatly increases, which would aid categorisation of the population.

The results indicate that the fast non-dominated sort in the NSGA2 algorithm
has a secondary purpose; It can be used to group designs by how well they meet
the objectives. This mechanism could greatly speed up IEC by allowing the user
to choose between groups rather than selecting individuals.

6 Conclusion and Future Work

In this paper we encoded material and physical constraints into a fitness func-
tion and showed conceptual designs could be evolved towards those objectives.
This is step towards making conceptual designs more realisable. We also showed
that multi-objective fitness functions could be used for more than optimisation.
By automatically categorising the designs and then presenting those categories
to a user for evaluation, the MOEA could drastically reduce the search space
presented to the user during IEC.

Our future work intends to encode other aesthetic constraints such as smooth-
ness, curvature, etc and allow the user to select objectives that they would most
like to see in the presented design. The modular structure of our software makes
it possible to lock the topology of a chosen bridge design and focus on the opti-
misation of either the shape of the beams or the sizing and material the beams
are constructed from.
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Abstract. We have translated genome-encoded protein sequence into musical 
notes and created a polyphonic harmony taking in account its tertiary structure. 
We did not use a diatonic musical scale to obtain a pleasant sound, focusing 
instead on the spatial relationship between aminoacids closely placed in the 3-
dimensional protein folding. In this way, the result is a musical translation of 
the real morphology of the protein, that opens the challenge to bring musical 
harmony rules into the proteomic research field. 

Keywords: Bioart, Biomusic, Protein Folding, Bioinformatics. 

1   Introduction 

During recent years, several approaches have been investigated to introduce biology 
to a wider, younger and non-technical audience [2, 10]. Accordingly, bio-inspired art 
(Bioart) represents an interdisciplinary field devoted to reduce the boundaries 
between science, intended as an absolutely rational argument, and the emotional 
feelings. By stimulating human senses, such as sight, touch and hearing, scientists and 
artists together attempt not just to communicate science but also to create new 
perspectives and new inspirations for scientific information analysis based on the 
rules of serendipity [13]. 

Bio-inspired music (Biomusic) is a branch of Bioart representing a well developed 
approach with educational and mere scientific aims. In fact, due to the affinity 
between genome biology and music language, lot of efforts have been dedicated to 
the conversion of genetic information code into musical notes to reveal new auditory 
patterns [4, 6, 7, 10-12, 14, 15]. 

The first work introducing Biomusic [10] showed the attempt to translate DNA 
sequences into music, converting directly the four DNA basis into four notes. The 
goal was initially to create an acoustic method to minimize the distress of handling 
the increasing amount of base sequencing data. A certain advantage of this approach 
                                                           
* Corresponding author. 
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was that the DNA sequences were easily recognized and memorized, but from an 
aesthetic/artistic point of view it represented a poor result due to the lack of 
musicality and rhythm. Other approaches to convert DNA sequences into music were 
based on codons reading frame and mathematical analysis of the physical properties 
of each nucleotide [6, 7]. 

Unfortunately, because of the structure and the nature of DNA, all these attempts 
gave rise to note sequences lacking of musical depth. In fact, since the DNA is based 
on four nucleotides (Adenine, Cytosine, Guanine, Thymine), a long and un-structured 
repetition of just four musical notes is not enough to create a musical composition. 
As a natural consequence, scientists focused their attention on proteins, instead of 
DNA, with the aim of obtaining a reasonable, pleasant and rhythmic sound that can 
faithfully represent genomic information. 

Proteins are polymers of twenty different amino acids that fold into specific spatial 
conformations, driven by non-covalent interactions, to perform their biological function. 
They are characterized by four distinct levels of organization: primary, secondary, 
tertiary and quaternary structure.  

The primary structure refers to the linear sequence of the different amino acids, 
determined by the translation of the DNA sequence of the corresponding gene. The 
secondary structure, instead, refers to regular local sub-structures, named alpha helix 
(α-helix) and beta sheet (β-sheet). The way the α-helices and β-sheets folded into a 
compact globule describes the tertiary structure of the protein. The correct folding of 
a protein is strictly inter-connected with the external environment and is essential  
to execute the molecular function (see Figure 1). Finally, the quaternary structure 
represents a larger assembly of several protein molecules or polypeptide chains [3].  

A number of studies have dealt with the musical translation of pure protein 
sequences [4, 15]. For example, Dunn and Clark used algorithms and secondary 
structure of proteins to translate amino acid sequences into musical themes [4]. 

Another example of protein conversion in music is given by the approach used by 
Takahashi and Miller [15]. They translated the primary protein structure in a sequence 
of notes, and after that they expressed each note as a chord of a diatonic scale. 
 

Amino Acid Sequence (Primary Structure) Folded Protein (Tertiary Structure)

protein folding

 

Fig. 1. Protein structures: linear sequence of amino acids, described on the left, fold into 
specific spatial conformations, driven by non-covalent interactions 
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Moreover, they introduced rhythm into the composition by analyzing the abundance 
of a specific codon into the corresponding organism and relating this information with 
note duration. Anyway, the use of the diatonic scale and the trick of chords built on a 
single note gave rise to results that are partially able to satisfy the listener from a 
musical point of view but, unfortunately, they are not a reliable representation of the 
complexity of the molecular organization of the protein. 

Music is not a mere linear sequence of notes. Our minds perceive pieces of music 
on a level far higher than that. We chunk notes into phrases, phrases into melodies, 
melodies into movements, and movements into full pieces. Similarly, proteins only 
make sense when they act as chunked units. Although a primary structure carries all 
the information for the tertiary structure to be created, it still "feels" like less, for its 
potential is only realized when the tertiary structure is actually physically created 
[11]. Consequently, a successful approach for the musical interpretation of protein 
complexity must take in account, at least, its tertiary structures and could not be based 
only on its primary or secondary structure. 

2   Method 

Our pilot study focused on the amino acid sequence of chain A of the Human 
Thymidylate Synthase A (ThyA), to create a comparison with the most recent work 
published on this subject [15]. The translation of amino acids into musical notes was 
based on the use of Bio2Midi software [8], by means of a chromatic scale to avoid 
any kind of filter on the result. 

The protein 3-dimensional (3D) crystallographic structure was obtained from the 
Protein Data Bank (PDB). Information relative to the spatial position in a 3D volume 
of each atom composing the amino acids was recovered from the PDB textual 
structure (http://www.rcsb.org/pdb/explore/explore.do?structureId=1HVY).  

The above mentioned file was loaded in a Matlab® environment, together with 
other useful indicators such as the nature of the atom and its sequential position in the 
chain, the corresponding amino acid type and its sequential position in the protein. 

A Matlab® script was written and implemented to translate the structure in music, 
as described below. We adopted an approach based on the computation of the centre 
of mass of each amino acid, which was identified and used as the basis for subsequent 
operations: this was done considering each atom composing every amino acid, its 
position in a 3D space and its mass. Therefore, the mass-weighed mean position of 
the atoms represented the amino acid centre of mass. 

3   Results 

3.1   Distance Matrix: Musical Chords 

The first important output obtained from the algorithm was the distance matrix, 
containing the lengths of the vectors connecting the amino acids one by one.  
The matrix is symmetrical by definition and features an interesting block structure 
(see Figure 2). The symmetry is explained simply considering that the distance 
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Fig. 2. Distance matrix. X and Y axis: sequential number of amino acid; Z axis: distance in pm 
(both vertical scale and colour scale). 

 

Fig. 3. Sketch of the Matlab® script operation 
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Fig. 4. Distance distributions. Histograms depicting the distance distribution in the three 
orders(X axis: distance in pm; Y axis: number of amino acid couples). Selection rules avoid the 
nearest-neighbours amino acids. Increasing the cut-off to third order it is possible to sample the 
second peak of the bi-modal distribution (diagonal lines). 

between the i-th and j-th amino acid is the same of that between the j-th amino acid 
and the i-th one. The block structure is probably due to amino acid clustering in 
portions of the primary chain.  

We sought spatial correlations between amino acids as non-nearest-neighbour, 
hence ignoring those amino acids which are placed close one to the other along the 
primary sequence. By spatial correlation, we mean the closest distance between non-
obviously linked amino acids. 

Running the sequence, the Matlab® script looked for three spatial correlations (i.e. 
three minimal distances) involving three different amino acids (two by two), as sketched 
in Figure 3. The two couples for every position in the primary chain were then stored 
and the corresponding distance distribution was extracted and plotted (see Figure 4). 
Those spatial correlations, or distances, are addressed to as first, second and third order. 
The parallelism between the sequence order and the discretization order ubiquitous in 
every field of digital information theory emerges from the spatial description of the 
protein: the more precise is the observation of the amino acids in proximity of a certain 
point, the higher the order necessary to include every spatial relation. The same concept 
applies to digital music: the higher either the bit-rate (as in MP3 codification) or the 
sampling frequency (as in CD-DA), the higher the fidelity. The topmost limit is an order 
equal to n, the number of amino acids composing a protein. 
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3.2   Note Intensity: Musical Dynamics 

The note intensity is given in a range between 0 and 99. We assumed that the closer is 
the couple of amino acids, the higher is the intensity of the musical note. In order to 
play each order with an intensity comparable to the first order, characterized by the 
closest couples which may be found in the whole protein structure, we performed a 
normalization of the distance data within each order. In this way, normalized distance 
data, multiplied times 99, give the correct intensity scale. 

3.3   Angle Distribution: Musical Rhythm 

The primary sequence was analyzed also to extrapolate the degree of folding, a 
measure of the local angle between segments ideally connecting the centres of mass 
of subsequent amino acids. 

Proteins composed by extended planar portions β-sheet tend to have an angular 
distribution centred around 180°. The angle distribution was extracted (see Figure 5) 
and parameterized as the note length: the more linear is the chain, the shorter is the 
note. This step gave rhythm to the generated music. In this way, the musical rhythm is 
intended as the velocity of an imaginary visitor running on the primary sequence. We 
would like to point out that this conversion features a third order cut-off, meaning that 
the spatial description fidelity is based on three spatial relations for each amino acid 
position; the higher is the cut-off, the higher the sound quality. 

 

Fig. 5. Angular distribution. Histogram showing the angular distribution of the vectors linking 
the amino acids along the chain A of the human Thymidylate Synthase A (ThyA), used to 
codify each note length. 
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3.4   Output: Musical Score/Notation 

Finally, a conversion from each amino acid to the corresponding note was performed, 
generating an ASCII textual output that can be converted to a MIDI file with the 
GNMidi software [9]. 

Since amino acids’ properties influence the protein folding process, we adopted 
Dunn’s translation method [4] that is based on amino acids water solubility. The most 
insoluble residues were assigned pitches in the lowest octave, the most soluble, 
including the charged residues, were in the highest octave, and the moderately 
insoluble residues were given the middle range. Thus, pitches ranged over two 
octaves for a chromatic scale. 

After that, the MIDI files of the three orders were loaded in Ableton Live software 
[1] and assigned to MIDI instruments. We chose to assign the first order sequence of 
musical notes to a lead instrument (Glockenspiel) and to use a string emulator to play 
the other two sequences (see Figure 6). In this way it is possible to discern the 
primary sequence from the related musical texture that represents the amino acids 
involved in the 3D structure (See Additional Data File). 

 

Fig. 6. Score of the musical translation of the chain A of the human Thymidylate Synthase A 
(ThyA). The three instruments represent respectively the primary sequence (Glockenspiel) and 
the two different amino acids correlated in the tertiary structure (String Bass, Viola). 

4   Discussion 

We obtained a polyphonic music by translating into musical notes the amino acid 
sequence of a peptide (the chain A of ThyA) and arranging them in chords by 
analyzing their spatial relationship (see Figure 7). To our knowledge, it is the first 
time that a team of scientists and musicians creates a polyphonic music that describes 
the entire 3D structure of a bio-molecule. 
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PPHGELQYLGQIQHILRCGVRKD
DRTGTGTLSVFGMQARYSLRDEF
PLLTTKRVFWKGVLEELLWFIKGS
TNAKELSSKGVKIWDANGSRDFL
DSLGFSTREEGDLGPVYGFQWRH
FGAEYRDMESDYSGQGVDQLQR
VIDTIKTNPDDRRIIMCAWNPRDL
PLMALPPCHALCQFYVVNSELSC
QLYQRSGDMGLGVPFNIASYALLT
YMIAHITGLKPGDFIHTLGDAHIYL
NHIEPLKIQLQREPRPFPKLRILRK
VEKIDDFKAEDFQIEGYNPHPTIK
MEMAV

E 30

L 74

P 273

E 30

L 74

P 273

a.

b.

 

Fig. 7. From tertiary protein structure to musical chord. The primary structure of ThyA (chain 
A), on top right of the figure, fold into its tertiary structure (a, b). In yellow an example of the 
amino acids composing a musical chord: E30, L74 and P273 are non-obviously linked amino 
acids accordingly to our 3D spatial analysis criteria. 

Previous works, attempting to translate a protein in music, focused on primary or 
secondary protein structure and used different tricks to obtain a polyphonic music. 

Instead, the Matlab® script we developed is able to analyze the PDB file that 
contains the spatial coordinates of each atom composing the amino acids of the 
protein. The computation of distances and other useful geometrical properties 
between non-adjacent amino acids, generates a MIDI file that codifies the 3D 
structure of the protein into music. 

In this way, the polyphonic music contains all the crucial information necessary to 
describe a protein, from its primary to its tertiary structure. Nevertheless, our analysis 
is fully reversible: by applying the same translation rules that are used to generate 
music, one can store, position by position, the notes (i.e. the amino acids) and obtain 
their distance. A first order musical sequence gives not enough information to recover 
the true protein structure, because there is more than one unique possibility to draw 
the protein. On the contrary, our approach, based on a third order musical sequence, 
has 3 times more data and describes one and only one solution to the problem of 
placing the amino acids in a 3D space. 

5   Conclusions 

Our work represents an attempt to communicate to a wider audience the complexity 
of the 3D protein structure, based on a rhythmic musical rendering. Biomusic can be 
an useful educational tool to depict the mechanisms that give rise to intracellular vital 
signals and determine cells fate. The possibility to “hear” the relations between amino 
acids and protein folding could definitely help students and a non technical auditory 
to understand the different facets and rules that regulate cells processes. 
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Moreover, several examples of interdisciplinary projects demonstrated that the use 
of an heuristic approach, sometimes perceived by the interacting audience as a  
game, can lead to interesting and useful scientific results [2, 5, 16]. We hope to bring 
musical harmony rules into the proteomic research field, encouraging a new 
generation of protein folding algorithms. Protein structure prediction, despite all the 
efforts and the development of several approaches, remains an extremely difficult and 
unresolved undertaking. We do not exclude that, in the future, musicality could be 
one of the driving indicators for protein folding investigation. 
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Abstract. With the introduction of the iPad and similar devices, there
is a unique opportunity to build tablet-based evolutionary art software
for general consumption, and we describe here the i-ELVIRA iPad ap-
plication for such purposes. To increase the ludic enjoyment users have
with i-ELVIRA, we designed a GUI which gives the user a higher level
of control and more efficient feedback than usual for desktop evo-art
software. This relies on the efficient delivery of crossover and mutation
images which bear an appropriate amount of resemblance to their par-
ent(s). This requirement in turn led to technical difficulties which we
resolved via the implementation and experimentation described here.

1 Introduction

While interacting with evolutionary art software can be a very rewarding expe-
rience, doing so is not yet a mainstream hobby, with the notable exception of
online collaborations such as the Electric Sheep project [1]. The recent prolifer-
ation of tablet devices such as the iPad – where an increased emphasis is put
on users enjoying their interaction with software – offers a good opportunity to
bring evolutionary art to a wider audience. We have built the j-ELVIRA desk-
top evolutionary art program (which stands for (J)ava (E)volution of (L)udic
(V)ariation in (R)esponsive (A)rtworks), as a rational reconstruction of the Av-
era software [2], in the usual mould of human-centric evo-art software such as
NEvAr [3]. Porting j-ELVIRA to the iPad raised more than just issues related
to re-programming the software. In particular, the touchscreen interface and the
expectation of constant, enjoyable interaction with iPad applications required a
new design for the GUI and improvements to the efficiency and quality of image
generation. We provide details here of the iPad implementation (i-ELVIRA), in-
cluding aspects of the interface design and the nature of image generation, in
addition to some experiments we have performed to inform our design choices.

In section 2, we describe the particle-based image generation underpinning
the ELVIRA systems, and we critique the desktop version from the perspective
of user-interaction. This critique led us to design i-ELVIRA in such a way as to
increase the ludic quality of the software, i.e., how much fun it is to interact with.
These design choices led to certain technical difficulties. In particular, we found
that images were generated too slowly to achieve the kind of ludic interaction
we hoped for, and that often the images were not appropriate, i.e., they were

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 223–233, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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blank, or bore too much/too little resemblance to their parents. In sections 3
and 4, we describe how we improved both the generation speed and quality of
the images respectively, including details of some experiments we undertook to
assess mutated image fidelity. In section 5, we assess the suitability of i-ELVIRA
for mainstream use, and we discuss some future directions for our work.

2 A Tablet-Based Interface Design

Particle based image generation schemes have been used to good effect in evo-
lutionary art, for instance in the generation of ricochet compositions [4], and
within the neuro-evolution framework described in [5]. In [2], Hull and Colton
introduced an image evolution scheme which we have re-implemented into the
j-ELVIRA software. The scheme uses six initialisation trees to control the nature
of P particles, in terms of a sextuplet defining their location and their colour:
〈x, y, r, g, b, a〉. Over T timesteps, each particle changes colour and position, as
controlled by six corresponding update trees, and a line is drawn from their pre-
vious position to their new one. The genomes of images therefore comprise a
background colour which the canvas is filled with initially, and 12 trees which
represent mathematical functions that calculate collectively the colour and po-
sition of a particle numbered p as it is initialised and as it changes at timestep
t. Each update function takes as input the current 〈x, y, r, g, b, a〉 values of the
particle in addition to t and p, all of which may be used in the function calcu-
lations. The canvas onto which lines are drawn is defined by the rectangle with
corners (−1,−1) and (1, 1). At each timestep, after all the particle lines have
been rendered, a Gaussian blur is applied. Each new set of lines is drawn on top
of the previously resulting blurred background.

With the default values of P = 1000 and T = 100, the production of an image
requires the plotting of 100,000 lines and 100 blurring operations. In [2], the
authors barely explored the variety of images which can be produced, because
their implementation was slow due to the drawing (off-canvas) of very long lines.
By truncating – if necessary – the start and end points of the lines to be within
the canvas rectangle, we achieved a much faster implementation. This allowed
greater exploration of the types of images that can be produced, and we have
seen a huge variety of images which can evoke perception of: lighting effects,
shadowing, depth, texture and painterly effects. Moreover, the images produced
often have a non-symmetrical and moderately hand-drawn look, which can add
to their appeal. A sample of sixty images produced using this method is given in
figure 1, along with an example genome (of 12 flattened trees) and the resulting
image. We see that the complexity of the images derives not from the complexity
of the individual trees, but rather from the iterative nature of the calculations the
trees perform, and the blurring effect, which adds much subtlety to the images.

j-ELVIRA has a user interface similar to that of many evo-art packages:

• To start with, the user waits while a series of randomly generated genomes are
used to produce a user-chosen number of images (usually 25).
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Initialisation functions
x(p)0 = −(0.75/sin(p))/ − p
y(p)0 = −(p ∗ −0.5) + (p/ − 0.01)
r(p)0 = cos(cos(sin(−0.001/p)))
g(p)0 = −sin(sin(0.001 + 100 ∗ p))
b(p)0 = (−p ∗ p)/(−0.25 ∗ p)
a(p)0 = sin(−0.01)

Update functions
x(p)t = sin(0.25 − p)
y(p)t = −sin((xt−1(p)−0.001)∗ (at−1(p)/rt−1(p)))
r(p)t = sin(xt−1(p)) + 0.75
g(p)t = sin((−bt−1(p) − yt−1(p)) ∗ t)
b(p)t = yt−1(p) ∗ −0.5
a(p)t = cos(t) ∗ 2 ∗ rt−1(p)

Fig. 1. Top: 60 exemplar images produced with the particles method. Below: a geno-
type/phenotype pair in terms of the genome functions and the image produced.

• The user selects the images they prefer, or sometimes at the start of the session,
they tend to select any images which are in any way unusual, as many of the
images will be devoid of interest.
• The user chooses to either crossover and/or mutate the selected images. They
then wait while the software chooses randomly from the selected individuals and
crosses pairs of them and/or mutates them into child genomes from which new
images are produced and shown to the user.

When implementing i-ELVIRA in Objective C for the iPad, we referred to Ap-
ple’s iPad development guidelines, where it is noted that: (a) “People, not apps,
should initiate and control actions ... it’s usually a mistake for the app to take
decision-making away from the user” (b) “People expect immediate feedback
when they operate a control”, and (c) “When appropriate, add a realistic, phys-
ical dimension to your app”. We felt that the interaction design for j-Elvira was
at odds with guidelines (a) and (b). In particular, by choosing which individuals
from the preferred set to crossover/mutate, j-Elvira takes too much control away
from the user, thus contradicting guideline (a). Moreover, j-Elvira forces users
to wait much too long (measured in minutes) for the production of 25 images
before more progress can be made, thus contradicting guideline (b). To address
these issues, we designed the iPad interface so that the user explicitly chooses
which individual to mutate, and which pairs to crossover. As soon as they have
made their choice, the child images are produced immediately. This hands back
more control to the user, and they are supplied with feedback as soon as a new
image can be generated (measured in seconds). In response to guideline (c), to
add a realistic element to the interface, we used metaphors of: a recycling tray
for discarding images; a printer/scanner for copying and generating images; and
rows of trays into which sets of images can be dragged.

The random generation of images at the start of a session with j-ELVIRA
is also unappealing, as it is prone to producing blank/dull images, as all/most
of the particle lines are drawn off-canvas. To address this, we generated tens of
thousands of images randomly, and chose by hand 1,000 preset images from them
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Fig. 2. (i) Opening screen, where old sessions can be loaded (ii) browsing screen, where
images are generated and organised into trays (iii) editing screen, where images can be
scaled, rotated, translated, cropped and re-rendered

(60 of which are given in figure 1). These were chosen to maximise the variety
of images afforded by the particles method, so that hopefully every user may
find a preset which fits their aesthetic preferences. We have performed extensive
testing, and we have found that neither large trees, nor more complex functions
than cosine and sine, nor more complex programmatic structures such as con-
ditionals lead to more interesting or varied images. Therefore, when generating
the preset images, we restricted the random search to trees of size 12 or less,
containing only the arithmetic and trigonometric functions and the terminals
{0, 0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 10, 100} and their negations.

We provide screenshots of the graphical user interface for i-ELVIRA in
figure 2. In overview, the user is presented with a continuous supply of pre-
set images at the top of the screen. The user can drag these images into trays
lower on the screen to organise them. The rows of trays add physicality to the
design and enable the choosing of any pair of images for crossover. If a user drags
one image on top of another, i-ELVIRA immediately crosses over the genomes
of the two images to produce four child images, which appear at the top of the
screen. Moreover, if the user drags an image to the printer/scanner, i-ELVIRA
will immediately start the generation of four mutations of the image. The images
are produced at the full resolution of the iPad screen (768 × 1024 pixels), and
by tapping on an image, it expands to fill the whole screen. In this state, the
image can be cropped, scaled, rotated and translated, and these transformations
are recorded in the image’s genome (as a 4 × 4 matrix). The user can choose to
re-render the image to further explore it, which is done by applying the trans-
formation matrix to the position of the particle just before the line between its
old (transformed) position, and its new one is rendered.

The interactive nature of the GUI for i-ELVIRA forced two issues. Firstly,
users did not expect to wait long for image generation, i.e., they wanted near-
immediate gratification in the form of more images in the style of ones they
have chosen. Secondly, people expected the images generated in response to
their choices to always be appropriate to those choices, i.e., that the children of
crossed-over or mutated individuals should resemble their parents, but not too
much. Unfortunately, our first implementation of i-ELVIRA regularly presented
the user with inappropriate images, and took up to 15 seconds to produce each
one. In early experiments, we found that this uncertainty in child fidelity and
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the slow execution times largely ruined the ludic appeal of the software, and
hence both issues had to be addressed, as described in the following sections.

3 Efficient Image Rendering

The printer/scanner metaphor helps disguise the time taken to produce images,
because as soon as a user has chosen an image for mutation or a pair of images
for crossover, an animation of a blank sheet of paper being output holds the
user’s attention for a few seconds. However, we estimated that any longer than
a five second wait for an image to be produced would be detrimental the the
user’s enjoyment. To calculate the lines which comprise an image, 6 functions
have to be called 100,000 times to calculate the position and colour of the par-
ticles. Fortunately, our preset genomes contain fairly succinct functions, due to
the fact that we restricted tree size to 12 nodes or fewer. However, we still found
that the calculations took prohibitively long: around eight seconds on average.
This was because we were representing the functions as trees which were being
interpreted at runtime. We chose to flatten the trees into mathematical functions
such as those in figure 1 and precompile these into i-Elvira. This dramatically
reduced the calculation time for the particles to around half a second on average.
Of course, a drawback to precompilation is a reduction in the size of the search
space, as new trees cannot be generated at runtime, nor existing ones altered. In
particular, the only option for crossover is to swap entire initialisation/update
functions of two parents, and for mutation, it is to randomly substitute one or
more function with ones from other individuals (i.e., no random generation of
trees is possible). However, the trees themselves are fairly small, so there wasn’t
much scope for crossing over subtrees anyway. Moreover, from the 1000 preset
images, we extracted 1798 distinct initialisation functions and 2076 distinct up-
date functions. Hence, given that any initialisation function may be swapped for
any other, and likewise for update functions, 17986×20766 = 2.7×1039 distinct
genomes can be produced, which is more than enough.

Having halved the image generation time through precompilation, we turned
to the other major bottleneck: the rendering of the image, i.e., the drawing of
the lines and the blurring operation. Apple supplies the 2D iPad CoreGraphics
graphics library. In our first attempt, we employed CoreGraphics to draw the
lines and wrote a per-pixel blurring operation, which changes a pixel’s colour to
be an average of those in a neighbourhood around it – with a bigger neighbour-
hood producing a more blurred image. Sadly, this method was too inefficient for
our purposes, as it took around 6 seconds to render the image. Hence, we made
several improvements to the image generation pipeline in order to optimise the
process. The most important of these was using OpenGL ES 1.1, an early mobile
version of the popular graphics engine, instead of CoreGraphics. To make the
move to OpenGL, we altered the rendering process to employ a vertex-based
drawing model, whereby each rendering pass contains a single update to the
particles which are described in terms of start and end vertices.

Recall that at each timestep, a blur operation is performed in the image
generation process. As OpenGL ES 1.1 does not support pixel shaders, which
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would have allowed for a per-pixel Gaussian blur to be applied between passes,
we instead pass the base image (representing a composite of each rendering
stage completed so far) to OpenGL as a texture. After the lines for the current
timestep are drawn on top of this texture, a further composite comprising the
base image and the new lines is drawn out to another texture using an OpenGL
FrameBufferObject. To this second texture, we perform a blur by redrawing the
texture object four times, offset by one pixel in the four compass directions,
at a reduced opacity. This produces a blurred image without being too costly
for OpenGL to draw. The resulting five-layer image is then flattened down to
become the base image for the next rendering pass. This new pipeline reduced
the rendering time to around 3.5 seconds on average, which is better than the
15 seconds we started with, and within our 5 second ludic limit.

4 Generation of Appropriate Images

The second issue raised by the interactive nature of i-ELVIRA was the disap-
pointment users felt when they were presented with an image which was either
blank, or looked different to what they expected (i.e., too similar or dissimilar
to its parent). Recall that four mutations of a chosen image are supplied when
the user makes a choice, and similarly four offspring are supplied when the user
chooses two parents to crossover. Noting that efficiency of image generation is
a major issue, we decided not to perform a post-hoc check on image quality, in
order to reject an image on grounds of low quality, as this would mean producing
another one, and therefore at least doubling the image generation time on occa-
sions. Instead, we concentrated on enabling i-ELVIRA to more reliably generate
genomes that would produce appropriate images. Blank or nearly blank images
are caused by a lack of lines being drawn on the canvas. One way to avoid the
generation of such images altogether is to somehow map the position of each
particle at each timestep to somewhere within the canvas. One possibility is to
map x and y to their fractional parts, whilst maintaining their parity. Unfor-
tunately, this produces largely uninteresting images, as each line is rendered on
the canvas, and many images gain their beauty by having fewer than the total
100,000 lines drawn. For instance, many interesting images exhibit a blurry look,
as no lines are drawn on them for the last 10 or 20 timesteps.

However, we did find a number of mappings that regularly produce pleas-
ing images. Two such mappings are given along with sample images produced
using them in figure 3. Note that f(k) denotes the fractional part of k, and
θp,s = 2π(p mod s)

s for a parameter s, which determines the number of segments
in the kaleidoscope image (default 17). Given that the images produced by these
mappings have appeal, and that the extra processing does not produce a notice-
able increase in rendering time, we have enabled i-ELVIRA to generate images
using the mappings, and a number denoting which mapping to use is stored in
the genome of every generated image. We accordingly added new genomes which
use these mappings, to i-ELVIRA’s presets. In addition, we looked at the un-
mapped genotypes which produced the blank images, and we realised that most
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Polar mapping:
(

xt(p)
yt(p)

)
	→(

f(xt(p))cos(2πf(yt(p)))
f(xt(p))sin(2πf(yt(p)))

)
Kaleidoscope mapping:

(
xt(p)
yt(p)

)
	→(

cos(θp,s) sin(θp,s)
−sin(θp,s) cos(θp,s)

)(
f(xt(p))cos( 2π

s
f(yt(p)))

f(xt(p))sin( 2π
s

f(yt(p)))

)

Fig. 3. Example images produce by the polar and kaleidoscope particle mappings

of them were caused by the update functions for the x and/or y co-ordinates
being constant. Hence, we gave i-ELVIRA the ability to avoid producing child
genomes through mutation or crossover where either the x or y update function
was not dependent on any input value. We found that this drastically reduced
the number of blank or nearly blank images to an acceptable level.

People find it difficult to predict what the children of two parent images will
look like, and are fairly forgiving when crossover images don’t resemble their
parents. Indeed, people tend to use the crossover mechanism to search the space
of images, rather than to focus on a particular style. We experimented with
different crossover mechanisms, until the following emerged as a reliable way
to produce child images: given two parent images A and B, child C inherits
the background colour of B, and five initialisation functions and four update
functions from A, with the missing initialisation and update functions inherited
from B. This mechanism works well, except when people crossover two images
which are themselves the children of a shared parent. In this case, there was a
tendency for C to be very similar to A and/or B. Hence, whenever an offspring
genome is produced, if the parents share 10 or more functions, the offspring
is mutated by swapping one initialisation function for a randomly chosen one,
and similarly swapping two update functions. This produces children which vary
enough from their parents. In producing four offspring, i-ELVIRA produces two
children as above, and two children with the contributions of A and B swapped.

Users of i-ELVIRA tend to be much less forgiving for mutated versions of their
chosen images, as mutation is the major way of exerting fine-grained control over
image production. Hence users tend to be quite disappointed when a mutated
image is too dissimilar or too similar to its parent. Due to the precompiled nature
of the functions in i-ELVIRA, the smallest mutation possible is a swapping of a
single initialisation function for a randomly chosen one. However, we found that
mutating only initialisation functions was prone to producing too many twin
images, i.e., pairs of siblings in the four produced by i-ELVIRA that look too
similar (see the experimental results below). We therefore looked at mutating a
single update function, but we found that this could sometimes produce both too
dissimilar mutations and too similar ones. Fortunately, we found that both these
problems could be managed by enabling i-ELVIRA to perform a dependency
analysis on the functions in the genomes of images. Looking at table 1, which
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Table 1. Dependency analysis for the genome from figure 1

x y r g b a
x 1 0 0 0 0 0 1 x(p)t = sin(0.25 − p)
y 1 1 1 0 0 1 4 y(p)t = −sin((xt−1(p) − 0.001) ∗ (at−1(p)/rt−1(p)))
r 1 0 1 0 0 0 2 r(p)t = sin(xt−1(p)) + 0.75
g 1 1 1 1 1 1 6 g(p)t = sin((−bt−1(p) − yt−1(p)) ∗ t)
b 1 1 1 0 1 1 5 b(p)t = yt−1(p) ∗ −0.5
a 1 0 1 0 0 1 3 a(p)t = cos(t) ∗ 2 ∗ rt−1(p)

6 3 5 1 2 3

re-iterates the update functions for the genome in figure 1, we see, for exam-
ple, that the updated alpha value a(p)t for particle number p at timestep t is
dependent on the previous red value of p, namely rt−1(p). However, looking at
rt(p), we see that the updated red value of p is dependent on the previous x
co-ordinate of p, namely xt−1(p). Working backwards, we can therefore conclude
that output of a(p)t is dependent on output of the r and x update functions.

For each precompiled update function, we gave i-ELVIRA information about
which other functions appear locally, e.g., it is told that a(p)t = cos(t)∗2∗rt−1(p)
is locally dependent on rt−1(p). We further implemented a routine to work back-
wards from the local dependencies to determine which variables each function
is ultimately dependent on. Hence, in the example in table 1, i-ELVIRA knows
that mutating the rt(p) or xt(p) update function will also affect the output from
the at(p) function. In effect, i-ELVIRA can build a dependency matrix such as
that in table 1, where a 1 in row w and column c indicates a dependency of the
row w function on the column c function. For instance, the 1 in the g row and
b column indicates that the update function g(p)t is dependent on previous b
values. Note that we put a 1 in each diagonal position, because each function is
dependent on itself (in the sense that mutating a function will naturally alter
that function). The row totals indicate how many update functions that row’s
function is dependent on. The column totals indicate how many update func-
tions depend upon that column’s function, and can therefore be used to indicate
how disruptive changing that function will be to the location and colour of the
particles. We call these numbers the dependency quotients for the functions. For
instance, the 5 in the r column of table 1 indicates that mutating r(p)t will effect
5 attributes of each particle, namely their y, r, g, b and a values.

On inspection of a number of mutated individuals where a single update func-
tion was swapped for a randomly chosen one, we found that mutating an update
function which had a dependency quotient of 1 led to images which were too
similar to the original. In contrast, swapping a function which had a depen-
dency quotient of 6 led to a change in every colour and location aspect of each
particle, and hence led to a fundamentally different image, i.e., too dissimilar
to the original. So, for instance, for the genome in table 1, it would be unwise
to mutate either the xt(p) update function, upon which all the other functions
depend, or the gt(p) update function, upon which no other functions depend.
We also analysed a number of other cases where the mutation produced was
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inappropriate, and used our findings to derive a heuristic mutation mechanism
which produces an acceptably high proportion of appropriate mutations.

This mechanism swaps a single update function for a randomly chosen one.
It first tries to swap the r, g, b or a function, but will only chose one if it has
a dependency quotient between 2 and 5 inclusive. If this fails, it attempts to
swap the x or y function, but again only if one has a dependency quotient be-
tween 2 and 5 inclusive. If this fails, then an update function is chosen randomly
and swapped, ensuring that neither the xt(p) nor the yt(p) update function is
swapped for a constant function. Moreover, if neither the x nor y function is
dependent on the r, g, b or a functions, then either the x or the y initialisation
function (chosen randomly) is mutated. Each part the heuristic mechanism was
motivated by analysis of the reasons why a set of mutations produced inappro-
priate images. To determine the value of the heuristic mechanism, we compared
it to swapping four, five and six initialisation functions for randomly chosen ones
(called the 4-init, 5-init and 6-init methods respectively), and swapping a sin-
gle update function for a randomly chosen one, with no dependency analysis or
constant function checking (called the 1-update method).

Table 2. Results for 250 sets of 4
images by 5 mutation methods

Method nb ns nd nt pf

Heuristic 6 30 25 29 0.84
1-update 12 34 95 19 0.63

4-init 8 80 68 128 0.66
5-init 12 47 99 114 0.69
6-init 17 33 114 128 0.69

We chose 250 of i-ELVIRA’s presets ran-
domly, and for each method, we took each pre-
set in turn and produced 4 mutations for it,
as this is the number that users of i-ELVIRA
are presented with. We performed image anal-
ysis on the resulting 1000 mutated images
to determine how appropriate they were. We
first recorded the number of mutated images
which were essentially blank (nb). We found
that two images look similar if they have a
similar colour distribution, and/or if they ex-

hibit a similar shape, i.e., the parts of the canvas which are covered by lines
for the two images are similar. Given two images i1 and i2, we implemented
a method to determine the colour distance, dc(i1, i2) of the images in terms
if their colour histograms, and a method to determine the shape distance
ds(i1, i2), in terms of the positions in a 24 × 24 grid which are crossed by
particle lines. Both methods return a value between 0 and 1, with 0 indicat-
ing equal images, and 1 indicating as different as possible images. Analysing
pairs of images visually, we settled on two definitions: a pair of images i1
and i2 are too similar if min(dc(i1, i2), ds(i1, i2)) < 0.1, and too dissimilar if
max(dc(i1, i2), ds(i1, i2)) > 0.9.

Within the 1000 images produced for each mutation method, we recorded
the number of mutations which were too similar to their parent (ns) and the
number which were too dissimilar (nd). We also recorded the number of twins
produced (nt). Finally, we recorded the proportion, pf , of sets of four muta-
tions which contained no inappropriate images (i.e., neither too similar to the
parent or eachother, nor too dissimilar to the parent). The results for the five
methods are given in table 2. We see that the heuristic method outperforms the
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other methods in all the metrics, with the exception of the 1-update method
producing fewer twins (at the cost of an increased distance between child and
parent). Also, as previously mentioned, we see that the mutation methods which
alter only initialisation functions all suffer from producing too many twins.

5 Conclusions and Future Work

We have developed the i-ELVIRA evolutionary art application for the iPad,
guided by general ludic considerations, which include: enabling constant user-
interaction with no periods where the user is waiting for the software to finish
processing; avoiding supplying the user with uninteresting or inappropriate im-
ages; a natural interaction design which enables the crossing over and mutation
of chosen images; an ability for users to customise their artworks and for them to
share their creations with others. We are currently finalising i-ELVIRA for distri-
bution, which requires a ludic graphical user interface to the evolution and image
generation mechanisms. This has only been made possible because we reduced
the image rendering time to 3.5 seconds, and we increased the reliability with
which appropriate mutation images are produced. Looking at the results in table
2, we see that the heuristic mutation method delivers a set of four appropriate
mutations with an 84% likelihood, which we believe is acceptable for i-ELVIRA.
In the context of evolving buildings for a video game, producing artefacts which
have an appropriate resemblance to their parents was addressed in [6]. This is a
key question in bringing evolutionary art to the general public.

To hopefully improve i-ELVIRA, we will experiment with showing users up-
dates during the rendering process, which might hold their attention (although
we have found that for many images, this process can be quite dull, as all the
lines are drawn at the start or the end of the process). We will also experiment
with different blurring processes to explore different visual styles, and we will
enable a search mechanism so that people can find presets similar to ones they
like. With all our experimentation, we will undertake extensive user testing to
determine the value of the changes we impose. In particular, using i-ELVIRA
and j-ELVIRA as research tools, our next step will be to conduct user studies,
whereby we try and derive methods for estimating people’s reactions to images.
Ultimately, we aim to embed machine learning methods into evolutionary art
software, so that it can approximate people’s aesthetic considerations and use
this to deliver better images, as we began to investigate in [7] for image filtering.
In the long term, we aim to show that sophisticated user modelling techniques
can lead to more enjoyable software such as i-ELVIRA for public consumption,
and also be a driving force for machine learning.
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A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius,
J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 111–120.
Springer, Heidelberg (2010)

7. Colton, S., Torres, P., Gow, J., Cairns, P.: Experiments in objet trouvé browsing.
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Abstract. In this paper we investigate the applicability of Multi-
Objective Optimization (MOO) in Evolutionary Art. We evolve images
using an unsupervised evolutionary algorithm and we use two aesthetic
measures as fitness functions concurrently. We use three different pairs
from a set of three aesthetic measures and we compare the output of
each pair to the output of other pairs, and to the output of experiments
with a single aesthetic measure (non-MOO). We investigate 1) whether
properties of aesthetic measures can be combined using MOO and 2)
whether the use of MOO in evolutionary art results in different images,
or perhaps “better” images. All images in this paper can be viewed in
colour at http://www.few.vu.nl/˜eelco/

1 Introduction

One of the fundamental problems in the field of evolutionary art is the issue of
fitness assignment. Within evolutionary art there are two possible ways to assign
fitness to an artefact; the first option is to delegate fitness assignment to a human
being in an interactive evolutionary setup (Interactive Evolutionary Computa-
tion or IEC). Setting up an IEC environment to evaluate art, music or other
artefacts is relatively simple, and IEC has been applied successfully in a wide
variety of application domains (especially in domains where computational fit-
ness functions are hard to come by) such as art, graphic design, music and many
others [16]. IEC also has a number of drawbacks; the most important one is user
fatigue, whereby the user that steers the evolution process (by evaluating arte-
facts) becomes tired and/ or loses interest (“fatigued”). This implies that typical
IEC experiments have relatively small populations and relatively few iterations
and this severely limits the potential output of any IEC setup. The other way
of fitness assignment within evolutionary art is unsupervised evolutionary art,
whereby a computational fitness function assigns a score to an artefact without
human intervention. The creation of fitness functions for the evaluation of art is
regarded as one of the open problems in evolutionary art [9]. In previous work
we investigated the use of six aesthetic measures as fitness functions [6] [7]. We
showed that the choice of the aesthetic measure has a significant impact on the
style of the evolved images.
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1.1 Research Questions

In this paper we investigate whether it is possible to combine the effect of mul-
tiple aesthetic measures concurrently using a Multi-Optimization Evolutionary
Algorithm (MOEA). In previous work we have shown that the choice of the aes-
thetic measure significantly determines the “style” of the generated art [6] [7].
With MOEA, we want to investigate whether the influence of different aesthetic
measures can be combined into the same image. For example, if we use one aes-
thetic measure that focuses on the use of contrast in an image, and one aesthetic
measure that focuses on certain color transitions within an image, then we would
like to evolve images that have both properties. So our first research question
is; can we combine the effects from multiple aesthetic measures into the same
image using a MOEA? Second, we want to know whether the use of a MOEA
results in “better” images in evolutionary art. Beautiful images often have mul-
tiple “good” properties; good use of contrast, interesting color transitions, good
level of interestingness (not too simple, not too complex/ chaotic) etc. If we
evolve images by optimizing multiple objectives simultaneously, it should – in
theory – lead to “better” images.

The rest of the paper is structured as follows. First we discuss evolutionary art
and the use of MOEA in evolutionary art (section 2). Section 3 briefly discusses
our software environment Arabitat. Next, we describe the experiments and their
results in section 4. Section 5 contains conclusions and directions for future
work.

2 Evolutionary Art

Evolutionary art is a research field where methods from Evolutionary Computa-
tion are used to create works of art (good overviews of the field are [11] and [2]).
Some evolutionary art systems use IEC or supervised fitness assignment (e.g.
[15], [12]), and in recent years there has been increased activity in investigating
unsupervised fitness assignment (e.g. [5], [13]).

2.1 The Use of MOEA in Evolutionary Art

MOEA’s have not been used frequently in the field of evolutionary art; in [14]
Ross & Zhu describe research into evolving procedural art by comparing evolved
images with a target image. The fitness functions in their MOEA setup are
distance metrics that calculate the difference between an individual and the
target image. Our approach is different since we do not evolve images with a
target image in mind. Our approach is more similar to [5] in which Greenfield
evolves images and fitness components concurrently in a co-evolution setup. Our
approach is different in two ways; first, we do not use co-evolution in our experi-
ments, and second, we have a number of “fixed” aesthetic measures that we use
as the fitness functions.
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Table 1. Evolutionary parameters of our evolutionary art system used in our experi-
ments

Symbolic parameters
Representation Expression trees, see table 2
Initialization Ramped half-and-half (depth between 2 and 5)
Survivor selection Tournament, Elitist (best 3)
Parent Selection Tournament
Mutation Point mutation
Recombination Subtree crossover
Fitness function Multiple aesthetic measures (see 2.2)

Numeric parameters
Population size 200
Generations 20
Tournament size 3
Crossover rate 0.9
Mutation rate 0.1
Maximum tree depth 8

2.2 Aesthetic Measures

The aesthetic measures that we use in this paper have different mechanisms and
backgrounds, and we will describe them briefly. For a more detailed description
we refer to the original papers. We will briefly describe the aesthetic measures
Benford Law, Global Contrast Factor, and Ross & Ralph Bell Curve.

Benford Law. We use an aesthetic measure based on Benford Law [1]; Benford
Law (or first-digit law) states that list of numbers obtained from real life (i.e.
not created by man) are distributed in a specific, non-uniform way. The leading
digit occurs one third of the time, the second digit occurs 17.6%, etc. We use
the Benford Law over the distribution of brightness of the pixels of an image.
We used the same implementation and settings as in previous experiments so we
refer to [7] for details.

Global Contrast Factor. The Global Contrast Factor is an aesthetic measure
described in [8]. Basically, the global contrast factor computes contrast (differ-
ence in luminance or brightness) at various resolutions. Images that have little or
few differences in luminance have low contrast and are considered ‘boring’, and
thus have a low aesthetic value. We used the same implementation and settings
as in previous experiments so we refer to [7] for details.

Ross and Ralph (bell curve). A second aesthetic measure that we imple-
mented is Ross & Ralph [13]. This measure is based on the observation that
many fine art painting exhibit functions over colour gradients that conform to
a normal or bell curve distribution. The authors suggest that works of art should
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have a reasonable amount of changes in colour, but that the changes in colour
should reflect a normal distribution (hence the name ’Bell Curve’). The compu-
tation takes several steps and we refer to [13] for details.

3 Arabitat: The Art Habitat

Arabitat (Art Habitat) is our software environment in which we investigate evo-
lutionary art. It uses genetic programming with Lisp expressions and supports
both supervised and unsupervised evaluation. The details of Arabitat have been
described in detail in [7] so we will not repeat it here. In addition to our sys-
tem described in [7] we have implemented the Multi-Objective Optimization
algorithms NSGA-II [3] and SPEA2. In this paper we will only discuss the ex-
periments we did with NSGA-II. NSGA-II finds an optimal Pareto front by using
the concept of non-domination; a solution A is non-dominated when there is no
other solution that scores higher on all of the objective functions. Furthermore,
NSGA-II uses elitism and a mechanism to preserve diverse solution by using a
crowding distance operator. For more details, we refer to [3].

Function set. Many functions used are similar to the ones used in [15], [12] and
[13]. Table 2 summarizes the used functions (including their required number of
arguments);

Table 2. Function and terminal set of our evolutionary art system

Terminals x,y, ephem double,
golden ratio, pi

Basic Math plus/2, minus/2, multiply/2, div/2, mod/2
Other Math log/1, sinh/1, cosh/1, tanh/1, atan2/2, hypot/2, log10/1, squareroot/1,

cone2/2, cone3/2, cone4/2
Relational minimum/2, maximum/2, ifthenelse/3
Bitwise and/2, or/2, xor/2
Noise perlinnoise/2, fbm/2, scnoise/2, vlnoise/2, marble/2, turbulence/2
Boolean lessthan/4, greaterthan/4
Other parabol/2

The function set has already been described in detail in [7] so we will not
repeat it here. There are a few new functions since [7] which we will describe
briefly; cone2, cone3 and cone4 all draw circle-like patterns with the center in
the middle (so the image looks like a cone from the top) and are variations on
the cone function from [4].

4 Experiments

We did a number of experiments to evaluate the use of a MOEA in evolutionary
art. First, we performed 10 runs with a single aesthetic measure (non-MOEA).
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Fig. 1. Portfolio of images gathered from ten runs with Benford Law (left) and Global
Contrast Factor (middle) and Ross & Ralph (right)

This resulted in 3 experiments (one for each aesthetic measure described in 2.2
consisting of 10 runs each. We hand-picked a number of images from these runs
and created portfolios for each aesthetic measure. Basically, this is the same
setup as the research we did described in [6] and [7], but we repeated these ex-
periments since we altered the function set. Figure 1 shows three portfolios of the
three experiments with a single aesthetic measure. As in [6] and [7] we see a clear
difference in “style” between the three aesthetic measures. We will use Figure
1 (as a kind of benchmark) to evaluate the output of the experiments with the
MOEA. Next, we performed three experiments with the NSGA-II algorithm [3]
using 1) Benford Law and Ross & Ralph, 2) Global Contrast Factor and Ross
& Ralph and 3) Benford Law and Global Contrast Factor. We did 10 runs with
each setup, using the exact same experimental setup (evolutionary parameters
from Table 1 and the function set from Table 2) except for the combination of
aesthetic measures. From each run, we saved the Pareto front (the first front,
with rank 0) and calculated the normalized fitness for image I for each objective
f using fnormalized(I) = f(I)/faverage. This way, we normalized all scores be-
tween 0 and 1. Next, we ordered each individual on the sum of the normalized
scores of the two objectives, and we stored the top 3 individuals from each run.
With 10 runs per experiments, we have 30 individuals per experiment that can
be considered the “top 30”. Using this approach, we have a fair and unbiased se-
lection procedure (since we did not handpick images for these selections). In the
top 30 portfolio of the experiment with Benford Law and Ross & Ralph (Figure 2)
we can clearly see the influence of both aesthetic measures in the images. The
Benford Law aesthetic measures produces images with an organic, natural feel
and the Ross & Ralph measure tends to produce image with a “painterly” feel
(since it focuses on smooth transitions in colours). We can see these properties
in most images and in some images they are combined (i.e. in the first three
images in Figure 2). The last two images of the second row and the first image
of the third row also appear in the close-up of the Pareto front in Figure 5. In
the top 30 portfolio of the experiment with Global Contrast Factor and Ross &
Ralph (Figure 3) we see again that the properties of both aesthetic measures ap-
pear in the images. GCF tends to produce images with stark contrast at various
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Fig. 2. Portfolio of images gathered from ten runs with NSGA-II with Benford Law
and Ross & Ralph

Fig. 3. Portfolio of images gathered from ten runs with NSGA-II with Global Contrast
Factor and Ross & Ralph

Fig. 4. Portfolio of images gathered from ten runs with NSGA-II with Benford Law
and Global Contrast Factor

resolutions and Ross & Ralph tends to produce “painterly” images. If we compare
this portfolio with the previous portfolio, we can clearly see more dark colours
(especially black) in the images. This can be attributed to the influence of the
GCF measure. There seems to be less “synergy” between the two measures; im-
ages either have a strong GCF signature or a strong Ross & Ralph signature,
but few images have both. Apparantly, it is difficult to mix the “styles” of these
two aesthetic measures into one image. The 5th, 6th and 7th image of the second
row appear in the close-up of the Pareto front in Figure 6. In the top 30 port-
folio of the experiment with Benford Law with GCF (Figure 4) we clearly see
the influence of the Global Contrast Factor; many images have a stark contrast
and have dark areas. Nevertheless, if we compare these images with the portfolio
of the Global Contrast Factor (Figure 1) then we can also detect the influence
of the Benford Law aesthetic measure (although clearly not in all images). The
Benford Law aesthetic measure produces images with a grainy, natural feel (see
more images in [7]) and in a way these two properties seem to blend in a number
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of images (although not in all). It appears that these two aesthetic measures do
not combine very well. The 2nd, 3rd and 4th image of the third row also appear
in the close-up of the Pareto front in Figure 7.

4.1 Close-Ups of Pareto Fronts

We wanted to know in detail how a single Pareto front was organized, and
whether we could see a gradual transition of the influence of measure A to
measure B while moving over the Pareto front. We zoomed in on a single Pareto
front and reconstructed the images that belong with each individual in that front.
In the following figure we show the Pareto front for each pair of aesthetic measure
(note that we did 10 runs per experiments, but we only show the Pareto front
of one run). In Figure 5 we see the 15 individuals plotted based on their scores
on the Ross & Ralph measures and the Benford Law measure. We normalized
the scores between 0 and 1.

Fig. 5. Details of the Pareto front of Benford Law and Ross & Ralph with the corre-
sponding images per element of the front

If we look at the individuals of the Pareto front in Figure 5, we can see a
transition of the influence from aesthetic measure to the other. At the top we
see “typical” Ross & Ralph images (we saw this type of images in Figure 1, right
picture, and in [6]), and at the bottom/ right we see more typical Benford Law
images. In between, at the right/ top we see the images where the influences
blend most. Not that the images of the individuals in the upper right of the
front (where the combined score is highest) are gathered in the Top 30 selection
of Figure 2 (fourth row, first three images).

In Figure 6 we see the 12 individuals of a run of Ralph & Ross and the Global
Contrast Factor. On the far left we see one individual that scores low on GCF
and high on the Ralph & Ross measure. This image is a ‘typical’ Ralph & Ross
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Fig. 6. Details of the Pareto front of Ralph & Ross and Global Contrast Factor with
the corresponding images per element of the front

Fig. 7. Details of the Pareto front of Benford Law and Global Contrast Factor with
the corresponding images per element of the front

image (we see similar images in Figure 1, right ), and it is quite different from
the cluster of images on the lower right; in this cluster we can clearly see the
influence of the GCF measure, with heavy contrast and a lot of black.

In Figure 7 we see the 12 individuals of a run of Benford Law and GCF. In
the Pareto front we see three clusters and one outlier on the lower right. Again
we see a nice transition from one style to another; on the left we see two images
in Benford Law style (we also see this type of images in Figure 1, left). Again we
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see images with high contrast and lot of black in the lower right of the Pareto
front. Remarkable is the recurring ‘zebra’/ ‘tiger’ print motif that recurs in a
number of images.

5 Conclusions and Future Work

Our first research question was “can we combine the effects from multiple aes-
thetic measures into the same image using a MOEA?”. The answer to this ques-
tion is ‘Yes, but not necessarily with success’. We have seen that some com-
binations of aesthetic measure work better than others; some combinations of
aesthetic measures result in images where the aesthetic properties do not blend
very well. It suggests that it is very important to carefully select the aesthetic
measures in a MOEA setup. Combinations of aesthetic measures with oppos-
ing goals (e.g. stark contrast vs. little contrast) will most likely not result in
images with new or surprising results. Most likely, they will result in images
where one property is dominant. However, it will not always be clear whether
two aesthetic measures have opposing goals. Furthermore, in order to improve
the artistic range of an evolutionary art system, it can be wise to use aesthetic
measures that have “somewhat” different goals. So it seems that the most inter-
esting combinations are of aesthetic measures that are different from each other
but not too different.

Another strategy could be to use aesthetic measures that act on different di-
mensions of an image. For example, if one aesthetic measures focuses on texture,
one focuses on a certain aspect of contrast and one focuses on composition as-
pects of the images, then the outcome of the different measures can be merged
more efficiently. This strategy looks like an interesting direction to explore in
future work.

The second research question was whether the use of MOEA would result in
“better” images; we think that some combinations of aesthetic measures certainly
result in more interesting images, whereby properties of both aesthetic measures
are merged nicely. We also think that some combinations of aesthetic measures
work counter-productive, and do not result in “better” images. Nevertheless, we
think it can be a powerful tool for evolutionary art systems.
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Abstract. In this paper we propose an automatic music composition
system for dodecaphonic music based on a genetic algorithm.

Dodecaphonic music, introduced by A. Schoenberg, departs from the
concept of tonality by considering all 12 notes equally important. Do-
decaphonic compositions are constructed starting from a 12-note series,
which is a sequence of all the 12 notes; the compositional process uses
the starting 12-note series as a seed and builds the music creating new
fragments of music obtained by transforming the seed series.

The algorithm proposed in this paper automates the compositional
process taking a seed series as input and automatically creating a dode-
caphonic composition. We have implemented the algorithm and we have
run several tests to study its behaviour.

1 Introduction

In this paper we are interested in the design and implementation of an algo-
rithmic music composition system for dodecaphonic music. The system must be
capable of composing music without any human intervention.

Algorithmic music composition fascinates both computer scientists and musi-
cians. The literature has plenty of works in this area, starting from the ILLIAC1

suite by Hiller [7,8], and arriving to more recent efforts, like, for example, the
ones by Cope [3] and Miranda [13].

Several music composition problems have been considered in the literature:
4-voice harmonizations, jazz solos, music styles reproduction, and others. To the
best of our knowledge, no one has yet considered the possibility of using genetic
algorithms for producing dodecaphonic compositions.

The dodecaphonic (or 12-note) technique has been introduced by Arnold
Schoenberg in the 1920s: this technique departs from the concept of tonality,
in which the notes of a given tonality are more important than notes outside the
given tonality, and considers all the 12 notes equally important. Dodecaphonic
music is built starting from a seed series: a particular sequence of the 12 different

1 ILLIAC is the name of a computer built in the 50s.

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 244–253, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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notes. An example of a 12-note series is: [C,D,D�,A�,C�,F,B,G�,E,A,G,F�]. The
series is not a theme but a source from which the composition is constructed.
It can be transposed to begin on any of the 12 pitches, and it may appear in
various derived forms.

Schoenberg dodecaphonic technique has been later generalized, by his disciples
Berg and Webern and by others, to the serialism technique. In this paper however
we consider only dodecaphonic music where the seed series is made up of all the
12 notes and the possible transformations are limited to certain types of series
manipulation.

During the last few decades, algorithms for music composition have been
proposed for several music problems. Various tools or techniques have been
used: random numbers, formal grammars, cellular automata, fractals, neural net-
works, evolutionary algorithms, genetic music (DNA and protein-based music).
The book by Miranda [12] contains a good survey of the most commonly used
techniques.

In this paper we are interested in the use of genetic algorithms. Genetic al-
gorithms are search heuristics that allow to tackle very large search spaces. A
genetic algorithm looks for a “good” solution to the input problem by emulating
the evolution of a population whose individuals are possible solutions to the given
problem. Once we have provided an evaluation function for the compositions,
composing music can be seen as a combinatorial problem in a tremendously large
search space. This makes the genetic approach very effective for our problem.
As we will explain later in the paper, in our algorithm each individual of the
evolving population is a complete dodecaphonic composition created from the
seed series.

We have implemented the algorithm using Java and we have run several tests.
In the final section of the paper we report the results of the tests that show the
behavior of the algorithm.

Related work. Several papers have proposed the use of genetic algorithms for
music composition (e.g. [9,10,14,15]); to the best of our knowledge none of the
papers that propose genetic algorithms has considered dodecaphonic music ex-
cept for a recent paper by Maeda and Kajihara [11] that proposes a genetic
algorithm for the choice of a seed series. The fitness function used exploits the
concept of consonance and dissonance to evaluate the candidate solutions. The
cited algorithm builds only the seed series of a dodecaphonic composition. Our
genetic algorithm takes a seed series as input and produces a complete dodeca-
phonic composition.

Surfing the web, it is possible to find software that produces dodecaphonic
compositions. However no details or documentation about the algorithms used
is provided.

2 Music Background

In this section we briefly recall the needed musical background to understand
the remainder of the paper.
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The music system we are accustomed to is the 12-tone equal temperament
which divides all pitches into octaves and within each octave defines 12 notes,
which are C,C�,D,D�,E,F,F�,G,G�,A,A�,B. The notion of “tonality” is the heart
of the equal temperament. Roughly speaking, a tonality is a set of notes, which
form a scale, upon which a composition is built. The 12 notes of the equal
tempered system are “equally spaced” and this makes transposition between
different tonalities very easy. A tonality is built starting from one of the 12
possible notes; hence we can have 12 different starting points (tonalities). For
each tonality there are several modes, of which the major and minor modes are
the most used ones.

A tonal composition has a main tonality, for example, D major, upon which the
composition is built. Notes of that tonality, D,E,F�,G,A,B,C�,D in the example,
are more important than other notes, and also specific degrees of the scale have
special roles (e.g., tonic, dominant, sub-dominant).

Dodecaphonic music departs from the notion of tonality. We do not have
anymore scales and tonalities but all 12 notes in the octave are equally important.
There are no special degree functions for the notes in the scale; in fact there are
no scales anymore. Instead of the scale the structural skeleton of the composition
consist of a sequence (that is, a particular order) of the 12 notes called seed series.
An example of 12-note series is provided in Figure 1. The figure emphasizes the
intervals between the notes; such intervals are indicated with a number (the
size) and a letter (the type). For example “2M” indicates a major second, while
“2m” indicates a minor second; “A” stands for augmented and “P”for perfect.
Notice that intervals are always computed as ascending; for example the interval
between the fourth (A�, or 10) and the fifth note (C�, or 1) of the series is a
minor third because we consider the first C� above the A�.

Fig. 1. Example of a seed series

A 12-note series is usually represented with an abbreviated form in which each
of the twelve notes correspond to an integer in the range [0, 11], where 0 denotes
C, 1 denotes C� , and so on up to 11 that denotes B. For example the series shown
in Figure 1 corresponds to the sequence [0, 2, 3, 10, 1, 5, 11, 8, 4, 9, 7, 6].

The seed series is then manipulated in order to obtain different fragments of
music that are used to build up the dodecaphonic composition. Four standard
manipulations can be used to obtain a set four of derived series, which are

1. O: Original, this is the seed series;
2. R: Retrograde, obtained by reversing the order of the intervals of the seed

series;
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3. I: Inversion, in which every interval in the seed series is inverted;
4. RI: Retrograde of Inversion, which is the retrograde of I.

Some theorists consider an extended set of derived series which includes beside
O, R, I, RI also the following:

1. D4: Fourth, based on correspondences with the circle of fourths;
2. D5: Fifth, based on correspondences with the circle of fifths;
3. R4: Retrograde of D4;
4. R5: Retrograde of D5.

For more information about the derived series D4 and D5 see [6].
The derived series are not melodies, but only a reference schema for the com-

position. Rhythmic choices play a crucial role in creating the actual music from
the derived series. Later we will explain how we choose rhythmic patterns. A
series transformation will consists in the choice of a derived series and the appli-
cation of a rhythmic pattern. Roughly speaking, the compositional process can
be seen as the application of several series transformations.

The transformations can be used to obtain fragments of music for several
voices to make up polyphonic compositions. Dodecaphonic music theory estab-
lishes some rules about the relative movements of the voices. We use such rules
to evaluate the quality of the compositions.

3 The Algorithm

3.1 Rhythmic Patterns and Seed Series Transformations

The composition is made up of transformations of the seed series. A transfor-
mation of the seed series is obtained by first choosing a derived form of the seed
series and then applying to such a derived form a rhythmic pattern. The derived
forms that we consider are the ones explained in the previous section.

A rhythmic pattern P is a list (nd1,r1
1 , . . . , ndm,rm

m ), with m ≥ 12, where for
each ndk,rk

k we have:

– nk ∈ {0, 1, . . . , 11,−1}, indicates the note (−1 indicates a rest note);
– dk ∈ {1, 1

2 , 1
4 , 1

8 , 1
16 , 1

32 , 1
64}, indicates the duration of note nk;

– rk ∈ {1, 2, . . . , rmax}, indicates the number of repetitions of note nk (rmax

specifies the maximum number of repetitions that we allow).

Notice we have m ≥ 12 because we can insert rests in the transformed series. For
example, let F be the series [0, 2, 3, 10, 1, 5, 11, 8, 4, 9, 7, 6] and P be the rhythmic
pattern

(0
1
4 ,1, 2

1
4 ,1, 3

1
8 ,1, 10

1
8 ,1,−1

1
4 ,1, 1

1
2 ,2, 5

1
4 ,1, 11

1
4 ,1, 8

1
2 ,1, 4

1
4 ,2,−1

1
2 ,1, 9

1
4 ,2, 7

1
2 ,1, 61,1),

where m = 14 because there are 2 rests. Figure 2 shows the result of a trans-
formation of F obtained choosing the R (retrograde) derived form and applying
the rhythmic pattern P to it. Remember that the intervals are always ascending
intervals.
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Fig. 2. Example of transformation

3.2 Chromosomes and Genes Representation

We represent each chromosome as an array C of dimension K ×V , where K > 1
denotes the number of melodic lines (voices) and V is an apriori fixed number
that determines the length of the composition. We assume that all melodic lines
are composed by the same number V of series transformations.

Formally, a chromosome C is an array C = G1, ..., GV , where each Gi =
T 1

i , ..., T K
i is a gene and each T j

i is a transformation of the seed series. Figure 3
shows a graphical representation of the structure of a chromosome. Notice that
the blocks that represent genes are not aligned because the transformations T j

i

change the length of the seed series.

Fig. 3. Chromosomes and genes structure

3.3 Genotype-Phenotype Mapping

Since the seed series, and thus its transformations, does not specify the exact
pitch of the notes (the same note can be played in several octaves, depending on
the voice extension), we have that the chromosomes do not correspond imme-
diately to solutions of the problem and thus our search space is different from
the problem space. This implies that given a chromosome, in order to obtain a
solution, we need to apply a genotype-phenotype mapping. In the following we
define such a mapping.

To each voice we associate an extension, that is, a range of pitch values that
the voice can reproduce. We use the MIDI values of the notes to specify the
exact pitch. For example the extension [48, 72] indicates the extension from C3

through C5. Recall that each note s in a series is denoted with an integer in the
interval [0, 11]. We need to map such an integer s to a pitch (MIDI) value.

For each of the K voices, we fix a range Extj = [�j, uj ], j = 1, 2, ..., K,
where �j is the lowest pitch and uj is the highest pitch for voice j. Given a note
s ∈ [0, 11] played by voice j, the genotype-phenotype mapping has to choose an
actual note by selecting a pitch in Extj .
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The possible pitch values for a note s are the values in the set Extj(s) =
{s′|s′ ∈ Extj , s

′ mod 12 = s}. For example, given s = 0, that is note C, and the
extension Ext = [57, 74], the possible MIDI values for s are Ext(0) = {60, 72}.

Fig. 4. An example of genotype-phenotype mapping

Figure 4 shows an example of genotype-phenotype mapping. To keep the
example small we used a 3-note series instead of a complete 12-note series. In
the example the chromosome consists of a single voice playing the 3-note series
{0, 11, 9}, the voice extension is Ext = [57, 74] and the rhythmic pattern is
(0

1
4 ,1, 11

1
4 ,1, 9

1
8 ,1). All the possible actual compositions that we can obtain in

this simple example are 8 because for each of the 3 notes in the series we have
exactly two possible actual pitches that we can choose. Figure 4 shows all these 8
possible compositions. Notice that with 12-note series and reasonable parameters
K and V the space of all possible compositions is enormous.

The genotype-phenotype mapping has to choose one of the possible actual
compositions to transform the chromosome in a solution of the problem. It does
so by selecting uniformly at random one of the possible actual compositions.
Notice that choosing an actual composition uniformly at random is equivalent
to choosing uniformly at random an actual note for each abstract note.

We denote with gpm the genotype-phenotype mapping. Hence if we take a
chromosome C and apply the genotype-phenotype mapping we obtain an actual
music composition X = gpm(C) where X is selected at random among all the
possible compositions that correspond to C.

3.4 Initial Population

We start from a random initial population of N individuals. Each individual,
which is made up of K×V seed series transformations, is constructed by selecting
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such transformations at random. The random choices are made as follows. For
the derived form we choose at random one of the 8 forms explained in the
music background section. In order to choose a random rhythmic pattern P for
a derived series [s1, . . . , s12], we do the following

Let i = 1; do
1. Choose either

(a) note si with an apriori fixed probability pnr > 1
2 or

(b) −1 (rest) with probability 1 − pnr

and let nk be the result of the choice.
2. Assign to dk a random value chosen in the set {1, 1

2 , 1
4 , 1

8 , 1
16 , 1

32 , 1
64}.

3. Assign to rk a random value chosen in the set {1, 2, . . . , rmax}.
4. Add ndk,rk

k to P .
5. If nk ≥ 0 then increment i (that is, if we have selected si and not a rest,

proceed to si+1).
6. If i = 13 we are done. Otherwise repeat from 1.

3.5 Fitness Measure

In order to evaluate the current population and make a selection, we use rules
taken from the dodecaphonic music theory. We refer the reader to textbooks
such as [2,6] for an explanation of such rules. The specific set of rules that we
have taken into account are detailed in Table 1. The rules refer to the movement
of two voices of the composition. For example, the “parallel octave” rule says
that two voices that proceed in parallel octaves are considered a critical error.
As specified in the table, we have assigned a penalty of 100 to such an error.
The “cross” rule says that two voices that cross each other are also considered
an error, but not so critical. The penalty that we use in this case is lower.

Table 1. Errors and penalties for the evaluation function

Description Penalty Level
unison 30 normal
octave 30 normal
cross 30 normal
parallel fourth 40 normal

Description Penalty Level
parallel fifth 40 normal
parallel seventh 40 normal
parallel unison 100 critical
parallel octave 100 critical

We have taken the liberty of interpreting and adapting what is reported in
dodecaphonic theory textbooks in order to obtain the rules reported in Table 1.
For example voice crossing is normally allowed; however we do assign it a small
penalty because we would like that voices do not cross too often. We have also
classified these errors in two categories, normal and critical. The critical errors
will be used for the mutation operator, as we will explain in later.

Let C be the chromosome and let X = gpm(C) be the solution that will be
used for the evaluation. Notice that this means that the actual fitness value that
we use for C is the one that we obtain for X . In other words the fitness value is
relative to the actual solution chosen by the gpm function.
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Let d be the smallest note duration used in X . We will consider such a note
duration as the “beat” of the composition. Notice that this “beat” is used only
for the evaluation function. Depending on the value of d we can look at the
entire composition as a sequence of a certain number z of beats of duration
d. For each of these beats we consider all possible pairs of voices and for each
pair we check whether an error occurs or not. If an error occurs then we give
the corresponding penalty to X . The fitness value is obtained by adding all the
penalties. The objective is to minimize the fitness value.

While evaluating the population, when we find a critical error we mark the
corresponding gene. This information will be used in the mutation operator.
Notice that if the error occurs across two genes we mark both genes.

3.6 Evolution Operators

In order to let the population evolve we apply a mutation operator and a
crossover operator.

– Mutation operator. This operator creates new chromosomes starting from
a chromosome of the current population. For each chromosome C =G1, ..., GV

in the current population, and for each gene Gi = T 1
i , ..., T K

i , we check
whether Gi has a critical error (that is if it has been marked in the evalu-
ation phase) and if so we generate a new chromosome replacing Gi with a
new gene G′

i = T ′1
i , ..., T

′K
i where T ′j

i is obtained by applying a transfor-
mation to T j

i . The transformation is chosen at random. We remark that the
transformation might include the “identity” in the sense that we might not
apply a derivation and/or we might not change the rhythmic pattern.

– Crossover. Given two chromosomes C1 and C2, the operator selects an
index i ∈ {1, . . . , V − 1} randomly, and generates the chromosome C3 =
G1

1, . . . , G
1
i , G

2
i+1, . . . , G

2
V .

3.7 Selection and Stopping Criteria

At this point as a candidate new population we have the initial population of N
chromosomes, at most new N chromosomes obtained with the mutation operator
and exactly N(N −1)/2 new chromosomes obtained with the crossover operator.
Among these we choose the N chromosomes that have the best fitness evaluation.
We stop the evolutionary process after a fixed number of generations (ranging
up to 200 in the tests).

4 Test Results

We have implemented the genetic algorithm in Java; we used the JFugue library
for the music manipulation subroutines. We have chosen as test cases several
seed series taken from [6]. We have run several tests varying the parameters on
many input series. The results obtained in all cases are quite similar.
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Figure 5 shows the data obtained for a specific test using K = 4, V = 30,
pnr = 0.8. The size of the population is N = 100. Figure 5 shows the fitness
value and the number of errors of the best solution as a function of the number
of generations.

Fig. 5. Fitness value and errors as function of the number of generations

Since in this test we have used V = 30 the length of the composition doesn’t
allow us to show the best solution. However, just as an example, Figure 6 shows
the actual composition given as output for a similar test in which we used V = 2
so that the total length of the composition is very small.

Fig. 6. Dodecaphonic music given as output for an example with V = 2

5 Conclusions

In this paper we have provided an automatic music composition system for dode-
caphonic music using a genetic algorithm. The output of the system is promising.
In this first version the system considers only the basic rules for the composition
of dodecaphonic music. Future work might include: (a) study of the impact of the
errors and penalties used; (b) use of a more complex fitness function taking into
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account not only harmony rules but also rhythmic and melodic considerations;
(c) study of the impact of the random choices (for example the probabilities seed
for the selection of the rhythmic pattern); (d) development of a more complex
version of the system in order to include advanced features, like, for example,
symmetry rules spanning the entire music composition.
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Abstract. In this paper we present a system for the recognition of or-
chestral conducting gestures using the Nintendo Wiimote controller. The
system is based on a neural network. This is not the first of such sys-
tems; however compared to previous systems that use the Wiimote or
other cheap hardware, it has several advantages: it is fully customizable,
continuous and does not require third party commercial software.

The system has been implemented in Java and we have run several
tests to evaluate its behavior.

1 Introduction

Modern technologies allow the direct use of human gestures as a means of inter-
action with computers and other electronic devices. Hence the problem of gesture
recognition has recently received considerable attention, both from a computer
science point of view and from a linguistic point of view. The field is quite wide
and includes recognition of facial expressions, hand gestures, body gestures and
has a variety of applications in several fields.

In this paper we are interested in the application of gesture recognition to the
music field and more in particular to the specific problem of recognizing orches-
tral conducting gestures. A number of systems for the recognition of orchestral
conducting gestures have been developed. The list is quite long; here we provide
only a few examples.

The Radio Baton [8] developed by Mathews is an electronic baton that uses
radio signals to capture the movements of the baton. The conductor can control
the tempo and the volume of the execution. The system requires specialized
hardware for the recognition of the baton movements. The goal of the system is
to “conduct” the execution (controlling tempo and dynamics) of a music piece
played by an electronic orchestra made up of MIDI instruments.

Ilmonen and Takala [4] describe a system to extract information about rhythm
and dynamics from the conductor gestures using a neural network. The system
uses specialized hardware made up of magnetic sensors to track the conductor’s
movements.

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 254–263, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Kolesnik and Wanderlay [6] propose a system that captures conducting ges-
tures using a pair of cameras, analyzes the images with the open software Eye-
sWeb and feeds the resulting representation of the gestures to the Max/MSP
commercial software. In the MAX/MSP environment the gestures are analyzed
and recognized using the Hydden Markov Model.

The papers that we have cited above are only a few of the research efforts
spent in order to have digital baton systems for musical conduction. The book by
Miranda and Wanderley [9] is a great source of information about the acquisition
and analysis of musical gestures and about the specific hardware that has been
used in several projects.

Many previous systems use specialized hardware: special digital batons, cy-
bergloves, special sensors, etc., which are not available as commercial products
or can be very expensive to obtain or to build. In recent years the technology
for human movement recognition, spurred by its application in videogames, has
seen a rapid development. The result is the availability of commercial products
like the Nintendo Wii console or the Kinetc Xbox. The Wii remote controller,
often called Wiimote, is a very cheap hardware that allows to track user move-
ments. A specific study, by Kiefer et. al. [3], has assessed the Wiimote usability
for musical applications with respect to accuracy and user feedback provided
by the Wiimote. There are a number of freely available Wiimote libraries for
interfacing the Wiimote to a personal computer, e.g, [2], [14]. Many people have
started using the Wiimote as the basic hardware for gesture recognition.

In this paper we propose a Wiimote-based system for the real-time (contin-
uous) recognition of music conducting gestures. The proposed system is con-
tinuous in the sense that the user simply conducts the music without breaking
down the entire sequence of gestures into separate single gestures: the system
automatically analyzes the input and determines the separation of the single
gestures. The proposed system is customizable in the sense that the specific set
of recognized gestures is decided by the user that first has to train the system
to learn the wanted gestures.

Related work. We found several papers in the literature that use the Wiimote for
the recognition of musical gestures or for the recognition of more general gestures.
The papers that tackle the specific problem of recognizing music conducting
gestures are [1], [11] and [13].

The system built by Bradshaw and Ng [1] is a 3D tracking system of musical
gestures. The goal of the system is the analysis and the 3D representation of the
gestures. It is not meant for “understanding” the gestures, but only to provide
a 3D representation. The system developed by Bruegge et al. [11] allows the
tracking either with a Wiimote or with a camera. Few details about the gestures
recognition are provided in [11]; it appears that what the Pinocchio system ex-
tracts from the user gestures are the indications about tempo and dynamics.
The UBS Virtual Maestro developed by Marrin Nakra et al. [13] is similar to
Pinocchio in that it also uses the Wiimote in order to conduct a virtual orches-
tra controlling the tempo and the dynamics of the execution. Both Pinocchio
and UBS Virtual Maestro do not focus on the specific problem of recognizing
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orchestral music conducting gestures. The main focus of both systems is that
of allowing the user to control tempo and dynamics of a virtual execution. It
should be noted that fully recognizing conducting gestures is different from just
understanding the tempo and the dynamics from the conducting gestures.

Among the projects that use the Wiimote for more general (not music related)
gestures recognition we cite [12] because the system presented is enough general
to be used also for music gestures recognition. Other papers, like [10] and [7]
present specific recognizers which, at least from what we understand, cannot be
used for continuous music gestures recognition.

The system presented by Schlömer et al. [12] is a general gesture recognizer
that can be trained by the user. So it can be used for our problem. However
for each gesture the user is required to push and hold the Wiimote button to
indicate the start and the end of the gesture. This means that the recognition
is discrete, that is, works for single gestures. This might be perfectly acceptable
in many situations; for our problem, however, this means putting the burden
of separating the gestures on the conductor, and thus it is not acceptable. Our
system is continuous in the sense that the separation of the gestures is made
automatically by the recognizer.

2 Background

2.1 Wiimote

The Wiimote controller, shown in Figure 1, produced and commercialized by
Nintendo, is designed to allow user interaction with the Wii Console. The Wii-
mote can be used also as stand-alone hardware and can be connected to a per-
sonal computer through Bluetooth. Several open source libraries allow to read
the data produced by the Wiimote and provide a representation of the user
movement as a list of points. In our particular setting, we have used an infrared
pen as digital baton (see Figure 1); the Wiimote controller captures the move-
ment of the pen and sends the data to the personal computer. Both the Wiimote
controller and the infrared pen are very cheap. Notice that we do not need the
Nintendo Wii console but only the remote controller.

Fig. 1. The Wiimote controller (left) and infrared pens (right)

The data arrives as the list of point coordinates of the pen relative to a
reference box defined in the Cartesian space. Such a reference box has to be
defined in a calibration phase. There are a number of open source projects
that show how to implement the above system, e.g. [2]. An example of input is
(100, 100), (100, 101), (103, 105), (102, 102), (98, 101), (97, 96), (90, 92), (80, 88), ...
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2.2 Feed-Forward Neural Networks Classifier

Neural networks are widely used to reproduce some activities of the human brain,
for example, perception of images, pattern recognition and language understand-
ing. They are a very useful tool also for gestures recognition. One of the most
commonly used neural network is the fully connected three-layer feed-forward
neural network. The neurons activation function is a sigmoid function defined
as f(a) = 1

1+exp(−a) . We do use such a kind of neural network.
Our problem can be seen as a classification problem in which the network has

to be able to recognize gestures and classify them in one of k classes C1, C2, ..., Ck,
that can be decided by the user.

2.3 Discrete vs. Continuous Recognition

An important distinction that we have to make is about discrete (or static)
and continuous (or dynamic) recognition. A discrete recognition means that we
assume that the input is just one single gesture, that is we can recognize one
gesture at a time. If we want to recognize a sequence of gestures with a discrete
recognizer we need to break down the list that represents all the gestures into
pieces, each of which corresponds to a single gesture.

Conversely, a continuous recognition is able to take as input the complete list
that represents all the gestures and automatically recognize each single gesture,
which implies being able to automatically break down the input sequence into
the pieces corresponding to single gestures.

Clearly, continuous gestures recognition is much harder than discrete gesture
recognition. One way of breaking down the complete list of the gestures into
fragments for each single gesture is to put the burden on the conductor: the
electronic baton might have a button that the conductor has to press at the
beginning of each gesture. However this is not a natural thing to do for the con-
ductor. It is more realistic to assume that the electronic baton will provide a list
of point coordinates that describes all the gestures without explicit indications
about when the previous gesture ends and the subsequent one begins.

2.4 Turning Points

A turning point of a gesture is a change of direction of the gesture. A simple way
to define turning points is the following. Look at the x and the y coordinates
and as long as they proceed in ascending or descending order we say that the
direction has not changed. When one of the coordinates changes its direction then
we have a turning point. For example if the list of coordinates that describes a
gesture (100, 100), (99, 101), (98, 102), (99, 103), (104, 110), (107, 109), ..., we have
2 turning points, one between the third and the fourth point and another one
between the fifth and the sixth point.

3 The Recognizer

In this section we describe the neural network for the recognition of music con-
ducting gestures. We use a feed-forward three-layer neural network. Our goal is
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to recognize typical music conducting gestures. Such gestures provide indications
to the musicians mainly about the tempo and the dynamics to be used. However
specific gestures might have also other meanings to the musicians. The gesture
meanings are decided by the conductor.

Each gesture has peculiar shape and characteristics. Figure 2 shows the 6
standard gestures that we have used for the tests. We remark that the system is
customizable so that the set of recognized gestures can be decided by the user.
For this particular set we have k = 6 gestures and the number of turning points
are n1 = 8, n2 = 10, n3 = 12, n4 = 14, n5 = 16, n6 = 18 and thus nmax = 18.

Fig. 2. The set of 6 conducting gestures classes C1, C2, ..., C6 used as a test case

As we have said in the background section our input is provided by the Wi-
imote controller and is a list G of point coordinates:

G = (x1, y1), (x2, y2, ), . . . . . . . . . , (xi, yi), (xi+1, yi+1), . . . . . .

Each pair is a point in a reference rectangle with corners at (0, 0) and (1024, 768)
in the Cartesian space. The particular values 1024 and 768 are specific to the
resolution of the Wiimote controller.

As in many other classification problems we use a data filtering to “smooth”
the input data and make the recognition problem easier. The raw input data
for a gesture G acquired using the Wiimote controller might be not a perfect
representation of the intended gesture. This might be due to the fact that the
gesture is not always the same, to the approximation introduced by the Wiimote
or to any other source of noise in the raw data.
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3.1 Data Representations

In this section we describe the data representation for the input and the output
of the neural network. We remark that the choice of the data representation is a
crucial step in the design of a neural network. The output of the network heavily
depends on such a choice. We experimented 4 alternative data representations
and we have compared the output of each type to determine the best data
representation among the proposed 4 alternatives.

Representation 1. Given a gesture G (input), the corresponding filtered data
F , let d be the distance between the two farthest turning points, PA and PB , in
F and let r be the straight line passing through PA and PB . Notice that PA and
PB do not necessarily correspond to the first P1 and the last Pn turning points;
actually they are different in many cases.

For each turning point Pi of a gesture we consider the perpendicular projection
Xi of Pi on r and include in the data representation the following information:

– the normalized height hi

d of Pi; the height is positive for points on one half-
plane of r and negative for points on the other half-plane;

– the normalized distance di

d between Xi and PA;
– the normalized distance d−di

d between Xi and PB.

Observe that each value is a real number in [−1, 1].
Hence a gesture F is represented with a list of triples F � ((h1

d , d1
d , d−d1

d ), ...,
(hn

d , dn

d , d−dn

d )). Notice that the value of n might change depending on the par-
ticular gesture. Remember that nmax is the maximum number of turning points
in any gesture.

The first-layer of the network consists of Nin = 3nmax neurons to which
the above representation (with a possible pad of zeroes) is fed. The output of
the network is a string of k bits, where k is the number of different gestures
(classes) that we have to recognize. Each class corresponds to a sequence of bits
consisting of k − 1 zeroes and exactly a 1. Class C1 is codified with [1, 0, . . . , 0],
C2 is codified with [0, 1, . . . , 0] and so on. Hence the third layer of the network
consists of Nout = k neurons.

Representation 2. In the second representation we use as reference line the
straight line r passing through the first and the last turning points, that is P1

and Pn. For each turning point Pi we consider the straight line ri passing from
P1 and Pi and represent Pi with the radian of the angle between r and ri.

We represent the gesture F with the list of radians F � (r1, ..., rn). As before,
the value of n might change depending on the particular gesture. The first layer of
the network consists of Nin = nmax neurons to which the above representation
(possibly padded with zeroes) is fed. As for Representation 1, the output is
specified with a string of k bits, hence Nout = k.

Representation 3. In the third representation the reference line r depends only
on P1 and is the straight line passing from P1 and parallel to the horizontal axis
of the Cartesian reference system. The data representation is similar to the one
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used in Representation 2: gesture F is represented with the list of radians F �
(r1, ..., rn) where ri is the angle measured in radians between the reference line
r and the straight line passing through P1 and Pi. The first layer of the network
consists of Nin = nmax neurons to which the above representation (possibly
padded with zeroes) is fed. As for the previous representations, the output is
specified with a string of k bits, hence Nout = k.

Representation 4. In the fourth representation instead of a reference line we
use a reference rectangle: we consider the smallest rectangle of the Cartesian
space that includes all the turning points. The lower-left corner of such a rect-
angle is point A with coordinates (xmin, ymin) where xmin = min xi over all the
turning points Pi = (xi, yi) and ymin = min yi over all the turning points Pi.
The upper-right corner of the rectangle is point B with coordinates (xmax, ymax)
where xmax = maxxi and ymax = max yi. Let d be the distance between A and
B. For each turning point Pi we include in the data representation the following
information about Pi:

– the value of cosαi where αi is the angle between the straight line passing by
A and Pi and the horizontal Cartesian axis;

– the normalized value di

d , where di is the distance between A and Pi.

We represent the gesture F with the list of pairs F �((cosα1,
di

d ), ...(cos αn, dn

d )).
The first-layer of the network consists of Nin = 2nmax neurons to which the above
representation (with a possible pad of zeroes) is fed. For this representation
we adopt a new strategy about the output representation: the output will be
specified using the same representation used for the input. Hence Nout = 2nmax.

The motivation for this choice is that we wanted to get a better behavior for
the continuous recognition and requiring the network to provide an enumerative
output, as in the previous representations, makes the task of the network harder.
When the network is required to give an output in the same form of the input
the task of the recognition becomes easier.

3.2 Continuous Recognition

As we have said earlier, the continuous recognition of gestures is much harder
than the discrete one because we have a continuous list of point coordinates
and we do not know when a gesture ends and consequently when a new gesture
starts. In order to tackle this problem we define the gesture fragments. A gesture
fragment is a “piece” of the gesture. We can define fragments exploiting the
turning points. In its simplest form a fragment is simply the piece of a gesture
between two successive turning points. However a fragment might consists also
of 2 or more consecutive turning points. In general, for a given network we fix
a parameter f , the number of fragments, and split each gesture in at most f
fragments as follows. Let n be the number of turning points in the gesture. If
n ≥ f + 1 then the gesture will be divided into f fragments each consisting of
either �n/f� or �n/f� consecutive turning points; if n ≤ f then the gesture will
be split into n−1 fragments each one consisting of two consecutive turning points.
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In the training phase, in which the user trains the system performing sam-
ple gestures, the system automatically computes fragments and learns how to
recognize the single fragments.

The continuous recognition works as follows. We fix a sample time interval tS .
We look at the input every tS units of time. The shorter tS is the better is be the
recognition; clearly we cannot look at the input too frequently because we are
bound to the CPU requirements of the neural network. In practice tS will be the
smallest time unit that we can use. In order to dynamically recognize gestures,
we feed the neural network with the input at time tS (the input starts arriving
at time 0). The neural network will respond saying either that it recognizes in
the input a particular class gesture Ci or a particular fragment of a gesture. If
the output of the network is not a gesture then we define the current output
error to be 1. If the output is a gesture Ci we first compute the difference
vector between the input data and Ci and then we define the error to be the
norm of the difference vector. Notice that the error is always in [0, 1]. If the
error is above a pre-defined threshold T then it is likely that the recognized
gesture has been misclassified; for example because the system has recognized
only some fragments. In this case we wait another time unit tS and we repeat
the recognition but using the input data from 0 through the current time until
the error distance is below the threshold; when this happens the network has
recognized one complete single gesture. This allows to split the overall list of
gestures into separates pieces, each one belonging to one single gesture.

Time 0 is to be interpreted as the beginning of the new gesture; that is when
we recognize a gesture we reset the time to 0 for the recognition of the subsequent
gesture.

The choice of the threshold T affects the quality of the recognition. After
several attempts we have set this threshold to T = 0.075 because with this value
we obtained better results.

4 Training, Validation and Test Results

Discrete recognition. Our training set consisted of 100 repetitions of each
single type of the 6 gestures for a total of 600 training gestures performed by
a single user. The validation set and the test set were obtained similarly. The
validation set consisted of 230 gestures (a little less than 40 per each type) and
the test set consisted of 125 gestures (about 20 per type).

We have run tests for each of the 4 data representations described in the
previous section. All networks were trained for about 5000 epochs. The error
rates for the 4 representations were, respectively, 9.9%, 11.8%, 11.4%, 4.1%. Hence
the best network is the one based on Representation 4.

Continuous recognition. In order to test the behavior of the network for con-
tinuous gesture recognition we have run several tests using sequences of various
lengths, ranging from sequences of 10 consecutive gestures to sequences of 100
consecutive gestures. For each sequence we have repeated the test 10 times. Ta-
ble 1 provides the percentage of errors for each of the 10 tests performed for the
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case of the sequence of 20 gestures. Table 2 provides the average error (over 10
tests) for each set of tests for the various sequences of 10 through 100 gestures.
As can be seen from the results, the neural network that uses Representation 4
provides the best results. It is worth noticing that the behavior of all the net-
works degrades as the length of the gesture sequence increases. This might be
due to some error propagation.

Table 1. Error rates for the test with a sequence of 20 gestures

Test number 1 2 3 4 5 6 7 8 9 10 Average
R1 40% 33% 38% 37% 30 % 38% 35% 35% 31% 35% 35.2%

R2 28% 31% 22% 22% 25% 27% 26% 22% 22% 27% 25.2%

R3 20% 29% 28% 28% 22% 19% 25% 25% 25% 26% 24.7%

R4 2% 3% 5% 4% 7% 7% 9% 3% 2% 2% 4.4%

Table 2. Average error rates for sequences of gestures with various length (from 10
through 100)

Sequence length 10 20 30 40 50 60 70 80 90 100
R1 33% 35% 40% 40% 46% 48% 54% 56% 28% 70%

R2 21% 25% 28% 31% 31% 31% 37% 39% 42% 44%

R3 20% 25% 26% 28% 31% 28% 35% 38% 42% 45%

R4 2% 4% 5% 4% 7% 7% 9% 11% 13% 16%

5 Conclusions and Future Work

Possible directions for future work can be two-fold. On one hand one could study
possible improvements of the system in terms of error rates by fine-tuning the
system, exploring other data representation or even different approaches for the
continuous recognition. On the other hand, one can integrate the recognition
system into a bigger framework, for example, for orchestral score following or
for the integration of a particular director’s conducting gestures into the score.
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Abstract. NodeBox is a free application for producing generative art. This 
paper gives an overview of the nature-inspired functionality in NodeBox and 
the artworks we created using it. We demonstrate how it can be used for 
evolutionary computation in the context of computer games and art, and discuss 
some of our recent research with the aim to simulate (artistic) brainstorming 
using language processing techniques and semantic networks. 

Keywords: computer graphics, generative art, emergence, natural language 
processing. 

1   NodeBox 

1.1   Computer Graphics and User Interfaces 

Traditionally, user interfaces in computer graphics applications have been based on 
real-world analogies (e.g., a pen for drawing, scissors for slicing). This model raises 
creative limitations. First, the features can only be used as the software developers 
implemented them; creative recombination of tools is impossible when not foreseen. 
Second, there is little room for abstraction: users will tend to think along the lines of 
what is possible with the built-in features (buttons, sliders, menus), and not about 
what they want [5].  

In 2002 we released NodeBox1, a free computer graphics application that creates 
2D visual output based on Python programming code, with the aim to overcome these 
limitations. By writing Python scripts, users are free to combine any kind of 
functionality to produce visual output. This approach has also been explored in 
software applications such as Processing [19] (using Java code) and ContextFree 
(using a context-free grammar). Over the course of two research projects the 
application has been enriched with functionality for a variety of tasks, bundled in 
intermixable Python modules—for example, for image compositing, color theory, 
layout systems, database management, web mining and natural language processing. 
                                                           
1 NodeBox for Mac OS X version 1.9.5, http://nodebox.net 
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Example script. Images are downloaded using the Web module and arranged in a 
random composition, using the NodeBox rotate() and image() commands. 

import web 
images = web.flickr.search("flower") 
for i in range(100): 
    img = choice(images).download() 
    rotate(random(360)) 
    image(img,  
        x=random(800),  
        y=random(600), width=200, height=200) 

A number of modules are inspired by nature. For example, the Graph module 
combines graph theory (i.e., shortest paths, centrality, clustering) with a force-based 
physics algorithm for network visualization. The Supershape module implements the 
superformula [10], which can be used to render (and interpolate between) many 
complex shapes found in nature (ellipses, leaves, flowers, etc.). The L-system module 
offers a formal grammar that can be used to model (the growth of) plants and trees 
[18]. The Noise module implements Perlin’s pseudo-random generator, where 
successive numbers describe a smooth gradient curve [17]. This technique is used in 
computer graphics to generate terrain maps, clouds, smoke, etc. Finally, two modules 
provide functionality for working with agent-based AI systems. The Ants module can 
be used to model self-organizing ant colonies. The Boids module presents a 
distributed model for flocking and swarming [20]. “Boids” is an emergent Artificial 
Life program where complexity arises from the interaction between individual agents. 
Each boid will 1) steer away to avoid crowding other boids, 2) steer in the average 
direction of other boids and 3) steer towards the average position of other boids. 

1.2   Generative Art 

In practice, NodeBox is used to create what is called “generative art”. Generative art 
is an artistic field inspired by ideas about emergence and self-organization, and 
making use of techniques borrowed from AI and artificial life [2, 14]. The concept of 
emergence was first coined by Lewes (1875) and later described by Goldstein (1999) 
as "the arising of novel and coherent structures, patterns and properties during the 
process of self-organization in complex systems" [11]. In terms of generative art, 
emergence implies that the artist describes the basic rules and constraints, and that the 
resulting artwork is allowed a certain amount of freedom within these constraints to 
self-organize. 

In this sense NodeBox is for example useful for: a graphic designer producing a 
200-page document in one consistent visual style but with variations across pages, 
information graphics based on real-time data, evolutionary art installations that react 
to input (e.g., sound), customized wallpaper based on e-mail spam [16], and so on. In 
section 2 we discuss one such project, which demonstrates how the software can be 
used for evolutionary computation in the context of the visual arts. In section 3 we 
show three example works of generative art. 

An approach using programming code leads to new opportunities, but it also 
introduces a problem: many people active in the arts (e.g., art students) are not trained 
in programming. In section 4 we briefly discuss our attempts to alleviate this problem 
with a natural language processing approach, and by using a node-based interface. 
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2   Evolutionary Computation in NodeBox 

2.1   Genetic Algorithms and Swarming 

In 2007 we created Evolution,2 a NodeBox art installation based on boid swarming 
and a genetic algorithm (GA). A starting set of creatures is randomly designed from a 
pool of components – heads, legs, wings, tails, etc. Different components have a 
behavioral impact. For example: the type of head allows a creature to employ better 
hunting strategies (ambush, intercept), better evasive strategies (deception, hide in the 
flock), or better cooperative skills. Larger wings allow a creature to fly faster.  

Central in a GA’s design is the fitness function, which selects optimal candidates 
from the population for the next generation. Here, the fitness function is an interactive 
hunting ground where creatures are pitted against each other. Survivors are then 
recombined and evolved into new creatures. Evolution’s GA uses a Hierarchical Fair 
Competition model (HFC) [12]. HFC ensures that a population does not converge into 
a local optimal solution too quickly, by ensuring a constant supply of new genetic 
material (i.e., new random creatures to fight). Interestingly, when correctly tweaked 
this produces an endless crash-and-bloom cycle of 1) creatures that are exceptional 
but flawed and 2) mediocre all-rounders. Random newcomers will eventually beat the 
current (mediocre) winner with an “exceptional trick” (e.g., very aggressive + very 
fast), but are in turn too unstable to survive over a longer period (e.g., inability to 
cope with cooperating adversaries). Their trick enters the gene pool but is dominated 
by generations of older DNA, leading to a very slow overall evolution. 

2.2   City in a Bottle – A Computer Game on Evolution by Natural Selection 

Later, we expanded this prototype into a computer game project (City in a Bottle) 
based on the principles of emergence and evolution by natural selection. The project 
is currently in development. In short, the game environment is procedural, i.e., 
lacking a predefined landscape or storyline. Organisms (plants and insects) are 
described in terms of their basic behavioral rules: “if attacked, flee”, “when cornered, 
fight”. Complex game mechanisms then arise as organisms interact. If the most 
nutritious food is found in tall-stemmed flowers, creatures with wings will thrive—
and in turn the spores from this kind of flower will spread. The game mechanisms are 
inspired by complex systems [13]: neither the designers nor the players of the game 
control the environment in full; only local actions such as planting a seed or catching 
and domesticating an insect are allowed.  

The game music adheres to the same principle. Typically, computer games use a 
predefined library of sound effects that accompany an event (a weapon that is fired, a 
spell that is cast) and music tracks that are looped in specific situations (the haunted 
mansion music, the magic forest music). However, audio in City In A Bottle is 
composed in real-time, resulting in an emergent, swarm-based music score [1] where 
individual audio samples are composed based on the creature’s wing flap velocity, the  
, 

                                                           
2 Evolution prototype, http://nodebox.net/code/index.php/Evolution 
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Fig. 1. Prototype of the City In A Bottle game world, with two kinds of flowers thriving 

clicking of mandibles and the rushing of leaves. The overall music composition then 
arises as an interaction of creatures flocking together near food or wind rustling the 
leaves of various plants. 

On a final note, the project uses a spin-off of NodeBox called NodeBox for 
OpenGL,3 which uses hardware-acceleration on the computer graphics card for better 
performance. 

3   Examples of Generative Art Created with NodeBox 

 

Fig. 2. “Creature”: 350x150cm panel created for the department of Morphology, University of 
Ghent. It was realized using a recursive approach to simulate veins and skeleton structures. 

                                                           
3 NodeBox for OpenGL, version 1.5, http://cityinabottle.org/nodebox 
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Fig. 3. “Superfolia”: 6 panels 70x150cm realized using an agent-based approach (a single blade 
of grass responds to its neighbors) 

 

Fig. 4. “Nanophysical”: 66.5x2.5m wall design at IMEC (European institute for nanotechnology). 
The work regards the hall window as a source of energy and then evolves along the walls, using 
(among other) a force-based physics algorithm. 
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4   Computational Creativity 

A user interface with programming code introduces a steep learning curve for users 
not trained in programming. In a recent research project (“Gravital”), we have 
attempted to alleviate this shortcoming by providing a node-based interface.4 Visual 
building blocks (nodes) can be connected in the interface to create interesting visual 
effects. Building blocks can be opened to examine and edit their source code.  

Furthermore, a programming tool for the visual arts is useful in terms of 
production-intensive tasks, but it does not provide leverage on what to make—what 
ideas are “interesting” from a creative standpoint. The second aim in the Gravital 
project was to develop a set of algorithms to find creative associations and analogies 
between concepts (i.e., words), to help users discover interesting new ideas. The 
system uses a memory-based shallow parser [8], a semantic network of commonsense 
[22] and heuristic search techniques. We hypothesize that this system can be used to 
simulate conceptual brainstorms based on natural language input. 

4.1   Memory-Based Shallow Parser 

The first task in the system is to transform information in natural language sentences 
to a meaning representation language. This task has a long history in AI, and in 
practice the translation of natural language into a deep, unambiguous representation 
(i.e., understanding) turned out to be impossible (except for small domains where all 
relevant background knowledge was explicitly modeled, see for example [23]). 
Natural language processing (NLP) has since switched to robust, efficient and 
reasonably accurate methods that analyze text to a more superficial partially syntactic 
and partially semantic representation (shallow parsing), using machine learning and 
statistical methods trained on large annotated corpora.  

The shallow parser used by our system is MBSP; a memory-based shallow parser 
implemented as memory-based learning modules using the Machine Learning 
package TiMBL [7]. Memory-based learning is a form of exemplar-based learning 
that is based on the idea that language processing involves specific exemplars of 
language use, stored in memory. With MBSP we can process user input in the form of 
natural language (i.e., English) and mine relevant concepts from it. These are then 
processed further with the Perception5 solver: a semantic network traversed with 
heuristic search techniques. 

4.2   Semantic Network of Commonsense 

For example, assume we have a drawing machine that can draw either circles or 
rectangles, in any color. The task “draw a circle” is trivial and can be solved by the 
user himself without having to rely on NLP algorithms. The task “don’t draw 
anything except an ellipse preferably of equal width and height” is quite complex to 
solve in terms of NLP, and perhaps not worth the effort. However: “draw the sun” 
poses an interesting challenge. What does the sun look like? Given the possibilities of 
                                                           
4 NodeBox 2, beta version, http://beta.nodebox.net/ 
5 Perception module, beta version, 
http://nodebox.net/code/index.php/Perception 
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our drawing machine, a human might translate the “sun” concept to an orange circle. 
This kind of conceptual association is a form of human creativity [15], which we 
attempt to simulate using a semantic network of related concepts. When given the 
word “sun”, Perception will propose colors such as orange and yellow, and shapes 
such as a circle or a star. 

To illustrate this further, say we are looking for images of creepy animals. The 
system could search the web for images named creepy-animal.jpg, but that is 
not very creative. What we want is a system that imitates an artistic brainstorming 
process: thinking about what animals look like, what the properties of each animal 
are, which of these properties can be regarded as creepy, and look for pictures of 
those animals. In this particular example the Perception solver suggests such animals 
as octopus, bat, crow, locust, mayfly, termite, tick, toad, spider, ... No frolicking 
ponies or fluffy bunnies here! For the octopus the logic is obvious: the semantic 
network has a direct creepy is-property-of octopus relation. The bat (second result) 
has no is-creepy relation however, only a set of relations to black, cave, night and 
radar. What happens here is that many aspects of a bat are inferred as a strong causal 
chain [21] leading to creepiness. Let us clarify the meaning of “many aspects”. 

In [4], Hofstadter argues that AI-representations of human high-level perception 
require a degree of flexibility (or fluidity), where objects and situations can be 
comprehended in many different ways, depending on the context. To reflect this, 
Perception’s solver uses clusters of concepts as its basic unit for reasoning, instead of 
a single concept. Concepts are surrounded by other concepts that reinforce meaning. 
A concept cluster is the concept itself, its directly related concepts, concepts related to 
those concepts, and so on, as deep as the representation requires (we used depth 2). 
This is called spreading activation [6]. Activation spreads out from the starting 
concept in a gradient of decreasing relatedness. What defines the bat concept are its 
directly surrounding concepts: black, cave, night, radar, and concepts directly related 
to these concepts: Darth Vader, dark, dangerous, deep, evil, cat, airplane, sky, 
nothing, ... Several of these have a short path [9] in the network to dark, and dark is 
directly related to creepy. The sum of the shortest path length to creepy is 
significantly less than (for example) the path score of the cluster defining bunny. A 
bat has many dark aspects, and dark is pretty creepy. 

Note that different concepts in a cluster have a higher or lower influence on the 
final score. For the bat concept, the distance between dark and creepy is more 
essential than the distance between deep and creepy. This is because dark is more 
central in the bat cluster when we calculate its betweenness centrality [3]. More 
connections between concepts in the cluster pass through dark. We take dark as a sort 
of conceptual glue when reasoning about bats. 

Using conceptual association, we think the system can be useful for human 
designers to come up with more creative ideas, or to find visual solutions for abstract 
concepts (e.g., jazz = blue). 

5   Future Work 

Section 4 presents a preliminary computational approach to simulate brainstorming. 
In future research, we will investigate if this is indeed how human brainstorming 
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works, and if the analogies the system comes up with are “good” or “bad” creative 
finds. This will introduce new challenges, since what is “good” or what is “bad” 
appears to involve numerous cultural and personal factors. 
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Abstract. This paper presents a genetic algorithm that evolves a four-
part musical composition–melodically, harmonically, and rhythmically.
Unlike similar attempts in the literature, our composition evolves from
a single musical chord without human intervention or initial musical
material. The mutation rules and fitness evaluation are based on common
rules from music theory. The genetic operators and individual mutation
rules are selected from probability distributions that evolve alongside the
musical material.

Keywords: Genetic Algorithm, Evolutionary Programming, Melody,
Harmony, Rhythm, Music Composition.

1 Introduction

Algorithmic composition is the process of creating music using either determi-
nate or indeterminate algorithmic processes, or some combination thereof. While
composing, musical composers use many simple rules during the creative pro-
cess. Unlike stochastic composition techniques, algorithmic methods that encode
knowledge from rules of voice leading and counterpoint can better approximate
musically desirable solutions.

The research presented here attempts to compose four-part musical harmony
with a GA without user intervention or initial musical material. Each musical
piece begins as a single musical chord and is expanded using genetic operations.
Unlike previous music experiments with GAs that focus on one aspect of music
or require initial musical material, such as a melody to harmonize, our system
evolves the entire composition, including the melodies, harmonies, and rhythms,
using genetic operations. Our system features a variable length chromosome that
represents a four-voice composition and uses the four basic genetic operators of
mutation, duplication, inversion, and crossover. The mutation operator and the
fitness function evaluation are based on music theory rules.

2 Related Work

Algorithmic composition has long been of interest to computer scientists and mu-
sicians alike. Researchers have used a variety of approaches toward algorithmic

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 273–282, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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composition including rule-based systems [2], musical grammars, artificial neural
networks, and Markov chains (see [11] for a review).

Previously, genetic algorithms have been applied in several areas of music com-
position. However, given the broad search space afforded by GAs and the multi-
dimensional complexity of music itself, most studies have constrained themselves
to focus on one dimension of music at a time, such as evolving rhythms, melodies,
or harmonies, but we have found no studies that evolve all aspects together. Ge-
netic algorithms have been used to compose single line melodies [3], creative
jazz melodies based on a given chord progression [1], unpitched rhythms [5],
Baroque-style harmony based on a given melody [10] [12] and figured bass [8],
and the composition of microtonal music [6]. Compositional rules based on music
theory have been used to control the fitness function [9] as well as the mutation
operator [13] in the evolution of single line melodies.

As discussed in [11], the efficacy of any algorithmic composition method
depends heavily on the underlying representation of musical knowledge. Most ap-
proaches to composition using GAs apply mutation and other operators stochas-
tically, relying on selection and the fitness score to eliminate the weak individuals
from the population. Our approach uses an probabilistic approach to operator
selection, but unlike previous approaches, we allow these probabilities to evolve
alongside the musical material. Therefore the individuals that succeed to sub-
sequent generations contain information about which musical rules and genetic
operators contributed to their higher fitness scores, thus allowing a more directed
and efficient traversal of the broad evolutionary search space.

3 Genetic Algorithm

3.1 Genome Representation

Individual in the population consist of a variable length chromosome that rep-
resents a single musical composition. A chromosome contains four parts, each
corresponding to a musical line. Every individual part consists of a list of tuples
containing a pitch and duration value. Musical pitch is represented by a stan-
dard MIDI value, ranging [0, 127]. Duration is represented as an integer from
[1, 8] that corresponds to the length in semiquavers (eighth notes). A duration
value of one indicates a single eighth note while a duration of eight represents
a single whole note (Fig. 1). The musical representation contains no time signa-
ture, allowing the composition to grow and shrink from insertions and deletions
anywhere in the piece. The chromosome also assumes a key of C-Major and does
not contain any key modulations. The final output can be transposed to another
musical key.

Each individual in the initial population consists of only a single whole note
chord. The bass line always contains the tonic note (C) while each of the upper
three parts contains a single note in the tonic chord selected randomly with
replacement from the C-Major triad (C, E, or G). Each musical part will grow
from this single initial note using mutation and the other genetic operators.



Evolving Four-Part Harmony Using Genetic Algorithms 275

Fig. 1. Example chromosome for a single part represented as a list of pitch-duration
tuples: {(72, 8); (71, 4); (69, 4); (67, 8)}

3.2 Operators

Operator Probability. In addition to the musical information, each chromo-
some also contains a set of probabilities used in the selection of the genetic
operators. Each genetic operator op has an individual probability drawn from a
total probability mass.

P(op) =

⎧⎪⎪⎨
⎪⎪⎩

P (mutation)
P (crossover)

P (duplication)
P (inversion)

∈ [0, 1]

P(op) represents the distribution that operator op will be selected. On each gen-
eration and for each chromosome, a single operator is probabilistically selected
and applied. The probabilities of the genetic operators are themselves mutated
in every generation. A probability corresponding to a single operator is randomly
selected from the distribution, and a random value from [−0.1, 0.1] is added to
the probability. The distribution is then normalized to maintain a sum of one.
The initial operator probability distribution is shown in Table 1.

Like the operator probabilities, individual mutation rules are also selected
probabilistically. On each generation, if the mutation operator is selected, a sin-
gle mutation rule mi is selected probabilistically and applied to the chromosome.
These individual mutation rules are drawn from a separate probability distribu-
tion, where ∑

i

P (mi|op = mutation) = 1

Thus, the probability of selecting a specific mutation operator is given by
P (mi, mutation) = P (mi|mutation) × P (mutation). The probabilities of the
mutation rules are randomly perturbed each generation in the same manner as
the operator probabilities. The probability distributions for the mutation rule
selection are initialized uniformly with an equal fraction of the total distribution.

Selection Method. To create a new generation, the fitness score of each chro-
mosome is calculated. Truncation elimination is applied to remove the weakest
ten percent from the population. To preserve the most fit chromosomes, an elitist
selection adds the top ten percent of the population to the successive generation
without any change.
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Table 1. Initial Operator Probabilities

Operator Initial Probability
Mutation 0.4
Crossover 0.2
Inversion 0.2
Duplication 0.2

The remainder of the population is generated by altering chromosomes using
one of the four genetic operators. A single chromosome from the previous gen-
eration is selected by tournament selection with a tournament size of two. This
selected chromosome is then altered by one of the genetic operators probabilis-
tically and added to the subsequent generation.

Mutation. If the mutation operator is selected, a single mutation rule is selected
according to the rules probability. For each part, a note or pair of consecutive
notes is selected at random and the mutation rule is applied. The mutation rules
are described below.

1. Repeat – the selected note is repeated with the same pitch and duration
value.

2. Split – the selected note is split into two notes. Each new note has the same
pitch as the original, but half the original duration.

3. Arpeggiate – the selected note is split into two notes of equal duration. The
first note retains the original pitch value while the second note is transposed
randomly to pitch a third or fifth above the first note.

4. Leap – the pitch of the selected note is randomly changed to another pitch
in the C-Major scale within the musical range of the part.

5. Upper Neighbor – for a pair of consecutive notes with the same pitch, the
pitch of the second note is transposed one diatonic scale step higher than
the original.

6. Lower Neighbor – for a pair of consecutive notes with the same pitch, the
pitch of the second note is transposed one diatonic scale step lower than the
original.

7. Anticipation – the selected note is split into two notes, each containing
the original pitch, but an unequal duration. The duration of the first note is
shorter than the second note by the ratio of 1:3. For example, if the original
note is a half note, the new notes will be an eighth and a dotted-quarter
note.

8. Delay – the selected note is split into two notes, each containing the original
pitch, but of unequal duration. The duration of the first note is longer than
the second note by the ratio of 3:1.

9. Passing Tone(s) – for a pair of selected consecutive notes, new notes are
added in between that connect the two notes by stepwise motion. If the
second note is lower than the first, the new notes connect in downward scalar
motion. If the second is higher than and the first, the new notes connect the
two original notes by upward scalar motion.
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10. Delete Note – the selected note is removed from the part.
11. Merge Notes – for a pair of consecutive notes with the same pitch, the two

notes are combined into a single note with a duration that is the sum of the
two original notes, or eight, whichever is smaller.

Crossover. When the crossover operator is chosen, a pair of chromosomes is
selected by tournament selection and recombined using single-point crossover to
create two new chromosomes. For any selected pair of chromosomes C1 and C2

with lengths m and n respectively, cutpoints i and j are selected at random. A
cutpoint is a duration point selected randomly anywhere between the start and
the end of a piece. It may fall on a boundary between two notes, or bisect an
individual note, in which case the note is split into two notes at this boundary.
Two new chromosomes C3 = C1

1 ..C1
i C2

j+1..C
2
n and C4 = C2

1 ..C2
j C1

i+1..C
1
m are

created and added to the next generation (Fig. 2(a)). The crossover operator is
applied to each of the parts using the same cutpoints. The operator probabilities
and the mutation rule probabilities for the new chromosome are the average of
the respective probabilities of the original two chromosomes.

Duplication. A single chromosome is selected by tournament selection and a
portion of the chromosome is repeated. An initial cutpoint i is selected at random
and a second cutpoint j is selected at random, such that j > i and j < i + 8.
The duplication operator restricts repetition to at most the duration of a whole
note so that the chromosome does not grow in length disproportionately with
other individuals in the population. A new chromosome containing a repetition
of notes from i to j is created and added to the next generation (Fig. 2(b)).

Inversion. A single chromosome C is selected by tournament selection and a
subsequence of the chromosome is reversed, similar to John Holland’s original
inversion operator [4]. An initial cutpoint i is selected at random and a second
cutpoint j is selected at random, such that j > i. The order of the notes between i
and j are then reversed. The new chromosome containing the retrograde musical
subsequence is added to the next generation (Fig. 2(c)).

3.3 Fitness Function

The fitness function evaluates the quality of various aspects of the piece of music
according to several common rules of musical composition and voice leading [7].
As in [9], the fitness of the entire chromosome is a weighted sum of R individual
fitness rules. In order to balance the relative importance of some rules over
others, each rule has a weight associated with it. Each rule is analyzed separately.
An individual fitness rule ri produces a score(ri) ∈ [0, 1], and wi indicates its
corresponding weight in the total fitness score.

fitness =
R∑
i

wi × score(ri)
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(a) Example of the crossover operation.
Above, original chromosomes C1 and C2

with cutpoints i and j, respectively. Be-
low, new chromosomes C3 and C4 result-
ing from crossover of C1 and C2.

(b) ) Example of the duplication op-
eration. Above, the original chromo-
some with cutpoints i and j. Below, the
new chromosome with duplicated subse-
quence.

(c) Example of the inversion operator.
Above, the original chromosome with
cutpoints i and j. Below, the new chro-
mosome with the inverted subsequence.

Fig. 2. Example of the crossover, duplication, and inversion operators for a single
musical line

An individual fitness rule indicates how well the composition conforms to the
individual rule alone. We analyze each opportunity n that the rule might be
analyzed and each violation v of the rule is counted.

score(ri) =
n − v

n

For rules that involve only a single note, such as Part Range, n corresponds to
a count of the notes in the composition. However, for rules that must analyze
two notes, such as Leap Height, n corresponds to the sum of the number notes
in each part minus one. A score of one indicates there were no rule violations
while a value of zero indicates the rule was violated at every opportunity.

In our present experiments, we näıvely weight the rules according to the type
of rule: melody, harmony, or rhythm. The sum of the rules within a type are
normalized to value between [0, 1], and the total fitness score of the chromosome
is the sum of these three types, a value between [0, 3]. In future work, we wish
to experimentally tune the weights as in [9] by empirically testing each fitness
rule individually on compositions from the literature and weighting each rule
according to its potential for fitness score gains.

Melodic Rules. The following rules examine pitch within a single part:

1. Opening Chord – the first chord should be a tonic chord.
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2. Closing Chord – the final chord should be a tonic chord.
3. Final Cadence – the last two chords should form an authentic cadence in

which the bass line should close with movement from a fifth above or a fourth
below to the tonic note and the other three parts should close by stepwise
motion to the final note.

4. Part Range – the difference between the lowest note and the highest note
in each part should be no more than an interval of a 13th (octave and a
fifth).

5. Leap Height – individual leaps should be no more than an interval of a 9th
(octave and a second).

6. Leap Resolution – leaps more than an interval of a major sixth should
resolve in the opposite direction by stepwise motion.

7. Voice Crossing – a lower part should not contain a pitch higher than an
upper part and an upper part should not contain pitches below a lower part.

8. Voice Range – each part should not contain pitches outside its range
(Fig. 3).

9. Repeating Pitch – no part should repeat the same pitch more than three
times consecutively.

10. Stepwise Motion – at least half of all melodic intervals in each part should
be stepwise motion. This helps forms a coherent melodic line by penalizing
excessive leapiness.

Harmonic Rules. The following rules examine pitch across multiple parts:

1. Parallel Octaves – no two parts should contain motion that forms parallel
octaves (two parts one octave apart moving to new notes also an octave
apart).

2. Parallel Fifths – no two parts should contain motion that forms parallel
fifths.

3. Vertical Consonance – no two parts should form a dissonant harmonic
interval (seconds, fourths, or sevenths).

Rhythm Rules. The following rules examine duration within a single part:

1. Rhythmic Variation – the piece should contain instances of each note
duration type, from the eighth note to the whole note.

2. Note Repetition – the piece should not repeat a note of the same duration
more than three times consecutively.

Fig. 3. Musical range of each part



280 P. Donnelly and J. Sheppard

4 Results

In our experiments, we use a population size of 1000. On each generation we
calculate the average fitness of the entire population. The genetic algorithm is
halted when the average fitness of the entire population converges to a value no
more than 0.01 from the previous generations average fitness. The chromosome
with the highest fitness score is saved as a MIDI file. In an experimental run of
100 trials, the average number of generations was 11.06 and the average fitness
score of the final generation was 2.668 out of a maximal possible fitness score of
3.0. Fig. 4(a) shows the average and best fitness scores for a single experimental
run of 34 generations.

We examined the evolution of the individual operator probabilities through-
out the evolutionary process. In each generation, we average each of the four
operator probabilities over the entire population. At the final generation, the
probability of the crossover operator dominated the distribution, accounting for
approximately 97% of the probability mass, leaving only trivial probabilities
of the other three operators. In a separate experiment, we examined adding a
fifth operator that consisted of no operation, allowing an individual to move
to the next generation unchanged. However, even with this additional operator
the crossover probability continued to dominate. This annealed preference of the
crossover operator demonstrates that crossover presents the best opportunity for
fitness score gains (Fig. 4(b)).

Our preliminary results demonstrate that it possible to evolve four-part mu-
sical compositions entirely from an initial single chord (Fig. 5). The resulting
compositions show a number of desirable musical qualities, such as preference
for leaps in the outer parts, preference for stepwise motion in the inner parts,
contrary motion between parts, and singable parts in the proper musical ranges.
While our compositions are musical, they suffer from several limitations. Since
we allow each musical line to grow or shrink independently, analyzing the har-
mony only in the fitness evaluation, the parts tend to move independently and
the composition often lacks coherence between parts. Additionally, our results
feature a dominance of C-Major chords, although Fig. 5 indicates there are some
exceptions. Although the mutation rules do change individual pitches, the re-
sulting harmony rule score tends to penalize the composition before pitches in
the other parts have a chance to mutate and form a new chord. These limita-
tions can be overcome with a better tuning of the fitness score weights and the
addition of new mutation rules.

5 Conclusion and Future Work

In this paper we present a method to evolve four-part musical compositions us-
ing genetic algorithms. While there have been other attempts in the literature
to compose music using GAs, these works generally constrain themselves to one
aspect of music alone. Our work examined the feasibility of using an evolution-
ary technique to create entire music compositions, including the melodic lines,
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(a) Average fitness score and the best fit-
ness score for each generation.

(b) Operator probabilities averaged over
entire population.

Fig. 4. Experimental run of 34 generations

Fig. 5. Excerpt of a composition with a fitness score of 2.94

rhythms, and harmonies, from a single musical chord, using mutation rules and
fitness evaluation based on rules of music composition. Another major difference
is that our work evolves the probabilities of the operator and mutation rule se-
lection. As the most fit individuals of the population survive to reproduce from
generation to generation, their probabilities most often reflect the rules which
contributed to their high fitness and are probabilistically more likely to be used
again.

As future work, we plan to examine and encode more mutation and fitness
rules based on more complicated rules from music theory, such as examining
melodic contour, encouraging contrary motion of the parts, as well as a more
complicated analysis of the chords in the resulting harmony. Furthermore, we
also plan to encode a key-signature in the chromosome to allow for the evolution
of richer harmonies and more complicated chord progressions. We will also ex-
amine using our system to evolve individual musical phrases, embedded within a
second higher-level GA that will combine individual phrases into a longer com-
position including key-modulations and well-defined cadences. Lastly, to improve
our fitness function and balance the many fitness rules we employ, we will empir-
ically test the fitness rules on a selection of compositions from the Renaissance
and Baroque periods to experimentally determine a set of weights.
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Abstract. We present a population of autonomous agents that exist within  
a sonic eco-system derived from real-time analysis of live audio. In this  
system, entitled Coming Together: Shoals, agents search for food consisting of 
CataRT unit analyses, which, when found, are consumed through granulation. 
Individual agents are initialised with random synthesis parameters, but 
communicate these parameters to agents in local neighborhoods. Agents form 
social networks, and converge their parameters within these networks, thereby 
creating unified grain streams. Separate gestures thus emerge through the self-
organisation of the population.  

Keywords: Sonic eco-system, Artificial-Life, self-organisation. 

1   Introduction 

Artificial-Life (A-Life), specifically the properties of self-organisation and emergence 
often found within it, offers composers new paradigms for computer music 
composition. The temporal nature of emergence — one desirable outcome of A-Life 
systems — provides a parallel to the complexity and evolution of gestural interactions 
sought by composers of both fixed and non-fixed music. Composers of generative 
computer music have found A-Life to be a particularly fruitful area of investigation. 
As McCormack [12] proposes, a successful evolutionary music system can “enable 
the creative exploration of generative computational phase-spaces.” 

1.1   Eco-Systems versus Evolution 

Martins and Miranda point out that, while A-Life offers new possibilities for 
computer music composition, its algorithms must be adapted to suit its musical ends. 
Miranda’s four requirements for evolution [15] are actually extremely difficult to 
achieve, particularly in a real-time context: his first criteria — selection of 
transformations — requires a system that can overcome the fitness bottleneck of 
interactive evaluation [2], a task that is difficult, if not impossible, given the aesthetic 
problem of evaluating successful musical evolution.  

Bown [4] discusses some of the failures of the traditional A-Life paradigm of the 
interactive genetic algorithm, and points to new approaches based within social 
learning, cultural dynamics, and niche construction that offer potential solutions [13]. 
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Bown suggests that an eco-system approach “might generate sonic works that 
continue to develop and transform indefinitely, but with consistent structural and 
aesthetic properties”. McCormack and Bown [13] posit that an eco-system approach 
emphasizes the design of interaction between its components, and that it is 
conceptualized within its medium itself: a sonic eco-system operates in the medium of 
sound rather than being a sonification of a process. RiverWave [13] is an example 
installation that demonstrates their concept of a sonic eco-system. 

We have similarly chosen to avoid mating, reproduction, and selection within our 
system — all traditional properties of A-Life and evolutionary computing — instead 
focusing upon the complex interactions of an existing population within a sonic eco-
system. Like Bown, we are interested in musical evolution and self-organisation of 
musical agents in real-time, in which the dynamic evolution is the composition [9]. 
Section 2 will discuss related work, including the use of musical agents, A-Life 
models for sound synthesis, and the uniqueness of our research; Section 3 will present 
a detailed description of the system; Section 4 will offer a conclusion and future 
research. 

2   Related Work 

We build upon the research into Artificial-Life based in audio by Jon McCormack 
[11], Joseph Nechvatal [19], Eduardo Miranda [15], Peter Beyls [1], Oliver Bown [4], 
and Tim Blackwell and Michael Young [3]. 

2.1   Musical Agents 

The promise of agent-based composition in musical real-time interactive systems has 
been suggested [23, 18, 15], specifically in their potential for emulating human 
performer interaction. The authors’ own research into multi-agent rhythm systems [6, 
7, 8] has generated several successful performance systems. Agents have been defined 
as autonomous, social, reactive, and proactive [22], similar attributes required of 
performers in improvisation ensembles. 

Martins and Miranda [10] describe an A-Life system in which users can explore 
rhythms developed in a collective performance environment. This system is an 
evolution of earlier work [16] in which agents could be physical robots or virtual 
entities whose data consisted of sung melodies. In this later research, agents are 
identical and remain virtual, although the number of agents can vary. Agents move in 
2D space, but their interaction is limited to pairs exchanging data. Although the data 
is limited to rhythmic representations, the resulting transformations suggest a 
convergence similar to the system described in this paper; however, Martins and 
Miranda’s motivation is extra-musical: “these transformations were inspired by the 
dynamical systems approach to study human bimanual coordination and is based on 
the notion that two coupled oscillators will converge to stability points at frequencies 
related by integer ratios.” Agents build a repertoire of rhythms that will eventually 
represent a population’s preference; however, these rhythms are not played 
collectively at any time, unlike the system described in this paper, in which a 
population’s current state is immediately audible. 

Martin and Miranda’s conclusion points out problems with current approaches to 
musical composition with A-Life: “the act of composing music seldom involves an 
automated selective procedure towards an ideal outcome based on a set of definite 
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fitness criteria.” In this case, the creation of rhythms may have followed a 
evolutionary path that utilised complex social interactions, but the musical application 
of this data was a simple random selection. While the system demonstrates that 
“social pressure steers the development of musical conventions”, the pressure is 
unmusical: it aims toward homogeneity. 

Bown describes a system [5] which “animates the sounds of a man-made 
environment, establishing a digital wilderness into which these sounds are ‘released’ 
and allowed to evolve interdependent relationships”. The analysed acoustic 
environment of the installation space, which includes the projected sounds of the 
agents, is treated as the virtual environment in which the agents exist. A continuous 
sonogram is made of the acoustic space, and agents attempt to inhibit low-energy 
regions, thereby creating an interesting dilemma: as the agents make sound at their 
occupied frequency region, they deplete the available resources at that region. It is the 
interaction of agents competing for available resources that creates the potential for 
emergence, and thus provides the musical evolution. 

2.2   A-Life Models for Sound Synthesis 

The system described in this paper utilizes granular synthesis as its method of sound 
generation, with agent interactions within the eco-system determining the synthesis 
parameters. Miranda’s ChaosSynth [14] was one of the first systems to use models 
other than stochastic processes for parameter control of granular synthesis: in this 
case, cellular automata.  

Blackwell and Young [3] have investigated the potential for swarms as models of 
for composition and synthesis, pointing to the similarity between the self-organisation 
of swarms, flocks, herds, and shoals and that of improvising musicians. The authors 
suggest that improvising music can explore musical aspects often ignored in accepted 
musical representations of “the note” — namely timbre and its morphology — aspects 
often shared by composers working with computers. The authors extend swarm 
organisation for synthesis in their Swarm Granulator, which, like ChaosSynth and the 
system described here, uses granular synthesis. 

3   Description  

3.1   Audio Analysis 

We use a modified version of CataRT [21] as a real-time analysis method to generate 
segmentation and audio descriptors of live audio. Equally segmented units are stored 
in an FTM data structure [20] that has been extended to include a 24-band Bark 
analysis [24]. CataRT plots a 2-dimensional projection of the units in the descriptor 
space: we have chosen spectral flatness and spectral centroid (see Figure 1). 

Incoming audio is initially recorded into a gated buffer in MaxMSP — silences and 
low amplitudes are not recorded — which is passed to CataRT every 12.1 seconds, 
resulting in 50 units of 242 ms in duration per analysis pass. When analysis is 
complete (at faster than real-time speed), the new units immediately populate the 
space. CataRT tags all units within an analysis pass with an index, or SoundFile 
number, which can be used to determine the most recent units. 

We also use CataRT to query agent proximity to units, a function that returns a list 
of units within a defined radius (see Section 3.2.2). 
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Fig. 1. CataRT display of units in 2D space, using spectral flatness (x) and spectral centroid (y)  

3.2   Agents 

A variable number of agents1 exist within the space, moving freely within it, 
interacting with one another, and treating the CataRT units as food. When agents find 
food, they consume it by using its audio as source material for granular synthesis. 
How the agents move within the space, and how they play the audio once found, is 
dependent upon internal parameters that are set randomly during initialisation. As 
agents interact with one another, they share their parametric data, allowing for 
convergence over time (see Section 3.3). As the agents themselves converge in 
different areas within the space, their eventual parametric similarities, coupled with 
related spectra due to their locations, produces differentiated gestures. 

3.2.1   Initialisation 
When the system is initialised, agents select a random location within the space, a 
location which is immediately broadcast to the entire population. Agents store other 
agent locations, and calculate proximity to other agents after each movement step, or 
when finished playing a phrase. Those agents within a globally defined radius 
(gNRadius) of one another are considered to be within a neighborhood. 

At initialisation, agents also select random values for their synthesis parameter 
ranges, from the following limits:  

 1. Grain duration (20-250 ms); 
 2. Delay between grains (5-350 ms);  
 3. Amplitude (0. - 1.); 
 4. Offset into the sample (0 to 1., where 1. is the duration of the sample less the 

current grain duration);  
 5. Phrase length (4 - 100 grains); 
 6. Pause between phrases (0 - 2500 ms); 
                                                           
1  We have run as high as 48 agents on a single computer without obvious latency. 
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 7. Phrase type (how subsequent grain delays are calculated within a phrase: 
stochastically using white noise, stochastically using brown noise, or exponential 
curves); 

 8. Output (number of speakers: for example, 1-8). 

An agent broadcasts its parameters to the entire population if it is actively playing.  
Lastly, agents select random values for their existence within the environment, 

including: 

 1. Acquiescence (the desire to stay with the same food, given a variety of nearby 
food sources); 

 2. Sociability (the desire to form social networks). 

3.2.2   Movement 
Agents are considered active if they have found food — the CataRT units — and are 
generating sound (see Section 3.2.4); only inactive agents move. Agents move at 
independent clock rates, calculating a time within their current pause-between-phrases 
range (initially two values randomly chosen between 0 and 2500 ms) from which a 
random selection is made. Agents move one grid location within the toroidal grid, 
then select a new delay time for their next movement phase. 

Agents can see food outside their current grid location at a distance dependent 
upon a global radius: gRadius. When an agent sees food, it moves toward it. If no 
food is within view, the agent randomly selects a new location from its eight 
neighboring grid spaces, a selection negatively weighted by any locations the agent 
previously occupied. Agents keep track of their previous locations: if they have 
occupied a grid space in which no food was found, that location’s desirability is 
decremented in the agent’s location history. When selecting a new grid space, 
previously explored spaces have a lower likelihood of being selected. This allows for 
more efficient exploration of local space, with minimal backtracking (see Figure 2). 

 

Fig. 2. Three agent’s movements over time. The agent in the centre has found food after 
methodically exploring nearby space; the agent to the right is still looking for food; the agent to 
the left has recently been reincarnated, and thus has a short movement history. 

When audio is recorded, the environment briefly becomes 3 dimensional, with  
the third dimension being time: the most recent SoundFiles appear at the top of 
the 3D cube. New audio analyses trigger an “excitement” mode, which allows the 
agents to move at much faster rates (using their grain delay times, rather than phrase 
delay) in search of new food. Any agent currently active will become inactive after its 
phrase is complete, and also move toward the new food. An analogy can be made of a 
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fish-tank, with new food appearing at the surface of the tank, and the fish inside  
the tank swimming upwards toward it. The excited mode lasts an independent  
amount of time for each agent (exponentially weighted around a global variable 
gExcitementTime) after which the agents return to normal speed. The purpose of 
the excited mode is twofold: to allow non-active wandering agents to find food faster, 
and to force active agents to search for more recent audio. In terms of CataRT, during 
the excited mode, the most recent SoundFile number is included in the query. 

When an agent finds food, it broadcasts this information to its neighbors. All 
inactive agents within that individual’s neighborhood can then move toward the 
location in which food was discovered (see Figure 3). However, if an agent does not 
find food within a defined number of movement turns (a global variable that translates 
into a global strength, or constitution, of all agents in the population), the agent dies. 
When this happens, the agent broadcasts its impending death to the population, which 
remove that agent’s data from their internal arrays. After a length of time (a global 
variable range between 5 and 60 seconds), the agent is reincarnated at a new location 
with new parameter data. The decision to use a model of reincarnation, as opposed to 
one of evolving generations, was made since the latter would offer little to this model – 
it is the complex interactions of the community over time that are of significance.2 

 

Fig. 3. Twelve agents within the space, with their individual neighborhood ranges visible. Dark 
agents are inactive, lighter agents are active. Inactive agents can move towards active agents 
within their neighborhood. 

3.2.4   Sound Generation 
Once an agent has moved with the CataRT’s gRadius of a food source, the agent 
has access to both the unit’s sample and analysis data. Using a custom granular 
synthesis patch created in MaxMSP, agents play a monophonic grain stream whose 
individual grain’s amplitude, duration, delay between grains, and offset into the 
sample are determined by the agent’s synthesis parameters. It was found that 
stochastic delays between grains did not significantly differentiate agent streams; 
therefore, over the course of an agent’s phrase, the delays are chosen from the 
available delay range in one of three ways: white (evenly distributed throughout the 

                                                           
2  On a more practical level, the number of agents cannot be dynamic within MaxMSP, as a set 

number need to be initialized before calculating the DSP chain. 
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range); brown (a random walk through the range); and curved (an exponential curve 
between range extremes). The specific probability distributions over the possible 
types are a converging parameter within the neighborhood (see Section 3.3.1). 

The number of grains in a phrase is chosen from the agent’s phrase range, while 
the length of time between grain phrases is chosen from the agent’s pause range. A 
single agent’s audio is rather meek, in that its amplitude is scaled by the number of 
agents within the eco-system. Interestingly, the stream itself somewhat resembles an 
insect-like sound due to its phrase length, discrete events, and monophonic nature3. 

The agent’s spectral bandwidth is limited, as agents play their audio through a 24-
band resonate filter, whose frequencies are set to those of the Bark analysis. The 
width of the filter is dependent upon the size of the agent’s social network (see 
Section 3.3): agents outside a social network play the entire bandwidth, while agents 
within a network divide the bandwidth between them, selecting centre frequencies 
through negotiation (see Section 3.3). As the spectral bands of a unit are played, its 
Bark energy is lowered (at a rate dependent upon a globally set variable 
gPersistence); if a unit’s bands are dissipated completely, the unit is removed 
from the environment. Agent’s within small social networks therefore “use up” food 
faster, as their spectral range is wider; as such, an agent’s fitness is dependent upon its 
ability to coexist with other agents. 

3.3   Agent Interaction: Social Networks 

Agents within a global radius of one another are considered to be within a 
neighborhood. Agents can be in multiple neighborhoods (see Figure 4). 

ca b

 

Fig. 4. Two neighborhoods, around agents a and c. Agent b is a member of both neighborhoods.  

a

b

c

d

e

f

g

h

 

Fig. 5. Two social networks (a b d) and (c e f h). Agent g is not in a network. 

                                                           
3  An example can be heard at www.sfu.ca/~eigenfel/research.html 
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After each movement cycle, or end of an audio phrase, agents can make a “friend-
request” to another active agent in its neighborhood, in an effort to create a social 
network. The likelihood of this request being made is dependent upon the agent’s 
sociability rating, while the target is dependent upon that agent’s current social 
network status. If the agent has no friends in its own network, it will look for existing 
networks to join, favouring agents within larger networks. If an agent is already in a 
social network, it will look for agents outside of a network in an effort to make its 
own social network larger. Agents can choose to leave their network and join another, 
if the requesting agent’s network is larger than the agent’s own network. 

Once agents have found food, and thus stopped moving, neighborhoods become 
static; however, social networks will continue to be dynamic, as agents can tempt 
each other away from existing networks (see Figure 5). 

3.3.1   Convergence 
Agents communicate their synthesis parameters within their social networks, and 
converge these parameters upon local medians. When an agent completes a grain 
stream phrase, it broadcasts which unit it consumed, along with the specific Bark 
bands. Next, it calculates the mean for all individual synthesis parameters it has 
accumulated from its social network, comparing it to its own parameters, and sets new 
values from the mean of the agent’s previous values and the group mean.  

Once values have converged for a parameter to a point that an agent’s range is 
within 10% of the group mean range, for a period of time dependent upon a globally 
set variable gDivergenceDelay, divergence can occur, in which an agent can 
choose to select a new, random range. This alternation between convergence and 
divergence was used previously [9] in a multi-agent system to create continually 
varying, but related, group dynamics, and is an example of a heuristic decision that 
creates successful musical results. It can, however, be justified through biological 
models: agents can decide to leave a group if it becomes too crowded. 

4   Conclusions and Future Work 

Many different social networks emerge within a continuously running performance, 
aurally defined by their unified gestures due to their shared synthesis parameters and 
spectral properties. The musical goal of the eco-system is to move from independent 
individual granular streams into cohesive gestures, which depend upon similar spectra 
(arrived at through localization within the space) and similar synthesis parameters 
(arrived at through convergence). 

Future work includes creating eco-systems across a high-speed network, in which 
agents act upon separate analysis created through different live audio. Related work 
includes sending audio generated by the eco-system across a high-speed network to 
an independent eco-system, complementing or replacing that eco-system’s live audio.  
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Abstract. Directing a group behavior towards interesting and complex
motion can and should be intuitive, iterative, and often participatory.
Toward this end, we present a choreographic system that enables design-
ers to explore a motion space based on a parametric model of behaviors.
Designers may work with the system by moving back and forth through
two complementary stages: first, using an evolutionary algorithm to tra-
verse the space of behavior possibilities, allowing designers to emphasize
desired kinds of motion while leaving room for an element of the unex-
pected, and second, using selected behaviors to direct the group motion
of simple performing creatures. In the second stage, evolved group mo-
tion behaviors from the first stage are used alongside existing high-level
parametric rules for local articulated motion.

Keywords: Evolutionary Design, Animation, Interaction Techniques,
Choreography, Behavioral Systems.

1 Introduction

In our natural world, the application of a few simple biological rules can bring
forth a flourishing array of biodiversity due to the complex nature of the in-
terplay between these basic rules within a dynamic environment. Similarly, the
creative synthesis of simple navigational behaviors and agent actions within a
simulated dynamic environment can produce a wide range of realistic and in-
teresting complex group motion. However, the same phenomena that allow for
such an explosion of diversity actually make any sort of creative directing, such
as tuning the parameters which control the blending of these behaviors, an over-
whelming task. This problem is compounded by the fact that beauty is, in a
sense, like obscenity: we know it when we see it, and our idea of what we like
or dislike changes as our level of experience matures through continued expo-
sure. The choreography of group motion is a complex and multifaceted task,
one that can benefit greatly from a collaborative process involving both human
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and machine. In this paper, we explore the use of evolutionary design to add
more complex group motion to an existing parametric choreographic animation
system. Our long-term hope is to discover theoretical foundations and practical
steps for deeper human/machine collaboration in the authoring of group motion.

Specifically, the problem we wish to address is that of providing an intuitive
and iterative method for directing the motion of individuals within a group. The
dynamic relationships between group members speak volumes to the human psy-
che about intentions and meaning. These dynamic relationships, when generated
by a behavioral system, are, by nature, emergent, and as such, they are difficult
to control in a feed-forward sense. We believe that an iterative design process
(as long as the iterations are quick) is invaluable in the creation of this kind of
complex behavior.

It is worthwhile here to discuss briefly what is meant by “choreography”
in this context. The word “choreography” is often used to describe dance or,
perhaps, the motion of crowds or fighting pairs. We are indeed interested in
these kinds of choreography in this work, but also take an expanded view of
the term. In his essay “Choreographic Objects” [4], the choreographer William
Forsythe writes that a choreographic object is “a model of potential transition
from one state to another in any space imaginable”. Choreography, in this view,
has to do with organizing systems of changes. Human body choreography is
indeed choreography; but the concept of choreography can be applied in many
other ways.

In our evolutionary design system, the computer does the book keeping work
of simulating individuals (agents) according to sets of rules that can be adjusted
in an iterative manner. The computer presents the designer with an array of
possible design solutions, and the designer makes creative decisions at each iter-
ation, and will hopefully encounter several surprising ideas along the way that
serve to inspire his or her design process.

The dance literature project Synchronous Objects for One Flat Thing, Re-
produced [5] includes an interactive online “Counterpoint Tool”. With this tool,
visitors can observe the motion of multi-armed performing creatures and give
them broad choreographic direction using a straightforward button-and-slider
interface. (See Figure 1) The creatures’ motion consists of both articulated arm
rotation and navigation around a virtual stage.

The choreographic interface controls an underlying parametric rule system.
This system is simple, but can produce surprisingly complex behavior, and the
slider interface works well for interactive (and even performative) use. However,
the navigational behavior of the creatures is limited; in particular, creatures
have no explicit relationship to one another beyond whether they are moving in
unison or not. This is in part because it is unclear how to represent a wide range
of relational behaviors using a simple parametric interface.

Evolutionary design presents one possible solution to this problem. Using an
interactive evolutionary design system, a choreographer could explore a large
motion space, selecting elements of the space for use in later interactive “perfor-
mances”. However, part of the interest of the Counterpoint Tool is the ability
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Fig. 1. The original Counterpoint Tool

to give choreographic direction “on the fly”. We therefore have worked to com-
bine the two approaches, retaining aspects of high-level, interactive, parametric
control while integrating more complex navigational motion designed using be-
haviors previously created via evolutionary methods.

The original Counterpoint Tool was designed with a strong aesthetic target in
mind: that of producing visual counterpoint through a system of different kinds
of alignments in time. The present work retains the contrapuntal articulated
motion of the original tool, but its navigational motion does not have any par-
ticular aesthetic aim other than “visual interest” or perhaps behavioral variety
as defined by the user.

The original Counterpoint Tool and our expansion of it are choreographic ani-
mation systems. Like all behavioral animation systems, they describe the motion
of elements related to a space and to each other. However, these tools emphasize
the choreographer’s role: the creative activity of navigating and shaping a rule
space to express artistic ideas.

In this paper we discuss concepts from several fields: behavioral simulation,
evolutionary design, parametric modeling, and choreography. We first provide
more background on several of these concepts and discuss some related work.
Then we describe the particulars of our method, and finally discuss some results
from our proof-of-concept system as well as possibilities for future investigation.

2 Foundations

In order to provide some context for our work among the various disciplines from
which it draws, we will briefly summarize work within behavioral simulation and
interactive evolutionary algorithms, and highlight the concepts that we draw
from each.
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Fig. 2. (a) Our interactive evolutionary design interface showing group motions with
trails. (b) Our performative interface with moving three-armed creatures.

First, we will tackle the field of behavioral simulation, a fascinating area of
study located at the crossroads of artificial life, psychology, and simulation. More
specifically, we are interested in using agent (or individual) based models for the
simulation of groups [13]. In this way, simple rules applied at the local level
can produce emergent or seemingly cooperative/competitive behavior between
agents in groups. Significant works include Reynolds’s “Steering Behaviors for
Autonomous Characters” which we will discuss at greater depth later on [14].
For an excellent overview of simulations involving agents in a dynamic environ-
ment, we refer the reader to Dorin’s survey on virtual ecosystems in generative
electronic art [2]. Perlin’s IMPROV system also deals with not only autonomous
agents, but also how to direct them interactively [12]. Several notable studies in
the area of directable group/crowd motion include papers by Kwon [9], Ulicny,
et al. [18], Kim, et al. [8], and Anderson et al. [1].

Next we discuss evolutionary algorithms, another area of artificial intelligence,
whose applications seem endless due to their inherent flexibility. We will men-
tion a few works that have inspired us to use interactive evolutionary methods
for choreography design. Sims played a pivotal role in establishing these tech-
niques as standards in the graphics literature. Application areas explored by
Sims include texture synthesis [15], particle dynamics [16], and evolved virtual
creatures [17]. Lim & Thalmann [11], Ventrella [19], and Eisenmann et al. [3]
have done some work with evolving character animation, and Li & Wang have ap-
plied non-interactive evolutionary algorithms to generate optimized crowd move-
ment [10]. Another work relevant to ours is Jacob and Hushlak’s discussion of
boid-like evolved swarm choreography [7]. Our goal is to add to the body of
knowledge in this area by providing a way to interactively evolve group motion
based on steering behavior rules.
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3 Our Method

3.1 Agent Navigation

The navigational motion is synthesized from basic building blocks called steering
behaviors. The behavior building blocks used by the sytem include: freeze, arrive,
pursue/evade, follow, wander, explore, hide, contain, and separate. Most of these
steering behaviors have additional parameters like vision variables or a proximity
radius. For more details, we refer the reader to Reynolds’s work [14], from which
we drew heavily, extending and making slight changes as we saw fit.

The only behaviors which we have added to Reynold’s list are freeze, explore,
and hide. The freeze behavior applies a braking force in the direction opposite to
the agent’s velocity. The explore behavior uses the arrive behavior to navigate
through a list of goals scattered across the space. The hide behavior steers an
agent toward the point on the nearest obstacle that is furthest from the nearest
agent pursuing the agent in question.

Each behavior applies a force to the agent, steering towards or away from a
particular agent, goal, or obstacle. In our implementation, a weighted sum of
these forces provides the steering force for an agent. The agents are modeled
similarly to the agents in Reynold’s method, with a minimal set of properties
that define physical limitations such as maximum speed and acceleration.

Choosing the correct weights for these forces is a tricky business. If too many
behaviors are blended together, the resulting motion appears non-intentional
and indecisive most of the time. The effect is much like that of mixing colors. If
a painter mixes all the colors on his or her palette together, the result is usually
an uninteresting muddy color. However, if a few colors are mixed in the right
ratios, diverse and interesting hues can result. Furthermore, if these composite
colors are delivered to the canvas in an interesting rhythm and at the proper
points in 2D space, a work of art is born. Extending this metaphor, we would
like our system to not only create interesting mixtures of behaviors, but also to
deliver them to the viewer at distinct points on the canvas of space and time.

To this end, our system includes a set of state machines that govern the
behavior of each agent. Each state stores a set of weights so that the system
can create a blended behavior for that state by calculating a weighted sum of all
possible steering forces. In the interest of keeping the number of system variables
as low as possible, we use a three state fully connected graph to represent the
behavior of all the agents in one group. The weights of the states and transitions
as well as the target information are evolved separately for each group of agents.
At each simulation step, an agent will check its state machine to see which state
it is currently in, and then will use the corresponding state weights to sum up
its steering forces. We apply a low-pass filter to the steering forces before they
are summed so that we only include the strongest signals and thus avoid mixing
too many behaviors at once.

We will now examine the game of hide-and-seek to gain some practical con-
text for what these states and transitions could be. Hide-and-seek is a subset of
the possible behaviors in our system, and it requires only two groups of agents:
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Fig. 3. Two finite state diagrams showing two possible behaviors contained within our
generalized behavior model

the hiders and the seeker(s). Each set of agents will have their own state ma-
chine definition. The hiding agents would start in a behavior state that consists
primarily of the hiding and evasion behaviors, but also includes the separation
and containment behaviors, so that they do not run into each other and also
so they stay within the play area and do not run into obstacles in the environ-
ment. When these agents sense that they are invisible to “It” they transition to a
frozen state, until they sense that they are visible to “It”. When this occurs, they
return to the original hiding/evasion state. If they sense that they are within
tagging proximity to “It” they will go into a wander state, and leave the play
area because they have been tagged “out”. The “It” agent will begin in a frozen
state that signifies counting to 100. “It” will leave this state after a duration
of 100 seconds, and begin to explore the play area. When “It” is able to see a
hiding agent, he moves into a pursuit state (which also includes separation and
containment). When an agent is tagged, that agent is removed from “Its” target
list. (See figure 3 for the finite state diagram of this game as well as the diagram
for the game of freeze tag.) Each state stores the weights to be used in the sum
of steering forces, and also any pertinent target information (i.e. evade agents in
subset X of group Y). Note that this state data is not shown in figure 3. There
are six possible transitions between states. The transitions correspond to events
or changes in attributes of the system. An agent’s state machine will move to a
new state given a probability equal to the weight for the transition in question,
but only if the condition specified by the type of transition evaluates to true.
Transition types include:

– proximity to targets
– visibility of self from targets
– invisibility of self from targets
– ability to see targets
– inability to see targets
– time in state surpasses a specified duration
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3.2 Interactive Evolutionary Algorithm

We use interactive selection from the user at each generation in the first stage of
our system to determine the fitness of our group motion phenotypes. The geno-
type is a fixed-length array of floating point numbers corresponding to steering
behavior parameters, agent properties, state weights, and transition weights for
each group of agents. The initial population is randomly generated, and we al-
low the user to introduce genes from a library of examples at any time. In each
generation, the user’s selections form a pool of parents available to the mating
algorithm for reproduction. The mating algorithm chooses two distinct, random
parents from this pool for each new offspring. We use a probabilistic crossover
where the probability that the algorithm starts copying from the other parent
at each gene is controlled by the user. Mutation takes place after crossover by
randomly changing gene values by adding a random value between -1 and 1 that
is scaled by a mutation amount. Mutation rate and mutation amount can be
adjusted by the user as well. We use elitism, and population size can be set by
the user at any time.

In our current prototype, the user generates as many interesting behaviors
as desired using the interactive evolutionary design interface. Group motion of
particular interest to the user is then stored in a library. The library also contains
some classic examples from children’s games such as hide-and-seek and freeze tag.
The motions stored in this library can be utilized later in the evolutionary process
as a means of (re)seeding the generation with a particular desired behavior.

In a typical design session, the user often views 16 individuals at a time and
spends a minute or two with each generation. The examples displayed in our
results were produced in anywhere from 9 to 12 generations.

3.3 User Interface Concerns

One technique that we found helpful for dealing with the well-known user fa-
tigue problem in interactive evolutionary computation, especially in the case of
time-varying data, was to display trails (or traces) of the agents as they move
through space and time (Figure 2 on the left). The position of the agents is
recorded every so often and a spline is drawn through these stored points. The
thickness of the spline correlates to the speed of the agent at that point in time.
In this way, the time-varying data can be compressed into a single-image at any
frame of the animation. The length of the trails is controllable by the user so
that he or she can determine how much history is visible in any one frame. We
note that this style of drawing agent path history may, in some cases, appear
similar to ant drawings. However, it is actually a visual compression technique
applied to spatio-temporal data. Furthermore, the underlying navigational rules
defining the system do not have anything to do with the notion of pheromone
trails.

As mentioned earlier, our interface involves two separate stages. Designers
first use an interactive evolutionary design interface to explore the space of
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possible motions, saving some in a library for later use. They then use the library
in conjunction with a “performative” interface similar to that of the Counter-
point Tool. In the performative interface, users may mix and match the original
parametric Counterpoint Tool behaviors and the saved library of evolved behav-
iors to create new motion.

In the interest of maintaining visual simplicity within the interactive evo-
lutionary design stage of our system, we have chosen to use simple shapes to
represent our agents and a two dimensional environment for them to live in. We
decided that it was not necessary to use a more complex representation, because
we wanted the amount of visual information presented to the user at any one
time to be kept to a minimum. A study by Heider & Simmel has shown that even
simple shapes can evoke sympathy and communicate intentions to a human au-
dience [6]. However in the performative stage of our system we wish to enhance
the visual complexity of the agent motions, so we add procedurally generated
arm movements and layer them on top of the agents’ navigational behaviors.

Because we believe it is important to be able to make some decisions during
a performance, we have retained the high-level shape and speed sliders from the
original Counterpoint Tool. These sliders control the arm movement model. The
arm movements add considerable visual interest, although they are not evolved
and do not interact directly with the navigational motion.

The Counterpoint Tool also has a “rest” control, which directs the creatures
to pause more or less often, regardless of the underlying navigational algorithm.
This one control value is connected both to the articulated arm movement and
also to the steering behavior weighting. In the case of articulated arm move-
ment, the “rest” value controls the percentage of the time that the arms are
still. In the case of navigational behaviors, the value determines with what prob-
ability other behaviors (besides the freeze behavior, which stops the agents,
and the separate and contain behaviors, which keep agents from running into
things) will be ignored. This control over stillness can change the look and
feel of a group’s motion dramatically, providing considerable visual interest and
variety.

Fig. 4. A sequence of images from one of the behaviors evolved in the first stage of our
system. In this example the speedy red agents are harrassing the sluggish blue agents,
and breaking up their cluster.
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4 Results

The best way to view motion results is often through seeing the motion itself. We
have therefore posted videos of a few example behaviors to our project website at:
http://accad.osu.edu/Projects/Evo/Choreography/. There is also a video that
documents the results of an interactive choreography session, demonstrating the
full range of the performative interface.

See figure 4 for a filmstrip showing a sequence of thumbnails of a behavior
evolved in the first stage of our system. The images in Figure 2 show screenshots
of the two stages of our system. In the performative interface image (figure 2b),
the creatures have been assigned a particular behavior that was created with
the interactive evolutionary design interface (figure 2a), saved to the library, and
rendered here along with the articulated arm motion. Note that we have added
motion blur to this image to give the feeling of movement. The two polygons
in the environment are obstacles that the creatures interact with and can hide
behind if being pursued.

5 Future Work

In the future we plan to move our two stages into a more seamless interface so
that users can move back and forth easily between evolutionary design of navi-
gation behaviors and high-level parameter adjustment in the performative part
of the system. We would also like to experiment with a more collaborative and
immersive interface. This interface would consist of a touch table control panel
and a virtual environment projected onto the floor where users could participate
with the behavior at hand by controlling a free agent through computer vision
techniques.1 We feel this might lead to collaborative synergy between two users:
one at the touch table navigating the parametric behavior space, and the other
participating in the choreography. Additionally, we would like to investigate the
use of automatic filters for distribution, dynamism, and balance that the de-
signer could use to customize the sampling of motion that is presented in each
generation. We would also like to experiment further with the parametric space
we have created in order to learn what (if any) combinations of genes correspond
to high-level controls. Currently our only such high-level control is for “rest”,
but we would like to develop more controls like this.

6 Conclusion

In conclusion, we have taken some exciting first steps into the realm of parametric
choreographic group motion using evolutionary design techniques. The results
produced with our prototype system show great promise, and we hope that
our future work will lead to both new ways to interact with and learn from
choreographic ideas as well as better ways to explore and author new group
motion sequences.
1 Zuniga Shaw et al. used a similar interface in their recent installation Synchronous

Objects, reproduced [20].
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Abstract. Creative activities including arts are characteristic to hu-
mankind. Our understanding of creativity is limited, yet there is sub-
stantial research trying to mimic human creativity in artificial systems
and in particular to produce systems that automatically evolve art appre-
ciated by humans. We propose here to model human visual preference by
a set of aesthetic measures identified through observation of human se-
lection of images and then use these for automatic evolution of aesthetic
images.

Keywords: aesthetic measure, human preference modelling, genetic
programming, interactive vs automatic evolution.

1 Introduction

Ever since the invention of the first computing device, humanity has been think-
ing about using them to perform creative activities. Producing aesthetically
pleasing pieces of art is certainly one such creative activity. Beginning with
the pioneering work of Dawkins [7] and Sims [19], over the past twenty years a
lot of effort has been spent on generating increasingly more effective evolution-
ary art systems that produce aesthetic artworks. Successful examples attracting
substantial public attention include the Electric Sheep [9], the NEvAr system
[14] and the Painting Fool [3].

The majority of evolutionary art systems are either interactive (for example
[21]) or automatic (for example [1,8]). Interactive systems tend to generate more
aesthetic artworks, as their driving force is human selection, but at the same
time need a lot of effort on the part of the human, may incur user fatigue and
could be inconsistent over time. Automatic systems have the advantage of a
built-in automatic fitness evaluation, so the human effort is reduced; however,
the aesthetics of the resulting artworks may suffer as the automatic evaluation
has not been perfected yet. To overcome the disadvantages and also combine
the advantages of both approaches, Machado et al. propose partially interactive
evolution [15], where the human user’s contribution is much reduced compared
to the fully interactive approach, but the human still guides the evolution.

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 303–312, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Substantial efforts in evolutionary art research have been dedicated to study-
ing and devising good aesthetic measures [11,13,17,18]. It is generally agreed that
formulating a universally valid and acceptable aesthetic criterion is not within
our reach. Achieving automatic evolution that produces aesthetic images to the
liking of the human user very strongly depends on the understanding of the par-
ticular user’s aesthetic values. A recent study by Li and Hu [12] suggests using
machine learning to learn the differences between aesthetic and non-aesthetic
images, as indicated by image complexity and image order. Colton [4] produces
new rules for forming fitness functions through the use of an inference engine.
Greenfield proposes the technique of evolutionary refinement [10] to encourage
aesthetic pattern formation through stages and concludes that “evolution in
stages with radical changes in fitness criteria may be a profitable evolutionary
exploration strategy”.

Our contribution complements these previous approaches by considering four
established aesthetic measures in interactive evolutionary art to model human
preference. We monitored how these measures evolved over the generations when
different users interacted with a simple evolutionary art system and fully drove
the selection process. We found that a combination of aesthetic measures mod-
els user preference suitably well. We consequently employed this combination
(MC and BZ) to automatically evolve further images starting from the result of
interactive evolution.

2 Aesthetic Measures

We study the evolution of four well-known aesthetic measures in an attempt to
model human selection in interactive evolutionary art. Measure R is based on
Ralph’s work, measure MC is based on Machado and Cardoso’s work, measure
BZ on Birkhoff and Zurek’s work and finally measure S on Shannon entropy.

2.1 Aesthetic Measure R

This aestheticmeasure is based on themathematicalmodel proposedbyRalph[18].
After analyzing hundreds of examples of fine art, it was found that many works
consistently exhibit functions over colour gradients that conform to a normal or
bell curve distribution.

The colour gradient for each pixel is computed as:

|∇ri,j |2 =
(ri,j − ri+1,j+1)2 + (ri+1,j − ri,j+1)2

d2

where ri,j is the value of the Red component for pixel (i, j) and d is a scaling
factor which is taken to be 0.1% of the diagonal length, as suggested by Ralph’s
model [18] (leading to the value d2 = 3.277∗10−2). ∇gi,j and ∇bi,j are computed
similarly for the Green and the Blue colour components.

The overall gradient, or the stimulus, of each pixel is calculated as follows:

Si,j =
√
|∇ri,j |2 + |∇gi,j |2 + |∇bi,j |2.
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Next, the viewer’s response to each pixel is computed as

Ri,j = log(Si,j/S0).

The range of values for Ri,j is [0, 1). R can never become negative. The minimum
value of 0 corresponds to the case when there is no change in colour at a pixel at
all; if there is no stimulus the response is 0. Si,j can never be less than S0 due to the
scaling factor. S0 is the detection threshold taken to be 2, as suggested by Ralph’s
model of aesthetics. If Si,j = 0 (no change in colour at a pixel), it is ignored.

The mean μ and standard deviation σ of the response values are calculated
using the response values themselves as weights because the probability that
a viewer pays attention to a detail of an image is considered proportional to
the magnitude of the stimulus that resides at that detail. A histogram is built
next to judge how close the distribution of response values is to the bell curve
distribution. The “bins” will each represent an interval of size σ/100. Then the
probability that a response value falls in a given bin is computed. This is repeated
for all the bins by going through all the Ri,j values where each Ri,j updates its
corresponding bin using a weight of Ri,j .

Then, the deviation (D) from the normal distribution is computed as follows:

D =
∑

i

pi log
(

pi

qi

)

where pi is the observed probability in the ith bin of the histogram and qi is the
expected probability assuming a normal distribution around μ with standard
deviation σ. When qi = 0, that bin is ignored. The value e−|D| will reported as
the value of the aesthetic measure. With a value between 0 and 1, a low value
will indicate a large deviation and hence a poor image, whereas a large value
will correspond to a good image.

We justify this aesthetic measure as follows:

1. Aesthetic measure R discourages images which give rise to very high or very
low response values. If a viewer gives very little response to something, it is
too insignificant to be of interest. On the other hand, if a viewer gives a very
large response to something, it is too disturbing or chaotic.

2. The response value increases as the gradient increases and decreases as the
gradient falls. Very low gradients give rise to single coloured monotonous
areas (which do not interest a viewer) whereas very large gradients give rise
to sharp lines and boundaries separating areas with huge colour differences
(which is undesirable). Aesthetic measure R discourages very high and very
low gradients and encourages reasonable values of gradients.

2.2 Aesthetic Measure MC

This measure is based on the aesthetic theory of Machado and Cardoso [13]
asserting that the aesthetic value of an artwork is directly connected to Image
Complexity (IC) and inversely connected to Processing Complexity (PC). So,
the value of the aesthetic measure is calculated as the ratio
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IC

PC
. (1)

In order to compute IC, we first compress the image losslessly using JPEG
compression and calculate the ratio (I) of the size of compressed image to the
size of uncompressed image. We hypothesize that the IC is directly connected
to the ratio I. The inherent unpredictability, or randomness can be measured
by the extent to which it is possible to compress the data [6]. Low values of I
indicate substantially compressible and low complexity image. High values of I
indicate not very compressible and therefore more complex image. That is,

more compressible ≡ less random ≡ more predictable ≡ less complex

Hence, the less the value of ratio I (the less the size of the compressed file) is,
the more compressible and hence, the less complex the image is. We substitute
the ratio I for IC in Equation 1.

PC should reflect the complexity of the coding of the image. We encode each
image by three expression trees, one for each of the R, G and B components, as
detailed in Section 3. In order to compute PC, we compress the expression trees
represented as strings in prefix notation and again find the ratio P of size after
compression to size before compression. We argue that PC can be substituted
by the ratio P . The aesthetic measure MC will be computed as

I

P
.

In theory the value of this aesthetic measure could range from zero to infinity,
where infinity corresponds to an image that cannot be compressed, but whose ge-
netic expression tree can be compressed to the minimum. Zero corresponds to an
image that can be compressed significantly, but with an expression that cannot
be compressed. It is notable that the compression rate PC of the mathematical
expressions could be replaced with the more exact rate computed for the min-
imum length of an equivalent mathematical expression. However, as arithmetic
simplification is not applied on the mathematical expressions in our system, we
consider that using the actual evolved expression is appropriate.

2.3 Aesthetic Measure BZ

This aesthetic measure is based on Birkhoff’s measure [2] and Zurek’s physical
entropy [17]. We compute the value of Shannon’s entropy as mentioned in [17]
by creating a histogram of luminance values of pixels and computing Shannon’s
entropy Hp as follows:

Hp = −
∑

i

pi log pi

where pi is the probability in the ith bin of the histogram. The luminance value
(L) for a pixel (i, j) is computed as follows:

L = (0.2126 ∗ ri,j) + (0.7152 ∗ gi,j) + (0.0722 ∗ bi,j).
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Next, the Kolmogorov Complexity (K) [17] of the expression trees of the image
is estimated by compressing the strings corresponding to expression trees and
finding the length of the compressed string. The value of this aesthetic measure
is given by

Hp

K
This aesthetic measure discourages very high and very low luminance values
because it favours high values of Hp. Very high and very low luminance values
lead to low values of Hp. Here, K is used as a measure of PC.

2.4 Aesthetic Measure S

As stated in [17], to analyse an image’s composition, the used measures must
quantify the degree of correlation or similarity between image parts. We compute
this degree of correlation by dividing the image into four equal squares and
compute Shannon’s entropy (Hpi , i = 1, . . . , 4) for each of these parts. We then
compute the weighted mean of these values (the weight being the area of the
part). Finally, we find the ratio of the weighted mean to the Shannon’s entropy
value of the image as a whole to obtain the value of the aesthetic measure. The
value of the aesthetic measure is given by

Hp1 + Hp2 + Hp3 + Hp4

4Hp
.

3 The Underlying Evolutionary Art System

A simple interactive evolutionary art system is used, where the user is presented
with nine images and has to select two as parents for the next generation. Images
are represented by triplets of functions corresponding to the three components R,
G and B. For each pixel of the image, the values of these functions are calculated
and produce the colour of the pixel as shown in Fig. 1.

Genetic programming is employed for the evolution of the expression trees.
Simple subtree crossover, subtree and point mutation are the allowed genetic
operators. The user can set the operators to be used and their rates and can also
introduce new random images at anytime during the interactive evolution. The
system was implemented in Java and uses all mathematical functions provided
in Java.Math. The terminals are Cartesian and polar coordinates of the points
and also random constants.1 Examples of images produced by the authors are
shown in Fig. 2.

4 Simple Numerical Analysis

To see whether there are any particular functions that are preferred more than
others, we initially analysed their frequency in nice images. The number of oc-
currences of each function in 44 nice images manually selected from a set of
images generated through interactive evolution by the authors in sessions of
1 The interactive system is available for download at http://www.evoartmedia.com

http://www.evoartmedia.com
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Fig. 1. The genetic representation used

(a) Spider (b) Flower (c) Fish

Fig. 2. Example images generated by interactive evolution

length varying between 15 and 30 minutes is shown in Fig. 3. The images were
selected such that on visual inspection they looked substantially different.

It can be seen that the preferred functions are SEC, CUBRT, EXP, LOG,
SQRT +, -, MAX, AVG, *, as each of these occurs on average at least once in
every aesthetic image. At 63.8% of all variables, polar coordinates were the pre-
ferred variables and variables were preferred over numeric constants, as 73.3% of
terminals. The constant range [0.5, 0.6) had the highest frequency of 20% of all
constants, the next closest being [0.6, 0.7) at 12.5%. Such a simple analysis does
not really offer detailed understanding of human aesthetic selection, just indicates
the more likely ingredients of aesthetic images within the given class of images.

5 Aesthetic Measures to Model Human Selection

Individual interactive evolution experiments were analysed to better understand
their driving force: human selection. Then automatic evolution was applied to the
resulting image, using the selection criteria revealed by the analysis. The analysis
involved monitoring the evolution of the four aesthetic measures described in
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Fig. 3. Occurrences of various functions in 44 different aesthetic images obtained in
different runs of the system
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Fig. 4. Evolution of image through interactive evolution by computer scientist

Section 2 during interactive experiments performed by four different people. We
found that although there are similarities for all users, the occupation of the
user substantially influences their use of the system and their image selection
preference.2 There is no universally applicable simple model. Computer scientists
tend to use the system for longer than graphic designers. The value of measure
MC shows a clear growth over generations in the case of computer scientists,
as in Fig. 4(a), both for the minimum and the maximum value taken in each
generation. At the same time, there is no clear tendency in the evolution of values
for measure MC in the case of graphic designers (see Fig. 5(a)). The evolution of
measures BZ and S are similar for both types of users: variation within similar
ranges is observed, approximately [0, 0.05] for BZ and [0.8, 1] for S, respectively.
The R measure has a lot of variation across its full range for computer scientists
and somewhat less variation for graphic designers, but follows no clear pattern.

Interestingly, if we consider the evolution of two measures together and draw
the Pareto front of non-dominated solutions3 in each generation, we notice some

2 The users were computer scientists and graphic designers.
3 A point (x1, y1) is part of the Pareto front of a set if there is no other point (x2, y2)

in the same set such that x2 > x1 and y2 > y1.
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Fig. 5. Evolution of image through interactive evolution by graphic designer

R = 3.8E-33
MC = 0.29
BZ = 0.04
S = 0.82

(a) Computer scientist (b) Automatic mut. (c) Automatic Xover

R = 0.47
MC = 0.26
BZ = 0.015
S = 0.99

(d) Graphic designer (e) Automatic mut. (f) Automatic Xover

Fig. 6. Images created by computer scientist and graphic designer. Subsequent images
evolved from these by automatic evolution using mutation or crossover.

trends. Figures 4(b) and 5(b) show the evolution of the Pareto front for measures
MC and BZ. In both shown examples, with a few exceptions over the full experi-
ment, the front is moving toward better (i.e. higher values of aesthetic measures)
non-dominated solutions. We interpret this as an indication that human users
may not select the images during evolution in a way that consistently follows a
single aesthetic measure, but more likely a set of aesthetic measures. In fact if
we compare the two images in Fig. 6(a) and 6(d), we notice that the first image
scores better over measures MC and BZ, while the second image scores better
over measures R and S.
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When attempting partial automatic evolution [15,20] we propose that the hu-
man’s previous selections are analysed and modelled by the best fitting set of
measures and then the automatic evolution subsequently uses these measures. It
is then more likely that images to the particular human user’s liking are pro-
duced by automatic evolution. We therefore applied automatic evolution with
the combination of the MC and BZ fitness measures to create images starting
from the preferred images of the human users. We experimented with mutation
only or both crossover and mutation, various settings of population sizes (15-
40) and generation numbers (30-100) allowing the computer to spend different
amounts of time on creating new images. Evolved images are shown in Figures
6(b) 6(c) and 6(e), 6(f), respectively.

6 Conclusion

We proposed modelling human user preference by a set of aesthetic measures
monitored through observation of human selection in an interactive evolutionary
art system. Although our evolutionary art system is very simple and is only capa-
ble of generating images within a limited set, it provides a suitable environment
for studying human aesthetic judgment. The same principles could be applied
using an extended set of aesthetic measures on more sophisticated evolutionary
art systems and then different combinations of aesthetic measures may be found
to model individual users best.

McCormack [16] criticises aesthetic selection itself and proposes an open prob-
lem “to devise formalized fitness functions that are capable of measuring human
aesthetic properties of phenotypes”. The key is to model and measure human
aesthetic properties by the available means.

We argue that once a combination of measures that models increasing hu-
man preference during interactive evolution is identified, automatic evolution is
provided with a suitable fitness evaluation method. We are planning to conduct
more experiments using an approach similar to that of Colton et al. [5]. Also
we are planning to employ machine learning techniques to find potentially more
accurate functions driving human aesthetic judgment and to subsequently apply
these functions for evaluation and selection in automatic evolution.
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Abstract. Layout planning is a process of sizing and placing rooms
(e.g. in a house) while attempting to optimize various criteria. Often
there are conflicting criteria such as construction cost, minimizing the
distance between related activities, and meeting the area requirements
for these activities. This paper describes new techniques for automating
the layout planning process using evolutionary computation. New inno-
vations include allowing polygonal exteriors and multiple floors. Multi-
objective ranking algorithms are tested to balance the many objectives
in this problem. The evolutionary representation and requirements spec-
ification used provide great flexibility in problem scope and depth of
problems to be considered. A variety of pleasing plans have been evolved
with the approach.

Keywords: evolutionary design, floor planning, genetic algorithms,multi-
objective optimization, Pareto ranking, ranked sum.

1 Introduction

Architecture is a complex amalgamation of science and art. There are functional
requirements, cultural expectations and general guidelines to follow. But within
these guidelines, there are still limitless possibilities. Even though a house may
meet building codes and social norms, Hirsch feels that there is no such thing
as the perfect house; “The needs and desires of every client are so unique, so
it follows that each should necessarily be unique.”[9] It is likely that no amount
of standard measures can identify one house that will suit everyone. This makes
the design of houses an interesting problem to assist with a computer.

There have been many efforts to automate floor plan generation. Hahn et al.[8]
demonstrate a method of generating building interiors in real-time as they are
explored using a procedural algorithm that follows a set of simple rules. Bidarra
et al.[2] use a hierarchical rule-based placement algorithm to create furnished
living spaces with a variety of restrictions and heuristics. Bruls et al.[3] propose
a visual representation for trees called “squarified treemaps” which Marson and
Musse[10] use to generate balanced floor plans converting interior walls into
hallways in order to ensure proper connectivity in the resulting house.

AI technologies have been applied to floor plan design. Mitchell et al.[12]
use a brute force search for small instances of a layout problem ensuring desired
room adjacencies. Martin[11] applies a multi-phase constructive procedural algo-
rithm to quickly produce a batch of houses. Schnier and Gero[13] use a genetic

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 313–322, 2011.
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program with a dynamic set of primitive functions in order to evolve designs
where similarity to a given plan is the only requirement. Doulgerakis[5] uses
a genetic programming algorithm. Activity assignment is accomplished by a
procedural algorithm followed by the evaluation of the space considering many
spatial, layout and functional requirements. He also considers polygonal spaces
by allowing angled splits of rectangles.

This paper presents research that explores several methods and ideas with
respect to automating the generation of floor plans[6]. Genetic algorithms are
used to search for plans that satisfy user requirements. Multi-objective strategies
are used to find a balance of the many objectives being optimized. Multiple
answers provide a client with many options which satisfy the constraints in
different ways. Final results may be hand-modified to fully satisfy the user’s
requirements, many of which may be difficult to formalize.

Our system has many possible applications. It is an interesting and challeng-
ing evolutionary design problem for evolutionary design algorithms. It can be
used as a generator of inspirational ideas for architects and their clients. It can
also be used to create dynamic environments for games, by generating new plans
as needed, as well as automatically constructing very large expansive game envi-
ronments. Lastly, it can be used for computer animations, where generating large
environments for background scenery would otherwise be very time consuming.

This paper is organized as follows. Background information regarding evo-
lutionary computation, evolutionary design and floor planning is found in Sec-
tion 2. The system design is described in detail in Section 3. Section 4 shows
the capabilities and flexibility of the system in a series of interesting problems.
Section 5 sums up the effectiveness of this system in meeting the outlined goals,
compares the system to some similar works and notes potential future work.
Details of all this research are in the MSc thesis [6].

2 Background Information

2.1 Floor Planning

The requirements for houses can be somewhat informal. Many implicit require-
ments are derived from a combination of western culture and simple usability
guidelines. They have been generally observed in most modern houses, and the
ones that do not observe them usually give one that feeling as though something
is out of place.

There are spatial requirements for a house. An implicit one is that the house
footprint must be built to fit on the lot. As a result, room shapes and sizes must
be designed accordingly to fit within the space. Rooms must be large enough to
host their activities and furniture. There are also various layout requirements,
as various rooms must be easily accessible or centrally located within the house.
Lastly in order for a house to be functional, it must have certain rooms, such as a
kitchen, bathroom, bedroom and a social room. In an autonomous system, these
requirements either have to be implicit in the representation such that they are
always satisfied, or explicitly measured as the quality of the solution.
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Floor plan goals often vary from one culture to another, and one time period to
another. As this paper is concerned with the constraints in the modern western
society, the results and some of the goals may not coincide with other cultures.
Nevertheless, these requirements could be tailored to other cultures as part of
the problem specification. Many of these goals are flexible and highly subjective.
However, if only the required constraints were satisfied the results would likely
not be pleasing.

2.2 Evolutionary Design

A genetic algorithm [7] is a popular evolutionary algorithm which simulates a
population of individuals evolving through natural selection. Evolutionary algo-
rithms are often used in design problems [1]. They are well suited to problems
where there is no clear solution, or explorative problems where there may be
many acceptable solutions. Using a population-based stochastic heuristic search
allows for a wide exploration combining a variety of good features from various
solutions. Quality of solutions is either measured by a user interactively, or by
a fitness function automatically. Additionally having a population of solutions
allows the system to provide a multitude of reasonable answers to the problem.

2.3 Multi-Objective Analysis

In this paper there are many objectives to be optimized. This paper explores
two popular strategies for combining the scores from multiple objectives into a
single overall score or ranking: (i) Pareto Ranking; and (ii) Ranked sum.

Pareto ranking is commonly used in many multi-objective problem areas [7]. A
solution is said to dominate another solution if the fitness in each of its objectives
is at least as good as the other solution, and has a better score in at least one of
the objectives. A rank of 0 is assigned to all non-dominated solutions. The next
rank is assigned to the remaining undominated solutions. This is repeated until
the population has been ranked.

Ranked sum is another means of multi-objective ranking [4]. The idea is to
rank each objective separately within the population. The sum of these ranks is
used to provide an overall rank for the individual. The sum of dominance ranks is
used in this work. The dominance rank is the number of individuals which have
a better value. This paper uses dominance ranks in the standard ranked sum.
The advantage of using the ranked sum fitness evaluation is that unlike Pareto,
outliers are not valued. This gives greater selective pressure towards solutions
that are hopefully better overall. Normalized ranks may be used to favour more
uniform improvement in all objectives. When computing a normalized rank, each
objective rank is divided by the number of ranks for that objective.

3 System Design

The basic operation of the system is as follows. The genetic algorithm produces
some chromosomes. Those chromosomes are converted to a physical floor plan
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(Section 3.1). If the floor plan does not have room types, these are procedurally
assigned(Section 3.2). The resulting floor plan is evaluated using the fitness
evaluation(Section 3.3). The fitness scores are then given to the multi-objective
evaluation scheme to generate single scores for use by the GA to select individuals
for reproduction in the next generation.

3.1 Chromosome Representation

The system uses a grid similar to [12], whose size will be predetermined. The grid
is fit to the bounding rectangle of the house exterior. The genotype representing
a house configuration is shown in Fig. 1. Here, h1, h2, ..., hn correspond to the
row heights, w1, w2, ..., wn correspond respectively to the column widths, and
xi,j corresponds to the room type and cell number of the cell in row i, column
j. The width and height of the grid rows and columns can be resized. Hence
the representation is capable of describing any rectilinear house given a grid of
a high enough dimensionality.

The transformation from genotype to phenotype proceeds by combining adja-
cent rooms of the same cell number into a single room, removing walls between
those grid cells. The overall room type is given by a vote of the room types of
all cells in each combined group. The final room type can be assigned using the
procedural algorithm outlined in Section 3.2.

A modified form of the standard 2-point GA crossover is used. A rectangular
selection is made by selecting two cell locations at random. Using this selection
rectangle, the information from each parent is exchanged to create the children.

To allow creation of a building with several floors without modifying the
chromosome or increasing the complexity in search space, a particular room
within the floor plan is fixed in position, size and room type. In this way, any
plan for the bottom floor can be combined with any plan for an upper floor to
create the building.

h 1 h 2 ... h n w 1 w 2 ... w m  x 1,1  x 1,2  ... x n,m  

Fig. 1. Chromosome mapping to phenotype
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Often it is necessary to design a house to fit a polygonal boundary. This may be
due to spatial limitations or for aesthetic reasons. To construct non-rectangular
houses, a floor plan is evolved to fit the bounding box of the outer footprint,
which is then clipped to fit the shape. If the clipping removes an important room
it will be penalized for that in the resulting fitness.

3.2 Procedural Activity Assignment

The procedural assignment used in this system is inspired by work in Martin
[11] and Doulgerakis [5]. The following algorithm begins at the front door with
one of a few allowable types, then assigns rooms in a breadth-first fashion.

proc assignType(room, types) ≡
for type := 1 to |types| step 1 do

types[type].value := evaluateFeasibility(room, type);
od;
sort(types, value);
for type := 1 to |types| step 1 do

room.type = type;
for adjroom ∈ adjacent(room) ∩ unassigned(rooms) do

enqueue((adjroom, adjTypes(room)))
od;
if ¬assignType(dequeue()) then room.type = 0; else returntrue; fi;

od;
returnfalse;

3.3 Fitness Objectives and Evaluation

The requirement description for a house includes the type of a room (public
or private), the minimum or maximum number of those rooms required, the
minimum or maximum width, area and ratio of the room, the room types which
should be close to the room, the room types which the room should be bigger
than, and whether or not the room should have windows.

The calculation of an individual’s fitness falls into several objectives relating
to its adherence to the specifications in the requirements:

Functional: the building’s adherence to the living requirements or required
numbers of various room types.

Geometric: the buildings closeness to idealized geometric measurements.
Connectivity: how well the building satisfies certain proximities as specified

by the requirements.
Reachable: how shallow and wide the graph of the building is. It measures the

average number of rooms one must travel through from the entrance to reach
any room in the building.

Ratio: how close the rooms are to their recommended ratio requirements.
Windows: how many rooms which require windows are not placed on the ex-

terior of the house.
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Table 1. Evolutionary Algorithm Parameters

Parameter Value

# of runs 30
Population 500
Generations 200
Crossover 80%
Mutation 20%
Reset if stalled 10 generations
Selection Method Tournament
Tournament Size 3
Assignment Procedural
Diversity Factor 100
Ranking Method Normalized Ranked Sum

3.4 GA Parameters

Evolutionary parameters are shown in Table 1. Most are standard in the liter-
ature [7]. A diversity preservation strategy is used. Duplicate individuals in the
population incur a penalty to their rank of diversity · i where diversity is the
diversity preservation factor and i is how many times this individual has already
been seen earlier in the population. Additionally, if the best individual has not
changed for 10 generations, the population is reinitialized in order to evolve new
layouts.

4 Results

4.1 Analysis of Multi-Objective Algorithms

An experiment of a basic single floor 40’x30’ house requiring two bedrooms was
performed in order to evaluate various multi-objective strategies. As weighted
sum is the traditional means of combining objectives, it is compared with the
Pareto and ranked sum strategies.

Tables 2 shows an analysis of the multi-objective strategies. In general, using
normalized ranking produces objective values that are as good if not better
than all other tested strategies. The second section shows the confidence of this
strategy exceeding the fitness of the others on each objective. The result is that
normalized ranked sum satisfies more requirements than other strategies. An
example plan is shown in Fig. 2(a). It is similar to what might be seen in a
contemporary condominium.

4.2 Polygonal Layout

Here, a half-hexagon shape is used to construct houses with an interesting ex-
terior appeal. A 40’ by 30’ house is evolved and then clipped to this shape. The
other requirements are fairly generic: 2 bedrooms with windows, kitchen with
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Social Room

Bathroom

Bedroom

Bedroom

Kitchen Dining Room

Master Bathroom

(a) Basic house

Magazines

Checkout

Magazines

Magazines

Frozen Food

Cleaning Items

Vegetables & Fruit
Snack Food

Meats

Baking Goods Eggs & Dairy

(b) Grocery store

Fig. 2. Example Plans

Table 2. Average best of run fitness and confidence in Norm Ranked Sum outperform-
ing other strategies

Objective Connect. Geom. Funct. Reach. Ratio Windows

Weighted 7.533 0.0 0.1333 1.789 0.2233 0.0
Pareto 7.0 72.06 0.0 1.904 1.063 0.0
Ranked 7.0 0.0 0.0 1.882 0.2016 0.0
Norm. Ranked 7.0 0.0 0.0 1.877 0.0 0.0
Weighted 99.9% – 98.4% – 94.9% –
Pareto – 99.5% – 96.7% 99.9% –
Ranked – – – 88.9% 95.5% –

adjoining living room, and others. Figure 3 shows several examples of the houses
the resulted from this search. House (a) exceeds (b) in the geometric score as (b)
has a small dining room. House (a) has an extraneous hallway from the social
room leading to the bedroom. This is not directly punished, though there is less
room for the remaining rooms in the house. House (b) has a large hallway with a
corridor that does not lead anywhere on the bottom-left of the plan. This again
is only punished indirectly in that the kitchen could have been larger. Otherwise
the majority of requirements are successfully met in both plans.

Figures 3(c) and 3(d) show what the plan from house (a) could look like
furnished. The extra hallway was removed, which could have been done by a
post-correction phase or evolved out with more time. There is a pleasing flow
of traffic through the house, the plumbing is largely centralized and all of the
rooms are of adequate size for their requirements.

4.3 2-Story Office Building

To show the flexibility of the system, another problem studied is that of an office
floor plan. An office building needs to have offices and labs easily accessible via
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Master Bathroom
Bathroom

Social Room

Hallway Bedroom

Bedroom

Closet

KitchenDining Room

(a)

Hallway Bathroom Bedroom

Kitchen
Social Room

Dining Room

Bedroom
Master Bathroom

(b)

(c) 3D top down view of (a) (d) 3D view of kitchen in (a)

Fig. 3. Half hexagon shaped houses evolved from system

HallwayOffice

Office Office Office

Stairwell Office

Office Bathroom Office

Office Office Office Office Office

(a) Bottom floor

Office

Office

Hallway

Office Office

Office Bathroom Office

Office Stairwell Office

Lab Office Office

Lab Office

(b) Upper floor

Fig. 4. Bottom and upper floor office building plans with a fixed stairwell

some system of hallways. Bathrooms need to be within easy reach of those offices.
By affixing a stairwell in position, the system can separately evolve a bottom
floor and an upper floor for the multiple story building. The evolved solutions
succeed in meeting most of these requirements. The plans, shown in Fig. 4,
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required a few minor tweaks. The bottom floors had extra stairwells which were
corrected to offices. The upper floors generated many hallways which have been
combined into a single hallway.

4.4 Grocery Store

A final example is to evolve a layout that has discrete implicit regions even
though they are not subdivided by walls. This is the case with a grocery store,
where there are sections that provide various goods divided into differently sized
regions. The customer is forced to walk through the checkout on leaving the
store to ensure that they pay for their goods. The details of the requirements
are available in [6]. Figure 2(b) shows an example plan evolved from the system.

5 Conclusion

This paper uses an evolutionary algorithms to solve a problem with a wide range
of informal notions of optimality. New contributions include a hybrid representa-
tion, a multi-floor generation strategy, polygonal exteriors, and multi-objective
strategies. The representation of the problem specifications allows it great flex-
ibility in both problem depth and problem scope. The procedural assignment
algorithm greatly reduces the search space of the problem by eliminating many
useless layouts. This allows the algorithm to work on much larger spaces. Runs
in this paper completed in approximately 7s on a single Intel Q6600 core. A
variety of floor plans are presented to the user for further selection and hand-
modification as desired.

Mitchell [12] and Doulgerakis [5] attempt to solve optimization problems in
generating floor plans. Mitchell is concerned with ensuring the maximum number
of desired adjacencies and afterwards adjusts sizes as a secondary goal, whereas
this system attempts to optimize the two together. Doulgerakis uses a genetic
program to construct houses through repeated angled divisions with a procedural
activity assignment phase similar to ours. His objectives include adjacencies,
room areas, ratios, and numbers of certain rooms, but does not include windows
or distances through the house. The angled divisions seem to hurt the quality of
layouts more. Other works [10,11] have not used search to optimize plans. None
of the previous works allow for polygonal exteriors or multi-floor layouts.

There are many possible directions for this research. The chromosome could
be modified to evolve multiple floors simultaneously. The sizes of the grid cells
could be constant for all floors to ensure structural integrity as walls would be
built over each other. Scaling up to even larger problems is challenging. This is a
common problem in any search, which could be leveraged using modularization.
An interactive/automatic hybrid evolutionary system could allow the user to
interact with and influence the evolution. Parameters involved in procedural
assignment could be evolved as part of the chromosome to help find ideal values
for assigning room types. Since the true evaluation of a house is how well it
serves the needs of its inhabitants, it may be possible to get a better rating of a
house by running a simulation of agents using the house for various purposes.
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Abstract. Computational adaptive methods have already been used in Installation 
art. Among them, Generative artworks are those that value the artistic process, 
rather than its final product, which can now be of multimodal nature. 
Evolutionary Algorithms (EA) can be successfully applied to create a Generative 
art process that is self-similar yet always new. EAs allow the creation of dynamic 
complex systems from which identity can emerge. In computational sonic arts, 
this is ecological modeling; here named Evolutionary Soundscape. This article 
describes the development and application of an EA computing system developed 
to generate Evolutionary Soundscapes in a Multimodal Art Installation. Its 
physical structure uses paths of forking pipes attached to fans and microphones 
that capture audio to feed the EA system that creates the Soundscape. Here is 
described the EA system; its design in PureData (PD); its connection with the 
physical structure; its artistic endeavor and final sonic accomplishments. 

Keywords: evolutionary computation, sonic art, soundscapes. 

1   Introduction 

In 2009, I presented a 20-hour workshop on adaptive methods for the creation of 
sonic art installations. I named it “aLive Music”, and was part of the package of my 
participations as advisor on the project of a music student who was awarded by the 
Brazilian art entity; MIS-SP (Museu da Imagem e do Som, de São Paulo) with a grant 
to develop his own multimodal project using PD (www.puredata.info). In this 
workshop, I presented an implementation in PD of an adaptive sound system, that 
uses principles of Evolutionary Algorithms (EA) for sound synthesis, which I 
developed in my Ph.D [8], [9]. Attending this workshop, was Fernando Visockis, a 
young artist, eager to learn adaptive computing methods to create Artwork 
Installations that could generate Soundscapes [4]. I was later invited to develop an 
Evolutionary Soundscape System that would be incorporated to an artwork 
installation, named “Vereda de Remendos” (VR); which is translated as “Path of 
Patches”. This artwork was awarded with “Primeiras Obras” prize, promoted by the 
cultural Brazilian entity CCJRC (“Centro Cultural da Juventude – Ruth Cardoso”). 
With this fund, the artists could build the installation. They assembled, tested, and 
finally exhibited it, from 14 to 29 of August, 2010, in Sao Paulo, Brazil. 
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This work describes my contribution to the VR development, which involved the 
design and implementation of the Evolutionary Soundscape System to which the VR 
artwork physical structure was connected, and, therefore, capable of successfully 
generating a continuous synthesis of sound objects that constitute the Evolutionary 
Soundscape.  

1.1   PA: Processual Artwork Defined 

VR follows the Conceptual Art philosophy, which differs from most of the art 
developed during the history of Western culture. For centuries, the aim of any artist 
was to produce fine artistic objects, where the artist studied and developed techniques 
to build object of art, as best they could. The object was the final product of an artistic 
endeavor; and the reason and purpose for the existence of any artistic process. 
However, in the 1950s, probably due to the scientific arrival of digital electronics and 
computational science, artistic processes turned to be aesthetically noticed; slowly 
equating – and sometimes surpassing – the static materiality of the final object of art. 
This caused, in that decade, a breakthrough of new artistic possibilities and 
experimentations; most of them gathered by the term “Conceptual Art”. To mention 
an example, Lucy Lippard, famous writer and art curator, when analyzing the artistic 
production of Sol LeWitt, in the 1960s, wrote that his work with structures was based 
on the premise that its “concept or idea is more important than the final object” [13]. 
This touches the definition of “Processual Artwork” (PA); a de-materialized 
expression of conceptual art that is complemented by the notion of Generative Art, 
here taking the definition of: any form of art where “a system with a set of defined 
rules and some degree of autonomy, is put on movement” [10]. Generative processes 
had been extensively explored in music and other forms of sonic arts; even before the 
arising of digital computing technology. More than four centuries ago, around 1650s, 
priest Athanasius Kircher, based on the belief that musical harmony should reflect 
natural proportions of physical laws, wrote a book entitled: Musurgia Universalis, 
where he described the design of a musical generating machine, based on these 
principles [3]. In 1793, Hummel published a system to generate musical scores, 
whose creation is attributed to Wolfgang Amadeus Mozart. This method generated 
music notation through a random process, based on the numbers given by tossing 
dices. This embeds most of late generative art elements, where a musician can create, 
from by applying simple rules, and building blocks (i.e. predefined musical bars), an 
astonishing amount of compositions. Later, this method was regarded as “Mozart's 
Dice Game” and has influenced many composers, such as John Cage and Hiller 
Lejaren, that created a musical piece entitled HPSCHD [11]. Generative art is 
therefore created by adaptive methods, which differ from deterministic and stochastic 
ones, as adaptive methods can rearrange their algorithmic structure according to the 
input.  

1.2   From PAs to Soundscapes 

PAs are seen as adaptive methods for art creation that uses generative processes 
where the artist is the element who provides the aesthetic judgement; constantly 
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weighting the artistic value of the product, thus guiding the adaptive artistic process 
of art creation. In sonic arts, the correspondent of such process would be the design of 
sonic landscapes, also known as Soundscapes. This term was originally coined by 
Murray Schafer, that describes it as “natural, self-organized processes usually 
resultant of an immense quantity of sound sources, that might be correlated or not, but 
conveys a unique sonic experience that is at the same time recognizable and yet 
always original” [14]. This refers to the immersive sonic environment perceived by 
listeners that can recognize and even be part of it. Thus, a soundscape is also fruit of 
the listener's auditory perception. In this sense, a soundscape is categorized by 
cognitive units, such as: foreground, background, contour, rhythm, space, density, 
volume and silence. According to Schafer, soundscapes is sonically defined by 5 
distinct categories of analytical auditory concepts, derived from their cognitive units. 
They are: Keynotes, Signals, Sound-marks, Sound Objects, and Sound Symbols. 
Keynotes are the resilient, omnipresent sonic aspects, usually unconsciously sensed 
by the listeners' perception. It refers to the musical concept of tonality or key. Signals 
are the foreground sounds that arouses listener's conscious attention, as they may 
convey meaningful information for the listener. Sound-marks are singular sounds only 
found in a specific soundscape, which makes this one perceptually unique. Sound 
objects – a term introduced by the french composer Pierre Schaeffer, extending the 
concept of musical note – can also be seen as a sonic process. Physical events create 
waveforms (a sound wave) carrying perceptual meaning, thus being heard, understood 
and recognized. Sound symbols are a more generic class that refer to sounds which 
evoke personal responses based on the sociocultural level of association and identity. 
In sonic arts, PAs are sometimes used to manipulate the process of creating these 5 
units, to generate Soundscapes.  

1.3   Soundscape and ESSynth  

Evolutionary Sound Synthesis (ESSynth) was first introduced in [7], that describes its 
original method. A detailed explanation of ESSynth method is in [8, 9, 10]. As an 
overview, ESSynth is an Evolutionary Algorithm for sound synthesis based on 
manipulating waveforms, within a Population set. This was later implemented as an 
adaptive computational model in PD. Waveforms are seen as Sound Objects. They are 
the Individuals of the ESSynth model. Individuals have Sonic Genotypes, formed by 
acoustic descriptors – time-series expressing perceptually meaningful sonic aspects of 
sound objects, such as: Loudness, Pitch and Spectral density. ESSynth model has two 
sets of Individuals: Population and Target. Population set has the individuals that 
undergo the Evolutionary process. Target set has the individuals that do not evolve 
but influence the evolution process with their Genotypes. There are two dynamic 
processes operating in the Population set: Reproduction and Selection. Reproduction 
uses two Genetic Operators – Crossover (Recombination) and Mutation – to create 
new Individuals in the Population set, based on the information given by its Genotype. 
Selection process searches for the best Individual within the Population – the one 
whose Genotype is more similar with the ones in the Target set. This aims to emulate 
the natural pressure imposed by environmental conditions, that shape the evolutionary 
path of biological species. Selection uses a Fitness Function – a metric distance 
between Genotypes – to scan the Population set, measuring the Individuals' fitness 
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distance, in comparison with the ones in the Target set. This process may also 
eliminate individuals not well-fit – the ones with fitness distance greater than a 
predetermined threshold – while selecting the best-one; the one presenting the 
smallest fitness distance. Reproduction uses the genetic operators: Crossover and 
Mutation, to create a new generation of individuals; the offsprings of the best-one, 
with each individual in the Population set. Initially ESSynth had a Population set with 
a fixed number of Individuals. There was a Generation cycle in which all a new 
generation of individuals in the Population entirely replaced their predecessor. The 
Reproduction occurred in Generation steps.  

This new version of ESSynth replaced the fixed-size Population set by a variable-
size one, with asynchronous Reproduction process, where the Individuals reproduce 
in pairs, and not in Generations steps. This also introduced the Lifespan rate, where 
Individuals now would be born, reproduce and die. With these developments, the 
sonic output of ESSynth was now created by all sound objects (the Individuals) co-
existing in the Population set, instead of as before; where the sonic output was given 
by the single queue of best individuals. The most interesting aspect that arose from 
this new development was the fact that this new ESSynth model could now synthesize 
not only a single stream of sounds – as before – but a whole interaction of sonic 
events, co-existing as an Adaptive Complex System. This evolutionary process of 
sound objects seemed to endow Schafer's categories of analytical auditory concepts 
that define a Soundscape [17].  

Soundscapes spontaneously occur in natural self-organized environments, but are 
very hard to be obtained “in vitro”. Formal mathematical methods and deterministic 
computational models are normally not able to describe the varying perceptual 
acoustic nature of a soundscape. In the same way, stochastic methods are normally 
not able in attaining sonic similarity. Deterministic and stochastic methods are 
mutually exclusive in describing soundscapes. As any mathematical or computational 
model, adaptive methods are also not complete, which means that they can not fully 
describe a phenomena. 

In our case, the sonic process that generates soundscapes is the complex adaptive 
system, modeled by an evolutionary algorithm that is incomplete, as any other 
computational model, but is able to describe its adaptive process of reproducing and 
selecting sound objects; the case of ESSynth. The sound we hear from (and/or 
within) Soundscapes are, at the same time, acoustically new and yet perceptually 
similar. Several methods aiming to synthesize soundscapes were already been 
proposed, such as the ones described in [2]. Most of them are deterministic models 
that control the parameters of sound sources location and spacial positioning 
displacement. However, when compared to natural soundscapes, these methods don't 
seem capable of creating dynamic sonic processes that are self-organized and self-
similar. From a systemic perspective, self-organization is a process that occurs in 
certain open complex systems, formed by parallel and distributed interaction of a 
variable number of agents (in our case; sound objects). The mind perceives the 
interaction between all internal and external agents as a system presenting 
emergence and coherence. As an example, the flocking behavior of biological 
population is a self-organized processes, as it is emergent, coherent and ostensive 
(i.e. it is perceptible). Soundscapes have, as well, similarity with gesture (i.e. 
intentional movement) as both rely on agents spatial location and self-organization to 
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exist [15]. In this perspective, this new implementation of ESSynth fits well as a 
computer model that os able to generate a set of localized agents – a Population of 
spatially located sound objects – that reproduce new ones with genotypical features 
of their predecessors, which naturally creates self-similarity. 

This article describes the usage of a new version of ESSynth – an evolutionary 
algorithm for sound synthesis – that creates the synthetic soundscape for VR; the 
artwork installation: ESSynth is an adaptive method that is able of emulating a sonic 
ecological system, in which sound objects are ephemeral beings. During their limited 
lifespan, they move inside a sonic location field – through the usage of sound location 
cues – and generate new sound objects that inherit sonic aspects of their predecessors. 
When a sound object lifespan is over, this is removed from the Population set; its 
genotype is erased from the genotype pool, to never be repeated again. The intrinsic 
property of ESSynth sonic output – the varying similarity – is paramount to generate 
synthetic soundscapes and thus being successfully used with artwork installations 
such VR; the case studied here. VR is an awarded multimodal project to which this 
customized version of ESSynth was designed. VR was also an ephemeral project per 
se. It was dismantled after its exhibition period was over. A video showing VR in 
action, with the evolutionary process of soundscape creation, is in the link: 
http://www.youtube.com/watch?v=3pnFJswizBw. This vanishing charac-
teristic is common for processual multimodal artworks, since the first one, in the 
records: the Poème Électronique, created by Edgard Varèse, for the Philips Pavilion 
at the 1958 Brussels World’s Fair; the first major World's Fair after World War II. Le 
Corbusier designed the Philips pavilion, assisted by the architect and composer Iannis 
Xenakis. The whole project was dismantled shortly after the fair was over, but its 
memory remains alive and still inspiring artistic creations to this date. A virtual tour 
to this installation was created by the “Virtual Electronic Poem” project, and can be 
accessed in the following link: (http://www.edu.vrmmp.it/vep/).  

Section 2 describes the VR structural project; its concept, design and built.  
Section 3 explains the development of the customized version of ESSynth for  
VR, and its implementation in the open-source computing environment of PD 
(www.puredata.info). Section 4 describes the sonic results achieved by VR, as a 
multimodal processual artwork project, and discusses the conclusions found in this 
successful artistic project; commenting on an excerpt of an alive recording of the 
generated Soundscape and discussing their correspondence with natural Soundscapes, 
based on Schafer's categories of analytical auditory concepts. 

2   A Plumbing Project 

The bulging aspect of VR, seen in Figure 1 (left), is here understood as the dwelling 
of the evolutionary soundscape system, described in this article. Several segments of 
PVC plastic pipes – used in residential constructions – compose this plumbing 
structure. The artists built with this material several pathways that were connected at 
one vented end with fans, as seen in Figure 1 (right). These fans created a constant flow 
of air inside these interconnected and forked pathways, veering the air blowing, which 
created unusual sonic results. The pipes had four microphones inserted in specific parts 
of the plumbing system, to capture in real-time these subtle sonic changes. 
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The first concept of VR was inspired by a short story written by Jorge Luis Borges, 
entitled "El jardín de senderos que se bifurcate" (The Garden of Forking Paths), 
appeared in 1941, which is arguably claim to be the first hypertext novel, as it can be 
read – and thus understood – in multiple ways.  

 

Fig. 1. Image of the VR installation. The plumbing structure (left), and a closeup of one fan 
attached to one of the vented ends of these pathways (right). 

Contrary to the expected by the artists, this structure didn't generate the predicted 
sound, right after its assemblage. Actually, the system initially generate no sound at 
all. As in many projects, they had to go through a thorough tweaking of structural 
parts, fans positioning and microphones adjustments, in order to find the correct 
sweet-spots for the retrieval of veering venting sonic aspects, as initially intended. 
After the usual “period of despair”, the sonic system finally came to live, working 
very alike the artists initial expectation, and kept on successfully generating the 
soundscape during all the period of its exhibition. When it was over, VR ought to be 
disassembled, by contract. Following the previously mentioned example of Philips 
Pavilion, VR was also dismantled. The artists, dressed as plumbers, took themselves 
the role of destroying it, bringing down this structure, as an artistic intervention. A 
video of the artistic disassembling of VR, in reverse mode, is in the following link: 
http://www.youtube.com/watch?v=tQcTvfhcVb4&feature=player
_embedded 

3   Evolutionary Synthesized Soundscapes 

The dynamic generation of synthetic soundscape in VR needed a customized version 
of ESSynth. Although developed in 2003, during the Ph.D. dissertation of the author, 
the first implementation of ESSynth was finished in 2009, for the RePartitura artwork 
[6]. In this previous implementation – also programmed in PD – individuals where 
sound objects whose genotype were given by the mapping of graphic objects from 
handmade drawings. A new version of ESSynth was later developed to use as 
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genotype other forms of artistic gesture, such as dance movements, as defined by 
Rudolf Laban [5]. In RePartitura, ESSynth didn't use a Selection process. It was 
enough to have only the Reproduction process. The soundscape was compounded by 
the unrestrained reproduction of individuals (sound objects) with short lifespan (10 to 
30 seconds). This sufficed to create the variant similarity of a soundscape. This new 
ESSynth implementation for VR, a Selection process is back, using the same strategy 
described in the original ESSynth method from 2003. This Selection process basically 
measures the fitness distance between individuals. It calculates the Euclidean distance 
of the 6 arrays forming the sonic genotype, as seen in Figure 3. The author used PD 
for the implementation of such complex system because, besides the fact that PD is a 
free open-source software environment, multi-platform; it is also a robust 
computational platform for the implementation of real-time multimedia data 
processing algorithms, named – in PD terms – “patches”. PD also allows to explore 
meta-programming; which implies that the patch algorithmic structure can manipulate 
and create parts of itself, as well as other patches, which means that, it is possible to 
develop a patch that is adaptive and even evolutionary; that can reproduce other 
patches. The Reproduction process uses some of these strategies to simulate the 
dynamic creation of new individuals in the Population set; and in the individual 
lifespan inner process – to eliminate individuals and their genotypes from the genetic 
pool, when they reached their life expectation period, and die.  

Figure 2 shows two structures programmed in PD, used in this implementation, 
depicted here to illustrate these algorithms. PD is a “data-flow”, or “visual” language. 
Patches are programmed using building blocks, called “objects”, interconnected so to 
describe the programming flow of events. PD was specifically developed for real-time 
processing. As such, it is possible to create structures in PD that are non-deterministic; 
allowing situations where two runs of the same patch, each time having the same 
inputs, may not have same results. This is interesting where simulating dynamic 
complex systems, such as the evolutionary algorithm for sound synthesis of ESSynth.  

VR had four pipes pathways with fans attached at their ends. Initially, each 
pathway had inside one piezoelectric sensor to capture vibrations and the air blowing 
sound. Each sensor was connected to an audio channel, which summed up to 4 audio 
inputs for the ESSynth. Later they were replaced by microphones. The audio retrieved 
by each channel was filtered into three frequency regions: Low, Middle and High (as 
seen in Figure 2, left); which summed up to 12 frequency regions, for the 4 audio 
channels. Low region is under 100Hz (given by a first-order low-pass filter); Middle 
region, around 1000Hz (band-pass with Q=3) and High region, above 4000Hz (first-
order high-pass). These 12 scalars referred to the 12 spectral regions of frequency, of 
the 4 input audio channels; captured by 4 microphones positioned inside the pipes. 
These data where inserted in the individuals sonic genotype, in the parameters arrays, 
denoted by the label “prmt-”, as seen in Figure 3.  

Each Individual was designed as an instantiation of a PD abstraction (a coadjutant 
patch that works as a sub-patch and appears in the main patch as an object). Each 
active individual generated a sound object, created by computing models of non-
linear sound syntheses. For this implementation, it was decided to use three models of 
sound synthesis: 1) Granular Synthesis (GS), 2) Karplus-Strong (KS), 3) Ring 
Modulation (RM). GS is a non-linear synthesis model that generates sound output 
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Fig. 2. Details of PD patches used in ESSynth. Part of the Selection process (left). Euclidean 
distance measurement of individuals genotypes (right).  

from the overlapped looping of small waveforms, of about 1 to 100 ms; known as 
sonic “grains” [16]. KS is a physical model for the sound synthesis of strings. It was 
later developed in the Digital Waveguide Synthesis model [18]. It is constituted by a 
short burst of sound (e.g. white-noise pulse), a digital filter, and a delay line. The 
sound is recursively filtered in a feedback looping, which creates a sound output 
similar to a percussed string [12]. RM model heterodynes (multiply in the time 
domain) two waveforms; normally an input audio signal by another one generated by 
an oscillator. It is equivalent to the convolution of these audio signals in the frequency 
domain. This implies that the output sound will have the sum and difference of the 
partials of each input sound, thus this method generates new (and normally 
inharmonic) partials, sometimes delivering a bell-like sound. 

The artists wanted the Soundscape to be generated by these synthesis models 
processing the audio from the commuting input of each one of the 4 audio channels. It 
was later decided to implement a logic to use the randomized commuting of one or 
more audio channels. When there was more than one input audio, they were mixed 
together, thus avoiding audio clipping. It may, at first, seems strange to use synthesis 
model to process sound input, instead of generating it. However, these 3 models are 
dependent of external audio data. GS uses sonic grains, which are provided by the 
segment of audio input. KS uses the same audio input to provide the pulse of audio 
for its feedback filtered looping. RM performs a frequency convolution with the audio 
input and a sine-wave. 

The amount of processing over the audio input, for each synthesis model, was 
determined by 3 arrays of 100 elements each. These ones determine the processing 
rate of each synth effect; its intervening on the audio input, during the Individual 
lifespan. For each effect, an array of 100 elements was assigned. They are labeled as 
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“intd-” which refer to the amount of each effect, along time. The elements of these 
arrays are normalized from [0,1]; 0 means no effect, and 1 means full effect. These 
arrays are part of the sonic genotype of each Individual, as seen in Figure 3.  

 

Fig. 3. Example of Sonic Genotype. It is formed by 6 arrays of 100 elements each. The arrays 
labels “intd-” refer to the synth effect along time. The arrays labeled “prmt-” refer to the synth 
parameters. Each synth effect has 2 arrays. Their labels are finished by the correspondent synth 
name: GS, KS and RM. 

As seen in Figure 3, there are also 3 other arrays on the sonic genotype. They are 
labeled as “prmt-”. These arrays refer to the parameters of each synthesis model. 
Although they are also arrays of 100 elements each, in this implementation, only the 
first 12 elements of each array were used. They are the control parameters related to 
the 12 frequency regions, as previously described. In future implementations, further 
parameters may turn to be necessary, therefore it seemed reasonable to leave these 
arrays with extra elements, even because it doesn't affect the computation required to 
run this system.  

4   Sonic Results, Sound Conclusions 

As any processual artwork, VR was, in several layers, a fleeting piece of art. Its 
structure was dismantled shortly after the exhibition was over. During its existence, 
the interactive parallel flow of sound objects, that constituted the soundscape, were 
constantly changing and vanishing. Each sound object, although perceptually similar, 
was never repeated. They were the product of an evolutionary process where 
individuals were coming into existence, reproducing and eventually dying, to never 
repeat themselves again, although passing to future generations their genetic legacy.  

The achieved sonic result of VR was a synthetic soundscape that seems to follow 
Schafer's formal definition of natural soundscapes, as previously described. When 
listening to recordings of this installation, such as the one in the video, whose link is 
referred in page 4, it is possible to perceive some of Schafer's categories of analytical 
auditory concepts. Figure 4 shows the waveform (bottom) and the correspondent 
spectrogram (top) of an excerpt of this audio recording. The spectrogram depicts the 
partials conveyed in this waveform. The horizontal coordinate is time. In the 
waveform, the vertical coordinate is intensity, and in the spectrogram, it is frequency, 
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where the colors changes refer to partials intensity (the darker the louder). Keynotes 
can be seen in this figure as formed by the structure of all darker horizontal lines, 
below 2KHz. They refer to the corresponding of a tonal center, normally associated to 
the cognitive sensation of resting. Each one of the horizontal lines refers to the 
concept of Signals. They have clear pitch, which are consciously perceived, and can 
be attributed to corresponding musical notes. Soundmarks are seen as the spread 
homogenous mass of partials, found along the spectrogram, which refers to the 
Soundscape identity.  

 

Fig. 4. Audio excerpt of a typical soundscape created by the system. The larger figure on top, 
shows its spectrogram. The narrow figure on the bottom is the waveform. Horizontal coordinate 
is time. 
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Abstract. Several approaches based on the ‘Markov chain model’ have been
proposed to tackle the composer identification task. In the paper at hand, we pro-
pose to capture phrasing structural information from inter onset and pitch in-
tervals of pairs of consecutive notes in a musical piece, by incorporating this
information into a weighted variation of a first order Markov chain model. Addi-
tionally, we propose an evolutionary procedure that automatically tunes the intro-
duced weights and exploits the full potential of the proposed model for tackling
the composer identification task between two composers. Initial experimental re-
sults on string quartets of Haydn, Mozart and Beethoven suggest that the pro-
posed model performs well and can provide insights on the inter onset and pitch
intervals on the considered musical collection.

1 Introduction

Various methods for computer aided musical analysis have been proposed, which focus
on two different classes of data extraction models. Namely, the global feature extrac-
tion models [10], which encapsulate global features of a musical piece in a single value,
and the event models which view the piece as a sequence of events that are described
by their own value [6]. Global feature models have been used for musical genre identi-
fication [10,13] as well as for style and composer recognition [8]. Event models, have
been utilized for chordal analysis [12], composer identification [4,5,7] and music com-
position [11] among others.

The composer identification task has been tackled through various event models,
with the most successful approaches being with n-grams or (n − 1)-th order Markov
chain models [5,6,19]. These models utilize the Markov assumption that only the prior
local context, i.e. some last few notes, may affect the next notes. A simple first order
Markov chain model for composer identification has been recently proposed in [9].
This model provides information only for the sequence of scale degrees that form the
melody, without incorporating any insights about their position in a phrase.

In the paper at hand, we propose to capture phrasing structural information from
inter onset and pitch intervals of pairs of consecutive notes, and incorporate that in-
formation into the simple Markov chain model. To this end, assumptions can be made
about which pairs of consecutive notes are of more or less musical importance. The
proposed model is a weighted variant of the first order Markov chain model, namely
the Weighted Markov Chain (WMC) model. Additionally, we propose an evolutionary
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procedure to automatically tune the two introduced parameters of the WMC model and
consequently exploit its full potential for tackling the composer identification task be-
tween two composers. The performance of the proposed approach has been evaluated
on string quartets of Haydn, Mozart and Beethoven with promising results.

The rest of the paper is organized as follows: Section 2 briefly describes how mono-
phonic melodies can be expressed as Markov chains and how did that motivate us to pro-
pose the weighted variation of the Markov chain model, which is extensively described
in Section 3. In Section 4, an automatic procedure for the application of the weighted
Markov chain model on the musical composer identification task is presented. Section 5
presents experimental results of the proposed approach on a musical collection of string
quartets of Haydn, Mozart and Beethoven. The paper concludes in Section 6 with a dis-
cussion and some pointers for future work.

2 Monophonic Melodies as Markov Chains

Monophonic melodies can be easily represented through a discrete Markov Chain (MC)
model. A discrete MC is a random process that describes a sequence of events from a set
of finite possible states, where each event depends only on previous events. Thus, each
monophonic melody, as a sequence of discrete musical events (the scale degrees), can
be formulated as a discrete MC model. Each MC is characterized by a transition proba-
bility matrix that represents the probability of transition from one state to an other. The
aforementioned representation has been proposed in [9] to tackle a two way composer
identification task between the string quartets of Haydn and Mozart.

To formulate each monophonic melody, and proceed with the construction of the
probability transition matrix, we have to assume that any single note in the melody
depends only on its previous note. This assumption has nothing to do with over-simplifi-
cation of a musical composition, it is just a statistical compliance that lets us consider
each monophonic melody as a first order MC. It is evident that, if one would like to
utilize more information in each transition probability, a higher order MC should be
incorporated [19], i.e. if each note is assumed to depend on its past two notes, we should
incorporate a second order Markov chain.

Markov chain model intends to capture a composer’s preferences on creating har-
monic structures independently of the key signature of the piece, e.g. the V → I ca-
dences. In [9], Markov chain models are built up for scale degree transitions in one
octave, thus all musical pieces were transposed in the same key. To this end, a transition
matrix of a musical piece M can be formally described by a square matrix TM , where
each pair (row, column) represents one possible state. Each element TM (i, j) of the
transition matrix, describes the probability that scale degree class i is followed by scale
degree class j.

Motivation: The Markov chain model as used so far, provides information only for the
sequence of scale degrees that form the melody, regardless of the phrasing structure they
are embodied. Two elements that could be possibly utilized to define phrasing structure
are the inter onset interval and the pitch interval of a pair of consecutive notes that
form each transition. The inter onset interval is the distance between two consecutive
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note start times, while pitch interval is the difference in semitones between two notes.
A statistical refinement of the aforementioned two elements in a monophonic melody
may lead to criteria about which transitions are of more or less musical importance.

For example, two consecutive notes with a great magnitude of their inter onset inter-
val, possibly belong to a different phrase, thus their transition should not be considered
of great importance. On the contrary, pairs of consecutive notes that are separated by
small inter onset intervals may not constitute vital elements of the phrase they belong
to, since they possibly form stylistic articulations. Similarly, a transition between notes
that share pitch distance of great magnitude, e.g. over one octave, possibly reveals that
these two notes belong to different phrases. The first one may belong to the end of the
current phrase, while the second one to the beginning of the next phrase.

On the contrary, pairs of consecutive notes in a musical piece whose inter onset inter-
val value is near to the mean value of all the inter onset intervals, probably constitute a
pair of notes that demonstrates greater phrasing coherence. Thereby, they contain more
information about the composer’s musical character. The same holds for pitch intervals.
It is evident that to capture the aforementioned characteristics, a weighting procedure
on the transitions should be incorporated. This procedure should take into account both
the inter onset and pitch interval of the notes.

3 Weighted Markov Chain Model

Motivated by the aforementioned comments, we try to capture qualitative statistical
characteristics of musical nature and construct an enhanced transition probability ma-
trix for each monophonic voice. The new transition probability matrix is constructed
in a similar manner as the Markov chain model, with the difference that transitions are
biased according to some musical criteria, that we will briefly discuss bellow. A general
rule that can be deducted by the comments on Section 2, is that pairs of more distant
time and pitch events provide less information than less distant ones. Thus an obvious
question to face is: In which way that distance affects musical information? For exam-
ple, do more distant notes contain linearly or exponentially less information than less
distant ones?

An answer to the above questions could be provided by studying the distributions of
the inter onset and pitch intervals of pairs of consecutive notes within a piece. Here, we
study string quartets from classical composers such as, Haydn, Mozart and Beethoven.
The string quartets of the classic music composers are perfectly suited for the com-
poser identification problem since each string quartet is composed in four monophonic
voices, where note transitions are clearly distinguished. A detailed description of the
utilized musical piece collection along with their characteristics will be explained in
the experimental results section (Section 5).

To this end, we have observed that all four voices from the string quartets of Haydn,
Mozart and Beethoven follow a Gaussian-like inter onset and pitch interval distribu-
tion. Thus, we take as a test case a randomly chosen musical piece of each composer, to
demonstrate the aforementioned behavior. Figure 1 illustrates normalized bar plots of
pitch and inter onset intervals of the first violin for a string quartet of Haydn, Mozart and
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Fig. 1. Demonstration of the pitch (left) and inter onset intervals (right) along with their fitted
Gaussian curves for the first violin of a musical piece of Haydn (top), Mozart (middle) and
Beethoven (bottom)

Beethoven. The bar plot distribution of both pitch and inter onset intervals, exhibit that
intervals follow a Gaussian-like distribution. This can be fairly justified by the Gaussian
curves that are properly adjusted to fit the distributions.

It has been observed that all pieces in the considered collection, in all four vio-
lins demonstrate the same behavior. This observation provides insights on our question
about how less important are more distant events. Since some intervals are preferred
over others, they should contain more musical information. It would be reasonable to
assume that pairs of consecutive notes that fall into an interval class that is more fre-
quently used, should be given a greater weight than others. In other words, it could be
assumed that there is a reciprocal relation on the usage frequency and the information
contained in any inter onset or pitch interval. It is expected that each piece contains
unique compositional information, thus different Gaussian distribution should be prop-
erly defined for the inter onset and pitch intervals of each piece.

Based on these observations it is rational to exploit the statistical characteristics of
each piece and define a weighted variant of the Markov Chain (MC) model, that ad-
justs the weight of each transition within a piece, namely, the Weighted Markov Chain
(WMC) model. More specifically, for a musical piece M we can define a Gaussian curve
for the pitch intervals, PitchM (x, y), and the inter onset, TimeM (x, y), as follows:

PitchM (x, y) = exp

((
p(x, y) − mp(M)

)2
2sp(M)2

)
, (1)

TimeM (x, y) = exp

((
t(x, y) − mt(M)

)2
2st(M)2

)
, (2)

where, x and y represent two consecutive notes of the current piece M that form a
transition, p(x, y) denotes the pitch interval, t(x, y) denotes the inter onset interval,
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mp(M) and mt(M) represent the mean values of all pitch and inter onset intervals
respectively on the entire musical piece at hand, while sp(M) and st(M) denote the
standard deviation values of all pitch and inter onset intervals respectively.

Equations (1) and (2) capture the probabilistic characteristics that we have formerly
discussed, and are capable to weight each transition TransM (x, y) from note x to note
y, as the product of the multiplication of the inter onset and pitch intervals distribution
values. More formally, TransM (x, y) = TimeM (x, y) PitchM (x, y). It is evident that,
the distributions are different from piece to piece, since every piece has unique mt(M),
sp(M) and st(M) values. To keep the identical pitch transition PitchM (x, x) to a max-
imum weighted value 1, we consider from now on mp(M) = 0 for all musical pieces.
In Equation (1) a transition from pitch x to pitch x has a value p(x, x) = 0, to ensure
that PitchM (x, x) = 1, we should set mp(M) = 0 for every musical piece. One can
observe that some values of the distributions vanish to zero, even in cases where exist
some transitions worth mentioning. For example, on the bottom left plot of Fig. 1, we
observe that transitions with pitch interval value p(x, y) = 12, exhibit a high value bar
plot and should not be ignored. Although the value of the fitted Gaussian curve tends to
vanish that transition.

To overcome the aforementioned problem, we introduce two parameters, r1 and r2,
to properly adjust the stiffness of the Gaussian-like curves, described by Eqs. (1)-(2).
The adjusted distribution values can be defined according to the following equations:

Pitchr1
M (x, y) = exp

(
r1

(
p(x, y) − mp(M)

)2
2sp(M)2

)
, (3)

Timer2
M (x, y) = exp

(
r2

(
t(x, y) − mt(M)

)2
2st(M)2

)
, (4)

where r1, r2 � 0. In the extreme case where r1 = r2 = 0 all transitions will have
the same weight value, equal to 1, which is the simple Markov chain model. In cases
where both parameters are r1, r2 > 1 the fitted distribution exhibits a tight “bell”-shape
around the mean value, while in the opposite case a less tight one.

To demonstrate this behavior, we exhibit in Fig. 2 the effect of the r1 and r2 vari-
ables on pitch and inter onset interval curves, for three different values (0.1, 1, and 10
respectively). Finally, we define and use from now on, as weight of the transition from
note x to note y the product of the aforementioned Eqs. (3)-(4).

Trans(r1,r2)(x, y) = Pitchr1
M (x, y)Timer2

M (x, y). (5)

The construction of the new transition matrix follows the same procedure as in the
Markov model, with the only exception that not all transitions are equally weighted, but
given a set of r1, r2 parameters, the (x, y) element of the matrix will be weighted by
Eq. (5).

4 Weighted Markov Chain Model for Composer Identification

In this section, we incorporate the Weighted Markov Chain (WMC) model into a gen-
eral procedure to effectively tackle the musical composer identification task between
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Fig. 2. Adjusted Gaussian curves over the pitch intervals distribution (top three), with r1 = 0.1,
r1 = 1 and r1 = 10 respectively, and over the inter onset intervals distributions (bottom three),
with r2 = 0.1, r2 = 1 and r2 = 10 respectively

two composers. The WMC model is a properly defined model for the representation of
a musical piece, since it captures some essential characteristics for both pitch and inter
onset intervals. The WMC model utilizes two parameters for adjusting the Gaussian
curves that estimate the distributions of pitch and inter onset intervals of a given piece.
These parameters should be automatically tuned to properly capture the characteristics
of the composer style. Thereby, we propose the incorporation of any intelligent opti-
mization algorithm to efficiently tune WMC model parameters and consequently tackle
the musical composer identification task by maximizing the classification performance,
i.e. the identification accuracy, of the proposed methodology.

Suppose that we have a collection of monophonic melodies of musical pieces com-
posed by two composers. In order to achieve maximum composer identification accu-
racy with the WMC model, we perform the following five steps:

1. Provide an intelligent optimization algorithm to properly adjust r1 and r2 parame-
ters.

2. Given r1 and r2 values, transform the monophonic melody of each piece in the
collection into a weighted transition probability matrices through the WMC model.

3. Classify the weighted transition probability matrices by performing a leave one out
classification task, using any supervised classifier.

4. Calculate the success percentage of the classification task and use it as a fitness
value of the optimization algorithm for the r1 and r2 parameters.

5. Repeat the above procedure until either a termination criterion is reached or the
r1 and r2 values produce the best composer identification accuracy for the utilized
classifier.

More specifically, in this work, we propose to utilize as a supervised classifier, the well
known Support Vector Machine (SVM) classifier [3,16], which has been successfully
applied to a wide range of difficult classification problems [16]. SVM is a supervised
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binary classifier which is trained with a set of paradigms. It classifies a paradigm to
one of the two categories by representing it as a point in the classification space. It is
mapped in a way that all paradigms of the two categories can be separated by a clear
gap which is as wide as possible. When a new paradigm is presented, SVM classifies it
based on which side of the aforementioned gap, i.e. respective class, will fall into.

Additionally, to optimize the r1 and r2 parameters, we employ a global optimiza-
tion algorithm that can handle nonlinear, (possibly) non-differentiable, multi-modal
functions, namely the Differential Evolution (DE) [15,17]. DE is a population-based
stochastic algorithm, which utilizes concepts borrowed from the broad class of the
Evolutionary Algorithms. It exploits a population of potential solutions to effectively
explore the search space and evolve them by simulating some basic operations involved
in the evolution of genetic material of organism populations, such as natural selection,
crossover and mutation. A thorough description of DE can be found in [15,17].

5 Experimental Results and Concluding Remarks

In this section, we perform an experimental evaluation of the proposed methodology
over a musical piece collection formed by string quartet movements of Haydn, Mozart
and Beethoven. The compilation contains 150 movements of string quartets in MIDI
format from collections [2,14], 50 pieces for each composer. All movements were com-
posed in a major scale and transposed in the key of C major.

It has to be noticed that, string quartets have a strictly specified structure, which makes
them a difficult musical collection for composer identification. Every string quartet is
composed in four voices, each of which play a certain role in the composition. The voice
of the higher pitch register plays the leading voice role, the others form the harmony
and the lower voice also forms almost always the bass line. The four voices are almost
always monophonic and can be easily separated in four different monophonic tracks.
When polyphony occurs, the skyline algorithm is performed to keep only the higher
note of the polyphonic cluster [18]. For the rest of the paper, we refer to the highest
voice, as the first voice, the next lower as second and similarly for the third and fourth.

More technically, in this work we utilize for the optimization task the DE/rand/1/bin
strategy, with a population of 20 individuals, and default values for the parameters as
stated in [17] i.e. F = 0.5, CR = 0.9. The number of maximum generations is kept
fixed and equal to 200. Additionally, we utilize as a classification method the SVM
with default parameters as stated in the libSVM library [1]. It has to be noted that the
transition matrix of each voice is reshaped into a normalized vector to meet the SVM
formality. For each of the 150 movements, we have four separate monophonic voices.
Thus, we can split the experimental procedure and perform four different simulations
to study and observe the composers unique compositional style of every voice.

Table 1 exhibits experimental results of the Markov Chain (MC) model and the
Weighted Markov Chain (WMC) model for all four voices of three different composer
identification tasks, namely Haydn–Mozart, Beethoven–Haydn and Mozart–Beethoven.
The following notation is used in Table 1: Voice indicates which voice we refer to;
MC–success performance indicates the classification success performance of the simple
Markov Chain model; similarly WMC–success performance indicates the mean value of
the classification success performance over 30 independent simulations produced by the
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Table 1. Experimental results for the simple Markov Chain (MC) model, the Weighted Markov
Chain (WMC) model and the corresponding r1 and r2 mean values

Haydn – Mozart
Voice MC WMC Improvement r1 r2

Success Performance Success Performance
First 63% 65% 2% 0.6760 15.1925

Second 53% 70% 17% 0.8025 5.7154
Third 57% 67% 10% 2.7398 18.1810
Fourth 55% 63% 8% 3.0347 9.9962

Beethoven – Haydn
Voice MC WMC Improvement r1 r2

Success Performance Success Performance
First 66% 88% 22% 3.1389 0.1204

Second 71% 75% 4% 1.3641 0.8872
Third 61% 59% -2% 3.5439 2.3682
Fourth 64% 78% 14% 0.0071 8.9264

Mozart – Beethoven
Voice MC WMC Improvement r1 r2

Success Performance Success Performance
First 82% 87% 5% 6.5461 0.9697

Second 68% 74% 6% 3.9459 0.4409
Third 67% 71% 4% 0.1840 2.9747
Fourth 70% 77% 7% 0.7016 5.1395

weighted Markov chain model; Improvement, denotes the improvement percentage of
the WMC versus the simple MC model. Finally, for the aforementioned WMC–success
performance results, we exhibit the mean best values of the r1 and r2 parameters.

A first comment is that, in the majority of the considered cases, the WMC model
improves the simple MC model, even by a small amount. In the third voice of the
Beethoven–Haydn identification task, DE has been trapped in a local maximum, since
when r1 = r2 = 0 the identification success would be the same as the simple MC
model. The WMC model exhibits a good overall improvement in the Beethoven–Haydn
and Haydn–Mozart tasks. In the data sets of Mozart–Beethoven and Beethoven–Haydn,
we observe that in the first two voices r2 < 1, while r1 > 1. The opposite happens for
the third and the fourth voice, with exception of the r1 factor in the third voice of the
Beethoven–Haydn set. This might indicate that Beethoven’s aspect for the operation of
the four voices in the string quartets, is different compared to Haydn’s and Mozart’s.
Thereby, Beethoven seems to utilize smaller pitch intervals within phrases for the first
two voices, and smaller inter onset internals within phrases for the third and the fourth
voice.

Next we proceed with some comments of musical nature that we can make about
the Haydn–Mozart pair which is one of the most difficult identification task considered
in this work. In this task, we observe that the smallest improvement was made for the
first voice. This could be due to the fact that the first voice already contains most of
the information, since it plays the role of the leading voice. It also explains the fact that
in this voice the simple Markov chain model produced its best success performance
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over the utilized collection. Additionally, the r1 values were kept at a low level near
to zero, which possibly means that distant pitch intervals contain considerable informa-
tion. Musically, this signifies that notes with distant pitches may belong to same phrases.
A similar behavior also holds for the second voice. On the contrary, in the first voice,
values of the r2 parameter were kept in high levels, near 15, which possibly means
that distant time events are less important, resulting that distant time events are used as
phrase separators. A similar behavior can also be observed for the third voice. Finally,
the third and the fourth voices exhibit best results for high values of the r1 parameter.
Thus, it could be said that different use of closely neighboring pitches is unique for the
string quartets of Haydn and Mozart.

Similar comments can be made for the remaining identification tasks, by analyzing
pairs of the r1 and r2 parameter values of different voices. A further analysis should
be made by musicologists, who could extract refined information by the aforemen-
tioned comments, in the considered musical collection. To collect more musical struc-
tural meanings, we can enhance the proposed model by incorporating more variables
that could probably capture additional characteristics of the musical collection.

6 Conclusions

In this work, a weighted version of the simple Markov chain model for the representa-
tion of a monophonic musical piece, which includes further information about its pitch
and inter onset intervals has been proposed. Furthermore, to tackle the composer iden-
tification task an automatic procedure based on an evolutionary algorithm for tuning
the parameters of proposed model has been presented. Initial experimental results sug-
gest that it is a promising model. The proposed model has two main aspects. Firstly, as
the results suggest, the weighted Markov chain model performs better than the simple
Markov chain model and in some cases exhibit high classification performance. Sec-
ondly, the incorporation of the proposed weighted Markov chain model representation
can provide insights about the behavior and the characteristics of the pitch and inter on-
set intervals on each monophonic voice in a given musical collection. Thereby, models
like the proposed one, in accordance with the essential opinion of a musicologist, could
lead to significant insights for identification of classical composers.

Several interesting aspects should be considered in a future work. The proposed ap-
proach should be further studied in a bigger collection with either string quartets or
pieces that share similar voice structures. The combination of all four voices into a
single transition matrix may further enhance the performance and the musical quality
of the proposed approach. Additionally, the proposed approach could be also tested
for sub-genre classification, since the compositions within a genre, often utilize certain
combinations of musical instruments and very similar voice structures. Furthermore,
genre classification could be performed, with a proper matching of the roles of mono-
phonic voices between different genres.
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Hernán Kerlleñevich, Pablo Ernesto Riera, and Manuel Camilo Eguia
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Abstract. In this work we present a novel approach for interactive mu-
sic generation based on the dynamics of biological neural networks. We
develop SANTIAGO, a real-time environment built in Pd-Gem, which
allows to assemble networks of realistic neuron models and map the ac-
tivity of individual neurons to sound events (notes) and to modulations
of the sound event parameters (duration, pitch, intensity, spectral con-
tent). The rich behavior exhibited by this type of networks gives rise to
complex rhythmic patterns, melodies and textures that are neither too
random nor too uniform, and that can be modified by the user in an
interactive way.

Keywords: generative music, biological neural networks, real-time pro-
cessing.

1 Introduction

Complex systems offer an outstanding opportunity to work in generative music.
One important message that came out from the study of complex systems is that
very simple rules can lead to complex behavior, starting both from an ordered
or from a completely disordered state. In this way, complex systems emerge as
a new state that supersedes the dichotomy between order and disorder, being
regular and predictable in the short term but unpredictable in the long run [6].

It is interesting to trace an analogy with what happens in generative music,
where the key element is the system to which the artist cedes partial or total
subsequent control [5]. Incorporating complex systems into generative music po-
tentially allows the emergence of a variety of stable and unstable time structures,
that can create expectancies in the listener and also deceive them, in a similar
way to what happens with tension-distension curves in composed music [8].

Among complex systems, biological neural networks are probably the ones
that exhibit the most rich behavior. In fact, the brain is the most complex de-
vice that we can think of. In its simplest realization a neural network consists
of units (neurons) connected by unidirectional links (synapses). The units are
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characterized by its (voltage) level that can be continuous or discrete. We distin-
guish between artificial neural networks, where units are highly simplified models
and the complexity resides in the network, and biological (or biophysical) neural
networks where the model neuron is fitted to adjust the records obtained in real
biological neurons and has a rich intrinsic dynamics.

There are some previous works that incorporate the behavior of neural net-
works into rules for generative music [3]. The most disseminated tool has been
artificial neural networks, that have been applied to music in many ways, rang-
ing from pitch detection [17], musical style analysis [16] and melody training
[4] to composition purposes [14]. Most of these works were based on the idea
that complex behavior emerges from the network only, disregarding the intrinsic
dynamics of each neuron unit. In fact, in artificial neural networks the units are
modeled with a single continuous or two-state variable.

However recent studies on the behavior of neural networks have shown that
the intrinsic dynamics of the neurons plays a major role in the overall behavior of
the system [11] and the connectivity of the network [2]. In this work we take into
account the complexity emerging from the intrinsic dynamics of the units and
from the connectivity of network as well. In order to do this, we adopt biologically
inspired models for the neurons, that produce spikes, which are considered the
unit of information in the neural systems. In simple terms, a spike is a short-
lasting event in which the voltage of the neuron rapidly rises and falls. A review
of some biological neuron models can be found in [10].

Also, previous works treated the networks as input/output systems, biased
with the task-oriented view of artificial neural networks. In contrast, our work
includes all the events (spikes) from the network as relevant information, as small
neuron networks are supposed to do. Among the many realizations of small neu-
ral networks in the animal realm, we take those that are able to generate rhyth-
mic behavior, with central pattern generators (CPGs) as a prominent example.
CPGs are small but highly sophisticated neural networks virtually present in
any animal endowed with a neural system, and are responsible for generating
rhythmic behavior in locomotion, synchronized movement of limbs, breathing,
peristaltic movements in the digestive tract, among others functions [7]. In this
CPG view, the individual spikes can be assigned to events in our musical gener-
ative environment (such as notes) that can lead to complex rhythmic behavior.

In addition to rhythm generation, spike events can trigger complex responses
in neural systems [13], and modulate dynamical behavior. In this spirit, we also
use biological neural networks to modify the pitch, spectral content, duration
and intensity of the generated events.

Finally, we adopt excitatory-inhibitory (EI) networks as the paradigmatic
network. EI networks arise in many regions throughout the brain and display
the most complex behavior. Neurons can be either excitatory or inhibitory. When
a spike is produced in an excitatory (inhibitory) neuron, this facilitates (inhibits)
the production of spikes in the neurons that recieve the signal of that neuron
through a synapse.
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The realization of the ideas expressed above is SANTIAGO, a real-time bio-
logical neural network environment for interactive music generation. It is named
after Santiago Ramón y Cajal (1852-1934) the spanish Nobel laureate, histologist
and physiologist, considered by many to be the father of modern neuroscience.

The article is organized as follows. In section 2 we expose the concept and
design of SANTIAGO. In section 3 we show some results. In section 4 we present
our conclusions.

2 SANTIAGO Description

2.1 Overview

Starting with a simple yet biologically relevant spiking neuron model, our en-
vironment allows to build up neural networks that generates a musical stream,
creating events and controlling the different parameters of the stream via the
action of individual spikes or some time average of them (firing rate).

SANTIAGO is designed with a highly flexible and modular structure. It is
possible to build small networks that only create rhythmic patterns, where each
neuron generates events (spikes) of a certain pitch, intensity and timbre (see
the example in Section 3), and progressively add more neurons or other small
networks that control the pitch, intensity or spectral content of the events gener-
ated by the first network. Also, different temporal scales can be used in different
sub-networks, thus allowing the spike events to control from long term structures
to granular synthesis.

In fig. 1 we display a diagram of a very basic realization of our environment.
Excitatory neurons project excitatory synapses (black dots) to other neurons
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Fig. 1. Diagram of a simple realization of SANTIAGO. Five neurons are connected
forming a small EI network (left). Neuron 1 excites neuron 3, neuron 2 excites neuron
3 and 4, and neuron 4 inhibits neuron 5. Each synapse is characterized by its synaptic
weight W and time delay T . Instrument terminals N1-N5 map the output of each
neuron (dotted lines) to events or event parameters (right). The notes (events) of this
instrument will occur when N3 fires a spike, the pitch of the note will be determined
by the averaged firing rate (FR) of N4, the durations of the notes by the FR of N5,
and the intensity and the spectral content will be controlled by the FR of N2.
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and inhibitory neurons project inhibitory synapses (bars) to other neurons. Each
synapse is characterized by its weight W (how strong is its action) and some time
delay T , which in real synapses corresponds to the physical length of the link
(axon). The EI network will have a complex behavior as a result of the intrinsic
dynamics of the neurons, which depends on its internal parameters, and the
connectivity of the network (connectivity matrix). The user can control all these
parameters in real time in order to obtain a desired result or explore a wide
diversity of behaviors.

The outputs of this network are the spikes generated by all the neurons
(N1-N5). These events are injected into the Instrument which has the main
responsible to map the spike events to sound.

As we mentioned in the previous section, neurons of the network can act as
event generators or modulation signals. In the first case, every spike triggers an
event or note. In the second case an averaged quantity, the firing rate (number
of spikes in a fixed time window), is calculated and mapped to a certain sound
event parameter.

2.2 Implementation

SANTIAGO is basically built as a set of abstractions for Pd-Extended (version
0.41.1) [15]. It is completely modular and works under different platforms. It
also uses the Gem external for neural activity visualization[1].

The current version implements the neuronal model with the fexpr˜ object
[18], which permits access to individual signal samples, and by entering a differ-
ence equation as part of the creation argument of the object the output signal
gives the integrated dynamical system. The environment runs flawlessly with 10
neurons, using 60% of CPU load on a Intel Core2Duo 2.2 Ghz machine. In the
present we are implementing the model with external objects developed specially
for this application that will increase the number of possible units.

OSC communication has been implemented with mrpeach objects, enabling
live music creation across local networks and the internet. On the other hand,
the network capability can be used for parallel distributed computing, when the
number of neurons is high or the desired output demands too much load for a
single machine. For this purpose, when the main patch is loaded, the user can
establish a personal Machine ID number, which will be sent as a signature for
every message and event generated from that computer. Finally, all streamed
data is easily identifiable and capable of being routed and mapped dynamically.

In this version, the inputs of the environment are: keyboard, mouse and MIDI
controllers. The outputs include real-time MIDI controllers and OSC messages,
multichannel audio and visuals.

A single-neuron version of SANTIAGO (SOLO) was also created, for the user
to explore the possibilities of one neuron only, and its different firing modes.

2.3 Architecture

The implementation of SANTIAGO is still in development. Yet it is very func-
tional even for complex interactions. The environment is built upon a modular
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structure, which is described next. The core of the system consists of three main
structures: neurons, network and instruments. Each structure has a window,
accessible from the Main Panel.

Neurons. This structure allows the creation of neuron modules, which con-
stitute the minimal units of the system. The implemented neuron model was
originally proposed by Izhikevich[9], as a canonical model capable of display a
large variety of behaviors. It is described by a system of two differential equations
(Eqs. 1a and 1b) and one resetting rule (Eq 1c)

dv

dt
= 0.04v2 + 5v + 140 − u + I(t) (1a)

du

dt
= a(bv − u) (1b)

ifv ≥ 30 mV, then

{
v ←− c

u ←− u + d
(1c)

The dynamical variables correspond to the voltage membrane of the neuron v
and a recovery variable u. There are four dimensionless parameters (a, b, c, d)
and an input current I(t). The spike mechanism works by resetting variables
v and u when the voltage reaches some fixed value. Figure 2 shows the neuron
spikes in the v variable and the phase portrait of the two dynamical variables.
The second plot also presents the nullclines of the system, i. e. the curves where
only one of the differential equations is equal to zero.

The current I(t) includes all the synaptic currents. The neuron may receive
synaptic inputs from other neurons. When one of these neuron fires a spike,
after some time delay T , a post-synaptic current pulse is added to I(t): for an
excitatory (inhibitory) synapse a step increase (decrease) of size W is followed
by an exponential decay towards the previous current value with a time constant
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Fig. 2. Neuron membrane voltage trace v (left) and phase portrait u, v (right). The
dashed lines represent the nullclines of the dynamical system and the full line is the
periodic spiking orbit showing a limit cycle.
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Fig. 3. Neuron Module. The numbers in the left indicate MachineID and Instrument
number respectively. There are two sub-modules: local input current and neuron pa-
rameters with a preset manager.

ts (which is also an adjustable parameter). In addition to the synaptic currents,
I(t) includes other currents that can be controlled by the user: a DC current, a
zero-average noisy current, and excitatory or inhibitory pulses.

This model has the advantage of being both computationally cheap and versa-
tile. With simple adjustment of its parameters, it can reproduces several known
neuronal spiking patterns such as bursting, chattering, or regular spiking. For a
complete description of the possible behaviors see [10].

The user can generate any number of neuron modules (figure 3), only limited
by CPU capability. Each module has local input currents, and can also be af-
fected by a global current and noise level sent from the main panel. The user can
choose between six presets of firing modes or manually set the model parame-
ters. Every neuron module has a particular integration time, allowing different
tempos for equal firing modes and parameter settings. There is also a presets
manager for saving and loading stored combinations of parameters.

Network. This structure allows designing and configuring the network by se-
lecting synaptic coupling between neurons, and the delays. In the left column the
user can select the neuron type, switching between excitatory (E) and inhibitory
(I) post-synaptic pulses. The central module of this structure is the connectivity
matrix (figure 4). Delays are set in the dark gray number boxes and synaptic
weight have color depending on the E/I status, so at a glance is easy to grasp the
network status. A synaptic weight equal to zero means that there is no synaptic
connection. There is number box (flat) for setting the same synaptic weights for
all the connections, and also a random set up generator.

Instruments. In this structure the user can map the neural activity to sound
event generation and sound event parameters. Each instrument has basic pa-
rameters the user may expect to control. In the example shown in figure 5, In-
strument 1 of Machine (ID) 1 has four sub-modules mapping: rhythm, duration,
pitch and intensity. Every one of this has a Machine ID number and a Neuron
number from which spikes and firing rates will be mapped. Both variables are
by default initialized with the same Machine ID and Instrument number. (A
spatialization sub-module (not shown) allows the instrument to control the dis-
tribution of events in a multichannel system.) The initial setup this instrument
module works with a basic synth oscillator or sends MIDI messages.

When the parameters are switched to manual (M) the user can fix the sound
event parameters to any desired value. When switched to automatic (A), it maps
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Fig. 4. Network connectivity matrix. This structure allows designing the network by
selecting synaptic gains (blue and red) and delays (dark gray) between neurons. In the
left column the user switches between excitatory and inhibitory postsynaptic pulse for
every neuron.

the firing rate of the input neuron to a modulation of the corresponding sound
event parameter. In the pitch case, the firing rate value is used for frequency
modulation, with a movable offset and configurable depth. Intensity varies be-
tween 0 and 1 for each instrument, and the overall volume is set from the main
panel.

Santiago has currently two visualization panels where network activity is de-
picted in real-time: spike view and event view. In spike view all the individual
traces of v are plotted in rows. The event view shows vertical lines in rows (one
for each neuron), corresponding to spikes, discarding sub-threshold activity.

Fig. 5. Instrument module. There are four sub-modules that map rhythm, duration,
pitch and intensity from neurons.

3 Network Activity

There are several ways to set up a network, depending on the desired goal. One
possible way is to build simple feed-forward circuits that perform basic logic
operations, such as coincidence detection (integrator neuron) or filtering inter-
vals (resonator neuron). Other ways are to use mutual inhibition or excitation,
or closed loops in order to achieve collective oscillations, like in CPG networks or
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Fig. 6. Spike view of the network displayed in figure 1. Neurons 1 and 2 are Regular
Spiking (RS) neurons, and both excite neuron 3, also RS. When their spikes are close
enough in time, they make neuron 3 spike, acting as a coincidence detector. Neuron 4
is a Low Threshold neuron excited by neuron 2 and spikes every time neuron 2 does.
At the same time, it inhibits 5 which has a chattering behavior.

1 12

2

3 3

A B

Fig. 7. Network diagram (A), and spike view (B) of a fully connected inhibition network
working as a CPG. Notice the rhythm and periodicity of the pattern.

coupled oscillators. Here we present three different examples: a simple network
with a coincidence detector, an elementary CPG and a small network more
oriented to obtain musical output.

As our basic example we used the same network displayed in figure 1. In this
circuit, neuron 3 detects concurrent spikes from 1 and 2. Neuron 4 acts as an
inhibitory inter-neuron for neuron 2 and inhibits the repetitive bursting pattern
from neuron 5. The outcome of this network is the repetitive pattern displayed
in figure 6).The length of the cycle varies depending on the parameters used.

We also tested whether our environment could reproduce some elementary
CPGs, such as the inhibition network studied in [12]. SANTIAGO was able
to reproduce the characteristic sustained oscillations patterns of the model. In
figure 7 we show the burst of three chattering neurons with mutual inhibition.
This example is particularly interesting to use with a spatialization module,
because we can have travelling patterns in space.

In our last example, we designed a network intended to depict a complex be-
havior in the sense mentioned in the introduction. Further, we were interested
in obtaining, as an output of a single instrument associated to that network, a
simple musical phrase with melodic and dynamic plasticity. For this purpose, we
devised a small, but densely connected network of three chattering inhibitory
neurons and two excitatory neurons (one chattering and one regular spiking)
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Fig. 8. An example of a musical score generated by a five-neuron network. Piano roll
(A) and note velocity (B) show data received through a virtual MIDI port into an
external sequencer. Event view (C) of the five-neuron network. Events from neuron 5
were selected to trigger the notes. The duration, intensity and pitch were modulated
with the firing rate of neurons 1, 2 and 3 respectively. The delayed firing rates are
plotted as thin lines in the corresponding row.

which produced a nearly recurring temporal pattern that shows up with slight
variations on each cycle, as displayed in figure 8. The notes were triggered by
neuron 5. The length of the notes was controlled by the firing rate of neuron 1,
the intensity with the firing rate of neuron 2 and the pitch with neuron 4. The
firing rate is computed with a time window of two seconds, inserting a delay
between the events onset time and the corresponding firing rate computation.

4 Conclusions

We presented a real-time environment for generative music creation, based on
the intrinsic dynamics of biological neural networks. From this perspective, sev-
eral mapping strategies were presented towards a composition-performance tech-
nique. SANTIAGO is a system that allows the user to compose and perform
music in which every sound event and parameter may interact with the others.
The presence of an event may alter the whole network and a change in a bigger
scale may be reflected in a micro level too. This brings together the essence of
complex systems and music performance. We can think of small musical elements
with simple rules which scale to another level when they interact. For more refer-
ences, project updates, and audible examples go to http://lapso.org/santiago

http://lapso.org/santiago
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Abstract. We introduce a method of generating grain parameters of a granular 
synthesiser in real-time by using a network of artificial spiking neurons, the 
behaviour of which is determined by user-control of a small number of network 
parameters; ‘Neurogranular synthesis’. The artificial network can exhibit a wide 
variety of behaviour from loosely correlated to highly synchronised, which can 
produce interesting sonic results, particularly with regard to rhythmic textures.  

Keywords: Spiking neurons, granular synthesis, interactive musical control 
systems. 

1   Introduction 

A recent development in the field of autonomous interactive musical control systems 
[13], which has received a great deal of attention [3] [6] [15], utilises the adaptive 
nature of an artificial recurrent network of nonlinear spiking neurons [14]. Several 
methodologies have been developed in which sonic events are triggered by neuronal 
firing in a network of nonlinear Integrate-and-Fire (IF) neurons which have been 
applied in various artistic contexts [5][12]. These firing events are attractive from a 
musical point of view for several reasons; the collective temporal dynamics of firing 
occur within a natural temporal scale for musical phrases, they have the potential to 
be controlled by external stimulation by a musician and can adapt and change 
according to relationships between external stimulation, internal ‘noisy’ currents and 
plasticity within the network of neurons.  

In this paper, we focus on the neuronal control of a granular synthesis engine, in 
which grains of synthesised sound are triggered by neuronal firing events in a simple 
spiking network model [8]. We will introduce granular synthesis, develop a rationale 
for the control of a granular synthesis engine using artificial neural networks and 
introduce a prototypical model, which we intend to develop in further work. 

2   Granular Synthesis 

Granular synthesis is a method for generating sound using a series of audio ‘grains’, 
typically of a few tens of milliseconds in duration [17]. Each grain is usually an 
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envelope-modulated waveform (as shown in fig. 1) and the grain duration, envelope 
function, amplitude, pan, waveform, frequency, etc. must be specified as control data. 
The grains may be temporally isolated or may overlap. The grain envelope removes 
clicks and glitches caused by discontinuities in the audio waveforms produced at the 
grain boundaries. The form of this grain envelope has a considerable effect upon the 
character of the resultant sound comprised of sequences or clouds of multiple grains. 

 

Fig. 1. A ‘grain’ is an envelope-modulated tone or ‘chirp’, typically a few tens of milliseconds 
in duration 

All of the parameters mentioned above constitute control data, which influence the 
perceived sound. Since each grain can have a dozen or more parameters associated 
with it and since grain durations can be as little as 10ms, the necessary control data 
rate to realise granular synthesis is quite large. It is not possible for a human operator 
to produce this amount of control data in real-time, so it must be generated, either by 
some sort of deterministic algorithm (set of instructions/equations) or a non-
deterministic stochastic process.  

Most current granular synthesis employs stochastic processes to generate grain 
control data [17]. However, granular synthesis with stochastically generated grain 
parameters will necessarily tend to produce ‘noisy’ synthesis and greatly limit the 
controllability of any system generating control information in this manner. A grain 
control generation system producing output data, which is, to some degree, correlated 
with previous data, is likely to produce more interesting and flexible results, 
particularly in terms of temporal information. To move forward with granular 
synthesis, novel methods of generating real-time grain control data are likely to prove 
fruitful. 

3   Research Background 

One of the main driving forces behind this work is that the level of synchronisation in 
nonlinear distributed systems is controlled by the strength of individual interactions. 
A desirable temporal output for granular synthesis in music would be a controllable 
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signal, which lies at the border between randomness and synchrony. Two-dimensional 
reduced spiking neuronal models (reduced from the four-dimensional Hodgkin-
Huxley model [7]) have been shown recently to self-organise at this boundary [11]. 
Recent artistic projects, The Fragmented Orchestra [5] and the Neurogranular 
Sampler [5][14] focused on the two-dimensional Izhikevich spiking network model 
[8] and trigger sound samples upon neuronal firing. In this work, we introduce a 
Neurogranular Synthesiser, which triggers the synthesised grains upon neuronal firing 
within the simple Izhikevich network.  

3.1   Why Izhikevich Spiking Neurons?  

Any one of a number of types of artificial neural network are possible candidates for 
real-time control of a granular synthesiser, such as McCulloch-Pitts, Hopfield or 
back-propagation networks, self-organising maps, Multi-Layer Perceptrons (MLP), 
Radial Basic Function (RBF) networks and, indeed, other spiking neuron models, 
such as IF neurons. The Izhikevich neuron was chosen for the following reasons; 

1) behavioural richness; real neurons exhibit a diverse range of firing behaviour 
and the Izhikevich model’s biological plausibility provides a similarly rich 
behavioural palette to be mapped to grain parameters. 

2) dynamical richness; Spiking Neural Networks (SNNs) in particular manifest a 
rich dynamical behaviour. Transmission delays between neurons can give rise 
to separate functional groups of neurons (polychronisation) with the potential 
to be harnessed when mapping to grain parameters. 

3) spiking; certain useful behavioural features require spiking behaviour, e.g. 
Spike Timing-Dependent Plasticity (STDP), discussed below. 

4) computational efficiency; the Izhikevich model was considered an excellent 
trade-off between accuracy of biological triggering behaviour simulation and 
the amount of computer processing to implement it [9].  

5) We know from our own ‘experience’ that networks of real spiking neurons can 
produce a rich and adaptive behaviour. 

3.2   The Izhikevich Neuron Model  

The Izhikevich neuron model is defined by the following pair of first-order 
differential equations [8]; 

dv

dt
= 0.04v 2 + 5v +140 − u + i . (1)

du

dt
= a bv − u( ). (2)

and the reset condition when v ≥ +30mV; 

v← c

u← u + d

⎧ 
⎨ 
⎩ 

. (3)
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Fig. 2. Some Izhikevich behaviours produced by a single neuronet neuron. Top left to right 
bottom; tonic spiking (TS), tonic bursting, phasic bursting & TS firing freq. vs. input stimulus. 

The dependent variables are the recovery variable u and the cell membrane voltage 
v, respectively. The behaviour of an individual Izhikevich neuron is determined by 
the four neuron parameters (a, b, c and d) and the input stimulus, i. The mammalian 
cortex contains many different types of neuron whose spiking behaviour differs in 
response to an input stimulus. Appropriate selection of these four parameters models 
the full range of these behaviours, some of which are illustrated in fig. 2. 

3.3   Networks of Izhikevich Neurons  

The fact that the four Izhikevich neuron parameters in conjunction with the input 
stimulus can produce such a wide variety of spiking behaviour [8] and that spike and 
grain timescales are of the same order, makes the Izhikevich model appropriate for 
real-time control of a granular synthesiser.  

When artificial neurons are interconnected in a network, with each receiving inputs 
from many others, their collective behaviour becomes more complex and interesting. 
Connections to other neurons (or synapses) vary in strength and type. There are two 
types of synapses: excitatory, which increase membrane potential in response to a 
positive synaptic message and inhibitory, which decrease it. The ratio of excitatory to 
inhibitory neurons in a mammalian cortex is approximately 4:1. Synapses are 
simulated in the network of N neurons discussed below via an N×N synaptic 
connection weight (SCW) matrix S with elements si,j, such that firing of the jth neuron 
instantaneously changes the membrane voltage of the ith neuron vi by si,j, where; 
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si, j = Seci, j : 1≤ i, j ≤ N, Se = 0.5 . (4)

for excitatory neurons and 

si, j = Sici, j : 1 ≤ i, j ≤ N, Si = −1.0 . (5)

for inhibitory neurons. The parameters Se and Si are weighting factors for excitatory 
and inhibitory synapses respectively and ci,j are random variables such that; 

ci, j ~ U(0,1) (6)

For each neuron in the network, the SCW weights from all connected neurons which 
have fired at a given instant are summed and added to the input stimulus, i.e. at each 
instant of time t, the total input Ii (t) to the ith neuron in the network, 

Ii t( ) = ii t( )+ si, j
j = fired

N

∑ . (7)

where ii (t) is the input stimulus to the ith neuron at time t. 

3.4   Propagation Delays, STDP and Spike Coding Schema 

Electrochemical signals in biological neural networks are transmitted between 
neurons at speeds of the order of a few metres per second, giving rise to time 
differences between sent presynaptic and received postsynaptic signals. These 
propagation delays range from fractions of a millisecond to a few tens of milliseconds 
and are responsible for polychronisation [10]. The research presented here employs 
propagation delay as a prospective tool in mapping behavioural and dynamical 
features to grain parameters in a granular synthesiser.  

Research from a number of sources has shown that synaptic connection strengths 
are modulated by relative timing between pre-synaptic action potentials and post-
synaptic firing. Within a time difference of around 10-50 ms, long-term synaptic 
connection strengths are increased when pre-synaptic action potentials precede post-
synaptic firing and decreased when they follow post-synaptic firing [1]. Such a 
mechanism is termed Spike Timing-dependent Plasticity (STDP) and is a means of 
learning a response to a particular stimulus. STDP will be implemented in the final 
version of the neurogranular synthesiser described below. 

The method by which spike trains are translated into meaningful grain control 
parameters can greatly influence the resultant sound of a granular synthesiser driven 
by them. Possible spike-train coding schemas are as follows; 

1) temporal coding - a spike could simply trigger the production of a grain 
2) rate coding – the spike count per unit time could be used to generate 

parameter values; i) for a single neuron, or ii) for a group. 
3) spike coding – relative spike times of a group of neurons could be scaled to 

generate a grain parameter value, i) as time to first spike, or ii) phase relative 
to stimulus for a group. 

The efficacy of possible spike-coding schema in mapping spiking behaviour to grain 
parameters (in terms of timbral malleability) will be evaluated in future work. 
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4   Research Objectives 

The first neurogranular synthesiser was Neurosynth [16]; a real-time implementation 
of neurogranular synthesis using 5 networks of 10 identical Izhikevich neurons, each 
triggering a half sine-wave windowed sine oscillator, the frequency of which is 
determined via rate-coding. The 5 network output grain streams are summed to 
produce the final audio output. The four Izhikevich parameters for each network are 
available for user control, as are the grain amplitude, frequency, duration and density.  

The research will address the limitations of Neurosynth and extend the scope of 
neural network control and modularity of the neurogranular approach, allowing the 
user to configure parameters such as the following; 

• number of neurons in the network 
• mappings between oscillators and neurons 
• inhibitory neuron proportion/arrangement 
• network constitution from homogeneous (with identical neurons) to 

heterogeneous (with neurons of varied behaviour)  
• topology or interconnectivity of the neurons 
• propagation delays 
• Spike Timing Dependent Plasticity (STDP) 
• multiple oscillator waveforms 
• multiple grain envelope functions 

5   Building a Neurogranular Synthesiser 

The neurogranular synthesiser was coded in the C language as two interconnected 
real-time external objects for Cycling74’s™ MAX/MSP audio development 
environment using Cycling74’s™ Applications Programming Interface (API): the 
neural network neuronet and audio grain generator multigrain~. The neuronet SNN 
objects output passes scheduling and grain parameter data to multigrain~’s input. 

5.1   The Grain Generator Object  

The multigrain~ object accepts an argument specifying the required polyphony, P. 
Each GG produces a ‘chirp’ of specified waveform, frequency, amplitude, duration, 
pan and grain envelope shape when a properly formatted message is received at the 
input. At the time of writing, a basic one-to-one prototypical mapping of neurons to 
grains has been implemented. Currently, the grain oscillators have fixed frequencies 
derived from P equal subdivisions of a five-octave range and all other grain 
parameters are fixed. In future versions of the objects, much greater flexibility in the 
mapping from neurons to grains and codification of frequency and scheduling will be 
implemented. Each GG produces non-overlapping grains constituting ‘a grain 
stream’. All streams are mixed to produce the output audio. The following grain 
parameters are provided for each grain by the triggering input message; 

• waveform (sine, triangle, sawtooth, square or white noise) 
• frequency 
• grain amplitude (0.0 to 1.0) 
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• grain envelope (rectangular, triangular, trapezoidal, or Tukey) 
• grain envelope fade-in slope (trapezoidal and Tukey waveforms only) 
• grain duration (10-100ms) 
• pan left to right (-50 to +50) 

5.2   The Izhikevich Network Object  

The neuronet object simulates a real-time N-neuron network of Izhikevich artificial 
neurons, N being accepted as an argument. Neuronet outputs data to control the 
multinet~ grain generator and has four inputs for real-time control of the Izhikevich 
parameters a, b, c and d from which individual neuron parameters are derived. On 
instantiating a neuronet object of N neurons, the Izhikevich parameters are initially 
randomised to produce a spread of neuron behaviours. The network can be made 
homogeneous, with all neuron parameters being identical, or heterogeneous, with 
individual neuronal parameters for the Izhikevich model being statistically distributed 
around the four user-supplied average network parameter values (a, b, c and d). Any 
user adjustment of the Izhikevich parameter magnitudes (a, b, c and d) input to the 
neuronet object, moves the statistical centre of those parameters through the phase-
space for every neuron in the network, so modifying the spiking behaviour of the 
entire network.  

The leftmost input also accepts other real-time messages to configure network 
parameters such as propagation delay modelling, network topology, constitution 
(homogeneity or heterogeneity) and input stimulus, etc. On instantiation, a matrix of 
propagation delay times is calculated from each neuron in the network to every other 
neuron. At the time of writing, the synaptic connection strengths stored in the SCW 
matrix remain static after initial randomisation, but future versions will implement 
STDP by allowing the SCW matrix elements to be varied in real-time.  

6   Discussion 

The first implementations of granular synthesis were ‘offline’ systems which did not 
operate in real time. Pioneering work by Iannis Xenaxis combined music concrète 
approaches and Dennis Gabor’s ideas on audio quanta [4] to realise audio grains with 
many short sections of pre-recorded sound on magnetic tape. Curtis Roads and John 
Alexander’s Cloud Generator program [18] and Barry Truax’s GSX and GSAMX 
programs [19] were the first computer-based implementations of granular synthesis. 
Cloud Generator is an offline (non-real-time) system providing granular synthesis and 
sampling. All parameters are determined with either linear functions between user-
specified start and end points, statistical algorithms with user-specified maxima and 
minima, or random processes and the audio output is rendered as a sound file. Barry 
Truax’s GSX and GSAMX programs [19] perform granular synthesis in real-time 
with a polyphony of 20 voices. Grain control parameters changed via single keyboard 
strokes are either fixed values, linear functions (or ramps), or statistically derived 
around a fixed mean value. More recent examples of real-time granular synthesis  
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include Stochos [2] and Propellerheads’™ Maelström graintable synthesiser. Both 
Stochos and Maelström employ wavetable-based oscillators and numerous grain 
control parameters are generated in real-time by deterministic or statistical functions. 
In all cases, setting bounds for these functions for numerous grain parameters 
constitutes a control interface of some complexity. 

For any synthesis methodology, one of the most important issues, when designing 
an instrument, is managing the complexity of the controlling parameters to provide an 
interface which responds in an intuitive manner to the composer. Granular synthesis, 
in particular, requires the manipulation of a very large number of grain parameters. 
The majority of approaches utilise combinations of deterministic and statistical 
functions to generate the necessary grain control parameters in real-time, but still 
require the user to specify many parameters.  

Using neural networks to generate grain parameters has the potential to greatly 
simplify the user interface of a granular system. The Izhikevich model of artificial 
neuron employed has a behaviour which is determined by four parameters and the 
behaviour of every neuron in the neuronet object’s is derived from these four 
parameters (in a homogeneous network, the Izhikevich parameters of each neuron are 
identical and, in a heterogeneous network, the parameters of each neuron are derived 
as a statistical variation around those four values). Thus, the behaviour of the whole 
network can be radically altered by changing just four parameters. In fact, this could 
be further simplified once musically useful behaviours are mapped to regions in the 
network parameter space so that, potentially, one controller might be varied in real-
time to allow the user to move through all of the musically ‘useful’ network 
behaviours. The input stimulus to the network influences network firing rate and the 
nature of that stimulus influences how correlated network firing is. Thus, for example, 
a simple 2-dimensional controller could provide effective adjustment of grain density 
and character with the y axis controlling amplitude and the x axis varying the nature 
of the input continuously from constant to random. 

 
 

 

Fig. 3. Raster plots and output waveforms from neuronet driving multigrain~ for a 
heterogeneous 64-neuron network with input noise without (left) and with (right) delays 
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7   Conclusion 

The prototype neuronet AN object has demonstrated potential for real-time granular 
synthesiser control, but also the need for further work to optimise its sonic potential. 
The current version is limited in scope (although interesting rhythmically) as network 
firing simply schedules grains; this basic implementation of spike-coding will be 
addressed in future work. Although the synthesiser engine (multigrain~) is capable of 
generating five different waveforms, four different grain envelopes of grain durations 
from 10-100ms and harnessing panning and amplitude data for each grain, this has 
not been exploited at the time of writing of this paper. Neural network-derived spike 
coding of some or all of these parameters could give very interesting sonic results. For 
instance, a harmonically rich waveform could be low-pass filtered with cut-off 
frequency modulated by the firing rate of a functional neuron group, or the same 
group firing rate might determine proportions of the fundamental and a number of 
harmonics, a higher firing rate equating to a higher high-frequency harmonic content, 
etc. Future versions of the described objects will incorporate plasticity to allow the 
sonic potential of topographical considerations and stimulus-driven network 
adaptation to be investigated. The intent of this research is to produce a musically 
intuitive instrument, which provides considerable real-time player control of timbre. 
Much work needs to be done on the most tonally appropriate means of mapping 
network spiking behaviour to grain parameter assignment. Further refinements to the 
system will maximise grain polyphony via code optimisation and dynamic oscillator 
resource allocation and a simple, intuitive user-interface will need to be developed. A 
device such as an iPad, capable of tracking multiple (half-a-dozen, or more) finder-tip 
positions, might serve as an excellent finger-actuated grain parameter controller. 
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Abstract. This paper describes a computer-based Interactive Biomi-
metic Space (IBS) installation. Through an interactive process, a user
creates and relates new spaces. The simulation of a simplified ecosys-
tem populates the created space with life. The installation attempts to
inspire architectural design ideas by integrating biological principles. In
particular, the biological concepts of stochastic motion, interaction and
reproduction of artificial swarms have been explored and applied. Both
the user and the swarm agents contribute to the design process, which re-
sults in interesting design outputs with a certain degree of unpredictabil-
ity. We introduce the theoretical background of our work, outline its
technical implementation, and present various interaction examples and
scenarios.

Keywords: Interactive art, architectural design, swarm dynamics, com-
putational development.

1 Introduction

With the development of various Computer Aided Design (CAD) techniques,
many designers and artists today understand the computer as a tool for facil-
itating design processes and art creation. Computer technology is utilized not
only as an effective approach to present final works but also as a practical assis-
tance in formulating design ideas and inspiring innovative concepts. Computer
scientists and biologists have developed numerous computational models of sys-
tems that retrace phenomena observed in nature [1,5]. Such bio-inspired models
have the potential to provide solutions for challenges in other disciplines. In
particular, they provide designers and artists with a new perspective to develop
their aesthetic creation [2, 4, 6, 7].

In this work, we present an Interactive Biomimetic Space (IBS) installation
that utilizes several bio-inspired computational concepts to explore living archi-
tecture. Specifically, within architectural space that is initialized by the user, a
swarm of agents are introduced as the actual inhabitants. Their habitat then
grows gradually through the coordination and collaboration among the agents
themselves and the interaction processes between the agents and the user.
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Section 2 gives a brief review on the related works. Section 3 details the
implementation and setup of the IBS installation and illustrates the interaction
scenarios. Section 4 focuses on the design results. We conclude with an outlook
on possible future works.

2 Related Work

The flocking behaviors of social animals, such as in flocks of birds or schools of
fish, can be simulated by means of boids [5]. Given a set of simple interaction
rules, such as separation, alignment, and cohesion, the boids simulation can be
rather complex due to the large number of interaction events among the par-
ticipating agents. By adding additional interaction rules to the original Boids
implementation, the user can be involved in these interaction processes. Unemi
and Bisig, for instance, developed the Flocking Orchestra by adding two forces
to support human-swarm interactions: “an attractive force causes the agents
to move towards the front part of the virtual world when they perceive visitor
motion; a repellant force pushes the agents away from the front part in the ab-
sence of any visitor’s motion” [6]. In the Flocking Orchestra, each agent controls
a MIDI instrument and plays a music note according to its state. As the user
varies his gestures or positions in front of the camera, the agents’ states will
be adjusted correspondingly, resulting in the generation of music. This example
demonstrates how Boids can be harnessed for an artistic creation via human-
swarm interactions.

Swarm Intelligence describes the collective behaviors of decentralized and self-
organized systems, such as ant colonies [1]. There is no central leader or hier-
archical command structure within the system to govern the individual agents’
behaviors. Instead, the agents interact locally with one another and with their
surroundings based on simple rules. Jacob et al. explored Swarm Intelligence
in their SwarmArt project [2]. By means of video cameras and computer vision
algorithms, the interaction between a user and the swarm agents was realized.
As a result, a dynamic and evolving swarm system was developed as a new tool
for artists. von Mammen and Jacob applied Swarm Intelligence to inspire ar-
chitectural design by introducing the Swarm Grammar system [7]. This system
allows agents to reproduce, communicate and build construction elements during
simulations. Different architectural shapes emerge from the interaction processes
of swarms with different behaviors. By breeding swarms through evolutionary
algorithms, the system produces unexpected, creative architectural models.

Niche construction is the process in which an organism alters the environment
to increase its own and its offspring’s chance for survival [3]. McCormack and
Bown applied principles of niche construction to an agent-based line drawing
program to increase its output diversity [4]. An allele in the agent’s genome is
utilized to describe the agent’s preference for the density of drawn lines in its
environment. A favorable environment increases the probability of agent repro-
duction. In this way, parents may construct a niche and pass on a heritable
environment well-suited to their offspring.
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3 The IBS Installation

Inspired by the works described above, the IBS installation is a simple, computer-
based interactive ecosystem, inhabited by swarm agents. Its motivation is the
exploration of architectural design processes in and for complex, lively envi-
ronments. A user engages with these swarm agents in a process of unfolding
architectural spaces. Dynamically adding simple rooms to accommodate the de-
mands of the swarm and the desires of the user, this collaborative effort yields
interesting artificial design scenarios.

The user sees three windows on a computer screen (Fig. 1). The main window
shows the IBS scene comprising the user’s agent and the swarm agents, and
displays the dynamic IBS in real-time. In the upper-right corner of the screen, a
motion detection window is displayed to help the user to be aware of his motions
in front of a camera. A 2D map window is located in the upper-left corner of the
screen to assist the user in navigating through the scene. By default, the main
window shows the scene in 3D mode.

In the main window, the user, or audience, sees different graphical elements.
The blue sphere represents a particular agent which is controlled by a motion de-
tection system. Other smaller spheres might be shown that represent autonomous
swarm agents that dwell in the simulated space. The IBS is made of individual
rooms that are depicted as transparent cubes. The relationships among the three
interactive components—user, agents, and IBS—are displayed in Fig. 2. Gener-
ally, the user creates the first several rooms and introduces a flock of swarm
agents. Subsequently, according to the characteristics of the rooms, such as the
room size and the room temperature, swarm agents are triggered to interact
with their partners as well as the environment.

Fig. 1. In addition to the main view, the IBS installation displays a map view in the
top-left and a user interaction display in the upper-right corner



Interactive Biomimetic Space 367

Fig. 2. The relationship triangle among three components: User’s Agent, Swarm Agents
and Rooms

3.1 The User’s Agent

A basic requirement for a meaningful simulation is a set of tools to direct and
constrain the swarm agents to explore the architectural design space. We choose
to implement that set of tools as a user’s agent. The user’s agent represents the
user in the system and is controlled by him. It is rendered as a blue sphere,
and its abilities are different then those of other swarm agents. The user’s agent
functions as an architect, coordinator and observer. It is responsible for shaping
the initial space and leading the swarm agents to develop their habitat thereafter
according to the user’s will.

At the beginning of the simulation, the user’s agent is located at the center
of the first room. The user controls it via a motion detection system, which is
introduced for facilitating the interaction between the user and the installation
in a public exhibition space. In the motion detection window, there are three
distinctly colored balls (red, green and blue) that the user can grab and move
through gestures (Fig. 3). Among them, the red ball is used to direct the move-
ments of the user’s agent. Steering his agent, the user can build new rooms (as
soon as a wall is reached) and increase or lower the current room’s temperature.
The user can use the green ball to control the swarm agents’ moving directions
or use the blue ball to make the swarm move towards the user’s agent.
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Fig. 3. Illustration of what the user sees in the motion detection window. Three colored
balls are controlled by the user to direct the agents’ movements

Fig. 4. Continuous space developed in the IBS installation

3.2 The Rooms

The rooms are the building blocks of the architectural design; each room rep-
resents a spatial architectural unit that indicates the generation, structure and
configuration of the space. Rooms can be assigned with attributes, such as the
size and the room temperature.

The three-dimensional rooms are built on the xz-plane. New rooms are al-
ways attached to an already existing one, so that a continuous space is created
(Fig. 4). Whenever a new room is created, an edge length for the new cube be-
tween 50 and 200 pixels is randomly chosen. The temperature in a newly built
room is randomly selected from -30 to 30 ◦C. Rooms with a temperature over
0 ◦C are displayed in red colors, whereas rooms with a temperature below 0 ◦C
are featured in blue colors. The room temperature can be influenced by both
the user’s agent and the swarm. In the meantime, different room temperatures
trigger various behaviors of the swarm agents (Section 3.3).

3.3 The Swarm Agents

Lastly, the swarm agents function as both the constructors of the architecture
and inhabitants of the built space. For instance, they could be seen as both the
architects and construction workers of a mall, and the clients and vendors that
make use of it. This dual identity is propitious to generate a lively architectural
space.



Interactive Biomimetic Space 369

Each time the user builds a room, a new swarm agent, whose gender is ran-
domly assigned, appears at that room center. Without interferences from the
user, swarm agents move freely in all directions inside the IBS. The perception
field of a swarm agent extends to the whole room in which it is currently lo-
cated. Its velocity correlates with the perceived room temperature, as explained
in more detail in the following paragraphs.

Swarm Agents’ Life Cycle. A temperature between 1 and 20 ◦C is an ideal
condition for an agent to reproduce, because it is neither too hot nor too cold. We
call a room with this temperature range a delivery room, where male and female
agents mate. During pregnancy, the female agent is depicted in grey color instead
of white. After 300 frames, a baby agent is given birth to which is represented
as a green sphere (Fig. 2). It takes another 300 frames for the baby agent to
mature into adulthood. Again, the new agent’s gender is randomly assigned. For
the parent agents, the male agent has to leave the delivery room at least once
before he can mate again; the female agent turns her color back to white after
the delivery and is ready for mating again.

Room temperatures not only trigger mating and reproduction but also death.
In rooms with temperatures below −20 ◦C, swarm agents die after 300 frames.
We refer to these rooms as death traps.

Altering Local Environments. The swarm agents have the ability to alter
their local environments to achieve better living conditions. Firstly, the presence
of five agents in any room increases the local temperature by 1 ◦C. Thus, given
a certain number of swarm agents, the extremely low temperature in a death
trap can be increased to a level suitable for the swarm to survive. However, this
mechanism can also yield extremely high temperatures when large numbers of
agents aggregate in one room. To avoid this situation, an additional rule is intro-
duced to limit the individual agent’s stay in the warm room (room temperature
> 0 ◦C) to 600 frames. After that period of time, the agent has to leave.

Secondly, when there are 30 or more individuals in one room, the swarm agent
that touches a wall first, will try to create a new room. If this new room does not
intersect with any neighboring rooms, it will be built (Fig. 5). Consequently, the
swarm agents can extend living spaces to alleviate their crowded living condition.
The size of the new room is determined by the individual agent who builds
it. Generally, the new room size is determined according to the agent gender.
A male agent builds a room with a fixed value between 100 and 200 pixels,
whereas the female one builds a room with a size between 50 and 100 pixels.
The room dimensions of offspring follow their parents’ preferences but introduce
slight mutations (+/- 10 pixels).

Observed Phenomenon. By coding a set of rules, swarm agents have the
tendency to stay at the warm rooms’ centers, which makes them more likely
to meet others for mating and reproduction. Conversely, swarm agents tend
to escape from the center space when the room temperature is below 0 ◦C, so
that they can increase their chances of survival. Therefore, over the course of a
simulation, swarm agents have a tendency to congregate in warm rooms.
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Fig. 5. Swarm agents shaping and exploring their new living space

If it gets too hot (room temperature > 20 ◦C) in delivery rooms due to over-
population, those rooms are not used for reproduction any longer. On the other
hand, since agents are only allowed to stay in a warm room for at most 600
frames at a time, agents gradually leave those rooms. As the agent numbers are
decreased, room temperatures drop and the rooms can be used as delivery rooms
again.

Pregnant agents are exempt from the rule of being rushed out of warm rooms
after 600 frames. After the delivery, they are subjected to this rule again. Due to
this special treatment for pregnant agents, male agents have a greater tendency
of ending up in cold rooms. Therefore, it is more likely that male agents become
the victims of death traps.

4 Design Results

By specifying a set of interaction rules, the IBS installation informs a self-
organizing swarm. In addition, the user is capable of affecting swarm motions
whenever it is necessary. During the simulation, both the user’s agent and the
swarm agents contribute to an architectural design process.

At the very beginning of the simulation, the user typically produces a number
of rooms. These rooms are connected and form corridors that serve as the habitat
for the swarm agents. Without the support by the swarm agents, the user creates
orderly layouts as seen in Fig. 6. As the swarm population grows, the swarm
agents begin to explore and extend their living space. The interactions of the self-
organizing swarm agents result in interesting, organic-looking designs as shown
in Fig. 7.
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Fig. 6. Two 2D design examples developed by the user

Fig. 7. Two 2D design examples developed mainly by the swarm

The simulation evolves an emotional connection between the user and the
swarm. When there are few swarm agents in the system, the user usually feels
responsible for populating the space with life. Specifically, when swarm agents
went astray into the death traps, the user tends to redirect the agents’ movements
or tries to change local environmental conditions for the swarm, so that a small
quantity of agents can survive. On the other hand, when swarm agents overpopu-
late the system, the user wants to limit the growth of the swarm agent population.
Sometimes, the user might even actively try to reduce the number of agents in the
system. Such subtle relationships between the user and the swarm further diver-
sify the design outputs, since the level of the user’s intervention determines how
much control is relinquished to an external force during the design process.

By combining the efforts by the user and the swarm agents, the design results
achieve a balance between systematic, ordered planning and natural, organic
growth. Fig. 8 documents such a collaborative work process. First, the user would
develop the basic construction layout while swarm agents are busy in expanding
their population (Fig. 8(a)). As their population grows to a certain level, swarm
agents engage in the construction process (Fig. 8(b) and (c)). As a result, a
number of newly built rooms are attached to the old structure (Fig. 8(d)). As
time goes on, the original architectural layout by the user is gradually fused
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Fig. 8. A collaborative design process between the user and the swarm

and merged into the new settlements. Fig. 8(e) finally exhibits these unfolding
settlement patterns. For a personal experience with the IBS installation, please
download it at: www.vonmammen.org/ibs/.

5 Future Work

The IBS installation allows a user to create and explore architectural design
space. As everywhere on Earth, this space is populated with life, which re-shapes
its environment. An interesting, collaborative design process between virtual
swarm inhabitants and the user emerges that seeks an ecological balance between
order and exploration.

For future work, we consider the following directions to improve the system’s
usability for architectural design processes. (1) Explore the IBS into the third
direction by building new rooms in more than one layer. (2) Diversify the archi-
tectural forms by bringing in other building shapes rather than cubes only or
even make the agents work on a generic 3D mesh itself by shifting, adding and
removing its vertices. (3) Develop sophisticated behavior sets and allow rooms
to disappear to achieve a greater structural complexity. (4) Enhance the prac-
ticality for architectural modeling by introducing evolutionary algorithms, e.g.
by providing separate breeding grounds for individuals swarms and means of in-
teractive evolution to create swarms that support architectural design in unique
ways. (5) Install the IBS in a public space and gain user feedback. (6) Trans-
late the built constructions into real-world models and immerse the IBS into a
complex virtual space with pre-existing architecture and diverse landscape.
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Abstract. This paper describes an Interactive Evolutionary system for
generating pleasing 3D images using a combination of Grammatical Evo-
lution and Jenn3d, a freely available visualiser of Cayley graphs of finite
Coxeter groups. Using interactive GE with some novel enhancements, the
parameter space of the Jenn3d image-generating system is navigated by
the user, permitting the creation of realistic, unique and award winning
images in just a few generations. One of the evolved images has been
selected to illustrate the proceedings of the EvoStar conference in 2011.

1 Introduction

Evolutionary Algorithms permit the creation of candidate solutions from arbi-
trarily coarse- or fine-grained representations. In an Interactive Evolutionary De-
sign context (i.e. with human evaluators playing the part of the fitness function),
user-fatigue is more likely to occur before acceptable quality solutions emerge
when the genotype representation is too fine-grained, due to a long, repetitive
process with no immediately pleasing results.

For example, consider a toy Evolutionary image generation task where the
goal is to produce a simple black and white image on an N ×N grid. The image
could be encoded as a binary string of length N2 – a representation that fits well
with a Genetic Algorithm implementation.

This simple representation is powerful in that it permits the construction
of every possible 2-dimensional monochrome image for a given value of N . If
this were a standard, non-interactive optimisation problem, this kind of repre-
sentation would probably be suitable, since the space of all possible solutions
is covered, meaning that with the right conditions, high-quality solutions are
almost guaranteed as output from evolution.

But in an interactive setting, this type of (fine-grained) representation makes
the construction of even the most basic shapes on the canvas a slow and difficult
process. Adding to the difficulty is the potentially destructive nature of the
genetic operators of the GA. For this type of problem, the use of pre-defined
building blocks (e.g. lines, rectangles, curves) is more likely to produce pleasing
or interesting images in a shorter amount of time, while reducing user-fatigue.
This notion of building-block creation and re-use has been employed in other
artistically focused evolutionary systems such as Picbreeder [17].
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The approach taken in this work was somewhat different than that of typical
evolutionary art approaches. In this case, the evolutionary algorithm is not actu-
ally constructing the image, but rather parametrising a 3-dimensional visualiser
of complex mathematical structures.

There were two main reasons for this approach. The first was speed of devel-
opment; by using a freely available tool that generates the images, there was no
graphical development involved, so all that was required was the integration of
the evolutionary algorithm with the visualiser tool, evolving the parameters for
the visualiser. The second reason was a shorter evolutionary process. The graph-
ical visualiser used generates fully constructed images, which are quite pleasing
to the eye1; the time required for the interactive evaluation process to reach
images that fulfill the objective is therefore potentially much shorter.

The results obtained are certainly unique; not only that, but they were also
obtained with very short runs of the system, thus complying with the objectives
stated above. Finally, they are visually appealing, not only for the authors, but
also for different communities: one of the evolved images won the EvoStar 2010
art competition, and now illustrates the proceedings cover, while another won
a competition to be chosen as the logo for a research cluster, located in the
University College Dublin, Ireland.

This paper describes the implementation of this work. It presents the evolu-
tionary algorithm used in Section 2, followed by a brief introduction to Coxeter
Matrices and the visualiser used, in Section 3, and finally describes the experi-
ments conducted, in Section 4. Section 5 then draws some conclusions.

2 Grammatical Evolution

Grammatical Evolution (GE) [12,15] is an evolutionary approach that specifies
the syntax of possible solutions through a context-free grammar, which is then
used to map binary strings onto syntactically correct solutions. Those binary
strings can therefore be evolved by any search algorithm; typically, a variable-
length genetic algorithm is used.

The use of a grammar to specify the syntax of solutions allows the application
of GE to a variety of domains; these are as diverse as horse gait optimisation [8],
wall shear stress analysis in grafted arteries [2], and optimisation of controllers
for video-games [3]. This also includes earlier applications to evolving art, such
as the evolution of logos using Lindenmayer systems [11], musical scores [13],
generation of digital surfaces [4], and architectural design [18,7].

2.1 Example Mapping Process

To illustrate the mapping process, consider the (simplified) shape grammar
shown in Fig. 1. Given an integer (genotype) string, such as (4, 5, 4, 6, 7, 5, 9),

1 Although a subjective statement, this opinion was also shared by enough voters to
deem one of the images the winner in a competition against other images produced
by evolutionary means.
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a program (phenotype) can be constructed, which respects the syntax specified in
the grammar.

This works by using each integer to choose productions from the grammar.
In this example, the first integer chooses one of the two productions of the start
symbol <Pic>, through the formula 4%2 = 0, i.e. the first production is chosen,
so the mapping string becomes <Pic> <Term>.

The following integer is then used with the first unmapped symbol in the
mapping string, so through the formula 5%2 = 1 the symbol <Pic> is replaced
by <Term>, and thus the mapping string becomes <Term><Term>.

The mapping process continues in this fashion, so in the next step the map-
ping string becomes <Var> <Term> through the formula 4%2 = 0, and through
6%3 = 0 it becomes square <Term>. Continuing in this fashion, all non-terminal
symbols in the growing expression are mapped, until the final program becomes
square Rotate(9), which can then be used to generate a shape.

<Pic> ::= <Pic> <Term>
| <Term>

<Term> ::= <Var>
| <Op> <Term>

<Op> ::= Grow(<Value>)
| Shrink(<Value>)
| Rotate(<Value>)

<Var> ::= square
| circle
| triangle

<Value> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 1. Example grammar for defining simple shapes

Sometimes the integer string may not have enough values to fully map a
syntactic valid program; several options are available, such as reusing the same
integers (in a process called wrapping[12]), assigning the individual the worst
possible fitness, or replacing it with a legal individual. In this study, an unmapped
individual is replaced by its parent.

3 Cayley Graphs

Elementary mathematical group theory teaches us that a group is a special type
of set, combined with a number of operations that obey fundamental algebraic
rules. For the visually inclined, a Cayley graph permits a diagrammatic repre-
sentation of the structure of a group with respect to a generating subset. For a
given discrete group, G, altering the generating set S can produce visually in-
teresting geometric consequences for the Cayley graph representation of G. An
example of this is shown in Fig. 2.

Increasing the complexity of these graphs and corresponding generating sets
can in fact generate interesting, visually appealing structures. A complete de-
scription of the underlying mathematics at work to create and visualise such
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Fig. 2. Two Cayley graphs of the cyclic group Z/4Z produced by two different gener-
ating sets

graphs is outside of the scope of this paper, as this would require sections on
Coxeter Groups, Reflection Groups, discrete groups, topologies and many other
aspects of group theory2. There are, however, available tools for the visualisation
of such graphs; the Jenn3d system is one of them.

3.1 Jenn3d

Jenn3d [10] is a freely available tool developed by Fritz Obermeyer, which gen-
erates visualisations of Cayley graphs of finite Coxeter matrices; it does so using
the Todd-Coxeter algorithm, and projects them onto Euclidean 3D space, by
embedding them into a 3-sphere.

It is a very simple to use, yet powerful piece of software; its generating param-
eters are: the Coxeter matrix; the sub-group generators; a set of vertex stabilising
generators; specific definitions of edges; specific definitions of faces; and a set of
vertex weights.

Thanks to the ability of Grammatical Evolution to evolve parameters to the
Jenn3d system that just work, it is not necessary to delve into these concepts in
any great detail since their complexity can be abstracted away into an image-
generating black box. This is obviously very convenient, however we feel that
it is also quite a valuable contribution of this work – we as EC researchers and
practitioners do not need to know the inner complexity of the black box, be
it Jenn3d or otherwise. All that is needed is the means to navigate the search
space of black box parameters, guiding the system to the generation of visually
pleasing images.

4 Experiments

4.1 Setup

A grammar was designed for GE, specifying the exact syntax of the required (and
optional) parameters for Jenn3d. Some were tricky to encode; many parameter

2 Many books are available on the subject, a good resource is Holt et al [6].
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combinations make Jenn3d crash, or just get stuck in an endless computational
loop. The solution to this was to use GE as the main executable, and make
external calls to Jenn3d for each evaluation process; if the external call fails, a
fitness of 0 (i.e. the worst fitness) is given to that set of parameters.

If the call is successful, the 3D visualiser appears on the screen; the user
can then interact with the image, examining its 3-dimensional structure. If a
particular viewing angle is found, Jenn3d has options to save a snapshot onto
file; additional options were encoded onto Jenn3d for this work: a way to save
the parameter combination onto a “best-parameters” file, and a scoring method.
Fig. 3 illustrates this.

Fig. 3. The Jenn3d interface, along with the extensions encoded. An example image is
shown in the left; the same image, when zoomed in and rotated (right), can produce a
dramatically different view angle.

The scoring options are the values 1 to 5. If the user gives the score 1 to
a structure, it will be replaced by a random structure at the next generation;
likewise, due to the 20% elitism replacement used, the structures with the maxi-
mum score per generation are guaranteed to remain in the next generation. This
ensures that the user retains a degree of control over the generational mechanics,
while allowing the evolutionary process to proceed as normal.

Additional novel approaches were used in this work. First, the size of the
initial population was larger, to present an initial large spectrum of structures
to the user; this size is then culled after the first generation, to the population
size chosen for the evolutionary algorithm.

Another novel approach was the encoding of crossover points in the grammar.
This is a technique presented recently for GE [9], in which a specific symbol
is used in the grammar, to label crossover points; the evolutionary algorithm
then only slices an individual according to these points. This technique was
particularly useful for the work presented: many of the parameters passed to
Jenn3d specify styling options, which can therefore be exchanged as a whole
between different individuals (a 2-point crossover operator was used). The same
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crossover points are used in both individuals, that is, vertex weights will only
be exchanged with vertex weights; the length of the exchanged blocks, however,
is variable. This makes crossover act mainly as an exploitation operator; as
the exchange of parameters can dramatically change the visual appearance of a
coxeter matrix, it made sense to limit the role of crossover to the exploration
of such combinations. A standard point mutation operation is also used, which
ensures the creation of novel parameter values. Fig. 4 shows a section of the used
grammar, along with the encoded crossover points.

<cmdline> ::= ./jenn <GEXOMarker> -c <CoxeterMatrix> <GEXOMarker>
<StabilizingGenerators> <GEXOMarker> <Edges> <GEXOMarker>
<Faces> <GEXOMarker> <VertexWeights> <GEXOMarker>

<CoxeterMatrix> ::= <Torus> | <FreePolyhedra> | <FreePolytope>
<StabilizingGenerators> ::= "" | -v <Comb0123>
<Edges> ::= "" | -e <EdgeSet>
<Faces> ::= "" | -f <FaceSet>
<VertexWeights> ::= "" | -w <Int1-12> <Int1-12> <Int1-12> <Int1-12>

Fig. 4. Section of the grammar used; crossover points are encoded using the special
non-terminal symbol <GEXOMarker>

The experimental parameters used are shown in Table 1. To ensure all indi-
viduals in the initial population were valid, a form of population initialisation
[14] was used. Also, the mutation rate was set such that, on average, one mu-
tation event occurs per individual (its probability is dependent on the length of
each individual). Finally, note that there is no maximum number of generations;
evolution will always continue, until the user decides to terminate the execution.

Table 1. Experimental Setup

Initial Population Size 20
Evolutionary Population Size 10
Derivation-tree Depth (for initialisation) 10
Selection Tournament Size 10%
Elitism (for generational replacement) 20%
Crossover Ratio 50%
Average Mutation Events per Individual 1

4.2 Results

A typical run of the system seems to give many undesirable images on the first
generation; some cause Jenn3d to crash, while others are visually displeasing.
After the first generation, however, the system seems to settle onto a sequence
of very pleasing images, based on variations of the initial best images.

There is always novelty being introduced into the population, and the user
has an active part on this process, by attributing a fitness score of 1 to displeasing
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Fig. 5. Example image and close variations achievable with the genetic operators used

Fig. 6. Example of the variety of structures achievable from a single run

structures, which forces these to be replaced by novel ones. A single run of the
system can therefore generate a wide variety of images; once a user has explored
many variations of a style, he/she can start attributing them fitness scores of
1, which effectively purges the population of these structures, and ensures that
new, unseen structures are present in the next generation.
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Fig. 7. The winning image, elected to illustrate the 2011 EvoStar proceedings

Fig. 5 shows examples of different variations of a pleasing image, obtained
mostly through the exploration power of the new crossover operator. Fig. 6, on
the other hand, shows many different images extracted from a single run of the
system, a result achievable through the user-control technique explained. This is
possible both due to the variety of structures which Jenn3d can project, and also
to the exploration of the parameter space by GE. Note that all these figures are
shown zoomed out; rotation, zooming and fly-in transformations can seriously
alter the style achieved. Finally, Fig. 7 shows the image that won the EvoStar
2010 Art Competition.

5 Conclusions

This paper has presented a novel application of Grammatical Evolution to Evo-
lutionary Art that treats the task of producing pleasing Jenn3d / Coxeter visu-
alisations as a parameter search problem. In fact, GE has been particularly well
suited to this problem thanks to the construction of a grammar that encapsu-
lates the complexity of the parameters of the image-generating Jenn3d system.
The ease of use of both GE and Jenn3d made them easily combinable, which
not only resulted in a fast implementation, but also allowed the generation of
unique and very often pleasing images.

A fair criticism of the use of black-box such as Jenn3d is that the images
produced will always be limited to the space of possibilities that the black-box
is capable of creating. This is indisputable – doing so constrains the space of
potential solutions and for certain problems this should be avoided in order to
gain maximum coverage of the search space.
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However, there are also cases where jump-starting is a sensible thing to do. In
this case, the space of possible solutions is still sufficiently large that a spread of
pleasing and not so pleasing images can come about. The necessity of interactive
fitness assignment is just as much a requirement as it would be for a system pro-
ducing arbitrary images. The advantage of using a system such as Jenn3d is that
the user will not spend time in the early generations evolving the fundamentals.

The encoding of crossover points in the grammar also worked with great effect
in this work. The crossover operator was originally designed [5] to work just like
in nature, that is, to allow two chromosomes to exchange building-blocks; there
has been a great dispute over the years, however, as to the real exploitation
nature of crossover, and in fact to the existence of exchangeable building-blocks
in Genetic Programming systems [1,16]. In this work, they do exist, and the
crossover operator was encoded to take full advantage of this fact.

Finally, some of the images generated by this approach were submitted to a
few competitions, with award-winning results: one has won the Evolutionary Art
competition at EvoStar 2010, and another has been chosen as a logo represen-
tation for a research cluster in University College Dublin.
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Abstract. This paper describes a prototype evolutionary texture syn-
thesis tool meant to assist a designer or artist by automatically discov-
ering many candidate textures that fit a given stylistic description. The
textures used here are small color images, created by procedural texture
synthesis. This prototype uses a single stylistic description: a textured
gray image with a small amount of color accent. A hand-written pro-
totype fitness function rates how well an image meets this description.
Genetic programming uses the fitness function to evolve programs writ-
ten in a texture synthesis language. A tool like this can automatically
generate a catalog of variations on the given theme. A designer could
then scan through these to pick out those that seem aesthetically inter-
esting. Their procedural “genetic” representation would allow them to
be further adjusted by interactive evolution. It also allows re-rendering
them at arbitrary resolutions and provides a way to store them in a
highly compressed form allowing lossless reconstruction.

Keywords: texture synthesis, evolutionary computation, genetic pro-
gramming, GP, evolutionary art, design, tool.

1 Introduction

Many aspects of visual art and design make use of texture patterns. Textures
are a basic component of 2D graphic design, such as for web sites or printed
material, as well as 3D graphic design, such as for 3D animation, realistic effects
for movies, and real time 3D in virtual worlds and games. In 3D applications,
2D textures can be mapped onto 3D surfaces, and put to other uses in shading
and texture-based modeling.

These textures are sometimes photographic: landscapes and clouds for back-
grounds, closeup photography for woodgrains or cloth textures. Other times the
required texture is more generic and may be specified in terms of brightness,
color or pattern. This paper describes a prototype tool for generating textures
to match a certain specification. Large collections of such textures can be made
automatically then presented to the artist or designer to be considered as can-
didates for the intended purpose.

In these experiments a single texture “style” is used. The fitness function that
defines the style was written by hand in C++. Finding a way an artist could
create these specifications for themselves is a key topic for future work.

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 384–393, 2011.
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Fig. 1. Two textures hand-selected from several hundred automatically generated tex-
tures meeting a high-level stylistic description: a textured gray image with a small
amount of color accent. Typical runs took between 1 and 5 minutes to complete. (Color
images and other information available at http://www.red3d.com/cwr/gots/).

2 Related Work

Interactive evolution of images was first demonstrated in software that accom-
panied Richard Dawkins’ 1986 book Blind Watchmaker [2]. In 1991 Karl Sims
expanded the idea and applied it to procedural synthesis of color textures [14].
Since then quite a bit of work has appeared, notably including Electric Sheep [6],
an animated and crowd-sourced version by Scott Draves. Ken Stanley and col-
leagues have described texture synthesis using evolved neural nets [15].

Less well studied is “non-interactive” evolution of images in a traditional evo-
lutionary computation (run unsupervised, using a procedural fitness function).
Visual art is easily evaluated by the human visual system in interactive evolu-
tion, while in unsupervised evolution, the complex tasks of visual understanding
and evaluation must be encoded into software. Neither vision nor aesthetics are
easily simulated, making the evolution of visual art an unsolved if not ill-posed
problem. Nonetheless attempts have been made to explore this topic, as recently
surveyed by den Heijer and Aiben [3,4]. DiPaola and Gabora [5] attempt to
model human creativity. See also a thorough critique of the field by Galanter [8].

A more tractable related problem is to evolve a synthetic image to minimize
its difference from a given target image. Small differences sometimes provide
visually interesting “stylistic” variations on the target image. Examples of this
approach are seen in Wiens and Ross’ Gentropy [16], and in work by Alsing [1].
Hertzmann used a similar approach based on relaxation [9].

The approach taken in this work is even more tractable: posing a relatively
“easy” problem for evolution to solve, collecting batches of solutions, then using
human visual judgement to cull the interesting results from the mundane. An
unresolved issue is whether this relatively simple evolutionary computation will

http://www.red3d.com/cwr/gots/
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actually provide useful help to a working designer. This work uses a slightly dif-
ferent approach to evolutionary texture synthesis. In most previous work, evolved
textures were represented by programs that compute an individual pixel’s color,
given its coordinates. The GP function set used here is based on passing objects
that represent entire images. This approach to evolutionary texture synthesis [12]
has been used to model the evolution of camouflage in nature [13].

3 Implementation

The evolutionary procedural texture synthesis used in this work is based on
three components: an engine for running genetic programming, a GP function
set drawn from a library of texture generators and operators [12], and a fit-
ness function. The GP engine is provided by Open BEAGLE [7,11] an excellent
general purpose toolkit for evolutionary computation.

The GP function set includes about 50 functions from the texture synthesis
library [12]. These functions return an object of type Texture and may also take
textures as input. The grammar also includes types for 2d Cartesian vectors,
RGB colors and five numeric types differentiated by range (for example, frac-
tions on [0, 1], small signed values, etc.). Open BEAGLE’s built in support for
Montana’s strongly-typed genetic programming [10] accommodates this mixture
of types. The GP population is 100, divided into 5 demes of 20 individuals each.
Several of Open BEAGLE’s genetic operators are used, but primarily evolution
is based on GP crossover and “jiggle” mutation of ranged floating point con-
stants. The termination condition for these runs is 50 generations (hence 5000
fitness tests) or when an individual reached 95% fitness. Textures shown here are
rendered at 300x300 pixels, fitness evaluation was done at 100x100 resolution.
See Fig. 7 for an example of texture and source code.

4 Fitness Function for a Graphical Style

At the center of this work is a handwritten fitness function used to score each
texture on how well it meets the prototype criteria of “a textured gray image
with a small amount of color accent.” The fitness function needs to take a pro-
cedural texture object and returns a numerical fitness on the range [0, 1]. The
evolutionary computation seeks to maximize this value, so 1 is perfect fitness.

The approach taken here is to establish several independent criteria, based on
various properties of the image. These can be based on isolated pixels (bright-
ness) or on larger neighborhoods (spatial frequencies). In these experiments
there were five independent criteria, suggesting that this would require a multi-
objective evolutionary algorithm. There are well established MOEA techniques,
some of which are provided with Open BEAGLE.

Instead this work used a simple transformation from multi-objective to single
objective. If each independent criteria is scored from 0 to 1, the scores can simply
be multiplied together to form a product of fractions. This does not allow moving
independently on fitness hyperplanes as in Pareto optimization. It does have two
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Fig. 2. More examples of textures evolved to meet the same stylistic criteria
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useful properties: a change in any single score adjusts the final fitness in the same
direction, and any low score acts as a fitness “veto” on other high scores. This
simplified approach to multi-objective fitness seemed to work well enough for
these experiments. (Based on a small test: combining scores as a renormalized
sum (average) seems to result in slower and less effective evolution.)

The fitness function looks for a mostly gray image with a certain amount of
bright colors, it prefers brightness fluctuations, and it slightly prefers midrange
images. It samples the texture and counts gray pixels (saturation below a given
threshold (0.2)) and colored pixels (above a second saturation threshold (0.6)).
It also measures how close each pixel’s brightness is to middle gray, computes the
RGB bounding box of all colored pixels, and a measure of variability over small
random neighborhoods. From these statistics five fitness criteria are computed:

1. fraction of good pixels (below gray threshold or above color threshold)
2. how close ratio of color/good is to given target value (0.05)
3. average score for “midrangeness”
4. fraction of variability samples above a given contrast threshold (Fig. 6)
5. size of the colored pixel bounding box (to promote non-uniform colors)

These values were adjusted to be above 0.01 to retain fitness variation even for
the very low values typical at the beginning of a run. Some tuning was used, for
example to reduce the strength of the “midrangeness” criteria (number 3). Its
value was remapped onto the more gentle forgiving range [0.9, 1.0], so an average
brightness of 50% gave a score of 1.0 while even a very dark texture would get
only a slightly lower score of 0.9. Typical results are shown in Fig. 1 and Fig. 2.
Some runs were tried with “midrangeness” set to favor bright or dark textures,
see Fig. 3 and Fig. 4.

5 Results

It proved relatively easy to find textures that met the fitness threshold of 0.95
(95%) within 50 generations. Most runs did so in 10-30 generations. In the envi-
sioned application of this technique, evolving an acceptable texture is only the
beginning of the process. After many such textures are found, a human observer
inspects them and picks out a few that seem especially interesting. (See more
information at http://www.red3d.com/cwr/gots/)

Each evolution run produces one texture. This process generally took between
one and five minutes to complete (on a MacBook Pro, 2.8 GHz Intel Core 2 Duo).
Some runs took only took a few seconds, some took more than ten minutes. Oc-
casionally some runs took longer due to very expensive evolved programs (with
many calls to convolution-based operators) and perhaps due to some computa-
tional inefficiencies in Open BEAGLE’s STGP crossover operator.

Many of the results from these experiments were visually similar. Certain
themes seemed to reappear frequently. Most common in early runs were textures
composed of a gray pattern with its darkest (or brightest) parts replaced with
a uniform color. Sometimes the gray portion was simply one of the monochrome

http://www.red3d.com/cwr/gots/
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Fig. 3. Dark textures evolved with target brightness set low (or disabled)

Fig. 4. Bright textures evolved with target brightness set high (or disabled)

texture generators from the texture synthesis library, leading to uninteresting sim-
plistic solutions to the fitness function such as: Max (Noise (...), UniformColor
(...)) Trying to avoid these, some runs were made with Max and Min removed
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Fig. 5. Textures evolved with Max and Min removed from GP function set

Fig. 6. Several accidentally “minimalist” textures evolved during these experiments.
Textures with large areas of constant brightness were selected against. Textures shown
here were near the lower limit for acceptable rates of variation.
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from the GP function set. While this seemed to make the problem harder for evo-
lution to solve (fewer successful runs) it produced some novel kinds of textures,
see Fig. 5. In later runs a fitness metric was added to reward textures with a range
of colors.

Many successful runs produced these trivial solutions with a pre-defined gray
texture and small irregular splotches of color. These trivial solutions often cor-
responded with short runs. If a solution was found in the first 10 generations it
was often one of these technically simplistic, visually boring textures. Long runs
often produced more interesting textures, but sometimes a long run produced
one of the common, boring textures. Runs that ended with less than 95% fitness
necessarily completed all 50 generations, and often did not appear to fit the
definition of “a textured gray image with a small amount of color accent”.

6 Conclusions and Future Work

The results of this experiment are encouraging. At a superficial level, on this one
prototype application, this technique of evolving textures to meet a high level
design goal seems to work. At least it seems able to easily generate a large range
of candidate textures which can then be culled by hand to produce a few novel,
unexpected and visually interesting textures.

As mentioned above, many textures generated with this technique had a cer-
tain sameness. This is not necessarily a problem, the human eye is quite good at
scanning over many similar items while looking for a special one. However the
similarity of many results suggests that the random sampling of texture synthesis
space is happening in a non-uniform manner. There appear to be several large
basins of attraction in this space. Once a search wanders into such a basin it is
likely to produce a certain type of result. Finding a way to shrink these basins,
or to limit the samples allocated to them, might allow the space of textures to be
explored more efficiently. One possible approach would be to let the human user
occasionally inspect the evolving population and cull out the overrepresented or
uninteresting textures. This kind of negative selection would be similar to the
“human predator” in a recent hybrid model of camouflage evolution [13].

In this work the only goal was to generate visually interesting textures. In a
real application an artist would be trying to solve an artistic design problem and
that would impose additional constraints on the generated textures, effectively
reducing the “yield” of interesting textures. It remains to be seen if this technique
could actually provide useful help to an artist in their design work. Sometimes
there are very tight constraints on what textures are appropriate for a certain
use. Other times the criteria are very broad (“find any dark fine-grained brownish
texture”). At least in the latter case, this technique could be quite helpful.

A useful property of procedural texture synthesis is that the “source code”
can serve as a highly compressed representation of the texture. The textures used
in this work use floating point pixel coordinates and so can be rendered at any
required resolution. Together these mean that a multi-megapixel texture can be
stored as several hundred characters. Source code for textures can also be put
into a Sims-like interactive evolution tool [14] to allow artist-guided refinement.
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Max (Max (UniformColor (Pixel (0.308089, 0.127216, 0.564523)),

VortexSpot (1.23485, 5.30871, Vec2 (1.99217, 0.137068),

Furbulence (0.152681, Vec2 (-1.74168, 0.119476)))),

VortexSpot (1.23485, 5.30871, Vec2 (2.91655, 0.119476),

VortexSpot (1.23485, 5.30871, Vec2 (1.99217, 0.138486),

Max (UniformColor (Pixel (0.308089, 0.127216, 0.564523)),

Furbulence (0.35606, Vec2 (2.91655, 0.119476))))))

Fig. 7. A “wispy” high-fitness (99.98%) texture and its concise evolved source code

Fig. 8. Textures evolved using another fitness function, similar in structure to the “gray
with accent color” style but instead looking for textures with high frequency variation,
a significant amount of color and a brightness histogram that is relatively flat [12]

The larger question about the utility of this technique is how fitness functions
will be constructed for arbitrary design criteria. In the single case considered
here, it was programmed in C++ over the course of about one day, interspersed
with many trial evolution runs. More experience is needed to evaluate how much
effort is required to write fitness functions for other kinds of design criteria.
(At least one other prototype example exists, see Fig. 8 and [12]) Also of interest
is the degree to which these functions have certain regularities and modularities.
If so it would allow creating a library of texture evaluation tools to help program
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these fitness functions. It might also lead to interactive tools allowing artists to
construct their own evaluation criteria for texture evolution without requiring
programming skills. Ultimately, putting texture synthesis in competition with
texture analysis could lead to interesting new coevolutionary systems.

References

1. Alsing, R.: Genetic Programming: Evolution of MonaLisa (2008),
http://rogeralsing.com/2008/12/07/genetic-programming-

evolution-of-mona-lisa/

2. Dawkins, R.: The Blind Watchmaker. W. W. Norton, New York (1986)
3. den Heijer, E., Eiben, A.E.: Using Aesthetic Measures to Evolve Art. In: Di Chio,

C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Green-
field, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoAppli-
cations 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010)

4. den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In:
Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J.,
Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoAp-
plications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010)

5. DiPaola, S., Gabora, L.: Incorporating characteristics of human creativity into an
evolutionary art algorithm. Genetic Programming and Evolvable Machines 10(2),
97–110 (2009)

6. Draves, S.: The Electric Sheep and their Dreams in High Fidelity. In: Proceedings of
the 4th International Symposium on Non-photorealistic Animation and Rendering
(NPAR 2006), pp. 7–9. ACM, New York (2006), http://electricsheep.org/
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Abstract. One of the problems in evolutionary art is the lack of robust
fitness functions. This work explores the use of image compression es-
timates to predict the aesthetic merit of images. The metrics proposed
estimate the complexity of an image by means of JPEG and Fractal com-
pression. The success rate achieved is 72.43% in aesthetic classification
tasks of a problem belonging to the state of the art. Finally, the behav-
ior of the system is shown in an image sorting task based on aesthetic
criteria.

1 Introduction

Having an estimate of aesthetic value, allowing the differentiation among various
objects based on merely aesthetic criteria, would have a great theoretical and
practical value in the field of Evolutionary Art.

This paper presents a set of 18 features, based on JPEG and Fractal compres-
sion, paying attention to the complexity of an image. Their adequacy is shown
in two different aesthetic tasks: classification and sorting. First of all, we tackle
the issue of image classification based on aesthetic criteria presented by Datta
et al. [4]. Using both the image dataset and the features provided by them, a
thorough comparison was established with those detailed in the present paper
by means of Support Vector Machines (SVMs) and ANNs. A linear combination
of the outputs of the neural network trained in the previous task is used to sort
several image sets presented by [10]. That combination is presented as a possible
aesthetic fitness function which we intend to use within an Evolutionary Art
System in the future.

2 Complexity and Aesthetics

The relationship between aesthetics and image complexity has been explored
in several psychology and graphic computation papers [2,5,6,16]. In a simplified
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way, the complexity of an image is related to its entropy, and inversely related
to the order. It is related to the minimal information (or the minimal program)
required to “construct” the image. It may be said to depend on the degree of
predictability of each pixel of the image [17]. Thus, a flat image with every pixel
of the same color shows a perfect order, and it is less complex. A pure random
image can be seen as extremely complex and the value of each pixel is impossible
to predict, even taking into account the values of neighbor pixels.

The relevance of perceived image complexity is a recurring topic in the field
of aesthetics [1,2,17]. According to [12], “Aesthetic value is related to the senso-
rial and intellectual pleasure resulting from finding a compact percept (internal
representation) of a complex visual stimulus”. In the same paper, two different
estimates are presented: one for the Complexity of the Visual Stimulus (CV),
using JPEG Compression and another for the Complexity of the Percept (CP),
using Fractal Compression. Finally, the metrics are tested with psychological
test: “Design Judgment Test” [8]. In [15], Machado used a subset of the features
proposed in this project and an Artificial Neural Network (ANN) classifier for
author identification, attaining identification rates higher than 90% across ex-
periments. This paper presents an aesthetic fitness function based on the metrics
proposed by [12].

3 Proposed Features

While several preceding works [4,10,20] use ad-hoc metrics designed for a specific
problem, the present paper will use general metrics based on edge detection
and complexity estimates of black and white images. The said estimates are
determined from the compression error generated from the original image. The
advantage posed by these metrics is their generality; they are easily estimated
and can be applied only on grayscale information of the image.

Before carrying out the calculations of the different features, every image
is individually subjected to a series of transformations before being analyzed.
A given input image is loaded and resized to a standard width and height of
256×256 pixels, transformed into a three channel image in the RGB (red, green
and blue) color space, with a depth of 8-bit per channel and all pixel values
scaled to the [0, 255] interval. This step ensures that all input images share the
same format and dimensions.

Afterwards, the image is converted into the HSV (Hue, Saturation and Value)
color space and its HSV channels are split. Only the V channel is stored as a
1-channel grayscale image, given that we just need its representation in black
and white format.

Previous works such as [4,10,11] rely, to a large extent, on color information
to extract features. [10] states “the color palette seen in professional photos and
snapshots is likely to be very different”. In this work, we rely exclusively on
grayscale information. We want to make the system as generic as possible, and
in every dataset we have there are some grayscale images. In the future, however,
we will analyze the results by using also color information (channels HS).
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Once the grayscale image is available, two edge detection filters are applied,
Canny and Sobel, which will yield two new black and white images. In previous
works (e.g., [18,10]) filters such as Canny, Sobel, Gauss and Laplace have been
applied.

The most popular image compression schemes are lossy, therefore they yield
a compression error, i.e., the compressed image will not exactly match the orig-
inal. All other factors being equal, complex images will tend towards higher
compression errors and simple images will tend towards lower compression er-
rors. Additionally, complex images will tend to generate larger files than simple
ones. Thus, the compression error and file size are positively correlated with
image complexity [9]. To explore these aspects, we consider three levels of de-
tail for the JPEG and Fractal compression metrics: low, medium, and high. The
process is the same for each compression level; the current image in analysis is
encoded in a JPEG or fractal format. We estimate each metric of image I using
the following formula:

RMSE(I, CT (I)) × s(CT (I))
s(I)

(1)

where RMSE stand for the root mean square error, CT is the JPEG or fractal
compression transformation, and s is the file size function.

In the experiments described herewith, we use a quad-tree fractal image com-
pression scheme [7] with the set of parameters given in Table 1. Note that letting
the minimum partition level be 3 implies that the selected region is always par-
titioned into 64 blocks first. Subsequently, at each step, for each block, if one
finds a transformation that gives good enough pixel by pixel matches, then that
transformation is stored and the image block isn’t further partitioned. (Here,
pixel by pixel match is with respect to the usual 0 to 255 grayscale interval en-
coding.) If the pixel by pixel match error is more than 8 for at least one of the
pixels of the block in the partition, that image block is further partitioned into 4
sub-blocks, the level increases, and the process is repeated. When the maximum
partition level is reached, the best transformation found is stored, even if the
pixel by pixel match error for the block exceeds 8. The quality settings of the
JPEG encoding for low, medium, and high level of detail were 20, 40 and 60
respectively.

Taking into account that there are 3 images available, 2 compression methods
and 3 levels of detail per method, a total of 18 features are generated per image.

Table 1. Fractal image compression parameters

low medium high
Image size 256 × 256 pixels
Minimum partition level 2 2 3
Maximum partition level 4 5 6
Maximum error per pixel 8 8 8
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4 Experiments

This section details two experiments related to aesthetics, (i) a classification one
using two different approaches (ANNs and SVMs) and (ii) a sorting one. The
dataset used in the first task is explained next.

4.1 Dataset

The features presented have been tested on a collection of images previously used
for aesthetic classification tasks [4,11]. It is a large and diverse set of ranked pho-
tographs for training and testing available via http://ritendra.weebly.com/
aesthetics-datasets.html. This address also provides more recent datasets,
but we are not aware of any published results using them. All of these images
were taken from the photography portal “photo.net”. This website is an infor-
mation exchange site for photography with more than 400,000 registered users.
It comprises a photo gallery with millions of images taken by thousands of pho-
tographers. They can comment on the quality of the pictures by evaluating their
aesthetic value and originality, assigning them a score between 1 and 7. The
dataset included color and grayscale images. Additionally, some of the images
have frames. None of these images was eliminated or processed. Because of the
subjective nature of this problem, both classes were determined by the average
user ratings.

This dataset includes 3581 images. All the images were evaluated by at least
two persons. Unfortunately, the statistical information from each image, namely
number of votes, value of each vote, etc., is not available. Like in the previous
approaches, they considered two image categories: the most valued images (av-
erage aesthetic value ≥ 5.8, a total of 832 images) and the least valued ones
(≤ 4.2, a total of 760 images), according to the ratings given by the users of
the portal. Images with intermediate scores were discarded. Datta’s justification
for making this division is that photographs with an intermediate value “are
not likely to have any distinguishing feature, and may merely be representing
the noise in the whole peer-rating process” [4]. However, when we carried out
our experiment, some of the images used by Datta were not longer available at
“photo.net”, which means that our image set is slightly smaller. We were able to
download 656 images with a rating of 4.2 or less, and 757 images with a rating
of 5.8 or more. Out of the available images, about 7.4% are in grayscale.

4.2 Aesthetic Classification

The difference existing between the dataset of Datta et al. and the proposed one
as regards the number of images used makes it impossible to compare the results.
Having the input data of his experiment, as well as the input parameters, we
have reproduced his experiment using only those images that we were able to
retrieve. They perform classification using the standard RBF Kernel (γ = 3.7,
cost =1.0) using the LibSVM package [3] and a 5-fold cross-validation (5-CV).
Their success rate using this configuration was 70.12%. On our behalf, with their

http://ritendra.weebly.com/aesthetics-datasets.html
http://ritendra.weebly.com/aesthetics-datasets.html
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input data and the images available, 71.44% of images are classified correctly.
The difference between both results shows that the task performed in this paper
is less complicated than the original one. We will compare our results with the
latter from now on.

We have used two different approaches in order to compare the functioning of
the metrics proposed. One of them is based on Support Vector Machines (SVMs),
while the other one is based on Artificial Neural Networks (ANNs). In the case
of SVMs, we have decided to use the standard Linear Kernel configuration using
the LibSVM package [19][3]. The success rate achieved in that case was 72.43%.

The other classifier is composed of a feed-forward ANN with one hidden layer.
For training purposes, we resorted to SNNS [21] and standard back-propagation.
The values that result from the feature extractor are normalized between 0 and
1. The results presented in this paper concern ANNs with one input unit per
feature, 12 units in the hidden layer, and 2 units in the output layer (one for
each category). A training pattern specifying an output of (0, 1) indicates that
the corresponding image belongs to the “low quality” set. Likewise, a training
pattern with an output of (1, 0) indicates that the corresponding image belongs
to the “high quality” set. For each experiment we perform 50 independent rep-
etitions of the training stage so as to obtain statistically significant results. For
each of these repetitions we randomly create training, test, and validation sets
with respectively 80%, 5%, and 15% of the patterns. The training of the ANNs
is halted at 400 training cycles, or an RMSE in both the training and test sets
lower than 0.01 is reached. Some other parameters used are shown in table 2. The
results obtained with ANNs are very similar to those of SVMs, with a validation
success rate of 71.16%.

Table 2. Parameters relative to the ANNs

Parameter Setting
Init. of weights random, [−0.1, 0.1]
Learning rate 0.15
Shuffle weights yes
Class distribution one-to-one
Max. tolerated error 0.3

4.3 Image Ranking

We will try to show the aptness of our metrics visually by showing the sorting
capacity of the images obtained from a web search application and previously
used by Ke et al. [10]. They used Google and Flickr to search for six image sets,
labeled “apple”, “bmw”, “cow”, “rose”, “Statue of Liberty”, and “violin”. The
retrieved images were then ranked by their quality assessment algorithm with a
success rate of 72% obtained with a dataset of 12,000 images coming from the
photography portal “DPChallenge.com”.

The advantage of using a neural network lies in achieving two continuous
outputs with values that can be used for another purpose, for instance, as fitness
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function determining the aesthetic quality of a particular image. In our case, we
will use both neural network outputs in order to create the formula 2 which will
be used as sorting criterion, having been used by [13]:

(O1 − O2) + 1
2

(2)

In this case, O1 and O2 will correspond to the ANN outputs. In case the first one
has a high value, the ranking value obtained will be close to 1, which indicates,
in our case, a high aesthetic quality. However, in case the value of the second
output is higher, then the ranking value will be close to 0, indicating a low
aesthetic quality. When O1 = O2 the ranking value will be 0.5.

Following the approach of Ke et al. [10], in Figure 1 displays ends of the
sorting, that is, the three best and the three worst. It is also important to observe
what happens in the intermediate area of the ranking. In Figure 2 we present the
entire list of images from the gallery retrieved by the search word “rose” sorted
accordingly to formula 2. The full sorted lists of each of the 6 image sets are
available on the Internet at http://193.147.35.124/papers/evomusart2011.

Taking into account the network outputs and the formula proposed, the values
given to each image should be distributed in a space with range [0,1]. Due to
the training model proposed for the ANN, the interval [0, 0.3] equals 0 and the
interval [0.7, 1] equals 1. Thanks to that, the network output models can have
a more linear approach, thus allowing the exploration of the ends, as done by
[14]. In that particular case, the end values seen in Figure 1 are located within
the range [0.85, 0.25]

In the subjective perspective of authors, the sorting achieved is far from per-
fect but quite successful from the point of view of aesthetics, particularly in
what concerns the “best” and “worst” images of each set, albeit some isolated
exceptions. One of these exceptions is “Statue11”, which we consider as one of
the best images of the subset.

By analyzing the sorted lists produced by the proposed approach one can try
understand how the rankings are being determined. The results indicate that
the best valued images tend to be those where the difference between the figure
and the background is more evident, as well as those that have high contrast.
It seems that two of the most determining elements are: the simplicity of the
background (either due to flat elements or due to a low depth of field leading to
an unfocused background); the existence of a significant difference between the
background and the figure in the foreground. The image contrast can be also a
decisive element, together with the existence of pure white and deep black, and
a well-balanced distribution of both. For instance, image “Cow33” in Figure 1
has deviation similar to the deviations of the best valued high-contrast images,
however, unlike them, it is underexposed, which causes a lack of information in
the highlights and a trimming in the shadows, making it harder to differentiate
between the background and the figure.

The rankings produced cannot be fully explained by these factors alone and
the exact sorting method of the system is far from being understood.

http://193.147.35.124/papers/evomusart2011
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.....
0.705883 0.692992 0.570499 0.225151 0.193109 0.172051

.....
0.694166 0.620657 0.610245 0.268343 0.256137 0.252113

Cow33

.....
0.589045 0.581111 0.556694 0.272222 0.251121 0.242988

.....
0.807562 0.702034 0.671153 0.257485 0.256849 0.217052

Statue11

.....
0.614539 0.579039 0.574231 0.270641 0.266319 0.245182

.....
0.57704 0.571422 0.570083 0.240551 0.231128 0.211836

Fig. 1. End images of each gallery with its associated aesthetic value. Each set is shown
in a row, with the three “best” images on the left and the three “worst” on the right.
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0.807562 0.702034 0.671153 0.627365 0.515773 0.484149 0.481490

0.472965 0.471704 0.469493 0.466644 0.463819 0.455546 0.449485

0.449094 0.448771 0.448690 0.446400 0.426468 0.417754 0.407865

0.403056 0.400600 0.400134 0.396309 0.380985 0.376629 0.375872

0.374920 0.365691 0.348017 0.341926 0.341267 0.334960 0.326114

0.319226 0.314488 0.314461 0.310659 0.308311 0.301810 0.296129

0.291962 0.279273 0.276291 0.257485 0.256849 0.217052

Fig. 2. Whole sorting list of the image gallery “rose”
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Therefore, we can state that among the worst classified images most of them
have brightness levels tending towards a concentration at the medium values of
the image, together with over and underexposed ones.

5 Conclusions and Future Work

It has been shown how a set of 18 metrics based on two widespread compression
methods can be used for image classification and sorting tasks. An experiment
of aesthetic classification of images was carried out achieving similar results to
other ad-hoc metrics specifically developed for that purpose, using two different
approaches: one of them based on SVMs and the other one based on ANNs.
A sorting function based on the output of the ANN used in the classification
experiment was proposed and its functioning when sorting particular image sets
based on aesthetic criteria presented and discussed.

In the future, the research will be expanded to cover other metrics related to
complexity in both tasks. The purpose is using a large set of metrics to develop
a fitness function within our own evolutionary engine.
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Abstract. Adaptive walk on a fitness soundscape [7] is a new kind of
interactive evolutionary computation for musical works. This system pro-
vides a virtual two-dimensional grid called a “soundscape” in which each
point corresponds to a genotype that generates a sound environment. By
using the human abilities of localization and selective listening, the user
can “walk” toward genotypes that generate more favorable sounds. This
corresponds to a hill-climbing process on the “fitness soundscape.” This
environment can be realized by multiple speakers or a headphone creat-
ing “surround sound.” In this work we describe two new applications of
adaptive walk. The first is developed for creating spatially grounded mu-
sical pieces as an interactive art based on fitness soundscapes. The second
provides a new way to explore the ecology and evolution of bird songs,
from scientific and educational viewpoints, by exploring the ecological
space of “nature’s music”, produced by populations of virtual songbirds.

Keywords: interactive evolutionary computation, musical composition,
fitness landscape, surround sound, birdsongs, artificial life.

1 Introduction

Interactive evolutionary computation (IEC) has been used for optimizing a va-
riety of artifacts which cannot be evaluated mechanically or automatically [8].
Based on subjective evaluations by a human, one’s favorite artifacts in the pop-
ulation are selected as “parents” for new artifacts in the next generation. By
iterating this process, one can obtain better artifacts without constructing them
directly.

IEC has found use in a variety of artistic fields, including visual displays
[6], musical compositions [9] and sound design [3]. While promising, IEC for
musical composition has shortcomings because it is difficult to evaluate candidate
sounds when a large number of them are played at once. Consequently, the users
typically had to listen to each piece separately and evaluated them, one by one.
This sequential evaluation of individuals has two costs: an increase in the total

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 404–413, 2011.
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Fig. 1. A basic concept of adaptive walk on a fitness soundscape and its relationship
with evolutionary computation

evaluation time (temporal cost), and the need for remembering the features of
individuals in order to compare them (cognitive cost). Thus, it is necessary to
limit the population of candidate pieces in each generation to a small size in
order to decrease these costs, leading to inefficient selection and introducing
substantial random genetic drift [1].

Recently, several studies proposed and developed surround-sound-based brows-
ing or exploration of musical collections or sounds [5,4]. Also, to increase effi-
ciency of IEC for sounds, Suzuki and Arita [7] proposed a new kind of IEC for
musical works which was inspired by a biological metaphor, adaptive walk on
fitness landscapes. A fitness landscape is used to visualize and intuitively under-
stand the evolutionary dynamics of a population [10]. Recognizing that similar
sounds could be placed nearby one another in a virtual landscape, they con-
structed a system that combined human abilities for localization and selective
listening of sounds with a hill-climbing process on fitness soundscapes. This sys-
tem enables a user to explore her favorite musical works by moving through a
virtual landscape of sounds. Fig. 1 shows a conceptual image of this system. It
may be summarized as follows:

– We assume a set of genotypes that can describe all possible musical pieces
to be explored.

– We also assume a two-dimensional grid, and map every genotype to a unique
grid point so that there is a correlation between the distance and similarity
among genotypes on the grid. That is to say, similar genotypes are located
nearby, while less similar ones are more distant in this grid.

– Each genotype can play its own musical pieces at its corresponding location
in the grid. The resulting two-dimensional acoustic space is called “sound-
scape”, as shown in Fig. 1 (bottom).
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– A user of this system, whom we will call the listener, has a location in the
soundscape, and can hear the sounds of neighboring genotypes at the same
time, if desired. The sounds come from different directions that correspond to
their locations on the soundscape. This virtual environment can be realized
by a multiple speaker system creating “surround sound.”

– Humans have a sophisticated ability to localize the direction of sounds, and
can focus their attention in one direction or another. This is sometimes called
the cocktail party effect [2]. By using their ability to localize, the listener can
evaluate neighboring sounds at the same time. Their evaluation of goodness
of the sounds gives each direction an analog to a gradient of fitness, thereby
defining a third dimension – which may be thought of as a fitness surface
on the soundscape – a “fitness soundscape.” The actual shape of the fitness
soundscape will be different among listeners depending on their subjective
impression, and can also change dynamically even for a single user.

– The listener is able to change her location – “walk” – along her own fitness
soundscape by repeatedly moving toward the direction with an increasing
fitness on the surface – i.e. in the direction from which more favored sounds
are coming. This corresponds to the evolutionary process of the population
in standard IECs. In other words, adaptive evolution of the population can
be represented by a walk along the soundscape, determined by a hill-climbing
process on the fitness soundscape.

This system can be regarded as a kind of evolutionary computation in the fol-
lowing sense: An evolving population in evolutionary computation corresponds
to the set of genotypes on the soundscape whose sounds can reach the user.
The movement of the user toward her favorable sounds corresponds to selection
and mutation operations because less favorable genotypes disappear and new,
slightly, different genotypes appear in the new population due to the shift of
the audible area of the user. Although a crossover or recombination operation
is not incorporated into the conceptual model, changing the scale and shape of
the soundscape implemented in the prototype can contribute to maintaining the
genetic diversity of the population (explained later).

Suzuki and Arita [7] constructed a prototype of the system using a personal
computer to control a multi-channel home theater system with 7 speakers. They
confirmed that listeners were able to search for their subjectively more favorable
pieces by using this system. Their experience led to a proposal for improving
evolutionary search in that system. Finally, they noted that a searching process
on the soundscape was itself a new experience for the listener, suggesting that
the system might be implemented as an art installation.

In this paper, we report on two variant applications of this concept. The first
is developed for creating more spatially grounded musical pieces as a kind of
interactive art, exploring better use of the surround sound environments with
an iPhone or iPad. The second variant is to provide a new way to experiment
with the ecology and evolution of birdsongs from both scientific and educational
viewpoints — in a sense to “nature’s music” by songbirds.
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Fig. 2. Basic operation of the iSoundScape App (left) and a snapshot (right) of the
main screen, with labels described in the text

iPhones and iPads provide a variety of sensors and interfaces, and have a rich
software development library for sound works, such as Core Audio and OpenAL.
The devices are now becoming standard platforms for applications of interactive
arts based on sounds. For example, Brian Eno, a pioneer of ambient music, re-
cently released a kind of interactive music box called “Bloom”, in which a user
can create drones playing periodically by touching a screen. Bloom and several
variants are available at http://www.generativemusic.com/. In the applications
described here, we use only a stereo (two-speaker) audio environment, rather
than the richer environment provided by the 7-speakers in earlier studies. Some-
thing is lost, certainly, but we are finding that the intuitive operation and quick
responses of a multi-touch interface may at the same time bring new benefits
for exploring fitness soundscapes. The availability of world-wide channels to dis-
tribute applications from AppStore and to obtain feed-back from users are also
benefits from this platform.

2 iSoundScape

We constructed an application for iPhone termed iSoundScape based on an
adaptive walk on the fitness soundscape illustrated in Fig. 2. It was developed
using Objective-C++ with XCode, and enlists the OpenAL API for creating
surrounded sounds. It is currently available from the Apple App store at no
cost.

Fig. 2 (left) shows a global image of a soundscape represented as a two-
dimensional and toroidal grid space in this system. Fig. 2 (right) is a snapshot
of a main screen of the implementation of an iPhone. It shows a part of the
whole soundscape from a top view. An open circle in the center corresponds
to the listener and generates her sound environment there. There are also sev-
eral double circles that represent the sound sources mapped from genotypes on
nearby grid points. The listener is assumed to face upward, and can hear the
sounds emanating from the corresponding sources, in a manner described below.
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Fig. 3. The relationship between a genotype and its location on the soundscape, and
one mapping from a genotype to a musical piece

2.1 Genotypes for Creating a Soundscape

Spatially grounded representations of musical pieces are utilized in this work,
improving the use of the acoustic space of the soundscape compared to the
simple scores often used in previous research [9,7].

Fig. 3 shows the relationship between a genotype and its location on the
soundscape, as well as one mapping from a genotype to its musical piece. Each
genotype is composed of a bit string with a length of 48, which contains enough
information to code for more than 67 billion possible genotypes. We can imagine
each 48-bit string as a point in a 224 × 224 soundscape grid. The information of
a genotype is used to determine its location on the soundscape, and also used to
determine the properties of its corresponding musical piece as described below.

In order to determine the location on the soundscape on the 224 × 224 grid,
the bit string of a genotype is split into the two substrings composed of odd or
even bits in the original genotype respectively, as shown in Fig. 3. Each substring
is mapped to an integer value by using a Gray code (Reflected Binary Code),
and the set of integer values is defined as the x and y location of the genotype
on the soundscape. A Gray code maps each number in the sequence of integers
{0, 1, · · · , 224 −1} as a bit string with the length 24 so that consecutive numbers
have binary representations that each differ by one bit. In this way, genotypes
are closely correlated to their locations on the soundscape.

Each genotype generates and plays a musical piece distinctive to its location on
the soundscape, composed of sounds from the three closest sound sources played
on an infinite loop. In this prototype, the four nearest genotypes displayed on
the screen generate the sound sources. In order to determine the property of
these sound sources, the bit string of the genotype is also split into the three
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Table 1. The sound clips

ID type unique number
0–15 piano (0) C3–C5 (0–14) and no sound (15)
16–31 bass (1) C3–C5 (16–30) and no sound (31)
32–47 synthesizer (2) C3–C5 (32–46) and no sound (47)
48–63 drums / sound effects (3) drums (48–55), singing birds (56, 57), sound of

water (58, 62), call of goat (59), laughter (60),
clock (61) and ambient sound at lobby (63)

substrings with the length 16, as shown in Fig. 3. Each substring determines a
type of sound clip to play (4 types), a unique number in the type (16 different
clips), a volume (4 levels), and a relative position from the grid point of the
genotype (16 × 16 locations) on the soundscape, as shown in Fig. 3. The type
of sound and the unique number in the type specifies one of 64 different sound
clips (in wave format) as listed in Table 1. Piano, bass and synthesizer are each
characterized as a short drone with a unique pitch. We also prepared some beats
on drums and sound effects from various natural or social environments. Each
sound source plays its sound clip with the specified volume repeatedly. Either
even or odd bits are used from a genotype to determine the appropriate x or y
location by relating each x and y value to the overall properties of the sound
sources. Each sound source is represented as a double circle with a tab that
indicates the ID of the sound clip. The size of the circle represents the volume
of the sound source.

2.2 Operations for Adaptive Walk on a Fitness Soundscape

There are several basic operations to walk on the soundscape as follows:

Adaptive walk. After evaluating the musical pieces generated by the near-
est four genotypes, a listener can change its location on the soundscape
by dragging its icon. The directions of sounds coming from sound sources
change dynamically according to the relative position of the listener during
the movement. If the icon is moved outside of the central area of the grid,
the soundscape scrolls by one unit of the grid as shown in Fig. 2 (left). The
sound sources of the next four neighboring genotypes are then displayed and
begin to play.

Rotation. By swiping a finger outside of the center area in a clockwise or
counterclockwise direction, a listener can rotate the whole soundscape by 90
degrees (Fig. 2 left). By changing the orientation of the surrounding sound
sources in this way, a listener can utilize the right / left stereo environment
of the iPhone for localizing sounds that were previously in front of / behind
the listener.

Scale change of the soundscape. By pinching in or out any place on the
screen, a listener can decrease or increase the scale of the soundscape. It
changes the Hamming distance between the nearest neighboring genotypes
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as shown in Fig. 2 (left) by skipping the closest genotypes and selecting
distant genotypes. The decrease in the scale ratio enables the listener to
evaluate more different individuals at the same time, and jump to a more
distant place quickly. Conversely, increasing the scale ratio allows the listener
to refine the existing musical pieces by evaluating more similar genotypes.

Shape change of the soundscape. A user can change the shape of the sound-
scape by modifying the genotype-phenotype mapping shown in Fig. 3. Every
time the user shakes the iPhone or iPad, the position of each bit in the geno-
type that corresponds to each property of the sound sources is right-shifted
cyclically by two bits. Then, the user jumps to the location on the sound-
scape based on the new genotype-phenotype mapping so that the sound
sources of the genotype in the user’s front left position are kept unchanged.
This enables the user to explore a wide variety of mutants of the current
population.

Bookmark of a location. If a listener touches one of the four buttons on the
bottom left in the screen, they can save the current position, scale and direc-
tion of the soundscape as a kind of bookmark. One previously bookmarked
state can be loaded as the current state of the user.

Finally, a listener can change some optional settings to facilitate exploring pro-
cesses by touching the button on the bottom right.

2.3 Basic Evaluations

iSoundScape has been freely available from the AppStore1, an online store for
downloading applications for iPhone. Approximately 1,100 people around the
world have downloaded it since May 2010. Users who have commented on iSound-
Scape have made several suggestions. The most important of these relate to ori-
entation on the fitness landscape. The first suggestion is that stereo headphones
or external speakers were effective for localizing sounds from right and left di-
rections, although it was not always easy to localize sounds coming from in front
of or behind the listener. Second, it was helpful to actively move back and forth
on the soundscape for localizing the sounds. With these methods, listeners were
able to effectively evaluate each musical piece and search for favorable musical
pieces without difficulty.

The general consensus of the user comments was that the spatially grounded
representation of musical pieces worked well on the soundscape and created a
new kind of listening experience invoking a feeling that one is surrounded by
different elements of a musical piece. A novel aspect of this experience is that
a set of sound sources from neighboring genotypes is interpreted as a kind of
musical work of itself. The wide variety of sound types including sound effects
produced through the exploration process itself provides an entertaining and en-
gaging experience because small changes in the sound types and locations can
change the aesthetic feeling of the musical piece in unexpected ways. Also, the

1 http://itunes.apple.com/us/app/isoundscape/id373769396?mt=8

http://itunes.apple.com/us/app/isoundscape/id373769396?mt=8
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Fig. 4. A phenotypic space of birdsongs and a snapshot of iSoundScape BIRD

scale or shape change of the soundscape enables a user to jump from the current
location to distant locations at one time. This can be a helpful method to explore
the whole soundscape quickly.

3 iSoundScape BIRD

To take the system a step further, we developed a variant of iSoundScape termed
iSoundScape BIRD that features various birdsongs from California. There are
several reasons to feature birdsongs. First, birdsong is one of the best examples
of “nature’s music”, and may appeal to some people on this level. Second, there
is the potential for practical applications of this system in exploring the ecology
and evolution of birdsongs from a new perspective. For example, the parallel
and simultaneous listening of songs from various directions is analogous to some
aspects of natural soundscapes. Lastly, this system could provide a new way to
teach concepts of adaptive evolution in an educational environment. Here, we
enumerate features modified from the original iSoundScape.

We prepared 64 sound clips of birdsongs from the sound tracks recorded in
Amador County, in Northern California. There are 16 species as shown in Fig.
4 (left), and 4 different song clips for each species. The duration of songs varied
from about 0.5 to 7.0 seconds. The song properties varied significantly from this
single location.

We have constructed two different soundscapes from these song clips. Each
reflects a phenotypic or ecological property of birdsongs. In addition to provid-
ing an interesting way to explore birdsongs, the first soundscape was developed
to provide a way to understand how properties of birdsongs could vary among
species in a soundscape. We assumed a two-dimensional phenotypic space of
birdsongs as shown in Fig. 4 (left). The axes in this space reflect roughly two
basic properties of birdsongs: the length of songs and the intermediate frequency
of songs. Instead of using genotypes, we directly mapped the all song clips to a
8 × 8 two-dimensional soundscape so that squared clusters of four song clips of
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each species are arranged according to the phenotypic space in Fig. 4 (left). Thus,
each genotype is composed of a set of two integer values, each corresponding to
the x or y location within the phenotypic space.

In a second form, we replaced the original sound clips in the iSoundScape
with the clips of birdsongs. To do so, we assumed that the first 4 bits in the
substring for each sound source in a genotype represent the species, reflecting
the topology of the phenotypic space in Fig. 4, and the next 2 bits represent
a unique number of song clips in the species. We also changed the number of
sounds for each genotype from three to two. Thus, the soundscape comprises a
216 × 216 grid. In this case, each genotype is composed of a 32 length bit string
representing an ecological situation involving two birds, and is mapped to both
individual birds singing different songs at different locations. Thus, a listener
is able to explore the soundscape and virtual ecology of multiple individuals of
songbirds.

In both cases, we inserted a random interval between the start times of songs
from each bird to approximate the variation found in many natural soundscapes.

Finally, we used a small picture to represent the species of each individual2.
This allows the listener to recognize the distribution of birds on the soundscape.

3.1 Preliminary Evaluations

Fig. 4 (right) shows a snapshot of iSoundScape BIRD. In our preliminary evalua-
tions with the phenotypic soundscape, we could recognize changes in the length
and frequency of songs gradually through exploration of the soundscape, and
understand how these species have different types of songs. In addition, it was
helpful to recognize the difference between the similar but slightly different songs
of different species because they are closely located on the soundscape and the
listener can hear their songs from different directions at the same time to com-
pare their properties between them. In the case of the ecological soundscape, the
listener could feel the acoustic environment as more ecologically realistic because
more birds were singing at different locations.

We believe both can provide a new way to understand ecology and evolution
of birdsongs from scientific and educational viewpoints in addition to an artistic
point of view. We are planning to release this variant at AppStore.

4 Conclusion

We proposed two variants of interactive evolutionary computation for musical
works based on adaptive walk on a fitness soundscape. The first variant was de-
veloped to explore a new application of IECs for creating spatially grounded mu-
sical pieces as a new kind of interactive art, based on the concept of soundscape.
Listeners were able to search for their favorite musical pieces by moving around

2 These pictures are provided by Neil Losin and Greg Gillson from their collections of
bird pictures (http://www.neillosin.com/, http://www.pbase.com/gregbirder/)

http://www.neillosin.com/
http://www.pbase.com/gregbirder/
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the soundscape actively, even within the limitations of two speakers for localiza-
tion. The second variant was developed to explore soundscapes of songbirds to
explore new ways to experiment with the ecology and evolution of birdsongs. It
appears that this system may find application to better understand properties
and ecology of birdsongs by creating phenotypic and ecological soundscapes.

Future work includes more detailed evaluations of these applications, a use
of other sensors in the device such as GPS or an acceleration meter in order to
make the system more interactive, and an addition of some functions that enable
us to learn more about songbirds in the system.
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Abstract. In recent years, we have seen some artificial artistic work that has 
drawn inspiration from swarm societies, in particular ant societies. Ant 
paintings are abstract images corresponding to visualizations of the paths made 
by a group of virtual ants on a bi-dimensional space. The research on ant 
paintings has been focused around a stigmergic mechanism of interaction: the 
deposition of pheromones, largely used by ants. In an effort to further on the 
research on ant inspired artificial art, we introduce the T. albipennis sand 
painting artists, which draw direct inspiration from the ant species Temnothorax 
albipennis (formerly tuberointerruptus). These ants build simple circular walls, 
composed of grains of sand or fragments of stones, at a given distance from the 
central cluster of adult ants and brood. The brood and ants cluster function as a 
template, which combined with self-organization are responsible for the 
particular wall pattern formation. The T. albipennis artists are artificial two-
dimensional builders, starting from unorganized placement of virtual sand 
grains, they rearrange them, creating some interesting patterns composed of 
scattered pointillistic and imperfect circles, a colored moon-like landscape full 
of craters. 

Keywords: Ant Paintigs, Swarm Art. 

1   Introduction 

Social insects perform a large variety of extraordinarily complex collective tasks, 
being nest building the most spectacular [4]. Social insects colonies are a 
decentralized systems composed of autonomous and cooperative individuals that are 
cognitively very simple, exhibiting simple probabilistic stimulus-response behavior 
and which have access to limited local information. Ants have been, since the 
beginning of the 21th century [1, 7, 15, 8, 9], a source of inspiration for media arts, 
where artists seek to create a collection of autonomous artificial entities, which are 
able to interact directly or indirectly, in stochastic ways and produce emergent and 
unexpected patterns with some aesthetical value.  

Ant paintings, a term first used by Aupetit et al. [1], are abstract images made on 
background neutral color, corresponding to visualizations of the paths made by a 
group of virtual ants that wander around on a toroidal virtual canvas, leaving colored 
traces. They used small virtual ant colonies (typically between 4 and 6) where the 
individuals do not communicate directly with each other—they use a stigmergic 
mechanism where color plays the main role. The luminance color value functions as a 
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virtual pheromone, which controls the movement of the ants and consequently their 
painting activity. The virtual scent has no evaporation and presentes limited diffusion 
properties. Each ant, as it moves, lays down one color while searching for the color 
deposited by other ants. Ant behavior is represented by a genome that determines 
what color ants should deposit, what color ants should seek, and their movement 
characteristics. Ant paintings were evolved using an interactive genetic algorithm.  
Greenfield [7] extended the previously referred work, using larger ant populations (8-
12), introduced perception of tristimulus color values instead of luminance, and has 
designed a non-interactive genetic algorithm for evolving ant paintings. The fitness 
function he has designed measures the exploration and exploitation capabilities of the 
ants. Urbano [15] introduced a new model: color has no scent properties and it is the 
reticular canvas that produces an invisible virtual scent, responsible for attracting 
individuals, influencing their movement and consequent traces. The population of 
micro-painters can be much more numerous (thousands of virtual ants). The 
individual ant traces are soon very difficult to follow and what is visualized is the 
exploration global pattern of the colony of ant painters. Each cell of the environment 
diffuses its chemical, which is subject to evaporation, but to be a chemical producer a 
cell must satisfy certain conditions. He has considered two variations on the model: 
either a non-painted cell produces scent (Colombines style) or a painted cell is the 
chemical producer (Anti-Colombines style). The visual characteristics of these ant 
paintings are influenced both by the number of ants and their initial placement. 
Greenfield [8, 9] considered simulated groups of ants whose movements and 
behaviors are influenced by both an external environmentally generated pheromone 
and an internal ant generated pheromone making a blend of the model in [1, 7] and 
the model in [15]. 

Outside of the scope of ant painting but of related interest, Urbano [16] has 
investigated consensual decision making in swarm paintings, where simple artificial 
artists use a distributed coordination mechanism to decide the values of decisive 
attributes for painting activity, like color, orientation or speed. Jacob and Hushlack 
were inspired by the boids model of Reynolds [13] to make swarm Art [14, 3]. Moura 
and Ramos [11] used autonomous robots to make real paintings.   

Trying to further on the research on ant inspired artificial art, we introduce the T. 
albipennis colony of artificial artists, which produce virtual sand paintings. They draw 
direct inspiration from the ant species Temnothorax albipennis (formerly 
tuberointerruptus). These ants build simple perimeter walls, composed of grains of 
sand or fragments of stones, at a given distance from the central cluster of ants and 
brood. The brood and ants cluster function as a template, which combined with self-
organization are responsible for the particular wall pattern formation. 

The wall builder ants have also inspired research on robotics, with no relation with 
art, but we think it deserves to be mentioned here. Melhuish et al. [10] developed a 
group of minimalist robots able to build a roughly linear wall composed of pucks, 
using as cues a white line on the floor and a bank of halogen lights. Parker, Zhang and 
Kube [12] created a group of blind bulldozing robots for debris cleanup. These robots 
equipped with force and collision sensors are able, by simply moving straight ahead 
and turning in random directions, to clean a space full of debris, simulated by pucks, 
which are pushed until the force opposing their movement exceeds a threshold.  
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The T. albipennis artists are artificial two-dimensional builders, which are able to 
create some interesting patterns composed of scattered pointillistic and imperfect 
circles. In this preliminary research we are going to use only the template effect, 
leaving the “grains attracting grains” effect for future developments. The visual 
characteristics of ant sand paintings are influenced by: the colony size, the number of 
existing virtual sand grains and their initial placement. This form of sand painting is a 
conservative one, the painting is made using only the initial available materials, which 
are recombined to form circles, the grains do not disappear and are not created either, 
during the painting process. 

 The paper is organized as follows: Section 2 describes wall building behavior of 
Temnothorax albipennis ant colonies and presents the two main mechanisms 
responsible for pattern formation: template and self-organization. In section 3 we 
present the T. albipennis artists. In section 4 we show some examples of T. albipennis 
art pieces and we conclude pointing out some future directions of research. 

2   Wall Building in TEMNOTHORAX albipennis 

Franks et al. [5] and Franks & Deneubourg [6] have observed that the colonies of ant 
species Temnothorax albipennis nest in narrow crevices of rocks that have been 
fractured by weathering. They build a dense circular wall (with one or more 
entrances) made of debris (fragments of rocks, grains of sand or particles of earth) 
around a central cluster of queen, brood and workers, which function has a physical or 
chemical template. 

 

Fig. 1. Example of a nest built out of sand-like material by the Temnothorax albipennis in 
laboratory. We can see the circular wall surrounding a tight ant cluster and same entrances. 
Image courtesy of Nigel Franks and reproduced with his permission. 

A template means that a blueprint of the nest ‘already’ exists in the environment. 
Although the exact nature of the template mechanism remains unknown, the nest size 
is adapted to the number of individuals belonging to the colony. In laboratory was 
seen [5] that when a colony migrates into a new nest slit, the brood is arranged at the 
center surrounded by the queen and the adults, which form a tight cluster. “Only when 
these formations of brood and adults are complete does a small minority of workers 
start building.” [4] The template mechanism is not alone, combined with it there is a 
self-organizing mechanism. In fact, deposition behavior does not solely depend on the 
distance from the cluster of brood and workers. The local density of building 
materials plays also an important role during nest construction. “The probability of 
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depositing a brick is highest when both the distance from the cluster is appropriate 
and the local density of bricks is large; it is lowest when the cluster is either too close 
or too far and when the local density of bricks is small. When the distance from the 
cluster does not lie within the appropriate range, deposition can nevertheless be 
observed if bricks are present; conversely, if the distance from the cluster is 
appropriate, deposition can take place even if the number of bricks is small.” [2]  

Camazine et al. [4] proposed a stochastic model where grain picking and dropping 
behavior is influenced both by the self-organizing amplifying effects (grains attract 
grains) and the influence of cluster of brood and workers template. Based on the 
model, they were able to simulate Temnothorax albipennis ant colonies’ wall building 
behavior. As we have adopted their model for our T. albipennis artificial artists, the 
formulas for calculating the dropping and picking up probabilities, will be presented 
in the next section. They were slightly adapted to deal with multiple colonies and 
multiples walls. 

3   The T. albipennis Artists 

In our artistic appropriation of the behavior of Temnothorax albipennis we will only 
use the template rules. There will be no interaction between the artistic material 
(virtual sand grains, corresponding to fragments of stones, grains of sand or pieces of 
earth in the ants) and the artists—the virtual grain sands will not “attract” other grain 
sands and so positive feedback will play no role in the artistic process. In ants, the 
tight cluster of ants and brood functions as a physical or chemical template. In our 
model, we will not differentiate between artists, we will not have the equivalent to the 
queen or brood or nurse in ants—every individual is a wall builder. In order to adapt 
the Temnothorax albipennis wall formation behavior to the artistic realm we thought 
in using several colonies with different population dimensions and associating each 
one with a particular color. Each colony will build a wall of a certain color. The exact 
position of the template walls is decided randomly before the sand painting process 
begins. We have diverged from the real phenomenon in several aspects: we allow that 
an ant drops a piece of virtual sand grain inside the circle area corresponding to the 
tight cluster of queen, brood and nurses. As there is no cluster of ants in the center, 
the debris inside the nest center may be not cleared out. We are also not worried with 
collisions, neither between ants nor between ants and grains. This means that ants do 
not collide with each other, and can occupy the same cell. We do not need the 
formation of entrances for entering and leaving the nest. Ants can go through the wall. 

3.1   The Black Sand Painting Reticular Canvas 

We have considered a bi-dimensional reticular space with dynamic dimensions, but 
all the paintings here displayed were made in a canvas 401×401 which can be toroidal 
if we wish (some of the paintings here displayed were made in the toroidal and others 
on non-toroidal canvas). Each cell can take a grain of sand and the cell color 
corresponds directly to the grain color. A black cell is a cell with no grain and so there 
are no black colonies (no black walls either) because the background of the canvas is 
black. It would be very easy to enable different background colors. 
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3.2   Colonies of T. albipennis Artists 

As in [4] we will not explicitly consider the physical or chemical influences of the 
worker plus-brood cluster, there will be a cluster center for each colony nest. Instead 
they have considered distance to the cluster center. Each T. albipennis artist belongs 
to a colony Ci and each colony Ci has a nest center ci, which is a circle. Each nest 
center is a circle and is defined by a center: a point with coordinates (xi yi), and a 
radius roi. Note that colony nest centers are configured during sand-painting setup and 
remain unchanged). For a particular T. albipennis artist, the probability of picking or 
dropping a virtual grain sand in a particular zone of the artistic space, depends on the 
distance the zone is from the center of the ant respective cluster or colony center. A 
colony of Temnothorax ants, builds its nest in proportion to the existing population 
size—a bigger colony will build a bigger wall, further away from the colony center, 
considering a circular wall. Our artistic colonies will have different population sizes 
and thus they will “build walls” with different sizes, closer or further way from their 
nest centers.  
 

 

Fig. 2. Example of two colonies nest centers 

In order to create polychromatic artistic pieces each colony is associated with a 
color although two different colonies might be associated with the same color. This 
means that an ant belonging to a green colony will try to make a green wall, made of 
green virtual grains of sand and two green colonies compete for the virtual green 
grains. Ants may destroy the wall of a similar colony in order to collect grains to build 
their own nest walls. 

3.3   T. albipennis Artist Attributes, Perception Abilities and Behavior 

The state of a T. albipennis sand artist is given by: position coordinates (two real 
numbers), an orientation (0…360), the nest center and color of its respective colony. 
Note that an ant position corresponds always to a square cell. The perception of each 
ant is reduced to its own cell, but it is able to detect the nest center and move towards. 
The loaded virtual ants could wander around looking for their nests but moving in the 
nest direction, using the smallest length path, accelerates the painting process.  

The behavior of T. albipennis sand artists is very simple: they collect building 
material into their colony nests. They depart from the center of their colonies, collect 
a single virtual grain of sand colored with their colony color and return to their virtual 
nests where they try to deposit it. Picking up and droppings are stochastic activities. 
The distance an ant is from the respective colony center is r. For an unloaded artist, 
the probability of picking up a virtual sand grain is P(r) and for a loaded artist the 
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probability of dropping a piece of material is given by D(r). The quantities D(r) and 
P(r) are both influenced by the templates. For an artist, the function for dropping  
a virtual grain of sand will be maximum (DM) at the circumference with radius roi  
(r= roi) (P(r) will be minimum at r= roi). The probability of picking up a virtual grain 
of sand is basically formula D(r) in 1 adapted to several colonies. 

D(r) = DM

1+ τ r − roi( )2 . (1) 

A smaller or larger τ value of corresponds to a wall with respectively, a smaller or 
larger width. We could easily consider different values for this parameter for 
different colonies in order to increase a higher variety of patterns but it is a global 
parameter. The probability of dropping a virtual grain of sand is also D(r) of [4] 
adapted to several colonies. The function for picking up a virtual sand grain is 
minimal when r= roi and maximal (PM) on the most distant points from the 
circumference with radius roi.  

P(r) = PM 1− 1

1+ τ r − roi( )2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . (2) 

Both PM and DM are system parameters varying from 0 to 1. In fact, the values of 
these two parameters do not influence the global pattern but can slow down or 
accelerate the painting process. The behavior of our artificial artists is described in 
algorithm 1: 
 

 An unloaded ant will wander around randomly. Whenever it sees a virtual 
grain of sand of its own colony it will pick it up with a probability P(r). If it 
succeeds it will be a loaded artist. Otherwise it continues to wander around 
randomly. 

 A loaded ant will go directly towards its colony center if r > roi; it will 
wander around if r ≤ roi. It will try to drop its grain with probability D(r) 
whenever it is on a spot free of grains. When it succeeds it will be considered 
unloaded. 

Algorithm 1. T. albipennis sand painter behavior 

Wandering around means that an ant goes forward one step and rotate right some 
random degrees and then rotate left some random degrees. When the ants try to go 
forward outside the limits of the wall (a non toroidal canvas), they rotate randomly 
until they can go forward. 

When loaded T. albipennis artists go towards their nest centers they will stay there 
until they are able to deposit the loaded grain. This means that if it is easier to deposit 
they will sooner start looking for grains again. Parameter τ plays an important role 
here because when it is small, the probability to drop is higher inside the nest center 
and vice-versa. But as the wall is built the cells with high dropping probability are 
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progressively reduced. It means that after a while a lot of the loaded ants are 
insistently trying to drop their grains. Therefore, in each time step, with a bigger 
colony the global colony probability of dropping a grain is higher. 

3.4   Grain Colors and Distribution 

As we said before each colony will be associated with a color and thus we have only 
grains with colors that are associated with the existent colony colors. If we have four 
colonies that build magenta, blue, green and yellow walls, we will create sand 
painting material reduced to the colony colors. Circular walls with bigger center 
circles will need more grains but we distribute the grains in equal proportions for each 
color. 

4   T. albipennis Art: Pointillistic Circular Walls 

There are several parameters that we can vary: the number of colonies and consequent 
diversity of colors, the density and initial placement of grains placed on the canvas, 
the range of possible radius for the colony centers.  

 

Fig. 3. Varying τ. We see 3 monochromatic sand paintings on a non toroidal canvas, built by a 
colony composed of 126 ants with the same r0=76 and a density of grains of 49%. On the left 
painting τ=0,001, on the center τ=1,59 and on the right τ=27,7. 

The painting begins by setting the parameters and then in each time step, all the 
ants, asynchronously, execute their behavior. There is no end for the sand painting, 
but even in face of competition between colonies, it usually converges to a stable 
pattern. 

Let’s build some sand paintings using just on colony to illustrate the wall building 
process and visualize the effects of parameter τ. In the paintings displayed on Fig. 3, 
we have disposed randomly some grains (density of 49%), which were crafted by a 
colony of 126 individuals. The center of the colony was randomly placed. It is clear 
the effect that τ has on the thickness of the corresponding wall. 

In figure 4 we see 9 colored paintings, after playing with the values of relevant 
parameters. These paintings illustrate the diversity attained by the T. albipennis artists 
in spite of the existence of the same shape: the circle walls. 
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Fig. 4. Gallery of T. albipennis sand art. Nine sand paintings made from different parameter 
configurations where grains are disposed randomly on the canvas on a black background. In 
two of the paintings we can see the workers. 

The different values for τ, the number of colors/colonies, the grain density and the 
random placement of nests along with their different center radius give us plenty of 
diversity. The duration of sand painting is dependent on the diverse parameters, which 
influence the process like PM, DM, population size and grain density— It is more 
difficult to find a free spot on a dense area. The density of grains plays also an 
important role on the global pattern, controlling the level of pointillism. 

In order to expand pattern diversity we tried to change the initial distribution of 
virtual sand grains.  We considered canvas where the grains on the left had much 
more grains than on the right or where the center of the canvas was more or less dense 
than the rest of the canvas space. The results are depicted in Fig. 5. 
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Fig. 5. Gallery of T. albipennis sand art. Six sand paintings made from different parameter 
configurations where grains are heterogeneously distributed on the canvas (black background). 
On the left painting we can see the sand painter artists, colored white (when they are unloaded) 
and orange (when they are loaded). 

5   Future Work 

The T. albipennis artists use only the template mechanism as the source for pattern 
formation. In the near future we will combine it with the amplification effect of 
“grains attracting grains”. We know that Temnothorax ants exhibit a building 
behavior, which actively exploits existing heterogeneities in the building 
environment. For example, they can choose a nest cavity with pre-existing L shaped 
walls for their nest and close the wall, building an arc. Our artistic environment is 
more or less homogeneous and so this cannot happen but might be a future direction 
of our artistic research. We could use a new virtual material which cannot be picked 
up and start the painting process with a particular disposition of this material. We 
want to explore also the possibility of making walls with different shapes, beyond 
circles, using moving colonies that change nest site during the sand painting process 
and also colonies with no a priori template but where individuals negotiate their 
colony’s template (nest center) in a collective decision process. Finally, we want to 
work with colonies with dynamic colony sizes so that the walls they build enlarge and 
reduce during the sand painting process. 
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Abstract. This paper proposes an algorithm through which the development of 
computationally generated forms can be externally directed towards both 
functional objectives and intuitive design targets. More precisely, it presents a 
special version of Interactive Genetic Algorithm, which introduces Weighted 
Mutation as a method to support the long life of genes corresponding to favored 
phenotypic characteristics. At the same time, optimization processes towards 
operational goals are also enabled. A set of experiments is conducted on the 
case study of a building façade, which appears to provide a suitable means for 
the investigation of functional, as well as aesthetic issues. The results are 
positively assessed, since they prove that this new methodology broadens the 
capacities of standard Interactive Genetic Algorithms, shedding light on how a 
constructive human-machine relationship can benefit the design process. 

Keywords: Interactive Genetic Algorithm, Weighted Mutation, Human 
Evaluation, Algorithmic Design Control. 

1   Introduction 

The novelty brought forward by digital technologies raises a major issue regarding the 
notion of digital design control. Although technological progress has enriched the 
design domain with new innovative techniques, there is still an ongoing concern 
regarding the possible ways through which the algorithmic evolution of form can be 
directed towards a certain designer’s particular goals. In this direction, Interactive 
Genetic Algorithms (IGAs) constitute a suitable means of externally guiding the 
computational development: By requesting the human evaluation as an indispensable 
step for the algorithm to proceed, an IGA structure favors the dynamic integration of 
the designer into the process of evolution. 

However, the examples recorded so far refer to a sheer aesthetically-driven 
morphogenetic process, which does not involve any functionality restrictions. This 
fact challenges the contemporary research community to investigate new algorithmic 
structures, which will be capable of merging objective and subjective criteria into one 
single evolutionary procedure. This is also supported by Mutsuro Sasaki [7], who 
holds that it is exactly this unification of mechanics with aesthetics that will truly 
validate the generation of complex forms.  
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This paper presents a variation of the conventional IGA structure, which deals with 
a more elaborate version within the operation of mutation: The proposed technique 
uses mutation weighting, as a method of favoring the survival of genes that control 
desired characteristics, without at the same time prohibiting any optimization 
processes towards functional goals. The experiments are carried out on the case study 
of a building façade, created through the use of L-Systems. It is suggested that this 
architectural element serves as an appropriate means for suchlike investigation, since 
it can be assessed both objectively, in terms of functionality, and subjectively, in 
terms of aesthetics.   

The paper is structured as follows: The next section introduces the reader into the 
main principles of IGA and briefly outlines some characteristic examples. Section 3 
reports on the experimentation, by explaining the actual methodology through which 
the façade is generated and the way it is combined with the Weighted Mutation IGA.  
For the conclusions to be meaningful, the outcomes are compared to the equivalent 
results of GA and standard IGA tests. A further development of the algorithm is 
proposed in Section 4, while Section 5 summarizes the presentation. 

2   Interactive Genetic Algorithm 

An Interactive Genetic Algorithm (IGA) is actually based on the structure of a 
standard Genetic Algorithm (GA), which follows the Darwinian theory of evolution. 
In a GA, the characteristics that specify a certain population of organisms are stored 
in a multitude of individuals, in the form of chromosomes. These are strings encoding 
problem solutions and consist of genes [4]. The total make-up of genes constitutes an 
individual’s genotype, while the way the genotype is eventually expressed determines 
the phenotype of the individual.  

Each organism is evaluated with respect to an objective scoring function. 
Subsequently, a new organism is created, by copying (crossover) and locally altering 
(mutation) the genotypes of two randomly selected individuals, which become the 
parents of the next generation. To accelerate the evolutionary process, the likelihood 
of selecting fitter individuals has to be higher than the probability of selecting poorly 
performing ones; yet it is crucial that a small probability is left for those less fit 
organisms to be selected, so that the population’s characteristics do not converge early 
and the diversity of phenotypes is maintained during the initial stage of the 
algorithmic run. Once bred, the new organism is also evaluated and classified within 
the set of individuals, by excluding the less fit one. The whole process is repeated for 
a certain number of generations and the population is in this way directed towards the 
best performing solution.  

GAs form robust searching techniques and are widely used for finding solutions to 
complex problems. Yet it is important that the size of the population is fairly large, so 
as to allow the searching of many test points within the search space of the algorithm. 
In this light, the operation of mutation contributes drastically to the testing of 
manifold gene combinations, by giving weak permutations the opportunity of being 
replaced by stronger ones, which, in another case, might have been lost.  

In this direction, a typical IGA structure is not very different from a conventional 
GA methodology, though here it is the user that selects the individuals constituting 
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the parents of the next generation. By repeating the algorithmic sequence for a 
considerable number of iterations, the best-performing design finally complies with 
the user’s preferences. Astounding solutions can also be potentially generated, ones 
that could not have been achieved easily through alternative methodologies [8].  

This idea of human intervention into evolutionary processes has its origins in 
Richard Dawkins’ [3] seminal book “The Blind Watchmaker”, where he describes a 
technique of user-computer collaboration, referenced as Interactive Evolution (IE). 
This approach has spawned various applications in the design field, such as the 
system invented by William Latham and Stephen Todd, which uses constructive solid 
geometry techniques to evolve “virtual sculptures” [5].  

Referring to the IGA structure described above, a characteristic implementation 
concerns the “Drawing Evolver”, a computer-aided drawing tool, developed by Ellie 
Baker and Margo Seltzer [1]. Here human evaluation is introduced dynamically into 
the algorithm, yet Baker and Seltzer notice that human speed and patience become 
limiting factors, restricting both the possible number of generations and the size of the 
population. As a solution, they suggest an increase of the mutation rate, which results 
in an expansion of the search space of the algorithm. Another IGA application is 
related to the fashion design domain [2]. Here, a variety of design details is encoded 
into chromosomes and the user, through constant interaction with the system, directs 
the way those items are recombined and reconfigured.  

3   Presentation of the Experiments 

The examples recorded concern the implementation of subjective and intuitive 
preferences into an algorithmic process, yet the fitness evaluation does not comprise 
any assessment in terms of explicitly defined functions. What the Weighted Mutation 
principle intends to define is an algorithmic methodology, capable of merging 
scientific and personal objectives as a single inherent property. This section firstly 
presents the algorithmic structure through which the architectural façade is generated, 
as well as the first test results, involving the façade’s optimization towards lighting 
objectives by means of a Genetic Algorithm (GA). Then the structure is converted 
into an Interactive Genetic Algorithm (IGA), which enables the user’s external 
contribution to the algorithmic process. The Weighted Mutation principle is 
subsequently examined as a third, separate case. All experiments are developed in 
Processing Programming Language.   

3.1   L-Systems Generating an Architectural Façade 

The pattern selected as the façade’s main configuration is influenced by nature, 
particularly by the way plants and trees develop in time. The implementation of a 
façade in a GA for the purpose of lighting optimisation might be an issue already 
explored within the discipline of architecture [9]; however, this project doesn’t treat 
the lighting parameter as a technical issue, but as a principle of morphogenesis.  

The façade is generated through the use of L-Systems, which are algorithms 
simulating the development of multicellular organisms and plants [6]. Their structure 
is based on the technique of rewriting, referring to the generation of complex objects 
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by successively replacing parts of a simple initial object; this is achieved through the 
use of rules, applied in a parallel process. In this particular project, L-Systems are not 
only employed because of the formalistic resemblance between natural forms and the 
produced patterns, but also because of the fact that small changes in the rewriting 
rules can result in significantly contrasting outcomes.  

The façade’s pattern consists of four branching units and is created according to 
the following procedure: At the beginning, four different polygons are placed at the 
corners of a rectangle, which has the same proportions as the façade. The orientation 
of each polygon is not set by the designer, but is randomly selected by the computer. 
This selection however is constrained by setting a maximum value for the angle 
formed by the central axis of each polygon and the associated side of the rectangle.  

 

Fig. 1. Three different façade patterns deriving from the same algorithmic process 

The polygons constitute initial components, axioms in the L-Systems vocabulary, 
which, at the next stage of the form development, are replaced by new ones, 
according to the applied rewriting rules. In this case, for each polygon “B”, the 
substitution is defined by the rule “B  B (+B) (-B)”, which means that every 
polygon is branching off two identical selves, one on each of its two sides. The new 
polygons are also subject to specific rules, such as the position of their pivot point, 
their rotation angle and a scaling factor which determines their proportion in relation 
to the previously generated polygon. The pivot points and the rotation angles are 
explicitly set; however, the scaling parameter is intentionally left to the computer to 
define so as to allow a random generation of thinner or thicker branches. The process 
is repeated by following the principle of recursion, which means that a function calls 
itself within its own block. To prevent this from continuing infinitely, a condition 
should be specified for the function to stop iterating. In this experiment, this is 
determined by the number of branching substitutions to be executed, which is also 
randomly selected by the computer within a certain range.  

The simple L-System algorithm described above forms a principal process, called 
four times to generate the four units mentioned before. Figure 1 reveals that the same 
algorithm can result into different patterns. The L-System units form the solid part of 
the façade, while the remaining surface constitutes the façade’s openings, allowing for 
natural light penetration. 
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3.2   Combination with a Genetic Algorithm for Lighting Optimization 

The L-System based algorithmic sequence is subsequently combined with a GA, 
which optimizes the façade in terms of the overall amount of light that penetrates it. 
If, for instance, the desired proportion of the openings on the whole surface of the 
façade is 60%, the algorithm will search for the best solution of creating a solid part 
of 40%. This can be achieved through different configurations, a fact which is 
positively assessed, as it will allow the user -in a further step- to select among 
different optimised results, according to his/her personal preferences.  

The evaluation function within the GA calculates the disparity between an 
individual’s performance and the pre-specified goal, which means that the lower this 
value, the higher the fitness of the individual evaluated. Although a GA generally 
deals with large population sizes, here the experiments involve a population of only 
25 individuals, due to the fact that the results will subsequently need to be compared 
with those deriving from the IGA experiments, which, as has already been mentioned, 
need to involve fewer individuals, so as not to cause human fatigue.  

 

 
 

(a) 
 

 
 

(b) 

Fig. 2. Two GA Convergence Tests and Population Phenotypes 
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Regarding the experiments, two convergence tests were conducted, so as to test the 
similarity of the converging results, displayed on the right of each graph (Figures 2a 
and 2b). The algorithm ran for 300 iterations, using a mutation rate of 5%. The results 
show that elitist individuals, although performing almost equally in terms of 
functionality, may demonstrate a significant differentiation in the way the L-System 
branches are arranged, which reveals that the searching space of the algorithm contains 
multiple global optima. In this context, the challenge is to define an algorithmic 
process that will produce a variety of configurations in one single algorithmic process.  

3.3   Conversion into an Interactive Genetic Algorithm 

As a next step, the GA is converted into an IGA, with the user’s task being to select 
the two individuals breeding the next generation. Once the parents are selected, the 
process follows the same structure as in the previous example. To make a fair 
comparison between the two experiments, the probability of mutation is intentionally 
kept at the same rate as before, that is 5%, and the population refers to a number of 25 
individuals. Moreover, the algorithm runs for 300 iterations, having as a pre-specified 
target the value of 60%. Since such a procedure involves by definition the user’s 
aesthetic preferences, these have to be taken into consideration for the evaluation of 
the results. In this particular experiment, the desired goal is characterised by a dense 
pattern, consisting of multiple, relatively thin branches.  

 

Fig. 3. IGA Convergence Test and Population Phenotypes 

A comparison between the IGA experiment (Figure 3) and the GA tests reveals 
that the standard GA approach performs better in terms of functionality; yet it can be 
seen that the IGA phenotypes show a higher degree of variety, as they have not 
converged to one single solution; this is considered as positive. It can also be 
observed that the elitist individual (right bottom corner) meets the external user’s 
expectations, as specified before, since it corresponds to a pattern that consists of 
multiple varying-thickness branches. On the contrary, the GA best performing 
individuals do not achieve this goal. However, the fact that the process has to be 
repeated for 300 iterations is negatively assessed, since it causes the user’s burden.  
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3.4   The Weighted Mutation Principle  

The Weighted Mutation Principle is presented as a structure through which the 
aforementioned problems can be overcome. It mainly involves a combination of GA 
and IGA methodologies: The user selects two individuals out of every new 
population; however, these do not constitute the parents of the next generation, but are 
rather stored in memory, forming the data to be used in a further stage of the 
evolution. Following the standard Genetic Algorithm (GA), two relatively fit 
individuals are randomly selected to become the parents of a new organism. The new 
genotype is subsequently compared to the user’s selections: Each gene is compared to 
both of the corresponding genes of the externally chosen individuals. In case the new 
gene’s value is different from both, its probability to mutate is increased to 10%, thus 
expanding the search space of the algorithm. If the value coincides with one of them, 
the mutation probability is reduced to 3.5%, while lastly, if it happens that all three 
values are identical, it becomes 1.5%. It is suggested that this methodology requires a 
smaller number of iterations to generate considerable results, since the mutation 
probability serves as a tool for a more efficient manipulation of the search space of 
the algorithm. Figure 4 illustrates the results of the experiment performed for a 
population of 25 individuals, which ran for only 50 iterations. The aesthetic goal is 
the same as before.  

 

 

Fig. 4. Weighted Mutation IGA Convergence Test and Population Phenotypes 

As can be seen from the graph, the average fitness value got stuck to a local 
optimum, after about 25 iterations. However, the phenotypes produced reveal that the 
user has actually managed to direct the algorithmic process towards the desired goal.  

A more sophisticated methodology would take into consideration not only the last 
generation’s selections, but also the ones indicated in the previous ones. In this 
direction, the mutation probability would be reduced according to the number of times 
a specific gene is selected by the user.  

The following table shows the mutation probabilities for a history of one, two and 
three generations.  
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Table 1. Mutation probabilities used in history-based experiments 

Number of generations Genes Similarities 
 Two  One  None 

1 1.5 3.5 10 

2 1.0 3.0 10 

3 0.5 2.5 10 

 

 

Fig. 5. 2-Generation History Weighted Mutation IGA Convergence Test and Population 
Phenotypes 

 

 

Fig. 6. 3-Generation History Weighted Mutation IGA Convergence Test and Population 
Phenotypes 

Figures 5 and 6 illustrate the implementation of this process for two and three 
generations respectively. The results imply that the greater the number of generations 
taken into account, the better the process is guided towards both functional objectives 
and aesthetic goals. Although the average fitness values do not really converge to the 
optimum solution, which is the value of zero, they do perform significantly better than 
the ones of the standard IGA methodology.  
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4   Future Work 

A more sophisticated version of the algorithm would concern the method of 
comparing the genes of the individuals selected by the user to the one selected by the 
computer. In the algorithm presented before, this comparison involves a binary result, 
meaning that if the two numbers compared are slightly different, they will still be 
marked as not equal. This method can be enhanced so that the probability of mutation 
does not depend on the equality or non-equality of the numbers but on the difference 
or the ratio of those two. The user could then specify the values of the mutation 
probability according to the comparison results. 

Moreover, further experiments could involve multiple users assessing the process 
with respect to whether they have managed to get the desired results. The 
effectiveness of the proposed methodology could also be tested through the 
combination of different algorithms with a Weighted Mutation IGA. 

5   Conclusions 

This paper has been built on the basis of an Interactive Genetic Algorithm, which 
utilizes Weighted Mutation as a technique of guiding the evolution of form towards 
objective, as well as subjective criteria. In this structure, the operation of mutation, 
instead of performing in a blind, deterministic manner, contributes drastically to the 
user’s personal manipulation of the search space of the algorithm. The results, carried 
out on the case study of a building façade, have been positively assessed, since they 
proved that the capacities of the standard Interactive Genetic Algorithm can thus be 
broadened. Apparently, the proposed algorithmic structure extends beyond the 
boundaries of this particular project, by elucidating ways through which the design 
process can be enhanced.  
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Abstract. Biped locomotion for humanoid robots is a challenging problem that 
has come into prominence in recent years. As the degrees of freedom of a 
humanoid robot approaches to that of humans, the need for a better, flexible and 
robust maneuverability becomes inevitable for real or realistic environments. 
This paper presents new motion types for a humanoid robot in coronal plane on 
the basis of Partial Fourier Series model. To the best of our knowledge, this is 
the first time that omni-directionality has been achieved for this motion model. 
Three different nature-inspired optimization algorithms have been used to 
improve the gait quality by tuning the parameters of the proposed model. It has 
been empirically shown that the trajectories of the two specific motion types, 
namely side walk and diagonal walk, can be successfully improved by using 
these optimization methods. The best results are obtained by the Simulated 
Annealing procedure with restarting.  

Keywords: Biped robot locomotion, gait planning, coronal plane, sagittal plane, 
omnidirectional locomotion, simulated annealing, genetic algorithms. 

1   Introduction 

Gait planning is essential for a robot to navigate in an environment. Especially 
humanoid robot gait planning problem has come into prominence due to the recent 
research trend toward human-like robots and the difficulty of generating stable 
motions for biped locomotion. Several different gait planning models have been 
developed for humanoid robots. These models rely on various mathematical and 
kinematic approaches. ZMP based motion model which was originally introduced by 
Vukobratović and further developed and extended by others [1-3], is one of the most 
popular gait generation models in mobile robotics. In this approach, the main 
objective is to design robot's motion in such a way that the zero moment point (the 
point where total inertia force equals to zero), does not exceed a predefined stability 
region. Another popular gait generation model considers the Center Of Mass (COM) 
to evaluate the quality of the generated gait [4]. Central Pattern Generator (CPG) 
method [5] generates gaits by considering a lattice of neurons for the production of 
repetitive patterns.  

As a recent work, the Partial Fourier Series (PFS) method [6] was introduced for 
generating a forward walk motion in the sagittal plane. The parameters of the proposed 
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model were optimized using a Genetic Algorithm. The PFS method is easy to 
implement on humanoid robots, and promising results has been observed for a 
forward walk motion in [6].  

We extend the work by [6] by applying the PFS model for different types of biped 
motions. The main objective of this paper is to introduce omni-directionality to PFS 
motion model. The first step toward this goal is to show that this motion model is 
suitable for biped locomotion in coronal plane in addition to the sagittal plane. For 
that purpose, the models of two important motions for a humanoid robot, namely, side 
walk and diagonal walk are introduced in this plane. These motions are constructed 
based on the physical and kinematic models. However, their parameters are needed 
to be optimized. Therefore, an optimization step is needed. In this paper, the 
parameters of PFS model are optimized by using nature-inspired methods:  variations 
of Simulated Annealing and Genetic Algorithms. This paper presents both the 
optimized parameters and a comparative analysis of these methods for humanoid gait 
planning problem.  

The rest of the paper is organized as follows. First, we present a brief review on the 
humanoid robot mode used in the experiments and its basic motion model. Then, the 
selected Simulated Annealing and Genetic Algorithms are reviewed. After this 
review, the two new motion types in coronal plane are introduced. It has been shown 
that the robot is able to perform a side walk and a diagonal walk using the Partial 
Fourier Series model. After presenting the model, the optimization processes are 
discussed. Finally, the experiments and the results are presented followed by the 
conclusion.  

2   Motion Model 

The PFS model was first introduced by [6] for the simulated Aldebaran Nao robot 
model in Simspark simulation environment. Simspark is the official simulator for 
RoboCup competitions and uses ODE (Open Dynamics Engine) for physics 
simulation [7]. We use the same robot model for presenting our proposed motions.  

Nao robot has 22 degrees of freedom of which only 12 have been used in this 
motion model. The height of the robot is 57 cm and its weight is 4.3 kg. Since the 
simulated Nao robot (Fig. 1(b))  is a realistic representation of the real Nao humanoid 
robot,  its joint structure (Fig. 1(c)) is the same with the real one. 

The human walking motion can be modeled by a smoothed rolling polygonal shape 
and a periodic function accordingly. In this sense, one can use the principle of Partial 
Fourier Series (PFS) in order to decompose the bipedal walk’s periodic function into a 
set of oscillators [9]. Assigning these oscillators to the joints of a humanoid robot 
enables one to develop a gait for the robot. According to [4], the main periodic 
function for the bipedal walk can be formulated as following: 

            ∑ sin                                (1) 

Where N is the number of frequencies (degrees of freedom which are used in gait 
definition), C is the offset, …  are amplitudes, T is the period and …  are phases. 
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Fig. 1. a) The Aldebaran Nao robot at RoboCup Standard Platform League [8] b) Simulated 
Nao Robot at Simspark environment, c) Nao Robot Structure [7] 

This PFS model ensures the right and left feet of the robot alternately perform 
swing and support roles. Note that, this alternation can be achieved by adding a shift 
of  for pitch joints of the right foot. The above mentioned oscillators give the desired 
angle of joints in a specific time. In order to control the robot with these joint angles, 
we use a simple proportional control method: 

 

                                  (2) 
 

Sending the outcome to the robot’s motion interface and then to Simspark causes the 
joints to move with the desired speed and value.  

3   Motions in Coronal Plane 

There are three major planes in which humanoid robot locomotion is considered: 
Sagittal plane, Coronal plane and Transverse plane. Forward and backward walk 
motions moves the robot in the sagittal plane. Motions in Coronal plane move the robot 
toward the sides. And finally, Transverse plane motions change the orientation of the 
robot. In this paper, we have extended the PFS model which is proposed for forward 
walk [6] into a model for coronal plane motions: side walk and diagonal walk.  

3.1   Side Walk 

The side walk motion is a coronal plane motion which does not change the orientation 
of the robot. The side walk motion involves the oscillation of two types of joints, 
namely, the pitch and the roll joints. We use the pitch joints to produce single support 
locomotion. This is based on a simple intuition rather than a detailed kinematics 
analysis. The idea is closing the swinging foot’s pitch joints, that is, assigning values 
to these joints so that the foot is detached from the ground and moved toward the 

(a) 

 
(b)                   (c) 
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robot’s torso. Opening pitch joints has exactly the reverse meaning. Closing pitch 
joints opens space for the swinging foot to move along the coronal plane and prevents 
from collision with the ground. At the same time, the support foot’s pitch joints are 
opened to expand the space created for the swinging foot. For roll joints however, 
opening means, assigning values to the joints so that the foot moves away from the 
torso side ward and closing means the reverse action.    

Both feet’s roll joints have to be opened to opposite sides simultaneously to their 
respective leg’s pitch joints. When the swinging foot touches the ground, the pitch 
joints should be close to their offset value to ensure sideward stability. This is where 
the roll joints have to be at their maximum values in order to maximize the force 
applied to the ground. In other words, there should always be a /2 phase difference 
between the roll and pitch joints of the same leg. At the same time, in order to ensure 
that roll joints are closed and opened in opposite directions there should also be a 
phase difference of  between the corresponding roll joints of the two legs. Note that, 
in order to maintain a support-swing sequence, a phase difference of  is applied 
between the corresponding pitch joints of the two legs.  

Table 1. The joint oscillators for a side walk motion in the coronal plane 

Left Leg Joints Right Leg Joints sin 2 2  sin 2  /2   sin 2  /2  sin 2 /2   sin 2   sin 2   sin 2
 sin 2   sin 2   sin 2   sin 2 /2  sin 2 2   

 

The set of equations in Table 1 presents the coronal plane motion gait planning 
equations for each joint. One has to note that, in the kinematic design of the simulated 
Nao robot, the roll joints’ y axes (horizontal) point to the opposite directions [7]. That 
is the reason for using negative coefficients for RShoulder2, RThigh1 and Rankle2 
joints. The offset and amplitude values of the corresponding Thigh2 and Ankle2 joints 
are initially set as the same for the simplicity of the model (   , ). The + 
and – superscripts in the formulation of some joints represent positive or negative half 
of their sinusoids respectively. The formulation in Table 1 results in a side walk 
motion with an average speed at 40 cm/sec. However, the parameters are needed to be 
optimized for a faster and straight sidewalk. 

3.2   Diagonal Walk 

Diagonal walk is another useful motion in the coronal plane. The robot is supposed to 
plan a straight trajectory line at a 45 degree angle with the horizon, without changing 
its orientation. The same intuition for the side walk motion also applies to the 
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diagonal walk. One has to note that, the diagonal walk motion is a variation of a side 
walk motion for which both forward and sideward force vectors are applied. This is 
why an additional joint, the hip joint in Fig1(c), is used to create the required forward 
force. Therefore, the diagonal walk motion model can be given as an extended side 
walk model with the following two PFS formulations (one for each leg’s hip joint).  

                             sin  /2    
                    (3)  sin 2  /2   

Note that, unlike other joints, amplitudes for the right and left hips are not necessarily 
the same. Just like side walk, we assign parameters to CHip, ALHip and ARHip based on a 
simple reasoning. The resulting diagonal walk motion does not follow the desired 
trajectory. Snapshots of these initial side walk and diagonal walk motions are shown 
in Fig. 2. 
 

  

(a) (b)

Fig. 2. The motion patterns before optimization (a) side walk (b) diagonal walk 

4   Optimization Methods 

We have investigated Simulated Annealing and Genetic Algorithm optimization 
methods in order to optimize the parameters of the motion model of a humanoid robot.  

Simulated Annealing (SA) is a global optimization method which applies a variation 
of Hill Climbing search to improve the solution quality but performing probabilistic 
random moves to escape from local optima. The probability value decreases 
exponentially according to a function of the temperature (T) value as in the original 
annealing process [10]. At higher values of T bad moves are more likely to be allowed. 
As T closes to zero, bad moves are less likely to happen, until T is zero in which case, 
the algorithm behaves like Hill Climbing. In this paper, we have tested two 
configurations of Simulated Annealing procedure. One configuration is the simple SA 
algorithm as mentioned above. The other includes restarting after a cooling procedure.  

In SA with restarting (SAR), the simulated annealing algorithm is iterated inside a 
main loop which repeatedly resets the temperature to its initial value. A small cooling 
factor which causes sharp temperature decrease after the evaluation of each individual 
is used in the annealing process. This reduces the number of annealing iterations and 
the number of times that SAR considers to replace the current individual with the next 
one. In such a case, the probability of replacing the current individual is less than that 
of SA without restart. 
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Fig. 3. Pseudo code for the simulated annealing with random restart 

In Genetic Algorithms (GAs), a population of individuals is evolved through 
generations. Each individual contains a possible solution to the problem in the form of 
numerical values. In order to generate the next population, individuals undergo 
several operations [10]. There are three major operations in a simple Genetic 
Algorithm: selection, crossover and mutation. A standard genetic algorithm approach 
is used in this research. The corresponding parameters for these optimization methods 
are presented in the next section. 

5   Optimization of Motion Models 

As discussed in the previous sections, the constructed PFS model produces the 
specified motion patterns. However, the parameters are needed to be tuned to obtain 
the motion trajectories in their desired sense (e.g., the speed of the side walk motion 
needs to be fastened and the orientation should be kept constant during a diagonal 
walk). Nature-inspired optimization methods are suitable for addressing these types of 
problems due to their size and complexity. In this work, three optimization methods, 
namely, Simulated Annealing (SA), Simulated Annealing with restarts (SAR) and 
Genetic Algorithms (GA) have been utilized to optimize the parameters and a 
comparative analysis is provided for humanoid gait planning problem.  The following 
three subsections present the settings of the algorithms. Different fitness functions are 
constructed for each motion type.  

The fitness function for the side walk is expressed as : 
  ,       ∑ ∑ ∑

       (4) 

This fitness function has been adapted from [6]. Here  is the final distance to 
the target at the end of each simulation trial. The target is fixed and defined as the 
location of the ball at the center of the field.  is the average oscillation of the torso 

Initialize (Curr , CurrentFitness = Fitness(Curr) , T) 
for (iteration) do 
      reset temperature 
      while (T >= End Temperature) 
 Next ← ComputeNext () 
 ∆E ← Fitness(Next) – CurrentFitness 
 if(∆E < 0) 
       Curr ← Next 
       CurrentFitness ← CurrentFitness + ∆E 
 else 
         ∆ /  
        if(p > 0.5) 
            Curr ← Next 
            CurrentFitness ← CurrentFitness + ∆E 
 if (Fitness < ∆E) 
           CurrentFitness ← Fitness 
 T ← T * CoolingRate 



440 S. Asta and S. Sariel-Talay 

(in radians per second). The oscillation values are received from robot’s gyro which is 
installed on the torso. Note that, the Simspark is a realistic simulation environment in 
which actions are nondeterministic and noisy. That is, the outcome of an action is not 
completely predictable as desired. Therefore, the fitness value of a parameter set is 
determined as an average of 3 simulation trials. 

Similarly the fitness function for the diagonal walk is designed as : 

                               (5) 

Where  is the distance to the target from the initial location of the robot. The 

target is simulated as the fixed location of the ball at the center of the field.  is the 
average absolute value of the horizontal angle detected by the robot’s camera during a 
trial.  

                                 ∑ | |
          (6) 

In both equations (4) and (6), N is the number of simulation cycles in each trial. A 
simulation cycle is 0.02 sec. Duration of each trial is 10 and 7 seconds for the 
diagonal walk and the side walk respectively. The initial location of the robot at the 
start time of a trial is (-8,0) for side walk and (-5,5) for diagonal walk. For the side 
walk experiments, the robot’s orientation is set to an angle such that torso’s x axis is 
parallel to the midfield line. At the start of each trial, the robot’s head is rotated 90  
and 45 degrees toward the target(i.e., the ball) for the side walk and diagonal walk, 
respectively. Corresponding angle for the head is kept constant during a trial. 

The selected methods and the parameter values for GA, SA and SAR during the 
optimization of side walk and diagonal walk gait planning are shown in Table 2. 

Table 2. The experimental settings for the optimization algorithms 

Genetic Algorithm 

Pmutation Pcrossover 
Crossover 

Type 
Population 

Size 
Stop Criteria 

0.55 0.85 Uniform 50 Similarity of population 

Elitism Selection 
Policy 

Mutation 
Type 

Fitness 
Function 

# of Parameters 

10% Proportional Random from 
the range of 
joint values 

Minimization 8 (SW) 

Simulated Annealing 
Initial 

Temperature 
Cooling 

Rate 
End 

Temperature 
Fitness 

Function 
# of Parameters 

4000 0.99 0.001 Minimization 11 (DW) 
Simulated Annealing with Restart 

Initial 
Temperature 

Cooling 
Rate 

End 
Temperature 

Fitness 
Function 

# of Parameters 

400 0.5 0.001 Minimization 11(DW)/8(SW) 
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In GA, each individual represents the parameters … and T in equations of 
table 1 along with the speed in Equation (2). All the represented values in an indivial 
are double. SA in its original form has been used for diagonal walk optimization. Each 
individual in SA represents the parameters …  and T in equations of table 1, and 
the , ,  ,   in Equation (3). Note that, diagonal walk has 3 more 
parameters as compared to side walk , while speed is not considered as a parameter for 
Diagonal Walk. SAR has been tested and applied on both motions with the same 
setting. In SAR, the cooling rate is set to a lower value than that of the simple 
SA and the annealing is performed fewer times (20 times).  

6   Experimental Results 

The selected optimization algorithms have been tested for optimizing the parameters 
for the sidewalk and diagonal walk motions. Each algorithm on each respected motion 
type was run for 10 times. Since the simulation environment is non-deterministic, the 
fitness value for each individual is determined as an average of 3 evaluations.  

Table 3. The overall best fitness values averaged over 10 runs for the two motion models 

Side walk Diagonal Walk 
 µ σ Confidence 

Interval (99%) 
 µ σ Confidence 

Interval (99%) 
GA 7.14 0.35 6.79 - 7.49 SA 3.17 0.18 2.99 - 3.35 

SAR 5.83 0.39 5.44 – 6.15 SAR 2.29 0.13 2.16 - 2.42 

 
The overall results (with the 99% confidence interval) are presented in Table.3. As 

can be seen, SAR performs better than SA and GA.  It results in a lower mean fitness 
value among 10 runs and there is no overlap between the interval values. 

SAR outperforms GA for the side walk motion. However at some points, the 
SAR shows a bad performance which closes it to the performance of GA. One other 
interesting fact is that sometimes the GA shows a better performance than its mean 
performance and closes down to the SAR’s worst performance. This is due to the 
random nature of GA which is much more emphasized than SAR 

A single run’s comparative result is presented in Fig4 (a). As can be seen from 
these results, SAR can find the improved parameters in less than 250 iterations for 
the diagonal walk in one single run. This is equivalent to running the simple SA 
algorithm with the parameters in Table 2 for 10 loops with restarts. This 
comparative study illustrates that SAR outperforms the simple SA which is not able 
to find a reasonable result even in more iterations.  When the performance of SAR 
is analyzed for two different motions, the convergence to the improved parameters 
for the diagonal walk has been observed in later iterations compared to that of the 
side walk. This is due to the structure of the diagonal walk which uses an additional 
joint (hip joint).  
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Fig. 4. Single run results of (a) GA, SAR for side walk. (b) SA, SAR for diagonal walk. 

The improved side walk motion (resulting from SAR optimization) has a speed of 
55 cm/sec (which is slightly better than its original version at 40 cm/sec) and the 
deviation from a straight baseline is considerably small. The diagonal walk motion 
with the optimized parameters ensures the robot to keep its orientation at a 45 degree 
straight line toward the target, and its speed is 35 cm/sec. The snapshots of the 
resulting motions are shown in Fig 5. 

 
(a) (b) 

Fig. 5. (a) improved diagonal walk (b) improved side walk 

7   Conclusions 

In this work, we have shown that the PFS model can be successfully extended for 
omni-directional motions on humanoid robots. However, an optimization step is 
needed to specify the tuned parameters for the PFS model for different motions. It has 
been empirically shown that the optimization can be performed by using nature-
inspired optimization techniques. A comparative analysis of three optimization 
methods is given for gait planning of two motion models for the simulated Nao robot 
in Simspark environment. As the experimental results illustrate, the best parameters are 
obtained by using Simulated Annealing with restarts. These best parameters produce 
the desired motion trajectories. The future work includes a general omni-directional 
gait planning based on the introduced PFS model for all motion directions. 
 
Acknowledgement. Authors would like to thank Ismail Hakki Yadigar for his 
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Abstract. This paper presents an experimental comparison of a selection hyper-
heuristic approach with several heuristic selection and move acceptance 
strategy combinations for the Short-Term Electrical Power Generation 
Scheduling problem. Tests are performed to analyze the efficiency of the 
combinations using problem instances taken from literature. Results show that 
the hyper-heuristic using the random permutation descent heuristic selection 
method and the only improving move acceptance scheme achieves the best 
results on the chosen problem instances. Because of the promising results, 
research will continue for further enhancements.  

Keywords: Short-term electrical power generation scheduling problem, hyper-
heuristics, unit commitment problem, optimization, scheduling. 

1   Introduction 

The short-term electrical power generation scheduling (SEPGS) problem is a 
constrained optimization problem, which aims at selecting operating units and 
determining the working hours of the units to produce power at a minimum cost while 
providing the hourly forecasted power demand without violating any constraint. 

In literature, this scheduling problem is also known as the unit commitment 
problem and it attracts great interest in the business world as well as in the academic 
world, since optimal scheduling decreases the power generation costs significantly. 
Due to this, many optimization techniques, such as dynamic-programming [1], 
Lagrangian relaxation [2], tabu search [3], simulated annealing [4], branch and bound 
[5], priority lists [6], greedy algorithms [7], ant colony optimization [8] and 
evolutionary algorithms [9,10,11,12,13] have been applied to the SEPGS problem. 

In our previous study [13], the performance of a hyper-heuristic approach with the 
random permutation descent heuristic selection method and the only improving move 
acceptance scheme is compared with other optimization techniques found in literature 
on four commonly used benchmark data sets. This paper explores the various 
heuristic selection and move acceptance method applications to the SEPGS problem 
to determine the best combination.  
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2   Short-Term Electrical Power Generation Scheduling Problem 

The objective of the SEPGS problem is to minimize the power generation costs over a 
given time period. Power generation costs include fuel costs, start-up costs and 
maintenance costs. Penalty coefficients are used to handle infeasible candidate 
solutions. These penalty values are the demand penalty, which occurs when the 
predefined hourly power demand is not fulfilled by the candidate solution, and the 
up/down penalty, which is added to the objective function due to additional 
maintenance costs, when an up/down constraint is violated for at least one generator. 
The following parameters are used in the SEPGS formulation. 

Table 1. Parameters used in the definition of the SEPGS 

Parameter Explanation 
Pi(t) generated power by unit i at time t 
Fi(p) cost of producing  p MW power by unit i 
PD(t) power demand at time t 
PR(t) power reserve at time t 
CSi(t) start-up cost of unit i at time t 
xi(t) duration for which unit i has stayed online/offline since hour t 
vi(t) status of  unit i at time t (on-off) 

Turning a power unit on, brings an additional cost, which is called the start-up cost. 
The start-up cost depends on the type of the corresponding power unit and the amount 
of time the unit has stayed offline before starting to operate. This cost is calculated as 
shown in Eq. 1.  
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where tcoldstart defines the number of hours that it takes for the generator to cool down. 
This value is used as the threshold to determine, whether the start-up is a cold or a hot 
start-up depending on the generator type. The cost of a hot start-up is higher than the 
cost of a cold start-up. 

The minimum up/down operational constraint defines the minimum up-time tup and 
the minimum down-time tdown of a unit. According to this constraint, a generator 
should operate tup hours straight after becoming online, or it should stay offline tdown 
hours before starting to operate. When this constraint is violated by any generator, a 
penalty cost, named the up/down penalty, is added to the power generation cost. The 
up/down penalty constraint is formulated in Eq. 2. 
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The fuel cost depends on the amount of power produced by each online generator for a 
given time slot. The predetermined power demand and the power reserve requirements 



446 A. Berberoğlu and A.Ş. Uyar 

need to be fulfilled for each time slot as given in Eq. 4 and Eq. 5 while keeping the 
generated power of each unit within its minimum and maximum values as in Eq. 6. For 
N generating units and T hours, the SEPGS objective function is shown in Eq. 3. 
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The fuel cost of generating p MW power for the i-th unit is calculated using the Eq. 7. 
Fuel cost of a power unit i depends on three parameters, a0i, a1i and a2i, which are 
predetermined for each generator. Commonly in literature, the lambda iteration 
technique [10] is used with this formulation to allocate the required load demand 
between the operating generators in each time slot while minimizing the total power 
generation costs. 
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3   Application of Hyper-heuristics to the SEPGS 

Many heuristics exist in literature to solve complex optimization problems. Since 
heuristics require information and experience about the problem, it is difficult to adapt 
a heuristic to a specific problem. Therefore, a single heuristic can not be developed 
which is applicable to a wide range of optimization problems. To overcome this 
limitation, hyper-heuristic methods [14] are introduced. 

Selection hyper-heuristics differ from heuristics, since they do not directly operate 
on the solution space. Instead, they are used to select a heuristic from a set of low 
level heuristics, which will be applied on the solution space [15]. Hyper-heuristics do 
not need problem specific knowledge to operate; therefore, they are defined as 
problem independent methods. Therefore, they can be successfully applied to a wide 
range of optimization problems with varying data sizes [14]. 

A selection hyper-heuristic process contains two phases: heuristic selection and 
move acceptance [14, 15]. In the heuristic selection phase, a decision needs to be 
made for the heuristic, which will be applied to the current solution candidate, either 
randomly or with respect to certain performance indicators. The move acceptance 
mechanism decides whether the new candidate solution replaces the current solution 
according to the selected move acceptance criterion.  
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For the heuristic selection mechanism, different strategies are proposed [14, 15]. In 
this study, six different heuristic selection strategies are incorporated into the hyper-
heuristic approach. These are: simple random (SR), random descent (RD), random 
permutation (RP), random permutation descent (RPD), greedy (GR) and choice 
function (CF). 

Simple random heuristic selection strategy chooses a heuristic randomly. Random 
descent is similar, but the selected heuristic is applied to the solution repeatedly, until 
the solution cannot be improved anymore. In the random permutation strategy, a 
permutation array of heuristics is created randomly and the heuristics are applied to 
the solution in the provided order. In the random permutation descent, heuristics are 
applied repeatedly in the provided order, until they do not improve the solution. In 
some hyper-heuristic frameworks [15], the set of low level heuristics contains both 
mutational heuristics and hill climbers. If the selected heuristic is a mutational 
heuristic, then a hill climber is applied to the solution; otherwise, only a hill climber is 
applied and the fitness value of the resultant solution is calculated before the move 
acceptance phase. 

Greedy methods apply all low level heuristics to the candidate solution at the same 
iteration and select the heuristic that creates the best solution [14, 15].  

In Choice function heuristic selection method, a score is assigned to each heuristic. 
This score depends on three performance criteria [14, 15]. First criterion is the 
individual performance of a heuristic denoted with f1(hi). Second criterion is the 
performance of a heuristic denoted with f2(hi ,hk), when it is used in combination with 
other heuristics. The last criterion is the elapsed time since the last heuristic was used. 
At each iteration, these scores are calculated for each heuristic. The performances of 
the heuristics are computed as given in Eqs. 8-11. 

    (8) 

 
(9) 

 (10) 

 
(11) 

where In(hi,hk) and Tn(hi,hk) are the changes in the fitness function and the amount of 
time taken, respectively, when the nth last time the heuristic hk was applied after the 
heuristic hi . In Eq. 11, α, β and δ are the relative weight factors used to calculate total 
scores of each heuristic.  

For the move acceptance phase, four different strategies [14] are used in this paper. 
These are accept All Moves (AM), accept Only Improving Moves (OI), accept 
Improving and Equal Moves (IE) and the Great Deluge (GD) strategies. In the AM 
strategy, all moves are accepted. In the OI strategy, improving moves are accepted, 
but all non-improving moves are rejected. In the IE strategy, moves which improve 
the solution or does not change the fitness of the solution, are accepted.  

In the GD move acceptance algorithm, the fitness of the initial solution is 
calculated and this value is set as the initial level value. Then, the down rate value is 
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determined using Eq. 12. After a heuristic is applied to the candidate solution, the 
fitness value of the resultant solution is calculated. If the fitness value is better than 
the level value, the level is decremented by the DownRate value and the resultant 
solution is replaced with the current solution; otherwise, the resultant solution is 
discarded and the next heuristic is applied to the current solution. 

(12) 

where BestResult is the best result found in literature for this problem so far and f(s0) 
is the fitness value of the initial solution. 

4   Experiments 

In this paper, selection hyper-heuristics with different heuristic selection and move 
acceptance strategy combinations are applied to the SEPGS problem. A binary 
representation is used with a length of N*T, where N is the number of units and T is 
the number of time slots. The variables in a solution take the values 0 or 1 to show 
that the corresponding power unit is either off or on for the corresponding time slot.  

Seven operators are used as low level heuristics in the proposed approach. These 
operators are taken from [9], where they are used as mutation operators in a genetic 
algorithm applied to the same problem. These are: mutation with a probability of 1/L, 
mutation with a probability of 2/L, where L is the solution length, swap-window, 
window-mutation, swap-mutation, swap window hill-climbing, and Davis bit hill-
climbing [16] operators. The last three operators combine mutational heuristics with 
hill climbers in a single heuristic.  

4.1   Experimental Setup 

The selection hyper-heuristics with twenty four heuristic selection and move 
acceptance combinations are tested on two benchmark problems taken from literature. 
These benchmarks are referred to as System 1 and System 2 in the rest of the paper. 
System 1, taken from [9, 10], consists of 10 units. System 2 data is generated by 
repeating the data of System 1 two times, as also done in [9, 10]. As a result, System 
2 has 20 generators. For these two test systems, the time horizon is 24 hours.  

For System 1 and System 2, the demand penalty and the up/down penalty 
coefficients are set to a very high value as 100000, so that infeasible solutions cannot 
have a better fitness than feasible ones. The number of allowed iterations for the 
hyper-heuristics per run is chosen as 1000 and 5000, for System 1 and System 2 
respectively. These values are determined empirically. Best, average and worst results 
are reported for both systems over 20 runs. Furthermore, statistical tests are 
performed on the resultant solutions using the Matlab statistical tools for one-way 
ANOVA (analysis of variance) tests and for multiple comparison tests using the 
Tukey Honestly Significant Difference approach at a confidence level of 0.95. 

4.2   Experimental Results 

The best, average and worst cost values obtained by different combinations on two 
test systems are reported in Tables 2 through 9. 



 Experimental Comparison of Selection Hyper-heuristics for the SEPGS Problem 449 

In the first experiment, OI move acceptance criterion is applied with six heuristic 
selection methods to System 1. RPD achieves the best result in this data set as shown 
in Table 2. RP comes second in front of SR and RD. In System 2, RPD again achieves 
the best result in front of the RP method. The difference percentage between RPD and 
RP is 0.021% in System 1, but this value is increased to 0.036% in System 2.  

In the first two test instances, statistical tests show that there is a statistically 
significant difference between the fitness values obtained by different combinations 
and the mean values of GR and CF are significantly worse than the mean values of 
RPD, RP, SR and RD. 

Table 2. Results for System 1 with OI 

Algorithm          Best Worst  Average 
RPD 1125997 1128831 1127474 
RP 1126231      1128931 1127689 
SR 1127253 1129911 1128435 
RD 1127253 1129563 1128572 
CF 1127683 1148563 1133976 
GR 1129038 1138217 1132815 

Table 3. Results for System 2 with OI 

Algorithm          Best Worst  Average 
RPD 2248284 2253971 2250434 
RP 2249099 2253057 2250835 
SR 2250116 2255899 2253378 
RD 2250875 2253851 2252456 
CF 2253743 2279271 2264473 
GR 2255837 2267460 2258998 

RPD and SR heuristic selection methods obtain the best result with the IE move 
acceptance criterion in System 1, but this result is not better than the best result 
produced by the RPD-OI strategy combination.  

In System 2, RPD achieves the best result and RD obtains the second best result 
with IE. The difference between these results is very low, but they are not better than 
the best result obtained by the RPD-OI combination. These results show that the 
hyper-heuristic with OI move acceptance criterion produces more efficient results 
when compared with IE. According to the statistical test results, CF and GR have 
significantly worse mean values than the rest of the methods. 

Table 4. Results for System 1 with IE 

Algorithm          Best Worst  Average 
RPD 1126231 1129039 1127381 
SR 1126231 1129317 1128190 
RD 1127065 1130338 1128500 
RP 1127253 1129837 1128510 
CF 1128041 1147346 1135070 
GR 1130520 1136545 1133359 



450 A. Berberoğlu and A.Ş. Uyar 

Table 5. Results for System 2 with IE 

Algorithm          Best Worst  Average 
RPD 2250070 2252741 2251331 
RD 2250090 2254164 2252311 
RP 2250837 2253019 2251510 
SR 2250875 2253881 2251794 
CF 2252492 2284777 2263464 
GR 2255999 2263901 2260230 

RPD also achieves the best result with GD in System 1. This result is equal to the 
best result obtained by the RPD-OI combination, but its average value is not better 
than the average value of RPD-OI. CF shows its best performance with GD and 
comes second in this data set.  

In System 2, RPD, RD and SR obtain the best result with GD, but this result is not 
better than the result achieved by RPD-OI with System 2 data. RP follows these 
methods with its performance. Statistical results show that there is a statistically 
significant difference between the methods. Besides, RPD and CF have significantly 
different mean values when GD is used as the move acceptance criterion. 

Table 6. Results for System 1 with GD 

Algorithm          Best Worst  Average 
RPD 1125997 1129390 1127673 
CF 1126119 1134568 1128820 
RP 1126231 1129404 1127944 
SR 1126231 1129837 1128267 
RD 1127055 1129837 1128343 
GR 1127252 1129135 1128345 

Table 7. Results for System 2 with GD 

Algorithm          Best Worst  Average 
RPD 2249099 2252103 2251066 
RD 2249099 2253712 2251471 
SR 2249099 2254148 2251906 
RP 2249576 2253223 2251336 
GR 2250904 2259784 2254414 
CF 2251195 2272279 2259073 

According to the results in Table 8 and Table 9, heuristic selection methods 
produce the poorest results with AM move acceptance criterion in both of the test 
systems. GR, which is the poorest heuristic selection method in the previous 
experiments, obtains the best results with AM, because it always selects the heuristic 
with the best resultant solution. Since hill climbers are also used as heuristics, they do 
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not accept a worsening move, even if AM is used after the application of the hill 
climber. Therefore, a worsening move is never accepted by GR. The statistical test 
results do not indicate statistically significant differences. 

Table 8. Results for System 1 with AM 

Algorithm          Best Worst  Average 
GR 1135972 1182232 1157148 
CF 1137093 1180722 1158591 
RPD 1140067 1180180 1160381 
RP 1141958 1180711 1161860 
RD 1142190 1184874 1163611 
SR 1152371 1183624 1165224 

Table 9. Results for System 2 with AM 

Algorithm          Best Worst  Average 
GR 2339024 2478087 2402021 
CF 2341696 2482374 2404243 
RPD 2348286 2477003 2406051 
RD 2354096 2481037 2419543 
RP 2356811 2483620 2418755 
SR 2383415 2482194 2427434 

 

Fig. 1. Iteration Number vs. Fitness Value Curves 
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Commonly in literature, the GR and CF heuristic selection methods are among the 
better ones for most problems. However, in this problem, the best heuristic selection 
method is found to be RPD. We believe this is due to properties of the problem. To 
explore why this is so, we looked at the iteration number vs. the fitness value plots. 

Fig. 1 illustrates the iteration number versus the fitness value curves for six 
different heuristic selection methods with respect to their best results in System 2. It 
can be seen that CF-IE and GR-IE achieve their best values much earlier than other 
combinations, but they get stuck at this local optimum, because these methods are 
greedy and they can not explore the whole search space efficiently. SR-GD, RD-GD 
and RP-OI achieve the second best result in System 2 and they find this result 
approximately between the iterations of 3000 and 3600. RPD-OI finds the overall best 
result approximately in the 8300th iteration. The randomness introduced by these 
methods helps the algorithm to be able to escape the local optima and to find better 
results later on in the search. 

5   Conclusion 

In this study, selection hyper-heuristics using six different heuristic selection methods 
and four move acceptance criteria are implemented and applied to the SEPGS 
problem. A set of experiments are executed on two data sets to find out the most 
effective strategy combination for this problem. In both of the problem instances, 
RPD-OI heuristic selection and move acceptance combination achieves the best 
results. Especially, its effectiveness becomes more emphasized in the second data set. 

Aside from the observations mentioned above, it is also noticed that GR and CF 
methods obtain the poorest results in these experiments, although these two methods 
find their best values much earlier than the other heuristic selection methods. This 
shows us that using performance indicators about previous runs leads to a greedy 
method which is prone to get stuck at local optima and not able to explore different 
areas of the search space in an effective way. 

Statistical tests show a statistically significant difference between the fitness values 
obtained by different heuristic selection methods for the same move acceptance 
criterion except for those using the AM acceptance scheme. Additionally, it also 
indicates that one heuristic selection method outperforms at least one of the other 
methods in the fitness values of the solutions it produces.  

In our previous study [13], the results produced by RPD-OI are compared with the 
previously published results achieved by other optimization techniques. Because of 
the promising results obtained in these two studies, research will continue to enhance 
the hyper-heuristic approach. Advanced mutational heuristics and local search 
operators can be incorporated into the hyper-heuristic method to increase the 
effectiveness of this approach. Besides, the quality of the initial solution can be 
improved by using heuristics such as the priority list method [6]. Effective decision 
making techniques including a learning mechanism, which keeps information about 
the previous iterations, can be used in heuristic selection and move acceptance parts. 
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Abstract. This paper is concerned with the radiotherapy pre-treatment
patient scheduling. Radiotherapy pre-treatment deals with localisation of
the area to be irradiated and generation of a treatment plan for a patient.
A genetic algorithm is developed for patient scheduling which evolves
priority rules for operations of radiotherapy pre-treatment. The fitness
function takes into consideration the waiting time targets of patients and
also the early idle time on resources. Real world data from a hospital in
the UK are used in experiments.

Keywords: Patient scheduling, radiotherapy, multiple objectives, evo-
lutionary algorithm.

1 Introduction

Radiotherapy is often used as means to treat cancer patients. Radiotherapy
includes two phases: pre-treatment, and treatment on linac (linear particle ac-
celerator) machines which deliver radiation. This research focuses on the radio-
therapy pre-treatment scheduling of patients. The purpose of the pre-treatment
is to define the precise area to be treated with radiotherapy, and to generate a ra-
diotherapy treatment plan which targets the tumour while keeping the radiation
to the surrounding healthy tissues and organs to a minimum. In radiotherapy,
radiation is given as a series of small doses, referred to as fractions, over a period
of days or weeks, although it can also be given as a single fraction.

The consequences of long waiting times for radiotherapy on patients have been
discussed in the literature and medical community [5,8,10]. Long waiting times
for radiotherapy treatment unfavourably affect both the possibility of cure and
the reduction of the severity symptoms by allowing tumour growth and causing
anxiety. It has been recommended to expand the resources (staff and machines)
to meet the growing demand for radiotherapy services. However, these resources
are expensive and it takes time to have them ready [5,16]. Therefore, the objec-
tive is to find ways to improve the use of existing resources while keeping the
quality of treatment at satisfactory levels by using better scheduling procedures.

Radiotherapy scheduling of patients on linac machines has attracted research
interests in the last decade or so. Approaches of different nature have been
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developed, starting from mathematical programming models [4], to heuristic
approaches [14] and constructive approaches hybridised with GRASP (Greedy
Random Adaptive Search Procedure) [13].

The pre-treatment and radiotherapy scheduling problems were considered to-
gether. In [9,15] the authors formulate a simulation model. Their results showed
that performance of the schedule could improve subject to having more resources
or working extra time. In [12] the authors described a genetic algorithm where
schedules, for both phases considered together, were encoded using an operation-
based representation. This research work was focused mostly on the investigation
of availability of doctors to approve the treatment plans.

In our earlier research work, we investigated the hybridisation of integer linear
programming and priority rules where a daily scheduling approach is considered.
A schedule generated by priority rules was used as an initial solution for the
CPLEX model. Although CPLEX improved the initial solutions provided by
priority rules, the overall performance of schedules, over a period of 120 weeks,
was worse than that of the schedules generated by priority rules only. In the
research presented in this paper, we aim to balance the effect of the greedy
optimisation method whose intent is to utilise all the capacity of resources, by
studying the effect of penalising early idle time on resources. This approach was
firstly developed for dynamic optimisation in [3].

A genetic algorithm is developed which considers the idle time on resources
within a predefined time window in the fitness function. This algorithm evolves
priority rules which are used to decode chromosomes into schedules using the
Giffler and Thompson’s algorithm presented in [17]. Real world data provided
by the Nottingham University Hospitals NHS Trust, City Hospital Campus are
used to evaluate this method.

This paper is organised as follows. Section 2 introduces the radiotherapy pre-
treatment scheduling problem present at the City Hospital Campus, Notting-
ham. Section 3 explains the implemented genetic algorithm. Section 4 introduces
the problem instances used in the experiments and discusses the results. Finally,
Section 5 gives conclusions and indicates future research directions.

2 Problem Statement

Radiotherapy patients are classified according to a treatment intent and a wait-
ing list status, and are diagnosed with a site (area to be treated). The treatment
intent can be palliative or radical. A palliative treatment is meant to relieve
symptoms, while the intent of a radical treatment is to cure. There are three
waiting list statuses: emergency, urgent and routine. The waiting list status is
determined by the site and progress of the cancer. The waiting time target deter-
mines the date by which a patient needs to have their first radiotherapy fraction
(i.e. the date by which pre-treatment has to finish). Table 1 shows the Joint
Council for Clinical Oncology (JCCO) good practice and maximum acceptable
waiting time targets given in days (separated by “/”) [8]. On the other hand,
the UK Department of Health (DH) suggests a 31-day waiting time target for
all cancers [5].
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Table 1. JCCO recommended waiting time targets

Intent
Waiting list status

Emergency Urgent Routine

Palliative 1/2 2/14 2/14
Radical – – 14/28

Table 2. Radical head and neck pre-treatment pathway

Operation Resources Description
Processing Lead

time time (days)

1 Mould room
Beam directed

60 min 1
shell (BDS)

2 CT scanner CT scan with BDS 45 min 0

3 Doctor Planning 60 min 0

4 Physics unit Isodose plan 2 days 0

5
Doctor Treatment

30 min 0
and simulator verification

6 Doctor
Approve verification

20 min 0
and prescribe dose

7 Physics unit Plan check 30 min 0

8 Verification system Enter data 30 min 0

9 Verification system Check data 30 min 0

The site of the cancer and treatment intent determine the patient pre-treatment
pathway. The City Hospital treats a large number of cancer sites including head
and neck, breast, prostate, etc. Table 2 shows as an example the pathway of a
radical head and neck patient. First, the patient visits the mould room, where a
bean directed shell (BDS) is fit. The BDS takes one hour to make, but it will only
be ready one day after it has been moulded. This extra time is referred to as lead
time. When the BDS is ready, the patient visits the CT scanner which is used to
decide the precise area to be treated. Once the scan is available the doctor can
generate a treatment plan together with the physics unit. This procedure takes
two working days to complete as it needs discussion between the doctor and the
physics unit. However, the doctor and the physics unit are available for other op-
erations. After the treatment plan is complete, the patient goes to the simulator
where the radiotherapy treatment position and plan are checked. Depending on
the case, the doctor has to be present during the treatment verification. After
the treatment verification, the doctor approves the verification and prescribes
the radiation dose. Finally, the radiotherapy treatment is checked by the physics
unit, before the corresponding data are entered and checked onto the verification
system. We note that a single doctor is assigned to a given patient, and that this
doctor must be a specialist for the site of the patient. The exception to this rule
are palliative patients who can be treated by any doctor.
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Resources have limited availability. All resources, except doctors, are continu-
ously available throughout the clinic opening hours: Monday to Friday from 8:30
to 18:00, and weekends from 9:00 to 13:00. Doctors availability is defined from
Monday to Friday for specified operations and patient types. During weekends
doctors are available on call.

Palliative-emergency and palliative-urgent patients can be seen on any day.
On the other hand, radical and palliative-routine patients can be treated only
from Monday to Friday.

Table 2 shows that this problem has resource concurrency (an operation may
require two or more resources simultaneously) and recirculation (a given resource
is used more than once in the same pathway).

3 Genetic Algorithm

A genetic algorithm is developed whose main characteristics are:

– The fitness function includes a term that penalises early idle time within a
predefined time window [3].

– Schedules are decoded using the modified Giffler and Thompson’s algorithm
given in [17]. In this algorithm, parameter δ modulates the size of the search
space. If δ = 1 the algorithm produces active schedules. If δ = 0 the algorithm
generates non-delay schedules. For values of δ from (0, 1) schedules from a
subset of active schedules, including all non-delay ones, are generated. In the
proposed genetic algorithm δ is not fixed as for example is the case in [1,3,11]
but this parameter is evolved as in [7].

Fitness Function. We assume that on a given day there is a set P of patients
to be scheduled. The quality of the schedule is evaluated by a fitness function
which has two terms. The first term considers waiting time targets of the patients
while the second term takes into account the idle time on the resources. The first
term consists of three objectives. The first one is the weighted number of patients
exceeding the waiting time targets (1). Priority weights of patients wj depend
on the patients’ waiting list status. Binary variable Uj is equal to 1 if patient Pj

exceeds the waiting time target, and it is 0 otherwise. The second objective is the
maximum lateness (2). The lateness of a patient is calculated as the difference
between the waiting time target and the completion date of the pre-radiotherapy
treatment. The third objective is the sum of weighted lateness (3).

Minimise z1 =
∑

Pj∈P
wj Uj . (1)

Minimise z2 = max
Pj∈P

{Lj} . (2)

Minimise z3 =
∑

Pj∈P
wj Lj . (3)
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Each objective (1)-(3) is normalised to take values in the [0, 1] interval with
respect to the largest and smallest values of that objective in a given population,
according to (4). In (4) vk is the value of chromosome k to be normalised, vk is
its normalised value, and l is the index for chromosomes in the population.

vk =
vk − minl{vl}

maxl{vl} − minl{vl} . (4)

The normalised values of (1)-(3) are used in the first term of the fitness function.

zk = W1z
k
1 + W2z

k
2 + W3z

k
3 . (5)

Weights Wi (i = 1, 2, 3) represent the relative importance of objectives (1)-(3).
The value given by (5) is normalised to take values in the [0, 1] interval using
formula (4) before being included in the fitness function.

The second term of the fitness function corresponds to the early idle time
on the resources. The idle time is calculated within a predefined time interval,
denoted by ω, that starts on the day patients arrive for scheduling. The idle time
is normalised to take values from the [0, 1] interval according to (4). Let τk be
the normalised resource idle time of chromosome k and α ∈ [0, 1] its importance
in the fitness function, then the fitness function of chromosome k is given as.

fk = zk + α τk (6)

Parameters α and ω are used to control the balance between the performance
of the schedule in terms of the utilisation of resources and having some spare
capacity for future patients.

Encoding and Decoding. A schedule is encoded by using the priority rule-
based representation given in [6]. In our implementation, the length of the chro-
mosome is equal to the total number of operations. We also include one additional
gene that stores δ ∈ [0, 1].

Chromosome k is represented by string (πk
1 , πk

2 , . . . , πk
M , δk) where M is the

total number of operations and πt is a rule from the set of predefined priority
rules.

Chromosomes are decoded into solutions using the modified Giffler and Thomp-
son’s algorithm introduced in [17]. Let Ct be the set of operations ready to be
scheduled in iteration t. Operation Ot ∈ Ct with earliest completion time on
the required resource is selected; ties are broken arbitrarily. A conflict set Gt is
defined with all operations from Ct which require Ot’s resource and whose pro-
cessing time overlaps with that of Ot. A smaller (respectively larger) value of δ
means a smaller (respectively larger) size of the conflict set Gt. Priority rule πt

is used to select an operation from Gt to be scheduled next. The pseudo-code is
given in Algorithm 1.

In order to illustrate the availability of resources calculated in step 5, let us
assume as an example that Ot is treatment verification (see Table 2). Then, mt

will be the doctor, as this resource has less hours of availability for treatment
verification per week than the simulator.
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Algorithm 1. Modified Giffler and Thompson’s algorithm [17]
1: t ← 1
2: Ct is the set of operations ready to be scheduled
3: while Ct �= ∅ do
4: Ot ← operation from Ct with earliest completion time φt

5: mt ← a resource required by Ot. If Ot requires multiple resources, mt is the least
available resource

6: σt ← earliest start time on machine mt

7: Gt ← {O ∈ I(mt) : σ(O) ≤ σt + δ(φt −σt)}, where I(mt) is the set of operations
ready to be scheduled on mt and σ(O) is the earliest start time of operation O

8: Choose operation O∗ ∈ Gt by using priority rule πt

9: Schedule O∗

10: Update Ct

11: t ← t + 1
12: end while

Variation Operators. Figure 1 displays the implemented one point crossover.
Genes δ are recombined by means of two convex combinations, one for each
offspring. The recombined values of δ are: δ′1 = δ1λ+δ2(1−λ) and δ′2 = δ1(1−λ)+
δ2λ. Value λ is chosen randomly from the [0, 1] interval. A convex combination
is chosen as a crossover rule because its definition guarantees that δ′1, δ′2 ∈ [0, 1].

Parents Offspring

A B δ1 C B δ′1

C D δ2 A D δ′2

Fig. 1. Implemented one point crossover

A chromosome is mutated by randomly selecting one of its genes. If this gene
is a priority rule, it is replaced by a randomly selected rule from the set of
predefined rules. If the selected gene is δ, a new value is randomly chosen from
the [0, 1] interval.

4 Experimental Results

The City Hospital provided us with two sets of data on patients. The first data
set contains five years of data with the arrival date, treatment intent and waiting
list status of patients. A second set has data from 188 patients which contains
all the details about the patients including the site and doctor booked for each
patient. These two data sets are combined to give different problem instances.

The values of the genetic algorithm parameters are as follows. The crossover
probability is 0.6, the mutation probability is 0.1, and the population size is
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100 chromosomes [1,3,11]. The genetic algorithm is allowed to run after a given
number of generations has been reached with no improvement in the fitness func-
tion. This number is equal to the number of patients in the given daily scheduling
problem [1]. The fitness proportionate selection with an elitist strategy of one
individual is used. Chromosomes of the initial population are randomly created,
namely each gene representing a priority rule is initialised by randomly selecting
a rule from a set of 44 rules, while δ is randomly selected from a [0, 1] interval.

We consider a comprehensive set of priority rules which can be classified as
in [2]. Rules that involve waiting time targets such as: earliest waiting time
target, slack-based rules, etc; rules involving the processing time: shortest pro-
cessing time, least work remaining, fewest remaining operations, etc; rules that
depend on characteristics other than processing time and waiting time targets
such as: random selection and arrived at queue first, and rules that depend on
two or more characteristics such as: slack per number of operations remaining,
slack per work remaining, etc.

Priority weights wj of emergency, urgent and routine patients are 5, 2, and 1
respectively. Weights Wi of the objectives (1), (2) and (3) are 6, 3, and 1. These
values are set in consultation with the Hospital staff, but are subjective.

The aim of the experiments is to investigate the effect of the parameters α
(weight of the early idle time in the fitness function) and ω (the time window
within which early idle time is penalised) on the performance of the schedule.
Following the practice of oncology departments in the UK the performance of
the schedule is measured as the percentage of the patients who breach the JCCO
and the DH waiting time targets.

The system is warmed up for two years (i.e. the system is loaded with patients
during two years but the generated schedule is not used in the system evaluation).
Starting with the generated booking system, the performance of the schedule
is measured every four weeks, because the Hospital reports performance on a
monthly basis, in the following 136 weeks (it gives us 34 experiments, each one
is four weeks long). The average values of the percentage of patients who breach
the waiting time targets over 34 experiments are reported.

Table 3 displays the average percent of patients who breach the JCCO maxi-
mum acceptable waiting time targets and DH waiting time targets for combina-
tions of α and ω.

For both the JCCO and the DH waiting times targets we can notice that,
larger improvements happen for values of α below 0.5 and large values of ω.
In particular, the largest improvements are achieved at certain combinations of
α ∈ {0.2, 0.3, 0.4} and ω ∈ {4, 7}. On the other hand, by having large values of
both α and ω, the early idle time is given higher relative importance with respect
to the first term that considers waiting time targets in the fitness function. This
bias prevents the algorithm from reaching better average performance over the
time period of 136 weeks. The best achieved results are underlined and boldfaced,
while the “good” ones are boldfaced only.

The gained improvements are very sensitive to changes in the the values of α
and ω. For example, pair (α, ω) = (0.3, 7), which produces the lowest percent
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Table 3. Average percent of patients who breach the waiting time targets over 34
observations

JCCO DH

α ω = 1 ω = 4 ω = 7 ω = 1 ω = 4 ω = 7

0.0 — 8.66 — — 6.10 —
0.1 8.61 8.66 8.66 6.10 6.10 6.10
0.2 8.42 8.33 8.95 5.87 5.74 6.44
0.3 8.65 8.62 8.25 6.27 6.06 5.74
0.4 8.39 8.34 8.39 5.87 5.74 5.95
0.5 8.63 8.46 8.63 6.10 5.96 6.10
0.6 8.77 8.40 8.66 6.27 5.96 6.10
0.7 8.37 8.59 8.63 5.87 6.06 6.10
0.8 8.71 8.43 8.83 6.10 5.96 6.27
0.9 8.62 8.65 8.68 6.06 6.06 6.10
1.0 8.37 8.63 8.62 5.87 6.10 6.06

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  4  6  8  10  12  14

δ

Generation

δ best chromosome
Average δ

Fig. 2. Evolution of δ

values, is in the neighbourhood of combinations which the largest percent
breaches. In particular, slightly decreasing the value of α, in a combination where
α is small and ω is large, leads to a increase in the percent of patients breaching
the waiting time targets. Further analyses need to be carried out to understand
this undesirable sensitivity.
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Regarding δ, as an example, Fig. 2 shows the value of δ of the best chromosome
and its average value across the population, for a given scheduling problem.
The algorithm stopped after 15 generations. We can see that the quality of the
schedules benefits by modulating the size of the search space by limiting the size
of the conflict set Gt. Namely, in the initial population the best chromosome has
δ = 0.989858 while at the end it has the value δ = 0.710254.

5 Conclusion and Future Work

We presented a genetic algorithm for a radiotherapy pre-treatment scheduling
problem. The fitness function is a combination of two terms. One term considers
the waiting time targets of patients and the other penalises the early idle time
within a defined number of days. We investigated the effect of the weight of the
early idle time in the fitness function and the length of time during which early
idle time is penalised on the performance of the schedules. Higher improvements
are achieved with values of α under 0.5 and large values of ω. However, settings
in α and ω are sensitive to small changes in α.

The system has been demonstrated to the hospital and will be left for further
evaluation. Our future work will be focused on understanding the sensitivity
to changes in α and ω. Additionally, other representations should be studied.
Priority rule-based encoding may lead to false competition (this happens when
multiple individuals produce the same schedule). Alternatively, we will investi-
gate a preference list-based encoding, where each resource has its own priority
list of patients.
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Abstract. Commuting to the workplace is a highly individualistic experience,
especially where the private car is the chosen mode of transport. The costs of
using cars with low occupancy rates are significant in environmental terms as
well as requiring the provision of parking space at the workplace. This paper ex-
amines the use of an Evolutionary Algorithm based problem solver to construct
travel plans for three sites with 248,404 and 520 employees respectively at each
site. Results presented suggest that a significant saving in overall distance trav-
elled and parking spaces required is possible. The algorithm employed takes into
account both hard constraints and soft constraints (such as work patterns and
journey flexibility).

1 Introduction and Motivation

Commuting to the workplace by private car is a major contributing factor to motoring
related greenhouse gas emissions and to rush hour congestion in towns and cities. The
provision of parking spaces can be a major cost to organisations who are based in areas
with high land values. By having employees travel to work in groups, sharing a car,
the pollution and congestion may be reduced and the number of parking spaces at the
workplace also reduced. Planning car sharing requires the identification of groups of
employees who live at set of addresses that can be served by one commute that is shorter
than the collective individual journeys.

A major drawback to the automated planning of car sharing schemes is their inability
to take into account the personal preferences of the individuals participating. The author
previously undertook a study into such ‘soft factors’ in [2]. Some preliminary work on
the concept of using an Evolutionary Algorithm to optimise car sharing was presented
by the author in [8], this study presents a more in depth discussion of the algorithm
and the results obtained. The algorithm used in this study minimises the toal distance
travelled by cars, minimises the extent to which individuals deviate from their direct
route and ensures that individuals share have similar work patterns.

2 Previous Work

There are many Vehicle Routing Problem (VRP) variants which have been identified
and investigated by researchers. An overview of vehicle routing problems and the range
of heuristics applied to them may be found in [7]. Disregarding soft preferences, the

C. Di Chio et al. (Eds.): EvoApplications 2011, Part II, LNCS 6625, pp. 464–470, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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problem under discussion may be formulated as a Capacitated Vehicle Routing Problem
with Time Windows (CVRPTW). The principle difference being vehicles start from a
“customer” and are routed to the central workplace, rather than starting and ending at
the same central location. A notable recent approach to the Vehicle Routing Problem
with Time Windows (VRPTW) is presented in [4], the problem is formulated as a multi-
objective problem, and the EA employed uses ranking to evaluate the population. This
work is further developed in [6] where it is applied to the problem of routing garbage
collections. The ranking approach has the potential to produce a range of solutions,
which collectively form a Pareto front. In this case a strategy is required to determine
which solution should be adopted by the user.

There exists several approaches to the problem of car sharing. Naor [3] formulates
the problem around groups of employees using their own cars to drive to a intermedi-
ate meeting point, and continuing to the place of work in one vehicle. This approach
is significantly different to the problem being discussed in this document. Naor exam-
ines the possibilities of optimising the sharing of driving equally. The 2nd leg opti-
mised such that from the entire pool each driver does a fair share of 2nd leg driving.
Buchholz [1] presents a car-pool problem as an NP complete partitioning problem. The
system formulates detours to individuals’ journeys to allow them to pick up other indi-
viduals. No results are presented, not are the preferences of individual users taken into
account.

A games-theory approach to public transport planning and integration is explored
in [5]. The authors take a market based approach using games theory to establish how
public transport artefacts such as bus services should be provided in order to secure the
maximum benefit from them.

3 Problem Description

The problem under consideration here is the construction of a potential car-sharing
plan for a UK-based University. Employee address data from the University payroll
system may be combined with UK-based Ordnance Survey geo-spatial data (obtained
for academic use under the Digimap Agreement) to allow distances between employees
homes and work place to be estimated. The aim of any solution is to group employees
into groups of up to 4 individuals, who may share the same car. The car is provided
by the employee living furthest away who deviates from their journey to pick up other
members of the group. In this case the system allows users to specify a work pattern
constraint (start and end times of their working day) and degree to which they will
deviate from their direct journey in order to share.

The prototype optimises with respect to three objectives:

– The total distance travelled by cars should be minimised.
– The additional distance travelled by any employee should not exceed the deviation

constraint specified by that employee.
– Each employee may specify a time slot that they work in, employees should only

share with others in that time slot.
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4 The Planning Algorithm

The test bed system constructed utilises an Evolutionary Algorithm (EA) to produce a
solution in the form of a travel plan. The solution must divide employees into groups
of up to four, each group sharing one car. The solution must take into account the
objectives outlined (see section 3). There may exist no ideal solution, but rather the
challenge is to find a compromise solution that satisfies as many of the objectives as
possible.

The EA uses an indirect representation, each individual is not itself a full solution, but
a list of groups, each employee being allocated to one group, the groups are not ordered
internally. The number of groups may differ between individuals (but the total number
of employees will always remain the same) as solutions may vary the number of passen-
gers in each car. The minimum number of groups being determined by noOfEmployees

4 ),
the maximum being noOfEmployees (the case where each individual travels to work
in a separate vehicle). The ordering of the groups within the chromosome is not signif-
icant. The role of EA is to form such groupings and preserve useful groups through the
generational cycle.

The algorithm used maintains a steady-state population of 25 individuals, during
each generation a sub-population of 15 children is created. A child may be created
from two parents, via recombination, or by cloning a single parent. The probability
of recombination is 0.8, parents are selected using a tournament of size 2. Each child
has a mutation applied to it, one of the three operators outlined above. The fitness of the
child is calculated by building a solution from the encoding within that child as outlined
below. Members of the child population are copied into the main population, replacing
the looser of a tournament.

Recombination consists of creating a new individual by adding groups selected al-
ternately from each parent. As each group is added employees are removed from the
group if they have been added previously as part of a group from the other parent. This
encourages the retention of group membership across generations.

The following three mutation functions are employed to modify groups within the
selected individual:

– Swap two employees between two groups.
– Create a new group. An existing group is selected (must have a minimum member-

ship of 2 persons) and half its members are moved to the new group.
– Two groups are selected at random and merged (the combined membership of the

groups must be equal to or less than 4 persons).

In order to evaluate the fitness of an individual a complete solution must be constructed
an evaluated. A solution is constructed by applying an ordering heuristic to each em-
ployee group, to order them by distance from the workplace.

A penalty fitness value is then calculated for each group based on the following:

gF it = d + (d ∗ devP ) + (d ∗ tpP − 1)

where:
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gFit = the fitness value for the current group of employees
d = total distance driven by the group in meters
devP = 1 if any of the individuals in the group have a journey length that violates their
deviation constraint
tpP = the number of different timeSlots within the group

The total fitness value for a candidate solution is the sum of the group fitness values,
the more constraints that are broken within a solution the higher the fitness allocated
to it. The algorithm is executed until 100 generations have elapsed without any fitness
improvement.

Table 1. The datasets used in this investigation

Location Employees Average direct distance to workplace(km)
Site 3 404 6.2
Site 2 248 6.5
Site 1 520 6.0

Table 2. Results obtained whilst altering the deviation constraint

Deviation (%) Site 3 Site 2 Site 1
% Dist Saved 10 39.9 42.3 35.1

30 44.9 45.3 39.7
50 47.1 48.3 41.3
70 48.7 48.5 43
90 48.6 50.9 42.7

Parking spaces 10 44.9 39.4 53.3
30 36.3 34.1 43.5
50 32.7 31.8 39.5
70 30.6 32.1 36.1
90 30.61 29.7 35

Deviation Constraint Violations 10 4.8 4.9 4.3
30 0.8 0 1.4
50 0.5 0 0.6
70 0 0.4 0.4
90 0 0 0.1

Time slot Constraint Violations 10 0.4 0 0.6
30 0.3 0 1.0
50 0.3 0.1 0.8
70 0.3 0.1 0.9
90 0.3 0 1.2

Average Car Occupancy 10 2.2 2.5 1.9
30 2.8 2.9 2.3
50 3.1 3.1 2.5
70 3.3 3.1 2.8
90 3.3 3.4 2.9



468 N. Urquhart

5 Experimental Method and Results

The test bed system has been tested using data based on the payroll of a UK based
University. Three university campuses were examined; the numbers employed at each
site may be seen in table 1.

For testing purposes each individual is allocated a random work pattern identifier
in the range (1..4) to represent their work pattern and a random deviation value in the
range (10-90%).

The reader should consider that this problem may be presented as a ”design” type
problem, where sufficient time is available to allow multiple runs to be made in order
to take account of the stochastic nature of the algorithm. However in many cases it may
be necessary to produce travel plans quickly (in order to respond to users’ changing
requirements) in which case there may only be time in which to build one solution.
With this in mind, the results presented here represent the average over 10 runs.

Over the following series of runs the deviation constraint was altered through values
of 10,30,40, 70 and 90% for each user. For instance if a user has a direct journey distance
of 10 kilometres to their place of work, and a deviation constraint of 30% then the
maximum acceptable journey distance to them when participating in the car sharing
scheme would be 13 kilometres. The results obtained may be seen in table 2. Note how
as the deviation constraint is relaxed the other constraints are met, this ability to ”trade
off” conflicting constraints is a well known feature of evolutionary algorithms.

Table 3. Results obtained whilst altering the number of work pattern

Work Patterns Site 3 Site 2 Site 1
Distance saved 1 64.9 65.1 64.0

2 58.1 59.7 54.6
3 55.7 55.4 49.7
4 51.6 52.5 46.5

Parking spaces 1 25.4 25.5 25.4
2 26.3 26.5 26.4
3 27.0 27.3 27.0
4 27.6 28.2 30.0

Deviation Constraint Violations 1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

Time slot Constraint Violations 1 0 0 0
2 0.2 0 0
3 0 0 0.4
4 0 0 1.2

Average Car Occupancy 1 3.9 3.9 3.9
2 3.8 3.8 3.8
3 3.7 3.7 3.7
4 3.6 3.5 3.3



Planning and Optimising Organisational Travel Plans Using an EA 469

Table 4. T-Test results comparing the fitness of the individuals that comprise the final populations
produced with the deviation constraint set at 10% and 50% and then between 10% and 90%. The
values returned suggest that the fitness produced with 1 and 4 work patterns are statistically
significant.

Comparison (Deviation) Site 3 Site 2 Site 1
10% - 50% 0.0001 0.0001 0.0001
10% - 90% 0.0131 0.0001 0.0001

Table 5. T-Test results comparing the fitness of the individuals that comprise the final populations
produced with the work pattern variable set at 1 and 4. The values returned suggest that the fitness
produced with 1 and 4 work patterns are statistically significant.

Comparison (Groups) Site 3 Site 2 Site 1
1 - 4 0.0001 0.0001 0.0001

From an environmental perspective, it is interesting to note the average occupancy
of the cars arriving at the workplace. An optimal solution would present an occupancy
of 4, table 3 presents solutions close to this (an average of 3.9 and 3.8) when only 1 or
two timeslot constraints exist.

Over the following series of the number of work patterns available was increased
from 1 to 4 and results obtained may be seen in table 3. T-tests have been used in
order to establish that varying the deviation constraint and the quantity of work patterns
does result in statistically significant changes in results. Table 4 compares the fitness
of the pupations produced with a deviation constraint of 10% with the results achieved
with constraints of 50% and 90%. Table 5 makes a similar comparison between results
obtained with only one work pattern and with 4 work patterns.

6 Conclusions and Future Work

From the results presented it may be seen that total commuter millage is reduced by
50%, and on average less than 30% of employees actually have to park at work. Given
the constraint of limiting individuals to a maximum of 4 persons per vehicle, the algo-
rithm manages to reduce the number of cars at the workplace to less than 1% more than
the 25% minimum.

In every case individuals’ desires for deviation distance were met and only in a few
cases at the largest campus were some individuals not placed in groups compatible with
their timeslot. This system produces a plan within approximately 10 minutes of CPU
time, although this time will differ depending on hardware , software implementation
and on the dataset being used. Future work, involves allowing a wider range of user
variables to be taken into account, the constraining nature of such variables and their
potentially random nature should create a search space that may be successfully explore
using the evolutionary algorithm. The survey work undertaken in [2] suggests that there
is potential for modelling of soft constraints. This may be achieved by allowing users to
feedback into the system their satisfaction level with the arrangements proposed. Such
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feedback would allow individuals to be allocated reputational scores indicating their
tolerance of sharing. It would be possible to build up a graph structure of employees
with weighted arcs indicating that individuals have shared previously and the success
of that share.
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Abstract. This paper proposes an effective Particle Swarm Optimiza-
tion (PSO)-based Memetic Algorithm (PSOMA) for the Team Orienteer-
ing Problem (TOP). TOP is a particular vehicle routing problem whose
aim is to maximize the profit gained from visiting clients while not ex-
ceeding a travel cost/time limit. Our PSOMA features optimal splitting
techniques and genetic crossover operators. Furthermore, the memetic
characteristic of our PSOMA is strengthened by an intensive use of lo-
cal search techniques and also by a low value of 0.07 for inertia. In our
experiments with the standard benchmark for TOP, PSOMA attained a
gap of only 0.016%, as compared to 0.041%, the best known gap in the
literature.

Keywords: Swarm Intelligence, Metaheuristics, Team Orienteering
Problem, Optimal Split.

Introduction

The term Team Orienteering Problem (TOP), first introduced in [9], comes from
an outdoor game played in mountainous or forested areas. In this game a team
of several players try to collect as many reward points as possible within a given
time limit. The Vehicle Routing Problem (VRP), analogous to the game that
we denote simply by TOP, is the problem where a limited number of vehicles
are available to visit customers from a potential set, the travel time of each
vehicle being limited by a time quota, customers having different corresponding
profits, and each customer being visited once at most once. The aim of TOP is
to organize an itinerary of visits so as to maximize the total profit.

TOP is a variant of the Orienteering Problem (OP, also known as the Selective
Traveling Salesman Problem) for multiple vehicles. As an extension of OP [10],
TOP is clearly NP-Hard. OP and its variants have attracted a good deal of
attention in recent years as a result of their practical applications and their
hardness [5, 7, 9, 10, 14, 16, 20, 21, 22]. Readers are referred to [23] for a recent
survey of these problems.

In this paper we are interested in TOP as the core variant of OP for multiple
vehicles. This work was motivated by several lines of research first put forward
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by Veolia Environnement [4, 5]. Solving TOP to optimality has not received
much attention. As far as we know, there are only two exact algorithms for TOP
[6, 8]. Both are branch-and-price algorithms, but the second has the advantage of
being easily adaptable to different variants of TOP. In contrast to exact solving
approaches, a number of heuristics and metaheuristics have been developed for
TOP [1, 4, 9, 12, 19, 20]. Three of these methods are considered to be state-of-the-
art algorithms for TOP. The first is the slow version of Variable Neighborhood
Search (SVNS) in [1]. The second is the Memetic Algorithm (MA) in [4], and
the third is the slow version of Path Relinking approach (SPR) in [19].

The main contribution of this paper is a new memetic algorithm, called
PSOMA, that can provide high quality solutions for TOP. The algorithm is rela-
tively close to MA proposed in [4] and features the same basic components such
as tour-splitting technique, population initializer and local search neighborhoods.
However the global scheme has been changed to Particle Swarm Optimization
(PSO): the recombination operator taking account of three sequences instead
of two in MA and especially configurable with PSO parameters; a swarm of
particles, i.e. couples of sequences, instead of a population of sequences in MA;
a systematical application of recombination operator to every particle of the
swarm in comparison to the stochastic selection of sequences for crossover oper-
ator in MA. With this memetic variant of PSO we were able to determine that
good quality solutions require a very low value for inertia, and this can be at-
tributed to the memetic characteristic of the algorithm. Experiments conducted
on standard benchmark instances have shown clearly that with such an inertia,
PSOMA was able to obtain better results than the state-of-the-art algorithms,
including MA, with less computational effort.

The remainder of this paper is organized as follows. Section 1 provides a formal
formulation of TOP. Our PSO-based Memetic Algorithm (PSOMA) is described
in Section 2. Section 3 describes our empirical method for tuning PSOMA pa-
rameters and discusses computational results on benchmark instances. Finally,
some conclusions and further developments are discussed in Section 4.

1 Formulation of the Problem

TOP is modeled with a graph G = (V ∪ {d} ∪ {a}, E), where V = {1, 2, ..., n}
is the set of vertices representing customers, E = {(i, j) | i, j ∈ V } is the edge
set, and d and a are respectively departure and arrival vertices for vehicles. Each
vertex i is associated with a profit Pi, and each edge (i, j) ∈ E is associated with
a travel cost Ci,j which is assumed to be symmetric and satisfying the triangle
inequality. A tour r is represented as an ordered list of |r| customers from V , so
r = (i1, . . . , i|r|). Each tour begins at the departure vertex and ends at the arrival
vertex. We denote the total profit collected from a tour r as P (r) =

∑
i∈r Pi,

and the total travel cost/time as C(r) = Cd,i1 +
∑x=|r|−1

x=1 Cix,ix+1 + Ci|r|,a. A
tour r is feasible if C(r) ≤ L with L being a predefined travel cost/time limit.
The fleet is composed of m identical vehicles. A solution S is consequently a
set of m (or fewer) feasible tours in which each customer is visited only once.
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The goal is to find a solution S such that
∑

r∈S P (r) is maximized. One simple
way of reducing the size of the problem is to consider only accessible clients. A
client is said to be accessible if a tour containing only this client has a travel
cost/time less than or equal to L. For mixed integer linear programming formu-
lations of TOP see [6, 8, 12, 23].

2 PSO-Based Memetic Algorithm

Particle Swarm Optimization (PSO) [13, 18] is one of swarm intelligence tech-
niques with the basic idea of simulating the collective intelligence and social
behavior of wild animals that can be observed, for example, in fish schooling
and bird flocking. PSO was first used for optimization problem in continuous
space as follows. A set known as a swarm of candidate solutions, referred to as
particles, is composed of positions in the search space. The swarm explores the
search space according to Equations 1 and 2. In these equations, xt

i and vt
i are

respectively the position and the velocity of particle i at instant t. Three values
w, c1 and c2, called respectively inertia, cognitive factor and social factor, are
parameters of the algorithm. Two values r1 and r2 are random numbers gener-
ated in the interval [0, 1]. Each particle i memorizes its best known position up
to instant t as xlbest

i , and the best known position up to instant t for the swarm
is denoted as xgbest.

vt+1
i [j] = w.vt

i [j] + c1.r1.(xlbest
i [j] − xt

i[j]) + c2.r2.(xgbest [j] − xt
i[j]) (1)

xt+1
i [j] = xt

i[j] + vt+1
i [j] (2)

With this design, PSO is highly successful at performing optimizations in con-
tinuous space [2, 11]. In contrast, when applied to problems of combinatorial
optimization, PSO encounters difficulties in interpreting positions and veloci-
ties, as well in defining position update operators. As result, there are a variety
of discrete PSO variants (DPSO) [3], and it is difficult to choose an appropriate
variant for any given combinatorial optimization such as TOP.

Memetic algorithms (MA) [15] represent an optimization technique that at-
tempts to simulate social evolution rather than genetic or biological evolution.
Most MA designs incorporate various local search techniques into a global search
scheme, e.g. a genetic algorithm. MA and PSO are both based on social evolu-
tion or behavior rather than biological ones, and there are benefits to be gained
from combining techniques into a single form, that we call a PSO-based MA, or
PSOMA, for solving combinatorial optimization problems. This section examines
PSOMA in detail as a technique for solving TOP.

2.1 Position Representation and Improvement of Positions

A position in PSOMA is a permutation π of all accessible clients in a particular
problem scenario. [4] gives a splitting algorithm that optimally transforms the
permutation into a solution of TOP in O(m.n2). This algorithm guarantees that
if the tours forming one of the optimal solutions of TOP are subsequences in
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a permutation π∗, the optimal solution will be returned in the output of the
algorithm. This is made possible by considering only saturated tours respecting
the permutation order, i.e subsequences of the permutation respecting the travel
cost/time limit and containing the highest number of clients, then formulating
the selection of the most profitable m saturated tours as a longest path problem
under a k-cardinality constraint (kCC-LPP) on an auxiliary acylic graph. Here
the value of k is 2.m+1 and kCC-LPP can be solved efficiently through dynamic
programming. In our approach, we use the PSO principle to find such a π∗

permutation.
The authors of [4] also provided an efficient local search technique (LS) to

improve a given permutation. Their intensive use of LS made the method a
memetic method. Consequently, in our PSOMA, whenever a new position is
found it has a pm probability of being improved using the same LS. It contains
3 neighborhoods:

– shift operator : evaluate all possibilities of moving a customer i from its orig-
inal position to any other position in the permutation.

– swap operator : evaluate all possibilities of exchanging two customers i and
j in the permutation.

– destruction/repair operator : evaluate the possibility of removing a random
number (between 1 and n

m ) of clients from an identified solution and then
rebuilding the solution with a best insertion algorithm. Best insertion uses
the well-known intuitive criterion for TOP that maximizes ΔPi

ΔCi
[4, 19].

The procedure is as follows. One neighborhood is randomly chosen to be applied
to the particle position. As soon as an improvement is found, it is applied and
the LS procedure is restarted from the new improved position. The LS is stopped
when all neighborhoods are fully applied without there being any improvement.

2.2 Genetic Crossover Operator to Update Position

In combinatorial optimization, the particle position update of PSO can be in-
terpreted as a recombination of three positions/solutions according to inertia,
cognitive and social parameters. There are various ways of defining this kind
of recombination operator [3]. In our approach, the recombination operator is
similar to a genetic crossover whose core component is an extraction of l clients
from a permutation π while avoiding clients from M set. This avoiding set al-
lows extracted subsequences from successive calls of the core component to be
non collapsed, so then they can be reassembled into a new valid sequence. The
extracted subsequence is denoted πl

M and the procedure is described as follows:

– Step 1: generate a random location r in π and initialize πl
M to empty.

– Step 2: browse clients from π[r] to π[n] and add them to the end of πl
M if

they are not in M . The set of clients to be avoided M is updated during the
process. If |πl

M | reaches l then terminate, otherwise go to Step 3.
– Step 3: browse clients from π[r] down to π[1] and add them to the beginning

of πl
M if they are not in M . The set of clients to be avoided M is updated

during the process. If |πl
M | reaches l then terminate.
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With the core component, the position update procedure of particle x from the
swarm S with respect to the three PSO parameters w, c1 and c2 is described as
follows. For convenience, the current, local best and global best positions of the
particle are denoted respectively S[x].pos, S[x].lbest and S[best].lbest:

– Phase 1: apply sequentially but in a random order the core component to ex-
tract subsequences from S[x].pos, S[x].lbest and S[best].lbest with a common
set of clients to be avoided M , initialized to empty. The desired numbers of
clients to be extracted for S[x].pos, S[x].lbest and S[best].lbest are respec-
tively w.n, (1 − w).n. c1.r1

(c1.r1+c2.r2)
and (1 − w).n. c2.r2

(c1.r1+c2.r2)
. Here r1 and r2

are real numbers whose values are randomly generated in the interval [0, 1]
with a uniform distribution.

– Phase 2: link three extracted subsequences in a random order to update
S[x].pos.

Our particle position update procedure therefore works with the standard PSO
parameters w, c1 and c2, the only restriction being that w has to be in the
interval [0, 1]. Our PSOMA can be classified as PSO with position only, because
no velocity vector is employed. It might be remarked that the core component
was created to adapt to a linear permutation order, but it can easily be adapted
to a circular order by changing Step 3.

2.3 Swarm Local Best Update

In some situations, PSO can be trapped in a local optimum, especially when
all the local best positions of particles in the swarm are identical. To avoid this
premature convergence, whenever a new position is found by a particle x in
the swarm S, instead of updating S[x].lbest, the algorithm will search for an
appropriate particle y in the swarm and update S[y].lbest. The update rule is
similar to [17] but simplified:

1. The update procedure is applied if and only if the performance of new posi-
tion S[x].pos is better than the worst local best S[worst].lbest.

2. If there exists a particle y in the S such that S[y].lbest is similar S[x].pos,
then replace S[y].lbest with S[x].pos.

3. If no such particle y according to Rule 2 exists, replace S[worst].lbest with
S[x].pos. Each successful application of this rule indicates that a new local
best has been discovered by the swarm.

The similarity measure in Rule 2 is based on two criteria: the total collected
profit and the travel cost/time of the identified solution. Two positions are said
to be similar or identical if the evaluation procedure on these positions returns
the same profit and a difference in travel cost/time that is less than δ. The
implementation of the update rules was made efficient through the use of a binary
search tree to sort particles by the performance of their local best positions using
the two criteria.
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2.4 Global PSO Algorithm

Particle positions in the swarm, including local best positions, are initialized to
a random sequence. In order to accelerate the algorithm, a small portion of the
swarm containing K particles will have local best positions generated with Iter-
ative Destruction/Construction Heuristics (IDCH) described in [4]. PSOMA is
stopped when the upper bound [6] is reached or after itermax consecutive itera-
tions have failed to give rise to new local best. The global scheme is summarized
in Algorithm 1.

Data: S a swarm of N particles;
Result: S[best].lbest best position found;
begin

initialize and evaluate each particle in S;
iter ← 1;
while iter ≤ itermax do

foreach x in [1..N ] do
update S[x].pos (see Section 2.2);
if rand(0, 1) < pm then

apply local search on S[x].pos (see Section 2.1);
end
evaluate S[x].pos (see Section 2.1);
update lbest of S (see Section 2.3);
if (a new local best is discovered) then

iter ← 1;
else

iter ← iter + 1;
end

end

end

end
Algorithm 1. Basic PSOMA scheme

3 Parameter Configuration and Numerical Results

Our algorithm is coded in C++ using the Standard Template Library (STL)
for data structures. The program is compiled with GNU GCC in a Linux envi-
ronment, and all experiments were conducted on an AMD Opteron 2.60 GHz.
This section describes in detail our method for tuning PSOMA parameters, in
particular the PSO inertia parameter. We also compare the performances of our
approach with those of state-of-the-art algorithms in the literature, using 387
instances from the standard benchmark for TOP [9]. These instances comprise
7 sets. Inside each set the original number of customers and customer positions
are constant, however the maximum tour duration L varies, then the number of
accessible clients are different for each instance. The number of vehicles m also
varies between 2 and 4.
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3.1 Parameter Tuning

We decided to reuse most of the population management parameter values listed
in [4]. To simplify the PSO parameter tuning, we decided to set the ratio between
c1 and c2 to equality, meaning that a particle has the same probability of moving
either to local or to global best. These parameters are summarized as follows.

– N , population size, is set to 40,
– K, the number of local best positions initialized with IDCH, is set to 5,
– itermax, the stopping condition, is set to 10 · n

m ,
– pm, the local search rate, is set to 1 − iter

itermax ,
– δ, the similarity measurement of particles, is set to 0.01,
– c1, the PSO cognitive factor, is set to 1.41,
– c2, the PSO social factor, is set to 1.41.

The only remaining parameter is inertia w, with values from 0 to 1.0. According
to [18] the choice of the inertia value is crucial to the performance of PSO. So
two experiments were designed to determine the best value for w and also the
best variant of the algorithm to use.

Our first experiment was designed to identify the prominent region for the
value of w. The algorithms were tested with large steps between values of w,
these values being 0, 0.1, 0.3, 0.5, 0.7 and 0.9. For each of these values the
algorithms were executed 10 times for each instance of the benchmark. The
sum of the highest profits for each instance could then be compared with the
corresponding sum from the best known results in the literature. These best
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Table 1. Comparison with state-of-the-art algorithms

Method Parameter
Average CPU time on data sets Gap

1 2 3 4 5 6 7 Profit Percent

PSOMA
w = 0.10 0.14 0.01 0.51 82.94 12.81 3.87 55.98 37 0.019
w = 0.07 0.15 0.01 0.51 78.45 12.87 3.99 54.54 31 0.016

SPRa slow − − − 367.40 119.90 89.60 272.80 117 0.060

MAb k = 5 1.31 0.13 1.56 125.26 23.96 15.53 90.30 81 0.041
k = 10 1.74 0.24 2.06 170.21 33.52 22.33 109.00 54 0.028

SVNSc slow 7.78 0.03 10.19 457.89 158.93 147.88 309.87 85 0.043
a Computations were carried out on an Intel Xeon 2.50 GHz
b Computations were carried out on an Intel Core 2 Duo 2.67 GHz
c Computations were carried out on an Intel Pentium 4 2.80 GHz

results are collected from [1, 4, 12, 19, 20] but not from [9] because the authors
used a different rounding precision and some of their results exceeded the upper
bounds given in [6]. Here we are interested in the difference (or gap) between
those two sums. On the basis of the results shown in Figure 1 for this experiment,
we chose to perform the next test using different values of w in the prominent
region between 0 and 0.3.

In the second test, PSOMA was executed, as a complement to the first test,
with the following values for w: 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15,
0.17, 0.19, 0.20, 0.21, 0.23, 0.25, 0.27 and 0.29. Figure 1 gives a full graphical
representation of the differences with the best known profits from the literature.
The figure shows that the best value that we found for w is 0.07.

3.2 Numerical Comparisons with Existing Methods

Numerical results with comparison to the state-of-the-art algorithms, MA in [4],
SVNS in [1] and SPR in [19], are given in Table 1. In this table, the relative
gap in percent is the gap in profit over the sum of profits from the best known
solutions in the literature. Results of SPR were not reported for all instances in
[19], so CPU times of SPR for sets 1, 2 and 3 are not reported in the table. But
according to the authors, the best known results in the literature can be used as
score of SPR for unreported instances, hence its gap can be deduced.

After the first test we noticed that PSOMA with w = 0.1 already outper-
formed all the three state-of-the-art algorithms. MA, SVNS and SPR gave gaps
of 81, 85 and 117 respectively in relation to the standard benchmark, while the
gap given by PSOMA is 37. Even better results were obtained with w = 0.07,
where the gap was reduced to 31. However, in order for the comparison with
[4] to be fair, we obtained the source code from the authors and applied the
same test protocol to MA with the stopping condition set to 10 · n

m , and with
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10 executions per instance. These results are also shown in Table 1, the gap
for MA obtained from this test was 54, rather than the original 81. Regarding
computational time, PSOMA required less CPU time than MA.

4 Conclusion

This paper presented a novel memetic algorithm for the Team Orienteering Prob-
lem which incorporates the PSO principle into the main scheme. Numerical re-
sults on the standard benchmark for TOP demonstrate the competitiveness of
this approach. The new PSOMA outperformed the prior GA/MA design in terms
both of computation time and solution quality. Because the old GA/MA is one
of the state-of-the-art algorithms, the new PSOMA has considerably improved
the solving method for TOP, the newly attained gap being 0.016%. This success
is due to the good design of the recombination operator for updating particle
positions, as well as to an appropriate choice of parameters. Furthermore, a
small inertia value, corresponding to the best configuration of the algorithm,
strengthens the memetic characteristic of the approach. In summary, the results
presented in this paper are encouraging for the application of Particle Swarm
Optimization for solving combinatorial problems, as has already been indicated
in [3]. As part of our future development of this method we intend to investigate
the performance of the approach for certain variants of TOP, such as variants
with time windows or with capacity constraints.
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Abstract. We are solving a mail delivery problem by combining exact
and heuristic methods. The problem is a tactical routing problem as
routes for all postpersons have to be planned in advance for a period
of several months. As for many other routing problems, the task is to
construct a set of feasible routes serving each customer exactly once at
minimum cost. Four different modes (car, moped, bicycle, and walking)
are available, but not all customers are accessible by all modes. Thus,
the problem is characterized by three interdependent decisions: the clus-
tering of customers into districts, the choice of a mode for each district,
and the routing of the postperson through its district. We present a
two-phase solution approach that we have implemented and tested on
real world instances. Results show that the approach can compete with
solutions currently employed and is able to improve them by up to 9.5%.

Keywords: mail delivery, hybrid solution approach, set covering.

1 Motivation and Introduction

Every day, millions of private households are waiting for their mail in European
countries. Currently, in many countries only public companies are responsible
for delivering the mail. After deregulation of the postal services by the European
Union, also private companies are allowed to deliver letters to households. The
current public actors, as well as potential private actors, are expecting high
competition for this market and, therefore, seek to improve their competitiveness.

Regardless of the changing market environment, postmen routes need to be
adapted on a regular basis because customer demand is changing over time
(e.g. new houses are being built in the area, people are moving to another
area, etc.). These adaptations can be minor or major adjustments (Bodin and
Levy 2000). On the one hand, making only minor changes to existing routes
means ignoring potential savings, but can be implemented very quickly. On the
other hand, the planning and implementation of completely new routes is quite
costly and is therefore omitted sometimes.

Orloff (1974) recommends an arc routing formulation for mail delivery prob-
lems. The Capacitated Arc Routing Problem (CARP) consists of traversing arcs
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with positive demand with one of m identical vehicles so that cost is minimized.
Arcs without demand can be traversed to reach compulsory ones. An intro-
duction to the CARP can be found in the PhD thesis of Wøhlk (2006), where
also some practical applications are described. She proposes a combination of
dynamic programming and simulated annealing to solve the problem. On the
other hand, Oppen and Løkketangen (2006) observe that, for a particular type
of problem with a lot of customers located along streets, it is not obvious if a
node routing or an arc routing formulation is more appropriate. This is also true
in our case. Despite the fact that customers can be aggregated (as described in
Sect. 2), a node routing environment is chosen, because we believe that, this
way, we can solve the large problem instances we are facing more efficiently.
The Vehicle Routing Problem (VRP) is similar to the CARP, but here demands
are associated to nodes instead of arcs. The VRP is one of the most studied
problems in the literature. An introduction to the VRP can be found in Toth
and Vigo (2002) and in Golden et al. (2008). Recently, some rich VRPs have
been introduced where real world constraints extend the basic VRP in several
ways. As described by Doerner and Schmid (2010), matheuristics are a promis-
ing way to tackle rich VRPs. Here, exact and heuristic methods are combined
to overcome the weaknesses of both methods. We will follow this observation
and combine heuristics for generating a large pool of routes, and then solve a
set covering problem to optimality to determine the most promising routes for
the final solution. One of the first approaches using a similar method was pub-
lished by Renaud et al. (1996). The authors generate a pool of routes using an
improved petal heuristic, and then solve a set partitioning problem to determine
an optimal combination of routes. Recently, Muter et al. (2010) proposed the in-
tegration of an exact algorithm into a tabu search framework. The exact method
solves a set covering problem and guides the metaheuristic in the solution space.

The remainder of the paper is organized as follows. A detailed problem de-
scription is given in Sect. 2. The solution approach is described in Sect. 3, and
a case study is presented in Sect. 4. A summary concludes the paper in Sect. 5.

2 Problem Description

We are planning mail delivery tours where each tour starts and ends at a given
depot. A tour is performed by a postperson, and each person may either use a
vehicle of the depot fleet to perform the tour, or walk. A set of customers is pro-
vided, and each customer has to be served exactly once. Since it is reasonable to
visit groups of customers consecutively (i.e., all customers living in a certain part
of a street), we aggregate customers to street segments that are then treated as
a single task. This helps to reduce the problem size because only entry and exit
points of the street segments, called connecting points, are considered. How the
customers are aggregated depends on the characteristics of the street they live
in. While in small streets customers can be served in a zigzag pattern, visiting
both street sides at the same time, in larger streets each side has to be served
separately, to reduce the risk of road accidents for postpersons. Figure 1 shows
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Fig. 1. If a street can be served in a zigzag pattern (shown on the left), then a single
street segment represents the customers in this street. If the street has to be served
side by side, then two independent street segments are created, as shown on the right.

examples of possible walking patterns. Whether a street can be served using a
zigzag pattern or not is decided beforehand by the mail delivery company and is
not a decision we have to make in the solution process. For some streets (i.e. one
way streets), service is only possible in the direction of traffic, but many streets
can be served in both directions. The proportion of one way streets varies from
instance to instance, since urban as well as rural areas are considered. In urban
areas, many one way streets can be found, whereas in rural areas most streets are
bi-directional. Using walking mode, all streets can be served in both directions.
Each street segment may be traversed an arbitrary number of times without
servicing it to reach other segments, which is often called deadheading.

Fleet. The depot fleet consists of bikes, mopeds, and cars. In addition, a postper-
son might walk and use a hand cart to carry the mail. For each type of vehicle
(or mode, as we refer to it here), the amount of vehicles available is specified.
For each type, vehicles are assumed to be homogeneous (i.e. all vehicles of a
type have the same capacity and the same speed), and each postperson is able
to use any of the vehicles available. Each vehicle used causes a fixed amount of
maintenance cost.

Postpersons. The different contracts of postal employees determine the person’s
daily working time and the amount of extra working hours (overtime) that might
be added if necessary. For each contract type, the number of available persons
is known and must be respected in the solution. In addition, the mail has to
be prepared before starting the tours.This is called table work and consists of
sorting the letters in the order of delivery in the tour. This work can either be
done by the postperson performing the tour or by another employee. In some
cases it is necessary to separate the table work from the delivery task. Whether a
postperson performs the table work himself or not is decided beforehand by the
company. The amount of time needed to sort the mail depends on the street seg-
ments visited in the tour. In case the performing postperson sorts the mail, the
table work is part of the total working time and therefore reduces the tourlength
(the sum of both must not exceed the person’s maximum working time). Before
a postperson starts the tour, he/she fills the vehicle (or the hand cart if it is
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a walking tour) with the sorted mail. If the available capacity is too small, the
remaining mail is taken to relay boxes along the route by another worker. If
necessary, a postperson’s working time can be extended. The maximum amount
of overtime depends on the personnel type.

Network. We use a directed street network to reflect the real street network
and to take one way streets and turning restrictions into account. For street
segments that have to be served, the connecting points are known, as well as
cost and time needed to serve the segment. Note that time and cost depend on
the vehicle (mode) used to traverse an arc, which means that in total up to eight
different costs can be assigned to a single arc. (Two values for each mode: with
and without service. The service cost of a street segment depends on the vehicle
used. Therefore, the decision of which mode should be used to service a segment
has strong impact on the objective value. In a similar fashion, service times also
depend on the vehicles used. The vehicle selection influences the route duration
and, therefore, the route feasibility.)

ZIP-codes are an important issue in the planning of postmen tours, because
machines are used to pre-sort the mail. The more ZIP-code borders a route
crosses, the more difficult it becomes to automatically sort the letters. There-
fore, ZIP-code boundaries are also included in the network by adding a penalty
to the costs of arcs that are crossing a border.

Objective. The objective is to minimize total cost, which consists of the service
cost for each street segment, the routing cost in between segments, and the cost
for preparing the mail for the covered segments in the morning. For each vehicle
used in the solution, a small amount of maintenance cost (depending on the
type of vehicle) is also added. Similar to Bodin et al. (2000), routes should reach
as close as possible the maximum working time of the performing postperson
because of practical considerations. Since the company could not specify this
explicitly enough to formulate it in a mathematical way, we do not consider this
aspect in the objective function, but pay attention to it in the final steps of the
solution procedure.

3 Solution Approach

The solution approach consists of two steps (see Fig. 2). First, a clustering and
routing process produces to a pool of routes. Then, in the second step, a set
covering problem is solved where routes are chosen from the pool to form the
final solution. Both steps are explained in detail in the following.

3.1 Step One: Clustering and Routing

In step one, routes are generated that serve as input for the set covering pro-
blem solved in step two. To form homogeneous routes, we follow the cluster-first
route-second paradigm proposed by Fisher and Jaikumar (1981).
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Fig. 2. Steps in the solution approach

Clustering Algorithm. Clusters are formed by placing seeds in a heuristic
way. The first seed is chosen randomly, then the node farthest away from the
seed is chosen, then the node farthest away from all seeds chosen so far, and so
on. The generation of seeds stops when the number of seeds equals the number
of postpersons available or when no more nodes are available. This is the case if
all points can be reached from a seed within distance Dmin (see Algorithm 1,
Dmin is a parameter).

Once all seeds are determined, each of the remaining nodes is assigned to its
nearest seed. One cluster is formed for each seed and its assigned nodes. Then,
for each cluster, routes are generated.

Algorithm 1. Generation of Seeds for Clusters
Seeds ← {randomElement(N )}
Candidates ← N \ Seeds
repeat

s ← farthest element from all Seeds in Candidates
Seeds ← Seeds ∪ {s}
Candidates ← Candidates \ {i|dis < Dmin}

until |Seeds| = nClustersMax ∨ Candidates = ∅
return Seeds

Routing Algorithm. We repeat the clustering for each personnel type and
each mode available. Therefore each cluster has a personnel type associated to
it. This is important since the postperson’s maximum working time per day
limits the route length, and the working times of postpersons vary because of
different working contracts. Routes are generated using the well known savings
algorithm by Clarke and Wright (1964). Starting from the depot, for each street
segment, the cheapest route to serve just this single segment is determined. The
route through each segment is fixed so that savings can be calculated. We use
the parallel version of the algorithm and merge routes in the order of decreasing
savings if it is feasible w.r.t route duration, until no more routes can be merged.
Then the generated routes are added to the pool and the clustering starts again
for the next postperson.
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mergeRoutes. The Savings Algorithm tends to produce routes that are much
shorter than the maximum duration. Therefore, after the route generation is
finished for all postpersons and modes, we try to merge routes again. This time,
we consider all routes in the pool. Two routes r and l in the pool are merged if
both routes are using the same mode, and the route duration of the combined
routes does not exceed the maximum route duration of the postperson perform-
ing route r. If both conditions are satisfied, customers in route l are appended
to route r and route l is removed from the pool of routes. Since the pool is very
large, we do not consider all possibilities but apply the first profitable merge for
each route.

3.2 Step Two: Route Selection

In the previous step, a number of routes were generated for each postperson us-
ing different modes. Now we need to select a set of routes that covers each street
segment exactly once. Therefore a set covering problem is solved. To make sure
that neither the number of persons available nor the number of vehicles available
is exceeded, we introduce the concept of resource. A resource can be a person
performing the route, or a vehicle. Note that a tour consumes several resources
as each tour requires a person and a vehicle. The set covering model can be
formulated as follows:

Ω . . . set of all routes j ∈ Ω
cj . . . cost of route j
ur

j . . . amount of resource r consumed by route j
Qr. . . available amount of resource r

ai
j =

{
1, if street segment i is covered by route j

0, otherwise

xj =

{
1, if route j is used in the solution
0, otherwise

min
∑
j∈Ω

cjxj (1)

∑
j∈Ω

ai
jxj ≥ 1 ∀i ∈ I (2)

∑
j∈Ω

ur
jxj ≤ Qr ∀r ∈ R (3)
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The objective is to minimize total cost, which is the sum of costs of all selected
subsets. Constraints (2) make sure that each street segment is covered at least
once, while constraints (3) ensure that no more resources are used than available.
Due to the set covering formulation, some street segments may be covered more
than once. Since each segment has to be served exactly once, multiple visits are
removed using the repairSolution-algorithm described in the following.

Local Search - repairSolution and fillRoutes. For each segment served
more than once, the gain for removing this segment from the route is calculated
for all routes serving this segment, and all visits are removed except the one
with lowest gain. Afterwards, all routes are improved using a slightly modified
version of the 3-opt* method proposed by Baker and Schaffer (1986).

For postal companies it is important that the route duration meets the max-
imum working time as close as possible. Therefore we use a local search called
fillRoutes that tries to fill up the routes, and at the same time reduces the to-
tal number of routes. Even though the number of routes is not an objective
in the first place, a solution with fewer routes decreases the fixed cost of the
company and is therefore preferable. The algorithm works the following way:
for each route, the difference between current and maximum route duration is
calculated, and the route with the largest difference is chosen as candidate to
be removed. The street segments of the candidate route are inserted into the
remaining routes using a cheapest insertion criterion. If this leads to a feasible
solution, we keep the new solution, remove the candidate and repeat the proce-
dure again. Otherwise we keep the old solution and try to remove another route.
The fillRoutes algorithm is terminated after ti iterations or if we fail k times
in a row to insert all street segments of the candidate route into another one
(ti and k are parameters). Then the last feasible solution is kept as final solution.

4 Case Study

Seven real world instances were used to test the algorithm. The instances are
generated from rural, urban and mixed postal areas with different sizes. The
number of street segments ranges between 895 in the smallest and 5,740 in the
largest instance. For all instances, the average of three test runs is indicated in
Table 1. Column Segments specifies the total number of street segments, column
Cost provides the cost of the final solution. Column Free Time specifies the
average difference between actual and maximum route duration for all routes in
the solution. Column Usage indicates how much of the maximum route duration
was used on average. Finally, the number of routes and the number of vehicles
used in the solution are specified. (The number of vehicles is specified separately
for each mode: walking/bike/moped/car).

Results were calculated on an Intel Xeon CPU with 2.67 GHz and 24 GB
of RAM using the Linux operating system. The set covering model was solved
using CPLEX 12.1 and was restricted to at most ten hours of computing time.
This time limit was reached by only one instance (instance 6), which can be
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explained by the size of the set covering instance (4,228 rows and 23,000 columns,
whereas for instance 7 only 18,600 columns were generated.) Instance 6 also had
the longest overall computing time of approximately 59 hours. The smallest
instance (instance 1) took less than 3 seconds to be solved, whereas the largest
one (instance 7) was solved in 16.5 hours.

In the solutions in Table 1, the number of mopeds used as route mode often
exceeds the number of the other vehicles. Even though this might be cheap,
postal companies often avoid to use many mopeds because it is inconvenient and
sometimes dangerous for employees during the year (rain in spring and fall season
and snow in winter make). Therefore, we run a test where mopeds are forbidden.
The results are indicated in Table 2. As expected, costs are slightly higher than
before, and the total number of routes increases for all instances. Not all mopeds
can be replaced by cars, therefore the number of bikes increases significantly.
Bikes are considered less dangerous than mopeds because they drive with lower
speed, but the company could also limit the number of bikes if necessary.

A third test was performed where the table work is not done by the postper-
sons themselves (see Table 3). As expected, fewer routes are needed to cover all
street segments. The cost also reduces for all instances except instance 3, where
it is slightly higher. This can probably be explained by the heuristic nature of
the route generation procedure.

Table 1. Test instances and results

Instance Segments Cost Free Time Usage Number Vehicles
(min.) (%) of Routes w/b/m/c

1 895 1,833.73 27.34 94.31 13.67 2.33/0/11.63/0
2 1110 3,640.30 40.54 91.56 23.33 14/0/7.67/1.67
3 1240 2,740.00 33.87 92.94 18.67 6/0/12.67/0
4 1676 2,287.13 53.05 88.95 15.67 3/0/10/2.67
5 1713 6,168.32 41.66 91.32 42 24/0.33/11/6.67
6 4228 7,933.97 15.66 96.74 55 14.67/1.33/31/7.67
7 5740 8,066.42 39.28 91.81 48 11.33/0/27.67/9

Table 2. Test run without mopeds

Instance Segments Cost
Free Time Usage Number Vehicles

(min.) (%) of Routes w/b/m/c
1 895 2,013.89 33.62 92.99 15.33 2/8.33/0/5
2 1110 4,136.84 82.87 82.74 29.67 16/8/0/6.67
3 1240 3,811.09 12.99 97.29 25 8.67/16.33/0/0
4 1676 2,434.69 20.78 95.67 16 2.67/6.33/0/7
5 1713 6,786.38 40.70 91.52 46.67 25.33/11.67/0/9.67
6 4228 8,332.53 10.15 97.88 57.67 16.33/15.67/0/25.67
7 5740 8,677.25 58.24 87.87 56 12/15/0/29
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Table 3. Test run without table work

Instance Segments Cost
Free Time Usage Number Vehicles

(min.) (%) of Routes w/b/m/c
1 895 1,829.44 29.70 93.81 10.33 3/0/7.33/0
2 1110 3,578.50 77.62 83.83 22.33 13.67/0/6.67/2
3 1240 2,756.45 33.37 93.05 15.33 6/0.33/9/0
4 1676 2,120.25 61.11 87.27 12 2/0/7.33/2.67
5 1713 5,785.61 44.19 90.79 33.33 20/0/11/2.33
6 4228 7,309.68 24.46 94.90 39.67 6.33/0.67/27/2.33
7 5740 7,768.97 33.69 92.98 41 10.33/0/24.33/6.67

Finally, we compare our results to currently applied solutions. The compari-
son shows that an improvement of up to 9.5% can be reached, whereas in one
case our solution is 5.9% more expensive. On average, a cost reduction of 3%
can be obtained. To postal companies often not only the cost, but also the
‘compactness’ of routes is important for organizational reasons but very diffi-
cult to obtain using conventional routing algorithms. Because the company was
not able to formulate this ‘compactness’ in a mathematical, company planners
were asked to assess the obtained solutions and were satisfied with the presented
results.

5 Summary and Conclusion

We presented a new approach to solve a tactical mail delivery problem. The com-
plexity of the planning tasks results from large-scale instances with sometimes
more than 5,000 customers and several non-standard options and constraints.
We propose a cluster-first route-second approach where first a pool of promis-
ing routes is generated heuristically, and then a set covering problem is solved
to optimality. Results on real world instances show that solutions can be im-
plemented in practice and outperform existing solutions. However, we still see
room for improvements, e.g., by applying more sophisticated routing algorithms
in the first phase or by embedding the entire two-phase approach into an itera-
tive framework that uses information from the set covering phase to construct
improved clusters and routes.
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Abstract. Our project addresses the question how to automatically
and simultaneously assign staff to workstations and generate optimised
working time models on the basis of fluctuating personnel demand while
taking into account practical constraints. Two fundamentally different
solution approaches, a specialized constructive heuristic (commercial)
and a hybrid metaheuristic (the evolution strategy) that integrates a
repair heuristic to remove contraint violations are compared on a com-
plex real-world problem from a retailer. The hybrid approach clearly
outperforms the tailored constructive method. Taken together with our
similar findings on a related staff scheduling problem from logistics this
result suggests that the evolution strategy, despite its original focus on
continuous parameter optimisation, is a powerful tool in combinatorial
optimisation and deserves more attention. Moreover, hybridising a meta-
heuristic with a problem-specific repair heuristic seems a useful approach
of resolving the conflict between domain-specific characteristics of a real-
world problem and the desire to employ generic optimisation techniques,
at least in the domain of workforce management.

Keywords: integrated planning, metaheuristic, constructive heuristic.

1 Introduction

The ability to adapt the assignment of personnel to changing requirements is
critical in workforce management (WFM). For the retail industry often inflex-
ible shift models are used, thus leaving out an important option to increase
WFM agility. In this traditional planning first a shift plan is created. Ernst et
al. [5] describe this as the line of work construction. Staff scheduling as the next
planning step involves the assignment of an appropriate employee to the appro-
priate workstation at the appropriate time while considering various constraints.
This step is also referred to as staff assignment [5]. This traditional multi-level
approach to workforce management in separate steps can be very inefficient.

An integrated design of working time models and staff schedules allows for
better solutions. During this process, working time models are automatically
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generated based on demand while respecting certain constraints. Thereby, over-
and understaffing are reduced while maintaining the same number of employees.
Efficient usage of the workforce leads to a reduction of overtime and idle time, a
rise in employee motivation and, thus, an increase of turnover through a higher
level of service.

In this paper, we compare a constructive approach, specifically designed for
the requirements of retail, and an adapted version of the evolution strategy
on this task. While constructive approaches are generally popular in personnel
scheduling and rostering [4], the evolution strategy performed well in a related
scheduling problem from logistics [9].

The research goals discussed in this paper are twofold. First, we investigate
means for finding good solutions to a complex practical application that is of
relevance in such diverse industries as logistics, retail and call centres. Second, we
want to contribute to the evaluation and comparison of the evolution strategy on
combinatorial problems of realistic size and complexity, since this metaheuristic
has received relatively little attention in combinatorial optimisation.

The rest of this article is structured as follows. In Section 2 the retail case is
highlighted. Then we discuss related work. In Section 4 the constructive heuristic
is presented. The subsequent section introduces our adaption of the evolution
strategy. In Section 6 both heuristics are applied and the results are discussed.
We conclude with a summary and indications for future work.

2 Description of the Real-World Case Study from a
Retailer

This practical case concerns personnel planning in the department for ladies’
wear at a department store. For current benchmarks and real data reference is
made to [11]. In this problem we assume a set of nine employees E = {1, . . . , 9},
a single workstation W and a discrete timeframe T with index t = 0, . . . , T − 1.
Each period t of the interval has a length lt greater than zero.

lt > 0 ∀t ∈ T (1)

The description of the workstation is kept rather open so that secondary tasks
such as refilling can be integrated into the personnel demand. The assignment
of an employee to the workstation is controlled using the binary variable xet.
A dummy workstation is used to mark times when an employee is generally
available but is not dispatched in staffing. This approach is necessary due to the
automatic generation of working time models within the scheduling framework.

xet =
{

1 if employee e is assigned to the workstation at period t
0 otherwise (2)

The store is open from Monday to Saturday from 10:00 to 20:00. Moreover, it is
known in advance, which employees are on holiday or detained due to training.
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The availability of the employees is determined using the binary variable aet.

aet =
{

1 if employee e is available at period t
0 otherwise (3)

The personnel demand dt is given in one-hour intervals and is centrally de-
termined based on historic data. Also considered are holidays as well as sales
campaigns. A minimal and maximal number of employees per period is set.

In order to find a solution to the problem described, automatic working time
model generation will be integrated with personnel scheduling. As a hard con-
straint, working time models must begin and end on the hour. Moreover, an
employee e can only be associated with the workstation in the period t if he is
actually present.

xet ≤ aet ∀e ∈ E and ∀t ∈ T (4)

Additionally a number of soft constraints are introduced to model further re-
quirements of the respective company. Their violation is penalised with error
points that reflect their relative importance as inquired through interviews with
the management. As maintaining a good service level is key for revenue in trade
the violation of staffing targets has to be avoided. If a discrepancy arises be-
tween the staffing demand dt and the assigned workforce d′t, error points Pd are
generated for the duration and size of the erroneous assignment. The assigned
workforce d′t is defined as follows.

d′t =
∑
e∈E

xe,t (5)

Different types of errors can be distinguished: cdo represents overstaffing when
the demand dt > 0, cdn signals overstaffing when the demand dt = 0, cdu signals
cases of understaffing.

Pd =
T−1∑
t=0

(cdn + cdo + cdu)lt

∣∣∣∣∣
(

E∑
e=1

xet

)
− dt

∣∣∣∣∣ ,
with: (6)

cdo > 0 if the workstation is overstaffed at t and dt > 0, else cdo = 0,

cdn > 0 if the workstation is overstaffed at t and dt = 0, else cdn = 0,

cdu > 0 if the workstation is understaffed at t and dt > 0, else cdu = 0.

By assigning more error points in cases of overstaffing without demand cdn the
chance for mutual support of employees in their work is strengthened.

Four types of employment contracts exist. They differ in the amount of weekly
working time which is between 25 and 40 hours. During weeks with bank holidays
the planned working time se is reduced by a proportional factor h. The effective
weekly working time ie for an employee should not exceed the contractually
agreed number of hours. Each minute in excess is punished with error points cw.

Pw =
52∑

week=1

E∑
e=1

cw(ie − se ∗ h), (7)

with: cw = 0 if se ∗ h − ie ≥ 0, cw = 1 else.
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A particular focus is on the automatically generated working time models.
Working time models should not be shorter than 3 hours or longer than 9 hours.
Any violation leads to error points ct per employee and day. The sum of these
error points for the planning horizon is Pt. Working time models must not be
split up during a working day, with violations leading to error points cc per
employee and day. The sum of these error points for the planning horizon is Pc.

Therefore, the objective function to be minimised becomes:

minP = Pd + Pw + Pt + Pc. (8)

Historical data is available for a complete calendar year, so that an entire year
can be planned ahead. With 9 employees and 8.760 one-hour time slots to be
planned the total number of decision variables for this problem is 78.840. In
practice, also shorter planning horizons are employed. However, the full year
plan helps the company to better understand on a more strategic level how well
it can cope with demand using the current staff.

3 Related Work

Staff scheduling is a hard optimisation problem. Garey and Johnson [7] demon-
strate that even simple versions of staff scheduling are NP-complete. Moreover,
Tien and Kamiyama [23] prove that practical personnel scheduling problems are
generally more complex than the TSP which is itself NP-hard.

The general workforce scheduling problem has attracted researchers for quite
a number of years. Ernst et al.[4] provide a comprehensive overview of problems
and solution methods for personnel scheduling and rostering from more than 700
analysed sources. Workforce scheduling problems can range from simple models
like days-off scheduling to quite complex problems like scheduling in call centres
[18] or multi objective optimisation problems [2]. Typical application areas are
airline crew scheduling (see [5] for a survey), nurse scheduling in hospitals [3],
and field workers scheduling (like repair service [13]). Most of these approaches
are not suitable for workforce scheduling in retail with it’s particular require-
ments. However, applications like service centre workforce scheduling [24] have
similarities with the problem presented here [5], as workforce requirements are
dynamic fluctuating, shifts can change in their length and beginning, over- and
understaffing are possible and should be minimized while the number of possible
shifts can become very large.

Systems that are currently in practical use often base on the constraint-
satisfaction approach. An example was developed with ILOG tools [10]. Due
to deregulation the workforce scheduling problem in the retail sector has nowa-
days a lot of soft constraints and nonlinearities, what makes it hard to compute
practical solutions with classical optimisation techniques. To our knowledge this
problem has not attracted a lot of researchers in retail for a long time [5]. The
situation currently seems to change as the references [12], [14] and [17] were
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all published recently. Additionally, one can find related work on scheduling of
employees with different skills, e.g. [24], [6] or approaches that take different
employees types and their job satisfaction into account [15]. Prüm [19] addresses
different variants of a personnel planning problem from retail, which is similar to
our problem. The results indicate that problems of realistic size with constraints
can in general not be successfully solved with exact methods. Therefore, in the
remainder of this paper we focus on heuristic approaches for our application.

4 Constructive Approach

Sauer and Schumann suggest a constructive approach as part of a commercial
interactive scheduling tool specifically designed for retail. This system allows
for demand-oriented assignment planning, with the intervals at least 15 minutes
long. The planning length is one week of seven days. Longer periods must be
planned week by week. The approach cannot consider more than one worksta-
tion or sub-daily workstation rotations. However, planning of breaks is possible
and employees can be divided in a primary and secondary pool for each schedul-
ing task. These pools can be constructed according to different skill levels or
departments. The approach is basically a greedy heuristic that produces a solu-
tion quickly and allows for the integration of human expert knowledge. For more
details see [21]. The main scheduling scheme is presented in the Algorithm 1.

Algorithm 1. Constructive heuristic
while days to schedule do

Select most difficult day to schedule
Calculate maximum interval
Chose available staff for the selected day
Rank possible staff candidates
if candidate exists then

Calculate assignment interval
Assign employee
Update employees and demand data

else
Reduce demand

end if
end while

The schedule is generated as a set of assignments under the assumption that
the available staff is rare and understaffing will be ineluctable. The idea is to use
a bottleneck heuristic. Most important decisions are the selection of days and
the appropriate personnel. Here heuristic knowledge is incorporated.

Selecting a day: A day is schedulable if it has an open demand. If there exist
more than one day with an open demand, the difficulty of the days is computed
which is the ratio of the open demand of that day and the open demand of the
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week. The most difficult day is chosen. Then the longest open demand interval of
this day is calculated and the next assignment has to be placed in this interval.

Selecting an employee for a day: Based on the information above the available
staff can be identified. These are the employees that are not scheduled already
on this day and are available for at least parts of the assignment interval. The
candidates have to be evaluated according to their adequacy for the next assign-
ment, computed by a number of factors, namely their normal weekly working
time, time-sheet balance and a priority value of the employee which depends on
the status group and working pool. This evaluation results in a total order of
all possible candidates for the assignment. The highest rated employee will be
assigned. During this selection constraints like the minimal assignment time for
each employee are regarded.

5 Evolution Strategy

The evolution strategy (ES) is a well-known biologically-inspired metaheuristic
[1]. Mutation is the main search operator employed. Our application is of a
combinatorial nature, this requires some adaptation of the ES. Algorithm 2
presents an overview of the implemented ES.

Algorithm 2. Workforce-scheduling evolution strategy
Initialise the Population with μ Individuals
Repair the Population
Evaluate the μ Individuals
loop

Recombination to generate λ Offspring
Mutate the λ Offspring
Repair the λ Offspring
Evaluate all repaired Individuals
Selection ((μ + λ) or (μ, λ))

end loopUntil Criterion

To apply the ES, the problem needs to be conveniently represented. A two-
dimensional matrix is applied. The rows represent the employees and the columns
the time slots. The meaning of the matrix elements is as follows:

– 0: Store is closed or employee is absent (holiday, training, illness).
– 1: Employee is assigned to the workstation.
– 2: Employee is generally available but not dispatched in staffing.

The ES-population is initialized with randomized but valid solutions that make
use of prior knowledge like the opening hours of the store, bank holidays and
employee availability. Possible errors w.r.t. the requirements of working time
models are repaired.

Ten alternative recombination variants were evaluated in a pre-test. The
best performance was achieved with the classical one-point crossover: The same
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crossover point is determined independently and at random for all employees
(row) of a solution and the associated parts of the two parents are exchanged.

Two different forms of mutation were devised. In standard-ES, mutation is
performed using normally-distributed random variables so that small changes
are more frequent than large ones. Mutation type ’N’ of an offspring is carried
out by picking an employee at random and changing the workstation assign-
ment for a time interval chosen at random. The number of employees selected
for mutation follows a (0;σ)-normal distribution. Results are rounded and con-
verted to positive integer numbers. The mutation stepsize sigma is controlled
self-adaptively using a log-normal distribution and intermediate recombination,
following the standard scheme of ES [1].

The second approach for mutation (type ’E’) has already proven to be efficient
in a staff scheduling problem from logistics [9]. The concept of maximum entropy
is used to select a specific mutation distribution from numerous potential candi-
dates. This mutation is based on the work of Rudolph [20]. Main differences to
Rudolph’s approach are the introduction of dimension boundaries, the conside-
ration of employee availability in mutation, and, finally, an increased mutation
intensity due to the high-dimensional search space.

(μ,λ)-selection (comma-selection) as well as (μ + λ)-selection (plus-selection)
are used as well as different population sizes. The best solution found during an
experimental run is always stored and updated in a ”golden cage”. It represents
the final solution of the run. Following suggestions in the literature e.g. [1], the
ratio μ/λ is set to 1/5 - 1/7 during the practical experiments. After mutation,
a repair heuristic is applied to individuals to remove constraint violations in the
following order, based on the observed error frequency (more details in [8]):

– Overstaffing: If possible, employees are reassigned to dummy workstation.
– Understaffing: If possible, additional employees are assigned to workstation.
– More than one working time model per day per employee: If possible, one

time period is transferred to an employee, who has no assignment that day.
– Minimum length of a working time model: If possible, the interval is ex-

panded, while shortening working hours of others.
– Maximum length of a working time model: If possible, the interval is split

and one part is assigned to another employee.
– Correction of the working time models: All working time models are made

consistent, regardless of effects concerning over- and understaffing.

6 Results and Discussion

The algorithms were tested on the retailer case study with the objective to
minimise resulting error points under the given constraints. The implementation
was done in C# on a 2.66 GHz quad core PC with 4 GB RAM under Windows
Vista. Table 1 presents the results for different variants of the heuristics. The
runs using ES were repeated 30 times for each parameter set. The constructive
method requires approx. 2 minutes and computes a deterministic result. The
ES (including repair) requires roughly 6 hours for a single run with 400,000



498 V. Nissen, M. Günther, and R. Schumann

Table 1. Results with various parameter settings (averaged over 30 runs for ES)

overstaffing too much
heuristic mean minimal standard understaffing in minutes weekly working

error error deviation in minutes demand > 0 time in minutes
constructive method
(commercial) [21]

27660.0 27660 0.0 2280.0 2160.0 23220.0

ES(1,5) type N 4910.0 3840 425.7 2178.0 0.0 2881.2
ES(1+5) type N 8828.8 4320 2786.0 3496.0 2.0 5330.8
ES(10,50) type N 5996.4 4836 656.2 2616.0 0.0 3380.4
ES(10+50) type N 17440.4 6132 11405.3 4328.0 4.0 13108.4
ES(30,200) type N 6712.8 4680 1050.9 2786.0 0.0 3926.8
ES(30+200) type N 13219.6 5700 5829.6 3924.0 0.0 9295.6
ES(1,5) type E 8257.6 5316 2416.9 3272.0 6.0 4979.6
ES(1+5) type E 9809.6 4980 2827.0 3600.0 0.0 6209.6
ES(10,50) type E 8174.8 5136 1464.1 3278.0 0.0 4896.8
ES(10+50) type E 15316.8 7296 6638.5 4244.0 2.0 11070.8
ES(30,200) type E 7278.0 5040 1209.3 3118.0 2.0 4158.0
ES(30+200) type E 11503.6 6000 3608.0 3666.0 4.0 7833.6

fitness calculations. Both heuristics produce working time models that respect
minimum and maximum length as set by the planner. In no case more than one
working time model per day was assigned to any one employee. Finally, both
solution approaches avoided overstaffing when demand for personnel was zero.

The commercial constructive heuristic, which was specifically developed for
the requirements of retailers with one workstation, produces a large number of
error points for overcoverage within the schedule. The method has difficulties
generating fitting working time models for the present problem. Employees are
often scheduled for too long time periods without good alignment to demand.
With regard to undercoverage, the approach yields good results. This is, however,
accomplished by exceeding weekly target hours, thus creating associated error
points. Shortening some of the working time models would reduce errors in
overcoverage and violation of contractually set working times.

ES performs significantly better. The best mean results were achieved with
ES(1,5) and mutation type N, which is based on the classical normally-distributed
form of mutation for continuous parameter optimisation. Thus, recombination is
not an important search operator for this application. The assignment plans gen-
erated with the ES(1,5) can hardly be improved upon, even with highly complex
manual changes. For this reason, and because of the vast improvement over the
specialized constructive approach, these plans can be regarded as very usable.
Interestingly, the mutation type E, specially designed for integer search spaces,
does not consistently outperform the type N. This is in contrast to previous
results produced for a similar problem in logistics [9].

Generally, the comma selection performs better than plus selection (for the
same μ and λ). The comma strategy ”forgets” the parent values after each gen-
eration, which allows for a temporary deterioration of objective function values.
This is helpful in escaping from a local optimum as is also confirmed by the
standard deviations. Plus selection always has a greater standard deviation than
comma selection with the same μ and λ. With regard to improving solutions,
a tendency can be seen in the comma strategy with classical mutation type
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N toward smaller populations. Because of the uniform termination criterion of
400,000 fitness calculations, a smaller population means more iteration cycles.
Many steps are required to arrive at a good plan. Thus, it seems preferable to
track changes for more iterations as compared to richer diversity (through larger
populations) of the solution space in each iteration. The effect is not so clearly
visible for the ES with mutation type E which will need further investigation.

7 Conclusions

We focus on the problem of simultaneously assigning staff to workstations and
generating optimised working time models on the basis of given demand. For a
complex real-world application from retail, it was shown that the evolution stra-
tegy in a hybrid form which integrates a repair heuristic significantly outperforms
a recent commercial constructive heuristic. Thus, hybrid metaheuristics, and ES
in particular, are capable of finding better solutions to staff planning problems
than heuristics that have been tailored to the domain. As the statistical spread
of the ES-solutions and the results with different strategy parameter settings
demonstrate, this outcome is rather stable. Stability of algorithms is important
for practical problems as was pointed out in [22].

The computational effort of the ES is much higher than for the constructive
method. This is acceptable here since workforce planning is not time-critical.
Additionally, if the planning horizon was shortend, the computational require-
ments would be reduced accordingly. Particularly the ES-solutions generated
with comma selection and small populations appear excellent. Repairing the vi-
olation of soft constraints significantly improved the quality of results for the ES.
However, the repair comes at additional computational expense. These results
are in line with our findings for a related scheduling problem from logistics [9]
and for survivable network design [16]. Thus, we conclude that the ES, despite its
original focus on continuous parameter optimisation, is a powerful tool in combi-
natorial optimisation and deserves more attention. However, a proper adaptation
in terms of representation and operators are called for, possibly complemented
by the integration of a repair heuristic. To broaden the basis for our conclusions,
additional combinatorial applications will be investigated. Future research also
looks at synergies between both planning approaches. For instance, the construc-
tive heuristic could be randomized and used to generate initial solutions for the
metaheuristic to reduce computational effort.
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Abstract. The traveling salesman problem with time windows is known
to be a really difficult benchmark for optimization algorithms. In this pa-
per, we are interested in the minimization of the travel cost. To solve this
problem, we propose to use the nested Monte-Carlo algorithm combined
with a Self-Adaptation Evolution Strategy. We compare the efficiency
of several fitness functions. We show that with our technique we can
reach the state of the art solutions for a lot of problems in a short period
of time.

Keywords: Nested Monte-Carlo, Self Adaptation, Traveling Salesman,
Time Window.

1 Introduction

The traveling salesman problem is a difficult optimization problem and is used
as a benchmark for several optimization algorithms. In this paper we tackle
the problem of optimizing the Traveling Salesman Problem with Time Windows
(tsptw). For solving this problem, we combine a nested Monte-Carlo algorithm
[4] and an evolutionary algorithm. With this system, as we will see, the important
point is that we will have to optimize a function which is noisy and where the
evaluation is not the score on average but the best score among a certain number
of runs. When the noise is uniform on the whole function, optimizing for the mean
or for the min is equivalent, so we will focus on problems where the noise is non
uniform. We will show on an artificial problem that having a fitness function
during the optimization that is different from the one we want to optimize can
improve the convergence rate. We will then use this principle to optimize the
parameters of a nested Monte-Carlo algorithm for the tsptw.

We have chosen the use of Evolution-Strategies (ES [12]) for the optimization
part. This kind of algorithms are known to be simple and robust. See [12,2] for
more details on ES in general.

The paper is organized as follows : Section 2 presents the optimization algo-
rithm used, Section 3 is the presentation of the artificial problem and the results
we obtain, Section 4 is the application to the tsptw, and finally we discuss all
the results in the Section 5.
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2 Self-Adaptation Evolution Strategy

In all the paper we use (μ/μ, λ)-ES. λ is the population size, μ the number of
parents (the selected population size), and the parents are selected only among
individuals belonging to the new generated population (and not in the mixing
between the new generated population and the previous parents). Mutation will
be done according to a Gaussian distribution.

We have chosen the Self-Adaptation Evolution Strategy (SA-ES) for the op-
timization of our problem. This algorithm has been introduced in [12] and [14].
An extended version with full covariance matrix has been proposed in [3]. An
improvement of this algorithm, based on the selection ratio, efficient in the case
of large population can also be used [16]. In our experiments, we use the standard
SA-ES with small population sizes, then we do not use this last improvement.
The motivation behind the choice of this algorithm is that it is known to be
really robust, because it doesn’t need any a priori knowledge on the problem.
The SA-ES algorithm is presented in Algorithm 1.

Algorithm 1. Mutative self-adaptation algorithm
Initialize σavg ∈ R, y ∈ R

N .
while Halting criterion not fulfilled do

for i = 1..λ do
σi = σavgeτNi(0,1)

zi = σiNi(0, Id)
yi = y + zi

fi = f(yi)
end for
Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).

zavg = 1
μ

∑μ
i=1 z(i)

σavg = 1
μ

∑μ
i=1 σ(i)

y = y + zavg

end while

3 Noisy Sphere

We will first optimize on an artificial problem: the noisy sphere.

3.1 Presentation

The noisy sphere is a classical artificial problem for optimization experiments.
However, here, the noise function will be original. The noise will be Gaussian
and non uniform. We will use 5 dimensions.

The exact equation of the function that we will use is the following:

f(y) =
N∑

i=1

(y2
i + N(0, (2yi)2)).

It is represented on the top-left of figure 1.
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Fig. 1. Top-left. Representation of the evaluation function. Top-right, bottom-left,
bottom-right. Evolution of the true score as a function of the iterations with n = 10,
n = 100 and n = 300 respectively.

The evaluation function eval(f(y)) will be the min over 1000 runs of f with
parameters y. We will optimize the expectation of this function:

eval(f(y)) = min(f i(y), i = 1..1000),

f i being the i-th run of f .
During the optimization, we will use a fitness function to evaluate an individ-

ual. Usually, people use the same function for the fitness function and for the
evaluation function. However, we see that the function that we want to optimize
is very unstable. For this reason, we propose to use a fitness function that can
be different from the evaluation function.

The 3 fitness functions that we will use are:

– bestn(f(y)) = min(f i(y), i = 1..n)
– meann(f(y)) =

∑n
i=1 fi(y)

n

– kbestk,n(f(y)) =
∑k

i=1 fi(y)

n with f1(y) < f2(y) < ... < fk(y) < ... < fn(y)

As the fitness function used during the optimization is not the same as the eval-
uation function, we compute for each generation the score of the best individual
according to the evaluation function. This function is noisy, so the true score
of an individual will be the average over NbEval runs of the evaluation function.
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This is very costly in number of evaluations but this true score is only used to
show that the algorithm converges and will only be used for the noisy sphere.

3.2 Experiments

We use the SA algorithm to do the optimizations. In the experiments, we used
k = 5 for kbest and NbEval = 100.

We compare bestn, meann and kbest5,n for different values of n.
We compute the true score of the best individual in function of the number

of the generation. Every curve is the average over 30 runs.
The results are given on the figure 1.
We see that in every cases, the convergence is slower with best than with mean

and kbest. However, the final value is always better for best. This is because best
is the fitness function the most similar to the evaluation function.

For high values of n, the convergence is equivalent for kbest and mean. Fur-
thermore, the final value is better for kbest than for mean. This implies that for
high value of n, it is always better to use kbest instead of mean.

For small values of n, kbest converges slowly than mean but achieves a better
final value.

As a conclusion, the choice of the fitness function will depend on the need
of the user. If the speed of the convergence is important, one can use mean or
kbest depending on n. If the final value is important, best is the function to use.

We will now see if the conclusions we obtained on an artificial problem are
still valid when we optimize on difficult benchmarks.

4 Application

We will now focus on the tsptw problem. First, we will describe the problem.
Then, we will present the nested Monte-Carlo algorithm. Finally, we will show
the results we obtain when we optimize the parameters of the algorithm on
tsptw.

4.1 Traveling Salesman Problem with Time Windows

The traveling salesman problem is an important logistic problem. It is used to
represent the problem of finding an efficient route to visit a certain number of
customers, starting and finishing at a depot. The version with time windows
adds the difficulty that each customer has to be visited within a given period
of time. The goal is to minimize the length of the travel. tsptw is an NP-
hard problem and even finding a feasible solution is NP-complete [13]. Early
works [5,1] were based on branch-and-bound. Later, Dumas et al. used a method
based on Dynamic programming [6]. More recently, methods based on constraints
programming have been proposed [10,7].

Algorithms based on heuristics have also been considered [15,8].
Finally, [9] provides a comprehensive survey of the most efficient meth-

ods to solve the tsptw and proposes a new algorithm based on ant colonies
that achieves very good results. They provide a clear environment to compare
algorithms on a set of problems that we used in this article.
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Technical description of the Traveling Salesman Problem with Time
Windows. The tsp can be described as follow. Let G be an undirected complete
graph. G = (N, A) where N = 0, 1, ..., n is a set of nodes and A = N ∗N is the set
of edges between the nodes. The node 0 represents the depot. The n other nodes
represent the customers. A cost function c : A → R is given. It represents the
distance between 2 customers. A solution to this problem is a sequence of nodes
P = (p0, p1, ..., pn, pn+1) where p0 = pn+1 = 0 and (p1, ..., pn) is a permutation
of N \ {0}.

The goal is to minimize the function

cost(P ) =
n∑

k=0

c(apk,pk+1).

In the version with time windows, each customer i is associated with an interval
[ei, li]. The customer must not be served before ei or after li. It is allowed to
arrive at a node i before ei but the departure time becomes ei.

Let dpk
be the departure time from node pk, dpk

= max(rpk
, epk

) where rpk

is the arrival time at node pk.
The function to minimize is the same but a set of constraints must now be

respected. Let Ω(P ) be the number of windows constraints violated by tour P.
The optimization of f must be done while respecting the following equation

Ω(P ) =
n+1∑
k=0

ω(pk) = 0,

where

ω(pk) =
{

1 if rpk
> lpk

0 otherwise ,

and
rpk+1 = max(rpk

, epk
) + c(apk,pk+1).

With the addition of the constraints, the problem becomes much more compli-
cated and classical algorithms used for tsp are not efficient anymore. That is
why we will use Nested Monte-Carlo which is described in the next part of the
article.

4.2 Adaptation of the Nested Monte-Carlo Algorithm for the
Traveling Salesman Problem with Time Windows

The Nested Monte-Carlo (NMC) algorithm [4] is a tree search algorithm. The
tree is supposed to be large and the leaves of the tree (final positions of the
problem) can be evaluated. It does not require any knowledge on the problem
and is quite simple to implement. It is particularly efficient on problems where
later decisions are as important as early ones. NMC has allowed to establish
world records in single-player games such as Morpion Solitaire or SameGame. We
first describe the NMC algorithm and then explain how we introduced heuristics
in order to obtain better results on the tsptw problem.
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The Nested Monte-Carlo Algorithm. The NMC algorithm uses several
levels. Each level uses the lower level to determine which action will be selected
at each step. The level 0 is a Monte-Carlo simulation, i.e. a random selection
of actions until a final position is reached. More precisely, in each position, a
NMC search of level n will perform a level n− 1 NMC for each action and then
select the one with the best score. For example, a NMC search of level 1 will do a
Monte-Carlo simulation for each action (those reaching a final position which can
be evaluated) and select the action associated with the highest evaluation. Once
an action has been selected, the problem is in a new position and the selection
method is repeated again until a final position is reached. The performance of the
algorithm is greatly improved by memorizing the best sequence for each level.

Algorithm 2. Nested Monte-Carlo
nested(position, level)
best playout ← {}
while not end of the game do

if level = 1 then
move ← arg maxm(MonteCarlo(play(position, m)))

else
move ← arg maxm(nested(play(position, m), level − 1))

end if
if score of playout after move > score of the best playout then

best playout ← playout after move
end if
position ← play(position, move of the best playout)

end while
return score(position)

play(position, m) is a function that returns the new position obtained after
having selected the action m in position

MonteCarlo(position) is a function that returns the evaluation of the final
position reached after having selected random actions from position.

NMC provides a good compromise between exploration and exploitation. It
is particularly efficient for one-player games and gives good results even without
domain knowledge. However, the results can be improved by the addition of
heuristics.

Adaptation for the Traveling Salesman Problem with Time Windows.
It is possible to improve the performance of NMC by modifying the Monte-Carlo
simulations. An efficient way is to select actions based on heuristics instead of
a uniform distribution. However, some randomness must be kept in order to
preserve the diversity of the simulations.

To do that, we use a Boltzmann softmax policy. This policy is defined by the
probability πθ(p, a) of choosing the action a in a position p:

πθ(p, a) =
eφ(p,a)T θ∑
b eφ(p,b)T θ

,

where φ(p, a) is a vector of features and θ is a vector of feature weights.
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The features we use are the heuristics described in [15]:

– the distance to the last node: h1(p, a) = c(d, a)
– the amount of time that will be necessary to wait if a is selected because of

the beginning of its time window: h2(p, a) = max(0, ea − (Tp + c(d, a)))
– the amount of time left until the end of the time window of a if a is selected:

h3(p, a) = max(0, la − (Tp + c(d, a)))

where d is the last node selected in position p, Tp is the time used to arrive in
situation p, ea is the beginning of the time window for action a, la is the end of
the time window for the action a and c(d, a) is the travel cost between d and a.

The values of the heuristic are normalized before being used.
The values that we will optimize are the values from the vector θ (the feature

weights).

4.3 Experiments

We use the set of problems given in [11].
As we have 3 different heuristics, the dimension of the optimization problem

is 3.
We define NMC(y), the function that associates a set of parameters y to the

permutation obtained by a run of the NMC algorithm, with parameters y on a
particular problem.

The score Tcost(p) of a permutation p is the travel cost. However, as the
NMC algorithm can generate permutations with some windows constraints not
respected, we added a constant to the score for each one.

Tcost(p) = cost(p) + 106 ∗ Ω(p),

cost(p) is the cost of the travel p and Ω(p) the number of non-respected con-
straints.

106 is a constant high enough for the algorithm to first optimize Ω(p) and
then cost(p).

The exact equation of the function f that we will use is the following:

f(y) = Tcost(NMC(y)).

As the end of the evaluation, we want to obtain a NMC algorithm that we
will launch for a longer period of time in order to obtain one good score on a
problem. So the evaluation function should be the min on this period of time.
As this period of time is not known and a large period of time would be too
time-consuming, we arbitrarily choose a time of 1s to estimate the true score of
an individual.

The evaluation function eval(f(y)) will be the min over r runs of f with
parameters y. r being the amount of runs that can be done in 1s. It means that
we want to optimize the expectation of this function:

eval(f(y)) = min
1s

(f(y)).



508 A. Rimmel, F. Teytaud, and T. Cazenave

As for the sphere problem, we will use 3 different fitness functions instead of
the evaluation function: meann, kbestn and bestn. In the experiments, we use
n = 100.

We use a nested algorithm of level 2.

Optimization on one Problem. The first experiments are done on the prob-
lem rc206.3 which contains 25 nodes.

In this experiment we compare best100, kbest100 and mean100. As in all the
paper, the population size λ is equal to 12 and the selected population size μ is
3, and σ = 1. The initial parameters are [1, 1, 1] and the stopping criterion of the
evolution-strategy is 15 iterations. Results are the average of three independent
runs.

Table 1. Evolution of the true score on the problem rc206.3

Iterations BEST KBEST MEAN

1 2.7574e+06 2.4007e+06 2.3674e+06
2 5.7322e+04 3.8398e+05 1.9397e+05
3 7.2796e004 1.6397e+05 618.22
4 5.7274e+04 612.60 606.68
5 2.4393e+05 601.15 604.10
6 598.76 596.02 602.96
7 599.65 596.19 603.69
8 598.26 594.81 600.79
9 596.98 591.64 602.54
10 595.13 590.30 600.14
11 590.62 591.38 600.68
12 593.43 589.87 599.63
13 594.88 590.47 599.24
14 590.60 589.54 597.58
15 589.07 590.07 599.73

There is a lot of difference between the initial parameters and optimized pa-
rameters in term of performances. This shows that optimizing the parameters is
really important in order to obtain good performance.

Results are similar as in the case of our noisy sphere function. best100 reaches
the best score, but converges slowly. mean100 has the fastest convergence, but
finds the worst final score. As expected, kbest100 is a compromise between the
two previous fitness, with a nice convergence speed and is able to find a score
really close to the best. For this reason, we have chosen to use kbest for the other
problems.

Results on all the problems. We launched the optimization algorithm on
all the problems from the set in the paper from Potvin and Bengio [11]. We
compare the best score we obtained on each problem with our algorithm and
the current best known score from the literature. The results are presented in
table 2. We provide the Relative Percentage Deviation (RPD): 100 ∗ (value −
bestknown)/bestknown.
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Table 2. Results on all problems from the set from Potvin and Bengio [11]. First Row
is the problem, second column the number of nodes, third column the best score found
in [9], forth column the best score found by algorithm and fifth column it the RPD.
The problems where we find the best solutions are in bold. We can see that for almost
all problems with our simple algorithm we can find the best score.

Problem n
State of Our best

RPD
the art score

rc201.1 20 444.54 444.54 0
rc201.2 26 711.54 711.54 0
rc201.3 32 790.61 790.61 0
rc201.4 26 793.64 793.64 0
rc202.1 33 771.78 776.47 0.61
rc202.2 14 304.14 304.14 0
rc202.3 29 837.72 837.72 0
rc202.4 28 793.03 793.03 0
rc203.1 19 453.48 453.48 0
rc203.2 33 784.16 784.16 0
rc203.3 37 817.53 837.72 2.47
rc203.4 15 314.29 314.29 0
rc204.1 46 868.76 899.79 3.57
rc204.2 33 662.16 675.33 1.99
rc204.3 24 455.03 455.03 0

Problem n
State of Our best

RPD
the art score

rc205.1 14 343.21 343.21 0
rc205.2 27 755.93 755.93 0
rc205.3 35 825.06 828.27 0.39
rc205.4 28 760.47 760.47 0
rc206.1 4 117.85 117.85 0
rc206.2 37 828.06 839.18 1.34
rc206.3 25 574.42 574.42 0
rc206.4 38 831.67 859.07 3.29
rc207.1 34 732.68 743.29 1.45
rc207.2 31 701.25 707.74 0.93
rc207.3 33 682.40 687.58 0.76
rc207.4 6 119.64 119.64 0
rc208.1 38 789.25 797.89 1.09
rc208.2 29 533.78 536.04 0.42
rc208.3 36 634.44 641.17 1.06

There is a lot of differences between one set of parameters optimized on one
problem and one set of parameters optimized on an other problem. So, the
optimization has to be done on each problem.

We obtain as well as the state of the art for all the problems with less than 29
nodes. We find at least one correct solution for each problem. When the number
of nodes increases, this is not a trivial task. For problems more difficult with a
higher number of nodes, we don’t do as well as the best score. However, we still
manage to find a solution close to the current best one and did this with little
domain knowledge.

5 Conclusion

In this paper we used a new method for solving the tsptw problem based on
the optimization of a nested Monte-Carlo algorithm with SA. This algorithm is
a generic algorithm, used in many different applications. The only adaptation
to the tsptw was to add 3 heuristics. Even in this case, for all the problems
with less than 29 nodes, we were able to reach state of the art solutions with
small computation times. However, a clear limitation of our algorithm is dealing
with a large number of nodes. A solution could be to prune some moves at the
higher level of NMC. Other further work will be to add new heuristics. In this
case, because of the higher dimensionality, we will try other evolution algorithms
and increase the population size. A natural choice is the Covariance Matrix Self-
Adaptation [3], known to be robust and good for large population sizes. Adding
covariance and allowing large population sizes should increase the speed of the
convergence.
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Epitropakis, Michael G. II-334
Ergin, Fatma Corut II-1

Falco, Ivanoe De II-61
Fang, Rui II-21
Feilmayr, Christoph I-274
Fenton, Michael II-204
Fernandes, Carlos M. I-32
Finder, Alexander II-151
Fink, Stefan II-101
Flack, Robert W.J. II-313
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Tuite, Cĺıodhna II-120

Urbano, Paulo II-414
Urquhart, Neil II-464
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Vučina, Damir II-172

Wan, Mingxu I-304
Weise, Thomas I-304
Wielgat, Robert I-224
Wille, Robert II-151
Wu, Huicong II-184

Xing, Huanlai II-51

Yamaguchi, Souichiro II-404
Yang, Shengxiang I-324
Yannakakis, Georgios N. I-63, I-93
Yayimli, Ayşegül II-1
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