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Preface

The present volume features a selection of the papers presented at the 9th In-
ternational Conference on Formal Concept Analysis (ICFCA 2011). Over the
years, the ICFCA conference series has grown into the premier forum for dis-
semination of research on topics from formal concept analysis (FCA) theory and
applications, as well as from the related fields of lattices and partially ordered
structures.

FCA is a multi-disciplinary field with strong roots in the mathematical the-
ory of partial orders and lattices, with tools originating in computer science and
artificial intelligence. FCA emerged in the early 1980s from efforts to restructure
lattice theory to promote better communication between lattice theorists and po-
tential users of lattice-based methods for data management. Initially, the central
theme was the mathematical formalization of concept and conceptual hierarchy.
Since then, the field has developed into a constantly growing research area in its
own right with a thriving theoretical community and an increasing number of
applications in data and knowledge processing including disciplines such as data
visualization, information retrieval, machine learning, software engineering, data
analysis, data mining, social networks analysis, etc.

ICFCA 2011 was held during May 2–6, 2011, in Nicosia, Cyprus. The Pro-
gram Committee received 49 high-quality submissions that were subjected to a
highly competitive selection process. Each paper was reviewed by three referees
(exceptionally two or four). After a first round, some papers got a definitive
acceptance status, while others got accepted conditionally to improvements in
their content. The latter got to a second round of reviewing. The overall out-
come was the acceptance of 16 submissions as regular papers for presentation
at the conference and publication in this volume. Another seven papers were
assessed as valuable for discussion at the conference and were therefore collected
in the supplementary proceedings. The regular papers presented hereafter cover
advances on a wide range of subjects from FCA and related fields.

A first group of papers tackled mathematical problems within the FCA field.
A subset thereof focused on factor identification within the incidence relation or
its lattice representation (papers by Glodeanu and by Krupka). The remainder of
the group proposed characterizations of particular classes of ordered structures
(papers by Doerfel and by Ganter et al.). A second group of papers addressed al-
gorithmic problems from FCA and related fields. Two papers approached their
problems from an algorithmic complexity viewpoint (papers by Distel and by
Babin and Kuznetsov), while the final paper in this group addressed algorith-
mic problems for general lattices, i. e., not represented as formal contexts, with
an FCA-based approach (work by Balcázar and Tı̂rnăucă). A third group stud-
ied alternative approaches for extending the expressive power of the core FCA,
e. g., by generalizing the standard one-valued attributes to attributes valued in
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algebraic rings (work by González Calabozo et al.), by introducing pointer-like
attributes, a. k. a. links (paper by Kötters), or by substituting set-shaped concept
intents with modal logic expressions (paper by Soldano and Ventos). A fourth
group focused on data mining-oriented aspects of FCA: agreement lattices in
structured data mining (paper by Nedjar et al.), triadic association rule mining
(work by Missaoui and Kwuida), and bi-clustering of numerical data (Kaytoue
et al.). An addional paper shed some initial light on a key aspect of FCA-based
data analysis and mining, i. e., the filtering of interesting concepts (paper by
Belohlavek and Macko). Finally, a set of exciting applications of both basic and
enhanced FCA frameworks to practical problems were described: in analysis of
gene expression data (the already mentioned work by González Calabozo et al.),
in Web services composition (paper by Azmeh et al.), and in browsing and re-
trieval of structured data (work by Wray and Eklund). This volume also contains
three keynote papers submitted by the invited speakers of the conference.

All these contributions constitute a volume of high quality which is the result
of the hard work done by the authors, the invited speakers and the reviewers.
We therefore wish to thank the members of the Program Committee and of the
Editorial Board, whose steady involvement and professionalism helped a lot. We
would also like to acknowledge the participation of all the external reviewers,
who sent many valuable comments. Kudos also go to EasyChair for having made
the reviewing/editing process a real pleasure. Special thanks go to the Cyprus
Tourism Organisation for sponsoring the conference and to the University of
Nicosia for hosting it. Finally, we wish to thank the Conference Chair, Florent
Domenach, and his colleagues from the Organizing Committee for the mountains
of energy they put behind the conference organization process right from the
beginning in order to make it a total success. We would also like to express
our gratitude to Dr. Peristianis, President of the University of Nicosia, for his
personal support.

May 2011 Petko Valtchev
Robert Jäschke
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Alain Gély Université Paul Verlaine, Metz, France
Wolfgang Hesse Philipps-Universität Marburg, Germany
Marianne Huchard LIRMM, Université Montpellier, France
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Inductive Databases and
Constraint-Based Data Mining

Sašo Džeroski

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract. We briefly introduce the notion of an inductive database, ex-
plain its relation to constraint-based data mining, and illustrate it on an
example. We then discuss constraints and constraint-based data mining
in more detail. We further give an overview of recent developments in
the area, focusing on those made within the IQ project and presented in
a recent volume with the same title as this paper, edited by the author,
Bart Goethals and Panče Panov, and published by Springer.

1 Inductive Databases

Inductive databases (IDBs, (Imielinski and Mannila 1996, De Raedt 2002a)) are
an emerging research area at the intersection of data mining and databases. In-
ductive databases contain both data and patterns (in the broader sense, which
includes frequent patterns, predictive models, and other forms of generaliza-
tions). IDBs embody a database perspective on knowledge discovery, where
knowledge discovery processes become query sessions. KDD thus becomes an ex-
tended querying process (Imielinski and Mannila 1996) in which both the data
and the patterns that hold (are valid) in the data are queried.

Roughly speaking, an inductive database instance contains: (1) Data (e.g., a
relational database, a deductive database), (2) Patterns (e.g., itemsets, episodes,
subgraphs, substrings, ... ), and (3) Models (e.g., classification trees, regression
trees, regression equations, Bayesian networks, mixture models, ... ). The differ-
ence between patterns (such as frequent itemsets) and models (such as regression
trees) is that patterns are local (they typically describe properties of a subset
of the data), whereas models are global (they characterize the entire data set).
Patterns are typically used for descriptive and models for predictive purposes.

A query language for an inductive database is an extension of a database query
language that allows us to: (1) select, manipulate and query data in the database
as in current DBMSs, (2) select, manipulate and query ”interesting” patterns
and models (e.g., patterns that satisfy constraints w.r.t. frequency, generality,
etc. or models that satisfy constraints w.r.t. accuracy, size, etc.), and (3) match
patterns or models with data, e.g., select the data in which some patterns hold,
or predict a property of the data with a model.

Inductive Databases and Queries: An Example. To clarify what is meant
by the terms inductive database and inductive query, we illustrate them by
an example from the area of bio-/chemo-informatics. Consider the task of

P. Valtchev and R. Jäschke (Eds.): ICFCA 2011, LNAI 6628, pp. 1–17, 2011.
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2 S. Džeroski

discovering a model that predicts whether chemical compounds are toxic or
not. In this context, the data part of the IDB will consist of one or more sets
of compounds. In our illustration below, there are two sets: the active (toxic)
and the inactive (non-toxic) compounds. Assume, furthermore, that for each of
the compounds, the two dimensional (i.e., graph) structure of their molecules
is represented within the database, together with a number of attributes that
are related to the outcome of the toxicity tests. The database query language
of the IDB will allow the user (say a predictive toxicology scientist) to retrieve
information about the compounds (i.e., their structure and properties). The in-
ductive query language will allow the scientist to generate, manipulate and apply
patterns and models of interest.

As a first step towards building a predictive model, the scientist may want
to find local patterns (in the form of compound substructures or molecular
fragments), that are ”interesting”, i.e., satisfy certain constraints. An example
inductive query may be written as follows: F ={τ |(τ ∈ AZT )∧(freq(τ, Active) ≥
15%) ∧ (freq(τ, Inactive) ≤ 5%)}. This should be read as: “Find all molecular
fragments that appear in the compound AZT (which is a drug for AIDS), occur
frequently in the active compounds (≥ 15% of them) and occur infrequently in
the inactive ones (≤ 5% of them)”.

Once an interesting set of patterns has been identified, they can be used as
descriptors (attributes) for building a model (e.g., a decision tree that predicts
activity). A data table can be created by first constructing one feature/column
for each pattern, then one example/row for each data item. The entry at a given
column and row has value ”true” if the corresponding pattern (e.g., fragment)
appears in the corresponding data item (e.g., molecule). The table could be
created using a traditional query in a database query language, combined with
IDB matching primitives.

Suppose we have created a table with columns corresponding to the molecular
fragments F returned by the query above and rows corresponding to compounds
in Active

⋃
Inactive, and we want to build a global model (decision tree) that

distinguishes between active and inactive compounds. The toxicologist may want
to constrain the decision tree induction process, e.g., requiring that the decision
tree contains at most k leaves, that certain attributes are used before others in
the tree, that the internal tests split the nodes in (more or less) proportional
subsets, etc. She may also want to impose constraints on the accuracy of the
induced tree.

Note that in the above scenario, a sequence of queries is used. This requires
that the closure property be satisfied: the result of an inductive query on an IDB
instance should again be an IDB instance. Through supporting the processing
of sequences of inductive queries, IDBs would support the entire KDD process,
rather than individual data mining steps.

Inductive Queries and Constraints. In inductive databases
(Imielinski and Mannila 1996), patterns become “first-class citizens” and can be
stored and manipulated just like data in ordinary databases. Ordinary queries
can be used to access and manipulate data, while inductive queries (IQs) can be
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used to generate (mine), manipulate, and apply patterns. KDD thus becomes
an extended querying process in which both the data and the patterns that
hold (are valid) in the data are queried. In IDBs, the traditional KDD process
model where steps like pre-processing, data cleaning, and model construction
follow each other in succession, is replaced by a simpler model in which all oper-
ations (pre-processing, mining, post-processing) are queries to an IDB and can
be interleaved in many different ways.

Given an IDB that contains data and patterns (or other types of general-
izations, such as models), several different types of queries can be posed. Data
retrieval queries use only the data and their results are also data: no pattern is
involved in the query. In IDBs, we can also have cross-over queries that combine
patterns and data in order to obtain new data, e.g., apply a predictive model
to a dataset to obtain predictions for a target property. In processing patterns,
the patterns are queried without access to the data: this is what is usually done
in the post-processing stages of data mining. Inductive (data mining) queries
use the data and their results are patterns (generalizations): new patterns are
generated from the data: this corresponds to the traditional data mining step.

A general statement of the problem of data mining (Mannila and Toivonen
1997) involves the specification of a language of patterns (generalizations) and a
set of constraints that a pattern has to satisfy. The constraints can be language
constraints and evaluation constraints: The first only concern the pattern itself,
while the second concern the validity of the pattern with respect to a given
database. Constraints thus play a central role in data mining and constraint-
based data mining (CBDM) is now a recognized research topic (Bayardo 2002).
The use of constraints enables more efficient induction and focusses the search
for patterns on patterns likely to be of interest to the end user.

In the context of IDBs, inductive queries consist of constraints. Inductive
queries can involve language constraints (e.g., find association rules with item A
in the head) and evaluation constraints, which define the validity of a pattern
on a given dataset (e.g., find all item sets with support above a threshold or find
the 10 association rules with highest confidence).

Different types of data and patterns have been considered in data mining,
including frequent itemsets, episodes, Datalog queries, and graphs. Designing
inductive databases for these types of patterns involves the design of inductive
query languages and solvers for the queries in these languages, i.e., CBDM algo-
rithms. Of central importance is the issue of defining the primitive constraints
that can be applied for the chosen data and pattern types, that can be used
to compose inductive queries. For each pattern domain (type of data, type of
pattern, and primitive constraints), a specific solver is designed, following the
philosophy of constraint logic programming (De Raedt 2002b).

The Promise of Inductive Databases. While knowledge discovery in data-
bases (KDD) and data mining have enjoyed great popularity and success over
the last two decades, there is a distinct lack of a generally accepted framework
for data mining (Fayyad et al. 2003). In particular, no framework exists that
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can elegantly handle simultaneously the mining of complex/structured data, the
mining of complex (e.g., relational) patterns and use of domain knowledge, and
support the KDD process as a whole, three of the most challenging/important
research topics in data mining (Yang and Wu 2006).

The IDB framework is an appealing approach towards developing a gen-
erally accepted framework/theory for data mining, as it employs declarative
queries instead of ad-hoc procedural constructs: Namely, in CBDM, the condi-
tions/constraints that a pattern has to satisfy (to be considered valid/interesting)
are stated explicitly and are under direct control of the user/data miner. The
IDB framework holds the promise of facilitating the formulation of an “alge-
bra” for data mining, along the lines of Codd’s relational algebra for databases
(Calders et al. 2006b, Johnson et al. 2000).

Different types of structured data have been considered in CBDM. Besides
itemsets, other types of frequent/local patterns have been mined under con-
straints, e.g., on strings, sequences of events (episodes), trees, graphs and even in
a first-order logic context (patterns in probabilistic relational databases). More
recently, constraint-based approaches to structured prediction have been con-
sidered, where models (such as tree-based models) for predicting hierarchies of
classes or sequences / time series are induced under constraints.

Different types of local patterns and global models have been considered as
well, such as rule-based predictive models and tree-based clustering models.
When learning in a relational setup, background / domain knowledge can be
naturally taken into account (through additional relations/predicates). Also, the
constraints provided by the user in CBDM can be viewed as a form of domain
knowledge that focuses the search for patterns / model towards interesting and
useful ones.

The IDB framework is also appealing for data mining applications, as it sup-
ports the entire KDD process (Boulicaut et al. 1999). In inductive query lan-
guages, the results of one (inductive) query can be used as input for another.
Nontrivial multi-step KDD scenarios can be thus supported in IDBs, rather than
just single data mining operations.

2 Constraint-Based Data Mining

“Knowledge discovery in databases (KDD) is the non-trivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns in
data”, state Fayyad et al. (1996). According to this definition, data mining (DM)
is the central step in the KDD process concerned with applying computational
techniques (i.e., data mining algorithms implemented as computer programs) to
actually find patterns that are valid in the data. In constraint-based data mining
(CBDM), a pattern/model is valid if it satisfies a set of constraints.

The basic concepts/entities of data mining include data, data mining tasks,
and generalizations (e.g., patterns and models). The validity of a generalization
on a given set of data is related to the data mining task considered. Below we
briefly discuss the basic entities of data mining and the task of CBDM.
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2.1 Basic Data Mining Entities

Data. A data mining algorithm takes as input a set of data. An individual
datum in the data set has its own structure, e.g., consists of values for several
attributes, which may be of different types or take values from different ranges.
We assume all data items are of the same type (and share the same structure).

More generally, we are given a data type T and a set of data D of this type.
It is of crucial importance to be able to deal with structured data, as these are
attracting an ever increasing amount of attention within data mining. The data
type T can thus be an arbitrarily complex data type, composed from a set of
basic/primitive types (such as Boolean and Real) by using type constructors
(such as Tuple, Set or Sequence).

Generalizations. We will use the term generalization to denote the output of
different data mining tasks, such as pattern mining, predictive modeling and
clustering. Generalizations will thus include probability distributions, patterns
(in the sense of frequent patterns), predictive models and clusterings. All of
these are defined on a given type of data, except for predictive models, which
are defined on a pair of data types. Note that we allow arbitrary (arbitrarily
complex) data types. The typical case in data mining considers a data type T
= Tuple(T1, . . ., k), where each of T1, . . ., Tk is Boolean, Discrete or Real.

We will discuss briefly here local patterns and global models (predictive mod-
els and clusterings). Note that both are envisaged as first-class citizens of induc-
tive databases. More detailed discussions of all types of generalizations are given
by Dzeroski (2007).

A pattern P on type T is a Boolean function on objects of type T: A pattern on
type T is true or false on an object of type T. We restrict the term pattern here
to the sense that it is most commonly used, i.e., in the sense of frequent pattern
mining. A predictive model M for types Td, Tc is a function that takes an object
of type Td (description) and returns one of type Tc (class/target). We allow
both Td and Tc to be arbitrarily complex data types, with classification and
regression as special cases (when Tc has nominal, respectively numeric values).
A clustering C on a set of objects S of type T is a function from S to {1, . . . , k},
where k is the number of clusters (with k ≤ |S|). It partitions a set of objects
into subsets called clusters by mapping each object to a cluster identifier.

Data Mining Tasks. In essence, the task of data mining is to produce a gen-
eralization from a given set of data. A plethora of data mining tasks has been
considered so far in the literature, with four covering the majority of data mining
research: approximating the (joint) probability distribution, clustering, learning
predictive models, and finding valid (frequent) patterns. We will focus here on
the last two of these.

In learning a predictive model, we are given a dataset consisting of example
input/output pairs (d, c), where each d is of type Td and each c is of type Tc.
We want to find a model m (mapping from Td to Tc), for which the observed
and predicted outputs, i.e., c and ĉ = m(d), match closely. In pattern discovery,
the task is to find all local patterns from a given pattern language (class) that
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satisfy the required conditions. A prototypical instantiation of this task is the
task of finding frequent itemsets (sets of items, such as {bread, butter}), which
occur frequently (in a sufficiently high proportion) in a given set of transactions
(market baskets) (Aggrawal et al. 1993). In clustering, we are given a set of
examples (object descriptions), and the task is to partition these examples into
subsets, called clusters. The notion of a distance (or conversely, similarity) is
crucial here: The goal of clustering is to achieve high similarity between objects
within a cluster (intra-cluster similarity) and low similarity between objects from
different clusters (inter-cluster similarity).

2.2 The Task(s) of (Constraint-Based) Data Mining

Having set the scene, we can now attempt to formulate a very general version
of the problem addressed by data mining. We are given a dataset D, consisting
of objects of type T . We are also given a data mining task, such as learning a
predictive model or pattern discovery. We are further given CG a family/class
of generalizations (patterns/models), such as decision trees, from which to find
solutions to the data mining task at hand. Finally, a set of constraints C is given,
concerning both the syntax (form) and semantics (validity) that the generaliza-
tions have to satisfy.

The problem addressed by constraint-based data mining (CBDM) is to find
a set of generalizations G from CG that satisfy the constraints in C: A desired
cardinality on the solution set is usually specified.

In the above formulation, all of data mining is really constraint-based. We
argue that the ‘classical’ formulations of and approaches to data mining tasks,
such as clustering and predictive modelling, are a special case of the above for-
mulation. A major difference between the ‘classical’ data mining paradigm and
the ‘modern’ constraint-based one is that the former typically considers only
one quality metric, e.g., minimizes predictive error or intra-cluster variance, and
produces only one solution (predictive model or clustering).

A related difference concerns the fact that most of the ‘classical’ approaches
to data mining are heuristic and do not give any guarantees regarding the solu-
tions. For example, a decision tree generated by a learning algorithm is typically
not guaranteed to be the smallest or most accurate tree for the given dataset.
On the other hand, CBDM approaches have typically been concerned with the
development of so-called ‘optimal solvers’, i.e., data mining algorithms that re-
turn the complete set of solutions that satisfy a given set of constraints or the k
best solutions (e.g., the k itemsets with highest correlation to a given target).

3 The Anatomy of Constraints

Constraints in CBDM are propositions/statements about generalizations (e.g.,
patterns or models). In the most basic setting, the propositions are either true
or false (Boolean valued): If true, the generalization satisfies the constraint. In
CBDM, we are seeking generalizations that satisfy a given set of constraints.
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3.1 Types of Constraints

Many types of constraints are currently used in CBDM, which can be divided
along several dimensions. Along the first dimension, we distinguish between
primitive and composite constraints. Along the second dimension, we distin-
guish between language and evaluation constraints. Along the third dimension,
we have Boolean (or hard), soft, and optimization constraints.

Primitive and Composite Constraints. Recall that constraints in CBDM
are propositions on generalizations. Some of these propositions are atomic in
nature (and are not decomposable into simpler propositions). In mining frequent
itemsets, the constraints ”item bread must be contained in the itemset” and ”the
itemsets should have a frequency higher than 10” are atomic/primitive.

Primitive constraints can be combined by using boolean operators, i.e., nega-
tion, conjunction and disjunction. The resulting constraints are called composite
constraints. The properties of the composite constrains (such as monotonicity/
anti-monotonicity discussed below) depend on the properties of the primitive
constraints and the operators used to combine them.

Language and Evaluation Constraints. Constraints typically refer to either
the form / syntax of generalizations or their semantics / validity with respect to
the data. In the first case, they are called language constraints, and in the sec-
ond evaluation constraints. Below we discuss primitive language and evaluation
constraints. Note that these can be used to form composite language constraints,
composite evaluation constraints, and composite constraints that mix language
and evaluation primitives.

Language constraints concern the syntax / representation of a pattern/model,
i.e., refer only to its form. We can check whether they are satisfied or not without
accessing the data that we have been given as a part of the data mining task. If
we are in the context of inductive databases and queries, post-processing queries
on patterns / models are composed of language constraints.

A commonly used type of language constraints is that of subsumption con-
straints. For example, we might be interested in finding frequent itemsets where
a specific item, e.g., beer, occurs (that is itemsets that subsume beer). Another
type of language constraints involves (cost) functions on patterns / models. An
example of these is the size of a decision tree: We can look for decision trees
of at most ten nodes. The cost functions (such as size) discussed here are map-
pings from the representation of a pattern/model to non-negative reals: Boolean
(hard) language constraints put thresholds on the values of these functions.

Evaluation constraints concern the semantics of patterns / models, in partic-
ular as applied to a given set of data. Evaluation constraints typically involve
evaluation functions, comparing them to constant thresholds. Evaluation func-
tions measure the validity of patterns/models on a given set of data: They take
as input a pattern or a model and a set of data, returning a real value as output.
For example, the frequency of a pattern on a given dataset is an evaluation func-
tion, as is the classification error of a predictive model. Evaluation constraints
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typically compare the value of an evaluation function to a constant threshold,
e.g., minimum support or maximum error.

Hard, Soft and Optimization Constraints. Hard constraints in CBDM are
Boolean functions on patterns / models. This means that a constraints is either
satisfied or not satisfied. Constraints define what patterns are valid or interesting:
The fact that interestingness is not a dichotomy (Bistarelli and Bonchi 2005) has
lead to the introduction of so-called soft constraints.

Soft constraints do not dismiss a pattern for violating a constraint; rather,
the pattern incurring a penalty for violating a constraint. In the cases where we
typically consider a larger number of binary constraints, such as must-link and
cannot-link constraints in constrained clustering (Wagstaff and Cardie 2000), a
fixed penalty may be assigned for violating each constraint. In the soft constraint
setting, all patterns/models are solutions to a different degree: Patterns with
lower penalty satisfy the constraints better (to a higher degree) and we look for
patterns with minimum penalty.

Optimization constraints allow us to ask for (a fixed-size set of) patterns/
models that have a maximal/ minimal value for a given cost or evaluation func-
tion. Example queries with such constraints could ask for the k most frequent
itemsets or the top k correlated patterns. We might also ask for the most accurate
decision tree of size five, or the smallest tree at least 90% accurate.

3.2 Functions Used in Constraints

As discussed above, functions are used to compose constraints. Language con-
straints use language cost functions, while evaluation constraints use evaluation
functions. An mportant property of such functions is monotonicity, and a prop-
erty of patterns related to monotonicity is closedness.

Language Cost Functions. The cost functions that are used in language
constraints concern the representation of generalizations (patterns/models/...).
Most often, these functions are related to the size/complexity of the representa-
tion. They are different for different classes of generalizations, e.g., for itemsets,
mixture models of Gaussians, linear models or decision trees. For itemsets, the
size can be the cardinality of the itemset; for decision trees, the total number of
nodes; and for linear models, the number of variables (with non-zero coefficients).

More general versions of cost functions involve costs of the individual lan-
guage elements, such as items or attributes, and sum/aggregate these over all
elements appearing in the pattern/model. These are motivated by practical con-
siderations, e.g., costs for items in an itemset and total cost of a market basket,
or the cost of lab tests in medical predictive models. Language constraints as
commonly used in CBDM involve thresholds on the values of cost functions (e.g.,
find a decision tree of size at most ten leaves).

Evaluation Functions. The evaluation functions used in evaluation constraints
are tightly coupled with the data mining task at hand. If we are solving a pre-
dictive modelling problem, the evaluation function used will most likely concern
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predictive error. If we are solving a frequent pattern mining problem, the eval-
uation function used will definitely concern the frequency of the patterns.

For the task of pattern discovery, with the discovery of frequent patterns as the
prototypical instantiation, the primary evaluation function is frequency. Recall
that patterns are Boolean functions, assigning values of true or false to data
points. The frequency of a pattern on a set of data is the cardinality (or the
proportion) of the subset of the data for which the pattern is true.

For predictive models, predictive error is the function typically used in con-
straints. The error function used crucially depends on the type of the target
predicted. For a discrete target (classification), misclassification error/cost can
be used; for a continuous target (regression), mean absolute error can be used. In
general, for a target of type Tc, we can use the mean error defined by a distance
(or cost) function dc between objects of type Tc.

Similar evaluation functions can be defined for probabilistic predictive model-
ing, a subtask of predictive modeling. For the data mining task of clustering,
the quality of a clustering is typically evaluated with intra-cluster variance (ICV)
in partition-based clustering. For density-based clustering, a variant of the task
of estimating the probability distribution, scoring functions for distributions/ den-
sities are used, typically based on likelihood or log-likelihood (Hand et al. 2001).

Scoring functions. Language constraints are often combined with evaluation
constraints. The latter can be hard constraints based on thresholds (e.g., find a
tree of size at most 10 with classification error of at most 10%) or optimization
constraints (e.g., find a tree of size at most 10 and the smallest classification
error). Also, optimization constraints may use language-related cost functions,
e.g., find the smallest decision tree with classification error lower than 10%.

In the ‘classical’ formulations of and approaches to data mining tasks, scoring
functions often combine evaluation functions and language cost functions. The
typical score function is a linear combination of the two, i.e., Score(G, D) =
wE × Evaluation(G.function, D) + wL × LanguageCost(G.data), where G is
the generalization (pattern/model) scored and D is the underlying dataset. For
predictive modelling, this can translate to Score = wE × Error + wS × Size.

Monotonicity. The notion of monotonicity of an evaluation (or cost) function
on a class of generalizations is often considered in CBDM. In mathematics, a
function f(x) is monotonic (monotonically increasing) if ∀x, y : x < y → f(x) ≤
f(y), i.e., the function preserves the < order. If the function reverses the order,
i.e., ∀x, y : x < y → f(x) ≥ f(y), we call it monotonically decreasing.

In data mining, in addition to the order on Real numbers, we also have a
generality order on the class of generalizations. The latter is typically induced
by a refinement operator. We say that g1 ≤ref g2 if g2 can be obtained from g1
through a sequence of refinements (and thus g1 is more general than g2): we will
refer to this order as the refinement order.

An evaluation (or cost) function is called monotonic if it preserves the re-
finement order or anti-monotonic if it reverses it. More precisely, an evaluation
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function f is called monotonic if ∀g1, g2 : g1 ≤ref g2 → f(g1) ≤ f(g2) and anti-
monotonic (or monotonically decreasing) if ∀g1, g2 : g1 ≤ref g2 → f(g1) ≥ f(g2).

Note that the above notions are defined for both evaluation functions /
constraints and for language cost functions / constraints. In this context, the
frequency of itemsets is anti-monotonic (it decreases monotonically with the
refinement order). The total cost of an itemset and the total prediction cost of
a decision tree, on the other hand, are monotonic.

In the CBDM literature (Boulicaut and Jeudy 2005), the refinement order
considered is typically the subset relation on itemsets (≤ref is identical to ⊆). A
constraint C (taken as a Boolean function) is considered monotonic if i1 ≤ref i2∧
C(i1) implies C(i2). A maximum frequency constraint of the form freq(i) ≤ θ,
where θ is a constant, is monotonic. Similarly, minimum frequency/support con-
straints of the form freq(i) ≥ θ, the ones most commonly considered in data
mining, are anti-monotonic. A disjunction or a conjunction of anti-monotonic
constraints is an anti-monotonic constraint. The negation of a monotonic con-
straint is anti-monotonic and vice versa.

The notions of monotonicity and anti-monotonicity are important because
they allow for the design of efficient CBDM algorithms. Anti-monotonicity means
that when a pattern does not satisfy a constraint C, then none of its refine-
ments can satisfy C. It thus becomes possible to prune huge parts of the search
space which can not contain interesting patterns. This has been studied within
the learning as search framework (Mitchell 1982) and the generic levelwise
algorithm from (Mannila and Toivonen 1997) has inspired many algorithmic
developments.

Closedness. Finally, let us mention the notion of closedness. A pattern (general-
ization) is closed, with respect to a given refinement operator≤ref and evaluation
function f , if refining the pattern in any way decreases the value of the evaluation
function. More precisely, x is closed if ∀y, x ≤ref y : f(y) < f(x). This notion has
primarily been considered in the context of mining frequent itemsets, where a
refinement adds an item to an itemset and the evaluation function is frequency.
There it plays an important role in condensed representations (Calders et al.
2005). However, it can be defined analogously for other types of patterns.

4 Inductive Queries for Mining Patterns and Models

A wide variety of research on IDBs and queries, as well as CBDM, was conducted
within two EU-funded projects. The first (contract number FP5-IST 26469) took
place from 2001 to 2004 and was titled cInQ (consortium on discovering knowl-
edge with Inductive Queries). The second (contract number FP6-IST 516169)
took place from 2005 to 2008 and was titled IQ (Inductive Queries for mining
patterns and models). This section briefly summarizes the research on IDBs and
CBDM conducted within the IQ project: A more detailed account can be found
in the volume with the same title as this paper, edited by Dzeroski et al. (2010).
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4.1 Background

The notions of inductive databases and queries were introduced by
Imielinski and Mannila (1996). The notion of constraint-based data mining
(CBDM) appears in the data mining literature for the first time towards the end
of the 20th century (Han et al. 1999). A special issue of the SIGKDD Explorations
bulletin devoted to constraints in data mining was edited by Bayardo (2002).

Following these early efforts, the project cInQ made substantial advances in
this area. A detailed overview of the results of the cInQ project is given by
Boulicaut et al. (2005). The major contributions of the project, however, can be
briefly summarized as follows.

First, an important theoretical framework was introduced for local/frequent
pattern mining (e.g., itemsets, strings) under constraints (see, e.g., (De Raedt
2002a)), in which arbitrary boolean combinations of monotonic and anti-monoto-
nic primitives can be used to specify the patterns of interest. Second,
major progress was achieved in the area of condensed representations that com-
press/condense sets of solutions to inductive queries (see, e.g., (Boulicaut et al.
2003)) enabling one to mine dense and/or highly correlated transactional data
sets, such as WWW usage data or boolean gene expression data, that could not
be mined before. Third, cInQ studied the incorporation of inductive queries for
frequent patterns and association rules, in query languages such as SQL and
XQuery, also addressing inductive query evaluation and optimization in this
context (Meo 2003). Finally, the various approaches to mining sets of
(frequent) patterns were successfully used in real-life applications in bio- and
chemo-informatics, most notably for finding frequent patterns in molecules
(Kramer et al. 2001) and in gene expression data (Becquet et al. 2002).

However, many limitations of IDBs/queries and CBDM remained to be ad-
dressed at the end of the cInQ project. Most existing approaches to inductive
querying and CBDM focused on mining local patterns for a specific type of data
(such as itemsets) and a specific set of constraints (based on frequency-related
primitives). Inductive querying of global models, such as mining predictive mod-
els or clusterings under constraints remained largely unexplored. Although some
integration of frequent pattern mining into database query languages was at-
tempted, most inductive querying/CBDM systems worked in isolation and were
not integrated with other data mining tools. Consequently, applications of IDBs
and CBDM to practically important problems remained limited.

The IQ project set out to address these challenges to IDBs and CBDM re-
maining at the end of the cInQ project. The overall goal of the IQ project was
to develop a sound theoretical understanding of inductive querying that would
enable us to develop effective inductive database systems and to apply them on
significant real-life applications. To realize this aim, it had to develop the re-
quired theory, representations and primitives for local pattern and global model
mining, and integrate these into inductive querying systems, inductive database
systems and query languages, and general frameworks for data mining. Based
on these advances, it aimed to developed significant show-case applications of
inductive querying in the area of bioinformatics.
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4.2 Major Results of the IQ Project

In sum, the IQ project has made major progress in several directions. In the
first instance, these include further developments in constraint-based mining of
frequent patterns, as well as advances in mining global models (predictive mod-
els and clusterings) under constraints. At another level, approaches for mining
frequent patterns have been integrated with the mining of predictive models
(classification) and clusterings (bi-clustering or co-clustering) under constraints.
In the quest for integration, inductive query languages, inductive database sys-
tems and frameworks for data mining in general have been developed. Finally,
applications in bioinformatics which use these advances have been developed.

Advances in mining frequent patterns have been made along several di-
mensions, including the generalization of the notion of closed patterns. First,
the one-dimensional (closed sets) and two-dimensional (formal concepts) cases
have been lifted to the case of n-dimensional binary data (Cerf et al. 2008, 2010).
Second, the notion of closed patterns (and the related notion of condensed repre-
sentations) have been extended to the case of multi-relational data (Garriga et al.
2007). Third, and possibly most important, a unified view on itemset mining un-
der constraints has been formulated (De Raedt et al. 2008, Besson et al. 2010)
where a highly declarative approach is taken. Most of the constraints used in
itemset mining can be reformulated as sets or reified summation constraints, for
which efficient solvers exist in constraint programming. This means that, once
the constraints have been appropriately formulated, there is no need for special
purpose CBDM algorithms.

Additional contributions in mining frequent patterns include the mining of
patterns in structured data, fault-tolerant approaches for mining frequent pat-
terns and randomization approaches for evaluating the results of frequent pattern
mining. New approaches have been developed for mining frequent substrings in
strings (cf. (Rigotti et al. 2010)), frequent paths, trees, and graphs in graphs (cf.,
e.g., (Bringmann et al. 2006, 2010)), and frequent multi-relational patterns in a
probabilistic extension of Prolog named ProbLog (cf. (De Raedt et al. 2010)).
Fault-tolerant approaches have been developed to mining bi-sets or formal con-
cepts (cf. (Besson et al. 2010)), as well as string patterns (cf. (Rigotti et al.
2010)): The latter has been used to to discover putative transcription factor
binding sites in gene promoter sequences. A general approach to the evaluation
of data mining results, including those of mining frequent patterns, has been
developed: The approach is based on swap randomization (Gionis et al. 2006).

Advances in mining global models for prediction and clustering have been
made along two major directions. The first direction is based on predictive clus-
tering, which unifies prediction and clustering, and can be used to build predic-
tive models for structured targets (tuples, hierarchies, time series). Constraints
related to prediction (such as maximum error bounds), as well as clustering
(such as must-link and cannot link constraints), can be addressed in predictive
clustering trees (Struyf and Dzeroski 2010). Due to its capability of predicting
structured outputs, this approach has been successfully used for applications
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such as gene function prediction (Vens et al. 2010) and gene expression data
analysis (Slavkov and Džeroski 2010).

The second direction is based on integrated mining of (frequent) local patterns
and global models (for prediction and clustering). For prediction, the techniques
developed range from selecting relevant patterns from a previously mined set as
new features of the data, over inducing pattern-based rule sets, to integrating
pattern mining and model construction (Bringmann et al. 2010). For cluster-
ing, approaches have been developed for constrained clustering by using local
patterns as features for a clustering process, computing co-clusters by post-
processing collections of local patterns, and using local patterns to characterize
given co-clusters (cf., e.g., (Pensa et al. 2008)).

Finally, algorithms have also been developed for constrained prediction and
clustering that do not belong to the above two paradigms. These include algo-
rithms for constrained induction of polynomial equations for multi-target predic-
tion (Peckov et al. 2007). A large body of work has been devoted to developing
methods for the segmentation of sequences, which can be viewed as a form of
constrained clustering (Bingham 2010), where the constraints relate the seg-
ments to each other and make the end result more interpretable for the human
eye, and/or make the computational task simpler. The segmentation methods
have been used to segment genomic sequences.

Advances in integration approaches have been made concerning inductive
query languages, inductive database systems and frameworks for data mining
based on the notions of IDBs and queries, as well as CBDM. Several
inductive query languages have been proposed within the project, such as IQL
(Nijssen and De Raedt 2007), which is an extension of the tuple relational cal-
culus with functions, a typing system and various primitives for data mining.
IQL is expressive enough to support the formulation of non trivial KDD scenar-
ios, e.g., the formal definition of a typical feature construction phase based on
frequent pattern mining followed by a decision tree induction phase.

An inductive database system coming out of the IQ project is embodied within
the MiningViews approach (Calders et al. 2006a, Blockeel et al. 2010b). This
approach uses the SQL query language to access data, patterns (e.g., frequent
itemsets) and models (e.g., decision trees): The patterns/models are stored in
a set of relational tables, called mining views, which virtually represent the
complete output of the respective data mining tasks. In reality, the mining views
are empty and the database system finds the required tuples only when they are
queried by the user: This is done by extracting constraints from the SQL queries
accessing the mining views and calling an appropriate CBDM algorithm.

A special purpose type of inductive database are experiment databases
(Vanschoren and Blockeel 2010): These are databases designed to collect the
details of data mining (machine learning) experiments, which run different data
mining algorithms on different datasets and tasks, and their results. Like all
IDBs, experiment databases store the results of data mining: They store infor-
mation on datasets, learners, and models resulting from running those learners
on those datasets: The datasets, learners and models are described in terms
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of predefined properties, rather than being stored in their entirety. A typi-
cal IDB stores one datasets and the generalizations derived from them (com-
plete patterns/model), while experiment databases store summary information
on experiments concerning multiple datasets. Inductive queries on experiment
databases analyze the descriptions of datasets and models, as well as experimen-
tal results, in order to find possible relationships between them: In this context,
meta-learning is well-supported.

Several proposals of frameworks for data mining were considered within the
project, such as the data mining algebra of Calders et al. (2006b). Among these,
the general framework for data mining proposed by Dzeroski (2007) defines pre-
cisely and formally the basic concepts (entities) in data mining, which are used
to frame this chapter. The framework has also served as the basis for developing
OntoDM, an ontology of data mining (Panov et al. 2010): While a number of
data mining ontologies have appeared recently, the unique advantages of On-
toDM include the facts that (a) it is deep, (b) it follows best practices from
ontology design and engineering (e.g., small number of relations, alignment with
top-level ontologies), and (c) it covers structured data, different data mining
tasks, and IDB/CBDM concepts, all of which are orthogonal dimensions that
can be combined in many ways.

On the theory front, the most important contributions (selected from the
above) are as follows. Concerning frequent patterns, they include the extensions
of the notion of closed patterns to the case of n-dimensional binary data and
multi-relational data and the unified view on itemset mining under constraints
in a constraint programming setting. Concerning global models, they include
advances in predictive clustering, which unifies prediction and clustering and
can be used for structured prediction, as well as advances in integrated mining
of (frequent) local patterns and global models (for prediction and clustering).
Finally, oncerning integration, they include the MiningViews approach and the
general framework/ontology for data mining.

On the applications front, the tasks of drug design, gene expression data
analysis, gene function prediction, and genome segmentation were considered.
In drug design, the more specific task of QSAR (quantitative structure-activity
relationships) modeling was addressed: The topic is treated by King et al. (2010).
Several applications in gene expression data analysis are discussed by
Slavkov and Džeroski (2010). In addition, human SAGE gene expression data
have been analyzed (Blachon et al. 2007), where frequent patterns are found first
(in a fault-tolerant manner), clustered next, and the resulting clusters (called
also quasi-synexpression groups) are then explored by domain experts, making
it possible to formulate very relevant biological hypotheses.

Gene function prediction was addressed for several organisms, a variety of
datasets, and two annotation schemes (including the Gene Ontology): This ap-
plication area is discussed by Vens et al. (2010). Finally, in the context of genome
segmentation, the more specific task of detecting isochore boundaries has been ad-
dressed (Haiminen and Mannila 2007): Simplified, isochores are large-scale struc-
tures on genomes that are visible in microscope images and correspond well (but
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not perfectly) with GC rich areas of the genome. This problem has been adressed
by techniques such as constrained sequence segmentation (Bingham 2010).

More information on the IQ project and its results can be found at the
project website http://iq.ijs.si.
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What’s Happening in Semantic Web
. . . and What FCA Could Have to Do with It

Pascal Hitzler

Kno.e.sis Center, Wright State University, Dayton, Ohio

The Semantic Web [27] is gaining momentum. Driven by over 10 years of focused
project funding in the US and the EU, Semantic Web Technologies are now
entering application areas in industry, academia, government, and the open Web.

The Semantic Web is based on the idea of describing the meaning – or
semantics – of data on the Web using metadata – data that describes other data
– in the form of ontologies, which are represented using logic-based knowledge-
representation languages [26]. Central to the transfer of Semantic Web into
practice is the Linked Open Data effort [7], which has already resulted in the
publication, on the Web, of billions of pieces of information using ontology lan-
guages. This provides the basic data needed for establishing intelligent system
applications on the Web in the tradition of Semantic Web Technologies.

Despite considerable success and progress, the field of Semantic Web Tech-
nologies still requires considerable conceptual advances in order to come to its
full potential [23,24,29]. Below, we briefly list some research challenges where
Formal Concept Analysis (FCA) could contribute as a method, and list some of
the past FCA-related work on these issues1.

1 Ontology Generation

Semantic Web applications require knowledge represented in the form of ontolo-
gies. However, the generation of such ontologies is a formidable modeling task
which requires both ontology modeling expertise, profound domain knowledge,
and an understanding of technical application requirements. Any automated or
semi-automated tools which make ontology generation simpler and less costly
are therefore highly desirable to have.

Automated or semi-automated generation of ontologies has been studied to
a considerable extent, and some of this work uses FCA as a main component
[9,10,11,21,31,50]. More recently, FCA has also found application for refining,
completing, and improving ontologies [3,4,6,13,19,20,38,40,41,42,46,47,48]. In-
deed, it turns out that FCA is indeed used as an ontology engineering component
in recent application-driven work [5,8,16,17,30,32,37].

1 We do not claim completeness with respect to FCA-based work in Semantic Web,
and we may in particular miss early work – indeed Semantic Web as a field is not
clearly defined, so it is sometimes a matter of judgement or opinion whether a paper
is actually a Semantic Web paper.
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2 Ontology Merging and Alignment

Ontology Alignment [15] refers to the process of merging two or more ontologies in
order to create a larger ontology for use in applications. Tools for realizing align-
ments are based on a variety of techniques, and their performances differ substan-
tially depending on the task at hand (see, e.g., the evaluation in [28]). FCA has
been introduced early on as a method for ontology merging [12,18,35,43,44,49].

3 Ontology-Based Interfaces

Some work has investigated the use of FCA for interfaces, e.g. for the purpose of
browsing data with underlying ontologies [11,14,45]. It seems that work related
to this has, so far, only be very preliminary, so there might be further potential
in this, in particular when considering the rapid expansion and rising popularity
of Linked Data: To date, navigating these datasets is a tedious task, and better
interfaces would have significant potential.

4 Ontology Cleansing

Usability of Linked Data is significantly hampered by the fact that it is still very
raw data in the sense that it contains many mistakes and omissions, and cannot
distinguish between different points of view [24]. In order to leverage logic-based
methods mediated by ontology reasoning, data would be required to be of high
modeling quality.

How to bridge this data quality gap is currently an open problem. Applica-
tion of traditional methods from data mining and machine learning is limited,
since the output of such methods is also, usually, prone to mistakes and errors
(often measured by probabilistic confidence levels). FCA as an alternative data
clustering method may have the potential to approach this problem, perhaps
in an interactive manner akin to exploration-based completion of ontologies as
performed in [40]. However, there seems to be no current work on this issue.

5 Ontology Language Development

Ontology languages currently being used are constantly being improved and
revised in incremental standardization processes, e.g. through the World Wide
Web Consortium (W3C). Such revisions of languages are driven both by theoret-
ical investigations and by applicability concerns. The current situation regarding
ontology languages is far from stable: While main paradigms seem to be agreed
upon [26,33,36], the paradigms and their interactions are still being investigated
(see, e.g., [34]) with respect to foundations and practice.
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There has been some work which can be understood as dealing with the ques-
tion whether FCA can be used to analyze or improve knowledge representation
languages [1,2,22,25]. However, this line of investigation has not been systemat-
ically investigated yet.

Acknowledgement. The author acknowledges support by the National Science
Foundation under award 1017225 III: Small: TROn—Tractable Reasoning with
Ontologies.

References

1. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite
model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933,
pp. 46–61. Springer, Heidelberg (2008)

2. Baader, F., Distel, F.: Exploring finite models in the description logic ELgfp. In:
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Abstract. We investigate the relations between, on the one hand, Ga-
lois connections and the related types of maps and, on the other hand, the
axiomatic Arrowian approach for the aggregation (or consensus) prob-
lem in lattices. In the latter one wants to ”aggregate” n-tuples (n ≥ 2)
of elements of a lattice L into an element of this lattice representing
their ”consensus”, subject to satisfying some desirable properties. The
main axiom is a generalization of Arrow’s [1] independence. The results
consist in the characterization of convenient aggregation functions, and
especially in impossibility ones when axioms turn to be incompatible.
For the many applications of this theory in the domains of social choice
or cluster analysis, see, e.g., the book of Day and McMorris [4]. Basic
characterizations of Arrowian aggregation functions according to a spe-
cific typology of finite lattices are given by Monjardet [10]. They are
extended to lattices of Galois maps (or polarized ones, that is maps ap-
pearing in Galois connections), then particularized to fuzzy preorders
and hierarchical classifications, in Leclerc [7]. A unified presentation is
given in Leclerc and Monjardet [8].
An FCA-related representation of Galois maps between two fixed lat-
tices is given in Domenach and Leclerc [5] with the introduction of the
so-called ”biclosed” relations. As pointed out in the unifying paper of
Ganter [6], the notion of biclosed relations is related to several others
in the literature. The first part of the presentation will be devoted to
Arrowian aggregation of biclosed relations.
In the second part, we present another relation between Aggregation the-
ory and residuated/residual maps (those appearing in Residuation The-
ory [2]), which corresponds to ”covariant” Galois connections. Chambers
and Miller [3] and Leclerc and Monjardet [9] have recently pointed out
that, in a significant class of atomistic lattices, an aggregation function
is a meet-projection if and only if it is a residual mapping.

Keywords: Galois connection, Residuation theory, Axiomatic aggrega-
tion, Lattice, Biclosed relation.
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Abstract. A Web service is a software functionality accessible through the net-
work. Web services are intended to be composed into coarser-grained applica-
tions. Achieving a required composite functionality requires the discovery of a
collection of Web services out of the enormous service space. Each service must
be examined to verify its provided functionality, making the selection task nei-
ther efficient nor practical. Moreover, when a service in a composition becomes
unavailable, the whole composition may become functionally broken. Therefore,
an equivalent service must be retrieved to replace the broken one, thus spend-
ing more time and effort. In this paper, we propose an approach for Web service
classification based on FCA, using their operations estimated similarities. The
generated lattices make the identification of candidate substitutes to a given ser-
vice straightforward. Thus, service compositions can be achieved more easily and
with backup services, so as to easily recover the functionality of a broken service.

Keywords: Web service classification, Formal Concept Analysis (FCA), service
composition, service backups.

1 Introduction

A Web service is a software functionality accessible through the network. It exposes its
functionalities to the external world by an abstract interface expressed in Web Service
Description Language (WSDL) [1]. A WSDL interface is an XML-based document that
describes a service’s available operations, parameters, data types, and access protocols.

Web services represent the building blocks for creating composite applications. When
creating a composite application, each selected Web service must fulfill a part of the ap-
plication’s functionality. Therefore, each service’s WSDL must be analyzed to verify its
provided operations, and so to decide whether to select the service or not. Then, after
identifying the needed services, they can be assembled together in order to meet the
desired functionality of the whole composite application.

The task of finding an appropriate service to use is hard and time-consuming, because
of the large number of existing Web services nowadays. This may become even harder
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knowing that Web services are not guaranteed to have a continuous execution. This
is due to their dynamic nature, being offered by various providers, remotely accessed,
and having different quality of service (QoS) levels. Therefore, an available functioning
Web service may crash and become unavailable at any time, which requires finding an
equivalent one to replace it, in order to maintain the application functionality.

The real challenge lies in the fact that there is a lack of WSDL management facil-
ities, especially after the deficiency of UDDI [2], which was originally proposed as a
core Web service registry standard: ”UDDI did not achieve its goal of becoming the
registry for all Web Services metadata and did not become useful in a majority of Web
Services interactions over the Web” [3]. Thus, a mechanism for organizing and indexing
Web services is significantly required. This leads us to our proposition for Web service
classification, which is based on Formal Concept Analysis (FCA)[4].

In our proposed approach, we consider the objects to be Web services and the at-
tributes to be the operations offered by these services. We construct Web service lattices
using many-valued contexts of similarity values calculated for each pair of operations.
The generated service lattices provide us with browsing and navigation capabilities.
This allows the retrieval of more general to more specific sets of services [5,6]. More
general sets have lesser common operations while more specific sets have more com-
mon operations. Therefore, applying FCA to Web services provides us with a retrieval
mechanism, which facilitates both selection of Web services and identification of their
possible substitutes. Accordingly, it helps building composite applications as well as
supporting them with backup services.

The rest of the paper is organized as follows: Section 2 defines how we adapt FCA
to web services. Section 3 explains our approach along with examples and formal defi-
nitions. Section 4 demonstrates a case study using real web services. Section 5 lists and
discusses the related work. Finally, Section 6 concludes the paper and describes some
of our perspectives.

2 An FCA-Based Approach for Web Service Classification

In our approach, we use FCA [4] in order to construct a classification of Web services.
We consider that the objects are Web services and the attributes are operations. In this
way, a formal context of Web services and operations becomes K = (W,O, I), where:
W = {wsi | 1 ≤ i ≤ nW , nW > 1} is the set of Web services. We suppose that it must
contain more than one Web service. Each service offers a set of one or more operations,
and the union of all of the sets of operations offered by all of the services forms the total
set of operations:

wsi = {opi j | 1≤ i≤ nW , 1≤ j ≤ nwsi}

O =
i=nW⋃
i=1

wsi

(ws,op) ∈ I denotes the fact that the service ws ∈W provides the operation op ∈ O
(also read as ws has op). Table 1 shows an example of a formal context (W,O, I) where
W = {Calc1,Calc2,Calc3} and O = {add,sub,mul,div, pow}.



28 Z. Azmeh et al.

Table 1. A formal context for W×O

add sub mul div pow
Calc1 × × ×
Calc2 × × × ×
Calc3 × × ×

Fig. 1. The service lattice for the context in
Table 1

Having a set of Web services X ⊆ W, X ′ = {op ∈ O | ∀ ws ∈ X : (ws,op) ∈ I} is
the set of common operations. In the same way, having the set of operations Y ⊆ O,
Y ′ = {ws ∈ W | ∀ op ∈ Y : (ws,op) ∈ I} is the set of common Web services. In our
example, ({Calc1,Calc2})′ = {add,sub, pow} and ({div})′ = {Calc2,Calc3}.

A concept, for example ({Calc1,Calc2},{add,sub, pow}), is thus a maximal col-
lection of services offering similar operations. The concept lattice defines a hierarchical
organization of services and operations, in which a certain concept inherits all the ex-
tents (services) of its descendants (subconcepts) and all the intents (operations) of its
ascendants (super-concepts). Fig. 1 illustrates the lattice built for the context shown in
Table 1, using the ConExp tool [7].

From the lattice in Fig. 1, we can reveal the relationships between the presented
services. We list some of them as follows:

– Calc1, Calc2 and Calc3 offer the operation {add}. Thus, they can replace each
other for this operation;

– Calc1 and Calc2 offer the operations {add,sub, pow};
– Calc2 can replace Calc1 since it offers all of its operations in addition to div;
– Calc2 and Calc3 offer together the operations {add,div}.

Using binary contexts to classify Web services by their operations reflects two cases:
the service either offers a given operation or not. Substitution can only be handled when
services offer strictly identical operations which is not the case for real Web services.
This is why we need to introduce the notion of operation similarity and use many-valued
contexts of similarity values, as in the following section.

3 Using Many-Valued Contexts

Web services in a certain business domain may offer similar operations. In order to
classify these services by their operations using FCA, we need to calculate the operation
similarity and to use many-valued contexts. We explain our approach using the set of
services illustrated in Table 1. For clarity, we use only the first 3 operations of each
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Table 2. A set of calculation services with their operations

Services Id Operations Id

Calc1 ws1 add(a,b) op11
sub(a,b) op12

Calc2 ws2 add(a,b,c) op21

Calc3 ws3 add(a,b,c,d) op31
sub(a,b,c) op32
mult(a,b) op33
add(a,b,c) op34

Table 3. The similarity matrix (SimMat)

op11 op12 op21 op31 op32 op33 op34

op11 1 0 0.75 0.5 0 0 1
op12 0 1 0 0 0.75 0 0
op21 0.75 0 1 0.75 0 0 0.75
op31 0.5 0 0.75 1 0 0 0
op32 0 0.75 0 0 1 0 0
op33 0 0 0 0 0 1 0
op34 1 0 0.75 0 0 0 1

Table 4. The context (SimCxt) for θ = 0.75

op11 op12 op21 op31 op32 op33 op34
op11 × × ×
op12 × ×
op21 × × × ×
op31 × ×
op32 × ×
op33 ×
op34 × × ×

service. We use the actual operations signatures. The set of services with their signatures
are given unique identifiers, as listed in Table 2.

Next, a similarity measure must be chosen, and applied on pairs of operation sig-
natures extracted from the WSDL files. There are several similarity measures for Web
services that evaluate similarity according to syntax and semantics, such as [8,9,10].
Similarity is assessed in the form of values in the range [0,1]. If two operations are
sufficiently similar, the similarity value will approach 1, otherwise it will approach 0.
The similarity measure is applied on pairs of operations provided by distinct services.
We do not evaluate similarity between distinct operations provided by the same service
(we suppose that it is equal to 0), because when a service becomes dysfunctional, all of
its operations become dysfunctional too.

A similarity measure Sim : O×O→ [0,1] can be defined as follows:

∀ opi j ∈O =⇒ Sim(opi j,opi j) = 1 (an operation with itself)
∀ opi j,opik ∈O, j 
= k =⇒ Sim(opi j,opik) = 0 (operations in the same service)
∀ opi j,opnm ∈O, i 
= n =⇒ Sim(opi j,opnm) ∈ [0,1] (operations in different services)

The calculated similarity values can be presented by a symmetric square matrix that
we will call SimMat, as shown in Table 3. This matrix is of size n = |O|, and its diago-
nal elements are all equal to 1 (similarity of an operation with itself).

From the similarity matrix SimMat, we can extract several binary contexts, by spec-
ifying threshold values θ ∈]0,1]. Thus, the values of SimMat that are greater or equal
to the chosen threshold θ are scaled to 1, while other values are scaled to 0. The binary
context that corresponds to θ = 0.75 is shown in Table 4, we call it SimCxt.
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The SimCxt context is a triple (O,O,RSimθ), where RSimθ is a binary relation indi-
cating whether an operation is similar to another operation or not.

(opi j,opnm) ∈ RSimθ ⇐⇒ Sim(opi j,opnm)≥ θ

We use the SimCxt context to generate a lattice of operations (Fig. 2), B(O,O,RSimθ).
This lattice helps in discovering groups of similar operations, which are used later on
to construct the service lattice.

In the resulting operation lattice, groups of mutually similar operations can be iden-
tified by the concepts having equal extent and intent sets. We call such concepts square
concepts [11], because they form square gatherings on the binary context matrix. We
define a group Gop of mutually similar operations OpSim as:

Gop = {OpSim | (OpSim,OpSim) ∈B(O,O,RSimθ)}

The notion of square concepts can be better recognized by performing a mutual
column-line interchange in the SimCxt. The resulting interchanged context is shown
in Table 5.

Table 5. The interchanged (SimCxt) con-
text

op11 op34 op21 op31 op12 op32 op33

op11 × × ×
op34 × × ×
op21 × × × ×
op31 × ×
op12 × ×
op32 × ×
op33 ×

Fig. 2. The generated lattice for (SimCxt)
shown in Table 4

From the lattice in Fig. 2 as from the interchanged context in Table 5, we can identify
the groups of similar operations, and they are the following:

– {op11,op34,op21} that we label (11,34,21);
– {op21,op31} labelled (21,31);
– {op12,op32} labelled (12,32);
– {op33} labelled (33).

The groups of similar operations, denoted as G, are used to define the final binary
context. This context is a triple (W,G,R), in which the relation R indicates whether or
not a service offers the functionality represented by the corresponding group of similar
operations. We use the labels representing the groups of operations to build the final
context, which is shown in Table 6. Using this context, we generate the corresponding
service lattice that is shown in Fig. 3.
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Table 6. The final services × groups
context

(11,34,21) (21,31) (12,32) (33)
ws1 × ×
ws2 × ×
ws3 × × × ×

Fig. 3. The final service lattice with possible
backups

From the final generated service lattice, shown in Fig. 3, we can notice the following:

– ws1, ws2, and ws3 offer the functionality denoted by (11,34,21), so they can replace
each other for this specific functionality;

– ws3 can replace ws1 and ws2, and it offers an additional functionality (33).

We can also infer immediately which services offer a specific functionality (denoted
by a specific label), by considering the indices in the label. For example, the label
(11,34,21) makes it possible to directly deduce that (11) is provided by ws1, (34)
by ws3 and (21) by ws2.

4 Case Study

In this section, we demonstrate the use of service lattices for both building composite
Web services and supporting them with backup services in a real world context.

We consider the example of a composite service for currency conversion, composed
of two Web services: a currency converter service Currency and a calculation service
Calculator. The Currency service offers an operation that returns the exchange rate be-
tween two entered currencies: getRate(fromCurr,toCurr). The Calculator service offers
an operation that calculates the multiplication of two entered numbers: mul(a,b). We
compose these two operations in order to build the composite currency service that con-
verts a given amount from one currency to another. We describe a service composition
using the Business Process Execution Language (BPEL) [12]. We use the BPEL editor
of NetBeans IDE [13] to design and describe the specified CompositeCurrencyService
as shown in Fig. 4.

We used the Seekda [14] and Service-Finder [15] Web service search engines to
search for the needed services. We describe this case study on two parts: first we illus-
trate the use of the approach, then we validate it.
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Fig. 4. The composite currency service

4.1 Using the Approach

We use a set of services for currency conversion shown in Table 7 and another set for
calculation as shown in Table 8. We limit the number of services in this example, in
order to simplify it and clearly explain the idea of lattice use.

For dealing with this illustration, we assess manually the similarity for the obtained
services’ operations of each set (an automatic approach is described later in the pa-
per). This is achieved by comparing operation signatures (operation names, parameter
names and types). Using the operations lattice and its square concepts, we identify the
following groups of mutually similar operations for the currency services in Table 7:

– {op11,op21,op31,op51} that we label (CR : 11,21,31,51);
– {op32,op42,op52,op61,op73,op82,op91} labelled (CC : 32,42,52,61,73,82,91);
– {op33,op81} labelled (CS : 33,81);
– {op41} labelled (R : 41);
– {op72} labelled (FC : 72);
– {op71} labelled (CF : 71).

We extract also the groups of mutually similar operations for the calculation services in
Table 8, and they are as follows:
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Table 7. The set of currency converter services

Services Id Operations Id

CurrencyConverter ws1 GetConversionRate(fromCurrency,toCurrency) op11

CurrencyConvertor ws2 ConversionRate(FromCurrency,ToCurrency) op21

DOTSCurrencyExchange ws3 GetExchangeRate(ConvertFromCurrency,ConvertToCurrency) op31

ConvertCurrency(Amount,ConvertFromCurrency,ConvertToCurrency) op32
GetCountryCurrency(Country) op33

CurrencyRates ws4 GetRate(CurrencyCode) op41
GetConversion(FromCurrencyCode,ToCurrencyCode) op42

RadixxFlights ws5 GetExchange(FromCurrency,ToCurrency) op51
ConvertCurrency(Amount,FromCurrency,ToCurrency) op52

rates ws6 Convert(CurrencyFrom,CurrencyTo,ValueFrom) op61

Conversion ws7 CelciusToFahrenheit(fCelsius) op71
FahrenheitToCelcius(fFahrenheit) op72

Currency(fValue,sFrom,sTo) op73

CurConvert ws8 GetCurrencySign(CountryName) op81

ConvertCurrency(FromCountry,ToCountry,Amount) op82

ConverterService ws9 Convert(sourceCurrency,targetCurrency,value) op91

Table 8. The set of calculation services

Services Id Operations Id

Calc ws1 add(a,b) op11
div(a,b) op12

mul(a,b) op13
pow(b,a) op14

sub(a,b) op15

Service ws2 add(a,b) op21

sqrt(a) op22
sub(a,b) op23

MathService ws3 Add(A,B) op31
Divide(A,B) op32

Multiply(A,B) op33
Subtract(A,B) op34

CalculatorService ws4 add(y,x) op41
divide(denominator,numerator) op42

multiply(y,x) op43
subtract(y,x) op44

CalcService ws5 Divide(A,B) op51
Multiply(A,B) op52

OperationAdd(A,B) op53
Subtract(A,B) op54

Calculate ws6 Add(dbl1,dbl2) op61
Divide(dbl1,dbl2) op62

Multiply(dbl1,dbl2) op63
Subtract(dbl1,dbl2) op64

– {op15,op23,op34,op44,op54,op64} labelled (sub : 15,23,34,44,54,64);
– {op11,op21,op31,op41,op53,op61} labelled (add : 11,21,31,41,53,61);
– {op13,op33,op43,op52,op63} labelled (mul : 13,33,43,52,63);
– {op12,op32,op42,op51,op62} labelled (div : 12,32,42,51,62);
– {op14} labelled (pow : 14);
– {op22} labelled (sqrt : 22).

These extracted groups of similar operations lead to a binary context for each set of
services as shown in Tables 9 and 10.

We generate the two corresponding lattices as shown in the right side of Fig. 5. We
can exploit these service lattices to build our composite service as well as to support it
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Table 9. The formal context corresponding to the currency converter services

(CR:11,21,31,51) (CC:32,42,52,61,73,82,91) (CS:33,81) (R:41) (FC:72) (CF:71)

ws1 ×
ws2 × ×
ws3 × × ×
ws4 × ×
ws5 × ×
ws6 ×
ws7 × × ×
ws8 × ×
ws9 ×

Table 10. The formal context corresponding to the calculator services

(sub:15,23,34,44,54,64) (add:11,21,31,41,53,61) (mul:13,33,43,52,63) (div:12,32,42,51,62) (pow:14) (sqrt:22)

ws1 × × × × ×
ws2 × × ×
ws3 × × × ×
ws4 × × × ×
ws5 × × × ×
ws6 × × × ×

with backup services. Thus, we decide to select operation op11 : (CR : 11) from service
ws1 for exchange rate (currency lattice), and operation op13 : (mul : 13) from service
ws1 for multiplication (calculation lattice). From these lattices (Fig. 5), we can also
extract some backup services for our composite service according to the selected oper-
ations. For example, we used operation op11 : (CR : 11) from service ws1, which has
3 equivalent operations: op21 : (CR : 21), op31 : (CR : 31) and op51 : (CR : 51) appear-
ing clearly in the lattice. This means that if service ws1 breaks down, we can replace it
by any of the services ws2 (equivalent to ws1 being in the same concept), ws3 or ws5

(services introduced in subconcepts).
Moreover, if we go down in the lattice, we get the set of services that provide the op-

erations used together with extra operations, like service ws5 and service ws3. They
can help if the composite service evolves and needs other operations. In the same
way, we can extract the backup services for the calculation service ws1 that we are
using. According to the calculation service lattice, service ws1 as a whole set of opera-
tions cannot be replaced by any service. But, regarding the multiplication functionality,
op13(mul : 13), it can be replaced by operations op33 : (mul : 33), op43 : (mul : 43),
op52 : (mul : 52), and op63 : (mul : 63), which are offered by services ws3, ws4, ws5,
and ws6 respectively. This gives us a replacement possibility in case of unavailability of
ws1 in the framework of the composite currency service.
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Fig. 5. The composite currency service, supported by backups from the service lattices

4.2 Validation

In this section, we validate our approach using the entire number of retrievedCalculator
and Currency services1. We queried Service−Finder to collect service endpoints (ad-
dresses), then we downloaded the corresponding WSDL interfaces via Seekda. For the
Calculator service, we searched using multiply as keyword. This returned a set WS1
of 29 services, among which we found one unrelated service.

For the Currency service, we used a combination of the following keywords ex-
change, rate, currency, converter. After eliminating the repeated services, we found a
set of 81 services. From this set, we also eliminated the services that we were unable to
parse. This resulted in a set W S2 of 64 services.

We parsed each service of the two sets (WSDL parser2), to extract its operation
signatures. The set WS1 has a total of 142 operations, while WS2 has 935 operations.

In order to calculate the SimMat (explained in Section 3) for both sets of services, we
make use of Jaro−Winkler [16] similarity measure, to assess the similarity between the
extracted signatures according to each set. This metric gave convenient similarity values

1 Retrieved services: http://www.lirmm.fr/∼azmeh/icfca11/CaseStudy.html
2 Available online: http://www.lirmm.fr/∼azmeh/tools/WsdlParser.html
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Fig. 6. The lattice corresponding to the Calculator services set

that were calculated efficiently, compared to another tested technique that used a com-
bination of syntactic and semantic metrics. After a number of experiments, we found
that a relatively pertinent similarity value starts from 80%. By applying this threshold
on the SimMat, we obtained the binary SimCxt corresponding to each set.

We tried to compute the lattices corresponding to each SimCxt using Galicia [17].
The lattices could not be generated due an ”out of memory” error (on a machine with
limited resources). Therefore, we computed the Galois Sub Hierarchy (GSH), (order
induced by attribute and object concepts). Using GSH, we obtained a suborder of 155
concepts for SimCxt (142× 142) and another suborder of 1724 concepts for SimCxt
(935× 935). The second suborder may be reduced depending on the functionality fil-
tering techniques.

Hereby, we restrict our analysis on WS1 regarding the limited paper space. From the
GSH calculated for SimCxt (142×142), we extracted 65 square concepts. Among these
65 square concepts, we had 13 non-trivial concepts and 52 concepts reduced to one
operation. Each square concept represents a functionality, for example: c82 represents
the multiply functionality. It contains {op15.2,op18.3,op2.3,op6.3,op8.2}, which are
mutually substitutable operations for calculating the multiplication of two numbers.

Afterwards, we constructed the lattice of services (as objects) and these square con-
cepts (as attributes). The generated lattice is shown in Fig. 6, and contains 21 concepts.
By regarding the right half of the lattice, we can notice services that can be entirely
replaced by other ones. For example: if we consider ws15, it contains the multiply
functionality (being a subconcept of c82). This service can be replaced by three other
services: ws18, ws6 and ws2.

5 Related Work

Software engineering research has long benefitted from using FCA-based techniques in
various ways, as attested by [18] which indexes and classifies 42 such scientific papers
published between 1992 and 2003 using FCA. These works go from early development
phases (requirement engineering) to late ones (maintenance or legacy system analysis).
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Many have focused on refactoring and reingineering, especially in object-oriented lan-
guages [19,20,21,22]. Although our approach can be used and understood as a Web
service refactoring method (since operations are factorized in the lattice), this paper
chooses to focus on the classification of Web services inside backup service libraries.
Among the works that ambition to browse or request software libraries using FCA,
some rely mainly on syntax [23,24], extending type theory [25] to recent paradigms
(Component-based development or SOA). Others have studied the use of FCA [26] to
structure keyword-based indexes that enable to browse software libraries [27,28]. In the
literature, we can find several works that more specifically focus on Web service classi-
fication and selection. A quick overview can be obtained from [29,30]. In sections 5.1
and 5.2 we list a selection of works based respectively on FCA and on other techniques.
Then we discuss comparatively our contribution in Section 5.3.

5.1 Approaches Based on FCA

In [31], Web services are classified using FCA to facilitate WSDL browsing. The for-
mal contexts are composed according to three levels, service level, operation level and
type level, together with keywords. These keywords are identified from the WSDL files
by applying vector space metrics with the help of WordNet to discover the synonyms.
The resulting service lattice represents an indexing of Web services, it highlights the
relationships between the services and permits the identification of different categoriza-
tions of a certain service. In [32], FCA is used together with keywords extracted from
services’ interfaces to build a Web services lattice. The extracted words are processed
using WordNet and other IR techniques, and are classified into vectors using support
vector machines (SVM). The obtained vectors categorize the services into domains, and
service lattices are obtained for each category using FCA.

In [33,34], pairs of similar operations, depending on a chosen threshold, are merged
together and the services are described by a representative operation of the pair in order
to build the service lattice. They do not approach the issue that in a set of operations,
op1 can be similar to op2 and op2 similar to op3 but op1 might be not similar to op3

because similarity is in general not a transitive operation. We solve this issue using an
intermediate operation lattice based on the SimCxt to merge the maximal sets of mutu-
ally similar operations. Our mining of mutually similar operations is another application
of the use of tolerance relations jointly with FCA, as is also done in [35].

5.2 Approaches Based on other Techniques

Many approaches use machine learning techniques, in order to discover and group sim-
ilar services. In [36,37], service classifiers are defined depending on sets of previously
categorized services. The resulting classifiers are then used to deduce relevant cate-
gories for new services. In case there are no predefined categories, unsupervised clus-
tering is used. In [38], the CPLSA approach is defined that reduces a service set then
clusters it into semantically related groups.

In [39], a Web service broker is designed relying on approximate signature matching
using XML schema matching. It can recommend services to programmers in order to
compose them. In [40], a service request and a service are represented as two finite state
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machines. Then, they are compared using various heuristics to find structural similar-
ities between them. In [8], the Woogle Web service search engine is presented, which
takes the needed operation as input and searches for all the services that include an op-
eration similar to the requested one. In [41], tags coming from folksonomies are used
to discover and compose services.

The vector space model is used for service retrieval in several existing works as
in [42,43,44]. Terms are extracted from every WSDL file and vectors are built for
describing service. A query vector is also built, and similarity is calculated between
the service vectors and the query vector. This model is sometimes enhanced by using
WordNet structure matching algorithms to ameliorate similarity scores as in [43], or by
partitioning the search space into smaller subspaces as in [44].

5.3 Discussion

In FCA approaches based on keywords, similar operations can not be determined and
thus, Web service substitutes can not be identified either. In our approach, we generate
an intermediary lattice to group mutually similar operations. Thus, sets of equivalent
operations appear in each concept of the final lattice. This serves for several purposes
such as service retrieval, selection and support for service compositions with backup
services. Indeed, one of our main contributions is the idea of supporting the continuity
of service compositions. When selecting a service, a sub-lattice that is descendant from
this service can be extracted. This sub-lattice contains the possible backups that can
replace this service to ensure a recovered functionality.

A service lattice is a structure that reveals relations between services according to
the operations provided in common. It offers a navigation facility that enables better
discovery and browsing than in structures such as lists and sets used in the other ap-
proaches. New services can be classified in existing lattices using incremental lattice
generation algorithms. Thus, there is no need to regenerate the whole lattice.

Moreover, our approach can be tuned to have similarity thresholds set to consider
finer-grained to coarser-grained comparisons. Indeed, the threshold values set during
the process set the sizes of the sieves used to keep similar operations. These thresholds
are set empirically. They condition the number of candidate backups our approach will
discover. If there are too much candidate services, selection might as well be harder
(only very similar services should be kept): the threshold can be raised. If there are few
services proposed as backups, the threshold can be lowered. Backup candidates will
be more dissimilar, probably requiring some little manual adaptations, but such setting
would find backup possibilities where others would not. Finally, systematically calculat-
ing lattices for several threshold values might provide an interesting zoom-in / zoom-out
capability that would provide several finer to coarser-grained classifications as in [45].

6 Conclusion and Future Work

In this paper, we proposed an approach based on Formal Concept Analysis (FCA) for
building Web service lattices according to functionality domains. We make use of sim-
ilarity measures for Web services to form our formal contexts in order to build the
lattices according to threshold values.
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A Web service lattice reveals the invisible relations between Web services in a cer-
tain domain, showing the services that are able to replace other ones. Thus, facilitating
service browsing, selecting and identifying possible substitutions. We explained how
to exploit the resulting lattices to build orchestrations of Web services and supporting
them with backup services.

The quality of our generated lattices depends on the chosen similarity measure
[8,9,10] and the similarity threshold. The more accurate the measure is, the more pre-
cise the obtained lattice is. The chosen values of threshold will give us a variation of
lattices, and they reflect the level of the required adaptations. Thus, a high value of
threshold means similar services with a low number of required adaptations.

Our work in progress is to enrich the service lattices with quality of service (QoS) as-
pects, in order to enable an automatic selection of a service that responds to a requested
level of QoS. We are also working on the dynamic substitution of a Web service by one
of its backups, to ensure a continuous functionality of a service orchestration. Besides,
the construction of a composite web service could benefit from Relational Concept
Analysis [46]. Several context families could be considered that would encode relations
between operations, operations and services, or services in the composition.

Another challenge is the dynamic update of the classification. As algorithms exist
that incrementally build lattices, we believe adding services might be possible without
reconsidering the whole calculus. When the disappearance of services is concerned,
dismissing the indexing information immediately might not be a good idea as services
might be frequently unavailable for temporary periods of time (as a crashed web server
reboots, for instance). More observation still is necessary for us to evaluate if disappear-
ances should be handled as immediate removals (or, maybe, as lazy removals, based on
their being unavailable for too long). This dynamic aspect is an interesting field for
future research.
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Abstract. Any monotone Boolean function on a lattice can be described
by the set of its minimal 1 values. If a lattice is given as a concept
lattice, this set can be represented by the set of minimal hypotheses of
a classification context. Enumeration of minimal hypotheses in output
polynomial time is shown to be impossible unless P = NP, which shows
that dualization of monotone functions on lattices with quasipolynomial
delay is hardly possible.

1 Introduction

One of the first models of machine learning that used lattices (closure systems)
was the JSM-method1 of automated hypothesis generation [1,2]. In this model
positive hypotheses are sought among intersections of positive example descrip-
tions (object intents), same for negative hypotheses. For classification purposes,
it suffices to have hypotheses minimal by inclusion, so-called minimal hypotheses.
It is well-known that hypotheses may be generated with polynomial delay [7].
However, the problem of generating minimal hypotheses with polynomial delay
remained an open one. In our paper we prove that minimal hypotheses cannot
be generated with polynomial delay unless P=NP. This finding has an important
implication for the theory of monotone Boolean functions.

The rest of the paper is organized as follows: In the second section we give
most important definitions, in the third section we prove the main result about
minimal hypotheses, and in the fourth section we discuss the implication of this
result for the problem of dualizing monotone Boolean functions.

2 Main Definitions

We use standard definitions from [4]. Let G and M be sets, called the set of
objects and attributes, respectively. Let I be a relation I ⊆ G × M between
objects and attributes: for g ∈ G, m ∈ M, gIm holds iff the object g has the
1 Called so in honor of the English philosopher John Stuart Mill, who introduced

methods of inductive reasoning in 19th century.
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attribute m. The triple K = (G, M, I) is called a (formal) context. If A ⊆ G, B ⊆
M are arbitrary subsets, then the Galois connection is given by the following
derivation operators :

A′ = {m ∈M | gIm ∀g ∈ A}

B′ = {g ∈ G | gIm ∀m ∈ B}

The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a (formal)
concept (of the context K) with extent A and intent B (in this case we have also
A′′ = A and B′′ = B). The set of attributes B is implied by the set of attributes
A, or implication A → B holds, if all objects from G that have all attributes
from the set A also have all attributes from the set B, i.e. A′ ⊆ B′.

Now we present a learning model from [1,2] in terms of FCA [8]. This model
complies with the common paradigm of learning from positive and negative
examples (see, e.g. [8], [7] ): given a positive and negative examples of a ”target
attribute”, construct a generalization of the positive examples that would not
cover any negative example.

Assume that w is a target (functional) attribute, different from attributes
from the set M , which correspond to structural attributes of objects. For exam-
ple, in pharmacological applications the structural attributes can correspond to
particular subgraphs of molecular graphs of chemical compounds.

Input data for learning can be represented by sets of positive, negative, and
undetermined examples. Positive examples (or (+)-examples) are objects that
are known to have the attribute w and negative examples (or (−)-examples) are
objects that are known not have this attribute.

Definition 1. Consider positive context K+ = (G+, M, I+) and negative con-
text K− = (G−, M, I−). The context K± = (G+ ∪ G−, M ∪ {w}, I+ ∪ I− ∪
G+ × {w}) is called a learning context. The derivation operator in this context
is denoted by superscript ±.

Definition 2. The subset H ⊆ M is called a positive (or (+)-)-hypothesis of
learning context K± if H is intent of K+ and H is not a subset of any intent of
K−.

In the same way negative (or (-)-) hypotheses are defined.
Besides classified objects (positive and negative examples), one usually has

objects for which the value of the target attribute is unknown. These examples
are usually called undetermined examples, they can be given by a context Kτ :=
(Gτ , M, Iτ ), where the corresponding derivation operator is denoted by (·)τ .

Hypotheses can be used to classify the undetermined examples: If the intent

gτ := {m ∈M | (g, m) ∈ Iτ}

of an object g ∈ Gτ contains a positive, but no negative hypothesis, then gτ is
classified positively. Negative classifications are defined similarly. If gτ contains
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hypotheses of both kinds, or if gτ contains no hypothesis at all, then the classifi-
cation is contradictory or undetermined, respectively. In this case one can apply
probabilistic techniques.

In [6], [7] we argued that one can restrict to minimal (w.r.t. inclusion ⊆)
hypotheses, positive as well as negative, since an object intent obviously contains
a positive hypothesis if and only if it contains a minimal positive hypothesis.

Definition 3. Let G = {g1, . . . , gn} and M = {m1, . . . , mn} be sets with same
cardinality. Then the context K = (G, M, I�=) is called contranominal scale,
where I�= = G×M − {(g1, m1), . . . , (gn, mn)}.

The contranominal scale has the following property, which we will use later: for
any H ⊆M one has H ′′ = H and H ′ = {gi | mi /∈ H, 1 ≤ i ≤ n}.

3 Enumeration of Minimal Hypotheses

Here we discuss algorithmic complexity of enumerating all minimal hypotheses.
Note that there is an obvious algorithm for enumerating all hypotheses (not nec-
essary minimal) with polynomial delay [7]. This algorithm is an adaptation of an
algorithm for computing the set of all concepts, where the branching condition
is changed.

Problem: Minimal hypotheses enumeration (MHE)
INPUT: Positive and negative contexts K+ = (G+, M, I+), K− = (G−, M, I−)
OUTPUT: All minimal hypotheses of K±.

Unfortunately, this problem cannot be solved in output polynomial time unless
P = NP . In order to prove this result we study complexity of the following
decision problem.

Problem: Additional minimal hypothesis (AMH)
INPUT: Positive and negative contexts K+ = (G+, M, I+), K− = (G−, M, I−)
and a set of minimal hypotheses H = {H1, . . . , Hk}.
QUESTION: Is there an additional minimal hypothesis H of K± i.e. minimal
hypothesis H that is H /∈ H.

We reduce the most known NP -complete problem satisfiability of CNF to AMH.

Problem: CNF satisfability (SAT)
INPUT: A Boolean CNF formula f(x1, . . . , xn) = C1 ∧ . . . ∧ Ck

QUESTION: Is f satisfable?

Consider an arbitrary CNF instance C1, . . . , Ck with variables x1, . . . , xn, where
Ci = (li1∨. . .∨liri), 1 ≤ i ≤ k and lij ∈ {x1, . . . , xn}∪{¬x1, . . . ,¬xn} (1 ≤ i ≤ k,
1 ≤ j ≤ ri) are some variables or their negations called literals. From this in-
stance we construct a positive context K+ = (G+, M, I+) and a negative context
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K− = (G−, M, I−). Define

M = {C1, . . . , Ck} ∪ {x1,¬x1, . . . , xn,¬xn}

G+ = {gx1 , g¬x1, . . . , gxn , g¬xn} ∪ {gC1 , . . . , gCk
}

G− = {gl1, . . . , gln}
The incidence relation of the positive context is defined by I+ = IC ∪ I�= ∪ I=,
where

IC = {(gxi, Cj) | xi /∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ k}
∪ {(g¬xi , Cj) | ¬xi /∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ k}

I�= = {gx1, g¬x1 , . . . , gxn , g¬xn} × {x1,¬x1, . . . , xn,¬xn}
− {(gx1, x1), (g¬x1 ,¬x1), . . . , (gxn , xn), (g¬xn ,¬xn)}

I= = {(gC1 , C1), . . . , (gCk
, Ck)}

that is for i-th clause C+
i ∩ {gx1 , g¬x1, . . . , gxn , g¬xn} is the set of literals not

included in Ci, I�= is relation of contranominal scale.
The incidence relation of the negative context is given by I− = IL where

IL = G− × {x1,¬x1, . . . , xn,¬xn}
− {(gl1 , x1), (gl1 ,¬x1), . . . , (gln , xn), (gln ,¬xn)}.

K+

K−

C1 C2 · · · Ck x1 ¬x1 · · · xn ¬xn

gx1

g¬x1

... IC I�=
gxn

g¬xn

gC1

... I=
gCk

gl1
... IL
gln

As the set of minimal hypotheses we take H = {{C1}, {C2}, . . . , {Ck}}. It is
easy to see that K± with H is a correct instance of AMH.

If a hypothesis (not necessary minimal) is not included in H we will call it
additional.

Proposition 4. If H is an additional minimal hypothesis of K± then
H ⊆ {x1,¬x1, . . . , xn,¬xn}.
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Proof. Suppose H � {x1,¬x1, . . . , xn,¬xn} then since H is not empty there
is some Ci ∈ H , 1 ≤ i ≤ k. But H is a minimal hypothesis and thus it does
not contain any hypothesis. Hence H = Ci and this contradicts that H is an
additional minimal hypothesis. �

For any H ⊆ {x1,¬x1, . . . , xn,¬xn} that for an 1 ≤ i ≤ n satisfies {xi,¬xi} � H
we define the truth assignment φH in a natural way:

φH(xi) =

{
true, if xi ∈ H ;
false, if xi /∈ H ;

In the case {xi,¬xi} ⊆ H for some 1 ≤ i ≤ n, φH is not defined.
Symmetrically, for a truth assignment φ define the set Hφ = {xi | φ(xi) =

true} ∪ {¬xi | φ(xi) = false}.
Below, for the sake of convenience, if H ⊆ {x1,¬x1, . . . , xn,¬xn} we will

denote the complement of H in {x1,¬x1, . . . , xn,¬xn} by H .

Proposition 5. If a subset H ⊆ {x1,¬x1, . . . , xn,¬xn} is not contained in the
intent of any negative concept (i.e ∀g ∈ G−, H � g−), then φH is correctly
defined. Conversely, for a truth assignment φ the set Hφ is not contained in the
intent of any negative concept.

Proof. The proof is straightforward. �

The following theorem proves NP-hardness of AMH.

Theorem 6. AMH has a solution if and only if SAT has a solution.

Proof.(⇒) Let H be an additional minimal hypothesis of K±. First note that
by Proposition 4 and Proposition 5 the truth assignment φH is correctly defined.
Since H is a nonempty concept intent of K+, Proposition 4 together with the
fact that I�= is the relation of contranominal scale implies H+ = {gxi | xi ∈
H} ∪ {g¬xi | ¬xi ∈ H}. Now H++ ∩ {C1, C2, . . . , Ck} = ∅, hence for any Ci

(1 ≤ i ≤ k) there is some gl ∈ H+ such that gl /∈ C+
i . According to the definition

of IC the letter means that literal l belongs to clause Ci. Thus f(φH) = true.
(⇐) Let φ be a truth assignment and f(φ) = true. Define H = Hφ. Note

that H+ = {gxi | xi ∈ Hφ} ∪ {g¬xi | ¬xi ∈ Hφ}, because I�= is the relation
of contranominal scale and H ∩ g+

Cj
= ∅, 1 ≤ i ≤ k. Suppose that Ci ∈ H++

for some 1 ≤ i ≤ k. This is equivalent to H+ ⊆ C+
i . Hence, by definition of

IC , there is no literal l ∈ Hφ such that l ∈ Ci. Therefore, the clause Ci does
not hold and this contradicts that φ satisfies CNF f . Thus H++ = H and H
is a hypothesis. Since H does not contain any {Ci}, it must contain additional
minimal hypothesis. �

Corollary 1. MHE cannot be solved in output polynomial time, unless P = NP .

Proof. Assume there is an output polynomial algorithm A that generates all
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minimal hypotheses in time pol(|G+|, |M |, |I+|, |G−|, |I−|, N), where N is the
number of minimal hypotheses. Use this algorithm to construct A′ that makes
first p(|G+|, |M |, |I+|, |G−|, |I−|, k + 1) steps of A. Clearly, if there is more than
k minimal hypotheses, then A′ generates k + 1 minimal hypotheses, hence we
can solve AMH in polynomial time. �

4 Dualizing Monotone Boolean Functions on Lattices

Let B be a complete lattice and f be a monotone Boolean function on it. With-
out loss of generality we can assume that B is a concept lattice B(G, M, I)
from the corresponding formal context K(G, M, I). Then A ⊆ B ⇒ f((A, A′)) ≤
f((B, B′)). It is known that any monotone Boolean function on a lattice is
uniquely given by its minimal 1 values, i.e. by the set {(A, A′) | (A, A′) ∈
B, f((A, A′)) = 1, f((B, B′)) = 0 ∀B ⊂ A}. We can represent the set of minimal
1 values of a monotone Boolean function as the set of minimal hypotheses of
the learning context defined by K+ and K−, where K+ = K and object intents
of K− are precisely maximal 0 values of f . Symmetrically, a learning context
K± specifies a monotone Boolean function f on concept lattice of K+ such that
maximal 0 values of f are (inclusion) maximal object intents of K−. Consider
the following

Problem: Minimal true values enumeration (MTE)
INPUT: A formal context K and a set of maximal 0 values of monotone Boolean
function f on the concept lattice of K
OUTPUT: Set of minimal 1 values of f .

From Corollary 1 it follows that MTE cannot be solved in output polynomial
time unless P = NP . Note that in the case of Boolean lattice this problem is
polynomially equivalent to Monotone Boolean Dualism (see [3]) and the min-
imal hypotheses in this case can be enumerated with quasi-polynomial delay
O(no(log n)), where n is the input size.

5 Conclusions

The enumeration of minimal hypotheses of a learning context in output poly-
nomial time was shown to be impossible unless P = NP . This implies that
dualizing monotone Boolean functions on lattices given by their contexts is not
possible in quasi-polynomial time unless P = NP .
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Abstract. The Border algorithm and the iPred algorithm find the Hasse
diagrams of FCA lattices. We show that they can be generalized to ar-
bitrary lattices. In the case of iPred, this requires the identification of a
join-semilattice homomorphism into a distributive lattice.
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1 Introduction

Lattices are mathematical structures with many applications in computer sci-
ence; among these, we are interested in fields like data mining, machine learning,
or knowledge discovery in databases. One well-established use of lattice theory is
in formal concept analysis (FCA) [8], where the concept lattice with its diagram
graph allows the visualization and summarization of data in a more concise repre-
sentation. In the Data Mining community, the same mathematical notions (often
under additional “frequency” constraints that bound from below the size of the
support set) are studied under the banner of Closed-Set Mining (see e.g. [21]).

In these applications, each dataset consists of transactions, also called objects,
each of which, besides having received a unique identifier, consists of a set of
items or attributes taken from a previously agreed finite set. A concept is a pair
formed by a set of transactions —the extent set or support set of the concept—
and a set of attributes —the intent set of the concept— defined as the set
of all those attributes that are shared by all the transactions present in the
extent. Some data analysis processes are based on the family of all intents (the
“closures” stemming from the dataset); but others require to determine also their
order relation, which is a finite lattice, in the form of a line graph (the Hasse
diagram).

Existing algorithms can be divided into three main types: the ones that only
generate the set of concepts, the ones that first generate the set of concepts
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and then construct the Hasse diagram, and the ones that construct the diagram
while computing the lattice elements (see [21], and also [9,12] and the references
therein). The goal is to obtain the concept lattice in linear time in the number
of concepts because this number is, most of the times, already exponential in
the number of attributes, making the task of getting polynomial algorithms in
the size of the input rather impossible.

One widespread use of concepts or closures is the generation of implications
or of partial implications (also called association rules). Several data mining al-
gorithms aim at processing large datasets in time linear in the size of the closure
space, and explore closed sets individually; these solutions tend to drown the
user under a deluge of partial implications. More sophisticated works attempt
at providing selected “bases” of partial implications; the early proposal in [13]
requires to compute immediate predecessors, that is, the Hasse diagram. Alterna-
tive proposals such as the Essential Rules of [1] or the equivalent Representative
Rules of [11] (of which a detailed discussion with new characterizations and an
alternative basis proposal appears in [6]) require to process predecessors of closed
sets obeying tightly certain support inequalities; these algorithms also benefit
from the Hasse diagram, as the slow alternatives are blind repeated traversal of
the closed sets in time quadratic in the size of the closure space, or storage of
all predecessors of each closed set, which soon becomes large enough to impose
a considerable penalty on the running times.

The problem of constructing the Hasse diagram of an arbitrary finite lattice is
less studied. One algorithm that has a better worst case complexity than various
previous works is described in [16]. From our “arbitrary lattices” perspective,
its main drawback is that it requires the availability of a basis from which each
element of the lattice can be derived. In the absence of such a subset, one may
still use this algorithm (at a greater computational cost) to output the Dedekind-
MacNeille completion [7] of the given lattice, which in our case is isomorphic to
the lattice itself. The algorithm is also easily adaptable to concept lattices, where
indeed a basis is available immediately from the dataset transactions.

We consider of interest to have available further, faster algorithms for arbi-
trary finite lattices; we have two reasons for this aim. First, many (although not
all) algorithms constructing Hasse diagrams traverse concepts in layers defined
by the size of the intents; our explorations about association rules sometimes
require to follow different orderings, so that a more abstract approach is helpful;
second, we keep in mind the application area corresponding to certain variants
of implications and database dependencies that are characterized by lattices of
equivalence relations, so that we are interested in laying a strong foundation
that gives us a clear picture of the applicability requirements for each algorithm
constructing Hasse diagrams in lattices other than powerset sublattices.

Of course, we expect that FCA-oriented algorithms could be a good source
of inspiration for the design of algorithms applicable in the general case. An
example that such an extension can be done is the algorithm in [20] (see Section
3 for more details), whose highest-level description matches the general case
of arbitrary lattices; nevertheless, the actual implementation described in [20]
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works strictly for formal concept lattices, so that further implementations and
complexity analyses are not readily available for arbitrary finite lattices.

The contribution of the present paper supports the same idea: we show how
two existing algorithms that build the Hasse diagrams of a concept lattice can
be adapted to work for arbitrary lattices. Both algorithms have in common the
notion of border, which we (re-)define and formalize in Section 3, after presenting
some preliminary notions about lattice theory in Section 2; our approach has the
specific interest that the notion of border is given just in terms of the ordering
relation, and not in terms of a set of elements already processed as in previous
references ([5,14,20]); yet, the notions are equivalent. We state and prove prop-
erties of borders and describe the Generalized Border Algorithm; whereas the
algorithm reads, in high level, exactly as in previous references, its validation is
new, as previous ones depended on the lattice being an FCA lattice. In Section
4 we introduce the Generalized iPred Algorithm, exporting the iPred algorithm
of FCA lattices [5] to arbitrary lattices, after arguing its correctness. This task
is far from trivial and is our major contribution, since the existing rendering and
validation of the iPred algorithm relies again extensively on the fact that it is
being applied to an FCA lattice, and even performs operations on difference sets
that may not belong to the closure space. Concluding remarks and future work
ideas are presented in Section 5.

2 Preliminaries

We develop all our work in terms of lattices and semilattices; see [7] as main
source. All our structures are finite. A lattice is a partially ordered set in which
every nonempty subset has a meet (greatest lower bound) and a join (lowest
upper bound). If only one of these two operations is guaranteed to be available a
priori, we speak of a join-semilattice or a meet-semilattice as convenient. Top and
bottom elements are denoted � and ⊥, respectively. Lower case letters, possibly
with primes, and taken usually from the end of the latin alphabet denote lattice
elements: x, y′. Note that Galois connections are not explicitly present in this
paper, so that the “prime” notation does not refer to the operations of Galois
connections.

Finite semilattices can be extended into lattices by addition of at most one
further element [7]; for instance, if (L,≤,∨) is a join-semilattice with bottom
element ⊥, one can define a meet operation as follows:

∧
X =

∨
{y

∣∣ ∀x ∈ X,y ≤
x}; the element ⊥ ensures that this set is nonempty. Thus, if the join-semilattice
lacks a bottom element, it suffices to add an “artificial” one to obtain a lattice.
A dual process is obviously possible in meet-semilattices.

Given two join-semilattices (S,∨) and (T,∨), a homomorphism is a function
f : S → T such that f(x∨ y) = f(x)∨ f(y). Hence f is just a homomorphism of
the two semigroups associated with the two semilattices. If S and T both include
a bottom element ⊥, then f should also be a monoid homomorphism, i.e. we
additionally require that f(⊥) = ⊥. Homomorphisms of meet-semilattices and
of lattices are defined similarly. It is easy to check that x ≤ y ⇒ f(x) ≤ f(y) for
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�

1 2 3

⊥

(a)

�

1 2

4

3

⊥

(b)

Fig. 1. Two join-semilattices converted into lattices

any homomorphism f ; the converse implication, thus the equivalence x ≤ y ⇔
f(x) ≤ f(y), is also true for injective f but not guaranteed in general.

We must point out here a simple but crucial fact that plays a role in our
later developments: given a homomorphism f between two join-semilattices S
and T , if we extend both into lattices as just indicated, then f is not necessarily
a lattice homomorphism; for instance, there could be elements of T that do not
belong to the image set of f , and they may become meets of subsets of T in a
way that prevents them to be the image of the corresponding meet of S. For one
specific example, see Figure 1: consider the two join-semilattices defined by the
solid lines, where the numbering defines an injective homomorphism from the
join-semilattice in (a) to the join-semilattice in (b). Both lack a bottom element.
Upon adding it, as indicated by the broken lines, in lattice (a) the meets of 1
and 2 and of 1 and 3 coincide, but the meets of their corresponding images in
(b) do not; for this reason, the homomorphism cannot be extended to the whole
lattices.

However, the following does hold:

Lemma 1. Consider two join-semilattices S and T , and let f : S → T be a
homomorphism. After extending both semilattices into lattices, f(

∧
Y ) ≤

∧
f(Y )

for all Y ⊆ S.

This is immediate to see by considering that
∧

Y ≤ y for all y ∈ Y , hence
f(

∧
Y ) ≤ f(y) for all such y, and the claimed inequality follows.

We employ x < y as the usual shorthand: x ≤ y and x 
= y. We denote as
x ≺ y the fact that x is an immediate predecessor of y in L, that is, x < y and,
for all z, x < z ≤ y implies z = y (equivalently, x ≤ z < y implies x = z).

We focus on algorithms that have access to an underlying finite lattice L of
size |L| = n, with ordering denoted ≤; abusing language slightly, we denote by
L as well its carrier set. The width w(L) of the lattice L is the maximum size
of an antichain (a subset of L formed by pairwise incomparable elements). The
lattice is assumed to be available for our algorithms in the form of an abstract
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data type offering an iterator that traverses all the elements of the carrier set,
together with the operations of testing for the ordering (given x, y ∈ L, find out
whether x ≤ y) and computing the meet x ∧ y and join x ∨ y of x, y ∈ L; also
the constants � ∈ L and ⊥ ∈ L are assumed available.

The algorithms we consider are to perform the task of constructing explicitly
the Hasse diagram (also known as the reflexive and transitive reduction) of the
given lattice: H(L) = {(x, y)

∣∣ x ≺ y}. By projecting the Hasse diagram along
the first or the second component we find our crucial ingredients: the well-known
upper and lower covers.

Definition 1. The upper cover of x ∈ L is uc(x) = {y
∣∣ x ≺ y}. The lower

cover of y ∈ L is lc(y) = {x
∣∣ x ≺ y}.

The following immediate fact is stated separately just for purposes of easy later
reference:

Proposition 1. If x < y then there is z ∈ uc(x) such that x ≺ z ≤ y; and there
is z′ ∈ lc(y) such that x ≤ z′ ≺ y.

We will use as well yet another easy technicality:

Lemma 2. If x1 ≺ y and x2 ≺ y, with x1 
= x2 then x1 ∨ x2 = y.

Proof. Since y ≥ x1 and y ≥ x2 we have y ≥ x1 ∨ x2. Then, x1 
= x2 implies
that they are mutually incomparable, since otherwise the smallest is not an
immediate predecessor of y; this implies that y ≥ x1∨x2 > x1, whence y = x1∨x2
as x1 ≺ y. ��

3 The Border Algorithm in Lattices

The algorithms we are considering here have in common the fact that they
traverse the lattice and explicitly maintain a subset of the elements seen so far:
those that still might be used to identify new Hasse edges. This subset is known
as the “border” and, as it evolves during the traversal, actually each element
x ∈ L “gets its own border” associated as the algorithm reaches it. The border
associated to an element may be potentially used to construct new edges touching
it (although these edges may not touch the border elements themselves): more
precisely, operations on the border for x will result in uc(x), hence in the Hasse
edges of the form (x, z).

In previous references the border is defined in terms of the elements already
processed, and its properties are mixed with those of the algorithm that uses
it. Instead, we study axiomatically the properties of the notion of “border” on
itself, always as a function of the element for which the border will be considered
as a source of Hasse edges, in a manner that is independent of the fact that
one is traversing the lattice. This allows us to clarify which abstract properties
are necessary for border-based algorithms, so that we can generalize them to
arbitrary lattices, traversed in flexible ways. Our key definition is, therefore:
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Definition 2. Given x ∈ L and B ⊆ L, B is a border for x if the following
properties hold:

1. ∀y ∈ B (y 
≤ x);
2. ∀z (x ≺ z ⇒ ∃y ∈ B (y ≤ z)).

That is, x is never above an element of a border, but each upper cover of x
is; this last condition is equivalent to: all elements strictly above x are greater
than or equal to some element of the border. Since x ≤ (x∨ y) always holds and
x = (x ∨ y) if and only if y ≤ x, we get:

Lemma 3. Let B be a border for x. Then ∀y ∈ B (x < x ∨ y).

All our borders will fulfill an extra “antichain” condition; the only use to be
made of this fact is to bound the size of every border by the width of the lattice.

Definition 3. A border B is proper if every two different elements of B are
mutually incomparable.

The key property of borders, that shows how to extract Hasse edges from them,
is the following:

Theorem 1. Let B be a border for x0. For all x1 with x0 < x1, the following
are equivalent:

1. x1 ∈ uc(x0) (that is, x0 ≺ x1);
2. there is y ∈ B such that x1 = (x0∨y) and, for all z ∈ B, if (x0∨z) ≤ (x0∨y)

then (x0 ∨ z) = (x0 ∨ y).

Proof. Given x0 ≺ x1, we can apply the second condition in the definition of
border for x0: ∃y ∈ B (y ≤ x1). Using Lemma 3, x0 < (x0 ∨ y) ≤ x1, implying
(x0 ∨ y) = x1 since x0 ≺ x1. Additionally, assuming (x0 ∨ z) ≤ (x0 ∨ y) for some
z ∈ B leads likewise to x0 < (x0 ∨ z) ≤ (x0 ∨ y) = x1 and the same property
applies to obtain (x0 ∨ z) = (x0 ∨ y) = x1.

Conversely, again Lemma 3 gives x0 < (x0 ∨ y) = x1. By Proposition 1,
there is z0 ∈ uc(x0) with x0 ≺ z0 ≤ (x0 ∨ y) = x1. We apply the second
condition of borders to x0 ≺ z0 to obtain z1 ∈ B with z1 ≤ z0, whence (x0 ∨
z1) ≤ z0 ≤ (x0 ∨ y) = x1, allowing us to apply the hypothesis of this direction:
(x0 ∨ z1) ≤ (x0 ∨ y) with z1 ∈ B implies (x0 ∨ z1) = (x0 ∨ y) and, therefore,
(x0 ∨ z1) = z0 = (x0 ∨ y) = x1. That is, x1 = z0 ∈ uc(x0). ��

Therefore, given an arbitrary element x0 of the lattice, any candidate for being
an element of its upper cover has to be obtainable as a join between x0 and a
border element (x1 = x0∨y for some y ∈ B). Moreover, among these candidates,
only those that are minimals represent immediate successors: they come from
those y where (x0 ∨ z) ≤ (x0 ∨ y) implies (x0 ∨ z) = (x0 ∨ y), for all z ∈ B.
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3.1 Advancing Borders

There is a naturally intuitive operation on borders; if we have a border B for x,
and we use it to compute the upper cover of x, then we do not need B as such
anymore; to update it, seeing that we no longer need to forbid the membership of
x, it is natural to consider adding x to the border. If we had a proper border, and
we wished to preserve the antichain property, the elements to be removed would
be exactly the upper cover just computed, as these are, as we argue below, the
only elements comparable to x that could be in a proper border. (All elements
other than x are mutually incomparable, as the border was proper to start with.)

Definition 4. Given x ∈ L and a border B for x, the standard step for B and
x is B ∪ {x} − uc(x).

Note that this is not to say that uc(x) ⊆ B; elements of uc(x) may or may
not appear in B. We will apply the standard step always when B is a border
for x, but let us point out that the definition would be also valid without this
constraint, as it consists of just some set-theoretic operations.

Proposition 2. Let B be a proper border for x. Then the standard step for B
and x is also an antichain.

Proof. Elements of the standard step different from x and from all elements of
uc(x) were already in the previous proper border and are, therefore, mutually
incomparable. None of them is below x, by the first border property. If y > x
for some y ∈ B, then y ≥ z � x for some z ∈ B, and the antichain property of
B tells us that y = z so that it gets removed with uc(x). ��

However, we are left with the problem that we have now a candidate border but
we lack the lattice element for which it is intended to be a border. In [14] and [5],
the algorithm moves on to an intent set of the same cardinality as x, whenever
possible, and to as small as possible a larger intent set if all intents of the same
cardinality are exhausted. In [20] it is shown that, for their variant of the Border
algorithm, it suffices to follow a (reversed) linear embedding of the lattice. Here
we follow this more flexible approach, which is easier now that we have stated
the necessary properties of borders with no reference to the order of traversal:
there is no need of considering intent sets and their cardinalities.

Both lattices and their Hasse diagrams can be seen as directed acyclic graphs,
by orienting the inequalities in either direction; here we choose to visualize edges
(x, y) as corresponding to x ≤ y. A linear embedding corresponds to the well-
known operation of topological sort of directed acyclic graphs, which we will
employ for lattices in a “reversed” way:

Definition 5. A reverse topological sort of L is a total ordering x1, . . . , xn of L
such that xi ≤ xj always implies j ≤ i.

All our development could be performed with a standard topological sort, not
reversed, that is, a linear embedding of the lattice’s partial order. However,
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as it is customary in FCA to guide the visualization through the comparison
of extents, the algorithms we build on were developed with a sort of “built-in
reversal” that we inherit through reversing the topological sort (see the similar
discussion in Section 2.1 of [5]). A reversed topological sort must start with �,
hence the initialization is easy:

Proposition 3. B = ∅ is a border for � ∈ L.

Proof. Both conditions in the definition of border become vacuously true: the
first one as B = ∅ and the second one as the top element has no upper covers. ��

Theorem 2. Let x1, . . . , xn be a reverse topological sort of L. Starting with
B1 = ∅, define inductively Bk+1 as the standard step for Bk and xk. Then, for
each k, Bk is a border for xk.

For clarity, we factor off the proof of the following inductive technical fact, where
we use the same notation as in the previous statement.

Lemma 4. Bk ⊆ {x1, . . . , xk−1} and, for all xj with j < k, there is y ∈ Bk

with y ≤ xj.

Proof. For k = 1, the statements are vacuously true. Assume it true for k,
and consider Bk+1 = Bk ∪ {xk} − uc(xk), the standard step for Bk and xk.
The first statement is clearly true. For the second, xk is itself in Bk+1 and, for
the rest, inductively, there is y ∈ Bk with y ≤ xj . We consider two cases; if
y /∈ uc(xk), then the same y remains in Bk+1; otherwise, xk ≺ y ≤ xj , and xk is
the corresponding new y in Bk+1. ��

Proof (of Theorem 2). Again by induction on k; we see that the basis is Propo-
sition 3. Assuming that Bk is a border for xk, we consider Bk+1 = Bk ∪ {xk} −
uc(xk). Applying the lemma, Bk+1 ⊆ {x1, . . . , xk}, which ensures immediately
that ∀y ∈ Bk+1 (y 
≤ xk+1) by the property of the reverse topological sort, and
the first condition of borders follows. For the second, pick any z ∈ uc(xk+1);
by the condition of reverse topological sort, z, being a strictly larger element
than xk+1, must appear earlier than it, so that z = xj with j < k + 1. Then,
again the lemma tells us immediately that there is y ∈ Bk+1 with y ≤ xj = z,
as we need to complete the proof. ��

3.2 The Generalized Border Algorithm

The algorithm we end up validating through our theorems has almost the same
high-level description as the rendering in [5]; the most conspicuous differences
are: first, that a reverse topological sort is used to initialize the traversal of the
lattice; and, second, that the “reversed lattice” model in [5] has the consequence
that their set-theoretic intersection in computing candidates becomes a lattice
join in our generalization. Another minor difference is that Proposition 3 spares
us the separate handling of the first element of the lattice.
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RevTopSort(L);
B = ∅;
H = ∅;
for x in L, according to the sort do

candidates = {x ∨ y
∣∣ y ∈ B};

cover = minimals(candidates);
for z in cover do add (x, z) to H ;
B = B ∪ {x} − cover;

end

Algorithm 1. The Generalized Border Algorithm

Theorem 2 and Proposition 3 tell us that the following invariant is maintained:
B is a border for x. Then, the Hasse edges are computed and added to H
according to Theorem 1, in two steps: first, we prepare the list of joins x∨y and,
then, we keep only the minimal elements in it. In essence, this process is the same
as described (in somewhat different renderings) in [5], [14] or [20]; however, while
the definition of border given in [20] (and recalled in [5]) leads, eventually, to the
same notion employed in this paper, further development of a general algorithm
that works outside the formal concept analysis framework is dropped off from
[20] on efficiency considerations. Moreover, the border algorithm described in
[14] works exclusively on the set of intents and assumes the elements are sorted
sizewise. The validations of the algorithms in these references rely very much,
at some points, on the fact that the lattice is a sublattice of a powerset and
contains formal concepts, explicitly operating set-theoretically on their intents.
Theorem 1 captures the essence of the notion of border and lifts the algorithm
to arbitrary lattices.

One additional difference comes from the fact that the cost of computing
the meet and join operations plays a role in the complexity analysis, but is
not available in the general case. If we assume that meet and join operations
take constant time, then the total running time of the algorithm (except for the
sort initialization, which takes O(|L| log |L|)) is bounded by O(|L|w(L)2). By
comparison with [20], one can see that one factor of the formula given in [20]
gets dropped under the constant time assumption for computing meet and join.
However, this assumption may be unreasonable in certain applications; the same
reference indicates that their FCA target case requires a considerable amount
of graph search for the same operations. Nevertheless, in absence of further
information about the specific lattice at hand, it is not possible to provide a
finer analysis.

We must point out that, in our implementation, we have employed a heapsort-
based version that keeps providing us the next element to handle by means of
an iterator, instead of completing the sorting step for the initialization.

4 Distributivity and the iPred Algorithm

In [5], an extra sophistication is introduced that, as demonstrated both formally
in the complexity analysis of the algorithm and also practically, leads to a faster
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algorithm; namely, if some further information is maintained along, once the
candidates are available there is a constant-time test to pick those that are in
the cover, by employing the duality y ∈ uc(x) ⇔ x ∈ lc(y) ⇔ x ≺ y. Constant
time also suffices to maintain the additional information. This gives the iPred
algorithm. However, it seems that the unavoidable price is to work on formal
concepts, as the extra information is heavily set-theoretic (namely, a union of
set differences of previously found cover sets for the candidate under study).

Again we show that a fully abstract, lattice-theoretic interpretation exists,
and we show that the essential property that allows for the algorithm to work is
distributivity: be it due to a distributive L, or, as in fact happens in iPred, due
to the embedding of the lattice into a distributive lattice, in the same way as
concept lattices (possibly nondistributive) can be embedded in the distributive
powerset lattice.

We start treating the simplest case, of very limited usefulness in itself but good
as stepping stone towards the next theorem. The property where distributivity
can be applied later, if available, is as follows:

Proposition 4. Consider two comparable elements, x < z, from L; let Y ⊆
lc(z) be the set of lower covers of z that show up in the reverse topological sort
before x (it could be empty). Then, x ∈ lc(z) if and only if

∧
y∈Y (x ∨ y) ≥ z.

Proof. Applying Proposition 1, we know that there is some y ∈ lc(z) such that
x ≤ y ≺ z. Any such y, if different from x, must appear before x in the reverse
topological sort.

Suppose first that no lower covers of z appear before x, that is, Y = ∅.
Then, no such y different from x can exist; we have that both x = y ≺ z and∧

y∈Y (x ∨ y) = � ≥ z trivially hold.
In case Y is nonempty, assume first x ≺ z; we can apply Lemma 2: x ∨ y = z

for every y ∈ Y , hence
∧

y∈Y (x∨y) = z. To argue the converse, assume x /∈ lc(z)
and let x ≤ y′ ≺ z as before, where we know further that x 
= y′: then y′ ∈ Y ,
so that

∧
y∈Y (x ∨ y) ≤ (x ∨ y′) = y′ < z. ��

This means that the test for minimality of Algorithm 1 can be replaced by
checking the indicated inequality; but it is unclear that we really save time, as
a number of joins have to be performed (between the current element x and all
the elements in the lower cover of the candidate z that appeared before x in
the reverse topological sort) and the meet of their results computed. However,
clearly, in distributive lattices the test can be rephrased in the following, more
convenient form:

Proposition 5. Assume L distributive. In the same conditions as in the previ-
ous proposition, x is in the lower cover of z if and only if x ∨ (

∧
y∈Y y) ≥ z.

This last version of the test is algorithmically useful: as we keep identifying ele-
ments Y = {y1, . . . , ym} of lc(z), we can maintain the value of y =

∧
i∈{1,...,m} yi;

then, we can test a candidate z by computing x ∨ y and comparing this value
to z. Afterwards, we update y to y ∧ x if x = ym+1 is indeed in the cover. This
may save the loop that tests for minimality at a small price.
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However, unfortunately, if the lattice is not distributive, this faster test may
fail: given Y ⊆ lc(z), the cover elements found so far along the reverse topological
sort, it is always true that x is in the lower cover of z if x∨(

∧
y∈Y y) ≥ z, because

z ≤ x∨(
∧

y∈Y y) ≤
∧

y∈Y (x∨y) and, then, one of the directions of Proposition 4
applies; but the converse does not hold in general. Again an example is furnished
by Figure 1(a), one of the basic, standard examples of a small nondistributive
lattice; assume that the traversal follows the natural ordering of the labels, and
consider what happens after seeing that 1 and 2 are indeed lower covers of z = �.
Upon considering x = 3, we have Y = {1, 2}, so that x∨ (

∧
Y ) = x∨⊥ = x < z,

yet x is a lower cover of z and, in fact,
∧

y∈Y (x ∨ y) = (3 ∨ 1) ∧ (3 ∨ 2) = �.
Hence, the distributivity condition is necessary for the correctness of the faster
test.

4.1 The Generalized iPred Algorithm

The aim of this subsection is to show the main contribution of this paper: we can
spare the loop that tests candidates for minimality in an indirect way, whenever
a distributive lattice is available where we can embed L. However, we must
be careful in how the embedding is performed: the right tool is an injective
homomorphism of join-semilattices. Recall that, often, this will not be a lattice
morphism. Such an example is the identity morphism having as domain the
carrier set of a concept lattice L over the set of attributes X , and as range,
P(X) (see Section 5 for more details on this particular case).

Theorem 3. Let (L′,≤,∨) be a distributive join-semilattice and f : L→ L′ an
injective homomorphism. Consider two comparable elements, x < z, from L; let
Y ⊆ lc(z) be the set of lower covers of z that show up in the reverse topological
sort before x.Then, x ≺ z if and only if f(x) ∨ (

∧
y∈Y f(y)) ≥ f(z).

Proof. If Y = ∅ we have x ≺ z as in Proposition 4; for this case,
∧

y∈Y f(y) = �
(of L′) and f(x) ∨ (

∧
y∈Y f(y)) = f(x) ∨� = � ≥ f(z).

For the case where Y 
= ∅, assume first x ≺ z and apply Proposition 4: we have
that

∧
y∈Y (x ∨ y) ≥ z whence f(

∧
y∈Y (x ∨ y)) ≥ f(z). By Lemma 1, we obtain

f(z) ≤ f(
∧

y∈Y (x∨y)) ≤
∧

y∈Y f(x∨y) =
∧

y∈Y (f(x)∨f(y)) = f(x)∨
∧

y∈Y f(y),
where we have applied that f commutes with join and that L′ is distributive.

For the converse, arguing along the same lines as in Proposition 4, assume
x /∈ lc(z) and let x ≤ y′ ≺ z with x 
= y′ so that y′ ∈ Y : necessarily

∧
y∈Y f(y) ≤

f(y′), so that f(x) ∨ (
∧

y∈Y f(y)) ≤ f(x) ∨ f(y′) = f(x ∨ y′) = f(y′) < f(z),
where the last step makes use of injectiveness. ��

The generalized iPred algorithm is based on this theorem, which proves it correct.
In it, the homomorphism f is assumed available, and table LC keeps, for each
z, the meet of the f(x)’s for all the lower covers x of z seen so far.
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RevTopSort(L);
B = ∅;
H = ∅;
for x in L, according to the sort do

LC[x] = �;
candidates = {x ∨ y

∣∣ y ∈ B};
for z in candidates do

if f(x) ∨ LC[z] ≥ f(z) then
add (x, z) to H ;
LC[z] = LC[z] ∧ f(x);
B = B − {z};

end
end
B = B ∪ {x};

end

Algorithm 2. The Generalized iPred Algorithm

In the Appendix below, we provide some example runs for further clarifica-
tion. Regarding the time complexity, again we lack information about the cost of
meets, joins, and comparisons in both lattices, and also about the cost of com-
puting the homomorphism. Assuming constant time for these operations, the
running time of the generalized iPred algorithm is O(|L|w(L)) (plus sorting):
the main loop (line 4-15) is repeated |L| times, and then for each of the at most
w(L) candidates, the algorithm checks if a certain condition is met (in constant
time) and updates the diagram and the border in the positive case.

If meets and joins do not take constant time, there is little to say at this level
of generality; however, for the particular case of the original iPred, which only
works for lattices of formal concepts, see [5]: in the running time analysis there,
one extra factor appears since the meet operation (corresponding to a set union
plus a closure operation) is not guaranteed to work in constant time.

5 Conclusions and Future Work

We have provided a formal framework for the task of computing Hasse diagrams
of arbitrary lattices through the notion of “border associated with a lattice
element”. Although the concept of border itself is not new, our approach provides
a different, more “axiomatic” point of view that facilitates considerably the
application of this notion to algorithms that construct Hasse diagrams outside
the formal concept analysis world.

While Algorithm 1 is a clear, straightforward generalization of the Border
algorithm of [20,5] (although the correctness proof is far less straightforward),
we consider that we should explain further in what sense the iPred algorithm
comes out as a particular case of Algorithm 2. In fact, the iPred algorithm uses
set-theoretic operations and, therefore, is operating with sets that do not belong
to the closure space: effectively, it has moved out of the concept lattice into the
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(distributive) powerset lattice. Starting from a concept lattice (L,≤,∨,∧) on a
set X of attributes, we can define:

– x ≤ y ⇔ x ⊇ y
– x ∨ y := x ∩ y
– x ∧ y :=

∨
{z ∈ L

∣∣ z ≤ x, z ≤ y} =
⋂
{z ∈ L

∣∣ z ⊇ x, z ⊇ y}
– � := ∅,⊥ := X

Thus, L is a join-subsemilattice of the (reversed) powerset on X , and we can
define f : L → P(X) as the identity function: it is injective, and it is a join-
homomorphism since L, being a concept lattice, is closed under set-theoretic
intersection. Therefore, Theorem 3 can be translated to: x ∈ lc(z) if and only if
x ∩ (

⋃
y∈Y y) ⊆ z, where Y is the set of lower covers of z already found; this is

fully equivalent to the condition behind algorithm iPred of [5] (see Proposition
1 on page 169 in [5]). Additionally, iPred works on one specific topological sort,
where all intents of the same cardinality appear together; our generalization
shows that this is not necessary: any linear embedding suffices.

A further application we have in mind refers to various forms of implica-
tion known as multivalued dependency clauses [17,18]; in [2,3,4], these clauses
are shown to be related to partition lattices in a similar way as implications
are related to concept lattices through the Guigues-Duquenne basis ([8,10]); fur-
ther, certain database dependencies (the degenerate multivalued dependencies of
[17,18]) are related to these clauses in the same way as functional dependencies
correspond to implications. Data Mining algorithms that extract multivalued
dependencies do exist [19] but we believe that alternative ones can be designed
using Hasse diagrams of the corresponding partition lattices or related structures
like split set lattices [2]. The task is not immediate, as functional and degen-
erate multivalued dependencies are of the so-called “equality-generating” sort
but full-fledged multivalued dependencies are of the so-called “tuple-generating”
sort, and their connection to lattices is more sophisticated (see [2]); but we still
hope that further work along this lattice-theoretic approach to Hasse diagrams
would allow us to create a novel application to multivalued dependency mining.

Appendix: Examples

We exemplify here some runs of iPred, for the sake of clarity. First we see how
it operates on the lattice in Figure 1(a), denoted L here, using as f the injective
homomorphism into the distributive lattice of Figure 1(b) provided by the labels.
The run is reported in Table 1, where we can see that we identify the respective
upper covers of each of the lattice elements in turn. The linear order is assumed
to be (�, 1, 2, 3,⊥). Only the last loop has more than one candidate, in fact
three. The snapshots of the values of B, H , and LC reported in each row (except
the initialization) are taken at the end of the corresponding loop, so that each
reported value of B is a border for the next row. In the Hasse edges H , thin
lines represent edges that are yet to be found, and thick lines represent the edges
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Table 1. Example run of the iPred algorithm using the lattices in Figure 1

L B H cand LC[�] LC[1] LC[2] LC[3] LC[⊥]

init ∅
� {�} ∅ �
1 {1} {�} 1 �
2 {1, 2} {�} 4 � �
3 {1, 2, 3} {�} ⊥ � � �
⊥ ∅ {1, 2, 3} ⊥ ⊥ ⊥ ⊥ �

�

1 2

34

⊥

Fig. 2. A distributive lattice

Table 2. Example run of the iPred algorithm on the lattice in Figure 2

L B H cand LC[�] LC[1] LC[2] LC[3] LC[4] LC[⊥]

init ∅
� {�} ∅ �
1 {1} {�} 1 �
2 {1, 2} {�} 4 � �
3 {1, 3} {�, 2} 4 � 3 �
4 {3, 4} {1, 2} 4 4 ⊥ � �
⊥ ∅ {3, 4} 4 ⊥ ⊥ ⊥ ⊥ �

found so far. Recall that the values of LC are actually elements of the distributive
lattice of Figure 1(b), and not from L.

All along the run we can see that LC[z] indeed maintains the meet of the set
of predecessors found so far for f(z) in the distributive embedding lattice; of
course, this meet is � whenever the set is empty.

Let us compare with the run on the distributive lattice in Figure 2, where the
homomorphism f is now the identity. Observe that the only different Hasse edge
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is the one above 3 which now goes to 2 instead of going to �. Again the linear
sort follows the order of the labels.

Due to the similarity among the Hasse diagrams, the run of generalized iPred
on this lattice starts exactly like the one already given, up to the point where
node 3 is being processed. At that point, 2 is candidate and will indeed create
an edge, but 1 leads to candidate 1∨3 = � for which the test fails, as LC[�] = 4
at that point, and 3 ∨ 4 = 2 < �. Hence, this candidate has no effect. After
this, the visits to 4 and ⊥ complete the Hasse diagram with their corresponding
upper covers.
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Abstract. We present an approach that enables one to select a reason-
able small number of possibly important formal concepts from the set of
all formal concepts of a given input data. The problem to select a small
number of concepts appears in applications of formal concept analysis
when the number of all formal concepts of the input data is large. Namely,
a user often asks for a list of “important concepts” in such case. In the
present approach, attributes of the input data are assigned weights from
which values of formal concepts are determined. Formal concepts with
larger values are considered more important. The attribute weights are
supposed to be set by the users. The approach is a continuation of our
previous approaches that utilize background knowledge, i.e. additional
knowledge of a user, to select parts of concept lattices. In addition to the
approach, we present illustrative examples.

1 Introduction

1.1 Problem Description

It is well-known from the applications of formal concept analysis (FCA) that even
a middle-size input data often contains quite a large set of formal concepts. If the
concept lattice, i.e. the hierarchically ordered collection of all formal concepts, is
to be directly presented to a user, the large number of formal concepts presents
a problem. Note in passing that the problem of a large number of patterns is a
general problem faced in many data analysis methods that look for certain types
of patterns in data. Note also that in many situations, the concept lattice is not
directly presented to a user but, instead, is used for further data preprocessing,
in which case the large number of all formal concepts may not be a problem.

1.2 Outline of Our Approach

Quite often, a user naturally considers some formal concepts important (or nat-
ural) and considers other formal concepts not important (or not natural). There-
fore, it is reasonable to present to the user only those formal concepts considered
by him as important. Alternatively, importance of formal concepts may be con-
sidered as a graded phenomenon—some concepts are more important than other
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concepts which themselves are more important than other ones, etc. The basic
hypothesis behind our approach is that user’s judgment regarding importance
of formal concepts is based on his background knowledge. A background knowl-
edge is a knowledge regarding the objects and attributes that is different from
the one represented by the input formal context, namely it is supplementary to
the knowledge given by the formal context.

This idea was investigated in some previous papers of the first author, see
e.g. [2,3,4]. In particular, [2,4] explores the case when the background knowledge
concerns importance of attributes. This type of information is then reflected in
the user’s assessment of importance of formal concepts of the formal context. As
an example, consider a formal context in which objects are certain organisms
and attributes are some of their features. Suppose that among the attributes are
“warm-blooded” and “red” (referring to the color of organisms). The attribute
concepts generated by these attributes, i.e. the formal concepts that can verbally
be described as warm-blooded organisms and red organisms, are (in non-trivial
cases) two different formal concepts which have the same status, namely, both
are elements of the concept lattice presented to a user. However, from an expert
user point of view, warm-blooded organisms is certainly more important than red
organisms. Note that a different but the same type of example, which occured
in experiments with FCA of fossils, led to the idea of background knowledge
investigated in [2,4] and that [1] provides an application of FCA with this type
of background knoweldge to fossil data.

In [2,4], a background knowledge concerning importance of attributes is repre-
sented by a set of formulas, called attribute-dependency formulas (AD formulas).
An example of such a formula is:

red � warm-blooded � cold-blooded.

A formal concept is then considered important if it satisfies the following con-
dition: if red belongs to the intent then either warm-blooded or cold-blooded
belongs to the intent of the concept. Therefore, the attribute concept “red
organisms” (whose intent presumably does contain neither warm-blooded nor
cold-blooded) is not considered important. This way, a background knowledge
represented by a set of AD formulas may rule out unimportant formal concepts.

Modeling a background knowledge regarding importance of attributes by AD
formulas may be considered a relationally based approach. One may, however,
consider also a numerical approach based on assigning weights to attributes.
This possibility is explored in the present paper.

Assigning weights to attributes is popular in various methods of data analysis
because of its appeal and seeming simplicity: A user assigns weights which are
further processed in a way that accordingly treats attributes with higher weights
as more important. On the other hand, weights entail a non-trivial problem.
Namely, how to assign them? If attribute y1 is more important than y2, what
values w(y1) and w(y2) shall be assigned to y1 and y2? Clearly, we want w(y1) >
w(y2) but what is the appropriate relationship of w(y1) to w(y1)? Should w(y1) =
cw(y2) or w(y1) = w(y2) + c? The problem at the core of these questions is
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that in order for the method to be reasonable for a user, the values of weights
and the way weights are processed need to have a clear meaning. This is an
important moral from the measurement theory [13]. It is exactly these problems
why in our previous work, we resorted to relationally based approach and to AD
formulas. However, the appeal of weights and their widespread use throughout
data analysis motivate us to investigate them within FCA.

In the framework using weights, attribute “warm-blooded” is to be assigned a
large weight, because it is an important one, while “red” is to be assigned a small
weight, because it is not very important (from a particular user point of view).
Doing so, formal concept “red organisms” is to be considered not important
because it is generated by an attribute with a low weight (low importance). This
is the essence of the approach presented in this paper.

1.3 Related Work

Formal concept analysis offers various methods to deal with large concept lat-
tices. The best known are perhaps the nested line diagrams [10] which represent
a kind of a folding/unfolding to present a large concept lattice to a user. A
different possibility to handle large concept lattices is to use the various decom-
position constructions described in [10]. However, computational properties of
these decompositions have, by and large, not yet been investigated. The idea
of using background knowledge to reduce the number of patterns presented to
a user appears in several forms in data mining [5]. In FCA, a type of back-
ground knowledge has been studied in [9] for the for the purpose of attribute
exploration. Both the type of the background knowledge and the aims in [9] are
different from those which are discussed in our paper. Related to the presented
approach are the approaches presented in [2,3,4,7,8,12,14], some of which are
discussed elsewhere in this paper. The difference of the presented approach from
these approaches is the use of attribute weights which is explored in the present
approach.

1.4 Preliminaries and Notation

We assume that the reader is familiar with basic notions of formal concept anal-
ysis [10]. A formal context is denoted by 〈X, Y, I〉. Formal concepts of 〈X, Y, I〉
are denoted by 〈A, B〉. A pair 〈A, B〉 consisting of A ⊆ X and B ⊆ Y is called
a formal concept if and only if A↑ = B and B↓ = A where

A↑ = {y ∈ Y | for each x ∈ X : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ Y : 〈x, y〉 ∈ I}

are the set of all attributes common to all objects from A and the set of all objects
having all the attributes from B, respectively. The set of all formal concepts
of 〈X, Y, I〉 is denoted by B(X, Y, I). B(X, Y, I) equipped with a subconcept-
superconcept partial order ≤ is the concept lattice of 〈X, Y, I〉.
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2 Weights to Select Important Formal Concepts

In the approach described in this section, attributes are assigned weights from
a partially ordered set W of weights. Every formal concept is then assigned a
value from a partially ordered set V of values. The values are computed from
the weights of the attributes present in the intent of the formal concept. This
induces an ordering of formal concepts by values. A threshold may in the end
determine a set of “important” formal concepts, i.e. those having at least the
threshold value.

2.1 Weights of Attributes

We assume that the weights to be assigned to attributes form a partially ordered
set 〈W,≤〉 (weights are elements w ∈ W ). A popular case used in various methods
of data analysis as well as in our paper is 〈W,≤〉 = 〈R,≤〉 (weights are reals).
Given a formal context 〈X, Y, I〉 and a partially ordered set 〈W,≤〉 of weights,
we assume that a user assigns weights from W to attributes from Y , i.e. that a
user specifies a function

w : Y → W.

The weights are supposed to be set according to expert knowledge. The rule of
thumb is that the more important the attribute, the larger the weight assigned to
it. However, as is mentioned in Section 1.2, without any further considerations,
setting the weights may turn to be an ad hoc process of which the user may easily
lose control. Some considerations along this line are presented in Section 4.1.

As an example, consider the formal context in Table 1. Table 2 shows an
assignment of weights to the attributes reflecting an expert opinion that genus
is the most important, habitat is second, and the other attributes are equally
important and are of low importance compared to genus and habitat.

Table 1. Formal context of felines

genus habitat size fur color
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Cheetah × × × × × ×
Cougar × × × ×
Jaguar × × × × × ×

Lion × × × ×
Panther × × × × × ×

Serval × × × × × × ×
Tiger × × × × × ×

Wildcat × × × × × × × × × × ×
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Table 2. Assignment of weights to attributes

genus habitat size fur color
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weight 100 100 100 100 10 10 10 10 1 1 1 1 1 1 1 1 1

2.2 Values of Formal Concepts

As is mentioned above, we want to assign values from a partially ordered set
〈V,≤〉 to formal concepts. (In examples we use W = V = R in this paper; in
general, however, weights are of different type than values.) A value of a formal
concept 〈A, B〉 is to be determined by the weights w(y) of attributes y ∈ B by
a suitable aggregation function

A :
∞⋃

k=1

W k → V.

We assume that the restrictions A(k) : W k → V of A to W k satisfy the following
conditions:

A(k) is isotone for each k, (1)
A(k)(0W , . . . , 0W ) = 0V and A(k)(1W , . . . , 1W ) = 1V for each k, (2)
A(1)(w) = A(2)(w, w) = · · · = A(k)(w, . . . , w) = · · · (3)

The conditions in (2) are assumed whenever 0W , 1W , 0V , and 1V exist (the
least and greatest elements of W and V , respectively). These requirements are
in accordance with [11].

An aggregation function A enables us to assign a value to a formal concept
〈A, B〉. Informally, 〈A, B〉 is considered important if it is determined by a set D
attributes for which the A-aggregation of their weights results in a high value.
However, which set D of attributes is to be taken for 〈A, B〉 is not immediate.
One can take D = B, i.e. the intent of 〈A, B〉. Alternatively, one can take D to be
a generator of 〈A, B〉 with a high value. Yet another option is to consider minimal
generators of 〈A, B〉 as candidates for D. Before considering these options, let
for a set D = {yi1 , . . . , yik

} ⊆ Y of attributes put

v(D) = A(w(yi1 ), . . . , w(yik
)).

v(D) is called the value of D. In most cases, A(w(yi1 ), . . . , w(yik
)) does not

depend on the order of the arguments and v(D) is thus defined correctly. In the
possible other cases, one needs to define v(D) in an appropriate way. v(∅) may
be defined to be 0V or may be handled ad hoc because of the specificity of ∅.
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As an example, the following functions are aggregation functions:

A(w1, . . . , wk) = min(w1, . . . , wk),

A(w1, . . . , wk) =
w1 + · · ·+ wk

k
,

A(w1, . . . , wk) = max(w1, . . . , wk).

Let us first consider the option D = B, i.e. computing the value of 〈A, B〉 using
the weights of all attributes of the intent B by

vInt(A, B) = v(B).

This approach suffers the following drawback. Suppose B = {y1, y2} where y1
and y2 are attributes with a high and low weight (such as y1 being “warm-
blooded” and y2 being “red”) and suppose that B = {y1}↓↑. This situation may
be interpreted as follows. The “core” of the formal concept consists of y1 (so
the formal concept would naturally be termed “warm-blooded organisms”) but
since (in our particular formal context) every warm-blooded organism is red,
the intent B contains “red” as an accompanying attribute of low importance. In
determining the value of formal concepts, e.g. by A being the arithmetic mean,
the accompanying attributes lower the value of a formal concept and should be
disregarded (in our case, vInt(A, B) = w(y1)+w(y2)

2 while an intuitively reasonable
way is to take v(A, B) = w(y1)).

Therefore, taking generators instead appears to be a reasonable choice. Recall
that for a formal concept 〈A, B〉 ∈ B(X, Y, I), the sets of generators and minimal
generators of 〈A, B〉 are defined by

gen(A, B) = {D ⊆ Y |D↓↑ = B},
mgen(A, B) = {D ∈ gen(A, B) |E↓↑ ⊂ B for every E ⊂ D},

respectively. Generators and minimal generators make it possible to define the
following two kinds of value:

vgen(A, B) = max{v(D) |D ∈ gen(A, B)},
vmgen(A, B) = max{v(D) |D ∈ mgen(A, B)}.

Clearly,
vgen(A, B) ≥ vmgen(A, B) and vgen(A, B) ≥ vInt(A, B).

An argument similar to the one we used to show a possible deficiency of vInt might
suggest that vgen is more appropriate than vmgen (this is seen on the concept
with intent consisting of G Pan and S Lar in Table 3, which is an important one
given the weights, but vmgen gives a very small value 1). However, we keep both
vgen and vmgen as reasonable choices.

2.3 Selecting Formal Concepts

A choice of an aggregation function A (min, arithmetic mean, max, etc.) and
a function v (vgen, vmgen, or vInt if the above drawback does not play a role)
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determine an ordering of formal concepts from B(X, Y, I) according to the values
from V (a total order if 〈V,≤〉 is totally ordered).

A given value θ ∈ V (threshold value, selected by a user beforehand or after
he sees the values of formal concepts) determines the part

Bθ(X, Y, I) = {〈A, B〉 ∈ B(X, Y, I) | v(A, B) ≥ θ}

of the whole concept lattice consisting of formal concepts whose value is at least
θ. Bθ(X, Y, I) may be seen as the set of important formal concepts.

Depending on the aggregation function A and the value-assignment function
v, Bθ(X, Y, I) may form a substructure of B(X, Y, I). For example, for v = vInt,
if A = min, Bθ(X, Y, I) with the largest formal concept forms a

∨
-sublattice

of B(X, Y, I); if A = max, Bθ(X, Y, I) forms a
∧

-sublattice of B(X, Y, I). An
investigation of this type of questions is beyond the scope of this paper.

2.4 Comparing Weights to AD Formulas

Consider now the connection of the presented approach to the approach based
on AD formulas [2,4]. We show that these two approaches have a different power
w.r.t. selecting important concepts. In a sense, this is not surprising because
the rationale behind the two approaches are different. Concrete examples are
presented in Section 3.

Recall that an AD formula over a set Y of attributes is an expression A � B,
where A, B ⊆ Y . A � B is true in M ⊆ Y if whenever A ∩ M 
= ∅, then
B ∩M 
= ∅; A � B is true in a formal concept 〈C, D〉 if it is true in D (see
Section 1.2 for an example). Given a set T of AD formulas over Y and a formal
context 〈X, Y, I〉, the concept lattice constrained by T is denoted by BT (X, Y, I)
and consists of formal concepts of 〈X, Y, I〉 in which all AD formulas from T are
true, i.e.

BT (X, Y, I) = {〈C, D〉 ∈ B(X, Y, I) | each A � B ∈ T is true in 〈C, D〉}.

The following proposition shows that constraints by weights are not repre-
sentable by constraints by AD formulas.

Proposition 1. For 〈W,≤〉 = 〈V,≤〉 = 〈R,≤〉, A being the arithmetic mean,
and v being any of vInt, vgen, or vmgen, there exists a formal context 〈X, Y, I〉
and a threshold θ such that no set T of AD formulas satisfies Bθ(X, Y, I) =
BT (X, Y, I).

Proof. Sketch: Consider the following formal context:

I y1 y2 y3

x1 × × ×
x2 × ×
x3 × ×
x4 × ×
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Let w(y1) = 10, w(y2) = 1, w(y3) = 1, and θ = 5. One may easily verify that
among the formal concepts in B(X, Y, I) are {y1, y2}, {y1, y3}, and {y1, y2, y3}.
Moreover, for v being any of vInt, vgen, or vmgen, we have v({y1, y2}) = 5.5,
v({y1, y3}) = 5.5, and v({y1, y2, y3}) = 4. Thus, Bθ(X, Y, I) contains 〈{y1, y2}↓,
{y1, y2}〉 and 〈{y1, y3}↓, {y1, y3}〉, but does not contain 〈{y1, y2, y3}↓, {y1, y2, y3}〉.
Now for any T , the system of sets M ⊆ Y in which all formulas from T is an
interior system [4]. Therefore, it follows that if 〈C1, D1〉, 〈C2, D2〉 ∈ BT (X, Y, I)
and if D1 ∪D2 is an intent, then 〈(D1 ∪D2)↓, D1 ∪D2〉 ∈ BT (X, Y, I). Hence, if
Bθ(X, Y, I) = BT (X, Y, I) then since 〈{y1, y2}↓, {y1, y2}〉, 〈{y1, y3}↓, {y1, y3}〉 ∈
BT (X, Y, I), we must have 〈{x1}, {y1, y2, y3}〉 ∈ BT (X, Y, I), a contradiction to
〈{x1}, {y1, y2, y3}〉 
∈ Bθ(X, Y, I). �

The next proposition shows that constraints by AD formulas are not repre-
sentable by constraints by weights.

Proposition 2. There exists a set T of AD formulas and a formal context
〈X, Y, I〉 such that no totally ordered 〈W,≤〉, totally ordered 〈V,≤〉, A, v being
any of vInt, vgen, or vmgen, and θ satisfy BT (X, Y, I) = Bθ(X, Y, I).

Proof. Sketch: Let T = {{y1} � {y2}, {y2} � {y1}} and consider the “non-
equality” formal context 〈Y, Y, 
=〉 (i.e., 〈x, y〉 ∈ I means x 
= y for x, y ∈ Y ).
Then, every subset of Y is an intent. Both formulas from T are true in {y1, y2},
{y1} � {y2} is not true in {y1}, and {y2} � {y1} is not true in {y2}. Therefore,
BT (X, Y, I) contains the corresponding formal concept 〈. . . , {y1, y2}〉, but does
contain neither 〈. . . , {y1}〉 nor 〈. . . , {y2}〉. Suppose BT (X, Y, I) = Bθ(X, Y, I).
Because {y1}, {y2}, and {y1, y2} are the only generators of the correspond-
ing formal concepts, we have v(〈. . . , {y1, y2}〉) = v({y1, y2}) = A(w(y1), w(y2)),
v(〈. . . , {y1}〉) = A(w(y1)), and v(〈. . . , {y2}〉) = A(w(y2)). Now, BT (X, Y, I) =
Bθ(X, Y, I) implies that A(w(y1), w(y2)) ≥ θ, A(w(y1)) < θ, and A(w(y2)) < θ.
This yields a contradiction because, as is easily seen, A(w(y1), w(y2)) must lie
between A(w(y1)) and A(w(y2)). �

3 Illustrative Examples and Experiments

First experiment. Consider the formal context in Table 1 . The corresponding
concept lattice contains 35 formal concepts and is depicted in Fig. 1. The con-
cept lattice uses the usual labeling [10]. To save space, we use abbreviations of
attribute names for labeling, e.g. G Pan for “genus Panthera”, H Af for “habi-
tat Africa”, and the like. As one can see, the concept lattice contains intuitively
important formal concepts such as the attribute concept of G Pan (felines of
genus Panthera). However, it also contains formal concepts such as the attribute
concept of C yell (felines with yellow color) which may be regarded as not im-
portant because a reasonable classification of felines is not likely to be based on
color (color is intuitively an attribute of secondary importance). On the other
hand, attribute C yell may be part of a subconcept of an important concept,
such as the formal concept whose intent consists of G Pan and C yell (felines of
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Fig. 1. Concept lattice of formal context from Table 1

Fig. 2. Formal concepts of the concept lattice from Fig. 1 with vgen ≥ 50 (black nodes)
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Table 3. Values of formal concepts of the concept lattice from Fig. 1 corresponding to
the weights from Table 2

attributes of intent vInt vgen vmgen

G Pan 100.00 100.00 100.00
G Fel H Af H Am H As H Eu S sm F str F spo
C bl C san C yell

13.27 100.00 100.00

all attributes 26.41 100.00 100.00
G Lep H Af S sm F str F spo C san C yell 16.43 100.00 100.00
G Ac H Af S med F str F spo C yell 19.00 100.00 100.00
G Pan H As C yell 37.00 55.00 55.00
G Pan H Af 55.00 55.00 55.00
G Pan H Am S lar 37.00 55.00 55.00
G Pan F spo C yell 34.00 50.50 50.50
G Pan S lar 50.50 50.50 1.00
G Pan C yell 50.50 50.50 50.50
G Pan S lar C san 34.00 50.50 50.50
G Pan H As S lar F str C whi C yell 19.00 50.50 50.50
G Pan H Am S lar F spo C bl C yell 19.00 50.50 50.50
G Pan H Af H As S med F spo C yell 20.50 50.50 50.50
G Pan H Am S lar C san 28.00 37.00 37.00
G Pan H Af S lar C san 28.00 37.00 37.00
G Pan S lar C yell 34.00 34.00 1.00
H As C yell 5.50 10.00 10.00
H Af H As F spo C yell 5.50 10.00 10.00
H Af 10.00 10.00 10.00
H Am 10.00 10.00 10.00
H Af F str F spo C yell 3.25 5.50 5.50
H Af C san 5.50 5.50 5.50
H Am C san 5.50 5.50 5.50
H Af S sm F str F spo C san C yell 2.50 5.50 1.00
H Af F spo C yell 4.00 5.50 5.50
H As F str C yell 4.00 5.50 5.50
H Am F spo C bl C yell 3.25 5.50 5.50
H Af S med F spo C yell 3.25 5.50 1.00
F spo C yell 1.00 1.00 1.00
C san 1.00 1.00 1.00
F str C yell 1.00 1.00 1.00
C yell 1.00 1.00 1.00

genus Panthera that are yellow). This subconcept may be regarded as important
because it helps us structure an important concept (felines of genus Panthera).

Setting the attribute weights according to Table 2, we obtain the values of
formal concepts, vInt, vgen, and vmgen, as depicted in Table 3. The formal con-
cepts are ranked according to vgen. Fig. 2 shows all formal concepts with vgen
greater than or equal to θ = 50 (those are represented by black nodes), i.e.
shows Bθ(X, Y, I). The value corresponding to vgen provides a reasonable as-
sessment of importance of formal concepts. Both vInt and vmgen may be seen as
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Table 4. Second assignment of weights to attributes

genus habitat size fur color
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weight 10 10 10 10 100 100 100 100 1 1 1 1 1 1 1 1 1

Table 5. Values of formal concepts of the concept lattice from Fig. 1 corresponding to
the weights from Table 4

attributes of intent vInt vgen vmgen

G Fel H Af H Am H As H Eu S sm F str F spo
C bl C san C yell

37.82 100.00 100.00

H As C yell 50.50 100.00 100.00
H Af H As F spo C yell 50.50 100.00 100.00
H Af 100.00 100.00 100.00
H Am 100.00 100.00 100.00
all attributes 26.41 82.00 70.00
G Pan H Af H As S med F spo C yell 35.50 70.00 70.00
G Pan H As C yell 37.00 55.00 55.00
G Pan H Af 55.00 55.00 55.00
G Lep H Af S sm F str F spo C san C yell 16.43 55.00 10.00
G Ac H Af S med F str F spo C yell 19.00 55.00 10.00
G Pan H Am S lar 37.00 55.00 55.00

not appropriate in this example. Namely, as is mentioned above, vInt takes into
account weights of all attributes of an intent rather than those weights only that
belong to an important “core” of the concept. Hence, the second formal concept
in Table 3 is assigned value 13.27 by vInt while it is assigned value 100 by both
vgen and vmgen because the “core” that determines the value is {G Fel} in both
cases. The tenth formal concept shows that vmgen may not be appropriate either,
because a minimal generator may consist of attributes with low weights (such
as S lar in this case) while there may exist a non-minimal generator with large
weights. Tables 4 and 5 show a different setting of weights and the corresponding
concepts ranked by vgen. Due to lack of space, we include only formal concepts
with vgen ≥ 55.

Second experiment. Table 6 contains a formal context for our second ex-
periment. The data consists of 26 belemnite species (objects) and 24 rostrum
characteristics (attributes). Due to lack of space, we omit the other 14 charac-
teristics that are used in [1] and provide a smaller data for illustration. Note
that in [1], important formal concepts were selected from the 26 × 38 data by
means of AD formulas in an experiment involving an expert paleontologist.
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Table 6. Formal context of belemnites

Size Flatt Alveola Cross
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a b c d e f g h i j k l m n o p q r s t u v w x

Actinocamax × × × × × ×
P. primus × × × × × × × × × × × × ×
P. plenus × × × × × × × × × × × ×

P. plenus cf. st. × × × × × × ×
P. triangulus × × × × × × × × ×

P. aff triangulus × × × × × ×
P. sozhensis × × × × × × × × ×

P. contractus × × × × × × × × ×
P. planus × × × × × × ×

P. coronatus × × × × × ×
P. matesovae × × × × × ×

P. medwedicicus × × × × × × ×
P. sp. 1 × × × × × × × ×
P. sp. 2 × × × × × × ×

P. strehlensis × × × × × × × × ×
P. bohemicus × × × × × × × × ×

P. aff. bohemicus × × × × × × × ×
P. cobbani × × × × × × × × ×

P. manitobensis × × × × × × × × × ×
P. cf. manitob. × × × × × ×

P. sternbergi × × × × × × × ×
P. walkeri × × × × × × × × ×

G. intermedius × × × × × × × × ×
G. surensis × × × × × × × × ×

G. christenseni × × × × × × ×
G. lundgreni × × × × × × ×
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Table 7. Assignment of weights to attributes

a b c d e f g h i j k l m n o p q r s t u v w x

weight 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 100 100 100 1 1 1 1

Table 7 shows an assignment of weights to the attributes that is based on an
assessment of attribute importance provided by the expert [1]. Table 8 contains
the corresponding formal concepts with vgen > 50. The last column indicates
by ∗ that a formal concept with the same set of attributes from a–x was listed
among the important concepts explicitly described by the expert paleontologist
in [1]. Since we include only 24 most important attributes in our experiment, the
experiment and comparison to [1] needs to be redone with all the 36 belemnite
attributes and needs to involve the expert paleontologist. Such experiment is left
for an extended version of this paper.

4 Further Issues and Conclusions

4.1 How To Set Weights?

As is mentioned above, a practical problem in setting the weights is that while a
user usually has an idea about whether a particular attribute y1 is more impor-
tant than another one, say y2, it might be difficult for the user to decide which
weights to assign to the attributes and to justify the decision. The question is
in fact the question of meaning of the weights. In some situations, the weights
may be given, e.g. as “prices” of the attributes. In general, however, answers to
this question need to be connected to the way weights are utilized. Taking into
account the utilization of weights described above, one may reason as follows.

It is often the case that a user naturally partitions the attributes into groups
in such a way that attributes in every particular group are considered equally
important. Let the set Y of attributes be partitioned into disjoint sets Y1, . . . , Yk,
i.e. {Y1, . . . , Yk} be a partition of Y = {y1, . . . , yn}. Let Yi = {yi1, . . . , yini}. That
is, n = n1 + · · ·+ nk. The experiments in Section 3 provide examples.

Suppose that attributes from Yi are considered more important than those
from Yi+1 for i = 1, . . . , k − 1. An appealing way to consider importance of
formal concepts is the following (consider k = 3). The most important formal
concepts are those with a determining set D (i.e. a generator, minimal generator,
or intent) of attributes that contains no other attributes than those from Y1
(at least one but possibly more). The second most important are those with
D that contains at least one attribute from Y1, at least one from Y2, but no
other attribute. The “signatures” of these types of concepts are 100 and 110.
The importance of concepts may then be assessed according to the following
ordering of signatures:

100 > 110 > 111 > 101 > 010 > 011 > 001 and one my add > 000. (4)

Now, such ordering (or a different one, representing a different user preferences
regarding importance of formal concepts) induces inequalities involving weights.
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Table 8. Values of formal concepts of belemnites with v > 50 to the weights from
Table 7

attributes of intent vInt vgen vmgen [1]
c q 55.00 100.00 100.00
a f p r s 46.00 100.00 100.00
c d e f l p s t v 29.00 100.00 100.00 *
p t 55.00 100.00 100.00
p s 55.00 100.00 100.00
p r 55.00 100.00 100.00
a b f k l p r s v w 26.20 70.00 70.00 *
a f p r s u 38.50 67.00 67.00
c d i n q x 23.50 55.00 55.00 *
b k p r 32.50 55.00 55.00
b f l o p t u 21.57 55.00 37.00 *
b c e k p r u 21.57 55.00 55.00
e l p t 32.50 55.00 55.00
b c e k l p t 22.86 55.00 55.00
b g p t 32.50 55.00 55.00
a b c e k l p q u 19.00 55.00 55.00 *
b g m p t u 23.50 55.00 55.00 *
a b c d e f g j k l p r u 16.23 55.00 55.00 *
b e j p r u 23.50 55.00 10.00 *
c l p t 32.50 55.00 55.00
b l p s 32.50 55.00 55.00
l p s 40.00 55.00 55.00
b l p r 32.50 55.00 55.00
f p s 40.00 55.00 55.00
b e p r u 26.20 55.00 55.00
f p r 40.00 55.00 55.00
f l p t 32.50 55.00 55.00
e l p s 32.50 55.00 55.00
b p t 40.00 55.00 55.00 *
d l p t v 26.20 55.00 55.00
b p r 40.00 55.00 55.00
b f g l p r 25.00 55.00 55.00
a l p t 32.50 55.00 55.00
b f g l m p r v w 18.00 55.00 55.00 *
l p t 40.00 55.00 55.00
a f p r 32.50 55.00 55.00
f l p s v 26.20 50.50 50.50
b p t u 30.25 50.50 50.50
b p r v 30.25 50.50 50.50 *
p s u 37.00 50.50 50.50
p r u 37.00 50.50 50.50
l p t v 30.25 50.50 50.50
a b c e k l p t w 19.00 50.50 50.50 *
b f l p r v w 20.29 50.50 50.50
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Consider 110 > 101 and two formal concepts with determining sets D1 and D2
with signatures 110 and 101. Let wi be the weight assigned to all attributes from
Yi. The worst case for which still v(D1) > v(D2) is when D1 contains 1 atrribute
from Y1 and all n2 attributes from Y2, while D2 contains n1 attributes from Y1
and 1 attribute from Y3. This leads to inequality

v(D1) =
w1 + n2w2

n2 + 1
>

n1w1 + w3

n1 + 1
= v(D2).

When setting the weights, such inequalities need to be taken into account. A
further investigation of this line of thought is left for future research.

4.2 Future Research

The following list contains problems for future research:

– A further investigation of relational vs. numeric approaches to represent
importance of attributes. Section 2.4 and Section 4.1 may be thought as
first steps in this direction.

– Efficient computation. We did not consider the problem of computing effi-
ciently the values of formal concepts. Even though some general approaches
may be envisioned, such computations are likely to depend on the particular
aggregation and value-assignment functions. Particularly important com-
putational problems are the following: Given a value θ, compute the set
Bθ(X, Y, I) of all formal concepts with value at least θ. Given a number k,
compute the top k formal concepts in the list of all formal concepts ordered
by their values v(A, B).

– Expressive power of selecting formal concepts using weights. Which types of
subsets Bθ(X, Y, I) may be selected from B(X, Y, I)?
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Abstract. We examine the enumeration problem for essential closed
sets of a formal context. Essential closed sets are sets that can be writ-
ten as the closure of a pseudo-intent. The results for enumeration of
essential closed sets are similar to existing results for pseudo-intents, al-
beit some differences exist. For example, while it is possible to compute
the lectically first pseudo-intent in polynomial time, we show that it is
not possible to compute the lectically first essential closed set in poly-
nomial time unless P = NP. This also proves that essential closed sets
cannot be enumerated in the lectic order with polynomial delay unless
P = NP. We also look at minimal essential closed sets and show that
they cannot be enumerated in output polynomial time unless P = NP.

1 Introduction

The analysis of dependencies between attributes, so-called implications, is an
important area of research within Formal Concept Analysis (FCA). Already in
[7] it has been shown how a complete set of implications with minimal cardi-
nality can be obtained from a formal context. This set is now commonly known
as the Duquenne-Guigues-Base of a context. Since its discovery many results
and algorithms in FCA, such as Attribute Exploration, have made use of the
Duquenne-Guigues-Base.

Not surprisingly, a lot of effort has been directed at finding efficient algorithms
to compute it. One of the earliest, and probably most well-known algorithms is
Next-Closure-Algorithm [5]. It produces all concept intents and all pseudo-intents
of a given formal context in a lexicographic order (called the lectic order). During
the last decade, newer algorithms have been developed [9,11].

It is known that the Duquenne-Guigues base cannot be computed in poly-
nomial time in the size of the input, since the base itself can be exponentially
large in the size of the input [8]. This leaves the question whether it can be
enumerated in output-polynomial time. Until now, no output-polynomial algo-
rithm has been found, and it is also not known whether such an algorithm exists.
Recently, a lot of progress has been made with respect to this question. It has
been shown that the implications from the Duquenne-Guigues Base cannot be
enumerated in output-polynomial time unless the transversal hypergraph prob-
lem (cf. [4]) is in P [12,13]. In [2] a connection between the boolean satisfiabil-
ity problem (SAT) and enumeration problems from FCA has been established.
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In particular, it has been shown using a reduction from SAT that the Duquenne-
Guigues-Base cannot be enumerated with polynomial delay in the lectic order
unless P = NP. A reduction from SAT has also been used in [1] to show that
the problem of verifying whether a given set of attributes is a pseudo-intent, i. e.
whether it occurs as the left-hand side of an implication in the Duquenne-Guigues
Base, is coNP-complete. In the same paper it is also shown that pseudo-intents
cannot be enumerated in the reverse lectical order with polynomial delay. Other
works related to enumeration algorithms for pseudo-intents include [6] where op-
timizations based on hidden dependencies within the Duquenne-Guigues Base
are considered. In [10] it is shown that the problem of counting pseudo-intents
is #P-hard.

Previous work has mainly considered the pseudo-intents, i. e. the left-hand
sides of the implications. In this paper we look at the right-hand sides, which
are commonly called essential closed sets. In [1] it is shown that verifying whether
a given set of attributes of a context is a pseudo-intent is as hard as verifying
whether it is an essential closed set, i. e. it is coNP-complete. Unfortunately, a
similar connection cannot be easily obtained for the decision problems considered
in [2]. We therefore present yet another reduction from SAT which yields several
complexity results about essential closed sets. Most of these results are similar
to the ones for pseudo-intents. The main part of this paper is a reduction from
SAT which proves that the problem of verifying whether a given set of attributes
contains an essential closed set is NP-complete (Section 3). In Section 4 several
other results are obtained using the same reduction. In particular, it is shown
that the lectically first essential closed set cannot be computed in polynomial
time unless P = NP, that essential closed sets cannot be enumerated in the
lectic order with polynomial delay unless P = NP, and that minimal essential
closed sets cannot be enumerated in output polynomial time unless P = NP.

2 Preliminaries

A formal context is a tuple (G, M, I) where G and M are finite sets and I ⊆
G×M is a binary relation. The elements of G are called objects and elements of
M are called attributes. For a set of objects A ⊆ G its derivation A′ is defined
as

A′ = {m ∈M | ∀g ∈ A : gIm}.

Analogously, for a set B ⊆ M its derivation B′ is defined as

B′ = {g ∈ G | ∀m ∈ B : gIm}.

Applying the two derivation operators successively yields the closure operators
·′′. Whenever we speak of a closed set in this work, we mean a set of attributes
B ⊆ M that is closed with respect to ·′′, i. e. that satisfies B′′ = B. Sets of
attributes that can be written as {g}′ for some g ∈ G are called object intents.
The following result is common knowledge in FCA.
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Proposition 1. A set of attributes B ⊆ M is closed if and only if it can be
written as an intersection of object intents, i. e. there is a set A ⊆ G such that

B =
⋂
g∈A

{g}′.

A relevant research area in FCA are dependencies between sets of attributes.
The simplest form of such a dependency is an implication A → B, A, B ⊆ M .
A set of attributes D ⊆ M respects A → B if A 
⊆ D or B ⊆ D. A → B holds
in the context (G, M, I) if all object intents respect A → B.

Let L be a set of implications. We say that A → B follows semantically from
L if and only if each subset D ⊆ M that respects all implications from L also
respects A → B. L is an implicational base for (G, M, I) if it is

– sound, i. e. all implications from L hold in (G, M, I), and
– complete, i. e. all implications that hold in (G, M, I) follow from L.

In [7] a minimum cardinality base, which is called the Duquenne-Guigues-Base,
has been introduced. The left-hand sides of the implications in the Duquenne-
Guigues-Base are called pseudo-intents. P ⊆ M is a pseudo-intent of K if P is
not closed and Q′′ ⊆ P holds for every pseudo-intent Q that is a proper subset
of P . The Duquenne-Guigues-Base consists of all implications P → P ′′, where
P is a pseudo-intent. A set R ⊆ M is an essential closed set (of K) if there is
a pseudo-intent P of K satisfying P ′′ = Q. Hence, the essential closed sets of a
context are exactly those sets that occur as the right-hand side of an implication
in the Duquenne-Guigues-Base. The following result is also common knowledge
from FCA.

Proposition 2. Let K be a formal context and let Q ⊆ M be a set of attributes.
If Q is not closed then Q contains a pseudo-intent of K.

The most well-known algorithm for computing the Duquenne-Guigues-Base is
Next-Closure. It computes the set of all closed sets and all pseudo-intents of a
context K in a special order, called the lectic order. Let < be a total order on
the elements of M . Then we say that A ⊆M is lectically smaller than B ⊆ M if
the smallest element with respect to < that distinguishes A and B is contained
in B. Formally, we write

A < B :⇔ ∃x ∈ B \A : ∀y < x : (y ∈ A ⇔ y ∈ B).

Notice that the lectic order extends the subset order, i. e. A � B implies A < B.

3 Main Reduction

In this section we prove that the following auxiliary problem is NP-hard. All
other results will be based on this reduction and can be found in Section 4.

Problem 1 (Essential Closed Subset (ECS)). Input: A formal context K =
(G, M, I) and a set B ⊆M .
Question: Does an essential closed set Q ⊆ B of K exist?
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We prove NP-hardness using a reduction from SAT.

Problem 2 (SAT). Input: A boolean CNF-formula f(p1, . . . , pn) = C1∧· · ·∧Cm,
where Ci = (xi1 ∨ · · · ∨ xili ) and xij ∈ {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} for all
i ∈ {1, . . . , m} and all j ∈ {1, . . . , li}.
Question: Is f satisfiable?

SAT remains NP-complete if we impose the additional condition that for every
literal l ∈ {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} there is a clause Ci in which l does not
occur (otherwise we could simply add a new variable pn+1 and a new clause
Cm+1 = (pn+1) without changing satisfiability of the formula).

Let an instance of SAT, i. e. a formula f(p1, . . . , pn) = C1 ∧ · · · ∧ Cm, where
Ci = (xi1∨· · ·∨xili ) and xij ∈ {p1, . . . , pn}∪{¬p1, . . . ,¬pn} for all i ∈ {1, . . . , m}
and all j ∈ {1, . . . , li}, be given. We construct an instance of ECS. We define

M = {α1, . . . , αn} ∪ {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β} (1)

For every r ∈ {1, . . . , n} we define sets Tr and Fr.

Tr = M \ {¬pr, αr}
Fr = M \ {pr, αr}

(2)

Finally, for every i ∈ {1, . . . , m} we define a set

Ai = M \ {β}
\ {pr | r ∈ {1, . . . , n}, the positive literal pr occurs in Ci}
\ {¬pr | r ∈ {1, . . . , n}, the negative literal ¬pr occurs in Ci}
\ {αr | r ∈ {1, . . . , n}, pr or ¬pr occurs in Ci}

(3)

We construct a context Kf = (G, M, I) whose attribute set M is defined as in
(1), whose set of objects is

G = {gA1, . . . , gAm} ∪ {gT1, . . . , gTn} ∪ {gF1 , . . . , gFn} ∪ {gQ1 , . . . , gQn},

and whose incidence relation I is such that

{gAi}′ = Ai, {gTr}′ = Tr, {gFr}′ = Fr, {gQr}′ = {αr, pr,¬pr}

for all r ∈ {1, . . . , n} and all i ∈ {1, . . . , m}. This context is shown in Table 1.
Our eventual objective is to reduce SAT to ECS by proving that f is satisfi-

able if and only if there exists a subset of

B = M \ {α1, . . . , αn}

that is an essential closed set of Kf . We need several technical results.
Let φ : {p1, . . . , pn} → {true, false} be an assignment that assigns truth

values to all variables. There is a natural correspondence between φ and a set of
attributes Sφ. We define

Sφ := {pr | φ(pr) = true} ∪ {¬pr | φ(pr) = false}. (4)

The following result motivates our choice of the object intents {gAi}′ = Ai,
i ∈ {1, . . . , m}.
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Table 1. Context Kf

α1 . . . αn p1 . . . pn ¬p1 . . . ¬pn β

gA1 · · · A1 · · ·
...

...
gAm · · · Am · · ·
gT1 · · · T1 · · ·
...

...
gTn · · · Tn · · ·
gF1 · · · F1 · · ·
...

...
gFn · · · Fn · · ·
gQ1 × × ×
...

. . .
. . .

. . .
gQn × × ×

Lemma 1. Let φ be an assignment of truth values. Then φ makes f true if and
only if Sφ 
⊆ Ai holds for all i ∈ {1, . . . , m}.

Proof. Since f is in conjunctive normal form, φ makes f true if and only if φ
makes every clause Ci, i ∈ {1, . . . , m}, of f true. For every i ∈ {1, . . . , m} the
assignment φ makes the clause Ci true if and only if one of the literals in Ci

evaluates to true, i. e.

– there is some pr satisfying φ(pr) = true, where the positive literal pr occurs
in Ci, or

– there is some pr satisfying φ(pr) = false, where the negative literal ¬pr

occurs in Ci.

According to (3) and (4) this is equivalent to saying that

– there is some pr ∈ Sφ, where pr /∈ Ai, or
– there is some ¬pr ∈ Sφ, where ¬pr /∈ Ai.

This is equivalent to Sφ 
⊆ Ai. Thus we have shown that φ makes f true if and
only if Sφ 
⊆ Ai holds for all i ∈ {1, . . . , m}.

The following proposition follows immediately from (2) and (4).

Proposition 3. Let φ be an assignment of truth values and X ⊆ Sφ a set of
attributes. Then

X ∪ {β} =
⋂

¬pr /∈X

Tr ∩
⋂

pr /∈X

Fr (5)

holds. Since for all r ∈ {1, . . . , n} the sets Tr and Fr are object intents this
proves that X ∪ {β} is closed.
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Proposition 4. Let φ be an assignment of truth values and X ⊆ Sφ a set of
attributes. X is closed if and only if there is some i ∈ {1, . . . , m} such that
X ⊆ Ai holds.

Proof. (⇐) We already know from Proposition 3 that X ∪ {β} =
⋂

¬pr /∈X Tr ∩⋂
pr /∈X Fr holds for X . Since X ⊆ Ai and β /∈ Ai it follows that

X = Ai ∩
(
X ∪ {β}

)
= Ai ∩

⋂
¬pr /∈X

Tr ∩
⋂

pr /∈X

Fr.

Since Tr and Fr , r ∈ {1, . . . , n}, and Ai are object intents Proposition 1 proves
that X ∪ {β} is closed.

(⇒) The case where X = ∅ is trivial. Let X = {l} be a singleton set. We have
required that for every literal there is a clause in which it does not occur. Hence,
there is a clause Ci in which l does not occur, and therefore X = {l} ⊆ Ai holds.
The case where X contains at least two elements remains. Since X ⊆ Sφ holds, X
cannot contain {pr,¬pr} or {αr} for any r ∈ {1, . . . , n}. We obtain that if X has
at least two elements then it cannot be a subset of {αr, pr,¬pr} = {gQr}′ for any
r ∈ {1, . . . , n}. Assume that X 
⊆ Ai = {gAi}′ holds for all i ∈ {1, . . . , m}. Then
the only object intents that contain X are of the form {gTr}′ or {gFr}′. All object
intents of the form {gTr}′ or {gFr}′ contain β, which yields β ∈ X ′′. Because
β /∈ Sφ ⊇ X this is a contradiction to the fact that X is closed. Therefore, the
assumption that X 
⊆ Ai holds for all i ∈ {1, . . . , m} must be false, i. e. there
must be some i ∈ {1, . . . , m} satisfying X ⊆ Ai.

Lemma 2. For every r ∈ {1, . . . , n} it holds that

{αr}′′ = {pr,¬pr}′′ = {αr, pr,¬pr}.

Proof. We have defined Kf in such a way that every object intent that con-
tains {pr,¬pr} also contains {αr}. Conversely, every object intent that con-
tains {αr} also contains {pr,¬pr}. This proves {αr, pr,¬pr} ⊆ {pr,¬pr}′′ and
{αr, pr,¬pr} ⊆ {αr}′′. On the other hand, we know that {αr, pr,¬pr} = {gQr}′
is closed since it is an object intent. This yields {αr, pr,¬pr} = {pr,¬pr}′′ =
{αr}′′.

Theorem 1. Define B = {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β}. There is an es-
sential closed set Q ⊆ B if and only if f is satisfiable.

Proof. (⇒) Assume that Q contains both pr and ¬pr for some r ∈ {1, . . . , n}.
Lemma 2 yields αr ∈ Q′′. This contradicts the fact that Q is a closed subset
of B. Therefore, the assumption that Q contains both pr and ¬pr for some
r ∈ {1, . . . , n} must be false. Thus, Q must be a subset of Sφ ∪ {β} for some
assignment φ. Since Q is an essential closed set there must be a pseudo-intent
P ⊆ Q ⊆ Sφ ∪ {β}. If P contains β then Proposition 3 yields that P is closed.
This contradicts the fact that P is a pseudo-intent. Hence, P cannot contain
β, i. e. P ⊆ Sφ holds. Since P is a pseudo-intent and therefore not closed we
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obtain from Proposition 4 that there is no i ∈ {1, . . . , m} such that P ⊆ Ai.
P ⊆ Sφ yields that there is no i ∈ {1, . . . , m} such that Sφ ⊆ Ai. It follows from
Lemma 1 that φ makes f true.

(⇐) Let φ be an assignment that makes f true. Lemma 1 implies Sφ 
⊆ Ai for
all i ∈ {1, . . . , m}. Proposition 4 shows that Sφ is not closed. Let X be minimal
among all subsets of Sφ that are not closed. Then in particular all subsets of X
are closed. Since X is not closed, but all of its subsets are closed, X must be a
pseudo-intent of Kf . Proposition 3 states that X ∪ {β} is closed, and therefore
X ′′ = X ∪ {β} holds. This shows that X ∪ {β} is an essential closed set. Since
X ∪ {β} is also a subset of B this proves the initial claim.

Corollary 1. ECS is NP-hard.

Proof. Every boolean formula f can be converted into an instance of ECS,
namely the context Kf and the set B = {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β},
in polynomial time. Theorem 1 states that f is a “Yes”-instance of SAT if and
only if Kf and B are a “Yes”-instance of ECS.

We have thus shown that the problem of deciding whether a given set of at-
tributes B in a context K contains an essential closed set, is NP-hard. Surpris-
ingly, the problem becomes easier if we require B to be closed. If all subsets of B
are closed then B cannot contain a pseudo-intent, and thus it does not contain
an essential closed set. On the other hand, if B contains a set S that is not
closed, then there must be a pseudo-intent P ⊆ S because of Proposition 2. We
obtain P ′′ ⊆ S′′ ⊆ B′′ = B. Therefore B contains the essential closed set P ′′.
This proves that checking whether a closed set B contains an essential closed set
is equivalent to checking whether all subsets of B are closed. It is well known
that the latter can be done in polynomial time.

4 Further Results

Let K = (G, M, I) be a formal context. We call a set Q is a minimal essential
closed set (of K) if Q is minimal with respect to set inclusion among all essential
closed sets of K. It is known from [1] that the problem of deciding whether a
given set of attributes is an essential closed set is coNP-hard. We first show
that the problem becomes easier for minimal essential closed sets: it is possible
to decide in polynomial time whether a given set is a minimal essential closed
set. This result is required for later proofs.

Proposition 5. Q is a minimal essential closed set if and only if

– Q is closed, and
– not every subset of Q is closed, and
– every closed set R � Q satisfies

∀S ⊆ R : S′′ = S. (6)
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Proof. (⇒) As an essential closed set, Q is obviously closed. As an essential
closed set, Q must contain a pseudo-intent P1, which is not closed. Hence, not
all subsets of Q are closed. Assume that there is a strict subset R � Q that is
closed and a set S ⊆ R that is not closed. By Proposition 2 S contains a pseudo-
intent P2 ⊆ S ⊆ R. Since R is closed it follows that P ′′

2 ⊆ R � Q. Hence, P ′′
2 is

an essential closed set and a strict subset of Q, which contradicts minimality of
Q. Thus the assumption that such a set S exists must be false.

(⇐) Since not all subsets of Q are closed there must be a pseudo-intent P ⊆ Q
by Proposition 2. Since Q is closed we obtain P ′′ ⊆ Q. P ′′ cannot be a strict
subset of Q, because otherwise (6) would imply that P is closed. Therefore,
P ′′ = Q holds, and thus Q is an essential closed set. No strict subset of Q can
be an essential closed set because of (6). Thus Q is a minimal essential closed
set.

Notice that in order to decide whether a given set Q satisfies (6) for all closed
sets R � Q it suffices to check whether (6) holds for all sets R that are maximal
with respect to set inclusion among the closed strict subsets of Q. If Q is itself
closed then these are of the form Q∩ {g}′, where g ∈ G and Q 
⊆ {g}′. Hence, it
suffices to check (6) for at most |G| strict subsets of Q. It has been established
in previous works [2] that one can decide in polynomial time whether all subsets
of a given set of attributes are closed. Hence, all conditions from Propostion 5
can be tested in polynomial time.

Corollary 2. Let K be a formal context and Q ⊆ M a set of attributes. It is
possible to decide in time polynomial in the size of the context K and the size of
Q whether Q is a minimal essential closed set.

This gives us the containment result corresponding to the hardness result from
Corollary 1. Clearly, for a formal context K = (G, M, I) and a set B ⊆ M there
is an essential closed set Q ⊆ B if and only if there is a minimal essential closed
set R ⊆ B. In order to decide in non-deterministic polynomial time whether B
contains an essential closed set we can non-deterministically guess a subset of B
and decide using Corollary 2 whether it is a minimal essential closed set. This
proves that ECS is contained in NP. Together with the previous hardness result
we obtain NP-completeness.

Theorem 2. ECS is NP-complete.

We want to take a closer look at the enumeration problem for essential closed
sets. But first we consider the following decision problem.

Problem 3 (Lectically Smaller Essential Closed Set (LS-ECS)). Input: A formal
context K = (G, M, I) and a set B ⊆ M .
Question: Is there an essential closed set Q of K which is lectically smaller that
B?



Some Complexity Results about Essential Closed Sets 89

Theorem 3. LS-ECS is NP-complete.

Proof. Containment: Since the lectic order extends the subset order there is
an essential closed set that is lectically smaller than B if and only if there is a
minimal essential closed set that is lectically smaller than B. This can be verified
by non-deterministically guessing a subset of B and checking in polynomial time
whether it is a minimal essential closed set.

Hardness: Given an instance f of SAT we can construct an instance of LS-
ECS consisting of the context Kf and the set B = {p1, . . . , pn}∪{¬p1, . . . ,¬pn}∪
{β} using the same reduction as in Section 3. We define the order on the set of
attributes as follows

α1 < · · · < αn < p1 < · · · < pn < ¬p1 < · · · < ¬pn < β.

Then the sets that are lectically smaller than B are exactly the subsets of B.
The correctness of the reduction therefore follows from Theorem 1.

This result has consequences for the problem of enumeration of essential closed
sets in the lectic order. If it were possible to compute the lectically first essential
closed set of a context K in polynomial time then we could decide LS-ECS
in polynomial time as follows. We would simply compute the lectically first
essential closed set of K and check whether it is lectically smaller than B. Because
of Theorem 3 it is not possible to decide LS-ECS in polynomial time unless
P = NP.

Corollary 3. Let K be a formal context. It is not possible to compute the lecti-
cally first essential closed set of K in polynomial time unless P = NP.

In this respect, the computational behaviour of essential closed sets is worse than
that of pseudo-intents, since the lectically first pseudo-intent can be computed
in polynomial time [3]. Because not even the lectically first essential closed set
can be computed in polynomial time it is obviously not possible to enumerate
essential closed sets in the lectic order with polynomial delay.

Corollary 4. It is not possible to enumerate essential closed sets in the lectic
order with polynomial delay.

Finally, we consider the problem of enumeration of minimal essential closed sets.

Problem 4 (All Minimal Essential Closed Sets (All-MECS)). Input: A formal
context K = (G, M, I) and sets Q1, . . . , Qk ⊆ M .
Question: Are Q1, . . . , Qk all minimal essential closed sets of K?

Lemma 3. Let f be a boolean CNF-formula and Kf the formal context con-
structed as in Section 3. Then Q1 = {α1, p1,¬p1}, . . . , Qn = {αn, pn,¬pn} are
all the minimal essential closed sets of Kf if and only if there is no essential
closed set Q ⊆ B = {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β}.
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Proof. (⇒) Assume that there is an essential closed set Q ⊆ B. Then Q contains
a minimal essential closed set R. For all r ∈ {1, . . . , n} since B does not contain
αr the set R cannot contain αr, either. Thus R 
= Qr holds for all r ∈ {1, . . . , n},
which contradicts the fact that Q1, . . . , Qn are all the minimal essential closed
sets of K. Hence, the assumption must be false, i. e. an essential closed set Q ⊆ B
cannot exist.

(⇒) By Lemma 2 every closed set that contains αr for some r ∈ {1, . . . , n}
must also contain {pr,¬pr}. Therefore, Qr = {αr, pr,¬pr} is the only minimal
essential closed set of Kf that contains αr. Thus, every essential closed set that
is different from Q1, . . . , Qn must be a subset of B. The hypothesis states that
such a set does not exist. Hence, Q1, . . . , Qn are all the minimal essential closed
sets of K.

Theorem 4. All-MECS is coNP-complete.

Proof. To prove hardness using a reduction from SAT from a given formula f
we construct a context Kf as in Section 3 and sets Q1, . . . , Qn as in Lemma 3.
Lemma 3 and Theorem 1 show that Q1, . . . , Qn are all the minimal essential
closed sets of K if and only if f is not satisfiable. This proves that All-MECS
is coNP-hard. Containment can be shown using Corollary 2: Given an instance
of All-MECS consisting of a context K = (G, M, I) and sets Q1, . . . , Qn we
can verify in polynomial time using Corollary 2 that all sets Q1, . . . , Qn are
minimal essential closed sets. Subsequently, we non-deterministically guess a set
S ⊆ M and check in polynomial time whether it is a minimal essential closed
set that is different from Q1, . . . , Qn.

If there were an algorithm A that enumerates the minimal essential closed sets
of a context in output polynomial time, then we could construct an algorithm
A′ that decides All-MECS as follows: Since A can enumerate the minimal
essential closed sets of a context K in output polynomial time there must be a
polynomial p(k, n) that serves as an upper bound for the runtime of A, where k
is the size of the input context K and n is the number of minimal essential closed
sets of K. To decide All-MECS for a context K and sets Q1, . . . , Qn we let A
run on K and stop it after time p(|K|, n). Then we compare its output (if any) to
Q1, . . . , Qn. Q1, . . . , Qn are not all the minimal essential closed sets of K iff the
outputs differ or A does not terminate within p(|K|, n) steps. Since All-MECS
cannot be decided in polynomial time unless P = NP such an algorithm cannot
exist unless P = NP.

Corollary 5. Minimal essential closed sets cannot be enumerated in output
polynomial time unless P = NP.

5 Conclusion

Using a new reduction from SAT we have shown several complexity results
about essential closed sets. Most of these results closely resemble those for
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pseudo-intents. Essential closed sets cannot be enumerated in the lectic order
with polynomial delay unless P = NP, and minimal essential closed sets cannot
be enumerated in output polynomial time unless P = NP. The same holds for
pseudo-intents [2].

Essential closed sets differ from pseudo-intents computationally with respect
to the following problems. For an arbitrary set of attributes it is NP-hard to
verify whether it contains an essential closed set. By contrast, it is easy to check
whether a given set of attributes contains a pseudo-intent, because this simply
means checking for closedness. It is impossible to compute the lectically first
essential closed set unless P = NP. The lectically first pseudo-intent can be
computed in polynomial time [3].

These results are, of course, only a minor contribution to the question whether
the Duquenne-Guigues Base can be enumerated efficiently. This important ques-
tion remains open and should be part of future work.
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Abstract. In universal algebra and in lattice theory the notion of vari-
eties is very prominent, since varieties describe the classes of all algebras
(or of all lattices) modeling a given set of equations. While a comprehen-
sive translation of that notion to a similar notion of varieties of complete
lattices – and thus to Formal Concept Analysis – has not yet been accom-
plished, some characterizations of the doubly founded complete lattices
of some special varieties (e.g. the variety of modular or that of distribu-
tive lattices) have been discovered. In this paper we use the well-known
arrow relations to give a characterization of the formal contexts of dou-
bly founded concept lattices in the variety that is generated by M3 – the
smallest modular, non-distributive lattice variety.

Keywords: variety, arrow-relations, modularity, projectivity, M3, sub-
direct product.

1 Introduction

In lattice theory and more generally in universal algebra, varieties play a very
important role. Given a set Σ of equations, the class of all algebras that model
these equations (i. e. each of these equations holds in all these algebras) is denoted
by Mod(Σ) and called a variety. Since generated by equations, in literature
varieties are often called equational classes (e. g. in [5]). Although some of the
results we discuss are true for all kinds of universal algebras, for the purpose of
this paper it will suffice to speak only of lattice varieties. For a class of lattices
K the set of all equations that hold for each lattice in K is denoted by Eq(K)
and the class

Var(K) := Mod(Eq(K))

is called the variety generated by K. This is justified, since Mod and Eq form
a Galois connection and thus Mod(Eq(K)) is the smallest variety containing K.

P. Valtchev and R. Jäschke (Eds.): ICFCA 2011, LNAI 6628, pp. 93–106, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.kde.cs.uni-kassel.de


94 S. Doerfel

One can see that constructing varieties is a means to find related lattices to a
set of given ones. I. e. K �→ Var(K) is a closure operator yielding all lattices
sharing all the properties that the lattices in K have in common. An important
property of each variety is that it is closed under the formation of homomor-
phisms, sublattices and products. Moreover, varieties can be generated using
these constructs via

Mod(Eq(K)) = HSP(K).

This fact is known as the HSP-Theorem. In this notion H, S and P are the clo-
sure operators that assign to a class of lattices its closure w.r.t. homomorphisms,
sublattices and products. For details see e. g. [1] or [8].

Although many notions from lattice theory have been successfully adapted
to the theory of complete lattices (which are no universal algebras), to the best
of our knowledge the notion of varieties has not. It is easy to see that one can
define operators Modc and Eqc similar to the corresponding ones above only
for complete lattices and polynomial complete (infinite) lattice equations (for a
detailed explanation see [9], Section 2). Modc and Eqc form a Galois connection
and satisfy

Modc(Eqc(K)) ⊆ Mod(Eq(K)) = Var(K)

for a class of complete lattices K. However, it is difficult to investigate these
structures in general. One of the main problems is the non-existence of free
complete lattices (free algebras play a key role in the study of varieties) – shown
in [9], Section 3 (especially Theorem 1) – not even in the smallest non-trivial
lattice variety (cf. [7]). Another problem arises while translating results from
complete lattice theory to the context level. One often has to restrict the results
to doubly founded lattices – in our case to the doubly founded complete members
of a lattice variety. It should be noted, however, that each non-trivial lattice
variety contains complete lattices that are not doubly founded.

For the variety of all modular lattices (in [4] or rephrased in [6], Theorem 42)
and for the variety of all distributive lattices (in [3], Theorem 7.9, or rephrased
in [6], Theorem 41) such context-based characterizations of the doubly founded
complete members have been achieved. Both of these characterizations can be
expressed using the arrow relations. Although these two varieties are probably
the most interesting ones (due to the fact that the modular and the distributive
law are the most important identities in lattice theory), also other varieties are

0

1

0

x y z

1

D2 M3

Fig. 1. Diagrams of the lattices D2 and M3
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prominent, especially those in the lower part of the lattice of all lattice varieties
(see Section 2). In this paper we focus on the variety generated by the lattice M3
(see Figure 1), which is the smallest modular, non-distributive lattice variety.

The main result of this paper is the following theorem that characterizes the
contexts of doubly founded members of the variety M3 := Var({M3}) by the
number of arrows in each row and each column of the context table.

Theorem 1. For a clarified context (G, M, I) of a modular, doubly founded con-
cept lattice the following conditions are equivalent:

1. B(G, M, I) ∈M3.
2. ∀g ∈ G : |{m ∈ M | g↗↙ m}| ≤ 2.
3. ∀m ∈M : |{g ∈ G | g↗↙ m}| ≤ 2.

The remainder of this paper is dedicated to the proof of that result. We therefore
first recall several facts and definitions of Formal Concept Analysis and about
modularity in the next section. Section 3 explains some useful facts about the
lattice of modular varieties and about the position of M3 in that lattice. Section 4
contains the first part of the proof i. e. 1=⇒2 and 1=⇒3. In Section 5 we recall
some results concerning projective lattices which will be applied in the last part
of the proof of Theorem 1 presented in Section 6.

2 Arrows and Modularity

Since our characterization is performed by counting arrows in a context, this
section begins with some facts about the arrow relations. Details can be found
in [6], Chapter 1.2. The relations are defined by:

g ↙ m : ⇐⇒ (g, m) /∈ I and if g′ ⊆ h′ and g′ 
= h′, then (h, m) ∈ I

g ↗ m : ⇐⇒ (g, m) /∈ I and if m′ ⊆ n′ and m′ 
= n′, then (g, n) ∈ I

g↗↙ m : ⇐⇒ g ↙ m and g ↗ m

where g is an object and m is an attribute of some context K = (G, M, I). The
next Lemma presents a useful characterization of these relations. As usual, γg =
({g}′′, {g}′) denotes the object concept of an object g and μm = ({m}′, {m}′′)
the attribute concept of an attribute m. Further, we make use of the ∗ notation:

(A, B)∗ := sup{(C, D) ∈ B(K) | (C, D) < (A, B)} and
(A, B)∗ := inf{(C, D) ∈ B(K) | (C, D) > (A, B)}.

Lemma 1. In (G, M, I) hold for each object g ∈ G and each attribute m ∈ M

g ↙ m ⇐⇒ γg ∧ μm = (γg)∗ 
= γg and
g ↗ m ⇐⇒ γg ∨ μm = (μm)∗ 
= μm.

The object g is irreducible, if and only if (γg)∗ 
= γg. The attribute m is
irreducible, if and only if (μm)∗ 
= μm.
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In Theorem 1 we require the concept lattices to be modular i. e. to satisfy the
modular law. That is for a lattice L:

∀x, y, z ∈ L : x ≥ z =⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z.

In order to express the requirements of Theorem 1 completely on the context
level it could be rephrased using the following characterization of modularity for
a doubly founded concept lattice B(G, M, I) (cf. [6], Theorem 42):

– From g ↙ m, g ↙ n, hIm and h �I� n follows that an attribute p exists with
h �I� p, gIp and m′ ∩ n′ ⊆ p′, and

– from g ↗ m, h ↗ m, gIn and h �I� n follows that an object q exists with
q �I� n, qIm and g′ ∩ h′ ⊆ q′.

In the next sections we will exploit two properties of modular lattices. The first
is a well-known fact about the intervals and often referred to as the Isomorphism
Theorem of modular lattices (cf. [8], Chapter IV.1, Theorem 2).

Theorem 2. Let L be a modular lattice and let a, b ∈ L. Then

φb : [a, a ∨ b] → [a ∧ b, b], x �→ x ∧ b

is an isomorphism between the two intervals. The inverse isomorphism is

ψa : [a ∧ b, b] → [a, a ∨ b], y �→ y ∨ a.

The other property concerns the arrows in contexts of modular lattices. A similar
result for reduced contexts is stated in [6], Chapter 6.2.

Lemma 2. In a context (G, M, I) of a modular concept lattice from g ↗ m or
g ↙ m always follows g↗↙ m for any irreducible object g ∈ G and any irreducible
attribute m ∈ M.

Proof. Let g ↙ m. By Lemma 1 we have γg ∧ μm = (γg)∗ 
= γg. According
to the Isomorphism Theorem the intervals [γg ∧ μm, γg] and [μm, μm ∨ γg] are
isomorphic. Thus, the neighborhood relation of (γg)∗ and γg implies that μm∨γg
is an upper neighbor of μm. Since μm is infimum-irreducible, it can only have
one upper neigbor. We obtain μm 
= μm∨γg = (μm)∗ and by Lemma 1 g ↗ m.
The second implication follows dually.

Apart from being modular we require the lattices we characterize to be doubly
founded. A complete lattice L is called doubly founded, if for any two elements
x, y ∈ L there always are elements s, t ∈ L with s being minimal w.r.t. s ≤ y and
s � x and t being maximal w.r.t. t ≥ x and t � y (cf. [6], Definition 26). Note
that for example every finite lattice is a doubly founded complete lattice. It is
also possible to define doubly founded contexts. In fact, the context of a doubly
founded lattice is always doubly founded. The definition can be found in [6], but
the details are not important in this paper. In the proof of Theorem 1 we will
employ the following lemma about products of doubly founded lattices.
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Lemma 3. A product of doubly founded lattices it doubly founded itself.

Proof. Let I be an index set, Li (i ∈ I) be doubly founded complete lattices and
L =

∏
i∈I Li. Further, let x = (xi | i ∈ I) and y = (yi | i ∈ I) be two arbitrary

elements of L satisfying x < y. From the latter follows that there exists an index
j ∈ I such that xj < yj holds. Then, there is an element s̄j ∈ Lj minimal
w.r.t. s̄j ≤ yj and s̄j � xj . We set s := (si | i ∈ I) with sj = s̄j and si = 0
for i 
= j. This yields s ≤ y and s � x, since clearly sj � xj . Now, for any
element t = (ti | i ∈ I) ∈ L that is smaller than s we have tj < s̄j and ti = 0
for j 
= i. But due to the construction of sj from tj < s̄j follows tj ≤ xj and
altogether t ≤ x. Therefore, s has the claimed minimality property. Dually, one
can construct a maximal element t ∈ V with t ≥ x and t � y.

3 Varieties of Modular Lattices

The intersection of a set of varieties is again a variety and thus varieties form
a lattice (ordered by inclusion). The modular varieties form a sublattice of the
lattice of all varieties. The largest member of the lattice of modular varieties
is of course the variety of all modular lattices. Trivially, the smallest variety in
that lattice consists of all lattices with only one element (we do not count empty
varieties here). The only upper neighbor of that variety is the distributive lattice
variety, i. e. Var({D2}). Var({D2}) again has only one (modular) upper neighbor
– the variety M3. A nice visualization of this situation is given by Figure 1 in [8],
Chapter V.2. The next two results are both from Jónsson (cf. [11], Theorem 1
and Corollary 9). The first gives insight into varieties of modular lattices (such
as M3), while the second one describes the upper neighbors of M3 in the lattice
of all modular lattice varieties.

Theorem 3. For any variety V of modular lattices the following conditions are
equivalent:

1. M3,3 /∈ V.
2. Every member of V is isomorphic to a subdirect product of lattices of length

two or less.
3. The inclusion a ∧ (b ∨ (c ∧ d) ∧ (c ∨ d)) ≤ b ∨ (a ∧ c) ∨ (a ∧ d) holds in V.

Corollary 1. In the lattice of all varieties of modular lattices, M3 is covered by
precisely two classes, M4 := Var({M4}) and M3,3 := Var({M3,3}), and every
class that properly contains M3 contains also M4 or M3,3.

The diagrams of the lattices in the corollary are depicted in Figure 2. The fol-
lowing theorem is again a result from Jónsson (cf. [10], Corollary 3.4). It allows
for a description of the members of the variety M3 as certain subdirect products.
We will make use of this in Proposition 1.
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Fig. 2. Diagrams of the lattices M̄3,3, M3,3 and M4

Theorem 4. If K is a finite set of finite algebras and if the lattice of all congru-
ence relations over each algebra A ∈ Var(K) is distributive, then every subdirectly
irreducible member of Var(K) belongs to HS(K), and hence

Var(K) = IPSHS(K).

The operator PS is the closure operator w.r.t. subdirect products and I is the
closure operator w.r.t. isomorphic lattices. It is well known that the lattice of
all congruence relations over any lattice is distributive (e. g. cf. [8], Chapter II.3,
Theorem 11). From the above theorem therefore follows that every member of
M3 is isomorphic to a subdirect product of lattices in HS({M3}). Since further
(according to Birkhoff’s Theorem cf. [1], Chapter VIII.8, Theorem 15) each lat-
tice is isomorphic to the subdirect product of subdirectly irreducible lattices, it
is sufficient to consider only the subdirectly irreducible lattices in HS({M3}),
i. e. the lattices isomorphic to D2 or to M3 and lattices with only one element.
However, the latter are not relevant for the construction of subdirect products
that themselves have more than one element. We infer the following proposition.

Proposition 1. Each lattice L ∈ M3 that has more than one element is iso-
morphic to a subdirect product of factors isomorphic to D2 or to M3.

Diagrams of the two lattices D2 and M3 are shown in Figure 1. We are now
ready to prove the first part of the claimed characterization.
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4 Characterization Part I

Proposition 2. If (G, M, I) is a clarified context of a complete lattice in the
variety M3, then for every object g ∈ G there are at most two distinct attributes
m, n ∈M , such that g↗↙ m and g↗↙ n hold. Dually, for every attribute m ∈M
there are at most two distinct objects g, h ∈ G, such that g ↗↙ m and h ↗↙ m
hold.

Proof. Let L be the concept lattice of the context (G, M, I). We will prove the
first part of the proposition indirectly and assume that there are three pairwise
distinct attributes m, n, p ∈ M with g ↗↙ m, g ↗↙ n and g ↗↙ p for some object
g ∈ G.

The set X := {μm, μn, μp, γg} of concepts of L generates a sublattice S in L.
Because varieties are closed under the formation of sublattices, it follows from
L ∈M3 that S is also a member of M3. Therefore, by Proposition 1 there exist
lattices Lt (for some fitting index set T ) with Lt being isomorphic to either D2
or to M3 for each t ∈ T – such that S is isomorphic to a subdirect product of the
lattices Lt. For the sake of convenience we will assume that each of the factors
is not only isomorphic but equal to either D2 or to M3 with the elements named
0, 1 and 0, x, y, z, 1 like in the diagrams in Figure 1.

We will now use this representation as subdirect product to produce a con-
tradiction to our assumption by eliminating all possible combinations of such
factors Lt. For each t ∈ T let πt : S → Lt, s �→ πts =: st denote the corre-
sponding projection homomorphism. Thus, each element s ∈ S is determined
by the tuple (st)t∈T . We can assume that there are no redundant factors in the
subdirect product. That means that for any two indexes t1, t2 ∈ T there does
not exist an isomorphism φ : Lt1 → Lt2 with (φ ◦ πt1)s = πt2s for all s ∈ S. A
consequence of this assumption is that T is finite (simply because there are only
finitely many distinct mappings from X to D2 or M3).

Since we are discussing a subdirect product, the projections πt : S → Lt

(t ∈ T ) have to be onto. This means that the image of the set X under πt must
generate Lt. For Lt = M3 we infer πt[X ] ⊇ {x, y, z}, for Lt = D2 this means
πt[X ] = {0, 1}.

From the assumption g↗↙ m and from Lemma 1 we obtain:

(γg)∗ = μm ∧ γg.

The analogue holds for n and p. By applying the projection πt we get:

((γg)∗)t = (μm)t ∧ (γg)t = (μn)t ∧ (γg)t = (μp)t ∧ (γg)t. (1)

For the case Lt = M3 this equation can only hold if the element 1 ∈ Lt is not
contained in πt[X ]. For the case Lt = D2 this means

(γg)t = 1 =⇒ (μm)t = (μn)t = (μp)t = 0.

Table 1 presents all possibilities of assigning elements of M3 or D2 to the mem-
bers of X by any projection πt such that all the above conditions are met. By



100 S. Doerfel

Table 1. The possible candidates for projections πt given by their image of μm, μn, μp
and γg

t Vt (μm)t (μn)t (μp)t (γg)t

1 x x y z
2 x y x z
3 y x x z
4 M3 0 x y z
5 x 0 y z
6 x y 0 z
7 x y z 0
8 1 1 1 0
9 1 1 0 0
10 1 0 1 0
11 D2 1 0 0 0
12 0 1 1 0
13 0 1 0 0
14 0 0 1 0
15 0 0 0 1

permutation of the elements x, y, z ∈ M3 one could get further projections –
however, they would yield redundant factors and are therefore not listed in the
table.

The index set T must now be chosen as a subset of {1, . . . , 15} and in the last
part of the proof we show that for none of these choices S is a subdirect product
of the lattices Lt. Obviously, the smallest element in S is

(0)t∈T = μm ∧ μn ∧ μp ∧ γg.

By Equation 1 this yields (0)t∈T = (γg)∗. Since γg is an upper neighbor of (γg)∗
in S (Lemma 1), there must be at least one index t ∈ T such that (γg)t 
= 0.
Thus, T contains at least one of the indexes 1 through 6 or 15. For each such
t we derive a contradiction. Let a and b be two of the attributes in {m, n, p}.
According to Lemma 1, g↗↙ a yields μa 
= (μa)∗ = μa∨γg ∈ S. Since (μa)∗ is the
only upper neighbor of μa in L and thus also in S, it follows from μa ∨ μb ≥ μa
that

∀a, b ∈ {m, n, p} : μa ∨ μb = μa or μa ∨ μb ≥ μa ∨ γg. (2)

If t is one of the indexes 1, 2, 3 or 15, we can always choose two distinct attributes
a, b from {m, n, p} such that (μa)t = (μb)t and yield

(μa)t ∨ (γg)t > (μa)t ∨ (μb)t < (μb)t ∨ (γg)t. (3)

Thus, only the first part of Condition 2 can be true and we obtain μa = μa∨μb =
μb. Since (G, M, I) is clarified, this contradicts the distinctness of a and b and
therefore neither of the four indexes can be in T . If t is one of the remaining
indexes 4, 5, 6, we can always choose a 
= b such that (μa)t = 0. In all these cases
we then have that γg∨μa and μb∨μa are incomparable in S and μa∨μb 
= μa,
contradicting Condition 2.
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We have thus eliminated all indexes that would allow (γg)t 
= 0 and thus
falsified the initial assumption. The second part of the proposition follows dually.

5 Projective Lattices and Covers of Lattices

For the second part of the proof of Theorem 1 we employ the theory of projective
lattices. Therefore, we quickly recall some further definitions and results. The
more general definitions of theses notions for arbitrary algebras can be found
in [2].

Definition 1. A lattice L in a variety of lattices K is called projective in K,
if for any two lattices L1, L2 ∈ K and any surjective lattice homomorphism
φ : L1 � L2 and any lattice homomorphism ψ : L → L2 there exists a lattice
homomorphism ψ̃ : L → L1 such that φ ◦ ψ̃ = ψ holds.

The following lemma explains a useful property of such projective lattices.

Lemma 4. If a lattice L1 is projective in a lattice variety K and φ : L2 � L1
is a surjective homomorphism from a lattice L2 ∈ K onto L1, then L2 contains
a sublattice S which is isomorphic to L1 such that its image under φ is L1.

Proof. Let ψ : L1 → L1, x �→ x denote the identity homomorphism on L1. Since
L1 is projective in K, there is a homomorphism ψ̃ : L1 → L2 with φ ◦ ψ̃ = ψ.
Then S := ψ̃[L1] is a sublattice of L2 and we obtain

L1 = ψ[L1] = φ[ψ̃[L1]] = φ[S].

Since φ ◦ ψ̃ is the identity map on L1, the homomorphism ψ̃ must be one-to-one
and is thus an isomorphism between L1 and S = ψ̃[L1].

Definition 2. Let K be a variety of lattices containing lattices L1 and L2 and
let ω : L1 � L2 be a surjective homomorphism. The pair (L1, ω) is called a cover
of L2 in K, if for any lattice L ∈ K and each homomorphism τ : L → L1 holds,
that if ω ◦ τ is surjective onto L1, then τ itself is surjective. Further, (L1, ω) is
called a projective cover of L2, if L1 is also projective in K.

The next theorem is a special case of Theorem 5.1 in [2] that provides us with
a cover of the lattice M3,3.

Theorem 5. There exists only one surjective homomorphism ω : M̄3,3 � M3,3
from M̄3,3 onto M3,3. In the variety of all modular lattices, (M̄3,3, ω) is a pro-
jective cover of M3,3.

Using the element names of Figure 2, the homomorphism ω is given by

ω : M̄3,3 → M3,3 : v �→

⎧⎪⎨
⎪⎩

x for v = x̄

y for v = ȳ

v else.
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Corollary 2. If φ : M � M3,3 is a surjective homomorphism from a modular
lattice M onto M3,3, then M contains a sublattice S such that the image of S
under φ is M3,3 with S being isomorphic to either M3,3 or M̄3,3.

Proof. Since φ : M � M3,3 is surjective and M̄3,3 is projective (Theorem 5),
by definition there exists a homomorphism ω̃ : M̄3,3 → M such that φ ◦ ω̃ = ω
holds. Let S be the image of M̄3,3 under ω̃. Then S is a sublattice of M and we
obtain

φ[S] = (φ ◦ ω̃)[M̄3,3] = ω[M̄3,3] = M3,3.

The lattice M̄3,3 has (up to isomorphism) only four distinct homomorphic im-
ages: M̄3,3, M3,3, D2 and the lattice with only one element. Thus, S is isomor-
phic to one of those four lattices and since it must be large enough to allow
φ[S] = M3,3, it must be isomorphic to either M̄3,3 or M3,3.

Finally, before we start proving the second part of our theorem we quote
Lemma 4 from [5], that makes direct use of the above Lemma 4.

Lemma 5. Let M2 be the variety generated by all modular lattices of length two.
Then M4 is projective in M2, i. e. for any surjective homomorphism φ : M � M4
with M ∈M2 there is a sublattice S of M that is isomorphic to M4 and its image
under φ is M4.

6 Characterization Part II

Proposition 3. If (G, M, I) is the context of a modular, doubly founded com-
plete lattice L and if for each object g ∈ G holds |{m ∈ M | g ↗↙ m}| ≤ 2, then
L is a member of the variety M3.

Proof. The variety M3 is the smallest modular non-distributive lattice variety
and it has only one lower neighbor in the lattice of all modular varieties. Due to
Corollary 1 there are three possible situations:

Var({L}) ⊇M3,3, Var({L}) ⊇M4 or L ∈M3.

In the following we will contradict the first two inclusions.
Assumption 1: Var({L}) ⊇M3,3.
From the HSP-Theorem follows that M3,3 is in HSP({L}). Thus, Corollary 2
yields that M̄3,3 is isomorphic to a member of SP({L}) or that M3,3 is isomorphic
to member of SP({L}). We eliminate both cases.

First, let P be a power of L that contains a sublattice S isomorphic to M̄3,3.
The elements of S shall be named u, a, b, c, c̄, x̄, x, y, z, v like in Figure 2. Further-
more, let KP be the direct context sum that belongs to P . I. e. if P =

∏
t∈T L

and (Gt, Mt, It) = (G, M, I), then KP is the context

(GP , MP , IP ) :=
( ⋃

t∈T

Ġt,
⋃
t∈T

Ṁt,
⋃
t∈T

İt ∪
⋃

t1∈T

(Ġt1 ×
⋃

t2∈T\{t1}
Ṁt2)

)
.
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Herein, the dot notion as usual means disjoint union, thus technically Ġt means
G×{t} (for details see [6], Definition 8). Now P is isomorphic to B(KP ) (cf. [6],
Definition 32) and for the sake of convenience, we assume that P = B(KP ). KP

inherits the arrow-relations from its summands, i. e.

(g, t1)↗ (m, t2) ⇐⇒ t1 = t2 and g ↗ m in (G, M, I)

and analogously for the↙ relation. According to Lemma 3, P is doubly founded,
since L is. Therefore, an element s ∈ P can be chosen such that it is minimal
with respect to the properties s ≤ a and s � u.

This element s is supremum-irreducible in P because, if we assumed s = sup Q
for some subset Q ⊆ P, then there would exist an element q ∈ Q with q � u
– otherwise we would obtain s = supQ ≤ u in contradiction to the condition
s � u. However, this would mean q ≤ s ≤ a and from the minimality of s would
follow s = q ∈ Q. From that irreducibility follows for s that there must exist an
irreducible object g in KP with s = γg.

For g we can now find three attributes mb, my, mz in KP such that g has
double arrows to all three of them. The following construction of the attribute
mz is visualized in Figure 3.

Since g is irreducible, we obtain

s = γg > (γg)∗ =: s∗

and from the minimality condition of s also s∗ ≤ u and thus s ∧ u = s∗. Due
to the latter equation, the Isomorphism Theorem (Theorem 2) applies to the
intervals [s∗, s] and [u, s∨u]. We infer that s∨u is an upper neighbor of u, since
s is an upper neighbor of s∗. In S (and thus in P ), clearly, we have

u = a ∧ z and v = a ∨ z

and therefore by the Isomorphism Theorem also [u, a] and [z, v] are isomorphic.
Because of s ≤ a we have s ∨ u ∈ [u, a] which means that

sz := s ∨ u ∨ z = s ∨ z ∈ [z, v]

u

a b c

x̄
c̄

x y z

v

s ∨ u

γg = s

s∗

sz

μmz

Fig. 3. A sketch to the proof of Proposition 3
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is an upper neighbor of z. To find the attribute mz with g↗↙ mz, we first consider
the set

Mz := {m ∈MP | μm ≥ z, μm � v, m irreducible}.

Because of v > z this set cannot be empty. For each attribute m ∈ Mz further
holds

s ≥ μm ∧ s ≥ z ∧ s ≥ u ∧ s = s∗.

Because of the neighborhood relation between s and s∗ then either μm ∧ s = s
or μm∧s = s∗ holds. If we assumed μm ≥ s for all attributes m ∈ Mz, we would
obtain

z = inf{μm | m ∈ MP , μm ≥ z}
= inf{μm | m ∈ MP , μm ≥ v} ∧ inf{μm | m ∈MP , μm � v, μm ≥ z}
= v ∧ inf μ[Mz]
≥ v ∧ s = s.

Thus, we would have z = s ∨ z = sz which is in contradiction to the fact that
sz is an upper neighbor of z. Therefore, there must exist at least one object
mz ∈Mz with μmz ∧ s = s∗, yielding

μmz ∧ γg = (γg)∗.

From Lemma 1 follows that g ↙ mz and since P is modular, g↗↙ mz follows by
Lemma 2.

Completely analogously one can construct an attribute

my ∈ My := {m ∈ MP | μm ≥ y, μm � v, m irreducible}

with g↗↙ my.
Eventually, since Theorem 2 applies also for the intervals [u, a] and [b, x̄], we

can find for b an upper neighbor sb ∈ [b, x̄] using the same argument as in the
case of sz and [z, v]. Again, this gives us an attribute

mb ∈ Mb := {m ∈MP | μm ≥ b, μm � x̄, m irreducible}

with g↗↙ mb.
Next, we verify that those three attributes are pairwise distinct. If we assume

mz = my, we have mz ∈ My ∩Mz and thus μmz ≥ z ∨ y = v which implies
mz /∈ Mz in contradiction to the construction of mz. From mz = mb we obtain
mb ∈ Mb ∩Mz, thus μmz ≥ x̄ ∨ z = v and again mz /∈Mz. In the same way we
can rule out my = mb.

In the context KP the object g now has three double arrows. By the construc-
tion of KP as the sum of contexts all three arrows have to be in one summand
which means in (G, M, I). This contradicts the requirements of the theorem and
therefore the assumption that M̄3,3 was isomorphic to a member of SP({L})
cannot be true.
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By the same reasoning there is no direct power of L that contains a sublattice
isomorphic to M3,3 (one only chooses x instead of x̄ during the construction of
mb). Thus, also M3,3 cannot be a member of HSP({L}) and in summary we
obtain Var({L}) � M3,3.
Assumption 2: Var({L}) ⊇M4. Since we already know that M3,3 is not a mem-
ber of Var({L}), we can apply Theorem 3 and obtain that each lattice in the
variety Var({L}) is isomorphic to a subdirect product of lattices of length two
or less. By definition this means that Var({L}) ⊆ M2. By the HSP-Theorem
from Assumption 2 we obtain M4 ∈ HSP({L}) and from Lemma 5 we obtain
eventually that M4 is isomorphic to a lattice in SP({L}). Therefore, there is
a direct power P of L, that contains a sublattice S isomorphic to M4. Let the
elements of S be named like in Figure 2. Analogously to the procedure above, let
KP be the context sum with the summands (G, M, I) such that P is isomorphic
to the concept lattice of KP . Due to being doubly founded, KP then contains
an irreducible object g such that s := γg is an element of L which is minimal
with respect to the properties s ≤ a and s � u. Again, we find three distinct
attributes

mb ∈Mb := {m ∈ MP | μm ≥ b, μm � v, m irreducible},

and mc ∈ Mc, md ∈ Md defined analogously satisfying g ↗↙ mb, g ↗↙ mc and
g↗↙ md.

Since KP is a context sum, all three attributes belong to the same summand
and thus g has three double arrows in (G, M, I). Since this is a contradiction to
the proposition’s requirements, also Assumption 2 must be false.

The only possible alternative left now is Var({L}) ⊆M3 and so L is a member
of the variety M3.

By duality we get the same result if we require in Proposition 3 that |{g ∈ G |
g↗↙ m}| ≤ 2 holds for any attribute m ∈ M instead of |{m ∈ M | g↗↙ m}| ≤ 2
for any object g ∈ G. This concludes our proof of the claimed characterization
in Theorem 1.

Remark: Finally, it is worth noting that an easy adaption of the characterization
to other lattice varieties – by allowing more arrows per object or per attribute
to cover larger varieties – is not possible, as the following example for the variety

M3,3 a b c d e

1 ↗↙↗↙× ↗↙×
2 ↗↙↗↙× × ↗↙
3 × × × ↗↙↗↙
4 ↗↙× ↗↙
5 × ↗↙↗↙

Fig. 4. A context of M3,3, containing three or less arrows in each row and column.
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M4 demonstrates: It is well known that the (modular and doubly founded) lattice
M3,3 is not a member of the variety M4. However, the context given in Figure 4
is clarified, has only three arrows per row and column and its concept lattice is
isomorphic to M3,3.
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Factorization with Hierarchical Classes Analysis
and with Formal Concept Analysis
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Abstract. We present a comparison between Hierarchical Classes Anal-
ysis and the formal concept analytical approach to Factor Analysis
regarding the factorization problem of binary matrices. Both methods
decompose a binary matrix into the Boolean matrix product of two bi-
nary matrices such that the number of factors is as small as possible. We
show that the two approaches yield the same decomposition even though
the methods are different. The main aim of this paper is to connect the
two fields as they produce the same results and we show how the two
domains can benefit from one another.

Keywords: Hierarchical Classes Analysis, Formal Concept Analysis,
Factor Analysis.

1 Introduction

We compare two methods regarding the decomposition of a binary matrix. The
formal concept analytical approach to Factor Analysis was developed in [1]. The
factors resulting from this approach are formal concepts, and they were shown
to yield an optimal factorization. The Hierarchical Classes Analysis uses object
and attribute bundles in the decomposition, which are in fact extents and intents
of concepts.

Formal Concept Analysis and Hierarchical Classes Analysis were first linked
in [2] however it did not include the factorization problem.

Section 2 and 3 contain brief introductions to Formal Concept Analysis and
to the formal concept analytical approach to Factor Analysis, respectively. In
Section 4 we present the basic notions of Hierarchical Class Analysis, their trans-
lation into the language of Formal Concept Analysis and the main differences
between the two fields. We also give a small example for this purpose. Section 5
contains the main results showing that both methods yield the same results but
they differ through the mathematical and algorithmic approaches. We also com-
ment on the generalization of the two fields regarding real, fuzzy and triadic
data. Section 6 contains concluding remarks and future work.

P. Valtchev and R. Jäschke (Eds.): ICFCA 2011, LNAI 6628, pp. 107–118, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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2 Formal Concept Analysis

The mathematical foundation of Formal Concept Analysis was developed by
the research group Allgemeine Algebra und Diskrete Mathematik around Rudolf
Wille at the Technical University Darmstadt as an instrument for data analysis
at the beginning of the 80s.

We give a brief introduction to Formal Concept Analysis, containing defini-
tions and results from [3], and refer the interested reader to this work.

Definition 1. A formal context K = (G, M, I) consists of two sets G and M
and a binary relation I ⊆ G × M . The elements of G are called objects, the
ones of M attributes and (g, m) ∈ I means that the object g has the attribute
m. The relation I is called the incidence relation of the context.

Finite small contexts can be represented through cross tables. The rows of the
table are named after the objects and the columns after the attributes. The row
corresponding to the object g and the column corresponding to the attribute m
contains a cross if and only if (g, m) ∈ I.

To obtain the concepts of the context one has to consider for each object the
accurate attributes and for each attribute the objects to which it belongs to.

Definition 2. For A ⊆ G and B ⊆ M the derivation operators are defined
as:

A� := {m ∈M | (g, m) ∈ I for all g ∈ A} and
B� := {g ∈ G | (g, m) ∈ I for all m ∈ B}.

A formal concept of (G, M, I) is a pair (A, B) with A ⊆ G, B ⊆ M such that
A� = B and B� = A. A is called the extent and B the intent of the concept
(A, B). The set of all formal concepts is denoted by B(G, M, I).

Formal concepts correspond to maximal rectangles full of crosses in the cross
table representation of a formal context.

For brevity, we write g� and m� instead of {g}� and {m}�, respectively.

Definition 3. The sets

O(G, M, I) := {(g��, g�) | g ∈ G},
A(G, M, I) := {(m�, m��) | m ∈M}

are called object concepts and attribute concepts, respectively.

The derivation operators form a Galois connection between the (power sets of
the) sets G and M and their compounds form closure operators.

Concepts serve for classification. Consequently the super- and subrelation
play an important role. A concept is called superconcept of another if it is more
general, if it contains more objects.
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Definition 4. Let (A, B) and (C, D) be two concepts of a context (G, M, I).
(C, D) is called superconcept of (A, B), (A, B) ≤ (C, D), iff A ⊆ C (D ⊆ B).
Then (A, B) is called subconcept of (C, D). The relation ≤ is called hierarchi-
cal order (or simply order) of the concepts. The set of all concepts of (G, M, I)
ordered in this way is denoted by B(G, M, I) and is called concept lattice of
the context (G, M, I).

Theorem 1. Basic Theorem of Formal Concept Analysis
The concept lattice of any formal context (G, M, I) is a complete lattice. The
supremum and infimum are given by:

∧
t∈T

(At, Bt) =

⎛
⎝⋂

t∈T

At,

(⋃
t∈T

Bt

)��
⎞
⎠ ,

∨
t∈T

(At, Bt) =

⎛
⎝
(⋃

t∈T

At

)��

,
⋂
t∈T

Bt

⎞
⎠ .

In general, a complete lattice L is isomorphic to B(G, M, I) iff there exist map-
pings γ̃ : G → L and μ̃ : M → L such that γ̃(G) is

∨
-dense in L, μ̃(M) is∧

-dense in L and gIm ⇔ γ̃g ≤ μ̃m for g ∈ G and m ∈ M . In particular,
L ∼= B(L, L,≤).

3 Factor Analysis through Formal Concept Analysis

This section contains the main results from [1] and the translation of the problem
to Formal Concept Analysis. In [1] an approach to Factor Analysis is presented:
A p×q binary matrix W is decomposed into the Boolean matrix product P ◦Q of
a p×n binary matrix P and an n×q binary matrix Q with n as small as possible.
The Boolean matrix product P ◦Q is defined as (P ◦Q)ij =

∨n
l=1 Pil ·Qlj, where∨

is the maximum and · is the product. Through the Boolean matrix product a
non-linear relationship between objects, factors and attributes is given.

The matrices W , P and Q represent an object-attribute, object-factor and
factor-attribute relationship, respectively. W = P ◦ Q means that object i is
incident with attribute j if and only if there is a factor l which applies to i and
contains j.

The method developed in [1] uses formal concepts as factors which produce
decompositions with smallest number of factors possible. Contexts can be seen
as Boolean matrices by replacing in the cross table the crosses by 1’s and the
blanks by 0’s.

In the language of Formal Concept Analysis we give the following definition
for factors:

Definition 5. A subset of formal concepts F ⊆ B(G, M, I) such that

I =
⋃

(A,B)∈F
A×B
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is called factorization. If F is minimal with respect to its cardinality then
it is called optimal factorization. The elements of F are called (optimal)
factors.

Note that an optimal factorization is not always unique, since different subsets
of formal concepts with the same cardinality may cover the incidence relation in
a formal context.

For a subset F = {(A1, B1), . . . , (An, Bn)} ⊆ B(G, M, I) of formal concepts
we construct binary matrices AF and BF as follows:

(AF )il =
{

1 if i ∈ Al

0 if i /∈ Al
, (BF )lj =

{
1 if j ∈ Bl

0 if j /∈ Bl
,

where i ∈ {1, . . . , |G|}, j ∈ {1, . . . , |M |}, l ∈ {1, . . . , n} and Al and Bl are the
extent and intent of the l-th factor, respectively.

We consider a decomposition of the Boolean matrix W associated to (G, M, I)
into the Boolean matrix product AF ◦BF .

Theorem 2 (Universality of concepts as factors [1]). For every W there
is F ⊆ B(G, M, I) such that W = AF ◦BF .

Theorem 3 (Optimality of concepts as factors [1]). Let W = P ◦ Q for
p × n and n × q binary matrices P and Q. Then there exists a subset F ⊆
B(G, M, I) of formal concepts of W with |F| ≤ n such that for the p× |F| and
|F| × q binary matrices AF and BF we have W = AF ◦BF .

The proofs are based on the fact that a binary matrix can be seen as a
∨

-
superposition of rectangles full of crosses. Each such rectangle is contained in
a maximal rectangle. Every maximal rectangle full of crosses corresponds to a
formal concept.

Theorem 4 (Mandatory factors [1]). If W = AF ◦ BF for some subset
F ⊆ B(G, M, I) of formal concepts then O(G, M, I) ∩ A(G, M, I) ⊆ F , where
O(G, M, I) and A(G, M, I) are the sets of object and attribute concepts, respec-
tively.

The proof is based on the fact that if one considers a formal concept (A, B) ∈
O(G, M, I) ∩ A(G, M, I), then (A, B) = (g��, g�) = (m�, m��) for some g ∈ G and
m ∈ M . The formal concept (A, B) is the only one which contains the tuple
(g, m).

Theorem 5 [1,4]. The problem to find a decomposition W = P ◦Q of an p×q
binary matrix W into a p × n binary matrix P and an n × q binary matrix Q
with n as small as possible is NP-hard and the corresponding decision problem
is NP-complete.

However there is a greedy approximation algorithm presented in [1] which com-
putes the optimal factorization of a Boolean matrix by choosing the concepts
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which cover most of the incidence data. Due to its greedy approach the algorithm
is applicable on large data sets but the disadvantage lies in the fact that it may
provide suboptimal solutions. In [1] the authors generated 80, 000 binary matri-
ces of size 20 × 20 with 50% density of 1’s and compared the results obtained
by the greedy algorithm with the results obtained by a brute force algorithm.
The test yields that the average number of factors determined by the greedy
algorithm is close to the optimal number of factors. For example, if the optimal
number of factors is 5 the greedy algorithm yields 5.255± 0.473 (average value
± standard deviation) factors and in the case of 11 optimal factors it produces
12.740± 1.290 factors. For the whole statistic we refer to [1].

3.1 Approximate Factorization

In case of large contexts the number of optimal factors can be quite big. The
approximate factorization requires that the factors from F ⊆ B(G, M, I) cover
just a part of the incidence relation. By applying approximate factorization to
our data we look for matrices P and Q such that W , the corresponding binary
matrix to the context (G, M, I), is approximately equal to P ◦ Q. By adding
further concepts to the approximate factorization F , we obtain a more precise
approximation of the data. While exact factorization may require a large number
of factors, a considerably smaller number of factors may cover a large portion of
the data.

This kind of approximate factorization yields negative discrepancies, i.e. since
P ◦Q is approximately equal to W there exist entries where (P ◦Q)ij = 0 and
Wij = 1.

For obtaining an approximate factorization with positive discrepancies, i.e.
(P ◦ Q)ij = 1 and Wij = 0, we have to compute dense rectangles instead of
full rectangles, which correspond to formal concepts. The computation of dense
rectangles of a given formal context was studied in [5,6].

4 Hierarchical Classes Analysis

The theory of Hierarchical Classes Analysis was developed by De Boeck and
Rosenberg at the end of the 80’s. In this section we give a brief introduction
to this field and translate the notions of Hierarchical Classes Analysis into the
language of Formal Concept Analysis. The interested reader may find a more
detailed introduction to Hierarchical Classes Analysis in [7,8].

Since the development of Hierarchical Classes Analysis there is recent work
going on for the generalization of the model for non-binary data and non-dyadic
data. A detailed discussion is done in the next section.

In the following we just give the definitions and notions for objects, the ones
for attributes can be done analogously by interchanging objects with attributes
and vice versa.

The object by attribute data from Hierarchical Classes Analysis is a binary
matrix which corresponds to the Boolean matrix representation of a formal con-
text. In Hierarchical Classes Analysis two objects are called equivalent if and
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Table 1.

a b c d e f g h
1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × ×
4 × × × × × ×
5 × × × × × ×
6 × × × ×
7 × × × ×
8 × × × ×
9
10

only if they have the same attributes. An object class is the set of all objects
that are equivalent to one another in a given object by attribute data. An object
class is denoted by square brackets, i.e. if g1, . . . , gn form an object class, we
write [g1, . . . , gn]. The class of objects to which none attributes, the empty set
of attributes, apply is called the undefined class.

In the context given in Table 1 the objects 1 and 2 are equivalent and therefore
form an object class. There are six object classes, namely [1, 2], [3, 4], [5], [6, 7],
[8] and [9, 10] where the last one is an undefined class, because no attribute
applies to its objects. The attribute classes are [a, b], [c, d], [e, f ] and [g, h]. In
this example we do not have any undefined attribute class.

Each object class is characterised by the set of attributes that apply to all
objects of the class. Therefore the object classes can be ordered by the super-
/subset relation of their attribute sets. This order is a partial one, called the
hierarchy of object classes.

In the language of Formal Concept Analysis we give the following definitions
of the notions presented above:

Definition 6. In a formal context (G, M, I) two objects g1, g2 ∈ G are called
equivalent iff g�

1 = g�

2. The set

[g1] := {g ∈ G | g� = g�

1}

is called object class of the object g1 ∈ G. For the object classes corresponding
to the objects g1, g2 ∈ G we define

[g1] ≤ [g2] :⇐⇒ g�

1 ⊆ g�

2

where ≤ is a partial order relation between the classes of G, the so called hier-
archy of object classes.

A simultaneous graphical representation of the hierarchy of object and of at-
tribute classes can be done by using the association relation between the two
classes. An object class is associated to all attribute classes that apply to the ob-
jects of that object class. By associating an object class with an attribute class,
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[g,h]

[a,b] [c,d] [e,f]

[6,7] [ ] [8]

[3,4] [5]

[1,2] [9,10]

Fig. 1. Hierarchical class representation Fig. 2. Concept lattice

the first is also associated to all the superordinated classes of the second one
and vice versa. Obviously the association relation is symmetrical. Therefore it is
enough to associate the bottom classes of the two hierarchies. Graphically, one
hierarchy is represented upside down and the association relation by zigzag lines.
The graphical representation of the context from Table 1 is given in Figure 1
and the concept lattice in Figure 2.

The object (attribute) classes are ordered through the super-/subset relation
of their attribute (object) sets. However the undefined object (attribute) class is
not included into the hierarchy of objects (attributes), because it interferes with
the graphical representation. Including the undefined classes into the hierarchies
would make them the bottom classes and through the association relation of the
bottom classes, every object class would be associated to every attribute class.

In the graphical representation sometimes empty classes are needed for the
correct representation of the association relation. For example, in the hierarchy
of object classes we have an empty bottom class, because the classes [3, 4] and
[5] both apply to the attribute class [c, d]. A direct zigzag line from [3, 4] and [5]
to [c, d] is not permitted because the two object classes are not bottom classes.

The hierarchical class representation contains the object concepts and the
attribute concepts, sometimes however it also contains different concepts if they
are needed for the correct representation of the association relation or/and for
the optimal factorization. Whereas the concept lattice contains all the concepts
of a given context.

The object set which corresponds to an attribute class can be decomposed
into object classes such that their size is maximal and their number minimal.
The objects contained in such a maximal set are called object bundles. An object
bundle is in fact a set of objects which is associated to the same bottom class
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of attributes. The three relations of the model can be reconstructed from the
bundles. A bundle specific class is a class that belongs to only one bundle, thus
they are the bottom classes in the hierarchy of object (attribute) classes.

For the context given in Table 1 the object bundles are {1, 2, 3, 4, 6, 7},
{1, 2, 3, 4, 5} and {1, 2, 5, 8} and the attribute bundles are {a, b, g, h},{c, d, g, h}
and {e, f, g, h}.

In the language of Formal Concept Analysis we give the following definitions
of bundles:

Definition 7. An object (attribute) bundle is the extent (intent) of some
concept.

In Hierarchical Classes Analysis a p × q binary matrix W is decomposed into
the Boolean matrix product X ◦ Y T of a p × k binary matrix X and a q × k
binary matrix Y with k being the Schein rank of W , i.e. the smallest possible
value such that W = X ◦ Y T , and Y T the transpose matrix of Y . The matrices
X and Y have as columns the characteristic vectors of the object and attribute
bundles, respectively.

As described in [7,9] the Hiclas algorithm computes for a binary matrix W the
best fitting Hierarchical Classes model for a given solution rank k. The algorithm
assumes that W = Z + E, where W, Z and E are p × q matrices, Z = X ◦ Y T

with X and Y being p× k and q × k binary matrices, respectively, and E is the
discrepancies matrix. X and Y are estimated by a least square approach.

The user must specify the number of bundles, the rank, of the solution. The
algorithm starts an iterative procedure based on either an initial set of attribute
or object bundles. The initial bundle set can be determined by: 1) a rational
heuristic; 2) a random generation procedure; or 3) user provided; where the first
two are built into the algorithm. Hiclas can also be used in a confirmatory way
through method 3). The algorithm stops either when the pre-entered rank is
reached or when the number of discrepancies does not decrease in any further
iteration. The optimal number of bundles is considered to be the number beyond
which the discrepancies decrease slightly.

The solution of the Hiclas algorithm depends strongly on the starting point [7].

5 Comparison of the Two Models

The formal concept analytical approach to Factor Analysis as well as the Hier-
archical Classes Analysis use sets of formal concepts in the decomposition of a
binary matrix but the mathematical formalisation is different. The algorithms
of both methods search for the smallest possible subset of formal concepts which
covers the incidence relation in a context but their approaches are different. The
algorithm presented in [1] is a greedy approximation approach which is efficient
but can possibly yield suboptimal solutions, as discussed in Section 3. A greedy
approach was considered because the factorization problem in NP hard and this
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algorithm can also be applied on large data sets. On the other hand the Hiclas
algorithm is based on a branch-and-bound approach and always yields an optimal
factorization. A branch-and-bound approach can be applied just on smaller data
sets due to its high complexity. Therefore Hiclas was implemented to compute
factorizations with up to 15 bundles.

If we modify the greedy algorithm to a brute force one, then both algorithms
yield the same number of factors for a given binary matrix.

In [10] the usability of Formal Concept Analysis was not considered as appli-
cable in data analysis in the sense of Hierarchical Classes Analysis due to the
lack of decomposition of the context and the complexity of the concept lattice
especially when dealing with large data sets and noisy data. By the method pre-
sented in [1] a decomposition of the context is possible, which yields the same
results as the decomposition using bundles. The algorithm computing the factor-
ization does not imply the computation of all the formal concepts which enables
the problem regarding the complexity of the concept lattice.

The use of formal concepts in the decomposition provides more possibilities
of representing the information contained in the data in the same compact way.
This is possible due to the fact that an optimal factorization is sometimes not
unique. In [10] the decomposition using bundles was presented as unique up
to permutations of rows in the binary matrices X and Y . This is however not
the case since both methods use formal concepts and such decomposition is not
always unique as discussed in Section 3. Such a non-unique decomposition is
presented in Example 1.

For the graphical representation of the hierarchical classes one has to know
afore the bundle decomposition whereas the concept lattice can be drawn inde-
pendently to the factorization.

Example 1. Consider the context below with objects and attributes given by the
edges and diagonals of a square. An object is incident with an attribute if and
only if their edges have at least a common node.

The context has 64 concepts and at the first glimpse it is difficult to determine
how many optimal factors it has. But the context has a complementary set
representation and making use of the 1-stepped Ferrers Relations (see [3] for
Ferrers Relation) one can easily determine the number of optimal factors. The
concept lattice of (G, M, G×M \I) (Figure 3 left) can be order embedded in the

Table 2. Formal context

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
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1
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4

5

6 7

8

9

10 11

12

13

14 15

16

Fig. 3. Order embedding in (P({1, 2, 3, 4}),≤)

power set lattice of (P({1, 2, 3, 4}),≤) (Figure 3 right), by identifying the nodes
of B(G, M, G×M \ I) with the nodes 4, 6, 7, 10, 11, 13 of the powerset lattice.

This means that the number of optimal factors is 4. By looking at the topmost
node at left in the square and all the attributes and objects which contain this
node, one gets the first factor of the factorization. By numbering consecutively
the attributes and the objects, the first optimal factor is ({1, 2, 3}, {4, 5, 6}).
Proceeding in this manner the other optimal factors are ({3, 4, 5}, {1, 2, 6}),
({1, 5, 6}, {2, 3, 4}) and ({2, 4, 6}, {1, 3, 5}).

This factorization is obtained by using the greedy approximation algorithm
proposed in [1].

In the graphical representation using Hierarchical Classes one would tend to
draw the object and attribute classes and to associate them correspondingly
since each class is a bottom element. This however does not yield an opti-
mal factorization. By knowing the number of bundles needed one could look
for the appropriate bundles. The Hiclas algorithm finds also 4 bundles, namely
({1, 2, 3}, {4, 5, 6}), ({1, 5, 6}, {2, 3, 4}), ({2, 4, 5}, {1, 3, 6}), ({1, 3, 6}), ({3, 4, 6},
{1, 2, 5}). The graphical representation is in Figure 4.

Both methods, formal concept analytical and Hierarchical Classes Analysis
approach, yield an optimal factorization but the factors are different. This ex-
ample is also suitable for the non-uniqueness of the decomposition.

The Hierarchical Class Analysis was extended to data containing positive
integers [11] and real values [12]. On the other hand the fuzzy approach to the
factorization problem using formal concepts as optimal factors was developed
in [13]. How these two models interact with each other and if the results from
this paper can be generalised to the approaches presented in [11,12] is topic of
a forthcoming paper.

In [14,15] the triadic model of Hierarchical Classes Analysis was presented.
The triadic approach using formal concepts was also developed in [16,17,18] and
the triadic fuzzy approach in [19]. The comparison of these two methods is also
subject of a forthcoming paper.
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[6] [3] [4] [1] [5] [2]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[2] [5] [1] [4] [3] [6]

Fig. 4. Hierarchical class representation

6 Conclusion

We compared two methods factorizing binary data. Hierarchical Classes Analysis
uses bundles in the decomposition and the formal concept analytical approach
to Factor Analysis uses formal concepts. We showed that both methods yield
the same factorization, even though the mathematical approaches are different.
The Hiclas algorithm performs in general better than the greedy approximation
algorithm. However the first one is applicable only on data sets having at most
15 bundles.

The connection between Hierarchical Classes Analysis and Formal Concept
Analysis was also studied.

Further research includes the study between the two methods for real and
triadic data. We expect that also in these generalisations the domains can benefit
from one another.

The results of this paper could convey the interest in Formal Concept Analysis
among the Hierarchical Classes Analysis community and vice versa.
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Abstract. DNA micro-arrays are a mechanism for eliciting gene expres-
sion values, the concentration of the transcription products of a set of
genes, under different chemical conditions. The phenomena of interest—
up-regulation, down-regulation and co-regulation—are hypothesized to
stem from the functional relationships among transcription products.
In [1,2,3] a generalisation of Formal Concept Analysis was developed
with data mining applications in mind, K-Formal Concept Analysis,
where incidences take values in certain kinds of semirings, instead of the
usual Boolean carrier set. In this paper, we use

(
Rmin,+

)
- and

(
Rmax,+

)
-

Formal Concept Analysis to analyse gene expression data for Arabidopsis
thaliana. We introduce the mechanism to render the data in the appro-
priate algebra and profit by the wealth of different Galois Connections
available in Generalized Formal Concept Analysis to carry different anal-
ysis for up- and down-regulated genes.

1 Introduction

The transcriptome of a species is the set of gene expression products, be they
proteins or messenger RNA (mRNA) chains. DNA micro-arrays are a mechanism
to take measures of such data in the form of an expression profile, a record of the
concentration of different mRNA associated to a subset of the species genome
with respect to a condition, a particular state or sequence of states undergone by
the cells under study. Roughly, each of these mRNA sequences comes from the
expression of a particular gene and is translated into a protein inside ribosomes.

Transcriptomics studies these expression profiles for multiple purposes: body
maps—creating records of baseline abundance of mRNA in different tissues—,
case vs. control studies—studying particular states vs a control profile—, parsing
pathways—elucidating the signalling networks associated to sets of genes— and
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studying functional response patterns, the exploration of a systematically varied
set of conditions in the expectation that co-regulation of genes across a set of
biological conditions reveals functional gene groups [4].

In this context, the concentration of the transcribed product (usually mRNA)
is the (gene) expression value, and the expression values of a set of genes un-
der the same condition an expression profile. Therefore, given a genome —a set
of genes—G = {gi}n

i=1 the gene expression data taken to analyse their func-
tional influence consists of the expression value of every gene Cij—an expres-
sion profile—under one condition mj in a non-explicitly given set of conditions
M = {mj}p

j=1 , which grows as we take more measurements.
Under these premises, co-regulation refers to the increment or decrement of the

expression value in a set of genes brought about by the change in expression value
of other genes. At each condition and for each gene, co-regulation results either in
up-regulation, an increment in expression value, or down-regulation, a decrement
in expression value, and these changes are expected to reveal functional relations
between genes.

This emphasis on up-regulation and down-regulation make gene profile ex-
ploration an ideal candidate to be explored by means of K-Formal Concept
Analysis, a flavour of Formal Concept Analysis where incidences take value in a
multi-valued algebra K which is an idempotent semifield—an analogue of a field
replacing addition with an idempotent law [1,2,3].

In this paper we will undertake the exploration of expression profiles with(
Rmin,+

)
-
(
Rmax,+

)
-Formal Concept Analysis with the purpose of researching

into functional response patterns. For that purpose, in Section 2 we review
data-preprocessing, K-Formal Concept Analysis and lattice-building procedures
applied to expression profiles. Next we describe our results in a database of
Arabidopsis thaliana profiles, and conclude in Section 4 by comparing ours to
previous work on using Formal Concept Analysis on gene expression data.

2 Methods and Tools

2.1 Data Preparation

The main problem with expression data is noise: mRNA concentrations profiles
are irreproducible from experiment to experiment due to conditions difficult or
impossible to control—such as the thermodynamic environment of reactions or
individual specimen ontogenesis, respectively. Besides, measurement techniques
also introduce their own kind of noise, since they are also based in chemical
reactions—hybridization of mRNA with fluorescent markers. For this reason
most measurements are repeated a number of times for each condition. Some-
times these measurements are used to obtain variance- and mean-normalised
profiles for each condition. Finally, an actual profile for condition mj is obtained
which we gather in a single matrix Cij of positive numbers where i runs over
genes and j over conditions.

For each experiment, a special kind of profile, called a control, may be mea-
sured as a reference for other measurements. Controls are adapted to the kind
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of experiment and might be the profile of a mix of cells of a whole specimen—
to obtain a body map—or a particular mix of specific cells under study—for
instance, healthy cells to be compared against cancerous cells. Since controls
may be extracted from population of specimens grown in controlled conditions,
they are expected to be less noisy. In our experiments, we designate a set of
measurements for the same condition as controls and coalesce them into their
geometrical mean c̄i . This produces a single control at the expense of reducing
the set of measurements.

Since both up-regulation and down-regulation of genes occur in gene expres-
sion we would like to cater to exploring both. All profiles excepting controls are
entry-wise normalized by the control profile and their logarithm1 taken to make
the resulting number range in [−∞,∞] Rij = log Cij

c̄i
. Log-quotients of gene

expression values are

– Rij ≤ 0 if gi is down-regulated by mj ,
– Rij ≥ 0 if gi is up-regulated by mj , and
– Rij = 0 if the control and the condition expression value are equal.

Call the doubly completed set of reals R = R ∪ {±∞} . The reasoning above
would suggest using as carrier set for log-quotient values R where further:

– Rij = log 0
k = −∞, k 
= 0 when gi is not expressed at all in mj ,

– Rij = log k
0 = ∞ when gi is not expressed in the control condition.

With |G| = n , |M | = p , we collect all expression profiles into a
(
R
)
-valued

matrix R ∈ R
n×p

, and call the triple (G, M, R) a multi-valued formal context,
where Rij = λ reads as “the expression value of gene gi in condition mj is λ” .
The procedure to obtain specific concept lattices from this context is roughly
sketched in the next subsection.

2.2 K-Formal Concept Analysis of Expression Data

A generalisation of Formal Concept Analysis called K-Formal Concept Analysis
(kFCA) was introduced in [1,2,3] to cater for the notion of a degree of incidence,
where K is a complete idempotent semifield K =

〈
K,⊕,⊗, ·−1,⊥, e,�

〉
. This

allows the analysis of real-valued incidences by embedding them into a convenient
algebra, to be investigated next.

K-Formal Concept Analysis. Complete idempotent semifields are already
lattices with a∧ b = a⊕ b, a∨ b = a⊗ (a⊕ b)−1⊗ b . For a complete idempotent
semifield a semimodule or vector space Kn

= 〈Kn
,⊕,⊥n〉 is an additive monoid

with a scalar multiplication inherited from the multiplication in the semifield. A
unitary vector ei in this vector space is ei(i) = e and ei(k) = ⊥K, i 
= k. Notice
that semimodules have an order induced by that of the underlying semiring. In
the case of idempotent semifields, this order is compatible with the ⊕ operation
x ≤ y ⇔ x⊕ y = y turning them into join-semilattices.
1 All logarithms are base 2 in this paper.
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Matrices over completed idempotent semifields R ∈ Kn×p
are linear forms

between vector spaces. For the analysis of expression values we call:

– a row vector in Y = K1×n
a K-set of genes,

– a column vector in X = Kp×1
a K-set of conditions,

– a column vector in the range of R, Im(R) ⊆ Kn×1
a (gene) expression profile,

– a row vector in the range of Rt, Im(Rt) ⊆ K1×p
a condition profile.

Note that DNA micro-arrays actually obtain a set expression values for a par-
ticular condition mj later transformed into an expression profile p(mj) = R⊗ ej

(§2.1). However, the condition profile for gi, the vector of its expression values for
different conditions q(gi) = et

i ⊗R is seldom considered of interest in analyses.
Consider the context (G, M, R)K and row- and column-vector spaces Y ∼= Kn

and X ∼= Kp
. The bracket 〈. | R | .〉 : K

n ×K
p → K, 〈y | R | x〉 = y ⊗ R ⊗ x

between left and right vector spaces over K is proven in [3] to induce a Galois
connection [(·)+R,ϕ,

+
R,ϕ(·)] : Kn

⇀↼Kp
. Given an invertible ϕ ∈ K , the ϕ-polars

are the dually adjoint maps

(y)+R,ϕ =
∨
{ x ∈ K

p | 〈y | R | x〉 ≤ ϕ } +
R,ϕ(x)=

∨
{ y ∈ K

n | 〈y | R | x〉 ≤ ϕ } .

For row- and column-vectors a and b , the ϕ-formal concept (a, b)ϕ is a pair
such that (a)+R,ϕ = b and +

R,ϕ(b) = a with a the ϕ-extent and b the ϕ-intent.
The parameter ϕ ∈ K is called the threshold of existence and it can be proven
to describe a maximum expression value allowed for pairs (a, b) ∈ Kn×Kp

to be
considered as members of the ϕ-formal concept set Bϕ(G, M, R)K [3]. As usual,
ϕ-concepts can be ordered by extents or dually by intents

(a1, b1) ≤ (a2, b2) ⇔ a1 ≤ a2 ⇔ b1 ≤d b2 (1)

and the set of ϕ-concepts with this order is the ϕ-concept lattice Bϕ(G, M, R)K .
A drawback for data mining purposes is that the ϕ-concept lattice, has a

huge number of concepts—infinite, in the typical case—and is hard to visualize.
Therefore, we define the structural (gene expression) lattice B(G, M, Iϕ

R) of the
ϕ-concept lattice as the concept lattice of a binary incidence, Iϕ

R , related to R
and intended to focus on those concepts below a threshold of existence ϕ.

The following is a procedure to build and explore a structural lattice:

Step 1 Fix a threshold ϕ. Compute the closures of the n unitary row vectors of
dimension 1 × n, γ(ei) =

(+

R,ϕ
((ei)

+
R,ϕ), (ei)

+
R,ϕ

)
and p unitary column

vectors of dimension p× 1, μ(ej) =
(

+

R,ϕ
(ej), (

+
R,ϕ(ej))

+

R,ϕ

)
.

Step 2 Define a binary incidence Iϕ
R between genes and conditions associated to

those concepts by giI
ϕ
Rmj ⇔ γ(ei) ≤ μ(ej) .

Step 3 Use a standard tool for Formal Concept Analysis—ConExp [5]—to build
and visualize the concept lattice B (G, M, Iϕ

R) .
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Because the procedure that selects the formal concepts depends on the threshold
ϕ, typically the algorithm above must be carried out a number of times—one
for each choice of ϕ that is deemed interesting—a process we call lattice explo-
ration. This allows us to analyse non-boolean expression matrices using several
thresholds of existence.

The choice of idempotent semiring. For the case at hand, therefore, a
proper choice for K is Rmax,+ (read “completed max-plus semiring”), actually
an idempotent semifield :

Rmax,+ = 〈R, max, +
�
,−·,−∞, 0,∞〉

This is the completed set of reals with the “max” operation used as addition and
normal addition as multiplication, and subtraction as the multiplicative inverse.
As noted elsewhere, completed idempotent semifields come in dually ordered
pairs[3, §2.2.2]. The order dual of Rmax,+ is Rmin,+, the completed min-plus
semiring

Rmin,+ = 〈R, min,
�
+,−·,∞, 0,−∞〉

Notice that then �
Rmin,+

= −∞,⊥
Rmin,+

= ∞ and −· is actually a dual order iso-
morphism between both lattice structures. In this notation we have −∞+

�
∞ =

−∞ and−∞
�
+∞ = ∞, which solves several issues in dealing with the separately

completed dioids. This structure actually carries a complete lattice structure

〈L,∨,∧,⊥,�〉 : =〈R, max, min,−∞,∞〉 .

.Therefore we posit this structure as an appropriate means for modelling incre-
ments with respect to an average value.

Exploring down-regulation with
(
Rmax,+

)
-Formal Concept Analysis.

By taking K : = Rmax,+ and the bracket 〈y | R | x〉 = y⊗
�

R⊗
�

x the polars are

the dually adjoint maps2

(y)+R,ϕ = (y⊗
�

R) \
�
ϕ

+
R,ϕ(x) = ϕ /

�
(R⊗

�
x)

= R� �
⊗ y� �

⊗ϕ = ϕ
�
⊗x� �

⊗R� (2)

Recall that e = 0 is the unit for multiplication in Rmin,+ . Since 〈y | R | x〉 =
maxi,j{yi +

�
Rij +

�
xj} selects the highest expression value(s) in Rij subject to the

weights in yi and xj which act as focusing mechanisms, by keeping yi = 0 = xj

and ϕ ≤ 0 we concentrate on negative expression values Rij ≤ 0 , that is down-
regulated genes in the concepts defined by (2). Hence to find down-regulated
genes of (G, M, R) we have to explore Bϕ(G, M, R)

Rmax,+
with ϕ ∈ (−∞, 0] .

2 Notice how the polars are given a closed expression in the dual idempotent semifield
Rmin,+ .
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Exploring up-regulation with (Rmin,+)-Formal Concept Analysis. To
cater to up-regulated genes we simply consider matrix R to be part of a the
context Rmin,+-valued formal context (G, M, R)

Rmin,+
. By taking the bracket

[y | R | x] = y
�
⊗R

�
⊗ x the dually adjoint maps over the dual order now define

a minimum degree of existence required for pairs of vectors to be considered
φ-concepts.

(y)+R,φ =
∧
{ x ∈ X | [x | R | y] ≥ φ } +

R,φ(x) =
∧
{ y ∈ Y | [x | R | y] ≥ φ }

= R�⊗
�

y�⊗
�

φ = φ⊗
�

x�⊗
�

R� (3)

Since [y | R | x] = mini,j{yi

�
+Rij

�
+ xj} selects the lowest expression value(s) in

Rij subject to the weights in yi and xj—which act as a masking mechanisms—
by keeping yi = 0 = xj and φ ≥ 0 we concentrate on positive expression values
Rij ≥ 0 , that is up-regulated genes in the concepts defined by (3). Hence to
find up-regulated genes of (G, M, R) we have to explore Bφ(G, M, R)

Rmin,+
with

φ ∈ (0,∞) .
Note that since the unitary vectors in R

n

min,+ are (ei)−1 , another way of ex-
ploring Bφ(G, M, R)

Rmin,+
with φ ∈ (0,∞) is to explore B−φ(G, M,−R)

Rmax,+
.

3 Results

3.1 Data Conditioning

We selected transcriptomic data for A. thaliana to analyse the behaviour of
the root and the shoots in a Selenium-rich environment. The data used for this
simulation was downloaded from the NCBI database3, the same data has been
analysed in [6]. The data come from an Affymetrix Arabidopsis ATH1 Genome
Array [7] which measures concentration of predefined mRNA sequences in a
given biological sample.

We perform this preprocessing with the Bioconductor R-package as in [8]
which also allows MAS preprocessing. A comparison among different prepro-
cessing types suggests that RMA—also supported by Bioconductor—can provide
better results [9], but MAS preprocessing seems to be more widely accepted.

The data has 8 different gene expression profiles:

– root tissues, two control samples: root1 and root2
– root tissues, two samples with Selenium: rootSe1 and rootSe2
– shoot tissues, two control samples: shoot1 and shoot2
– shoot tissues, two samples with Selenium: shootSe1 and shootSe2

Each of these profiles provides the expression value of |G| = 22 810 genes.
The data were preprocessed as described in Section 2.1 to obtain two different

contexts:
3 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9311
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– normalised in the mean of the normal root profiles Kr = (G, Mr, Rr)R
.

Thus all the gene expression values, for the gene i, will be normalized by
cr
i =

√
Ciroot1 · Ciroot2 . The final gene expression will be

Rij = log
Cij

cr
i

(4)

where j ∈ {shoot1, shoot2, rootSe1, rootSe2, shootSe1, shootSe2} is
one of the remaining 6 different profiles after removing root1 and root2.

– normalised in the mean of the normal shoot profiles Ks = (G, Ms, Rs)R
.

As before the gene expression values, for the gene i, are normalized by:
cs
i =

√
Cishoot1 · Cishoot2 . The final gene expression will be

Rij = log
Cij

cs
i

(5)

where j ∈ {root1, root2, rootSe1, rootSe2, shootSe1, shootSe2} is one
of the 6 different profiles remaining after removing shoot1 and shoot2.

The idea is that each of the lattices explored for each of these contexts will shed
light on the Selenium-modified analogue of the control, but the other conditions
will further identify expression behaviour. As previously said the number of
conditions for, say Kr is reduced to 6: the conditions used to find the control no
longer appear, and the other six profiles are normalized by it. Therefore Mr and
Ms are different albeit related.

The contexts were processed with our in-house K-Formal Concept Analysis
toolbox, running in MatLab.

3.2 Lattice Exploration

Lattice exploration was carried out on each context using
(
Rmax,+

)
- and

(
Rmin,+

)
—to investigate under-expressed and over-expressed genes, respectively—for dif-
ferent values of the thresholds, with ϕ ranging in (−∞, 0) and φ in (0,∞) , as
described in Section 2.2. The resulting number of concepts are shown in Figure
1 for either context.

The overall shape of both curves is very similar. The left halves with ϕ ∈
(−∞, 0) start from two concepts when the threshold of existence is below the
minimum entry in R, attaining the maximum 2p in a neighbourhood of 0. On the
other hand, the right halves with φ ∈ (0,∞), are roughly symmetric collapsing
again into a two-concept lattice when φ is above the maximum entry in R . It
is worth mentioning, that it is possible to detect a change in the slope of the
curves around ϕ = −6 and φ = 4. This will be further looked into in the next
subsections.

Down-regulation analysis. To obtain an interpretation of the structure of the
genes that are down-regulated in the presence of Selenium, structural lattices for
negative ϕ should be explored. Figure 2 depicts two structural lattices at a middle
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(a) Root-normalized

(b) Shoot-normalized

Fig. 1. (Colour on-line) Number of concepts as a function of the threshold level ϕ ∈
(−∞, 0) for down-regulated genees (blue asterisks) and φ ∈ (0,∞) for up-regulated
genes(red crosses) in root-normalized (a) and shoot-normalized (b) data. Points of
interest to draw structural lattices from are the leftmost (an example labeled with
arrow #3) and rightmost extremes, those points close to the plateaus, coming from
either side (examples labeled with arrows #2 and #5), but specially the shoulders are
each side of the “mesas” (examples labeled with arrows #1 and #4). The structural
lattices for these examples are depicted in the subsequent figures.
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value of the left part of the curve where the slope has been found to be lower—a
shoulder. A clear separation between root-related and shoot-related conditions
is appreciated in the form of adjoint sublattices in Figure 2a and almost adjoint
sublattices in Figure 2b.

In Figure 2a, the four shoot-related conditions make up a boolean lattice
with sets of genes labelled in all possible combinations of the four mentioned
conditions. This implies that these conditions cannot be separated at this level in
the root normalization. Interestingly, the RootSe conditions join at a node with
a singleton extent, gene 259161 at related to carbon and nitrogen metabolism.

On the other hand, a different situation can be noticed in Figure 2b where the
boolean sublattice is now generated by the four root-related conditions while the
ShootSe conditions are apart. However, they are not so clearly differentiated due
to the connection that exists with a lower node of the boolean sublattice. Inter-
estingly, these conditions join at a node with a singleton extent, gene 251196 at
or glutaredoxin, an enzyme normally related to stress signalling which is here
inhibited.

Figure 3 depicts the projection of rootSe labels in Figure 3a and shootSe
labels in Figure 3b from the full boolean lattice of 2p concepts that appears
close to ϕ = 0. The bottom nodes represent the 89 (118) genes that are down-
regulated by Selenium in the root (the shoots), in which an agreement between
both realizations of condition rootSe exists. Nonetheless, it is important to
acknowledge that at this level of the observation the measurements are not very
reliable due to the empirical limitations explained in 2.1, and we will concentrate
on the findings for the previous case in Subsection 3.3.

Figure 4 presents, finally, the most salient down-regulated genes in a lattice for
a low ϕ. As can be noted, for the root normalization (resp. shoot) the threshold of
existence for rootSe (resp. shootSe) is too low to allow any gene down-regulated
by that condition to appear. However, an incipient structure concerning shoot-
related (resp. root-related) conditions is beginning to be discernible which we
refuse to analyse in this first attempt.

Up-regulation analysis. Changing the choice of semiring from Rmax,+ to
Rmin,+ allows us to analyse up-regulation. For this case, structural lattices for
positive φ should be explored.

Figure 5 depicts two structural lattices at both middle values to the right of
the curves in Figure 1 where the slopes have been found to be less decreasing.
A clear separation between root-related conditions is again evident in the form
of adjoint sublattices in Figure 5a. The same cannot be asserted for the shoot-
related conditions in Figure 5b as it is not possible to find any structural lattice
in which shootSe1 and shootSe2 are joined in an independent (not labelled
with any other condition) concept different than bottom.

The structure encountered in Figure 5a is analogue to the one in Figure
2a with the four shoot-related conditions conforming a boolean lattice (to the
left) and an adjoint sublattice condensing root-related conditions (to the right).
The object counts of the concepts are different, however, involving considerably
fewer genes in the boolean lattice and many more in the root sublattice. As in
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(a) Root-normalized, ϕ = −3.31

(b) Shoot-normalized, ϕ = −4.06

Fig. 2. Structural lattices for down-regulation analysis at a low ϕ —marked as #1 in
both plots of Figure 1—where the RootSe (a) and ShootSe (b) conditions split away
from the rest
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(a) Root-normalized, ϕ = −1.42 (b) Shoot-normalized, ϕ = −1.66

Fig. 3. Structural lattices for down-regulation analysis at a high ϕ—marked as #2 in
either plot of figure 1. Only rootSe (a) and shootSe (b) related conditions are retained,
since by considering all conditions at this level a fully connected boolean lattice would
be obtained indicating a non-discriminative value of ϕ.

(a) Root-normalized, ϕ = −7.29 (b) Shoot-normalized, ϕ = −7.47

Fig. 4. Structural lattices for down-regulation analysis at a low ϕ—marked as #3 in
either plot of figure 1

down-regulation both rootSe conditions join at a node that in this case contains
10 exclusive genes whose analysis can be found in Section 3.3.

Unfortunately, and though almost the inverse situation can be noticed in Fig-
ure 5b, where the boolean sublattice is now generated by the four root-related
conditions, the shootSe conditions do not appear totally apart or even join-
ing at a common concept different to bottom. This divergence between the
two realizations of the experiments prevents us from providing findings in this
situation.

Figure 6 depicts the projection of rootSe labels in Figure 6a and shootSe
labels in Figure 6b from the full boolean lattice of 2p concepts that appears close
to φ = 0. The bottom nodes represent the 190 (203) genes that are up-regulated
by Selenium in the root (shoots, respectively) in which an agreement between
both realizations of the experiment exists.
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(a) Root-normalized, φ = 4.41 (b) Shoot-normalized, φ = 3.65

Fig. 5. Structural lattices for up-regulation analysis at a φ—marked with arrows #4
in both plots of figure 1—where the RootSe (a) and ShootSe (b) conditions split
away from the rest

(a) Root-normalized, φ = 1.86 (b) Shoot-normalized, φ = 1.59

Fig. 6. Structural lattices for up-regulation analysis at a high φ—marked as #5 in
both plots of figure 1. Only rootSe (a) and shootSe (b) conditions are retained. With
all conditions considered, a fully connected boolean lattice would be obtained at this
threshold indicating a non-discriminative value of φ .

Finally, similar lattices as the ones depicted for down-regulation in Figure
4 for low ϕ can be obtained for high φ and up-regulation. However, they are
omitted here as they do not add much information for the present analysis.

3.3 Findings

We used the gene identifiers appearing in the more reliable concepts, those with
lowest down-regulation and highest up-regulation threshold, to obtain their func-
tional description, when available, from a knowledge database.

Preliminary analyses suggest that for up-regulation in the roots subject to
Se, our procedure detects over-expressed genes used by A. thaliana to sense and
signal physiological conditions (Ca++ transport), to bind to heavy metals (Cd,
Zn) and salts (Se is introduced as a selenate) and to combat metal-, pathogen-
and salt-induced stress. It is encouraging that one of these genes has an unknown
function but is suggested by our procedure to engage in some or all of these
functions.
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The results for down-regulation are less clear. On the one hand, less genes are
clearly under-expressed: for the roots the single reliably-detected gene engages in
the metabolism of carbon by non-photosynthetic means and in that of nitrogen.
For the shoots, the clearly inhibited gene, glutaredoxin, is an enzyme involved in
signalling stress conditions employing sulphur-redox pairs (cysteine). The overall
picture is not clear but might suggest that Se is interfering with the sensing of
S in the plant, pretending that sulphur is over-abundant and thereby affecting
the signalling related to it.

Further in-depth analysis should be carried out by plant physiologists.

3.4 Summary

The analysis carried out in the previous subsections allows us to reach the fol-
lowing conclusions:

– root and shoot conditions appear clearly apart in terms of the genes up-
or down-regulated in each case. The disparity in the values of Cij observed
in them advise a separate analysis which we have implemented by providing
two types of normalizations as described in section 3.1.

– Up- and down-regulation can be analysed with the same procedure by chang-
ing the carrier semiring in K-Formal Concept Analysis fromRmax,+ to Rmin,+.
The evolution of the number of concepts in each case proceeds inversely as
can be observed in the overall symmetry of Figure 1.

– A consistency of both realizations of the same condition, e.g. rootSe1 and
rootSe2, should be always enforced to provide reliability.

– When our focus of attention is the up- or down-regulation in rootSe (resp.
shootSe) conditions, the presence of shoot-related (resp. root-related) ones
obscures the analysis, as they appear for very low values of ϕ (resp. very
high values of φ), that is, point marked as #3 (resp. #4) in Figure 1).

– Around the value of ϕ = 0 at #2 (resp φ = 0 at #5) a full boolean lattice of
2p concepts appears showing the unreliability of the down-regulation (resp.
up-regulation) threshold due to limitations of the measuring technique.

– Finally, a compromise between the two previous situations can be found in
the middle of both down and up regulation analysis where figure 1 exhibits
a decay of the absolute value of its slope—the shoulders of Figure 1. At
these positions—marked as #1—root and shoot conditions separate into
two adjoint sublattices for root normalization and a not-so-clear separation
for shoot-normalised experiments.

– Pending more thorough analyses, the lattice theory-induced findings can be
corroborated by gene-function analysis of the extents found for each case.

4 Discussion

In this paper we have introduced a new approach to gene expression data analysis
with K-Formal Concept Analysis, a flavour of Formal Concept Analysis where
incidences may take values in complete idempotent semifields. Specifically, we
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directly analyse the R-valued, non-scaled context of gene expression values by
means of

(
Rmin,+

)
- and (Rmax,+)-Formal Concept Analysis.

Our analyses show that a combination of these is a promising tool for the
interactive exploration of gene co-regulation, since exploring the context with
(Rmax,+)-Formal Concept Analysis captures the phenomenon of gene down-
regulation, while using (Rmin,+)-Formal Concept Analysis for the exploration
captures up-regulation, decreases and increases, respectively, of gene concentra-
tions with respect to a normalizing gene expression profile. In this way, we have
detected genes that are either up-regulated or down-regulated in specimens of
A. thaliana subject to a Selenium-induced physiological stress.

Previous work on using Formal Concept Analysis for transcriptomics includes
a remarkable proposal for a methodology for gene expression data exploration
in [10], which seems to be the schedule adopted by most practitioners. Pensa et
al. suggest and iterative process of exploration based in the inductive databases
paradigm: for each iteration loop against a database of gene expression data, they
carry out pre-processing, data discretisation (attribute scaling), Boolean gene
expression data enrichment, Constraint-based extraction of Formal Concepts
and post-processing.

Note that our methodology shares the first and last steps, but greatly changes
the intermediate steps since no scaling or enrichment is used. Of course, this pre-
liminary work has only demonstrated a single loop of the exploration procedure.

For instance, Motameny et al. [11] concentrated on a binary classification task
over human leukaemia. They scaled gene expression values into binary attributes
and used standard extents to obtain gene sets inducing rules for classification. In
related work, [12] uses interval scaling aided by experts to discretise expression
values.

Scaling is widely acknowledged to introduce biases in the analysis and perhaps
to result in loss of context information [13]. Thresholding and insensibility pa-
rameters [14] have been used to minimize these effects, but also richer, hopefully
loss-free, kinds of scaling such as interordinal scaling [15].

With regard to noise preprocessing, since normalization by means of control
conditions does not dispose of noise, practitioners either refuse to trust data too
firmly or do a flavour of noise-insensitive analysis [15,14].

Our work is an example of the former: we only describe analysis at thresholds
marked as #1 and #4 in Figure 1, far away from values either too close to
noise (#2 and #5), or so high in absolute value that they show no significant
information (#3).

An instance of the second type of analysis, Pattern Formal Concept Analysis
was designed to minimize or dispose of the need for scaling [16] . The novelty
in [13,15] is considering expression value intervals as pattern structures to act
as “attributes” in the context. The process of lattice building accords narrow
intervals to concepts lower in the lattice and wider intervals to those higher up.
The wider the interval, the less reliable is the concept association between genes
and conditions. This seems to be a complementary approach to our analysis
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based in the threshold of existence for concepts, but it has not been applied to
the complementary process of gleaning up- and down-regulated genes.

Regarding the phenomena being explored, most of the work so far seems to
have concentrated in over-expressed genes or up-regulation, whereas our frame-
work also caters for down-regulation, albeit with a technique complementary
to that used for up-regulation, that is

(
Rmin,+

)
- vs.

(
Rmax,+

)
-Formal Concept

Analysis.
In future work we plan to attack control vs. case studies in A. thaliana, as

well as using the different types of Galois connections of Extended Formal Con-
cept Analysis [3] on gene expression data to widen the array of tools at the
practitioner’s disposal.
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Abstract. A numerical dataset is usually represented by a table where
each entry denotes the value taken by an object in line for an attribute
in column. A bicluster in a numerical data table is a subtable with close
values different from values outside the subtable. Traditionally, largest
biclusters were found by means of methods based on linear algebra. We
propose an alternative approach based on concept lattices and lattices
of interval pattern structures. In other words, this paper shows how for-
mal concept analysis originally tackles the problem of biclustering and
provides interesting perspectives of research.

keywords: biclustering, numerical data, formal concept analysis,
pattern structures, conceptual scaling.

1 Introduction

We consider the problem of biclustering numerical data [7,4,16] using techniques
of Formal Concept Analysis (FCA) [5,6]. A numerical dataset is given by sets
of objects, attributes, and attribute values for objects (many-valued contexts in
terms of FCA). The description of an object is a tuple of values, each component
corresponding to an attribute value. An example of numerical dataset is given
in Table 1 where lines denote objects, while columns denote attributes.

To analyze such a dataset, a major data-mining task is clustering, a data
analysis technique used in several domains, e.g. gene expression data analysis.
It allows one to group objects into clusters according to some similarity criteria
between their description, the similarity being defined according to an adequate
distance, following given characteristics [9]. However, clusters are global patterns
since similarity between objects is computed w.r.t. all attributes simultaneously
(possibly weighted). In many applications, and especially in gene expression data
analysis, local patterns are preferred [3,16] and consist in pairs (A, B) where A
is a subset of objects related to a subset of attributes B. Indeed, it is known that
a set of genes is activated (e.g. translated into proteins for enabling a biological
process) under some conditions only, i.e. only for some attributes. Accordingly,
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a bicluster is generally represented by a rectangle of values in a numerical data
table, see e.g. a bicluster in Table 2. In Table 1, one can see that both biclusters
({g1, g2}, {m1, m2, m3, m4}) and ({g1, g2}, {m5}) give more meaningful informa-
tion than cluster {g1, g2} being described by all attributes, since the values taken
by objects in A for attributes in B are more similar.

There are many definitions of a bicluster, depending on the relation between
subsets of objects and subsets of attributes, as discussed in [16]. In this paper,
we consider two types of biclusters: firstly, constant biclusters that can be rep-
resented as rectangle of equal values (see Table 3), and secondly, biclusters of
similar values, that can be represented by rectangle of similar values (see Ta-
ble 4). In general case, extracting all biclusters is an intractable problem [16], so
in practice heuristics are used. Obviously, even best heuristics may result in the
loss of “interesting” biclusters.

The purpose of this paper is to show that an approach based on Formal
Concept Analysis (FCA [5]) can be used for biclustering numerical data, leading
to a complete, correct and non-redundant enumeration of all maximal biclusters
(either of constant or similar values). Such non-heuristic based enumeration has
not been deeply considered in the literature due to the very important number
of possible biclusters. Whereas a first study is given in [2], we propose here
two equivalent FCA-based methods, whose underlying closure operator enables
a natural enumeration of maximal biclusters. The first one relies on conceptual
scaling (discretization) of numerical data giving rise to several binary tables
from which biclusters can be extracted as formal concepts. A second method
avoids a priori scaling and is based on interval pattern structures [6,12], an
FCA formalism that allows one to build concept lattices directly from numerical
data from which biclusters of interest can be extracted.

The paper is organized as follows. We first give a brief introduction to FCA,
before formally stating the problem of extracting biclusters from numerical data.
Then, Section 2 presents the first method based on scaling while Section 3 details
the method based on pattern structures. Finally, a discussion compares both
approaches w.r.t. their scalability and usage, and highlights several perspectives
of research.

1.1 Preliminaries on FCA

We use standard notations of [5]. Let G and M be arbitrary sets and I ⊆ G×M
be an arbitrary binary relation between G and M . The triple (G, M, I) is called a
formal context. Each g ∈ G is interpreted as an object, each m ∈M is interpreted
as an attribute. The fact (g, m) ∈ I is interpreted as “g has attribute m”. The
two following derivation operators (·)′ are considered:

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

which define a Galois connection between the powersets of G and M . For A ⊆ G,
B ⊆ M , a pair (A, B) such that A′ = B and B′ = A, is called a (formal) concept.
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Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1).
With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G, M, I). For a concept
(A, B) the set A is called the extent and the set B the intent of the concept.
Certain data are not given directly by binary relations, e.g. numerical data.
Such data is usually represented by a many-valued context (G, M, W, I), a 4-
tuple constituted of a set of objects G, a set of attributes M , a set of attribute
values W and a ternary relation I defined on the Cartesian product G×M ×W .
(g, m, w) ∈ I, also written g(m) = w, means that “the value of attribute m taken
by object g is w”. The relation I verifies that g(m) = w and g(m) = v always
implies w = v. For applying the FCA machinery, a many-valued context needs
to be transformed into a formal context with so-called conceptual scaling. The
choice of a scale should be wisely done w.r.t. data and goals since affecting the
size, the interpretation, and the computation of the resulting concept lattice.

1.2 Problem Setting

Here a numerical dataset is realized by a many-valued context (G, M, W, I) where
W is a set of values that objects g ∈ G can take for attributes m ∈ M . Such
many-valued contexts are usually represented by a numerical table where a table-
entry gives the value m(g) ∈ W , i.e. the value taken by attribute m in column
for object g in line. The Table 1 gives an example (taken from [2]) that we
consider throughout this paper, with objects G = {g1, ..., g4}, attributes M =
{m1, ..., m5}, and e.g. m2(g4) = 9.

A bicluster is given by a pair (A, B) with A ⊆ G and B ⊆ M . Intuitively, a
bicluster is represented by a rectangle of values, or sub-table (modulo line and
column permutations), see e.g. the bicluster ({g2, g3, g4}, {m3, m4}) highlighted
grey in Table 2.

Definition 1 (Bicluster). Given a numerical dataset (G, M, W, I), a bicluster
is a pair (A, B) with A ⊆ G and B ⊆ M .

In [16], several types of biclusters are introduced. The type of a bicluster (A, B)
depends on the relation between the values taken by attributes in B for objects in
A. In this paper, we consider constant biclusters (equality relation) and biclusters
of similar values (similarity relation) as defined in the next paragraphs.

A constant bicluster can be interpreted as a rectangle of identical values, and
is defined as follows.

Table 1. A numerical dataset

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 2. ({g2, g3, g4}, {m3, m4})
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7
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Table 3. A constant bicluster

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 4. A bicluster of similar values

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Definition 2 (Constant bicluster). Given a numerical dataset (G, M, W, I),
a constant bicluster is a bicluster (A, B) such that mi(gj) = mk(gl), ∀gj, gl ∈
A, ∀mi, mk ∈ B.

Since the number of possible biclusters in a numerical dataset can be very large,
the notion of maximality gives naturally rise to maximal constant biclusters, i.e.
“largest rectangles of identical values”.

Definition 3 (Maximal constant biclusters). Given a numerical dataset
(G, M, W, I), a constant bicluster (A, B) is maximal if it does not exist a constant
bicluster (E, F ) with either A ⊂ E or B ⊂ F .
In other terms, (A, B) is a maximal constant bicluster iff

– (A ∪ {g}, B) is not a constant bicluster ∀g ∈ G\A
– (A, B ∪ {m}) is not a constant bicluster ∀m ∈ M\B

Table 3 shows an example of maximal constant bicluster ({g1, g2, g3}, {m5}).
One should remark that ({g1, g2}, {m5}) is constant but not maximal. Note that
maximal constant biclusters taking values 1 in a 1/0 table are formal concepts.

The fact that constant biclusters correspond to sets of objects taking equal
values for same attributes is a too strong condition in real-world data. This may
lead to the well-known problem of pattern overwhelming. Instead of considering
equality, one may relax this condition and consider a similarity relation between
values. This idea was introduced in [2] for handling noise in a numerical dataset.
Two values w1, w2 ∈W are said to be similar if their difference does not exceed a
user-defined parameter θ. A similarity relation denoted by #θ is formally defined
by: w1 #θ w2 ⇐⇒ |w1 − w2| ≤ θ. According to this formalization of similarity,
a bicluster of similar values can be defined as a “generalization” of constant
biclusters.

Definition 4 (Bicluster of similar values). A bicluster (A, B) is a bicluster
of similar values if mi(gj) #θ mk(gl), ∀gj , gl ∈ A, ∀mi, mk ∈ B.

Definition 5 (Maximal biclusters of similar values). A bicluster of similar
values (A, B) is maximal if there does not exist a bicluster of similar values
(E, F ) with either A ⊂ E or B ⊂ F .

Table 4 shows an example of maximal bicluster of similar values ({g1, g2, g3},
{m1, m2, m3}) with θ = 1. Note that bicluster ({g1, g2}, {m1, m2}) fulfils the
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conditions of similarity but is not maximal. Obviously, constant biclusters are
biclusters of similar values when θ = 0.

In this paper we consider the problem of mining all maximal (i) constant
biclusters and (ii) biclusters of similar values from a numerical dataset. The
novelty here lies in the use of Formal Concept Analysis for a correct, complete
and non-redundant enumeration (without heuristics). Indeed, we show in the
following sections how to define a scaling to build formal contexts whose concepts
exactly correspond to the two types of biclusters. However, this leads to the
definition of several contexts whose preparation and mining may be inefficient.
Then, based on so-called interval pattern structures, we show how binarization
can be avoided, which results in reducing practical computational complexity.

2 Mining Biclusters by Means of Conceptual Scaling

In this section, we present two scaling procedures allowing to build formal con-
texts from which (i) constant biclusters and (ii) biclusters of similar values, can
be extracted within the existing FCA framework. Intuitively, scaling allows to
express bicluster searchspace under the form of binary tables, while the Galois
connection allows to extract maximal biclusters represented as concepts.

2.1 Constant Biclusters

A maximal constant bicluster can be interpreted as a maximal rectangle of iden-
tical values. Recall that formal concepts correspond to maximal rectangles of
1 values in binary tables. Accordingly, a maximal constant bicluster containing
values w ∈ W from a numerical dataset (G, M, W, I) corresponds to a concept
in a context Kw = (G, M, Iw) where (g, m) ∈ Iw ⇐⇒ m(g) = w. One should
naturally consider one formal context for each value w ∈ W , which results in a
context family KW defined as follows:

KW = {Kw = (G, M, Iw) | w ∈ W (m, g) ∈ Iw ⇐⇒ m(g) = w}

The procedure building the family KW from (G, M, W, I) involves one conceptual
scaling for each w ∈ W (actually nominal scalings related to each value w [5]).
Figure 1 gives Kw = (G, M, Iw) for w = 1 and w = 6. The collection of concepts
of each context Kw = (G, M, Iw) is denoted by B(G, M, Iw), or simply Bw.
Examples are given in Figure 1.

The two obvious propositions hold.

Proposition 1. Given a set of objects A ⊆ G and a set of attributes B ⊆ M ,
a concept (A, B) of Kw corresponds to a maximal constant bicluster (A, B) of
values w from numerical dataset (G, M, W, I).

Proposition 2. There is a one-to-one correspondence between the set of con-
cepts

⋃
w∈W Bw and the set of all maximal biclusters.
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w ∈ W Kw Bw Bicluster corresponding to
first concept on left list

... ... ... ...

1

m
1

m
2

m
3

m
4

m
5

g1 × ×
g2 × ×
g3 ×
g4

({g2, g3}, {m3})
({g2}, {m2, m3})
({g1}, {m1, m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

... ... ... ...

6

m
1

m
2

m
3

m
4

m
5

g1 ×
g2 ×
g3 ×
g4 ×

({g1, g2, g3}, {m5})
({g4}, {m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

... ... ... ...

Fig. 1. Extracting constant biclusters from the dataset of Table 1

Hence, an algorithm that constructs the set of concepts
⋃

w∈W Bw gives a
correct, complete and non redundant enumeration of all maximal constant bi-
clusters.

Figure 1 gives two examples of concepts and their corresponding bicluster
representation in the original numerical table.

2.2 Biclusters of Similar Values

The number of constant biclusters can be very large in real-world data, where
numerical attribute domains contain many different values. Moreover, it leads
to a huge number of artifacts, e.g. the maximal constant bicluster (A, B) =
({g4}, {m4}) is a rectangle of area 1, i.e. the product |A|×|B|. One should there-
fore relax the equality constraint on numerical values when performing scaling
with similarity relation #θ defined in the introduction. Intuitively, with θ = 1,
the previous example is not maximal anymore, whereas ({g3, g4}, {m4, m5}) is
maximal with area equal to 4. For that matter, one should extract rectangles
with pairwise similar values w.r.t #θ. However, this relation is reflexive and
symmetric but not transitive, hence a tolerance relation.

As related in [14], a tolerance relation T over an arbitrary set G, i.e. T ⊆ G×G,
can be represented by a formal context (G, G, T ). A formal concept of (G, G, T )
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Table 5. Formal context of relation θ over W = {0, 1, 2, 5, 6, 7, 8, 9} with θ = 1 (left).
Corresponding tolerance classes (middle). Renaming classes as the convex hull of their
elements (right).

1 0 1 2 6 7 8 9

0 × ×
1 × × ×
2 × ×
6 × ×
7 × × ×
8 × × ×
9 × ×

Classes of tolerance

{0, 1}
{1, 2}
{6, 7}
{7, 8}
{8, 9}

Renamed classes

[0, 1]
[1, 2]
[6, 7]
[7, 8]
[8, 9]

where intent is equal to extent corresponds to a class of tolerance, i.e., a maximal
subset of G such that all pairs of its elements are in relation T .

Going back to the tolerance relation #θ on a set of values W , tolerance classes
are maximal sets of pairwise similar values, corresponding to concepts (A, B) of
(W, W,#θ) such that A = B [11]. This is exactly what we need to characterize
maximal biclusters of similar values. More details on this process are given in
[11], while Table 5 shows initial context (W, W,#θ) and corresponding classes of
tolerance from the numerical dataset of Table 1.

Now that classes of tolerance, or maximal sets of pairwise similar values, are
characterized and computed, we can rename them for sake of readability and
use them for scaling the initial dataset from which maximal biclusters of similar
values can be extracted.

We choose to rename a class K ⊆ W as the convex hull of its elements, i.e.
the interval [ki, kj ] s.t. ki and kj are respectively smallest and largest values
of K w.r.t. natural order ≤ on numbers. Indeed, when |K| becomes large for
certain data, this new name is more concise. Moreover, any k ∈ [ki, kj ] respects
k #θ ki #θ kj .

Biclusters of similar values are a generalization of constant ones, i.e. with all
values included in interval [ki, kj ] for a given class of tolerance. We should now
also consider one formal context for each class of tolerance, hence a family of
contexts. Consider a numerical dataset (G, M, W, I), and a class of tolerance
from W which corresponds to the interval [ki, kj ]. The associated formal context
is given by:

(G, M, I[ki,kj ]) s.t. (g, m) ∈ I ⇔ m(g) ∈ [ki, kj ] and

(∃h1, h2 ∈ m′ s.t. m(h1) = ki and m(h2) = kj

or ∃n1, n2 ∈ g′ s.t. n1(g) = ki and n2(g) = kj)

First condition m(g) ∈ [ki, kj ] means that m(g) should be similar with all el-
ements of the current class of tolerance. The two other conditions come from
the fact that classes of tolerance are computed from the set W : since a bicluster
is represented by a rectangle in the numerical table, we should consider only
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Class of Formal contexta Concepts Bicluster corresponding to
tolerance first concept on left list

[0, 1]
m2 m3 m4

g1 ×
g2 × × ×

({g1, g2}, {m4})
({g2}, {m2, m3, m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[1, 2]

m1 m2 m3 m4

g1 × × × ×
g2 × × ×
g3 × × ×
g4 ×

({g1, g2, g3}, {m1, m2, m3})
({g1}, {m1, m2, m3, m4})
({g1, g2, g3, g4}, {m3})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[6, 7]

m4 m5

g1 ×
g2 ×
g3 × ×
g4 × ×

({g3, g4}, {m4, m5})
({g1, g2, g3, g4}, {m5})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[7, 8]
m1 m5

g4 × × ({g4}, {m1, m5})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[8, 9]
m1 m2

g4 × × ({g4}, {m1, m2})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

a Empty lines and columns are omitted.

Fig. 2. Extracting all maximal biclusters of similar values from Table 1

similar values in column (second condition) or dually lines (third condition) to
test whether a value belongs to a class of tolerance.

Consider the formal context K[ki,kj ] which corresponds to the class of toler-
ance [ki, kj ] and a concept (A, B) from this context. The following propositions
hold.

Proposition 3. (A, B) is a maximal bicluster of similar values.
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Proposition 4. There is a one-to-one correspondence between the set of con-
cepts from all formal contexts K[ki,kj ] and the set of all maximal biclusters of
similar values.

Thus, an algorithm computing the set of concepts from all formal contexts
K[ki,kj ] gives a correct, complete and non redundant enumeration of maximal
biclusters of similar values.

Figure 2 gives the formal context K[ki,kj ] for each class of tolerance [ki, kj ],
their respective concepts and bicluster representation in the initial numerical
Table 1.

3 Mining Biclusters from Pattern Concept Lattice

Until now, we presented how (constant) biclusters (of similar) values can be
extracted using standard FCA tools such as scaling and concept extraction al-
gorithms. Since resulting binary tables may be numerous and large (i.e. one for
each class of tolerance), we present in this section an approach based on pat-
tern structures. Pattern structures are introduced in [6] and can be thought as a
“generalization” of formal contexts to complex data from which a concept lattice
can be built without a priori scaling. We consider in this section only biclusters
of similar values, since being more general than constant ones and more useful
for real-world applications.

3.1 Pattern Structures

Formally, let G be a set (interpreted as a set of objects), let (D,�) be a meet-
semilattice (of potential object descriptions) and let δ : G −→ D be a mapping.
Then (G, D, δ) with D = (D,�) is called a pattern structure, and the set δ(G) :=
{δ(g) | g ∈ G} generates a complete subsemilattice (Dδ,�), of (D,�). Thus each
X ⊆ δ(G) has an infimum �X in (D,�) and (Dδ,�) is the set of these infima.
Each (Dδ,�) has both lower and upper bounds, resp. 0 and 1. Elements of D
are called patterns and are ordered by subsumption relation �: given c, d ∈ D
one has c � d ⇐⇒ c � d = c.
A pattern structure (G, D, δ) gives rise to the following derivation operators (·)�:

A� =
�

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d � δ(g)} for d ∈ D.

These operators form a Galois connection between the powerset of G and (D,�).
Pattern concepts of (G, D, δ) are pairs of the form (A, d), A ⊆ G, d ∈ D, such
that A� = d and A = d�. For a pattern concept (A, d) the component d is called
a pattern intent and is a description of all objects in A, called pattern extent.
Intuitively, (A, d) is a pattern concept if adding any element to A changes d
through (·)� operator and equivalently taking e ⊃ d changes A. Like in case of
formal contexts, for a pattern structure (G, D, δ) a pattern d ∈ D is called closed
if d�� = d and a set of objects A ⊆ G is called closed if A�� = A. Obviously,
pattern extents and intents are closed.
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3.2 Interval Pattern Structures

In [12], a numerical dataset (G, M, W, I) is represented by a so-called interval
pattern structure (G, (D,�), δ) where D is a set of interval vectors, the ith di-
mension giving an interval of values from W for attribute mi ∈ M . We denote
such vectors as interval patterns. In Table 1, the description of object g1 is the
interval pattern δ(g1) = 〈[1, 1], [2, 2], [2, 2], [1, 1], [6, 6]〉. Interval patterns can be
represented as |M |-hyperrectangles in Euclidean space R|M|, whose sides are
parallel to the coordinate axes.

Now we detail how interval patterns are ordered. Consider firstly a single
attribute m ∈ M , with value domain Wm ⊆ W . Elements of Wm can be or-
dered within a meet-semi-lattice making them potential object descriptions.
Recalling that any w ∈ Wm can be written as interval [w, w], the infimum �
of two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R is: [a1, b1] � [a2, b2] =
[min(a1, a2), max(b1, b2)], i.e. the largest interval containing them. Indeed, when
c and d are intervals, c � d ⇔ c � d = c holds:

[a1, b1] � [a2, b2] ⇔ [a1, b1] � [a2, b2] = [a1, b1]
⇔ [min(a1, a2), max(b1, b2)] = [a1, b1]
⇔ a1 ≤ a2 and b1 ≥ b2
⇔ [a1, b1] ⊇ [a2, b2].

As objects are described by several intervals, each one standing for a given
attribute, interval patterns have been introduced as p-dimensional vector of
intervals, with p = |M |. Given two interval patterns e = 〈[ai, bi]〉i∈[1,p] and
f = 〈[ci, di]〉i∈[1,p] their infimum � and induced ordering relation � are given
by:

e � f = 〈[ai, bi]〉i∈[1,p] � 〈[ci, di]〉i∈[1,p] e � f ⇔ 〈[ai, bi]〉i∈[1,p] � 〈[ci, di]〉i∈[1,p]
= 〈[ai, bi] � [ci, di]〉i∈[1,p] ⇔ [ai, bi] � [ci, di], ∀i ∈ [1, p]

This means that patterns with larger intervals are subsumed by patterns with
smaller ones. Hence, one can define a pattern structure (G, (D,�), δ) from a
numerical dataset (G, M, W, I), where (D,�) is a meet-semi-lattice of interval
patterns. This is deeply detailed in [12]. We illustrate here the Galois connection.

{g2, g3}� = δ(g2) � δ(g3)
= 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉

〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉� = {g ∈ G|〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉 � δ(g)}
= {g2, g3}

Hence ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉) is a pattern concept. The set of all
pattern concepts gives rise to a pattern concept lattice, see Figure 3 for our ex-
ample. Intuitively, (A1, d1) ≤ (A2, d2) means that corresponding hyperrectangle
of (A1, d1) is included in corresponding hyperrectangle of (A2, d2).
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Fig. 3. Pattern concept lattice of pattern structure from Table 1. 3 concepts are fully
described with respective pattern extent and intent.

3.3 Biclusters of Similar Values in Pattern Concepts

A pattern concept (A, d) of a numerical dataset (G, W, M, I) can be seen as
a bicluster (A, M) since it gives a range of value for each attribute m ∈M .
Bicluster representation of ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉) is given in
Table 6.

However, a pattern concept (A, d) is not necessarily a bicluster of similar val-
ues, for three reasons. First, d may contain intervals larger than θ, i.e. all values
in columns are not necessarily similar. Secondly, d may contain different intervals
whose values are not similar, i.e. all values in lines may not be similar. Finally,
if those conditions are respected, it is not sure that maximality of biclusters
holds. We show how to control these statements to extract maximal biclusters
of similar values from the pattern concept lattice.

First statement. Avoiding intervals of size larger than θ in a pattern intent d
means that a pattern concept will correspond to a rectangle for which each col-
umn has similar values. For that matter, consider a modification (G, (D∗,�), δ)
of the interval pattern structure defined in the previous subsection: the set D∗
consists of tuples, whose components are either intervals or the null element ∗.

Table 6. Interval pattern as bicluster

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 7. Introducing θ = 1

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7
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For two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R their infimum � is
defined as follows: [a1, b1] � [a2, b2] = [min(a1, a2), max(b1, b2)] if |max(b1, b2)−
min(a1, a2)| ≤ θ and ∗ otherwise. Moreover, ∗ � [a, b] = ∗ for any a, b ∈ R. Con-
sider that for d ∈ D, dm denotes the interval given for attribute m ∈ M . Now,
given two interval vectors c = 〈ci〉 and d = 〈di〉 their infimum is computed com-
ponentwise: c�d = 〈ci �di〉. Applying operators of the Galois connection on set
{g2, g3} derives the concept ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), while starting
with set {g1, g4} allows to derive concept ({g1, g2, g3, g4}, 〈∗, ∗, [1, 2], ∗, [6, 6]〉).
The resulting pattern concept lattice is given in Figure 4 and contains only 11
concepts compared to 16 when the operation � is not constrained with θ. Table 7
shows the bicluster representation of ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), i.e. a
rectangle for which values in each column are similar w.r.t. θ = 1. Note that one
should ignore attributes that take the value ∗ in pattern intent.

Second statement. From a pattern structure (G, (D∗,�), δ), we are able to
build a pattern concept lattice whose concepts corresponds to rectangles having
similar values in columns. We should therefore also consider similar values in
lines. Going back to concept ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), we remark
that ({g2, g3}, {m1, m2, m3}) and ({g2, g3}, {m5}) are biclusters of similar values
that can be built from the initial pattern concept. Indeed, the intervals describing
attributes m1, m2, and m3 and pairwise similar ([2, 2] #θ [1, 2] #θ [2, 2] with
θ = 1), while interval describing attribute m5 is similar with no others. We
should accordingly consider classes of tolerance between attribute descriptions
to extract biclusters of similar values. The similarity relation #θ is adapted for
intervals as follows: [a1, b1] #θ [a2, b2] ⇐⇒ max(b1, b2)−min(a1, a2) ≤ θ.

Proposition 5. Given a pattern concept (A, d), any pair (A, B) with B ⊆
M is a bicluster of similar values iff {dm}∀m∈B is a class of tolerance w.r.t.
relation #θ over the set {dm}∀m∈M .

Proof. Consider that (A, B) is not a bicluster of similar values: ∃g1, g2 ∈ A, and
∃m1, m2 ∈ B such that m1(g1) 
#θ m2(g2), a contradiction.

Third statement. By controlling the two first statements, we are able to extract
biclusters of similar values from the pattern concept lattice of (G, (D∗,�), δ). By
the properties of classes of tolerance making a class a maximal set of similar val-
ues, we know that biclusters are maximal in colums, i.e. no columns can be
added without violating the similarity relation. However, we are not sure that
biclusters are maximal in lines. Going back to previous example, i.e. ({g2, g3},
〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), the extracted biclusters ({g2, g3}, {m1, m2, m3}) and
({g2, g3}, {m5}) are not maximal. Indeed, we have ({g1, g2, g3}, {m1, m2, m3})
and ({g1, g2, g3}, {m5}) that are also biclusters of similar values. If such biclus-
ters are not maximal, this means that objects can be added in the extent A
while B remains the same set. Due to the generalization/specialization property
of concept lattices, such larger bicluster can be found in the direct upper neigh-
bours of concept ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), i.e. concept ({g1, g2, g3},
〈[1, 2], [1, 2], [1, 2], ∗, [6, 6]〉).
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Example. The Figure 4 gives the pattern concept lattice of (G, (D∗,�), δ) with
θ = 1. For each pattern intent, elements of each class of tolerance are either
underlined, crossed-off, or in bold. For a pattern concept (A, d), when a class
is underlined, or in bold, it means that (A, B), B being the set of attribute
corresponding to this class, is a maximal bicluster of similar values. If element of
the class are crossed-off, this means that (A, B) is not maximal, i.e (C, B) with
A ⊂ C can be characterized also in a direct upper concept. For example, take
concept ({g1, g2}, 〈[1, 2], [1, 2], [1, 2], [0, 1], [6, 6]〉). From this concept, according
to classes of tolerance, one can characterize the following biclusters of similar
values ({g1, g2}, {m1, m2, m3}), ({g1, g2}, {m4}) and ({g1, g2}, {m5}). However,
({g1, g2}, {m4}) is the one only that is maximal, i.e. that cannot be characterized
from upper pattern concepts with larger extents.

Hence, all biclusters of similar values can be computed from pattern concepts by
standard algorithms. These considerations lead to two dual ways of construct-
ing maximal biclusters of similar values as pattern concepts: bottom-up and
top-down.

⊥

({g1}, 〈1, 2, 2, 1,6〉) ({g2}, 〈2,1,1, 0,6〉) ({g3}, 〈 2,2,1,7,6〉) ({g4}, 〈8, 9,2,6,7 〉)

({g1, g2},

〈[1,2],[1,2],[1,2], [0, 1],6〉)

({g1, g3},

〈[1,2],2,[1,2], ∗,6〉)

({g2, g3},

〈 2,[1,2],1, ∗,6 〉

({g3, g4},

〈∗, ∗, [1,2], [6, 7], [6, 7]〉)

({g1, g2, g3},

〈[1, 2], [1, 2], [1, 2], ∗,6 〉)

({g1, g2, g3, g4},

〈∗, ∗, [1, 2], ∗, [6, 7]〉)

Fig. 4. Pattern concept lattice of pattern structure from Table 1 with θ = 1. When an
interval from a pattern intent has same left and right borders, a value is given instead
for sake of readability.
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4 Discussion and Conclusion

This paper focused on the problem of biclustering numerical data with formal
concept analysis. The goal was not to propose a new kind of bicluster, but rather
to argue that two existing types of biclusters can be extracted using FCA tech-
niques. For that matter, we proposed two methods producing equivalent results.
The first is based on conceptual scaling, while the second on interval pattern
structures. It is now expected to experiment these approaches, compare them
with other biclustering algorithms (e.g. from [2]) and investigate how to handle
other types of biclusters defined in [16]. We should also study the impact of the
variation of θ on the concept lattice granularity, or dually on the number of for-
mal contexts/concepts. Finally, we should examine how formal concept analysis
in fuzzy seetings can contribute to biclustering problems. Indeed, similarity and
tolerance relations are widely studied in such settings [1].

We discuss now our both methods.
Consider the method based on scaling. The strength of such approach is to

produce binary tables. Any FCA algorithm (discussed and compared in [15]), or
closed itemset algorithm (e.g. Charm [8]) can be used for extracting biclusters.
Moreover, since each context of the produced family is independent from the
others, a distributed computation is naturally possible: one core can be assigned
for each formal context. It also allows to mine other kinds of binary patterns.
For example, one can mine fault-tolerant patterns that would correspond to
quasi biclusters of similar values, i.e. accepting some exceptions, see e.g. [17].
Meanwhile, searching for frequent biclusters (i.e. involving a number of objects
higher than a user-defined threshold [18]) is straightforward. It rises also in-
teresting questions: what is the meaning of an association rule? of a minimal
generator?

The second method proposes to extract biclusters from a concept lattice,
providing an interesting ordered hierarchy of biclusters. Computing the pattern
concept lattice by adapting standard FCA algorithms such as CloseByOne is
efficient as experimented in [12], while this algorithm can be parallelized [13].
In [10], CloseByOne was adapted to mine frequent closed interval patterns and
their minimal generators. How this algorithm can be adapted for mining frequent
biclusters is an interesting perspective of research. The fact that biclusters can
be extracted from an ordered hierarchy of concepts make the pattern concept
lattice a good structure for user queries. For example, a biologist may be in-
terested in a particular set of genes for a given study. Accordingly, navigating
in the concept lattice helps him discovering the different biclusters in which
those genes occurs with other good candidates. We can describe such query
as extensional since it starts by given a set of objects. On another hand, the
approach based on scaling is more useful for so called intentional queries: the
biologist is interested in all biclusters with values in a given interval (or class
of tolerance) and accordingly only selects the formal context associated to this
class.
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Object Configuration Browsing in Relational
Databases

Jens Kötters

Monash University, Melbourne, Australia

Abstract. Conventional means of querying a database for relevant in-
formation require some degree of knowledge about the nature and the
structural representation of such information. The paper addresses the
case where sufficient knowledge is not readily available a priori. A method
for data exploration based on the refinement of graphs, which represent
summarized views of the underlying data, is proposed and illustrated by
a small example featuring relational data extracted from an Electronic
Health Record. The method is based on Formal Concept Analysis, ex-
tended to the case of several many-valued formal contexts, one for each
database table, with additional referential attributes.

1 Introduction

Imagine there is a database likely containing some information somebody is in-
terested in. In order to get the information, one has to know the specific question
that is answered by the information, and how to formulate this question as a
query in SQL or whatever query language is given. But there are cases where one
can start with a general question only, and where more specific questions depend
on the answer to previous questions; or where one merely wants an overview of
what information is available on a particular subject. A doctor making a general
enquiry about a patient would be an example for such a case.

This example is used throughout the paper to introduce a graph-based ap-
proach for browsing configurations of semantically related objects in a database.
The graphs, called Query Graphs, can be imagined as visualized queries in a
point-and-click interface, but they have an exact formal representation based
on Formal Concept Analysis (FCA) [12]. In [3], a system based on QuOnto[1]
is presented that allows a user to specify graphs which represent queries to a
database. Database access is mediated through an ontology encoded by a De-
scription Logic, which allows high-level queries to be formulated. The semantics
of these graphs is defined in a way analogous to that which is defined for query
graphs in Sect. 3. The difference of our approach is that we use FCA for nav-
igation, which provides a formal background for the task at hand, and allows
fine-grained control of query refinement options by using a lattice as the under-
lying data structure.

An early paper describing the use of FCA for navigation is [13], more ded-
icated approaches have been developed in the following (see e.g. [7],[9]). Some
FCA related literature deals with navigation in databases([20],[8],[2]) or other

P. Valtchev and R. Jäschke (Eds.): ICFCA 2011, LNAI 6628, pp. 151–166, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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relational data([11]), but usually these approaches define only a single set of ob-
jects to be browsed. However, a recent paper by Ferré[10] features an application
similar to the one proposed here (see Sect. 7). Further FCA papers dealing with
databases are [16],[17],[14],[18].

Huchard et al. write in [15]:

When processing [...] complex datasets, it is of prime importance for an
analysis tool to hold as much as possible to the initial format so that the
semantics is preserved and the interpretation of the final results eased.

Consequently, the authors of [15] define a Relational Context Family(RCF),
which describes interrelated objects of different types, and they describe an
extension of FCA on top of this description, which preserves the distinction
between objects of different types. The statement above appears to be motivated
by some application in data analysis, but the paper proceeds with a sample
application of UML model transformation – in any case, we believe that a similar
statement would also hold for the case of querying and navigation, which is the
subject of the paper at hand.

The Query Graphs presented in this paper represent descriptions of several
objects, each of a particular type (i.e. data table) represented by a vertex, which
are linked through object references (i.e. foreign keys) represented by directed
edges. This means that the schema of the database is reflected in the query
graphs. The database used for the example has six tables, shown in Fig. 1.
The tables are supposed to be the output of some Information Extraction (IE)
process, running on the following extract from the “CLEF corpus” presented
in [19]:

The patient has had a lymph node biopsy which shows melanoma in
his right groin. It is clearly secondaries from the melanoma on his right
second toe. Although his PET scan is normal, he does need a groin
dissection. We will perform a CT scan to look at the left pelvic side wall.

The stated purpose of the corpus is the training and evaluation of IE systems for
certain kinds of clinical text. Figure 2 shows a modified version of an extraction
schema presented in [19] that is used as a database schema here. The tables in
Fig. 1 have been created manually by the author, based on the schema and the
text extract.

In the following, standard FCA notation and terminology as covered in chapter
1 of the standard textbook [12] will be used. The reader is also supposed to
be familiar with the process of scaling a many-valued context. The definitions
of “Linked Context Family” and “Query Graph” in the following sections have
been chosen to resemble existing definitions of “Relational Context Family” [15],
“Abstract Concept Graph” [21] and “Basic Conceptual Graph” [5], so that it
is easier to recognize commonalities and differences. A more detailed discussion
follows in Sect.7.
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Fig. 1. Sample database

Fig. 2. Data schema from [19] (modified)

2 Linked Context Family

Let T be a set of typenames and Kt =: (Gt, Mt, It) a formal context for t ∈ T .
Let L be a set with two maps src : L �→ T and dest : L �→ T on it, such that
every λ ∈ L is a partial map from Gsrc(λ) to Gdest(λ). We shall call the elements
of L links, and the pair ((Kt)t∈T , L) a Linked Context Family(LCF).
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We will now see how the content of a database is translated into an LCF. The
elements of T represent the tables of the database, so for the database in Fig. 1,
the elements of T are: CONDITION, INTERVENTION, INVESTIGATION,
LOCUS, PATIENT and RESULT. We make the assuption that every table has
an attribute ”id” which serves as the primary key. For each table t ∈ T , the
contents of the id column are collected in a set Gt. We refer to the elements of
Gt as objects. In Fig. 1, the id column is always the leftmost column of a table.
Those entries which are objects are prefixed by a hash mark (#).

Another assumption is that foreign keys do not span multiple columns. A
foreign key always refers to a primary key in one of the tables. However, entries
in a foreign key column may be null. This allows to model each foreign key as
a partial function λ : Gs → Gt, and we set src(λ) = s and dest(λ) = t. The
case s = t is allowed. For example, the fifth column of the INVESTIGATION
table is the function “has target” with src(has target) = INVESTIGATION
and dest(has target) = LOCUS, defined by has target(#INV1) = #L1 and
has target(#INV3) = #L4 (the second row contains a null value).

So there are eight links in L, corresponding to the foreign keys in our database.
These are represented by the arrows in Fig. 2. Note that some arrows are labeled
by the same name, so it may be necessary to modify these names for disambigua-
tion (as for the functions “has finding” in the INVESTIGATION table).

To obtain the formal context Kt for a given t ∈ T , we remove the foreign key
columns from the table t and consider the remaining table as a many-valued
context with object set Gt from which a formal context can be derived by con-
ceptual or logical scaling, where SQL expressions could already be used as the
scale attributes (see [16] and [17]). In this paper, we use simple formulas as scale
attributes and translate them into SQL later (see Sect. 6).

Consider as an example the INVESTIGATION table. After removing the
foreign key columns, we obtain a context with the many-valued attributes ”class”
and ”date”. From each many-valued context, a derived context is obtained by
scaling, using one scale per attribute. Each scale attribute is expressed as a
formula in a single variable X , see the scale for the “class” attribute of the
INVESTIGATION table in Fig. 3. The scale encodes a hierarchy of concept
names, which can be seen in the line diagram in Fig. 3. For simplicity, we choose
nominal scales for all other many-valued attributes in the database. Of course,
in a real application it would be desirable that the other scales represent similar
hierarchies.

We obtain the attributes of the derived context Kt by substituting a(X)
for X in each scale attribute, for all many-valued attributes a of the corre-
sponding many-valued context. For an example, see the derived context for the
INVESTIGATION type in Fig. 4.

This shows by example how a relational database is translated into an LCF.
Note that there is generally no canonical translation of a database into an LCF
because the scales encode knowledge external to the database, and the construc-
tion of suitable scales for a given database may be a nontrivial effort.
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Fig. 4. Derived context for the INVESTIGATION type

3 Query Graphs

Let (V art)t∈T be a family of sufficiently large and mutually disjoint sets of
variables. Let V ar :=

⋃
t∈T V art. We say that a variable x ∈ V art has type t

and denote this by writing type(x) = t.
A query graph over a given LCF ((Kt)t∈T , L) is a triple (V, E, κ) where

1. V ⊆ V ar is a finite set of vertices,
2. E ⊆ V × L× V is a finite set of labeled edges (we say that an edge (x, λ, y)

goes from x to y and has label λ),
3. the graph is well-formed, i.e. type(x) = src(λ) and type(y) = dest(λ) for all

(x, λ, y) ∈ E,
4. κ is a map that assigns a formal concept to each vertex: κ(x) ∈ B(Ktype(x))

for all x ∈ V .

In addition we shall require that a query graph must be connected.
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Let us call the graph (T, {(src(λ), λ, dest(λ)) | λ ∈ L}) the schema graph
for given T and L. For our example, this is the graph depicted in Fig. 2. It
may be interesting to note that the well-formedness property of a query graph
means that type is a label-preserving homomorphism from the query graph to
the schema graph.

A realization of such a query graph is a map ρ : V �→
⋃

t∈T Gt with ρ(x) ∈
ext(κ(x)) for all v ∈ V , where ext(κ(x)) denotes the extent of the concept κ(x),
and furthermore λ(ρ(x)) = ρ(y) for all (x, λ, y) ∈ E. We denote the set of all
realizations of a query graph Q by P (Q).

A morphism preorder can be defined on the query graphs. In [5, pg.30-
31,35-38], such a preorder is described for basic conceptual graphs, and we will
adapt the definitions and restate the observations made there for the case of
query graphs. A map ϕ : V1 → V2 from a query graph Q1 =: (V1, E1, κ1)
to a query graph Q2 =: (V2, E2, κ2) is called a morphism of query graphs if
type(x) = type(ϕ(x)) and κ1(x) ≥ κ2(ϕ(x)) holds for all x ∈ V1, and if in addi-
tion (x, λ, y) ∈ E1 ⇒ (ϕ(x), λ, ϕ(y)) ∈ E2 holds for all x, y ∈ V1 and λ ∈ L. We
say that Q2 is a refinement of Q1, if such a morphism exists and denote this by
Q1 � Q2. We say that Q1 and Q2 are equivalent, in terms: Q1 ∼ Q2, if Q1 � Q2
and Q2 � Q1. Among all query graphs of the same equivalence class, there is
a unique graph – up to isomorphism – with a minimal number of vertices. In
[5], this graph is called irredundant. We shall use the term unretractive instead,
because query graphs form a category, and the vertex-minimal graphs of each
equivalence class are precisely those graphs which do not allow a retraction onto
another (nonisomorphic) graph. The unretractive graphs suggest themselves as
representatives of their equivalence classes, and we conclude that the morphism
preorder induces a partial order on the set of unretractive query graphs.

Let us finally observe that, if Q2 is a refinement of Q1 by virtue of a morphism
ϕ : Q1 → Q2, the implication ρ ∈ P (Q2) ⇒ ρ◦ϕ ∈ P (Q1) holds. This means that
every realization of Q2, restricted to the image of Q1 under ϕ, can be considered
a realization of Q1, as well. The condition can be strengthened as follows: We
shall call Q2 an extension of Q1 if there is a morphism ϕ : Q1 → Q2 and if in
addition, every realization in P (Q1) is of the form ρ ◦ϕ for some ρ ∈ P (Q2), i.e.
if every realization of Q1 can be extended to a realization of the refined graph
Q2. In the next section we will get back to the example and consider extensions
as part of the result for a query, because they add more information to the graph
without precluding any realizations.

4 Navigation Example

Consider the case where a doctor wants to know what information on a particular
patient xy is available. The corresponding query is represented by the graph Q1
in Fig. 5. The graph consists of a single vertex XP of type PATIENT (indices are
used here to indicate the type of variable). The formal concept κ(XP) is stated
in terms of its intent, which is the formula ”name(XP) = xy“ (the variable XP is
used instead of the placeholder variable X initially used, as in Fig. 4). The graph
Q2 in Fig. 5 is the result of the query Q1. The map ι : Q1 → Q2, ι(XP) = XP,
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Fig. 5. Navigation example

is a morphism, this verifies that Q2 is a refinement of Q1. It is obvious that Q1
has only a single realization r, given by r(XP) = #P1.

The graph Q2 has six realizations, which can not be read off directly from
the representation in Fig. 5. The objects written on top of the vertices are the
extents of the vertices, defined by

ext(x) := {ρ(x) | ρ ∈ P (Q)}

for an arbitrary vertex x of a query graph Q. But all realizations of P (Q2) map
XP to #P1, in particular there exists a ρ ∈ P (Q2) such that r = ρ ◦ ι. This
verifies that Q2 is an extension of Q1.

The most precise concept that describes the extent of a vertex x is given
by κ(x) := (ext(x)′′, ext(x)′), where ′ is the derivation operator of the context
Ktype(x). The intent of this concept is written below each vertex and, in the
case of Q2, provides the following information: There is exactly one patient with
name xy, which is the patient #P1. The patient is male, melanoma have been
found on the right side of his body, and three investigations are associated with
the patient.

There are two kinds of query refinements proposed by the system, and these
can be determined independently for each of the vertices. One kind of refinement
is a link in which some, but not all objects in a vertice’s extent participate. The
other kind is a refinement on the scale values, there is one set of refinements
for each of the scaled attributes. A look at the refinement terms for the XINV
vertex of Q2 reveals that targets and findings of some investigations are available;
furthermore, at least one investigation is scheduled, at least one investigation is
a scan and at least one investigation is a biopsy. The refinement term below
the XC vertex proposes a link to the investigation which led to the discovery of
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Fig. 6. Navigation example (continued)

the melanoma, and the refinement terms below the XL vertex suggest to have a
look at the groin or the second toe, and another investigation link is proposed.
Let us say the doctor wants to know more about the biopsy. Choosing this
refinement option leads to a query graph Q3 which is the upper query graph in
Fig. 6. Only the attributes which are new in Q3 are shown: we see that a biopsy
of the lymph node revealed a melanoma in the groin, and that a dissection of
the groin is scheduled. The doctor could maybe then go back to Q2, navigating
backwards through query history, and try a different refinement. There are two
links ”has finding“ that could be connected to the XINV vertex, connecting to
CONDITION objects and RESULT objects, respectively. In [19], the RESULT
type is described as ”the numeric or qualitative finding of an INVESTIGATION,
excluding CONDITION“. The doctor wants to see what results, other than the
melanoma, were obtained from investigations and now chooses the attribute
”has finding(XINV) = XR“ from the list of refinement options. The resulting
graph Q4 is the lower graph in Fig. 6. It says that there was just one investigation
producing a (negative) result, which was a PET scan.

5 Algorithm

The algorithm in Fig. 7 describes in more detail how a user query is processed
by the system. The function cl takes a query graph (V, E, κ) and the associated
LCF ((Kt)t∈T , L) as an input, and computes another query graph, the closure
of (V, E, κ), along with a set refs of refinement options. The vlist contains all
vertices to be processed, initially it contains all vertices of the graph (line �).
The refinement set is initialized as the empty set (line �).

Before the closure can be computed, we need the extent for each of the
vertices (line �). The algorithm is not explicit about how this is done, but a
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�������� ��	(V , E, κ)
((Kt)t∈T , L)��
 vlist := V �

� refs := ∅�

� ������� ext(x) ��� ��� x ∈ V �

� ���� ���������� ���������

� ����� vlist �= ∅
� ������ x ∈ vlist�

� ��� ���� λ ∈ L ���� src(λ) = type(x)
 �� 	�y ∈ V : (x, λ, y) ∈ E�

! �� 	∀g ∈ ext(x) : λ(g) �"�����

# ������ y ∈ V ardest(λ) \ V �

 V := V ∪ {y} � E := E ∪ {(x, λ, y)}�
� ext(y) := λ(ext(x))�
� vlist := vlist ∪ {y}�
� ���� �� 	∃g ∈ ext(x) : λ(g) �"�����

� ������ y ∈ V ardest(λ) \ V �

� refs := refs ∪ {′′λ(x) = y‘‘}�

� ��� ���� λ ∈ L ���� dest(λ) = type(x)
 �� 	�y ∈ V : (y, λ, x) ∈ E�

! �� 	∀g ∈ ext(x) : λ−1(g) �= ∅�
�# ������ y ∈ V arsrc(λ) \ V �

� V := V ∪ {y} � E := E ∪ {(y, λ, x)}�
�� ext(y) := λ−1(ext(x))�
�� vlist := vlist ∪ {y}�
�� ���� �� 	∃g ∈ ext(x) : λ−1(g) �= ∅�
�� ������ y ∈ V arsrc(λ) \ V �

�� refs := refs ∪ {′′λ(y) = x‘‘}�

�� ���� ���������� ���������

� vlist := vlist \ {x}�

�! ��� ���� x ∈ V
�# κ(x) := (ext(x)′′, ext(x)′)�
� ��� ���� ���$%�����& �����'��� a �� type(x)
�� ��� ���� C � κa(x)
�� �� 	ext(C) �= ∅�
�� refs := refs ∪ (int(C) \ int(κa(x)))�

Fig. 7. Computing the closure of a query graph

straightforward approach is to process the query graph as an SQL query (see
Sect. 6). The extent of each variable is the set of all distinct elements in the
corresponding column of the result table.

If a query graph Q contains vertices x and y with type(x) = type(y) and
ρ(x) = ρ(y) for all ρ ∈ P (Q), these should be contracted to a single vertex,



160 J. Kötters

and V and vlist modified accordingly (line �, also line ��). Note that this is a
stronger condition than ext(x) = ext(y). The situation does not occur during
the processing of Q1, but the cycle in the graph Q3 in Fig. 6 was obtained by
such a contraction.

In the while loop (lines ����), actual or proposed attachments of vertices to
the graph are computed. This is done separately for each x ∈ vlist. If λ ∈ L is
a link with src(λ) = type(x), then an outgoing edge (x, λ, y) to a new vertex y
is created (lines �	
��) if

1. the vertex x is not already connected to an outgoing λ-edge (line �),
2. for all g ∈ ext(x) there exists an object h with (g, h) ∈ λ (line �).

At this stage we assume that κ(y) is always the top concept for the respec-
tive type (no restrictions on the values of y). Then, by 2. , attachment of y
results in an extension of the previous graph, and the extent of y is given by
ext(y) = λ(ext(x)). An assignment in line �� is made accordingly. New vertices
are inserted into vlist for subsequent processing (line ��). Note that this im-
plies the possibility that the algorithm does not terminate; the output might
converge against an infinite graph. The while loop should be aborted when the
graph becomes too large.

If the above condition 2. does not hold, then no attachment to the graph is
made. However, if the condition

3. for some but not all g ∈ ext(x) there exists an object h with (g, h) ∈ λ (line
��),

holds, which also implies 1. , then the corresponding attachment is stored as a
refinement option (line ��).

The code on lines ����� repeats the previous steps for incoming edges: for
each λ ∈ L with dest(λ) = type(x), a new vertex y is attached via an incoming
edge (y, λ, x) if

1’. the vertex x is not already connected to an incoming λ-edge (line ��),
2’. for all g ∈ ext(x) there exists an object h with (h, g) ∈ λ (line ��),

whereas a refinement option is generated if

3’. for some but not all g ∈ ext(x) there exists an object h with (h, g) ∈ λ (line
��).

The inverse relation λ−1 is generally not a map, so the link λ may connect several
objects h to the same object g. However, as condition 1’. states, at most one
incoming λ-edge will be attached to x, and all objects h with λ(h) ∈ ext(g) are
summarized by a single vertex y (cf. line ��). More specific queries involving
several incoming λ-edges to x can be reached through user interaction, e.g. by
duplicating y and then refining each copy of y individually. For example, the
graph Q5 in Fig. 8 is another extension of query Q1; it is the most detailed
extension. But as we have seen in the navigation example, the algorithm outputs
Q2, which is a high-level representation of Q5. The three incoming edges on the
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Fig. 8. Maximal extension (labels omitted)

left side of XP in Q5 are summarized by a single incoming edge in Q2, and so
are the two incoming edges and their respective attachments to the right of XP.

The same considerations apply for outgoing edges if λ is a general relation
and not a map. This allows to deal with set-valued attributes in the database,
but alternatively a set-valued attribute can be eliminated by modeling it as a
database table.

Note that conditions 1. and 1’. imply that the graph attachments computed
by the algorithm can not be folded onto some other part of the graph. In par-
ticular, the closure of an unretractive graph is unretractive.

After the structure of the closure graph is established, the concept map κ
is computed (lines ��
�	). In the output, we can write next to each vertex its
intent ext(x)′ as a label. In lines �����, refinement terms are computed for
each vertex. The refinement terms for a vertex x could be chosen to describe
lower neighbor concepts of κ(x). For example, if κ(x) is the top concept of the
INVESTIGATION lattice in Fig. 9 (left), the terms ”class(x) ≤ biopsy” and
”class(x) ≤ scan” describe the two lower neighbor concepts. The example high-
lights a problem: If the doctor was potentially interested in what investigations
are scheduled, she would have no hint that there actually is a refinement term
”date(x) = scheduled” deeper in the lattice.

Fig. 9. Concept lattice for the INVESTIGATION type, decomposition
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Fig. 10. Line diagram of all closures of unretractive query graphs (upper half only)

A way to address this problem in FCA-based navigation is to compute the
refinement options separately for each many-valued attribute. In the INVESTI-
GATION example, ”class” and ”date” are the many-valued attributes. We de-
fine Ktype(x),a to be the context obtained from Ktype(x) by removing all columns
unrelated to the many-valued attribute a. So KINV,class has four columns and
KINV,date has one column (see Fig. 4). The corresponding lattices are shown in
Fig. 9 (right). We further define κa(x) := (ext(x)′′, ext(x)′), where ′ is the deriva-
tion operator of Ktype(x),a. With this approach, which is used in lines �����, a
refinement option for x describes a lower neighbor of some κa(x). This is how the
first three refinement options listed under the XP in Fig. 5 have been obtained.

Figure 10 has been included for reference. It shows the upper part of the partial
order of all unretractive query graphs for the given LCF. The topmost element
is supposed to be the empty graph. The bottom element is the graph from
Fig. 8. The lower graphs, which are not shown here, result from combinations of
branches attached to XP in the graphs above.
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6 Alternative Representations of Query Graphs

A query graph can be interpreted as a quantifier-free conjunctive formula in one or
more variables. The conjunctive terms are statements about attribute values and
follow a domain-specific syntax, e.g. the symbol ”≤” has been used to express a
hierarchy of class names. If some of the variables were existence quantified, the al-
gorithm in Sect. 5 could still be used for computing the closure (newly created ver-
tices are then existence quantified by default), but only a subset of the refinement
options would apply because a refinement must affect at least one free variable.
The morphism definition would have to be adapted, too.

The following statement shows by example how a query graph (in this case
Q2) can be translated into SQL:

SELECT t1.id as XINV, t2.id as XP, t3.id as XC, t4.id as XL

FROM INVESTIGATION as t1, PATIENT as t2, CONDITION as t3,
LOCATION as t4

WHERE t1.patient = t2.id AND t2.name = "xy" AND t2.sex = "male"
AND t3.patient = t2.id AND t3.has_location = t4.id
AND t3.class = "melanoma" AND t4.laterality = "right"

Table aliases are optional in this case, but they have to be used if two or more
vertices are associated with the same table. The example lacks full generality
because the exact form of ����-clauses depends on domain-specific syntax. A
conjunctive clause like ”class(x) ≤ scan” can be easily translated into a ����-
clause if the database contains a nested set representation of the hierarchy[4].

Query graphs can also be considered a subset of the graph-based query lan-
guage SPARQL. A query graph corresponds to a collection of triples of URIs
and literals. The expression of class hierarchies is natively supported by the
��������������� property. Concurrent research in this area will have to be
compared with the approach presented in this paper.

7 Related Work

In [15], an extension of Formal Concept Analysis is presented which bases on
conditions almost identical to those considered in this article. A Relational Con-
text Family is introduced as a pair (KR, AR) consisting of a set KR of many-
valued contexts and a set AR of many-to-many relations, modeled as set-valued
functions, between the object sets of contexts in KR. The contexts in an LCF
((Kt)t∈T , L) are binary, but this is not a significant difference because they are
also derived from many-valued contexts. Another difference between RCF and
LCF is that the elements of L model many-to-one relations. A many-to-many
relation can be decomposed into a one-to-many and a many-to-one relation by
introducing relation instances as an intermediary object type, and the defini-
tion of the LCF was motivated by the idea that such a decomposition is also



164 J. Kötters

semantically meaningful. This is the reason why the elements of L are refered to
as ”links“ rather than relations.

An algorithm is presented in [15] which transforms the RCF into a set of
lattices, one for each many-valued context, where relations between objects are
considered for the definition of concepts. The extents of the concepts defined
by Huchard et al. w.r.t. one of their methods of relational scaling are precisely
the extents ext(x) of variables x within tree-structured query graphs. This can
be shown by induction over the depth of trees with root x and edges in either
direction.

Query graphs do also resemble the abstract concept graphs which have been
defined by Wille in [21], but most later definitions of concept graphs incorporate
a particular realization in their definition, which leads to a different kind of order
on the graphs that is based on ”conceptual content” [22]. In [8], concept graphs
have been used for querying flight information.

In [6], SQL queries which may contain negation and subqueries are visually
represented by concept graphs. These graphs, which are called nested concept
graphs with cuts, have considerably greater expressive power than the query
graphs which have been presented here. They have not been considered for
browsing, however.

In [10], a browsing application is presented which seems to rely on the same
extension mechanism to introduce linked objects. A SPARQL-like syntax is used
which also allows to express negation and disjunction. However, querying is
menu-based and centers on a single object, whereas the application proposed
here uses a purely graph-based interface and has a theoretical underpinning
based on graph homomorphism which leads to a preorder on query graphs.

The (pre-)order on Basic Conceptual Graphs described in [5] is essentially the
same that is used for query graphs. The book also features generalization and
specialization operations with respect to this order.

8 Conclusion

An idea for exploring the content of a relational database based on an exten-
sion of FCA which considers links between objects of different types has been
presented. The advantage of this approach is that the conceptual structure de-
fined over an LCF reflects the schema of the database to a high degree, which
facilitates the integration of data modeling efforts into the general system. An
algorithm has been given which explains how a query graph can be refined to
a more informative, summarized view of the underlying data without exposing
too much information at once.

There are several mathematical questions which still need to be answered, e.g.
if the algorithm for query graph extension could possibly lead to infinite graphs
by means of structural self-replication. A prototype in Python is currently under
development which will implement the idea presented here and will allow a better
evaluation.
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Abstract. It is a well-known fact that complete tolerance relations on concept
lattices are in one-to-one correspondence with some superrelations (called block
relations) of the incidence relation of the underlying formal context. However,
sometimes it is useful to consider more general superrelations of the incidence
relation, leading to tolerance relations, not compatible with the lattice structure
of the concept lattice. In this paper, we give a characterization of such tolerances
and present a mathematical framework for factorizing any complete lattice by
such incompatible tolerances.

Keywords: Concept lattice, Tolerance, Completion, Factorization.

1 Introduction

In this paper, we study the possibilities of reducing the size of concept lattices by means
of factorization. It is a well-known fact [6] that for a formal context 〈X ,Y, I〉 and its
concept lattice B(X ,Y, I), complete tolerance relations on B(X ,Y, I) are in one-to-one
correspondence with so-called block relations J ⊇ I. As it is known from the theory
of lattices [5,6], factorization of complete lattices by complete tolerance relations has
the advantage that it preserves the completeness of the lattice. Moreover, in the case
of concept lattices, the factor lattice of B(X ,Y, I) by the complete tolerance relation
induced by a block relation J ⊇ I is isomorphic to the concept lattice B(X ,Y,J). These
results allow us to reduce the size of concept lattices by putting together formal con-
cepts, which are (as maximal rectangles in the data table) contained within a formal
concept of some augmented incidence relation.

However, the condition on a superrelation J ⊇ I to be a block relation is sometimes
too limiting. For example, in [4] an interesting and natural method is introduced to re-
duce the size of a concept lattice by using an equivalence relation on the set of attributes.
However, such an equivalence induces an equivalence on the concept lattice, which is
not a congruence.

Main results of this paper are the following. We formulate the problem of the min-
imal completion of an ordered set endowed with a tolerance relation and solve this
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problem by identifying ordered sets with tolerance with appropriate fuzzy ordered sets
and then performing the well-known Dedekind-MacNeille completion of fuzzy ordered
sets. Then we characterize all tolerance relations on concept lattices which are induced
by superrelations of the incidence relation and show that factorization of concept lat-
tices by such tolerances consists of two steps: a completion of the concept lattice with
the tolerance and factorization of the resulting lattice by the completion of the tolerance
(which is now a complete tolerance).

Due to limited space, we abbreviate, resp. omit, some proofs.

2 Preliminaries from Lattice Theory and Formal Concept
Analysis

In this section, we briefly recall basic facts on factorization of complete lattices and
Formal Concept Analysis (FCA). Details can be found in [6].

Recall that a tolerance on a set X is a relation ∼ which is reflexive and symmetric.
Each tolerance induces a covering of X , called the factor (quotient) set. This covering
consists of all maximal blocks of the tolerance, i.e., maximal (with respect to set inclu-
sion) subsets B⊆ X such that for any a,b∈ B it holds a∼ b. The factor set of X induced
by a tolerance ∼ is denoted X/∼. Note that X/∼ is a covering of X , but need not be
a partition. X/∼ is a partition of X if and only if ∼ is transitive (hence an equivalence
relation).

A complete tolerance relation on a complete lattice L = 〈L,∧,∨,0,1〉 is a tolerance
which preserves suprema and infima. More precisely, a tolerance∼ on L is complete if
from a j ∼ b j for all j ∈ J it follows

∨
j∈J a j ∼

∨
j∈J b j and

∧
j∈J a j ∼

∧
j∈J b j (J is an

arbitrary index set).
For a complete tolerance∼ on L and a ∈ L we denote

a∼ =
∨{b ∈ L | a∼ b}, a∼ =

∧{b ∈ L | a∼ b}, (1)

[a]∼ = [a∼,(a∼)∼], [a]∼ = [(a∼)∼,a∼] (2)

([a1,a2] denotes the interval {b ∈ L | a1 ≤ b≤ a2}).
The equations (2) describe all maximal blocks of∼ [5,12]: it holds L/∼= {[a]∼ | a∈

L}= {[a]∼ | a ∈ L}.
An ordering on the set L/∼ is introduced using suprema of maximal blocks and can

be equivalently introduced using infima. For blocks B1,B2 ∈ L/∼ we set

B1 ≤ B2 iff
∨

B1 ≤
∨

B2
(
iff

∧
B1 ≤

∧
B2

)
. (3)

The set L/∼ together with this ordering is a complete lattice, which is denoted by L/∼.

Formal Concept Analysis has been introduced in [11], the basic reference is [6].
A formal context is a triple 〈X ,Y, I〉 where X is a set of objects, Y a set of attributes and
I ⊆ X×Y a binary relation between X and Y . For 〈x,y〉 ∈ I it is said “The object x has
the attribute y”.
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For subsets A⊆ X and B⊆ Y we set

A↑I = {y ∈ Y | for each x ∈ A it holds 〈x,y〉 ∈ I},
B↓I = {x ∈ X | for each y ∈ B it holds 〈x,y〉 ∈ I}.

If A↑I = B and B↓I = A, then the pair 〈A,B〉 is called a formal concept of 〈X ,Y, I〉. The
set A is called the extent of 〈A,B〉, the set B the intent of 〈A,B〉.

We write ↑ (resp. ↓) instead of ↑I (resp. ↓I ) when I is obvious.
A partial order ≤ on the set B(X ,Y, I) of all formal concepts of 〈X ,Y, I〉 is defined

by
〈A1,B1〉 ≤ 〈A2,B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

B(X ,Y, I) together with ≤ is a complete lattice and is called the concept lattice of
〈X ,Y, I〉.

3 Fuzzy Logic and Fuzzy Ordered Sets

In this section, we introduce briefly basic notions of fuzzy logic and fuzzy ordered sets
as needed in the paper. The reader can refer to [3] for details. Note that we use these
notions (and Formal Concept Analysis in fuzzy setting, introduced in the next section)
merely as a tool; all the main results of this paper belong to classical (non-fuzzy) logic
and classical FCA.

As the structure of truth degrees, we use complete residuated lattices. A complete
residuated lattice is an algebra L = 〈L,∧,∨,⊗,→,0,1〉, where 〈L,∧,∨,0,1〉 is a com-
plete lattice with the least element 0 and the greatest element 1; 〈L,⊗,1〉 is a commuta-
tive monoid (i.e., ⊗ is commutative, associative, and a⊗1 = 1⊗a = a for each a ∈ L);
⊗ (product) and → (residuum) satisfy the so-called adjointness property: a⊗b ≤ c iff
a≤ b→ c for each a,b,c∈ L (the order≤ on L is defined as usual by a≤ b iff a∧b = a).
Elements of L are called truth degrees.⊗ and → are truth functions (interpretations) of
“fuzzy conjunction” and “fuzzy implication”.

The biresiduum is a binary operation ↔ on L defined by a ↔ b = (a → b)∧(b → a).
For an integer n > 0, the n-th power an of a ∈ L is defined by a1 = a, an+1 = an⊗a.

We also set for a > 0, a0 = 1 and for a < 1, a∞ = 0.
A common choice of L is a structure with L = [0,1] (unit interval), ∧ and ∨ being

minimum and maximum,⊗ being a left-continuous t-norm with the corresponding →.
Three most important pairs of adjoint operations on the unit interval are:

Łukasiewicz:
a⊗b = max(a + b−1,0),

a → b = min(1−a + b,1),
(4)

Gödel:
a⊗b = min(a,b),

a → b =
{

1 if a≤ b,
b otherwise,

(5)

Goguen:
a⊗b = a ·b,

a → b =
{

1 if a≤ b,
b
a otherwise.

(6)
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Complete residuated lattices on [0,1] given by (4), (5), and (6) are called the standard
Łukasiewicz, Gödel, Goguen (product) algebras, respectively. A special case of a com-
plete residuated lattice is also the two-element Boolean algebra 2 = 〈{0,1},∧,∨,⊗,→,
0,1〉, which is the structure of truth degrees of classical logic.

In this paper, we use basic properties of residuated lattices as summarized, for exam-
ple, in [3].

Any element e ∈ L defines a complete tolerance relation ∼e on L by

a∼e b iff e≤ a ↔ b.

In [9] a structure of complete residuated lattice on the factor set L/e is introduced by
setting for any B1,B2 ∈ L/e,

B1⊗B2 =
[∨

B1⊗
∨

B2

]
∼e

, (7)

B1 → B2 =
[∨

B1 →
∨

B2

]
∼e

. (8)

Now the set L/e, together with elements 0,1 ∈ L/e and operations ∧,∨ given by the
factor lattice structure, and together with operations ⊗,→, introduced in (7) and (8), is
a complete residuated lattice, which is denoted by L/e.

An L-set (a fuzzy set) A in universe X is a mapping A : X → L. Values A(x) ∈ L are
interpreted as “the degree to which x belongs to A”. The set of all L-sets in universe X
is denoted by LX .

For L-sets A,B ∈ LX , put

S(A,B) =
∧
x∈X

A(x) → B(x), (9)

A≈X B =
∧
x∈X

A(x) ↔ B(x). (10)

S(A,B) and A ≈X B are called the degree of subsethood of A in B and the degree of
equality of A and B, respectively.

For L = 2 (the two-element Boolean algebra), L-sets can be identified with classical
sets by identifying sets with their characteristic functions.

A binary L-relation between sets X, Y is an L-set R ∈ LX×Y , where R(x,y) is inter-
preted as the degree to which x and y are in R. L-relations are often written using infix
notation as in xRy ∈ L. A binary L-relation R : X×X → L is called a binary L-relation
on the set X .

A binary L-relation R on a set X is called reflexive if R(x,x) = 1 for any x ∈ X ,
symmetric if R(x,y) = R(y,x) for any x,y ∈ X , crisply antisymmetric if from R(x,y) =
R(y,x) = 1 it follows x = y for any x,y∈X , and transitive if R(x,y)⊗R(y,z)≤R(x,z) for
any x,y,z ∈ X . R is called an L-equivalence if it is reflexive, symmetric and transitive.
If, moreover, for any x,y ∈ X from R(x,y) = 1 it follows x = y, then R is called an
L-equality on X . L-equalities are often denoted by ≈. The similarity ≈X of L-sets,
introduced before, is an L-equality on LX .

Let ∼ be an L-equivalence on X , R an L-relation on X . We say that R is compatible
with ∼ if the following condition holds for any x,x′,y,y′ ∈ X :

R(x,y)⊗ (x∼ x′)⊗ (y∼ y′)≤ R(x′,y′).
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For an L-set A∈ LX and a∈ L, the a-cut of A is a crisp subset aA⊆ X such that x∈ aA iff
a ≤ A(x). This definition applies also to binary L-relations, whose a-cuts are classical
(crisp) binary relations.

An L-order on a set V with L-equality relation≈ [1,3] is a binary L-relation(which
is compatible with ≈, reflexive, transitive and satisfies (v ( w)∧ (w ( v) ≤ v ≈ w for
any v,w ∈ V (antisymmetry). If ( is an L-order on V with L-equality ≈, then the tuple
V = 〈〈V,≈〉,(〉 is called an L-ordered set. An immediate consequence of the definition
is that for any v,w ∈V it holds

v≈ w = (v( w)∧ (w( v). (11)

For any reflexive, crisply antisymmetric, and transitive L-relation ( on a set V, (11)
defines an L-equality ≈ on V such that 〈〈V,≈〉,(〉 is an L-ordered set.

For two L-ordered sets V = 〈〈V,≈V 〉,(V 〉 and W = 〈〈W,≈W 〉,(W 〉, a mapping F :
V →W is called an embedding of V into W, if it satisfies

(v1 ( v2) = (F(v1)( F(v2)),

for any v1,v2 ∈ V . F is an isomorphism from V to W, if it is bijective and both F and
F−1 are embeddings. V and W are called isomorphic, if there exists an isomorphism
from V to W.

For an L-ordered set V = 〈〈V,≈〉,(〉 and an L-set U ∈ LV we define L-sets U U ,
LU ∈ LV by

LU(v) =
∧

w∈V

U(w) → (v( w),

U U(v) =
∧

w∈V

U(w) → (w( v).

LU (resp. U U) is called the lower cone (resp. the upper cone) of U .
For any L-set W ∈ LV there exists at most one element v ∈ V such that LW (v)∧

U (LW )(v) = 1 (resp. U W ∧L (U W )(v) = 1) [1,3]. If there is such an element, we
call it the infimum of W (resp. the supremum of W ) and denote infW (resp. supW );
otherwise we say, that the infimum (resp. supremum) does not exist. An L-ordered set
V = 〈〈V,≈〉,(〉 is called completely lattice L-ordered, if for any U ∈ LV , both infU
and supU exist.

For a completely lattice L-ordered set V = 〈〈V,≈〉,(〉, an L-set U ∈ LV is said to
be infimum-dense, if for any v ∈ V there exists an L-set W ∈ LV such that W ⊆U and
v = infW . Similarly, U is called supremum-dense, if for any v ∈V there exists an L-set
W ∈ LV such that W ⊆U and v = supW .

Lower and upper cones can be used for constructing the so called Dedekind-Mac-
Neille completion of an L-ordered set [1,3]. The construction is a generalization of the
well-known construction from ordered set theory and goes as follows. For an L-ordered
set U = 〈〈U,≈U〉,(U〉we set V = 〈〈V,≈V〉,(V〉, where V = {〈A,B〉 ∈ LU×LU |U A =
B and L B = A}, 〈A1,B1〉 ≈V 〈A2,B2〉 = A1 ≈U A2, 〈A1,B1〉 (V 〈A2,B2〉 = S(A1,A2).
Further we define a mapping f : U →V by setting f (u) = 〈L {u},U {u}〉.

The main result is that V is a completely lattice L-ordered set, f is an embedding
of L-ordered sets and for any other completely lattice L-ordered set V′ and embedding
f ′ : U → V′ there exists an embedding h : V → V′ such that f ′ = h ◦ f .
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4 Formal Concept Analysis in Fuzzy Setting

In this section, we introduce the basic facts from Formal Concept Analysis in fuzzy
setting. The reader can refer to [3] for details. Some more recent results can be found
in [8,9].

By a formal L-context we understand the triple 〈X ,Y, I〉, where X and Y are sets and I
is an L-relation between X and Y , I : X×Y → L. The sets X and Y are interpreted as sets
of objects, resp. attributes, and for any x ∈ X , y ∈ Y the value I(x,y) ∈ L is interpreted
as the degree to which the object x has the attribute y.

For any L-set A ∈ LX of objects we define an L-set A↑ ∈ LY of attributes by

A↑(y) =
∧
x∈X

A(x) → I(x,y). (12)

Similarly, for any L-set B ∈ LY of attributes we define an L-set B↓ of objects by

B↓(x) =
∧
y∈Y

B(y) → I(x,y). (13)

The L-set A↑ is interpreted as the L-set of all attributes shared by objects from A. Simi-
larly, the L-set B↓ is interpreted as the L-set of all objects having the attributes from B
in common.

An L-formal concept of a formal L-context 〈X ,Y, I〉 is a pair 〈A,B〉 ∈ LX ×LY such
that A↑ = B and B↓ = A. A is called the extent, B the intent of 〈A,B〉. The set of all formal
concepts of 〈X ,Y, I〉 is denoted B(X ,Y, I) and called the L-concept lattice of 〈X ,Y, I〉.

For any two formal concepts 〈A1,B1〉,〈A2,B2〉 ∈B(X ,Y, I) we set

(〈A1,B1〉 ≈ 〈A2,B2〉) = (A1 ≈X A2), (14)

(〈A1,B1〉 ( 〈A2,B2〉) = S(A1,A2). (15)

≈ is an L-equality on B(X ,Y, I) and ( is an L-order on 〈B(X ,Y, I),≈〉.
Note that the notions of (classical) formal context, formal concept and concept lattice

represent special cases of the notions introduced here for L equal to the two-element
Boolean algebra 2. To distinguish between classical and fuzzy notions, we always use
the prefix “L-” for fuzzy formal contexts, formal concepts and concept lattices.

The following theorem represents a basic result of Formal Concept Analysis in fuzzy
setting. It first appeared in [1], our version is from [8].

Theorem 1 (Main theorem of fuzzy concept lattices). 1. B(X ,Y, I) together with the
L-order ( is a completely lattice L-ordered set.

2. A completely lattice L-ordered set V = 〈〈V,≈〉,(〉 is isomorphic to an L-concept
lattice B(X ,Y, I), if and only if there are mappings γ : X →V and μ : Y →V such that
γ(X) is supremum-dense in V, μ(Y ) is infimum-dense in V and for any x ∈ X, y ∈ Y it
holds

I(x,y) = γ(x)( μ(y). (16)
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In [2], a method of reducing the size of fuzzy concept lattices by factorization is in-
troduced. For any user-chosen threshold e ∈ L, the e-cut e≈ of the L-equality ≈ on
B(X ,Y, I) is a complete tolerance. Thus, it is possible to use the method introduced in
[5,12] and construct the factor lattice B(X ,Y, I)/e≈, which is also denoted simply by
B(X ,Y, I)/e. The following result has been proved in [9]:

Theorem 2. B(X ,Y, I)/e is isomorphic to B(X ,Y, [I]e) where the L-relation [I]e : X×
Y → L/e is defined by [I]e(x,y) = [I(x,y)]∼e .

5 Posets with Tolerance

A partially ordered set with tolerance (or, simply, a poset with tolerance) is a structure
U = 〈U,≤U,∼U〉 where 〈U,≤U〉 is a partially ordered set and ∼U is a tolerance on U .
U is called a poset with equivalence, if ∼U is an equivalence.

We usually omit the subscript in ≤U and ∼U and denote the order resp. tolerance of
U by ≤ resp.∼.

Posets with tolerance can be depicted by Hasse diagrams with dashed ovals, denoting
maximal blocks of the tolerance∼ (see some figures below).

When working with the notions introduced below, we sometimes consider the set of
all nonnegative integers together with a unique value ∞, where we set n < ∞ for any
integer n.

For any elements u1,u2 of a poset with tolerance U we set u1 ≤0
U u2 iff u1 ≤ u2

and for any integer n > 0 we set u1 ≤n
U u2 iff there exist elements v1,v2 ∈U such that

u1 ≤n−1
U v1, v1 ∼ v2, and v2 ≤ u2. Finally we set u1 ≤∞

U u2 for any u1,u2 ∈U .
As an example, in Fig. 1 a situation where u1 ≤2

U u2 is depicted.
We say that the tolerance∼ satisfies the diagonal property, if the following holds for

any u1,u2,u3, u4,v1,v2 ∈U :

If u1 ≥ v1 ≥ u3, u2 ≥ v2 ≥ u4, u1 ∼ u4, and u2 ∼ u3, then v1 ∼ v2.

If for a poset with tolerance U = 〈U,≤,∼〉 the tolerance ∼ satisfies the diagonal prop-
erty, then we also say that U satisfies this property.

The diagonal property resembles the well-known situation from basic geometry where
all segments inside any rectangle are at most as long as the diagonals (see Fig. 2). Hence
the name “diagonal property”.

The diagonal property can be equivalently formulated using the above relation ≤1
∼

as follows. For any v1,v2 ∈U from v1 ≤1
∼ v2 and v2 ≤1

∼ v1 it follows v1 ∼ v2.

u1

u2

Fig. 1. u1 ≤2
U u2
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u1 u2

u3 u4

v1

v2

Fig. 2. The diagonal property: if elements in dashed ovals are related, then those in the dotted one
are also related

We say that the tolerance ∼ satisfies the strong diagonal property, if for any integer
n > 0 from v1 ≤n

∼ v2 and v2 ≤n
∼ v1 it follows v1 ∼ v2.

For k ∈ {0,1,2, . . .} ∪ {∞}, a poset with tolerance U = 〈U,≤,∼〉 is said to be
k-complete, if it satisfies the following conditions:

1. 〈U,≤〉 is a complete lattice,
2. ∼ is a complete tolerance on 〈U,≤〉,
3. ∼k = U×U .

If k = ∞, then Condition 3 is trivially satisfied. In this case, U is also called simply
complete. Note that the motivation for the case k < ∞ is that it allows us to formulate
and to prove main results of this paper. In the light of these results, this case seems to
be quite appropriate.

Condition 3 can be equivalently reformulated as follows.

3a. If u1 (resp. u0) is the greatest (resp. the least) element of U , then u1 ∼k u0.

For k ∈ {1,2, . . .}∪{∞}, a mapping f : U → V of two posets with tolerance is called
a k-embedding, if for any u1,u2 ∈U and for any integer n satisfying 0≤ n < k it holds
u1 ≤n

U u2 iff f (u1)≤n
V f (u2).

A k-completion of a poset with tolerance (resp. equivalence) U is an k-embedding
f : U → V where V is a k-complete poset with tolerance (resp. equivalence). The k-
completion f : U → V is called minimal, if for any other k-completion f ′ : U → V′ there
exists an k-embedding h : V → V′ such that f ′ = h ◦ f . For k = ∞, the k-completion of
U is called simply completion.

The notion of a completion of a poset with tolerance seems to be new. Up to now,
only various types of completions of ordered algebraic structures with operations have
been studied [7].

6 Completions of Posets with Tolerance

Our goal in this section is to construct to a given poset with tolerance its minimal
k-completion. We achieve this by identifying posets with tolerance with some fuzzy or-
dered sets and then performing the fuzzy version of the classical Dedekind-MacNeille
completion of ordered sets.
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We use basic notions from the theory of fuzzy ordered sets, as introduced in Sec.
3. However, we restrict ourselves only to three types of residuated lattices, namely the
finite Łukasiewicz chain, three-element Gödel chain and countable Goguen chain. In
this and the subsequent sections, by residuated lattice L we always mean a residuated
lattice of one of these three types.

For a residuated lattice L = 〈L,∧,∨,⊗,→,0,1〉 we say that L is a finite Łukasiewicz
chain, if L = {a0,a1, . . . ,an}, n > 1, numbers 0 = a0 < · · ·< an = 1 are equidistant and
⊗ and → are given by (4); L is the three-element Gödel chain, if L = {0,0.5,1} and
⊗ and → are given by (5); and L is the countable Goguen chain, if L = {2−n | n =
0,1,2, . . .}∪{0} and ⊗ and → are given by (6).

For each of these structures there is an element g < 1 such that for any a < 1 it holds
a ≤ g. For the finite Łukasiewicz chain we have g = an−1 and for the three-element
Gödel chain as well as the countable Goguen chain we have g = 0.5. It holds g2 < g
for the finite Łukasiewicz chain and the countable Goguen chain, while for the three-
element Gödel chain we have g2 = g. For the finite Łukasiewicz chain it holds gn = 0
while for the other two structures gn > 0 for any integer n≥ 0.

Let U = 〈U,≤,∼〉 be a poset with tolerance. An L-ordered set 〈〈U,≈〉,(〉 is called
an L-extension of U, if the following two conditions are satisfied:

1. 1(=≤,
2. g≈=∼.

〈〈U,≈〉,(〉 is called the minimal L-extension of U, if for any other L-extension 〈〈U,≈′
〉,(′〉 of U it holds (⊆(′. The minimal L-extension of U is denoted UL.

Note that using the above conditions 1 and 2, U can be easily reconstructed from
its L-extension: U = 〈U,1(,g≈〉. Thus, the minimal L-extension UL retains all the
information about U. For an L-ordered set Ū = 〈〈U,≈〉,(〉, the poset with tolerance
〈U,1(,g≈〉 is called the g-reduction of Ū.

Lemma 1. The minimal L-extension UL = 〈〈U,≈〉,(〉 of U exists iff there is at least
one L-extension of U. In such a case, if {〈〈U,≈ j〉,( j〉 | j ∈ J} is the (non-empty) set
of all L-extensions of U then

(=
⋂
j∈J

( j.

Lemma 2. If g2 < g, then UL exists iff U satisfies the diagonal property. If g2 = g, then
UL exists iff U satisfies the strong diagonal property. In both cases, for any u1,u2 ∈U it
holds u1( u2 = gn where n is the least element of {0,1,2, . . .}∪{∞} such that u1≤n

U u2.

Proof. Suppose UL exists and take u1,u2 ∈ U such that u1 ≤1
U u2 and u2 ≤1

U u1. We
have by definition of ≤1

U, (11), and transitivity of (, that u1 ( u2 ≥ g and u2 ( u1 ≥ g,
and by antisymmetry of (, u1 ≈ u2 ≥ g. Thus, u1 ∼ u2. This shows that U satisfies the
diagonal property.

Now suppose, in addition, that g2 = g. Then for any u1,u2 ∈U such that u1 ≤k
U u2

and u2 ≤k
U u1 we have by definition of≤1

U, (11), and transitivity of(, u1 ( u2 ≥ gk = g
and u2 ( u1 ≥ gk = g, concluding again that u1 ∼ u2, which proves that U satisfies the
strong diagonal property.
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To prove the opposite implication, we first set for any u1,u2 ∈U , u1 ( u2 = gn where
n is the least element of {0,1,2, . . .} ∪ {∞} such that u1 ≤n

U u2. We obtain a binary
L-relation ( on U , which is reflexive, crisply antisymmetric and transitive. Indeed,
reflexivity and crisp antisymmetry follow directly from the fact that u1 ( u2 = 1 iff
u1 ≤ u2. To prove transitivity, let u1,u2,u3 ∈U and n1 (resp. n2) be the least element
of {0,1,2, . . .}∪{∞} such that u1 ≤n1

U u2 (resp. u2 ≤n2
U u3). We have (u1 ( u2)⊗ (u2 (

u3) = gn1⊗gn2 = gn1+n2 . By definition, u1 ≤n1+n2
U u3, which proves transitivity.

Let ≈ be an L-relation on U defined by (11). 〈〈U,≈〉,(〉 is an L-ordered set. We
shall show that g≈ = ∼. Let u1 ≈ u2 ≥ g. Then there exists an integer k ≥ 1 such that
gk = g, u1 ≤k

U u2 and u2 ≤k
U u1. If g2 < g, then we can set k = 1 and by the diagonal

property, u1 ∼ u2. If g2 = g, then we use the strong diagonal property and obtain the
same result. This shows g≈ ⊆ ∼. Conversely, if u1 ∼ u2, then u1 ≤1

U u2 and u2 ≤1
U u1,

which, by definition of ( and ≈, means u1 ≈ u2 ≥ g.

Theorem 3. Let U, V be two posets with tolerance, UL, VL their L-extensions, respec-
tively, f : U →V a mapping. Further let k be the least element of {1,2, . . .}∪{∞} such
that gk = 0. Then f is a k-embedding of U into V, if and only if it is an embedding of
UL into VL.

Proof. Suppose f is a k-embedding of U into V. By Lemma 2, for u1,u2 ∈U it holds
u1 (U u2 = gm where m is the least element of {0,1,2, . . .}∪{∞} such that u1 ≤m

U u2.
Since f is a k-embedding then for any n < k we have f (u1) ≤n

V f (u2) iff n ≥ m. Thus,
if m < k, then f (u1)(V f (u2) = gm. If m≥ k, then u1 (U u2 = 0 and there is no n < k
such that f (u1)≤n

V f (u2). From definition of (V we obtain f (u1)(V f (u2)≤ gk = 0.
To prove the opposite, we suppose that f is an embedding of UL into VL. We need to

show that for any integer n satisfying 0 ≤ n < k it holds u1 ≤n
U u2, iff f (u1)≤n

V f (u2).
Since gn > 0 then u1 ≤n

U u2 (resp. f (u1)≤n
V f (u2)) is equivalent to u1 (U u2≥ gn (resp.

f (u1)(V f (u2)≥ gn). Thus, (u1 (U u2) = ( f (u1)(V f (u2)).

Theorem 4. If k is the least element of {1,2, . . .} ∪ {∞} such that gk = 0, then any
poset with tolerance U is k-complete, if and only if UL exists and is a completely lattice
L-ordered set.

Proof. Let 〈U,≤〉 be a complete lattice and∼ a complete tolerance. First we shall show
that U satisfies the diagonal property. Let u1,u2,u3,u4,v1,v2 ∈U satisfy the assumption
of the diagonal property. Since v1 = u1∧ v1 and v2 = u2∧ v2 then for v3 = u3∧ v2 and
v4 = u4∧ v1 it holds v1 ∼ v4 and v2 ∼ v3. Now from v1∨ v3 = v1 and v2∨ v4 = v2 we
obtain v1 ∼ v2, proving the diagonal property.

Now let g2 < g. According to Lemma 2, UL exists. According to [8], to show that
UL is a completely lattice L-ordered set it suffices to prove that for any u∈U and m≤ k
there exists v ∈U such that for any w ∈U it holds

(w( v) = gm → (w( u). (17)

The case m = ∞ is trivial as one can set v =
∨

U and obtain (w ( v) = 1, gm → (w (
u) = 0 → (w( u) = 1. In the rest of the proof we suppose m < ∞.

For any integer n≥ 0 denote by u∼
n

the greatest u′ ∈U such that u′ ∼n u (since U is
k-complete then u∼

n
always exists). It can be easily proved by induction that w ≤ u∼

m
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but w � u∼
m−1

. Set v = u∼
m

and denote w( u = gn where n < k or n = k, if k < ∞. Then
n is the least integer such that w≤n

U u.
If n ≤ m, then w ≤ u∼

n ≤ v. Thus, w ( v = 1 and gm → (w ( u) = gm → gn = 1,
proving (17). If m < n, then (w( v) = gn−m = gm → gn, proving (17) again.

The remaining case is k = ∞ and w ( u = 0. In this case, there is no integer n such
that w≤n

U u which also means that there is no integer n′ such that w ≤n′
U v. Thus, (w (

v) = (w( u) = 0 and since for k = ∞ there are no zero divisors in L, (17) is satisfied.
Now suppose g2 = g. First, as it can be easily shown, since 〈U,≤〉 is a complete

lattice and ∼ a complete congruence then for any integer n from u1 ≤n
U u2 it follows

u1 ≤1
U u2. Thus, from the fact that U satisfies the diagonal property (see the beginning

of this proof) it follows that it satisfies the strong diagonal property and by Lemma 2,
UL exists. The rest of the proof follows the same logic as the proof for g2 < g.

Combining the results of Lemma 2 and Theorems 3, 4 we obtain the main result of this
section.

Theorem 5. 1. Any poset with tolerance satisfying the diagonal property has the mini-
mal k-completion for any k ∈ {1,2, . . .}∪{∞}.

2. Any poset with equivalence satisfying the strong diagonal property has the mini-
mal completion.

7 Tolerances Generated by Superrelations of Incidence Relation

The purpose of this section is to characterize all tolerance relations on concept lattices
which can be generated by adding incidences to the incidence relation. We show that
these tolerances are exactly those satisfying the diagonal property.

Let 〈X ,Y, I〉 be a formal context, B(X ,Y, I) its concept lattice. For a relation J ⊇ I
and 〈A1,B1〉,〈A2,B2〉 ∈ B(X ,Y, I) we set 〈A1,B1〉 ∼J 〈A2,B2〉 iff (A1 ∪ A2)× (B1 ∪
B2)⊆ J. We obtain a tolerance∼J on B(X ,Y, I).

Conversely, for any tolerance relation ∼ on B(X ,Y, I) we set

I∼ =
⋃

〈A1,B1〉∼〈A2,B2〉
(A1∪A2)× (B1∪B2). (18)

The definition of I∼ can be also reformulated as follows. It holds 〈x,y〉 ∈ I∼ iff there ex-
ist 〈A1,B1〉,〈A2,B2〉 ∈B(X ,Y, I) such that 〈{x}↑↓,{x}↑〉≤ 〈A1,B1〉, 〈A1,B1〉∼ 〈A2,B2〉,
and 〈A2,B2〉 ≤ 〈{y}↓,{y}↓↑〉.

A special type of superrelations of the incidence relation I is called a block relation
[6]. A relation J⊆ X×Y , J⊇ I is a block relation, if for any object x∈X the set {x}↑J is
an intent of the formal context 〈X ,Y, I〉 and for any attribute y ∈Y , {y}↓J is an extent of
〈X ,Y, I〉. Block relations are in one-to-one correspondence with complete tolerances on
B(X ,Y, I) [6]. This correspondence is given by the assignments J �→ ∼J and ∼ �→ I∼

defined above.
Also, in the case that ∼ is a complete tolerance and J is a block relation, the factor

lattice B(X ,Y, I)/∼J is isomorphic to the concept lattice B(X ,Y,J), which provides an
efficient way of computing and representing the factor lattice. The isomorphism allows
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us to use the concept lattice B(X ,Y,J) instead of the (possibly much larger) concept
lattice B(X ,Y, I).

In the general case, when ∼ is not necessarily a complete tolerance and J is not
a block relation, elements of B(X ,Y,J) still represent some clusters of formal concepts
from B(X ,Y, I). More precisely, a formal concept 〈A,B〉 ∈B(X ,Y, I) belongs to the
maximal block represented by a formal concept 〈A′,B′〉 ∈ B(X ,Y,J) iff A ⊆ A′ and
B ⊆ B′. This shows that even in this general case it makes sense to use the concept
lattice B(X ,Y,J) as an approximate representation of B(X ,Y, I).

The following theorem gives a general characterization of (not necessarily complete)
tolerance relations on B(X ,Y, I) generated by general superrelations J ⊇ I.

Theorem 6. 1. For any J ⊇ I, ∼J satisfies the diagonal property.
2. The opposite always holds for the formal context 〈U,U,≤〉: for any tolerance

relation ∼ on a complete lattice U satisfying the diagonal property there exist a super-
relation J ⊇≤ such that ∼J =∼.

Proof. 1. Suppose that the assumptions of the diagonal property are satisfied for u1 =
〈A1,B1〉, u2 = 〈A2,B2〉, u3 = 〈A3,B3〉, u4 = 〈A4,B4〉, v1 = 〈C1,D1〉, v2 = 〈C2,D2〉. We
have (C1 ∪C2)× (D1 ∪D2) = (C1×D1)∪ (C2×D2)∪ (C1×D2)∪ (C2×D1), where,
obviously, C1×D1 ⊆ I ⊆ J and C2×D2 ⊆ I ⊆ J. Further, since v1 ≤ u1, v2 ≥ u4 and
u1 ∼J u4 then C1×D2 ⊆ A1×B4 ⊆ (A1∪A4)× (B1∪B4)⊆ J. Similarly, since v1 ≥ u3,
v2 ≤ u2 and u3 ∼J u2 then C2 ×D1 ⊆ A2× B3 ⊆ (A2 ∪ A3)× (B2 ∪ B3) ⊆ J; hence
(C1∪C2)× (D1∪D2)⊆ J.

2. Obviously,∼⊆∼J . Suppose that F(v1)∼J F(v2). Then 〈v1,v2〉 ∈ J and 〈v2,v1〉 ∈
J. Since J = I∼ then from 〈v1,v2〉 ∈ J it follows that there are u1,u4 ∈ U such that
u1 ∼ u4, v1 ≤ u1, v2 ≥ u4. Similarly, from 〈v2,v1〉 ∈ J it follows that there are u2,u3 ∈U
such that u2 ∼ u3, v2 ≤ u2, v1 ≥ u3. Now, from the diagonal property, v1 ∼ v2.

8 Factorization of Concept Lattices

In this section, we use results of the previous sections to derive the main results of this
paper. Basically, we show that factorization of a complete lattice by a (incompatible)
tolerance consists of two steps: 1. constructing a k-completion of this lattice and, 2.
factorizing the resulting complete lattice by a (now compatible) tolerance. We also show
the correspondence of this general problem to the problem of a factorization of concept
lattice by a superrelation of the incidence relation.

Let 〈X ,Y, I〉 be a formal context, J ⊇ I a superrelation of the incidence relation I, ∼
the tolerance relation on the concept lattice B(X ,Y, I), induced by J (i.e.,∼=∼J). We
also suppose that J is the minimal superrelation, given by ∼ (i.e., J = I∼). B(X ,Y, I)
together with ∼ forms a poset with tolerance, which we denote by 〈B(X ,Y, I),∼〉.

By Theorem 6, ∼ satisfies the diagonal property. Thus, by Theorem 5, Part 1, there
always exists a minimal k-completion of 〈B(X ,Y, I),∼〉 for any k ∈ {1,2, . . .}∪{∞}. If,
in addition, ∼ is an equivalence and satisfies the strong diagonal property, then (by the
same theorem, Part 2) there exists a minimal completion of 〈B(X ,Y, I),∼〉 as a poset
with equivalence.
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In the following lemma, we construct a formal L-context from 〈X ,Y, I〉 in such a way
that the resulting concept lattice is isomorphic to the minimal k-completion of the orig-
inal concept lattice with tolerance ∼, 〈B(X ,Y, I),∼〉. We achieve this by adding to the
incidence relation I some values from L less than 1.

Let IJ
L : X×Y → L be an L-relation between X and Y , defined by

IJ
L(x,y) = gn,

where n ∈ {0,1,2, . . .}∪{∞} is the least element such that

〈{x}↑I↓I ,{x}↑I 〉 ≤n
∼ 〈{y}↓I ,{y}↓I↑I 〉.

Since the relation≤1
∼ on B(X ,Y, I) is equal to≤ then for the 1-cut of the new incidence

relation IJ
L it holds 1IJ

L = I.

Lemma 3. Let f : 〈B(X ,Y, I),∼〉→ V be a minimal k-completion of 〈B(X ,Y, I),∼〉
for some k ∈ {1,2, . . .}∪{∞}. If g2 < g holds in L and k is the least element satisfying
gk = 0, then VL is isomorphic to B(X ,Y, IJ

L). If ∼ is an equivalence satisfying the
strong diagonal property and f a minimal completion of 〈B(X ,Y, I),∼〉 as a poset with
equivalence, then the same also holds for g2 = g.

Consequently, V is in both cases isomorphic to the g-reduction of B(X ,Y, IJ
L) and,

using this isomorphism, the complete tolerance ∼V corresponds to the g-cut g≈ of the
L-equality≈ on B(X ,Y, IJ

L).

Proof. By definition of IJ
L and Lemma 2, we have for any x ∈ X and y ∈ Y ,

IJ
L(x,y) = 〈{x}↑I↓I ,{x}↑I〉 (VL 〈{y}↓I ,{y}↓I↑I 〉.

Thus, we can set

γ(x) = f (〈{x}↑I↓I ,{x}↑I〉), μ(y) = f (〈{y}↓I ,{y}↓I↑I 〉)

and use Theorem 1.

In the case g2 = 0 (i.e., L is the three-element Łukasiewicz chain), the L-relation IJ
L can

be easily constructed. Namely, it holds

IJ
L(x,y) =

⎧⎨
⎩

1 if 〈x,y〉 ∈ I,
0.5 if 〈x,y〉 ∈ J \ I,

0 otherwise.
(19)

In this case, we have the following result:

Theorem 7. Let V be a 2-completion of 〈B(X ,Y, I),∼〉. Then B(X ,Y,J) is isomorphic
to V/∼V.

Proof. Let L be the three-element Łukasiewicz chain. According to Lemma 3, VL is
isomorphic to the L-concept lattice B(X ,Y, IJ

L) where IJ
L is given by (19). For e =

0.5, the factor residuated lattice L/e is isomorphic to the 2-element Boolean algebra
2, where [0]0.5 = 0 ∈ L/0.5 and [0.5]0.5 = [1]0.5 = 1 ∈ L/0.5. Thus, [IJ

L]0.5(x,y) = 1 iff
〈x,y〉 ∈ J, and the L/e-concept lattice B(X ,Y, [IJ

L]0.5) is isomorphic as an ordered set
with the concept lattice B(X ,Y,J). Now we can use Theorem 2.
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Recall that if J is a block relation (and, consequently, ∼ is a complete tolerance), the
factor lattice B(X ,Y, I)/∼J is isomorphic to the concept lattice B(X ,Y,J). The above
theorem clarifies the correspondence between these two sets in the general case. The
factorization is achieved in two steps. First, embedding the concept lattice B(X ,Y, I)
into its 2-completion B(X ,Y, IJ

L) in such a way that the tolerance ∼ is a restriction
of the 0.5-cut 0.5≈ of the L-equality ≈ on B(X ,Y, IJ

L). Second, factorizing the lattice
B(X ,Y, IJ

L) by the complete tolerance 0.5≈.
Since the concept lattice B(X ,Y, I) is embedded into its 2-completion B(X ,Y, IJ

L)
before factorization, it is possible that there are formal concepts in B(X ,Y,J) which do
not correspond to any maximal block of the tolerance ∼ and, as such, do not belong to
the factor set B(X ,Y, I)/∼J. In the next theorem we show that this is not the case when
∼ is an equivalence satisfying the strong diagonal property.

Theorem 8. If∼ is an equivalence satisfying the strong diagonal property, then for any
formal concept 〈A,B〉 ∈B(X ,Y, I) there exists exactly one formal concept 〈A′,B′〉 ∈
B(X ,Y,J) such that A⊆ A′ and B⊆ B′. The induced mapping B(X ,Y, I) →B(X ,Y,J)
is surjective.

Proof. This follows from the following observation. If U is an L-ordered set such that
〈U,1(U〉 is a complete lattice (1(U is the 1-cut of (U), then the Dedekind-MacNeille
completion f : U→V adds to U only elements similar to existing elements to the degree
g. More precisely, for any v ∈V there exists u ∈U such that (v≈V f (u))≥ g.

This result is a little surprising. It says that if an equivalence on a complete lattice sat-
isfies the strong diagonal property, then the factor set is a complete lattice even though
the equivalence is not a congruence.

9 Conclusion

This paper provides a theoretical background for the problem of factorization of concept
lattices by incompatible tolerances. This problem arises naturally in situations where we
are trying to reduce the size of a concept lattice based on a similarity of concepts, which
is not given by a block relation and, as such, is not compatible with the complete lattice
structure of the concept lattice.

We also introduced and solved a new problem of finding a minimal completion of
a poset with tolerance and poset with equivalence.

We used the theory of fuzzy ordered sets and fuzzy concept lattices as the main
tool in the paper. Our results, however, belong to the realm of classical (i.e., not fuzzy)
ordered sets and concept lattices. As it turns out, various choices of the structure of truth
degrees allow us to prove various interesting results. More specifically, the countable
Goguen chain has been used to find the minimal completion of a poset with tolerance,
the three-element Gödel chain allowed similar results for posets with equivalence. We
used the three-element Łukasiewicz chain and the three-element Gödel chain to prove
the main results of the paper (Theorem 7, 8).



On Factorization of Concept Lattices by Incompatible Tolerances 181

The theoretical results, presented in this paper, could be used in situations where
we deal with tolerances on concept lattices which are not complete. We mention two
examples.

In [4], the use of concept lattices for visualizing results of some information retrieval
tasks (namely, term-document relationships) is proposed. The authors attempt to reduce
the size of concept lattices (to make them more comprehensible for the user) by using
Singular Value Decomposition to introduce an equivalence∼Y on the set Y of attributes
and then computing the factor set B(X ,Y, I)/∼, where ∼ is an equivalence, induced
on B(X ,Y, I) by ∼Y . The authors claim that ∼ is a congruence, which, in fact, is not
true. However, it is possible to use the results of this paper to partially overcome this
obstacle: It can be easily shown that ∼ can be defined by means of some superrela-
tion J ⊇ I and satisfies the strong diagonal property. Thus, according to Theorem 8,
there is a (surjective) factor projection B(X ,Y, I) → B(X ,Y,J) (which is not, however,
a homomorphism of lattices) and a bijection between B(X ,Y,J) and B(X ,Y, I)/∼.

Paper [10] is an overview of several applications of concept lattices in software anal-
ysis. In Conclusion, the author admits that “. . . all these applications stick to the basic
theory of concept lattices and their corresponding implication base, but do not apply
more advanced results . . . The reason is that realistic lattices do not have the properties
required for the advanced techniques. For examples, typical lattices in software technol-
ogy have neither congruences nor block relations . . . ” The results of the present paper
could be used in these situations.

In addition to possible applications, there are several new theoretical problems which
could be addressed:

– the general meaning of the choice of different structures of truth degrees,
– generalizing results of this paper to fuzzy FCA,
– the problem of superfluous concepts in B(X ,Y,J) when ∼ is not an equivalence.

Some of these problems will be addressed in a forthcoming paper.
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Abstract. While extending partial orders towards linear orders is a very
well-researched topic, the combination of two ordered sets has not yet
attracted too much attention. In the underlying article, however, we
describe the possibilities to merge two given quasiordered sets in the sense
that the restriction of the combined order towards the given ordered sets
returns the initial orders again. It turns out that these mergings form a
complete lattice. We elaborate these lattices of mergings and present its
contextual representation. While the motivating example was discovered
in role-oriented software modeling, we give a further possible application
in the field of scheduling.

1 Introduction

In order theory, a well-studied problem is the question of finding linear exten-
sions of a given partial order. In this paper we will investigate the somehow
related problem of merging two given orders (P,≤P ) and (Q,≤Q). Thereby, we
understand a merging as an order on P ∪ Q, such that the restrictions onto
P and Q return the initial posets again.

Such a construction can for example be observed, when considering the role-
play relation in role-oriented software modeling. We refer to [Ste00] for a detailed
introduction into this topic and will recall only the immediate notations. Roughly
spoken, a role-oriented software model consists of two independent hierarchies
(P,≤P ) and (Q,≤Q) – called base resp. role types – and a partial order R ⊆
P ×Q, that determines which role type can be played by which base type. Since
(P,≤P ) and (Q,≤Q) can be regarded as a kind of generalisation/specialisation
hierarchy the role-play property is inherited according to the following restriction
[Ste00, p. 13]: Given two base types p′ ≤P p from P and two role types q ≤Q q′

from Q it has to follow that pRq ⇒ p′Rq′. Therefore, for fixed p ∈ P, q ∈ Q with
pRq, we obtain that the set

pR := {q′ ∈ Q | pRq′} resp. qR := {p′ ∈ P | p′Rq}

is an order filter in (Q,≤Q) resp. an order ideal in (P,≤P ). We shall note that
this already means that a proper role-play relation always forms a bond between
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(P, P, �≥P ) and (Q, Q, �≥Q). One may use this property for developing a design
advisor for creating role models, which, however, is beyond the scope of the
present article. Furthermore, the relation ≤R := ≤P ∪ ≤Q ∪ R clearly is a
partial order on P ∪Q whose restrictions on P resp. Q agree with ≤P resp. ≤Q.
(This is clear, since there are no pairs of the form (q, p) with q ∈ Q, p ∈ P and
thus the transitivity of ≤R does not extend P resp. Q.) From this motivating
example we started to investigate the mergings

≤R,S := ≤P ∪ ≤Q ∪ R ∪ S

between two given ordered sets (P,≤P ) and (Q,≤Q) where R ⊆ P × Q and
S ⊆ Q × P .

The rest of this paper is structured as follows: In Section 2 we prepare the
basic definitions. In Section 3 we introduce our notion of a (proper) merging and
discuss fundamental properties. Section 4 is dedicated to the contextual repre-
sentation of the lattice of (proper) mergings for two given posets. Section 5 illus-
trates our construction and gives a possible application in the field of scheduling.
Section 6 concludes this paper and gives an outlook towards future work.

2 Preliminaries

We suppose that the reader is familiar with the basic concepts of order theory.
Nevertheless we shortly repeat some of the most fundamental notions in the fol-
lowing. For a detailed introduction to this topic we refer the reader to [DP02]. It
is common usage to call a set P equipped with a reflexive and transitive relation
≤ on it a quasiordered set. We write x < y for x ≤ y and x � y. For a given
quasiordered set P = (P,≤) one obtains an equivalence relation ≡ on P by

x ≡ y :⇐⇒ x ≤ y and y ≤ x.

The equivalence ≡ equals the identity relation on P if and only if the quasiorder
relation ≤ is a (partial) order relation on P . This means that the relation ≤ is
also antisymmetric. It is commonly known that the relation � defined by

[x]≡ � [y]≡ :⇐⇒ x ≤ y,

is an order relation on the set of all ≡-equivalence classes. The partially ordered
set

P∗ := (P/≡, �)

is then called the factor poset of the quasiordered set P.
If there is no ambiguity about the quasiorder relation, we allow to omit it in

our notation and to simply speak of the quasiordered set P . A subset X of the
quasiordered set P is called an order ideal if for every x ∈ X and every p ∈ P
with p ≤ x it follows that p ∈ X . The dual of (P,≤) is the quasiordered set
(P,≤)d := (P,≥), where x ≥ y simply means that y ≤ x. Furthermore, X ⊆ P
is called an order filter in P if it is an order ideal in its dual P d.



Merging Ordered Sets 185

There is a nice way to describe order ideals and order filters of an ordered
set P by means of Formal Concept Analysis (FCA). The basic elements of FCA
are formal contexts, i. e. triplets (G, M, I) where G is a set of objects, M is
a set of attributes and I ⊆ G × M is a relation describing whether an object
has an attribute. From this context we can now derive formal concepts via
the derivation operators

(·)I : P(G) → P(M), A �→ {m ∈ M | ∀ g ∈ A : gIm},
(·)I : P(M) → P(G), B �→ {g ∈ G | ∀ m ∈ B : gIm}.

A formal concept is a pair (A, B) with A ⊆ G, B ⊆ M satisfying AI = B and
BI = A. A is called the extent, B is called the intent of this concept. There is
a natural ordering on the set B(G, M, I) of concepts given by

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇔ B1 ⊇ B2)

such that the ordered set B(G, M, I) := (B(G, M, I),≤) is a complete lattice –
the concept lattice of (G, M, I) [GW99, p. 20]. For g ∈ G and m ∈ M we put
gI := {g}I and mI := {m}I .

For a given quasiordered set (P,≤P ) there is a formal context whose ex-
tents correspond to the order ideals of P and whose intents correspond to the
order filters of P – the contraordinal scale (P, P, �≥P ) [GW99, p. 49]. The con-
cepts of the contraordinal scale are precisely the pairs of the form (A, P \ A)
where A is an order ideal of P . One can furthermore show that the contraordi-
nal scales precisely describe the doubly-founded, completely distributive lattices
[GW99, p. 49].

Let (G, M, I) and (H, N, J) be formal contexts. One calls a relation R ⊆ G×N
a bond from (G, M, I) to (H, N, J) if for every object g ∈ G the row gR is an
intent of (H, N, J) and for every attribute n ∈ N the column nR is an extent of
(G, M, I). A bond from (G, M, I) to (G, M, I) is called a self-bond.

3 Mergings and Proper Mergings

In the following (P,≤P ) and (Q,≤Q) denote two quasiordered sets. We assume
P and Q to be disjoint, which allows us to simply write x ≤ y instead of x ≤P y
or x ≤Q y, respectively. The cardinal sum of (P,≤P ) and (Q,≤Q) is the
quasiordered set

(P,≤P ) + (Q,≤Q) := (P ∪ Q,≤P ∪ ≤Q).

Hence, two elements are comparable in the cardinal sum if and only if they
belong to the same component and are comparable in this component.

Definition 1. A pair (R, S) where R ⊆ P × Q and S ⊆ Q × P is called a
merging of the disjoint quasiordered sets (P,≤P ) and (Q,≤Q) if the relation

≤R,S :=
⋃

{≤P ,≤Q, R, S}
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is a quasiorder on P ∪Q. A merging (R, S) is called proper if R∩S−1 is empty.
The set of all mergings from P to Q is denoted by MP,Q, or simply by M. The
set of all proper mergings is denoted by M•

P,Q, or simply by M•.

Obviously, p R q means that the element p from P is less or equal than q from
Q with respect to the quasiorder ≤R,S on P ∪ Q. Dually, for p ∈ P and q ∈ Q

Q

P

P Q

≤P R

≤QS

q S p expresses that q ≤R,S p is satisfied. Hence, a
merging is not proper if and only if there are elements
p ∈ P and q ∈ Q with

p ≤R,S q and q ≤R,S p.

In other words the pairs (p, q) from R ∩ S−1 can be
understood as a fusion of p and q. They belong to the
same equivalence class in the factor poset of (P ∪ Q,≤R,S).

Remark 1. The pair (R, S) is a (proper) merging of the quasiordered sets P and
Q if and only if the pair (R̂, Ŝ) with

R̂ := {([p]≡, [q]≡) | (p, q) ∈ R} and Ŝ := {([q]≡, [p]≡) | (q, p) ∈ S}

is a (proper) merging of the factor posets P ∗ and Q∗. Furthermore, every (proper)
merging of P ∗ and Q∗ is of this form. Hence, if one wants to describe (proper)
mergings of quasiordered sets, this one-to-one correspondence allows to describe
the (proper) mergings of the factor posets instead.

Proposition 1. Let (P,≤P ) and (Q,≤Q) be quasiordered sets and let R ⊆ P ×
Q. Then the following three statements are equivalent:

(a) For every p ∈ P the row pR is an order filter in Q, and for every q ∈ Q the
column qR is an order ideal in P ;

(b) R is an order ideal in the quasiordered set P × Qd;
(c) R is a bond from (P, P, �P ) to (Q, Q, �Q).

Proof. We initiate our proof by defining for (p1, q1), (p2, q2) ∈ P × Q

(p1, q1) � (p2, q2) :⇐⇒ p1 ≤ p2 and q1 ≥ q2.

Hence, � is the quasiorder relation of P ×Qd. Now suppose that (a) is valid. Let
(x, y) ∈ R and (p, q) ∈ P×Q with (p, q) � (x, y). This means that p ≤ x R y ≤ q.
Since by (a) xR = {q̂ ∈ Q | x R q̂} is an order filter in Q, we infer that x R q,
and since by (a) qR is an order ideal in P , we infer from x ∈ qR that p R q.
Hence, (a) implies (b). Now suppose that (b) is valid and let p ∈ P , q ∈ pR and
y ∈ Q with q ≤ y. This means that (p, q) ∈ R and (p, y) � (p, q). From (b) we
infer that y ∈ pR. Hence, pR is an order filter in Q. Dually, (b) implies that qR

is an order ideal in P for every q ∈ Q.
The equivalence of (a) and (c) easily follows from the fact that the intents of

the contraordinal scale (P, P, �P ) are precisely the order filters of P and that
the extents of the contraordinal scale (Q, Q, �Q) are precisely the order ideals
of Q. ��
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Proposition 2. Let (P,≤P ) and (Q,≤Q) be disjoint quasiordered sets, let R ⊆
P × Q and let S ⊆ Q × P . Then the pair (R, S) is a merging if and only if all
of the following four properties are satisfied:

(1) R is an order ideal in P × Qd,

(2) S−1 is an order filter in1 P × Qd,

(3) R ◦ S ⊆≤P ,

(4) S ◦ R ⊆≤Q.

Furthermore, ≤R,S is antisymmetric iff both, ≤P and ≤Q are antisymmetric and
the intersection R ∩ S−1 is empty.

Proof. We have to show that ≤R,S is a quasiorder on P ∪ Q iff all of the four
properties (1) to (4) are satisfied. Let us assume that (1) to (4) are valid. Since
≤R,S is reflexive for trivial reasons, it is enough to show transitivity. Let x, y, z ∈
P ∪Q with x ≤R,S y ≤R,S z. We have to show that this implies x ≤R,S z, which
is obviously true when all three elements belong to P or all three belong to Q. In
the case that x, y ∈ P and z ∈ Q we have that x ≤ y R z. By (1) and Proposition
1 we infer that x R z and hence x ≤R,S z. Analogously, the three cases x ∈ Q,
y, z ∈ P , and x, y ∈ Q, z ∈ P , and x ∈ P , y, z ∈ Q imply x ≤R,S z. In the case
x, z ∈ P and y ∈ Q, we infer x R y S z and hence (x, z) ∈ R ◦S. By (3) we infer
that x ≤ z and hence x ≤R,S z. Dually, in the case x, z ∈ P and y ∈ P property
(4) yields x ≤R,S z. The backward direction, i.e. that the transitivity of ≤R,S

implies (1) to (4), is even easier and hence omitted.
That the antisymmetry of ≤R,S implies that of ≤P and of ≤Q is trivial. If

a pair (p, q) belongs to R ∩ S−1, this just means that p ≤R,S q and q ≤R,S p.
In the case of antisymmetry of ≤R,S this yields p = q, which contradicts the
disjointness of P and Q. That, otherwise, R ∩ S−1 = ∅ and the antisymmetry
of ≤P and ≤Q imply the antisymmetry of ≤R,S can be shown by an obvious
case-by-case analysis. ��

Corollary 1. Let P and Q be disjoint partially ordered sets, let R ⊆ P ×Q and
let S ⊆ Q × P . Then (P ∪ Q,≤R,S) is a partially ordered set again if and only
if (R, S) is a proper merging.

Hence, if one just considers posets and wants to merge them to a new poset, the
notion of a proper merging seems to be the right one. Because in this case one has
to avoid to fuse elements from P with elements from Q. In the following we will
see that both concepts, the mergings and the proper mergings, can be described
in a similar fashion. We will thus often have propositions that are divided into
two parts: one considering mergings, the other one considering proper mergings.

1 In order to avoid the somehow annoying inversion of S, we will often use the
equivalent condition that S is an order filter in Qd × P .
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3.1 Lattices of Mergings

We will see that the (proper) mergings form a complete lattice in a canonical
manner. In order to prepare this statement we need the following Lemma 1
saying that the relation product ◦ respects the union

⋃
of relations.

Lemma 1. Let A, B, C be sets, let X ⊆ A × B and let Yt ⊆ B × C for t ∈ T .
Then

X ◦
⋃
t∈T

Yt =
⋃
t∈T

(X ◦ Yt) .

Proof. We omit the proof since it is common knowledge. ��

Theorem 1. Let P and Q be disjoint quasiordered sets.

(i) Then the set M of all mergings of P and Q forms a complete lattice if one
orders it by

(R1, S1) ≤ (R2, S2) :⇐⇒ R1 ⊆ R2 and S1 ⊇ S2.

The indicated expressions for infimum and supremum are given by:

∧
t∈T

(Rt, St) =
(⋂

t∈T

Rt,
⋃
t∈T

St

)
,

∨
t∈T

(Rt, St) =
(⋃

t∈T

Rt,
⋂
t∈T

St

)
.

(ii) The set M• of all proper mergings forms a complete sublattice of M.
(iii) The least (proper) merging is (∅, Q × P ), whereas the greatest one is (P ×

Q, ∅).

Proof. In order to prove (i) it suffices to show that the indicated infimum and
supremum are well-defined, i.e., that both constructions yield to a merging again.
Afterwards it is obvious that this indeed is the infimum and supremum in (M,≤).
Let for every t ∈ T the pair (Rt, St) be a merging. Since order ideals and order
filters are closed under both, set union and set intersection, one easily infers
from Proposition 2 that R :=

⋂
t∈T Rt is an order ideal in P × Qd, and that

S :=
⋃

t∈T St is an order filter in Qd × P again. Furthermore, it follows that

R ◦ S =
(⋂

s∈T

Rs

)
◦
(⋃

t∈T

St

)
=

⋃
t∈T

((⋂
s∈T

Rs

)
◦ St

)
⊆

⋃
t∈T

Rt ◦ St ⊆ ≤P .

Thereby the second equality follows from the aforementioned Lemma 1 and
the first inclusion follows from the monotonicity of the relation product ◦. By
Proposition 2 we have shown that (R, S) is indeed a merging. Dually one can
show that the given supremum is a merging again.
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We now show that the proper mergings form a complete sublattice. Let there-
fore the pair (Rt, St) be a proper merging for every t ∈ T . This implies that

(⋂
s∈T

Rs

)
∩
(⋃
t∈T

St

)−1 =
(⋂
s∈T

Rs

)
∩
(⋃
t∈T

S−1
t

)
=

⋃
t∈T

(
S−1

t ∩
⋂
s∈T

Rs

)
=

⋃
t∈T

∅ = ∅.

Dually one can show that M• is closed under suprema in M. Statement (iii) is
an easy consequence of (i) and (ii). ��

As a consequence of the previous theorem we obtain the following. Let R be
an order ideal in P × Qd. By Proposition 2, R is a possible first component of
a merging. The question if there really is an S such that (R, S) is a merging
is easy to answer, because (R, ∅) obviously is a merging. Furthermore, (R, ∅) is
the largest merging having R as its first component. And since R is the first
component of a merging, Theorem 1 also implies that

∧
{(R, S̃) | S̃ ⊆ Q × P such that (R, S̃) merging}

is the smallest merging with R as its first component. Hence, if one fixes the first
component one obtains an interval in M. A similar consequence is the following

Corollary 2. Let P and Q be disjoint quasiordered sets, let X ⊆ P ×Q and let
Y ⊆ Q×P . Then the set of all (proper) mergings (R, S) with X ⊆ R and Y ⊆ S
is empty or forms an interval in M (in M•).

For two mergings (R1, S1) and (R2, S2) we define

(R1, S1) ⊆2 (R2, S2) :⇐⇒ R1 ⊆ R2 and S1 ⊆ S2.

Obviously, ⊆2 defines an order relation on M. In case of (R1, S1) ⊆2 (R2, S2) we
say that (R2, S2) is an extension of (R1, S1). Hence, (R2, S2) is an extension of
(R1, S1) if and only if ≤R2,S2 is an order extension of ≤R1,S1 , i.e., if ≤R1,S1 ⊆
≤R2,S2 . Obviously, the merging (∅, ∅) which corresponds to the cardinal sum of P
and Q is the least element of the ordered set (M,⊆2), as well as of (M•,⊆2). The
maximal elements of (M,⊆2) are called maximal mergings and the maximal
elements of (M•,⊆2) are called maximal proper mergings. Please note, that
the latter notion is capable of being misunderstood. A merging that is proper and
maximal is of course maximal proper, but not every maximal proper merging
needs to be maximal in (M,⊆2).

3.2 An Example

Let us illustrate the previous constructions by means of the two two-element
chains (P,≤P ) and (Q,≤Q) as shown in Fig. 1. Let us for this setting con-
sider some example mergings. In Fig. 2(a) we clearly have R1 = ∅, S1 = ∅.



190 B. Ganter, C. Ganter, and H. Mühle

a

b

1

2

Fig. 1. Two chains (P,≤P ), (Q,≤Q)

This merging is proper and corresponds to
the cardinal sum of (P,≤P ) and (Q,≤Q).
It introduces no additional order relation-
ships on P ∪Q. Fig. 2(b), however, shows
no proper merging. We can read

R2 = {(a, 1), (a, 2), (b, 2)},
S2 = {(1, a), (1, b), (2, b)}.

Thus, it is R ∩ S−1 = {(a, 1), (b, 2)}. A nontrivial proper merging is e. g. given
in Fig. 2(c). We have R3 = {(a, 2), (b, 2)}, S3 = {(1, b)} and thus R ∩ S−1 = ∅
which makes this merging proper. Comparing the proper mergings M1 and M3,
we see that R1 � R3 and S1 � S3 which makes them incomparable w.r.t. the
lattice order ≤ on M•. But clearly, M2 and M3 are extensions of M1.

a

b

1

2

a

b

1
2

a b 1 2

× ×
×

× ×
×

(a) M1

a, 1

b, 2
a

b

1
2

a b 1 2

× × × ×
× ×

× × × ×
××

(b) M2

a 1

b

2 a

b

1
2

a b 1 2

× × ×
× ×
× × ×

× ×

(c) M3

Fig. 2. Some mergings of P and Q

Fig. 3 and Fig. 4 show the lattices M and M• of all mergings and of all
proper mergings for our example. Please note that the labels show the (up to
four-element) quasiordered sets (P ∪ Q,≤R,S) for all (proper) mergings (R, S).
We thereby used white nodes for elements from P and black nodes for elements
from Q. In this very simple example we are allowed to omit the labels 1, 2, a,
or b for the elements of the quasiordered sets on P ∪ Q. There are 29 mergings
whereof 20 are proper.

3.3 The Non-disjoint Case

The aim of this subsection is to describe how the case of non-disjoint ordered sets
can be embedded into the previously described theory. So let us now assume that
P and Q are not necessarily disjoint. We define A := P ∩Q to be the intersection.
A necessary, but very reasonable assumption is that the restrictions of ≤P and
≤Q to A are equal, i.e., that for a, b ∈ A it follows that

a ≤P b ⇐⇒ a ≤Q b.

The self-evident way to reduce this setting to the disjoint case is to carry on to
assume that P and Q are disjoint, but to additionaly choose a subset A of P
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a

b

1

2

Fig. 3. The lattice M of all mergings for the two two-element chains from Fig. 1.
Thereby, the nodes that are half-filled correspond to the cases where elements from
P and Q are equivalent in the merged quasiordered sets. Hence, the quasiordered
sets without such a half-filled node correspond to the proper mergings. The complete
sublattice M• of all proper mergings is displayed in the following Fig. 4.
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a 1

b 2

(a, 2)

(a, 1) (b, 2)

(b, 1)

(2, a)

(2, b) (1, a)

(1, b)

Fig. 4. The lattice M• of proper mergings for the two two-element chains. In order
to understand the labels like (a, 1) ∈ P × Q or (1, b) ∈ Q × P we refer the reader to
Theorem 2 below. A representing formal context is displayed in Fig. 7.
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and an order embedding ψ : A → Q modeling the identification. Hence, for all
a, b ∈ A we assume that

a ≤P b ⇐⇒ ψa ≤Q ψb.

Then ψa can be understood as the copy of a in Q. Since we want a to be the
copy of ψa in P , the embedding ψ should be one-to-one. In order to ensure this,
we assume that P and Q are posets, i.e., that the respective order relations are
antisymmetric. By Remark 1 this restriction does not lead to a lack of generality.

Definition 2. Let P and Q be disjoint partially ordered sets, let A ⊆ P and
let ψ : A → Q be an order embedding, i.e., for a, b ∈ A it follows that a ≤ b if
and only if ψa ≤ ψb is satisfied. Then a merging (R, S) of P and Q is called a
ψ-gluing if for every a ∈ A the two conditions (a, ψa) ∈ R and (ψa, a) ∈ S are
satisfied. A ψ-gluing (R, S) is said to be a proper ψ-gluing if for all p ∈ P and
q ∈ Q the implication

(p, q) ∈ R and (q, p) ∈ S =⇒ p ∈ A and q = ψp.

is valid. The set of all (proper) ψ-gluings is denoted by Mψ (by M•
ψ).

Hence, a merging (R, S) of the two given posets P and Q is a ψ-gluing if for
every a ∈ A it follows that

a ≤R,S ψa ≤R,S a.

This means that every element from A joins its copy in Q to form the only
non-singleton equivalence classes in the factor poset of (P ∪Q,≤R,S). Note that
if one chooses A to be the empty set and ψ to be the only mapping from ∅ to
Q, the definition from above yields mergings and proper mergings again.

Proposition 3. Let P and Q be disjoint posets, let A ⊆ P and let ψ : A → Q be
an order-embedding. Then a merging (R, S) of P and Q is a ψ-gluing iff R0 ⊆ R
and S0 ⊆ S, where

p R0 q :⇐⇒ ∃a ∈ A : p ≤ a and ψa ≤ q,

q S0 p :⇐⇒ ∃a ∈ A : q ≤ ψa and a ≤ p.

The set Mψ of all ψ-gluings forms an interval in M.

Proof. It is not hard to see that a merging (R, S) is a ψ-gluing iff R0 ⊆ R and
S0 ⊆ S. We show that (R0, S0) is a merging. Because then the rest follows from
Corollary 2. One can see from the definition that for every p ∈ P the row pR0 is
the union of order filters in Q, and hence is an order filter itself:

pR0 =
⋃

{↑Qψa | a ∈ A ∩ ↑P a}.

Analogously, one shows that for every q ∈ Q the column qR0 is an order ideal in
P , which by Proposition 1 makes R0 an order ideal in P ×Qd. In the same way
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one can show that S0 is an order filter in Qd ×P . Furthermore, for p1, p2 ∈ P it
follows that

p1 R0 ◦ S0 p2 ⇐⇒ ∃q ∈ Q ∃a1, a2 ∈ A : p1 ≤ a1 and ψa1 ≤ q ≤ ψa2 and a2 ≤ p2

=⇒ ∃a1, a2 ∈ A : p1 ≤ a1 ≤ a2 ≤ p2

Hence, it follows that R0 ◦ S0 ⊆ ≤P . Note that for the implication we needed
that ψ is an order embedding. Dually, one can show that S0 ◦ R0 ⊆ ≤Q. By
Proposition 2 the pair (R0, S0) is a merging. ��

4 Contextual Representation

In the following we introduce formal contexts representing the lattices of merg-
ings and lattices of proper mergings. Furthermore, we discuss related topics like
how one can describe the intervals MX,Y from Corollary 2 by formal contexts,
or how to read the maximal mergings from the representing context.

P × Q

P × Q

P × Q P × Q

Ψ �	

�	
=: M

P × Q

P × Q

P × Q P × Q

Ψ• �	

�	
=: M•

Fig. 5. The representing contexts M and M• of the lattices M and M• of all mergings on
the left and of all proper mergings on the right. Thereby, 
 denotes the order on P ×Qd.
Hence, we have that (p1, q1) 
 (p2, q2) iff p1 ≤ p2 and q1 ≥ q2. For the definition of the
relations Ψ and Ψ• in the upper left quadrants we refer to Theorem 2 below. Please note
that the big cross in the lower right quadrant represents the universal relation, i.e., every
pair from P × Q is in relation to every pair from P × Q. To be precise, the object (and
attribute) set of the displayed formal contexts is the disjoint union (P × Q) � (P × Q),
where for two sets A and B one puts A�B := ({1}×A)∪ ({2}×B). And in order to be
technically correct one thinks of the displayed contexts M and M• as the composition of
the four respective disjoint copies of the displayed non-disjoint parts.

Theorem 2. Let P and Q be disjoint quasiordered sets. Then the following
statements hold:

(i) The lattice M of all mergings of P and Q is isomorphic to the concept lattice
of the context M displayed in Fig. 5. Thereby the relation Ψ from the upper
left quadrant is given by

(p1, q1) Ψ (p2, q2) :⇐⇒

⎧⎨
⎩

q1 ≤ q2 ⇒ p1 ≤ p2, and
p1 ≥ p2 ⇒ q1 ≥ q2.
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An isomorphism ϕ : M → B(M) is given by

(R, S) �−→
(
R � (S−1)�, S−1 � R�

)
.

(ii) The lattice M• of all proper mergings is isomorphic to the concept lattice of
the context M• displayed in Fig. 5. Thereby the relation Ψ• from the upper
left quadrant is given by

(p1, q1) Ψ• (p2, q2) :⇐⇒
{

q1 ≤ q2 ⇒ p1 < p2, and
p1 ≥ p2 ⇒ q1 > q2

An isomorphism ϕ : M• → B(M•) is given by

(R, S) �−→
(
R � (S−1)�, S−1 � R�

)
.

Proof. We have seen in Theorem 1 that the lattice of mergings and the lattice
of proper mergings are both complete sublattices of

OI(P × Qd) ×
(
OF(Qd × P )

)d
.

Since the mapping that maps an order filter to its complement is an anti-auto-
morphism and since the inversion (·)−1 easily transforms order filters from P×Qd

into those of Qd × P (and vice versa), we get that the following mapping

ϕ̂ : OI(P × Qd) ×
(
OF(Qd × P )

)d −→ B(S)

(R, S) �−→
(
R � (S−1)�, S−1 � R�

)
.

is an isomorphism. Thereby
S denotes the direct sum
of the contraordinal scale
(P × Q, P × Q, ��) with it-
self. This direct sum is dis-
played in Fig. 6. Theorem
13 in [GW99] describes a
one-to-one correspondence
between the complete
sublattices of a concept
lattice and the so-called
closed subrelations of the

P ×Q

P ×Q

P ×Q P ×Q

	


	


Fig. 6. The direct sum S = (P ×Q, P ×Q, �	) + (P ×
Q, P × Q, �	) of two contraordinal scales; see [GW99]
Definition 32

underlying formal context. What we will do in the following is to describe the
two closed subrelations for our two complete sublattices.

For the upper right quadrant we obtain the following relation⋃
{R × R� | (R, S) merging}
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which by Proposition 1 equals the relation ��. Please note that in this case we
have R� = R ��. Analogously one obtains that the lower left part of the closed
subrelation belonging to M is also ��. For the lower right quadrant one gets⋃

{(S−1)� × R� | (R, S) merging}

which is (P × Q)2 since (∅, ∅) is a merging. We denote the remaining upper left
part of the closed subrelation belonging to M by Ψ . In order to determine Ψ
we make some preliminary thoughts. Let p1, p2 ∈ P and let q1, q2 ∈ Q. Then it
follows that

(
↓p1 × ↑q1

)
◦
(
↓q2 × ↑ p2

)
=

{
∅ if q1 � q2,(
↓p1 × ↑p2

)
else.

Hence, it follows that(
↓p1 × ↑q1

)
◦
(
↓q2 × ↑p2

)
⊆ ≤P ⇐⇒

(
q1 ≤ q2 ⇒ p1 ≤ p2

)
.

Dually one gets(
↓q2 × ↑p2

)
◦
(
↓p1 × ↑q1

)
⊆ ≤Q ⇐⇒

(
p2 ≤ p1 ⇒ q2 ≤ q1

)
.

From this we conclude (with the help of Proposition 2) that

(p1, q1) Ψ (p2, q2) ⇐⇒ ∃(R, S) ∈ M : p1 R q1 and q2 S p2

⇐⇒ ∃R ∈ OI(P × Qd), ∃S ∈ OF(Qd × P ) :
R ◦ S ⊆ ≤P , S ◦ R ⊆ ≤Q, (p1, q1) ∈ R and (q2, p2) ∈ S

⇐⇒ for R := ↓p1 × ↑q1 and S := ↓q2 × ↑p2 it follows that
R ◦ S ⊆ ≤P and S ◦ R ⊆ ≤Q

⇐⇒
(
p2 ≤ p1 ⇒ q2 ≤ q1

)
and

(
q1 ≤ q2 ⇒ p1 ≤ p2

)
.

The determination of the closed subrelation belonging to the complete sublattice
M• of proper mergings can be done analogously. The only difference occurs in
the upper left part which will be denoted by Ψ•. One obtains

(p1, q1) Ψ• (p2, q2) ⇐⇒ ∃(R, S) ∈ M• : p1 R q1 and q2 S p2

⇐⇒ for R := ↓p1 × ↑q1 and S := ↓q2 × ↑p2 it follows that
R ◦ S ⊆ ≤P and S ◦ R ⊆ ≤Q and R ∩ S−1 = ∅

⇐⇒
(
p2 ≤ p1 ⇒ q2 ≤ q1

)
and

(
q1 ≤ q2 ⇒ p1 ≤ p2

)
and(

p2 � p1 or q1 � q2
)

⇐⇒
(
p2 ≤ p1 ⇒ q2 < q1

)
and

(
q1 ≤ q2 ⇒ p1 < p2

)
.

��



Merging Ordered Sets 197

Remark 2. One can easily show that Ψ and Ψ• are self-bonds of the contraordinal
scale (P ×Q, P × Q, ��). Furthermore, it follows that Ψ• ⊆ Ψ . If both, P and Q
are chains, it follows that �� = Ψ•.

Example 1. The previous theorem describes how one can construct a formal
context that represents the lattice of (proper) mergings. Fig. 7 shows the formal
context, whose concept lattice is depicted
in Fig. 4. As we notice, the concept lattice
of M• in Fig. 4 is not labeled with the usual
reduced labeling for concept lattices. Since
the mergings can be understood as certain
preconcepts of the upper left quadrant, we
just use the objects and attributes belong-
ing to this quadrant to label the lattice.
Furthermore, as attribute labels we use the
pairs from Q×P instead of the correspond-
ing inverse pairs pairs from P × Q. This
makes it more intuitive to read a (proper)

a
1

a
2

b1 b2 a
1

a
2

b1 b2

a1 × × × ×
a2 × × × × × ×
b1
b2 × × × ×
a1 × × × × × ×
a2 × × × × × × ×
b1 × × × ×
b2 × × × × × ×

Fig. 7. The context M•

merging (R, S) from the diagram. Thereby, R contains all pairs in P × Q that
are object labels of concepts below and S contains all pairs in Q × P that are
attribute labels of concepts above this concept.

Let us, for example, have a look at the merging M3 as given in Fig. 2(c).
The object labels that are attached to concepts below the respective concept in
M• are (b, 2) and (a, 2). Thus, we have R = {(a, 2), (b, 2)}. The only attribute
label attached to a concept above the corresponding concept is (1, b) and thus
S = {(1, b)}. This matches exactly the observation from Fig. 2(c).

Let (R, S) be a fixed merging. In Corollary 2 we have seen that the set MR,S

of all extensions of (R, S) forms an interval in M. Furthermore, we learned in
Proposition 3 that such a setting might for instance be used to describe the case
were the two ordered sets P and Q are not disjoint. It is not hard to see from
the previous Theorem 2 that for arbitrary relations X ⊆ P ×Q and Y ⊆ Q×P
the set MX,Y is nonempty if and only if (X, Y ) is a preconcept of the upper left
quadrant of M, i.e., if X × Y ⊆ Ψ . Analogously, the set M•

X,Y is nonempty if
and only if X × Y ⊆ Ψ•. Hence, in these cases the intervals MX,Y and M•

X,Y

form complete lattices. The question that shall be answered in the following
Proposition 4 is how contextual representations of these intervals look like.

Proposition 4. Let P and Q be disjoint quasiordered sets and let2 X, Y ⊆
P ×Q. Furthermore, let ↓X denote the smallest order ideal in P ×Qd containing
X and let ↑Y denote the smallest order filter in P × Qd containing Y .

2 Instead of Y ⊆ Q×P we choose a relation Y −1 ⊆ Q×P . This replacement of Y by
Y −1 makes the description of the representing contexts easier.
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XΨ \ ↑Y

Y Ψ \ ↓X

XΨ \ ↑Y Y Ψ \ ↓X

Ψ �	

�	

MX,Y −1

XΨ• \ ↑Y

Y Ψ• \ ↓X

XΨ• \ ↑Y Y Ψ• \ ↓X

Ψ• �	

�	

M•
X,Y −1

Fig. 8. The representing contexts MX,Y −1 and M•
X,Y −1 of the complete lattices

MX,Y −1 on the left and M•
X,Y −1 on the right. Thereby, 
, Ψ , Ψ• and the big cross

denote the restrictions of the respective relations from Fig. 5. Hence, the two contexts
are subcontexts of M and M•, respectively.

(i) If X ×Y ⊆ Ψ , then the interval MX,Y −1 is isomorphic to the concept lattice
of the context MX,Y −1 displayed in Fig. 8. An isomorphism is given by

ξ : B(MX,Y −1) −→ MX,Y −1

(A1 � A2, B1 � B2) �−→ (↓X ∪ A1, (↑Y ∪ B1)−1).

(ii) If X×Y ⊆ Ψ•, then the interval M•
X,Y −1 is isomorphic to the concept lattice

of the context M•
X,Y −1 displayed in Fig. 8. An isomorphism is given by

ξ : B(M•
X,Y −1) −→ M•

X,Y −1

(A1 � A2, B1 � B2) �−→ (↓X ∪ A1, (↑Y ∪ B1)−1).

Thereby, for a concept (A, B) of MX,Y −1 or of M•
X,Y −1 the disjoint unions A =

A1�A2 and B = B1�B2 describe the split-up into the object and attribute sets of
the four quadrants. Thus, one reads the mergings from the upper left quadrants.

Proof. One can easily show that for every quasiordered set (Z,≤) and every W ⊆
Z the context (W, W, �) is a compatible3 subcontext of the whole contraordinal
scale (Z, Z, �). It is now an
easy application of [GW99,
Proposition 35] to show that
the formal context displayed
in Fig. 9 is a compatible sub-
context of the direct sum dis-
played in Fig. 6. With the
help of [GW99, Proposition
48] and the proof of Theo-
rem 2 we infer that MX,Y −1

from Fig. 8 is a compatible
subcontext of M.

XΨ \ ↑Y

Y Ψ \ ↓X

XΨ \ ↑Y Y Ψ \ ↓X

��

��

Fig. 9. A compatible subcontext of the direct sum
from Fig. 6

3 See [GW99, Definition 45].
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We put Ẋ := Y Ψ \ ↓X and Ẏ := XΨ \ ↑Y . By [GW99, Proposition 34] the
mapping Π : B(M) → B(MX,Y −1) that restricts the extents and intents of
concepts from M to the object set Ẋ � Ẏ and to the attribute set Ẏ � Ẋ of
MX,Y −1 is a surjective complete homomorphism. In particular it is a mapping.
Furthermore, ι : MX,Y −1 → M with (R, S) �→ (R, S) is an order embedding and
ϕ from Theorem 2 (i) is an isomorphism from M to B(M). We put

ξ−1 := Π ◦ ϕ ◦ ι

and show that it is an isomorphism from MX,Y −1 to B(MX,Y −1). It is then easy
to see that its inverse is the mapping ξ described above in (i).

For (R, S) ∈ MX,Y −1 it follows that

ξ−1(R, S) = Π
(
ϕ(R, S)

)
=

(
(R ∩ Ẋ) � ((S−1)� ∩ Ẏ ), (S−1 ∩ Ẏ ) � (R� ∩ Ẋ)

)
.

From R ⊆ (S−1)Ψ and S−1 ⊇ Y we infer that R ⊆ Y Ψ and hence R∩Ẋ = R\↓X .
Analogously one shows that S−1∩ Ẏ = S−1\ ↑ Y . With the help of this, we infer
that the following implications are valid for (Ri, Si) ∈ MX,Y −1 (i = 1, 2):

ξ−1(R1, S1) ≤ ξ−1(R2, S2) =⇒ R1 \ ↓X ⊆ R2 \ ↓X and S−1
1 \ ↑Y ⊇ S−1

2 \ ↑Y
⇐⇒ R1 ⊆ R2 and S1 ⊇ S2.

Since ξ−1 is order-preserving for obvious reasons, we have shown that it is an
order embedding and it remains to show that it is onto. Let therefore (A1 �
A2, B1 � B2) be a concept of MX,Y −1 . Since the upper right and the lower left
quadrant are compatible subcontexts, we infer that (A1, B2) and (A2, B1) are
formal concepts of the respective quadrants. One can use this to show that for
R := A1 ∪ ↓X and S := B1 ∪ ↑Y it follows that ξ−1(R, S) = (A1 �A2, B1 �B2).
It remains to show that (R, S) is a merging. Since A1 is an order ideal in (Ẋ,�)
we infer that R is an order ideal in (Y Ψ ,�). Since Y Ψ is an order ideal in the
whole P × Qd (see Remark 2) we infer that R is an order ideal in P × Qd; see
Fig. 10. Analogously, one can show that S−1 is an order filter in P × Qd. It

P × Qd

Y Ψ

P × Qd

X
Ẋ

P × Qd

X
A1

Fig. 10. Some order ideals in P × Qd
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remains to show that R×S ⊆ Ψ (see the proof of Theorem 2). From X ×Y ⊆ Ψ
we infer with the help of Remark 2 that ↑Y ⊆ (↓X)Ψ . Furthermore, we infer
from A1 ⊆ Y Ψ and Ẏ � ⊇ Y that

AΨ
1 = (AΨ

1 ∩ Ẏ ) ∪ (AΨ
1 ∩ Ẏ �) ⊇ B1 ∪ (AΨ

1 ∩ Y ) ⊇ B1 ∪ Y.

By Remark 2 this yields AΨ
1 ⊇ B1 ∪ ↑Y . Dually, one can show BΨ

1 ⊇ A1 ∪ ↓X ,
which implies B1 ⊆ (↓X)Ψ . All this yields

S−1 = B1 ∪ ↑Y ⊆ AΨ
1 ∩ (↓X)Ψ = (A1 ∪ ↓X)Ψ = RΨ .

Hence, (R, S) is indeed a merging and we have shown that ξ−1 is an isomorphism.
Statement (ii) can be shown analogously. ��

As an immediate consequence we get that a merging (R, S) is maximal if and
only if (R, S−1) is a formal concept of the upper left quadrant of M. In this case
all quadrants of MR,S with exception of the lower right one are empty. Hence,
MR,S just has one formal concept which corresponds to the only extension of
(R, S) which obviously is the merging itself. Analogously, the formal concepts
of the upper left quadrant of M• correspond one-to-one to the maximal proper
mergings.

5 An Illustrating Example

As we already mentioned in the introduction, a possible application of our no-
tion of mergings can be found in the field of scheduling. Scheduling deals with
assigning a set of processors (and possibly given resources) to a set of tasks, such
that all tasks can be completed under certain (imposed) constraints; [BEP+01].
A common scheduling example is to create an execution plan for a certain
(multi-part) action. There will be some tasks that can be freely executed (un-
constrained) and some tasks that need to be completed before the execution of
another task can be started. Executing (optimal) execution plans for two differ-
ent actions on the same set of processors results in the problem of finding an
(optimal) merging of both plans. With the construction given in the previous
sections we obtain a handy tool to restrict the search space for this challenge.

Taking the examples for scheduling plans as given in Fig. 11, we find that
the lattice of all mergings between both posets has 521 138 elements and the
sublattice of all proper mergings still has 403 844 elements. For practical use,
this will be way too large. In order to find the optimal plan, a näıve approach
would check all of these merged plans for optimality. However, if we assume a
certain preordering for a desired merging, in the form of certain fixed relations
in R and S, Proposition 4 allows for filtering suitable mergings in an intuitive
manner. For our example we want to assume the following: Since boiling eggs
lasts longer than brewing coffee, we do not want to start brewing coffee, until
the water is boiling. Furthermore, we want to finish brewing coffee, before the
eggs are done. Thus, we fix the following:

X :=
{
(EP, FP), (EP, WPe)}, Y :=

{
(POff, SOff)

}
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Pot on Stove
(PS)

Water in Pot
(WPo)

Turn on Stove
(SOn)

Egg in Pot
(EP)

Turn off Stove
(SOff)

Quench Egg
(QE)

E PS WPo SOn EP SOff QE
PS × × × × ×
WPo × × × × ×
SOn × × × ×
EP × × ×
SOff ×
QE ×

(a) Boiling an egg.

Filter in Percolator
(FP)

Water in Percolator
(WPe)

Coffee in Filter
(CF)

Turn on Percolator
(POn)

Turn off Percolator
(POff)

C FP WPe CF POn POff
FP × × × ×
WPe × × ×
CF × × ×
POn × ×
POff ×

(b) Brewing coffee.

Fig. 11. Two scheduling examples

(QE,POff)

(QE,POn)

(QE,CF)

(QE,WPe) (QE,FP)

Fig. 12. The lattice M•
X,Y of the proper mergings which extend (X, Y ), where X ={

(EP, FP), (EP, WPe)} and Y =
{
(POff, SOff)

}
. Note the reduced labeling according

to Theorem 2.

According to Corollary 2 the set of all mergings (R, S) with X ⊆ R, Y ⊆ S forms
an interval in (M•,≤). According to Proposition 4, our computation shows that
we get only eight possible proper mergings, satisfying the constraints given by
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X and Y . Fig. 12 shows the respective interval M•
X,Y of M•. It shall be noted,

that adding the constraint (POff, QE) to Y yields exactly one possible proper
merging.

6 Conclusion and Outlook

The underlying article describes how to combine two given quasiordered sets
without extending the initial orders. We started by classifying these mergings
as special pairs (R, S) of order ideals R and order filters S−1 in a derived qua-
siordered set P × Qd. We then showed that these mergings form a complete
lattice and described this lattice by a formal context. In the whole work we dis-
tinguished between the case of mergings and proper mergings, whereas the latter
one can be understood as combinations of the initial orders where one does not
allow to identify elements from the two different quasiordered sets.

To elaborate the topic in more detail, we described special intervals in the
lattices of mergings belonging to extensions of a fixed pair of relations (X, Y )
where X ⊆ P ×Q and Y ⊆ Q×P . We gave a contextual representation of these
intervals as well, and concluded the paper with a possible application of these
mergings in the field of scheduling, which was elaborated in an example.

The next, self-evident step to continue this work is to extend the notion of
mergings towards mergings of an arbitrary number of ordered sets. Thereby, it is
not hard to see how this generalisation can be done and how to characterise these
mergings. But up to now we have not elaborated how the representing contexts
might look like. We hope this generalistion could increase the readability and
intuitivity of some of the statements and proofs presented in the underlying
article.

It will turn out that this generalisation matches the application of Theorem 32
from [GW99] for the case of contraordinal scales. Hence, the mergings precisely
describe subdirect products of distributive lattices. A way to describe subdirect
products of lattices in FCA is a context construction called P -product. In this
context a subsequent article should point out the connections to [Gan07, Gan08]
and [KM06]. Namely, without explicitely mentioning it, we benefit from the
well-known fact that there is a context representation of the Galois connections
between distributive lattices. Furthermore, we want to mention that our lattices
of mergings might be understood as lattices of approximations (as in [Mes10])
for special complete lattices.
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1 Université du Québec en Outaouais
rokia.missaoui@uqo.ca

2 Zurich University of Applied Sciences - School of Engineering
Center for Applied Mathematics and Physics

CH-8401 Winterthur, Switzerland
kwuida@gmail.com

Abstract. Ternary and more generally n-ary relations are commonly found in
real-life applications and data collections. In this paper, we define new notions
and propose procedures to mine closed tri-sets (triadic concepts) and triadic asso-
ciation rules within the framework of triadic concept analysis. The input data is
represented as a formal triadic context of the form K := (K1, K2, K3, Y ), where
K1, K2 and K3 are object, attribute and condition sets respectively, and Y is a
ternary relation between the three sets. While dyadic association rules represent
links between two groups of attributes (itemsets), triadic association rules can

take at least three distinct forms. One of them is the following: A
C−−→ D, where

A and D are subsets of K2, and C is a subset of K3. It states that A implies D
under the conditions in C. In particular, the implication holds for any subset in
C. The benefits of triadic association rules of this kind lie in the fact that they
represent patterns in a more compact and meaningful way than association rules
that can be extracted for example from the formal (dyadic) context

K(1) := (K1, K2×K3, Y
(1)) with (ai, (aj , ak)) ∈ Y (1) : ⇐⇒ (ai, aj , ak) ∈ Y.

1 Introduction

The objective of this research work is to show how triadic association rules (inclu-
ding implications) can be generated from a triadic context together with triadic con-
cepts (called also closed tri-sets). The present work can be useful to mine patterns from
ternary relations between three groups of entity instances in general, and in particular
when one of the three sets describes a collection of individuals while the other sets
correspond to their properties (e.g., privileges or roles in secured systems) and the con-
ditions (e.g., spatio-temporal constraints) under which they have such attributes.

In this section we briefly present work on closed set and implication computation
from n-relations where n ≥ 3. The theoretical basis for triadic concept analysis (TCA)
has been defined by Wille and Lehmann [12,19] and generalized in [18] to n-adic for-
mal contexts to produce n-adic formal concepts and complete n-lattices. Other stud-
ies closely related to TCA were conducted to generate patterns in the form of closed
3-sets (triadic concepts) [9] and triadic implications [3,5]. In [9], an algorithm called

P. Valtchev and R. Jäschke (Eds.): ICFCA 2011, LNAI 6628, pp. 204–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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TRIAS allows the computation of triadic concepts from dyadic ones. Ji et al. [10] tackles
the same problem of closed 3-set computation by proposing two algorithms: RSM and
CubeMiner. The former relies on frequent closed 2-set mining to generate 3-sets while
the latter exploits directly the tridimensional table to compute patterns in a more efficient
manner by exploiting a ternary enumeration that recursively decomposes the dataset
into smaller groups. The merit of the research presented in [4] lies in the generalization
of the 3-set computation previously studied by [9,10] to a constraint-based mining ap-
proach for closed set computation from n-ary relations. The set of constraints contains
piecewise (anti)-monotonic ones, including monotonic and antimonotonic constraints.
An experimental comparison of DATA PEELER [4] with TRIAS and CubeMiner has
been conducted and showed that the former behaves more efficiently than the two other
algorithms for closed 3-set generation. The work in [14] defines a new semantics for
inter-dimensional rules in dynamic oriented graphs that can be represented as n-ary re-
lations with n ≥ 3. In particular, a new objective interestingness measure called the
exclusive confidence is proposed, and the computation of n-ary rules is allowed.

In this paper we propose novel notions and algorithms that use triadic concept ana-
lysis [12] as a framework to extract triadic concepts and generators as well as triadic
association rules (including implications) of different types based on the studies in [3,5].

The remainder of this paper is organized as follows. In Section 2 we recall the basic
definitions and notions related to formal concept analysis (FCA) and triadic concept
analysis. Section 3 provides new definitions and notations. Then, we propose in Section
4 algorithms that generate triadic concepts, implications and more generally associa-
tion rules by conducting a “factorization” on concepts, rules and generators extracted
from a dyadic representation of the initial 3-dimensional one. Section 5 provides an
experimental study while Section 6 concludes the paper and presents further work.

2 Triadic Concept Analysis

We will give some key definitions related to triadic concept analysis and illustrate them
through the example in Figure 1. This is a triadic context borrowed from [5] but its
meaning has been adapted to represent a data cube of three dimensions CUSTOMER,
SUPPLIER, and PRODUCT. It concerns a group K1 of customers (1 to 5) that pur-
chase from suppliers in K2 (Peter, Nelson, Rick, Kevin and Simon) products found
in K3 (accessories, books, computers and digital cameras). For example, the value
ac at the cross of row 1 and column R means that customer 1 orders from supplier
R products a and c. The right-hand side of Figure 1 is a dyadic context (extracted
from the triadic one) where columns (attributes) are (aj , ak) ∈ K2 × K3, usually
denoted by aj×ak or simply aj-ak. We will often use simplified notations also for
sets and tuples (e.g., 125 stands for {1, 2, 5}, ab for {a, b}, and P-aP-dN-dR-aK-a for
{P×a, P×d, N×d, R×a, K×a}).

2.1 Dyadic and Triadic Concepts

A formal (dyadic) context is a triple K := (G, M, I) where G, M and I stand for a
set of objects, a set of attributes, and a binary relation between G and M respectively.
For A ⊆ G and B ⊆ M two subsets A′ ⊆ M and B′ ⊆ G are defined as the set of
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K P N R K S

1 abd abd ac ab a
2 ad bcd abd ad d
3 abd d ab ab a
4 abd bd ab ab d
5 ad ad abd abc a

K(1) P N R K S
a b c d a b c d a b c d a b c d a b c d

1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1

Fig. 1. Left: A triadic context K := (K1, K2, K3, Y ), with K1 = {1, 2, 3, 4, 5} (customers),
K2 = {P, N, R, K, S} (suppliers) and K3 = {a, b, c, d} (products). Right: The dyadic context
K(1) extracted from K. Customers 1 to 5 purchase from suppliers Peter, Nelson, Rick, Kevin and
Simon the products: accessories, books, computers and digital cameras.

attributes common to objects in A and the set of objects sharing all the attributes in B,
respectively. Formally, the derivation ′ is defined by

A′ := {a ∈M | oIa ∀o ∈ A} and B′ := {o ∈ G | oIa ∀a ∈ B}.

This setting defines a pair of mappings (′,′ ) between the powerset of G and the powerset
of M , which is a Galois connection. The induced closure operators (on G and M ) are
both denoted by ′′. For example, the closure of R-b is

(R-b)′′ = ((R-b)′)′ = {2, 3, 4, 5}′ = {P-a, P-d, N-d, R-a, R-b, K-a}.

A formal concept c is a pair (A, B) with A ⊆ G, B ⊆ M , A = B′ and B = A′. The
set A that we denote by Ext(c) is called the extent of c while B is its intent denoted by
Int(c). A formal (dyadic) concept corresponds to a maximal rectangle (full of crosses /
ones) in the dyadic context. In the closed itemset mining framework [16], G, M , A and
B correspond to the transaction database, the set of items (products), the closed tidset
and the closed itemset respectively.

The set B(K) of all concepts of the context K, partially ordered by: (X1, Y1) ≤
(X2, Y2) ⇔ X1 ⊆ X2 forms a complete lattice, called concept lattice of K and de-
noted by B(K). A concept (X2, Y2) is called successor of a concept (X1, Y1) whenever
(X1, Y1) < (X2, Y2) holds. In this case, (X1, Y1) is called predecessor of (X2, Y2).
The immediate precedence relation ≺ is the transitive reduction of <, i.e. ci ≺ cj if
ci < cj and there is no concept between ci and cj . We then call ci an immediate pre-
decessor of cj and cj an immediate successor of ci. Figure 2 shows the Hasse diagram
of the concept lattice corresponding to the dyadic context in Figure 1. The labeling
of the diagram is reduced so that the extent of a concept represented by a node n is
given by all labels in G (in white square) from the node n downwards, and the intent
by all labels in M (in grey rectangles) from n upwards. For example, node #4 (on the
right-hand side of the diagram) with the label N-b represents the concept ({1, 2, 4},
{P-d, P-a, N-d, R-a, K-a, N-b}). The bottom of the lattice exhibits three attributes: S-b,
S-c and P-c which indicate that no customer asks for books or computers from supplier
S or for computers from supplier P.

Triadic concept analysis was originally introduced by Lehmann and Wille [12,19]
as an extension to formal concept analysis, to analyze data described by three sets
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Fig. 2. Concept lattice generated from the dyadic context K(1) := (K1, K2 × K3, Y
(1)) where

(ai, (aj , ak)) ∈ Y (1) :⇔ (ai, aj , ak) ∈ Y (see the right-hand side of Figure 1)

K1 (objects), K2 (attributes) and K3 (conditions) together with a 3-ary relation Y ⊆
K1×K2×K3. K := (K1, K2, K3, Y ) is called a triadic context. A triple (a1, a2, a3)
in Y means that object a1 possesses attribute a2 under condition a3. For e.g., the table
on the left of Figure 1 is a triadic context (K1, K2, K3, Y ) representing the purchase of
customers in K1 = {1, 2, 3, 4, 5} from suppliers in K2 = {P, N, R, K, S} of products
in K3 = {a, b, c, d}.

A triadic concept (also called closed tri-set or 3-set for short) of a triadic context
is a triple (A1, A2, A3) with A1 ⊆ K1, A2 ⊆ K2, A3 ⊆ K3 and A1×A2×A3 ⊆ Y .
It represents a maximal cuboid full with ones (or crosses). The subsets A1, A2 and
A3 are called the extent, the intent and the modus of the triadic concept (A1, A2, A3)
respectively. From Figure 1, we can extract e.g., the closed tri-sets
(12345, PRK, a) and (14, PN, bd). The tri-set (135, PN, d) is not closed since its
extent can be augmented without violating the ternary relation to get (12345, PN, d).

Let K := (K1, K2, K3, Y ) be a triadic context and {i, j, k} = {1, 2, 3} with j < k.
For Xi ⊆ Ki and (Xj , Xk) ⊆ Kj×Kk

1, an
(i)-derivation extending the derivation ′ (see Subsection 2.1) is defined as follows [12]:

X
(i)
i := {(aj, ak) ∈ Kj×Kk | (ai, aj , ak) ∈ Y ∀ai ∈ Xi}.

(Xj , Xk)(i) := {ai ∈ Ki | (ai, aj, ak) ∈ Y for all (aj , ak) ∈ Xj×Xk}.
For example the (1)-derivation in a triadic context K := (K1, K2, K3, Y ) is the deriva-
tion in the dyadic context K(1) := (K1, K2×K3, Y

(1)) with (ai, (aj , ak)) ∈ Y (1) :
1 We write (Xj , Xk) ⊆ Kj×Kk to mean that Xj ⊆ Kj and Xk ⊆ Kk.
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⇐⇒ (ai, aj, ak) ∈ Y . In practice, the attribute×condition set can be restricted to the
existing combinations (aj , ak) instead of all possible ones.

The set of triadic concepts can be ordered and form a complete trilattice [3,12]. In-
deed, for each i ∈ {1, 2, 3}, the relation (A1, A2, A3) �i (B1, B2, B3)⇔ Ai ⊆ Bi is a
quasi-order whose equivalence relation∼i is given by: (A1, A2, A3) ∼i (B1, B2, B3)⇔
Ai = Bi. These three quasi-orders satisfy the following antiordinal dependencies: for
{i, j, k} = {1, 2, 3}, (A1, A2, A3) �i (B1, B2, B3) and (A1, A2, A3) �j (B1, B2, B3)
imply (B1, B2, B3) �k (A1, A2, A3) for all concepts (A1, A2, A3) and (B1, B2, B3).

2.2 Dyadic and Triadic Association Rules

Let (G, M, I) be a formal dyadic context. An association rule is of the form r : B → C
(s, c) where B, C ⊆ M (itemsets) with B ∩ C = ∅. The parameter s = supp(r) =
|B′∩C′|

|G| is called the support of the rule r while c = conf(r) = |B′∩C′|
|B′| is its confidence

[1]. An implication is an association rule whose confidence is equal to 1.
A set of studies in FCA were conducted on the generation of concise representations

of rules [8,11] such as informative rules, Guigues-Duquenne base (stem base) [6,7],
generic base [16], and Luxenburger base [13]. The notions of generator [16,17] and
pseudo-intent [6,7] play a key role in such studies. A minimal generator of a closed
itemset C is a subset B of C that is minimal w.r.t. B′′ = C. A generic basis [16] asso-
ciated with a given context is a concise representation of implications B → B′′\B such
that B is a minimal generator for B′′. An informative basis for approximate associa-
tion rules takes the following form: B → Int(ci)\B′′ where B is a minimal generator
of Int(c) and ci is an immediate predecessor of c. The support of r is equal to |Ext(ci)|
while its confidence is equal to |Ext(ci)|/|Ext(c)|. For example, there are four (dyadic)
generators for the intent of the concept #14 (see the lower left part of Figure 3). The
generator R-c will produce the implication R-c→ P-aP-bP-dN-aN-bN-dR-aK-aK-bS-a
(0.2, 1) while the generator P-bN-b associated with node #13 will generate the associ-
ation rule P-bN-b→ R-bS-d (0.2, 0.5) when node #19 is considered.

To the best of our knowledge, Biedermann [3] was the first researcher who investi-
gated the problem of implication extraction in triadic contexts. A triadic implication has
the form (A → D)C and holds if “whenever A occurs under all conditions in C, then
D also occurs under the same conditions”. Later on, Ganter and Obiedkov [5] extended
Biedermann’s work and defined three types of implications: attribute×condition impli-
cations (AxCIs), conditional attribute implications (CAIs), and attributional condition
implications (ACIs).

An attribute×condition implication has the form A→ D, where A and D are subsets
of K2×K3. Such implications (rather dyadic) are extracted from the binary context
K(1). For example, the implication R-c→ P-aP-bP-dN-aN-bN-dR-aK-aK-bS-a (0.2, 1)
is an AxCI extracted from node #14 in Figure 3.

A conditional attribute implication takes the form: A
C−−→ D, where A and D are

subsets of K2, and C is a subset of K3. It means that A implies D under all conditions in
C and in particular, for any subset in C. Such implication is then linked to Biedermann’s

definition of triadic implication as follows [5]: A
C−−→ D ⇐⇒ (A→ D)C1 for all C1 ⊆

C. As an illustration, N
ad−−→ P holds since (N → P )C1 is true for any C1 ⊆ {a, d}.
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Although (N → P )abd holds, N
abd−−→ P is not true since (N → P )C1 does not hold

for any C1 ⊆ {a, b, d} and in particular is not true for C1 ∈ {b, bd}.
In a dual way, an attributional condition implication is an exact association rule

of the form A
C−−→ D, where A and D are subsets of K3, and C is a subset of K2.

Using our example, the CAI N
ad−−→ P states that whenever Nelson supplies accessories

and digital cameras (or any one of these two products), then Peter does so. The ACI:

b
PN−−→ d holds since whenever books are supplied by both Peter and Nelson, then

digital cameras are also provided by all these two suppliers. These last two kinds of
implications (i.e., CAIs and ACIs) can be visualized through a concept lattice [5]. If
we take the case of CAIs, a context (G, K3, I) is first produced where G represents the
set of implications of the form A → D such that A and D belong to K2. The binary
relation I holds between the implication A → D and a condition c in K3 iff A

c−−→ D
holds. Based on the definitions given earlier, the formal concepts generated from such

a context are couples (F, C) where F is a set of CAIs: A
C−−→ D and C is the largest

set of conditions for which a given implication holds. An example of CAI visualization
is provided in Figure 4.

To distinguish triadic association rules (and implications) with Biedermann’s mean-
ing from their extensions defined by Ganter and Obiedkov, we will use the prefix B for
the first group of patterns.

3 Data Mining from Triadic Contexts

The intuition behind our approach is the following: the extraction of triadic concepts,
generators and association rules (including implications) from a triadic context can be
obtained by first (i) flattening the initial context into a dyadic one (e.g., K(1)), then (ii)
getting dyadic concepts, generators, attribute×condition association rules (AxCARs),
and finally (iii) proceeding to a factorization of the output to get triadic concepts, gener-
ators and association rules, mainly those of the form (A → D)C i.e., with Biedermann’s
meaning. Note that the mapping K ↔ K(i) is one to one and onto, and therefore does
not lead to any loss of information.

3.1 Definitions

Based on the key notions presented earlier [12], the following expression can be defined,
where (U2, U3) ⊆ K2×K3:

(U2, U3)(1)(1):=
{

(A2, A3) | Ui ⊆ Ai ⊆ Ki and
(
(U2, U3)(1), A2, A3

)
is a triadic concept

}
.

Definition 1. (U2, U3) is a t-generator (triadic generator) of the couple (A2, A3) as a
part of a triadic concept (A1, A2, A3) iff (A2, A3) ∈ ((U2, U3)(1))(1).

From Figures 1 and 3, one can see that (PN, b)(1) = {1, 4} and {1, 4}(1) = {(PNK, b),
(PN, bd)}. Therefore, ((PN, b)(1))(1) = {(PNK, b), (PN, bd)}. Therefore, the pair
(PN, b) is a t-generator for the pairs (PNK, b) and (PN, bd) associated with the ex-
tent {1, 4}.
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Let K := (K1, K2, K3, Y ) be a triadic context. We denote by Π2.3(Y ) the projection
of Y on K2×K3. To extract triadic concepts we first flatten the triadic context K to get
a binary context from which we extract the dyadic concepts. Note that if (A1, A2, A3)
is a triadic concept of K, then there is a dyadic concept (C, D) of (K2, K3, Π2.3(Y )
such that A2 ⊆ C and A3 ⊆ D. To get triadic concepts and t-generators from the set of
dyadic concepts and generators we define partial maps as follows.

Proposition 1. Let (A1, B) be a dyadic concept of K(1). Then (K2, K3, B) is a dyadic
context. We set B2 := π1(B) und B3 := π2(B). A tuple (A1, A2, A3) with A1 ⊆
K1, A2 ⊆ B2 und A3 ⊆ B3 is a triadic concept of K(1) if and only if the following
conditions hold: (i) (A2, A3) is a dyadic concept in the sub-context (K2, K3, B), and
(ii) (A2, A3)(1) = A1.

Proposition 2. Let g be a (dyadic) generator in K(1), (and hence a subset of K2×K3).
Let U2 := Π1(g) und U3 := Π2(g). Then (U2, U3) is a t-generator if and only if
|U2|×|U3| = |g|.

From the concept in node #6 (see Figure 2) whose extent is {1, 3, 4} and intent is B =
{P×a, P×b, P×d, N×d, R×a, K×a, K×b}, four triples can be generated. However,
only (134, PK, ab) and (134, P, abd) are triadic concepts while (134, PRK, a) and
(134, PN, d) are not closed 3-sets since in the last two cases (A2, A3)(1) leads to
{1, 2, 3, 4, 5} �= {1, 3, 4}.

Fig. 3. Dyadic and triadic concepts and generators

A look at Figure 3 shows that there are two t-generators associated with the node #13
and their corresponding triadic concepts. Indeed, (NK, b) and (PN, b) are t-generators
for the pairs (PNK, b) and (PN, bd) related to the extent {1, 4}. However, the dyadic
generators N-bS-a (i.e., g := {N×b, S×a}) and P-bN-a extracted from the node #14
whose intent is P-aP-bP-dN-aN-bN-dR-aR-cK-aK-bS-ado not lead to t-generators since
they do not verify the condition stated in Proposition 2.
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3.2 Attribute×condition Association Rules

An attribute×condition association rule (AxCAR) is of the form: A −→ D where
each element in the sets A and D is of the form aj×ak such that aj ∈ K2 and ak ∈
K3. Using existing algorithms and theory (see Subsection 2.1), one can easily compute
AxCARs from the context K(1). An implication AxCI [5] is then a special case of a
AxCAR since its confidence is 1. From Figures 2 and 3 one extract the AxCAR: R-c→
P-aP-bP-dN-aN-bN-dR-aK-aK-bS-a (0.2, 1).

In the following we define two types of triadic association rules that can be extracted
from a triadic context K := (K1, K2, K3, Y ) by borrowing and combining ideas from
[3,5]. The two types are: conditional attribute association rules and attributional condi-
tion association rules that we will call BCAARs and BACARs. respectively. We attach
to such rules three quality measures: support, confidence and a new measure called cov-
erage. The coverage of a given triadic association rule is computed as the ratio |C|/|K3|
for a BCAAR and |C|/|K2| for an BACAR, and indicates the ratio of conditions (resp.
attributes) for which an association between attributes (resp. conditions) holds.

3.3 Conditional Attribute Association Rules

A Biedermann conditional attribute association rule BCAAR has the form: (A → D)C

(s, c, cov). Its meaning is as follows: whenever A occurs under all conditions in C, then
D also occurs under the same conditions with a support s, a confidence c and a coverage
cov. By extending the definition of conditional attribute implication [5], the conditional

attribute association rule CAAR A
C−−→ D (s, c, cov) holds if (A → D)Ci (si, ci, cov)

holds for all Ci ⊆ C where s (resp. c) is the minimal support (resp. confidence) among
the si (resp. ci).

Figure 4 helps visualize and easily interpret a set of conditional attribute associa-
tion rules with a confidence equal to 1. For example, the node (see the left part of the
figure) whose extent contains N-P and whose successors are labeled with accessories

and digital cameras represents the implication N
ad−−→ P (0.4, 1, 0.5). It means that

whenever Nelson supplies any one of these two items (or both), then Peter also supplies
such product(s). The implication ∅ → P attached to the node representing the meet of
nodes labeled with accessories and digital cameras means that supplier Peter supplies
accessories and digital cameras to every customer.

The following proposition defines the way a conditional attribute implication and an
attributional condition implication (with Biedermann’s meaning) are computed.

Proposition 3. Given a t-generator (U2, U3) of the pair (A2, A3) in the triadic concept
(A1, A2, A3) where A1 ⊆ K1. Then, the Biedermann conditional attribute implication
BCAI : (U2 → A2 \U2)U3 holds with a support equal to |A1|/|K1| provided A2 \U2 �=
∅. In a dual way, the Biedermann attributional condition implication BACI: (U3 →
A3 \ U3)U2 occurs with a support equal to |A1|/|K1| provided A3 \ U3 �= ∅ holds.

For example the BCAI: (NK → P )b and the BACI: (b → d)PN are extracted from
node #13 of Figure 3.

A Biedermann conditional attribute association rule BCAAR with confidence less
than 1 can be defined as follows.
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Proposition 4. Given a t-generator (U2, U3) of the pair (A2, A3) in the triadic concept
(A1, A2, A3) such that A2 is a maximal set in ((U2, U3)(1))(1) that contains U2. Let the
precedence order (B1, B2, B3) ≺1 (A1, A2, A3) holds. Then, the conditional attribute
association rule BCAAR: (U2 → B2 \ A2)U3 (s, c, cov) holds with a support s =
|B1|/|K1|, a confidence c = |B1|/|A1| and a coverage cov = |U3|/|K3| provided the
following conditions hold: (i) B2 \A2 �= ∅, and (ii) U2 ⊂ B2 and U3 ⊆ B3.

By imposing the maximality of A2 we discard the attributes in B2 that are deduced
from U2 with a confidence equal to 1 (see an example below).

3.4 Attributional Condition Association Rules

A Biedermann attributional condition association rule BACAR has the form: (A →
D)C (s, c, cov). Its meaning is as follows: whenever the conditions in A occur for all
attributes in C, then the conditions in D also occur for the same attributes with a support
s, a confidence c and a coverage cov.

Proposition 5. Given a t-generator (U2, U3) of the pair (A2, A3) in the triadic concept
(A1, A2, A3) such that A3 is a maximal set in ((U2, U3)(1))(1) that contains U3. Let the
precedence order (B1, B2, B3) ≺1 (A1, A2, A3) holds. Then, the Biedermann attribu-
tional condition association rule BACAR: (U3 → B3 \ A3)U2 (s, c, cov) holds with a
support s = |B1|/|K1|, a confidence c = |B1|/|A1| and a coverage cov = |U2|/|K2|
provided the following conditions are met: (i) B3 \ A3 �= ∅, and (ii) U2 ⊆ B2 and
U3 ⊂ B3.

The rule (U3 → B3 \A3)U2 (s, c, cov) becomes an attributional condition association

rule ACAR U3
U2−−→ B3 \ A3 (s, c, cov) if it holds for any subset in U2. For example

(see Figure 3), (NK, b) is a t−generator for (A2, A3) := (PNK, b) while (PN, b) is
a t−generator for both (PNK, b) and (PN, bd). The maximal value of A2 w.r.t. both
t-generators is PNK while the maximal value for A3 w.r.t. the t-generator (PN, b)
is bd. Since (1, PN, abd) ≺1 (14, PN, bd) (see the link between nodes #13 and #14)
and (4, PNRK, b) ≺1 (14, PNK, b) (see the link between nodes #13 and #19) and
the two conditions of the previous proposition are verified, we can generate e.g. the

BCAAR (and also CAAR): PN
b−−→ R (0.2, 0.50, 0.25) and the ACAR: b

PN−−→ a (0.2,
0.50, 0.50) because the BACAR (b → a)C1 holds for all C1 ⊆ {P, N}.

The benefits of CAARs and ACARs over AxCARs is that they express in a very com-
pact and more meaningful way a plethora of association rules by factorizing attributes
or conditions, respectively. In the first case (i.e., CAARs), the focus is on attribute as-
sociations with reference to conditions under which they hold while in the second case
(i.e., ACARs), the focus is on condition links with reference to attributes for which they
hold. Moreover, the size of these sets is reduced compared to BCAARs and BACARs
since they are stronger (and more restrictive) than the latter kind. However, their com-
putation is more time consuming than the Biedermann’s version due to the checking of
(A→ D)c for all c ∈ C, mainly when C is large.
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Fig. 4. The lattice of conditional attribute implications (CAIs) where e.g., N-P stands for N → P

4 Triadic Pattern Computation

In the following we use the notion of generator to extract the generic base (containing
only rules with confidence =1) and the informative base for approximate rule compu-
tation. As indicated earlier, our approach operates in three steps: (i) convert the triadic
context into a dyadic one (e.g., K(1) := (K1, K2×K3, Y

(1))), (ii) compute dyadic con-
cepts, their corresponding (minimal) generators as well as attribute×condition associ-
ation rules (AxCARs), and (iii) compute tri-sets, t-generators, and triadic association
rules association rules (including implications). We will mainly focus on the Bieder-
mann’s meaning of implications and rules.

The main procedure is called TRIADIC (see Algorithm 1) and relies on other proce-
dures to conduct all the needed computations. The concepts in the lattice L generated
from K(1) are first sorted according to a decreasing order of their extent size. This could
be helpful for checking if (A2, A3) has already been retrieved with a greater extent (see
line 18 of Algorithm 2). For each dyadic concept in the lattice, Procedure AXCAR (not
shown in this paper) is called to compute AxCARs using the notions presented in Sub-
section 2.2. Then Algorithm 2 (line 8) is used to calculate the set C of triadic concepts
together with their associated t-generators. If C is not empty (lines 9 to 11), then we add
to TS (the set of ∼1 classes containing tri-sets) a new class identified with its extent,
its set C of pairs (A2, A3) and its t-generators in G. Once all triadic concepts (together
with their associated t-generators) are produced, the link between classes of ∼1 triadic
concepts is established (see line 11) using for example the algorithm iPred [2]. Fi-
nally, the computation of BCAIs, BACIs, BCAARs, and BACARs is done in a polyno-
mial time in the size of triadic concepts using Procedure TRAR (line 12) described by
Algorithm 3.
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Algorithm 1. Main procedure. Computation of triadic concepts and triadic association
rules, including implications

1: Procedure TRIADIC(L)
2: In: L: a lattice of dyadic concepts described by their extent, intent, generators,

successors and predecessors. K1, K2 and K3 are global variables representing the
object, attribute, and modus sets respectively.

3: Out: T : a set of ∼1 classes containing triadic concepts and t-generators together
with a precedence order between classes; Σ1: a set of AxCARs; Σ2: a set of
BCAIs, BACIs, BCAARs and BACARs

4: TS ← ∅; Σ1 ← ∅;
5: Sort(L)
6: for c in L do
7: Σ1 ← Σ1∪ AXCAR(c) {Compute AxCARs from c}
8: (C,G) ← TRISET(c) {Compute the set C of triadic concepts and the set G of

t-generators from c and its dyadic generators}
9: if C �= ∅ then

10: TS ← TS ∪ {(Ext(c), C,G)} {Store ∼1 tri-sets}
11: T ← TS ∪ LINK(TS)
12: Σ2 ← TRAR(T )
13: return T,Σ1, Σ2

Algorithm 2. Computation of triadic concepts and t-generators

1: Procedure TRISET(c)
2: In: c: a dyadic concept
3: Out: C and G: a set of triadic concepts and a set of associated t-generators
4: C ← ∅; G ← ∅
5: U ← Gen(c) {Gen(c) is the set of generators associated with the intent of c}
6: A ← DistinctA(c) {Collect distinct attribute values aj ∈ c}
7: M ← DistinctM(c) {Collect distinct modus values ak ∈ c}
8: for aj ∈ A do
9: for ak ∈ M do

10: Kaj ,ak ← 0 {Initialize the sub-context Kaj ,ak to 0 where rows and columns
are attributes and modus found in c.}

11: for e in Int(c) do
12: aj ← Attrib(e) {Extract the attribute value aj in e = aj × ak }
13: ak ← Mod(e) {Extract the modus value ak in e }
14: Kaj ,ak ← 1 {Construct the sub-context Kaj ,ak from the intent of the concept

c.}
15: AM ← AttMod(Kaj ,ak ) {Compute the concepts (Aj , Ak) from Kaj ,ak}
16: for e ∈ AM do
17: e1 ← Derive(e) {e1 is the (1)-derivation of e}
18: if e1 = Ext(c) then
19: C ← C ∪ {(e1, Ext(e), Int(e))}
20: if C �= ∅ then
21: for g in U do
22: A ← DistinctA(g) {Collect distinct attribute values aj ∈ g}
23: M ← DistinctM(g) {Collect distinct modus values ak ∈ g}
24: if Size(A)× Size(M) = Size(g) then
25: G ← G ∪ {(A,M)}
26: return C,G
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Algorithm 2 exploits Propositions 1 and 2 to compute triadic concepts and t-
generators when a dyadic concept c is given together with its associated (dyadic) gen-
erators. Lines 5 to 15 collect distinct attribute and modus values found in the intent of
the current dyadic c in order to construct the sub-context Kaj ,ak

and generate the cor-
responding concepts. Line 18 checks whether each computed triple is a triadic concept.
The computation of t-generators is done through lines 20 to 25. For each class of ∼1
triadic concepts and their associated t-generators, Algorithm 3 uses Proposition 3 to
first compute BCAIs and BACIs (lines 10 to 18) and then uses Propositions 4 and 5 to
compute BCAARs and BACARs (lines 19 to 24) using Algorithm 4. In order to discard
some redundant implications BCAIs (resp. BACIs), lines 20 and 23 select the closed tri-
sets that have a maximal intent (resp. modus) containing the intent (resp. modus) of t-g.

To illustrate the execution of the different procedures, let us take the example given
in Figure 3. From the dyadic concept c in node #13, Procedure AXCAR computes Ax-
CARs like N-bK-b→ P-aP-bP-dN-dR-aK-a (0.4, 1) and N-bK-b→ R-bS-d (0.2, 0.5).
Algorithm 2 computes the following elements: the set of dyadic generators U ={P-bN-
b, N-bK-b} as well as A = {P, N, R, K} and M = {a, b, d} corresponding to the set
of attributes and conditions found in c, respectively. The set AM contains five couples
(Aj , Ak), but only two tri-sets can be stored in C = {(14, PNK, b), (14, PN, bd)}.
The set of t-generators to be extracted from U is G = {(NK, b), (PN, b)}. From Al-
gorithms 3 and 4 a set of association rules can be computed such as (NK → R)b

(0.2, 0.5, 0.25), (NK → P )b (0.4, 1, 0.25) and (b → a)NK (0.2, 0.5, 0.5).

5 Experimental Study

The objective of this section is to empirically estimate the execution time of the main
procedure that computes both triadic concepts, t-generators and triadic association rules.
To the best of our knowledge, there are neither implementations nor algorithms that han-
dle the types of association rules that we are considering in this paper. Therefore, no
empirical comparison between our procedures and other studies can be conducted. The
empirical tests were done on a Windows XP-based system with 3 GB memory and 1.9
GHz processor on a pattern management environment using SQL Server. We generated
five synthetic data sets of dyadic concepts obtained from triadic contexts of varying
sizes. The size of the five datasets are 2197, 4350, 6289, 8461, and 10234 dyadic con-
cepts. The execution time shown in Figure 5 includes the time needed to first generate
dyadic concepts and then to compute triadic concepts, generators and rules from dyadic
concepts. Other tests show that the overall cost is dominated by the computation of tri-
adic concepts. We have also compared the size of AxCARs against the size of BCAARs
and BACARs and found that the former ones are more numerous than the latter ones. As
an example, from a set of 2197 concepts, we got 19107 AxCARs from which only 309
rules (232 BCAARs and 77 BCAIs) were produced. This result illustrates the potential
of triadic rules to be more meaningful and compact than dyadic ones.

Further experimentation and implementation will be conducted in order to compare
our present approach against other variants that we are developing (e.g., computing
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Algorithm 3. Computation of triadic association rules, including implications

1: Procedure TRAR(T )
2: In: T= a set of classes. Each class contains ∼1 triadic concepts together with

associated t-generators and predecessors.
3: Out: TRAR: A set of n-uples (L,R,C, t, s, c, cov) representing association rules

with left hand-side L, right hand-side R, condition C, type t (= 1 to 4 for BCAI,
BACI, BCAAR and BACAR resp.), and quality measures.

4: TRAR ← ∅
5: for CL in T do
6: for t-g in Gen(CL) do
7: {Gen(CL) is the set of t-generators in the class CL of T}
8: A ← Int(t-g); D ← Modus(t-g)
9: for t-c in CL do

10: {Compute BCAIs and BACIs}
11: MaxTriAtt ← MAX(t-c, Int(t-g)); MaxTriMod ← MAX(t-c, Modus(t-g))
12: B ← Int(t-c); F ← Modus(t-c); E ← Ext(t-c);
13: s ← Size(E)/Size(K1)
14: if t-c in MaxTriAtt and A ⊂ B and D ⊆ F then
15: cov ← Size(D)/Size(K3)
16: TRAR ← TRAR ∪ {(A,B \A,D, 1, s, 1, cov)}
17: if t-c in MaxTriMod and D ⊂ F and A ⊆ B then
18: cov ← Size(A)/Size(K2)
19: TRAR ← TRAR ∪ {(D,F \D,A, 2, s, 1, cov)}
20: {Compute BCAARs}
21: if Pred(CL) �= ∅ and t-c is maximal w.r.t. the intent A of t-g then
22: TRAR ← TRAR ∪ AR(CL,A,D,E, 3)
23: {Compute BACARs}
24: if Pred(CL) �= ∅ and t-c is maximal w.r.t. the modus D of t-g then
25: TRAR ← TRAR ∪ AR(CL,A,D,E, 4)
26: return TRAR
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Algorithm 4. Computation of BCAARs and BACARs

1: Procedure AR(CL,A,D,E, i)
2: In: CL: A class of ∼1 triadic concepts together with associated t-generators and

predecessors; A and D are the intent and the modus of the current gt-generator
respectively while E is the extent of the current triadic concept and i takes de value
3 or 4

3: Out: Temp: a set of association rules whose confidence is less than 1.
4: Temp ← ∅
5: for p in Pred(CL) do
6: B ← Int(p); F ← Modus(p)
7: s ← Ext(p)/Size(K1)
8: c ← Ext(p)/Size(E)
9: if i = 3 and A ⊂ B and D ⊆ F then

10: cov ← Size(D)/Size(K3)
11: Temp ← Temp ∪ {(A,B \A,D, 3, s, c, cov)}
12: if i = 4 and D ⊂ F and A ⊆ B then
13: cov ← Size(A)/Size(K2)
14: Temp ← Temp ∪ {(D,F \D,A, 4, s, c, cov)}
15: return Temp

Fig. 5. Execution time according to the number of dyadic concepts

triadic concepts and generators directly from the initial triadic context) and analyze the
effects of context configuration (e.g., density, number of attributes) on performance.

6 Conclusion

In this work, we defined procedures for association rule mining using triadic concept
analysis as a theoretical framework. A couple of issues need to be explored: (i) alternate
solutions towards a more efficient computation of triadic concepts, generators and as-
sociation rules, (ii) incremental computation of triadic concepts when one of the three
sets is augmented, and (iii) computation of n-ary association rules by exploring existing
studies on generating n-ary patterns (concepts and rules) from polyadic contexts [4,18].
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Abstract. In this paper we propose the characterization of two new
structures, the Agree Concept Lattice and the Quotient Agree Lattice of
a database relation. Both of them are of great interest for multidimen-
sional database analysis. They provide a formal framework which makes
it possible to improve computation time, reduce representation and easily
navigate through the Hasse diagram. These structures are generic, ap-
ply to various database analysis problems and combine formal concept
analysis and database theory. They make use of the concepts of agree
set and database partition. Agree set and partition are associated to de-
fine the Agree Concept of a database relation. The set of all the Agree
Concepts is organized within the Agree Concept Lattice. The Quotient
Agree Lattice is along the lines of both the Titanic framework and the
quotient cube.

We also briefly present three application fields of the proposed struc-
tures. The first two ones are classical since they concern on the one hand
the discovery of functional and approximate dependencies for database
design and tuning and on the other hand the data cube computation
and representation. The latter field has been recently investigated. The
underlying issue is to retrieve the most relevant objects according to
the user expectations: the Skyline. The multidimensional generaliza-
tion of the Skyline has been proposed through the Skycube. The pro-
posed structures smartly solve the problem of partial materialization of
Skycube with reconstruction guarantee.

Keywords: Agree set,Databasepartition,Concept lattice,Olapmining,
Multidimensional database analysis.

1 Introduction

In the fields of databases and data warehouses, several very different issues
require manipulating very voluminous data sets, performing costly computa-
tions and storing overwhelming volumes of results. Among such issues, let us
quote the extraction of functional or approximate dependencies (Lopes et al.,
2002), the computation and representation of data cubes (Casali et al., 2009a;
Nedjar et al., 2009; Casali et al., 2003; Lakshmanan et al., 2002) and the multi-
dimensional database analysis through the Skycube concept (Pei et al., 2006,
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2005; Yuan et al., 2005). In this paper, we propose two well founded and generic
structures which can be used to solve the given issues. They associate formal con-
cept analysis (Ganter and Wille, 1999) and database theory (Abiteboul et al.,
1995). The former has been successfully used when addressing various issues in
database, data mining and data warehousing. For instance, different approaches
have been defined to extract frequent closed item-sets (Pasquier et al., 1999;
Stumme et al., 2002) and association rules, represent such rules in a compact
way through basis or covers (Zaki, 2000; Bastide et al., 2000; Pasquier et al.,
2005), discover functional and conditional dependencies (Lopes et al., 2000;
Novelli and Cicchetti, 2001; Diallo et al., 2011; Medina and Nourine, 2010), re-
duce the size of data cubes by representing them through constrained closed or
quotient cubes (Nedjar et al., 2010b, 2009, 2010c,a). The former two quoted ap-
proaches mine new knowledge from transaction databases or formal contexts. For
the latter ones, knowledge extraction is performed from a database relation which
represents a many-valued context. All these approaches take advantage of the
formal concept analysis expressiveness in order to soundly characterize the tack-
led problems, devise efficient algorithms and propose reduced representations as
well as visual navigation tools through the solution space. Our proposals fit in
a similar spirit. We characterize the Agree Concept Lattice and the Quotient
Agree Lattice. From database theory, we make use of the concepts of partition
and agree set. The partition of a relation according to a set of attributes X is
a set of parts (or equivalence classes) in which all the stored objects (or tuples)
share the same value for X . An agree set is a set of attributes for which certain
tuples agree, i.e. share the same value (Beeri et al., 1984; Lopes et al., 2002).
The agree sets and partitions are combined through a particular Galois connec-
tion in order to constitute Agree Concepts. The set of all the Agree Concepts is
provided with a twofold order relationship: inclusion between attribute sets and
refinement between database partitions. The result is the Agree Concept Lattice.
When compared to this lattice, the Quotient Agree Lattice associates to each
Agree Concept intent all its minimal generators in order to represent equiva-
lence classes. These classes are built up according to an equivalence relationship
for which we define three particular and equivalent instances. We also briefly
describe two classical application fields: the approximate and functional depen-
dency discovery and the data cube computation and representation. Moreover we
investigate the most promising and innovating application field: the multidimen-
sional and multicriterion database analysis based on Skylines (Börzsönyi et al.,
2001). The Skyline operator considers the set of the chosen user criteria as pref-
erences and extracts the optimal objects for this set. It is based on the notion
of dominance (Pareto’s dominance relationship (Kung et al., 1975)). The Sky-
cube (Yuan et al., 2005; Pei et al., 2005) groups all the Skylines according to
the possible subsets of criteria (or attributes). With the two proposed structures,
we are able to define a partial materialization approach which makes it possible
to reconstruct the whole Skycube.

The paper is organized as follows. In Section 2, we remind our background:
the concepts of agree set and partition. The two following sections are devoted
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to the two new lattice structures. Finally we place emphasis on their application
in several database analysis problems.

2 Background

In this section, we present the fundamental concepts for our approach: the par-
tition lattice (Birkhoff, 1970) and agree set (Beeri et al., 1984) originated from
database theory.

2.1 The Partition Lattice

The concepts reminded in this section are classical in mathematics and have
been used for solving database problems (Spyratos, 1987).

Definition 1 (Partition of a set). Let E be a set, a partition π(E)1 of the set
E is a family of parts of this set such that each element of E exactly belongs to a
single part (also called class). In other words, π(E) is a family of disjointed sets
(∀X, Y ∈ π(E) we have X∩Y = ∅) and their union is equal to E (

⋃
X∈π(E) = E).

Definition 2 (Order relationship between partitions). Let π(E), π′(E)
be two partitions of a single set E, π(E) is a refinement of π′(E) if and only if
any class of π(E) is obtained by dividing classes of π′(E)2. The refinement rela-
tionship between two partitions is a partial order relation noted �. It is defined
as follows:

π(E) � π′(E)⇔ π(E) is a refinement of π′(E)3

⇔ ∀X ∈ π(E), ∃X ′ ∈ π′(E), X ⊆ X ′

From this definition, we have π(E) � π′(E)⇒ |π(E)| ≥ |π′(E)|.

Definition 3 (Partition product). Let π(E) and π′(E) be two partitions of a
single set E. The product of the partitions π(E) and π′(E), noted π(E) • π′(E),
is obtained as follows:

π(E) • π′(E) = {Z = X ∩ Y | Z �= ∅, X ∈ π(E) and Y ∈ π′(E)}

Before defining the operator sum between two partitions, we introduce a tool
function U :

U(e, F ) =
⋃

X∈F
e∈X

X

with e an element of a set E, F a family of parts of E. U(e, F ) corresponds to
the union of sets of F containing the element e.
1 When there is no ambiguity for the set E we note the partition π.
2 In an equivalent way, π(E) is a refinement of π′(E) if and only if any class of π′(E)

results from the union of classes of π(E).
3 π′(E) is said rougher than π(E).
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{1234}

{13,24} {1,234} {2,134} {3,124} {12,34} {4,123} {14,23}

{1,3,24} {1,2,34} {2,4,13} {2,3,14} {3,4,12} {1,4,23}

{1,2,3,4}

�

Fig. 1. Hasse Diagram of the partition lattice of E = {1, 2, 3, 4}

Definition 4 (Sum of partitions). Let π(E) and π′(E) be two partitions of a
single set E. The sum of the partitions π(E) and π′(E), noted π(E) + π′(E), is
obtained by the transitive closure of the operation which associates to an element
of E the set of elements of its classes in π(E) and π′(E) (Barbut, 1968). The
sequence S is defined below in order to characterize this computation :⎧⎨

⎩
S0 = max

⊆
(π(E) ∪ π′(E))

Sn = max
⊆

({U(e, Sn−1) | e ∈ E})

Thus the operator sum can be defined as follows:

π(E) + π′(E) = Sk with k such that Sk = Sk−1

Theorem 1 (Partition lattice). Let Π(E) be the set of the possible partitions
of a set E. The ordered set 〈Π(E),�〉 forms a complete lattice called partition
lattice of E. ∀P ⊆ Π(E), its infimum or lower bound (

∧
) and its supremum or

upper bound (
∨

) are given below:∧
P = •

π∈P
π,

∨
P = +

π∈P
π

Example 1. The Hasse diagram of the partition lattice of E = {1, 2, 3, 4} is given
in Figure 1. In order to keep the uniformity with the Agree Concept Lattice, the
lattice is represented in a reverse way in comparison with the classical represen-
tation. The roughest partitions are at the bottom and the thinnest ones at the
top.

2.2 Agree Sets

The concept of agree set (as well as the associated closure system), intro-
duced in Beeri et al. (1984) to characterize the Armstrong relation, has been
successfully used to discover exact and approximate functional dependen-
cies (Lopes et al., 2002). Two tuples agree on an attribute set X if they share
the same value on X .



The Agree Concept Lattice for Multidimensional Database Analysis 223

Table 1. The relation Housing

RowId Price Distance Consumption Neighbors

1 220 15 275 5
2 100 15 85 1
3 150 7 180 1
4 340 7 85 3
5 100 7 180 1

Definition 5 (Agree set). Let r be a database relation with the set of attributes
R and ti, tj two tuples of r. X ⊆ R is an attribute set. ti, tj agree on X if and
only if ti[X ] = tj [X ]. The agree set of ti and tj is defined as follows:

Acc(ti, tj) = {X ⊂ R | ti[X ] = tj [X ]}

This definition can be generalized to a set of tuples T ⊆ r encompassing at least
two elements:

Acc(T ) = {X ⊂ R | t[X ] = t′[X ], ∀t, t′ ∈ T }

Definition 6 (Agree set of a database relation). The agree set of a database
relation r is defined as follows:

Agree(r) = {Acc(ti, tj) | ti, tj ∈ r and i �= j}

This set can be defined in an equivalent way:

Agree(r) = {Acc(T ) | ∀T ⊆ r and |T | ≥ 2}

Example 2. The relation depicted in Table 1 lists various housings. The at-
tributes are: the sale Price in thousands of euros, the Distance from the work
place, the energy Consumption in kilowatt-hours by year and square meter, the
number of Neighbors. The attributes are denoted by their initial.

Acc(t2, t5) = PN because these two tuples share the same value for the
attributes Price, Neighbor and are provided with different values for Distance,
Consumption. In the same way, Acc({t3, t4, t5}) = D because these three tuples
have the same value only for the attribute Distance. The agree attribute set of
the relation Housing is the following:
Agree(Housing) = {∅, D, N, C, PN, DCN}.

Definition 7 (Equivalence class of a tuple). Let r be a relation and X ⊆ R
a set of attributes. The class of a tuple t according to X, noted [t]X , is defined
as the set of identifiers i (Rowid) of all the tuples ti ∈ r which agree with t
according to X ( i.e. the identifier set of the tuples ti sharing with t the same
values for X). Thus we have:

[t]X = {i ∈ T id(r)4 | ti[X ] = t[X ]}

4 T id(r) = {Rowid(t) | t ∈ r}.
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Example 3. With the relation Housing, [t2]P = {2, 5} because t2 and t5 are
provided with the same value for the attribute Price.

3 Agree Concept Lattice of a Database Relation

In this section, our objective is to define a formal framework combining the
concepts of agree set and the one of concept lattice. We propose a new structure,
the Agree Concept Lattice of a relation, which can be used to solve several
multidimensional database analysis problems. Then we soundly characterize the
Agree Concept Lattice.

3.1 Agree Concepts of a Database Relation
Our objective is to define a particular concept lattice which is based on the agree
sets and the database partitions (Spyratos, 1987). In order to meet this goal, we
characterize an instance of the Galois connection between on the one hand the
lattice of the power set of the attribute set and on the other hand the lattice
of the partitions of the tuple identifier set. This connection makes it possible to
define dual closure operators, introduce the Agree Concept and characterize the
Agree Concept Lattice.

Definition 8. Let Rowid : r → N be an application which associate to each
tuple a single natural integer and T id(r) = {Rowid(t) | t ∈ r}. Let f , g be two
applications between the ordered sets 〈Π(T id(r)),�〉 and 〈P(R)5,⊆〉 which are
defined as follows:

f : 〈Π(T id(r)),�〉 −→ 〈P(R),⊆〉
π �−→

⋂
[t]∈π

Acc({ti | i ∈ [t]})

g : 〈P(R),⊆〉 −→ 〈Π(T id(r)),�〉
X �−→ {[t]X | t ∈ r}

For an attribute set X , the equivalence class set according to X forms a partition
of T id(r). It is the function g which associates this partition of identifiers to X .
This partition is noted πX and defined as follows: πX = g(X). The set of all the
possible partitions πX is noted ΠP(R)(Lopes et al., 2000; Laporte et al., 2002).
The function f performs the opposite association.

Example 4. With the relation Housing, by considering the following attribute
set: D, DC, DCN and PN . we have g(D) = {12, 345}6, g(DC) = {1, 2, 35, 4},
g(DCN) = {1, 2, 35, 4} and g(PN) = {1, 25, 3, 4}. With the partitions {1, 2, 35, 4}
and {1, 2, 345}, we have f({1, 2, 35, 4}) = DCN and f({1, 2, 345}) = D.

Proposition 1. The couple of applications gc = (f, g) is a Galois connection
between the attribute power set lattice of R and the lattice of partitions of T id(r).
5 P(R) is the powerset lattice of the attribute set of the database relation r.
6 t1 and t2 are in the same equivalence class. t3, t4 and t5 belong to the same class.
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Proof. Due to the definition of the order relationship between partitions and
the definition of f , it is trivial to show that π � πX ⇔ X ⊆ f(π). According
to Ganter and Wille (1999), gc = (f, g) is a Galois connection. ��

Definition 9 (Closure operators). The couple gc = (f, g) is a particular case
of the Galois connection. The compositions f ◦g and g◦f of the two applications
are closure operators (Ganter and Wille, 1999). They are defined below:

h : P(R) −→ P(R)
X �−→ f(g(X)) =

⋂
X′∈Agree(r)

X⊆X′

X ′

h′ : Π(T id(r)) −→ Π(T id(r))
π �−→ g(f(π)) = •

π′∈ΠP(R)

π�π′

π′

h and h′ satisfy the following properties:

1. X ⊆ X ′ ⇒ h(X) ⊆ h(X ′) and π � π′ ⇒ h′(π) � h′(π′) (monotony)
2. X ⊆ h(X) et π � h′(π) (extensivity)
3. h(X) = h(h(X)) et h′(π) = h′(h′(π)) (idempotence)

Example 5. With the relation Housing, by considering the attribute sets DC
and DCN , according to the previous example, we have:

– h(DC) = f(g(DC)) = f({1, 2, 35, 4}) = DCN

– h(DCN) = f(g(DCN)) = f({1, 2, 35, 4}) = DCN

With the partitions {1, 2, 35, 4} and {1, 2, 345}, we have:

– h′({1, 2, 35, 4}) = g(f({1, 2, 35, 4})) = g(DCN) = {1, 2, 35, 4}
– h′({1, 2, 345}) = g(f({1, 2, 345})) = g(D) = {12, 345}

Definition 10 (Agree concepts). An Agree concept of a database relation r
is a couple (X, π) associating a set of attributes to a partition of identifiers:
X ∈ P(R) and π ∈ Π(T id(r)). The elements of this couple must be related by
the following conditions : X = f(π) , π = g(X) = πX .
Let ca = (Xca , πca) an Agree Concept of r, we call πca the extent of ca (noted
ext(ca)) and Cca its intent (noted int(ca)). The set of all the Agree Concepts of
a relation r is noted AgreeConcepts(r).

Theorem 2 (Agree Concept Lattice). Let AgreeConcepts(r) be the set of
Agree Concepts of a relation r. The ordered set 〈AgreeConcepts(r),≤ 7〉 forms
a complete lattice called the Agree Concept lattice. ∀P ⊆ AgreeConcepts(r),

7 Let (X1, π1), (X2, π2) ∈ AgreeConcepts(r), (X1, π1) ≤ (X2, π2) ⇔ X1 ⊆ X2 (or
in an equivalent way π2 	 π1).
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(∅, {12345})

(N, {1, 235, 4}) (D, {12, 345}) (C, {1, 24, 35})

(PN, {1, 25, 3, 4}) (DCN, {1, 2, 35, 4})

(PDCN, {1, 2, 3, 4, 5})

Fig. 2. Hasse diagram of the Agree Concept Lattice of the relation Housing

the infimum or lower bound (
∧

) and supremum or upper bound (
∨

) are given
below: ∧

P = (
⋂

ca∈P

int(ca), h′( +
ca∈P

ext(ca)))

∨
P = (h(

⋃
ca∈P

int(ca)), •
ca∈P

ext(ca))

Proof. Since the couple gc = (f, g) is a Galois connection, the Agree Concept
Lattice is a concept lattice according to the fundamental theorem of Wille
(Ganter and Wille, 1999).

Example 6. Figure 2 gives the Hasse diagram of the Agree Concept lattice
of the relation Housing. The couple (DCN, {1, 2, 35, 4}) is an Agree Con-
cept because according to the examples 4 we have g(DCN) = {1, 2, 35, 4}
and f({1, 2, 35, 4}) = DCN . In contrast, the couple (DC, {1, 2, 35, 4}) is not
an Agree Concept because f({1, 2, 35, 4}) �= DC. Let ca = (DCN, {1, 2, 35, 4})
and cb = (PN, {1, 25, 3, 4}) be two Agree Concepts, thus we have:

ca ∧ cb =(DCN ∩ PN, h′({1, 2, 35, 4}+{1, 25, 3, 4}))
=(N, h′({1, 235, 4})) = (N, {1, 235, 4})

ca ∨ cb =(h(DCN ∪ PN), {1, 2, 35, 4} •{1, 25, 3, 4})
=(h(PDCN), {1, 2, 3, 4, 5}) = (PDCN, {1, 2, 3, 4, 5})

Proposition 2. For any attribute set X ⊆ R, the associated partition πX is
identical to the partition of its closure.

∀X ⊆ R, πX = πh(X)

Proof. By definition ∀X ⊆ R, πX = g(X) and h(X) = f(g(X)). Thus we have
πh(X) = g(f(g(X)). Since the couple gc = (f, g) is a Galois connection, we have
g ◦f ◦g = g (Ganter and Wille, 1999). Then, πh(X) = g(f(g(X))) = g(X) = πX .

Example 7. With the relation Housing, by considering the set of attributes DC,
according to the examples 4 and 5, we have: πDC = g(DC) = {1, 2, 35, 4} and
πh(DC) = g(h(DC)) = g(DCN) = {1, 2, 35, 4}.
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The previous proposition means that the closure of a set of attributes X can be
seen as the greatest super-set of X provided with the very same partition.

4 Quotient Agree Lattice of a Database Relation

In this section, we define the Quotient Agree Lattice which is inspired by the
structure of the quotient cube (Lakshmanan et al., 2002) which itself is along
the lines of Titanic (Stumme et al., 2002).

The idea behind the structure in question is to discard redundancies by gath-
ering together elements sharing an equivalent information. This results in a set of
equivalence classes partitioning the original set. Such a partitioning can be per-
formed in various ways. However, in order to preserve the navigation capabilities
through the structure, it is important to deal with convex classes.

Definition 11 (Convex equivalence class). Let 〈E,≤〉 be an ordered set and
C ⊆ E be an equivalence class. We say C is convex if and only if:

∀e ∈ E if ∃e′, e′′ ∈ C such that e′ ≤ e ≤ e′′ then e ∈ C

A partition P of E which only encompasses convex equivalence classes is called
a convex partition.

The convexity property makes it possible to represent each equivalence class
through its maximal and minimal tuples. Intermediary tuples are no longer useful
and the underlying representation is reduced. To ensure that the partition is
convex (Lakshmanan et al., 2002), the following equivalence relation is used.

Definition 12 (Quotient equivalence relation). The equivalence relation ≡
is said a quotient equivalence relation if and only if it satisfies the property of
weak congruence:

∀e, e′, f, f ′ ∈ E, if e ≡ e′, f ≡ f ′, e ≤ f and f ′ ≤ e′, then e ≡ f

We denote [e]≡ the equivalence class of e ∈ E defined by : [e]≡ = {e′ ∈ E | e ≡ e′}

The construction of a quotient lattice depends on the chosen quotient equivalence
relation. As a consequence, two different quotient equivalence relations result in
two different quotient lattices. In order to define the Quotient Agree Lattice of
a database relation, we give the following equivalence relation.

Definition 13 (π-equivalence relation). Let X, Y ∈ P(R) be two sets of
attributes. X, Y are π-equivalent over r, X ≡π Y , if they have the same partition.

∀X, Y ∈ P(R), X ≡π Y ⇔ πX = πY

Example 8. With the relation Housing, by considering the attribute set DC,
according to the example 7, we have: πDC = {1, 2, 35, 4} and πDCN = {1, 2, 35, 4}
hence DC ≡π DCN .
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Proposition 3. the π-equivalence relation is a quotient equivalence relation.

Proof.

∀X, X ′, Y, Y ′ ∈ P(R), X ≡π X ′, Y ≡π Y ′, X ⊆ Y and Y ′ ⊆ X ′

⇔ πX = πX′ , πY = πY ′ , πY � πX , πX′ � πY ′

⇒ πY � πX , πX � πY ⇒ πY = πY ⇒ X ≡π Y

��

Using the π-equivalence relation as a quotient equivalence relation, we are able
to define the Quotient Agree Lattice. It is defined as the set of equivalence classes
of P(R), each one being provided with its associated partition.

Definition 14 (Quotient Agree Lattice). Let ≡π be the π-equivalence rela-
tion. The Quotient Agree Lattice of r, denoted by QuotientAgreeLattice(r), is
defined as follows:

QuotientAgreeLattice(r) = {([X ]≡π , πX) such that X ∈ P(R)}

The Quotient Agree Lattice of r is a convex partition of P(R)( cf. proposition 3
and definition 12). Each equivalence class of the Quotient Agree Lattice which
contains more than one element is represented by its maximal element (w.r.t in-
clusion) which is an Agree Concept and its minimal elements which are the min-
imal generators associated with the quoted Agree Concept. Equivalence classes
such that |[X ]≡π | = 1 are represented by their single element.

For two equivalence classes C, C′ ∈ QuotientAgreeLattice(r), C �Q C′ when
∃X ∈ C and ∃X ′ ∈ C′ such that X ⊆ X ′.

Example 9. Figure 3 gives the Hasse diagram of the Quotient Agree Lattice of
the relation Housing.

Definition 15 (count equivalence relation). Let X, Y ∈ P(R) be two sets,
the count equivalence relation over r, X ≡c Y , is defined as follows:

∀X, Y ∈ P(R), X ≡c Y ⇔ ∃Z ∈ P(R), X ⊆ Z, Y ⊆ Z

such that |r(X)| = |r(Y )| = |r(Z)|

Definition 16 (closure equivalence relation). Let X, Y ∈ P(R) be two sets,
the closure equivalence relation over r, X ≡h Y , is defined as follows:

∀X, Y ∈ P(R), X ≡h Y ⇔ h(X) = h(Y )

Proposition 4. ∀X, Y ∈ P(R),

X ≡π Y ⇔ X ≡c Y ⇔ X ≡h Y
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(∅, {12345})

P (C, {1, 24, 35}) (D, {12, 345}) (N, {1, 235, 4})

{1, 25, 3, 4}
PN PD PC DC DN CN

DCN

{1, 2, 35, 4}

PDCN

{1, 2, 3, 4, 5}

Fig. 3. Hasse diagram of the Quotient Agree Lattice of the relation Housing

Proof.

1. X ≡h Y ⇔ h(X) = h(Y ). Moreover, according to proposition 2, πX = πh(X)
and πY = πh(Y ), since h(X) = h(Y ) we have πX = πY . ��

2. According to (Stumme et al., 2002) counting is a weight function hence
X ≡h Y ⇔ X ≡c Y . ��

The above proposition states the relationship between the Quotient Agree Lat-
tice and the concepts related to the Agree Concept Lattice.

5 Applications to Multidimensional Database Analysis

In this paper we have proposed two soundly founded structures originated from
formal concept analysis and database theory. In this section, we highlight three
database applications for which these structures are of great interest. The for-
mer two result from classical issues: mining exact and approximate functional
dependencies and computing data cubes. The latter approach provides a mul-
tidimensional and multi-criterion database analysis intended for retrieving the
user preferences. It is called Skycube.

5.1 Functional Dependencies

The discovery of functional dependencies is a well known task in database design
and tuning (Beeri et al., 1984; Lopes et al., 2002; Novelli and Cicchetti, 2001).
All the approaches tackling this issue mine a canonical cover which encompasses
all the minimal functional dependencies. However such a cover does not exist for
approximate dependencies. The concepts of agree set and partition have been
successfully used for solving the dependency extraction problem with the Dep-
Miner approach (Lopes et al., 2000). With the Quotient Agree Lattice, it is
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possible to easily compute both approximate and exact functional dependen-
cies. All the dependencies within classes are exact dependencies. They hold be-
tween the minimal generators and associated closed set. Dependencies between
classes are approximate ones. They link between minimal generators and closed
sets (Bastide et al., 2000; Pasquier et al., 2005; Stumme et al., 2002).

Finally the covering graph of the Quotient Agree Lattice is a visual tool which
makes it possible to easily detect the various functional dependencies.

Example 10. With the Quotient Agree Lattice of the relation Housing (Cf. fig-
ure 3), the exact functional dependency DC → N holds because DC and DCN
belong to the same equivalence class. N → DC is an approximate dependency
because N is a minimal generator and DCN is a closed set of a different but
linked class.

5.2 Data Cubes

A data cube (Gray et al., 1997; Morfonios et al., 2007) stores all the aggre-
gates according to all the possible combinations of attributes (all the possible
Group-By). The result of any Group-By operation is called a cuboid. To com-
pute data cubes, an approach based on database partitions has been proposed:
PCube (Casali et al., 2009b; Laporte et al., 2002). It navigates within the power
set lattice of the set of attributes from bottom to top. For each node in the lat-
tice, it performs the product of its predecessor partitions in order to yield the
associated cuboid. With the Agree Concept Lattice, we have shown that for
each node X in the lattice we have: πC = πh(C). By applying this property, it
is possible to avoid the computation of the partition product for the non-closed
attribute sets. Furthermore it is not necessary to store the whole data cube, only
the cuboids associated with the Agree Concepts.

Example 11. With our relation, the 24 partitions computed by PCube are: π∅,
πP , πD, πC , πN , πPD, πPC , πPN , πDC , πDN , πCN , πPDC , πPCN , πPDN , πDCN ,
πPDCN . By using the Agree Concept Lattice, they are reduced to: π∅, πD, πC ,
πN , πPN , πDCN , πPDCN . In this small example, with the Agree Concept Lattice
we avoid the computation and storage of 9 partitions.

5.3 Skycubes

The Skyline operator (Börzsönyi et al., 2001) is intended to retrieve the most
relevant objects: the tuples which are not dominated by any other tuple (Pareto’s
dominance). It is originated by the maximal vector problem (Kung et al., 1975).

The Skyline operator is a decision making tool and the user will likely com-
pute several Skylines before finding the ones which are really interesting. In
order to address such an issue, the Skycube (Yuan et al., 2005; Pei et al., 2005)
has been proposed. The underlying general idea is to compute all the possible
Skylines of all subspaces (subsets of attributes) beforehand, then it is necessary
to reduce as much as possible the storage cost of the result.
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∅

Id P

2 100
5 100

Id E

3 7
4 7
5 7

Id C

2 85
4 85

Id V

2 1
3 1
5 1

Id P E

5 100 7

Id P C

2 100 85

Id P V

5 100 1

Id E C

4 7 85

Id E V

3 7 1
5 7 1

Id C V

2 85 1

Id P E C

2 100 15 85
4 340 7 85
5 100 7 180

Id P E V

5 100 7 1

Id P C V

2 100 85 1

Id E C V

2 15 85 1
3 7 180 1
4 7 85 3
5 7 180 1

Id P E C V

2 100 15 85 1
4 340 7 85 3
5 100 7 180 1

Fig. 4. Representation as a lattice of the Skycube of the relation Housing

According to Pei et al. (2005), if a tuple t belongs to the Skyline of the
subspaces C1 and C2 such that C1 ⊂ C2, t does not necessarily belong to the
Skyline of any subspace C located between C1 and C2 (C1 ⊂ C ⊂ C2). Such
a property would be especially interesting since it could significantly reduce the
multidimensional Skyline computation. Unfortunately it does not hold in the
general case: belonging to a Skyline is not monotonic.

Like for the data cube, the Skycube may enclose superfluous information.
This feature has motivated the proposal of reduced representations of the Sky-
cube presented in Pei et al. (2006). In order to avoid the important cost of the
reconstruction of Skylines originated from the value oriented representation
of Pei et al. (2006), the Agree Concept Lattice can be used as a basis for an
attribute oriented reduction method.

Using the Agree Concepts to compute the Skycube has several advantages:

(∅, {12345})

(N, {235}) (D, {345}) (C, {24})

(PN, {25}) (DCN, {2, 35, 4})

(PDCN, {2, 4, 5})

Fig. 5. Partial materialization of the Skycube based on the Agree Concept Lattice for
the relation Housing
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1. If a tuple t belongs to the Skyline of the subspace C, all the tuples t′ ∈
[t]C also belong to this Skyline. Therefore, by using partitions in order to
compute a Skyline, we avoid a great number of useless comparisons.

2. According to proposition 2, πC = πh(C) hence we only need the Agree Con-
cepts to efficiently compute the Skycube.

3. In Nedjar et al. (2011), we have shown that the Skyline according to C is
included in the Skyline according to h(C). The Agree Concept lattice is
the first partial materialization which is attribute oriented. Such a materi-
alization makes it possible to efficiently compute the missing cuboids from
the Skyline objects associated with their Agree Concepts.

The objective of this approach is the reconstruction at the least cost of the
Skycuboids, and it ideally behaves when such a task must be performed. Despite
its targeted orientation, it is a good compromise between data actualization and
storage space reduction.

Example 12. With our relation Housing, the Figure 4 gives the associated Sky-
cube and Figure 5 gives its partial materialization based on the Agree Concept
Lattice.

6 Conclusion

In this paper, we have proposed two lattice structures at the cross road between
formal concept analysis and database theory: the Agree Concept Lattice and the
Quotient Agree Lattice. One of the main features of our structures is their generic
feature and they can apply in several application fields, in particular for partially
materializing Skycubes. Our aim when proposing these structures is to make
use of database concepts to solve database and Olap problems. This makes
it possible to take advantage of existing and efficient database tools. We are
currently working on an algorithmic approach, intended to be integrated within
DBMSs and which takes advantage of our structure’s adaptability. The final
objective is to achieve a unified software platform devoted to multidimensional
and multicriterion database analysis.
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Abstract. We present a view of abstraction based on a structure preserving re-
duction of the Galois connection between a language L of terms and the powerset
of a set of instances O. Such a relation is materialized as an extension-intension
lattice, namely a concept lattice when L is the powerset of a set P of attributes.
We define and characterize an abstraction A as some part of either the language
or the powerset of O, defined in such a way that the extension-intension latticial
structure is preserved. Such a structure is denoted for short as an abstract lattice.
We discuss the extensional abstract lattices obtained by so reducing the powerset
of O, together together with the corresponding abstract implications, and discuss
alpha lattices as particular abstract lattices. Finally we give formal framework
allowing to define a generalized abstract lattice whose language is made of terms
mixing abstract and non abstract conjunctions of properties.

1 Introduction

There were in machine learning various attempts to formalize abstraction and charac-
terize its desirable properties with respect to induction. An important statement was that
abstraction should be order-preserving with respect to the partially ordered language in
which hypotheses are searched for [21]. However, the question of what classes of ab-
stractions are to be investigated for learning and reasoning is far from being exhausted.
We present a view of abstraction based on a structure preserving reduction of the rela-
tion between a term t of a language L, partially ordered following a general-to-specific
partial order, and the extension of t on a set of objects (or instances) O, representing the
subset of O whose elements satisfy the term.

In Formal Concept Analysis [15] and Galois lattice theory [4] L is a lattice, and the
relation between L and the powerset P(O) is materialized as an extension-intension
lattice. This lattice is the structure of the definable elements of P(O) [1], i.e. the sub-
sets of O that are each the extension of some term of L. In such a lattice, a definable
set e represents the equivalence class of all the terms whose extension is e, and a node,
also called a concept, is a pair (e, t) where t is the most specific term of the class, de-
noted as the intension of the concept. Formal Concept Analysis is primarily concerned
with the relation between the powerset of a set of properties as a language and P(O).
The extension-intension lattice is then denoted as a concept lattice. Various extensions
have been recently proposed to ease the representation in more sophisticated languages

P. Valtchev and R. Jäschke (Eds.): ICFCA 2011, LNAI 6628, pp. 235–250, 2011.
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[6,18]. In particular pattern structures [16] have been recently introduced to represent
complex data, associating such a pattern structure to each object. Logical Concept
Analysis (LCA) [13] has been recently introduced as a general formalization in which
L is a logical language and uses object descriptions in L. Though we do not use here
the LCA formulation and notations, for technical reasons, our construction of a Galois
connection on a modal language is very similar to the construction presented in [12]. In
a recent paper [20] particular mappings, denoted as projections, are used to reduceL or
P(O) in such a way that the relation between the language and the extensional space is
still materialized as a lattice. In other words, projections ensure that we have a coarser,
yet structure preserving, view of concepts representatives of the universe we deal with.
Independently [16] also uses projections on pattern structures.

In this paper we show that projections of a lattice are in a one to one correspondence
with abstractions defined as parts of the lattice that are closed under least upper bound.
We call the corresponding structures abstract extension-intension lattices and abstract
concept lattice, and for short abstract lattices. We first briefly discuss intensional ab-
stractions and investigate then more specifically extensional abstractions, i.e. parts of
P(O) that are closed under set theoretic union.

More precisely, applying an extensional abstraction means that we will no longer
consider instances of O as elements of the extensional space, but rather consider subsets
of O given a priori. As an example consider O = {o1, o2, o3, o4}, and A be obtained
by closing under union the part {{o1, o2}, {o1, o3}}. As a result, {o1, o2, o3} belongs
to A but {o2, o3} does not. Now, consider the smallest elements of A that contain a
given instance o. We call these elements the minimal abstractions of o and consider
them as abstract instances. In this example, {o1, o2} is the unique minimal abstraction
of o2, {o1, o3} is the unique minimal abstraction of o3, {o1, o2} and {o1, o3} are the
two minimal abstractions of o1, and o4 has no abstraction in A.

We relate then any term t to an abstract extension extA(t) that turns out to be the
union of all the abstract instances included in ext(t). Going back to our example, sup-
pose that ext(t) = {o1, o2, o3, o4}, then the abstract instances included in ext(t) are
{o1, o2} and {o1, o3} and therefore extA(t) = {o1, o2, o3}. Clearly the abstract exten-
sion of a given term is always included in its original extension. In other words we re-
duce the extension of the term by excluding any instance that has no minimal abstraction
included in the original extension. In the current example, o4 is such an instance. The
intuition here is a change in granularity: the new objects we deal with are the minimal
abstractions of the original instances. Furthermore, as an extension-intension lattice rep-
resents a set of valid implications (see for instance [4]), our abstract extension-intension
lattice also represents a set of valid abstract implications. Going back to our example,
suppose ext(p) = {o1, o2, o4} and ext(q) = {o1, o2, o3}, then the implication p → q is
not valid on O. However, as we have extA(p) = {o1, o2} and extA(q) = {o1, o2, o3},
the abstract implication p →A q is valid. As a matter of fact a general property of exten-
sional abstractions is that they preserve validity of implications. Algorithms that extract
valid implications [14,17] from a set of instances O, can be extended to extract valid
abstract implications. As an example, we can interpret alpha lattices [28] as particular
abstract lattices, and alpha implications are straightforwardly extracted by extending
the method of N. Pasquier and collaborators [19] to alpha lattices.
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Regarding extensional abstractions, the formal work closest to ours regards rough
sets logics. Rough sets originally relies on an indiscernibility relation (see for instance
[29]). More recently, generalization of rough sets using coverings, corresponding to
our extensional abstractions, has been investigated from an algebraic perspective [5,8].
However these works do not investigate the extension-intension relationship.

To summarize, in this first part of the paper we characterize and discuss the properties
of abstractions, and particularly of extensional abstractions, as a structure and order
preserving reduction of extension-intension lattices.

We then remark that abstract implications are in fact implications between abstract
terms, i.e. t1 → t2 rewrites as �t1 → �t2, where �t means ”Abstractly t“ with respect
to the abstraction A. Then, starting from the semantics, we discuss the corresponding
abstract modal logics. This leads us to consider a languageL� a term of which is made
of a non abstract part together with an abstract part and to define a new, more expressive,
extension-intension lattice.

2 Preliminaries

2.1 Galois Connection

We recall here the definitions of a Galois connection and a Galois lattice.

Definition 1. Given two lattices (E,≤E,∧,∨) and (F,≤F ,∧,∨), where ≤E and ≤F

denote the order relations, and ∧,∨ the meet and the join operations, a Galois connec-
tion between E and F is a pair of mappings (f : E → F, g : F → E) verifying the
following properties:

– For any x and x′ in E, we have that x ≤E x′ implies f(x) ≥F f(x′)
– For any y and y′ in F , we have that y ≤F y′ implies g(y) ≥E g(y′)
– For any x in E and y in F we have that g ◦ f(x) ≥E x and f ◦ g(y) ≥F y

The Galois lattice defined by the Galois connection (f, g) is then the set {(x, y) ∈
E × F | y = f(x) and x = g(y)} ordered by ≤E .

2.2 Extension-Intension Lattices

FCA, in a broad sense, investigates the link between the terms of some language L
and a universe O of elements of the universe denoted as instances. We also call inten-
sional representations the terms ofL and extensional representations the elements of the
powerset P(O). In this presentation we suppose that we know whenever an instance o
satisfies the term t, and we define accordingly its extension:

Definition 2. extO(t) = {o ∈ O | o satisfies t}.

In what follows we consider O as a fixed and finite set of instances and we simply write
ext(t) the extension in O.

The language L is partially ordered by a general-to-specific relation. We write t1 �
t2 whenever t1 is less specific than t2, or equivalently t1 is more general than t2. The
following proposition relate L and P(O) by a Galois connection.
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Proposition 1. Let L be a finite language, � a partial order on L denoted as speci-
ficity, O be a finite set of instances and ext : L → P(O) be a mapping such that
t1 � t2 ⇒ ext(t1) ⊇ ext(t2). We consider the following conditions:

– (condition 2.1) For any instance o, there is a unique most specific term, denoted as
the object description d(o), among all terms t such that o ∈ ext(t)

– (condition 2.2) L has a greatest element and is a lower semi lattice, i.e. each pair
of terms t1, t2 of L has a unique greatest lower bound t1 ∧L t2 in L , also called
the least general generalisation (for short lgg) of t1 and t2.

Whenever conditions 2.1 and 2.2 are satisfied, (L,�) is a lattice, i.e. two terms t1 and
t2 also have a least upper bound denoted t1 ∨L t2, and the pair (int, ext) where

int(e) =
∧
o∈eL

d(o)

is a Galois connection.

In Formal Concept Analysis [15] and Galois Analysis [4], L is the powerset of a set
P of attributes. Recent extensions to various languages have been performed [14,13].
In particular in [16], L is defined as a set of pattern structures, i.e. terms generated
by first considering the set of object descriptions, and then closing it under the least
general generalization∧L . Independently, E. Diday and R. Emilion start from the same
assumptions [9]. Proposition 1 directly follows from, for instance, theorem 2 in [9].

We call extension-intension lattice the Galois lattice G coresponding to this Galois
connection. G is ordered using the extensional order and each element G is a pair (e, t)
such that t = int(e) and e = ext(t), i.e. t is the unique most specific term representing
the equivalence class of terms whose extension is e, and is also denoted as the intension
of e. Such most specific terms are also referred as closed terms or closed motifs in data
mining [25]. In Machine Learning, the search space L may be in this way explored by
minimally generalizing or specializing such closed terms [3].

Finally G is considered as the structure of O as perceived through L and can be also
represented by the set TO of all the implications p → q which are valid on O, i.e. such
that ext(p) ⊆ ext(q) is true. The equivalence class whose intension is t = int(e), also
contains various minimal (i.e. most general) terms tm, also know as generators. The
elements of TO can be generated from the set of all the tm → t implications also called
the min-max implications basis of TO [19].

2.3 Projections and Projected Extension-Intension Lattices

Now, consider the following problem; how to reduce P(O), L, or both, in such a way
that i) conditions 2.1 and 2.2 are still satisfied, ii) the resulting extension-intension lat-
tice G′ is isomorphic to part of G. In other words, how to reduce G by reducing the
language or the powerset of the universe of instances in such a way that the structure is
preserved, and its size reduced ? An answer to this question is given in [20] through the
use of intensional and extensional projections whose images are also lattices:

Definition 3 (Projection). p is a projection of a lattice (M,≤) iff for each pair (x, y)
of elements of M , we have :
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If x ≤ y then p(x) ≤ p(y) (monotonicity)
p(x) ≤ x (minimality)
p(x) ≤ p(p(x)) (semi-idempotence)

Let M be a lattice and p a projection of M , then p(M) is also a lattice with join operator
∨ and meet operator ∧ defined as, for any pair m1, m2 ∈ p(M), m1 ∧m2 = p(m1 ∧M

m2) and m1 ∨m2 = m1 ∨M m2.
When considering respectively M = L and M = P(O) we obtain respectively

intensional and extensional projections and both lead to projected extension-intension
lattices [20,28].

Proposition 2. Let (int, ext) be a Galois connection on (P(O),�), (L,⊆)), G be the
associated Galois lattice, and (e, t) be a node of G.

– Let p be a projection on L, then (p ◦ int, ext) defines a Galois connection on
((p(L),�), (P(O),⊆)) and (e, t) is projected in the corresponding Galois lattice
p(G) on the node (e′, t′) such that t′ = p(t) and e′ = ext(t′).

– Let p be a projection on P(O), then (int, p ◦ ext) defines a Galois connection on
((L,�), (p(P(O)),⊆)) and (e, t) is projected in the corresponding Galois lattice
p(G) on the node (e′, t′) such that e′ = p(e) and t′ = int(e′).

Note that in partial order theory, projections are known as kernel operators or interior
operators. Their properties are well known [11] and are the basis of the next section.

3 Abstractions

3.1 From Projection to Abstractions

Reducing through projectionsL, P(O) or both results in a reduced extension-intension
representation whose latticial structure is preserved. However, while projections are
technically useful, they do not always give a simple way to chose simplified represen-
tations. In what follows we present an equivalent view of projections.

Definition 4. An abstraction of a lattice M is a subset 1of M , closed under ∨M .

Building abstractions therefore simply means to chose any subset of M and close it by
∨M . We note hereunder that abstractions are in a one to one correspondence with pro-
jections and so abstract extension-intension lattices are defined as projected extension-
intension lattices.

Proposition 3. Let A be an abstraction of a lattice M , then pA defined as pA(x) =∨
c∈A,c≤x c , is a projection of M . Let p be a projection then A = p(M) is an abstrac-

tion of M , and p is the projection pA associated to A.

The equivalence between interior systems p(M) and subsets A of M closed under union
is a known property of interior operators [11]. As abstractions are closed under ∨M , we
have that ∨M = ∨A. From now on we simply write ∨ when no confusion is possible.
An important point is that we only need the ∨-irreducible elements2of A:

1 Note that ⊥M , the smallest element of M , belongs to all abstractions.
2 Irreducible elements of A are elements that cannot be obtained as a result of applying ∨M .
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Proposition 4. Let A be an abstraction of M , and AI be the set of ∨-irreducible ele-
ments of A, the projection pA is obtained by only considering elements of AI :

pA(x) =
∨

c∈AI ,c≤x

c

Intensional abstractions An intensional abstraction is then simply obtained by select-
ing part of the languageL and closing it by the join operator∨L. For instance, consider
the lattice L whose elements are intervals [a, b] such that a, b ∈ {1, 2, 3, 4}. We have
then [1, 3]∨L [3, 4] = [3]. Consider first the abstraction A whose elements are the inter-
vals containing 3. A is closed by ∨L as intersecting two intervals containing 3 results
in an interval also containing 3.

Consider nowL′ = L−{[1], [2], [3], [4]}.L′ is obtained by simply deleting the most
specific terms and is clearly also a lattice. However [1, 3] ∨L′ [3, 4] is now [] and so
clearly L′ is not closed under ∨L, and therefore is not an abstraction. Note that there
are in L′ two most specific elements satisfied by o = 3, and as a consequence d(o) is
no longer defined.

Extensional abstractions. They abstract instances rather than abstracting the language
of terms. Note that when considering extensional abstractions, ∨ is the set theoretic
union ∪, and that the order relation is the set theoretic inclusion.

Example 1. As an example consider O = {1, 2, 3, 4}, and the abstraction A obtained
by closing under union the part {{1, 2}, {1, 3}} of P(O), so adding {1, 2, 3}and ∅ to
build A. The set of ∪-irreducible elements of A is AI = {{1, 2}, {1, 3}}. For instance,
pA({1, 2, 3}) = {1, 2} ∪ {1, 3} = {1, 2, 3} as both elements of AI are included in
{1, 2, 3}, and pA({2, 3}) = ∅ because neither {1, 2} nor {1, 3} is included in {2, 3}.

We remark in the next section that abstractions are partially ordered.

3.2 The Lattice of Abstractions

There is a partial order on projections of a lattice M [20] and therefore, on abstractions:

Definition 5. Let M be a lattice and p1 et p2 two projections of M , we will state that
p2 ≤ p1, i.e. p2 is less concrete, and so more abstract than p1, iff there is some projection
p defined on p1(M) such that for all c in M , p2(c) = p ◦ p1(c).

This means that A2 = p2(M) is more abstract than A1 = p1(M) iff A2 is an abstraction
of A1. This is also equivalent to saying that any ∨-irréductible element i2 of A2 may be
written as a disjunction of ∨-irreducible elements of A1, i.e. i2 = i11 ∨ · · · ∨ in1

Example 2 (Extensional abstractions). Let M =P({1, 2, 3, 4}), AI1 = {{1, 2}, {1, 3}}
and A2I = {{1, 2}, {1, 2, 3}}, A2 is more abstract than A1 as {1, 2} ∈ AI1 and
{1, 2, 3} = {1, 2} ∪ {1, 3} .

Proposition 5 (Lattice of abstractions). Let M be a lattice, and A be the set of the
abstractions of M . Let then A1 = p1(M) and A2 = p2(M) be elements ofA:
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– The least upper bound A1 ∨A A2 is obtained by closing A1 ∪A2 under ∨.
– The greatest lower bound A1 ∧A A2 is simply A1 ∩A2.

This partial order, defined through projections, is known to order projected extension-
intension lattices [20]. Therefore, abstract extension-intension lattices, where abstrac-
tion is performed on L or P(O), are also ordered following the lattice of abstractions.

4 Extensional Abstractions and Extensional Abstract Lattices

4.1 Extensional Abstract Lattices

An extensional abstraction is obtained by considering part of the powerset of O, and
closing it by the union operator ∪. This means that we do not consider any more in-
stances but rather subsets of instances, called abstract instances.

Definition 6. Let A be an extensional abstraction and pA the associated projection of
P(O), then let t be a term of L, extA(t) = pA ◦ ext(t) is the abstract extension of t.

From Proposition 4 we also have

extA(t) =
⋃

u∈AI ,u⊆ext(t)

u

Definition 7. Let A be an abstraction of P(O), the projected extension-intension lat-
tice pA(G) is denoted as an extensional abstract lattice, and noted GA.

Hereunder we define abstract instances and minimal abstractions of a given instance.

Definition 8. Let A be an extensional abstraction.

– An element of AI is called an abstract instance.
– Let AI(o) be the subset of AI whose elements contain the instance o. We denote as

minimal abstractions of an instance o the minimal elements of AI(o), i.e. Am(o) =
{u ∈ AI | o ∈ u and if o ∈ u′ ⊂ u, then u′ �∈ A}.

An interesting point is that AI is the set of minimal abstractions of the instances:

Proposition 6.
AI =

⋃
{o∈O}

Am(o)

Example 3. In this example O = {1, 2, 3, 4} and AI = {{1, 2}, {2, 3}, {3, 4}}. Here
L = P(P ) where P = {X, Y, Z} is a set of properties. We give hereunder a table
representing the context relating P(P ) to P(O). We have added a column for each
element of AI . In Figure 1 we have represented the original concept lattice together
with the extensional abstract lattice (here an abstract concept lattice) associated to AI .

Instances X Y Z {1,2} {2,3} {3,4}
1 1 0 1 1 0 0
2 1 1 1 1 1 0
3 0 1 0 0 1 1
4 1 0 0 0 0 1
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Fig. 1. The concept lattice (on the left) and the abstract concept lattice (on the right) correspond-
ing to the context and abstraction given in Example 3. On each node I is the intension, E is the
extension, and G is the set of most general terms whose extension is E. The nodes 3 and 4 of the
original concept lattice are merged into the node 8 of the abstract concept lattice. As a result, the
abstract implication X → Z is now valid as X and Z have the same abstract extension.

We may note that such an extensional abstract lattice is isomorphic to an extension-
intension lattice relating L to the powerset of AI . For that purpose, we reformulate AI

as a new instance set and we define (ext′ : L → AI) as follows: let u = {o1, . . . ok} be
an element of AI , we have then that u, as a new instance, belongs to ext′(t) whenever
u, as a subset of O, is included in ext(t). As a consequence extA(t) =

⋃
u∈ext′(t) u

and therefore the images ext′(L) and extA(L) are in one to one correspondence.
As stated before, an extension-intension lattice corresponds to a set of valid im-

plications. We define hereunder the abstract implications associated to an extensional
abstract lattice.

Definition 9 (Abstract implication). Let t1 et t2 be terms of L. Whenever extA(t1) ⊆
extA(t2) we say that the abstract implication t1 →A t2 is valid on A.

Then GA is represented by the whole set of abstract implications valid on A, or by
any generating subset, as the min-max basis of abstract implications extending to the
extensional abstract lattices the definition of the min-max basis of implications (see end
of Section 2.2).

Now as t1 → t2 means that ext(t1) ⊆ ext(t2), we have that whenever some abstract
instance u is included in ext(t1), we also have that u is included in ext(t2). This also
means, by definition, that extA(t1) is included in extA(t2). As a consequence validity
of implications is preserved by extensional abstraction:

Proposition 7. Let A be an abstraction of P(O), and t1 and t2 two terms of L.
If t1 → t2 is valid on O, then the abstract implication t1 →A t2 is valid on A.

4.2 Alpha Lattices as Extensional Abstract Lattices

The partial order of abstractions (see Definition 5), means that A′ is more abstract than
A whenever any element of A′ (or A′

I ) may be written as the union of elements of A
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(or AI ). An interesting case is alpha abstraction. Starting from a subset C whose union
closure is an initial abstraction A, more concrete abstractions Aα are built. Aα is ob-
tained by deriving from each initial category C the set of frequent enough parts of C,
and closing under union the resulting set Cα. We have then that Aα is more abstract than
Aα′

iff α ≥ α′. In a previous work the corresponding alpha Galois lattices were defined
through projections and experimented in order to extract alpha association rules [28]. As
an example, consider the implication ”Animals that fly are oviparous”, it is not valid on
O because of the bat. When considering the categorization C = {mammal, insect, bird},
the corresponding abstract implication is valid but never applies: none of the initial cat-
egories contains only flying animals. However by considering frequent enough parts of
each category, the corresponding (α = 0.1)- implication is valid, as the bat is elim-
inated from the premise (very few mammals fly), but still applies to flying birds and
flying insects, as they represent large enough parts of their categories.

5 The Extended Abstract Lattice G�

We will formalize the nature of abstract implications by interpreting them as classical
implications relating modalized terms. So we rewrite t1 →A t2 as �At1 → �At2. We
first define a modal logics of abstraction built on a propositional modal languageLmod.
Then we restrict Lmod to a language L� using only conjunction and non nested modal
connectors. Finally we present an extended abstract lattice G� where intensions have
both modalized and non modalized parts.

5.1 Modal Logics of Abstraction

Hereunder we discuss the modal logics of abstractions. Note that in this section we
denote as worlds the elements of O.

A modal logic, in its simplest form, is a propositional logic to which is added at least
one unary modal connector �, referred to as a necessity operator. Classical modal logics
are the modal logics in which formulas are given truth values through neighborhood
semantics, also known as minimal models semantics [7]. This wide class of modal logics
includes in particular normal modal logics relying on Kripke possible world semantics.
We will define hereunder abstract modal logics as particular classical modal logics. We
hereunder very informally summarize neighborhood semantics in order to relate such
semantics to our extensional abstractions.

The modal languageLmod is obtained by adding the modal connector � to a proposi-
tional languageL built on a set of atomic propositions. So for instance, φ = a∧�(b∧c)
belongs to Lmod. In order to give a truth value to a modal formula we first consider a set
of worlds O, together with a valuation function ext, relating each atomic proposition p
to the set of worlds in which p is true. For any formula φ without modal connectors, the
computation of ext(φ) is then straightforward, for instance ext(a∧b) = ext(a)∩ext(b)
and represents the worlds o in which φ is true, or in other words, the worlds that sat-
isfies φ. In order to extend ext to modal formulas we need a neighboring function
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N relating each world o to a set of subsets of O and we say that the world o is in
ext(�φ) whenever ext(φ) belongs to N (o). It is known that neighboring functions
N are in one to one correspondence with mappings m : P(O) → P(O) such that
m(e) = {o ∈ O | e ∈ N (o)}. To summarize we have now that

ext(�φ) = m ◦ ext(φ)

Now recall that we defined abstract extension as p◦ext where p is a projection. We will
so naturally define abstract modal logics as classical modal logics in which the map-
ping m is a projection. To characterize abstract modal logics we have just to translate
the properties of projection as axioms and inference rules. Detailed results on modal
logics of abstraction, including multimodal logics allowing to access to various levels
of abstraction, are outside the scope of this paper [22]. Now, considering the abstract ex-
tension of a term as the extension of an abstract term leads to define extension-intension
lattices built on languages whose terms contain both non abstract and abstract parts.
This is the subject of the remaining of this section.

5.2 Mixing Abstract and Non Abstract Statements: The Language L�

We consider here a language L� where classical properties and modalized proper-
ties appear simultaneously. Technically L� is a subset of Lmod whose terms contain
∧ and � as connectors, and in which the nesting of � is not allowed. For instance,
(a ∧ b) ∧�(b ∧ c) ∧ �(c ∧ d) ∈ L�, but �((a ∧ b) ∧�(b ∧ c)) �∈ L�.

We first give an inductive definition of L�.

Definition 10 ( Inductive definition of LP and L� ). The inductive definition of L�

according to P , a non-empty set of atoms, is the following (note that we define and use
the language LP corresponding to terms without any � connective):

• ∀a ∈ P , a ∈ LP

• Constants � and ⊥ ∈ LP

• if F1 and F2 ∈ LP then (F1 ∧ F2) ∈ LP

• if F ∈ LP then F ∈ L�

• if F ∈ LP then �F ∈ L�

• if F1 ∧ F2 ∈ L� then (F1 ∧ F2) ∈ L�

An intensional semantics for L�

We define an intensional semantics for L� based on an algebraic approach similar to
[27], [10] but for description logics. The definition is made in two steps. In the first
step, an equational system which highlights the main properties of the L� connectives
is given. During the second step, an homomorphism based on the equational system is
defined. This homomorphism is used to map terms of L� to their structural normal
form (snf ) in the intensional semantics.
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Definition 11 . (The equational system EQ� )
∀ F1, F2, F3 ∈ L� , ∀ F, F’ ∈ LP :

1. (F1 ∧ F2) ∧ F3 = F1 ∧ (F2 ∧ F3)
2. F1 ∧ F2 = F2 ∧ F1
3. F1 ∧ F1 = F1
4. � ∧ F1 = F1
5. ⊥ ∧ F1 = ⊥
6. �F = �F ∧ F
7. �(F ∧ F ′) = �(F ∧ F ′) ∧ �F ∧ �F ′

The equational system EQ� fixes the main properties of the connectives and can be
used to define an equivalence relation between terms of L�. Equality modulo axioms
of EQ� is denoted by ≡EQ�

. We use it to formalize the subsumption relation in L�.

Definition 12 (Subsumption in L� ). Let F1, and F2 be two terms of L�, F1 � F2
(i.e. F1 subsumes or is less specific than F2) iff F1 ∧ F2 ≡EQ�

F2.

EQ� induces a class of algebras. From this class, a structural algebra can be proposed,
which provides L� with an intensional semantics called CL�. The elements of CL�

are structures whose definition is given below. These elements are structural normal
forms of terms of L� allowing us to obtain an unique class representative for each
equivalence classes of terms. CL� can be viewed as a normalized subset of L� where
the lgg is unique.

The intensional semantics CL�

An element of CL� corresponding to a term T of L� denoted snf(T ) is a pair defined
as follows: < Eclassical , E� >. Eclassical is a set of atoms belonging to P , E� is a
set of subsets of P . Intuitively, Eclassical contains every explicit and implicit classical
properties of T (i.e. properties not at reach to a � connective). The data structure used
can then be a simple set of atoms. E� contains � properties of T . Since for instance
�(a ∧ b) and �(b ∧ d) cannot be compared, we must keep both of them. The data
structure used is a set of sets.

This definition presents the data structure of elements of CL� but not how to asso-
ciate to a term of L� its corresponding element in CL� . To make this computation
and then to define CL�, an homomorphism from the set of terms of L� and the set of
elements of CL� need to be defined.

The homomorphism from L� into CL� is sketched below. It allows us to associate
to each term T of L� its structural normal form denoted snf(T ) . This homoporphism
takes into account axioms of EQ� and the normalization strategy choosen. Indeed,
to obtain a normal form many normalization strategies may be applied (e.g. deletion
of redundant information). We chose to add implicit information in the classical part,
this strategy is a kind of partial saturation which is a trick largely used to make easier
subsumption and lgg computation. On the other hand, for complexity reasons we only
keep maximal subsets in the � part. The � part is a Sperner family i.e., an antichain in
the inclusion lattice over the power set of LP (for more details see [2]).
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Homomorphism snf from L� into CL�:

Term of L� Element in CL�

� t = < ∅,{∅} >
⊥ bo = < P ,{P} >

a ∈ P < {a},{∅}>
F1 ∧ F2 snf(F1) ∨s snf(F2)

�F <EF ,{EF } >

where snf(F ) =< EF ,∅ > (the � part is empty since there is no � nesting).

∨s is the join operator in CL�. It uses the classical union set operator and ∨a which
represents the union operator in antichains.
Let K1 and K2 be two antichains:

K1 ∨a K2 = {x ∈ K1 ∪K2 | �y ∈ K1 ∪K2 s.t. x ⊂ y}
Let snf(Fi) be < EFi, Ki > for i = 1, 2:

snf(F1) ∨s snf(F2) =< EF1 ∪ EF2, K1 ∨a K2 >

Example 4. snf((a∧ b)∧�(b∧ c)∧�b∧�(c∧ d)) =< {a, b, c, d}, {{b, c}, {c, d}}>
c and d are added in the classical part according to axiom 6 and 7, {b} is removed from
the � part since {b} ⊆ {b, c}.

Definition 13 (Structural Subsumption in CL�). Let S1 and S2 be two elements of
CL�,

S1 �s S2 (i.e. S1 subsumes S2) iff S1 ∨s S2 = S2

Proposition 8. Subsumption in L� is equivalent to structural Subsumption in CL�:
Let F1, and F2 be two terms of L�,

F1 � F2 iff snf( F1)�s snf(F2)

5.3 The Galois Lattice G�

We consider the two following posets : (P(O),⊆ ) and (CL�, �s). In order to obtain a
Galois connection between the two posets, we need to define the least general generali-
sation in CL� . The lgg uses the following definition of ∧a the intersection operator in
antichain: any antichain A corresponds to a lower set LA = {x ∈ A | ∃y ∈ A s.t. x ⊆
y}. Let A and B be two antichains and LA and LB their lower sets:

A ∧a B = {x ∈ LA ∩ LB | �y ∈ LA ∩ LB s.t .x ⊂ y}

Definition 14 (Least General Generalisation in CL� ). Let S1 = < E1,K1> and S2
= < E2, K2 > be two elements in CL�:

lgg(S1,S2) = <E1 ∩ E2,K1 ∧a K2>
Let EnsS be a finite set of elements of CL� = {s1,s2,. . . ,sn}:

lgg(EnsS) = lgg(s1,lgg(s2,. . . lgg(sn-1,sn)))
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Each instance o is described by a term T ofL�. In order to obtain a unique most specific
description in CL� satisfied by o, we simply use snf(T ) denoted d(o) in the following.

Proposition 9. Let ( CL�,�s) and (P(O),⊆ ) be two posets. The pair (ext,int) defined
by:

∀ S ∈ CL�, ext(S) = {o ∈ O | S �s d(o)}
∀ E ∈ P(O), int(E) = lgg(d(E)) with d(E) ={ d(o) | ∀ o ∈ E}

defines a Galois connection between ( CL�, �s) and (P(O),⊆ )

Proof : as stated in proposition 4 p11 in [15], (ext,int) is a Galois connection iff:

S �s int(E)⇔ E ⊆ ext(S)

1) S �s int(E) ⇒ S �s lgg(d(E))
∀o ∈ E, lgg(d(E)) �s d(o) since lgg(d(E)) = lgg(d(o), lgg(d(E − {o}))
⇒ S �s d(o) since S �s lgg(d(E)) ⇒ o ∈ ext(S) by definition of ext ⇒ E ⊆ ext(S)
2) E ⊆ ext(S)⇒ (∀o ∈ E ⇒ o ∈ ext(S)) ⇒ ∀o ∈ E, S �s d(o) ⇒ S �s int(E)

Proposition 10. The extension-intension lattice G� defined by the Galois connection
of proposition 9 is denoted as an extended abstract lattice.

When considering a given extensional abstraction A, we have now a ”pure“ exten-
sional abstract lattice GA, as defined in section 4 together with the new intension/ex-
tension lattice G� defined on the connection between CL� and P(O) and relying, for
its modalized part, on ext(�t) = pA ◦ ext(t). We are now interested in the exact re-
lations between these lattices and the original concept lattice G relating the language
P(P ) to P(O). We first remark that P(P ) is isomorphic to an abstraction of CL� as
the classical part of CL� is closed under the lgg operator. Therefore G is obtained
as an intensional abstraction of G�. A second remark is that the extensional abstract
lattice pA(G�) is isomorphic to GA: consider some intension t in G, its abstract ex-
tension e = extA(t) rewrites as ext(�t), and the representation of �t is the most
specific element in CL� whose extension contains e. As a consequence, GA and G
are both less abstract than G�. We draw Figure 2 these three lattices in a very simple
example with two atomic properties X and Y , 4 instances and the following abstrac-
tion AI = {{1, 2}, {2, 3}, {3, 4}}. Note that in the table hereunder, the columns �t
represent the abstract extensions extA(t). For instance the column �XY represents the
empty set since ext(XY ) = {2} and that no abstract instance of AI is included in
ext(XY ).

Instance X Y � X � Y � XY {1,2} {2,3} {3,4}
1 1 0 1 0 0 1 0 0
2 1 1 1 1 0 1 1 0
3 0 1 0 1 0 0 1 1
4 1 0 0 0 0 0 0 1
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I=True
  E={1,2,3,4}

I=X  
  E={1,2,4}

I= Box Y  
  E={2,3}

I= Box X  
  E={1,2}

I= Box (X) & Box (Y) 
  E={2}

I= Box (X & Y) 
  E={}

I=True
  E={1,2,3,4}

I=X  
  E={1,2,4}

I=  Y  
  E={2,3}

I= X &  Y 
  E={2}

I=True
  E={1,2,3,4}

I=Box X  
  E={1,2}

I=  Box Y  
  E={2,3}

I= Box (X & Y) 
  E={}

Fig. 2. The three intension/extension lattices corresponding to the example of section 5.2. The
node label is a minimal representation of the intension I (here Box and & stand for � and ∧)
together with its extension E in {1, 2, 3, 4}. The leftmost lattice is G�, the centermost lattice is
the original concept lattice G, and the rightmost lattice is the projected lattice pA(G�) isomorphic
to the abstract lattice GA.

6 Related Work and Conclusion

In this paper we have proposed abstractions as reductions that preserve the extension-
intension lattice structure.They are simply defined as parts of either the intensional
language or the extensional space that are closed under the join operator. A second
contribution is the investigation of extensional abstractions. We have shown that defin-
ing an extensional abstraction A ⊆ P(O) consists in a priori defining as units particular
subsets of instances, denoted as abstract instances, so applying a change in extensional
granularity. A noticeable effect of so preserving the Galois lattice structure is that valid-
ity of implications is preserved through extensional abstractions. Finally, we interpret
abstract implications as classical implications between two modalized terms. This leads
to define abstract modal logics and to define an extended abstract concept lattice relat-
ing P(O) to a language whose elements have abstract and non abstract parts. We can
then search for concepts as ”Oviparous and abstractly apt-to-fly” where ”o satifies ab-
stractly apt-to fly” means that all the instances of some minimal abstraction of o share
this property. Regarding the implementation of abstract concept lattices, we can benefit
from implementations of alpha lattices, and in particular their incremental construction
[23] adapted from [26], and a software, based on Galicia [24], is available3. How-
ever, extended abstract concept lattice construction still has to be investigated, both
from an algorithmic and practical point of view. Note that as extended abstract lattices
belongs to the class of logical concept lattices [13] yet there exists a way to implement
them.

3 http://www-lipn.univ-paris13.fr/˜ champesme/alphabetagalicia
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Abstract. Within the cultural informatics community, there is a strong
desire to mine and understand relationships within and among collec-
tions of objects. In this paper we describe a case study of applied Formal
Concept Analysis to cultural heritage and art collections. We base our
inter-disciplinary research on our development of a navigation framework
that drives the Virtual Museum of the Pacific – an FCA-based applica-
tion that employs a conceptual neighbourhood paradigm for browsing
concept lattices. We also utilise a feature called conceptual similarity
that allows users to search for similar objects and hence promote knowl-
edge discovery of the objects within the collection. We describe how
we can construct a meaningful information space derived from museum
documentation while considering complexity and associated performance
issues of large formal contexts. We report the resulting lattice structure,
user experience and relevance of our FCA-based application in browsing
and exploring objects from a cultural domain. Our research is an applied
case study of term extraction and context creation based on data-sets
from the Australian Museum and Powerhouse Museum collections.

1 Introduction

Within digital collections, the ability to cluster and find relationships between
objects is seen as a desirable property. An object’s meaning can be significantly
enhanced when it is supplemented with contextual cues and otherwise hidden
relationships, particularly as collections grow in size and diversity. When applied
to art and cultural collections, and specifically towards collections that are geared
towards a public or stakeholder audience, an alternate interaction paradigm
that focuses on serendipitous rather than direct search can represent a dynamic
view of collections rather than a fixed hierarchy or a ‘locked down search box.’
Formal Concept Analysis, with its ability to generate conceptual hierarchies
inherent within data, is a promising approach towards unlocking the value of art
and cultural collections. Novel approaches towards presentation fuel stakeholder
interest and curiousity, and in effect, can ultimately motivate the digitisation
of the endless array of cultural content that is otherwise locked up and not on
public display.
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This paper represents a snapshot in an on-going research project to develop
a framework that allows a unique and explorative approach towards browsing
cultural collections. We focus our problem domain towards art and cultural col-
lections, and highlight the specific technicalities of term extraction and context
creation, and describe our conceptual browsing, search and similarity features in
Section 3 as they apply to these extracted terms. This paper focuses attention
on the need to automate the formal context creation process for large collections
of digital content. More importantly is the need to create such formal contexts
with a low margin of error or attribute ambiguity as it is well known that a
noisy data-set can result in lattice structures that are prohibitively unreadable,
complex and disjointed.

When considering the nature of museum documentation and cultural heritage
sources, building suitable formal contexts for lattice generation can present some
particular challenges. These data-sets suffer from particular problems – these in-
clude: inconsistent or incorrect use of terminology (e.g. ‘domicile’ instead of
‘domestic’); multiple synonyms that represent the same term; different uses of
specialised terminology across institutions and even individual cataloguers and
a general lack of maintenance of ‘exhibition quality’ meta-data due to the vast
size of collections, legacy systems and the budgetary constraints that museums
operate under. Large scale cultural heritage portals such as Europeana1 and
Digital NZ2 compound the problem by aggregating meta-data from multiple
institutions, each with their own fields, standards, disciplines and approach to-
wards documentation. As museums and cultural heritage portals trend towards
the aggregation and combination of user-generated meta-data, these factors pose
particular challenges towards constructing normalised, stable and relatively clean
formal contexts from their collections.

The paper is structured as follows: first, in Section 2, we will present a brief
overview of Formal Concept Analysis and some of the its underlying techniques
for data analysis and discovery. In Section 3, we describe the key features of
the Virtual Museum of the Pacific project, an instance of an evolving software
framework for collection browsing and discovery. These design features were
engineered to allow conceptual browsing, discovery, search and similarity within
cultural collections. We then focus the discussion towards our approach and
results for a term extraction method in Section 4 as they are applied to the our
software framework.

2 Formal Concept Analysis

Formal Concept Analysis is a data analysis technique that allows the synthe-
sis of formal concepts based on a collection of objects and their attributes. It
follows the philosophical tradition that any concept or unit of thought could
be understood in terms of its attributes (or intension) and its objects that are

1 http://www.europeana.eu/portal/
2 http://www.digitalnz.org/

http://www.europeana.eu/portal/
http://www.digitalnz.org/
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characterised by those attributes (its extension). A more expansive overview of
Formal Concept Analysis is provided in [1].

Formal concepts can be placed into a specialisation hierarchy, where more
specific concepts (with fewer objects and more attributes) can be viewed as a
specialisation of other less specific formal concepts. The result is an algebraic
structure known as a concept lattice. We exploit the properties of the concept
lattice – along with techniques such as conceptual scaling – to drive the naviga-
tion and design features of our software framework.

2.1 Conceptual Scaling

Conceptual scaling is a technique that allows stored views of the data being anal-
ysed [2]. Conceptual scales encompass specific attribute sets and are represented
by a mathematical entity called a formal context. A formal context is a triple
(G, M, I) where G is a set of objects, M is a set of attributes and I is a relation
between the objects and the attributes, called an incidence relation. Within our
applications, we use conceptual scales to represent specific contexts with dif-
ferent themes such as ‘works as described by materials’ or ‘works as described
by origin.’ In essence, conceptual scales can be used to represent sub-contexts
of an entire collection, both in order to reduce navigational and computational
complexity. To an end-user, they can be used to create multiple views or ‘lenses’
on the information space. We describe our implementation of conceptual scaling
in Section 3.1.

2.2 The Conceptual Neighbourhood Paradigm

We apply the conceptual neighbourhood paradigm for browsing the information
space provided by the concept lattice – which in turn is derived by conceptual

Fig. 1. The conceptual neighbourhood representation of a formal concept of attributes
{ ‘container’, ‘melanesia’, ‘fiji’ } – shown here are its upper neighbours (top row) and
lower neighbours (bottom row)
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scaling from the given data. Within this approach, the user is placed at a single
formal concept within the lattice. Users can move from one formal concept to an-
other by incrementally navigating across upper and lower neighbours. Fig. 1 shows
a lattice neighbourhood representation. Evident are the upper and lower
neighbours for the formal concept where its attributes are represented by
{ ‘container’, ‘melanesia’, ‘fiji’ } – users can effectively generalise or specialise their
view on the collection by navigating to neighbouring concepts. We describe our
implementation of this approach in Section 3.1.

2.3 Conceptual Similarity

We exploit a feature called conceptual similarity that allows us to find neigh-
bouring concepts for a given formal concepts, or related concepts where a certain
set of attributes do not manifest in a single object. Our approach uses variations
on defined distance and similarity metrics in the FCA literature [3] in order to
find relevant concepts.

The similarity metric we applied uses the number of common objects and the
number of common attributes of two given formal concepts (A, B) and (C, D):

similarity((A, B), (C, D)) :=
1
2

(
|A ∩ C|
|A ∪ C| +

|B ∩D|
|B ∪D|

)
.

The distance metric uses the size of the total overlap of the intent and extent
normalised against the total size of the context. For two concepts (A, B) and
(C, D):

distance((A, B), (C, D)) :=
1
2

(
|A \ C|+ |C \A|

|G| +
|B \D|+ |D \B|

|M |

)
.

A predecessor program to the Virtual Museum of the Pacific – ImageSleuth2 –
applies distance and similarity metrics to traverse the concept lattice and present
ranked formal concepts with similarity metrics for a given object and its set of
attributes. This allows for a query by example feature which we incorporate into
the Virtual Museum of the Pacific – details and examples on the nature of lattice
traversal and the method that formal concepts are selected and ranked can be
found in [4].

3 The Virtual Museum of the Pacific

The Virtual Museum of the Pacific, an FCA-based application previously re-
ported in [5], is a collaborative project between the University of Wollongong
and the Australian Museum that leverages a collection of 427 objects from the
Australian Museum’s Pacific collection.3 From a design perspective, it is ar-
guably the successor of the Sleuth series reported in [6], [4] and [7]. Our work
3 The Virtual Museum of the Pacific is available in two versions :

http://epoc.cs.uow.edu.au/vmp is the version that is based on the manually
selected set of attributes. http://epoc3.cs.uow.edu.au/vmp is an alternate version
based on an automatically generated set of attributes.
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extends the FCA-based browsing features developed in the Sleuth series by in-
corporating collaborative tagging, the ability to add rich media, an overhaul of
its user interface (reported in [8]), an and implementation of query expansion,
content-based retrieval and term extraction described in Sections 3.2, 3.3 and
4 respectively. As a continuously evolving project that represents the current
feature-set of our framework for term extraction, search and navigation, we will
briefly describe its features in this section, with particular reference to its FCA-
based browsing features. Section 4 elaborates on its design in more detail by
highlighting issues relating to its term extraction and context creation features.

3.1 Navigation Using Formal Concept Analysis

Navigation within the Virtual Museum of the Pacific uses the conceptual neigh-
bourhood approach for browsing collections as described in Section 2.2. Using
this approach, objects of a single formal concept are represented as thumbnails
and users can navigate the conceptual neighbourhood by incrementally moving
to upper or lower neighbours within the user interface, shown respectively at
the top and bottom of the screen in Fig. 2. This allows users to easily gener-
alise or refine their conceptual view on the collection. For instance, in Fig. 2, a
user can refine their conceptual neighbourhood view to present all Melanesian
wooden body accessories by clicking on the ‘melanesia’ link (located bottom-
centre), or by viewing only wooden objects by clicking on the ‘body accessories’
link (located top-centre) and removing it from the search space.

In Fig. 2, the left-hand side of the screen shows a list of conceptual scales
which are called ‘perspectives’ within the Virtual Museum of the Pacific. Per-
spectives either represent logical groupings of objects (e.g. ‘containers’, ‘hunting
fishing weapon’ and ‘transport’ objects) or facets that circumscribe a specific di-
mensions (e.g. ‘origin’ and ‘materials’). Perspectives reduce the navigational and
computational complexity by circumscribing attributes (and their corresponding
objects) into thematically defined formal contexts. To an end-user, a perspective
represents a specific ‘lens’ on a collection, and perspectives can be combined to
effectively query the data, allowing for multi-faceted browsing of the collection.

3.2 Text Search Using Query Expansion

For the purpose of creating useful concept lattices for the objects of the Virtual
Museum of the Pacific, it is desirable to employ a set of unambiguous terms as
the set of formal attributes. Within the Virtual Museum of the Pacific, a set of
609 terms (from the Australian Museums own control vocabulary of 1198 terms)
is created to represent the attributes of the 427 Pacific objects. These terms
are narrow, specific and unambiguous, and while they allow the construction of
stable lattices, the use of these attributes alone for keyword-based search yields
poor recall due to the concise and often highly specific terminology employed by
controlled vocabularies. In an effort to align the Virtual Museum of the Pacific
(and its associated software framework) as an easily accessible repository of
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Fig. 2. The main navigation interface of the Virtual Museum (top) of the Pacific,
showing the conceptual neighbourhood view of all objects that have ‘body accessory’
and ‘wood’ attributes (bottom)

cultural objects, we have implemented WordNet-based [9] query expansion to
facilitate free-text searching for formal concepts.4

In our implementation of WordNet-based query expansion, the search string
“Melanesian objects made of bone” returns the following three formal concepts:

– 6 objects tagged bone and melanesia
– 6 objects tagged tooth and melanesia
– 1 object tagged pigment, melanesia, natural fibre, bougainville, bougainville

island, teeth
4 This feature is available within the Virtual Museum of the Pacific, however, you can

access a lightweight HTML version at http://epoc.cs.uow.edu.au/vmpsearch/
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We perform query expansion by creating a set of extended terms for a given
attribute from the formal context (we call this the base term). These extended
terms are used solely for the purposes of expanding user queries and are not
considered part of the formal context. To obtain this set of extended terms,
the correct word-sense – a distinct and logical grouping of synonyms – is se-
lected from WordNet. We follow a relatively simple approach for word-sense
disambiguation where we select the word-sense whose terms have the highest
occurrence of matches within the Virtual Museum of the Pacific’s corpus of de-
tailed object text labels, and then use those terms as a set of extended terms for
a given base term.

When a user query is processed, the algorithm removes all stop-words and
any other terms from a pre-defined list that do not represent specific objects or
qualities (such as ‘object’, ‘artifact’ etc.). We then stem these terms and map
them against our extended term set, retrieving a set of base terms for the given
query. For instance, the search phrase “Fijian house items” (shown in Fig. 3)
returns base terms { ‘fiji’, ‘house model’ and ‘domicile object’ }. The algorithm
then attempts to find a matching formal concept for these given base terms, and
if none is found, the most similar formal concept is retrieved, using the conceptual
similarity metrics described in Section 2.3. For example, for a given query “Fijian
objects that are made with metal and stone”, no exact matches are found as
there are no such objects within the collection. Instead, the algorithm returns two
similar yet disjointed concepts: “all Fijian objects made with stone, coconut fibre

Fig. 3. The Virtual Museum of the Pacific allows for free text searching that can return
both matching formal concepts (or their approximations) and their individual objects.
Here we see the matching formal concept for the search phrase “Fijian house items”
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Fig. 4. Demonstration of content-based retrieval within the Virtual Museum of the
Pacific. Similar concepts are clustered, then expressed in natural language.

and wood” and “all objects made with metal.” To minimise the computational
overhead of the search algorithm, a formal sub-context based on the minimal
union of conceptual scales is created before it checks it for matching concepts,
or searches for similar concepts. Following the running “Fijian house items”
example, the extracted base terms { ‘fiji’, ‘house model’ and ‘domicile object’ }
match the ‘origin’, ‘architecture’ and ‘domicile objects’ scales respectively. The
reduced sub-context is then used to perform concept matching and conceptual
similarity operations, rather than use the entire full context of 427 objects and
605 attributes.

3.3 Content-Based Retrieval Using Conceptual Similarity

The Virtual Museum of the Pacific also allows users to view a single object, and
find related objects that share similar properties or qualities to that object. In
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addition, it can also describe how those objects are related in natural language.
We employ techniques of conceptual similarity and natural language generation
to achieve this.

For a given object, we derive similar concepts based on the object’s attributes
using conceptual similarity methods described in Section 2.3. In essence, we
gather formal concepts from the conceptual neighbourhood whose attributes
most closely match the object we are comparing. Due to the high intersection of
objects from formal concepts that are ‘close’ to one another within the conceptual
neighbourhood, we then cluster formal concepts that have a set of common
attributes. For instance, as shown in Fig. 4, the first ‘result’ actually links to three
formal concepts, each one within the list being a super-concept of the one before
it. These results are then expressed in natural language where an attribute’s
membership with one or more conceptual scales implies the relationship type
that attribute has with the object. For example, if an object has attributes
‘wood’ and ‘steel’, and those attributes are within the ‘materials’ conceptual
scale, then it can be given that the object is made of wood and steel. Likewise, it
could be said that an object is from Papua New Guinea if the attribute ‘papua
new guinea’ is a member of the ‘origin’ conceptual scale. Although this form
of semantic expression lacks a certain explicitness compared to other formal
descriptive languages, we theorise that it is particularly well suited to the cultural
heritage domain as its terms and facets often imply a specific relationship-type
to the object at hand, and as such it also benefits from its simplicity in that it
doesn’t require the use of complex descriptive languages to store its associations.
We test this assumption as we perform term extraction on a different domain
within Section 4.

4 Building Formal Contexts Using Term Extraction

The idea of using automated term extraction to annotate and group objects
has been discussed extensively. Much of these discussions centre around the use
of lexical resources to help normalise and categorise extracted terms, or to au-
tomatically create faceted hierarchies based on a large corpus of free text. For
instance, the approach by Stoica and Hearst [10] uses WordNet [9] to offer a hier-
archical view of topics covered within a videoconference discussion, much in the
same way that we construct hierarchies using the Getty’s Art and Architecture
vocabularies. Previous studies have shown that using an external thesuarus’s
hypernym structure is a good way of building faceted hierarchies [11], [12]. It
was shown that WordNet hypernyms and synonyms have high precision, and
therefore are useful in accurately (and unambiguously) describing objects, but
are poorly suited to be used as index terms for search due to their low recall.

Closely related to our approach for term extraction is the work by Klavans et
al. [13]. They describe a system that provides a machine-assisted way of image
cataloguers to assign subject terms to image collections, where these terms are
extracted from high-quality image descriptions and related texts. Their approach
for semi-automated term extraction uses part-of-speech tagging, extraction and
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vocabulary alignment techniques against the Getty Art and Architecture the-
saurus to help cataloguers tag terms to visual resource collections. Interestingly,
they also discuss some of the challenges and problems associated with word-sense
disambiguation, and ensuring that the semantics and meaning from free textual
data are well understood and interpreted so the appropriate terms are assigned.
These challenges also apply to our approach to term extraction, which in turn,
may affect the quality of browsing, search and content-based retrieval.

Our design goal for a term extraction process is to make it as autonomous
as possible so that formal contexts and conceptual scales can be created from
a large corpus of art objects and their meta-data. To evaluate our approach,
we apply our method to two data-sets. The first data-set is based on the object
descriptions and labels from the 427 objects from the Virtual Museum of the Pa-
cific. Within this data-set, the object descriptions are thorough, well researched
and documented and are written by a single anthropologist. Thematically speak-
ing, the object descriptions are generally well focused on the provenance of the
object and its use within a cultural context with a very large emphasis on its
physical materials and properties. The collection represents a focused, narrow
view of a specific type of object (Pacific cultural artefacts, although the objects
themselves represent a very diverse range of Pacific cultures, materials and ob-
ject types) but most importantly the source meta-data for our context creation
is consistent, with similar usage of terms and language across all object labels
and descriptions.

To assess the generality of our approach, we also apply our method to 427
objects from the Powerhouse Museum. These objects, available via an API5,
come from a diverse range of categories such as agricultural equipment, books,
computers, photographs and costumes. Some of the object descriptions are re-
cent, while others date back to over 100 years. To represent a diverse collection
of objects, records and meta-data, five to six objects were selected from each of
its 75 categories.

Our experimentation effectively compares three formal contexts: the carefully
selected, manually generated set of terms from the Virtual Museum of the Pa-
cific6 reported in [14]; a generated set of terms based on high quality meta-data
from that same collection7 and a generated set of terms from a categorically and
historically diverse collection.8 We then compare our conceptual based browsing,
search and content-based retrieval features on these three formal contexts.

4.1 The Term Extraction and Mapping Process

We initially extract key terms by parsing object meta-data and descriptions
through Yahoo’s Term Extraction service. This service retrieves key concepts
and terms that are considered to be descriptive of the text at hand, and in

5 http://api.powerhousemuseum.com/
6 Available at: http://epoc.cs.uow.edu.au/vmp
7 Available at: http://epoc3.cs.uow.edu.au/vmp
8 Available at: http://epoc3.cs.uow.edu.au/phe
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terms of its performance, it is considered to be state-of-the-art when compared
to baseline tf-idf measures [15].

In isolation, the extracted terms provide a good representation of their objects.
However, the use of these terms proved to be problematic when we apply our
conceptual-based browsing features. In our initial experimentation, we simply
parsed all the objects and their extracted terms and created a new conceptual
scale called ‘automatically extracted terms.’ Performance of navigating these
contexts using conceptual-based navigation was degraded severely due to their
size and complexity, and even more so as we apply our search and content-based
retrieval features. This was due to the very large contexts resulting from the noise
induced by the term extraction process – it resulted in a set of 2294 attributes
for the Australian Museum’s Pacific collection and a set of 3613 attributes for
the Powerhouse collection. However, most of these attributes (61.7% and 85.2%
respectively) were only tagged to a single object, therefore producing a lattice
with many small, single object concepts.

To reduce the complexity of these formal contexts, we have adopted an ap-
proach where attributes that have less than N objects assigned to them are
removed. From N one can calculate a total percentage, N/|G|, and we have set a
baseline percentage of 0.25%, so that N = 2 (for a set of 427 objects). In effect,
we are uncommonly used terms from each of these contexts. More sophisticated
complexity reduction techniques, such as removing formal concepts below a sta-
bility threshold [16] rely on prior computation of the entire lattice, and hence
cannot be applied in our approach due to the size of the formal contexts and the
fact that we do not pre-compute the entire lattice for browsing and search.

To further reduce the complexity of the contexts, we map and normalise the
terms to the Getty’s Art and Architecture Thesaurus. The Art and Architecture
Thesaurus (AAT)9 is an extensive control vocabulary developed by the Getty
Research Institute. It contains approximately 34,000 terms that are used to de-
scribe and catalogue objects, and these terms are organised into facet hierarchies.
There are numerous benefits in doing this: first, all synonymous (and relevant)
terms are normalised against a thesaurus. Due to the hierarchical representation
of the terms within the AAT, this allows for the construction of attribute hier-
archies that can be represented quite naturally within FCA, and as such prove
especially useful for operations that rely on conceptual similarity. Secondly, these
hierarchies (grouped into 7 facets) can be used to create conceptual scales. This
allows for the creation of ‘perspectives’ described in Section 3.1, and also allows
us to apply lightweight semantics to the tags as described in Section 3.3. Fi-
nally, and perhaps most importantly, the use of a standardised vocabulary (and
a collection-independent term extraction process) allows the significant possibil-
ity of federating multiple and distinct collections into an FCA-based browsing
applications. This possibility will be explored in future research.

Fig. 5 outlines the process of term extraction and alignment. Automated term-
mapping and disambiguation to the AAT, as described in [13], is a particu-
larly challenging task, and the authors describe some techniques for overcoming

9 http://www.getty.edu/research/tools/vocabularies/aat/about.html
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Fig. 5. Attributes are derived from the meta-data records of the object (left) by
exxtracting terms using Yahoo’s Term Extraction Web Service (top) and then aligning
them to the Getty Art and Architecture vocabularies (bottom)

disambiguation problems. For our experiments, we map the terms manually and
identify some of the common problems encountered with term mapping process.
In some cases, extracted terms such as ‘Cook’ actually referred to the name ‘Cap-
tain Cook’ rather than the common term ‘cook (occupation).’ In other cases,
the extracted terms provided overly generalised or ambiguous description of an
object that provided insufficient semantic or disambiguation information (such
as the terms ‘artefact’, ‘standard deviation’, ‘registration number’) or that the
terms did not simply exist in the AAT in the correct word-sense that was rel-
evant to the collection. These manually mapped terms will be used as baseline
data for future research where we investigate automated alternatives for mapping
extracted terms to the AAT.

4.2 Results of Term Extraction

For the Australian Museum’s Pacific collection, conceptual navigation of the au-
tomatically extracted terms allowed the ability to find object clusters that were
non-existent in the formal context of manually extracted terms. For instance,
the generation of the color, people, design elements and visual works concep-
tual scales – derived from the AAT – allowed the ability to explore previously
obscured facets of objects that were otherwise ‘hidden’ in museum documenta-
tion. The hierarchical nature also allowed the ability to ‘drill down’ into specific
terms and sub-concepts (e.g. users could drill down from metal-based objects
to copper-based objects). The Powerhouse collections offered a similar level of
user experience, although there were some cases where terms were incorrectly
assigned due to the fact that the term refers to a component or feature of the
object, rather than the object itself. For instance, the term ‘space’ was both
correctly assigned to spacecraft paraphernalia, but incorrectly assigned to com-
puter keyboard (where, ‘space’ referred to the ‘space-bar’ on the computer’s
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Fig. 6. A subset of the Powerhouse collection (top), rendered as a conceptual neigh-
bourhood (bottom). Here, we can infer that the majority of the costume accessories
are black or are headdresses. The formal context for this collection was constructed
entirely from the term extraction techniques described in this paper.

keyboard). In some cases, terms were ambiguous or could hold multiple inter-
pretations, where, for instance, ‘leaves’ referred to both leaf material and leaf
designs and motifs. Aside from these isolated cases, the objects within each con-
cept were overall representative of their intension, as shown in Fig. 6.

Content-based retrieval for the extracted term sets generally retrieved ob-
jects that were related mostly by their physical composition or use, rather than
the actual item type or category of object itself. This feature may allow users
to find related objects beyond the well-defined categories that museum collec-
tions often impose. Fig. 7 lists the groups of objects that are related to the
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Fig. 7. The results of the content-based retrieval for a kato alu basket from the Aus-
tralian Museum’s Pacific collection and a black and white television receiver from the
Powerhouse collection, based on the formal contexts created by the term extraction
features as described within this paper

Australian Museum’s kato alu basket and the Powerhouse Museum’s black and
white television. When we compare the content-based retrieval results between
the manually-added and automatically extracted data-sets of the Australian Mu-
seum’s Pacific collection, the results appeared to be less indicative of their object
types (e.g. “2 bowls from melanesia that are made with plant fibre”) and are
usually presented in more abstract terms, yet they are still related according to
their materials and function (as shown in Fig. 7). However, the free text search
capabilities described in Section 3.2 for the automatically extracted contexts gen-
erally returned fewer or more irrelevant formal concepts, particularly for search
queries that describe what an object is, rather than its characteristics. For in-
stance, while queries such as “objects made of metal” generally returned related
concepts, queries that describe the objects’ common nouns, such as “bowls”,
“containers” or “shoes” generally retrieved results with lower recall or no results
at all. This is consistent with the findings of previous research that suggests that
term extraction from lexical resources produces terms that have high precision
and low recall [11] and that when users search, they tend to user terms that are
more broader and less specific (e.g. ‘metal’ instead of ‘copper’, or ‘clocks’ instead
of ‘chronometers’) [17].

5 Conclusion and Future Work

In this paper, we have presented some of the main design features of our software
framework for browsing collection content and evaluated an approach for term
extraction and context creation using term extraction Web Services and exter-
nal thesauri. For a collection of 427 objects, navigation of concept lattices using
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a set of extracted terms did not present any significant performance or usabil-
ity problems. Despite some small errors relating to word-sense disambiguation
along with the semantics of the extracted terms as they apply to objects, our
method for term extraction generally worked well for scale creation and content-
based retrieval queries. Based on our generated contexts, our applications showed
strength in the ability to browse associatively and relate objects to one another
due to the hierarchical nature of the mapped terms and their precision. How-
ever, search performance was limited due to low recall of the object names and
categories within the museum meta-data records. So far, the results look promis-
ing and future research will focus on term extraction and context creation for
larger collections and whether such extraction techniques are sustainable for
other sources of museum documentation such as secondary documents, articles
and news sources and user commentary and stories.
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