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Preface

This monograph covers some selected problems of positive fractional 1D and 2D
linear systems. It is an extended and modified English version of its preceding Pol-
ish edition published by Technical University of Bialystok in 2009. This book is
based on the lectures delivered by the author to the Ph.D. students of the Faculty of
Electrical Engineering of Bialystok University of Technology and of Warsaw Uni-
versity of Technology and on invited lectures in several foreign universities in the
last three years.

The monograph consists of 12 chapters. 4 appendices and a list of references.
Chapter 1 is devoted to the fractional discrete-time systems. The solution to the

state equations of fractional discrete-time linear systems is derived. Necessary and
sufficient conditions for the positivity, the reachability and the controllability to zero
are established. The minimum energy control problem for the positive fractional
systems is formulated and solved. The solution to the fractional different orders
discrete-time linear systems is also derived. The fractional continuous-time linear
systems are considered in Chapter 2. The definitions of fractional derivatives are
recalled and the solutions to the fractional state equations of continuous-time lin-
ear systems are derived. Necessary and sufficient conditions for the internal and
external positivity and the reachability of the systems without and with delays are
established. The fractional positive 2D linear systems are addressed in Chapter 3.
The solution to the state equations of fractional 2D linear systems is derived. The
necessary and sufficient conditions for the positivity, the reachability and the con-
trollability of the systems are established. The positive Roesser type model, the
Fornasini-Marchesini type models and the general 2D model are discussed. The
positive 2D linear systems with delays are also considered. The pointwise com-
pleteness and the pointwise degeneracy of standard and positive linear systems are
considered in Chapter 4. First the pointwise completeness and the pointwise de-
generacy of the standard discrete-time and continuous-time linear systems without
and with delays are analyzed. Next the considerations are extended to the posi-
tive and fractional linear systems. The pointwise completeness and the pointwise
degeneracy of electrical circuits are also investigated. The pointwise completeness
and the pointwise degeneracy of linear systems with state feedbacks are considered
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in Chapter 5. Gain matrices of the state feedbacks are chosen so that the closed-
loop systems are positive and pointwise complete. Conditions are established under
which there exist such gain matrices. It is shown that the pointwise completeness
and the pointwise degeneracy of the standard and fractional continuous-time linear
systems are invariant under the state feedbacks. The realization problem for positive
fractional discrete-time and continuous-time linear systems is addressed in Chap-
ter 6. Sufficient conditions for the existence of positive fractional realizations of
a given transfer matrix are established for SISO and MIMO linear systems. Pro-
cedures for computation of the realizations are given and illustrated by numerical
examples. Chapter 7 is devoted to the cone discrete -time and continuous-time linear
systems. The relationship between the cone and positive systems is discussed. Nec-
essary and sufficient conditions for the reachability and controllability to zero of the
cone fractional systems are established. Sufficient conditions for the existence and a
procedure for computation of cone realizations for continuous-time linear systems
with delays are also given. The stability of positive and fractional linear 1D and
2D systems is addressed in Chapter 8. Necessary and sufficient conditions for the
asymptotic stability of the positive systems without and with delays are established.
The relationship between the asymptotic stability of positive 1D and 2D linear sys-
tems is given. It is shown that checking of the stability of positive fractional 2D
linear systems can be reduced to checking of the stability of corresponding posi-
tive 1D linear systems. The practical stability of the fractional 1D and 2D linear
systems is also investigated. Chapter 9 is devoted to the stability analysis of frac-
tional linear systems in frequency domain. It is based on M. Busowicz papers. First
the stability of fractional continuous-time linear systems and of fractional systems
with delays of retarded type is investigated. Next the stability of fractional discrete-
time linear systems of commensurate orders in frequency domain is analyzed. The
robust stability of the convex combination of two fractional polynomials is also in-
vestigated. In Chapter 10 the stabilization problem of positive and fractional 1D and
2D linear systems by state feedbacks is addressed. Gain matrices of the state feed-
backs are chosen so that the closed loop-systems are positive and asymptotically
stable. The LMI approaches are applied to the stabilization problem for 1D and 2D
linear systems. Chapter 11 is addressed to the singular fractional continuous-time
and discrete-time linear systems. Using the Weierstrass decomposition of the sin-
gular pencil of matrices the solutions to the singular fractional systems are derived.
Singular fractional electrical circuits are considered. It is shown that the singular
systems can be reduced to equivalent standard fractional systems. The decomposi-
tion of the singular systems into dynamical and static parts is also presented. The
last Chapter 12 is devoted to the continuous-discrete (hybrid 2D) linear systems.
The solution to the general model of the systems is derived and the necessary and
sufficient conditions for the positivity of the model are established. The reachability
of the positive continuous-discrete linear systems is analyzed. Necessary and suffi-
cient conditions for the asymptotic stability of the positive systems are established.
The robust stability of the scalar general model of the systems is investigated. The
positive realization problem for the linear systems is also considered.
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In Appendix A some basic definitions and properties of the Laplace transform
and the z-transform are recalled. The infinite long cable with zero inductance is
presented in Appendix B as an example of linear fractional continuous-time system.
In Appendix C the right inverses of matrices and their application to finding the
solution of the matrix linear equation are presented. Basic definitions of element
operations on real matrices are recalled in Appendix D.

It is hoped that this monograph will be value to Ph.D. students and researches
from the field of fractional systems.

I would like to express my gratitude to Professors J. Klamka and P. Ostalczyk,
the reviewers of the Polish edition of the book, for their valuable comments, sug-
gestions and remarks which helped to improve the monograph. My special thanks
go to Professor M. Busowicz who was the scientific editor of the Polish edition of
the book.

I wish to thank very much my Ph.D student Krzysztof Rogowski, who has
checked the calculations in this edition of the book, and has given many valuable
comments and remarks.

I wish to extend my gratitude to Mr. Przemysław Czyronis for the preparation of
the manuscript of this English edition.

This monograph was supported by the Ministry of Science and Higher Education
in Poland under work No. NN514193933.

Tadeusz Kaczorek
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Chapter 1
Fractional Discrete-Time Linear Systems

1.1 Definition of n-Order Difference

Definition 1.1. A discrete-time function defined by

Δ nxi = Δ n−1xi −Δ n−1xi−1 =
n

∑
k=0

(−1)k
(

n
k

)
xi−k, (1.1)

i = 1,2,3, . . . , n ∈ Z, xi ∈ R,

where (
n
k

)
=

n!
k!(n− k)!

=
n(n−1) · · ·(n− k + 1)

k!
, (1.2)

is called the n-order (backward) difference of the function xi.

Definition 1.2. The fractional n-order (backward) difference on the interval [0,k] of
the function xi is defined as follows

0Δ n
k xi =

k

∑
j=0

(−1) j
(

n
j

)
xi− j. (1.3)

From (1.1) it follows that the n-order difference can be written as a linear combina-
tion of the values of discrete-time function in n + 1 points.

The definitions are valid for n being natural numbers and integers.
Note that (1.2) is also well defined for fractional and real numbers. In general

case n can be also a complex number.

Example 1.1. From (1.1) we have for:

n = 1 : Δxi = xi − xi−1,

n = 2 : Δ 2xi = Δxi −Δxi−1 = xi −2xi−1 + xi−2,

n = 3 : Δ 3xi = Δ 2xi −Δ 2xi−1 = xi −3xi−1 + 3xi−2 − xi−3.

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 1–25.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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From (1.3) we obtain for:
n = −1:

0Δ−1
k xk =

k

∑
j=0

(−1) j
(−1

j

)
xk− j = xk + xk−1 + · · ·+ x0 =

k

∑
j=0

xk− j,

n = −2:

0Δ−2
k xk =

k

∑
j=0

(−1) j
(−2

j

)
xk− j = xk + · · ·+(k + 1)x0 =

k

∑
j=0

( j + 1)xk− j.

Definition 1.3. The discrete-time function

Δ α xk =
k

∑
j=0

(−1) j
(

α
j

)
xk− j, (1.4)

where 0 < α < 1, α ∈ R and

(
α
k

)
=

{
1 for k = 0
α(α−1)···(α−k+1)

k! for k = 1,2,3, . . . ,
(1.5)

is called the fractional α-order difference of the function xk.

Example 1.2. Using (1.5) for 0 < α < 1 we obtain for:

k = 1 : (−1)1
(

α
1

)
= −α < 0,

k = 2 : (−1)2
(

α
2

)
=

α(α −1)
2!

< 0,

k = 3 : (−1)3
(

α
3

)
= −α(α −1)(α −2)

3!
< 0.

1.2 State Equations of the Fractional Linear Systems

1.2.1 Fractional Systems without Delays

The state equations of the fractional discrete-time linear system have the form:

Δ α xk+1 = Axk + Buk, 0 ≤ α ≤ 1, (1.6a)

yk = Cxk + Duk, k ∈ Z+, (1.6b)

where xk ∈R
n, uk ∈R

m, yk ∈R
p are the state, input and output vectors and A∈R

n×n,
B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
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Substituting the definition of fractional difference (1.4) into (1.6a), we obtain

xk+1 +
k+1

∑
j=1

(−1) j
(

α
j

)
xk− j+1 = Axk + Buk, (1.7a)

or

xk+1 = Axk +
k+1

∑
j=1

(−1) j+1
(

α
j

)
xk− j+1 + Buk

= Aα xk +
k+1

∑
j=2

(−1) j+1
(

α
j

)
xk− j+1 + Buk, (1.7b)

where
Aα = A + αIn. (1.8)

Remark 1.1. From (1.7b) it follows that the fractional system is equivalent to the
system with increasing number of delays.

In practice it is assumed that j is bounded by natural number h. In this case the
equations (1.6) take the form:

xk+1 = Aα xk +
h

∑
j=1

(−1) j
(

α
j + 1

)
xk− j + Buk, k ∈ Z+, (1.9a)

yk = Cxk + Duk. (1.9b)

Remark 1.2. The equations (1.9) describe a discrete-time linear system with h
delays.

1.2.2 Fractional Systems with Delays

Consider the fractional discrete-time linear system with h delays:

Δ α xi+1 =
h

∑
k=0

(Akxi−k + Bkui−k) , i ∈ Z+, (1.10a)

yi = Cxi + Dui, (1.10b)

where xi ∈Rn, ui ∈Rm, yi ∈Rp are the state, input and output vectors and Ak ∈Rn×n,
Bk ∈ Rn×m, k = 0, . . . ,h; C ∈ Rp×n, D ∈ Rp×m.

Substituting the definition of fractional difference (1.4) into (1.10a) we obtain:

xi+1 =
i+1

∑
j=1

(−1) j+1
(

α
j

)
xi− j+1 +

h

∑
k=0

(Akxi−k + Bkui−k) , (1.11a)

yi = Cxi + Dui, i ∈ Z+, (1.11b)
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If i is bounded by the natural number L then from (1.11) we obtain:

xi+1 =
L+1

∑
j=1

(−1) j+1
(

α
j

)
xi− j+1 +

h

∑
k=0

(Akxi−k + Bkui−k) , (1.12a)

yi = Cxi + Dui, i ∈ Z+ . (1.12b)

1.3 Solution of the State Equations of the Fractional
Discrete-Time Linear System with Delays

1.3.1 Fractional Systems with Delays

The state equations of the fractional discrete-time linear system with q delays has
the form:

xk+1 +
k+1

∑
j=1

(−1) j
(

α
j

)
xk− j+1 =

q

∑
r=0

(Arxk−r + Bruk−r) , k ∈ Z+, (1.13a)

yk = Cxk + Duk, 0 ≤ α ≤ 1, (1.13b)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp are the state, input and output vectors and Ar ∈
Rn×n, Br ∈ Rn×m, r = 0,1, . . . ,q; C ∈ Rp×n, D ∈ Rp×m, q is the number of delays.

Applying the z-transform (Z ) method we shall derive the solution of the state
equation (1.13a) of the fractional system [79].

Theorem 1.1. The solution of the equation (1.13a) has the form

xk = Φkx0 +
q

∑
r=0

k−r−1

∑
i=0

Φk−r−1−iBrui +
k+1

∑
j=1

− j+1

∑
l=−1

(−1) j+1
(

α
j

)
Φk−l− jxl

+
q

∑
r=0

−r

∑
l=−1

Φk−r−l−1Arxl +
q

∑
r=0

−r

∑
l=−1

Φk−r−l−1Brul, (1.14)

where
xk �= 0, uk �= 0, k = 0,−1, . . . ,−q , (1.15)

are initial conditions and the matrices Φk are determined by the equation

Φk+1 = Φk (A0 + αIn)+
k+1

∑
i=2

(−1)i+1
(

α
i

)
Φk−i+1 +

k

∑
i=1

Φk−iAi, (1.16a)

Φ0 = In, (1.16b)

for k = 0,1, . . . .

Proof. Let X(z) be the z-transform (Z ) of the discrete-time function xi defined by
(A.13). Applying the z-transform (Appendix A.3) to the equation (1.13a) we obtain
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Z [xk+1]+
k+1

∑
j=1

(−1) j
(

α
j

)
Z [xk− j+1] =

q

∑
r=0

ArZ [xk−r]+
q

∑
r=0

BrZ [uk−r]. (1.17)

Using (A.14) to (1.17) we get

zX(z) − zx0 +
k+1

∑
j=1

(−1) j
(

α
j

)
z− j+1

[
X(z)+

− j+1

∑
l=−1

xlz
−l

]
(1.18)

=
q

∑
r=0

Arz
−r

[
X(z)+

−r

∑
l=−1

xlz
−l

]
+

q

∑
r=0

Brz−r

[
U(z)+

−r

∑
l=−1

ulz
−l

]
,

where U(z) = Z [uk].
Multiplying (1.18) by z−1 and solving with respect to X(z) we obtain

X(z) =

[
k+1

∑
j=0

(−1) j
(

α
j

)
z− jIn −

q

∑
r=0

Arz
−r−1

]−1

×
{

x0 +
k+1

∑
j=1

(−1) j+1
(

α
j

)
z− j

− j+1

∑
l=−1

xlz
−l +

q

∑
r=0

Arz
−r−1

−r

∑
l=−1

xlz
−l

+
q

∑
r=0

Brz
−r−1

[
U(z)+

−r

∑
l=−1

ulz
−l

]}
. (1.19)

Substituting of the expansion

[
k+1

∑
j=0

(−1) j
(

α
j

)
z− jIn −

q

∑
r=0

Arz
−r−1

]−1

=
∞

∑
k=0

Φkz−k, (1.20)

into (1.19) yields

X(z) =
∞

∑
k=0

Φkz−kx0 +
∞

∑
k=0

q

∑
r=0

Φkz−k−r−1BrU(z)

+
∞

∑
k=0

Φkz−k

[
k+1

∑
j=1

− j+1

∑
l=−1

(−1) j+1
(

α
j

)
xlz

− j−l

+
q

∑
r=0

−r

∑
l=−1

Arxlz
−r−l−1 +

q

∑
r=0

−r

∑
l=−1

Brulz
−r−l−1

]
. (1.21)

Applying the inverse z-transform and the convolution theorem (Appendix A.1) to
(1.21) we obtain the desired solution (1.14).

From definition of the inverse matrix we have[
k+1

∑
j=0

(−1) j
(

α
j

)
z− jIn −

q

∑
r=0

Arz
−r−1

][
∞

∑
k=0

Φkz−k

]
= In. (1.22)
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Comparison of the coefficients at the same powers of z−k, k = 0,1, . . .; from (1.22)
yields:

z0: Φ0 · In = In,
z−1: −A0 + Φ1 −αIn = 0 ⇒ Φ1 = A0 + αIn,
z−2: Φ2 −Φ1(A0 + αIn)+ · · · = 0 ⇒ Φ2 = Φ1(A0 + αIn)−Φ0

(
In
(α

2

)−A1
)

...
and in general case the equation (1.16). ��

1.3.2 Fractional Systems without Delays

In this section we shall consider the fractional discrete-time linear system without
delays. Substituting in (1.14) q = 0 we obtain the following theorem.

Theorem 1.2. The solution of the equation (1.7) has the form

xk = Φkx0 +
k−1

∑
i=0

Φk−i−1Bui, (1.23)

where the matrices Φk are determined by the equation

Φk+1 = Φk (A + αIn)+
k+1

∑
i=2

(−1)i+1
(

α
i

)
Φk−i+1, Φ0 = In. (1.24)

Theorem 1.3. Let

det

[
k+1

∑
j=0

(−1) j
(

α
j

)
Inz− j −Az−1

]
=

M

∑
i=0

aM−iz
−i, (1.25)

be the characteristic polynomial of the fractional system (1.7) for k = L. The matri-
ces Φ1, . . . ,ΦM satisfy the equation

M

∑
i=0

aiΦi = 0. (1.26)

Proof. From definition of the adjoint matrix and (1.25) we have

Adj

[
L+1

∑
j=0

(−1) j
(

α
j

)
Inz− j −Az−1

]
=

(
∞

∑
i=0

Φiz
−i

)(
M

∑
i=0

aM−iz
−i

)
, (1.27)

where AdjF denotes the adjoint matrix of F .
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Comparing the coefficients of the same powers of z−1 in (1.27), we obtain (1.26),
since the degree of the matrix

Adj

[
L+1

∑
j=0

(−1) j
(

α
j

)
Inz− j −Az−1

]
,

is less than M. ��
Theorem 1.3 is an extension of the well-known Cayley-Hamilton theorem for frac-
tional discrete-time linear systems.

Remark 1.3. The degree M of the characteristic polynomial (1.25) depends on k and
it increases to infinity for k → ∞. Usually it is assumed that k is bounded by natural
number L. If k = L then M = N(L+ 1).

1.4 Positive Fractional Linear Systems

In this section the necessary and sufficient conditions for the positivity of the frac-
tional discrete-time linear system:

xk+1 +
k+1

∑
j=1

(−1) j
(

α
j

)
xk− j+1 = Axk + Buk, k ∈ Z+, (1.28a)

yk = Cxk + Duk, (1.28b)

will be established, where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp are state, input and output
vectors and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Let R
n×m
+ be the set of real n×m matrices with the nonnegative entries and

Rn
+ = R

n×1
+ .

Definition 1.4. The system (1.28) is called (internally) positive fractional system
if xk ∈ Rn

+, yk ∈ R
p
+ for every initial conditions x0 ∈ Rn

+ and all inputs uk ∈
Rm

+, k ∈ Z+.

Lemma 1.1. If 0 < α < 1, then

(−1)i+1
(

α
i

)
> 0, i = 1,2, . . . . (1.29)

Proof. The proof will be accomplished by induction. The hypothesis is true for i = 1
since

(−1)1+1
(

α
1

)
= α > 0.

Assuming that (−1)k+1
(α

k

)
> 0 for k ≥ 1 we shall show that the hypothesis is valid

for k + 1. From (1.5) we have
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(−1)k+2
(

α
k + 1

)
= (−1)k+2 α(α −1) · · ·(α − k + 1)(α − k)

k!(k + 1)

= (−1)k+1
(

α
k

)
k−α
k + 1

> 0.

Therefore, the hypothesis is true for k + 1. This completes the proof. ��
Remark 1.4. In a similar way it can be shown that for 1 < α < 2

(−1)i+1
(

α
i

)
< 0, i = 2,3, . . . .

Lemma 1.2. Let 0 < α < 1 and

[A + αIn] ∈ R
n×n
+ , (1.30)

then
Φk ∈ R

n×n
+ , k = 1,2, . . . . (1.31)

Proof. The proof follows immediately from (1.24). ��
Theorem 1.4. The fractional system (1.28) is (internally) positive if and only if:

Aα = [A + αIn] ∈ R
n×n
+ and B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ . (1.32)

Proof. Sufficiency follows from Lemma 1.2 and the equation (1.23). From (1.23) it
follows that if Φk ∈R

n×n
+ , B ∈ R

n×m
+ , x0 ∈Rn

+ then xk ∈ Rn
+, k ∈ Z+. Similarly from

(1.28b) we have yk ∈ R
p
+ if the conditions (1.32) are satisfied.

Necessity. Let uk = 0 for k ∈ Z+. For positive system from (1.28) for k = 0 we
have x1 = [A + αIn]x0 = Aαx0 = Aα1 ∈ Rn

+, and y0 = Cx0 ∈ R
p
+. Therefore Aα ∈

R
n×n
+ and C ∈ R

p×n
+ , since x0 ∈ R

n
+ and by Definition 1.4 it is arbitrary. Assuming

x0 = 0 from (1.28) for k = 0 we obtain x1 = Bu0 ∈ Rn
+ and y0 = Du0 ∈ R

p
+, and this

implies B ∈ R
n×m
+ and D ∈ R

p×m
+ , since u0 ∈ Rm

+ and it is arbitrary. ��

Definition 1.5. The fractional discrete-time linear system (1.11) with h delays is
called (internally) positive if xi ∈Rn

+ and yi ∈R
p
+ for any initial conditions xk ∈Rn

+,
k = 0,−1, . . . ,−h and all inputs ui ∈ Rm

+, i ∈ Z+.

Theorem 1.5. The fractional discrete-time linear system (1.11) with h delays is (in-
ternally) positive for 0 < α < 1 if and only if

Ak + ck+1In ∈ R
n×n
+ , ck = (−1)k+1

(
α
k

)
, Bk ∈ R

n×m
+ , k = 1, . . . ,h;

C ∈ R
p×n
+ , D ∈ R

p×m
+ . (1.33)

Proof. The proof is similar to the proof of Theorem 1.4. ��
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1.5 Externally Positive Fractional Systems

Definition 1.6. The fractional discrete-time linear system (1.28) is called externally
positive if for any inputs uk ∈ Rm

+, k ∈ Z+ and x0 = 0 we have yk ∈ R
p
+, k ∈ Z+.

Definition 1.7. The output of the single-input single-output (SISO) linear system
for the unit impulse

ui =

{
1 for i = 0

0 for i > 0
,

and zero initial conditions is called the impulse response of the system.

In a similar way we define the matrix of impulse responses gk of the multi-input
multi-output (MIMO) linear systems.

Theorem 1.6. The fractional discrete-time linear system (1.28) is externally positive
if and only if

gk ∈ R
p×m
+ , k ∈ Z+, (1.34)

and the matrix of impulse responses is given by

gk =

{
D for k = 0

CΦk−1B for k = 1,2, . . . .
(1.35)

Proof. Sufficiency. The output of the system (1.28) with zero initial conditions and
any input ui ∈ Rm

+ is given by

yk =
k

∑
i=0

gk−iui, k ∈ Z+. (1.36)

If (1.34) holds and ui ∈ Rm
+, then from (1.36) we have yk ∈ R

p
+, k ∈ Z+.

Necessity follows immediately from Definition 1.7. ��
Remark 1.5. Every (internally) positive linear system is always externally positive.
This follows from Definitions 1.4 and 1.6.

Example 1.3. Consider the fractional system (1.6a) for 0 < α < 1 with the matrices:

A =
[

1 0
0 −α

]
, B =

[
0
1

]
, (n = 2). (1.37)

The system is positive since

[A + αIn] =
[

(1 + α) 0
0 0

]
∈ R

2×2
+ .
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Using (1.24) for k = 0,1, . . . we obtain:

Φ1 = (A + αIn)Φ0 =
[

(1 + α) 0
0 0

]
, (1.38a)

Φ2 = (A + αIn)Φ1 −
(

α
2

)
Φ0 =

[
α2+5α+2

2 0

0 α(1−α)
2

]
, (1.38b)

Φ3 = (A + αIn)Φ2 −
(

α
2

)
Φ1 +

(
α
3

)
Φ0

=

[
3(α2+5α+2)(α+1)−α(α−1)(2α+5)

6 0

0 α(1−α)(2−α)
6

]
, (1.38c)

...

From (1.23) and (1.24) we have

xk = Φkx0 +
k−1

∑
i=0

Φk−i−1

[
0
1

]
ui, (1.39)

where Φk is defined by (1.38).

1.6 Reachability of Fractional Discrete-Time Linear Systems

Definition 1.8. A state x f ∈ Rn is called reachable in (given) q steps if there exists
an input sequence u0,u1, . . . ,uq−1, which steers the state of the system (1.28) from
x0 = 0 to the state x f , i.e. xq = x f . If every given state x f ∈ R

n is reachable in q
steps then the system (1.28) is called reachable in q steps. If for every state x f ∈ Rn

there exists a number q of steps such that the system is reachable in q steps then the
system is called reachable.

Theorem 1.7. The fractional system (1.28) is reachable in q steps if and only if

rank
[

B Φ1B . . . Φq−1B
]
= n. (1.40)

Proof. From (1.23) for k = q and x0 = 0 we have

x f = Φqx0 +
q−1

∑
i=0

Φq−i−1Bui =
[

B Φ1B . . . Φq−1B
]
⎡
⎢⎢⎢⎢⎢⎣

uq−1

uq−2
...

u1

u0

⎤
⎥⎥⎥⎥⎥⎦

. (1.41)

From Kronecker-Capelly theorem it follows that the equation (1.41) has a solution
for every x f if and only if the condition (1.40) is satisfied. ��
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Theorem 1.8. In the condition (1.40) the matrices Φ1, . . . ,Φq−1 can be substituted

by the matrices Aα , . . . ,Aq−1
α , i.e.

rank
[

B Φ1B . . . Φq−1B
]
= rank

[
B Aα B . . . Aq−1

α B
]

= n. (1.42)

Proof. To simplify the notation the proof will be accomplished for n = 4. From
(1.24) for ci = (−1)i+1

(α
i

)
, we have

[
B Φ1B Φ2B Φ3B

]
=

[
B AαB (A2

α + c2In)B (A3
α + 2c2Aα + c3In)B

]

=
[

B AαB A2
α B A3

α B
]
⎡
⎢⎢⎣

In 0 c2In c3In

0 In 0 2c2In

0 0 In 0
0 0 0 In

⎤
⎥⎥⎦ .

Hence rank
[

B Φ1B Φ2B Φ3B
]

= rank
[

B AαB A2
αB A3

α B
]
, since postmultiplica-

tion of the matrix
[

B AαB A2
α B A3

α B
]

by the nonsingular matrix does not change
the rank of the matrix. ��
Theorem 1.9. The fractional system (1.28) is reachable if and only if one of the
equivalent conditions is satisfied:

a) The matrix [Inz−Aα ,B] has full rank, i.e.

rank [Inz−Aα ,B] = n, ∀z ∈ C. (1.43)

b) The matrices [Inz−Aα ], B are relatively left prime or equivalently it is possible
using elementary column operations (R) to reduce the matrix [Inz−Aα ,B] to the
form [In,0], i.e.

[Inz−Aα ,B] R−→ [In,0] . (1.44)

Proof. First we shall show that the condition (1.43) is equivalent to the condition
(1.42). Let v ∈ Cn be a vector such that vT B = 0 and vT Aα = zvT for z ∈ C. In this
case vT AαB = zvT B = 0,vT A2

αB = zvT AαB = 0, . . . ,vT Aq−1
α B = 0 and

vT
[

B AαB . . . Aq−1
α B

]
= 0. (1.45)

From (1.45) it follows that the condition implies v = 0 and vT [Inz−Aα ,B] = 0, and
this is equivalent to a (1.43). If the condition (1.42) is not satisfied then there exists
a vector v satisfying (1.45) or rank[Inz−Aα ,B] < n for z ∈ C. The reduction holds
if and only if the condition (1.43) is satisfied. ��
Example 1.4. Using (1.42), (1.43) and (1.44) check the reachability of the system
with the matrices:

Aα =

⎡
⎣ 0 1 0

0 0 1
−1 −2 −3

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ .
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a) From (1.42) for n = 3 we have

rank
[

B Aα B A2
α B

]
= rank

⎡
⎣ 0 0 1

0 1 −3
1 −3 7

⎤
⎦= 3.

By Theorem 1.8 the pair (Aα ,B) is reachable.
b) From (1.43) we have

rank [Inz−Aα ,B] = rank

⎡
⎣ z −1 0 | 0

0 z −1 | 0
1 2 z+ 3 | 1

⎤
⎦= 3 for ∀z ∈ C.

Using the elementary column operations we shall show that the matrices [Inz−
Aα ] and B are relatively left prime:

⎡
⎣ z −1 0 | 0

0 z −1 | 0
1 2 z+ 3 | 1

⎤
⎦ R[3+4×(−z−3)]

R[2+4×(−2)]
R[1+4×(−1)]−−−−−−−−−→

⎡
⎣ z −1 0 | 0

0 z −1 | 0
0 0 0 | 1

⎤
⎦

R[2+3×(z)]−−−−−−−→

⎡
⎣ z −1 0 | 0

0 0 −1 | 0
0 0 0 | 1

⎤
⎦ R[1+2×(z)]

R[2×(−1)]
R[3×(−1)]−−−−−−−→

[
0 I3

]
.

Therefore, by Theorem 1.9 the pair (Aα ,B) is reachable.

Remark 1.6. The fractional system is reachable only if the matrix (Aα ,B) has n
linearly independent columns. If the matrix (Aα ,B) has no n linearly independent
columns then the matrix [B,Aα B, . . . ,Aq−1

α B] does not have n linearly independent
columns. This follows from the condition (1.43) for z = 0.

1.7 Reachability of Positive Fractional Discrete-Time Linear
Systems

Definition 1.9. A state x f ∈ Rn
+ of the positive fractional system (1.28) is called

reachable in (given) q steps if there exists an input sequence uk ∈ Rm
+, for k =

0,1 . . . ,q− 1, which steers the state of the system from x0 = 0 to the state x f , i.e.
xq = x f . If every (given) state x f ∈ Rn

+ is reachable in q steps then the positive sys-
tem is called reachable in q steps. If for every state x f ∈ Rn

+ there exists a number q
of steps such that the positive system (1.28) is reachable in q steps then the system
is called reachable.

Definition 1.10. A square real matrix is called monomial if its every column and its
every row has only one positive entry and the remaining entries are zero.

The inverse matrix of a real matrix with nonnegative entries has nonnegative entries
if and only if it is a monomial matrix. The inverse matrix of monomial matrix can
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be found by its transposition and replacing each element of the transpose matrix by
its inverse. For example the inverse matrix of the matrix

A =

⎡
⎣ 0 b 0

a 0 0
0 0 c

⎤
⎦ , has the form A−1 =

⎡
⎣ 0 1

a 0
1
b 0 0
0 0 1

c

⎤
⎦ ,

where a,b,c > 0.

Theorem 1.10. The positive fractional system (1.28) is reachable in q steps if and
only if the matrix

Rq =
[

B Φ1B . . . Φq−1B
]
, (1.46)

contains n linearly independent monomial columns.

Proof. In a similar way as in the proof of Theorem 1.7 we obtain the equation (1.41).
For given x f ∈ R+ we can find the input sequence uk ∈ R

m
+, k = 0,1, . . . ,q−1 if and

only if the matrix (1.46) contains n linearly independent monomial columns. ��
Remark 1.7. The matrix (1.46) can not be substitute by the matrix

Rq =
[

B Aα B . . . Aq−1
α B

]
, (1.47)

since for positive fractional systems the matrices in general case have different num-
ber of linearly independent monomial columns.

Example 1.5. Consider the fractional positive system (1.28) with the matrices:

A =

⎡
⎣ 0 1 0

1 −α 1
1 0 −α

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ . (1.48)

In this case

[A + αIn] =

⎡
⎣α 1 0

1 0 1
1 0 0

⎤
⎦ ∈ R

3×3
+ , (1.49)

and the matrix (1.47) for q = 3 has the form

R3 =
[

B Aα B A2
α B

]
=

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ ,

and it contains three linearly independent monomial columns but the matrix

R3 =
[

B Φ1B Φ2B
]
=

⎡
⎣ 0 0 1

0 1 0

1 0 α(α−1)
2

⎤
⎦ ,

contains only two linearly independent monomial columns.
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Theorem 1.11. The positive fractional system (1.28) is reachable only if the matrix

[A + αIn,B] (1.50)

contains n linearly independent monomial columns.

Proof. From (1.24) for k = 0,1, . . . it can be easily shown that

Φk = Ak
α + akk−1Ak−1

α + · · ·+ ak1Aα + ak0In, (1.51)

where aki ∈ R, i = 0,1, . . . ,k−1.
From matrix (1.46) and the equation (1.51) it follows that the number of linearly

independent monomial columns of the matrix (1.46) can not be greater than of the
matrix (1.50). ��
Example 1.6. Consider the fractional system (1.28) with matrices (1.37). Using
(1.46) we obtain matrix

R2 =
[

B Φ1B
]
=
[

0 0
1 0

]
,

which has only one monomial column. By Theorem 1.10 the system with (1.37) is
unreachable. However using (1.50), we obtain matrix

[A + αIn,B] =
[

1 + α 0 | 0
0 0 | 1

]
,

which has two linearly independent monomial columns.

Theorem 1.12. The positive fractional system (1.28) is reachable only if the matrix

[B,(A + αIn)B] , (1.52)

contains n linearly independent monomial columns.

Proof. From (1.51) for the positive system we have

ΦkB =
k

∑
i=0

akiA
i
αB, (1.53)

where Aα = A + αIn, aki ≥ 0, k = 0,1, . . . ,q−1, i = 0,1, . . . ,k.
Note that besides the matrix B, only the matrix Φ1B may have additional lin-

early independent monomial columns. The matrix (1.53) for k = 2,3, . . . ,q−1 does
not introduce additional linearly independent monomial columns to the matrix
(1.46). ��
Remark 1.8. If all m columns of the matrix B are linearly independent and monomial
then the matrix (1.52) has n linearly independent monomial columns only if the
matrix Aα has at least n−m linearly independent monomial columns.
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Example 1.7. Consider the positive fractional system (1.28) with the matrices:

A =

⎡
⎢⎢⎣

a11 −α a12 1 0
a21 a22 −α 0 1
a31 a32 −α 0
a41 a42 0 −α

⎤
⎥⎥⎦ , ai j ≥ 0, i = 1,2,3,4; j = 1,2,

a) B =

⎡
⎢⎢⎣

0 0
0 0
0 1
1 0

⎤
⎥⎥⎦ , b) B =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

Taking into account that

Aα =

⎡
⎢⎢⎣

a11 a12 1 0
a21 a22 0 1
a31 a32 0 0
a41 a42 0 0

⎤
⎥⎥⎦ ,

in the case a) we obtain the matrix

[
B Φ1B

]
=

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

which has n = 4 linearly independent monomial columns. Therefore, in this case the
system is reachable in q = 2 steps. In the case b) we obtain the matrix

[
B Φ1B Φ2B . . .

]
=

⎡
⎢⎢⎣

0 0 a12 . . .
0 1 a22 . . .
0 0 a32 . . .

1 0 a42 + α(1−α)
2 . . .

⎤
⎥⎥⎦ ,

which contains only two linearly independent monomial columns. By Theorem 1.10
the positive fractional system is unreachable.

It is well-knew that the observability is a dual notion. The presented considerations
for the reachability of the positive fractional linear systems can be extended to the
observability of this class of systems.

1.8 Controllability to Zero of the Fractional Discrete-Time
Linear Systems

Definition 1.11. The fractional system (1.28) is called controllable to zero in (given)
number of q steps if there exists an input sequence u0,u1, . . . ,uq−1, which steers the
state of the system from x0 �= 0 to the final state x f = 0.
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The fractional system (1.28) is called controllable to zero if there exists a natural
number q such that the system is controllable to zero in q steps.

Theorem 1.13. The fractional system (1.28) is controllable to zero in q steps if

rank
[

B Φ1B . . . Φq−1B
]
= n. (1.54)

Proof. From (1.23) for k = q and xq = 0 we have

−Φqx0 =
q−1

∑
i=0

Φq−i−1Bui =
[

B Φ1B . . . Φq−1B
]
⎡
⎢⎢⎢⎣

uq−1

uq−2
...

u0

⎤
⎥⎥⎥⎦ . (1.55)

The equation (1.55) has a solution uk, k = 0,1, . . . ,q− 1 for arbitrary vector Φqx0

if the condition (1.54) is satisfied. This is a sufficient but not necessary condi-
tion for the controllability to zero since even if the condition (1.54) is not satis-
fied the equation (1.55) can be satisfied for arbitrary x0, when Φq = 0 and uk = 0,
k = 0,1, . . . ,q−1. ��
Theorem 1.14. For the controllability to zero of the fractional system (1.28) the
following equality holds

rank
[

B Aα B . . . Aq−1
α B

]
= rank

[
B Φ1B . . . Φq−1B

]
. (1.56)

Proof. To simplify the notation we shall accomplished the proof for n = 4. From
(1.24), we have

[
B Φ1B Φ2B Φ3B

]
=

[
B AαB (A2

α + c2In)B (A3
α + 2c2Aα + c3In)B

]

=
[

B AαB A2
α B A3

α B
]
⎡
⎢⎢⎣

I 0 c2In c3In

0 I 0 2c2In

0 0 I 0
0 0 0 I

⎤
⎥⎥⎦ .

where ci = (−1)i+1
(α

i

)
.

The equality (1.55) holds since postmultiplication of the matrix
[

B Aα B A2
α B A3

αB
]

by nonsingular matrix does not change its rank. ��
Theorem 1.15. The fractional system (1.28) is controllable to zero if and only if

rank
[

B Aα B . . . Aq−1
α B Φq

]
= rank

[
B AαB . . . Aq−1

α B
]
. (1.57)
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Proof. From (1.23) for k = q and xq = 0 we have

0 = xq = Φqx0 +
q−1

∑
i=0

Φq−i−1Bui

= Φqx0 +
[

B Φ1B . . . Φq−1B
]
⎡
⎢⎢⎢⎣

uq−1

uq−2
...

u0

⎤
⎥⎥⎥⎦ , (1.58)

or

−Φqx0 =
[

B Φ1B . . . Φq−1B
]
⎡
⎢⎢⎢⎣

uq−1

uq−2
...

u0

⎤
⎥⎥⎥⎦ , (1.59)

The equation (1.59) has a solution ui, . . . ,uq−1 for arbitrary x0 if and only if

rank
[

B Φ1B . . . Φq−1B Φq
]
= rank

[
B Φ1B . . . Φq−1B

]
= n. (1.60)

By Theorem 1.14 the conditions (1.57) and (1.60) are equivalent. ��
Remark 1.9. The condition (1.54) is only sufficient condition but not necessary for
the controllability to zero of the system (1.28) since condition (1.54) implies only
the condition (1.57).

Theorem 1.16. The fractional system (1.28) is controllable to zero if and only if one
of the following equivalent conditions is satisfied:

a) The matrix [In −Aαd,B] has full row rank, i.e.

rank [In −Aαd,B] = n, ∀d ∈ C. (1.61)

b) The matrices [In −Aαd], B are relatively left prime or equivalent it is possible
using elementary column operations (R) to reduce the matrix [In −Aα d,B] to
the form [In,0], i.e.

[In −Aαd,B] R−→ [In,0] . (1.62)

Proof. The equivalence of the conditions (1.57) and (1.61) follows from Kučera
theorem. The controllability to zero means that if there exists an unreachable mod
then it is finite. Assume that [Inz−Aα ] = [In −Aαd], where d = z−1. Substituting
[In −Aα d] instead of [Inz−Aα ] to the reachability condition we neglect the finite
mods. Therefore, the condition (1.61) is necessary and sufficient for the controlla-
bility to zero. The reduction (1.62) can be performed if and only if the condition
(1.61) is satisfied. ��
Example 1.8. Check the controllability to zero of the fractional system (1.28) with
the matrices:



18 1 Fractional Discrete-Time Linear Systems

Aα =

⎡
⎣ 0 0 1

1 0 0
0 a 1

⎤
⎦ , B =

⎡
⎣ 1

0
0

⎤
⎦ . (1.63)

a) Using (1.61), we obtain

rank [In −Aαd,B] = rank

⎡
⎣ 1 0 −d | 1
−d 1 0 | 0
0 −ad 1−d | 0

⎤
⎦= 3, ∀d ∈ C

By Theorem 1.16 the pair (A,B) is controllable to zero if and only if a �= 0.
b) Performing the following elementary column operations we can check whether

the matrices [In −Aαd] and B are relatively left prime:

⎡
⎣ 1 0 −d | 1
−d 1 0 | 0
0 −ad 1−d | 0

⎤
⎦ R[1+4×(−1)]

R[3+4×(d)]
R[1+2×(d)]−−−−−−−−→

⎡
⎣ 0 0 0 | 1

0 1 0 | 0
−ad2 −ad 1−d | 0

⎤
⎦

R[1−3×(ad+a)]
R[1×(−1/a)]
R[2+1×(ad)]−−−−−−−−−→

⎡
⎣ 0 0 0 | 1

0 1 0 | 0
1 0 1−d | 0

⎤
⎦ R[3+1×(d−1)]

R[1,4]
R[3,4]−−−−−−−−→

[
I3 | 0

]
.

By Theorem 1.16 the pair (A,B) is controllable to zero in q = 3 steps.

1.9 Controllability to Zero of Positive Fractional Discrete-Time
Linear Systems

Definition 1.12. The positive fractional system (1.28) is called controllable to zero
in q steps if there exists an input sequence ui ∈ Rm

+, i = 0,1, . . . ,q−1, which steers
the nonzero arbitrary initial state x0 ∈ Rn

+, to the final state x f = 0. The positive
fractional system (1.28) is called controllable to zero if there exists a natural number
q > 0 such that the system is controllable to zero in q steps.

Theorem 1.17. The positive fractional system (1.28) with B �= 0 is called control-
lable to zero in q steps if and only if

Φq = 0. (1.64)

Moreover, ui = 0 for i = 0,1, . . . ,q−1.

Proof. From (1.23) for k = q and xq = 0 we obtain the equality (1.55). This equality
for positive system can be satisfied for every x0 if and only if the condition (1.64) is
satisfied and ui = 0 for i = 0,1, . . . ,q−1. ��
Lemma 1.3. For positive fractional system (1.28) the condition (1.64) is satisfied if
and only if q = 1 and

Φ1 = A + αIn = 0. (1.65)
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Proof. From (1.51) with aki ≥ 0 and Lemma 1.1 it follows that the condition (1.64)
is satisfied if and only if q = 1 and (1.65). ��
Corollary 1.1. The positive fractional system (1.28) with B �= 0 is controllable to
zero if and only if q = 1 and the condition (1.65) is satisfied.

1.10 Minimum Energy Control of Positive Fractional Systems

Consider the positive fractional discrete-time linear system (1.28). If the system
is reachable in q steps then exist many input sequences which steer the state of
the system from x0 = 0 to the final state x f ∈ Rn

+. Among these sequences we are
looking for a sequence ui ∈ Rm

+, i = 0,1, . . . ,q− 1, i ∈ Z+, which minimizes the
performance index

I(u) =
q−1

∑
j=0

uT
j Qu j, (1.66)

where Q∈Rm×m is a symmetric positive definite matrix and q is the number of steps
needed to steer the system from x0 = 0 to the final state x f ∈ Rn

+.
The minimum energy control problem for the positive fractional system (1.28)

can be stated as follows [102]: Given the matrices A, B, degree α of the system
(1.28), number of steps q, the finite state x f ∈ R

n
+ and the matrix Q of (1.66). Find

an input sequence ui ∈ Rm
+, i = 0,1, . . . ,q− 1, which steers the state of the system

from x0 = 0 to x f ∈ Rn
+ and minimizes the performance index (1.66).

To solve the problem we define the matrix

W = W (q,Q) = RqQRT
q ∈ R

n×n, (1.67)

where Rq is given by (1.46) and

Q = block diag
[

Q−1 . . . Q−1
] ∈ R

qm×qm. (1.68)

From (1.67) it follows that the matrix W is nonsingular if and only if rankRq = n. If
this condition is satisfied then the system is reachable in q steps. In this case we can
define for given x f ∈ Rn

+ the following input sequence

û0q =

⎡
⎢⎢⎢⎣

ûq−1

ûq−2
...

û0

⎤
⎥⎥⎥⎦= QRT

q W−1x f . (1.69)

From (1.69) it follows that ûi ∈ Rm
+ for i = 0,1, . . . ,q−1 if

QRT
q W−1 ∈ R

m×n
+ , (1.70)
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and this implies
Q−1 ∈ R

m×m
+ , W−1 ∈ R

n×n
+ . (1.71)

Theorem 1.18. Let the fractional system (1.28) be reachable in q steps and the con-
dition (1.71) be satisfied. Moreover let ui ∈ Rm

+, i = 0,1, . . . ,q− 1 be an input se-
quence which steers the state of the system from x0 = 0 to the final state x f ∈ Rn

+.
The input sequence ûi ∈ R

m
+, i = 0,1, . . . ,q− 1 also steers the state of the system

from x0 = 0 to x f ∈ Rn
+ and minimizes the performance index (1.66), i.e.

I(û) ≤ I(u). (1.72)

The minimal value of the performance index (1.66) for (1.69) is

I(û) = xT
f W−1x f . (1.73)

Proof. If the fractional system (1.28) is positive, reachable in q steps and the as-
sumption (1.71) are satisfied then for x f ∈Rn

+ we have ûi ∈Rm
+ for i = 0,1, . . . ,q−1.

We shall show that the input sequence (1.69) steers the state of the system from
x0 = 0 to x f ∈ Rn

+. Using (1.23) for k = q, x0 = 0 and (1.67), (1.69), we obtain

xq = Rqû0q = RqQRT
q W−1x f = x f ,

since RqQRT
q W−1 = In.

Both input sequences u0q and û0q steer the state of the system from x0 = 0 to
x f ∈ Rn

+ and we have x f = Rqû0q = Rqu0q, i.e.

Rq
[
û0q −u0q

]
= 0. (1.74)

Using (1.74) and (1.69), we shall show

[
û0q −u0q

]T
Q̂û0q = 0, (1.75)

where Q̂ = block diag[Q, . . . ,Q].
Transposing (1.74) and postmultiplying it by W−1x f we obtain

[
û0q −u0q

]T
RT

q W−1x f = 0. (1.76)

Using (1.69) and (1.76), we obtain (1.75), since

[
û0q −u0q

]T
Q̂û0q =

[
û0q −u0q

]T
Q̂QRT

q W−1x f =
[
û0q −u0q

]T
RT

q W−1x f = 0,

where Q̂Q = Iqm.
Using (1.75) it is easy to show that

uT
0qQu0q = ûT

0qQ̂û0q +
[
u0q − û0q

]T
Q̂
[
u0q − û0q

]
. (1.77)
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From(1.77) it follows that the inequality (1.72), is satisfied since

[
u0q − û0q

]T
Q̂
[
u0q − û0q

]≥ 0.

To find the minimal value of the performance index we substitute (1.69) into (1.66)
and using (1.67), we obtain

I(û) = ûT
0qQ̂û0q =

[
QRT

q W−1x f
]T

Q̂
[
QRT

q W−1x f
]

= xT
f W−1RqQRT

q W−1x f = xT
f W−1x f ,

since W−1RqQRT
q = In. ��

If the assumption of Theorem 1.18 are satisfied then the minimal energy control
problem can be solved by the use of the following procedure.

Procedure 1.1 ENUMERATE OD NOWEJ LINII

Step 1. Knowing the matrices A, B, Q and α , q find the matrices Rq and Q, using
(1.46) and (1.68).

Step 2. Knowing Rq and Q, and using (1.67) find the matrix W .
Step 3. Using (1.69), find the input sequence û0, û1, . . . , ûq−1.
Step 4. Using (1.73), find the value of I(û).

Example 1.9. Consider the fractional system (1.28) for 0 < α < 1 with the matrices:

A =
[−α 0

1 2

]
, B =

[
1
0

]
, n = 2. (1.78)

Find the optimal input sequence which steers the state of the system from x0 = 0 to
the final state x f = [1 1]T in q = 2 steps and minimizes the performance index (1.66)
for Q = [2].

The fractional system (1.28) with (1.78) is reachable in q = 2 steps. It is easy to
check that the assumption of Theorem 1.18 are satisfied. Using Procedure 1.1 we
obtain the following:

Step 1. In this case

R2 =
[

B Φ1B
]
=
[

1 0
0 1

]
,

and

Q = diag
[

Q−1 Q−1
]
=

1
2

[
1 0
0 1

]
.

Step 2. Using (1.67), we obtain

W = R2QRT
2 = Q =

1
2

[
1 0
0 1

]
.
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Step 3. Using (1.69), we obtain

û02 =
[

û1

û0

]
= QRT

2 W−1x f =
[

1
1

]
(1.79)

It is easy to check that the input sequence (1.79) steers the state of system in
q = 2 steps from x0 = 0 to x f = [1 1]T .

Step 4. In this case the minimal value of the performance index is

I(û) = xT
f W−1x f =

[
1 1

][2 0
0 2

][
1
1

]
= 4. (1.80)

Corollary 1.2. Note that in the case of positive fractional system by suitable choice
of state-feedback we may modify the reachability matrix Rq, and the minimal value
of the performance index.

1.11 Fractional Different Orders Discrete-Time Linear Systems

Consider the fractional different orders discrete-time linear system

Δ α x1(k + 1) = A11x1(k)+ A12x2(k)+ B1u(k), k ∈ Z+, (1.81a)

Δ β x2(k + 1) = A21x1(k)+ A22x2(k)+ B2u(k), (1.81b)

where x1(k) ∈ Rn1 , x2(k) ∈ Rn2 , u(k) ∈ Rm are state and input vectors, respectively
and Ai j ∈ R

ni×n j , Bi ∈ Rni×m, i, j = 1,2.
The fractional derivative of α order is defined by

Δ α x(k) =
k

∑
j=0

(−1) j
(

α
j

)
x(k− j) =

k

∑
j=0

cα( j)x(k− j), (1.82a)

cα( j) = (−1) j
(

j
α

)
= (−1) j α(α −1) · · ·(α − j + 1)

j!
, (1.82b)

cα(0) = 1, j = 1,2, . . . .

Using (1.82) can write the equation (1.81) in the form

x1(k + 1) = A1α x1(k)+ A12x2(k)−
k+1

∑
j=2

cα( j)x1(k− j + 1)+ B1u(k), (1.83a)

x2(k + 1) = A21x1(k)+ A2β x2(k)−
k+1

∑
j=2

cβ ( j)x2(k− j + 1)+ B2u(k). (1.83b)

where A1α = A11 + αIn1 , A2β = A22 + β In2.
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Applying to (1.83) the z-transform we obtain
[

In1z−A1α + ∑k+1
j=2 cα( j)In1z− j+1 −A12

−A21 In2z−A2β + ∑k+1
j=2 In2cβ ( j)z− j+1

]

×
[

X1(z)
X2(z)

]
=
[

zx10

zx20

]
+
[

B1

B2

]
U(z), (1.84)

where Xi(z) = Z [xi(k)] = ∑∞
k=0 xi(k)z−k , i = 1,2; U(z) = Z [u(k)] and x10 = x1(0),

x20 = x2(0).
From (1.84) we have[

X1(z)
X2(z)

]

=

[
In1z−A1α + ∑k+1

j=2 cα( j)In1z− j+1 −A12

−A21 In2z−A2β + ∑k+1
j=2 In2cβ ( j)z− j+1

]−1

×
{[

zx10

zx20

]
+
[

B1

B2

]
U(z)

}
. (1.85)

Let
[

In1z−A1α + ∑k+1
j=2 cα( j)In1 z− j+1 −A12

−A21 In2z−A2β + ∑k+1
j=2 In2cβ ( j)z− j+1

]−1

=
∞

∑
j=0

Φ jz
−( j+1), (1.86)

where the matrices Φk are defined by

Φi =

⎧⎪⎨
⎪⎩

In (n = n1 + n2) for i = 0

AΦi−1 −D1Φi−2 −·· ·−Di−1Φ0 for i = 1,2, . . . ,k

AΦi−1 −D1Φi−2 −·· ·−DkΦi−k−1 for i = k + 1,k + 2, . . .

. (1.87)

From definition of inverse matrix we have

[
Inz−A−D1z−1 −D2z−2 −·· ·−Dkz−k

][
Φ0z−1 + Φ1z−2 + Φ2z−3 + · · · ]= In,

(1.88)
where

A =
[

A1α A12

A21 A2β

]
, Dk =

[
cα(k + 1)In1 0

0 cβ (k + 1)In2

]
. (1.89)

Comparison of the coefficient at the same power of z−1 we obtain

Φ0 = In, Φ1 = AΦ0, Φ2 = AΦ1 −D1Φ0,

Φ3 = AΦ2 −D1Φ1 −D2Φ0, . . . . (1.90)

which can be written in the form (1.87).
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Substitution of (1.86) into (1.85) yields
[

X1(z)
X2(z)

]
=

∞

∑
j=0

Φ jz
− j
[

x10

x20

]
+

∞

∑
j=0

Φ jz
−( j+1)

[
B1

B2

]
U(z). (1.91)

Applying the inverse z-transform and the convolution theorem to (1.91) we obtain

[
x1(k)
x2(k)

]
= Φk

[
x10

x20

]
+

k−1

∑
i=0

Φk−i−1

[
B1

B2

]
ui. (1.92)

Therefore, the following theorem has been proved.

Theorem 1.19. The solution to the fractional equation (1.81) with initial conditions
x1(0) = x10, x2(0) = x20 is given by (1.92), where Φk is defined by (1.87).

1.12 Positive Fractional Different Orders Discrete-Time Linear
Systems

Consider the fractional different orders discrete-time linear systems described by
the equation (1.81) and

y(k) = C

[
x1(k)
x2(k)

]
+ Du(k), (1.93)

where x1(k) ∈R
n1 , x2(k) ∈ R

n2 , u(k) ∈R
m, y(k)∈ R

p are the state, input and output
vectors and C ∈ Rp×n, D ∈ Rp×m.

Definition 1.13. The fractional system (1.81), (1.93) is called positive if x1(k) ∈
R

n1
+ , x2(k) ∈ R

n2
+ , y(k) ∈ R

p
+ for any initial conditions x10 ∈ R

n1
+ , x20 ∈ R

n2
+ and all

inputs u(k) ∈ Rm
+ for k ∈ Z+.

Theorem 1.20. The fractional discrete-time linear system (1.81), (1.93) with 0 <
α < 1, 0 < β < 1 is positive if and only if

A =
[

A1α A12

A21 A2β

]
∈ R

n×n
+ ,

[
B1

B2

]
∈ R

n×m
+ , C ∈ R

p×n, D ∈ R
p×m. (1.94)

Proof. Necessity. Let e
n j
i be i-th column of the n j×n j identity matrix, j = 1,2. From

(1.83) for k = 0, u(0) = 0, x20 = 0 and x10 = en1
i we have x1(1) = A1αen1

i ∈ R
n1
+ and

x2(1) = A21en1
i ∈ R

n1
+ . This implies the nonnegativity of i-th (i = 1, . . . ,n) columns

of the matrices A1α and A21. Similarly for k = 0, u(0) = 0, x10 = 0 and x20 = en2
i we

have x1(1) = A12en2
i ∈ R

n2
+ and x2(1) = A2β en2

i ∈ R
n2
+ . To show that B1 ∈ R

n1×m
+ and

B2 ∈ R
n2×m
+ we assume in (1.83) for k = 0, x1(0) = 0, x2(0) = 0 and u(0) = em

i and
we obtain x1(0) = B1em

i ∈ R
n1
+ and x2(0) = B2em

i ∈ R
n2
+ . In a similar way we prove

C ∈ R
p×n
+ and D ∈ R

p×m
+ .
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Sufficiency. In Lemma 1.1 was shown that if 0 < α < 1 and 0 < β < 1 then
cα( j) < 0 and cβ ( j) < 0 for j = 2, . . . ,k + 1. From (1.89) if follows that Di ∈ Rn

+
for i = 1, . . . ,n and from(1.87) we have Φi ∈ R

n×n
+ for i = 0,1 . . . since A ∈ R

n×n
+ .

From (1.92) we have x1(k) ∈ R
n1
+ , x2(k) ∈ R

n2
+ , k ∈ Z+ since

[
B1

B2

]
∈ R

n×m
+ and

u(i) ∈ Rm
+, i ∈ Z+. Finaly from (1.93) we have y(k) ∈ R

p
+, k ∈ Z+ since C ∈ Rp×n,

D ∈ Rp×m, x1(k) ∈ R
n1
+ , x2(k) ∈ R

n2
+ and u(k) ∈ Rm

+, k ∈ Z+. ��
These considerations can be easy extended to fractional system consisting of n sub-
systems of different fractional order [161].



Chapter 2
Fractional Continuous-Time Linear Systems

2.1 Definition of Euler Gamma Function and Its Properties

There exist the following two definitions of the Euler gamma function.

Definition 2.1. A function given by the integral

Γ (x) =
∫ ∞

0
tx−1e−t dt, Re(x) > 0, (2.1)

is called the Euler gamma function.
The Euler gamma function can be also defined by

Γ (x) = lim
n→∞

n!nx

x(x + 1) · · ·(x + n)
, x ∈ C\{0,−1,−2, . . .} (2.2)

where C is the field of complex numbers.

We shall show that Γ (x) satisfies the equality

Γ (x + 1) = xΓ (x). (2.3)

Proof. Using (2.1), we obtain

Γ (x + 1) =
∫ ∞

0
txe−tdt =

∫ ∞

0
txde−t = txe−t

∣∣∣∣
∞

0
= x

∫ ∞

0
tx−1e−t dt = xΓ (x).

��
Example 2.1. From (2.3) we have for:

x = 1 : Γ (2) = 1 ·Γ (1) = 1, since Γ (1) =
∫ ∞

0
e−t dt = 1,

x = 2 : Γ (3) = 2 ·Γ (2) = 1 ·2 = 2!,

x = 3 : Γ (4) = 3 ·Γ (3) = 3 ·2 ·Γ (2) = 3!.

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 27–52.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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In general case for x ∈ N we have

Γ (n + 1) = nΓ (n) = n(n−1)Γ (n−1) = n(n−1)(n−2) · · ·(1) = n!

The gamma function is also well-define for x being any real (complex) numbers. For
example we have for

x = 1.5 : Γ (2.5) = 1.5 ·Γ (1.5) = 1.5 ·0.5Γ (0.5),
x = −0.5 : Γ (0.5) = −0.5 ·Γ (−0.5) = −0.5 · (−1.5)Γ (−1.5).

2.2 Mittag-Leffler Function

The Mittag-Leffler function is a generalization of the exponential function esit and
it plays important role in solution of the fractional differential equations.

Definition 2.2. A function of the complex variable z defined by

Eα(z) =
∞

∑
k=0

zk

Γ (αk + 1)
, (2.4)

is called the one parameter Mittag-Leffler function.

Example 2.2. For α = 1 we obtain

E1(z) =
∞

∑
k=0

zk

Γ (k + 1)
=

∞

∑
k=0

zk

k!
= ez,

i.e. the classical exponential function.

An extension of the one parameter Mittag-Leffler function is the following two
parameters function.

Definition 2.3. A function of the complex variable z defined by

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk + β )
, (2.5)

is called two parameters Mittag-Leffler function.

For β = 1 from (2.5) we obtain (2.4).

2.3 Definitions of Fractional Derivative-Integral

2.3.1 Riemann-Liouville Definition

It is well known that to reduce n-multiple integral to 1-tiple integral the following
formula
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0In
x =

∫ x

0

∫ u1

0
· · ·

∫ un−1

0
f (un)dun · · ·du2du1 =

1
(n−1)!

∫ x

0
(x−u)n−1 f (u)du, (2.6)

can be used, where f (u) is a given function. Using the equality (n− 1)! = Γ (n),
the formula (2.6) can be extended for any n ∈ R and we obtain Riemann-Liouville
fractional integral

0Iα
t =

1
Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ, (2.7)

where α ∈ R+ is the order of integral.

Definition 2.4. The function defined by

RL
0Dα

t f (t) =
dα

dtα f (t) =
dn

dtn

[
0I(n−α)

t f (t)
]

=
1

Γ (n−α)
dn

dtn

∫ t

0
(t − τ)n−α−1 f (τ)dτ, (2.8)

is called Riemann-Liouville fractional derivative-integral, where n− 1 ≤ α ≤ n,
n ∈ N.

Example 2.3. Consider the unit-step function

f (t) = �(t) =

{
1 for t ≥ 0

0 for t < 0 .

Using (2.8), we obtain

dα

dtα �(t) =
1

Γ (n−α)
dn

dtn

∫ t

0
(t − τ)n−α−1dτ

=
1

Γ (n−α)
dn

dtn

[ −1
n−α

(t − τ)n−α
]t

0
=

1
Γ (n−α)

1
n−α

dn

dtn tn−α

=
1

Γ (n−α)
1

n−α
(n−α)(n−α −1) · · ·(1−α)t−α =

t−α

Γ (1−α)
.

Therefore, the α order Riemann-Liouville derivative of unit-step function is a de-
creasing in time function.

Theorem 2.1. The Riemann-Liouville derivative-integral operator is linear satisfy-
ing the relation

RL
0Dα

t [λ f (t)+ μg(t)] = λ RL
0 Dα

t f (t)+ μRL
0 Dα

t g(t), λ ,μ ∈ R. (2.9)
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Proof.

RL
0Dα

t (λ f (t)+ μg(t)) =
1

Γ (n−α)
dn

dtn

∫ t

0
(t − τ)n−α−1[λ f (τ)+ μg(τ)]dτ

=
λ

Γ (n−α)
dn

dtn

∫ t

0
(t − τ)n−α−1 f (τ)dτ

+
μ

Γ (n−α)
dn

dtn

∫ t

0
(t − τ)n−α−1g(τ)dτ

= λ RL
0 Dα

t f (t)+ μRL
0 Dα

t g(t).

��
Theorem 2.2. The Laplace transform of the derivative-integral (2.8) has the form

L
[RL

0Dα
t f (t)

]
= sα F(s)−

n

∑
k=1

sk−1 f (α−k)(0+). (2.10)

Proof. Using the definition given in Appendix A.2 we obtain

L
[RL

0Dα
t f (t)

]
= L

[
dn

dtn

(
1

Γ (n−α)

∫ t

0
(t − τ)n−α−1 f (τ)dτ

)]

= L

[
dn

dtn

(
0In−α

t f (t)
)]

=
snF(s)
sn−α −

n

∑
k=1

sn−k dk−1

dtk−1

[
0In−α

t f (t)
]
.

��

2.3.2 Caputo Definition

Definition 2.5. The function defined by

C
0 Dα

t f (t) =
1

Γ (n−α)

∫ t

0

f (n)(τ)
(t − τ)α+1−n dτ, (2.11)

is called the Caputo fractional derivative-integral, where n−1 < α < n, n ∈ N.

Remark 2.1. From definition 2.5 it follows that the Caputo derivative of constant is
equal to zero.

Theorem 2.3. The Caputo derivative-integral operator is linear satisfying the
relation

C
0 Dα

t [λ f (t)+ μg(t)] = λC
0 Dα

t f (t)+ μC
0 Dα

t g(t). (2.12)

Proof. The proof is similar to the proof of Theorem 2.1. ��
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Theorem 2.4. The Laplace transform of the derivative-integral (2.11) has the form

L
[C

0 Dα
t f (t)

]
= sα F(s)−

n

∑
k=1

sα−k f (k−1)(0+). (2.13)

Proof. Using the definition given in Appendix A.2, we obtain

L
[C

0 Dα
t f (t)

]
= L

[
1

Γ (n−α)

∫ t

0
(t − τ)n−α−1 f (n)(τ)dτ

]

=
1

Γ (n−α)
L

[
tn−α−1]L [

f (n)(t)
]

=
1

Γ (n−α)
Γ (n−α)

sn−α

[
snF(s)−

n

∑
k=1

sn−k f (k−1)(0+)

]

= sα F(s)−
n

∑
k=1

sα−k f (k−1)(0+)

��

2.4 Solution of the Fractional State Equation of
Continuous-Time Linear System

Consider the continuous-time linear system described by the equation [100]:

0Dα
t x(t) =

dα x(t)
dtα = Ax(t)+ Bu(t), 0 < α ≤ 1, (2.14a)

y(t) = Cx(t)+ Du(t), (2.14b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are state, input and output vectors and A ∈
Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Theorem 2.5. The solution of the equation (2.14a) has the form

x(t) = Φ0(t)x0 +
∫ t

0
Φ(t − τ)Bu(τ)dτ, x(0) = x0, (2.15)

where

Φ0(t) = Eα(Atα) =
∞

∑
k=0

Aktkα

Γ (kα + 1)
, (2.16)

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
. (2.17)

Eα(Atα) is the Mittag-Leffler function and Γ (x) is the Euler gamma function.
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Proof. Applying the Laplace transform to (2.14a) and taking in to account

X(s) = L [x(t)] =
∫ ∞

0
x(t)e−stdt, (2.18a)

L [Dα x(t)] = sα X(s)− sα−1x0, (2.18b)

we obtain

X(s) = [Insα −A]−1 [sα−1x0 + BU(s)
]
, U(s) = L [u(t)]. (2.19)

It is easy to show that

[Insα −A]−1 =
∞

∑
k=0

Aks−(k+1)α , (2.20)

since

[Insα −A]

(
∞

∑
k=0

Aks−(k+1)α

)
= In. (2.21)

Substituting of (2.20) to (2.19), yields

X(s) =
∞

∑
k=0

Aks−(kα+1)x0 +
∞

∑
k=0

Aks−(k+1)α BU(s). (2.22)

Using the inverse Laplace transform and the convolution theorem (Appendix A.1)
to (2.22) we obtain

x(t) = L −1[X(s)] =
∞

∑
k=0

AkL −1
[
s−(kα+1)

]
x0 +

∞

∑
k=0

AkL −1
[
s−(k+1)αBU(s)

]

= Φ0(t)x0 +
∫ t

0
Φ(t − τ)Bu(τ)dτ, (2.23)

where

Φ0(t) =
∞

∑
k=0

AkL −1
[
s−(kα+1)

]
=

∞

∑
k=0

Aktkα

Γ (kα + 1)
,

Φ(t) = L −1{[Insα −A]−1}=
∞

∑
k=0

AkL −1
[
s−(k+1)α

]
=

∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
.

��
Remark 2.2. From (2.16) and (2.17) for α = 1 mamy

Φ0(t) = Φ(t) =
∞

∑
k=0

Atk

Γ (k + 1)
= eAt .
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Remark 2.3. From classical Cayley-Hamilton theorem it follows that if

det [Insα −A] = (sα )n + an−1(sα )n−1 + · · ·+ a1sα + a0, (2.24)

then

An + an−1(A)n−1 + · · ·+ a1Aα + a0In = 0. (2.25)

Example 2.4. Find the solution of the equation (2.14a) for 0 < α ≤ 1 and:

A =
[

0 1
0 0

]
, B =

[
0
1

]
, x0 =

[
1
1

]
, u(t) = �(t) (2.26)

Using (2.16) and (2.17), we obtain:

Φ0(t) =
∞

∑
k=0

Aktkα

Γ (kα + 1)
= I2 +

Atα

Γ (α + 1)
, (2.27a)

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
= I2

tα−1

Γ (α)
+ A

t2α−1

Γ (2α)
, (2.27b)

Substituting (2.27) and u(t) = 1 into (2.15), we obtain

x(t) = x0 +
Ax0tα

Γ (α + 1)
+
∫ ∞

0

(
B

Γ (α)
(t − τ)α−1 +

AB
Γ (2α)

(t − τ)2α−1
)

dτ

= x0 +
Ax0tα

Γ (α + 1)
+

Btα

Γ (α + 1)
+

ABt2α

Γ (2α + 1)
=

[
1 + tα

Γ (α+1) + t2α

Γ (2α+1)

1 + tα

Γ (α+1)

]
,

where Γ (α + 1) = αΓ (α).

Theorem 2.6. The solution of the equation (2.14a) for n− 1 ≤ α ≤ n and Caputo
definition has the form

x(t) =
n

∑
l=1

Φl(t)x(l−1)(0+)+
∫ t

0
Φ(t − τ)Bu(τ)dτ, (2.28)

where

Φl(t) =
∞

∑
k=0

Akt(kα+l)−1

Γ (kα + l)
, Φ(t) =

∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
.

Proof. Taking into account (A.1), (2.13) from (2.14a) we obtain:

X(s) = [Insα −A]−1

[
n

∑
l=1

sα−lx(l−1)(0+)+ BU(s)

]
, U(s) = L [u(t)]. (2.29)
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Substituting of (2.20) into (2.29), yields

X(s) =
∞

∑
k=0

Aks−(k+1)α

[
n

∑
l=1

sα−lx(l−1)(0+)+ BU(s)

]

=
∞

∑
k=0

n

∑
l=1

Aks−(kα+l)x(l−1)(0+)+
∞

∑
k=0

Aks−(k+1)α BU(s). (2.30)

Applying the inverse Laplace transform and the convolution theorem (Appendix
A.1) to (2.30), we obtain

x(t) =
∞

∑
k=0

n

∑
l=1

AkL −1
[
s−(kα+l)

]
x(l−1)(0+)+

∞

∑
k=0

AkL −1
[
s−(k+1)αBU(s)

]

=
n

∑
l=1

Φl(t)x(l−1)(0+)+
∫ t

0
Φ(t − τ)Bu(τ)dτ, (2.31)

where

Φl(t) =
∞

∑
k=0

AkL −1
[
s−(kα+l)

]
=

∞

∑
k=0

Akt(kα+l)−1

Γ (kα + l)
,

Φ(t) =
∞

∑
k=0

AkL −1
[
s−(k+1)α

]
=

∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
.

��
Theorem 2.7. The solution of the equation (2.14a) for n − 1 ≤ α ≤ n and the
Riemann-Liouville definition has form

x(t) =
n

∑
l=1

Φl(t)x(α−l)(0+)+
∫ t

0
Φ(t − τ)Bu(τ)dτ, (2.32)

where

Φl(t) =
∞

∑
k=0

Akt(k+1)α−l

Γ [(k + l)α − l + 1]
, Φ(t) =

∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
.

Proof. Taking into account (A.1) and (2.10), from (2.14a) we obtain:

X(s) = [Insα −A]−1

[
n

∑
l=1

sl−1x(α−l)(0+)+ BU(s)

]
, U(s) = L [u(t)]. (2.33)

Substituting of (2.20) to (2.33), yields

X(s) =
∞

∑
k=0

Aks−(k+1)α

[
n

∑
l=1

sl−1x(α−l)(0+)+ BU(s)

]

=
∞

∑
k=0

n

∑
l=1

Aks−(k+1)α+l−1x(α−l)(0+)+
∞

∑
k=0

Aks−(k+1)α BU(s). (2.34)
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Applying the inverse Laplace transform and the convolution theorem (Appendix
A.1) to (2.34), we obtain

x(t) =
∞

∑
k=0

n

∑
l=1

AkL −1
[
s−(k+1)α+l−1

]
x(α−l)(0+)

+
∞

∑
k=0

AkL −1
[
s−(k+1)αBU(s)

]

=
n

∑
l=1

Φl(t)x(α−l)(0+)+
∫ t

0
Φ(t − τ)Bu(τ)dτ, (2.35)

where

Φl(t) =
∞

∑
k=0

AkL −1
[
s−(k+1)α+l−1

]
=

∞

∑
k=0

Akt(k+1)α−l

Γ [(k + l)α − l + 1]
,

Φ(t) =
∞

∑
k=0

AkL −1
[
s−(k+1)α

]
=

∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
.

��
Remark 2.4. From comparison of (2.28) and (2.32) it follows that the component of
the solution corresponding to u(t) is the same.

2.5 Positivity of the Fractional Systems

Definition 2.6. The fractional system (2.14) is called (internally) positive if the state
vector x(t) ∈ Rn

+ and the output vector y(t) ∈ R
p
+ for t ≥ 0 for all initial conditions

x0 ∈ Rn
+ and all inputs u(t) ∈ Rm

+, t ≥ 0.

Definition 2.7. A real square matrix A = [ai j] is called Metzler matrix if its off di-
agonal entries are nonnegative, i.e. ai j ≥ 0 for i �= j.

Lemma 2.1. Let A ∈ R
n×n and 0 < α ≤ 1. Then

Φ0(t) =
∞

∑
k=0

Aktkα

Γ (kα + 1)
∈ R

n×n
+ for t ≥ 0, (2.36)

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
∈ R

n×n
+ for t ≥ 0. (2.37)

if and only if A is a Metzler matrix.

Proof. Necessity. From:

Φ0(t) = In +
Atα

Γ (α + 1)
+ · · · ,

Φ(t) = In
tα−1

Γ (α)
+ A

t2α−1

Γ (2α)
+ · · ·
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it follows that Φ0(t) ∈ R
n×n
+ i Φ(t) ∈ R

n×n
+ for small value t > 0 only if A is a

Metzler matrix.
Sufficiency. It is well-known [77] that

eAt ∈ R
n×n
+ for t ≥ 0 (2.38)

if and only if A is a Metzler matrix.
Using (2.36), we can write

Φ0(t)− eAtα
=

∞

∑
k=0

(
(Atα)k

Γ (kα + 1)
− (Atα)k

k!

)
=

∞

∑
k=0

k!−Γ (kα + 1)
Γ (kα + 1)

· (Atα)k

k!

for t ≥ 0, since k! ≥ Γ (kα + 1) for 0 < α ≤ 1. From (2.38) and (2.5) we have
Φ0(t) ≥ eAtα ≥ 0 for t ≥ 0. The proof for (2.37) is similar. ��
Theorem 2.8. The fractional continuous-time system(2.14) is (internally) positive if
and only if:

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ . (2.39)

Proof. Sufficiency. By Theorem 2.5 the solution (2.14a) has the form (2.15) and
x(t) ∈ R

n
+, t ≥ 0, if the condition (2.39) is satisfied since Φ0 ∈ R

n×n
+ , x0 ∈ R

n
+ and

u(t) ∈ Rm
+ for t ≥ 0.

Necessity. Let u(t) = 0, t ≥ 0 and x0 = ei (i-th column of the identity matrix
In). The trajectory does not leave the orthant R

n
+ only if the derivative of order

α , xα(0) = Aei ≥ 0, what implies ai j ≥ 0 for i �= j. The matrix A is a Metzler
matrix. From the same reason for x0 = 0 we have xα(0) = Bu(0) ≥ 0, what implies
B ∈ R

n×m
+ , since u(0) ∈ Rm

+ can be arbitrary. From (2.14b) for u(t) = 0, t ≥ 0 we
have y(0) = Cx0 ≥ 0 and C ∈ R

p×n
+ , since x0 ∈ Rn

+ can be arbitrary. In a similar way
assuming x0 = 0, we obtain y(0) = Du(0) ≥ 0 and D ∈ R

p×m
+ , since u(0) ∈ Rm

+ is
arbitrary. ��

2.6 External Positivity of the Fractional Systems

Definition 2.8. The fractional system (2.14) is called externally positive if for all
u(t) ∈ Rm

+, t ≥ 0 and zero initial conditions x0 = 0 the output vector y(t) ∈ R
p
+,

t ≥ 0.

Definition 2.9. Output of the fractional SISO system with zero initial conditions for
Dirac impulse u(t) = δ (t) is called the impulse response of the system. In a similar
way we define the matrix of impulse response of the MIMO fractional system (2.14).

Lemma 2.2. Matrix of the impulse responses g(t) of the fractional system (2.14)is
given by

g(t) = CΦ(t)B + Dδ (t), t ≥ 0. (2.40)

Proof. Substituting (2.15) into (2.14b) and taking into account x0 = 0, u(t) = δ (t),
y(t) = g(t) we obtain
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g(t) =
∫ t

0
CΦ(t − τ)Bδ (τ)dτ + Dδ (t) = CΦ(t)B + Dδ (t). (2.41)

��
Theorem 2.9. The fractional system (2.14) is externally positive if and only if

g(t) ∈ R
p×m
+ for t ≥ 0. (2.42)

Proof. Sufficiency. The output y(t) of the system (2.14) with zero initial conditions
for the input u(t) is given by

y(t) =
∫ t

0
g(t − τ)u(τ)dτ. (2.43)

If the condition (2.42) is satisfied then from (2.43) we have y(t) ∈ R
p
+, t ≥ 0.

Necessity. The necessity follows immediately from the fact that the matrix of
impulse responses in a particular case of the output of the system for u(t) = δ (t)
and δ (t) is nonnegative for t ≥ 0. ��
Corollary 2.1. The matrix of impulse responses (2.40) of internally positive system
(2.14)is nonnegative for t ≥ 0.

Between the internal and external positivity we have the following relationship.

Corollary 2.2. Every fractional continuous-time (internally) positive system (2.14)
is always externally positive.

2.7 Reachability of Fractional Positive Continuous-Time
Linear System

Definition 2.10. A state x f ∈ Rn
+ of the fractional system (2.14) is called reachable

in time t f if there exists an input u(t) ∈ Rm
+ for t ∈ [0, t f ] which steers the state of

system from zero initial condition x0 = 0 to the finial state x f = x(t f ). If every state
x f ∈ R

n
+ is reachable in time t f , then the system is called reachable in time t f . The

system (2.14) is called reachable if for every x f ∈ Rn
+ there exist t f and an input

u(t) ∈ Rm
+ for t ∈ [0,t f ], which steers the state of system from x0 = 0 to x f .

Theorem 2.10. The fractional system(2.14) is reachable in time t f , if the matrix

R(t f ) =
∫ t f

0
Φ(t)BBT ΦT (t)dt, (2.44)

is monomial. Moreover the input which steers the state from x0 = 0 to x f is given by

u(t) = BT ΦT (t f − t)R−1(t f )x f , t ∈ [0, t f ], (2.45)

where T denotes transpose.



38 2 Fractional Continuous-Time Linear Systems

Proof. We shall show that the input (2.45) steers the state of the system (2.14) from
x0 = 0 to x f .

Substituting of (2.45) into (2.15) we obtain

x(t f ) =
∫ t f

0
Φ(t f − τ)BBT ΦT (t f − τ)R−1(t f )x f dτ

=
∫ t f

0
Φ(t f − τ)BBT ΦT (t f − τ)dτR−1(t f )x f (2.46)

= R(t f )R−1(t f )x f = x f .

��
Theorem 2.11. If the matrix A = diag

[
a1 a2 . . . an

]∈R
n×n
+ and B ∈R

n×m
+ for m =

n are monomial matrices then the system (2.14) is reachable.

Proof. From (2.17) it follows that if A is diagonal then the matrix Φ(t) and Φ(t)B
are also monomial for monomial matrix B From (2.44)written in the form

R(t f ) =
∫ t f

0
Φ(τ)B[Φ(τ)B]T dτ, (2.47)

it follows that the matrix (2.47) is monomial. By Theorem 2.10 the fractional system
is reachable. ��
Example 2.5. We shall show that the fractional system (2.14) with the matrices:

A =
[

1 0
0 0

]
, B =

[
0 1
1 0

]
, (2.48)

is reachable. Taking into account that

Ak =
[

1 0
0 0

]k

=
[

1 0
0 0

]
, for k = 1,2, . . . ,

and using (2.17) we obtain

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
=
[

Φ1(t) 0
0 Φ2(t)

]
, (2.49)

where

Φ1(t) =
∞

∑
k=0

t(k+1)α−1

Γ [(k + 1)α]
, Φ2(t) =

tα−1

Γ (α)
,

and

Φ(t)B =
[

0 Φ1(t)
Φ2(t) 0

]
.
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In this case from (2.47) we have

R(t f ) =
∫ t f

0
Φ(τ)B[Φ(τ)B]T dτ =

∫ t f

0

[
Φ2

1 (τ) 0
0 Φ2

2 (τ)

]
dt. (2.50)

The matrix (2.50) is monomial and by Theorem 2.9 the fractional system is
reachable.

Remark 2.5. It is well-knew that the standard system

ẋ = Ax + Bu (2.51)

with the matrices:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 a0

1 0 . . . 0 a1

0 1 . . . 0 a2
...

...
. . .

...
...

0 0 . . . 1 an−1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , (2.52)

is reachable for all values of the coefficients ai, i = 0,1, . . . ,n−1, since the reacha-
bility matrix [

B AB . . . An−1B
]
= In. (2.53)

The system (2.51) is also reachable as a positive system if ai ≥ 0, i = 0,1, . . . ,n−2.
The fractional system (2.14) with (2.52) is reachable even for ai = 0, i = 1, . . . ,n−1
if there exist u(t) ≥ 0, t ∈ [0,t f ] which satisfied condition

x f =
∫ t f

0

⎡
⎢⎢⎢⎢⎢⎢⎣

(t f −τ)α−1

Γ (α)
(t f −τ)2α−1

Γ (2α)
...

(t f −τ)nα−1

Γ (nα)

⎤
⎥⎥⎥⎥⎥⎥⎦

u(τ)dτ. (2.54)

This condition (2.54) follows from (2.15) for x0 = 0, (2.53) and the fact that for
ai = 0, i = 0,1, . . . ,n−1, we have Ak = 0 for k = n,n + 1, . . . and

Φ(t)B =
∞

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
B =

n−1

∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α]
B =

⎡
⎢⎢⎢⎢⎢⎣

tα−1

Γ (α)
t2α−1

Γ (2α)
...

tnα−1

Γ (nα)

⎤
⎥⎥⎥⎥⎥⎦

.

This example shows that the reachability conditions for the fractional system (2.14)
are much stronger than for positive system (2.51) [100].
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2.8 Positive Continuous-Time Linear Systems with Delays

Consider the continuous-time linear system with q delays described by the state
equations

ẋ(t) = A0x(t)+
q

∑
k=1

Akx(t −dk)+ Bu(t), (2.55a)

y(t) = Cx(t)+ Du(t), (2.55b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input and output vectors and
Ak ∈ R

n×n
+ , k = 0,1, . . . ,q; B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ , and dk (dk ≥ 0), k =

1,2, . . . ,q are delays.
Initial conditions for (2.55a) have the form

x(t) = x0(t) for t ∈ [−d,0], d = max(dk), (2.56)

where x0(t) ∈ Rn is given.

Definition 2.11. The system (2.55) is called (internally) positive if x(t)∈Rn
+, y(t)∈

R
p
+ for any x0(t) ∈ Rn

+ and all inputs u(t) ∈ Rm
+, t ≥ 0.

Theorem 2.12. The system (2.55) is (internally) positive if and only if

A0 ∈ Mn, Ak ∈ R
n×n
+ , k = 1, . . . ,q; (2.57a)

B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ . (2.57b)

Proof. Necessity. The equation (2.55a) for x(t − dk) = 0, t ∈ [d,0] and u(t) = 0,
t ≥ 0 takes the form

ẋ(t) = A0x(t), t ∈ [0,d]. (2.58)

It is well-known [52, 77] that x(t) ∈ R
n
+ of (2.58) only if A0 ∈ Mn. Assuming in

(2.55a) u(t) = 0, t ≥ 0, x0(−dk) = ei, i = 1, . . . ,n (i-th column of the identity matrix
In), x(−d j) = 0, j = 0,1, . . . ,k − 1,k + 1, . . . ,n for t = 0 we obtain ẋ(0) = Akei =
Aki ∈Rn

+, where Aki is i-th column of Ak ∈R
n×n
+ , k = 1, . . . ,q. From (2.55a) for t = 0

and x0(t) = 0, t ∈ [−d,0] we have ẋ(0) = Bu(t) and B ∈ R
n×m
+ , since by definition

u(0) ∈ Rm
+ is arbitrary. The necessity of C ∈ R

p×n
+ , D ∈ R

p×m
+ can be shown in a

similar way as for positive systems without delays [52, 77].
Sufficiency. The solution of the equation (2.55a) for t ∈ [0,d] has the form

x(t) = eA0t +
∫ t

0
eA0(t−τ)

(
q

∑
k=1

Akx0(τ −dk)+ Bu(τ)

)
dτ . (2.59)
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Taking in to account that eA0t ∈ R
n×n
+ , t ≥ 0, for A0 ∈ Mn, and the condition (2.57),

from (2.59) we obtain x(t) ∈ Rn
+, t ∈ [0,d], since x0(t) ∈ Rn

+, t ∈ [−d,0] and u(t) ∈
Rm

+, t ≥ 0. From (2.55b) we have y(t)∈R
p
+, t ∈ [0,d], since x(t)∈Rn

+ and u(t)∈Rm
+.

Using the step method we can extend the considerations for the intervals [d,2d],
[2d,3d], . . . . ��

Definition 2.12. Let to the asymptotically stable positive system (2.55) a constant
input u(t) = u ∈ Rm

+ be applied. The vector xe satisfying the equation

0 =
q

∑
k=0

Akxe + Bu (2.60)

is called the equilibrium point (state) of the system (2.55) for constant input u.

If the positive system (2.55) is asymptotically stable then the matrix

A =
q

∑
k=0

Ak ∈ Mn (2.61)

is nonsingular and from (2.60) we have

xe = −A−1Bu. (2.62)

Remark 2.6. For positive asymptotically stable system (2.55)

−A−1 ∈ R
n×n
+ . (2.63)

This follows immediately from (2.62), since x0 ∈ R
n
+ and Bu ∈ R

m
+ is arbitrary

[52, 77].

Theorem 2.13. The equilibrium point xe for positive asymptotically stable system
(2.55) is strictly positive, i.e. xe > 0, if Bu > 0.

Proof. If A∈ Mn and Bu > 0 then from (2.60) we have xe ∈Rn
+. The hypothesis will

be proved by contradiction. Assume that xe = 0 then from (2.60) we have Bu = 0.
This contradicts that Bu > 0. This completes the proof. ��

These considerations can be extended for positive fractional continuous-time linear
systems with delays.
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2.9 Positive Linear Systems Consisting of n Subsystems with
Different Fractional Orders

2.9.1 Linear Differential Equations with Different Fractional
Orders

Consider a fractional linear system described by the equation

⎡
⎢⎣

dα1 x1
dtα1

...
dαn xn
dtαn

⎤
⎥⎦=

⎡
⎢⎣

A11 . . . A1n
...

. . .
...

An1 . . . Ann

⎤
⎥⎦
⎡
⎢⎣

x1
...

xn

⎤
⎥⎦+

⎡
⎢⎣

B1
...

Bn

⎤
⎥⎦u,

pk −1 < αk < pk

pk ∈ N = {1,2, . . .},
k = 1, . . . ,n,

(2.64)

where xk ∈ Rnk , k = 1, . . . ,n are the state vectors, Ak j ∈ Rnk×nj , Bk ∈ Rnk×m, k, j =
1, . . . ,n and u ∈ Rm is the input vector.

Initial conditions for (2.64) have the form

x( j)
k (0) = x( j)

k0 ∈ R
nk , k = 1, . . . ,n; j = 0,1, . . . , pk −1. (2.65)

Theorem 2.14. The solution of the equation (2.64) for pk−1 < αk < pk, k = 1, . . . ,n
with initial conditions (2.65) has the form

x(t) =
∫ t

0
[Φ1(t − τ)B10 + · · ·+ Φn(t − τ)Bn0]u(τ)dτ

+
∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

⎡
⎢⎢⎣

∑p1
j1=1

tk1α1+···+knαn+ j1−1

Γ (k1α1+···+knαn+ j1)x( j1−1)
10

...

∑pn
jn=1

tk1α1+···+knαn+ jn−1

Γ (k1α1+···+knαn+ jn)x( jn−1)
n0

⎤
⎥⎥⎦ , (2.66)

where

x(t) =

⎡
⎢⎣

x1(t)
...

xn(t)

⎤
⎥⎦ ∈ R

N , N = n1 + · · ·+ nn, x0 =

⎡
⎢⎣

x10
...

xn0

⎤
⎥⎦ , (2.67a)

B10 =

⎡
⎢⎢⎢⎣

B1

0
...
0

⎤
⎥⎥⎥⎦ , Bn0 =

⎡
⎢⎢⎢⎣

0
...
0

Bn

⎤
⎥⎥⎥⎦ , (2.67b)
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Φ1(t) =
∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

t(k1+1)α1+k2α2+···+knαn−1

Γ [(k1 + 1)α1 + k2α2 + · · ·+ knαn]
,

... (2.67c)

Φn(t) =
∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

tk1α1+···+kn−1αn−1+(kn+1)αn−1

Γ [k1α1 + · · ·+ kn−1αn−1 +(kn + 1)αn]
,

and

Tk1...kn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IN for k1 = · · · = kn = 0⎡
⎢⎢⎢⎢⎣

A11 · · · A1n

0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎥⎦ for

k1 = 1,

k2 = · · · = kn = 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0

Ai1 · · · Ain

0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for

k1 = · · · = ki−1 = 0,

k1 = 1,

ki+1 = · · · = kn = 0,

⎡
⎢⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0

An1 · · · Ann

⎤
⎥⎥⎥⎥⎦ for

k1 = · · · = kn−1 = 0,

ki = 1

T10...0T01...1 + · · ·+ T0...01T1...10 for k1 = · · · = kn = 1
...

T10...0Tk1−1,k2,...,kn

+ · · ·+ T0...01Tk1,kn−1,kn−1
for k1 + · · ·+ kn > 0

0 for at last one ki < 0, i = 1, . . . ,n

(2.67d)

Proof. Using the Laplace transforms

Xk(s) = L [xk(t)], k = 1, . . . ,n; U(s) = L [u(t)], (2.68)
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and (A.10) we may write the equations (2.64) for pk − 1 < α < pk; pk ∈ N,
k = 1 . . . ,n in the form

⎡
⎢⎣

In1sα1 −A11 −A12 · · · −A1n−1 A1n
...

...
. . .

...
...

−An1 −An2 · · · −Ann−1 Innsαn −Ann

⎤
⎥⎦
⎡
⎢⎣

X1(s)
...

Xn(s)

⎤
⎥⎦

=

⎡
⎢⎣

B1
...

Bn

⎤
⎥⎦U(s)+

⎡
⎢⎢⎣

∑p1
j1=1 sα1− j1x( j1−1)

10
...

∑pn
jn=1 sαn− jnx( jn−1)

n0

⎤
⎥⎥⎦ . (2.69)

From (2.69) we have

⎡
⎢⎣

X1(s)
...

Xn(s)

⎤
⎥⎦ =

⎡
⎢⎣

In1sα1 −A11 −A12 · · · −A1n−1 A1n
...

...
. . .

...
...

−An1 −An2 · · · −Ann−1 Innsαn −Ann

⎤
⎥⎦
−1

×

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎣

B1
...

Bn

⎤
⎥⎦U(s)+

⎡
⎢⎢⎣

∑p1
j1=1 sα1− j1 x( j1−1)

10
...

∑pn
jn=1 sαn− jn x( jn−1)

n0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

. (2.70)

Comparing the coefficients at the same powers of s−αk it is easy to verify that

⎡
⎢⎣

In1 −A11s−α1 · · · −A1ns−α1

...
. . .

...
−An1s−αn · · · Inn −Anns−αn

⎤
⎥⎦
[

∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn s−(k1α1+···+knαn)

]
= IN ,

(2.71)

where matrices Tk1...kn are defined by (2.67d).
Using (2.71) we obtain

⎡
⎢⎣

In1 sα1 −A11 −A12 · · · −A1n−1 A1n
...

...
. . .

...
...

−An1 −An2 · · · −Ann−1 Innsαn −Ann

⎤
⎥⎦
−1

=

⎧⎪⎨
⎪⎩

⎡
⎢⎣

In1sα1 · · · 0
...

. . .
...

0 · · · Innsαn

⎤
⎥⎦
⎡
⎢⎣

In1 −A11s−α1 · · · −A1ns−α1

...
. . .

...
−An1s−αn · · · Inn −Anns−αn

⎤
⎥⎦
⎫⎪⎬
⎪⎭

−1

=
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⎡
⎢⎣

In1 −A11s−α1 · · · −A1ns−α1

...
. . .

...
−An1s−αn · · · Inn −Anns−αn

⎤
⎥⎦
−1⎧⎪⎨
⎪⎩

⎡
⎢⎣

In1s−α1 · · · 0
...

. . .
...

0 · · · Inns−αn

⎤
⎥⎦
⎫⎪⎬
⎪⎭=

∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kns−(k1α1+···+knαn)

⎧⎪⎨
⎪⎩

⎡
⎢⎣

In1s−α1 · · · 0
...

. . .
...

0 · · · Inns−αn

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (2.72)

substituting of (2.72) into (2.70) yields

⎡
⎢⎣

X1(s)
...

Xn(s)

⎤
⎥⎦ =

∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn s−(k1α1+···+knαn)

⎡
⎢⎣

In1s−α1 · · · 0
...

. . .
...

0 · · · Inns−αn

⎤
⎥⎦

×

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎣

B1
...

Bn

⎤
⎥⎦U(s)+

⎡
⎢⎢⎣

∑p1
j1=1 sα1− j1x( j1−1)

10
...

∑pn
jn=1 sαn− jnx( jn−1)

n0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

=
∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

{[
B10s−[(k1+1)α1+k2α2+···+knαn]

+ · · ·+ Bn0s−[k1α1+···+kn−1αn−1+(kn+1)αn]
]

U(s)

+ s−(k1α1+···+knαn)

⎡
⎢⎢⎣

∑p1
j1=1 s− j1x( j1−1)

10
...

∑pn
jn=1 s− jnx( jn−1)

n0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

. (2.73)

Applying the inverse Laplace transform and the convolution theorem to (2.73) we
obtain

L −1

⎡
⎢⎣

X1(s)
...

Xn(s)

⎤
⎥⎦ = L −1

∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

{[
B10s−[(k1+1)α1+k2α2+···+knαn]

+ · · ·+ Bn0s−[k1α1+···+kn−1αn−1+(kn+1)αn]
]

U(s)

+ s−(k1α1+···+knαn)

⎡
⎢⎢⎣

∑p1
j1=1 s− j1 x( j1−1)

10
...

∑pn
jn=1 s− jn x( jn−1)

n0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,
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⎡
⎢⎣

x1(t)
...

xn(t)

⎤
⎥⎦ =

∫ t

0
[Φ1(t − τ)B10 + · · ·+ Φn(t − τ)Bn0]u(τ)dτ

+
∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

⎡
⎢⎢⎣

∑p1
j1=1

tk1α1+···+knαn+ j1−1

Γ (k1α1+···+knαn+ j1)x( j1−1)
10

...

∑pn
jn=1

tk1α1+···+knαn+ jn−1

Γ (k1α1+···+knαn+ jn)x( jn−1)
n0

⎤
⎥⎥⎦ , (2.74)

since L −1
[

1
sα+1

]
= tα

Γ (α+1) . ��

In a particular case if 0 < αk < 1, k = 1, . . . ,n; (p1 = · · · = pn = 1), then

∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

⎡
⎢⎢⎣

∑p1
j1=1

tk1α1+···+knαn+ j1−1

Γ (k1α1+···+knαn+ j1)x( j1−1)
10

...

∑pn
jn=1

tk1α1+···+knαn+ jn−1

Γ (k1α1+···+knαn+ jn)x( jn−1)
n0

⎤
⎥⎥⎦= Φ0(t)x0, (2.75)

where

Φ0(t) =
∞

∑
k1=0

· · ·
∞

∑
kn=0

Tk1...kn

tk1α1+···+knαn

Γ (k1α1 + · · ·+ knαn + 1)
. (2.76)

2.9.2 Positive Fractional Systems

Definition 2.13. The fractional system (2.64) is called positive if xk(t) ∈ R
nk
+ ,

k = 1, . . . ,n, t ≥ 0 for any initial conditions xk0 ∈ R
nk
+ , k = 1, . . . ,n, and all input

vectors u ∈ Rm
+, t ≥ 0.

Let Mn be the set of n× n Metzler matrices, i.e. real matrices with nonnegative
off-diagonal entries.

Theorem 2.15. The fractional system (2.64) for pk − 1 < α < pk, pk ∈ N, k =
1, . . . ,n is positive if and only if

A =

⎡
⎢⎣

A11 . . . A1n
...

. . .
...

An1 . . . Ann

⎤
⎥⎦ ∈ MN , (2.77a)

⎡
⎢⎣

B1
...

Bn

⎤
⎥⎦ ∈ R

N×m
+ . (2.77b)
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Proof. To simplify the notation the proof will be given for n = 2. First we shall
show that

Φk(t) ∈ R
n×n
+ , (n = n1 + n2) for k = 0,1,2 and t ≥ 0, (2.78)

only if (2.77a) holds. From the expansion (2.67c) we have

Φ0(t) =
[

In1 0
0 In2

]
+
[

A11 A12

0 0

]
tα1

Γ (α1 + 1)

+
[

0 0
A21 A22

]
tα2

Γ (α2 + 1)
+ · · · , (2.79a)

Φ1(t) =
[

In1 0
0 In2

]
tα1−1

Γ (α1)
+
[

A11 A12

0 0

]
t2α1−1

Γ (2α1)

+
[

0 0
A21 A22

]
tα1+α2−1

Γ (α1 + α2)
+ · · · , (2.79b)

Φ2(t) =
[

In1 0
0 In2

]
tα2−1

Γ (α2)
+
[

A11 A12

0 0

]
tα1+α2−1

Γ (α1 + α2)

+
[

0 0
A21 A22

]
t2α2−1

Γ (2α2)
+ · · · . (2.79c)

(2.79d)

From (2.79) it follows that Φk(t) ∈ R
n×n
+ , k = 0,1,2 for small value of t > 0 only if

the condition (2.77a) is satisfied.
In a similar way as in [100, 135] it can be shown that if (2.77) holds then

Φ0(t) ∈ R
n×n
+ , t ≥ 0, (2.80)

and
Φ1(t)B10 + Φ2(t)B01 ∈ R

n×n
+ , t ≥ 0. (2.81)

In this case from (2.66) we have x(t) ∈ R
n
+, t ≥ 0 since by definition x0 ∈ R

n
+ and

u(t) ∈ Rm
+, t ≥ 0. The remaining part of the proof is similar as in [100, 135]. ��

2.9.3 Fractional Linear Electrical Circuits

Consider linear electrical circuits composed of resistors, supercondensators (ultra-
capacitors), coils and voltage (current) sources. As the state variables (the compo-
nents of the state vector x) the voltage across the supercondensators and the currents
in the coils are usually chosen. It is well-known [51, 196] that the current i(t) in
supercondensator with its voltage uC(t) is related by formula

iC(t) = C
dα uC(t)

dtα for 0 < α < 1, (2.82)

where C is the capacity of the supercondensator.
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Similarly, the voltage uL(t) on the coil with its current iL(t) is related by the
formula

uL(t) = L
dβ iL(t)

dtβ for 0 < β < 1, (2.83)

where L is the inductance of the coil.
Using the relations (2.82), (2.83) and Kirchhoff’s laws we may write for the

fractional linear circuits the following state equation
[

dα xC
dtα

dβ xL
dtβ

]
=
[

A11 A12

A21 A22

][
xC

xL

]
+
[

B1

B2

]
e, (2.84)

where the components of xC ∈ Rn1 are voltages across the supercondensators, the
components of xL ∈ Rn2 are currents in coils and the components of e ∈ Rm are the
voltages of the circuit.

Example 2.6. Consider the linear electrical circuit shown on Fig. 2.1 with known
resistances R1, R2, R3, capacitances C1, C2, inductances L1, L2 and sources voltages
e1, e2.

Fig. 2.1 Electrical circuit.
Illustration to Example 2.6.

R1 R2R3

L1 L2
C1 C2

i1

u1 u2

i2

i1 − i2

e1 e2

Using relations (2.82), (2.83) and Kirchhoff’s laws we may write for the circuit
the following equations:

i1 = C1
dα1u1

dtα1
, i2 = C2

dα2u2

dtα2
, (2.85a)

e1 = (R1 + R2)i1 + L1
dβ1 i1
dtβ1

+ u1 −R3i2, (2.85b)

e2 = (R2 + R3)i2 + L2
dβ2 i2
dtβ2

+ u2 −R3i1. (2.85c)
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The equations (2.85) can be written in the form

⎡
⎢⎢⎢⎢⎣

dα1 u1
dtα1

dα2 u2
dtα2
dβ1 i1
dtβ1
dβ2 i2
dtβ2

⎤
⎥⎥⎥⎥⎦= A

⎡
⎢⎢⎣

u1

u2

i1
i2

⎤
⎥⎥⎦+ B

[
e1

e2

]
, (2.86)

where

A =
[

A11 A12

A21 A22

]
=

⎡
⎢⎢⎢⎣

0 0 1
C1

0
0 0 0 1

C2

− 1
L1

0 −R1+R3
L1

R3
L1

0 − 1
L2

R3
L2

−R2+R3
L2

⎤
⎥⎥⎥⎦ , (2.87a)

B =
[

B1

B2

]
=

⎡
⎢⎢⎣

0 0
0 0
1

L1
0

0 1
L2

⎤
⎥⎥⎦ . (2.87b)

From (2.87) it follows that the fractional electrical circuit is not positive since the
matrix A has some negative off-diagonal entries.

If the fractional linear circuit is not positive but the matrix B has nonnegative
entries (see for example the circuit on Fig. 2.1) then using the state-feedback

e = K

[
xC

xL

]
. (2.88)

we may usually choose the gain matrix K ∈ Rm×n, (n = n1 +n2) so that the closed-
loop system matrix (obtained by substituting of (2.88) into (2.84))

Ac = A + BK, (2.89)

is a Metzler matrix.

Theorem 2.16. Let A be not a Metzler matrix but B ∈ R
n×m
+ . Then there exists a

gain matrix K such that the closed-loop system matrix Ac ∈ Mn if and only if

rank [B,Ac −A] = rankB. (2.90)

Proof. By Kronecker-Cappely theorem the equation

BK = Ac −A, (2.91)

have a solution K for any given B and Ac −A if and only if the condition (2.90) is
satisfied. ��
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Example 2.7. (Continuation of Example 2.6). Let

Ac =

⎡
⎢⎢⎢⎣

0 0 1
C1

0
0 0 0 1

C2
a1
L1

0 −R1+R3
L1

a3
L1

0 a2
L2

a4
L2

−R2+R3
L2

⎤
⎥⎥⎥⎦ for ak ≥ 0, k = 1,2,3,4. (2.92)

In this case the condition (2.90) is satisfied since

rank [B,Ac −A] =

⎡
⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
1

L1
0 a1+1

L1
0 0 a3−R3

L1

0 1
L2

0 a2+1
L2

a4−R3
L2

0

⎤
⎥⎥⎦= rank

⎡
⎢⎢⎣

0 0
0 0
1

L1
0

0 1
L2

⎤
⎥⎥⎦= 2. (2.93)

The equation (2.91) has the form

⎡
⎢⎢⎣

0 0
0 0
1

L1
0

0 1
L2

⎤
⎥⎥⎦
[

k11 k12 k13 k14

k21 k22 k23 k24

]
=

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

a1+1
L1

0 0 a3−R3
L1

0 a2+1
L2

a4−R3
L2

0

⎤
⎥⎥⎦ , (2.94)

and its solution is

K =
[

k11 k12 k13 k14

k21 k22 k23 k24

]
=
[

a1 + 1 0 0 a3 −R3

0 a2 + 1 a4 −R3 0

]
. (2.95)

The matrix (2.95) has nonnegative entries if ak ≥ 0 for k = 1,2,3,4.

On the following two examples of fractional linear circuits we shall shown that it
is not always possible to choose the gain matrix K so that the two conditions are
satisfied:

a) the closed-loop system matrix Ac ∈ Mn,
b) the closed-loop system is asymptotically stable.

Example 2.8. Consider the fractional linear circuit shown on Fig. 2.2 with given
resistances R, capacitance C, inductance L and source of voltage e.

Using (2.82), (2.83) and the second Kirchhoff’s law we obtain for the circuit the
state equation

[
dα uC
dtα
dβ i
dtβ

]
= A

[
uC

i

]
+ Be, 0 < α < 1; 0 < β < 1; (2.96)

where

A =
[

0 1
C

− 1
L −R

L

]
, B =

[
0
1
L

]
. (2.97)
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Fig. 2.2 Electrical circuit.
Illustration to Example 2.8.

R

LC

i

uc

e

From (2.97) it follows that A is not a Metzler matrix but B ∈ R2
+. It is easy to see

that the condition (2.90) is satisfied for

Ac =
[

0 1
C

a
L

b−R
L

]
, (2.98)

and
K =

[
k1 k2

]
=
[

a + 1 b
]
. (2.99)

Note that the characteristic polynomial of the matrix (2.98)

det

[
In1sα −A11 −A12

−A21 In2sβ −A22

]
=
∣∣∣∣ sα − 1

C
− a

L sβ + R−b
L

∣∣∣∣= sα+β +
R−b

L
sα − a

LC
,

(2.100)

has one nonnegative coefficient and closed-loop circuit is unstable for a ≥ 0 and
any b.

Example 2.9. Consider the fractional linear system shown on Fig. 2.3 with given
resistances R1, R2, capacitance C, inductance L and source of voltage e. Using the
relations (2.82), (2.83) and the second Kirchhoff’s law we obtain for the circuit the
state equation [

dα uC
dtα
dβ i
dtβ

]
= A

[
uC

i

]
+ Be, (2.101)

Fig. 2.3 Electrical circuit.
Illustration to Example 2.9.

R1 R2

L

C

i
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where

A =

[
− 1

R2C
1
C

− 1
L −R1

L

]
, B =

[
0
1
L

]
. (2.102)

The matrix A is not a Metzler matrix but B∈R2
+. It is easy to check that the condition

(2.90) is satisfied for

A =

[
− 1

R2C
1
C

a
L

b−R1
L

]
, a,b ≥ 0, (2.103)

and from (2.91) we obtain
[

0
1
L

][
k1 k2

]
=
[

0 0
a+1

L
b
L

]
, (2.104)

and
K =

[
k1 k2

]
=
[

a + 1 b
]
. (2.105)

In this case the characteristic polynomial of the matrix (2.90) has the form

p(s) =

∣∣∣∣∣
sα + 1

R2C − 1
C

− a
L sβ + R1−b

L

∣∣∣∣∣= sα+β +
R1 −b

L
sα +

1
R2C

sβ +
R1 −aR2 −b

R2CL
,

(2.106)
and it is possible to choose the values of parameters a, b so that the closed-loop
system is asymptotically stable [266].



Chapter 3
Fractional Positive 2D Linear Systems

3.1 Definition of (Backward) Fractional Difference of 2D
Function

Definition 1.3 of (backward) fractional difference of α-order will be extended to
two-dimensional (shortly 2D) discrete function xi j.

Definition 3.1. The 2D discrete function

Δ α xi j =
i

∑
k=0

j−k

∑
l=0

cα(k, l)xi−k, j−l , 0 < α < 1, (3.1a)

is called the (backward) fractional difference of α order of the 2D function xi j where

cα(k, l) =

{
1 for k = l = 0 k, l ∈ Z+

(−1)k+l α(α−1)···(α−k−l+1)
k!l! for k + l > 0

(3.1b)

3.2 State Equation of Fractional 2D Linear Systems

The model described by the state equation:

Δ α xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1

+ B0ui j + B1ui+1, j + B2ui, j+1, (3.2a)

yi j = Cxi j + Dui j, (3.2b)

is called the fractional general model of α order of 2D linear systems where xi j ∈Rn,
ui j ∈ Rm, yi j ∈ Rp are state, input and output vectors and Ak ∈ Rn×n, Bk ∈ Rn×m,
k = 0,1,2, C ∈ Rp×n, D ∈ Rp×m.

Using Definition 3.1 we may write the equations (3.2a) in the form

xi+1, j+1 +
i+1

∑
k=0

j−k+1

∑
l=0

k+l>0

cα(k, l)xi−k+1, j−l+1 (3.3a)

= A0xi j + A1xi+1, j + A2xi, j+1 + B0ui j + B1ui+1, j + B2ui, j+1.

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 53–80.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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From (3.1b) it follows that the coefficients cα(k, l) in (3.1a) strongly decrease with
increasing k and l. In practice usually it is assumed that i and j are bounded by some
natural numbers L1 and L2. In this case the equation (3.3a) takes the form

xi+1, j+1 +
L1+1

∑
k=0

L2−k+1

∑
l=0

k+l>0

cα(k, l)xi−k+1, j−l+1 (3.3b)

= A0xi j + A1xi+1, j + A2xi, j+1 + B0ui j + B1ui+1, j + B2ui, j+1.

Remark 3.1. From (3.3a) it follows that the fractional 2D linear system is a linear
system with increasing number of delays in state vector.

Boundary conditions for (3.3a) have the form:

xi0, i ∈ Z+, and x0 j, j ∈ Z+. (3.4)

3.3 Solution of the State Equation of the Fractional 2D Linear
System

Applying 2D z-transform we shall derive the solution of the state equation (3.3a)
with boundary conditions (3.4).

Theorem 3.1. The solution of the state equation (3.3a) with the boundary condi-
tions (3.4) has the form

xi j =
i

∑
p=1

Ti−p, j−1
(
A1xp0 + B1up0

)
+

j

∑
q=1

Ti−1, j−q
(
A2x0q + B2u0q

)

+
i−1

∑
p=1

Ti−p−1, j−1A0xp0 +
j−1

∑
q=1

Ti−1, j−q−1A0x0q + Ti−1, j−1A0u00 (3.5)

+
i−1

∑
p=0

j−1

∑
q=0

Ti−p−1, j−q−1B0upq +
i

∑
p=0

j

∑
q=0

(
Ti−p−1, j−qB1 + Ti−p, j−q−1B2

)
upq

where the matrices Tpq are defined as

Tpq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

In for p = q = 0

A0Tp−1,q−1 + A1Tp,q−1 + A2Tp−1,q

−
p

∑
k=0

q

∑
l=0

cα(p− k,q− l)Tkl for p + q > 0,

and k + l < p + q−2

0 (zero matrix) for p < 0 and/or q < 0

(3.6)

and Ak = Ak −αIn for k = 0,1,2.
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Proof. Let X(z1,z2) be the 2D z-transform of the discrete function xi j, defined by
(A.15). Applying the 2D z-transform to equation (3.3a) and using Appendix (A.3),
we obtain

X(z1,z2) = G−1(z1,z2){(B0 + B1z1 + B2z2)U(z1,z2)
+ z1z2[X(z1,0)+ X(0,z2)− x00]

+
j+1

∑
l=1

cα(0, l)z1z−l+1
2 X(0,z2)+

i+1

∑
k=1

cα(k,0)z−k+1
1 z2X(z1,0)

− z1
[
A1B1

][X(0,z2)
U(0,z2)

]
− z2

[
A2B2

][X(z1,0)
U(z1,0)

]}
, (3.7a)

where

G(z1,z2) =

⎡
⎢⎣z1z2In +

i+1

∑
k=0

j−k+1

∑
l=0

k+l>1

cα(k, l)z−(k−1)
1 z−(l−1)

2 In −A0 −A1z1 −A2z2

⎤
⎥⎦

(3.7b)
and U(z1,z2) = Z [ui j].
Let

G−1(z1,z2) =
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2 . (3.8)

From the equality

G−1(z1,z2)G(z1,z2) = G(z1,z2)G−1(z1,z2) = In,

we have

In =

(
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2

)
G(z1,z2)

= G(z1,z2)

(
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2

)
. (3.9)

Comparing of the coefficients at the same power of z1 i z2 in the equation (3.9), we
obtain (3.6). Substituting of (3.8) into (3.7a), yields
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X(z1,z2) =

(
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2

)
{(B0 + B1z1 + B2z2)U(z1,z2)

+ z1z2[X(z1,0)+ X(0,z2)− x00]

− z1
[
A1B1

][X(0,z2)
U(0,z2)

]
− z2

[
A2B2

][X(z1,0)
U(z1,0)

]
(3.10)

+
j+1

∑
l=2

cα(0, l)z1z−l+1
2 X(0,z2)+

i+1

∑
k=2

cα(k,0)z−k+1
1 z2X(z1,0)

}
,

Applying the inverse 2D z-transform and the convolution theorem we obtain the
desired solution (3.5). ��

3.4 Extension of the Cayley-Hamilton Theorem

From (3.7b) we have
G(z1,z2) = z1z2G(z1,z2), (3.11)

where

G(z1,z2) = In +
i+1

∑
k=0

j−k+1

∑
l=0

Incα(k, l)z−k
1 z−l

2 −A0z−1z−1
2 −A1z−1

2 −A2z−1
1 . (3.12)

and

det
[
G(z1,z2)

]
=

N1

∑
k=0

N2

∑
l=0

aN1−k,N2−lz
−k
1 z−l

2 . (3.13)

It is assumed that i and j are bounded by some natural numbers L1 i L2, which
determine the degrees N1 and N2.

From (3.11) and (3.8) it follows that

G−1(z1,z2) = z−1
1 z−1

2 G
−1(z1,z2) = z−1

1 z−1
2

∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2 , (3.14)

and

G
−1(z1,z2) =

∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2 , (3.15)

where Tpq is defined by (3.6).

Theorem 3.2. Let (3.13) be the characteristic polynomial of the system (3.2). Then
the matrices Tkl satisfy the equation

N1

∑
k=0

N2

∑
l=0

aklTkl = 0. (3.16)
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Proof. From definition of inverse matrix, (3.13) and (3.15) we have

Adj
[
G(z1,z2)

]
=

(
N1

∑
k=0

N2

∑
l=0

aN1−k,N2−lz
−k
1 z−l

2

)(
∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2

)
, (3.17)

where Adj
[
G(z1,z2)

]
is the adjoint matrix of G(z1,z2).

Comparison of the coefficients at the same power of z−N1
1 z−N2

2 in equation (3.17),
yields the equality (3.16), since the degrees of the polynomial matrix (3.17) with
respect to z−1

1 and z−1
2 are less than N1 and N2. ��

Theorem 3.2 is an extension of the classical Cayley-Hamilton theorem to fractional
2D linear system described by (3.2).

3.5 Positivity of Fractional 2D Linear Systems

Lemma 3.1. If |α| < 1, then:

cα(k, l)

{
< 0 for 0 < α < 1

> 0 for −1 < α < 0
k, l ∈ Z+ . (3.18)

Proof. Using (3.1b) for 0 < α < 1, we obtain

cα(k, l) = (−1)k+l α(α −1) · · ·(α + 1− k− l)
k!l!

=

{
−α for k + l = 1

−α(1−α)···(k+l−1−α)
k!l! for k + l > 1

.

since

α(α−1) · · · (α +1−k− l)= (−1)k+l−1α(1−α) · · · (k+ l−1−α) for k+ l > 1.

The proof of the second part is similar. ��
Lemma 3.2. If 0 < α < 1 and

Ak ∈ R
n×n
+ for k = 0,1,2, (3.19)

then
Tpq ∈ R

n×n
+ for p,q ∈ Z+. (3.20)

Proof. If the conditions (3.18), (3.19), are satisfied then from (3.6), we obtain
(3.20). ��
Theorem 3.3. The fractional 2D linear system(3.2) for 0 < α < 1 is positive if and
only if:

Ak ∈ R
n×n
+ , Bk ∈ R

n×m
+ for k = 0,1,2, C ∈ R

p×n
+ , D ∈ R

p×m
+ . (3.21)
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Proof. Sufficiency. If the conditions (3.21) are satisfied then by Lemma 3.2 Tpq ∈
R

n×n
+ and from (3.5) we have xi j ∈ Rn

+ for i, j ∈ Z+ since xi0 ∈ Rn
+, x0 j ∈ Rn

+ and
ui j ∈ Rm

+ for i, j ∈ Z+. From (3.2b) we have yi j ∈ R
p
+ since C ∈ R

p×n
+ , D ∈ R

p×m
+

and xi j ∈ Rn
+, ui j ∈ Rm

+ for i, j ∈ Z+.
Necessity. It is assumed that the system is positive and x00 = eni, i = 1, . . . ,n

(eni is i-th column od the identity matrix In), x01 = x10 = 0, ui j = 0, i, j ∈ Z+. From
equation (3.3a) for i = j = 0 and ui j = 0, i, j ∈Z+ we obtain x11 = A0eni = A0i ∈R

n
+

where A0i is i-th column of A0. This implies A0 ∈ R
n×n
+ since i = 1, . . . ,n. If we

assume that x10 = eni, x00 = x01 = 0 and ui j = 0, i, j ∈ Z+ then from (3.3a) for
i = j = 0 we obtain x11 = A1eni = A1i ∈ R

n
+ what implies A1 ∈ R

n×n
+ . In a similar

way we may show that A2 ∈ R
n×n
+ . Assuming u00 = eni, ui j = 0, i, j ∈ Z+ i+ j > 0

and x00 = x10 = x01 = 0 from (3.3a), for i = j = 0, we obtain x11 = B0emi = B0i ∈Rm
+

for i = 1, . . . ,m what implies B0 ∈ R
n×m
+ . The proof of Bk ∈ R

n×m
+ for k = 1,2 and

C ∈ R
p×n
+ , D ∈ R

p×m
+ is similar. ��

3.6 Reachability and Controllability of Positive Fractional 2D
Linear Systems

Definition 3.2. The positive fractional 2D linear system (3.2) is called reachable at
the point (h,k) ∈ Z+ ×Z+ if for zero boundary conditions (3.4) and every vector
x f ∈ Rn

+ there exists a sequence of inputs ui j ∈ Rm
+ for

(i, j) ∈ Dhk = {(i, j) ∈ Z+×Z+ : 0 ≤ i ≤ h,0 ≤ j ≤ k, i+ j �= h + k}, (3.22)

which steers the state of the system from zero boundary conditions to the state x f ,
i.e. xhk = x f .

Theorem 3.4. The positive fractional 2D linear system (3.2) is reachable at the
point (h,k) if and only if the reachability matrix

Rhk =
[

M0 M1
1 . . . M1

h M2
1 . . . M2

k M11 . . . M1k M21 . . . Mh,k
]

(3.23)

contains n linearly independent monomial columns, where:

M0 = Th−1,k−1B0,

M1
i = Th−i,k−1B1 + Th−i−1,k−1B0, i = 1, . . . ,h;

M2
j = Th−1,k−1B2 + Th−1,k− j−1B0, j = 1, . . . ,k;

Mi j = Th−i−1,k− j−1B0 + Th−i,k− j−1B1 + Th−i−1,k−1B2, (3.24)

i = 1, . . . ,h; j = 1, . . . ,k;

Proof. Using (3.5) for i = h, j = k and zero boundary conditions we obtain

x f = Rhku(h,k), (3.25)
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where

u(h,k) =
[

uT
00 uT

10 . . . uT
h0 uT

01 . . . uT
0k uT

11 . . . uT
1k uT

21 . . . uT
h,k

]T
(3.26)

and T denotes the transpose.
For positive fractional system (3.2) from (3.23) and (3.24) we have M0 ∈ R

n×m
+ ,

M1
i ∈ R

n×m
+ , M2

j ∈ R
n×m
+ , Mi j ∈ R

n×m
+ , i = 1, . . . ,h; j = 1, . . . ,k; and matrix Rhk ∈

R
n×[(h+1)(k+1)−1]m
+ . From (3.25) it follows that there exists a sequence of inputs ui j ∈

Rm
+ for (i, j) ∈ Dhk for every x f ∈ Rn

+ if and only if the matrix (3.23) contains n
linearly independent monomial columns. ��
The following theorem formulates only the sufficient conditions for reachability of
the positive fractional system (3.2).

Theorem 3.5. The positive fractional 2D linear system(3.2) is reachable at the point
(h,k), if rankRhk = n and the right inverse Rr

hk of the matrix (3.23) has nonnegative
entries

Rr
hk = RT

hk

[
RhkRT

hk

]−1 ∈ R
[(h+1)(k+1)−1]m×n
+ . (3.27)

Proof. If rankRhk = n, then there exists the right inverse of Rhk and (3.27) holds
then from equation (3.25) we obtain

u(h,k) = Rr
hkx f ∈ R

[(h+1)(k+1)−1]m
+ ,

for every x f ∈ Rn
+. ��

Example 3.1. Consider the positive fractional 2D linear system (3.2) with the
matrices:

A0 =
[

0 1
1 0

]
, A1 =

[
1 0
0 1

]
, A2 =

[
1 0
1 1

]
, (3.28a)

B0 =
[

1
0

]
, B1 =

[
0
1

]
, B2 =

[
1
1

]
. (3.28b)

To check the reachability at the point (h,k) = (1,1), of the system we use Theorem
3.4. From (3.23) and (3.24) we obtain:

M0 = B0 =
[

1
0

]
, M1

1 = B1 =
[

0
1

]
, M2

1 = B2 =
[

1
1

]
, (3.29)

and

R11 =
[

M0 M1
1 M2

1

]
=
[

1 0 1
0 1 1

]
. (3.30)
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The first two columns of the matrix (3.30) are linearly independent monomial
columns. By Theorem 3.4 the positive fractional system (3.2) with (3.28) is reach-
able at the point (1,1). The input sequence which steers the state of the system from
zero boundary conditions to any given state x f ∈ R2

+ at the point (1,1) is given by[
u00

u10

]
= x f and u01 = 0.

Using (3.27) and (3.30), we obtain

Rr
hk = RT

hk

[
RhkRT

hk

]−1
=

⎡
⎣ 1 0

0 1
1 1

⎤
⎦[ 2 1

1 2

]−1

=
1
3

⎡
⎣ 2 −1
−1 2
1 1

⎤
⎦ . (3.31)

From (3.31) it follows that the condition (3.27), is not satisfied although the system
is reachable at the point (1,1). Note that the system is reachable at the paint (1,1)
for the arbitary order α , 0 < α < 1 and any matrices Ak, k = 0,1,2.

Definition 3.3. The positive fractional 2D linear system (3.2) is called the system
with finite memory if its characteristic polynomial has the form

det[G(z1,z2)] = czn1
1 zn2

2 , (3.32)

where c is a constant coefficient.

Lemma 3.3. If the positive fractional 2D linear system(3.2) is a system with finite
memory then

xbc(i, j) =
i

∑
p=1

(
Ti−p, j−1A1 + Ti−p−1, j−1A0

)
xp0

+
j

∑
q=1

(
Ti−1, j−qA2 + Ti−1, j−q−1A0

)
x0q

+ Ti−1, j−1A0x00 = 0, (3.33)

for i ≥ n1, j ≥ n2 and any nonzero boundary conditions (3.4).

Proof. Using (3.8) and (3.32), we obtain Ti j = 0 for i ≥ n1, j ≥ n2 and the equality
(3.33) holds for any nonzero boundary conditions (3.4). ��

Definition 3.4. The positive fractional 2D linear system (3.2) is controllable at the
point (h.k) ∈ Z+ ×Z+ for any nonzero boundary conditions:

xi0 ∈ R
n
+, i ∈ Z+ and x0 j ∈ R

n
+, j ∈ Z+, (3.34)

if for every vector x f ∈Rn
+ there exists a sequence of inputs ui j ∈Rm

+ for (i, j) ∈ Dhk

such that xhk = x f .
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Theorem 3.6. The positive fractional 2D linear system (3.2) is controllable at the
point (h,k) (h ≥ n1,k ≥ n2) for any nonzero boundary conditions (3.4) if and only if
it is a system with finite memory and the matrix (3.23) contains n linearly indepen-
dent monomial columns.

Proof. Using (3.5) for i = h, j = k and taking into account that xhk = x f , we obtain

x f − xbc(h,k) = Rhku(h,k), (3.35)

where Rhk and xbc(h,k) are defined by (3.23) and (3.33), respectively.

If the positive fractional system (3.2) is a system with finite memory then
by Lemma 3.3 there exists a point (h,k) (h ≥ n1,k ≥ n2) such that the equal-
ity (3.33) is satisfied and x f = Rhku(h,k). In this case by Theorem 3.4, there ex-
ists a sequence of inputs ui j ∈ Rm

+ for (i, j) ∈ Dhk, satisfied (3.25) if and only if
the matrix (3.23) contains n linearly independent monomial columns. Otherwise
x f − xbc(h,k) /∈ Rhku(h,k), since boundary conditions (3.34) are arbitrary and the
vector x f ∈ Rn

+ is also arbitrary. In this case does not exist a sequence of inputs
ui j ∈ Rm

+ for (i, j) ∈ Dhk, satisfying the equality (3.35). ��

3.7 Controllability to Zero of Positive Fractional 2D Linear
System

Definition 3.5. The positive fractional 2D linear system (3.2) is called controllable
to zero at the point (h,k) (h ≥ n1,k ≥ n2) if for any nonzero boundary conditions
(3.34) there exists a sequence of inputs ui j ∈ Rm

+ for (i, j) ∈ Dhk, which steers the
state of the system from nonzero boundary conditions to the zero state xhk = 0.

Theorem 3.7. The positive fractional 2D linear system (3.2) is controllable to zero
at the point (h,k) (h ≥ n1,k ≥ n2) if and only if it is a system with finite memory.

Proof. By Lemma 3.3 for a system with finite memory the condition (3.33) is satis-
fied for h ≥ n1, k ≥ n2. For x f = 0 from (3.35) we have

xbc(h,k)+ Rhku(h,k) = 0. (3.36)

The equation (3.36) is satisfied for u(h,k) = 0. If the condition (3.33), is not satisfied

then does not exist u(h,k) ∈ R
[(h+1)(k+1)−1]m
+ satisfying (3.36), since for positive

system Rhk ∈ R
n×[(h+1)(k+1)−1]m
+ and xbc(h,k) ∈ Rn

+. ��
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3.8 Models of 2D Linear Systems

3.8.1 Positive 2D Linear Systems

The model described by the equations:

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1

+ B0ui j + B1ui+1, j + B2ui, j+1, (3.37a)

yi j = Cxi j + Dui j, i, j ∈ Z+, (3.37b)

is called the general model of 2D linear systems, where xi j ∈ Rn, ui j ∈ Rm, yi j ∈ Rp

are state, input and output vectors and Ak ∈ Rn×n, Bk ∈ Rn×m, k = 0,1,2, C ∈ Rp×n,
D ∈ Rp×m.

Boundary conditions for (3.37) have the form:

xi0 ∈ R
n, i ∈ Z+, x0 j ∈ R

n, j ∈ Z+ . (3.38)

Definition 3.6. The model (system) (3.37) is called (internally) positive if xi j ∈ R
n
+

and yi j ∈R
p
+, i ∈ Z+ for all boundary conditions xi0 ∈Rn

+, i ∈ Z+, x0 j ∈ Rn
+, j ∈ Z+

and all inputs ui j ∈ Rm
+, i, j ∈ Z+.

Theorem 3.8. The model (system) (3.37) is positive if and only if

Ak ∈ R
n×n
+ , Bk ∈ R

n×m
+ for k = 0,1,2, C ∈ R

p×n
+ , D ∈ R

p×m
+ . (3.39)

Proof. The proof is given in [77].

Substituting (3.37a) B1 = B2 = 0 and B0 = B, we obtain the first Fornasini-
Marchesini model (FF-MM) and substituting in (3.37a) A0 = 0 and B0 = 0, we
obtain the second Fornasini-Marchesini model (SF-MM).

The Roesser model of 2D linear system has the form:

[
xh

i+1, j
xv

i, j+1

]
=
[

A11 A12

A21 A22

][
xh

i j
xv

i j

]
+
[

B11

B22

]
ui j, (3.40a)

yi j =
[

C1 C2
][ xh

i j
xv

i j

]
+ Dui j, i, j ∈ Z+, (3.40b)

where xh
i j ∈ Rn1 and xv

i j ∈ Rn2 are horizontal and vertical state vectors at the point
(i, j), ui j ∈ Rm, yi j ∈ Rp are input and output vectors and Akl ∈ Rnk×nl , k, l = 1,2;
B11 ∈ Rn1×m, B22 ∈ Rn2×m, C1 ∈ Rp×n1 , C2 ∈ Rp×n2 , D ∈ Rp×m.

Boundary conditions for (3.40) have the form:

xh
0 j ∈ R

n1 , j ∈ Z+, xv
i0 ∈ R

n2 , i ∈ Z+ . (3.41)

Definition 3.7. The Roesser model (3.40) is called (internally) positive if xh
i j ∈ R

n1
+ ,

xv
i j ∈ R

n2
+ and yi j ∈ R

p
+, i, j ∈ Z+ for all xh

0 j ∈ Rn1 , j ∈ Z+, xv
i0 ∈ Rn2 , i ∈ Z+ and all

inputs ui j ∈ R
m
+, i, j ∈ Z+.
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Theorem 3.9. The Roesser model is positive if and only if:
[

A11 A12

A21 A22

]
∈ R

n×n
+ ,

[
B11

B22

]
∈ R

n×m
+ , (3.42a)

[
C1 C2

] ∈ R
p×n
+ , D ∈ R

p×m
+ , n = n1 + n2. (3.42b)

The proof is given in [77].
Defining:

xi j =
[

xh
i j

xv
i j

]
, A1 =

[
0 0

A21 A22

]
, A2 =

[
A11 A12

0 0

]
, (3.43a)

B1 =
[

0
B22

]
, B2 =

[
B11

0

]
, (3.43b)

we may write the Roesser model in the form of SF-MM

xi+1, j+1 = A1xi+1, j + A2xi, j+1 + B1ui+1, j + B2ui, j+1. (3.44)

3.8.2 Positive Fractional 2D Linear Systems

Definition 3.8. The fractional horizontal difference of of α-order of the discrete
function xi j is defined by the relation [166]

Δ h
α xi j =

i

∑
k=0

cα(k)xi−k, j , (3.45a)

where α ∈ R, n−1 < α < n ∈ N = 1,2, . . . and

cα(k) =

{
1 for k = 0

(−1)k
(α

k

)
= (−1)k α(α−1)···(α−k+1)

k! for k > 0
(3.45b)

Definition 3.9. The fractional vertical difference of β -order of the discrete function
xi j is defined by the relation [166]

Δ v
β xi j =

j

∑
l=0

cβ (l)xi, j−l , (3.46a)

where β ∈ R, n−1 < β < n ∈ N = 1,2, . . . and

cβ (l) =

{
1 for l = 0

(−1)l
(β

l

)
= (−1)l β (β−1)···(β−l+1)

l! for l > 0
(3.46b)

Lemma 3.4. If 0 < α < 1 (0 < β < 1), then

cα(k) < 0,
(
cβ (l) < 0

)
for k = 1,2, . . . . (3.47)
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Proof. The proof will be accomplished by induction with respect to k. The hypothe-
sis is true for k = 1, since from (3.45b) for k = 1 we have cα(1)=−α < 0. Assuming
that the hypothesis is valid for k ≥ 1 we shall show that it is also true for k+1. From
(3.45b) we have

cα(k + 1) = (−1)k+1
(

α
k + 1

)
= −(−1)k

(
α
k

)
(α − k)
k + 1

= cα(k)
k−α
k + 1

< 0,

since cα(k) < 0. ��
Consider the fractional 2D linear system:

[
Δ h

αxh
i+1, j

Δ v
β xv

i, j+1

]
=
[

A11 A12

A21 A22

][
xh

i j
xv

i j

]
+
[

B1

B2

]
ui j, (3.48a)

yi j =
[

C1 C2
][ xh

i j
xv

i j

]
+ Dui j, i, j ∈ Z+, (3.48b)

where xh
i j ∈ Rn1 and xv

i j ∈ Rn2 are horizontal and vertical state vectors at the point
(i, j), ui j ∈ Rm, yi j ∈ Rp are input and output vectors at the point (i, j) and Akl ∈
Rnk×nl , k, l = 1,2; B1 ∈ Rn1×m, B2 ∈ Rnn×m, C1 ∈ Rp×n1 , C2 ∈ Rp×n2 , D ∈ Rp×m.

Using Definitions 3.8 and 3.9, we may write the equation (3.48a) in the form

[
xh

i+1, j
xv

i, j+1

]
=
[

A11 A12

A21 A22

][
xh

i j
xv

i j

]
−

⎡
⎢⎢⎢⎣

i+1

∑
k=2

cα(k)xh
i−k+1, j

j+1

∑
l=2

cβ (l)xv
i, j−l+1

⎤
⎥⎥⎥⎦+

[
B1

B2

]
ui j, (3.49)

where A11 = A11 + αIn1 and A22 = A22 + β In2.
From (3.49) it follows that the fractional 2D linear system is a system with in-

creasing number of delays in state vectors. From (3.45b) and (3.46b) it follows that
the coefficients cα(k) and cβ (l) in (3.49) strongly decrease with increasing k and l.
In practice usually it is assumed that k and l are bounded by some natural numbers
L1 and L2. In this case the equation (3.49) takes the form

[
xh

i+1, j
xv

i, j+1

]
=
[

A11 A12

A21 A22

][
xh

i j
xv

i j

]
−

⎡
⎢⎢⎢⎣

L1+1

∑
k=2

cα(k)xh
i−k+1, j

L2+1

∑
l=2

cβ (l)xv
i, j−l+1

⎤
⎥⎥⎥⎦+

[
B1

B2

]
ui j. (3.50)

Boundary conditions for (3.48), (3.49) and (3.50) have the form:

xh
0 j for j ∈ Z+, and xv

i0 for i ∈ Z+ . (3.51)
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Theorem 3.10. The solution of state equation (3.49) for the boundary conditions
(3.51) has the form

[
xh

i j
xv

i j

]
=

i

∑
p=0

Ti−p, j

[
0

xv
p0

]
+

j

∑
q=0

Ti, j−q

[
xh

0q
0

]

+
i

∑
p=0

j

∑
q=0

(
Ti−p−1, j−qB10 + Ti−p, j−q−1B01

)
upq, (3.52a)

where

B10 =
[

B1

0

]
, B01 =

[
0

B2

]
, (3.52b)

and the transition matrix Tpq ∈ Rn×n is defined as follows

Tpq =

⎧⎪⎨
⎪⎩

In for p = 0, q = 0

T10Tp−1,q + T01Tp,q−1 +ϒ for p + q > 0 (p,q ∈ Z+)
0 (zero matrix) for p < 0 and/or q < 0

(3.52c)

where

ϒ = −
p

∑
k=2

[
cα(k)In1 0

0 0

]
Tp−k,q −

q

∑
l=2

[
0 0
0 cβ (l)In2

]
Tp,q−l (3.52d)

T10 =
[

A11 A12

0 0

]
, T01 =

[
0 0

A21 A22

]
. (3.52e)

Proof. Let X(z1,z2) be the 2D z-transform of the discrete function xi j

X(z1,z2) = Z [xi j] =
∞

∑
i=0

∞

∑
j=0

xi jz
−i
1 z− j

2 . (3.53)

Using (3.53), we obtain

Z
[
xh

i+1, j

]
= z1

[
Xh(z1,z2)−Xh(0,z2)

]
, (3.54a)

where Xh(0,z2) =
∞

∑
j=0

xh
0 jz

− j
2 ,

Z
[
xv

i, j+1

]
= z2 [Xv(z1,z2)−Xv(z1,0)] , (3.54b)
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where Xv(z1,0) =
∞

∑
i=0

xv
i0z−i

1 ,

Z

[
i+1

∑
k=2

cα(k)xh
i−k+1, j

]
=

i+1

∑
k=2

cα(k)z−k+1
1 Xh(z1,z2), (3.54c)

since

Z
[
xh

i−k, j

]
=

∞

∑
i=0

∞

∑
j=0

xh
i−k, jz

−i
1 z− j

2 =
∞

∑
i=−k

∞

∑
j=0

xh
i jz

−i−k
1 z− j

2

= z−k
1

[
∞

∑
i=0

∞

∑
j=0

xh
i jz

−i
1 z− j

2

]
= z−k

1 Xh(z1,z2). (3.54d)

Similarly

Z

[
j+1

∑
l=2

cβ (l)xv
i, j−l+1

]
=

j+1

∑
l=2

cβ (l)z−l+1
2 Xv(z1,z2), (3.54e)

since

Z
[
xv

i, j−l

]
=

∞

∑
i=0

∞

∑
j=0

xv
i, j−lz

−i
1 z− j

2 =
∞

∑
i=0

∞

∑
j=−l

xv
i jz

−i
1 z− j−l

2

= z−l
2

[
∞

∑
i=0

∞

∑
j=0

xv
i jz

−i
1 z− j

2

]
= z−l

2 Xv(z1,z2). (3.54f)

Using (3.54), to (3.49) we obtain
[

z1Xh(z1,z2)− z1Xh(0,z2)
z2Xv(z1,z2)− z2Xv(z1,0)

]
=
[

A11 A12

A21 A22

][
Xh(z1,z2)
Xv(z1,z2)

]

−

⎡
⎢⎢⎢⎣

i+1

∑
k=2

cα(k)z−k+1
1 Xh(z1,z2)

j+1

∑
l=2

cβ (l)z−l+1
2 Xv(z1,z2)

⎤
⎥⎥⎥⎦+

[
B1

B2

]
U(z1,z2) (3.55)

where U(z1,z2) = Z (ui j).

Premultiplying (3.55) by the matrix blockdiag[In1z−1
1 , In2z−1

2 ], we obtain

[
Xh(z1,z2)
Xv(z1,z2)

]
= G−1(z1,z2)

{[
z−1

1 B1

z−1
2 B2

]
U(z1,z2)+

[
Xh(0,z2)
Xv(z1,0)

]}
(3.56)

where

G(z1,z2) =
[

G11(z1,z2) −z−1
1 A12

−z−1
2 A21 G22(z1,z2)

]
(3.57)
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and

G11(z1,z2) = In1 − z−1
1 A11 +

i

∑
k=2

cα(k)z−k
1 In1 ,

G22(z1,z2) = In2 − z−1
2 A22 +

j

∑
l=2

cβ (l)z−l
2 In2 .

Let

G−1(z1,z2) =
∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2 (3.58)

and

Tpq =
[

T 11
pq T 12

pq
T 21

pq T 22
pq

]
(3.59)

where T kl
pq have the same dimension as Akl for k, l = 1,2.

From the equality

G−1(z1,z2)G(z1,z2) = G(z1,z2)G−1(z1,z2) = In

and (3.58) and (3.59) we have

[
In1 − z−1

1 A11 + ∑i
k=2 cα(k)z−k

1 In1 −z−1
1 A12

−z−1
2 A21 In2 − z−1

2 A22 + ∑ j
l=2 cβ (l)z−l

2 In2

]

×
(

∞

∑
p=0

∞

∑
q=0

[
T 11

pq T 12
pq

T 21
pq T 22

pq

]
z−p

1 z−q
2

)
=
[

In1 0
0 In2

]
(3.60)

From (3.60) it follows that

∞

∑
p=0

∞

∑
q=0

(
T 11

pq −A11T 11
p−1,q +

p

∑
k=2

cα(k)T 11
p−k,q −A12T 21

p−1,q

)
z−p

1 z−q
2 = In1 (3.61a)

∞

∑
p=0

∞

∑
q=0

(
T 12

pq −A11T 12
p−1,q +

p

∑
k=2

cα(k)T 12
p−k,q −A12T 22

p−1,q

)
z−p

1 z−q
2 = 0 (3.61b)

∞

∑
p=0

∞

∑
q=0

(
T 21

pq −A22T 21
p,q−1 +

q

∑
l=2

cβ (l)T 21
p,q−l −A21T 11

p,q−1

)
z−p

1 z−q
2 = 0 (3.61c)

∞

∑
p=0

∞

∑
q=0

(
T 22

pq −A22T 22
p,q−1 +

q

∑
l=2

cβ (l)T 22
p,q−l −A21T 12

p,q−1

)
z−p

1 z−q
2 = In2 (3.61d)

Comparing the coefficients at the same powers of z1 i z2 in the equation (3.61), we
obtain (3.52c).
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Using (3.58) and applying the inverse z-transform and the convolution theorem to
(3.56), we obtain (3.52a). ��

Consider the system (3.50) and

G(z1,z2) =
[

G11(z1,z2) −z−1
1 A12

−z−1
2 A21 G22(z1,z2)

]
(3.62)

where

G11(z1,z2) = In1 − z−1
1 A11 +

L1

∑
k=2

cα(k)z−k
1 In1 ,

G22(z1,z2) = In2 − z−1
2 A22 +

L2

∑
l=2

cβ (l)z−l
2 In2 .

Let

detG(z1,z2) =
N1

∑
p=0

N2

∑
q=0

aN1−p,N2−qz−p
1 z−q

2 , (3.63)

where N1,N2 ∈ Z+ are defined by the natural numbers L1 i L2 in (3.50).

Theorem 3.11. Let (3.63) be the characteristic polynomial of the system (3.50). The
matrices Tpq satisfy the equation

N1

∑
p=0

N2

∑
q=0

apqTpq = 0. (3.64)

The proof is similar to the proof of Theorem 3.2 [166].
Theorem 3.11 is an extension of the classical Cayley-Hamilton theorem to the

fractional 2D linear systems described by the Roesser model (3.49).

Definition 3.10. The system (3.49) is called (internally) positive fractional 2D
Roesser model if xh

i j ∈ R
n1
+ , xv

i j ∈ R
n2
+ and yi j ∈ R

p
+, i, j ∈ Z+ for any boundary

conditions xh
0 j ∈ R

n1
+ , j ∈ Z+, xv

i0 ∈ R
n2
+ , i ∈ Z+ and all inputs ui j ∈ Rm

+, i, j ∈ Z+.

Theorem 3.12. The fractional Roesser model (3.49) for α,β ∈ R, 0 < α ≤ 1,
0 < β ≤ 1 is positive if and only if

[
A11 A12

A21 A22

]
∈ R

n×n
+ ,

[
B1

B2

]
∈ R

n×m
+ ,

[
C1 C2

] ∈ R
p×n
+ , D ∈ R

p×m
+ , (3.65)

The proof is similar to the proof of Theorem 3.3 [166].



3.8 Models of 2D Linear Systems 69

3.8.3 Positive 2D Linear Systems with Delays

Consider the autonomous 2D Roesser model with q delays in state vector

[
xh

i+1, j
xv

i, j+1

]
=

q

∑
k=0

Ak

[
xh

i−k, j
xv

i, j−k

]
, i, j ∈ Z+, (3.66)

where xh
i j ∈ R

n1
+ , xv

i j ∈ R
n2
+ are horizontal and vertical state vectors at the point (i, j)

and

Ak =
[

Ak
11 Ak

12
Ak

21 Ak
22

]
, k = 0,1, . . . ,q . (3.67)

Defining:

xh
i j =

⎡
⎢⎢⎢⎣

xh
i j

xh
i−1, j

...
xh

i−q, j

⎤
⎥⎥⎥⎦ , xv

i j =

⎡
⎢⎢⎢⎣

xv
i j

xv
i, j−1

...
xv

i, j−q

⎤
⎥⎥⎥⎦ , (3.68)

we may write the equation (3.66) in the form

[
xh

i+1, j
xv

i, j+1

]
= A

[
xh

i, j
xv

i, j

]
, i, j ∈ Z+, (3.69)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0
11 A1

11 . . . Aq−1
11 Aq

11 A0
12 A1

12 . . . Aq−1
12 Aq

12
In1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . In1 0 0 0 . . . 0 0

A0
21 A1

21 . . . Aq−1
21 Aq

21 A0
22 A1

22 . . . Aq−1
22 Aq

22
0 0 . . . 0 0 In2 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . In2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
N×N , (3.70)

N = (q + 1)(n1 + n2).

The Roesser model with q delays (3.66) has been reduced to Roesser model without
delays but with greater dimensions.

Theorem 3.13. The Roesser model with q delays (3.66) is positive if and only if

Ak ∈ R
(n1+n1)×(n2+n2)
+ for k = 0,1, . . . ,q or equivalently A ∈ R

N×N
+ . (3.71)

The proof follows immediately from Theorem 3.9, applied to the model (3.69).
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Consider the autonomous general model with q delays

xi+1, j+1 =
q

∑
k=0

(
A0

kxi−k, j−k + A1
kxi+1−k, j−k + A2

kxi−k, j+1−k
)
, i, j ∈ Z+, (3.72)

where xi j ∈ R
n
+ is the state vector at the point (i, j) and At

k ∈ R
n×n, k = 0,1, . . . ,q;

t = 0,1,2.
Defining vector

xi j =

⎡
⎢⎢⎢⎣

xi j

xi−1, j−1
...

xi−q, j−q

⎤
⎥⎥⎥⎦ , (3.73)

and the matrices

A0 =

⎡
⎢⎢⎢⎢⎢⎣

A0
0 A0

1 . . . A0
q−1 A0

q

In 0 . . . 0 0
0 In . . . 0 0
...

...
. . .

...
...

0 0 . . . In 0

⎤
⎥⎥⎥⎥⎥⎦

, A1 =

⎡
⎢⎢⎢⎢⎢⎣

A1
0 A1

1 . . . A1
q−1 A1

q

0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

A2 =

⎡
⎢⎢⎢⎢⎢⎣

A2
0 A2

1 . . . A2
q−1 A2

q

0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (3.74)

we may write (3.72) in the form

xi+1, j+1 = A0xi, j + A1xi+1, j + A2xi, j+1, i, j ∈ Z+, (3.75)

The general 2D model with q delays has been reduced to the equivalent general 2D
model without delays but with greater dimensions.

Theorem 3.14. The general 2D model with q delays (3.72) is positive if and only if
At

k ∈ R
n×n
+ for k = 0,1, . . . ,q; t = 0,1,2 or equivalently if and only if At ∈ R

N×N
+ ,

t = 0,1,2; N = (q + 1)n.

The proof follows immediately from Theorem 3.8 applied to the model (3.75).
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3.9 Positive Fractional 2D Linear System of Different Orders

3.9.1 Definition of (Backward) Difference of (α,β ) Order of 2D
Function

Definition 3.11. The function defined by

Δ α ,β xi j =
i

∑
k=0

j

∑
l=0

(−1)k+l
(

α
k

)(
β
l

)
xi−k, j−l =

i

∑
k=0

j

∑
l=0

cαβ (k, l)xi−k, j−l , (3.76a)

n1 −1 < α < n1, n2 −1 < β < n2, n1,n2 ∈ N, α,β ∈ R,

is called the (backward) difference of (α,β )-order of the function xi j where

Δ α ,β xi j = Δ α
i Δ β

j xi j,

and

cαβ (k, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for k = 0 and l = 0

(−1)k α(α−1)···(α−k+1)
k! for k > 0 and l = 0

(−1)l β (β−1)···(β−l+1)
l! for k = 0 and l > 0

(−1)k+l α(α−1)···(α−k+1)β (β−1)···(β−l+1)
k!l! for k > 0 and l > 0

(3.76b)

3.9.2 State Equations of Fractional 2D Linear System

The state equations of the general fractional 2D model of linear systems have the
form:

Δ α ,β xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1

+ B0ui j + B1ui+1, j + B2ui, j+1, (3.77a)

yi j = Cxi j + Dui j, (3.77b)

where xi j ∈Rn, ui j ∈Rm, yi j ∈Rp are state, input and output vectors and Ak ∈Rn×n,
Bk ∈ Rn×m, k = 0,1,2, C ∈ Rp×n, D ∈ Rp×m.

From (3.76a) we have

Δ α ,β xi+1, j+1 =
i+1

∑
k=0

j+1

∑
l=0

cαβ (k, l)xi−k+1, j−l+1

= xi+1, j+1 +
i+1

∑
k=0

j+1

∑
l=0

k+l>0

cαβ (k, l)xi−k+1, j−l+1. (3.78)
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Using (3.78) we may write the equation (3.77a) in the form

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1 −
i+1

∑
k=0

k,l �=1

j+1

∑
l=0

k+l>0

cαβ (k, l)xi−k+1, j−l+1

+ B0ui j + B1ui+1, j + B2ui, j+1, (3.79a)

where:

A0 = A0 − cαβ (1,1) = A0 −αβ In,

A1 = A1 − cαβ (0,1) = A1 + β In, (3.79b)

A2 = A2 − cαβ (1,0) = A2 + αIn.

Let
Di j = {k, l ∈ Z+, 0 ≤ k ≤ i, 0 ≤ l ≤ j}, D = Di+1, j+1 \D11,

then the equation (3.79a) takes the form

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1 −∑ ∑
i, j∈D

cαβ (k, l)xi−k+1, j−l+1

+ B0ui j + B1ui+1, j + B2ui, j+1. (3.79c)

From (3.76b) it follows that the coefficients cαβ (k, l) strongly decrease when k and
l increase. In practice usually it is assumed that i and j are bounded by some natural
numbers L1 and L2. In this case the equation (3.79a) takes the form

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1 −
L1+1

∑
k=0

k,l �=1

L2+1

∑
l=0

k+l>0

cαβ (k, l)xi−k+1, j−l+1

+ B0ui j + B1ui+1, j + B2ui, j+1. (3.79d)

Remark 3.2. From (3.79) if follows that the fractional 2D linear system is a system
with increasing numbers of delays in state vector.

Boundary conditions for (3.79) have the form:

xi0, i ∈ Z+, and x0 j, j ∈ Z+. (3.80)

3.9.3 Solution of the State Equations of the Fractional 2D Linear
Systems

Applying the 2D z-transform (Z ) we shall derive the solution of the state equation
(3.79a) of the fractional 2D linear system.



3.9 Positive Fractional 2D Linear System of Different Orders 73

Theorem 3.15. The solution of the state equation (3.79a) with boundary conditions
(3.80) has the form

xi j =
i−1

∑
p=0

j−1

∑
q=0

Ti−p−1, j−q−1B0upq +
i

∑
p=0

j−1

∑
q=0

Ti−p, j−q−1B1upq

+
i−1

∑
p=0

j

∑
q=0

Ti−p−1, j−qB2upq +
i

∑
p=0

Ti−p, jxp0 +
j

∑
q=0

Ti, j−qx0q −Ti jx00

−
j−1

∑
q=0

Ti, j−q−1
[

A1 B1
][ x0q

u0q

]
−

i−1

∑
p=0

Ti−p−1, j
[

A2 B2
][ xp0

up0

]

+
i+1

∑
k=2

i−k

∑
p=0

cαβ (k,0)Ti−p−k, jxp0 +
j+1

∑
l=2

j−l

∑
q=0

cαβ (0, l)Ti, j−q−lx0q (3.81)

where the matrices Tpq are defined as follows

Tpq =

⎧⎪⎨
⎪⎩

In for p = q = 0

A0Tp−1,q−1 + A1Tp,q−1 + A2Tp−1,q −ϒ for p + q > 0

0 (zero matrix) for p < 0 and/or q < 0
(3.82)

and

ϒ =
p

∑
k=0

q

∑
l=0

cαβ (p− k,q− l)Tkl for k, l �= p−1,q−1 and k + l < p + q−1.

Proof. Let X(z1,z2) be the 2D z-transform of the discrete function xi j, defined by
(A.15). Taking in to account
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Z

⎡
⎢⎣ i+1

∑
k=0

k,l �=1

j+1

∑
l=0

k+l>0

cαβ (k, l)xi−k+1, j−l+1

⎤
⎥⎦= Z

⎡
⎢⎣ i+1

∑
k=1

k,l �=1

j+1

∑
l=1

cαβ (k, l)xi−k+1, j−l+1

+
i+1

∑
k=2

cαβ (k,0)xi−k+1, j+1 +
j+1

∑
l=2

cαβ (0, l)xi+1, j−l+1

]

=
i+1

∑
k=1

k,l �=1

j+1

∑
l=1

cαβ (k, l)z−k+1
1 z−l+1

2 X(z1,z2)

+
i+1

∑
k=2

cαβ (k,0)z−k+1
1 z2[X(z1,z2)−X(z1,0)]

+
j+1

∑
l=2

cαβ (0, l)z1z−l+1
2 [X(z1,z2)−X(0,z2)]

=
i+1

∑
k=0

k,l �=1

j+1

∑
l=0

k+l>1

cαβ (k, l)z−k+1
1 z−l+1

2 X(z1,z2)

−
i+1

∑
k=2

cαβ (k,0)z−k+1
1 z2X(z1,0)−

j+1

∑
l=2

cαβ (0, l)z1z−l+1
2 X(0,z2),

and applying the 2D z-transform to (3.79a) and using Appendix A.3, we obtain

X(z1,z2) = G−1(z1,z2){(B0 + B1z1 + B2z2)U(z1,z2)
+ z1z2[X(z1,0)+ X(0,z2)− x00]

+
j+1

∑
l=2

cαβ (0, l)z1z−l+1
2 X(0,z2)+

i+1

∑
k=2

cαβ (k,0)z−k+1
1 z2X(z1,0)

− z1
[
A1B1

][X(0,z2)
U(0,z2)

]
− z2

[
A2B2

][ X(z1,0)
U(z1,0)

]}
, (3.83a)

where

G(z1,z2) =

⎡
⎢⎣z1z2In +

i+1

∑
k=0

k,l �=1

j+1

∑
l=0

k+l>1

cαβ (k, l)z−(k−1)
1 z−(l−1)

2 −A0 −A1z1 −A2z2

⎤
⎥⎦

(3.83b)
and U(z1,z2) = Z [ui j].

Let

G−1(z1,z2) =
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2 . (3.84)
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From the equality

G−1(z1,z2)G(z1,z2) = G(z1,z2)G−1(z1,z2) = In,

we have

In =

(
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2

)
G(z1,z2)

= G(z1,z2)

(
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2

)
. (3.85)

Substituting of (3.83b) into (3.85) yields

In =
∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2 +
∞

∑
p=0

∞

∑
q=0

i+1

∑
k=0

k,l �=1

j+1

∑
l=0

k+l>1

cαβ (k, l)z−(p+k)
1 z−(q+l)

2

−
∞

∑
p=0

∞

∑
q=0

A0Tpqz−(p+1)
1 z−(q+1)

2 −
∞

∑
p=0

∞

∑
q=0

A1Tpqz−p
1 z−(q+1)

2

−
∞

∑
p=0

∞

∑
q=0

A2Tpqz−(p+1)
1 z−q

2 ,

and

In =
∞

∑
p=0

∞

∑
q=0

⎡
⎢⎣Tpq +

i+1

∑
k=0

k,l �=1

j+1

∑
l=0

k+l>1

cαβ (k, l)Tp−k,q−l −A0Tp−1,q−1

− A1Tp,q−1 −A2Tp−1,q
]

z−p
1 z−q

2 .

Comparing the coefficients at the same powers of z1 and z2 in equation (3.85) we
obtain (3.82). Substituting (3.84) into (3.83a) we obtain

X(z1,z2) =

(
∞

∑
p=0

∞

∑
q=0

Tpqz−(p+1)
1 z−(q+1)

2

)
{(B0 + B1z1 + B2z2)U(z1,z2)

+ z1z2[X(z1,0)+ X(0,z2)− x00]

− z1
[
A1B1

][ X(0,z2)
U(0,z2)

]
− z2

[
A2B2

][X(z1,0)
U(z1,0)

]
(3.86)

+
j+1

∑
l=2

cαβ (0, l)z1z−l+1
2 X(0,z2)+

i+1

∑
k=2

cαβ (k,0)z−k+1
1 z2X(z1,0)

}
,
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Applying the inverse 2D z-transform to the equation (3.86) and taking into account
Tpq = 0 for p < 0 and q < 0, we obtain the desired solution (3.81). ��

Using (3.82) it can be easily shown that for i, j ∈ Z+ we have

xi j =
i

∑
p=0

j

∑
q=0

Ti−p−1, j−q−1B0upq +
i

∑
p=1

j

∑
q=1

(
Ti−p, j−q−1B1 + Ti−p−1, j−qB2

)
upq

+
i

∑
p=1

Ti−p, j−1B1up0 +
j

∑
q=1

Ti−1, j−qB2u0q +
i

∑
k=2

i−k

∑
p=0

cαβ (k,0)Ti−p−k, jxp0

+
i

∑
p=1

⎛
⎜⎝Ti−p−1, j−1A0 + Ti−p, j−1A1 −

i−p

∑
k=0
D1

j

∑
l=0
D2

cαβ (i− p− k, j− l)Tk,l

⎞
⎟⎠xp0

+
j

∑
q=1

⎛
⎜⎝Ti−1, j−q−1A0 + Ti−1, j−qA2 −

i

∑
k=0
D3

j−q

∑
l=0
D4

cαβ (i− k, j−q− l)Tkl

⎞
⎟⎠x0q

+
j

∑
l=2

j−l

∑
q=0

cαβ (0, l)Ti, j−q−lx0q

+

⎛
⎜⎝Ti−1, j−1A0 −

i

∑
k=0
D5

j

∑
l=0
D6

cαβ (i− k, j− l)Tkl

⎞
⎟⎠x00,

where:
D1 = k + l < i+ j− p−1, D2 = k, l �= i− p−1, j−1,
D3 = k + l < i+ j−q−1, D4 = k, l �= i−1, j−q−1,
D5 = k + l < i+ j−1, D6 = k, l �= i−1, j−1.

(3.87)
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After some manipulations the solution can be rewritten in the form

xi j =
i

∑
p=0

j

∑
q=0

Ti−p−1, j−q−1B0upq +
i

∑
p=1

j

∑
q=1

(
Ti−p, j−q−1B1 + Ti−p−1, j−qB2

)
upq

+
i

∑
p=1

Ti−p, j−1B1up0 +
j

∑
q=1

Ti−1, j−qB2u0q

+
i

∑
p=1

⎛
⎜⎝Ti−p−1, j−1A0 + Ti−p, j−1A1 −

i−p

∑
k=0

k+l>1

j

∑
l=1

k,l �=1

cαβ (k, l)Ti−p−k, j−l

⎞
⎟⎠xp0

+
j

∑
q=1

⎛
⎜⎝Ti−1, j−q−1A0 + Ti−1, j−qA2 −

i

∑
k=1

k+l>1

j−q

∑
l=0

k,l �=1

cαβ (k, l)Ti−k, j−q−l

⎞
⎟⎠x0q

+

⎛
⎜⎝Ti−1, j−1A0 −

i

∑
k=1

k,l �=1

j

∑
l=1

cαβ (k, l)Ti−k, j−l

⎞
⎟⎠x00,

or

xi j =
i

∑
p=0

j

∑
q=0

Ti−p−1, j−q−1B0upq +
i

∑
p=1

j

∑
q=1

(
Ti−p, j−q−1B1 + Ti−p−1, j−qB2

)
upq

+
i

∑
p=1

Ti−p, j−1B1up0 +
j

∑
q=1

Ti−1, j−qB2u0q

+
i

∑
p=1

⎛
⎜⎝Ti−p−1, j−1A0 + Ti−p, j−1A1 −

i−p

∑
k=0
D1

j−1

∑
l=0
D2

cαβ (i− p− k, j− l)Tk,l

⎞
⎟⎠xp0

+
j

∑
q=1

⎛
⎜⎝Ti−1, j−q−1A0 + Ti−1, j−qA2 −

i−1

∑
k=0
D3

j−q

∑
l=0
D4

cαβ (i− k, j−q− l)Tk,l

⎞
⎟⎠x0q

+

⎛
⎜⎝Ti−1, j−1A0 −

i−1

∑
k=0
D7

j−1

∑
l=0

cαβ (i− k, j− l)Tk,l

⎞
⎟⎠x00.

where Di, i = 1,2,3,4; are given by (3.87) and D7 = k + l < i+ j−2.

3.9.4 Extension of the Cayley-Hamilton Theorem

From (3.83b) we have
G(z1,z2) = z1z2G(z1,z2), (3.88)
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where

G(z1,z2) = In +
L1+1

∑
k=0

L2+1

∑
l=0

Incαβ (k, l)z−k
1 z−l

2 −A0z−1z−1
2 −Aqz−1

2 −A2z−1
1 . (3.89)

and

det
[
G(z1,z2)

]
=

N1

∑
k=0

N2

∑
l=0

aN1−k,N2−lz
−k
1 z−l

2 . (3.90)

It is assumed that i and j are bounded by some natural numbers L1 i L2, which
determine the degrees N1 and N2.

From (3.88) and (3.84) it follows that

G−1(z1,z2) = z−1
1 z−1

2 G
−1(z1,z2) = z−1

1 z−1
2

∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2 , (3.91)

and

G
−1(z1,z2) =

∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2 , (3.92)

where Tpq are defined by (3.82).

Theorem 3.16. Let(3.90) be the characteristic polynomial of (3.77). The matrices
Tkl satisfy the equation

N1

∑
k=0

N2

∑
l=0

aklTkl = 0. (3.93)

Proof. From definition of the inverse matrix and (3.90), (3.92) we have

Adj
[
G(z1,z2)

]
=

(
N1

∑
k=0

N2

∑
l=0

aN1−k,N2−lz
−k
1 z−l

2

)(
∞

∑
p=0

∞

∑
q=0

Tpqz−p
1 z−q

2

)
, (3.94)

where Adj
[
G(z1,z2)

]
is adjoint matrix of G(z1,z2).

Comparing the coefficients at the same power of z−N1
1 z−N2

2 in equation (3.94),
we obtain (3.93), since the degree of the polynomial matrix (3.94) is less than N1 i
N2. ��
Theorem 3.16 is an extension of the classical Cayley-Hamilton theorem to the frac-
tional 2D linear systems described by (3.77).

3.9.5 Positivity of the Fractional 2D Linear Systems

Lemma 3.5. If

a) 0 < α < 1 and 1 < β < 2 then

cαβ (k, l) < 0 for k = 1,2, . . . ; l = 2,3, . . . ; (3.95a)
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b) 1 < α < 2 and 0 < β < 1 then

cαβ (k, l) < 0 for k = 2,3, . . . ; l = 1,2, . . . ; (3.95b)

c) 0 < α < 1 and 1 < β < 2 then

cαβ (k,1) > 0 for k = 2,3, . . . ; (3.95c)

and
cαβ (0, l) > 0 for l = 2,3, . . . ; (3.95d)

Proof. The proof will be accomplished by induction. The hypothesis (3.95a) is true
for k = 1 and l = 2 since

cαβ (1,2) = (−1)3 αβ (β −1)
2

< 0.

Assuming that the hypothesis is true for the pair (k, l), k + l ≥ 3, we shall show that
it is also valid for the pairs (k + 1, l), (k, l + 1) and (k + 1, l + 1).

From (3.76b) we have

cαβ (k + 1, l) = cαβ (k, l)
k−α
k + 1

< 0,

since cαβ (k, l) < 0 for k = 1,2, . . .; l = 2,3, . . ..

Similarly

cαβ (k, l + 1) = cαβ (k, l)
l −β
l + 1

< 0,

since cαβ (k, l) < 0 for k = 1,2, . . .; l = 2,3, . . .; and

cαβ (k + 1, l + 1) = cαβ (k, l)
(k−α)(l −β )
(k + 1)(l + 1)

< 0,

since cαβ (k, l) < 0 for k = 1,2, . . .; l = 2,3, . . .. Proofs for (3.95b), (3.95c) and
(3.95d) are similar. ��

Remark 3.3. Taking in to account (3.95c) and (3.95d) we shall assume that for 0 <
α < 1 and 1 < β < 2

i+1

∑
k=2

cαβ (k,1)xi−k+1, j = 0,
j+1

∑
l=2

cαβ (0, l)xi+1, j−l+1 = 0. (3.96)

Lemma 3.6. If the conditions (3.95) are satisfied and

Ak ∈ R
n×n
+ for k = 0,1,2, (3.97)
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then
Tpq ∈ R

n×n
+ for p,q ∈ Z+. (3.98)

Proof. If the conditions (3.95), (3.96), (3.97) are satisfied then from (3.82) we
obtain (3.98). ��
Definition 3.12. The system (3.77) is called (internally) positive fractional 2D linear
system if xi j ∈ Rn

+ and yi j ∈ R
p
+, i, j ∈ Z+ for any boundary conditions xi0 ∈ Rn

+,
i ∈ Z+, x0 j ∈ Rn

+, i ∈ Z+ and all inputs ui j ∈ R
p
+, i, j ∈ Z+.

Theorem 3.17. Let the assumptions (3.96) be satisfied. The fractional 2D linear
system (3.77) for 0 < α < 1 and 1 < β < 2 (or 1 < α < 2 and 0 < β < 1) is positive
if and only if:

Ak ∈ R
n×n
+ , Bk ∈ R

n×m
+ for k = 0,1,2, C ∈ R

p×n
+ , D ∈ R

p×m
+ . (3.99)

Proof. Sufficiency. If the conditions (3.99) are satisfied then by Lemma 3.6 Tpq ∈
R

n×n
+ and from (3.81) we have xi j ∈ R

n
+ for i, j ∈ Z+, since xi0 ∈ R

n
+, x0 j ∈ R

n
+ and

ui j ∈ Rm
+ for i, j ∈ Z+. From (3.77b) we have yi j ∈ R

p
+ since C ∈ R

p×n
+ , D ∈ R

p×m
+

and xi j ∈ Rn
+, ui j ∈ Rm

+ for i, j ∈ Z+.
Necessity. Let the system be positive and x00 = eni, i = 1, . . . ,n (eni is i-th column

of the identity matrix In), x01 = x10 = 0, ui j = 0, i, j ∈ Z+. From (3.79a) for i =
j = 0 and ui j = 0, i, j ∈ Z+ we obtain x11 = A0eni = A0i ∈ Rn

+, where A0i is i-th
column of A0. This implies A0 ∈ R

n×n
+ , since i = 1, . . . ,n. If we assume that x10 =

eni, x00 = x01 = 0 and ui j = 0, i, j ∈ Z+, then from (3.79a) for i = j = 0 we have
x11 = A1eni = A1i ∈R

n
+, what implies A1 ∈R

n×n
+ . In a similar way we may show that

A2 ∈ R
n×n
+ . Assuming u00 = eni, ui j = 0, i, j ∈ Z+ i+ j > 0 and x00 = x10 = x01 = 0

from (3.79a), for i = j = 0, we obtain x11 = B0emi = B0i ∈ Rm
+ for i = 1, . . . ,m, what

implies B0 ∈ R
n×m
+ . In a similar way we may show that Bk ∈ R

n×m
+ for k = 1,2 and

C ∈ R
p×n
+ , D ∈ R

p×m
+ . ��

Remark 3.4. From (3.76b) and (3.79a) it follows that if α = β , 0 < α < 1, then
cαβ (k, l) > 0 for k, l = 1,2, . . . and the fractional 2D linear system (3.77) is not
positive.

The considerations presented for Roesser model can be easily extended to the
model (3.77) [103].



Chapter 4
Pointwise Completeness and Pointwise
Degeneracy of Linear Systems

4.1 Standard Discrete-Time Linear Systems

Consider the discrete-time linear system described by the equation

xi+1 = Axi, (4.1)

where xi ∈ Rn is the state vector and A ∈ Rn×n.

Theorem 4.1. Solution of the equation (4.1) has the form

xi = Aix0, i ∈ Z+ = {0,1, . . .}. (4.2)

Definition 4.1. The standard discrete-time linear system (4.1) is called pointwise
complete for i = q if for every final state x f ∈ Rn there exists an initial condition x0

such that xq = x f .

Theorem 4.2. The standard discrete-time linear system (4.1) is pointwise complete
if and only if the matrix A is nonsingular.

Proof. For i = q from (4.2) we have x f = xq = Aqx0. From this equation it is possible
to find x0 for any given vector x f if and only if detAq �= 0. Note that detAq =(detA)q.
Therefore, x0 = A−qx f if and only if detA �= 0. ��
Definition 4.2. The standard discrete-time linear system (4.1) is called pointwise
degenerated for i = q if there exist nonzero vector v ∈ Rn such that for all initial
conditions x0 ∈ R

n the solution (4.2) for i = q satisfies the condition vT xq = 0.

Theorem 4.3. The standard discrete-time linear system (4.1) is pointwise degener-
ated for i = q if and only if the matrix A is singular. The vector v can be found from
vT Aq = 0.

Proof. There exists a vector v such that vT Aq = 0, if and only if the matrix A is
singular. In this case premultiplying the equation x f = Aqx0 by vT we obtain vT x f =
vT Aq = 0. ��
T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 81–101.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Example 4.1. Check the pointwise completeness and pointwise degeneracy of the
system (4.1) with the matrix

A =
[

0 a
2 1

]
.

Note that detA = −2a and the system is pointwise complete for a �= 0 and it is
pointwise degenerated for a = 0. In this case

v =
[

1 0
]T

.

4.2 Standard Continuous-Time Linear Systems

Consider the continuous-time linear system described by the equation

ẋ(t) = Ax(t), (4.3)

where x ∈ Rn is the state vector and A ∈ Rn×n.

Theorem 4.4. Solution of the equation (4.3) has the form

x(t) = eAtx0. (4.4)

From expansion of eAt it follows that deteAt �= 0 for every matrix A and time t.

Definition 4.3. The standard continuous-time linear system (4.3) is called pointwise
complete for t = t f if for every final state x f ∈ Rn there exists an initial condition
x(0) = x0 such that x(t f ) = x f .

Theorem 4.5. The standard continuous-time linear system (4.3) is pointwise com-
plete for t = t f for every (nonsingular or singular) matrix A.

Definition 4.4. The standard continuous-time linear system (4.3) is called pointwise
degenerated in the direction v and time t = t f , if there exists a nonzero vector v ∈ Rn

such that for every initial state x0 ∈ Rn the solution (4.4) for t = t f satisfies the
condition vT x f = 0.

Taking into account that every continuous-time linear system is pointwise complete
we obtain the following theorem.

Theorem 4.6. The standard continuous-time linear system (4.3) is not pointwise
degenerated for every matrix A.

Proof. The proof follows immediately from the fact that deteAt �= 0 for every A and
time t. ��
Corollary 4.1. From Theorems 4.5 and 4.6 it follows that in linear circuit composed
of resistances R, inductances L and capacitances C by suitable choice of initial
conditions (voltages uC(0) on condensators and currents iL(0) in coils) it is possible
to obtain in a given time t f the desired values uC(t f ) and iL(t f ).
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4.3 Standard Discrete-Time Linear Systems with Delays

Consider the discrete-time linear systems with h delays

xi+1 =
h

∑
j=0

A jxi− j = A0xi + A1xi−1 + · · ·+ Ahxi−h, (4.5)

where xi ∈ Rn is the state vector a A j ∈ Rn×n, j = 0,1, . . . ,h.

In general case the initial conditions x0,x−1, . . . ,x−n are nonzero.

Theorem 4.7. Solution of the equation (4.5) has the form

xi = Φix0 +
h

∑
j=0

− j

∑
l=−1

Φi− j−l−1A jxl, (4.6)

where

Φi+1 =
h

∑
k=0

Φi−kAk, Φ0 = In, and Φi = 0, for i < 0.

Definition 4.5. The discrete-time linear system with h delays (4.5) is called point-
wise complete for i = q ≥ h if for any given final state x f ∈ Rn there exist initial
conditions x0,x−1, . . . ,x−h such that the solution for i = q is equal to x f , i.e. x f = xq.

Definition 4.6. The discrete-time linear system with h delays (4.5) is called point-
wise degenerated in the direction v for i = q ≥ h if there exists a nonzero vector
v ∈ Rn such that for any initial conditions x0,x−1, . . . ,x−h the solution (4.6) for i = q
satisfies the condition vT xq = 0.

Theorem 4.8. The discrete-time linear system with h delays (4.5) is pointwise
complete for i = q if and only if

rankHq = n, (4.7)

where

Hq =
[

H0(q) H1(q) . . . Hh(q)
]

(4.8)

H0(q) = Φq, Hj(q) =
h− j+1

∑
k=1

Φq−kAk+ j−1, j = 1, . . . ,h. (4.9)

Proof. From (4.6) for i = q we have

xq = Hqx̃0, (4.10)
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where

x̃0 =

⎡
⎢⎢⎢⎣

x0

x−1
...

x−h

⎤
⎥⎥⎥⎦ ∈ R

(h+1)n. (4.11)

The equation (4.10) has a solution x̃0 for any xq = x f if and only if the condition
(4.7) is satisfied. ��
Theorem 4.9. The discrete-time linear system with h delays (4.5) is pointwise de-
generated in the direction v for i = q ≥ h if and only if

rankHq < n . (4.12)

Proof. By Definition 4.6 the system (4.5) is pointwise degenerated in the direction
v for i = q if for any vector x̃0 there exists a vector xq = x f such that

vT x f = vT Hqx̃0 = 0. (4.13)

There exists a vector v satisfying (4.13) for any vector x̃0 if and only if the condition
(4.12) is satisfied. ��

4.4 Positive Discrete-Time Linear Systems

Consider the discrete-time linear system described by the equation (4.1).

Definition 4.7. The discrete-time linear system (4.1) is called positive if xi ∈ Rn
+,

i ∈ Z+ for any initial conditions x0 ∈ Rn
+.

Theorem 4.10. The discrete-time linear system (4.1) is positive if and only if A ∈
R

n×n
+ .

Proof. Necessity. Assuming that xi ∈ Rn
+, and x0 = ei = [0, ...,0,1,0, ...,0]T , we

obtain x1 = Ax0 = Ai ∈ Rn
+ for i = 1, . . . ,n.

Sufficiency. For x0 ∈ Rn
+ and A ∈ R

n×n
+ , we have Ai ∈ R

n×n
+ and from (4.2) xi ∈ Rn

+,
i ∈ Z+. ��

Definition 4.8. The positive discrete-time system (4.1) is called pointwise complete
for i = q if for every final state x f ∈ Rn

+ there exists x0 ∈ Rn
+ such that xq = x f .

Theorem 4.11. Positive discrete-time system (4.1) is pointwise complete for i = q if
and only if the matrix A is monomial (see Definition 1.10).

Proof. It is easy to show that the matrix Aq for q = 1,2, . . . is monomial if and only
if the matrix A is monomial. It is well-known that A−q ∈ R

n×n
+ if and only if the

matrix A is monomial. In this case from (4.2) we have x0 ∈ Rn
+ for any x f ∈ Rn

+. ��
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Definition 4.9. The positive discrete-time system (4.1) is called pointwise degener-
ated for i = q if there exists at least one final state x f ∈ Rn

+, which is unreachable
in q steps from any initial state x0 ∈ Rn

+, or equivalently the equality xq = x f is not
satisfied for any x0 ∈ Rn

+.

Theorem 4.12. The positive discrete-time system (4.1) is pointwise degenerated for
i = q if and only if the matrix A is not monomial.

Proof. The equation x f = xq = Aqx0 has a solution x0 ∈ Rn
+ for any x f ∈ Rn

+ if and
only if A is a monomial matrix. ��

4.5 Positive Continuous-Time Linear Systems

Consider the continuous-time linear system described by the equation (4.3).

Definition 4.10. The continuous-time system (4.3) is called positive if x(t) ∈ Rn
+,

t ≥ 0 for any initial conditions x0 ∈ Rn
+.

Theorem 4.13. The continuous-time system (4.3) is positive if and only if A is a
Metzler matrix (see Definition 2.7).

Definition 4.11. The positive continuous-time system (4.3) is called pointwise com-
plete for t = t f if for every final state x f ∈ Rn

+ there exists x0 ∈ Rn
+ such that

x(t f ) = x f .

Theorem 4.14. The positive continuous-time system (4.3) is pointwise complete for
t = t f if and only if the matrix A is diagonal.

Proof. From (4.4) it follows that for any x f ∈ Rn
+ there exists x0 ∈ Rn

+ if and only if
the matrix e−At f is monomial. From the expansion

e−At f =
∞

∑
k=0

(−At f )k

k!
= In − At f

1!
+

(At f )2

2!
−·· · , (4.14)

it follows that the matrix e−At f is monomial if and only if A is diagonal. ��
Definition 4.12. The positive continuous-time system (4.3) is called pointwise de-
generated for t = t f if there exists at least one final state x f ∈Rn

+, which is reachable
for t = t f from any initial state x0 ∈ Rn

+, or equivalently the equation x(t f ) = x f is
not satisfied for any x0 ∈ Rn

+.

Theorem 4.15. The positive continuous-time system (4.3) is pointwise degenerated
for t = t f if and only if the matrix A is not diagonal.

Proof. For any x f ∈Rn
+ there exists x0 ∈Rn

+ satisfying (4.4) if and only if the matrix
e−At f is monomial. From (4.14) it follows that e−At f is monomial if and only if A is
diagonal. ��
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4.6 Positive Discrete-Time Linear Systems with Delays

Definition 4.13. The discrete-time linear system with delays (4.5) is called positive
if xi ∈ Rn

+, i ∈ Z+ for any initial conditions x− j ∈ Rn
+, j = 0, . . . ,h.

Theorem 4.16. The discrete-time linear system with delays (4.5) is positive if and
only if A j ∈ R

n×n
+ for j = 0, . . . ,h.

Definition 4.14. The positive discrete-time system (4.5) is called pointwise com-
plete for i = q ≥ h if for every x f ∈ Rn

+ there exist initial conditions x− j ∈ Rn
+,

j = 0, . . . ,h such that xq = x f .

The solution (4.6) of the equation (4.5) with nonzero initial conditions can be rewrit-
ten in the form

xq = Hqx̃0 (4.15)

where

x̃0 =
[

xT
0 ,xT

−1, . . . ,x
T
−h

]T ∈ R
(h+1)n
+ ,

Hq =
[

H0(q) H1(q) . . . Hh(q)
] ∈ R

n×(h+1)n
+ , (4.16)

and

Hj(q) =
h− j+1

∑
k=1

Φq−kAk+ j−1, H0(q) = Φq.

From Definition 4.14 and (4.15) the following necessary condition for pointwise
completeness follows [32].

Lemma 4.1. The positive discrete-time system with delays (4.5) is pointwise com-
plete for i = q only if the matrix Hq has full row rank.

Theorem 4.17. Positive discrete-time system with delays (4.5) is pointwise complete
for i = q if and only if one of the following equivalent conditions is satisfied:

a) Im+ Hq = Rn
+, where Im+ Hq =

{
xq ∈ Rn

+ : xq = Hqx̃0, x̃0 ∈ R
(h+1)n
+

}
is posi-

tive image of the matrix Hq defined by (4.16);
b) The matrix Hq contains n linearly independent monomial columns;

Proof. From Definition 4.14 and (4.15) it follows that the positive system (4.5) is

pointwise complete for i = q if and only if for every xq ∈Rn
+ there exists x̃0 ∈R

(h+1)n
+

such that the equation (4.15) is satisfied but this is equivalent to the condition
a). Note that the matrix Hq contains n linearly independent monomial columns if
and only if the condition a) is satisfied. Therefore, the conditions a) and b) are
equivalent.

If one of the conditions is satisfied then x̃0 ∈ R
(h+1)n
+ can be found from x0 =

(Hq)−1x f , where Hq is monomial matrix composed of the monomial columns and
xq = x f ∈ R

n
+. ��
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Theorem 4.18. The positive discrete-time system with delays (4.5) is pointwise com-
plete for i = q if the matrix Hq has full row rank and

Hp = HT
q

[
HqHT

q

]−1 ∈ R
n(h+1)×n
+ , (4.17)

Moreover
x̃0 = HT

q

[
HqHT

q

]−1
x f . (4.18)

Proof. If rankHq = n, then det[HqHT
q ] �= 0 and the matrix (4.17) is well-defined. If

the condition (4.17) is satisfied and x f ∈ Rn
+, then x̃0 ∈ R

(h+1)n
+ and x̃0 is given by

(4.18). ��
Definition 4.15. The positive discrete-time system with delays (4.5) is pointwise
degenerated for i = q, if there exists at least one state x f ∈Rn

+, which is unreachable
from any initial condition x0 ∈ Rn

+.

Corollary 4.2. The positive discrete-time system with delays (4.5) can be pointwise
degenerated although rankHq = n if there exists xq ∈ R

n
+ for which it is impossible

to find x̃0 ∈ R
(h+1)n
+ satisfying the equation (4.15).

Theorem 4.19. The positive discrete-time system with delays (4.5) is pointwise de-
generated for i = q if and only if the matrix Hq does not contain n linearly indepen-
dent monomial columns.

Proof. The proof follows immediately from Definition 4.15 and Theorem 4.17. ��
Example 4.2. Check the pointwise completeness of the positive system (4.5) for
h = 1 and the matrices:

A0 =

⎡
⎣ 0 1 0

0 0 1
0 0 1

⎤
⎦ , A1 =

⎡
⎣ 0 0 0

1 0 0
0 2 0

⎤
⎦ .

In this case the matrix H1 = [H0(1),H1(1)] = [A0,A1] has 3 linearly independent
monomial columns. Therefore, by Theorem 4.17 the system is pointwise complete.
It is easy to check for this system the condition (4.17) is not satisfied and we are
not able to find the initial condition for the equation (4.18). This initial condition x̃0

corresponding to x f = [x f 1,x f 2,x f 3]T can be found as follows. From matrix [A0,A1]
we choose the second column of the matrix A0 and the first two columns of the
matrix A1. The matrix composed from these monomial columns has the form

H1 =

⎡
⎣ 1 0 0

0 1 0
0 0 2

⎤
⎦ .

Assuming x̃0 = [0,x1,0,x2,x3,0]T , from (4.15) we obtain

x f = H1x̃
′
0 for x̃

′
0 =

[
x1 x2 x3

]T
.
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Hence
x̃
′
0 = H

−1
1 x f =

[
x f 1 x f 2

1
2 x f 3

]T
, (4.19)

and x̃0 = [0,x f 1,0,x f 2,
1
2 x f 3,0].

Theorem 4.20. The positive discrete-time system with delays (4.5) is pointwise de-
generated for i = q if the matrix [A0,A1, . . . ,Ah] does not contain n linearly inde-
pendent monomial columns.

Proof. The matrix (4.16) contains n linearly independent monomial columns only if
the matrix [A0,A1, . . . ,Ah] contains n linearly independent monomial columns. ��

4.7 Fractional Discrete-Time Linear Systems

Consider the fractional autonomous discrete-time linear system described by the
equation

Δ α xi+1 = Axi, i ∈ Z+, 0 < α < 1, (4.20)

where xi ∈ Rn is the state vector and A ∈ Rn×n.

The (backward) difference of α-order has the form

Δ α xi = xi +
i

∑
j=1

(−1) j
(

α
j

)
xi− j, 0 < α < 1. (4.21)

Substituting of (4.21) into (4.20) yields:

xi+1 = Aα xi +
i

∑
j=1

c j(α)xi− j, (4.22)

where

Aα = A + Inα, c j(α) = (−1) j
(

α
j + 1

)
> 0. (4.23)

Theorem 4.21. The solution of the equation (4.22) has the form

xi = Φix0, i ∈ Z+, (4.24)

where

Φ0 = In, Φi+1 = AαΦi +
i

∑
j=1

c j(α)Φi− j. (4.25)

Definition 4.16. The fractional discrete-time linear system (4.22) is called point-
wise complete for i = q ≥ 1 if for every x f ∈ Rn there exists an initial condition
x0 ∈ Rn such that xq = x f .

Theorem 4.22. The fractional discrete-time linear system (4.22) is pointwise com-
plete for i = q if and only if rankΦq = n or equivalently detΦq �= 0.
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Proof. From (4.24) for i = q we have x f = Φqx0 and we can find x0 for given x f if
and only if rankΦq = n, detΦq �= 0. ��
Definition 4.17. The fractional discrete-time linear system (4.22) is pointwise de-
generated in the direction v if there exists a nonzero vector v ∈ Rn such that for all
initial conditions x0 ∈ Rn the solution of (4.22) satisfies the condition vT xq = 0.

Theorem 4.23. The fractional discrete-time linear system (4.22) is pointwise degen-
erated for i = q if and only if

rankΦq < n, or equivalently detΦq = 0. (4.26)

The direction of degeneracy v can be found from the equation vT Φq = 0.

Proof. If the condition (4.26) is satisfied, then there exists a vector v ∈ R
n such that

vT xq = vT x f = vT Φqx0 for every x0 ∈ Rn. ��

4.8 Fractional Continuous-Time Linear Systems

Consider the fractional autonomous continuous-time linear system described by the
equation

dα

dtα x(t) = Ax(t) (4.27)

where x ∈ Rn, A ∈ Rn×n, 0 < α < 1 and dα

dtα is defined by (2.11).

Theorem 4.24. The solution of the equation (4.27) has the form:

x(t) = Φ0(t)x0, (4.28)

where

Φ0(t) = Φ0(A,t) =
∞

∑
k=0

Aktkα

Γ (kα + 1)
= In +

Atα

Γ (α + 1)
+ · · · (4.29)

Lemma 4.2. The matrix Φ0(t) defined by (4.29) is nonsingular for any matrix A ∈
Rn×n and time t ≥ 0.

Proof. Consider the function

Φ0(z, t) =
∞

∑
k=0

zktkα

Γ (kα + 1)
= In +

ztα

Γ (α + 1)
+ · · · (4.30)

We shall show that Φ0(A,t) �= 0 for any matrix A ∈ Rn×n. The function (4.30) is
well-defined on the spectrum of the matrix A. Let λ1,λ2, . . . ,λn be the eigenvalues
(real or complex) of the matrix A. From (4.30) it follows that Φ0(λi, t) �= 0 for any
real λi, i = 1, . . . ,n and Φ0(λi,t)Φ0(λi+1,t) �= 0 for any complex conjugate pair
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(λi,λi+1), i = 1,2, . . . ,n− 1. It is well-known that the eigenvalues of the matrix
Φ0(A,t) are equal to Φ0(λ1,t),Φ0(λ2, t), . . . ,Φ0(λn, t) and

detΦ0(A,t) = Φ0(λ1, t)Φ0(λ2,t) . . .Φ0(λn, t) �= 0.

��
Lemma 4.3. If the matrix A has distinct eigenvalues then the matrix (4.29) is given
by

Φ0(A,t) =
n

∑
i=1

n

∏
j=1
j �=i

A−λ jIn

λi −λ j
Φ0(λi, t). (4.31)

Example 4.3. Using the Sylvester formula (4.31) find the matrix Φ0(A, t) for the
system (4.27) with the matrix

A =
[

1 0
0 0

]
. (4.32)

This matrix has two eigenvalues λ1 = 1, λ2 = 0. Using (4.31) we obtain

Φ0(A,t) = AΦ0(λ1,t)+ (I2−A)Φ0(λ2,t) =
[

ϕ(t) 0
0 1

]
, (4.33)

where

ϕ(t) =
∞

∑
k=0

tkα

Γ (kα + 1)
.

The matrix (4.29) can be rewritten in the form

Φ0(t) = In +
∞

∑
k=1

Akϕk(t), (4.34)

where

ϕk(t) =
tkα

Γ (kα + 1)
. (4.35)

From (4.34) we have the following lemma.

Lemma 4.4. If A is a nilpotent matrix with index μ , i.e.

Ak = 0 for k = μ ,μ + 1, . . . and Aμ−1 �= 0,

then

Φ0(t) = In +
μ−1

∑
k=1

Akϕk(t). (4.36)

Definition 4.18. The fractional continuous-time linear system (4.27) is called point-
wise complete for t = t f if for every final state x f ∈ Rn there exists a vector of initial
conditions x0 ∈ Rn such that x(t f ) = x f .
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Theorem 4.25. The fractional continuous-time linear system (4.27) is pointwise
complete for any t = t f and every x f .

Proof. From (4.28) for t = t f we have

x(t f ) = x f = Φ0(t f )x0,

and
x0 =

[
Φ0(t f )

]−1
x f , (4.37)

since by Lemma 4.2 detΦ0(t f ) �= 0 for any matrix A and time t ≥ 0. ��

Definition 4.19. The fractional continuous-time system (4.27) is called pointwise
degenerated in the direction v for t = t f if there exists a vector v ∈ Rn such that for
all initial conditions x0 ∈ Rn the solution of (4.27) for t = t f satisfies the condition
vT x f = 0.

Remark 4.1. Every strictly upper (down) triangular matrix is a nilpotent matrix with
the index not greater than the dimensions of the matrix.

Example 4.4. Check the pointwise completeness of the system with

A =
[

0 1
0 0

]
. (4.38)

The nilpotency index of the matrix (4.38) is equal to 2. From (4.29) we have

Φ0(t) = In +
Atα

Γ (α + 1)
=
[

1 0
0 1

]
+
[

0 1
0 0

]
tα

α
=
[

1 tα

α
0 1

]
.

Assuming t f = 1, x f = [1,1]T we obtain

x0 =
[

1 1α

α
0 1

]−1 [
1
1

]
=
[

1− 1
α

1

]
.

From Lemma 4.4 for μ = 2 we have

Φ0(t) = I2 + Aϕ1(t) =
[

1 ϕ1(t)
0 1

]
,

where ϕ1(t) is given by (4.35) for k = 1. By Theorem 4.25 the system is pointwise
complete. For any given find state x f = [x f 1,x f 2]T ∈ R2 we may find the desired
initial conditions using (4.37), i.e.

x0 =
[
Φ0(t f )

]−1
x f =

[
1 −ϕ1(t f )
0 1

][
x f 1

x f 2

]
=
[

x f 1 − x f 2ϕ1(t f )
x f 2

]
.
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Assuming x f 1 = 0 and x f 2 > 0, we obtain

x0 =
[−x f 2ϕ1(t f )

x f 2

]
. (4.39)

4.9 Positive Fractional Discrete-Time Linear System

Consider the fractional discrete-time linear system described by the equation (4.22).

Definition 4.20. The fractional discrete-time linear system (4.22) is called positive
if xi ∈ Rn

+, i ∈ Z+ for all initial conditions x0 ∈ Rn
+.

Theorem 4.26. The fractional discrete-time linear system (4.22) is positive if and
only if A + αIn = Aα ∈ R

n×n
+ .

Definition 4.21. The positive fractional discrete-time system (4.22) is pointwise
complete for i = q ≥ 1 if for any final state x f ∈ R

n
+ there exists an initial condition

x0 ∈ Rn
+, such that xq = x f .

Theorem 4.27. The positive fractional discrete-time system (4.22) is pointwise com-
plete for i = q ≥ 1 if and only if the matrix Aα is nonsingular and diagonal. If the
matrix Aα is singular and diagonal then the system (4.22) is pointwise complete for
i = q ≥ 2.

Proof. From (4.24) for i = q ≥ 1 we have x0 = [Φq]−1xq. Hence x0 ∈ Rn
+ for x f ∈

Rn
+, if and only if [Φq]−1 ∈ R

n×n
+ , and this is equivalent to the condition that Φq is

a monomial matrix. From (4.25) and that c j > 0 for every j ≥ 1 and Aα ∈ R
n×n
+ it

follows that Φi is monomial matrix for any i ≥ 1, if and only if Aα is monomial
matrix. From the structure of matrix Aα it follows that it is monomial if and only
if it is nonsingular and diagonal. If Aα is a singular and diagonal then Φ1 = Aα is
not monomial and from (4.24) it follows that Φi is nonsingular and diagonal for any
i ≥ 2. In this case the system (4.22) is pointwise complete for i = q ≥ 2. ��

Definition 4.22. The positive fractional discrete-time system (4.22) is called point-
wise degenerated if there exists at least one final state x f ∈Rn

+, such that is unreach-
able from any initial condition x0 ∈ Rn

+.

Theorem 4.28. The positive fractional discrete-time system (4.22) is pointwise de-
generated for i = q ≥ 1 if and only if the matrix Φq is not monomial.

Example 4.5. Check the pointwise completeness of the fractional system (4.22) for
0 < α < 1 with the matrix

A =
[

1 0
0 −α

]
.
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Using (4.23) and (4.25) we obtain:

c1 = (−1)
α(α −1)

2
, c2 =

α(α −1)(α −2)
6

, . . .

Φ1 = Aα = A + Inα =
[

1 + α 0
0 0

]
,

Φ2 = Aα Φ1 + c1Φ0 =
[

(1 + α)2 + c1 0
0 c1

]
,

Φ3 = Aα Φ1 + c1Φ1 + c2Φ0 =
[

[(1 + α)2 + c1](1 + α)+ c1(1 + α)+ c2 0
0 c2

]

...

The system is positive since Aα ∈ R
2×2
+ and the matrices Φi are diagonal with

nonnegative entries for i ≥ 2. Therefore, by Theorems 4.27 and 4.28 we have the
following:

a) The positive fractional system is not pointwise complete for i = q = 1, since
the matrix Φ1 is singular. The system is pointwise degenerated in the direction
v = [0,1]T ;

b) The positive fractional system is pointwise complete for i = q ≥ 2, since the
matrix Φi is diagonal and nonsingular for every i = q ≥ 2.

In this case it is possible to find x0 = [Φq]−1xq for any given xq = x f only for q ≥ 2.
Assuming α = 0.5 we obtain c1 = 0.125 and:

Φ1 =
[

1.5 0
0 0

]
, Φ2 =

[
2.375

0 0.125

]
.

Therefore, any desired final state x f = [x f 1,x f 2]T ∈ R2
+ is reachable for i = q = 2

from the initial state

x0 = [Φ2]
−1 x f =

[
0.4211 0

0 8.0

][
x f 1

x f 2

]
.

4.10 Positive Fractional Continuous-Time Linear Systems

Consider the fractional continuous-time linear system described by the equation
(4.27).

Definition 4.23. The fractional continuous-time linear system (4.27) is called posi-
tive if x(t) ∈ Rn

+, t ≥ 0 for all initial conditions x0 ∈ Rn
+.

Theorem 4.29. The fractional continuous-time system (4.27) is positive if and only
if A is a Metzler matrix.



94 4 Pointwise Completeness and Pointwise Degeneracy of Linear Systems

Definition 4.24. The positive fractional continuous-time system (4.27) is called
pointwise complete for t = t f if for any final state x f ∈ Rn

+ there exists an initial
condition x0 ∈ Rn

+ such that x(t f ) = x f .

Theorem 4.30. The positive fractional continuous-time system (4.27) is pointwise
complete for t = t f if and only if the matrix A is diagonal.

Proof. From (4.37) it follows that for any x f ∈ Rn
+ there exists x0 ∈ Rn

+ if and only

if
[
Φ0(t f )

]−1 ∈ Rn
+ and the matrix Φ0(t f ) is monomial. By (4.34) the matrix Φ0(t f )

is monomial if and only if the matrix A is diagonal. ��
Definition 4.25. The positive fractional continuous-time system (4.27) is called
pointwise degenerated if there exists at least one finial state x f ∈ Rn

+, which is un-
reachable from any initial state x0 ∈ Rn

+, in other words does not exist t = t f and
x0 ∈ Rn

+ such that x(t f ) = x f .

Theorem 4.31. The positive fractional continuous-time system (4.27) is pointwise
degenerated if and only if the matrix A is not diagonal.

Proof. The proof follows immediately from Definition 4.25 and Theorem 4.30. ��
Example 4.6. In Example 4.4 it was shown that the fractional system (4.27) with the
Metzler matrix (4.38) is pointwise complete. From (4.39) it follows that if x f 1 = 0
and x f 2 > 0, then x0 /∈R2

+. This means that the positive fractional system with (4.38)
is pointwise degenerated. The same result follows from Theorem 4.30.

Example 4.7. Consider the positive fractional system (4.27) with the matrix (4.32).
Using Theorem 4.30 and (4.37) we may find x0 ∈ R

2
+ for any final state x f ∈ R

2
+. If

x f = [x f 1,x f 2]T ∈ R2
+ then from (4.37) we have

x0 =

[
1

ϕ(t f )
0

0 1

][
x f 1

x f 2

]
=

[
x f 1

ϕ(t f )
x f 2

]
∈ R

2
+.

4.11 Pointwise Completeness and Pointwise Degeneracy of
Electrical Circuits

Example 4.8. Consider the electrical circuit shown on Fig. 4.1 with given resistances
R1, R2, R3, capacitances C1, C2 and voltage source e = e(t). The voltages on the
condensators u1 = u1(t) and u2 = u2(t) are the state variables x1 = u1 and x2 = u2

and the voltage source is the input u = e.
Using the Kirchhoff’s laws we may write the equations:

R1C1u̇1 + u1 + R3 (C1u̇1 +C2u̇2) = e, (4.40a)

R2C2u̇2 + u2 + R3 (C1u̇1 +C2u̇2) = e, (4.40b)



4.11 Pointwise Completeness and Pointwise Degeneracy of Electrical Circuits 95

Fig. 4.1 R, C, e type elec-
trical circuit. Illustration to
Example 4.8.

R1 R2

R3

C1 C2
C1u̇1 C2u̇2

u1 u2

e

The equations (4.40) can be rewritten in the form
[

u̇1

u̇2

]
= A

[
u1

u2

]
+ Be, (4.41)

where

A =

[
− R2+R3

C1[R1(R2+R3)+R2R3]
R3

C1[R1(R2+R3)+R2R3]
R3

C2[R1(R2+R3)+R2R3]
− R1+R3

C2[R1(R2+R3)+R2R3]

]
, (4.42a)

B =

[
R2

C1[R1(R2+R3)+R2R3]
R1

C2[R1(R2+R3)+R2R3]

]
. (4.42b)

The matrix A is a Metzler matrix and the matrix B has positive entries. This electri-
cal circuit is an example of linear positive continuous-time system. This electrical
circuit will be called shortly R, C, e type.

By Theorem 4.14 an electrical circuit is pointwise complete for t = t f if and only
if its A matrix is diagonal what implies R3 = 0.

By Theorem 4.15 an electrical circuit is pointwise degenerated for every t = t f if
and only if the matrix A is not diagonal, what implies R3 > 0.

Example 4.9. Consider the electrical circuit shown on Fig. 4.2 with given resistances
R1, R2, R3, inductances L1, L2 and voltage sources e1 = e1(t) and e2 = e2(t). The
currents in coils i1 = i1(t) and i2 = i2(t) are the state variables x1 = i1 and x2 = i2
and the voltages sources u1 = e1, u2 = e2 are inputs.

Using the Kirchhoff’s laws we may write the equations:

L1
di1
dt

+ R1i1 + R3 (i1 − i2) = e1, (4.43a)

L2
di2
dt

+ R2i2 + R3 (i2 − i1) = e2, (4.43b)
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Fig. 4.2 R, L, e type elec-
trical circuit. Illustration to
Example 4.9.

R1 R2R3

L1 L2

i1 − i2

i1 i2

e1 e2

The equations (4.43) can be rewritten in the form

d
dt

[
i1
i2

]
= A

[
i1
i2

]
+ B

[
e1

e2

]
, (4.44)

where

A =

[
−R1+R3

L1

R3
L1

R3
L2

−R2+R3
L2

]
, B =

[
1

L1
0

0 1
L2

]
. (4.45)

The matrix A is a Metzler matrix and the matrix B has nonnegative entries. The elec-
trical circuit is an example of positive continuous-time linear system. This electrical
circuit will be called shortly R, L, e type.

The presented considerations can be extended to any electrical circuits of R, C, e
and R, L, e types.

Theorem 4.32. The positive electrical circuits of R, C, e and R, L, e types are point-
wise complete for every t = t f if and only if the matrix A is diagonal. The electrical
circuits are pointwise degenerated if and only if A is not diagonal Metzler matrix.

In general case an electrical circuits R, C, L, e types is not a positive system. If we
neglect the assumption x0 ∈ Rn

+, x(t) ∈ Rn
+, u(t) ∈ Rm

+, t ≥ 0 then from Theorem
4.5 we obtain the following theorem.

Theorem 4.33. An electrical circuit of R, C, L, e type is pointwise complete for every
t = t f (as standard linear system).

4.12 Standard Continuous-Discrete Linear System Described
by the General Model

Consider the autonomous general model

ẋ(t, i+ 1) = A0x(t, i)+ A1ẋ(t, i)+ A2x(t, i+ 1), (4.46)
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t ∈ R+ = [0,+∞], i ∈ Z+ = {0,1, . . .},
where ẋ(t, i) = ∂x(t,i)

∂ t , x(t, i) ∈ Rn, u(t, i) ∈ Rm, y(t, i) ∈ Rp are the state, input and
output vectors.

Boundary conditions for (4.46) are given by

x(0, i) = xi, i ∈ Z+, and x(t,0) = xt0, ẋ(t,0) = xt1, t ∈ R+. (4.47)

Definition 4.26. The general model (4.46) is called pointwise complete at the point
(t f ,q) if for every final state x f ∈ Rn there exist boundary conditions (4.47) such
that x(t f ,q) = x f .

Theorem 4.34. The general model (4.46) is always pointwise complete at the point
(t f ,q) for any t f > 0 and q = 1.

Proof. From (4.46) for i = 0 we have

ẋ(t,1) = A2x(t,1)+ F(t,0), (4.48)

where
F(t,0) = A0x(t,0)+ A1ẋ(t,0) = A0xt0 + A1xt1. (4.49)

Assuming xt0 = 0, xt1 = 0 we obtain F(t,0) = 0 and from (4.48)

x(t,1) = eA2t x(0,1). (4.50)

Substituting t = t f and q = 1 we obtain

x f = eA2t f x(0,1) (4.51)

and
x(0,1) = e−A2t f x f . (4.52)

Therefore, for any final state x f there exist boundary conditions xt0 = 0, xt1 = 0 and
x1 = e−A2t f x f such that x(t f ,1) = x f since the matrix e−A2t f x f exists for any matrix
A2 and any t f > 0. ��
From Theorem 4.34 we have the following corollaries.

Corollary 4.3. Any general model (4.46) is pointwise complete at the point (t f ,1)
for arbitrary t f > 0.

Corollary 4.4. The pointwise completeness of the general model at the point (t f ,1)
is independent of the matrices A0 and A1 of the model.

Definition 4.27. The general model (4.46) is called pointwise degenerated at the
point (t f ,q) in the direction v if there exist a nonzero vector v ∈ Rn such that for all
boundary conditions (4.47) the solution of the model for t = t f , i = q satisfies the
condition vT x(t f ,q) = 0.
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Theorem 4.35. The general model (4.46) is not pointwise degenerated at the point
(t f ,1) for any t f > 0.

Proof. Using the solution of (4.48)

x(t,1) = eA2t x(0,1)+
∫ t

0
eA2(t−τ)F(τ,0)dτ, (4.53a)

we obtain

vT x(t,1) = vT eA2t x(0,1)+
∫ t

0
vT eA2(t−τ)F(τ,0)dτ, (4.53b)

where F(t,0) is defined by (4.49). From (4.53b) it follows that does not exist a
nonzero vector v ∈ Rn such that for all boundary conditions (4.47) vT (t f ,1) = 0
since the matrix eA2t f is nonsingular for every matrix A2 and t f > 0. ��
Example 4.10. Consider the general model (4.46) with the matrices

A0 =
[

1 2
3 2

]
, A1 =

[
1 1
2 1

]
, A2 =

[−1 0
1 −2

]
. (4.54)

Find the boundary conditions (4.47) at the point (t f ,q) = (1,1) for x f =
[

2
3

]
.

Taking into account that the eigenvalues of A2 are λ1 = −1, λ2 = −2 and using
the Sylvester formula we obtain

e−A2t =
A2 −λ2In

λ1 −λ2
e−λ1t +

A2 −λ1In

λ2 −λ1
e−λ2t =

[
et 0

et − e2t e2t

]
. (4.55)

From (4.52) we have the desired boundary conditions

x(0,1) = e−A2t f x f =
[

et f 0
et f − e2t f e2t f

][
2
3

]∣∣∣∣
t f =1

=
[

2e
2e + e2

]
, (4.56)

and x(t,0) = 0, ẋ(t,0) = 0, t ≥ 0.

The above conditions can be extended as follows.

From (4.46) for i = 1 we have

ẋ(t,2) = A2x(t,2)+ F(t,1), (4.57)

where
F(t,1) = A0x(t,1)+ A1ẋ(t,1). (4.58)

Substituting of (4.48) and (4.50) for F(t,0) = 0 into (4.58) yields

F(t,1) = (A0 + A1A2)x(t,1) = (A0 + A1A2)eA2t x(0,1). (4.59)
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Assuming x(0,1) = 0 we obtain F(t,1) = 0 and from (4.57)

x(t,2) = eA2t x(0,2). (4.60)

Continuing the procedure for i = 2, . . . ,q−1 we obtain the following theorem, which
is an extension of Theorem 4.34.

Theorem 4.36. The general model (4.46) is always pointwise complete at the point
(t f ,q), t f > 0, q ∈ N = {1,2, . . .} for any matrices Ak, k = 0,1,2.

Theorem 4.35 can be also extended for any point (t f ,q).

4.13 Positive Continuous-Discrete Linear System Described by
the General Model

Definition 4.28. The model (4.46) is called positive if x(t, i) ∈ Rn
+, t ∈ R+, i ∈ Z+

for any boundary conditions

xt0 ∈ R
n
+, xt1 ∈ R

n
+, t ∈ R+, xi ∈ R

n
+, i ∈ Z+. (4.61)

Theorem 4.37. The general model (4.46) is positive if and only if

A2 ∈ Mn, (4.62a)

A0,A1 ∈ R
n×n
+ , A = A0 + A1A2 ∈ R

n×n
+ , (4.62b)

where Mn is the set of n×n Metzler matrices (with nonnegative off-diagonal entries).

Proof. Necessity of A0 ∈ R
n×n
+ and A1 ∈ R

n×n
+ follows immediately from (4.49)

since F(t,0) ∈ Rn
+, t ∈ R+ and xt0, xt1 are arbitrary. From (4.50) it follows that

A2 ∈ Mn since eA2t ∈ R
n×n
+ only if A2 is a Metzler matrix, x(t,1) ∈ Rn

+, t ∈ R+
and x(0,1) is arbitrary. From (4.57) it follows that F(t,1) ∈ Rn

+, t ∈ R+ for any
x(0,1) ∈ Rn

+ only if A = A0 + A1A2 ∈ R
n×n
+ . The proof of sufficiency is similar to

the one given in [77]. ��
Definition 4.29. The positive general model (4.46) is called pointwise complete at
the point (t f ,q) if for every final state x f ∈R

n
+ there exist boundary conditions (4.61)

such that
x(t f ,q) = x f , t f > 0, q ∈ N = {1,2, . . .}. (4.63)

Theorem 4.38. The positive general model (4.46) is pointwise complete at the point
(t f ,1) if and only if the matrix A2 is diagonal.

Proof. In a similar way as in proof of Theorem 4.34 we may obtain the equation
(4.52). It is well-known [77] that eA2t ∈ R

n×n
+ , t ∈ R+ if and only if A2 is a Metzler

matrix. Hence e−A2t ∈ R
n×n
+ if and only if A2 is a diagonal matrix. In this case for

arbitrary x f ∈ R
n
+ if and only if x(0,1) ∈ R

n
+. ��
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In a similar way as for standard general model we can prove the following
theorem.

Theorem 4.39. The positive general model (4.46) is pointwise complete at the point
(t f ,q), t f > 0, q ∈ N = {1,2, . . .} if and only if the matrix A2 is diagonal.

From Theorem 4.39 we have the following corollary.

Corollary 4.5. The pointwise completeness of the positive general model (4.46) is
independent of the matrices A0 and A1 of the model.

Definition 4.30. The positive general model (4.46) is called pointwise degenerated
at the point (t f ,q) if there exists at least one final state x f ∈Rn

+ such that x(t f ,q) �= x f

for all x(0, i) ∈ Rn
+ and x(t,0) = 0, ẋ(t,0) = 0, t ∈ R+.

Theorem 4.40. The positive general model (4.46) is pointwise degenerated at the
point (t f ,q) if the matrix A2 ∈ Mn is not diagonal.

Proof. In a similar way as in proof of Theorem 4.34 we may obtain the equality
(4.52) which can be satisfied for x f ∈ Rn

+ and x(0, i) ∈ Rn
+ if and only if the Metzler

matrix A2 is diagonal. The proof for q > 1 is similar. ��
These considerations can be easily extended for x(0, i) ∈ Rn

+, x(t,0) ∈ Rn
+ and

ẋ(t,0) ∈ Rn
+, t ∈ R+.

Example 4.11. Consider the general model (4.46) with the matrices

A0 =
[

2 1
3 2

]
, A1 =

[
1 0
2 1

]
, A2 =

[−1 0
0 −2

]
. (4.64)

The model is positive since the matrices A0 and A1 have nonnegative entries and

A = A0 + A1A2 =
[

2 1
3 2

]
+
[

1 0
2 1

][−1 0
0 −2

]
=
[

1 1
1 0

]
∈ R

2×2
+ . (4.65)

The matrix A2 is diagonal and the positive model with (4.64) by Theorem 4.38 is
pointwise complete at the point (t f ,1), t f > 0. Using (4.52) we obtain

x(0,1) = e−A2t f x f =
[

et f 0
0 e2t f

]
x f ∈ R

2
+, (4.66)

for any x f ∈ R2
+ and t f ∈ R+.

Example 4.12. Consider the general model (4.46) with the matrices (4.54). The
model is positive since A0 and A1 have nonnegative entries, A2 ∈ Mn and

A = A0 + A1A2 =
[

1 0
2 0

]
∈ R

2×2
+ . (4.67)
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Let x f =
[

1
0

]
. Using (4.55) and (4.52) we obtain the vector

x(0,1) = e−A2t f x f =
[

et f 0
et f − e2t f e2t f

][
1
0

]
=
[

et f

et f − e2t f

]
, (4.68)

with negative second component for t f > 0. Therefore, the model is pointwise de-
generated at the point (t f ,1). The same result follows from Theorem 4.40 since the

matrix A2 is not diagonal. Note that the vector x(0,1) given by (4.56) for x f =
[

2
3

]

has positive components.



Chapter 5
Pointwise Completeness and Pointwise
Degeneracy of Linear Systems with
State-Feedbacks

5.1 Standard Discrete-Time Linear Systems

Consider the discrete-time system

xi+1 = Axi + Bui, (5.1)

with the state-feedback
ui = Kxi, (5.2)

where xi ∈ Rn, ui ∈ Rm are state and input vectors, A ∈ Rn×n, B ∈ Rn×m and
K ∈ Rm×n is a gain matrix. Substituting (5.2) into (5.1) we obtain

xi+1 = Acxi, (5.3)

where Ac = A + BK.

The solution of the equation (5.3) has the form

xi = Ai
cx0. (5.4)

By Theorem 4.2 the closed-loop system (5.3) is pointwise complete if and only if
the matrix Ac is nonsingular. Let the system (5.1) be pointwise degenerated. We are
looking for a gain matrix K ∈ R

m×n such that the closed-loop matrix Ac = A + BK
is nonsingular.

Theorem 5.1. If the pair (A,B) is reachable then there exists a gain matrix
K ∈ Rm×n such that the closed-loop system is pointwise complete.

Proof. It is well-known that

detA = λ1λ2 . . .λn. (5.5)

where λ1,λ2, . . . ,λn are the eigenvalues of the matrix A.

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 103–116.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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If the system (5.1) is pointwise degenerated then at least one of the eigenvalues
is zero. The closed-loop system is pointwise complete if and only if all eigenvalues
s1,s2, . . . ,sn of the matrix Ac

det[A + BK] = s1s2 . . .sn �= 0. (5.6)

are nonzero. To obtain (5.6) we have to replace all zero eigenvalues λi, i = 1, . . . ,k
of A with nonzero eigenvalues si, i = 1, . . . ,k of Ac. The problem of finding a gain
matrix K such that (5.6) has been reduced to the classical eigenvalues assignment
problem. It is well-known that we can arbitrary assign the eigenvalues of the closed-
loop system if and only if the pair (A,B) is reachable. This complete the proof. ��
Remark 5.1. Note that Theorem 5.1 formulates sufficient but not necessary condi-
tions for the existence of a gain matrix.

Example 5.1. The following three cases will be considered.

Case 1. The pair:

A =

⎡
⎣ 0 0 1

0 −1 0
0 −2 1

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ , (5.7)

is unreachable since

rank
[

B AB A2B
]
= rank

⎡
⎣ 0 1 1

0 0 0
1 1 1

⎤
⎦= 2 < n = 3.

The closed-loop matrix

Ac = A + BK =

⎡
⎣ 0 0 1

0 −1 0
k1 k2 −2 k3 + 1

⎤
⎦ ,

is nonsingular for k1 �= 0 and arbitrary k2, k3. Therefore, although that the pair (5.7)
is unreachable there exists a gain matrix K = [k1,k2,k3], such that the closed-loop
system is pointwise complete.

Case 2. The pair:

A =

⎡
⎣ 0 0 0

0 1 1
0 −2 1

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ . (5.8)

is unreachable since

rank
[

B AB A2B
]
= rank

⎡
⎣ 0 0 0

0 1 2
1 1 −1

⎤
⎦= 2 < n = 3.
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From the form of the closed-loop matrix

Ac = A + BK =

⎡
⎣ 0 0 0

0 1 1
k1 k2 −2 k3 + 1

⎤
⎦ ,

it follows that for any gain matrix K ∈ Rm×n we have detAc = 0. In this case does
not exist a gain matrix K = [k1,k2,k3], such that the closed-loop system is pointwise
complete.

Case 3. The pair:

A =

⎡
⎣ 0 1 0

0 0 1
0 −2 1

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ , (5.9)

is reachable since

rank
[

B AB A2B
]
= rank

⎡
⎣ 0 0 1

0 1 1
1 1 −1

⎤
⎦= 3 = n.

The closed-loop matrix

A + BK =

⎡
⎣ 0 1 0

0 0 1
k1 k2 −2 k3 + 1

⎤
⎦ ,

is nonsingular for k1 �= 0 and arbitrary k2, k3 and the closed-loop system is pointwise
complete.

Theorem 5.2. There exists a gain matrix K ∈Rm×n such that the closed-loop system
(5.3) is pointwise complete if and only if

rank[A,B] = n. (5.10)

Proof. Necessity. From

A + BK =
[

A B
][ In

K

]
, (5.11)

it follows that det[A + BK] �= 0 implies the condition (5.10), since

rank[A + BK]≤ min

{
rank[AB], rank

[
In

K

]}
.
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Sufficiency. Without loss of generality we may assume that the matrices A and B
have the form

A =
[

A1

0

]
, A1 ∈ R

r×n, r = rankA, (5.12a)

B =
[

0
Ip

B2

]
, B2 ∈ R

n×(m−p), p ≤ m. (5.12b)

If the pair (A, B) has not the form (5.12), then premultiplying (5.11) by the matrix
L of elementary row operations (Appendix D), we may always obtain on the matrix
[A,B] in the form (5.12).

Let

det

[
A1

A2

]
�= 0, A2 ∈ R

p×n, p = n− r, (5.13)

and

K =
[

A2

0

]
∈ R

m×n, (5.14)

then

A + BK =
[

A1

0

]
+
[

0
Ip

B2

][
A2

0

]
=
[

A1

A2

]
. (5.15)

This completes the proof. ��
Example 5.2. Consider the pair

A =

⎡
⎣ 0 −1 0

1 0 1
0 2 0

⎤
⎦ , B =

⎡
⎣ 1 0

0 2
−1 1

⎤
⎦ . (5.16)

In this case n = 3, m = 2 and detA = 0.

Applying the following elementary row operations L we obtain

[
A B

]
=

⎡
⎣ 0 −1 0 | 1 0

1 0 1 | 0 2
0 2 0 | −1 1

⎤
⎦ L[3+1×2]−−−−−−→

⎡
⎣ 0 −1 0 | 1 0

1 0 1 | 0 2
0 0 0 | 1 1

⎤
⎦

L[1+3×(−1)]−−−−−−−−→

⎡
⎣ 0 −1 0 | 0 −1

1 0 1 | 0 2
0 0 0 | 1 1

⎤
⎦ (5.17)

and

A1 =
[

0 −1 0
1 0 1

]
, B2 =

⎡
⎣−1

2
1

⎤
⎦ , r = 2, p = 1. (5.18)
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For A2 = [k1,k2,k3] we have

[
A1

A2

]
=

⎡
⎣ 0 −1 0

1 0 1
k1 k2 k3

⎤
⎦ and det

[
A1

A2

]
=

∣∣∣∣∣∣
0 −1 0
1 0 1
k1 k2 k3

∣∣∣∣∣∣= k3 − k1 �= 0 (5.19)

for k1 �= k3 and arbitrary k2.

The same result we obtain by computation of the determinant

det [A + BK] = det

⎧⎨
⎩
⎡
⎣ 0 −1 0

1 0 1
0 2 0

⎤
⎦+

⎡
⎣ 1 0

0 2
−1 1

⎤
⎦
[

k1 k2 k3

0 0 0

]⎫⎬
⎭

=

∣∣∣∣∣∣
k1 k2 −1 k3

1 0 1
−k1 2− k2 −k3

∣∣∣∣∣∣=
∣∣∣∣∣∣
k1 k2 −1 k3

1 0 1
0 −1 0

∣∣∣∣∣∣
= k1 − k3. (5.20)

Remark 5.2. Note that the reachability of the pair (A, B) implies (5.10). Substituting
z = 0 in the reachability test of the pair (A, B)

rank [Inz−A,B] = n, ∀z ∈ C, (5.21)

we obtain
rank [−A,B] = rank [A,B] = n.

Example 5.3. Consider the pair:

A =

⎡
⎣ 0 0 1

0 1 0
0 −2 1

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ . (5.22)

In this case

rank [Inz−A,B] = rank

⎡
⎣ z 0 −1 | 0

0 z−1 0 | 0
0 2 z−1 | 1

⎤
⎦ .

For z = 0

rank

⎡
⎣ 0 0 −1 | 0

0 −1 0 | 0
0 2 −1 | 1

⎤
⎦= 3,

and for z = 1

rank

⎡
⎣ 1 0 −1 | 0

0 0 0 | 0
0 2 0 | 1

⎤
⎦= 2 ≤ n = 3.

The pair (5.22) is unreachable but it satisfies the condition (5.10). The closed-loop
matrix
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A + BK =

⎡
⎣ 0 0 1

0 1 0
k1 k2 −2 k3 + 1

⎤
⎦ ,

is nonsingular for k1 �= 0 and arbitrary k2 and k3. Note that although the pair (5.22)
is unreachable there exists K ∈ Rm×n such that closed-loop system is pointwise
complete.

5.2 Standard Continuous-Time Linear Systems

Consider the standard continuous-time linear system

ẋ(t) = Ax(t)+ Bu(t), (5.23)

with the state-feedback
u(t) = Kx(t), (5.24)

where x(t) ∈ Rn, u(t) ∈ Rm are state and input vectors, A ∈ Rn×n, B ∈ Rn×m and
K ∈ Rm×n is a gain matrix.

Substitution of (5.24) into (5.23) yields

ẋ(t) = Acx(t), (5.25)

where Ac = A + BK.

The solution of the equation (5.25) has the form

x(t) = eActx0. (5.26)

Theorem 5.3. The pointwise completeness and the pointwise degeneracy of the
standard continuous-time linear system are invariant under the state-feedback.

Proof. From (5.26) for t = t f we have x f = eAct f x0 and x0 = e−Act f x f , since
det[eAct f ] �= 0 for any matrix Ac and time t f . ��
Remark 5.3. Theorem 5.3 is also valid for output feedbacks, u(t) = Fy(t) = FCx(t),
since the closed-loop system matrix has the form Ac = A + BFC.

5.3 Positive Standard Discrete-Time Linear Systems

Consider the discrete-time linear system (5.1) with the state-feedback (5.2).

Definition 5.1. The discrete-time system (5.1) is called positive if the state vector
xi ∈ Rn

+, i ∈ Z+ for any initial conditions x0 ∈ Rn
+ and all input sequences ui ∈ Rm

+,
i ∈ Z+.
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Theorem 5.4. The discrete-time system (5.1) is positive if and only if A ∈ R
n×n
+ ,

B ∈ R
n×m
+ .

Proof. The proof is similar to the proof of Theorem 4.10. ��
By Theorem 4.10 the closed-loop system is positive if and only if Ac ∈ R

n×n
+ and by

Theorem 4.11 it is pointwise complete if and only if the matrix Ac is monomial.

Let the matrix B ∈ Rn×m have m ≤ m linearly independent monomial rows
bi1 , ...,bim and its remaining rows be zero. The matrix B ∈ Rm×n is obtained from
B by adding n−m zero in each its bi1 , . . . ,bim rows and the matrix A ∈ R(n−m)×n

is obtained from A by removing the rows ai1 , . . . ,aim (corresponding to the rows
bi1 , . . . ,bim). The k ≥ m rows of the matrices A and B are called linearly indepen-

dent monomial rows if and only if the matrix

[
A
B

]
contains k linearly independent

monomial rows.
For example if

A =

⎡
⎣ 0 1 0

1 0 2
0 1 1

⎤
⎦ , B =

⎡
⎣ 0 0

1 0
0 1

⎤
⎦ ,

then

A =
[

0 1 0
]
, B =

[
1 0 0
0 0 1

]
.

The matrices A and B contain three linearly independent monomial rows since the
matrix [

A
B

]
=

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦ .

is monomial.

Theorem 5.5. Let the positive system (5.1) be pointwise degenerated. There exists a
gain matrix K ∈ Rm×n such that the closed-loop system (5.3) is positive and point-
wise complete if the matrices A and B contain n linearly independent monomial
rows.

Proof. Without loss of generality we may assume that:

1) the matrix B has the first m ≤ m linearly independent monomial rows b1, . . . ,bm

and remaining zero rows, i.e.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

bm

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.27)
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2) and that the rows am+1, . . . ,an of the matrix A are also linearly independent
monomial rows.

We are looking for a gain matrix of the form

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1
...

km

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.28)

The closed-loop matrix has the form

Ac = A + BK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 + b1k1
...

am + bmkm

am+1
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.29)

Note that k1, . . . ,km of (5.28) can be always chosen so that the matrix (5.29) has n
linearly independent monomial rows. ��
Example 5.4. Consider the positive discrete-time system (5.1) with the matrices:

A =

⎡
⎣ 0 1 0

1 0 0
1 2 3

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ . (5.30)

In this case the matrix B has only one monomial row and the matrix A two linearly
independent monomial rows. We are looking for a gain matrix K = [k1,k2,k3] such
that the closed-loop system matrix

Ac = A + BK =

⎡
⎣ 0 1 0

1 0 0
1 2 3

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦[ k1 k2 k3

]
=

⎡
⎣ 0 1 0

1 0 0
k1 + 1 k2 + 2 k3 + 3

⎤
⎦ , (5.31)

is monomial. It is easy to see that for k1 = −1, k2 = −2, k3 > −3 the matrix (5.31)
is monomial and the closed-loop system is positive and pointwise complete.

Example 5.5. Consider the positive discrete-time system (5.1) with the matrices

A =

⎡
⎣ 0 1 1

1 0 0
0 0 2

⎤
⎦ , B =

⎡
⎣ 0

0
1

⎤
⎦ . (5.32)
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In this case the condition of Theorem 5.5 is not satisfied since only one row of the
matrix A corresponding to zero rows of B is monomial.

For a gain of the form K = [k1,k2,k3] the closed-loop matrix

A + BK =

⎡
⎣ 0 1 1

1 0 0
k1 k2 k3 + 2

⎤
⎦ ,

has at most two linearly independent rows for any entries k1, k2, k3. The closed-loop
matrix Ac = A+BK is not monomial for any choice of the gain matrix K. Therefore,
for the pair (5.32) does not exist a gain matrix K such that the closed-loop system is
pointwise complete.

5.4 Positive Standard Continuous-Time Linear Systems

Consider the continuous-time linear system (5.23) with the state-feedback (5.24).

Definition 5.2. The continuous-time linear system (5.23) is called positive if x(t) ∈
Rn

+, t ≥ 0 for any initial conditions x0 ∈ Rn
+ and all inputs u(t) ∈ Rm

+, t ≥ 0.

Theorem 5.6. The continuous-time linear system (5.23) is positive if and only if
A ∈ Mn and B ∈ R

n×m
+ .

Proof. The proof is similar to the proof of Theorem 2.8. ��
By Theorem 4.13 the closed-loop system (5.25) is positive if and only if Ac ∈ Mn.
By Theorem 4.14 the positive continuous-time linear system is pointwise complete
if and only if the matrix A is diagonal.

Remark 5.4. Note that the matrix eAt is monomial if and only if the matrix A is
diagonal. The matrix e−At is monomial if and only if the matrix A is diagonal.

Theorem 5.7. Let the positive system (5.23) be pointwise degenerated. There exists
a gain matrix K ∈ R

m×n such that the closed-loop system (5.25) is positive and
pointwise complete if the pair (A,B) of the system satisfies the condition:

The matrix B has l ≤ m linearly independent monomial rows bi1 ,bi2 , . . . ,bil and
all its remaining rows are zero. Every i-th row of the matrix A has the form ai = ciei,
i = l + 1, . . . ,n, where ci is a real nonzero or zero coefficients and ei is i-th row of
the identity matrix In.

Proof. Without loss of generality we may assume i1 = 1, i2 = 2, . . . , il = l and the
matrices A and B have the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

al

cl+1el+1
...

cnen

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

bl

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ai =
[

ai1 . . . ain
]
. (5.33)
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The closed-loop matrix has the form

Ac = A + BK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 + b1k1
...

al + blkl

cl+1el+1
...

cnen

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.34)

From (5.34) it follows that it is always possible to choose the gain matrix K ∈ R
m×n

so that the matrix Ac is diagonal if the condition of Theorem 5.7 is satisfied. ��
Example 5.6. Consider the positive continuous-time system (5.23) with the
matrices:

A =

⎡
⎢⎢⎣
−1 2 0 1
0 0 0 0
2 1 0 2
0 0 0 2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦ . (5.35)

We are looking for a gain matrix of the form

K =
[

k11 k12 k13 k14

k21 k22 k23 k24

]
,

such the closed-loop matrix Ac is diagonal.
The pair (5.35) satisfy the condition of Theorem 5.7 and the closed-loop matrix

Ac has the form

Ac = A + BK =

⎡
⎢⎢⎣
−1 2 0 1
0 0 0 0
2 1 0 2
0 0 0 2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦
[

k11 k12 k13 k14

k21 k22 k23 k24

]

=

⎡
⎢⎢⎣

k21 −1 k22 + 2 k23 k24 + 1
0 0 0 0

k11 + 2 k12 + 1 k13 k14 + 2
0 0 0 2

⎤
⎥⎥⎦ .

For k13 and k21 arbitrary and k22 = −2, k23 = 0, k24 = −1, k11 = −2, k12 = −1,
k14 = −2 we obtain a diagonal closed-loop matrix Ac. The desired gain matrix is:

K =
[−2 −1 k13 −2

k21 −2 0 −1

]
.

Theorem 5.8. Let the positive system (5.23) be pointwise degenerated. There exists
a gain matrix K ∈ Rm×n such that the closed-loop system (5.25) is positive and
pointwise complete if and only if for a given diagonal matrix Ac ∈ R

n×n and B ∈
R

n×m
+ the following condition is satisfied
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rankB = rank
[

Ac −A , B
]
. (5.36)

Proof. By Kronecker-Capelly theorem the equation

BK = Ac −A, (5.37)

has a solution K for a given Ac −A and B ∈ R
n×m
+ if and only if the condition (5.36)

is satisfied. ��
Example 5.7. Consider the positive system (5.23) with the matrices (5.35). We are
looking for a gain matrix

K =
[

k11 k12 k13 k14

k21 k22 k23 k24

]
,

such the closed-loop matrix Ac is diagonal

Ac = diag
[

a1 a2 a3 a4
]
. (5.38)

The condition (5.36) for (5.35) and (5.38) has the form

rank

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦= rank

⎡
⎢⎢⎣

a1 + 1 −2 0 −1 0 1
0 a2 0 0 0 0
−2 −1 a3 −2 1 0
0 0 0 a4 −2 0 0

⎤
⎥⎥⎦= 2,

and it is satisfied for a2 = 0, a4 = 2.

In this case the equation (5.37) has the form
⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦K =

⎡
⎢⎢⎣

a1 + 1 −2 0 −1
0 a2 0 0
−2 −1 a3 −2
0 0 0 a4 −2

⎤
⎥⎥⎦ , (5.39)

and its solution is

K =
[ −2 −1 a3 −2

a1 + 1 −2 0 −1

]
, (5.40)

where a1, a3 are arbitrary.

For
Ac = diag

[−1 0 0 2
]
,

the gain matrix K has the form

K =
[−2 −1 0 −2

0 −2 0 −1

]
.

This result is consistent with the result obtain in Example 5.6.
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5.5 Fractional Discrete-Time Linear Systems

Consider the fractional discrete-time linear system

xi+1 = Aα xi +
i

∑
j=1

c j(α)xk− j + Bui, (5.41)

with the state-feedback
ui = Kxi, (5.42)

where c j(α) is defined by (4.23), xi ∈ R
n, ui ∈ R

m are the state and input vectors
A ∈ Rn×n, B ∈ Rn×m and K ∈ Rm×n is a gain matrix. Substitution of (5.42) into
(5.41) yields

xi+1 = [Aα + BK]xi +
i

∑
j=1

c j(α)xk− j. (5.43)

To investigate the pointwise completeness and pointwise degeneracy we may use
Theorems 4.8 and 4.9 for A0 = Aα + BK, Ak = ck(α)In, k = 1, . . . ,q.

Theorem 5.9. Every fractional discrete-time linear system is pointwise complete for
i = q = 1 and every gain matrix K.

Proof. Using (4.8) for i = q = 1 we obtain

H1 =
[

H0(1) H1(1)
]
=
[

Φ1 c1(α)In
]
.

By Theorem 4.8 this system is pointwise complete for every gain matrix K for i =
q = 1, since

rankH1 = rank
[

Φ1 c1(α)In
]
= n. (5.44)

��

5.6 Fractional Continuous-Time Linear Systems

Consider the fractional continuous-time linear systems

dα

dtα x(t) = Ax(t)+ Bu(t), (5.45)

with the state-feedback
u(t) = Kx(t), (5.46)

where x(t) ∈ Rn, u(t) ∈ Rm are state and input vectors, A ∈ Rn×n, B ∈ Rn×m and
K ∈ Rm×n is a gain matrix. Substitution of (5.46) into (5.45) yields

dα

dtα x(t) = Acx(t), Ac = A + BK. (5.47)
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Theorem 5.10. The pointwise completeness and pointwise degeneracy of fractional
continuous-time linear systems are invariant under the state-feedbacks and the
output-feedbacks.

Proof. The proof follows immediately from the fact that the fractional continuous-
time system is pointwise complete for every matrix A. ��

5.7 Positive Fractional Discrete-Time Linear System

Consider the positive fractional discrete-time linear system (5.41) with the state-
feedback (5.42), where xi ∈ Rn

+, ui ∈ Rm
+ are state and input vectors, A ∈ R

n×n
+ ,

B ∈ R
n×m
+ and K ∈ Rm×n.

Theorem 5.11. Let the positive fractional discrete-time system (5.41) be pointwise
degenerated. There exists a gain matrix K ∈ Rm×n such that the closed-loop system
is positive and pointwise complete if the pair (A,B) satisfies the condition:

The matrix B has l ≤ m linearly independent monomial rows and the remaining
its rows are zero. Every row ai of the matrix A corresponding to the zero row of B
has the form ai = ciei where ci is nonzero coefficient and ei is i-th row if In.

Proof. Proof is similar to the proof of Theorem 5.7. ��
Example 5.8. Consider the positive fractional discrete-time system (5.41) with the
matrices:

A =

⎡
⎢⎢⎣

1 2 0 1
0 3 0 0
2 1 1 2
0 0 0 2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦ . (5.48)

We are looking for a gain matrix of the form

K =
[

k11 k12 k13 k14

k21 k22 k23 k24

]
,

such that the closed-loop matrix Ac is diagonal with positive diagonal entries.
The pair (5.48) satisfies the condition of Theorem 5.11. The closed-loop matrix has
the form

Ac = A + BK =

⎡
⎢⎢⎣

1 2 0 1
0 3 0 0
2 1 1 2
0 0 0 2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦
[

k11 k12 k13 k14

k21 k22 k23 k24

]

=

⎡
⎢⎢⎣

k21 + 1 k22 + 2 k23 k24 + 1
0 3 0 0

k11 + 2 k12 + 1 k13 + 1 k14 + 2
0 0 0 2

⎤
⎥⎥⎦ .
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Assuming k13 >−1, k21 >−1 and k22 =−2, k23 = 0, k24 =−1, k11 =−2, k12 =−1,
k14 = −2 we obtain diagonal matrix Ac with positive diagonal entries. The desired
gain matrix has the form:

K =
[−2 −1 k13 −2

k21 −2 0 −1

]
.

5.8 Positive Fractional Continuous-Time Linear Systems

Consider the positive fractional continuous-time linear system (5.45) with the state-
feedback (5.46), where x(t)∈Rn

+, u(t)∈Rm
+ are state and input vectors and A ∈ Mn,

B ∈ R
n×m
+ .

Theorem 5.12. Let the positive fractional continuous-time system (5.45) be point-
wise degenerated. There exists a gain matrix K ∈ Rm×n such that the closed-loop
system is positive and pointwise complete if the pair (A,B)satisfies the condition:

The matrix B has l ≤ m linearly independent monomial rows and the remaining
its rows are zero. Every row ai of the matrix A corresponding to zero row of B has
the form ai = ciei, where ci is nonzero or zero coefficient and ei is the i-th row of In.

Proof. Proof is similar to the proof of Theorem 5.7. ��
Example 5.9. Consider the positive fractional continuous-time system (5.45) with
the matrices

A =

⎡
⎣ 0 1 2

0 0 0
2 1 −1

⎤
⎦ , B =

⎡
⎣ 0 1

0 0
1 0

⎤
⎦ . (5.49)

We are looking for a gain matrix of the form

K =
[

k11 k12 k13

k21 k22 k23

]
,

such that the closed-loop matrix

Ac = A + BK =

⎡
⎣ k21 k22 + 1 k23 + 2

0 0 0
k11 + 2 k12 + 1 k13 −1

⎤
⎦ ,

is diagonal.

Assuming k21 ≥ 0, k13 ≥ −1 and k22 = −1, k23 = −2, k11 = −2, k12 = −1 we
obtain the desired diagonal matrix Ac.



Chapter 6
Realization Problem for Positive Fractional and
Continuous-Discrete 2D Linear Systems

6.1 Fractional Discrete-Time Linear Systems

Consider the fractional discrete-time linear system:

xk+1 +
k+1

∑
j=1

(−1) j
(

α
j

)
xk− j+1 = Axk + Buk, k ∈ Z+, (6.1a)

yk = Cxk + Duk, (6.1b)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp are state, input and output vectors and A ∈ Rn×n,
B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m.

Lemma 6.1. The transfer matrix of the fractional system (6.1) has the form

T (z) = C [In (z− cα)−A]−1 B + D =
N(z)
d(z)

, (6.2)

where

cα = cα(k,z) =
k

∑
j=1

(−1) j−1
(

α
j

)
z1− j, (6.3a)

N(z) = C Adj [In (z− cα)−A]−1 B + Dd(z) (6.3b)

= Nn (z− cα)n + · · ·+ N1 (z− cα)+ N0 =

⎡
⎢⎣

N11(z) . . . N1m(z)
...

. . .
...

Np1(z) . . . Npm(z)

⎤
⎥⎦ ,

Ni ∈ R
p×m, i = 0,1, . . . ,n, (6.3c)

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 117–140.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Ni j =
(k−1)n

∑
l=−n

Nl
i jz

−l, i = 1, . . . , p; j = 1, . . . ,m; (6.3d)

d(z) = det[In(z− cα)−A] (6.3e)

= (z− cα)n + an−1(z− cα)n−1 + · · ·+ a1(z− cα)+ a0 =
kn

∑
l=−n

aiz
−i

a0 = detA, . . . ,an−1 = tranceA.

Proof. Using Z -transform to (6.1) with zero initial conditions and taking into ac-
count (A.14b), we obtain:

X(z) = [In(z− cα)−A]−1 BU(z), (6.4a)

Y (z) = CX(z)+ DU(z), (6.4b)

where X(z) = Z [xk], U(z) = Z [uk], Y (z) = Z [yk].

Substitution of (6.4b) into (6.4a) yields Y (z) = T (z)U(z), where T (z) is given
by (6.2). ��
Definition 6.1. The transfer matrix T (z) is called proper if

lim
z→∞

T (z) = K ∈ R
p×m,

and it is called strictly proper if K = 0.
From (6.2) we have

lim
z→∞

T (z) = D, (6.5)

since

lim
z→∞

[In(z− cα)−A]−1 = 0.

Definition 6.2. Matrices A, B, C, D satisfying

A + Inα ∈ R
n×n
+ , B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ ,

are called a positive realization of a given transfer matrix T (z), if they satisfy the
equality

T (z) = C[In(z− cα)−A]−1B + D.

Realization is called minimal if the dimension of A is minimal among all realizations
of T (z).
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The positive fractional realization problem can be stated as follows. Given a
proper transfer matrix T (z), find its positive realization.

Sufficient conditions for the existence of the positive fractional realizations of a
given proper transfer matrix T (z) will be established and procedures for computa-
tion of the positive fractional realizations will be proposed [110].

6.1.1 SISO Systems

From (6.2) it follows that the transfer matrix of fractional discrete-time linear system
is proper rational matrix in the variable z − cα . From (1.5) and (6.3a) it follows
that cα = cα(k,z) strongly decreases when k increases. In practical problems it is
assumed that k is bounded by some natural number h. In this case the fractional
system (6.1) is a system with h delays in state vector.

Firstly the following two cases for single-input single-output systems (SISO) will
be addressed:

Case 1). Given α , cα and the transfer function

T (z) =
bn(z− cα)n + · · ·+ b1(z− cα)+ b0

(z− cα)n + an−1(z− cα)n−1 + · · ·+ a1(z− cα)+ a0
, (6.6)

find its positive fractional realization A, B, C, D.

Case 2). Given a transfer function of the form

T (z) =
bnzn + · · ·+ b1z+ b0 + b−1z−1 + · · ·+ b−qnz−qn

zn + an−1zn−1 + · · ·+ a1z+ a0 + a−1z−1 + · · ·+ a−qnz−qn , (6.7)

find a fractional order α and a positive fractional realization A, B, C, D.
In Case 1) the problem can be solved using the well-known realization theory of

positive systems [77].

Theorem 6.1. There exist positive fractional realizations of the forms:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎦ , (6.8a)
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A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , (6.8b)

A =

⎡
⎢⎢⎢⎢⎢⎣

−an−1 −an−2 . . . −a1 −a0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

bn−1

bn−2
...

b0

⎤
⎥⎥⎥⎦ , (6.8c)

A =

⎡
⎢⎢⎢⎢⎢⎣

−an−1 1 0 . . . 0
−an−2 0 1 . . . 0

...
...

...
. . .

...
−a1 0 0 . . . 1
−a0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

bn−1

bn−2
...

b0

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , (6.8d)

bk = bk −akbn, k = 0,1, . . . ,n−1; D = bn. (6.8e)

of the transfer function(6.6), if

a) bk ≥ 0 for k = 0,1, . . . ,n;
b) ak ≤ 0 for k = 0,1, . . . ,n−2 and an−1 ≤ α;

Proof. The detail of the proof will be given only for (6.8a). The proofs for (6.8b),
(6.8c) and (6.8d) are similar.

From (6.6) we have
D = lim

z→∞
T (z) = bn, (6.9)

and the strictly proper transfer function has the form

Tsp(z) = T (z)−D =
bn−1(z− cα)n−1 + · · ·+ b1(z− cα)+ b0

(z− cα)n + an−1(z− cα)n−1 + · · ·+ a1(z− cα)+ a0
. (6.10)

Taking into account that for (6.8a)

det[In(z− cα)−A] = (z− cα)n + an−1(z− cα)n−1 + · · ·+ a1(z− cα)+ a0,

and
Adj[In(z− cα)−A]B =

[
1 (z− cα) . . . (z− cα)n−1

]T
.

it is easy to verify that

C[In(z− cα)−A]−1B =
C Adj[In(z− cα)−A]B

det[In(z− cα)−A]

=
bn−1(z− cα)n−1 + · · ·+ b1(z− cα)+ b0

(z− cα)n + an−1(z− cα)n−1 + · · ·+ a1(z− cα)+ a0
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The matrix Aα ∈ R
n×n
+ , if and only if the condition b) of Theorem 6.1 is satisfied

and the matrices C and D are nonnegative if the condition a) is met. ��
If the conditions of Theorem 6.1 are satisfied then the positive fractional realizations
(6.8) of the transfer function (6.6) can be found by use of the following procedure:

Procedure 6.1 ENUMERATE OD NOWEJ LINII

Step 1. Knowing transfer function (6.6) and using (6.9) find D and the strictly
proper transfer function (6.10).

Step 2. Using (6.8) find the desired realizations.

Remark 6.1. The positive realizations (6.8) are minimal if and only if the transfer
function (6.6) is irreducible.

Example 6.1. Find the positive minimal fractional realizations (6.8) of the irre-
ducible transfer function

T (z) =
2(z− cα)2 + 5(z− cα)+ 2
(z− cα)2 − (z− cα)−2

. (6.11)

Using Procedure 6.1 we obtain the following:

Step 1. From (6.9) and (6.11) we have D = 2 and

Tsp(z) = T (z)−D =
7(z− cα)+ 6

(z− cα)2 − (z− cα)−2
.

Step 2. In this case b0 = 6, b1 = 7. Using (6.8), we obtain the desired positive
fractiona realizations:

A =
[

0 1
2 1

]
, B =

[
0
1

]
, C =

[
6 7

]
, D = 2,

A =
[

0 2
1 1

]
, B =

[
6
7

]
, C =

[
0 1

]
, D = 2,

A =
[

1 2
1 0

]
, B =

[
1
0

]
, C =

[
7 6

]
, D = 2,

A =
[

1 1
2 0

]
, B =

[
7
6

]
, C =

[
1 0

]
, D = 2.

Positive realization problem in the Case 2) will be presented on a very simple
example of SISO fractional system with the strictly proper transfer function

Tsp(z) =
b1z+ b0 + b−1z−1 + b−2z−2

z2 + a1z+ a0 + a−1z−1 + a−2z−2 + a−3z−3 + a−4z−4 . (6.12)
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In this case n = 2 and q = 2.

Without loss of generality we may assume the matrix A in the canonical Frobenius
form

A =
[

0 1
−a0 −a1

]
. (6.13)

Taking into account (1.5), (6.12) and (6.13), we may write

det [In(z− cα)−A] =
[

z−c0 −c1z−1 −c2z−2 −1
a0 z+a1 −c0 −c1z−1 −c2z−2

]

= z2 +(a1 −2c0)z+ c2
0 −a1c0 −2c1

+ (2c0c1 −a1c1 −2c2)z−1 +(c2
1 + 2c0c2 −a1c2)z−2

+ 2c1c2z−3 + c2
2z−4 + a0, (6.14)

where

ck = (−1)k α(α −1) · · ·(α − k)
(k + 1)!

, k = 0,1, . . . . (6.15)

From comparison of the denominator (6.12) and (6.14) we have c2
2 = a−4. From

(6.15) for k = 2 we have α(α −1)(α −2) = 6
√

a−4, and

α3 −3α2 + 2α −6
√

a−4 = 0. (6.16)

Solving the equation (6.16) we may find the desired real fractional order α . Know-
ing α and using (6.15), we may find the coefficients c0, c1 and cα = c0 + c1z−1 +
c2z−2. Then the denominator of the transfer function (6.12) can be written in the
form

z2 + a1z+ a0 + a−1z−1 + a−2z−2 + a−3z−3 + a−4z−4 = (z− cα)2 + a1(z− cα)+ a0.

In a similar way we proceed with the numerator of (6.12) and we may write the
transfer function (6.12) in the form

T (z) =
b1(z− cα)+ b0

(z− cα)2 + a1(z− cα)+ a0
. (6.17)

To find a positive fractional realization of (6.17) we may use Procedure 6.1.

Procedure 6.2. In general case of SISO fractional system with transfer function
(6.7) we proceed as follows:

Step 1. Using (6.9), find D and strictly proper transfer function

Tsp(z) =
bn−1zn−1 + · · ·+ b1z+ b0 + b−1z−1 + · · ·+ b−(n−1)qz−(n−1)q

zn + an−1zn−1 + · · ·+ a1z+ a0 + a−1z−1 + · · ·+ a−nqz−nq . (6.18)
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Step 2. Knowing the coefficient a−nq of the denominator of (6.18) and solving the
equation

a−nq =
α(α −1) · · ·(α −q)

(q + 1)!
, (6.19)

find the desired fractional order α .
Step 3. Knowing α and using (6.15), compute the coefficients c0,c1, . . . ,cq−1 and

cα = c0 + c1z−1 + · · ·+ cqz−q and write (6.18) in the form

Tsp(z) =
b̂n−1(z− cα)n−1 + · · ·+ b̂1(z− cα)+ b̂0

(z− cα)n + an−1(z− cα)n−1 + · · ·+ a1(z− cα)+ a0
. (6.20)

Step 4. Using Procedure 6.1 find the desired positive fractional realization (6.8) of
the transfer function (6.20) (and (6.7)).

Remark 6.2. The method can be easily extended for MIMO fractional system.

6.1.2 MIMO Systems

Consider a multi-input multi-output (MIMO) positive fractional system with proper
transfer matrix T (z). Using (6.5), we may find the matrix D and next the strictly
proper transfer matrix which can be written in the form

Tsp(z) = T (z)−D =

⎡
⎢⎢⎣

N11(z)
D1(z) . . .

N1m(z)
Dm(z)

...
. . .

...
Np1(z)
D1(z) . . .

Npm(z)
Dm(z)

⎤
⎥⎥⎦= N(z)D−1(z), (6.21)

where

N(z) =

⎡
⎢⎣

N11(z) . . . N1m(z)
...

. . .
...

Np1(z) . . . Npm(z)

⎤
⎥⎦ , D(z) = diag

[
D1(z) . . . Dm(z)

]
,

Ni j(z) = c
d j−1
i j (z− cα)d j−1 + · · ·+ c1

i j(z− cα)+ c0
i j, (6.22a)

D j(z) = (z− cα)d j + a jd j−1(z− cα)d j−1 + · · ·+ a j1(z− cα)+ a j0, (6.22b)

i = 1, . . . , p; j = 1, . . . ,m;
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Theorem 6.2. There exists the positive fractional realization

A = block diag
[

A1 . . . Am
] ∈ R

n×n
+ , j = 1, . . . ,m; n = d1 + . . .+ dm,

A j =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a j0 −a j1 −a j2 . . . −a jd j−1

⎤
⎥⎥⎥⎥⎥⎦
∈ R

d j×d j
+ , (6.23)

B = block diag
[

B1 . . . Bm
] ∈ R

n×m
+ , B j =

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦ ∈ R

d j
+ , j = 1, . . . ,m;

C =

⎡
⎢⎢⎣

c0
11 . . . cd1−1

11 . . . c0
1m . . . cdm−1

1m
...

...
...

. . .
...

...
...

c0
p1 . . . cd1−1

p1 . . . c0
pm . . . cdm−1

pm

⎤
⎥⎥⎦ ∈ R

p×n
+ , D = T (∞) ∈ R

p×m
+ ,

of the transfer matrix T (z), if the following conditions are satisfied:

a) T (∞) ∈ R
p×m
+

b) ai j ≤ 0 for i = 1, . . . ,m; j = 0,1, . . . ,di −2 and aidi−1 ≤ α for i = 1, . . . ,m;
c) cl

i j ≥ 0 for i = 1, . . . , p; j = 1, . . . ,m; l = 0,1, . . . ,dm−1;

Proof. First we shall show that the matrices (6.23) are a realization of the strictly
proper transfer matrix (6.21). Using (6.22) and (6.23), it is easy to verify that

B jD j(z) =
[
Id j(z− cα)−A j

]
⎡
⎢⎢⎢⎣

1
z− cα

...
(z− cα)d j−1

⎤
⎥⎥⎥⎦ , for j = 1, . . . ,m;

and

BD(z) = [In(z− cα)−A]S, (6.24)

where

S = block diag
[

S1 . . . Sm
]
, S j =

⎡
⎢⎢⎢⎣

1
(z− cα)

...
(z− cα)d j−1

⎤
⎥⎥⎥⎦ , j = 1, . . . ,m;



6.1 Fractional Discrete-Time Linear Systems 125

Premultiplying (6.24) by C[In(z− cα)−A]−1 and postmultiplying by D(z)−1, we
obtain

C [In(z− cα)−A]−1 B = CSD−1(z) = N(z)D−1(z) = Tsp(z)

since

N(z) = CS =

⎡
⎢⎢⎣

c0
11 . . . cd1−1

11 . . . c0
1m . . . cdm−1

1m
...

...
...

. . .
...

...
...

c0
p1 . . . cd1−1

p1 . . . c0
pm . . . cdm−1

pm

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
z− cα 0 . . . 0

...
...

. . .
...

(z− cα)d1−1 0 . . . 0

...
...

. . .
...

0 0 . . . 1
0 0 . . . z− cα
...

...
. . .

...
0 0 . . . (z− cα)dm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.25)

If the condition a) is met then from (6.5) we have D ∈ R
p×m
+ . If the conditions b)

are satisfied then Aα ∈ R
n×n
+ . The matrix C has nonnegative entries if the conditions

c) are satisfied. Therefore, the matrices (6.23) are a positive fractional realization of
T (z). ��
If the conditions of Theorem 6.2, are satisfied then the positive fractional realization
(6.23) of the transfer matrix T (z) can be found by use of the following procedure:

Procedure 6.3 ENUMERATE OD NOWEJ LINII

Step 1. Knowing the proper transfer matrix T (z) and using (6.5), find the matrix D
and the strictly proper matrix Tsp(z).

Step 2. Find the minimal degrees d1, . . . ,dm of the denominators D1(z), . . . ,Dm(z)
and write the matrix Tsp(z) in the form (6.21).

Step 3. Using the equality

D(z) = diag
[
(z− cα)d1 . . . (z− cα)dm

]
+ diag

[
a1 . . . am

]
S, (6.26)

find
a j =

[
a j0 a j1 . . . a jd j−1

]
for j = 1, . . . ,m; (6.27)

and the matrix A.
Step 4. Knowing the matrix N(z) and using (6.25), find the matrix C.
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Example 6.2. Find the positive fractional realization (6.23) of the transfer matrix

T (z) =

⎡
⎣ 2(z−cα )2+3(z−cα )+1

(z−cα )2+(z−cα )
(z−cα )2+3(z−cα )+2
(z−cα )2−2(z−cα )−3

z−cα+3
z−cα−1

2(z−cα )+1
(z−cα )2−2(z−cα )−3

⎤
⎦ . (6.28)

Using Procedure 6.3 we obtain the following:

Step 1. From (6.5) and (6.28) we have

D = lim
z→∞

T (z) =
[

2 1
1 0

]
, (6.29)

and

Tsp(z) = T (z)−D =

[
z−cα +1

(z−cα )2+(z−cα )
5(z−cα )+5

(z−cα )2−2(z−cα )−3
4

z−cα−1
2(z−cα )+1

(z−cα )2−2(z−cα )−3

]
. (6.30)

Step 2. In this case d1 = d2 = 2 and D1(z) = (z− cα)2 − (z− cα), D2(z) = (z−
cα)2 −2(z− cα)−3. The matrix (6.30) takes the form

Tsp(z) =

[
z−cα +1

(z−cα )2−(z−cα )
5(z−cα )+5

(z−cα )2−2(z−cα )−3
4(z−cα )

(z−cα )2−(z−cα )
2(z−cα )+1

(z−cα )2−2(z−cα )−3

]
. (6.31)

Step 3. Using (6.26) we obtain
[

(z− cα)2 − (z− cα) 0
0 (z− cα)2 −2(z− cα)−3

]
=

[
(z− cα)2 0

0 (z− cα)2

]
−
[

0 1 0 0
0 0 3 2

]
⎡
⎢⎢⎣

1 0
z− cα 0

0 1
0 z− cα

⎤
⎥⎥⎦ ,

and
a1 =

[
a10 a11

]
=
[

0 −1
]
, a2 =

[
a20 a21

]
=
[−3 −2

]
.

Therefore, the matrix A has the form

A = block diag
[

A1 A2
]
=

⎡
⎢⎢⎣

0 1 0 0
0 1 0 0
0 0 0 1
0 0 3 2

⎤
⎥⎥⎦ . (6.32)
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Step 4. Using (6.25) and (6.31), we obtain

[
z− cα + 1 5(z− cα)+ 5
4(z− cα) 2(z− cα)+ 1

]
=
[

1 1 5 5
0 4 1 2

]
⎡
⎢⎢⎣

1 0
z− cα 0

0 1
0 z− cα

⎤
⎥⎥⎦ ,

and

C =
[

1 1 5 5
0 4 1 2

]
. (6.33)

The matrix B has the form

B =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ . (6.34)

The desired positive fractional realization (6.23) of (6.28) is given by (6.29), (6.32),
(6.33) and (6.34).

The strictly proper transfer matrix Tsp(z) can be also written in the form

Tsp(z) =

⎡
⎢⎢⎢⎣

N11(z)
D1(z) . . . N1m(z)

D1(z)
...

. . .
...

N p1(z)
Dp(z) . . .

N pm(z)
Dp(z)

⎤
⎥⎥⎥⎦= D

−1(z)N(z), (6.35)

where

N(z) =

⎡
⎢⎣

N11(z) . . . N1m(z)
...

. . .
...

N p1(z) . . . N pm(z)

⎤
⎥⎦ , D(z) = diag

[
D1(z) . . . Dp(z)

]
,

Ni j(z) = b
di−1
i j (z− cα)di−1 + · · ·+ b

1
i j(z− cα)+ b

0
i j, (6.36a)

Di(z) = (z− cα)di + aidi−1(z− cα)di−1 + · · ·+ ai1(z− cα)+ ai0, (6.36b)

i = 1, . . . , p; j = 1, . . . ,m;

Theorem 6.3. There exists the positive fractional realization

A = block diag
[

A1 . . . Ap
] ∈ R

n×n
+ , (6.37a)

j = 1, . . . , p; n = d1 + · · ·+ dp,

A j =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −aj0

1 0 . . . 0 −aj1

0 1 . . . 0 −aj2
...

...
. . .

...
...

0 0 . . . 1 −ajd j−1

⎤
⎥⎥⎥⎥⎥⎦
∈ R

d j×d j
+ , (6.37b)
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
0
11 b

0
12 . . . b

0
1m

...
...

. . .
...

b
d1−1
11 b

d1−1
12 . . . b

d1−1
1m

...
...

. . .
...

b
0
p1 b

0
p2 . . . b

0
pm

...
...

. . .
...

b
d p−1
p1 b

d p−1
p2 . . . b

d p−1
pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×m
+ , (6.37c)

C = block diag
[

C1 . . . Cp
] ∈ R

p×n
+ , C j =

[
0 0 . . . 1

] ∈ R
1×d j
+ , (6.37d)

D = T (∞) ∈ R
p×m
+ , (6.37e)

of the transfer matrix T (z), if the following conditions are satisfied:

a) T (∞) ∈ R
p×m
+

b) ai j ≤ 0 for i = 1, . . . , p; j = 0,1, . . . ,di −2 and aidi−1
≤ α for i = 1, . . . , p;

c) b
i
jk ≥ 0 for j = 1, . . . , p; k = 1, . . . ,m; i = 0,1, . . . ,d j −1;

Proof. First we shall show that the matrices (6.37) are a realization of the strictly
proper transfer matrix (6.35). Using (6.36) and (6.37) it is easy to verify that

D j(z)C j =
[

1 z− cα . . . (z− cα)d j−1
][

Id j
(z− cα)−Aj

]
,

for j = 1, . . . , p; and

D(z)C = S
[
In(z− cα)−A

]
, (6.38)

where

S = block diag
[

S1 . . . Sp
]
, S j =

[
1 z− cα . . . (z− cα)d j−1

]
, j = 1, . . . , p;

Premultiplying (6.38) by D
−1(z), and postmultiplying by [In(z − cα)−A]−1B we

obtain
C[In(z− cα)−A]−1B = D

−1(z)SB = D
−1(z)N(z) = Tsp(z),

since SB = N(z).

If the condition a) is met then from (6.5) we have D ∈ R
p×m
+ . If the conditions b)

are satisfied then the matrix Aα ∈ R
n×n
+ . The matrix B has nonnegative entries if the

conditions c) are satisfied. Therefore, the matrices (6.37) are a positive fractional
realization of T (z). ��
If the conditions of Theorem 6.3 are satisfied then the positive fractional realization
(6.37) of the transfer matrix T (z) can be computed by the use of the following
procedure:



6.1 Fractional Discrete-Time Linear Systems 129

Procedure 6.4 ENUMERATE OD NOWEJ LINII

Step 1. Knowing the proper transfer matrix T (z) and using (6.5) find the matrix D
and the strictly proper matrix Tsp(z).

Step 2. Find the minimal degrees d1, . . . ,d p of the denominators D1(z), . . . ,Dp(z)
and write the matrix Tsp(z) in the form (6.35).

Step 3. Using the equality

D(z) = diag
[
(z− cα)d1 . . . (z− cα)d p

]
+ Sdiag

[
a1 . . . ap

]
, (6.39)

find

aj =
[

aj0 aj1 . . . ajd j−1

]T
for j = 1, . . . , p; (6.40)

and the matrix A.
Step 4. Knowing the matrix N(z) and using the equality SB = N(z), find the

matrix B.

Example 6.3. Find the positive fractional realization (6.37) of the strictly proper
transfer matrix

Tsp(z) =

⎡
⎣ (z−cα )2+2(z−cα )+3

(z−cα )3−2(z−cα )2−3(z−cα )−1
4(z−cα )+2

(z−cα )3−2(z−cα )2−3(z−cα )−1
z−cα +2

(z−cα )2−2(z−cα )−3
2(z−cα )+3

(z−cα )2−2(z−cα )−3

⎤
⎦ . (6.41)

Using Procedure 6.4, we obtain the following:

Step 1. From (6.5) and (6.41) we have D = 0.
Step 2. In this case D1(z) = (z− cα )3 − 2(z− cα)2 − 3(z− cα)− 1, D2(z) = (z−

cα)2 − 2(z− cα)− 3 and d1 = 3, d2 = 2. The matrix (6.41) has already the
desired form (6.35).

Step 3. Using (6.39) and (6.41) we obtain
[

(z− cα)3 −2(z− cα)2 −3(z− cα)−1 0
0 (z− cα)2 −2(z− cα)−3

]
=

[
(z− cα)3 0

0 (z− cα)2

]
−
[

1 z− cα (z− cα)2 0 0
0 0 0 1 z− cα

]
⎡
⎢⎢⎢⎢⎣

1 0
3 0
2 0
0 3
0 2

⎤
⎥⎥⎥⎥⎦ ,

and
a1 = −[

1 3 2
]T

, a2 = −[
3 2

]T
.
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Therefore, the matrix A has the form

A = block diag
[

A1 A2
]
=

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
1 0 3 0 0
0 1 2 0 0
0 0 0 0 3
0 0 0 1 2

⎤
⎥⎥⎥⎥⎦ . (6.42)

Step 4. Using the equality SB = N(z) and (6.41), we obtain

[
(z− cα)2 + 2(z− cα)+ 3 4(z− cα)+ 2

z− cα + 2 2(z− cα)+ 3

]
=

[
1 z− cα (z− cα)2 0 0
0 0 0 1 z− cα

]
⎡
⎢⎢⎢⎢⎣

3 2
2 4
1 0
2 3
1 2

⎤
⎥⎥⎥⎥⎦ ,

and

B =

⎡
⎢⎢⎢⎢⎣

3 2
2 4
1 0
2 3
1 2

⎤
⎥⎥⎥⎥⎦ . (6.43)

The matrix C in this case has the form

C =
[

0 0 1 0 0
0 0 0 0 1

]
. (6.44)

The desired positive fractional realization (6.37) of (6.41) is given by (6.42), (6.43),
(6.44) and D = 0.

6.2 Fractional Continuous-Time Linear Systems

Consider the fractional continuous-time linear system (2.14). Using the Laplace
transform to (2.14) with zero initial conditions, it is easy to show that the transfer
matrix of the system is given by the formula [108]

T (s) = C [Insα −A]−1 B + D. (6.45)

The transfer matrix is called proper if

lim
s→∞

T (s) = K ∈ R
p×m,

and it is called strictly proper if and only if K = 0.
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From (6.45) we have

lim
s→∞

T (s) = D, (6.46)

since

lim
s→∞

[Insα −A]−1 = 0.

Definition 6.3. Matrices

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ , (6.47)

are called a positive fractional realization of a given transfer matrix T (s), if they
satisfy the equality (6.45). A realization is called minimal if the dimension of A is
minimal among all realizations of T (s).

The positive fractional realization problem can be stated as follows. Given a proper
transfer matrix T (s), find its realizations (6.47).

6.2.1 SISO Systems

First the realization problem will be solved for a single-input single-output (SISO)
linear fractional systems with the proper transfer function

T (s) =
bn(sα )n + bn−1(sα )n−1 + · · ·+ b1sα + b0

(sα )n −an−1(sα )n−1 −·· ·−a1sα −a0
. (6.48)

Using (6.46), we obtain

D = lim
s→∞

T (s) = bn, (6.49)

and the strictly proper transfer function has the form

Tsp(s) = T (s)−D =
bn−1(sα )n−1 + · · ·+ b1sα + b0

(sα )n −an−1(sα )n−1 −·· ·−a1sα −a0
, (6.50)

where

bk = bk + akbn, k = 0,1, . . . ,n−1. (6.51)

From (6.51) it follows that if ak ≥ 0 and bk ≥ 0 for k = 0,1, . . . ,n then also bk ≥ 0
for k = 0,1, . . . ,n−1.
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Theorem 6.4. There exist positive fractional realizations of the forms:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a0 a1 a2 . . . an−1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎦ , D = bn, (6.52a)

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 a0

1 0 . . . 0 a1

0 1 . . . 0 a2
...

...
. . .

...
...

0 0 . . . 1 an−1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , D = bn, (6.52b)

A =

⎡
⎢⎢⎢⎢⎢⎣

an−1 an−2 . . . a1 a0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

bn−1

bn−2
...

b0

⎤
⎥⎥⎥⎦ , D = bn, (6.52c)

A =

⎡
⎢⎢⎢⎢⎢⎣

an−1 1 0 . . . 0
an−2 0 1 . . . 0

...
...

...
. . .

...
a1 0 0 . . . 1
a0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

bn−1

bn−2
...

b0

⎤
⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , D = bn, (6.52d)

of the transfer function(6.48) if:

a) bk ≥ 0 for k = 0,1, . . . ,n;
b) ak ≥ 0 for k = 0,1, . . . ,n−2; and bn−1 + an−1bn ≥ 0;

Proof. Taking into account that for (6.52a)

det [Insα −A] = (sα )n −an−1(sα )n−1 −·· ·−a1sα −a0,

and
Adj [Insα −A]B =

[
1 sα . . . (sα )n−1

]T
,

it is easy to verify that

C [Insα −A]−1 B =
C Adj [Insα −A]B

det [Insα −A]

=
bn−1(sα )n−1 + · · ·+ b1sα + b0

(sα)n −an−1(sα)n−1 −·· ·−a1sα −a0
.
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The matrix A is Metzler matrix if and only if ak ≥ 0 for k = 0,1, . . . ,n− 2 and
arbitrary an−1. Note that the coefficients of matrices C and D are nonnegative if the
condition a) is met and bn−1 = bn−1 +an−1bn ≥ 0. The proofs for (6.52b-6.52d) are
similar (dual). ��
The matrices (6.52) are minimal realizations if and only if the transfer function
(6.48) is irreducible. If the conditions of Theorem 6.4, are satisfied then the positive
minimal realizations (6.52) of the transfer function (6.48) can be computed by use
of the following procedure:

Procedure 6.5 ENUMERATE OD NOWEJ LINII

Step 1. Knowing T (s) and using (6.49) find D and the strictly proper transfer func-
tion (6.50).

Step 2. Using (6.52) find the desired realizations.

Example 6.4. Find the positive minimal fractional realizations (6.52) of the irre-
ducible transfer function

T (s) =
2(sα)2 + 5sα + 1
(sα)2 + 2sα −3

. (6.53)

Using Procedure 6.5 and (6.53) we obtain the following:

Step 1. From (6.49) and (6.53) we have D = 2 and

Tsp = T (z)−D =
sα + 7

(sα )2 + 2sα −3
.

Step 2. Taking into account that in this case b0 = 7, b1 = 1 and using (6.52) we
obtain the desired positive minimal fractional realizations:

A =
[

0 1
3 −2

]
, B =

[
0
1

]
, C =

[
7 1

]
, D = 2,

A =
[

0 3
1 −2

]
, B =

[
7
1

]
, C =

[
0 1

]
, D = 2,

A =
[−2 3

1 0

]
, B =

[
1
0

]
, C =

[
1 7

]
, D = 2,

A =
[−2 1

3 0

]
, B =

[
1
7

]
, C =

[
1 0

]
, D = 2.

6.2.2 MIMO Systems

Consider a multi-input multi-output (MIMO) positive fractional system (2.14) with
a proper transfer matrix T (s). Using the formula (6.46) we can find the matrix D
and the strictly proper transfer matrix which can be written in the form
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Tsp(s) = T (s)−D =

⎡
⎢⎢⎣

N11(z)
D1(z) . . . N1m(z)

Dm(z)
...

. . .
...

Np1(z)
D1(z) . . .

Npm(z)
Dm(z)

⎤
⎥⎥⎦= N(s)D−1(s), (6.54)

where

N(s) =

⎡
⎢⎣

N11(s) . . . N1m(s)
...

. . .
...

Np1(s) . . . Npm(s)

⎤
⎥⎦ , D(s) = diag

[
D1(s) . . . Dm(s)

]
,

Nik(s) = cdk−1
ik (sα)dk−1 + · · ·+ c1

iksα + c0
ik, (6.55a)

Dk(s) = (sα )dk −akdk−1(sα )dk−1 −·· ·−ak1sα −ak0, (6.55b)

i = 1, . . . , p; k = 1, . . . ,m;

Theorem 6.5. There exists the positive fractional realization

A = block diag
[

A1 . . . Am
] ∈ R

n×n,

Ak =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
ak0 ak1 ak2 . . . akdk−1

⎤
⎥⎥⎥⎥⎥⎦
∈ R

dk×dk
+ ,

k = 1, . . . ,m;
n = d1 + · · ·+ dm;

(6.56a)

B = block diag
[

B1 . . . Bm
] ∈ R

n×m
+ , Bk =

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦ ∈ R

dk
+ , (6.56b)

C =

⎡
⎢⎢⎣

c0
11 . . . cd1−1

11 . . . c0
1m . . . cdm−1

1m
...

...
...

. . .
...

...
...

c0
p1 . . . cd1−1

p1 . . . c0
pm . . . cdm−1

pm

⎤
⎥⎥⎦ ∈ R

p×n
+ , (6.56c)

D = T (∞) ∈ R
p×m
+ , (6.56d)

of the transfer matrix T (s), if the following conditions are satisfied:

a) T (∞) ∈ R
p×m
+

b) akl ≥ 0 for k = 1, . . . ,m; l = 0,1, . . . ,dk −2; and akdk−1 can be arbitrary

c) c j
ik ≥ 0 for i = 1, . . . , p; l = 1, . . . ,m; k = 0,1, . . . ,dk −1

Proof. First we shall show that the matrices (6.56) are a realization of strictly proper
matrix (6.54). Using (6.55) and (6.56) it is easy to verify that
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BkDk(s) =
[
Idk sα −Ak

]
⎡
⎢⎢⎢⎣

1
sα

...
(sα)dk−1

⎤
⎥⎥⎥⎦ , for k = 1, . . . ,m;

and
BD(s) =

[
Idk sα −A

]
S, (6.57)

where

S = block diag
[

S1 . . . Sm
]
, Sk =

⎡
⎢⎢⎢⎣

1
sα

...
(sα)dk−1

⎤
⎥⎥⎥⎦ , k = 1, . . . ,m;

Premultiplying (6.57) by C[Insα −A]−1 and postmultiplying by D(s)−1 we obtain

C [Insα −A]−1 B = CSD−1(s) = N(s)D−1(s) = Tsp(s)

since

N(s) =

⎡
⎢⎢⎣

c0
11 . . . cd1−1

11 . . . c0
1m . . . cdm−1

1m
...

...
...

. . .
...

...
...

c0
p1 . . . cd1−1

p1 . . . c0
pm . . . cdm−1

pm

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
sα 0 . . . 0
...

...
. . .

...
(sα)d1−1 0 . . . 0

...
...

. . .
...

0 0 . . . 1
0 0 . . . sα

...
...

. . .
...

0 0 . . . (sα)dm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.58)

If the condition a), is met then from (6.46) we have D ∈ R
p×m
+ . If the conditions b)

are satisfied then the matrix A is a Metzler matrix and the matrix C has nonnegative
entries if the conditions c) are met. ��
If the conditions of Theorem 6.5 are satisfied then the positive fractional realiza-
tion (6.56) of the transfer matrix T (s) can be computed by use of the following
procedure:

Procedure 6.6 ENUMERATE OD NOWEJ LINII

Step 1. Knowing the proper transfer matrix T (s) and using (6.46) compute matrix
D and the strictly proper matrix Tsp(s).

Step 2. Find the minimal degrees d1, . . . ,dm of the denominators D1(s), . . . ,Dm(s)
and write the matrix Tsp(s) in the form (6.54).



136 6 Realization Problem for Positive Fractional

Step 3. Using the equality

D(s) = diag
[
(sα)d1 . . . (sα )dm

]−diag
[

a1 . . . am
]

S, (6.59)

find
ak =

[
ak0 ak1 . . . akdk−1

]
for k = 1, . . . ,m; (6.60)

and the matrix A.
Step 4. Knowing the matrix N(s) and using (6.58) find the matrix C.

Example 6.5. Find the positive fractional realization (6.56) of the transfer matrix

T (s) =

⎡
⎣ 2sα+1

sα
(sα )2+3sα+2
(sα )2+2sα−3

sα+3
sα+1

2sα+1
(sα )2+2sα−3

⎤
⎦ . (6.61)

Using the Procedure 6.6 we obtain the following:

Step 1. From (6.46), (6.54) and (6.61) we have

D = lim
s→∞

T (s) =
[

2 1
1 0

]
, (6.62)

and

Tsp(s) = T (s)−D =

[
1

sα
sα+5

(sα )2+2sα−3
2

sα+1
2sα +1

(sα )2+2sα−3

]
. (6.63)

Step 2. In this case D1(s) = (sα)2 + sα , D2(s) = (sα)2 + 2sα −3, d1 = d2 = 2 and
the matrix (6.63) takes the form

Tsp(s) =

[
sα +1

(sα )2+sα
sα +5

(sα )2+2sα−3
2sα

(sα )2+sα
2sα+1

(sα )2+2sα−3

]
. (6.64)

Step 3. Using (6.59) we obtain
[

(sα )2 + sα 0
0 (sα )2 + 2(sα)−3

]
=

[
(sα )2 0

0 (sα )2

]
−
[

0 −1 0 0
0 0 3 −2

]
⎡
⎢⎢⎣

1 0
sα 0
0 1
0 sα

⎤
⎥⎥⎦ ,

and
a1 =

[
a10 a11

]
=
[

0 −1
]
, a2 =

[
a20 a21

]
=
[

3 −2
]
.
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Therefore, the matrix A has the form

A = block diag
[

A1 A2
]
=

⎡
⎢⎢⎣

0 1 0 0
0 −1 0 0
0 0 0 1
0 0 3 −2

⎤
⎥⎥⎦ . (6.65)

Step 4. Using (6.58) and (6.64) we obtain

[
sα + 1 sα + 5

2sα 2sα + 1

]
=
[

1 1 5 1
0 2 1 2

]⎡⎢⎢⎣
1 0
sα 0
0 1
0 sα

⎤
⎥⎥⎦ ,

and

C =
[

1 1 5 1
0 2 1 2

]
. (6.66)

In this case the matrix B has the form

B =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ . (6.67)

The desired positive fractional realization (6.56) of (6.61) is given by (6.62), (6.65),
(6.66) and (6.67).

The strictly proper transfer matrix Tsp(s) can be also written in the form

Tsp(s) =

⎡
⎢⎢⎢⎣

N11(s)
D1(s) . . . N1m(s)

D1(s)
...

. . .
...

N p1(s)
Dp(s) . . .

N pm(s)
Dp(s)

⎤
⎥⎥⎥⎦= D

−1(s)N(s), (6.68)

where

N(s) =

⎡
⎢⎣

N11(s) . . . N1m(s)
...

. . .
...

N p1(s) . . . N pm(s)

⎤
⎥⎦ , D(s) = diag

[
D1(s) . . . Dp(s)

]
,

N jk(s) = b
d j−1
jk (sα)d j−1 + · · ·+ b

1
jksα + b

0
jk, (6.69a)

Dk(s) = (sα)d j −akd j−1(s
α)d j−1 −·· ·−ak1sα + ak0, (6.69b)

k = 1, . . . ,m; j = 1, . . . , p;
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Theorem 6.6. There exists the positive fractional realization

A = block diag
[

A1 . . . Ap
] ∈ R

n×n,
k = 1, . . . , p;

n = d1 + · · ·+ dp;
(6.70)

Ak =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 ak0

1 0 . . . 0 ak1

0 1 . . . 0 ak2
...

...
. . .

...
...

0 0 . . . 1 akdk−1

⎤
⎥⎥⎥⎥⎥⎦
∈ R

dk×dk ,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
0
11 b

0
12 . . . b

0
1m

...
...

. . .
...

b
d1−1
11 b

d1−1
12 . . . b

d1−1
1m

...
...

. . .
...

b
0
p1 b

0
p2 . . . b

0
pm

...
...

. . .
...

b
d p−1
p1 b

d p−1
p2 . . . b

d p−1
pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×m
+ ,

C = block diag
[

C1 . . . Cp
] ∈ R

p×n
+ , Ck =

[
0 0 . . . 1

] ∈ R
1×dk
+ ,

D = T (∞) ∈ R
p×m
+ ,

of the transfer matrix T (s) if the following conditions are satisfied:

a) T (∞) ∈ R
p×m
+

b) akl ≥ 0 for k = 1, . . . , p; l = 0,1, . . . ,dk −2; and akdk−1 can be arbitrary

c) b
i
jk ≥ 0 for j = 1, . . . , p; k = 1, . . . ,m; i = 0,1, . . . ,d j −1;

Proof. First we shall show that the matrices (6.70) are a realization of the strictly
proper matrix (6.68). Using (6.69) and (6.70) it is easy to verify that

Dk(s)Ck =
[

1 sα . . . (sα )dk−1
][

Idk
sα −Ak

]
, k = 1, . . . , p;

and
D(s)C = S

[
Insα −A

]
, (6.71)

where

S = block diag
[

S1 . . . Sp
]
, Sk =

[
1 sα . . . (sα )dk−1

]
, k = 1, . . . , p;

Premultiplying (6.71) by D
−1(s) and postmultiplying by [Insα −A]−1B we obtain

C[Insα −A]−1B = D
−1(s)SB = D

−1(s)N(s) = Tsp(s), since SB = N(s).
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If the condition a) is met then from (6.46) we have D ∈ R
p×m
+ . If the conditions b)

are satisfied then the matrix A is a Metzler matrix and the matrix B has nonnegative
entries if the conditions c) are met. ��

If the conditions of Theorem 6.6 are satisfied then the positive fractional realiza-
tion (6.70) of the transfer matrix T (s) can be computed by use of the following
procedure:

Procedure 6.7 ENUMERATE OD NOWEJ LINII

Step 1. Knowing the proper transfer matrix T (s) and using (6.46) compute the ma-
trix D and the strictly proper matrix Tsp(s).

Step 2. Find the minimal degrees d1, . . . ,d p of the denominators D1(s), . . . ,Dp(s)
and write the matrix Tsp(s) in the form (6.68).

Step 3. Using the equality

D(s) = diag
[
(sα )d1 . . . (sα)d p

]
−Sdiag

[
a1 . . . ap

]
, (6.72)

find
ak =

[
ak0 ak1 . . . akdk−1

]T
for k = 1, . . . , p; (6.73)

and the matrix A.
Step 4. Knowing the matrix N(s) and using the equality SB = N(s) find the

matrix B.

Example 6.6. Find the positive fractional realization (6.70) of the strictly proper
transfer matrix

Tsp(z) =

⎡
⎣ (sα )2+2sα+3

(sα )3+2(sα )2−3(sα )−1
4(sα )+2

(sα )3+2(sα )2−3sα−1
sα +2

(sα )2+2sα−3
2sα +3

(sα )2+2sα−3

⎤
⎦ . (6.74)

Using Procedure 6.7 we obtain the following:

Step 1. From (6.46) and (6.74) we have D = 0.
Step 2. In this case d1 = 3, d2 = 2, D1(s) = (sα )3 + 2(sα)2 − 3sα − 1, D2(s) =

(sα )2 + 2sα −3. The matrix (6.74) has already the desired form (6.68).
Step 3. Using (6.72) we obtain

[
(sα )3 + 2(sα)2 −3sα −1 0

0 (sα)2 + 2sα −3

]
=

[
(sα )3 0

0 (sα)2

]
−
[

1 sα (sα )2 0 0
0 0 0 1 sα

]
⎡
⎢⎢⎢⎢⎣

1 0
3 0
−2 0
0 3
0 −2

⎤
⎥⎥⎥⎥⎦ ,
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and
a1 =

[
1 3 −2

]T
, a2 =

[
3 −2

]T
.

Therefore, the matrix A has the form

A = block diag
[

A1 A2
]
=

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
1 0 3 0 0
0 1 −2 0 0
0 0 0 0 3
0 0 0 1 −2

⎤
⎥⎥⎥⎥⎦ . (6.75)

Step 4. Using the equality SB = N(s) and (6.74) we obtain

[
(sα )2 + 2sα + 3 4sα + 2

sα + 2 2sα + 3

]
=
[

1 sα (sα )2 0 0
0 0 0 1 sα

]
⎡
⎢⎢⎢⎢⎣

3 2
2 4
1 0
2 3
1 2

⎤
⎥⎥⎥⎥⎦ ,

and

B =
[

3 2 1 2 1
2 4 0 3 2

]T

, C =
[

0 0 1 0 0
0 0 0 0 1

]
. (6.76)

The desired positive fractional realization (6.70) of (6.74) is given by (6.75),
(6.76), and D = 0.



Chapter 7
Cone Discrete-Time and Continuous-Time
Linear Systems

7.1 Basic Definitions

Definition 7.1. Let P = [pT
1 , . . . , pT

n ]T ∈ Rn×n be nonsingular and pk be the k-th
(k = 1, . . . ,n) its row. The set

P =

{
xi ∈ R

n :
n⋂

k=1

pkxi ≥ 0

}
(7.1)

is called a linear cone of the state variable xi generated by the matrix P.

In a similar way we may define for inputs ui the linear cone of the inputs

Q =

{
ui ∈ R

m :
m⋂

k=1

qkui ≥ 0

}
, (7.2)

generated by the nonsingular matrix Q = [qT
1 , . . . ,qT

m]T ∈ Rm×m and for outputs yi,
the linear cone of the outputs

V =

{
yi ∈ R

p :
p⋂

k=1

vkyi ≥ 0

}
, (7.3)

generated by the nonsingular matrix V = [vT
1 , . . . ,vT

p ]T ∈ Rp×p.

7.1.1 Cone Discrete-Time Systems

Consider the discrete-time linear systems

xi+1 = Axi + Bui, (7.4a)

yi = Cxi + Dui, (7.4b)

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 141–159.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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where xi ∈Rn, ui ∈Rm, yi ∈Rp are the state, input and output vectors and A∈Rn×n,
B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Definition 7.2. The linear system (7.4) is called (P,Q,V ) cone system if xi ∈ P
and yi ∈ V , i ∈ Z+ for every x0 ∈ P and all ui ∈ Q, i ∈ Z+.

If P = Rn
+, Q = Rm

+, V = R
p
+ then (Rn

+,Rm
+,Rp

+) cone system is equivalent to
the positive system.

Theorem 7.1. The linear system (7.4) is (P,Q,V ) cone system if and only if

A = PAP−1 ∈ R
n×n
+ , B = PBQ−1 ∈ R

n×m
+ , (7.5a)

C = VCP−1 ∈ R
p×n
+ , D = VDQ−1 ∈ R

p×m
+ . (7.5b)

Proof. Let
xk = Pxk, uk = Quk, yk = V yk, k ∈ Z+. (7.6)

From Definition 7.2 it follows that if xk ∈ P then xk ∈ Rn
+, if uk ∈ Q then uk ∈ Rm

+
and if yk ∈ V then yk ∈ R

p
+. From (7.4) and (7.6) we have

xk+1 = Pxk+1 = PAxk + PBuk = PAP−1xk + PBQ−1uk = Axk + Buk, (7.7a)

and

yk = Vyk = VCxk +VDuk = VCP−1xk +VDQ−1uk = Cxk +Duk, k ∈Z+. (7.7b)

It is well-known that the system (7.7) is positive if and only if the conditions (7.5)
are satisfied. ��

7.1.2 Cone Continuous-Time Systems with Delays

Consider the continuous-time linear system

ẋ(t) =
h

∑
i=0

Aix(t − id)+
q

∑
j=0

B ju(t − jd), (7.8a)

y(t) = Cx(t)+ Du(t), (7.8b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state, input and output vectors and

Ai ∈ Rn×n, i = 0,1, . . . ,h; B j ∈ Rn×m, j = 0,1, . . . ,q; C ∈ Rp×n, D ∈ Rp×m, and
d > 0 is a delay.

Initial conditions for (7.8) are given by

x0(t) for t ∈ [−hd,0] and u0(t) for t ∈ [−qd,0) (7.9)
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Definition 7.3. The continuous-time system (7.8) is called the (P,Q,V ) cone sys-
tem if x(t) ∈ P and y(t) ∈ V , t ≥ 0 for every x0 ∈ P , t ∈ [−hd,0], u0 ∈ Q,
t ∈ [−qd,0) and u(t) ∈ Q, t ≥ 0.

If P = Rn
+, Q = Rm

+, V = R
p
+, then (Rn

+,Rm
+,Rp

+) cone system is equivalent to
the positive system.

Theorem 7.2. The continuous-time system (7.8) is the (P,Q,V ) cone system if
and only if

A0 = PA0P−1 ∈ Mn, Ai = PAiP
−1 ∈ R

n×n
+ , i = 1, . . . ,h;

B j = PB jQ
−1 ∈ R

n×m
+ , j = 0,1, . . . ,q; (7.10)

C = VCP−1 ∈ R
p×n
+ , D = VDQ−1 ∈ R

p×m
+ .

Proof. Let
x(t) = Px(t), u(t) = Qu(t), y(t) = Vy(t). (7.11)

From Definition 7.3 it follows that if x(t) ∈ P then x(t) ∈ Rn
+, if u(t) ∈ Q then

u(t) ∈ Rm
+ and if y(t) ∈ V , then y(t) ∈ R

p
+.

From (7.8) and (7.11) we have

ẋ(t) = Pẋ(t) =
h

∑
i=0

PAix(t − id)+
q

∑
j=0

PB ju(t − jd)

=
h

∑
i=0

PAiP
−1x(t − id)+

q

∑
j=0

PB jQ
−1u(t − jd) (7.12a)

=
h

∑
i=0

Aix(t − id)+
q

∑
j=0

B ju(t − jd),

and

y(t) = V y(t) = VCx(t)+VDu(t) = VCP−1x(t)+VDQ−1u(t)
= Cx(t)+ Du(t). (7.12b)

It is well-known that the continuous-time system (7.12) is positive if and only if the
conditions (7.10) are satisfied. ��
The considerations can be easily extended to linear systems with arbitrary delays by
substitution in (7.8a) id = di, i = 0,1, . . . ,h and jd = d j, j = 0,1, . . . ,q.
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7.1.3 Cone Fractional Discrete-Time Systems

Consider the fractional discrete-time linear systems

xk+1 = Axk +
k+1

∑
j=1

(−1) j+1
(

α
j

)
xk− j+1 + Buk

= Aα xk +
k

∑
j=1

(−1) j
(

α
j + 1

)
xk− j + Buk, (7.13a)

yk = Cxk + Duk, k ∈ Z+ (7.13b)

where xk ∈Rn, uk ∈Rm, yk ∈Rp are the state, input and output vectors nad A∈Rn×n,
B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Definition 7.4. The fractional system (7.13) is called (P,Q,V ) cone fractional
discrete-time linear systems if xk ∈ P and yk ∈ V , k ∈ Z+ for every x0 ∈ P and
uk ∈ Q, k ∈ Z+.

The (P,Q,V ) cone fractional discrete-time linear systems (7.13) will be shortly
called the cone fractional system. If P = R

n
+, Q = R

m
+, V = R

p
+, then (Rn

+,Rm
+,R

p
+)

cone system is equivalent to the positive fractional system.

Theorem 7.3. The fractional system (7.13) is the (P,Q,V ) cone fractional system
if and only if

Aα = PAαP−1 ∈ R
n×n
+ , B = PBQ−1 ∈ R

n×m
+ , (7.14a)

C = VCP−1 ∈ R
p×n
+ , D = VDQ−1 ∈ R

p×m
+ , (7.14b)

Proof. Let
xk = Pxk, uk = Quk, yk = V yk, k ∈ Z+. (7.15)

From Definition 7.4 it follows that if xk ∈ P then xk ∈ Rn
+, if uk ∈ Q then uk ∈ Rm

+
and if yk ∈ V , then yk ∈ R

p
+. From (7.13) and (7.15) we have

xk+1 = PAαxk +
k

∑
j=1

(−1) j
(

α
j + 1

)
Pxk− j + PBuk (7.16a)

= Aα xk +
k

∑
j=1

(−1) j
(

α
j + 1

)
xk− j + Buk, (7.16b)

and

yk =V yk =VCxk +VDuk =VCP−1xk +VDQ−1uk =Cxk +Duk, k∈Z+. (7.16c)

It is well-known that the fractional system (7.16) is positive if and only if the con-
ditions (7.14) are satisfied. ��
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7.1.4 Cone Fractional Continuous-Time System

Consider the fractional continuous-time system

dα

dtα x(t) = Ax(t)+ Bu(t), 0 < α < 1, (7.17a)

y(t) = Cx(t)+ Du(t), (7.17b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input and output vectors and
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Definition 7.5. The fractional system (7.17) is called (P,Q,V ) cone fractional
continuous-time system if x(t) ∈ P and y(t) ∈ V , t ≥ 0 for every x0 ∈ P and
u(t) ∈ Q, t ≥ 0.

The (P,Q,V ) cone fractional continuous-time system (7.17) we shall shortly
called the cone fractional system. If P = Rn

+, Q = Rm
+, V = R

p
+ then the cone

(Rn
+,Rm

+,R
p
+) system is equivalent to the positive fractional system.

Theorem 7.4. The fractional system (7.17) is the (P,Q,V ) cone fractional system
if and only if

A = PAP−1 ∈ Mn, B = PBQ−1 ∈ R
n×m
+ , (7.18a)

C = VCP−1 ∈ R
p×n
+ , D = VDQ−1 ∈ R

p×m
+ , (7.18b)

Proof. Let

x(t) = Px(t), u(t) = Qu(t), y(t) = Vy(t), t ≥ 0. (7.19)

From Definition 7.5 it follows that if x(t) ∈ P , then x(t) ∈ Rn
+, if u(t) ∈ Q, then

u(t) ∈ R
m
+ and if y(t) ∈ V , then y(t) ∈ R

p
+. From (7.17) and (7.19) we have

Dα x(t) = Dα Px(t) = PAx(t)+ PBu(t) = PAP−1x(t)+ PBQ−1u(t)
= Ax(t)+ Bu(t), t ≥ 0, (7.20a)

and

y(t) = V y(t) = VCx(t)+VDu(t) = VCP−1x(t)+VDQ−1u(t)
= Cx(t)+ Du(t), t ≥ 0. (7.20b)

It is well-known the the fractional system (7.20) is positive if and only if the condi-
tions (7.18) are satisfied. ��
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7.2 Reachability of Cone Fractional Systems

7.2.1 Cone Fractional Discrete-Time Systems

Definition 7.6. A state x f ∈ P of the cone fractional system (7.13) is called reach-
able in q steps if there exists an inputs sequence uk ∈ Q, k = 0,1, . . . ,q− 1, which
steers the state of the system from zero initial state x0 = 0 to the desired state x f ,
i.e. xq = x f . If every state x f ∈ P is reachable in q steps then the cone fractional
system is called reachable in q steps. If for every state x f ∈ P there exists a natural
number q such that the state is reachable in q steps then the cone fractional system
is called reachable.

Theorem 7.5. The cone fractional system (7.13) is reachable in q steps if and only
if the matrix

Rq =
[

PBQ−1 PΦ1BQ−1 . . . PΦq−1BQ−1
]
, (7.21)

contains n linearly independent monomial columns where Φi, i = 1, . . . ,q− 1 are
defined by (1.24).

Proof. From (7.15) it follows that if xk ∈P , then xk = Pxk ∈Rn
+ and if uk ∈Q, then

uk = Quk ∈ Rm
+ for k ∈ Z+. From Definitions 7.4 and 1.9 it follows that the cone

fractional system (7.13) is reachable in q steps if and only if the positive fractional
system (7.16) is reachable in q steps. Using (1.24) and (7.14), it is easy to show that
the matrices Φk of the system (7.16) are related with the matrices Φk of the system
(7.13) as follows

Φk = PΦkP−1 for k = 0,1, . . . . (7.22)

Taking into account that

ΦkB = PΦkP−1PBQ−1 = PΦkBQ−1, k = 1,2, . . . ,q−1, (7.23)

we obtain

Rq =
[

B Φ1B . . . Φq−1B
]
=
[

PBQ−1 PΦ1BQ−1 . . . PΦq−1BQ−1
]
. (7.24)

From Theorem 1.10 it follows that the positive fractional system (7.16) is reachable
in q steps if and only if the matrix (7.24) contains n linearly independent monomial
columns. ��
Example 7.1. Consider the cone fractional system (7.13) with the matrices

P =
[

1 1
−1 1

]
, Q = [1], A =

[−α a
1 a−α + 1

]
, a > 0, 0 < α < 1, (7.25)

and for the following two forms of the matrix B:

B1 =
[

b
b

]
, B2 =

[−b
b

]
, b > 0.
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In case 1 we shall show that the cone fractional system is unreachable. Using (1.32),
(7.14) and (7.25), we obtain:

Aα = P(A + αIn)P−1 =
[

1 1
−1 1

][
0 a
1 a + 1

]
1
2

[
1 −1
1 1

]

=
[

a + 1 a
1 0

]
, a > 0, (7.26)

B1 = PB1Q−1 =
[

1 1
−1 1

][
b
b

]
=
[

2b
0

]
, b > 0.

The system with (7.26) is a positive fractional system. Using (7.21) for q = 2, (7.25)
and taking into account that Φ1 = Aα , we obtain

R2 =
[

PB1Q−1 PΦ1B1Q−1
]
= P

[
B1 Aα B1

]

=
[

1 1
−1 1

][
b ab
b (a + 2)b

]
=
[

2b 2(a + 1)b
0 2b

]
. (7.27)

The matrix(7.27) contains only one monomial column. From Theorem 7.5 it follows
that the cone fractional system is unreachable. Note that the necessary condition of
reachability of Theorem 1.11 is not satisfied since the matrix

[
Aα B1

]
=
[

a + 1 a 2b
1 0 0

]

contains only one linearly independent monomial column.

In case 2 we have

B2 = PB2Q−1 =
[

1 1
−1 1

][−b
b

]
=
[

0
2b

]
, b > 0. (7.28)

The system with (7.26) and (7.28) is also a positive fractional system. Using (7.21)
for q = 2, (7.25), we obtain the matrix

R2 = P
[

B2 Aα B2
]
=
[

1 1
−1 1

][−b ab
b ab

]
=
[

0 2ab
2b 0

]
, a > 0, b > 0, (7.29)

which contains two linearly independent monomial columns. Therefore, by Theo-
rem 7.5 the cone fractional system is reachable. In this case the necessary condition
of the reachability is satisfied since the matrix

[
Aα B2

]
=
[

a + 1 a 0
1 0 2b

]

contains two linearly independent monomial columns.
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7.2.2 Cone Fractional Continuous-Time System

Definition 7.7. A state x f ∈ P of the cone fractional system (7.17) is called reach-
able in time t f , if there exists an input u(t) ∈ Q, t ∈ [0, t f ], which steers the state of
the system from zero initial state x0 = 0 to the finial state x(t f ) = x f . If every state
x f ∈ P is reachable in time t f , then the cone fractional system is reachable in time
t f . If for every state x f ∈ P there exists time t f such that the state is reachable in
time t f , then the cone fractional system is called reachable.

Theorem 7.6. The positive cone fractional system (7.17) is reachable in time t f , if
the matrix

R(t f ) = P
∫ t f

0
Φ(τ)BQ−1 (Q−1)T

BT ΦT (τ)dτPT , (7.30)

is monomial, where Φ(t) is defined by (2.17).

Proof. From (7.19) it follows that if x(t) ∈ P , then x(t) = Px(t) ∈ Rn
+, t ≥ 0, if

u(t) ∈ Q, then u(t) = Qu(t) ∈ Rm
+, t ≥ 0. By Definitions 2.10 and 7.7 the cone

fractional system (7.17) is reachable in time t f , if the positive fractional system
(7.20) is reachable in time t f .

From (7.18) and (2.17) we have

Φ(t) =
∞

∑
k=0

A
k
t(k+1)α−1

Γ [(k + 1)α]
=

∞

∑
k=0

(
PAP−1

)k
t(k+1)α−1

Γ [(k + 1)α]
= PΦ(t)P−1, (7.31)

since A
k = (PAP−1)k = PAkP−1 for k = 1,2, . . . and

Φ(t)B = PΦ(t)P−1PBQ−1 = PΦ(t)BQ−1. (7.32)

Using (2.44) and (7.30), we obtain

R(t f ) =
∫ t f

0
Φ(τ)BB

T ΦT (τ)dτ =
∫ t f

0

(
PΦ(τ)BQ−1)(PΦ(τ)BQ−1)T

dτ

= P
∫ t f

0
Φ(τ)BQ−1 (Q−1)T

BT ΦT (τ)dτPT (7.33)

By Theorem 2.10 the positive cone fractional system (7.17) is reachable in time t f ,
if the matrix (7.30) is monomial. ��
Corollary 7.1. If Q = Im, then R(t f ) = PR(t f )PT and the positive fractional system
(7.17) is reachable in time t f , if the positive fractional system is reachable and the
matrix P is monomial.

Example 7.2. Consider the cone fractional system (7.17) with the matrices:

P =
[

1 1
−1 1

]
, Q =

[
1 0
0 1

]
, A =

[
1 0
0 0

]
, B =

[
0 1
1 0

]
. (7.34)
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From (7.34) and (2.49) it follows that

Φ(t)B =
[

0 Φ1(t)
Φ2(t) 0

]
. (7.35)

From (2.44) we have

R(t f ) =
∫ t f

0
Φ(τ)BBT ΦT (τ)dt =

∫ t f

0

[
Φ2

1 (τ) 0
0 Φ2

2 (τ)

]
dτ, (7.36)

where

Φ1(t) =
∞

∑
k=0

t(k+1)α−1

Γ [(k + 1)α]
, Φ2(t) =

tα−1

Γ (α)
, 0 < α < 1. (7.37)

The matrix (7.36) is monomial and by Theorem 7.6 the positive fractional system is
reachable in time t f .

In this case Q = I2 and the matrix

R(t f ) = PR(t f )PT =
∫ t f

0

[
1 1
−1 1

][
Φ2

1 (τ) 0
0 Φ2

2 (τ)

][
1 −1
1 1

]
dτ

=
∫ t f

0

[
Φ2

1 (τ)+ Φ2
2 (τ) Φ2

2 (τ)−Φ2
1 (τ)

Φ2
2 (τ)−Φ2

1 (τ) Φ2
1 (τ)+ Φ2

2 (τ)

]
dτ, (7.38)

is not monomial since Φ2
1 (τ) �= Φ2

2 (τ). Therefore, the sufficient condition of the
reachability of Theorem 7.6 of the cone system is not satisfied.

Corollary 7.2. From this example and from comparison of (2.44) and (7.30) it fol-
lows that the sufficient conditions for the reachability of the cone fractional systems
are much stronger than for the positive fractional systems.

7.3 Controllability to Zero of Cone Fractional Discrete-Time
Systems

Definition 7.8. The positive fractional system (7.13) is called controllable to zero in
q steps if for any nonzero initial condition x0 ∈ R

n
+ there exists a sequence of inputs

uk ∈ Rm
+, k = 0,1, . . . ,q−1, which steers the state of the system from x0 to the finial

state x f = 0.

Theorem 7.7. Positive fractional system (7.13) is controllable to zero if and only if
q = 1 and

Φ1 = Aα = A + αIn = 0. (7.39)

Moreover u0 = 0.

Proof. The proof is similar to the proof of Lemma 1.3. ��
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Definition 7.9. The cone fractional system (7.13) is called controllable to zero in q
steps if for any initial condition x0 ∈ P there exists a sequence of inputs uk ∈ Q,
k = 0,1, . . . ,q− 1, which steers the state of the system from x0 to the final state
x f = 0.

Theorem 7.8. The cone fractional system (7.13) is controllable to zero if and only
if q = 1 and the condition (7.39) is satisfied.

Proof. From (7.15) it follows that if xk ∈ P , then xk = Pxk ∈ Rn
+ and if uk ∈ Q,

then uk = Quk ∈ Rm
+ for k ∈ Z+. From Definitions 7.8 and 7.9 it follows that cone

fractional system (7.13) is controllable to zero in q steps if and only if the positive
fractional system (7.16) is controllable to zero in q steps if and only if q = 1 and

Φ1 = PΦ1P−1 = P(A + αIn)P−1 = 0. (7.40)

This is equivalent to the condition (7.39) since detP �= 0. ��

7.4 Cone Realization Problem for Linear Systems

7.4.1 Discrete-Time Linear Systems

Lemma 7.1. The transfer matrix

T (z) = C [Inz−A]−1 B + D, (7.41)

of the (P,Q,V ) cone system (7.4) and the transfer matrix

T (z) = C
[
Inz−A

]−1
B+ D, (7.42)

of the positive system (7.4) are related by

T (z) = VT (z)Q−1. (7.43)

Proof. Using (7.42), (7.41) and (7.5), we obtain

T (z) = C
[
Inz−A

]−1
B+ D = VCP−1 [Inz−PAP−1]−1

PBQ−1 +VDQ−1

= VCP−1 [P(Inz−A)P−1]−1
PBQ−1 +VDQ−1

= VC [Inz−A]−1 BQ−1 +VDQ−1 = VT (z)Q−1.

��
Definition 7.10. The matrices:

A ∈ R
n×n and B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, (7.44)

are called a (P,Q,V ) cone realization of the transfer matrix T (z) ∈ Rp×m(z) if
they satisfy (7.41) and the conditions:
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PAP−1 ∈ R
n×n
+ , PBQ−1 ∈ R

n×m
+ , (7.45a)

VCP−1 ∈ R
p×n
+ , VDQ−1 ∈ R

p×m
+ , (7.45b)

where P,Q,V are nonsingular matrices generating the cones P,Q,V .

The (P,Q,V ) cone realization problem can be stated as follows. Given a proper
transfer matrix T (z) ∈ Rp×m(z) and nonsingular matrices P,Q,V generating the
cones P,Q,V . Find a (P,Q,V ) cone realization of the transfer matrix T (z).

The (P,Q,V ) cone realization of the transfer matrix T (z) ∈ Rp×m(z) for given
nonsingular matrices P,Q,V can be computed by the use of the following procedure:

Procedure 7.1 ENUMERATE OD NOWEJ LINII

Step 1. Knowing T (z) and the matrices Q,V and using (7.43), find the transfer
matrix T (z).

Step 2. Using the known procedures finding a positive realization A, B, C, D of the
form (6.8) of T (z).

Step 3. Using:

A = P−1AP, B = P−1BQ, (7.46a)

C = V−1CP, D = V−1DQ, (7.46b)

find the desired realization.

Theorem 7.9. There exists a (P,Q,V ) cone realization of T (z) if and only if there
exists a positive realization of T (z).

Proof. The proof follows from Procedure 7.1 and Lemma 7.1. ��

From Theorem 7.9 for SISO (m = p = 1) systems we have the following corollary.

Corollary 7.3. There exist a (P,Q,V ) cone realization A, B, C, D if and only if
there exists a positive realization A, B, C, D of T (z). The realizations are related by:

A = P−1AP, B = P−1BQ, (7.47)

C = V−1CP, D = kD, (7.48)

where k = QV−1 is a scalar and the transfer matrices T (z) and T (z) are related by
T (z) = kT (z).

Example 7.3. Given the transfer function

T (z) =
2z+ 1

z2 −2z−3
, (7.49)
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and

P =
[

2 −1
1 1

]
, Q = V = 1. (7.50)

Find its a (P,Q,V ) cone realization. Using Procedure 7.1 we obtain the following:

Step 1. In this case T (z) = T (z), since Q = V = 1.
Step 2. A positive realization of (7.49) has the form:

A =
[

0 1
3 2

]
, B =

[
0
1

]
, C =

[
1 2

]
, D = 0. (7.51)

Step 3. Using (7.46), (7.50) and (7.51), we obtain the desired cone realization:

A = P−1AP =
[

2 −1
1 1

]−1 [0 1
3 2

][
2 −1
1 1

]
=
[

3 0
5 −1

]
, (7.52a)

B = P−1BQ =
[

2 −1
1 1

]−1 [ 0
1

]
[1] =

[ 1
3
2
3

]
, (7.52b)

C = V−1CP =
[

1 2
][ 2 −1

1 1

]
=
[

4 1
]
, D = V−1DQ = 0. (7.52c)

Example 7.4. Given the transfer matrix

T (z) =
1

2(z−1)(z−2)(z−3)

×
[

3z2 −8z+ 5 z−3 2z2 −11z+ 15
−z2 + 8z−11 −2z2 + 5z−1 6z2 −19z+ 11

]
, (7.53)

and the matrices:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 0 1 −1 0
−1 1 2 0 1 0
0 1 0 −1 2 1
0 −1 1 0 1 0
1 2 1 0 1 1
0 −1 1 2 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, Q =

⎡
⎣ 1 −1 2
−1 0 1
0 1 −2

⎤
⎦ , V =

[
1 −1
1 1

]
. (7.54)

Find a (P,Q,V ) cone realization of (7.53). In this case m = 3 and p = 2. Using
Procedure 7.1, we obtain the following:
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Step 1. From (7.43) and (7.53) we have

T (z) = VT (z)Q−1 =
[

1 −1
1 1

]
1

2(z−1)(z−2)(z−3)

×
[

3z2 −8z+ 5 z−3 2z2 −11z+ 15
−z2 + 8z−11 −2z2 + 5z−1 6z2 −19z+ 11

]⎡⎣ 1 −1 2
−1 0 1
0 1 −2

⎤
⎦
−1

=

[
2z−4

(z−1)(z−3) 0 3z−7
(z−2)(z−3)

3
z−3

2z−3
(z−1)(z−2)

2
z−3

]
. (7.55)

Step 2. A positive realization of (7.55) has the form:

A = diag
[

1 1 2 2 3 3
]
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 1 0
1 0 2
3 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.56a)

C =
[

1 0 1 0 1 0
0 1 0 1 0 1

]
, D =

[
0 0 0
0 0 0

]
. (7.56b)

Step 3. Using (7.46), (7.54) and (7.56), we obtain the desired realization:

A =
1
6

⎡
⎢⎢⎢⎢⎢⎢⎣

12 11 6 −3 6 1
6 7 12 9 0 5
−6 15 −18 −21 0 −9
18 −29 60 57 0 23
12 −20 42 30 12 14
−12 16 −36 −24 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =
1
6

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 −4
−1 4 −8
3 −6 12
−7 10 −14
−10 10 −14
14 −8 10

⎤
⎥⎥⎥⎥⎥⎥⎦

,

C =
1
2

[
1 0 5 2 4 4
−3 −2 3 2 0 0

]
, D =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ .

7.4.2 Cone Realization Problem for Continuous-Time Systems
with Delays

Lemma 7.2. The transfer matrix

T (s,w) = C
[
Ins−A0 −A1w− ...−Ahwh

]−1
[B0 + B1w+ ...+ Bqwq]+ D,

w = e−ds, (7.57)

of the (P,Q,V ) cone system (7.8) and the transfer matrix
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T (s,w) = C
[
Ins−A0 −A1w−·· ·−Ahwh

]−1 [
B0 + B1w+ · · ·+ Bqwq]+ D,

(7.58)
of the positive system (7.12) are related by

T (s,w) = VT (s,w)Q−1 (7.59)

Proof. Using (7.10), (7.57) and (7.58), we obtain

T (s,w) = C
[
Ins−A0 −A1w−·· ·−Ahwh

]−1

× [
B0 + B1w+ · · ·+ Bqwq

]
+ D

= VCP−1
[
P
(

Ins−A0 −A1w−·· ·−Ahwh
)

P−1
]−1

× P [B0 + B1w+ · · ·+ Bqwq]Q−1 +VDQ−1

= V

(
C
[
Ins−A0 −A1w−·· ·−Ahwh

]−1

× [B0 + B1w+ · · ·+ Bqwq]+ D)Q−1

= VT (s,w)Q−1.

��
Definition 7.11. The matrices:

Ai ∈ R
n×n, i = 0,1, . . . ,h; B j ∈ R

n×m, j = 0,1, . . . ,q;

C ∈ R
p×n, D ∈ R

p×m,

are called (P,Q,V ) cone realization of the transfer matrix T (s,w) if they satisfy
(7.10) and the conditions (7.57).

The (P,Q,V ) cone realization problem can be stated as follows. Given a proper
transfer matrix T (s,w)∈Rp×m(s,w) and the nonsingular matrices P,Q,V generating
the cones P,Q,V . Find a (P,Q,V ) cone realization of T (s,w).

From (7.58) we have

D = lim
s→∞

T (s,w), (7.60)

since

lim
s→∞

[
Ins−A0 −A1w−·· ·−Ahwh

]−1
= 0.

The strictly proper transfer matrix is

T sp(s,w) = T (s,w)−D. (7.61)
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The positive realization problem of (7.61) has been reduced to finding the matrices:

A0 ∈ Mn, Ai ∈ R
n×n
+ , i = 1, . . . ,h;

B j ∈ R
n×m
+ , j = 0,1, . . . ,q; C ∈ R

p×n
+ .

If for the given T sp(s,w)

A0 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 a00

1 0 . . . 0 a01

0 1 . . . 0 a02
...

...
. . .

...
...

0 0 . . . 1 a0n−1

⎤
⎥⎥⎥⎥⎥⎦

, Ai =

⎡
⎢⎢⎢⎣

0 . . . 0 ai0

0 . . . 0 ai1
...

. . .
...

0 . . . 0 ain−1

⎤
⎥⎥⎥⎦ , i = 1, . . . ,h, (7.62)

then

d(s,w) = det
[
Ins−A0 −A1w−·· ·−Ahwh

]

= sn −dn−1sn−1 −·· ·−d1s−d0, (7.63)

d j = d j(w) = ah, jw
h + ah−1, jw

h−1 + · · ·+ a1 jw+ a0 j, j = 0,1, . . . ,n−1;

and the n-th row of the adjoint matrix

Adj
[
Ins−A0 −A1w−·· ·−Ahwh

]
, (7.64)

has the form
Rn(s) =

[
1 s . . . sn−1

]
. (7.65)

The strictly proper transfer matrix T sp(s,w) can be written in the form

T sp(s,w) =

⎡
⎢⎢⎣

N1(s,w)
d1(s,w)

...
Np(s,w)
dp(s,w)

⎤
⎥⎥⎦ , (7.66)

where

dk(s,w) = snk −dk
nk−1snk−1 −·· ·−dk

1s−dk
0, i = 0,1, . . . ,nk −1,

dk
i = dk

i (w) = ak
h,iw

h + ak
h−1,iw

h−1 + · · ·+ ak
1iw+ ak

0i, k = 1, . . . , p; (7.67)

is the least common denominator of the i-th row of the matrix T sp(s,w) and

Nk(s,w) =
[

nk1(s,w) . . . nkm(s,w)
]
, k = 1, . . . , p; (7.68a)
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nk j(s,w) = nnk−1
k j snk−1 + · · ·+ n1

k js+ n0
k j, j = 0,1, . . . ,m; (7.68b)

ni
k j = niq

k jw
q + · · ·+ ni1

k jw+ ni0
k j, i = 0,1, . . . ,nk −1.

With the polynomials (7.67) are associated the matrices

Ak0 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 ak
00

1 0 . . . 0 ak
01

0 1 . . . 0 ak
02

...
...

. . .
...

...
0 0 . . . 1 ak

0nk−1

⎤
⎥⎥⎥⎥⎥⎦

, Aki =

⎡
⎢⎢⎢⎣

0 . . . 0 ak
i0

0 . . . 0 ak
i1

...
. . .

...
...

0 . . . 0 ak
ink−1

⎤
⎥⎥⎥⎦ ,

k = 1, ..., p;
i = 1, ...,hk;

(7.69)

satisfying the condition

dk(s,w) = det
[
Ink s−Ak0 −Ak1w−·· ·−Akhk whk

]
, k = 1, . . . , p. (7.70)

Let

A0 = block diag
[

A10 . . . Ap0
] ∈ R

n×n, n = n1 + · · ·+ np;

Ai = block diag
[

A1i . . . Api
] ∈ R

n×n, i = 1, . . . , p; (7.71a)

Bk =

⎡
⎢⎣

bk
11 . . . bk

1m
...

. . .
...

bk
p1 . . . bk

pm

⎤
⎥⎦ , bk

i j =

⎡
⎢⎣

bk1
i j
...

bkni
i j

⎤
⎥⎦ ,

k = 0,1, . . . ,q;
j = 1, . . . ,m;

(7.71b)

C = block diag
[

c1 . . . cp
]
, ci =

[
0 . . . 0 1

] ∈ R
1×ni . (7.71c)

It is assumed that the number of delays q in the input vector is equal to the polyno-
mial degree of the matrix N(s,w) with respect to w.

The entries of the matrices Bk, k = 0,1, . . . ,q, are given by:

b01
1 j = n00

1 j , b11
1 j = n01

1 j , . . . ,b
0q
1 j = nq−1,0

1 j , . . . ,b0n1
1 j = nn1−1,0

1 j ,

b1n1
1 j = nn1−1,1

1 j , . . . ,bqn1
1 j = nn1−1,q

1 j

... (7.72)

b01
p j = n00

p j, b11
p j = n01

p j, . . . ,b
0q
p j = nq−1,0

p j , . . . ,b
0np
p j = n

np−1,0
p j ,

b
1np
p j = n

np−1,1
p j , . . . ,b

qnp
p j = n

np−1,q
p j

for j = 1, . . . ,m.

Theorem 7.10. There exists a positive realization of the transfer matrix T (s,w), if:

a)
T (∞) = lim

s→∞
T (s,w) ∈ R

p×m
+ (7.73)
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b) the coefficients of polynomials dk(s,w), k = 1, . . . , p are nonnegative except
ak

0nk−1
, k = 1, . . . , p, which can be arbitrary

ak
i j ≥ 0 for i = 1, . . . ,hk; j = 0,1, . . . ,nk −2; k = 0,1, . . . , p; (7.74)

c) the coefficients of polynomial Nj(s,w), j = 1, . . . , p, are nonnegative

nil
k j ≥ 0 for i = 0,1, . . . ,nk −1; j = 1, . . . ,m;

k = 1, . . . , p; l = 0,1, . . . ,q; (7.75)

If the conditions of Theorem 7.10 are satisfied then the minimal positive realization
of T (s,w) can be found by the use of the following procedure:

Procedure 7.2 ENUMERATE OD NOWEJ LINII

Step 1. Using (7.60) and (7.61) find the matrix D and the strictly proper transfer
matrix T sp(s,w).

Step 2. Knowing the coefficients of polynomial dk(s,w), k = 1, . . . , p, find the ma-
trices (7.69) and (7.71a).

Step 3. Knowing the coefficients of polynomial Nj(s,w), j = 1, . . . , p; and using
(7.72), find the matrices Bk, k = 0,1, . . . ,q, and the matrix C.

For given matrices P,Q,V the (P,Q,V ) cone realization of T (s,w) ∈Rp×m can be
found by the use of the following procedure:

Procedure 7.3 ENUMERATE OD NOWEJ LINII

Step 1. Knowing the transfer matrix T (s,w) and the matrices P,Q,V and using
(7.59) find the transfer matrix T (s,w).

Step 2. Using Procedure 7.2 find the positive realization Ai, i = 0,1, . . . ,h; B j, j =
0,1, . . . ,q; C, D of T (s,w).

Step 3. Using (7.10), find the desired realization.

Theorem 7.11. There exists a (P,Q,V ) cone realization of the transfer matrix
T (s,w) if and only if the there exists a positive realization of T (s,w).

Proof. The Proof follows from Procedure 7.3 and Lemma 7.2. ��
Example 7.5. Given the transfer function

T (s,w) =
2s2 + 6s− (2w+ 1)

s2 +(2−w)s− (2w+ 1)
, (7.76)

and

P =
[

2 −1
1 1

]
, Q = V = 1. (7.77)

Find a (P,Q,V ) cone realization of (7.76).
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Using Procedure 7.3, we obtain the following:

Step 1. In this case T (s,w) = T (s,w), since Q = V = 1.
Step 2. Using Procedure 7.2, we obtain D = 2 and a positive realization of (7.76)

in the form:

A0 =
[

0 1
1 −2

]
, A1 =

[
0 2
0 1

]
, B0 =

[
1
2

]
, B1 =

[
2
2

]
, C =

[
0 1

]
.

Step 3. Using (7.10) we obtain the desired cone realization:

A0 =
1
3

[
1 −2
−1 −7

]
, A1 =

[
1 1
0 0

]
, B0 =

[
1
1

]
, B1 =

1
3

[
4
2

]
, C =

[
1 1

]
,

and D = D = 2

Example 7.6. Given the transfer matrix

T (s,w) =
1
2

⎡
⎣ (−w2+w−1)s+w2−w+1

s2+(−w2+2)s−(2w2+w+1) + −2s+3w2−1
s−2w2−w+1

(w2−w+1)s−w2+w−1
s2+(−w2+2)s−(2w2+w+1) + −2s+3w2−1

s−2w2−w+1

, (7.78)

1
2

3s2+(−w2+w+8)s−5w2−w−2
s2+(−w2+2)s−(2w2+w+1) + 4s−3w2+5

s−2w2−w+1
−3s2+(w2−w−8)s+5w2+w+2

s2+(−w2+2)s−(2w2+w+1) + 4s−3w2+5
s−2w2−w+1

⎤
⎦ .

and the matrices

P =

⎡
⎣ 1 −2 0
−1 1 2
1 −1 0

⎤
⎦ , Q =

[
1 1
−1 2

]
, V =

[
1 −1
1 1

]
. (7.79)

Find a (P,Q,V ) cone realization of (7.78).

In this case m = p = 2. Using Procedure 7.3 we obtain the following:

Step 1. From (7.59), (7.78) and (7.79) we have

T (s,w) =

[
s2+(−w2+w+2)s−w2−w

s2+(−w2+2)s−(2w2+w+1)
s2+3s−(2w2+1)

s2+(−w2+2)s−(2w2+w+1)
w2+1

s−2w2−w+1
2s−2w2+2

s−2w2−w+1

]
. (7.80)

Step 2. Using Procedure 7.2 we obtain

D =
[

1 1
0 2

]
(7.81)

and

T sp(s,w) =

[
ws+w2+1

s2+(−w2+2)s−(2w2+w+1)
(w2+1)s+w

s2+(−w2+2)s−(2w2+w+1)
w2+1

s−2w2−w+1
2w2+2w

s−2w2−w+1

]
. (7.82)
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Taking into account that

d1(s,w) = s2 +(−w2 + 2)s− (2w2 + w+ 1), d2(s,w) = s−2w2 −w+ 1,

and

n11(s,w) = ws+(w2 + 1), n21(s,w) = w2 + 1,

n12(s,w) = (w3 + 1)s+ w, n22(s,w) = 2(w2 + w),

we obtain a positive realization of (7.80) in the form:

A0 =
[

A10 0
0 A20

]
=

⎡
⎣ 0 1 0

1 −2 0
0 0 −1

⎤
⎦ , A1 =

[
A11 0
0 A21

]
=

⎡
⎣ 0 1 0

0 0 0
0 0 1

⎤
⎦ ,

A2 =
[

A21 0
0 A22

]
=

⎡
⎣ 0 2 0

0 1 0
0 0 2

⎤
⎦ ,

B0 =

⎡
⎣ b01

11 b01
12

b02
11 b02

12
b01

21 b01
22

⎤
⎦=

⎡
⎣ 1 0

0 1
1 0

⎤
⎦ , B1 =

⎡
⎣ b11

11 b11
12

b12
11 b12

12
b11

21 b11
22

⎤
⎦=

⎡
⎣ 0 1

1 0
0 2

⎤
⎦ ,

B2 =

⎡
⎣ b21

11 b21
12

b22
11 b22

12
b21

21 b21
22

⎤
⎦=

⎡
⎣ 1 0

0 1
1 2

⎤
⎦ , C =

[
C1 0
0 C2

]
=
[

0 1 0
0 0 1

]
.

Step 3. Using (7.10) we obtain the desired cone realization:

A0 =

⎡
⎣−1 1 −2

0 0 −2
1 −1.5 −2

⎤
⎦ , A1 =

⎡
⎣ 3 −3 −2

2 −2 −2
0.5 −0.5 0

⎤
⎦ ,

A2 =

⎡
⎣ 6 −6 −4

4 −4 −4
0.5 −0.5 0

⎤
⎦ ,

B0 =

⎡
⎣ 1 1

0 0
0 1.5

⎤
⎦ , B1 =

⎡
⎣ −3 6

−1 2
−0.5 2.5

⎤
⎦ , B2 =

⎡
⎣−3 9
−2 4
−1 3.5

⎤
⎦ ,

C =
[

0 0 1
1 −1 −1

]
, D =

[−1 3.5
−1 0.5

]
.



Chapter 8
Stability of Positive Fractional 1D and 2D Linear
Systems

8.1 Asymptotic Stability of Discrete-Time Linear Systems

8.1.1 Positive Discrete-Time Systems

Consider the positive discrete-time linear system:

xi+1 = Axi + Bui, (8.1a)

yi = Cxi + Dui, (8.1b)

where xi ∈Rn
+, ui ∈Rm

+, yi ∈R
p
+ are the state, input and output vectors and A∈R

n×n
+ ,

B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

The positive system (8.1) is called asymptotically stable if the solution

xi = Aix0, (8.2)

of the equation
xi+1 = Axi, A ∈ R

n×n
+ , i ∈ Z+, (8.3)

satisfies the condition
lim
i→∞

xi = 0,

for every x0 ∈ Rn
+.

Theorem 8.1. The positive system (8.3) is asymptotically stable if and only if one of
the following equivalent conditions is satisfied:

a) All eigenvalues z1, . . . ,zn of the matrix A satisfy the condition |zk| < 1 for
k = 1, . . . ,n;

b) det[Inz−A] �= 0 for |z| ≥ 1;
c) ρ(A) < 1, where ρ(A) is the spectral radius of the matrix A defined by

ρ(A) = max
1≤k≤n

|zk|.

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 161–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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d) All coefficients âi, i = 0,1, . . . ,n−1 of the characteristic polynomial

pA(z) = det [In(z+ 1)−A] = zn + ân−1zn−1 + · · ·+ â1z+ â0, (8.4)

are positive.
e) All principal minors of the matrix

A = In −A =

⎡
⎢⎣

a11 . . . a1n
...

. . .
...

an1 . . . ann

⎤
⎥⎦ , (8.5)

are positive, i.e.

|a11| > 0,

∣∣∣∣a11 a12

a21 a22

∣∣∣∣> 0, . . . , detA > 0. (8.6)

f) There exists a strictly positive vector x > 0 (all components are positive) such
that

[A− In]x < 0. (8.7)

g) All diagonal entries of the matrices A(k)
n−k for k = 1, . . . ,n−1 are negative where

the matrices A(k)
n−k are defined as follows

A(0)
n = A− In =

⎡
⎢⎢⎣

a(0)
11 . . . a(0)

1n
...

. . .
...

a(0)
n1 . . . a(0)

nn

⎤
⎥⎥⎦=

[
A(0)

n−1 b(0)
n−1

c(0)
n−1 a(0)

nn

]
,

A(0)
n−1 =

⎡
⎢⎢⎣

a(0)
11 . . . a(0)

1,n−1
...

. . .
...

a(0)
n−1,1 . . . a(0)

n−1,n−1

⎤
⎥⎥⎦ , (8.8a)

(8.8b)

b(0)
n−1 =

⎡
⎢⎢⎣

a(0)
1n
...

a(0)
n−1,n

⎤
⎥⎥⎦ , c(0)

n−1 =
[

a(0)
n1 . . . a(0)

n,n−1

]
,
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and

A(k)
n−k = A(k−1)

n−k − b(k−1)
n−k c(k−1)

n−k

a(k−1)
n−k+1,n−k+1

=

⎡
⎢⎢⎣

a(k)
11 . . . a(k)

1,n−k
...

. . .
...

a(k)
n−k,1 . . . a(k)

n−k,n−k

⎤
⎥⎥⎦

=

[
A(k)

n−k−1 b(k)
n−k−1

c(k)
n−k−1 a(k)

n−k,n−k

]
,

b(k)
n−k−1 =

⎡
⎢⎢⎣

a(k)
1,n−k

...

a(k)
n−k−1,n−k

⎤
⎥⎥⎦ , c(k)

n−1 =
[

a(k)
n−k,1 . . . a(k)

n−k,n−k−1

]
,

Proof. The proof of the conditions a)- f ) is given in [77, 96]. The proof of the condi-
tion g) follows from application of Theorem 8.1 to the positive discrete-time linear
system (8.3). ��
Theorem 8.2. The positive system (8.3) is unstable if at least one diagonal entry of
the matrix A is greater than 1.

Proof. The proof is given in [77, 96]. ��
Example 8.1. Using the conditions of Theorem 8.1 check the asymptotic stability of
the positive system (8.3) with matrix

A =

⎡
⎣ 0.1 0.2 1

0 0.3 0.5
0 0 0.4

⎤
⎦ . (8.9)

The matrix (8.9) has the eigenvalues z1 = 0.1, z2 = 0.3, z3 = 0.4.
The condition a) is satisfied and the system is asymptotically stable.
The condition b) is also satisfied since

det [Inz−A] =

∣∣∣∣∣∣
z−0.1 −0.2 −1

0 z−0.3 −0.5
0 0 z−0.4

∣∣∣∣∣∣ �= 0 for |z| ≥ 1.

The spectral radius of the matrix is equal to

ρ(A) = max
1≤k≤3

|zk| = 0.4 < 1,

and the condition c) is satisfied.
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In this case the characteristic polynomial (8.4) has the form

pA(z) = det [In(z+ 1)−A] =

∣∣∣∣∣∣
z+ 0.9 −0.2 −1

0 z+ 0.7 −0.5
0 0 z+ 0.6

∣∣∣∣∣∣
= z3 + 2.2z2 + 1.59z+ 0.378,

and all its coefficients are positive. Therefore, the condition d) is satisfied.

The condition e) is also satisfied since all principal minors of the matrix

A = In −A =

⎡
⎣ 0.9 −0.2 −1

0 0.7 −0.5
0 0 0.6

⎤
⎦ ,

are positive

M1 = 0.9, M2 =
∣∣∣∣0.9 −0.2

0 0.7

∣∣∣∣= 0.63, detA = 0.378.

As the strictly positive vector x in (8.7) we choose the equilibrium point of the

system (8.1) for Bu = �3 =

⎡
⎣ 1

1
1

⎤
⎦, i.e.

x = [In −A]−1
�n =

⎡
⎣ 0.9 −0.2 −1

0 0.7 −0.5
0 0 0.6

⎤
⎦
−1⎡
⎣ 1

1
1

⎤
⎦

=
1

0.378

⎡
⎣ 1.344

0.99
0.63

⎤
⎦ .

This vector satisfies the condition (8.7) since

[A− In]x = [A− In] [In −A]−1
�n = −�n.

Therefore, the condition f ) is also satisfied.

In this case using (8.8) we obtain the following matrices

A(0)
3 =

⎡
⎣−0.9 0.2 1

0 −0.7 0.5
0 0 −0.6

⎤
⎦ ,

A(1)
2 =

[−0.9 0.2
0 −0.7

]
+

[
1

0.5

][
0 0

]
0.6

=
[−0.9 0.2

0 −0.7

]
,
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and

A(2)
1 =

[−0.9
]
+

[
0.2

][
0
]

0.7
=
[−0.9

]
.

All these matrices have negative diagonal entries.

Therefore, the condition g) is also satisfied and the positive system is asymptoti-
cally stable.

8.1.2 Positive 2D Linear Systems

Consider the positive 2D linear system described by the equations

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1

+ B0ui j + B1ui+1, j + B2ui, j+1, (8.10a)

yi j = Cxi j + Dui j, i, j ∈ Z+, (8.10b)

where xi j ∈ Rn
+, ui j ∈ Rm

+, yi j ∈ R
p
+ are the state, input and output vectors and Ak ∈

R
n×n
+ , Bk ∈ R

n×m
+ , k = 0,1,2, C ∈ R

p×n
+ , D ∈ R

p×m
+ .

Definition 8.1. The positive 2D system (8.10) is called asymptotically stable if for
any bounded boundary conditions xi0 ∈ Rn

+, i ∈ Z+, x0 j ∈ Rn
+, j ∈ Z+ and zero

inputs ui j = 0, i, j ∈ Z+ the condition

lim
i, j→∞

xi j = 0 for all xi0 ∈ R
n
+, x0 j ∈ R

n
+, i, j ∈ Z+, (8.11)

is satisfied.

It is well-known [77, 96] that the positive system (model) (8.10a) is asymptoti-
cally stable if and only if

det [In −A0z1z2 −A1z1 −A2z2] �= 0 , (8.12a)

for
∀(z1,z2) ∈ {(z1,z2) : |z1| ≤ 1, |z2| ≤ 1} . (8.12b)

To the positive asymptotically stable 2D system

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1 + Bui j , (8.13)

we apply the strictly positive input ui j = u > 0, u ∈Rm
+. The vector xe ∈Rn

+ is called
the equilibrium point (state) of the system (8.13) for ui j = u, if the condition

xe = [A0 + A1 + A2]xe + Bu. (8.14)

is satisfied.
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If Bu = �n = [1 1 . . . 1]T ∈ Rn
+ then from (8.14) we obtain

xe = [In −A0 −A1 −A2]
−1
�n > �n, (8.15)

since xe = [A0 + A1 + A2]xe +�n.

Theorem 8.3. Positive system (8.10) is asymptotically stable if and only if there
exists a strictly positive vector λ ∈ Rn

+ such that

[A0 + A1 + A2 − In]λ < 0. (8.16)

Proof. If the positive system (8.10) is asymptotically stable then there exists a
strictly positive vector λ which satisfies the condition (8.16) since substituting

λ = [In −A0 −A1 −A2]
−1
�n

into (8.16) we obtain

[A0 + A1 + A2 − In]λ = [A0 + A1 + A2 − In] [In −A0 −A1 −A2]
−1
�n

= −�n < 0. (8.17)

If there exists a strictly positive vector λ > 0 satisfying the condition (8.16) then

[A0 + A1 + A2]λ < λ ,

and this implies the asymptotic stability of the system (8.10). ��
Remark 8.1. The positive system (8.10) is unstable if

det [In −A0 −A1 −A2] ≤ 0, (8.18)

since the coefficient
a0 = det [In −A0 −A1 −A2] (8.19)

is not positive.

Theorem 8.4. Let
det[In −A0 −A1 −A2] > 0. (8.20)

The positive system (8.10) is asymptotically stable if and only if the sum of entries
of every row (column) of the adjoint matrix

Adj [In −A0 −A1 −A2]

is strictly positive, i.e.

(Adj [In −A0 −A1 −A2])�n > 0 or �
T
n Adj [In −A0 −A1 −A2] > 0. (8.21)
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Proof. If the positive system (8.10) is asymptotically stable then the matrix

In −A0 −A1 −A2,

is invertible and the condition (8.15)is satisfied and this implies (8.21). If the condi-
tion (8.21) is satisfied then from the equality

Adj [In −A0 −A1 −A2]�n = �n det [In −A0 −A1 −A2]

and (8.20) we have

λ = (Adj [In −A0 −A1 −A2])�n > 0,

By Theorem 8.3 we obtain

[In −A0 −A1 −A2]λ = −�n det [In −A0 −A1 −A2] < 0,

what implies the asymptotic stability of the positive system (8.10).
In the case of columns the proof is similar. ��
Example 8.2. Consider the positive system (8.10) with the matrices

A0 =
[

0.1 0.4
0 0.1

]
, A1 =

[
0 0.1
0 0.1

]
, A2 =

[
0.2 0.5
0 0.2

]
. (8.22)

Using (8.15) we obtain

xe = [In −A0 −A1 −A2]
−1
�n =

[
0.7 −1
0 0.6

]−1 [ 1
1

]
=

1
0.42

[
1.6
0.7

]
>

[
1
1

]
. (8.23)

For λ = xe we obtain

[A0 + A1 + A2 − In]λ =
[−0.7 1

0 −0.6

]
1

0.42

[
1.6
0.7

]
=
[−1
−1

]
. (8.24)

The condition (8.16) is satisfied and the positive system is asymptotically stable.
The same result follows from Theorem 8.4, since

(Adj [In −A0 −A1 −A2])�n =
[

0.6 1
0 0.7

][
1
1

]
=
[

1.6
0.7

]
>

[
0
0

]
. (8.25)

and

�
T
n Adj [In −A0 −A1 −A2] =

[
1 1

][ 0.6 1
0 0.7

]
=
[

0.6 1.7
]
>
[

0 0
]
. (8.26)

These considerations can be extended to positive 2D linear systems with delays.
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Theorem 8.5. The positive 2D linear system with delays

xi+1, j+1 =
p

∑
k=0

q

∑
l=0

(
A0

klxi−k, j−l + A1
klxi−k+1, j−l + A2

klxi−k, j−l+1
)
, i, j ∈ Z+, (8.27)

is asymptotically stable if and only if the 1D positive system

xi+1 =
p

∑
k=0

q

∑
l=0

(
A0

kl + A1
kl + A2

kl

)
xi for xi ∈ R

n
+, i ∈ Z+, (8.28)

is asymptotically stable, where xi j ∈ Rn
+ is the state vector and At

kl ∈ R
n×n
+ ,

k = 0, . . . , p; l = 0, . . . ,q; t = 0,1,2.

8.1.3 Relationship between Asymptotic Stability of 1D and 2D
Linear Systems

We shall show that the positive 2D system (8.10) is asymptotically stable if and only
if the positive 1D system

xi+1 = (A0 + A1 + A2)xi, i ∈ Z+, (8.29)

is asymptotically stable.

Lemma 8.1. [97] Let P = [pi j] ∈ Rn×n and Q = [qi j] ∈ Cn×n be a complex matrix
such that |Q| = [|qi j|] ≤ P (entries of the matrix P are greater than or equal to the
corresponding entries of the matrix Q). Then

ρ(Q) ≤ ρ(P).

where ρ(M) is spectral radius of the matrix M.

Theorem 8.6. The positive 2D system (8.10) is asymptotically stable if and only if
the positive 1D system (8.29) is asymptotically stable.

Proof. If the positive 1D system (8.29) is asymptotically stable then by
Theorem 8.1

ρ (A0 + A1 + A2) < 1. (8.30)

Note that for any complex z1 and z2 such that |z1| ≤ 1, |z2| ≤ 1 we have

|A0z1z2|+ |A1z1|+ |A2z2| ≤ ρ (A0 + A1 + A2) . (8.31)

Using Lemma 8.1, (8.30) and (8.31) we obtain

ρ (A0z1z2 + A1z1 + A2z2) ≤ ρ (A0 + A1 + A2) < 1, (8.32)

what by (8.12) implies the asymptotic stability of the system (8.10).
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Theorem 8.6 can be also proved as follows. From condition f ) of Theorem 8.1
it follows that the positive 2D system (8.29) is asymptotically stable if and only
if the condition (8.16) is satisfied. By Theorem 8.3 this is necessary and sufficient
condition for the asymptotic stability of the positive system (8.10). ��
For A0 = 0 the equation (8.29) has the form

xi+1 = (A1 + A2)xi, i ∈ Z+ . (8.33)

By Theorem 8.6 for A0 = 0 we have the following theorem.

Theorem 8.7. The following statements are equivalent:

a) The positive 2D second Fornasini-Marchesini model SF-MM (3.44) is asymp-
totically stable.

b) The positive 1D system (8.33) is asymptotically stable.

Example 8.3. Consider the positive 2D model (3.44) with the matrices

A1 =
[

a 0.1
0 0.2

]
, A2 =

[
0.3 0.6
0 b

]
, a,b ≥ 0. (8.34)

Find values of the parameters a and b, for which the SF-MM (8.34) is asymptotically
stable. By Theorem 8.7 the problem can be reduced to finding a, b satisfying the
condition

det [In − z(A1 + A2)] =
[

1− z(a + 0.3) −z0.7
0 1− z(b + 0.2)

]

=
[

1− z(a + 0.3)
][

1− z(b + 0.2)
] �= 0, (8.35)

for |z| ≤ 1. It is easy to check that the condition (8.35) is satisfied for a < 0.7 and
b < 0.8.

Theorem 8.8. The positive 2D model(8.10) is asymptotically stable if and only if
one of the following equivalent conditions is satisfied:

a) All coefficients of the polynomial

wA(z) = det [In(z+ 1)− (A0 + A1 + A2)] = zn + an−1zn−1 + · · ·+ a1z+ a0,
(8.36)

are positive.
b) All principal minors of the matrix

[In − (A0 + A1 + A2)] = [ai j] , i = 1, . . . ,n; j = 1, . . . ,n (8.37)

M1 = |a11|, M2 =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ , . . . ,Mn = det [In − (A0 + A1 + A2)] > 0,

are positive.
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Example 8.4. Check the asymptotic stability of the system (8.10) with the matrices
(8.22).

Using the condition a) of Theorem 8.8 we obtain

det [In(z+ 1)− (A0 + A1 + A2)] = det

[
z+ 0.7 −1

0 z+ 0.6

]
= z2 + 1.3z+ 0.42.

All coefficients of the polynomial are positive and the system is asymptotically
stable.

The condition b) of Theorem 8.8 is also satisfied since

a11 = 0.7 > 0,

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣= 0.42 > 0,

and the system is asymptotically stable.

Lemma 8.2. The positive 2D system

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1, (8.38)

is asymptotically stable if and only if one of the following positive SF-MM systems:

xi+1, j+1 =
[

A1 A0

0 0

]
xi+1, j +

[
A2 0
In 0

]
xi, j+1, (8.39a)

x̂i+1, j+1 =
[

A1 0
In 0

]
x̂i+1, j +

[
A2 A0

0 0

]
x̂i, j+1, (8.39b)

is asymptotically stable.

Proof. Defining

xi j =
[

xi j

xi−1, j

]
, x̂i j =

[
xi j

xi, j−1

]
,

we may write (8.38) in the form (8.39). From (8.11) it follows that that positive 2D
system (8.38) is asymptotically stable if and only if every of the systems SF-MM
(8.39) is asymptotically stable. ��
Theorem 8.9. The positive 2D system (8.38) is asymptotically stable if and only if
the positive 1D system

xi+1 =
[

A1 + A2 A0

In 0

]
xi, i ∈ Z+, (8.40)

is asymptotically stable.

Proof. The proof follows immediately from Theorem 8.6. ��
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From (3.43a) it follows that

A1 + A2 =
[

A11 A12

A21 A22

]
, (8.41)

and we have the following theorem.

Theorem 8.10. The positive Roesser model (3.40) is asymptotically stable if and
only if the positive 1D system

xi+1 =
[

A11 A12

A21 A22

]
xi, i ∈ Z+, (8.42)

is asymptotically stable.

Remark 8.2. To check the asymptotic stability of the positive 1D system (8.42) the
conditions of Theorem 8.1 are recommended.

8.1.4 Positive Fractional Discrete-Time Linear Systems with
Delays

Consider the positive fractional system with h delays

xi+1 =
i+1

∑
j=1

(−1) j+1
(

α
j

)
xi− j+1 +

h

∑
k=0

(Akxi−k + Bkui−k) , i ∈ Z+, (8.43a)

yi = Cxi + Dui, (8.43b)

Definition 8.2. The positive fractional system (8.43) is called practical stable if the
system

xi+1 =
L+1

∑
j=1

(−1) j+1
(

α
j

)
xi− j+1 +

h

∑
k=0

(Akxi−k + Bkui−k) , i ∈ Z+, (8.44a)

yi = Cxi + Dui, (8.44b)

is asymptotically stable for any finite number L.

Definition 8.3. The positive fractional system (8.43) is called asymptotically stable
if the system (8.44) is practically stable for L → ∞.

Remark 8.3. Note that the positive fractional system (8.43) is a system with increas-
ing number of delays.It is well-known [20, 118] that the asymptotic stability of the
positive discrete-time linear systems with delays is independent of the numbers and
values of the delays and it depends only of the sum of state matrices of the system.

Theorem 8.11. The positive fractional system with delays (8.43) is asymptotically
stable if and only if the positive system
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xi+1 = Axi, A = In +
h

∑
k=0

Ak, (8.45)

is asymptotically stable.

Proof. From the Maclaurin series of the function (1− z)α we have

(1− z)α =
∞

∑
j=0

(−1) j
(

α
j

)
z j =

∞

∑
j=0

c jz
j,

where

c j = (−1) j
(

α
j

)
,

Substituting z = 1 we obtain
∞

∑
j=0

c j = 0. (8.46)

Taking into account that c0 = 1 from (8.46) we obtain

∞

∑
j=1

c j = −1. (8.47)

Substitution of (8.47) into

A =
h

∑
k=0

Ak −
∞

∑
j=1

c jIn, (8.48)

yields (8.45). ��
Theorem 8.12. The positive fractional system with delays (8.43) is asymptotically
stable if and only if one of the following equivalent conditions is satisfied

a) All coefficients of the polynomial A = A− In

det
[
In(z+ 1)−A

]
= zn + an−1zn−1 + · · ·+ a1z+ a0 (8.49)

are positive.
b) There exists a strictly positive vector λ > 0 such that

Aλ < 0, A =
h

∑
k=0

Ak. (8.50)

Proof. Proof of the conditions a), b) follows immediately from the condition d) and
f ) of Theorem 8.1. ��
Remark 8.4. The remaining conditions of Theorem 8.1 can be also used to check the
asymptotic stability of the positive fractional system with delays (8.43).
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The practical stability of positive fractional discrete-time linear systems without
delays has been addressed in [31].

8.1.5 Positive Fractional 2D Linear Systems

Consider the positive fractional 2D linear system

Δ α ,β xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1

+ B0ui j + B1ui+1, j + B2ui, j+1, (8.51a)

yi j = Cxi j + Dui j, (8.51b)

where xi j ∈ Rn
+, ui j ∈ Rm

+, yi j ∈ R
p
+ are the state, input and output vectors and Ak ∈

R
n×n
+ , Bk ∈ R

n×m
+ , k = 0,1,2, C ∈ R

p×n
+ , D ∈ R

p×m
+ .

Definition 8.4. The positive factional 2D linear system (8.51) is called asymptoti-
cally stable if it is practically stable for L1 → ∞ and L2 → ∞.

Lemma 8.3. If 0 < α < 1 and 1 < β < 2 (or 1 < α < 2 and 0 < β < 1), then

∞

∑
k=0

∞

∑
l=0

cαβ (k, l) = 0. (8.52)

Proof. From Maclaurin series of the function (1− z)α , we have

(1− z)α =
∞

∑
i=0

(−1)i
(

α
i

)
zi, (8.53)

Substituting z = 1 we obtain

∞

∑
i=0

(−1)i
(

α
i

)
=

∞

∑
i=0

(−1)i α(α −1) · · ·(α − i+ 1)
i!

= 0 for α > 0. (8.54)

Using (3.1b) and (8.54) we obtain

0 =
∞

∑
k=0

∞

∑
l=0

cαβ (k, l)

=

(
∞

∑
k=0

(−1)k α(α −1) · · ·(α − k + 1)
k!

)(
∞

∑
l=0

(−1)l β (β −1) · · ·(β − l + 1)
l!

)
.

��
Theorem 8.13. The positive fractional 2D system (8.51) is asymptotically stable if
and only if the positive 1D system

xi+1 =
[
Â+ In

]
xi, Â = A0 + A1 + A2, xi ∈ R

n
+, i ∈ Z+, (8.55)

is asymptotically stable.
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Proof. From (8.51) for B0 = B1 = B2 = 0 and (3.79a) we have

xi+1, j+1 = A0xi j + A1xi+1, j + A2xi, j+1 −
i+1

∑
k=0

j+1

∑
l=0

k+l>0

cklxi−k+1, j−l+1, (8.56)

where ckl = cαβ (k, l).

By Theorem 8.5 the positive 2D linear system with delays is asymptotically stable
if and only if the positive 1D system

xi+1 =

⎡
⎢⎣Â−

∞

∑
k=0

∞

∑
l=0

k+l>0

ckl In

⎤
⎥⎦xi, xi ∈ R

n
+, i ∈ Z+, (8.57)

is asymptotically stable. From (3.76b) we have c00 = cαβ (0,0) = 1 and from (8.52)
we obtain

∞

∑
k=0

∞

∑
l=0

k+l>0

ckl In = −In. (8.58)

Substituting of (8.58) into (8.57) yields (8.55). ��

Theorem 8.14. The positive fraction 2D system (8.51) is asymptotically stable if
and only if one of the following equivalent conditions is satisfied:

a) The eigenvalues z1, . . . ,zn of the matrix Â+ In have module less than 1, i.e |zk|<
1, k = 1, . . . ,n.

b) All coefficients of the characteristic polynomial of the matrix Â are positive.
c) All principal minors of the matrix −Â are positive.

Proof. The proof follows immediately from Theorem 8.1. ��

Theorem 8.15. The positive fractional 2D system (8.51) is unstable if at least one
entry on the diagonal of the matrix Â is positive.

Proof. If at least one entry of the diagonal of Â is positive then at least one entry of
the diagonal of the matrix Â + In is greater than 1 and this by Theorem 8.2 implies
the instability of the system (8.55). ��
Example 8.5. Using Theorem 8.14, check the asymptotic stability of the positive
fractional system (8.51), for α = 0.3 and β = 1.2, with the matrices:

A0 =
[

0.4 0
0 0.5

]
, A1 =

[−1 0
0.2 −1.1

]
, A2 =

[−0.2 0
0.2 0.1

]
. (8.59)
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The fractional system is positive since the matrices

A0 = A0 −αβ In =
[

0.04 0
0 0.14

]
, (8.60a)

A1 = A1 + β In =
[

0.2 0
0.2 0.1

]
, (8.60b)

A2 = A2 + αIn =
[

0.1 0
0.2 0.4

]
, (8.60c)

(8.60d)

have nonnegative entries. In this case

Â = A0 + A1 + A2 =
[−0.8 0

0.4 −0.5

]
, (8.61)

the condition a) of Theorem 8.14 is satisfied since the eigenvalues of the matrix

Â+ In =
[

0.2 0
0.4 0.5

]
, (8.62)

have module less than 1, i.e. z1 = 0.2, z2 = 0.5.

The condition b) of Theorem 8.14 is also satisfied since the coefficients of the
polynomial (8.61)

det
[
Inz− Â

]
=
[

z+ 0.8 0
−0.4 z+ 0.5

]
= z2 + 1.3z+ 0.4 , (8.63)

are positive.

All principal minors of the matrix

−Â =
[

0.8 0
−0.4 0.5

]
(8.64)

are positive since Δ1 = 0.8 and Δ2 = 0.4.

The conditions of Theorem 8.14 are satisfied and the positive fractional system
(8.51) with (8.59) is asymptotically stable.

Example 8.6. Using Theorem 8.15 we shall show that the positive fractional 2D
system (8.51) for α = 0.5 and β = 1.2 with the matrices:

A0 =
[

0.6 0
0.1 0.7

]
, A1 =

[−0.1 0.3
0 −0.2

]
, A2 =

[−0.4 0.2
0 −0.5

]
, (8.65)

is unstable.
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In this case the matrix

Â = A0 + A1 + A2 =
[

0.1 0.5
0.1 0

]
, (8.66)

has one positive diagonal entry. By Theorem 8.15 the positive fractional system is
unstable. The same result follows from Theorem 8.14.

8.2 Practical Stability of Fractional Systems

8.2.1 Positive Fractional 1D Systems

Consider the positive fractional discrete-time linear system

xk+1 = Aα xk +
k

∑
j=1

(−1) j
(

α
j + 1

)
xk− j + Buk, k ∈ Z+, (8.67a)

yk = Cxk + Duk, (8.67b)

where Aα = A + αIn and the system

xk+1 +
k+1

∑
j=1

(−1) j
(

α
j

)
xk− j+1 = Axk + Buk, k ∈ Z+, (8.68a)

yk = Cxk + Duk, (8.68b)

where xk ∈ R
n
+, uk ∈ R

m
+, yk ∈ R

p
+ are the state, input and output vectors and A ∈

R
n×n
+ , B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

Definition 8.5. The positive fractional system (8.68) is called practically stable if
the system (8.67) is asymptotically stable for any finite h.

Defining the new state vector

x̃k =

⎡
⎢⎢⎢⎣

xk

xk−1
...

xk−h

⎤
⎥⎥⎥⎦ , (8.69)

we may write the equations (8.67) in the form:

x̃i+1 = Ãx̃i + B̃ui, k ∈ Z+, (8.70a)

yi = C̃xi + D̃ui, (8.70b)
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where

Ã =

⎡
⎢⎢⎢⎢⎢⎣

Aα c1In . . . chIn

In 0 . . . 0
0 In . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

ñ×ñ
+ , B̃ =

⎡
⎢⎢⎢⎣

B
0
...
0

⎤
⎥⎥⎥⎦ ∈ R

ñ×m
+ , (8.71a)

C̃ =
[

C 0 . . . 0
] ∈ R

p×ñ
+ , D̃ = D ∈ R

p×m
+ , ñ = (1 + h)n, (8.71b)

c j = (−1) j
(

α
j + 1

)
for j = 1, . . . .

Theorem 8.16. The positive fractional system(8.68) is practically stable if and only
if one of the following equivalent conditions is satisfied:

a) All eigenvalues z̃1, . . . , z̃ñ of the matrix Ã have module less than 1, i.e. |z̃k| < 1
for k = 1, . . . , ñ;

b) det[zIñ − Ã] �= 0 for |z| ≥ 1;
c) ρ(Ã) < 1 where ρ(Ã) is the spectral radius of the matrix Ã defined by

ρ(Ã) = max
1≤k≤ñ

|z̃k|.

d) All coefficients ãi, i = 0,1, . . . , ñ−1 of the characteristic polynomial

pÃ(z) = det
[
Iñ(z+ 1)− Ã

]
= zñ + ãñ−1zñ−1 + · · ·+ ã1z+ ã0, (8.72)

of the matrix [Ã− Iñ] are positive.
e) All principal minors of the matrix

Iñ − Ã =

⎡
⎢⎣

ã11 . . . ã1ñ
...

. . .
...

ãñ1 . . . ãññ

⎤
⎥⎦ , (8.73)

are positive, i.e.

|ã11| > 0,

∣∣∣∣ ã11 ã12

ã21 ã22

∣∣∣∣> 0, . . . , det
[
Iñ − Ã

]
> 0. (8.74)

f) There exist strictly positive vectors xi ∈Rn
+, i = 0, . . . ,h, satisfying the condition

x0 < x1 < .. . < xh−1 < xh, (8.75a)

such that
Aα x0 + c1x1 + · · ·+ chxh < x0. (8.75b)

Proof. The first a)-e) conditions follows immediately from the corresponding con-
ditions of Theorem 8.1. Using (8.7) for the matrix Ã we obtain:
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⎡
⎢⎢⎢⎢⎢⎣

Aα c1In . . . chIn

In 0 . . . 0
0 In . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

x2
...

xh

⎤
⎥⎥⎥⎥⎥⎦

<

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

x2
...

xh

⎤
⎥⎥⎥⎥⎥⎦

. (8.76)

From (8.76) we obtain the conditions (8.75). ��
Theorem 8.17. If the positive fractional system (8.68) is practically stable then the
sum of entries of every row (column) of the adjoint matrix Adj[Iñ − Ã] is strictly
positive

Adj
[
Iñ − Ã

]
�ñ > 0

(
�

T
ñ Adj

[
Iñ − Ã

]
> 0

)
. (8.77)

where �ñ = [1, . . . ,1]T .

Proof. If the system (8.70) is asymptotically stable then the vector

x =
[
Iñ − Ã

]−1
�ñ > 0 (8.78)

is the strictly positive equilibrium point of the system for B̃u = �ñ. For the positive
system

det
[
Iñ − Ã

]
> 0, (8.79)

since ã0 = det
[
Iñ − Ã

]
in (8.72). The conditions (8.78) and (8.79) implies (8.77).

��
Example 8.7. Check the practical stability of the positive fractional system

Δ α xk+1 = 0.1xk, k ∈ Z+, (8.80)

for α = 0.5 and h = 2.
Using

c j(α) = (−1) j
(

α
j + 1

)
, (8.81)

and (1.8), (8.71) we obtain:

c1 =
1
8
, c2 =

1
16

, Aα = 0.6,

and

Ã =

⎡
⎣ 0.6 1

8
1

16
1 0 0
0 1 0

⎤
⎦ . (8.82)

In this case the characteristic polynomial (8.72) has the form

pÃ =
[
Iñ(z+ 1)− Ã

]
= z3 + 2.4z2 + 1.675z+ 0.2125. (8.83)

All coefficients of the polynomial (8.83) are positive and by Theorem 8.16 the sys-
tem is practically stable. Using (8.77) we obtain
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Adj
[
Iñ − Ã

]
�ñ =

⎛
⎝Adj

⎡
⎣ 0.4 − 1

8 − 1
16−1 1 0

0 −1 1

⎤
⎦
⎞
⎠
⎡
⎣ 1

1
1

⎤
⎦=

⎡
⎣ 1.2500

1.4625
1.6750

⎤
⎦ . (8.84)

It is easy to check that the condition (8.78) is satisfied.

Theorem 8.18. The positive fractional system (8.68) is practically stable if and only
if the positive 1D system

xk+1 = Aα xk, k ∈ Z+, (8.85)

is asymptotically stable.

Proof. From (8.75b) we have

(Aα − In)x0 + c1x1 + · · ·+ chxh < 0. (8.86)

Note that the equality (8.86) is satisfied only if there exists a strictly positive vector
x0 ∈ R

n
+ such that

(Aα − In)x0 < 0, (8.87)

where c1x1 + · · ·+ chxh > 0. ��
Corollary 8.1. The positive fractional system (8.68) is unstable for any finite h if
the positive system (8.85) is unstable.

Theorem 8.19. The positive fractional system (8.68) is unstable if at least one di-
agonal entry of the matrix Aα is greater than 1.

Proof. The proof follows immediately from Theorems 8.2 and 8.18. ��
Example 8.8. Consider the positive fractional system

Δ α xk+1 =
[−0.5 1

2 0.5

]
xk, k ∈ Z+, (8.88)

for α = 0.8 and any finite h.

In this case n = 2 and

Aα = A + αIn =
[

0.3 1
2 1.3

]
. (8.89)

By Theorem 8.19 the positive fractional system is unstable for any finite h since the
matrix (8.89) has one diagonal entry greater than 1. The same result follows from
the condition d) of Theorem 8.1, since the polynomial

pÃ = z2 + 0.4z−2.21,

has one negative coefficient ã0 = −2.21.

The practical stability of the positive system has been addressed in [31].
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8.2.2 Positive Fractional 2D Systems

Consider the fractional 2D linear system

xi+1, j+1 +
i+1

∑
k=0

j−k+1

∑
l=0

k+l>0

cα(k, l)xi−k+1, j−l+1 (8.90)

= A0xi j + A1xi+1, j + A2xi, j+1 + B0ui j + B1ui+1, j + B2ui, j+1.

Defining the new state vector

x̃i j =
[

xT
i j xT

i−1, j ... xT
i−L1, j xT

i, j−1 ... xT
i−L1, j−1 ... xT

i, j−L2
... xT

i−L1, j−L2

]
x̃i j ∈ R

Ñ , Ñ = (L1 + 1)(L2 + 1)n, i, j ∈ Z+ (8.91)

we may write the equation

xi+1, j+1 +
L1+1

∑
k=0

L2−k+1

∑
l=0

k+l>0

cα(k, l)xi−k+1, j−l+1 (8.92)

= A0xi j + A1xi+1, j + A2xi, j+1 + B0ui j + B1ui+1, j + B2ui, j+1.

in the form

x̃i+1, j+1 = Ã0x̃i j + Ã1x̃i+1, j + Ã2x̃i, j+1, i, j ∈ Z+, (8.93)

where

Ã0 =

⎡
⎢⎢⎢⎣

A0 Inc11 ... IncL1+1,1 ... Inc1,L2+1 ... IncL1+1,L2+1

0 0 ... 0 ... 0 ... 0
...

...
. . .

...
. . .

...
. . .

...
0 0 ... 0 ... 0 ... 0

⎤
⎥⎥⎥⎦ , (8.94a)

Ã1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 ... 0 Inc02 ... 0 Inc03 ... 0
0 0 ... 0 0 ... 0 0 ... 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 ... 0 0 ... 0 0 ... 0
In 0 ... 0 0 ... 0 0 ... 0
0 In ... 0 0 ... 0 0 ... 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 ... In 0 ... 0 0 ... 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 ... 0 0 ... 0 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.94b)
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Ã2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2 Inc20 ... IncL10 IncL1+1,0 ... 0 0 ... 0 0
In 0 ... 0 0 ... 0 0 ... 0 0
0 In ... 0 0 ... 0 0 ... 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

0 0 ... In 0 ... 0 0 ... 0 0
0 0 ... 0 0 ... 0 0 ... 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

0 0 ... 0 0 ... 0 0 ... In 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.94c)

Theorem 8.20. The 2D system (8.93) is positive if and only if

Ak = Ak −αIn ∈ R
n×n
+ , k = 0,1,2. (8.95)

Proof. The proof follows from (8.93) and (8.94) and the fact that the system is
positive if and only if the conditions (8.95) are met. ��

Definition 8.6. The positive fractional 2D system (8.51) is called practically stable
if the system (8.92) is asymptotically stable.

Theorem 8.21. The positive fractional 2D linear system (8.51) is practically stable
if and only if one of the following equivalent conditions is satisfied:

a)
det

[
IÑ − Ã0z1z2 − Ã1z1 − Ã2z2

] �= 0 (8.96a)

for
∀(z1,z2) ∈ {(z1,z2) : |z1| ≤ 1, |z2| ≤ 1}. (8.96b)

b) There exists a strictly positive vector λ ∈ R
Ñ
+ such that

[
Ã0 + Ã1 + Ã2

]
λ < 0. (8.97)

c) The positive 1D system

xi+1 =
(
Ã0 + Ã1 + Ã2 − IÑ

)
xi, i ∈ Z+, (8.98)

is asymptotically stable.
d) The positive 1D system

xi+1 =
[(

Ã1 + Ã2
)

Ã0

IÑ 0

]
xi, i ∈ Z+, (8.99)

is asymptotically stable.
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Theorem 8.22. The positive fractional 2D system (8.51) is practically stable if the
positive 2D system

x̃i+1, j+1 = Ã0x̃i j + Ã1x̃i+1, j + Ã2x̃i, j+1, (8.100)

is asymptotically stable.

Proof. The proof follows immediately from (8.93) and (8.94). ��
Corollary 8.2. The positive fractional system (8.51) is unstable for any L1 and L2 if
the positive 2D system (8.100) is unstable.

Theorem 8.23. The positive fractional 2D system (8.51) is unstable if at least one
diagonal entry of the matrix A1 + A2 is greater than 1.

Proof. The proof follows from the structure of the matrices (8.94).

It is well-known that the system (8.99) is unstable if at least one diagonal entry of the
matrix Ã1 + Ã2 is greater than 1. From structure of the matrices Ã1 and Ã2 defined
by (8.94) it follows that at least one diagonal entry of the matrix Ã1 + Ã2 is greater
than 1 if and only if at least one diagonal entry of the matrix A1 +A2 is greater than
1. By Theorem 8.16 the positive fractional 2D system (8.51) is practically stable if
and only if the positive 1D system (8.99) is asymptotically stable. ��
Theorem 8.24. The positive fractional 2D system(8.51) is unstable if

Ak ∈ R
n×n
+ , k = 1,2. (8.101)

Proof. By Theorem 3.17 the fractional 2D system (8.51) for 0 < α < 1 and 1 < β <
2 (or 1 < α < 2 and 0 < β < 1) is positive if and only if the conditions (3.99) are
satisfied. From (8.90) it follows that the matrix

A1 + A2 = A1 + A2 +(α + β ) In, (8.102)

has all diagonal entries greater than 1 if the condition (8.101) is satisfied. In this
case by Theorem 8.23 the positive fractional 2D system (8.51) is unstable. ��

8.3 Asymptotic Stability of Continuous-Time Linear Systems

8.3.1 Positive Continuous-Time Linear Systems

Consider the autonomous continuous-time linear system

ẋ(t) = Ax(t), (8.103)

where x(t) ∈ Rn is the state vector and A = [ai j] ∈ Rn×n.
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The system (8.103) is called (internally) positive if x(t)∈Rn
+, t ≥ 0 for any initial

conditions x(0) ∈ Rn
+.

The system (8.103) is positive if and only if A is a Metzler matrix [77].
It is assumed that all diagonal entries aii, i = 1, . . . ,n of the Metzler matrix are

negative, otherwise the positive system (8.103) is unstable [77].

Theorem 8.25. The positive system (8.103) is asymptotically stable if and only if
one of the following equivalent conditions is satisfied:

a) All coefficients of the characteristic polynomial

det [Ins−A] = sn + an−1sn−1 + · · ·+ a1s+ a0, (8.104)

are positive, i.e. ai > 0, i = 0,1, . . . ,n−1.
b) All principal minors Mi, i = 1, . . . ,n of the matrix −A are positive, i.e.

M1 = |−a11| > 0, M2 =
∣∣∣∣−a11 −a12

−a21 −a22

∣∣∣∣> 0, . . . , Mn = det [−A] > 0.

(8.105)
c) The diagonal entries of the matrices

A(k)
n−k for k = 1, . . . ,n−1 , (8.106)

are negative, where A(k)
n−k are defined as follows

A(0)
n = A =

⎡
⎢⎢⎣

a(0)
11 . . . a(0)

1n
...

. . .
...

a(0)
n1 . . . a(0)

nn

⎤
⎥⎥⎦=

[
A(0)

n−1 b(0)
n−1

c(0)
n−1 a(0)

nn

]
,

A(0)
n−1 =

⎡
⎢⎢⎣

a(0)
11 . . . a(0)

1,n−1
...

. . .
...

a(0)
n−1,1 . . . a(0)

n−1,n−1

⎤
⎥⎥⎦ , (8.107)

b(0)
n−1 =

⎡
⎢⎢⎣

a(0)
1n
...

a(0)
n−1,n

⎤
⎥⎥⎦ , c(0)

n−1 =
[

a(0)
n1 . . . a(0)

n,n−1

]
,

and

A(k)
n−k = A(k−1)

n−k − b(k−1)
n−k c(k−1)

n−k

a(k−1)
n−k+1,n−k+1

=

⎡
⎢⎢⎣

a(k)
11 . . . a(k)

1,n−k
...

. . .
...

a(k)
n−k,1 . . . a(k)

n−k,n−k

⎤
⎥⎥⎦

=

[
A(k)

n−k−1 b(k)
n−k−1

c(k)
n−k−1 a(k)

n−k,n−k

]
,
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b(k)
n−k−1 =

⎡
⎢⎢⎣

a(k)
1,n−k

...

a(k)
n−k−1,n−k

⎤
⎥⎥⎦ , c(k)

n−1 =
[

a(k)
n−k,1 . . . a(k)

n−k,n−k−1

]
,

Proof. The proof of the conditions a) and b) are given in [77]. To simplify the
notation in proof of the condition c) we shall assume n = 3. We shall show the
equivalence of the conditions b) and c) of Theorem 8.25.

From (8.105) we have

(−1)1M1 = a11 < 0,

(−1)2M2 = a11a22 −a12a21 > 0,

(−1)3M3 = det

⎡
⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ (8.108)

= a33 det

{[
a11 a12

a21 a22

]
− 1

a33

[
a13

a23

][
a31 a32

]}

= a33 det

{
1

a33

[
a11a33 −a13a31 a12a33 −a13a32

a21a33 −a23a31 a22a33 −a23a32

]}
< 0.

By the condition c) the diagonal entries of the matrices

A(1)
2 = A(0)

2 − b(0)
2 c(0)

2

a(0)
33

=
[

a11 a12

a21 a22

]
− 1

a33

[
a13

a23

][
a31 a32

]

=
1

a33

[
a11a33 −a13a31 a12a33 −a13a32

a21a33 −a23a31 a22a33 −a23a32

]
=
[

a11 a12

a21 a22

]
, (8.109)

A(2)
1 = A(1)

1 − b(1)
1 c(1)

1

a(1)
22

= a11 − a12a21

a22
=

a11a22 −a12a21

a22
,

are negative.

Note that the condition (8.108) and (8.109) are equivalent since aii < 0, i = 1,2,3
and the inequations

a11 =
a11a33 −a13a31

a33
< 0,

a22 =
a22a33 −a23a32

a33
< 0,

a11a22 −a12a21

a22
< 0,

are satisfied if and only if

det

[
a11 a12

a21 a22

]
> 0,
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and

det

{
1

a33

[
a11a33 −a13a31 a12a31 −a13a32

a21a33 −a23a31 a22a33 −a13a32

]}
< 0.

The proof can be also accomplished by induction with respect to n. ��
An other proof of Theorem 8.25 is given in [211].

Example 8.9. Using Theorem 8.25 check the asymptotic stability of the positive sys-
tem (8.103) with the matrix

A =
[−0.5 0.1

0.2 −0.6

]
. (8.110)

Using (8.104) we obtain

det[Ins−A] =
∣∣∣∣ s+ 0.5 −0.1
−0.2 s+ 0.6

∣∣∣∣= s2 + 1.1s+ 0.28. (8.111)

All coefficients of the polynomial are positive and the condition a) is satisfied.
The condition b) is also satisfied since

M1 = 0.5, M2 = det[−A] =
∣∣∣∣ 0.5 −0.1
−0.2 0.6

∣∣∣∣= 0.28.

Using (8.109) for n = 2 we obtain

A(1)
1 = a11 − a12a21

a22
= −0.5 +

0.1 ·0.2
0.6

= −0.28
0.6

< 0.

Therefore, the condition of Theorem 8.25 are met and the positive system (8.103)
with (8.110) is asymptotically stable.

8.3.2 Asymptotic Stability of Positive Continuous-Time Systems
with Delays

Theorem 8.26. The positive system

ẋ(t) = A0x(t)+
q

∑
k=1

Akx(t −dk)+ Bu(t), (8.112a)

y(t) = Cx(t)+ Du(t), (8.112b)

is asymptotically stable if and only if there exists a strictly positive vector λ ∈ Rn
+

satisfying the condition

Aλ < 0, A =
q

∑
k=0

Ak . (8.113)
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Proof. First we shall show that if the system (8.112) is asymptotically stable then
there exists a strictly positive vector λ ∈ Rn

+ satisfying the condition (8.113). Inte-
grating in the interval [0,∞] the equation (8.112a) for B = 0 we obtain

∫ ∞

0
ẋ(t)dt = A0

∫ ∞

0
x(t)dt +

q

∑
k=1

Ak

∫ ∞

0
x(t −dk)dt

and

x(∞)− x(0)−
q

∑
k=1

Ak

∫ 0

−dk

x(t)dt = A
∫ ∞

0
x(t)dt . (8.114)

For asymptotically stable positive system

x(∞) = 0, x(0)+
q

∑
k=1

Ak

∫ 0

−dk

x(t)dt > 0,
∫ ∞

0
x(t)dt > 0,

and (8.114) we have (8.113) for

λ =
∫ ∞

0
x(t)dt

If the condition (8.113) is satisfied then positive system (8.112) is asymptotically
stable. It is well-known that the system (8.112) is asymptotically stable if and only
if the corresponding transposed system

ẋ(t) = AT
0 x(t)+

q

∑
k=1

AT
k x(t −dk) (8.115)

is asymptotically stable. As a Lapunnov function for the positive system (8.115) we
choose the function

V (x) = xT (t)λ +
q

∑
k=1

∫ t

t−dk

xT (τ)dτAkλ , (8.116)

which is positive for any nonzero x(t) ∈ Rn
+. Using (8.115) and (8.116) we obtain

V̇ (x) = ẋT (t)λ +
q

∑
k=1

(
xT (t)− xT (t −dk)

)
Akλ

= xT (t)A0λ +
q

∑
k=1

xT (t −dk)Akλ +
q

∑
k=1

(
xT (t)− xT (t −dk)

)
Akλ

= xT (t)Aλ . (8.117)

If the condition (8.113) is satisfied then from (8.117) we have V̇ (x) < 0 and the
system (8.112) is asymptotically stable. ��
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Remark 8.5. As the strictly positive vector λ we may choose the equilibrium point

xe = −A−1Bu (8.118)

since
Aλ = A

(−A−1Bu
)

= −Bu < 0 for Bu > 0 . (8.119)

Theorem 8.27. The positive system with delays (8.112) is asymptotically stable if
and only if the positive system without delays

ẋ = Ax, A =
q

∑
k=0

A ∈ Mn (8.120)

is asymptotically stable.

Proof. The positive system (8.120) is asymptotically stable if and only if there exists
a strictly positive vector λ ∈ Rn

+ such that the condition (8.113) is satisfied [84]. By
Theorem 8.26 the system (8.112) is asymptotically stable if and only if the positive
system (8.120) is asymptotically stable. By Theorem 8.27 the asymptotic stability
problem of the positive system with delays (8.112) can be reduced to the asymptotic
stability problem of the corresponding positive system without delays (8.120). ��
To check the asymptotic stability of the positive system (8.112) the following The-
orem can be used [77, 96].

Theorem 8.28. The positive system with delays (8.112) is asymptotically stable if
and only if one of the following equivalent conditions is satisfied:

a) All eigenvalues s1,s2, . . . ,sn of the matrix A has negative real parts, i.e.
Re sk < 0, k = 1, . . . ,n.

b) All coefficients of the characteristic polynomial of the matrix A are positive.
c) All principal minors of the matrix

−A =

⎡
⎢⎣

a11 . . . a1n
...

. . .
...

an1 . . . ann

⎤
⎥⎦ (8.121)

are positive, i.e.

|a11| > 0,

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣> 0, . . . ,det[−A] > 0. (8.122)

Example 8.10. Using the conditions b) and c) of Theorem 8.28 check the asymptotic
stability of the positive system (8.112) for q = 1 with the matrices

A0 =
[−1 0.3

0.2 −1.4

]
, A1 =

[
0.5 0.1
0.2 0.8

]
. (8.123)
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The characteristic polynomial of the matrix

A = A0 + A1 =
[−0.5 0.4

0.4 −0.6

]

has the form

det [Ins−A] =
∣∣∣∣ s+ 0.5 −0.4
−0.4 s+ 0.6

∣∣∣∣= s2 + 1.1s+ 0.14. (8.124)

All coefficients of the polynomial (8.124) are positive.

All principal minors of the matrix

−A =
[

0.5 −0.4
−0.4 0.6

]

are positive, i.e.

Δ1 = 0.5, det[−A] = 0.14 .

The conditions b) and c) of Theorem 8.28 are satisfied and the positive system
(8.112) with the matrices (8.123) is asymptotically stable.



Chapter 9
Stability Analysis of Fractional Linear Systems
in Frequency Domain

In this chapter the stability analysis of fractional linear systems in frequency domain
based on Busłowicz papers [14, 17, 30, 19, 21, 27, 23] will be presented.

9.1 Fractional Continuous-Time Systems

Consider SISO continuous-time fractional system described by the

n

∑
i=0

ai
dαi

dtαi
y(t) =

m

∑
k=0

bk
dβk

dtβk
u(t), (9.1)

where u(t) is the input, y(t) is the output, αn > αn−1 > · · · > α1 > α0 ≥ 0 and
βm > βm−1 > · · · > β1 > β0 ≥ 0 are arbitrary real numbers, ai (i = 0,1, . . . ,n) and
bk (k = 0,1, . . . ,m) are real coefficients.

Applying the Laplace transform to the equation (9.1) with zero initial conditions,
we obtain the fractional transfer function

G(s) =
bmsβm + bm−1sβm−1 + · · ·+ b0sβ0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (9.2)

The fractional linear system with the transfer function (9.2) is of [307]:

a) commensurate order if

αi = iα, i = 0,1, . . . ,n , βk = kα, k = 0,1,2, . . . ,m , (9.3)

where α > 0 is a real number,
b) rational order if it is a commensurate order and α = 1/q, where q is a positive

integer,
c) non-commensurate order if (9.3) does not hold.

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 189–220.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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The transfer function of fractional system of commensurate order can be written in
the form

G(s) =
bmsmα + bm−1s(m−1)α + · · ·+ b0

ansnα + an−1s(n−1)α + · · ·+ a0
. (9.4)

Substituting λ = sα in (9.4), we obtain the associated natural order transfer function

G̃(λ ) =
bmλ m + bm−1λ m−1 + · · ·+ b0

anλ n + an−1λ n−1 + · · ·+ a0
. (9.5)

For example, if

G(s) =
s0.25 + 1

s−2s0.5 + 1.25
, (9.6a)

then for λ = s0.25 we obtain the associated natural order transfer function

G̃(λ ) =
λ + 1

s4 −2λ 2 + 1.25
. (9.6b)

Characteristic polynomial of the fractional system (9.1) has the form

D(s) = ansαn + an−1sαn−1 + · · ·+ a0sα0 . (9.7)

The polynomial (9.7) is a multivalued function whose domain is a Riemann surface.
In general case, this surface has an infinite number of sheets and the fractional poly-
nomial (9.7) has an infinite number of zeros. Only a finite number of which will be
in the main sheet of the Riemann surface. For stability reasons only the main sheet
defined by −π < args < π can be considered [307].

The fractional system (9.1) is called bounded-input bounded-output (BIBO) sta-
ble (shortly stable) if for any bounded input u(t) its output y(t) is also bounded.

Theorem 9.1. [198, 199, 307]. The fractional system with the transfer function (9.2)
is stable if and only if the fractional degree characteristic polynomial (9.7) is stable,
i.e. this polynomial has no zeros in the closed right-half of the Riemann complex
surface, that is

D(s) �= 0 for Re s ≥ 0. (9.8)

The Riemann surface has a finite number of sheets only in the case of fractional
polynomials (9.7) of commensurate degree, i.e. for

αi = iα, i = 0,1, . . . ,n. (9.9)

If (9.9) holds, then the fractional degree characteristic polynomial (9.7) can be writ-
ten in the form

D(s) = ansnα + an−1s(n−1)α + · · ·+ a0. (9.10)

Hence, for λ = sα from (9.10) we obtain the associated natural number degree
polynomial

D̃(λ ) = anλ n + an−1λ n−1 + · · ·+ a1λ + a0. (9.11)
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For example, if D(s) = s1.5 + as0.5 + b (a and b are real numbers) then α =
1/2, λ = s1/2 and the associated natural number degree polynomial has the form
D̃(λ ) = λ 3 + aλ + b.

Theorem 9.2. [307]. The fractional commensurate degree characteristic polyno-
mial (9.10) is stable if and only if all zeros of this polynomial satisfy the condition
(9.8) or, equivalently, all zeros λi of the associated natural degree polynomial (9.11)
satisfy the condition

|argλi| > α
π
2

, i = 1,2, . . . ,n. (9.12)

If 0 < α ≤ 1 then from (9.12) we obtain the stability region shown in Fig. 9.1.

0

0

real

imag

απ / 2

απ / 2

stability region

boundary of the
stability region

 
Fig. 9.1 Stability region of fractional order polynomial (9.10) in the complex λ -plane (λ = sα

with 0 < α ≤ 1).

Parametric description of the boundary of the stability region is given by

( jω)α = |ω |α e jπα/2, ω ∈ (−∞,∞). (9.13)

The polynomial (9.10) for α = 1 is a natural number degree polynomial and from
(9.13) it follows that the imaginary axis of the complex plane is the boundary of the
stability region.

From the above and Theorem 9.2 we have the following sufficient condition for
stability of fractional degree polynomial (9.10) for 0 < α ≤ 1.

Lemma 9.1. The fractional commensurate degree characteristic polynomial (9.10)
for 0 < α ≤ 1 is stable if the associated natural number degree polynomial (9.11)
is asymptotically stable, i.e. the condition (9.12) holds for α = 1, i.e. |argλi| > π/2
for all zeros λi of (9.11).
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From Theorem 9.2 it follows that the fractional polynomial (9.10) may be stable
even if the associated natural degree polynomial (9.11) is not asymptotically stable.
Checking of the stability the fractional degree polynomial (9.10) using Theorem 9.2
is a difficult problem in general, because the degree of the associated polynomial
(9.11) may be very large. For example, if

D(s) = s127/105 + 0.4s77/105 + 0.3s71/105 + 0.1s56/105 + 1,

then for λ = sα = s1/105 we obtain the associated polynomial of natural degree [61]

D̃(λ ) = λ 127 + 0.4λ 77 + 0.3λ 71 + 0.1λ 56 + 1.

The polynomial has degree equal to 127 and only five non-zero coefficients.
To avoid this difficulty, a method for determination of the multi-variate natural

degree polynomial, associated with the fractional commensurate degree polynomial
has been proposed [61]. To stability analysis of multi-variate degree polynomials,
the LMI technique has been also proposed in [61].

Following [22] in this section a new frequency domain methods for stability anal-
ysis of fractional polynomials of commensurate degree will be presented. Extension
of these methods to the case of non-commensurate degree fractional polynomials is
given in [17]. The proposed methods are based on the Mikhailov stability criterion
and the modified Mikhailov stability criterion, known from the theory of systems of
natural number order (see [14, 75, 311], for example).

In the stability theory of natural degree characteristic polynomials of linear
continuous-time systems, the following kinds of stability are considered (see [14],
for example):

a) asymptotic stability (all zeros of the characteristic polynomial have negative
real parts),

b) D-stability (all zeros of the characteristic polynomial lie in the open region D in
the left half-plane of complex plane).

From Theorem 9.2 we have the following lemma.

Lemma 9.2. The fractional degree polynomial (9.10) is stable if and only if the
associated natural degree polynomial (9.11) is D-stable, where the parametric
description the boundary of the region D has the form (9.13). In particular, for
0 < α ≤ 1 the D-stability region is shown in Fig. 9.1.

It is easy to see that if α = 1 then the fractional degree polynomial (9.10) is reduced
to the natural degree polynomial (9.11) with λ = s. In such case from (9.13) it
follows that boundary of the stability region is the imaginary axis of the complex
plane.

Theorem 9.3. The fractional degree characteristic polynomial (9.10) is stable if and
only if

Δ arg
0≤ω<∞

D( jω) = nπ/2, (9.14)

where D( jω) = D(s) for s = jω .
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Proof. It is easy to see that D̃(( jω)α ) = D( jω). This means that (9.14) is the neces-
sary and sufficient condition for D-stability of the natural degree polynomial (9.11)
[14]. Hence, the proof follows from Lemma 9.2.

Plot of the function D( jω), where D( jω) = D(s) for s = jω will be called the
generalized (to the class of fractional degree polynomials) Mikhailov plot.

From (9.14) it follows that the generalized Mikhailov plot starts for ω = 0 in the
point D( j0) > 0 on positive real axis and with ω increasing from 0 to ∞ turns strictly
counter-clockwise and goes through n quadrants of the complex plane.

Checking the condition (9.14) of Theorem 9.3 is a difficult task (for large values
of n), because D( jω) quickly tends to infinity as ω grows to ∞.

To remove this difficulty, we consider the rational function

ψ(s) =
D(s)
wr(s)

, (9.15)

instead of the polynomial (9.10), where wr(s) is the reference fractional polynomial
of the same degree as the polynomial (9.10).

We will assume that the reference fractional polynomial wr(s) is stable, i.e.

wr(s) �= 0 for Re s ≥ 0. (9.16)

Theorem 9.4. The fractional degree polynomial (9.10) is stable if and only if

Δ arg
ω∈(−∞,∞)

ψ( jω) = 0, (9.17)

where ψ( jω) = ψ(s) for s = jω and ψ(s) is defined by (9.15).

Proof. If the reference polynomial wr(s) is stable then from Theorem 9.3 we have

Δ arg
ω∈(−∞,∞)

wr( jω) = nπ . (9.18)

From (9.15) for s = jω it follows that

Δ argψ( jω) = Δ argD( jω)−Δ argwr( jω). (9.19)

The fractional degree polynomial (9.10) is stable if and only if

Δ arg
ω∈(−∞,∞)

D( jω) = Δ arg
ω∈(−∞,∞)

wr( jω) = nπ ,

which holds if and only if (9.17) is satisfied. ��
The reference fractional polynomial wr(s) for the polynomial (9.10) can be chosen
in the form

wr(s) = an(s+ c)αn, c > 0. (9.20)

Note that for c > 0 the reference polynomial (9.20) is stable.
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Plot of the function ψ( jω), ω ∈ (−∞,∞) (ψ(s) is defined by (9.15)) we will call
the generalized modified Mikhailov plot.

The condition (9.17) of Theorem 9.4 holds if and only if the generalized modified
Mikhailov plot does not encircle the origin of the complex plane as ω runs from −∞
to ∞.

From (9.10), (9.15) and (9.20) we have

lim
ω→±∞

ψ( jω) = lim
ω→±∞

D( jω)
wr( jω)

= 1, (9.21)

and

ψ(0) =
D(0)
wr(0)

=
a0

ancαn . (9.22)

From (9.22) it follows that ψ(0) ≤ 0 if a0/an ≤ 0. Hence, from Theorem 9.4 we
have the following important lemma.

Lemma 9.3. The fractional degree polynomial (9.10) is unstable if a0/an ≤ 0.

Now we consider the case in which the condition (9.17) of Theorem 9.4 is not
satisfied.

Theorem 9.5. The fractional characteristic polynomial (9.10) of commensurate de-
gree has k ≥ 0 zeros in the right-half of the Riemann complex surface if and only
if as ω runs from −∞ to +∞ the plot of ψ( jω) k times encircle in the negative
direction the origin of the complex plane. In such a case

Δ arg
ω∈(−∞,∞)

ψ( jω) = −k2π . (9.23)

Proof. As in [75] in the case of natural degree polynomials we can show that if the
fractional degree polynomial (9.10) has k ≥ 0 zeros with positive real parts, then

Δ arg
ω∈(−∞,∞)

D( jω) = (n−2k)π . (9.24)

Hence, from (9.19) and (9.18), (9.24) it follows that (9.23) holds. If (9.23) is satisfied
then from (9.19) and (9.18) we have (9.24). ��
It is easy to see that Theorem 9.4 follows from Theorem 9.5 for k = 0.

Example 9.1. Consider a linear fractional order system with characteristic polyno-
mial of commensurate degree of the form [61]

D(s) = 134.7955988s11/15+ 17.49138877s14/15+ 7.5619s7/5 + 18.60416827s6/5

+ s8/5 + 13.68686363s3/5+ 276.0731421s1/3+ 269.6615050s1/5

+ 218.5809037s2/5+ 338.6269398s8/15+ 7.3225s19/15 + 55.921984s16/15

+ 139.1374509s13/15+ 14.79208246s+221.9590294. (9.25)
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For α = 1/15 and λ = sα = s1/15 from the fractional commensurate degree polyno-
mial (9.25) we obtain the associated natural degree polynomial

D̃(λ ) = λ 24 + 7.5619λ 21 + 7.3225λ 19 + 18.60416827λ 18+ 55.92198403λ 16

+ 14.79208246λ 15+ 17.49138877λ 14+ 139.1374509λ 13+ 134.79559λ 11

+ 13.68686363λ 9+ 338.6269398λ 8+ 218.5809037λ 6+ 276.0731421λ 5

+ 269.6615050λ 3+ 221.9590294. (9.26)

By Theorem 9.2 the fractional degree polynomial (9.25) is stable if and only if
the associated natural degree polynomial (9.26) has no zeros in the cone shown in
Fig. 9.1 with απ/2 = π/30 = 0.1047 rad.

Plot of the function (9.15) with wr(s) = (s + 10)8/5 is shown in Fig. 9.2. Ac-
cording to (9.21) and (9.22) we have lim

ω→±∞
ψ( jω) = 1, ψ( j0) = a0/108/5 =

221.9590294/108/5 = 5.5754.
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Fig. 9.2 Plot of the function (9.15) with s = jω, ω ∈ (−∞,∞). Illustration to Example 9.1.

From Fig. 9.2 it follows that the generalized modified Mikhailov plot ψ( jω) does
not encircle the origin of the complex plane and by Theorem 9.4 the system is stable.

Now we consider the fractional degree polynomial (9.25) and associated natural
degree polynomial (9.26) in the case when the free term has negative sign, i.e. is
−221.959029 instead of +221.959029. In such case a0/an = a0 = −221.959029 <
0 and by Lemma 9.3 the fractional system is unstable.

In this case, the generalized modified Mikhailov plot with the reference polyno-
mial wr(s) = (s + 10)8/5 is shown in Fig. 9.3, where lim

ω→±∞
ψ( jω) = 1,

ψ( j0) = −5.5754.
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Fig. 9.3 Plot of the function (9.15) with s = jω , ω ∈ (−∞,∞), D(s) of the form (9.25) with
negative free term

Zeros of natural degree polynomial (9.26) with negative free term and the bound-
ary of the stability region are shown in Fig. 9.4.
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Fig. 9.4 Zeros of polynomial (9.26) with negative free term and boundary of the stability
region
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From Fig. 9.3 it follows that the generalized modified Mikhailov plot ψ( jω) ones
encircles the origin of the complex plane in negative direction. By Theorem 9.5, the
system is unstable and the characteristic polynomial has one unstable zero. The zero
lies in the instability region shown in Fig. 9.4.

Example 9.2. Consider the control system with the fractional order plant described
the transfer function [259, 313]

G0(s) =
1

0.8s2.2 + 0.5s0.9 + 1
=

1
D0(s)

, (9.27)

and the fractional PD controller

C(s) = 20.5 + 3.7343s1.15. (9.28)

Characteristic polynomial of the closed loop system with the plant (9.27) and con-
troller (9.28) has the form

D(s) = D0(s)+C(s) = 0.8s2.2 + 3.7343s1.15 + 0.5s0.9 + 21.5 . (9.29)

Substituting α = 1/20 and λ = sα = s1/20 in (9.29), we obtain the associated poly-
nomial of natural degree

D̃(λ ) = 0.8λ 44 + 3.7343λ 23 + 0.5λ 18 + 21.5 . (9.30)

0.2 0.6 1
-0.4

-0.2

0

0.2

0.4

Re

Im

ω ≈ ±4 ω = ±∞ω = 0

 
Fig. 9.5 Plot of the function ψ( jω). Illustration to Example 9.2.
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The control system is stable if and only if all zeros of polynomial (9.30) lie in the
stability region shown in Fig. 9.1 with α = 1/20.

To check stability of fractional polynomial (9.29) we use Theorem 9.4.
Plot of the function ψ( jω)= D( jω)/wr( jω), where D(s) has the form (9.29) and

wr(s) = 0.8(s + 5)2.2 is the reference fractional polynomial, is shown in
Fig. 9.5.

From (9.21) and (9.22) we have

lim
ω→±∞

ψ( jω) = 1; ψ(0) =
D(0)
wr(0)

=
21.5

0.8 ·52.2 = 0.7791 .

From Fig. 9.5 it follows that the generalized modified Mikhailov plot ψ( jω)
does not encircle the origin of the complex plane. Therefore, by Theorem 9.4 the
fractional control system is stable.

9.2 Fractional Continuous-Time Systems with Delays of the
Retarded Type

Following [21] consider a linear fractional system with delays described by the
transfer function

P(s) =
q0(s)+ ∑m2

j=1 q j(s)exp(−srβ j),

p0(s)+ ∑m1
i=1 pi(s)exp(−srhi),

=
N(s)
D(s)

, (9.31)

where r is a real number such that 0 < r ≤ 1, the fractional order polynomials pi(s)
and q j(s) with real coefficients have the forms

pi(s) =
n

∑
k=0

aiksαk , i = 0,1, . . . ,m1 , (9.32)

q j(s) =
m

∑
k=0

b jksδk , j = 0,1, . . . ,m2 , (9.33)

where αk and δk are real non-negative numbers and a0n �= 0, b0m �= 0.
Without loss of generality we will assume that αn > αn−1 > · · · > α1 > α0 = 0;

δm > δm−1 > · · · > δ1 > δ0 ≥ 0 and the delays β j and hi satisfy the inequalities
βm2 > βm2−1 > · · · > β1, hm1 > hm1−1 > · · · > h1 .

The fractional degree characteristic quasi-polynomial of the system (9.31) has
the form

D(s) = p0(s)+
m1

∑
i=1

pi(s)exp(−srhi). (9.34)

The fractional degree characteristic quasi-polynomial (9.34) is:

a) of the retarded type if deg p0(s) > deg pi(s) for all i = 1,2, . . . ,m1,
b) of the neutral type if deg p0(s) = deg pi(s) for at least one i = 1,2, . . . ,m1.
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We will consider the time-delay systems of the retarded type, i.e. the systems satis-
fying the assumption deg p0(s) > deg pi(s) for all i = 1,2, . . . ,m1.

Moreover, we assume that degq0(s) > degq j(s), j = 1,2, . . . ,m2, and deg p0(s) >
degq0(s) in order to deal with strictly proper systems. Suppose that N(s) and D(s)
have no common zeros in {Re s ≥ 0}\{0}.

Theorem 9.6. [9] The fractional system with the transfer function (9.31) is stable
if and only if the fractional degree characteristic quasi-polynomial (9.34) is stable,
i.e. all its zeros have negative real parts, that is

D(s) �= 0 for Re s ≥ 0. (9.35)

Similarly as in the case of fractional order systems without delays [307], we intro-
duce the following classification of the fractional order systems with delays.

The fractional order system with delays described by the transfer function
(9.31) is:

a) of commensurate order if

αk = kα (k = 0,1, . . . ,n) and δk = kα (k = 0,1, . . . ,m), (9.36)

where α > 0 is a real number,
b) of rational order if it is a commensurate order and α = 1/q, where q is a positive

integer (in such a case 0 < α ≤ 1),
c) of non-commensurate order if (9.36) does not hold.

A numerical algorithm for stability testing of fractional order systems with delays
(of non-commensurate order, in general) has been given in [70]. This algorithm
is based on the use of the Cauchy integral theorem and solving an initial-value
problem.

In this section following [21] new necessary and sufficient conditions for sta-
bility in frequency domain of fractional characteristic quasi-polynomials (9.34) will
be proposed. First, the characteristic quasi-polynomial of commensurate degree will
be analyzed and frequency domain method for stability will be given. Next, the fre-
quency domain method for stability analysis of the characteristic quasi-polynomial
of non-commensurate degree will be proposed.

The system with delays of fractional commensurate order is described by the
transfer function (9.31) with

pi(s) =
n

∑
k=0

aikskα , i = 0,1, . . . ,m1, (9.37)

q j(s) =
m

∑
k=0

b jkskα , j = 0,1, . . . ,m2. (9.38)

In such a case, applying substitution λ = sα in (9.37), (9.38) and (9.31) we obtain
the associated transfer function of natural order of the form
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P̃(λ ) =
q̃0(λ )+ ∑m2

j=1 q̃ j(λ )exp(−λ r/α β j),

p̃0(λ )+ ∑m1
i=1 p̃i(λ )exp(−λ r/α hi),

=
Ñ(λ )
D̃(λ )

, (9.39)

where

p̃i(λ ) =
n

∑
k=0

aikλ k, i = 0,1, . . . ,m1, (9.40a)

q̃ j(λ ) =
m

∑
k=0

b jkλ k, j = 0,1, . . . ,m2, (9.40b)

are natural number degree polynomials.
Hence, in the case of system with delays of fractional commensurate order we

can consider the natural degree quasi-polynomial

D̃(λ ) = p̃0(λ )+
m1

∑
i=1

p̃i(λ )exp(−λ r/α hi), (9.41)

associated with the characteristic quasi-polynomial (9.34) of fractional order.

Lemma 9.4. All zeros of the fractional quasi-polynomial (9.34) of commensurate
degree satisfy the condition (9.35) if and only if all zeros of the associated natural
degree quasi-polynomial (9.41) satisfy the condition

|argλ | > α
π
2

. (9.42)

Proof. From Theorem 9.6 it follows that boundary of the stability region of frac-
tional quasi-polynomial (9.34) is the imaginary axis of complex s-plane with the
parametric description s = jω , ω ∈ (−∞,∞). Zeros of fractional quasi-polynomial
D(s) of the form (9.34) and the associated natural degree quasi-polynomial D̃(λ )
of the form (9.41) satisfy the relationship λ = sα . Hence, boundary of the stability
region in the complex λ -plane of the natural degree quasi-polynomial (9.41) has the
parametric description

λ = ( jω)α = |ω |α e jαπ/2, ω ∈ (−∞,∞). (9.43)

All zeros of quasi-polynomial (9.41) lie in the stability region with the boundary
(9.43) if and only if (9.42) holds. This completes the proof. ��
It is easy to see that for 0 < α ≤ 1 the condition (9.42) holds for zeros of quasi-
polynomial (9.41) lying in the stability region shown in Fig. 9.1. This region is
reduced to the open left half-plane of the complex λ -plane for α = 1.

From (9.42) and Fig. 9.1 it follows that if 1 < α < 2 then the "stability region" is
a cone in the open left half-plane.

From the fundamental properties of distribution of zeros of quasi-polynomials
(see [6, 15, 64, 66, 65], for example) it follows that natural degree quasi-polynomial
(9.41) of the retarded type always has at least one chain of asymptotic zeros satisfy-
ing the conditions
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lim
|λ |→∞

Reλ = −∞, lim
|λ |→∞

Imλ = ±∞.

Therefore, the condition (9.42) with α > 1 does not hold for the asymptotic zeros
of quasi-polynomial (9.41). Therefore, we have the following important lemma.

Lemma 9.5. The fractional quasi-polynomial (9.34) of commensurate degree (the
condition (9.36) holds) is unstable for any α > 1.

In the stability theory of polynomials or quasi-polynomials of natural degree, the
asymptotic stability (all zeros have negative real parts) and more general case of
stability, namely the D-stability (all zeros lie in the open region D in the open left
half-plane of complex plane), are considered [14, 15].

From the above and Lemma 9.4 we have the following lemmas.

Lemma 9.6. The fractional quasi-polynomial (9.34) of commensurate degree is sta-
ble if and only if the associated natural degree quasi-polynomial (9.41) is D-stable,
where parametric description of boundary of the region D has the form (9.43) with
0 < α ≤ 1 (see Fig. 9.1).

Lemma 9.7. The fractional quasi-polynomial (9.34) of commensurate degree with
0 < α ≤ 1 is stable if the associated natural degree quasi-polynomial (9.41) is
asymptotically stable, i.e. all zeros of this quasi-polynomial have negative real parts
(the condition (9.42) holds for α = 1).

By generalization of the Mikhailov theorem (see [14, 15, 75], for example) to the
fractional degree characteristic quasi-polynomial (9.34) of commensurate degree we
obtain the following theorem.

Theorem 9.7. The fractional characteristic quasi-polynomial (9.34) of commensu-
rate degree is stable if and only if

Δ arg
0≤ω<∞

D( jω) = nπ/2, (9.44)

which means that plot of D( jω) with ω increasing from 0 to ∞ runs in the positive
direction by n quadrants of the complex plane, missing the origin of this plane.

Proof. Because D̃(( jω)α ) = D( jω), the condition (9.44) is necessary and sufficient
for D-stability of natural degree quasi-polynomial (9.41) [15]. The proof follows
immediately from Lemma 9.6. ��
Plot of the function D( jω), where D( jω) = D(s) for s = jω (D(s) has the form
(9.34)) will be called the generalized (to the class of fractional degree quasi-
polynomials) Mikhailov plot.

In general case checking the condition of Theorem 9.7 is difficult task, since

a) D( jω) quickly tends to infinity as ω grows to ∞,
b) the delay terms in D(s) generate an infinite number of spiral for s = jω and

ω ∈ (−∞,∞).
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Therefore, Theorem 9.7 is not practically reliable. Moreover, this theorem is true
only in the case of commensurate degree fractional quasi-polynomials.

To remove the difficulty a), we introduce the rational function

ψ(s) =
D(s)
wr(s)

(9.45)

instead of fractional degree quasi-polynomial D(s) of the form (9.34).
In (9.45) wr(s) is the reference fractional polynomial (fractional quasi-poly- no-

mial) of the same degree αn as quasi-polynomial (9.34). We will assume that this
polynomial is stable, i.e.

wr(s) �= 0 for Re s ≥ 0. (9.46)

The reference fractional polynomial wr(s) can be chosen in the form

wr(s) = a0n(s+ c)αn , c > 0, (9.47)

where a0n is the coefficient of sαn in polynomial p0(s) of the form (9.32) for i = 0.
Note that the reference polynomial (9.47) is stable for c > 0.

Theorem 9.8. The fractional characteristic polynomial (9.34) (of commensurate or
non-commensurate degree) is stable if and only if

Δ arg
ω∈(−∞,∞)

ψ( jω) = 0, (9.48)

where ψ( jω) = ψ(s) for s = jω and ψ(s) is defined by (9.45).

Proof. From (9.45) for s = jω it follows that

Δ arg
ω∈(−∞,∞)

ψ( jω) = Δ arg
ω∈(−∞,∞)

D( jω)− Δ arg
ω∈(−∞,∞)

wr( jω). (9.49)

By the assumption the reference polynomial wr(s) of the same fractional degree as
quasi-polynomial (9.34) is stable. Therefore, the fractional quasi-polynomial (9.34)
is stable if and only if

Δ arg
ω∈(−∞,∞)

D( jω) = Δ arg
ω∈(−∞,∞)

wr( jω), (9.50)

which holds if and only if (9.48) is satisfied. ��
Plot of the function ψ( jω), ω ∈ (−∞,∞) (ψ(s) is defined by (9.45)) and will be
called the generalized modified Mikhailov plot.

The condition (9.48) of Theorem 9.8 holds if and only if the generalized modified
Mikhailov plot ψ( jω) does not encircle the origin of the complex plane as ω runs
from −∞ to ∞.
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Form (9.45), (9.34) and (9.47) we have

lim
ω→±∞

ψ( jω) = lim
ω→±∞

D( jω)
wr( jω)

= 1, (9.51a)

and

ψ(0) =
D(0)
wr(0)

=
a00 + a10 + · · ·+ am10

a0ncαn
. (9.51b)

From the above it follows that the generalized modified Mikhailov plot encircles or
cross the origin of the complex plane if ψ( j0) ≤ 0. Hence, we have the following
lemma.

Lemma 9.8. The fractional characteristic quasi-polynomial (9.34) of commensu-
rate or non-commensurate degree is unstable if

a00 + a10 + · · ·+ am10

a0n
≤ 0.

Example 9.3. Check the stability of fractional order system with delays with char-
acteristic quasi-polynomial of the form

D(s) = s3/2 −1.5s−1.5sexp(−sh)+ 4s1/2 + 8. (9.52)

For α = 1/2 and λ = sα = s1/2 from (9.52) one obtains the following associated
fractional quasi-polynomial of natural degree

D̃(λ ) = λ 3 −1.5λ 2 −1.5λ 2 exp(−λ 2h)+ 4λ + 8. (9.53)

From Lemma 9.6 it follows that fractional quasi-polynomial (9.52) of commensu-
rate degree is stable (all its zeros satisfy the condition (9.35)) if and only if the
natural degree quasi-polynomial (9.53) is D-stable, where the region D is shown in
Fig. 9.1 with α = 1/2.

Substituting h = 0 in (9.52) and (9.53) we obtain, respectively, the fractional and
natural degree polynomials D(s) = s3/2 − 3s + 4s1/2 + 8 and D̃(λ ) = λ 3 − 3λ 2 +
4λ +8. Polynomial D̃(λ ) has the following zeros: λ1 = −1, λ2,3 = 2± j2. Zeros λ2

and λ3 lie on the boundary of D-stability region which means that polynomial D̃(λ )
is not D-stable and the fractional quasi-polynomial (9.52) is unstable for h = 0. In
[255] it was shown (see also [70]) that the fractional quasi-polynomial (9.52) is
stable for a few intervals of values of the delay h, where H1 = (0.04986,0.78539)
is the first interval of stability.

We check stability of the fractional characteristic quasi-polynomial (9.52) with
h = 0.1.

Plot of the function (9.45) for s = jω and ω ∈ [0,500], where D(s) has the form
(9.52) for h = 0.1 and wr(s) = (s+ 5)3/2, is shown in Fig. 9.6. According to (9.51)
we have ψ(0) = 8/53/2 = 0.7155, lim

ω→∞
ψ( jω) = 1. The plot is symmetrical with

respect to the real axis for negative values of frequency ω . This plot does not encircle
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Fig. 9.6 Plot of (9.45) for s = jω , ω ∈ [0,500], wr(s) = (s+5)3/2

the origin of the complex plane, and by Theorem 9.8 the fractional system with
characteristic quasi-polynomial (9.52) with h = 0.1 is stable.

Example 9.4. Consider the control system shown in Fig. 9.7 with fractional order
plant described by the transfer function

P(s) =
e−0.5s

1 + s0.5 . (9.54)

and fractional PID controller

C(s) = K +
I

sλ + Dsμ , (9.55)

where λ = 1.1011, μ = 0.1855, K = 1.4098, I = 1.6486, D = −0.2139 [305].

Fig. 9.7 The feedback con-
trol system. Illustration to
Example 9.4.

y0(t)
C(s) G(s)

u(t) y(t)

−

Characteristic quasi-polynomial of the closed-loop system has the form

D(s) = sλ+1/2 + sλ +(Ksλ + Dsλ+μ + I)e−0.5s (9.56)

= s1.6011 + s1.1011 +(1.4098s1.1011−0.2139s1.2866 + 1.6486)e−0.5s.
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The control system with characteristic quasi-polynomial (9.56) is stable if and only
if all zeros of (9.56) have negative real parts.

To check the stability we apply Theorem 9.8 with the reference polynomial
wr(s) = (s+ 10)1.6011. In such a case the function (9.45) has the form

ψ(s) =
s1.6011 + s1.1011 +(1.4098s1.1011−0.2139s1.2866 + 1.6486)e−0.5s

(s+ 10)1.6011 . (9.57)

Plot of the function (9.57) for s = jω , ω ∈ (−∞,∞), is shown in Fig. 9.8, where

lim
ω→±∞

ψ( jω) = 1, ψ(0) = 1.6486/101.6011 = 0.0413 . (9.58)
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Fig. 9.8 Plot of the function (9.57) for s = jω , ω ∈ (−∞,∞)

From Fig. 9.8 it follows that the generalized modified Mikhailov plot ψ( jω)
does not encircle the origin of the complex plane. Therefore, by Theorem 9.8 the
fractional control system with characteristic quasi-polynomial (9.56) is stable.

9.3 Fractional Discrete-Time Systems

Consider a fractional linear discrete-time dynamical system with the transfer
function

G(z) =
bmzβm + bm−1zβm−1 + · · ·+ b0zβ0

anzαn + an−1zαn−1 + · · ·+ a0zα0
, (9.59)
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where: αn > αn−1 > · · · > α0 ≥ 0, βm > βm−1 > · · · > β0 ≥ 0 are real numbers, ai

(i = 0,1, . . . ,n) and bk (k = 0,1, . . . ,m) are real coefficients.
In general case, transfer function (9.59) describes the fractional systems of non-

commensurate order with characteristic function

w(z) = anzαn + an−1zαn−1 + · · ·+ a0zα0 . (9.60)

The function (9.60) will be called the polynomial of fractional degree or fractional
polynomial.

Similarly as in the case of fractional continuous-time systems [307], we have the
following classification.

The system described by transfer function (9.59) is of non-commensurate order.
This system is of a commensurate order if αi = iα (i = 0,1, . . . ,n) and βk = kα

(k = 0,1, . . . ,m), moreover

a) if α = 1/q (q > 1 is a positive integer), then system (9.59) is called the system
of rational commensurate order,

b) if does not exist a positive integer q > 1 such that α = 1/q then system (9.59)
is called the system of fractional commensurate non-rational order.

The system of fractional commensurate order is described by the transfer function

G(z) =
bmzmα + bm−1z(m−1)α + · · ·+ b1zα + b0

anznα + an−1z(n−1)α + · · ·+ a1zα + a0
(9.61)

with the characteristic polynomial of fractional degree

w(z) = anznα + an−1z(n−1)α + · · ·+ a1zα + a0, (9.62)

where α ∈ (0,1] is a real number.
Following [60] we can formulate the following theorem.

Theorem 9.9. The discrete-time system of fractional order is stable if and only if its
characteristic polynomial (9.60) (or (9.62)) of fractional degree is stable, i.e.

w(z) �= 0 for |z| ≥ 1. (9.63)

Substituting λ = zα in (9.61) we obtain the associated transfer function of natural
order

G(λ ) =
bmλ m + bm−1λ m−1 + · · ·+ b1λ + b0

anλ n + an−1λ n−1 + · · ·+ a1λ + a0
. (9.64)

From (9.64) it follows that with the fractional degree characteristic polynomial
(9.62) is associated the natural degree polynomial

w̃(λ ) = anλ n + an−1λ n−1 + · · ·+ a1λ + a0. (9.65)

The characteristic polynomial (9.60) of the system described by transfer function
(9.59) is a multivalued function whose domain is a Riemann surface [256, 307]. In
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general, this surface has an infinite number of sheets. The number of sheets is finite
only if the polynomial (9.60) is of rational commensurate degree, i.e. it has the form
(9.62) with α = 1/q, where q > 1 is an integer.

Note that the transfer function (9.59) almost always can be written in the form
(9.61) with α = 1/q and q > 1.

If z = |z|e jϕ , then with α = 1/q we have

zα = q
√

z = q
√
|z|e j(ϕ+2kπ)/q, k = 0,1,2, . . . ,q−1. (9.66)

From (9.66) and the relation λ = zα it follows that |λ | < 1 if and only if |z| < 1.
Therefore, we have the following theorem.

Theorem 9.10. The discrete-time system of fractional rational commensurate order
is stable if and only if the condition (9.63) is met, or equivalently, all zeros λi of the
associated polynomial (9.65) of natural degree satisfy the condition

|λi| < 1, i = 1,2, . . . ,n. (9.67)

By Theorem 9.10 the stability checking of discrete-time system (9.59) of fractional
rational commensurate order can be reduced to checking of location of zeros of
associated polynomial (9.65) in the unit circle.

Investigation of stability of the fractional system with transfer function (9.59) by
checking the condition (9.67) for all zeros of natural degree polynomial (9.65) can
be inconvenient with regard on high degree of this polynomial.

If, for example, the characteristic polynomial of fractional degree is of the
form [60]

w(z) = z61/35 + 0.2z22/35 + 0.1z3/5 + 0.4z4/7 + 1 , (9.68)

then for α = 1/35 and λ = zα = z1/35 we obtain the associated polynomial of natural
degree

w̃(λ ) = λ 61 + 0.2λ 22 + 0.1λ 21 + 0.4λ 20 + 1 , (9.69)

which has degree equal to 61 and only 5 non-zero components.
To avoid this inconvenience, in [60] has been proposed the determination of the

associated polynomial of natural degree not in the form of polynomial of one vari-
able but in the form of polynomial of several independent variables. To investigation
of stability of such polynomial, the LMI methods can be used.

In this section following [23] a computer method for stability analysis of linear
discrete-time systems of fractional rational commensurate order which characteris-
tic polynomial has the form (9.62) with α = 1/q and q > 1 will be presented. The
method proposed is based on the modified Mikhailov criterion. This criterion will
be applied to the associated polynomial (9.65) of natural degree.

In the case of discrete-time systems (of natural or fractional orders) the stabil-
ity region is the open unit circle which boundary has the parametric description
exp( jωπ), ω ∈ [0,2]. We can consider the interval ω ∈ [0,1] in the case of polyno-
mials with real coefficients.
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Applying the Mikhailov criterion to stability investigation of the associated poly-
nomial (9.65) and using Theorem 9.10 we obtain the following theorem.

Theorem 9.11. The discrete-time system of fractional rational commensurate order
is stable if and only if

Δ arg
0≤ω≤1

w̃(exp( jωπ)) = nπ , (9.70)

i.e. if the plot of w̃(exp( jωπ)) (the Mikhailov plot) with ω increasing from 0 to 1
encircles in the positive direction n/2 times the origin of the complex plane, where
w̃(exp( jωπ)) = w̃(λ ) for λ = exp( jωπ).

Application of Theorem 9.11 to the investigation of stability of the fractional system
is usually enough difficult since the degree of associated polynomial (9.65) is high.

The essential problems are connected with determination of number of encir-
clement of the origin of the complex plane by the Mikhailov plot. For example, for
stable polynomial of natural order 61 the number of encirclement is equal to 30.5.

To avoid this inconvenience, we will apply the modified Mikhailov criterion [14]
to investigation of the stability of associated polynomial (9.65) of natural degree.

Let w0(λ ) be any stable polynomial of the same degree n as polynomial (9.65).
We will call this polynomial the reference polynomial.

The reference polynomial can be chosen in the form

w0(λ ) = anλ n, (9.71)

where an is the coefficient of polynomial (9.62) (and (9.65)).
We will consider the rational function

ψ(λ ) = w̃(λ )/w0(λ ), (9.72)

instead of fractional degree polynomial (9.65) (or (9.62)), where w0(λ ) is the refer-
ence polynomial.

Theorem 9.12. The discrete-time system of fractional rational commensurate order
is stable if and only if

Δ arg
0≤ω≤1

ψ(exp( jωπ)) = 0, (9.73)

where ψ(exp( jωπ)) = ψ(λ ) for λ = exp( jωπ), i.e. the plot of ψ(exp( jωπ))
(called the modified Mikhailov plot) does not encircle the origin of the complex
plane as ω runs from 0 to 1.

Proof. By assumption the reference polynomial w0(λ ) is stable and the condition
(9.70) holds for this polynomial.

From (9.72) it follows that Δ argψ(.) = Δ arg w̃(.)−Δ argw0(.). Hence, (9.70) holds
if and only if (9.73) is satisfied. ��
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If the reference polynomial is of the form (9.71), then from (9.65) and (9.72) we
have

ψ(e j0) = ψ(1) = w̃(1)/an =
1
an

n

∑
i=0

ai, (9.74)

ψ(e jπ) = ψ(−1) = (−1)nw̃(−1)/an =
1
an

n

∑
i=0

(−1)i+nai. (9.75)

Note that the plot of ψ(exp( jωπ)) encircles or crosses the origin of the complex
plane if

(−1)n w̃(−1) w̃(1) ≤ 0. (9.76)

In this case the condition (9.73) is not satisfied. Hence, we have the following
lemma.

Lemma 9.9. The discrete-time system of fractional rational commensurate order
with characteristic polynomial (9.62) is unstable if the condition (9.76) is met.

Example 9.5. Check stability of the fractional system with characteristic fractional
polynomial (9.68) and the associated natural degree polynomial (9.69).

We apply Theorem 9.12 with the reference polynomial of the form w0(λ ) = λ 61.
Plot of the function

ψ(exp( jωπ)) =
w̃(exp( jωπ))
w0(exp( jωπ))

, ω ∈ [0,1], (9.77)

is shown in Fig. 9.9. According to (9.74) and (9.75), this plot begins and finishes in
the points

ψ(1) = w̃(1) =
n

∑
i=0

ai = 2.7 , (9.78)

ψ(−1) = (−1)nw̃(−1) =
n

∑
i=0

(−1)i+nai = −0.5 . (9.79)

These points are denoted by • in Fig. 9.9.
Plot of the function (9.77) many times encloses the origin of the complex plane

and by Theorem 9.12 the system is unstable.
The same result we obtain from Lemma 9.9, since

(−1)n w̃(−1) w̃(1) = −1.35 < 0.

Example 9.6. Check stability of the fractional system with characteristic polynomial
of the form [60]
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Fig. 9.9 Plot of the function (9.77). Illustration to Example 9.5.

w(z) = z61/35 + 0.2757z8/5 + 0.1479z54/35 + 0.1653z51/35

− 0.2351z49/35 + 0.009457z47/35+ 0.04144z46/35

− 0.08902z44/35 + 0.0213z42/35 + 0.4983z41/35

+ 0.0252z8/7−0.0493z39/35 + 0.05421z37/35

+ 0.11071z36/35 + 0.0358z+ 0.1284z34/35+ 0.07794z32/35

+ 0.0288z31/35 + 0.00964z6/7−0.30901z29/35+

− 0.00132z27/35−0.00347z26/35−0.03378z5/7

− 0.1669z24/35 + 0.1274z22/35−0.00725z3/5

+ 0.1676z4/7 + 0.07858z19/35+ 0.07728z17/35

+ 0.003193z3/7−0.014498z2/5+ 0.07091z12/35

− 0.04598z2/7−0.01123z1/5 + 0.0793z1/7 + 0.0007197 .

Assuming q = 35, α = 1/35 and substituting λ = zα = z1/35 we obtain the associ-
ated polynomial of natural degree
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w̃(λ ) = λ 61 + 0.2757λ 56 + 0.1479λ 54 + 0.1653λ 51

− 0.2351λ 49 + 0.009457λ 47 + 0.04144λ 46

− 0.08902λ 44 + 0.0213λ 42 + 0.4983λ 41

+ 0.0252λ 40−0.0493λ 39 + 0.05421λ 37

+ 0.11071λ 36 + 0.0358λ 35 + 0.1284λ 34 + 0.07794λ 32

+ 0.0288λ 31 + 0.00964λ 30−0.30901λ 29

− 0.00132λ 27−0.00347λ 26−0.03378λ 25

− 0.1669λ 24 + 0.1274λ 22−0.00725λ 21

+ 0.1676λ 20 + 0.07858λ 19 + 0.07728λ 17

+ 0.003193λ 15−0.014498λ 14 + 0.07091λ 12

− 0.04598λ 10−0.01123λ 7 + 0.0793λ 5 + 0.0007197 .
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Fig. 9.10 Plot of the function (9.77). Illustration to Example 9.6.

Plot of the function (9.77) with the polynomial w̃(λ ) and the reference polyno-
mial as in Example 9.5, is shown in Fig. 9.10. This plot begins with ω = 0 in the
point ψ(1)= w̃(1)= 1.6173 and finishes for ω = 1 in the point ψ(−1)=−w̃(−1)=
0.5177. These points are denoted by • in Fig. 9.10.

The plot shown in Fig. 9.10 does not encircle the origin of the complex plane,
and by Theorem 9.12 the fractional system is stable.

9.4 Robust Stability of Convex Combination of Two Fractional
Polynomials

Consider the fractional degree polynomial

w(s, p) = w1(s)+ pw2(s), p ∈ P, (9.80)
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linearly dependent on one uncertain parameter p, where P = [p−, p+] with p− < p+

is the value set of uncertain parameter and

w1(s) = a1,nsαn + a1,n−1sαn−1 + · · ·+ a1,1sα1 + a1,0, (9.81a)

w2(s) = a2,msβm + a2,m−1sβm−1 + · · ·+ a2,1sβ1 + a2,0, (9.81b)

are given polynomials of fractional degrees where αn > αn−1 > · · · > α1 > 0 and
βm > βm−1 > · · · > β1 > 0 are arbitrary real numbers, a1,i (i = 0,1, . . . ,n) and a2,k

(k = 0,1, . . . ,m) are real coefficients.
The polynomial (9.80) with uncertain parameter can be written in the form of

convex combination of two fractional degrees polynomials

W (s,Q) = {w(s,q) : q ∈ Q = [0,1]}, (9.82)

where
w(s,q) = (1−q)wa(s)+ qwb(s), (9.83)

with q = (p− p−)/(p+− p−) and

wa(s) = w(s, p−) = w1(s)+ p−w2(s)
= ansγn + an−1sγn−1 + · · ·+ a1sγ1 + a0 , (9.84a)

wb(s) = w(s, p+) = w1(s)+ p+w2(s)
= bnsγn + bn−1sγn−1 + · · ·+ b1sγ1 + b0 , (9.84b)

with γn = αn and γn > γn−1 > · · · > γ1 > 0.
In general case the family (9.82) of fractional polynomials is of the non-com-

mensurate degree.
This family is of the commensurate degree, if polynomials (9.84) have commen-

surate degrees, i.e. if γi = iγ for i = 0,1, . . . ,n and 0 < γ < 1. In such a case polyno-
mials (9.84) can be written in the forms of natural degree polynomials

wa(λ ) = anλ n + an−1λ n−1 + · · ·+ a1λ + a0 , (9.85a)

wb(λ ) = bnλ n + bn−1λ n−1 + · · ·+ b1λ + b0 , (9.85b)

where λ = sγ .
We will assume that the leading coefficient of the polynomial (9.83) is non-zero

for all q ∈ Q, i. e.
(1−q)an + qbn �= 0, ∀q ∈ Q.

If the above condition holds then the family (9.82) of fractional polynomials is
degree invariant.

From the theory of stability of fractional order systems given by [198, 199] and
[307], for example, we have the following theorem.

Let w(s) be any fixed fractional degree polynomial.



9.4 Robust Stability of Convex Combination of Two Fractional Polynomials 213

Theorem 9.13. The fractional order system with characteristic polynomial w(s) is
stable if and only if the fractional degree characteristic polynomial w(s) is stable,
i.e. w(s) has no zeros in the closed right-half of the Riemann complex surface, i.e.

w(s) �= 0 for Re s ≥ 0. (9.86)

The fractional order polynomial w(s) is a multivalued function whose domain is a
Riemann surface. In general case, this surface has an infinite number of sheets and
the fractional polynomial w(s) has an infinite number of zeros. Only a finite number
of which will be in the main sheet of the Riemann surface. For stability reasons only
the main sheet defined by −π < args < π can be considered [307].

Definition 9.1. The family (9.82) of fractional degree polynomials is called robustly
stable, if polynomial w(s,q) is stable for all q ∈ Q.

By generalization of Theorem 9.13 to the robust stability case we obtain the follow-
ing theorem [19].

Theorem 9.14. An uncertain system of fractional order with characteristic polyno-
mial (9.82) is robustly stable if and only if the family (9.82) of fractional degree
characteristic polynomials is robustly stable, i.e. w(s,q) has no zeros in the closed
right-half of the Riemann complex surface for all q ∈ Q, that is

w(s,q) �= 0 for Re s ≥ 0 and for all q ∈ Q. (9.87)

The problem of robust stability analysis of family (9.82) of fractional polynomials
was considered in [29] in the case of commensurate degrees of polynomials (9.84),
i.e. with γi = iγ , i = 0,1, . . . ,n, 0 < γ < 1. In such a case family (9.82) is robustly
stable if and only if all zeros of the polynomial w(λ ,q) = (1− q)wa(λ )+ qwb(λ )
with wa(λ ) and wb(λ ) of the forms (9.85) satisfy the condition |argλ | > 0.5γπ for
all q ∈ Q = [0,1].

In this section following [19] the frequency domain methods for robust stability
analysis of family (9.82) of fractional polynomials of non-commensurate degrees
will be presented. The methods proposed are based on the Argument Principle and
they are a generalization to the fractional polynomials case of the methods given in
[14] in the case of natural degree polynomials.

First we consider the problem of stability analysis of fixed fractional polynomial
of non-commensurate degree, in general, of the form

w(s) = ansαn + an−1sαn−1 + · · ·+ a1sα1 + a0, (9.88)

where αn > αn−1 > · · · > α1 > 0 are real numbers.
From [17] we have the following frequency domain method for stability analysis

of the fractional polynomial (9.88).
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Theorem 9.15. The fractional degree polynomial (9.88) is stable if and only if

Δ arg
ω∈(−∞,∞)

ψ( jω) = 0, (9.89)

with ψ( jω) = ψ(s) for s = jω and

ψ(s) =
w(s)
wr(s)

, (9.90)

where wr(s) is the reference fractional polynomial of the same order αn as (9.88)
and it is stable, i.e.

wr(s) �= 0 for Re s ≥ 0. (9.91)

Proof. From (9.90) for s = jω it follows that

Δ argψ( jω) = Δ argw( jω)−Δ argwr( jω).

By assumption the reference polynomial wr(s) of the same fractional degree as poly-
nomial (9.88) is stable. Therefore, the fractional polynomial (9.88) is stable if and
only if

Δ arg
ω∈(−∞,∞)

w( jω) = Δ arg
ω∈(−∞,∞)

wr( jω),

which holds if and only if (9.89) is satisfied. ��
The reference fractional polynomial wr(s) can be chosen in the form

wr(s) = an(s+ c)αn , c > 0. (9.92)

Note that for c > 0 the reference polynomial (9.92) is stable.
Condition (9.89) of Theorem 9.15 holds if and only if the plot of ψ( jω) does not

encircle the origin of the complex plane as ω runs from −∞ to +∞.
From (9.90), (9.88) and (9.92) we have

lim
ω→±∞

ψ( jω) = lim
ω→±∞

w( jω)
wr( jω)

= 1, (9.93)

and

ψ(0) =
w(0)
wr(0)

=
a0

ancαn
. (9.94)

By Theorem 9.15 the fractional degree characteristic polynomial (9.88) is unstable
if a0/an ≤ 0.

Now we consider the robust stability problem of the family (9.82) of fractional
polynomials.

Without loss of generality we will assume that wa(s) is the nominal polynomial of
this family and that wa(s) is stable, i.e. wa(s) �= 0 for Res ≥ 0. Theorem 9.15 can by
used for stability analysis of this polynomial.
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Let ω be any fixed real number. Substituting s = jω in (9.84) one obtain complex
numbers wa( jω) and wb( jω) - values of polynomials wa(s) and wb(s) for s = jω .

Definition 9.2. For any fixed complex number s = jω the set defined by

w( jω ,Q) = {w( jω ,q) : q ∈ Q = [0,1]}, (9.95)

where w( jω ,q) has the form (9.83) for s = jω , is called the value set of the family
(9.82) of fractional polynomials.

The value set (9.95) is the straight line segment joining the points wa( jω) and
wb( jω) in the complex plane.

Theorem 9.16. Let the polynomial wa(s) be stable. Family (9.82) of fractional poly-
nomials is robustly stable if and only if the following condition (called as the Zero
Exclusion Condition)

0 /∈ w( jω ,Q), ∀ω ∈ Ω = [0,∞), (9.96)

holds, where w( jω ,Q) is defined by (9.95).

Proof. If the condition (9.96) does not hold, then there exist ω = ω ∈ Ω and q =
q ∈ Q such that w( jω ,q) = 0. This means that polynomial w(s,q) ∈ W (s,Q) has
zero s = jω on the imaginary axis and the family (9.82) is robustly unstable.

Now we assume that the family (9.82) of fractional polynomials is robustly unstable.
Then in this family exists at least one unstable polynomial w(s, q̃) with q̃ > 0. This
follows from the fact that the nominal polynomial wa(s) = w(s,0) by assumption is
stable.

From the above and continuous dependence of coefficients of the polynomial
w(s,q) on uncertain parameter q it follows that there exists q ∈ (0, q̃) such that
polynomial w(s,q) has at least one zero on the imaginary axis, i.e. w( jω ,q) = 0 for
a some fixed ω ∈ Ω and the condition (9.96) is not satisfied. ��

If the condition (9.96) holds then the origin of the complex plane is excluded from
the value set (9.95) for all ω ∈ Ω = [0,∞). Therefore, the condition (9.96) is called
as the Zero Exclusion Condition, see [5], for example.

It is easy to see that wa( jω) and wb( jω) (endpoints of the value set (9.95) for
fixed ω) quickly tend to infinity as ω → ∞. Therefore, application of Theorem 9.16
is in general case a difficult problem.

To remove this difficulty, similarly as in [14] in the case of natural degree poly-
nomials, we will consider the normalized value set instead of the value set (9.95).

Definition 9.3. Let the polynomial wa(s) be stable. For the fixed complex number
s = jω the value set defined by

wnor( jω ,Q) = {wnor( jω ,q) : q ∈ Q = [0,1]}, (9.97a)
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with
wnor( jω ,q) = w( jω ,q)/wa( jω), wa( jω) �= 0, (9.97b)

where w( jω ,q) has the form (9.83) for s = jω is called the normalized value set of
the family (9.82) of fractional polynomials.

For any fixed complex number s = jω the normalized value set (9.97a) is the straight
line segment with endpoints wnor( jω ,0) = 1 + j0 and wnor( jω ,1) = wb( jω)/
wa( jω). Because wnor( jω ,0) = 1 + j0 for all ω ∈ Ω , the normalized value set
(9.97a) always lies near of the origin of the complex plane.

From the above and Theorem 9.16 it follows that the Zero Exclusion Condition
for the normalized value set (9.97a) can be formulated as follows.

Theorem 9.17. Let the nominal polynomial wa(s) be stable. Family of polynomials
(9.82) is robustly stable if and only if the following condition is satisfied

0 /∈ wnor( jω ,Q), ∀ω ∈ Ω = [0,∞). (9.98)

The parametric description of the boundary of stability region, i.e. of the imaginary
axis of the complex plane, has the form s = jω , ω ∈ (−∞,∞). Zeroes of fractional
polynomials with real coefficients are complex conjugate. Therefore, in the Zero
Exclusion Conditions (9.96) and (9.98) we can consider only the interval Ω = [0,∞)
of the parameter ω .

Satisfaction of the condition (9.98) can be checked directly by plotting the
normalized value set (9.97a) (straight line segment) for all fixed ω = i · Δω ,
i = 0,1, . . . , where Δω is the sufficiently small step.

Now we consider the methods for checking of the Zero Exclusion Condition
(9.98) without plotting the normalized value set (9.97a).

It is easy to see that if for fixed ω = ω ∈ Ω the straight line segment (9.97a)
crosses the origin of the complex plane then

wnor( jω ,1) = wb( jω)/wa( jω) < 0,

since wnor( jω ,0) = 1 + j0. In such case the following condition holds

|arg(wa( jω))− arg(wb( jω))| = π , (9.99)

where arg(·) ∈ [−π ,π).
From the above it follows that the condition (9.98) of Theorem 9.17 holds if and

only if
ϕ(ω) �= 0, ∀ω ∈ Ω , (9.100)

where
ϕ(ω) = π −|arg(wa( jω))− arg(wb( jω))| (9.101)

is the testing function.
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Hence, we have the following lemma.

Lemma 9.10. Let the nominal polynomial wa(s) be stable. Family of polynomials
(9.82) is robustly stable if and only if the condition (9.100) is satisfied.

Now we shall prove the following theorem.

Theorem 9.18. Let the nominal polynomial wa(s) be stable. Family of polynomials
(9.82) is robustly stable if and only if plot of the function

ϑ( jω) =
wb( jω)
wa( jω)

, ω ∈ Ω , (9.102)

does not cross the non-positive part (−∞,0] of the real axis in the complex plane.

Proof. From the above considerations it follows that for any fixed ω ∈Ω the straight
line segment wnor( jω ,Q) with one endpoint wnor( jω ,0) = 1 + j0 does not cross
the origin of the complex plane for all ω ∈ Ω if and only if plot of the function
wb( jω)/wa( jω), ω ∈ Ω , does not cross the non-positive part of the real axis. ��
From (9.102) and (9.84) it follows that

ϑ(0) =
b0

a0
, lim

ω→±∞
ϑ( jω) =

bn

an
. (9.103)

Lemma 9.11. Let the nominal polynomial wa(s) be stable. Family (9.82) of frac-
tional polynomials is robustly unstable if b0/a0 ≤ 0 or bn/an ≤ 0.

Proof. If b0/a0 ≤ 0 or bn/an ≤ 0 then plot of the function (9.102) crosses the non-
positive part of the real axis and by Theorem 9.18 the family (9.82) of fractional
polynomials is unstable. ��
Example 9.7. Consider the control system shown in Fig. 9.7 with the fractional order
plant described by the nominal transfer function

G0(s) =
1

0.8s2.2 + 0.5s0.9 + 1
=

1
D0(s)

(9.104)

and fractional order PID controller

C(s) = kp +
ki

sλ + kdsμ . (9.105)

In [313] it was shown that closed loop system with the plant (9.104) is stable and it
has the gain margin Am = 1.3 and phase margin φm = 60◦ for the controller (9.105)
with λ = 0.1, μ = 1.15, kp = 233.4234, ki = 22.3972 and kd = 18.5274, i.e. for the
controller PID with the transfer function

C(s) =
18.5274s1.25 + 233.4234s0.1 + 22.3972

s0.1 =
Nc(s)
Dc(s)

. (9.106)
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Characteristic polynomial of the closed loop system with the plant (9.104) and con-
troller (9.106) has the form

wc0(s) = D0(s)Dc(s)+ Nc(s)
= 0.8s2.3 + 18.5274s1.25 + 0.5s+ 234.4234s0.1+ 22.3971. (9.107)

It is assumed that the model of the plant is not precisely known and it is described
by the family of transfer functions

G(s, p) =
1

D0(s)+ pΔ(s)
=

1
D(s, p)

, p ∈ P = [−1,1], (9.108)

where D0(s) has the form shown in (9.104) and

Δ(s) = 0.4s2.2 + 0.2s0.9 + 0.5 (9.109)

is the perturbation polynomial.
Characteristic polynomial of the closed loop system with the plant (9.108) and

controller (9.106) has the form

wc(s, p) = D(s, p)Dc(s)+ Nc(s)
= [D0(s)Dc(s)+ Nc(s)]+ pΔ(s)Dc(s)
= wc0(s)+ pΔ(s)Dc(s) = wc0(s)+ pd(s), (9.110)

where p ∈ P = [−1,1], wc0(s) has the form (9.107) and

d(s) = 0.4s2.3 + 0.2s+ 0.5s0.1. (9.111)

The polynomial (9.110) with uncertain parameter p ∈ P = [−1,1] can be written in
the form

w(s,q) = (1−q)wa(s)+ qwb(s),q ∈ Q = [0,1], (9.112)

where

wa(s) = wc(s, p−) = wc0(s)−d(s), (9.113a)

wb(s) = wc(s, p+) = wc0(s)+ d(s). (9.113b)

For the given polynomials wc0(s) and d(s) from (9.113) we have

wa(s) = 0.4s2.3 + 18.5274s1.25 + 0.3s+ 233.9234s0.1+ 22.3971, (9.114)

wb(s) = 1.2s2.3 + 18.5274s1.25 + 0.7s+ 234.9234s0.1+ 22.3971. (9.115)

First, we check stability of the polynomial (9.114).
Plot of the function

ψ( jω) =
wa( jω)
wr( jω)

, (9.116)
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where wa(s) has the form (9.114) and wr(s) = 0.4(s + 10)2.3 is the reference frac-
tional polynomial, is shown in Fig. 9.11. From (9.93), (9.94) we have

ψ(0) =
22.3971

0.4 ·102.3 = 0.2806, lim
ω→±∞

ψ( jω) = 1.

From Fig. 9.11 it follows that the plot of ψ( jω) does not encircle the origin of
the complex plane. By Theorem 9.15, the nominal polynomial (9.114) is stable.

0 1 2 3
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ω = 0

ω = ±∞

 

Fig. 9.11 Plot of the function (9.116)

Plot of the function (9.102) with wa(s) and wb(s) of the forms (9.114) and
(9.115), respectively, is shown in Fig. 9.12. From (9.103) and (9.114), (9.115) we
have

ϑ(0) =
wb(0)
wa(s0)

= 1, lim
ω→±∞

ϑ( jω) =
1.2
0.4

= 3. (9.117)

The plot of ϑ( jω) does not cross of the non-positive part of the real axis and by
Theorem 9.18 the system is robustly stable. Therefore, the control system with the
controller (9.106) and uncertain plant (9.108) is stable for all p ∈ P = [−1,1].
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Fig. 9.12 Plot of the function ϑ ( jω) defined by (9.102)



Chapter 10
Stabilization of Positive and Fractional Linear
Systems

10.1 Fractional Discrete-Time Linear Systems with Delays

Consider the fractional discrete-time linear system with h delays:

xi+1 =
i+1

∑
j=1

(−1) j+1
(

α
j

)
xi− j+1 +

h

∑
k=0

(Akxi−k + Bkui−k) , i ∈ Z+, (10.1a)

yi = Cxi + Dui, 0 < α < 1, (10.1b)

and with the state-feedback

ui = Kxi, i ∈ Z+, (10.2)

where K ∈ Rm×n is a gain matrix.
We are looking for a gain matrix K such that the closed-loop system

xi+1 =
h

∑
k=0

(Ak + BkK + Inck+1)xi−k +
i+1

∑
j=h+2

c jxi− j+1, (10.3)

c j = (−1) j+1
(

α
j

)
for j = 1, . . . , i+ 1;

is positive and asymptotically stable.

Theorem 10.1. The fractional closed-loop system (10.3) is positive and asymptoti-
cally stable if and only if there exists a diagonal matrix

Λ = diag
[

λ1 . . . λn
]
, (10.4)

with positive diagonal entries λk > 0, k = 1, . . . ,n and a matrix D ∈ Rm×n such that

(Ak + Inck+1)Λ + BkD ∈ R
n×n
+ , k = 0,1, . . . ,h (10.5)

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 221–243.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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and
h

∑
k=0

(AkΛ + BkD)�n < 0, (10.6)

where �n = [1, . . . ,1]T ∈ R
n×n.

The matrix K is given by
K = DΛ−1. (10.7)

Proof. First we shall show that the closed-loop system (10.3) is positive if and only
if the condition (10.5) is satisfied. Using (10.7) and (10.3) we obtain

Ak + BkK + Inck+1 = Ak + BkDΛ−1 + Inck+1

= [(Ak + Inck+1)Λ + BkD]Λ−1 ∈ R
n×n
+ (10.8)

since the condition (10.5) is met.

Taking into account that

KΛ�n = DΛ−1Λ�n = D�n and Λ�n = λ , (10.9)

and using (8.47) we obtain
[

h

∑
k=0

(Ak + BkK)+
∞

∑
j=1

Inc j − In

]
λ =

h

∑
k=0

(Ak + BkK)Λ�n

=
h

∑
k=0

(AkΛ + BkD)�n < 0, (10.10)

when the conditions (8.47) and (10.6) are satisfied.

By Theorem 8.12 the closed-loop system (10.3) is asymptotically stable if and
only if the condition (10.6) is met. ��
If the conditions (10.5) and (10.6) are satisfied then the gain matrix K can be found
by the use of the following procedure:

Procedure 10.1 ENUMERATE OD NOWEJ LINII

Step 1. Choose a diagonal matrix (10.4) with λk > 0, k = 1, . . . ,n and a matrix
D ∈ Rm×n satisfying the conditions (10.5) and (10.6).

Step 2. Using (10.7) find the gain matrix K.

Example 10.1. Consider the fractional system (10.1) witch α = 0.5, h = 2 and

A0 =
[−0.4 0.4

0.6 −0.3

]
, A1 =

[−0.1 0.05
0.1 −0.1

]
, A2 =

[−0.04 0.05
0.05 −0.05

]
, (10.11)

B0 =
[

1
1

]
, B1 =

[
0.2
0.1

]
, B2 =

[
0.1

0.05

]
. (10.12)
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Find a gain matrix K ∈R1×2 such that the closed-loop system is positive and asymp-
totically stable.

The fractional system is positive but unstable since the matrices

A0 + c1In =
[−0.4 0.4

0.6 −0.3

]
+ 0.5

[
1 0
0 1

]
=
[

0.1 0.4
0.6 0.2

]
,

A1 + c2In =
[−0.1 0.05

0.1 −0.1

]
+ 0.125

[
1 0
0 1

]
=
[

0.025 0.05
0.1 0.025

]
, (10.13)

A2 + c3In =
[−0.04 0.05

0.05 −0.05

]
+ 0.0625

[
1 0
0 1

]
=
[

0.0225 0.05
0.05 0.0125

]
,

have positive entries and the characteristic polynomial of the matrix A = A0 +
A1 + A2

det [Iz−A] =
[

z+ 0.54 −0.5
−0.75 z+ 0.45

]
= z2 + 0.99z−0.132, (10.14)

has one (a0 = −0.132) negative entry. Using Procedure 10.1 we obtain the
following:

Step 1. We choose:

Λ =
[

1 0
0 1

]
, D =

[−0.1 −0.2
]
, (10.15)

and we check the conditions (10.5) and (10.6)

(A0 + Inc1)Λ + B0D =
[

0 0.2
0.5 0

]
,

(A1 + Inc2)Λ + B1D =
[

0.005 0.01
0.09 0.005

]
,

(A2 + Inc3)Λ + B2D =
[

0.0125 0.03
0.045 0.0025

]
,

and
2

∑
k=0

(AkΛ + BkD)�n =
[ −0.43
−0.045

]
<

[
0
0

]
. (10.16)

Thus, the conditions (10.5) and (10.6) are satisfied.
Step 2. Using (10.7), we obtain the desired gain matrix

K = DΛ−1 =
[−0.1 −0.2

]
. (10.17)

The closed-loop system is positive and asymptotically stable since the matrices
(10.13) have positive entries and the condition (10.16) is satisfied.
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10.2 Fractional Continuous-Time Linear Systems with Delays

Consider the fractional continuous-time linear system with delays

dα x(t)
dtα =

q

∑
k=0

[Akx(t −dk)+ Bku(t −dk)] , (10.18)

with the state-feedback
u(t) = Kx(t), (10.19)

where K ∈ Rm×n is a gain matrix.

Substituting (10.19) in (10.18) we obtain the closed-loop system

dα x(t)
dtα =

q

∑
k=0

(Ak + BkK)x(t −dk), 0 < α ≤ 1. (10.20)

The positive system with delays (10.20) is asymptotically stable if and only if the
positive system without delays

dα x(t)
dtα = (A + BK)x(t), A =

q

∑
k=0

Ak, B =
q

∑
k=0

Bk, (10.21)

is asymptotically stable.

We are looking for a gain matrix K such that the closed-loop system (10.20) is
positive and the zeros of the characteristic polynomial

det [Insα − (A + BK)] = (sα)n + an−1 (sα )n−1 + · · ·+ a1s+ a0, (10.22)

are located in the sector φ = π
2α .

Theorem 10.2. The closed-loop fractional system (10.20) is positive and the zeros
of the polynomial (10.22) are located in the sector φ = π

2α if and only if there exist
a diagonal matrix

Λ = diag [λ1, . . . ,λn] with λk > 0, k = 1, . . . ,n; (10.23)

and a real matrix D ∈ Rm×n such that the following conditions are satisfied

AΛ + BD ∈ Mn, (10.24)

(AΛ + BD)�n < 0. (10.25)

The gain matrix K is given by the formula

K = DΛ−1. (10.26)
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Proof. First we shall show that the closed-loop system (10.20) is positive if and only
if (10.24) holds. Using (10.20), (10.21) and (10.26) we obtain

q

∑
k=0

(Ak + BkK) = A + BK = A + BDΛ−1 = (AΛ + BD)Λ−1 ∈ Mn, (10.27)

if and only if the condition (10.24) is satisfied.

Taking into account that

KΛ�n = DΛ−1Λ�n = D�n and Λ�n = λ = [λ1, . . . ,λn]T , (10.28)

and using (10.25) we obtain

(A + BK)λ = (A + BK)Λ�n = (AΛ + BD)�n < 0. (10.29)

Therefore, by Theorem 8.4 the zeros of the characteristic polynomial (10.22) are
located in the sector φ = π

2α if and only if the condition (10.25) is met. ��
If the conditions of Theorem 10.2 are satisfied then the problem of stabilization can
be solved by the use of the following procedure:

Procedure 10.2 ENUMERATE OD NOWEJ LINII

Step 1. Choose a diagonal matrix (10.23) with λk > 0, k = 1, . . . ,n and a real matrix
D ∈ Rm×n satisfying the conditions (10.24) and (10.25).

Step 2. Using (10.26) find the gain matrix K.

Example 10.2. Given the fractional system (10.18) with α = 0.8, q = 2 and the
matrices

A0 =

⎡
⎣ 0.5 0.3 −0.2

0.2 −1 0
0 −0.2 1

⎤
⎦ , A1 =

⎡
⎣ 0.3 0.4 −0.3

0.1 −0.5 0
0 −0.1 1

⎤
⎦ ,

A2 =

⎡
⎣ 0.2 0.3 −0.5

0.7 −1.5 0
0 −0.7 0.5

⎤
⎦ , (10.30)

B0 =

⎡
⎣ 0 0.1

0 0
0.2 0

⎤
⎦ , B1 =

⎡
⎣ 0 0.5

0 0
0.3 0

⎤
⎦ , B2 =

⎡
⎣ 0 0.4

0 0
0.5 0

⎤
⎦ .

Find a gain matrix K ∈ R2×3 such that the closed-loop system is positive and the
zeros of its characteristic polynomial are located in the sector φ = π

2α .

Note that the fractional system with (10.30) is not positive since the matrices A0,
A1 and A2 have negative off-diagonal entries.
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In this case

A =
2

∑
k=0

Ak =

⎡
⎣ 1 1 −1

1 −3 0
0 −1 2.5

⎤
⎦ , B =

2

∑
k=0

Bk =

⎡
⎣ 0 1

0 0
1 0

⎤
⎦ . (10.31)

Using Procedure and (10.31) we obtain the following

Step 1. We choose

Λ =

⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦ , D =

[
0.5 2 −3.5
−4 0 1.4

]
, (10.32)

and we check the condition (10.24)

AΛ + BD =

⎡
⎣ 1 1 −1

1 −3 0
0 −1 2.5

⎤
⎦
⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦+

⎡
⎣0 1

0 0
1 0

⎤
⎦[ 0.5 2 −3.5

−4 0 1.4

]

=

⎡
⎣−3 2 0.4

1 −6 0
0.5 0 −1

⎤
⎦ ∈ M3,

and the condition (10.25)

(AΛ + BD)�n =

⎡
⎣−3 2 0.4

1 −6 0
0.5 0 −1

⎤
⎦
⎡
⎣ 1

1
1

⎤
⎦=

⎡
⎣−0.6

−5
−0.5

⎤
⎦ .

Therefore, the conditions are satisfied.
Step 2. Using (10.26) we obtain the gain matrix

K = DΛ−1 =
[

0.5 2 −3.5
−4 0 1.4

]⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦
−1

=
[

0.5 1 −3.5
−4 0 1.4

]
.

The closed-loop system is positive since the matrix

Ac = A + BK =

⎡
⎣−3 1 0.4

1 −3 0
0.5 0 −1

⎤
⎦ ,

is a Metzler matrix.
The characteristic polynomial

det[Inλ −Ac] =

∣∣∣∣∣∣
λ + 3 −1 −0.4
−1 λ + 3 0
−0.5 0 λ + 1

∣∣∣∣∣∣= λ 3 + 7λ 2 + 13.8λ + 7.4 ,
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has positive coefficients. Therefore, zeros of the characteristic polynomial of
the closed-loop system are located in the desired sector φ = 5

8 π .

10.3 Application of LMI to Stabilization of Fractional Linear
Systems

10.3.1 Fractional 1D Linear Systems

Definition 10.1. An inequality of the form

F(x)+F > 0 (10.33)

where x takes values in real vector space V , the mapping F : V → Sn is linear, and
F ∈ Sn, is called the linear matrix inequality (LMI). The LMI is called feasible if
there exists an x ∈V such that the inequality (10.33) is satisfied, otherwise the LMI
is called infeasible.

A matrix A = [ai j] ∈ Rn×n is called the Metzler matrix if its off-diagonal entries are
nonnegative, i.e. ai j ≥ 0 for i �= j, i, j = 1, . . . ,n. The matrix A = [ai j]∈Rn×n is called
Hurwitz matrix if it has all eigenvalues with negative real parts (the system ẋ = Ax is
asymptotically stable). The matrix A = [ai j] ∈ Rn×n is called Schur matrix if it has
all eigenvalues with module less than one (the system xi+1 = Axi is asymptotically
stable).

Lemma 10.1. A Metzler matrix A ∈ Rn×n is Hurwitz matrix if and only if the LMI

block diag
[−(

AT P + PA
)

, P
]� 0 , (10.34)

is feasible with respect to the diagonal matrix P.

Remark 10.1. It is well-known that A ∈ Rn
+ is Schur matrix if and only if (A− In) is

Hurwitz matrix.

Lemma 10.2. A nonnegative matrix A ∈ Rn
+ is Schur matrix if and only if the LMI

block diag
[
−
(
(A− In)

T P+ P(A− In)
)

, P
]
� 0 , (10.35)

is feasible with respect to the diagonal matrix P.

Lemma 10.3. A nonnegative matrix A ∈ R
n
+ is Schur matrix if and only if the LMI

block diag
[

P−AT PA , P
]� 0 , (10.36)

is feasible with respect to the diagonal matrix P.
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Theorem 10.3. The positive fractional system (8.68) is practically stable if and only
if one of the following equivalent conditions holds:

a) The LMI

block diag

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

P̃1 −AT
αP1Aα −c1AT

α P1 . . . −ch−1AT
αP1 −chAT

αP1

−c1P1Aα P̃2 − c2
1P1 . . . −c1ch−1P1 −c1chP1

...
...

. . .
...

...
−ch−1P1Aα −c1ch−1P1 . . . P̃h − c2

h−1P1 −ch−1chP1

−chP1Aα −c1chP1 . . . −ch−1chP1 Ph+1 − c2
hP1

⎤
⎥⎥⎥⎥⎥⎦

,

N

⎡
⎢⎢⎢⎢⎢⎣

P1 0 . . . 0 0
0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0
0 0 . . . 0 Ph+1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� 0 , (10.37)

P̃i = Pi −Pi+1, i = 1, . . . ,h;

is feasible with respect to the diagonal matrix P1, . . . ,Ph+1.
b) The LMI

block diag

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

AT
α P1 + P1Aα −2P1 P2 + c1P1 . . . ch−1P1 chP1

P2 + c1P1 −2P2 . . . 0 0
...

...
. . .

...
...

ch−1P1 0 . . . −2Ph−1 Ph+1

chP1 0 . . . Ph+1 −2Ph

⎤
⎥⎥⎥⎥⎥⎦

,

N

⎡
⎢⎢⎢⎢⎢⎣

P1 0 . . . 0 0
0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0
0 0 . . . 0 Ph+1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� 0 , (10.38)

is feasible with respect to the diagonal matrix P1, . . . ,Ph+1.
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c) The LMI

block diag

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 0 . . . 0 −AT
αP1 −P2 . . . 0

0 P2 . . . 0 −c1P1 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . Ph+1 −chP1 0 . . . −Ph+1

−P1Aα −c1P1 . . . −chP1 P1 0 . . . 0
−P2 0 . . . 0 0 P2 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . −Ph+1 0 0 . . . Ph+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N

⎡
⎢⎢⎢⎢⎢⎣

P1 0 . . . 0 0
0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0
0 0 . . . 0 Ph+1

⎤
⎥⎥⎥⎥⎥⎦
} � 0 , (10.39)

is feasible with respect to the diagonal matrix P1, . . . ,Ph+1.

Proof. Proof is given in [121]. ��
Example 10.3. Using the LMI approaches check the practical stability of the posi-
tive fractional system

Δ α xk+1 = 0.1xk, k ∈ Z+, (10.40)

for α = 0.5 and h = 2.

In this case we have:

c1 =
1
8
, c2 =

1
16

, Aα = 0.6 ,

and

Ã =

⎡
⎣Aα c1 c2

1 0 0
0 1 0

⎤
⎦=

⎡
⎣ 0.6 1

8
1
16

1 0 0
0 1 0

⎤
⎦ .

Applying Theorem 10.3 and using MATLAB environment together with SE-
DUMI solver and YALMIP parser we obtain for the LMI (10.37)

block diag

⎧⎨
⎩
⎡
⎣P1−P2 −AT

α P1Aα −c1AT
α P1 −c2AT

α P1
−c1P1Aα P2 −P3 −c2

1P1 −c1c2P1
−c2P1Aα −c1c2P1 P3 −c2

2P1

⎤
⎦ ,

[
P1 0 0
0 P2 0
0 0 P3

]⎫⎬
⎭� 0

where
block diag

[
P1 P2 P3

]
= diag

[
7.8921 3.5026 2.1132

]
.
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For LMI (10.38)

block diag

⎧⎨
⎩
⎡
⎣AT

α P1 + P1Aα −2P1 P2 + c1P1 c2P1

P2 + c1P1 −2P1 P3

c2P1 P3 −2P2

⎤
⎦ ,

⎡
⎣P1 0 0

0 P2 0
0 0 P3

⎤
⎦
⎫⎬
⎭� 0

where
block diag

[
P1 P2 P3

]
= diag

[
6.9266 3.1156 2.6096

]
,

and for LMI (10.39)

block diag

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

P1 0 0 −AT
α P1 −P2 0

0 P2 0 −c1P1 0 −P3
0 0 P3 −c2P1 0 0

−P1Aα −c1P1 −c2P1 P1 0 0
−P2 0 0 0 P2 0

0 −P3 0 0 0 P3

⎤
⎥⎥⎥⎥⎥⎦

,

[
P1 0 0
0 P2 0
0 0 P3

]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� 0

(10.41)
where

block diag
[

P1 P2 P3
]
= diag

[
7.7203 3.6738 2.2765

]
.

Therefore, the LMIs are feasible with respect to the matrices P1, P2, P3 and the
positive fractional system (10.40) is practically stable.

Example 10.4. Using the LMI approaches check the practical stability of the posi-
tive fractional system

Δ α xk+1 =
[−0.2 1

0.1 b

]
xk, k ∈ Z+, (10.42)

for α = 0.8 and h = 2 and the following two values of the coefficient b:

a) b = −0.5, b) b = 0.5.

In this case we have:
c1 = 0.08, c2 = 0.032.

In Case a) we have:

Aα1 =
[

0.6 1
0.1 0.3

]
,

Ã1 =

⎡
⎣Aα c1I2 c2I2

I2 0 0
0 I2 0

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.6 1 0.08 0 0.032 0
0.1 0.3 0 0.08 0 0.032
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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In Case b) we have:

Aα2 =
[

0.6 1
0.1 1.3

]
,

Ã2 =

⎡
⎣Aα c1I2 c2I2

I2 0 0
0 I2 0

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.6 1 0.08 0 0.032 0
0.1 1.3 0 0.08 0 0.032
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In Case a) applying Theorem 10.3 and using MATLAB environment together with
SEDUMI solver and YALMIP parser we obtain for the LMI (10.37)

block diag
[

P1 P2 P3
]
=

block diag

{[
16.0915 0

0 84.368

]
,

[
4.2540 0

0 16.3556

]
,

[
2.5726 0

0 8.6007

]}
,

for LMI (10.38)

block diag
[

P1 P2 P3
]
=

block diag

{[
8.8848 0

0 35.5971

]
,

[
2.5601 0

0 7.2962

]
,

[
2.2771 0

0 5.2364

]}
.

In Case b) for LMI (10.39) we obtain

block diag
[

P1 P2 P3
]
=

block diag

{[−0.0834 0
0 −0.3933

]
,

[
0.4152 0

0 0.316

]
,

[
0.4417 0

0 0.6885

]}
.

In Case a) the positive fractional system (10.42) is practically stable. In Case b) the
positive fractional system (10.42) is unstable for any h (not only for h = 2) since the
matrix Aα2 has one diagonal entry grater then 1.

The characteristic polynomial of the matrix Aα2 − In

p(z) = det[In(z+ 1)−Aα2] =
∣∣∣∣ z−0.4 −1
−0.1 z−0.3

∣∣∣∣ = z2 −0.7z−0.22 ,

has two negative coefficients. Therefore, the system (10.42) is also unstable
for any h.

10.3.2 Positive 2D Linear Systems

Theorem 10.4. The positive Roesser model (3.40) is asymptotically stable if and
only if one of the following equivalent conditions is satisfied:
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a) LMI

block diag

{[
2P1 −AT

11P1 −P1A11 −AT
21P2 −P1A12

−AT
12P1 −P2A21 2P2 −AT

22P2 −P2A22

]
,

[
P1 0
0 P2

]}
� 0 , (10.43)

is feasible with respect to the diagonal matrices P1 and P2.
b) LMI

block diag

{[
P1 −AT

11P1A11 −AT
21P2A21 −AT

11P1A12 −AT
21P2A22

−AT
12P1A11 −AT

22P2A21 P2 −AT
12P1A12 −AT

22P2A22

]
,

[
P1 0
0 P2

]}
� 0, (10.44)

is feasible with respect to the diagonal matrices P1 and P2.

Proof. By Theorem 8.10 the positive Roesser model (3.40) is asymptotically stable
if and only if the equivalent 1D system (8.42) is asymptotically stable. Using Lemma
10.2 to the system (8.42) we obtain LMI (10.43) since

block diag

{[
In1 −AT

11 −AT
21

−AT
12 In2 −AT

22

][
P1 0
0 P2

]

+
[

P1 0
0 P2

][
In1 −A11 −A12

−A21 In2 −A22

]}

= block diag

{[
2P1 −AT

11P1 −P1A11 −AT
21P2 −P1A12

−AT
12P1 −P2A21 2P2 −AT

22P2 −P2A22

]
,

[
P1 0
0 P2

]}
� 0 .

Similarly, using Lemma 10.3 to the system (8.42) we obtain LMI (10.44) since

block diag

{[
P1 0
0 P2

]
−
[

AT
11 AT

21
AT

12 AT
22

][
P1 0
0 P2

][
A11 A21

A12 A22

]
,

[
P1 0
0 P2

]}

= block diag

{[
P1 −AT

11P1A11 −AT
21P2A21 −AT

11P1A12 −AT
21P2A22

−AT
12P1A11 −AT

22P2A21 P2 −AT
12P1A12 −AT

22P2A22

]
,

[
P1 0
0 P2

]}
� 0 . ��

Theorem 10.5. The positive (general model) system (8.10) is asymptotically stable
if and only if one of the following equivalent conditions is satisfied:
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a) LMI

block diag

[
2P−

2

∑
k=0

(
AT

k P+ PAk
)

, P

]
� 0 , (10.45)

is feasible with respect to the diagonal matrix P.
b) LMI

block diag

[
P−

2

∑
k=0

2

∑
l=0

(
AT

k PAl
)

, P

]
� 0 , (10.46)

is feasible with respect to the diagonal matrix P.
c) LMI

block diag

{[
2P1 −

(
AT

1 + AT
2

)
P1 −P1 (A1 + A2) −P2 −P1A0

−P2 −AT
0 P1 2P2

]
,

N

[
P1 0
0 P2

]}
� 0 , (10.47)

is feasible with respect to the diagonal matrices P1 and P2.
d) LMI

block diag

{[
P1 − (A1 + A2)

T P1 (A1 + A2)−P2 −(A1 + A2)
T P1A0

−AT
0 P1 (A1 + A2) P2 −AT

0 P1A0

]
,

N

[
P1 0
0 P2

]}
� 0 , (10.48)

is feasible with respect to the diagonal matrices P1 and P2.

Corollary 10.1. The positive 2D SF-MM is asymptotically stable if and only if one
of the following equivalent conditions is satisfied:

a) LMI

block diag

[
2P−

2

∑
k=1

(
AT

k P+ PAk
)

, P

]
� 0, (10.49)

is feasible with respect to the diagonal matrix P.
b) LMI

block diag

[
P−

2

∑
k=1

2

∑
l=1

(
AT

k PAl
)

, P

]
� 0, (10.50)

is feasible with respect to the diagonal matrix P.

10.3.3 Positive 2D Linear Systems with Delays

Consider the positive 2D Roesser model with q delays

[
xh

i+1, j
xv

i, j+1

]
=

q

∑
k=0

Ak

[
xh

i−k, j
xv

i, j−k

]
, i, j ∈ Z+, (10.51)
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where xh
i j ∈ R

n1
+ , xv

i j ∈ R
n2
+ are the horizontal and vertical state vectors in the point

(i, j) and

Ak =
[

Ak
11 Ak

12
Ak

21 Ak
22

]
, k = 1, . . . ,q . (10.52)

Theorem 10.6. The positive Roesser model (10.51) is asymptotically stable if and
only if one of the following equivalent conditions is satisfied:

a) LMI

block diag

{[
P11 P12

P21 P22

]
,

[
P1 0
0 P2

]}
� 0 , (10.53)

where

P11 =

⎡
⎢⎢⎢⎢⎢⎣

2P0
1 − (A0

11)
T P0

1 −P0
1 A0

11 −P1
1 −P0

1 A1
11 . . . −P0

1 Aq−1
11 −P0

1 Aq
11

−(A1
11)

T P0
1 −P1

1 2P1
1 . . . 0 0

...
...

. . .
...

...

−(Aq−1
11 )T P0

1 0 . . . 2Pq−1
1 −Pq

1
−(Aq

11)
T P0

1 0 . . . −Pq
1 2Pq

1

⎤
⎥⎥⎥⎥⎥⎦

, (10.54a)

P12 = PT
21 = −

⎡
⎢⎢⎢⎢⎢⎣

(A0
21)

T P0
2 +P0

1 A0
21 P0

1 A1
12 . . . P0

1 Aq−1
12 P0

1 Aq
12

(A1
21)

T P0
2 0 . . . 0 0

...
...

. . .
...

...

(Aq−1
21 )T P0

2 0 . . . 0 0
(Aq

21)
T P0

2 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (10.54b)

P22 =

⎡
⎢⎢⎢⎢⎢⎣

2P0
2 − (A0

22)
T P0

2 −P0
2 A0

22 −P1
2 −P0

2 A1
22 . . . −P0

2 Aq−1
22 −P0

2 Aq
22

−(A1
22)

T P0
2 −P1

2 2P1
2 . . . 0 0

...
...

. . .
...

...

−(Aq−1
22 )T P0

2 0 . . . 2Pq−1
2 −Pq

2
−(Aq

22)
T P0

2 0 . . . −Pq
2 2Pq

2

⎤
⎥⎥⎥⎥⎥⎦

, (10.54c)

Pk = block diag
[

P0
k P1

k . . . Pq
k

]
, k = 1,2 , (10.54d)

is feasible with respect to the diagonal matrices P1 and P2.
b) LMI

block diag

{[
P11 P12

P21 P22

]
,

[
P1 0
0 P2

]}
� 0 , (10.55)

where

P11 =

⎡
⎢⎢⎢⎣

P̃1
11

P̃2
11
...

P̃R11
11

⎤
⎥⎥⎥⎦ , P12 = P

T
21 = −

⎡
⎢⎢⎢⎣

P̃1
12

P̃2
12
...

P̃R12
12

⎤
⎥⎥⎥⎦ , P22 =

⎡
⎢⎢⎢⎣

P̃1
22

P̃2
22
...

P̃R22
22

⎤
⎥⎥⎥⎦ , (10.56)
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P̃1
11 =

[
P0

1 −P1
1 − (A0

11)
T P0

1 A0
11, −(A0

11)
T P0

1 A1
11, . . . , −(A0

11)
T P0

1 Aq
11,

−(A0
21)

T P0
2 A0

21 , −(A0
21)

T P0
2 A1

21 , . . . , −(A0
21)

T P0
2 Aq

21

]
,

P̃2
11 =

[−(A1
11)

T P0
1 A0

11, P1
1 −P2

1 − (A1
11)

T P0
1 A1

11, . . . , −(A1
11)

T P0
1 Aq

11 ,

−(A1
21)

T P0
2 A0

21 , −(A1
21)

T P0
2 A1

21 , . . . , −(A1
21)

T P0
2 Aq

21

]
,

...

P̃R11
11 =

[−(Aq
11)

T P0
1 A0

11 , −(Aq
11)

T P0
1 A1

11 , . . . , Pq
1 − (Aq

11)
T P0

1 Aq
11 ,

−(Aq
21)

T P0
2 A0

21 , −(Aq
21)

T P0
2 A1

21 , . . . , −(Aq
21)

T P0
2 Aq

21

]
,

P̃1
12 =

[
(A0

11)
T P0

1 A0
12 , (A0

11)
T P0

1 A1
12 , . . . , (A0

11)
T P0

1 Aq
12 ,

(A0
21)

T P0
2 A0

22 , (A0
21)

T P0
2 A1

22 , . . . , (A0
21)

T P0
2 Aq

22

]
,

P̃2
12 =

[
(A1

11)
T P0

1 A0
12 , (A1

11)
T P0

1 A1
12 , . . . , (A1

11)
T P0

1 Aq
12 ,

(A1
21)

T P0
2 A0

22 , (A1
21)

T P0
2 A1

22 , . . . , (A1
21)

T P0
2 Aq

22

]
,

...

P̃R12
12 =

[
(Aq

11)
T P0

1 A0
12 , (Aq

11)
T P0

1 A1
12 , . . . , (Aq

11)
T P0

1 Aq
12 ,

(Aq
21)

T P0
2 A0

22 , (Aq
21)

T P0
2 A1

22 , . . . , (Aq
21)

T P0
2 Aq

22

]
,

P̃1
22 =

[
P0

2 − (A0
22)

T P0
2 A0

22 , −(A0
22)

T P0
2 A1

22 , . . . , −(A0
22)

T P0
2 Aq

22 ,

−(A0
12)

T P0
1 A0

12 , −(A0
12)

T P0
1 A1

12 , . . . , −(A0
12)

T P0
1 Aq

12

]
,

P̃2
22 =

[−(A1
22)

T P0
2 A0

22 , P1
2 − (A1

22)
T P0

2 A1
22 , . . . , −(A1

22)
T P0

2 Aq
22 ,

−(A1
12)

T P0
1 A0

12 , −(A1
12)

T P0
1 A1

12 , . . . , −(A1
12)

T P0
1 Aq

12

]
,

...

P̃R22
22 =

[−(Aq
22)

T P0
2 A0

22 , −(Aq
22)

T P0
2 A1

22 , . . . , Pq
2 − (Aq

22)
T P0

2 Aq
22 ,

−(Aq
12)

T P0
1 A0

12 , −(Aq
12)

T P0
1 A1

12 , . . . , −(Aq
12)

T P0
1 Aq

12

]
,

is feasible with respect to the diagonal matrices P1 and P2.

Proof. The positive Roesser model (10.51) is asymptotically stable if and only if
the reduced model (3.69) is asymptotically stable. Applying to the reduced model
(3.69) Theorem 10.4 and using (3.70) and (10.43) we obtain (10.54). Similarly,
using (3.70) and (10.44) we obtain (10.56). ��
Example 10.5. Using LMI check the asymptotic stability of the positive Roesser
model (10.51) for q = 1 with the matrices:
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A0 =

⎡
⎢⎢⎣

0.1 0.2 | 0
0 0.1 | 0.3

−− −− −|− −−
0 0 | 0.2

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣

0.2 0.1 | 0.2
0 0.1 | 0.2

−− −− −|− −−
0 0 | 0.2

⎤
⎥⎥⎦ . (10.57)

In this case the matrix (3.70) of the reduced positive Roesser model has the form

A =

⎡
⎢⎢⎣

A0
11 A1

11 A0
12 A1

12
I2 0 0 0

A0
21 A1

21 A0
22 A1

22
0 0 I1 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1 0.2 0.2 0.1 0 0.2
0 0.1 0 0.1 0.3 0.2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0.2 0.2
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(10.58)

Using Theorem 10.6 and using MATLAB environment together with SEDUMI
solver and YALMIP parser we obtain LMI (10.53).

block diag
[

P1 P2
]
= diag

[
0.7799 0.7883 0.5625 0.5615 0.9452 0.5931

]
,

and for LMI (10.55)

block diag
[

P1 P2
]
= diag

[
1.5526 1.5897 0.8374 0.8074 1.8736 0.9290

]
.

Moreover, LMI is feasible with respect to the diagonal matrices P1 and P2 and the
positive Roesser model is asymptotically stable.

The above considerations can be easily extended for the positive Roesser model
with delays of the form

[
xh

i+1, j
xv

i, j+1

]
=

q1

∑
k=0

q2

∑
l=0

Akl

[
xh

i−k, j
xv

i, j−l

]
, i, j ∈ Z+,

where xh
i j ∈ R

n1
+ , xv

i j ∈ R
n2
+ are the horizontal and vertical state vectors in the point

(i, j) and Akl ∈ R
(n1+n2)×(n1+n2)
+ .

Theorem 10.7. The positive 2D (general model) system with q delays (3.72) is
asymptotically stable if and only if one of the following equivalent conditions is
satisfied:

a) LMI
block diag

[
2P− (

P̂0 + P̂1 + P̂2
)

, P
]� 0 , (10.59)
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where

P = block diag
[

P0 P1 . . . Pq
]
,

P̂0 =

⎡
⎢⎢⎢⎢⎢⎣

(A0
0)

T P0 + P0A0
0 P1 + P0A0

1 . . . P0A0
q−1 P0A0

q

(A0
1)

T P0 + P1 0 . . . 0 0
...

...
. . .

...
...

(A0
q−1)

T P0 0 . . . 0 Pq

(A0
q)

T P0 0 . . . Pq 0

⎤
⎥⎥⎥⎥⎥⎦

, (10.60a)

P̂k =

⎡
⎢⎢⎢⎢⎢⎣

(Ak
0)

T P0 + P0Ak
0 P0Ak

1 . . . P0Ak
q−1 P0Ak

q

(Ak
1)

T P0 0 . . . 0 0
...

...
. . .

...
...

(Ak
q−1)

T P0 0 . . . 0 0
(Ak

q)
T P0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (10.60b)

is feasible with respect to the diagonal matrix P.
b) LMI

block diag
[

P− P̂ , P
]� 0 . (10.61)

where

P = block diag
[

P0 P1 . . . Pq
]
,

P̂ =

⎡
⎢⎢⎢⎢⎣

(A0)T P0A0 +P1 (A0)T P0A1 . . . (A0)T P0Aq−1 (A0)T P0Aq

(A1)T P0A0 (A1)T P0A1 +P2 . . . (A1)T P0Aq−1 (A1)T P0Aq
...

...
. . .

...
...

(Aq−1)T P0A0 (Aq−1)T P0A1 . . . (Aq−1)T P0Aq−1 +Pq (Aq−1)T P0Aq

(Aq)T P0A0 (Aq)T P0A1 . . . (Aq)T P0Aq−1 (Aq)T P0Aq

⎤
⎥⎥⎥⎥⎦

Ak = A0
k + A1

k + A2
k, k = 0,1, . . . ,q , (10.62)

is feasible with respect to the diagonal matrix P.

Proof. The positive 2D system (3.72) is asymptotically stable if and only if the re-
duced system (3.75) is asymptotically stable. Applying to the reduced system (3.75)
LMI (10.45), we obtain LMI (10.60). Similarly, applying to the reduced system
(3.75) LMI (10.46), we obtain LMI (10.62). ��

Remark 10.2. In a similar way using LMI (10.47) and (10.48) to the reduced system
(3.75), we obtain LMI for the positive system (3.72).

Remark 10.3. Substituting A0
k = 0, k = 0,1, . . . ,q in Theorem 10.7, we obtain the

corresponding LMI conditions for the positive 2D SF-MM.
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Example 10.6. Using LMI check the asymptotic stability of the positive 2D system
(3.72) for q = 1 with the matrices:

A0
0 =

[
0.6 0.1
0 0.2

]
, A1

0 =
[

0.1 0.2
0 0.21

]
, A2

0 =
[

0 0
0 0

]
,

A1
1 =

[
0 0
0 0

]
, A1

1 =
[

0.2 0.1
0 0.1

]
, A2

1 =
[

0 0.2
0 0.4

]
.

The matrices (3.74) of the reduced system (3.75) have the form:

A0 =

⎡
⎢⎢⎣

0.6 0.1 0 0
0 0.2 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣

0.1 0.2 0.2 0.1
0 0.21 0 0.1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

0 0 0 0.2
0 0 0 0.4
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Using Theorem 10.7 and using MATLAB environment together with SEDUMI
solver and YALMIP parser we obtain LMI (10.59)

P = diag
[

0.1382 2.0346 0.0414 1.0731
]
,

and for LMI (10.61)

P = diag
[

0.2681 3.5981 0.0647 1.8976
]
.

Moreover, LMI is feasible with respect to the diagonal matrix P and the positive 2D
system is asymptotically stable.

The consideration can be easily extended for the positive 2D system of the form

xi+1, j+1 =
q1

∑
k=0

q2

∑
l=0

(
A0

klxi−k, j−l + A1
klxi+1−k, j−l + A2

klxi−k, j+1−l
)
, i, j ∈ Z+,

(10.63)
where xi j ∈ Rn

+ is the state vector in the point (i, j) and At
kl ∈ Rn×n, k = 0,1, . . . ,q1;

l = 0,1, . . . ,q2; t = 0,1,2.

10.3.4 Fractional 2D Roesser Model

Consider the positive fractional Roesser model (3.49) with the state-feedback

ui j =
[

K1 K2
][ xh

i j
xv

i j

]
, (10.64)

where K = [K1,K2] ∈ Rm×n, Kj ∈ Rm×n, j = 1,2 is a gain matrix.
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We are looking for a gain matrix K such that the closed-loop system

[
xh

i+1, j
xv

i, j+1

]
=
[

A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

][
xh

i j
xv

i j

]
−

⎡
⎢⎢⎢⎣

i+1

∑
k=2

cα(k)xh
i−k+1, j

j+1

∑
l=2

cβ (l)xv
i, j−l+1

⎤
⎥⎥⎥⎦ , (10.65)

is positive and asymptotically stable [127].

Theorem 10.8. The positive fractional closed-loop system (10.65) is positive and
asymptotically stable if and only if there exist a block diagonal matrix

Λ = block diag
[

Λ1 Λ2
]
, Λk = diag

[
λk1, . . . ,λknk

]
, λk j > 0, (10.66)

k = 1,2; j = 1, . . . ,nk;

and a real matrix

D =
[

D1 D2
]
, Dk ∈ R

m×nk , k = 1,2; (10.67)

satisfying conditions
[

A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

]
∈ R

n×n
+ (10.68)

and [
A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

][
�n1

�n2

]
<

[
0
0

]
, (10.69)

where �nk = [1, . . . ,1]T ∈ R
nk
+ , k = 1,2. The gain matrix is given by the formula

K =
[

K1 K2
]
=
[

D1 D2
]

Λ−1 =
[

D1Λ−1
1 D2Λ−1

2

]
(10.70)

Proof. Proof of this Theorem is similar to the proof of Theorem 10.1 [166]. ��
It is well-known that the positive closed-loop system (10.65) is asymptotically stable
if and only if the positive 1D system with the matrix

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

]
−

∞

∑
k=2

[
In1cα(k) 0

0 In2cβ (k)

]
, (10.71)

is asymptotically stable.

Taking into account that

∞

∑
k=2

cα(k) = α −1,
∞

∑
l=2

cβ (l) = β −1, (10.72)
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and A11 = A11 + In1α , A22 = A22 + In2β , we may write the matrix (10.71) in the form

[
Â11 + B1K1 A12 + B1K2

A21 + B2K1 Â22 + B2K2

]
= A + BK, (10.73)

where Â11 = A11 + In1 , Â22 = A22 + In2 and

A =
[

Â11 A12

A21 Â22

]
, B =

[
B1

B2

]
. (10.74)

Theorem 10.9. The fractional closed-loop system (10.65) is positive and asymptoti-
cally stable if and only if there exist a positive definite block diagonal matrix (10.66)
and a real matrix (10.67)such that the condition (10.68) is satisfied and the LMI

[ −Λ AΛ + BD
(AΛ + BD)T −Λ

]
≺ 0 , (10.75)

is feasible with respect to the positive definite diagonal matrix Λ .

Proof. The closed-loop system (10.65) is positive if and only if the condition
(10.68) is satisfied since the condition

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

]
=
[

A11 + B1D1Λ−1
1 A12 + B1D2Λ−1

2
A21 + B2D1Λ−1

1 A22 + B2D2Λ−1
2

]

=
[

A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

]

×
[

Λ−1
1 0
0 Λ−1

2

]
,

is equivalent to (10.68).

The closed-loop system (10.65) is asymptotically stable if and only if the LMI

P− (A + BK)T P(A + BK)� 0 , (10.76)

is feasible with respect to a positive definite diagonal matrix P.
Using the Schur complement we can write the condition (10.76) in the form

[ −P P(A + BK)
(A + BK)T P −P

]
≺ 0 . (10.77)

Substituting of (10.70) and P = Λ−1 into (10.77) yields

[ −Λ−1 Λ−1
(
A + BDΛ−1

)
(
A + BDΛ−1

)T Λ−1 −Λ−1

]
=
[−Λ−1 0

0 −Λ−1

]

×
[ −Λ AΛ + BD

(AΛ + BD)T −Λ

][−Λ−1 0
0 −Λ−1

]
≺ 0 . (10.78)
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Applying the congruent transformation with the matrix block diag[Λ ,Λ ] we obtain
the condition (10.75). ��
Example 10.7. Given the fractional 2D Roesser model with α = 0.4 β = 0.5 and

A11 =
[−0.5 −0.1

0.1 0.01

]
, A12 =

[−0.1 −0.1
0.2 0.1

]
, A21 =

[−0.3 −0.1
0.2 0.1

]
, (10.79a)

A22 =
[−1 −0.1

0.4 0.1

]
, B1 =

[−0.2
0.1

]
, B2 =

[−0.3
0.2

]
. (10.79b)

Find a gain matrix K = [K1,K2], Ki ∈R1×2, i = 1,2 such that the closed-loop system
is positive and asymptotically stable.

The fractional 2D Roesser model with (10.79a) is not positive since the matrices

[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣
−0.1 −0.1 −0.1 −0.1
0.1 0.41 0.2 0.1
−0.3 −0.1 −0.5 −0.1
0.2 0.1 0.4 0.6

⎤
⎥⎥⎦

have negative entries. The model is also unstable since the matrix

[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣
−0.5 −0.1 −0.1 −0.1
0.1 0.01 0.2 0.1
−0.3 −0.1 −1 −0.1
0.2 0.1 0.4 0.1

⎤
⎥⎥⎦ (10.80)

has positive diagonal entries.

We choose:

D =
[

D1 D2
]
, D1 = D2 =

[−0.4 −0.2
]
. (10.81)

Applying Theorem 10.9 and using MATLAB environment together with SEDUMI
solver and YALMIP parser for the LMI (10.75) we obtain:

Λ =
[

Λ1 0
0 Λ2

]
, Λ1 =

[
0.4 0
0 0.4

]
, Λ2 =

[
0.2258 0

0 0.2413

]
. (10.82)

Therefore, the LMI is feasible with respect to the diagonal matrix Λ .

Using (10.70) we obtain the gain matrix

K =
[

K1 K2
]
=
[

D1Λ−1
1 D2Λ−1

2

]
=
[−1 −0.5 −1.7712 −0.8289

]
. (10.83)
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The closed-loop system is positive since matrices:

A11 + B1K1 =
[

0.1 0
0 0.36

]
, A12 + B1K2 =

[
0.2542 0.0658
0.0229 0.0171

]
,

A21 + B2K1 =
[

0 0.05
0 0

]
, A22 + B2K2 =

[
0.0313 0.1487
0.0458 0.4342

]
,

have all nonnegative entries.

The closed-loop system is asymptotically stable since its characteristic polynomial

det

[
In1z− (A11 + B1K1) −(A12 + B1K2)
−(A21 + B2K1) In2z− (A22 + B2K2)

]

= z4 + 0.8744z3 + 0.2166z2 + 0.0141z+ 0.0003,

has positive coefficients.

Example 10.8. Given the positive fractional 2D Roesser model with α = 0.4,
β = 0.9 and

A11 =
[−0.4 0.01

0.03 0.001

]
, A12 =

[
0.01 0.01
0.01 0.2

]
, A21 =

[
0.01 0.2

0 0.01

]
, (10.84a)

A22 =
[−0.9 0.01

0.01 −0.8

]
, B1 =

[
0

0.001

]
, B2 =

[
0

0.002

]
. (10.84b)

Find a gain matrix K = [K1,K2], Ki ∈R1×2, i = 1,2 such that the closed-loop system
is positive and asymptotically stable.

The fractional 2D Roesser model with (10.84) is unstable since the matrix

[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣
−0.4 0.01 0.01 0.01
0.03 0.001 0.01 0.2
0.01 0.2 −0.9 0.01

0 0.01 0.01 −0.8

⎤
⎥⎥⎦ (10.85)

has positive diagonal entries.

We choose:

D =
[

D1 D2
]
, D1 =

[
0.13 −0.37

]
, D2 =

[−3.19 −0.11
]
. (10.86)

Applying Theorem 10.9 and using MATLAB environment together with SEDUMI
solver and YALMIP parser for the LMI (10.75) we obtain:

Λ =
[

Λ1 0
0 Λ2

]
, Λ1 =

[
0.0554 0

0 0.0755

]
, Λ2 =

[
0.8659 0

0 0.0032

]
. (10.87)

Therefore, the LMI is feasible with respect to the diagonal matrix Λ .
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Using (10.70) we obtain the gain matrix

K =
[

K1 K2
]
=
[

D1Λ−1
1 D2Λ−1

2

]
=
[

2.3460 −4.9035 −3.6840 −34.1058
]
. (10.88)

The closed-loop system is positive since matrices:

A11 + B1K1 =
[

0 0.01
0.0323 0.3961

]
, A12 + B1K2 =

[
0.01 0.01

0.0063 0.1659

]
,

A21 + B2K1 =
[

0.01 0.2
0.0047 0.0002

]
, A22 + B2K2 =

[
0 0.01

0.0026 0.0318

]
,

have all nonnegative entries.

The closed-loop system is asymptotically stable since its characteristic polynomial

det

[
In1z− (A11 + B1K1) −(A12 + B1K2)
−(A21 + B2K1) In2z− (A22 + B2K2)

]

= z4 + 2.1721z3 + 1.4953z2 + 0.3159z+ 0.0004,

has positive coefficients.

These considerations can be extended to the closed-loop systems with poles lo-
cated in desired sectors of the left half complex plane [187].



Chapter 11
Singular Fractional Linear Systems

11.1 Singular Fractional Continuous-Time Linear Systems

Consider singular fractional linear system described by the state equations

E
dα

dtα x(t) = Ax(t)+ Bu(t), (11.1a)

y(t) = Cx(t)+ Du(t), (11.1b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input and output vectors and
E,A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m.

The initial condition for (11.1a) is given by

x(0) = x0. (11.2)

It is assumed that the pencil of the pair (E , A) is regular, i.e.

det[Es−A] �= 0, (11.3)

for some z ∈ C (the field of complex numbers). It is well-known [62, 89] that if the
pencil is regular then there exists a pair of nonsingular matrices P,Q∈Rn×n such that

P[Es−A]Q =
[

In1 0
0 N

]
s−

[
A1 0
0 In2

]
, (11.4)

where n1 is equal to degree of the polynomial det[Es−A], A1 ∈ Rn1×n1 , N ∈ Rn2×n2

is a nilpotent matrix with the index μ (i.e. Nμ = 0 and Nμ−1 �= 0) and n1 + n2 = n.
Applying to the equation (11.1a) with zero initial conditions x0 = 0 the Laplace

transform (L ) we obtain

[Esα −A]X(s) = BU(s), (11.5)

where X(s) = L [x(t)] =
∫ ∞

0 x(t)e−stdt and U(s) = L [u(t)]. By assumption (11.3)
the pencil [Esα − A] is regular and we may apply the decomposition (11.4) to
equation (11.1a).

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 245–266.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Premultiplying the equation (11.1a) by the matrix P∈Rn×n and introducing the new
state vector

x(t) = Q−1x(t) =
[

x1(t)
x2(t)

]
, x1(t) ∈ R

n1 , x2(t) ∈ R
n2 , (11.6)

we obtain

dα

dtα x1(t) = A1x1(t)+ B1u(t), (11.7a)

N
dα

dtα x2(t) = x2(t)+ B2u(t), (11.7b)

where

PB =
[

B1

B2

]
, B1 ∈ R

n1×m, B2 ∈ R
n2×m. (11.8)

Using (2.15) we obtain the solution to the equation (11.7a) in the form

x1(t) = Φ10(t)x10 +
∫ t

0
Φ11(t − τ)B1u(τ)dτ, (11.9)

where

Φ10(t) =
∞

∑
k=0

Ak
1tkα

Γ (kα + 1)
, (11.10a)

Φ11(t) =
∞

∑
k=0

Ak
1t(k+1)α−1

Γ [(k + 1)α]
, (11.10b)

and x10 ∈ Rn1 is the initial condition for (11.7a) defined by
[

x10

x20

]
= Q−1x0, x0 = x(0). (11.11)

To find the solution of the equation (11.7b) we apply to the equation the Laplace
transform and we obtain

Nsα X2(s)−Nsα−1x20 = X2(s)+ B2U(s), (11.12)

since [36, 100] for 0 < α < 1

L

[
dα

dtα x2(t)
]

= sα X2(s)− sα−1x20, (11.13)

where X2(s) = L [x2(t)]. From (11.12) we have

X2(s) = [Nsα − In2 ]
−1 (B2U(s)+ Nsα−1x20

)
. (11.14)
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It is easy to check that

[Nsα − In2 ]
−1 = −

μ−1

∑
i=0

Nisiα , (11.15)

since

[Nsα − In2]

(
−

μ−1

∑
i=0

Nisiα

)
= In2 , (11.16)

and Ni = 0 for i = μ ,μ + 1, . . . .

Substitution of (11.15) into (11.14) yields

X2(s) = −B2U(s)− Nx20

s1−α −
μ−1

∑
i=1

[
NiB2siαU(s)+ Ni+1s(i+1)α−1x20

]
, (11.17)

Using inverse Laplace transform (L −1) to (11.17) and the convolution theorem we
obtain for 1−α > 0

x2(t) = L −1[X2(s)] (11.18)

= −B2u(t)−Nx20
t−α

Γ (1−α)
−

μ−1

∑
i=1

[
NiB2

diα

dtiα u(t)+ Ni+1 d(i+1)α−1

dt(i+1)α−1
x20

]
,

since L −1
[

1
sα+1

]
= tα

Γ (1+α) for α + 1 > 0.

Therefore, The following theorem has been proved.

Theorem 11.1. The solution to the equation (11.1a) with the initial condition (11.2)
has the form

x(t) = Q

[
x1(t)
x2(t)

]
, (11.19)

where x1(t) and x2(t) are given by (11.9) and (11.18) respectively.

Knowing the solution (11.19) we can find the output y(t) of the system using the
formula

y(t) = CQ

[
x1(t)
x2(t)

]
+ Du(t). (11.20)

11.2 Singular Fractional Electrical Circuits

Let the current iC(t) in the supercondensator with the capacity C be the α order
derivative of its charge q(t) [143]

iC(t) =
dαq(t)

dtα . (11.21)
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Taking into account that q(t) = CuC(t) we obtain

iC(t) = C
dα uC(t)

dtα , (11.22)

where uC(t) is the voltage on the supercondensator.

Similarly, let the voltage uL(t) on the supercoil (inductor) with the inductance L
be the β order derivative of its magnetic flux ψ(t)

uL(t) =
dβΨ(t)

dtβ . (11.23)

Taking into account that ψ(t) = LiL(t) we obtain

uL(t) = L
dβ iL(t)

dtβ , (11.24)

where iL(t) is the current in the supercoil.

Example 11.1. Consider electrical circuit shown on Fig. 11.1 with given resistance
R, capacitances C1, C2, C3 and source voltages e1 and e2. Using the Kirchhoff’s laws

Fig. 11.1 Electrical circuit.
Illustration to Example 11.1.

R

C1 C2C3u1 u3 u2

e1 e2

we can write for the electrical circuit the equations

e1 = RC1
dαu1

dtα + u1 + u3, (11.25a)

0 = C1
dα u1

dtα +C2
dαu2

dtα −C3
dα u3

dtα , (11.25b)

e2 = u2 + u3 . (11.25c)

The equations (11.25) can be written in the form
⎡
⎣RC1 0 0

C1 C2 −C3

0 0 0

⎤
⎦ dα

dtα

⎡
⎣ u1

u2

u3

⎤
⎦=

⎡
⎣−1 0 −1

0 0 0
0 −1 −1

⎤
⎦
⎡
⎣ u1

u2

u3

⎤
⎦+

⎡
⎣1 0

0 0
0 1

⎤
⎦
[

e1

e2

]
. (11.26)
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In this case we have

E =

⎡
⎣RC1 0 0

C1 C2 −C3

0 0 0

⎤
⎦ , A =

⎡
⎣−1 0 −1

0 0 0
0 −1 −1

⎤
⎦ , B =

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ . (11.27)

Note that the matrix E is singular (detE = 0) but the pencil

det[Esα −A] =

∣∣∣∣∣∣
RC1sα + 1 0 1

C1sα C2sα −C3sα

0 1 1

∣∣∣∣∣∣
= (RC1sα + 1)(C2 +C3)sα +C1sα , (11.28)

is regular. Therefore, the electrical circuit is a singular fractional linear system.

Remark 11.1. If the electrical circuit contains at least one mesh consisting of bran-
ches with only ideal supercondensators and voltage sources then its matrix E is
singular since the row corresponding to this mesh is zero row. This follows from the
fact that the equation written by the use of the voltage Kirchhoff’s law is algebraic
one.

Example 11.2. Consider electrical circuit shown on Fig. 11.2 with given resis-
tances R1, R2, R3, inductances L1, L2, L3 and source voltages e1 and e2. Using the

Fig. 11.2 Electrical circuit.
Illustration to Example 11.2.

R1 R2

R3

L1 L2

L3

i1 i3
i2e1 e2

Kirchhoff’s laws we can write for the electrical circuit the equations

e1 = R1i1 + L1
dβ i1
dtβ + R3i3 + L3

dβ i3
dtβ , (11.29a)

e2 = R2i2 + L2
dβ i2
dtβ + R3i3 + L3

dβ i3
dtβ , (11.29b)

0 = i1 + i2 − i3. (11.29c)
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The equations (11.29) can be written in the form
⎡
⎣L1 0 L3

0 L2 L3

0 0 0

⎤
⎦ dβ

dtβ

⎡
⎣ i1

i2
i3

⎤
⎦=

⎡
⎣−R1 0 −R3

0 −R2 −R3

1 1 −1

⎤
⎦
⎡
⎣ i1

i2
i3

⎤
⎦+

⎡
⎣1 0

0 1
0 0

⎤
⎦
[

e1

e2

]
. (11.30)

In this case we have

E =

⎡
⎣L1 0 L3

0 L2 L3

0 0 0

⎤
⎦ , A =

⎡
⎣−R1 0 −R3

0 −R2 −R3

1 1 −1

⎤
⎦ , B =

⎡
⎣ 1 0

0 1
0 0

⎤
⎦ . (11.31)

Note that the matrix E is singular but the pencil

det[Esβ −A] =

∣∣∣∣∣∣
L1sβ + R1 0 L3sβ + R3

0 L2sβ + R2 L3sβ + R3

−1 −1 1

∣∣∣∣∣∣
= [L1(L2 + L3)+ L2L3]s2β

+ [(L2 + L3)R1 +(L1 + L3)R2 +(L1 + L2)R3]sβ

+ R1(R2 + R3)+ R2R3, (11.32)

is regular. Therefore, the electrical circuit is a singular fractional linear system.

Remark 11.2. If the electrical circuit contains at least one node with branches with
supercoils then its matrix E is singular since it has at least one zero row. This follows
from the fact that the equation written using the current Kirchhoff’s law for this node
is algebraic one.

In general case we have the following theorem.

Theorem 11.2. Every electrical circuit is a singular fractional system if it contains
at least one mesh consisting of branches with only ideal supercondensators and
voltage source or at least one node with branches with supercoils.

Proof. By Remark 11.1 the matrix E of the system is singular if the electrical circuit
contains at least one mesh consisting of branches with only ideal supercondensators
and voltage source.
Similarly, by Remark 11.2 the matrix E is singular if the electrical circuit contains
at least one node with branches with supercoils. ��
Using the solution (11.19) of the equation (11.1a) we may find the voltages on
the supercondensators and currents in the supercoils in the transient states of the
singular fractional linear electrical circuits. Knowing the voltages and currents and
using (11.20) we may find also any currents and voltages in the singular fractional
linear electrical circuits.

Example 11.3. (an continuation of Example 11.1) Using one of the well-known
methods [36, 39, 89] we can find for the pencil (11.28) the matrices
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P =

⎡
⎢⎢⎢⎣

1
RC1

0 − C2
RC1(C2+C3)

− 1
R(C2+C3)

1
C2+C3

C2
R(C2+C3)2

0 0 −1

⎤
⎥⎥⎥⎦ , Q =

⎡
⎢⎢⎢⎣

1 0 0

0 1 C3
C2+C3

0 −1 C2
C2+C3

⎤
⎥⎥⎥⎦ , (11.33)

which transform it to the canonical form (11.4) with

A1 =

[
− 1

RC1

1
RC1

1
R(C2+C3) − 1

R(C2+C3)

]
, N = [0], n1 = 2, n2 = 1. (11.34)

Using the matrix B given by (11.27), (11.33) and (11.8) we obtain

[
B1

B2

]
= PB =

⎡
⎢⎢⎢⎣

1
RC1

− C2
RC1(C2+C3)

− 1
R(C2+C3)

C2
R(C2+C3)2

0 −1

⎤
⎥⎥⎥⎦ , (11.35)

from (11.9) we have

x1(t) = Φ10(t)x10 +
∫ t

0
Φ11(t − τ)B1u(τ)dτ, (11.36)

for any given initial condition x10 ∈ Rn1 and input u(t), where

Φ10(t) =
∞

∑
k=0

Ak
1tkα

Γ (kα + 1)
,

Φ11(t) =
∞

∑
k=0

Ak
1t(k+1)α−1

Γ [(k + 1)α]
,

and 0 < α < 1.

In this case using (11.18) we obtain

x2(t) = −B2u(t), (11.37)

since N = [0].

In a similar way we may find currents in the supercoils of the singular fractional
electrical circuit shown on Fig. 11.2.

11.3 Singular Fractional Discrete-Time Linear Systems

Consider the singular fractional discrete-time linear system described by the state
equation

EΔ α xi+1 = Axi + Bui, i ∈ Z+ = {0,1, . . .}, (11.38)
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where, xi ∈ Rn,ui ∈ Rm are the state and input vectors, A ∈ Rn×n, E ∈ Rn×n, B ∈
Rn×m, and the fractional difference of the order α is defined by

Δ α xi =
i

∑
k=0

(−1)k
(

α
k

)
xi−k, 0 < α < 1, (11.39)

(
α
k

)
=

{
1 for k = 0
α(α−1)···(α−k+1)

k! for k = 1,2, . . .
(11.40)

It is assumed that
detE = 0, (11.41a)

and
det[Ez−A] �= 0, (11.41b)

for some z ∈ C (the field of complex numbers).

Lemma 11.1. [62, 89] If (11.41) holds then there exist nonsingular matrices
P,Q ∈ Rn×n such that

PEQ =
[

In1 0
0 N

]
, PAQ =

[
A1 0
0 In2

]
, (11.42)

where N ∈Rn2×n2 is a nilpotent matrix with the index μ (i.e. Nμ = 0 and Nμ−1 �= 0),
A1 ∈ R

n1×n1 , n1 is equal to degree of the polynomial

det[Es−A] = an1zn1 + · · ·+ a1z+ a0, (11.43)

and n1 + n2 = n.

A method for computation of the matrices P and Q has been given in [39].
Using Lemma 11.1 we shall derive the solution xi to the equation (11.38) for a

given initial conditions x0 and an input vector ui, i ∈ Z+.
Premultiplying the equation (11.38) by the matrix P ∈ Rn×n and introducing the

new state vector

xi =

[
x(1)

i

x(2)
i

]
= Q−1xi, x(1)

i ∈ R
n1 , x(2)

i ∈ R
n2 , i ∈ Z+, (11.44)

we obtain

PEQQ−1Δ α xi+1 = PEQΔ α Q−1xi+1 = PAQQ−1xi + PBui, (11.45)

and after using (11.42) and (11.44)

[
In1 0
0 N

]
Δ α

[
x(1)

i+1

x(2)
i+1

]
=
[

A1 0
0 In2

][
x(1)

i

x(2)
i

]
+
[

B1

B2

]
ui, i ∈ Z+, (11.46)
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where [
B1

B2

]
= PB, B1 ∈ R

n1×m, B2 ∈ R
n2×m. (11.47)

Taking into account (11.39) from (11.46) we obtain

x(1)
i+1 = −

i+1

∑
k=1

(−1)k
(

α
k

)
x(1)

i−k+1 + A1x(1)
i + B1ui

= A1α x(1)
i +

i+1

∑
k=2

(−1)k−1
(

α
k

)
x(1)

i−k+1 + B1ui, (11.48)

and

N

[
x(2)

i+1 +
i+1

∑
k=1

(−1)k
(

α
k

)
x(2)

i−k+1

]
= x(2)

i + B2ui, (11.49)

where A1α = A1 + In1α .
The solution x1

i to the equation (11.48) is well-known [100, 135] and it is given
by the theorem.

Theorem 11.3. The solution x(1)
i of the equation (11.48) is given by the formula

x(1)
i = Φix

(1)
0 +

i−1

∑
k=0

Φi−k−1B1uk, i ∈ Z+, (11.50)

where the matrices Φi are determined by the equation

Φi+1 = ΦiA1α +
i+1

∑
k=2

(−1)k−1
(

α
k

)
Φi−k+1, Φ0 = In1 . (11.51)

To find the solution x2
i of the equation (11.49) for N �= 0 it is assumed that

N =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

n2×n2 . (11.52)

For (11.52) the equation (11.49) can be written in the form
⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

i+1

∑
j=0

(−1) j
(

α
j

)
⎡
⎢⎢⎢⎢⎢⎣

x(21)
i− j+1

x(22)
i− j+1

...

x(2,n2)
i− j+1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎣

x(21)
i

x(22)
i
...

x(2,n2)
i

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

B21

B22
...

B2,n2

⎤
⎥⎥⎥⎦ui. (11.53)
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From (11.53) we have

x(21)
i = −B21ui,

x(22)
i =

i+1

∑
j=0

(−1) j
(

α
j

)
x(21)

i− j+1 −B22ui

= −
i+1

∑
j=0

(−1) j
(

α
j

)
B21ui− j+1 −B22ui,

x(23)
i =

i+1

∑
j=0

(−1) j
(

α
j

)
x(22)

i− j+1 −B23ui (11.54)

= −
i+1

∑
j=0

(−1) j
(

α
j

) i− j+2

∑
k=0

(−1)k
(

α
k

)
B21ui− j−k+2

−
i+1

∑
j=0

(−1) j
(

α
j

)
B22ui− j+1 −B23ui,

...

x(2,n2)
i =

i+1

∑
j=0

(−1) j
(

α
j

)
x(2,n2−1)

i− j+1 −B2,n2ui.

If N = 0 then from (11.49) we have

x(2)
i = −B2ui, i ∈ Z+. (11.55)

This approach can be easily extended for

N = block diag[ N1 N2 . . . Nh ], (11.56)

where Nk ∈ Rnk×nk has the form (11.52) and ∑h
k=1 nk = n2.

If the matrix N has the form

N =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

n2×n2 , (11.57)

the considerations are similar (dual).
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Note that the matrices (11.52) and (11.57) are related by N = SNS where

S =

⎡
⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

1 0 . . . 0 0

⎤
⎥⎥⎥⎦ .

Knowing x(1)
i and x(2)

i we can find the desired solution of the equation (11.38) from
(11.44)

xi = Q

[
x(1)

i

x(2)
i

]
, i ∈ Z+. (11.58)

Example 11.4. Find the solution xi of the singular fractional linear system (11.38)
with the matrices

E =

⎡
⎣−1 −1 −1

2 4 2
1 4 1

⎤
⎦ , A =

⎡
⎣ 0.8 1.7 2.8

0.4 0.8 1.4
2.2 4.6 2.2

⎤
⎦ , B =

⎡
⎣ 1

0
−1

⎤
⎦ , (11.59)

for α = 0.5, ui = u , i ∈ Z+ and x0 = [ 1 2 −1 ]T (T denotes the transpose).
It is easy to check that the matrices (11.59) satisfy the assumptions (11.41). In

this case the matrices P and Q have the forms

P =
1

11

⎡
⎣ 1 −2 5
−2 4 1
4 3 −2

⎤
⎦ , Q =

⎡
⎣−2 1 −1

1 0 0
0 0 1

⎤
⎦ , (11.60)

and

PEQ =
[

In1 0
0 N

]
=

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ , (11.61a)

PAQ =
[

A1 0
0 In2

]
=

⎡
⎣ 0.1 1 0

0 0.2 0
0 0 1

⎤
⎦ , (11.61b)

PB =
[

B1

B2

]
=

1
11

⎡
⎣−4
−3
6

⎤
⎦ , (11.61c)

A1α = A1 + In1α =
[

0.6 1
0 0.7

]
,

n1 = 2,
n2 = 1.

(11.61d)

The equations (11.48) and (11.49) have the forms

x(1)
i+1 =

[
0.6 1
0 0.7

]
x(1)

i +
i+1

∑
k=2

(−1)k−1
(

0.5
k

)
x(1)

i−k+1 −
1

11

[
4
3

]
ui, (11.62)



256 11 Singular Fractional Linear Systems

and

x(2)
i = −B2ui = − 6

11
ui, i ∈ Z+. (11.63)

The solution x(1)
i of the equation (11.62) has the form

x(1)
i = Φix

(1)
0 +

i−1

∑
k=0

Φi−k−1B1uk, i ∈ Z+, (11.64)

where

Φ0 =
[

1 0
0 1

]
, (11.65a)

Φ1 = A1α =
[

0.6 1
0 0.7

]
, (11.65b)

Φ2 = A2
1α − In1

α(α −1)
2!

=
[

0.485 1.300
0 0.615

]
, (11.65c)

...

and

x0 = Q−1x0 =

⎡
⎣ 0 1 0

1 2 1
0 0 1

⎤
⎦
⎡
⎣ 1

2
−1

⎤
⎦=

⎡
⎣ 2

4
−1

⎤
⎦ , x(1)

0 =
[

2
4

]
, x(2)

0 = [−1]. (11.66)

The desired solution of the singular fractional system with (11.59) is given by

xi = Qxi =

⎡
⎣−2 1 −1

1 0 0
0 0 1

⎤
⎦
[

x(1)
i

x(2)
i

]
, (11.67)

where x(1)
i and x(2)

i are determined by (11.63) and (11.64), respectively.

Example 11.5. Find the solution xi of the singular fractional linear system (11.38)
with the matrices

E =

⎡
⎣ 1 0 0

0 1 −1
1 −1 1

⎤
⎦ , A =

⎡
⎣ 0.2 2 −2

2 1 0
−1.8 0 −1

⎤
⎦ , B =

⎡
⎣ 1 2
−1 2
2 −1

⎤
⎦ , (11.68)

for α = 0.8, arbitrary ui, i ∈ Z+ and x0 = [ 1 1 1 ]T .
It is easy to check that the matrices (11.68) satisfy the assumptions (11.41). In

this case the matrices P and Q have the forms

P =

⎡
⎣−1 2 2

1 −1 −1
−1 2 1

⎤
⎦ , Q =

⎡
⎣ 1 0 0
−2 1 1
−2 0 1

⎤
⎦ , (11.69)
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and

PEQ =
[

In1 0
0 N

]
=

⎡
⎣ 1 0 0

0 0 0
0 1 0

⎤
⎦ , (11.70a)

PAQ =
[

A1 0
0 In2

]
=

⎡
⎣ 0.2 0 0

0 1 0
0 0 1

⎤
⎦ , (11.70b)

PB =
[

B1

B2

]
=

⎡
⎣ 1 0

0 1
−1 1

⎤
⎦ , (11.70c)

A1α = A1 + In1α = [1], n1 = 1,
n2 = 2.

(11.70d)

In this case the equations (11.48) and (11.49) have the forms

x(1)
i+1 = x(1)

i +
i+1

∑
k=2

(−1)k−1
(

0.8
k

)
x(1)

i−k+1 +[ 1 0 ]ui, i ∈ Z+, (11.71)

[
0 0
1 0

]( i+1

∑
j=0

(−1) j
(

0.8
j

)[
x(21)

i− j+1

x(22)
i− j+1

])
=

[
x(21)

i

x(22)
i

]
+
[

0 1
−1 1

]
ui, (11.72)

and

x0 = Q−1x0 =

⎡
⎣ 1 0 0

0 1 −1
2 0 1

⎤
⎦
⎡
⎣ 1

1
1

⎤
⎦=

⎡
⎣ 1

0
3

⎤
⎦ , x(1)

0 = [1], x(2)
0 =

[
0
3

]
. (11.73)

The solution x(1)
i of the equation (11.71) with x(1)

0 = 1 can be easily found using
(11.50) and (11.51).

From (11.72) we have

x(21)
i = [ 0 −1 ]ui, i ∈ Z+, (11.74a)

x(22)
i =

i+1

∑
j=0

(−1) j
(

0.8
j

)
[ 0 −1 ]ui− j+1 +[ 1 −1 ]ui. (11.74b)

The desired solution of the singular fractional system with (11.68) is given by

xi = Qxi =

⎡
⎣ 1 0 0
−2 1 1
−2 0 1

⎤
⎦
⎡
⎢⎣

x(1)
i

x(21)
i

x(22)
i

⎤
⎥⎦ , (11.75)

where x(1)
i , x(21)

i and x(22)
i are determined by (11.71) and (11.74), respectively.
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For example for singular positive linear systems with different fractional order.
The linear systems with different fractional orders are described by the equation
[10].

[
dα x1
dtα

dβ x2
dtβ

]
=
[

A11 A12

A21 A22

][
x1

x2

]
+
[

B1

B2

]
u,

p−1 < α < p;
q−1 < β < q;

p,q ∈ N;
(11.76)

where x1 ∈ Rn1 , x2 ∈ Rn2 are the state vectors and Ai j ∈ Rni×n j , Bi ∈ Rni×m,
i, j = 1,2; and u ∈ Rm is the input vector. Initial conditions for (11.76) have the
form x1(0) = x10 and x2(0) = x20.

11.4 Reduction of Singular Fractional Systems to Equivalent
Standard Fractional Systems

Consider the singular fractional discrete-time linear system described by the state
equation

EΔ α xi+1 = Axi + Bui, i ∈ Z+ = {0,1, . . .}, (11.77)

where, xi ∈ Rn,ui ∈ Rm are the state and input vectors, A ∈ Rn×n, E ∈ Rn×n ,
B ∈ Rn×m, and the fractional difference of the order α is defined by

Δ α xi =
i

∑
k=0

(−1)k
(

α
k

)
xi−k, 0 < α < 1, (11.78)

(
α
k

)
=

{
1 for k = 0
α(α−1)···(α−k+1)

k! for k = 1,2, . . .
(11.79)

It is assumed that

detE = 0, (11.80a)

and
det[Ez−A] �= 0, (11.80b)

for some z ∈ C (the field of complex numbers).
Substituting (11.78) into (11.77) we obtain

i+1

∑
k=0

Eckxi−k+1 = Axi + Bui, i ∈ Z+, (11.81)

where

ck = (−1)k
(

α
k

)
. (11.82)
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The following elementary operations on rows(columns) will be used [89]
(Appendix D).

a) Multiplication of the i-th row (column) by nonzero scalar c. This operation will
be denoted by L(ixc) (R(ixc)).

b) Addition to the i-th row ( column) of the j-th row (column) multiplied by
nonzero scalar b. This operation will be denoted by L(i+ jxb) (R(i+ jxb)).

c) Interchange of the i-th and j-th rows (columns). This operation will be denoted
by L(i, j) (R(i, j)).

Applying the row elementary operations to (11.81) we obtain

i+1

∑
k=0

[
E1

0

]
ckxi−k+1 =

[
A1

A2

]
xi +

[
B1

B2

]
ui, i ∈ Z+, (11.83)

where E1 ∈ Rn1×n is full row rank and A1 ∈ Rn1×n, A2 ∈ R(n−n1)×n, B1 ∈ Rn1×m,
B2 ∈ R(n−n1)×m. The equation (11.83) can be rewritten as

i+1

∑
k=0

E1ckxi−k+1 = A1xi + B1ui, (11.84a)

and
0 = A2xi + B2ui. (11.84b)

Substituting in (11.84b) i by i+ 1 we obtain

A2xi+1 = −B2ui+1. (11.85)

The equations (11.84a) and (11.85) can be written in the form
[

E1

A2

]
xi+1 =

[
A1 − c1E1

0

]
xi −

[
c2E1

0

]
xi−1 −·· ·−

[
ci+1E1

0

]
x0

+
[

B1

0

]
ui +

[
0

−B2

]
ui+1. (11.86)

If the matrix [
E1

A2

]
, (11.87)

is nonsingular then premultiplying the equation (11.86) by the inverse matrix[
E1

A2

]−1

we obtain the standard system

xi+1 = A0xi + A1xi−1 + · · ·+ Aix0 + B0ui + B1ui+1, (11.88)
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where

A0 =
[

E1

A2

]−1 [
A1 − c1E1

0

]
, A1 = −

[
E1

A2

]−1[
c2E1

0

]
, . . . ,

Ai = −
[

E1

A2

]−1[
ci+1E1

0

]
, (11.89)

B0 =
[

E1

A2

]−1 [
B1

0

]
, B1 =

[
E1

A2

]−1 [ 0
−B2

]
.

If the matrix (11.87) is singular then applying the row elementary operations to
(11.86) we obtain

[
E2

0

]
xi+1 =

[
A20

A20

]
xi +

[
A21

A21

]
xi−1 + · · ·+

[
A2,i

A2,i

]
x0

+
[

B20

B20

]
ui +

[
B21

B21

]
ui+1, (11.90)

where E2 ∈ Rn2×n is full row rank with n2 ≥ n1 and A2, j ∈ Rn2×n, A2, j ∈ R(n−n2)×n,
j = 0,1, . . . , i; B2,k ∈ Rn2×m, B2,k ∈ R(n−n2)×m, k = 0,1.

From (11.90) we have

0 = A20xi + A21xi−1 + · · ·+ A2,ix0 + B20ui + B21ui+1. (11.91)

Substituting in (11.91) i by i+ 1 (in state vector x and in input u) we obtain

A20xi+1 = −A21xi −·· ·−A2,ix1 −B20ui+1 −B21ui+2 (11.92)

From (11.90) and (11.92) we have
[

E2

A20

]
xi+1 =

[
A20

−A21

]
xi +

[
A21

−A22

]
xi−1 + · · ·+

[
A2,i

0

]
x0

+
[

B20

0

]
ui +

[
B21

−B20

]
ui+1 +

[
0

−B21

]
ui+2. (11.93)

If the matrix [
E2

A20

]
, (11.94)

is nonsingular then premultiplying the equation (11.93) by its inverse we obtain the
standard system

xi+1 = Â0xi + Â1xi−1 + · · ·+ Âix0 + B̂0ui + B̂1ui+1 + B̂2ui+2, (11.95)
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where

Â0 =
[

E2

A20

]−1 [
A20

−A21

]
, Â1 =

[
E2

A20

]−1 [
A21

−A22

]
, . . . ,

Âi =
[

E2

A20

]−1 [
A2,i

0

]
, (11.96a)

B̂0 =
[

E2

A20

]−1 [
B20

0

]
, B̂1 =

[
E2

A20

]−1 [
B21

−B20

]
,

B̂2 =
[

E2

A20

]−1 [
0

−B21

]
. (11.96b)

If the matrix (11.94) is singular we repeat the procedure. Continuing this procedure
after at most n steps we finally obtain a nonsingular matrix and the desired stan-
dard fractional system. The procedure can be justified as follows. The elementary
row operations do not change the rank of the matrix [Ez−A]. The substitution in
the equations (11.84b) and (11.91) i by i + 1 also does not change the rank of the
matrix [Ez−A] since it is equivalent to multiplication of its lower rows by z and by
assumption (11.80b) holds. Therefore, the following theorem has been proved.

Theorem 11.4. The singular fractional linear system (11.81) satisfying the assump-
tion (11.80) can be reduced to the standard fractional linear system

xi+1 = Ã0xi + Ã1xi−1 + · · ·+ Ãix0 + B̃0ui + B̃1ui+1 + · · ·+ B̃pui+p, (11.97)

where Ã j ∈ Rn×n, j = 0,1, . . . , i; B̃k ∈ Rn×m, k = 0,1, . . . , p < n whose dynamics
depends on the future inputs ui+1, . . . ,ui+p.

Example 11.6. Consider the singular fractional linear system (11.77) for α = 0.5
with

E =

⎡
⎣ 5 0 2

2 0 1
1 0 0

⎤
⎦ , A =

⎡
⎣ 0.2 2 −2

2 1 0
−1.8 0 −1

⎤
⎦ , B =

⎡
⎣ 1 2
−1 2
2 −1

⎤
⎦ . (11.98)

In this case the conditions (11.80) are satisfied since

detE = 0 and det[Ez−A] =

∣∣∣∣∣∣
5z−0.2 −2 2z+ 2
2z−2 −1 z
z+ 1.8 0 1

∣∣∣∣∣∣= z−0.2 .

Applying to the matrices (11.98) the following elementary row operations L[1+2×
(−2)], L[3 + 1× (−1)] we obtain
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[
E A B

]
=

⎡
⎣ 5 0 2

2 0 1
1 0 0

0.2 2 −2
2 1 0

−1.8 0 −1

1 2
−1 2
2 −1

⎤
⎦ (11.99)

→
⎡
⎣ 1 0 0 −3.8 0 −2 3 −2

2 0 1 2 1 0 −1 2
0 0 0 2 0 1 −1 1

⎤
⎦=

[
E1 A1 B1

Q A2 B2

]
,

and the equations (11.84) have the form

i+1

∑
k=0

ck

[
1 0 0
2 0 1

]
xi−k+1 =

[−3.8 0 −2
2 1 0

]
xi +

[
3 −2
−1 2

]
ui, (11.100a)

and
0 = [ 2 0 1 ]xi +

[−1 1
]

ui. (11.100b)

Using (11.82) we obtain c1 = −(α
1

)
=−α = −0.5, c2 = (−1)2

(α
2

)
= α(α−1)

2! =− 1
8 ,

. . . , ci+1 = (−1)i−1 α(α−1)···(α−i)
(i+1)!

∣∣∣
α=0.5

and the equation (11.86) has the form

⎡
⎣ 1 0 0

2 0 1
2 0 1

⎤
⎦xi+1 =

⎡
⎣−3.3 0 −2

3 1 0.5
0 0 0

⎤
⎦xi +

1
8

⎡
⎣ 1 0 0

2 0 1
0 0 0

⎤
⎦xi−1

− ·· ·− ci+1

⎡
⎣ 1 0 0

2 0 1
0 0 0

⎤
⎦x0 (11.101)

+

⎡
⎣ 3 −2
−1 2
0 0

⎤
⎦ui +

⎡
⎣ 0 0

0 0
1 −1

⎤
⎦ui+1.

The matrix

⎡
⎣ 1 0 0

2 0 1
2 0 1

⎤
⎦ is singular and we perform the elementary row operation L[3+

2× (−1)] on (11.101) obtaining the following
⎡
⎣ 1 0 0

2 0 1
0 0 0

⎤
⎦xi+1 =

⎡
⎣−3.3 0 −2

3 1 0.5
−3 −1 −0.5

⎤
⎦xi +

1
8

⎡
⎣ 1 0 0

2 0 1
−2 0 −1

⎤
⎦xi−1

− ·· ·− ci+1

⎡
⎣ 1 0 0

2 0 1
−2 0 −1

⎤
⎦x0 (11.102)

+

⎡
⎣ 3 −2
−1 2
1 −2

⎤
⎦ui +

⎡
⎣ 0 0

0 0
1 −1

⎤
⎦ui+1.
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The matrix [
E2

A20

]
=

⎡
⎣ 1 0 0

2 0 1
−3 −1 −0.5

⎤
⎦ , (11.103)

is nonsingular and we obtain the equation (11.95) with the matrices

Â0 =
[

E2

A20

]−1 [
A20

−A21

]

=

⎡
⎣ 1 0 0

2 0 1
−3 −1 −0.5

⎤
⎦
−1⎡
⎣−3.3 0 −2

3 1 0.5
0.25 0 0.125

⎤
⎦=

⎡
⎣−3.30 0 −2

4.85 −0.5 3.63
9.60 1 4.50

⎤
⎦ ,

...

Âi =
[

E2

A20

]−1 [−A2,i

0

]

=

⎡
⎣ 1 0 0

2 0 1
−3 −1 −0.5

⎤
⎦
−1⎡
⎣ 1 0 0

2 0 1
0 0 0

⎤
⎦=

⎡
⎣ 1 0 0
−3 0 −0.5
0 0 1

⎤
⎦ ,

B̂0 =
[

E2

A20

]−1 [
B20

0

]

=

⎡
⎣ 1 0 0

2 0 1
−3 −1 −0.5

⎤
⎦
−1⎡
⎣ 3 −2
−1 2
0 0

⎤
⎦=

⎡
⎣ 3 −2
−5.5 3
−7 6

⎤
⎦ ,

B̂1 =
[

E2

A20

]−1 [
B21

−B20

]

=

⎡
⎣ 1 0 0

2 0 1
−3 −1 −0.5

⎤
⎦
−1⎡
⎣ 0 0

0 0
−1 2

⎤
⎦=

⎡
⎣ 0 0

1 −2
0 0

⎤
⎦ ,

B̂2 =
[

E2

A20

]−1 [
0

−B21

]

=

⎡
⎣ 1 0 0

2 0 1
−3 −1 −0.5

⎤
⎦
−1⎡
⎣ 0 0

0 0
−1 1

⎤
⎦=

⎡
⎣ 0 0

1 −1
0 0

⎤
⎦ . (11.104)

11.5 Decomposition of Singular Fractional System into
Dynamic and Static Parts

Consider the singular fractional system (11.81) satisfying the assumptions (11.80).
Applying the procedure presented in section 11.4 after p steps we obtain
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[
Ep

0

]
xi+1 =

[
Ap,0

Ap,0

]
xi +

[
Ap,1

Ap,2

]
xi−1 + · · ·+

[
Api

Api

]
x0 (11.105)

+
[

Bp,0

Bp,0

]
ui +

[
Bp,1

Bp,1

]
ui+1 + · · ·+

[
Bp,p−1

Bp,p−1

]
ui+p−1,

where Ep ∈ Rnp×n is full row rank, Ap j ∈ Rnp×n, Ap j ∈ R(n−np)×n, j = 0,1, . . . , p;
and Bpk ∈ Rnp×m, Bpk ∈ R(n−np)×m, k = 0,1, . . . , p−1 with nonsingular matrix

[
Ep

Ap,0

]
∈ R

n×n. (11.106)

Using the elementary column operations we may reduced the matrix (11.106) to the
form [

Inp 0
A21 In−np

]
, A21 ∈ R

(n−np)×np , (11.107)

and performing the same elementary operations on the matrix In we can find the
matrix Q ∈ Rn×n such that

[
Ep

Ap,0

]
Q =

[
Inp 0
A21 In−np

]
. (11.108)

Taking into account (11.108) and defining the new state vector

x̃i = Q−1xi =

[
x̃(1)

i

x̃(2)
i

]
, x̃(1)

i ∈ R
np , x̃(2)

i ∈ R
n−np , i ∈ Z+, (11.109)

from (11.105) we obtain

x̃(1)
i+1 = Epxi+1 = EpQQ−1xi+1 = Ap,0QQ−1xi + Ap,1QQ−1xi−1 + · · ·+ ApiQQ−1x0

+ Bp,0ui + Bp,1ui+1 + · · ·+ Bp,p−1ui+p−1

= [ A(1)
p,0 A(2)

p,0 ]

[
x̃(1)

i

x̃(2)
i

]
+[ A(1)

p,1 A(2)
p,1 ]

[
x̃(1)

i−1

x̃(2)
i−1

]

+ · · ·+[ A(1)
pi A(2)

pi ]

[
x̃(1)

0

x̃(2)
0

]
(11.110)

+ Bp,0ui + Bp,1ui+1 + · · ·+ Bp,p−1ui+p−1

= A(1)
p,0x̃(1)

i + A(2)
p,0x̃(2)

i + · · ·+ A(1)
pi x̃(1)

0 + A(2)
pi x̃(2)

0

+ Bp,0ui + Bp,1ui+1 + · · ·+ Bp,p−1ui+p−1, i ∈ Z+,

and

x̃(2)
i = −A21x̃(1)

i −A
(1)
p,1x̃(1)

i−1 −A
(2)
p,2x̃(2)

i−1 −·· ·−A
(1)
pi x̃(1)

0 −A
(2)
pi x̃(2)

0

− Bp,0ui −·· ·−Bp,p−1ui+p−1, i ∈ Z+, (11.111)
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where

Ap jQ = [ A(1)
p j A(2)

p j ], Ap j = [ A
(1)
p j A

(2)
p j ], j = 0,1, . . . , i . (11.112)

Substitution of (11.111) into (11.110) yields

x̃(1)
i+1 = Ãp,0x̃(1)

i + · · ·+ Ãpix̃
(1)
0 + B̃p,0ui + · · ·+ B̃p,p−1ui+p−1, i ∈ Z+ (11.113)

where

Ãp,0 = A(1)
p,0 −A(2)

p,0A21, . . . , Ãpi = A(1)
pi −A(2)

p,0A(1)
pi , (11.114a)

B̃p,0 = Bp,0 −A(2)
p,0Bp,0, . . . , B̃p,p−1 = Bp,p−1 −A(2)

p,0Bp,p−1.(11.114b)

The standard system described by the equation (11.113) is called the dynamic part
of the system (11.81) and the system described by the equation (11.111) is called
the static part of the system (11.81).

Therefore, the following theorem has been proved.

Theorem 11.5. The singular fractional linear system (11.81) satisfying the assump-
tion (11.80) can be decomposed into the dynamical part (11.113) and static part
(11.111) whose dynamics depend on the future inputs ui+1, . . . ,ui+p−1.

Example 11.7. Consider the singular fractional system (11.77) for α = 0.5 with the
matrices (11.98). The matrix (11.103) is nonsingular. To reduce this matrix to the
form (11.107) we perform the elementary operations R[1 + 3× (−2)], R[2× (−1)],
R[2,3]. The matrix Q has the form

Q =

⎡
⎣ 1 0 0

0 0 −1
−2 1 0

⎤
⎦

and

[
E2

A20

]
Q =

⎡
⎣ 1 0 0

2 0 1
−3 −1 −0.5

⎤
⎦
⎡
⎣ 1 0 0

0 0 −1
−2 1 0

⎤
⎦=

⎡
⎣ 1 0 0

0 1 0
−2 −0.5 1

⎤
⎦ ,

A21 = [−2 −0.5 ], n2 = 2.

The new state vector (11.109) is

x̃i = Q−1xi =

⎡
⎣ 1 0 0

2 0 1
0 −1 0

⎤
⎦
⎡
⎣ x1,i

x2,i

x3,i

⎤
⎦=

[
x̃(1)

i

x̃(2)
i

]
,

x̃(1)
i =

[
x1,i

2x1,i + x3,i

]
, (11.115)

x̃(2)
i = −x2,i.
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In this case the equations (11.110) and (11.111) have the forms

x̃(1)
i+1 =

[
0.7 −2
2 0.5

]
x̃(1)

i +
[

0
−1

]
x̃(2)

i +
1
8

x̃(1)
i−1 −·· ·− ci+1x̃(1)

0 +
[

3 −2
−1 2

]
ui,

(11.116)
and

x̃(2)
i = [ 2 0.5 ]x̃(1)

i +[ 0.25 0 ]x̃(1)
i−1 + · · ·+ ci+1[−2 0 ]x̃(1)

0

− [ 1 −2 ]ui − [ 1 −1 ]ui+1. (11.117)

Substituting (11.117) into (11.116) we obtain

x̃(1)
i+1 =

[
0.7 −2
0 0

]
x̃(1)

i +
1
8

[
1 0
0 −1

]
x̃(1)

i−1 −·· ·− ci+1

[
1 0
−2 1

]
x̃(1)

0

+
[

3 −2
0 0

]
ui +

[
0 0
1 −1

]
ui+1. (11.118)

The dynamic part of the system is described by (11.118) and the static part by
(11.117).

This considerations can be extended for singular fractional continuous-time and
discrete-time linear systems with delays.



Chapter 12
Positive Continuous-Discrete Linear Systems

12.1 General Model of Continuous-Discrete Linear Systems
and Its Solution

Consider the general model of linear continuous-discrete systems described by the
equations

ẋ(t, i+ 1) = A0x(t, i)+ A1ẋ(t, i)+ A2x(t, i+ 1)
+ B0u(t, i)+ B1u̇(t, i)+ B2u(t, i+ 1), (12.1a)

y(t, i) = Cx(t, i)+ Du(t, i), t ∈ R+ = [0,+∞], i ∈ Z+, (12.1b)

where ẋ(t, i) = ∂x(t,i)
∂ t , x(t, i) ∈ Rn, u(t, i) ∈ Rm, y(t, i) ∈ Rp are the state, input and

output vectors and Ak ∈ Rn×n, Bk ∈ Rn×m, k = 0,1,2; C ∈ Rp×n, D ∈ Rp×m.
Boundary conditions for (12.1a) are given by

x(0, i) = xi, i ∈ Z+ and x(t,0) = xt0, ẋ(t,0) = xt1, t ∈ R+. (12.2)

The transition matrix Ti j of the model (12.1) is defined as follows

Ti, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

In for i = j = 0

A0Ti−1, j−1 + A1Ti, j−1 + A2Ti−1, j

= Ti−1, j−1A0 + Ti, j−1A1 + Ti−1, jA2
for i+ j > 0; i, j ∈ Z+

0 for k < 0 or l < 0

(12.3)

Theorem 12.1. The solution of the equation (12.1a) with boundary conditions (12.2)
has the form

T. Kaczorek: Selected Problems of Fractional Systems Theory, LNCIS 411, pp. 267–305.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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x(t, i) =
∞

∑
k=0

∞

∑
l=0

(
Tk,i−l−1B0

∫ t

0

(t − τ)k

k!
u(τ, l)dτ + Tk,i−lB2

×
∫ t

0

(t − τ)k

k!
u(τ, l)dτ −Tk,i−l−1B1

tk

k!
u(0, l)

+ Tk,i−l
tk

k!
x(0, l)−Tk,i−l−1A1

tk

k!
x(0, l)

)

+
∞

∑
k=1

∞

∑
l=0

(
Tk,i−l−1B1

∫ t

0

(t − τ)k−1

(k−1)!
u(τ, l)dτ

)
+

∞

∑
l=0

T0,i−l−1B1u(t, l)

−
∞

∑
k=0

(
Tk,iB2

∫ t

0

(t − τ)k

k!
u(τ,0)dτ + Tk,iA2

×
∫ t

0

(t − τ)k

k!
x(τ,0)dτ + Tk,i

tk

k!
x(0,0)

)

+
∞

∑
k=1

(
Tk,i

∫ t

0

(t − τ)k−1

(k−1)!
x(τ,0)dτ

)
+ T0,ix(t,0). (12.4)

Proof. Let X(s) be the Laplace transform of the continuous-time vector x(t)

X(s) = L [x(t)] =
∫ ∞

0
x(t)e−stdt, (12.5)

and X(z) be the zet transform of the discrete-time vector x(i)

X(z) = Z [x(i)] =
∞

∑
i=0

x(i)z−i. (12.6)

Using (12.5) and (12.6) it is easy to show that

Z {L [ẋ(t, i)]} = Z {sX(s, i)− x(0, i)} = sX(s,z)−X(0,z),
Z {L [ẋ(t, i+ 1)]} = Z {sX(s, i+ 1)− x(0, i+ 1)}

= szX(s,z)− szX(s,0)− zX(0,z)+ zx(0,0), (12.7)

Z {L [x(t, i+ 1)]} = Z {X(s, i)} = zX(s,z)− zX(s,0),

where X(s,0) = L [x(t,0)], X(0,z) = Z [x(0, i)].
Using (12.7) from (12.1a) we obtain

X(s,z) =
[
In −A0s−1z−1 −A1z−1 −A2s−1]−1

×
⎡
⎣ (B0s−1z−1 + B1z−1 + B2s−1)U(s,z)−B1s−1z−1U(0,z)
−B2s−1U(s,0)+ (In −A2s−1)X(s,0)
+(Ins−1 −A1s−1z−1)X(0,z)− s−1x(0,0)

⎤
⎦ , (12.8)

where U(s,z) = Z {L [u(t, i)]}, U(s,0) = L [u(t,0)], U(0,z) = Z [u(0, i)].
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Let [
In −A0s−1z−1 −A1z−1 −A2s−1]−1

=
∞

∑
i=0

∞

∑
j=0

Ti, js
−iz− j (12.9)

From the definition of inverse matrix we have

In =
[
In −A0s−1z−1 −A1z−1 −A2s−1] ∞

∑
i=0

∞

∑
j=0

Ti, js
−iz− j

=
∞

∑
i=0

∞

∑
j=0

Ti, js
−iz− j [In −A0s−1z−1 −A1z−1 −A2s−1] . (12.10)

Comparing the matrices at the same power of s−1 and z−1 of (12.10) we obtain
(12.3).

Substitution of (12.9) into (12.8) yields

X(s,z) =
∞

∑
i=0

∞

∑
j=0

Ti, js
−iz− j [(B0s−1z−1 + B1z−1 + B2s−1)U(s,z)

− B2s−1U(s,0)−B1s−1z−1U(0,z)+ (In−A2s−1)X(s,0)
+ (Ins−1 −A1s−1z−1)X(0,z)− s−1x(0,0)

]
. (12.11)

Applying to (12.11) the inverse transforms and the convolution theorem we obtain
(12.4). ��
Knowing the matrices Ak, Bk, k = 0,1,2 of (12.1a), boundary conditions (12.2) and
input u(t, i), t ∈R+, i ∈ Z+ we can compute the transition matrices (12.3) and using
(12.4) the state vector x(t, i) for t ∈ R+, i ∈ Z+. Substituting the state vector into
(12.1b) we can find the output vector y(t, i) for t ∈ R+, i ∈ Z+.

12.2 Positive General Model of Continuous-Discrete Linear
Systems

Definition 12.1. The general model (12.1) is called positive if x(t, i) ∈ Rn
+ and

y(t, i) ∈ R
p
+, t ∈ R+, i ∈ Z+ for any boundary conditions

xt0 ∈ R
n
+, xt1 ∈ R

n
+, t ∈ R+, xi ∈ R

n
+, i ∈ Z+, (12.12)

and all inputs u(t, i) ∈ Rm
+, u̇(t, i) ∈ Rm

+, t ∈ R+, i ∈ Z+.

Theorem 12.2. The general model (12.1) is positive if and only if

A2 ∈ Mn, (12.13a)

A0,A1 ∈ R
n×n
+ , A = A0 + A1A2 ∈ R

n×n
+ , (12.13b)
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Bk ∈ R
n×m
+ , k = 0,1,2, C ∈ R

p×n
+ , D ∈ R

p×m
+ , (12.13c)

where Mn is the set of n×n Metzler matrices (with nonnegative off-diagonal entries).

Proof. Necessity. From (12.1a) for i = 0 and Bk = 0, k = 0,1,2 we have

ẋ(t,1) = A2x(t,1)+ F(t,0), (12.14)

where
F(t,0) = A0x(t,0)+ A1ẋ(t,0). (12.15)

Assuming xt0 = 0, xt1 = 0 we obtain F(t,0) = 0 and from (12.14)

x(t,1) = eA2t x(0,1). (12.16)

Necessity of A0 ∈ R
n×n
+ and A1 ∈ R

n×n
+ follows immediately from (12.15) since

F(t,0) ∈ Rn
+, t ∈ R+ and xt0, xt1 are arbitrary. From (12.16) it follows that A2 ∈ Mn

since eA2t ∈ R
n×n
+ only if A2 is a Metzler matrix, x(t,1) ∈ Rn

+, t ∈ R+ and x(0,1) is
arbitrary.

From (12.1a) for i = 1 and Bk = 0, k = 0,1,2 we have

ẋ(t,2) = A2x(t,2)+ F(t,1), (12.17)

where
F(t,1) = A0x(t,1)+ A1ẋ(t,1). (12.18)

Substitution of (12.14) into (12.18) yields

F(t,1) = (A0 + A1A2)x(t,1)+ A1F(t,0). (12.19)

From (12.19) it follows that F(t,1) ∈ Rn
+, t ∈ R+ for any boundary conditions

(12.12) only if A = A0 + A1A2 ∈ R
n×n
+ . Proof of the necessity of (12.13c) is sim-

ilar to the one for standard general 2D model [77].
The proof of sufficiency will be accomplished by induction with respect to i. For

i = 0 the equation (12.1a) for Bk �= 0, k = 0,1,2 takes the form (12.14) and

F(t,0) = A0x(t,0)+ A1ẋ(t,0)+ B0u(t,0)+ B1u̇(t,0)+ B2u(t,1). (12.20)

If the conditions (12.12) and (12.13) are satisfied and u(t, i) ∈ Rm
+, u̇(t, i) ∈ Rm

+,
t ∈ R+, i = 0 then F(t,0) ∈ Rn

+, t ∈ R+. The solution of the equation (12.14) has
the form

x(t,1) = eA2t x(0,1)+
∫ t

0
eA2(t−τ)F(τ,0)dτ ∈ R

n
+, t ∈ R+, (12.21)

since eA2t ∈ R
n×n
+ , t ∈ R+ and x(0,1) ∈ Rn

+.

From (12.1b) for i = 1 we have

y(t,1) = Cx(t,1)+ Du(t,1)∈ R
p
+, t ∈ R+. (12.22)
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Substituting (12.21) into

F(t,1) = A0x(t,1)+ A1ẋ(t,1)+ B0u(t,1)+ B1u̇(t,1)+ B2u(t,2). (12.23)

we obtain

F(t,1) = AeA2t x(0,1)+ A
∫ t

0
eA2(t−τ)F(τ,0)dτ + A1F(t,0)

+ B0u(t,1)+ B1u̇(t,1)+ B2u(t,2) ∈ R
n
+, (12.24)

since A ∈ R
n×n
+ , A1 ∈ R

n×n
+ , eA2t ∈ R

n×n
+ , F(t,0) ∈ Rn

+, u(t, i) ∈ Rm
+, i = 1,2 and

u̇(t,1) ∈ R
m
+, t ∈ R+. Assuming that the x(t, i) ∈ R

n
+, F(t, i− 1) ∈ R

n
+ for t ∈ R+,

i ≥ 1 we shall show that x(t, i + 1) ∈ Rn
+ for t ∈ R+ if the assumptions (12.13) are

satisfied.

From (12.1a) we have

ẋ(t, i+ 1) = A2x(t, i+ 1)+ F(t, i), (12.25)

where

F(t, i) = A0x(t, i)+ A1ẋ(t, i)+ B0u(t, i)+ B1u̇(t, i)+ B2u(t, i+ 1)

= AeA2t x(0, i)+ A
∫ t

0
eA2(t−τ)F(τ, i−1)dτ + A1F(t, i−1)

+ B0u(t, i)+ B1u̇(t, i)+ B2u(t, i+ 1)∈ R
n
+, (12.26)

if the assumptions are satisfied.

The solution of (12.25) has the form

x(t, i+ 1) = eA2t x(0, i+ 1)+
∫ t

0
eA2(t−τ)F(τ, i)dτ ∈ R

n
+ (12.27)

and it satisfies the condition x(t, i + 1) ∈ Rn
+, since eA2t ∈ R

n×n
+ , t ∈ R+ and

F(τ, i) ∈ Rn
+.

From (12.1b) we have y(t, i+ 1) = Cx(t, i+ 1)+ Du(t, i+ 1)∈ R
p
+, t ∈ R+ since

x(t, i + 1) ∈ Rn
+, u(t, i + 1) ∈ Rm

+ and C ∈ R
p×n
+ , D ∈ R

p×m
+ . This completes the

proof. ��
Consider the general 2D model [77, 192]

xi+1, j+1 = A0xi, j + A1xi+1, j + A2xi, j+1

+ B0ui, j + B1ui+1, j + B2ui, j+1, i, j ∈ Z+, (12.28)

where xi, j ∈Rn, ui, j ∈Rm are the state and input vectors, and Ak ∈Rn×n , Bk ∈ℜn×m,
k = 0,1,2.
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The model (12.28) is called positive if xi, j ∈ Rn
+, i, j ∈ Z+ for all boundary

conditions
xi0 ∈ R

n
+, i ∈ Z+, x0 j ∈ R

n
+, j ∈ Z+ (12.29)

and every input ui, j ∈ Rm
+, i, j ∈ Z+.

Theorem 12.3. [77] The model (12.28) is positive if and only if

Ak ∈ R
n×n
+ , Bk ∈ R

n×m
+ for k = 0,1,2. (12.30)

It is well-known (Lemma 5.2 in [77]) that the transition matrix Ti j (defined also
by (12.3)) of the positive model (12.28) is a positive matrix, i.e. Ti, j ∈ R

n×n
+ for

i, j ∈ Z+. Note that the transition matrix Ti j of the positive model (12.1) may be not
always a positive matrix. For example for the model (12.1) with the matrices

A0 =
[

2 1
1 0

]
, A1 =

[
1 0
2 1

]
, A2 =

[−1 2
1 −2

]
, Bk ∈ R

2×2
+ , k = 0,1,2,

(12.31)
we have

A = A0 + A1A2 =
[

1 3
0 2

]
∈ R

2×2
+ . (12.32)

Therefore, by Theorem 12.2 the model with the matrices (12.31) is positive, but the
matrices

T11 = A0 + A1A2 + A2A1 =
[

4 5
−3 0

]
,

T20 = A2
2 =

[
3 −6
−3 6

]
, (12.33)

have some negative entries.

Remark 12.1. From (12.13) it follows that if A2 = 0 then the general model (12.1)
of the continuous-discrete systems is positive if and only if the general 2D model
(12.28) is positive.

12.3 Reachability of the Standard and Positive General Model

Definition 12.2. The model (12.1) is called reachable at the point (t f ,q) if for any
given final state x f ∈ Rn there exists an input u(t, i) , 0 ≤ t ≤ t f , 0 ≤ i ≤ q which
steers the system form zero boundary conditions to the state x f , i.e. x(t f ,q) = x f .

Theorem 12.4. The model (12.1) is reachable at the point (t f ,q) for t f > 0 and
q = 1 if and only if one of the following conditions is satisfied.

a) rank
[
B0,A2B0, . . . ,A

n−1
2 B0

]
= n ⇔ rank [Ins−A2,B0] = n, ∀s ∈ C

b) the rows of the matrix eA2tB0 are linearly independent over the field of complex
numbers C.
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Proof. Let B1 = B2 = 0. For i = 0 and zero boundary conditions from (12.1a) we
have

ẋ(t,1) = A2x(t,1)+ B0u(t,0),

and

x f = x(t f ,1) =

t f∫
0

eA2(t f −τ)B0u(τ,0)dτ, (12.34)

since x(0,1) = 0.

From Sylvester formula we have

eA2t f =
n−1

∑
k=0

Ak
2ck(t f ). (12.35)

Substitution of (12.35) into (12.34) yields

x f =
n−1

∑
k=0

Ak
2B0

t f∫
0

ck(t f − τ)u(τ,0)dτ

=
[
B0,A2B0, . . . ,A

n−1
2 B0

]
⎡
⎢⎢⎢⎣

v0(t f )
v1(t f )

...
vn−1(t f )

⎤
⎥⎥⎥⎦ , (12.36)

where

vk(t f ) =

t f∫
0

ck(t f − τ)u(τ,0)dτ. (12.37)

The equation (12.36) has a solution vk(t f ) for k = 0,1, . . . ,n−1 and any given x f if
and only if the condition a) is satisfied.

The equivalence of the condition a) and b) are known (see [75], page 131). ��
Theorem 12.5. The model (12.1) is reachable at the point (t f ,q) for t f > 0 and
q = 1 if and only if the matrix

R f =

t f∫
0

eA2τ B0BT
0 eAT

2 τ dτ, t f > 0, (12.38)

is positive definite (nonsingular), (see [77], page 130).
Moreover, the input which steers the system from zero boundary conditions to x f

is given by
u(t,0) = BT

0 eAT
2 (t f −τ)R−1

f x f . (12.39)
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Proof. If the matrix R f is invertible (nonsingular) then (12.39) is well defined. We
shall show that the input (12.39) steers the system from zero boundary conditions to
x f . Substituting (12.39) into (12.34) we obtain

x f = x(t f ,1) =

t f∫
0

eA2(t f −τ)B0BT
0 eAT

2 (t f −τ)dτR−1
f x f = x f , (12.40)

since
t f∫

0

eA2(t f −τ)B0BT
0 eAT

2 (t f −τ)dτ = R f .

��
Remark 12.2. Reachability is independent of the matrices A0, A1, B1, B2.

Remark 12.3. To simplify the calculation we may assume that u(t,0) is piecewise
constant (is the step function).

Example 12.1. Consider the general model (12.1) with the matrices

A2 =
[

1 0
1 2

]
, B0 =

[
1
0

]
. (12.41)

and arbitrary remaining matrices of the system.
Applying the condition a) of Theorem 12.4 we obtain

rank [B0,A2B0] = rank

[
1 1
0 1

]
= 2, (12.42)

and

rank [Ins−A2,B0] = rank

[
s−1 0 1
−1 s−2 0

]
= 2, ∀s ∈ C. (12.43)

Therefore, the system (12.1) with matrices (12.41) is reachable for q = 1 and
t f > 0 .

Assuming t f = 2 and

x f =
[

2
1

]
, (12.44)

from (12.39) and (12.38) we may find the input that steers the system form zero
boundary conditions to the desired state (12.44)

u(t,0) = BT
0 eAT

2 (t f −τ)R−1
f x f = 0.5519e2−t −0.0953e4−2t. (12.45)

The plots of the state variables for q = 1 , t ∈ [0,2] and input for q = 0 and t ∈ [0,2]
are shown on Fig. 12.1 and Fig. 12.2, respectively.
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Fig. 12.1 State variables of the system. Illustration to Example 12.1.

Fig. 12.2 Input of the system. Illustration to Example 12.1.

Let us assume, that the input of the system is piecewise constant, i.e.

u(t,0) =
{

u1 for 0 ≤ t < t1
u2 for t1 ≤ t ≤ t f

(12.46)

where u1 and u2 are constant values.
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Taking into account (12.41) and (12.44) for (12.36) we obtain

[
v0(t f )
v1(t f )

]
= [B0,A2B0]

−1 x f =
[

1 1
0 1

]−1 [ 2
1

]
=
[

1
1

]
. (12.47)

From (12.37) for (12.46) we have

[
u1

u2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

t1∫
0

c0(t f − τ)dτ
t f∫

t1

c0(t f − τ)dτ

t1∫
0

c1(t f − τ)dτ
t f∫

t1

c1(t f − τ)dτ

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

[
1
1

]
. (12.48)

Using (12.35) it is easy to show that

c0(t) = 2et − e2t , c1(t) = e2t − et . (12.49)

Using formula (12.48) we may compute values of the system input for arbitrary
t1 and t2 (0 < t1 < t f ).

For t1 = 1 and t f = 2 , we obtain

[
u1

u2

]
=
[−0.0481

1.2948

]
. (12.50)

The plots of state variables and input for q = 1 and t ∈ [0,2] are shown on
Figure 12.3 and Figure 12.4, respectively.

Definition 12.3. The positive system (12.1) is called reachable at the point (t f ,q)
if for any given final state x f ∈ Rn

+ there exists a nonnegative input u(t, i) ∈ Rm
+ ,

0 ≤ t ≤ t f , 0 ≤ i ≤ q which steers the system form zero boundary conditions to the
state x f , i.e. x(t f ,q) = x f .

Theorem 12.6. The positive model (12.1) is reachable at the point (t f ,q) for t f > 0
and q = 1 if the matrix

R f =

t f∫
0

eA2τ B0BT
0 eAT

2 τ dτ, t f > 0, (12.51)

is a monomial matrix.

The input that steers the system in time t f from zero boundary conditions to the state
x f is given by the formula (12.39).

Proof. If R f is a monomial matrix, then there exists the inverse matrix R−1
f ∈ R

n×n
+

and the input (12.39) is well defined and nonnegative for 0 ≤ t ≤ t f . Similarly as
in proof of Theorem 12.4, it can be shown that the input (12.39) steers the system
from zero boundary conditions to nonnegative final state x f ∈ R

n
+ . ��
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Fig. 12.3 State variables of the system. Illustration to Example 12.1.

Fig. 12.4 Input of the system. Illustration to Example 12.1.

The considerations for the controllability to zero of the general model (12.1) are
similar.
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12.4 Stability of the Positive General Model

Consider the continuous-discrete linear 2D system [77, 76]

ẋ(t, i+ 1) = A0x(t, i)+ A1ẋ(t, i)+ A2x(t, i+ 1)+ Bu(t, i), (12.52)

t ∈ R+, i ∈ Z+,

where ẋ(t, i) = ∂x(t,i)
∂ t , x(t, i) ∈ Rn, u(t, i) ∈ Rm A0,A1,A2 ∈ Rn×n, B ∈ Rn×m.

Definition 12.4. The positive model (12.52) is called asymptotically stable if for
u(t, i) = 0

lim
t,i→∞

x(t, i) = 0, (12.53)

for bounded boundary conditions.

The matrix A ∈ Rn×n is called asymptotically stable (Hurwitz) if all its eigenvalues
lie in the open left half of the complex plane.

Definition 12.5. The point xe is called equilibrium point of the asymptotically stable
system (12.52) if for Bu = 1n = [ 1 ... 1 ]T ∈ Rn

+

0 = A0xe + A2xe + 1n. (12.54)

Asymptotic stability implies det[A0 + A2] �= 0 and from (12.54) we have

xe = −[A0 + A2]−11n. (12.55)

Remark 12.4. From (12.52) for B = 0 it follows that the positive system is asymp-
totically stable only if the matrix A1 − In is Hurwitz Metzler matrix [77, 52].

In what follows it is assumed that the matrix A1 − In is a Hurwitz Metzler matrix.

Theorem 12.7. [109] The linear continuous-discrete positive 2D system (12.52) is
asymptotically stable if and only if all coefficients of the polynomial

det[Ins(z+ 1)−A0−A1s−A2(z+ 1)] = snzn + an,n−1snzn−1 + an−1,nsn−1zn

+ · · ·+ a10s+ a01z+ a00, (12.56)

are positive, i.e.

ak,l > 0 for k, l = 0,1, . . . ,n; (an,n = 1). (12.57)

Theorem 12.8. Let the matrix A1 − In be a Hurwitz Metzler matrix. The positive
continuous-discrete linear 2D system (12.52) is asymptotically stable if and only
if there exists a strictly positive vector λ ∈ Rn

+ (all components of the vectors are
positive) such that

(A0 + A2)λ < 0. (12.58)
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Proof. Integrating the equation (12.52) with B = 0 in the interval (0,+∞) for i →
+∞ we obtain

x(+∞,+∞)− x(0,+∞) = A0

∫ +∞

0
x(τ,+∞)dτ + A1x(+∞,+∞)

− A1x(0,+∞)+ A2

∫ +∞

0
x(τ,+∞)dτ. (12.59)

If the system is asymptotically stable then by (12.53) from (12.59) we obtain

(A1 − In)x(0,+∞) = (A0 + A2)
∫ +∞

0
x(τ,+∞)dτ. (12.60)

If the matrix A1 − In is Hurwitz Metzler matrix then for every x(0,+∞) > 0 such
that (A1 − In)x(0,+∞) is a strictly negative vector, λ =

∫ +∞
0 x(τ,+∞)dτ is a strictly

positive vector and (12.58) holds.
Now we shall show that if there exists a strictly positive vector λ such that (12.58)

holds then the positive system (12.52) is asymptotically stable. It is well-known that
the positive system (12.52) with B = 0 is asymptotically stable if and only if the
corresponding transpose positive system

ẋ(t, i+ 1) = AT
0 x(t, i)+ AT

1 ẋ(t, i)+ AT
2 x(t, i+ 1),

t ∈ R+, i ∈ Z+, (12.61)

is asymptotically stable. As a candidate for a Lapunov function for the positive
system (12.61) we choose

V (t,x(i)) = xT (t, i)λ , λ > 0, (12.62)

which is positive for every nonzero x(t, i)∈Rn
+. Using (12.62) and (12.61) we obtain

ΔV̇ (t,x(i)) = V̇ (t,x(i+ 1))− V̇(t,x(i)) = ẋT (t, i+ 1)λ − ẋT (t, i)λ
= ẋT (t, i)[A1 − In]λ + xT (t, i)A0λ + xT (t, i+ 1)A2λ (12.63)

≤
{

xT (t, i)(A0 + A2)λ for x(t, i) ≥ x(t, i+ 1)
xT (t, i+ 1)(A0 + A2)λ for x(t, i) < x(t, i+ 1)

since by assumption [A1 − In]λ < 0. If (12.58) holds then from (12.63) we have
ΔV̇ (t,x(i)) < 0 and the positive system is asymptotically stable. ��
Remark 12.5. As the strictly positive vector λ we may choose the equilibrium point
(12.55) since for λ = xe we have

(A0 + A2)λ = −(A0 + A2)(A0 + A2)−11n = −1n. (12.64)

Theorem 12.9. The positive system (12.52) is asymptotically stable if and only if
both matrices

A1 − In, A0 + A2, (12.65)

are Hurwitz Metzler matrices.
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Proof. From Remark 12.4 it follows that the positive system (12.52) is asymptoti-
cally stable only if the matrix A1 − In is Hurwitz Metzler matrix. By Theorem 12.8
the positive system is asymptotically stable if and only if there exists a strictly posi-
tive vector λ such that (12.58) holds but this is equivalent that the matrix A0 +A2 is
Hurwitz Metzler matrix. ��
To test of the matrices (12.65) are Hurwitz Metzler matrices the following theorem
is recommended [211, 77].

Theorem 12.10. The matrix A ∈R
n×n is a Hurwitz Metzler matrix if and only if one

of the following equivalent conditions is satisfied:

a) all coefficients a0, . . . ,an−1 of the characteristic polynomial

det[Ins−A] = sn + an−1sn−1 + ...+ a1s+ a0, (12.66)

are positive, i.e. ai ≥ 0, i = 0,1, . . . ,n−1,
b) the diagonal entries of the matrices

A(k)
n−k for k = 1, . . . ,n−1, (12.67)

are negative, where

A(0)
n = A =

⎡
⎢⎢⎣

a(0)
11 . . . a(0)

1,n
...

. . .
...

a(0)
n,1 . . . a(0)

n,n

⎤
⎥⎥⎦=

[
A(0)

n−1 b(0)
n−1

c(0)
n−1 a(0)

n,n

]
, (12.68)

A(0)
n−1 =

⎡
⎢⎢⎣

a(0)
11 . . . a(0)

1,n−1
...

. . .
...

a(0)
n−1,1 . . . a(0)

n−1,n−1

⎤
⎥⎥⎦ ,

b(0)
n−1 =

⎡
⎢⎢⎣

a(0)
1,n
...

a(0)
n−1,n

⎤
⎥⎥⎦ , c(0)

n−1 = [ a(0)
n,1 . . . a(0)

n,n−1 ],

A(k)
n−k = A(n−1)

n−k − b(k−1)
n−k c(k−1)

n−k

a(k−1)
n−k+1,n−k+1

=

⎡
⎢⎢⎣

a(k)
11 . . . a(k)

1,n−k
...

. . .
...

a(k)
n−k,1 . . . a(k)

n−k,n−k

⎤
⎥⎥⎦

A(k)
n−k =

[
A(k)

n−k−1 b(k)
n−k−1

c(k)
n−k−1 a(k)

n−k,n−k

]
,

b(k)
n−k−1 =

⎡
⎢⎢⎣

a(k)
1,n−k

...

a(k)
n−k−1,n−k

⎤
⎥⎥⎦ , c(k)

n−k−1 = [ a(k)
n−k,1 . . . a(k)

n−k,n−k−1 ],

for k = 0,1, . . . ,n−1.



12.4 Stability of the Positive General Model 281

To check the stability of the positive system (12.52) the following procedure can be
used.

Procedure 12.1 ENUMERATE OD NOWEJ LINII

Step 1. Check if at least one diagonal entry of the matrix A1 ∈ R
n×n
+ is equal or

greater than 1. If this holds then positive system (12.52) is unstable [77].
Step 2. Using Theorem 12.10 check if the matrix A1− In is Hurwitz Metzler matrix.

If not the positive system (12.52) is unstable.
Step 3. Using Theorem 12.10 check if the matrix A0 + A2 is Hurwitz Metzler ma-

trix. If yes the positive system (12.52) is asymptotically stable.

Example 12.2. Consider the positive system (12.52) with the matrices

A0 =
[

0.2 0.1
0.1 0.3

]
, A1 =

[
0.4 0.2
0.1 0.3

]
, A2 =

[−0.5 0.1
0.2 −0.6

]
. (12.69)

By Theorem 12.2 the system is positive since A2 ∈ Mn, A0,A1 ∈ R
n×n
+ and

A0 + A1A2 =
[

0.04 0.02
0.11 0.13

]
∈ R

2×2
+ .

Using Procedure 12.1 we obtain the following

Step 1. All diagonal entries of the matrix A1 are less than 1.
Step 2. The matrix A1 − In is Hurwitz since the coefficient of the polynomial

det[I2s−A1 + In] =
∣∣∣∣ s+ 0.6 −0.2
−0.1 s+ 0.7

∣∣∣∣= s2 + 1.3s+ 0.4,

are positive.
Step 3. The matrix

A = A0 + A2 =
[−0.3 0.2

0.3 −0.3

]
,

is also Hurwitz since (using condition b) of Theorem 12.10)

A(1)
1 = −0.3 +

0.2 ∗ 0.3
0.3

= −0.1 < 0.

By Theorem 12.9 the positive system (12.52) with (12.69) is asymptotically stable.
The polynomial (12.56) for positive system has the form

det[I2s(z+ 1)−A0−A1s−A2(z+ 1)]

=
∣∣∣∣ s(z+ 1)−0.2−0.4s+0.5(z+1) −0.1−0.2s−0.1(z+1)

−0.1−0.1s−0.2(z+1) s(z+ 1)−0.3−0.3s+0.6(z+ 1)

∣∣∣∣
= s2z2 + 1.3s2z+ 1.1sz2 + 1.26sz+ 0.28z2 + 0.26z+ 0.4s2 + 0.31s+ 0.03.

All coefficient of the polynomial are positive. Therefore, by Theorem 12.9 the pos-
itive system is also asymptotically stable.



282 12 Positive Continuous-Discrete Linear Systems

It is well-known [77] that substituting A0 = 0, B = 0 in (12.52) we obtain
the autonomous second Fornasini-Marchesini continuous-discrete linear 2D model
(system)

ẋ(t, i+ 1) = A1ẋ(t, i)+ A2x(t, i+ 1), t ∈ R+, i ∈ Z+. (12.70)

The autonomous Roesser type continuous-discrete model has the form [77]
[

ẋh(t, i)
xv(t, i+ 1)

]
=
[

A11 A12

A21 A22

][
xh(t, i)
xv(t, i)

]
, t ∈ R+, i ∈ Z+, (12.71)

where ẋ(t, i) = ∂x(t,i)
∂ t , xh(t, i) ∈ Rn1 and xv(t, i) ∈ Rn2 are the horizontal and vertical

vectors and Akl ∈ Rnk×nl , k, l = 1,2. The model (12.71) is positive if and only if [77]
A11 is a Metzler matrix and A12 ∈ R

n1×n2
+ , A21 ∈ R

n2×n1
+ , A22 ∈ R

n2×n2
+ . The positive

model (12.71) is a particular case of the model (12.70) for [77]

A1 =
[

0 0
A21 A22

]
, A2 =

[
A11 A12

0 0

]
. (12.72)

Theorem 12.11. The positive Roesser type continuous-discrete model (12.71) is
asymptotically stable if and only if the coefficients of the polynomial

det

[
In1s(z+ 1)−A11(z+ 1) −A12(z+ 1)

−A21s In2s(z+ 1)−A22s

]

= sn1zn2 + ân1,n2−1sn1 zn2−1 + ân1−1,n2sn1−1zn2 (12.73)

+ · · ·+ â11sz+ â10s+ â01z+ â00,

are positive.

Proof. To transform the model (12.71) to the model (12.70) we perform the follow-
ing two operations:

1) In the equation

ẋh(t, i) = [ A11 A12 ]
[

xh(t, i)
xv(t, i)

]
,

we substitute i by i+ 1.
2) We differentiate with respect to t the equation

xv(t, i+ 1) = [ A21 A22 ]
[

xh(t, i)
xv(t, i)

]
.

Note that to operation 1) corresponds the multiplication of the z-transform by z and
to the operation 2) the multiplication of the Laplace transform by s. These operations
do not change the asymptotic stability of the positive system (model). To shift the
unit circle of the complex plane in the left half of the complex plane we replace z by
z+ 1.
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Taking into account
[

In1sz−A11z −A12z
−A21s In2s(z+ 1)−A22s

]
=
[

In1z 0
0 In2s

][
In1s−A11 −A12

−A21 In2(z+ 1)−A22

]

and Theorem 12.10 we conclude that the positive Roesser type model (12.71) is
asymptotically stable if and only if all coefficients of the polynomial (12.73) are
positive. ��
Example 12.3. Consider the positive scalar model (12.71) with [26]

A1 =
[

0 0
a21 a22

]
, A2 =

[
a11 a12

0 0

]
,

a11 < 0,
a12 ≥ 0,

a21 ≥ 0,
a22 ≥ 0.

(12.74)

The polynomial (12.73) for (12.74) has the form

det

[
s(z+ 1)−a11(z+ 1) −a12(z+ 1)

−a21s s(z+ 1)−a22s

]

= s2z2 +(2−a22)s2z−a11sz2 +(1−a22)s2 (12.75)

+(−2a11 + a11a22 −a12a21)sz+(a11a22 −a12a21 −a11)s,

and its coefficients are positive if and only if a11 < 0, 0 ≤ a22 < 1 and a11a22 −
a12a21 > a11. This result is consistent with the one obtained in [26] by different
method.

Theorem 12.12. The positive linear continuous-discrete 2D system (12.52) is asymp-
totically stable if and only if all coefficients of the polynomial

det[Ins(z+ 1)−A0−A1s−A2(z+ 1)]
= snzn + an,n−1snzn−1 + an−1,nsn−1zn (12.76)

+ · · ·+ a10s+ a01z+ a00,

are positive, i.e.

ak,l > 0 for k, l = 0,1, . . . ,n(an,n = 1). (12.77)

Proof. It is well-known that the zeros w1, . . . ,wn of the characteristic polynomial

det[Inw−A] = wn + an−1wn−1 + · · ·+ a1w+ a0, (12.78)

located in the unit circle in the left half of the complex plane w can be shifted into
the unit circle of the complex plane z by the substitution w = z + 1 (Fig. 12.5) i.e.
the zeros z1, . . . ,zn (zk = wk + 1, k = 1, . . . ,n) of the characteristic polynomial

det[In(z+ 1)−A] = zn + ân−1zn−1 + · · ·+ â1z+ â0, (12.79)

are located in the unit circle of the complex plane.
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Im

Re
−1

Im

Re
1

wk

w1

w2

zk

z1

z2zk = wk + 1

z1 = w1 + 1

z2 = w2 + 1

Fig. 12.5 Shifting the zeros w into unit circle of the complex plane.

Therefore, the positive continuous-discrete 2D system (12.52) is asymptotically
stable if and only if the coefficients of the polynomial (12.76) are positive. ��
Theorem 12.13. [77] The positive linear system

ẋ = Ax,A ∈ Mn, (12.80)

is asymptotically stable if and only if the characteristic polynomial

det[Ins−A] = sn + an−1sn−1 + . . .+ a1s+ a0, (12.81)

has positive coefficients, i.e. ak > 0 for k = 0,1, . . . ,n−1.

Lemma 12.1. [52] Nonnegative matrix A ∈ R
n×n
+ is asymptotically stable (nonneg-

ative Schur matrix) if and only if the Metzler matrix A− In is asymptotically stable
(Metzler Hurwitz matrix).

Example 12.4. Consider system (12.52) with the matrices

A0 =
[

0.2 0
0.1 0.1

]
, A1 =

[
0.4 0
0.5 0.3

]
, A2 =

[−0.3 0
1 −0.2

]
. (12.82)

The matrices (12.82) satisfy the conditions (12.13) since

A0 + A1A2 =
[

0.08 0
0.25 0.04

]
∈ R

2×2
+ , (12.83)

and then the system is positive.

In this case the polynomial (12.76) has the form

det[Ins(z+ 1)−A0−A1s−A2(z+ 1)] (12.84)

= det

[
s(z+ 1)−0.2−0.4s+0.3(z+1) 0

−0.1−0.5s− (z+ 1) s(z+ 1)−0.1−0.3s+0.2(z+1)

]

= s2z2 + 1.3s2z+ 0.5sz2 + 0.42s2 + 0.06z2 + 0.53sz+ 0.13s+ 0.05z+0.01.
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All coefficient of the polynomial (12.84) are positive. Therefore, by Theorem
12.12 the positive continuous-discrete system (12.52) with (12.82) is asymptotically
stable.

Theorem 12.14. The positive continuous-discrete 2D linear system (12.52) is un-
stable if one of the following conditions is satisfied

a) det[−(A0 + A2)] ≤ 0,
b) det[−A2] ≤ 0,
c) det[In −A1] ≤ 0.

Proof. Substitution s = z = 0 into (12.76) yields

det[−(A0 + A2)] = a00. (12.85)

If the condition a) is satisfied then from (12.85) we have a00 ≤ 0 and by Theorem
12.13 the system (12.52) is unstable. Substituting s = 0 into (12.76) we obtain

det[−A2z− (A0 + A2)] = a0,nzn + · · ·+ a01z+ a00, (12.86)

and det[−A2] = a0,n. If the condition b) is met then a0n ≤ 0 and by Theorem 12.12
the system (12.52) is unstable. Similarly, substituting z = 0 into (12.76) we obtain

det[(In −A1)s− (A0 + A2)] = an,0sn + · · ·+ a10s+ a00, (12.87)

and det[(In −A1)] = an,0. If the condition c) is met then an,0 ≤ 0 and by Theorem
12.13 the system (12.52) is unstable. ��
Example 12.5. Consider the system (12.52) with the matrices

A0 =
[

0.5 0.3
0.4 0.4

]
, A1 =

[
0.2 0.1
0.1 0.3

]
, A2 =

[−0.3 0.1
0.2 −0.4

]
. (12.88)

The matrices (12.88) satisfy the conditions 12.13 since

A0 + A1A2 =
[

0.46 0.28
0.43 0.29

]
∈ R

2×2
+ , (12.89)

and then the system is positive.

Using (12.88) we obtain

det[−(A0 + A2)] = det

[−0.2 −0.4
−0.6 0

]
= −0.24,

det[−A2] = det

[
0.3 −0.1
−0.2 0.4

]
= 0.1,

det[In −A1]det

[
0.8 −0.1
−0.1 0.7

]
= 0.55,
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and the condition a) of Theorem 12.14 is satisfied. Therefore, the positive system
(12.52) with (12.88) is unstable.

In this case the polynomial (12.76) has the form

det[Ins(z+ 1)−A0−A1s−A2(z+ 1)] (12.90)

= det

[
sz+ 0.8s+ 0.3z−0.2 −0.1s−0.1z−0.4
−0.1s−0.2z−0.6 sz+ 0.7s+ 0.4z

]

= s2z2 + 1.5s2z+ 0.7sz2 + 0.55s2 + 0.1z2 + 0.3sz−0.24s−0.22z−0.24,

and by Theorem 12.13 the system is also unstable.

12.5 Robust Stability of Linear Continuous-Discrete Linear
System

Following [26] we shall consider the new general 2D model of scalar continuous-
discrete linear system (for i ∈ Z+ and t ∈ R+)

ẋ1(t, i) = a11x1(t, i)+ a12x2(t, i)+ b1u(t, i), (12.91a)

x2(t, i+ 1) = a21x1(t, i)+ a22x2(t, i)+ b2u(t, i), (12.91b)

y(t, i) = c1x1(t, i)+ c2x2(t, i)+ du(t, i), (12.91c)

where ẋ1(t, i) = ∂x1(t, i)/∂ t, x1(t, i)∈R, x2(t, i)∈ R, u(t, i)∈R, y(t, i)∈ R and a11,
a12, a21, a22, b1, b2, c1, c2 and d are constant coefficients.

The boundary conditions for (12.91a) and (12.91b) have the form

x1(0, i) = x1(i), i ∈ Z+ and x2(t,0) = x2(t), t ∈ R+. (12.92)

The model (12.91) can be written in the form
[

ẋ1(t, i)
x2(t, i+ 1)

]
=
[

a11 a12

a21 a22

][
x1(t, i)
x2(t, i)

]
+
[

b1

b2

]
u(t, i), (12.93a)

y(t, i) =
[

c1 c2
][ x1(t, i)

x2(t, i)

]
+ du(t, i). (12.93b)

The general model (12.91) is called positive (internally) if x1(t, i)≥ 0 and x2(t, i)≥ 0
for all boundary conditions x1(i) ≥ 0, i ∈ Z+ and x2(t) ≥ 0, t ∈ R+, and all inputs
u(t, i) ≥ 0, t ∈ R+, i ∈ Z+.

The general model (12.91) is positive (internally) if and only if

a11 ∈ R, a12, a21, a22 ≥ 0 and b1,b2 ≥ 0, c1, c2 ≥ 0, d ≥ 0. (12.94)

Characteristic function of the model (12.91) (and (12.93)) is a polynomial in two
independent variables s and z, of the form
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w(s,z) = det

[
s−a11 −a12

−a21 z−a22

]

= sz− sa22 − za11 +(a11a22 −a12a21). (12.95)

The general model (12.91) is called asymptotically stable (or Hurwitz-Schur stable)
if for u(t, i) ≡ 0 and bounded boundary conditions (12.92) the condition x(t, i) → 0
holds for t, i → ∞.

From the papers [8, 67] we have the following theorem.

Theorem 12.15. The general model (12.91) is asymptotically stable if and only if

w(s,z) �= 0, Res ≥ 0, |z| ≥ 1. (12.96)

The polynomial (12.95) satisfying condition (12.96) is called continuous-discrete
stable (C-D stable) or Hurwitz-Schur stable [8].

Now we consider the system (12.91) with uncertain coefficients a11, a12, a21, a22

and assume that
aik ∈ [a−ik , a+

ik], i,k = 1,2, (12.97)

where a−ik and a+
ik with a−ik < a+

ik (i,k = 1,2) are given real numbers.
By generalization to the case of systems with uncertain parameters one obtains

the following definition and theorems.

Definition 12.6. The general uncertain model (12.91) is called robustly stable if for
u(t, i) ≡ 0 and bounded boundary conditions (12.92) the condition x(t, i) → 0 holds
for t, i → ∞ and for all coefficients aik, i,k = 1,2, satisfying (12.97).

Theorem 12.16. The general uncertain model (12.91), (12.97) is positive if and
only if

a11 ∈ [a−11,a
+
11] ⊂ R, a−12,a

−
21,a

−
22 ≥ 0, (12.98a)

and
b1,b2 ≥ 0, c1,c2 ≥ 0, d ≥ 0. (12.98b)

Theorem 12.17. The general uncertain model (12.91) is robustly stable if and only
if condition (12.96) holds for all coefficients aik, i,k = 1,2, of the polynomial (12.95)
satisfying (12.97).

In this section following [26] a simple analytical conditions for stability and for ro-
bust stability of general model (12.91) of continuous-discrete linear systems, stan-
dard (i.e. non-positive) and positive will be presented.

Theorem 12.18. The general model (12.91) is asymptotically stable if and only if
the following two conditions hold

w(s,exp( jω)) �= 0, Re s ≥ 0, ∀ω ∈ [0,2π ], (12.99)

w( jy,z) �= 0, |z| ≥ 1, ∀y ∈ [0,∞). (12.100)
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Proof. From [67] it follows that (12.96) is equivalent to the conditions

w(s,z) �= 0, Res ≥ 0, |z| = 1, (12.101)

w(s,z) �= 0, Res = 0, |z| ≥ 1. (12.102)

It is easy to see that conditions (12.101) and (12.102) can be written in the forms
(12.99) and (12.100), respectively. ��
Solving the equation w(s,z) = 0 for z = exp( jω), where w(s,z) has the form (12.95),
we obtain

s( jω) = a11 +
a12a21

exp( jω)−a22
. (12.103)

From (12.103) it follows that s( jω) is a discontinuous function in the points ω = 0
and ω = π for a22 = 1 and a22 = −1, respectively. Therefore, for excluding this
discontinuity, we assume that a22 �= ±1.

Substituting ω = 0 and ω = π in (12.103) we obtain, respectively,

s0 = s( j0) = a11 +
a12a21

1−a22
, (12.104)

sπ = s( jπ) = a11 − a12a21

1 + a22
. (12.105)

Let s( jω) = u(ω)+ jv(ω), where u(ω) = Res( jω), v(ω) = Ims( jω). It is easy to
check that [u(ω)− sc]2 + v2(ω) = r2, where sc = 0.5(s0 + sπ ), r = |s0 − sc|. This
means that the plot of s( jω), ω ∈ [0, 2π ], is a circle with the center sc and radius r.
Hence, the condition Res( jω) < 0 holds for all ω ∈ [0,2π ] if and only if

max

{
a11 − a12a21

a22 −1
, a11 − a12a21

1 + a22

}
< 0. (12.106)

From the above we have the following lemma.

Lemma 12.2. For the general model (12.91) the condition (12.99) is equivalent to
(12.106).

Now we consider the condition (12.100).

Lemma 12.3. For the general model (12.91) the condition (12.100) is equivalent to

−1 < a22 < 1 and a2
11 − (a11a22 −a12a21)2 > 0. (12.107)

Proof. From (12.95) for s = jy we have that the root of the equation w( jy,z) = 0
has the form

z( jy) =
jya22 − (a11a22 −a12a21)

jy−a11
. (12.108)
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The condition (12.100) holds if and only if |z( jy)| < 1, ∀y ∈ R, i.e.

y2(1−a2
22)+ a2

11 − (a11a22 −a12a21)2 > 0, ∀y ∈ R. (12.109)

It is easy to see that (12.109) is equivalent to (12.107). ��
Theorem 12.19. The general model (12.91) is asymptotically stable if and only if

−1 < a22 < 1, (12.110)

and (12.106) is satisfied, or equivalently, one of the following conditions holds:

a12a21 ≥ 0,a11 <
a12a21

a22 −1
, (12.111)

a12a21 < 0,a11 <
a12a21

1 + a22
. (12.112)

Proof. It follows directly from Theorem 12.18 and Lemmas 12.2 and 12.3. ��
Example 12.6. Consider the model (12.91) with a12 = −1 and a21 = 1. Check sta-
bility of the model for a22 = −0.5 and a22 = 0.5.

In this case a12a21 = −1 < 0 and the necessary condition (12.110) holds. From
(12.112) it follows that the model is asymptotically stable if and only if:

a) a11 < −2 for a22 = −0.5,
b) a11 < −2/3 for a22 = 0.5.

In the case of positive general model (12.91), from (12.94) and Theorem 12.19 we
have the following theorem.

Theorem 12.20. The positive general model (12.91) is asymptotically stable if and
only if

a12,a21 ≥ 0, 0 < a22 < 1 and a11 <
a12a21

a22 −1
. (12.113)

Remark 12.6. Note that the conditions (12.113) follows immediately also from The-
orem 12.17.

Example 12.7. Let us consider positive model (12.91) with a12 = a21 = 1. Check
stability of the model for a22 = 0 and a22 = 0.5.

From Theorem 12.20 we have that the model is positive and asymptotically stable
if and only if:

a) a11 < −1 for a22 = 0,
b) a11 < −2 for a22 = 0.5.

Let us consider two real interval numbers A = [a−,a+], a− < a+ and B = [b−,b+],
b− < b+.

Recall, that real interval number X = [x−,x+] is the set of real numbers x such
that x− ≤ x ≤ x+.
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It is well known from the interval analysis that (see [1, 7] for example)

A−B = {a−b : a ∈ A,b ∈ B} = [a−−b+,a+−b−], (12.114)

A ·B = {a ·b : a ∈ A,b ∈ B} = [α,β ], (12.115)

where

α = min(a−b−,a−b+,a+b−,a+b+), (12.116)

β = max(a−b−,a−b+,a+b−,a+b+), (12.117)

and

A/B = {a/b : a ∈ A,b ∈ B} = [a−,a+] · [1/b+,1/b−],0 /∈ B. (12.118)

Hence, for any fixed a12 ∈ [a−12,a
+
12] and a21 ∈ [a−21,a

+
21] we have a12a21 ∈ [α−

12,α
+
12],

where

α−
12 = min(a−12a−21, a−12a+

21, a+
12a−21, a+

12a+
21), (12.119a)

α+
12 = max(a−12a−21, a−12a+

21, a+
12a−21, a+

12a+
21). (12.119b)

From (12.110) and (12.97) it follows that the necessary condition for robust stability
has the form

−1 < a−22 < a+
22 < 1. (12.120)

Using the rules (12.115), (12.118) we obtain the following:

a12a21

a22 −1
∈ [α1,β1], (12.121)

where

α1 = min

(
α−

12

a+
22 −1

,
α−

12

a−22 −1
,

α+
12

a+
22 −1

,
α+

12

a−22 −1

)
, (12.122)

β1 = max

(
α−

12

a+
22 −1

,
α−

12

a−22 −1
,

α+
12

a+
22 −1

,
α+

12

a−22 −1

)
, (12.123)

and a12a21

a22 + 1
∈ [α2,β2], (12.124)

where

α2 = min

(
α−

12

a+
22 + 1

,
α−

12

a−22 + 1
,

α+
12

a+
22 + 1

,
α+

12

a−22 + 1

)
, (12.125)

β2 = max

(
α−

12

a+
22 + 1

,
α−

12

a−22 + 1
,

α+
12

a+
22 + 1

,
α+

12

a−22 + 1

)
. (12.126)
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Theorem 12.21. The general uncertain model (12.91), (12.97) is robustly stable if
and only if the necessary condition (12.120) is satisfied and

a+
11 < min(α1,α2). (12.127)

Proof. Using the rule (12.114) and (12.97) with i = k = 1, (12.121), (12.124), from
(12.106) we obtain the condition max{a+

11−α1,a
+
11−α2}< 0, which can be written

in the form (12.127). The proof follows from Theorem 12.19. ��
From the above considerations the following algorithm for robust stability analysis
of the standard uncertain general model (12.91), (12.97) follows.

Procedure 12.2 ENUMERATE OD NOWEJ LINII

Step 1. Compute α−
12, α+

12 from (12.119) and α1, α2 from (12.122) and (12.125)
respectively.
Step 2. Check satisfaction of the conditions of Theorem 12.21.

Example 12.8. Find values of coefficient a11 for which the uncertain general model
(12.91) with a12 ∈ [−1,2], a21 ∈ [2,3] and a22 ∈ [−0.5,0.5] is robustly stable.

According to Procedure 12.2 we have:

Step 1. From (12.119) and (12.122), (12.125) one obtains: α−
12 = −3, α+

12 = 6,
α1 = −12, α2 = −6.
Step 2. In this case the necessary condition (12.120) holds and from (12.127)
we have a+

11 < min(α1,α2) =−12. This means that the model is robustly stable
if and only if a11 ∈ (−∞,−12).

Now we consider the following special cases:

a) [α−
12,α

+
12] ⊂ [0,∞)⇔ α−

12 ≥ 0,
b) [α−

12,α
+
12] ⊂ (−∞,0]⇔ α+

12 ≤ 0,

where α−
12 and α+

12 are computed form (12.119).
Assume that the necessary condition (12.120) holds. From (12.122) and (12.125)

we obtain the following:

a) if α−
12 ≥ 0 then

α1 =
α+

12

a+
22 −1

< 0, α2 =
α−

12

a+
22 + 1

> 0, (12.128)

b) if α+
12 ≤ 0 then

α1 =
α+

12

a−22 −1
> 0, α2 =

α−
12

a−22 + 1
< 0. (12.129)

Hence, from Theorem 12.21 we have the following lemmas.
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Lemma 12.4. The standard uncertain general model (12.91), (12.97) with α−
12 ≥ 0

is robustly stable if and only if

−1 < a−22 < a+
22 < 1 and a+

11 <
α+

12

a+
22 −1

. (12.130)

Lemma 12.5. The standard uncertain general model (12.91), (12.97) with α+
12 ≤ 0

is robustly stable if and only if

−1 < a−22 < a+
22 < 1 and a+

11 <
α−

12

a−22 + 1
. (12.131)

In the case of positive uncertain model (12.91), (12.97) the conditions (12.98) holds.
In this case α−

12 ≥ 0. From (12.98) and Lemma 12.4 we have the following theorem.

Theorem 12.22. The uncertain general model (12.91), (12.97) is positive and ro-
bustly stable if and only if

0 ≤ a−22 < a+
22 < 1 and a+

11 <
α+

12

a+
22 −1

. (12.132)

Example 12.9. Consider the general uncertain model (12.91) with a12 ∈ [−5,−1],
a21 ∈ [2,4], a22 ∈ [−0.6,0.6]. Find values of the coefficient a11 for which the model
is robustly stable.

In this case from (12.119) we have α−
12 = −20, α+

12 = −2. Because α+
12 < 0

and (12.120) holds, we apply condition (12.131) of Lemma 12.5. From this condi-
tion we have that the model is robustly stable if and only if a+

11 < α−
12/(a−22 + 1) =

−20/0.4 = −50. The same result one obtains from Procedure 12.2.

Example 12.10. Find values of the coefficient a11 for which is robustly stable the
positive uncertain general model (12.91) with a12 ∈ [1,4], a21 ∈ [2,6] and a22 ∈
[0,0.5].

From (12.119) and Theorem 12.22 we obtain α−
12 = 2, α+

12 = 24 and a+
11 <

−24/0.5 = −48. This means that the positive model is robustly stable if and only if
a11 ∈ (−∞,−48). The same result one obtains from Procedure 12.2.

The considerations can be extended to the matrix general model of continuous-
discrete linear systems.

12.6 Positive Realization Problem for Continuous-Discrete
Linear Systems

12.6.1 Problem Formulation

Consider a continuous-discrete linear system described by the 2D general model
[77]
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ẋ(t, i+ 1) = A0x(t, i)+ A1ẋ(t, i)+ A2x(t, i+ 1)
+ B0u(t, i)+ B1u̇(t, i)+ B2u(t, i+ 1), (12.133a)

y(t, i) = Cx(t, i)+ Du(t, i), (12.133b)

t ∈ R+ = [0,+∞], i ∈ Z+ = {0,1, . . .},
where ẋ(t, i) = ∂x(t,i)

∂ t , x(t, i) ∈ R
n, u(t, i) ∈ R

m, y(t, i) ∈ R
p are the state, input and

output vectors and

Ak ∈ R
n×n, Bk ∈ R

n×m, k = 0,1,2; C ∈ R
p×n, D ∈ R

p×m. (12.133c)

Boundary conditions for (12.133a) have the form

x(0, i), i ∈ Z+, and x(t,0), ẋ(t,0), t ∈ R+. (12.134)

Definition 12.7. The continuous-discrete system (12.133a) is called internally posi-
tive if x(t, i)∈ Rn

+ and y(t, i) ∈R
p
+, t ∈R+, i ∈Z+ for arbitrary boundary conditions

x(0, i) ∈ R
n
+, i ∈ Z+, x(t,0) ∈ R

n
+, ẋ(t,0) ∈ R

n
+, t ∈ R+, (12.135)

and any inputs

u(t, i) ∈ R
m
+, u̇(t, i) ∈ R

m
+, t ∈ R+, i ∈ Z+. (12.136)

The transfer matrix T (s,z) of the continuous-discrete system (12.133a) is given by

T (s,z) = C [Insz−A0 −A1s−A2z]−1 (B0 + B1s+ B2z)+D ∈ R
p×m(s,z), (12.137)

where Rp×m(s,z) is the set of p×m rational matrices in s and z with real coefficients.

Theorem 12.23. The continuous-discrete system (12.133a) is internally positive if
and only if

A2 ∈ Mn, (12.138a)

A0,A1 ∈R
n×n
+ , A0+A1A2 ∈R

n×n
+ , B0,B1,B2 ∈R

n×m
+ , C ∈R

p×n
+ , D∈R

p×m
+ ,

(12.138b)
where Mn is the set of n×n Metzler matrices (with nonnegative off-diagonal entries).

From (12.137) we have
D = lim

s,z→∞
T (s,z), (12.139)

since
lim

s,z→∞
[Insz−A0 −A1s−A2z]−1 = 0

Knowing the matrix D we can find the strictly positive transfer matrix

Tsp(s,z) = T (s,z)−D. (12.140)
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Definition 12.8. IThe matrices (12.133c) satisfying the conditions (12.138) and
(12.137) are called positive realization of the transfer matrix T (s,z).

The realization problem can be stated as follows. Given a rational matrix T (s,z) ∈
Rp×m(s,z), find its positive realization.

Sufficient conditions for the existence of a positive realization will be established
and a procedure for computation of a positive realization for a given transfer matrix
T (s,z) will be given.

12.6.2 SISO Systems

First we shall solve the problem for single-input single-output (SISO) continuous-
discrete systems using the state variable diagram method [77, 169].

Let a given transfer function of the SISO continuous-discrete system have the
form

T (s,z) =
bq1,q2sq1zq2 + bq1,q2−1sq1 zq2−1 + · · ·+ b11sz+ b10s+ b01z+ b00

sq1zq2 −aq1,q2−1sq1 zq2−1 −·· ·−a11sz−a10s−a01z−a00

=
n(s,z)
d(s,z)

∈ R
p×m(s,z), (12.141)

which by definition is the ratio of Y (s,z) and U(s,z) for zero boundary conditions,
where U(s,z) = Z {L [u(t, i)]}, Y (s,z) = Z {L [y(t, i)]} and L and Z are Laplace
and z-operators.

Using (12.139) and (12.140) we can find

D = lim
s,z→∞

T (s,z) = bq1,q2 , (12.142)

and the strictly proper transfer function

T (s,z) =
bq1,q2sq1zq2 + bq1,q2−1sq1zq2−1 + · · ·+ b11sz+ b10s+ b01z+ b00

sq1zq2 −aq1,q2−1sq1 zq2−1 −·· ·−a11sz−a10s−a01z−a00
−bq1,q2

=
bq1,q2−1sq1 zq2−1 + · · ·+ b11sz+ b10s+ b01z+ b00

sq1zq2 −aq1,q2−1sq1 zq2−1 −·· ·−a11sz−a10s−a01z−a00
, (12.143)

where bkl = bkl + bq1,q2akl , k = 0,1, . . . ,q1; l = 0,1, . . . ,q2; (k + l �= q1 + q2).

Multiplying the numerator and denominator of (12.143) by s−q1z−q2 we obtain

T (s,z) =
Y (s,z)
U(s,z)

=
bq1,q2−1z−1 + · · ·+ b11s1−q1z1−q2 + · · ·+ b00s−q1z−q2

1−aq1,q2−1z−1 −·· ·−a11s1−q1z1−q2 −·· ·−a00s−q1z−q2
.

(12.144)
Defining

E(s,z) =
U(s,z)

1−aq1,q2−1z−1 −·· ·−a11s1−q1z1−q2 −·· ·−a00s−q1z−q2
. (12.145)



12.6 Positive Realization Problem for Continuous-Discrete Linear Systems 295

From (12.145) and (12.144) we have

E(s,z) = U(s,z)+
(
aq1,q2−1z−1 + · · ·+ a11s1−q1z1−q2 + · · ·+ a00s−q1z−q2

)
E(s,z),
(12.146)

and

Y (s,z) =
[
bq1,q2−1z−1 + · · ·+ b11s1−q1z1−q2 + · · ·+ b00s−q1z−q2

]
E(s,z). (12.147)

Using (12.146) and (12.147) we may draw the state variable diagram shown on
Fig. 12.6.

The number of integration elements 1/s is equal to q1 and the number of delay
elements 1/z is equal to 2q2. The outputs of delay elements are chosen as the vari-
ables xq1+1(t, i), . . . ,xq1+q2(t, i),xq1+q2+1(t, i), . . . ,xq1+2q2(t, i). Using the state vari-
able diagram we may write the equations

ẋ1(t, i) = x2(t, i),
ẋ2(t, i) = x3(t, i),

... (12.148a)

ẋq1−1(t, i) = xq1(t, i),
ẋq1(t, i) = a0,q2x1(t, i)+ a1,q2x2(t, i)+ · · ·+ aq1−1,q2xq1(t, i)

+x q1+1(t, i)+ u(t, i),
xq1+1(t, i+ 1) = a0,q2−1x1(t, i)+ a1,q2−1x2(t, i)+ · · ·+ aq1−1,q2−1xq1(t, i)

+ aq1,q2−1xq1+1(t, i)+ xq2+2(t, i)+ aq1,q2−1u(t, i),
...

xq1+q2−1(t, i+ 1) = a01x1(t, i)+ a11x2(t, i)+ · · ·+ aq1−1,1xq1(t, i)
+ aq1,1xq1+1(t, i)+ xq1+q2(t, i)+ aq1,1u(t, i),

xq1+q2(t, i+ 1) = a00x1(t, i)+ a10x2(t, i)+ · · ·+ aq1−1,0xq1(t, i)
+ aq1,0xq1+1(t, i)+ aq1,0u(t, i), (12.148b)

xq1+q2+1(t, i+ 1) = â00x1(t, i)+ â10x2(t, i)+ · · ·+ âq1−1,0xq1(t, i)
+ bq1,0xq1+1(t, i)+ bq1,0u(t, i),
...

xq1+2q2(t, i+ 1) = â0,q2−1x1(t, i)+ â1,q2−1x2(t, i)+ · · ·+ âq1−1,q2−1xq1(t, i)
+ bq1,q2−1xq1+1(t, i)+ xq1+2q2−1(t, i)+ bq1,q2−1u(t, i),

y(t, i) = b0,q2x1(t, i)+b1,q2x2(t, i)+ · · ·+bq1−1,q2xq1(t, i)+xq1+2q2(t, i), (12.148c)

where

akl = akl + aq1lakq2 , k = 0,1, . . . ,q1 −1;

âkl = bkl + bq1lakq2 , l = 0,1, . . . ,q2 −1, (12.148d)
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ẋ
q
1

1 s

x
q
1

a
q
1
,0

a
q
1
,1

a
q
1
,2

b̄ q
1
,0

b̄ q
1
,1

b̄ q
1
,2

1 s

x
q
1
−

1

a
q
1
−

1
,0

a
q
1
−

1
,1

a
q
1
−

1
,2

b̄ q
1
−

1
,0

b̄ q
1
−

1
,1

b̄ q
1
−

1
,2

a
q
1
−

1
,q

2
−

1

a
q
1
−

1
,q

2

a
q
1
−

2
,0

a
q
1
−

2
,1

a
q
1
−

2
,2

1 s

x
1

x
2

b̄ q
1
−

2
,0

b̄ q
1
−

2
,1

b̄ q
1
−

2
,2

a
q
1
−

2
,q

2
−

1

a
q
1
−

2
,q

2

a
0
,0

a
0
,1

a
0
,2

1 s

x
1

x
2

b̄ 0
,2

b̄ 0
,1

b̄ 0
,0

1 z

x
q
1
+

q
2
+

2
1 z

x
q
1
+

q
2
+

1
1 z

x
q
1
+

q
2
−

1
1 z

x
q
1
+

q
2

a
q
1
,q

2
−

1

a
0
,q

2
−

1

a
0
,q

2

x
q
1
+

1
1 z

x
q
1
+

2

b̄ q
1
−

1
,q

2

b̄ q
1
−

2
,q

2

b̄ 0
,q

2

1 z

x
q
1
+

2
q
2

y

Fig. 12.6 State variable diagram for transfer function (12.144)



12.6 Positive Realization Problem for Continuous-Discrete Linear Systems 297

Substituting in the equations (12.148a) i by i+ 1 and differentiating with respect to
t the equations (12.148b) we obtain the equation (12.133a) with

A0 = 0, B0 = 0, C =
[

C1 0 C3
] ∈ R

1×(q1+2q2),

A1 =

⎡
⎢⎣

0 0 0

A(1)
21 A(1)

22 0

A(1)
31 A(1)

32 A(1)
33

⎤
⎥⎦ ∈ R

(q1+2q2)×(q1+2q2),

A2 =

⎡
⎣A(2)

11 A(2)
12 0

0 0 0
0 0 0

⎤
⎦ ∈ R

(q1+2q2)×(q1+2q2),

B1 =

⎡
⎣ 0

B12

B13

⎤
⎦ ∈ R

(q1+2q2)×1, B2 =

⎡
⎣B21

0
0

⎤
⎦ ∈ R

(q1+2q2)×1,

where
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A(1)
21 =

⎡
⎢⎢⎢⎣

a0,q2−1 a1,q2−1 . . . aq1−1,q2−1
...

...
. . .

...
a0,1 a1,1 . . . aq1−1,1

a0,0 a1,0 . . . aq1−1,0

⎤
⎥⎥⎥⎦ ∈ R

q2×q1 , (12.149a)

A(1)
22 =

⎡
⎢⎢⎢⎢⎢⎣

aq1,q2−1 1 0 . . . 0
aq1,q2−2 0 1 . . . 0

...
...

...
. . .

...
aq1,1 0 0 . . . 1
aq1,0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

q2×q2 ,

A(1)
31 =

⎡
⎢⎢⎢⎣

â0,0 â1,0 . . . âq1−1,0

â0,1 â1,1 . . . âq1−1,1
...

...
. . .

...
â0,q2−1 â1,q2−1 . . . âq1−1,q2−1

⎤
⎥⎥⎥⎦ ∈ R

q2×q1 ,

A(1)
32 =

⎡
⎢⎢⎢⎢⎢⎣

bq1,0 0 0 . . . 0
bq1,1 0 0 . . . 0

...
...

...
. . .

...
bq1,q2−2 0 0 . . . 0
bq1,q2−1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

q2×q2 ,

A(1)
33 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

q2×q2 ,

A(2)
11 =

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

a0,q2 a1,q2 a2,q2 . . . aq1−1,q2

⎤
⎥⎥⎥⎦ ∈ R

q1×q1 ,

A(2)
12 =

⎡
⎢⎢⎢⎣

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
1 0 . . . 0

⎤
⎥⎥⎥⎦ ∈ R

q1×q2 ,
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B12 =

⎡
⎢⎢⎢⎣

aq1,q2−1
...

aq1,1

aq1,0

⎤
⎥⎥⎥⎦ ∈ R

q2×1, B13 =

⎡
⎢⎢⎢⎢⎢⎣

bq1,0

bq1,1
...

aq1,1

bq1,q2−1

⎤
⎥⎥⎥⎥⎥⎦
∈ R

q2×1,

B21 =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ ∈ R

q1×1

C1 =
[

b0,q2 b1,q2 . . . bq1−1,q2

] ∈ R
1×q1 ,

C3 =
[

0 . . . 0 1
] ∈ R

1×q2 .

Theorem 12.24. There exists a positive realization (12.149) of the transfer function
(12.141) if the following conditions are satisfied

a) akl ≥ 0 for k = 0,1, . . . ,q1; l = 0,1, . . . ,q2; k + l �= q1 + q2;
b) bkl ≥ 0 for k = 0,1, . . . ,q1; l = 0,1, . . . ,q2;

Proof. If the condition b) is met then D = bq1,q2 ≥ 0 and the coefficients of the
strictly proper transfer function (12.143) are nonnegative. From (12.149) it follows
that if the conditions a) and b) are satisfied then Ak ∈ R

n×n
+ , Bk ∈ R

n×m
+ , C ∈ R

p×n
+ ,

k = 0,1,2; D ≥ 0 and by Theorem 12.23 the realization (12.149) is positive. ��
From (12.149) we have the following corollary.

Corollary 12.1. If the conditions a) and b) of Theorem 12.24 are satisfied then there
exists a positive realization of the transfer function (12.141) with A0 = 0 and B0 = 0
and A2 ∈ R

n×n
+ .

Example 12.11. Find the positive realization of the transfer function

T (s,z) =
s2z2 + s2z+ s2 + z2 + z+ 2

s2z2 −2s2z− s2 − z2 −2z−1
. (12.150)

Using (12.139) and (12.140) we obtain

D = lim
s,z→∞

T (s,z) = 1, (12.151)

and the strictly proper transfer function

Tsp(s,z) = T (s,z)−1 =
3s2z+ 2s2 + 2z2 + 3z+ 3

s2z2 −2s2z− s2 − z2 −2z−1

=
3z−1 + 2z−2 + 2s−2 + 3s−2z−1 + 3s−2z−2

1−2z−1− z−2 − s−2 −2s−2z−1 − s−2z−2 .(12.152)
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In this case (12.146) and (12.147) have the form

E(s,z) = U(s,z)+
(
2z−1 + z−2 + s−2 + 2s−2z−1 + s−2z−2)E(s,z), (12.153)

and

Y (s,z) =
(
3z−1 + 2z−2 + 2s−2 + 3s−2z−1 + 3s−2z−2)E(s,z). (12.154)

Using (12.153) and (12.154) we may draw the state variable diagram shown on
Fig. 12.7.
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Fig. 12.7 State variable diagram for transfer function (12.152)

The outputs of the integration elements are chosen as the state variables x1(s,z),
x2(s,z) and the outputs of the delay elements as the state variables x3(s,z), x4(s,z),
x5(s,z), x6(s,z). From the state variable diagram we have the equations

ẋ1(t, i+ 1) = x2(t, i+ 1),
ẋ2(t, i+ 1) = x1(t, i+ 1)+ x3(t, i+ 1)+ u(t, i+ 1),
ẋ3(t, i+ 1) = 4ẋ1(t, i)+ 2ẋ3(t, i)+ ẋ4(t, i)+ 2u̇(t, i), (12.155)

ẋ4(t, i+ 1) = 2ẋ1(t, i)+ ẋ3(t, i)+ u̇(t, i),
ẋ5(t, i+ 1) = 5ẋ1(t, i)+ 2ẋ3(t, i)+ 2u̇(t, i),
ẋ6(t, i+ 1) = 6ẋ1(t, i)+ 3ẋ3(t, i)+ ẋ5(t, i)+ 3u̇(t, i),
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and
y(t, i) = 2x1(t, i)+ x6(t, i). (12.156)

The equations (12.155) and (12.156) can be written in the form (12.133a), where

x(t, i) =
[

x1(t, i) x2(t, i) x3(t, i) x4(t, i) x5(t, i) x6(t, i)
]T

, (12.157)

A0 = 0, A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
4 0 2 1 0 0
2 0 1 0 0 0
5 0 2 0 0 0
6 0 3 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B0 = 0, B1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
2
1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

, B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =
[

2 0 0 0 0 1
]
.

The desired positive realization of (12.150) is given by (12.151) and (12.157).

12.6.3 MIMO Systems

First we shall consider linear continuous-discrete m-inputs and one-output systems
with the transfer matrix [153]

T (s,z) =
[

T1(s,z) . . . Tm(s,z)
] ∈ R

1×m(s,z), (12.158)

where

Tk(s,z) =
nk(s,z)
dk(s,z)

, k = 1, . . . ,m. (12.159)

It is assumed that the minimal common denominator d(s,z) satisfies the assumption

d(s,z) =
m

∏
k=1

dk(s,z). (12.160)

Using (12.139) and (12.140) we can find the matrix D and the strictly proper transfer
matrix Tsp(s,z). Applying the approach presented above for SISO systems to MIMO
system with (12.158) we may find a realization of each transfer function (12.159).
A realization of the transfer function (12.158) can be found by use of the following
theorem.

Theorem 12.25. Let

A0k = 0, A1k, A2k, B0k = 0, B1k, B2k, C, k = 1, . . . ,m, (12.161)
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be a realization of the transfer function (12.159). Then a realization of the strictly
proper transfer matrix

Tsp(s,z) = T (s,z)−D =
[

T1(s,z)−D1 . . . Tm(s,z)−Dm
]
, (12.162a)

Dk = lim
s,z→∞

Tk(s,z), (12.162b)

is given by

A1 = block diag
[

A11 . . . A1m
]
, A2 = block diag

[
A21 . . . A2m

]
,

B1 = block diag
[

B11 . . . B1m
]
, B2 = block diag

[
B21 . . . B2m

]
,

C =
[

C1 . . . Cm
]
. (12.163)

Proof. Using (12.139), (12.162a) and (12.163) we obtain

Tsp(s,z) =
[

C1 . . . Cm
]{

block diag
[

Insz−A1s−A2z
]}−1

× {
block diag

[
B11s+ B21z . . . B1ms+ B2mz

]}
=
[

C1 . . . Cm
]{

block diag
[

Insz−A1s−A2z
]−1

}

× {
block diag

[
B11s+ B21z . . . B1ms+ B2mz

]}
=

=
[
C1

[
Insz−A1s−A2z

]−1 (B11s+ B21z)

. . . Cm
[

Insz−A1s−A2z
]−1 (B1ms+ B2mz)

]

=
[

T1(s,z)−D1 . . . Tm(s,z)−Dm
]
.

��
Theorem 12.26. There exists a positive realization (12.163) of the transfer matrix
(12.158) if all coefficients of the numerator nk(s,z), k = 1, . . . ,m; are nonnegative
and all coefficient of the denominators dk(s,z), k = 1, . . . ,m; are nonnegative except
the leading coefficient equal to 1.

Theorem 12.27. If the assumptions are satisfied then by Theorem 12.24 the realiza-
tion (12.161) of the transfer function (12.158) is positive.

Proof. From (12.163) it follows that in this case all matrices (12.163) have nonneg-
ative entries and by Theorem 12.23 the realization of the transfer matrix is positive.

��
Example 12.12. Given the transfer matrix

T (s,z) =
[

T1(s,z) T2(s,z)
]
, (12.164)

where T1(s,z) is given by (12.150) and
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T2(s,z) =
2s2z2 + 2s2 + 3z2 + s+ 1

s2z2 −2s2 − z2 −2sz− s−2
. (12.165)

Using (12.139) and (12.140) from (12.164), (12.150) and (12.165) we have

D = lim
s,z→∞

T (s,z) =
[

1 2
]
, (12.166)

and

Tsp = T (s,z)−D

=
[

3s2z+2s2+2z2+3z+3
s2z2−2s2z−s2−z2−2z−1

6s2+5z2+4sz+3s+5
s2z2−2s2−z2−2sz−s−2

]
(12.167)

=
[

3z−1+2z−2+2s−2+3s−2z−1+3s−2z−2

1−2z−1−z−2−s−2−2s−2z−1−s−2z−2
6z−2+5s−2+4s−1z−1+3s−1z−2+5s−2z−2

1−2z−2−s−2−2s−1z−1−s−1z−2−2s−2z−2

]
.

The state variable diagram corresponding to the transfer function Tsp1(s,z) is shown
on Fig. 12.7 and the positive realization is given by (12.157) i.e.

A11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
4 0 2 1 0 0
2 0 1 0 0 0
5 0 2 0 0 0
6 0 3 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, A12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (12.168a)

B11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
2
1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

, B12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, C1 =
[

2 0 0 0 0 0
]
. (12.168b)

The state variable diagram corresponding to Tsp2(s,z) is shown on Fig. 12.8.
Using this variable diagram we can write the equations

ẋ1(t, i+ 1) = x2(t, i+ 1),
ẋ2(t, i+ 1) = x1(t, i+ 1)+ x3(t, i+ 1)+ u2(t, i+ 1),
ẋ3(t, i+ 1) = 2ẋ2(t, i)+ ẋ4(t, i),
ẋ4(t, i+ 1) = 4ẋ1(t, i)+ ẋ2(t, i)+ 2ẋ3(t, i)+ 2u̇2(t, i), (12.169)

ẋ5(t, i+ 1) = 11ẋ1(t, i)+ 3ẋ2(t, i)+ 6ẋ3(t, i)+ 6u̇2(t, i),
ẋ6(t, i+ 1) = 4ẋ2(t, i)+ ẋ5(t, i),

y(t, i) = 5x1(t, i)+ x6(t, i).

From these equations we have the realization of Tsp2(s,z) in the form
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ẋ2(t, i)
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Fig. 12.8 State variable diagram for transfer function (12.167)

A11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 2 0 1 0 0
4 1 2 0 0 0

11 3 6 0 0 0
0 4 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, A12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (12.170a)

B11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
2
6
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, C1 =
[

5 0 0 0 0 1
]
. (12.170b)

The state variable diagram corresponding to the transfer matrix (12.167) can be
obtained as the connection of the state variable diagrams shown on Fig. 12.7 and
Fig. 12.8 (see Fig. 12.9).

Fig. 12.9 Connection of
state variable diagrams u1(t, i)

u2(t, i)

Fig. 1
y1(t, i)

Fig. 2
y2(t, i)

y(t, i)
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By Theorem 12.25 the desired realization of the transfer matrix (12.164) is given
by

A1 =
[

A11 0
0 A12

]
, A2 =

[
A21 0
0 A22

]
, (12.171a)

B1 =
[

B11 0
0 B12

]
, B2 =

[
B21 0
0 B22

]
, (12.171b)

C =
[

C1 C2
]
, D =

[
1 2

]
, (12.171c)

where the submatrices A11, A12, B11, B12, C1 are given by (12.168) and submatrices
A21, A22, B21, B22, C2 are given by (12.170). The realization is positive since all
entries of the matrices (12.171) are nonnegative.

Remark 12.7. If the assumption (12.160) is not satisfied and

degs d(s,z) <
m

∏
k=1

degs dk(s,z), degz d(s,z) <
m

∏
k=1

degz dk(s,z), (12.172)

then to decrease the dimension of a realization of (12.158) it is recommended to find
the polynomial d(s,z) and write the transfer matrix (12.158) in the form

T (s,z) =
1

d(s,z)
[

n1(s,z) . . . nm(s,z)
]
, (12.173)

where degs d(s,z) (degz d(s,z)) denotes the degree of the minimal common denom-
inators with respect to s (z).

Note that the m-inputs and p-outputs system can be considered as the sequence
of p m-inputs and one-output systems. In this way the presented approach can be
extended for m-inputs and p-outputs linear systems.

The considerations can be extended to fractional positive continuous-discrete 2D
linear systems.



Appendix A
Laplace Transforms of Continuous-Time
Functions and Z-Transforms of Discrete-Time
Functions

A.1 Convolutions of Continuous-Time and Discrete-Time
Functions and Their Transforms

Definition A.1. The Laplace transform of a continuous-time function f (t) is defined
by

L [ f (t)] =
∫ ∞

0
f (t)e−stdt = F(s), (A.1)

where f (t) = 0 for t < 0.

Definition A.2. The continuous-time function defined by

f1(t)∗ f2(t) =
∫ t

0
f1(t − τ) f2(τ)dτ, (A.2)

is called the convolution of the continuous-time functions f1(t) and f2(t).

Theorem A.1. If
F1(s) = L [ f1(t)], F2(s) = L [ f2(t)], (A.3)

then

L

[∫ t

0
f1(t − τ) f2(τ)dτ

]
= F1(s)F2(s). (A.4)

Proof.

L

[∫ t

0
f1(t − τ) f2(τ)dτ

]
= L

[∫ ∞

0
f1(t − τ) f2(τ)dτ

]

=
∫ ∞

0

[∫ ∞

0
f1(t − τ) f2(τ)

]
e−stdτdt

=
∫ ∞

0
f1(u)e−sudu

∫ ∞

0
f2(τ)e−sτ dτ = F1(s)F2(s).

��
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Definition A.3. The discrete-time function defined by

f1(i)∗ f2(i) =
i

∑
k=0

f1(i− k) f2(k), (A.5)

is called the convolution of the discrete-time functions f1(i) and f2(i).

Theorem A.2. If:

F1(z) = Z [ f1(i)], F2(z) = Z [ f2(i)], (A.6)

then

Z

[
i

∑
k=0

f1(i− k) f2(k)

]
= F1(z)F2(z). (A.7)

Proof. The proof is similar to the Theorem A.1. ��

A.2 Laplace Transforms of Derivative-Integrals

Theorem A.3. The Laplace transform of the function tα has the form

L [tα ] =
Γ (α + 1)

sα+1 , α ∈ R. (A.8)

Proof.

L [tα ] =
∫ ∞

0
tα e−stdt =

∫ ∞

0

xα

sα+1 e−xdx =
1

sα+1

∫ ∞

0
xα e−xdx =

Γ (α + 1)
sα+1 .

��
Theorem A.4. The Laplace transform of the first order derivative of the function
f (t) has the form

L

[
d
dt

f (t)
]

= sF(s)− f (0+). (A.9)

Proof.

L

[
d
dt

f (t)
]

=
∫ ∞

0

d
dt

f (t)e−stdt =
∫ ∞

0
e−std f = e−st f

∣∣∣∞
0

+ s
∫ ∞

0
f (t)e−st dt

= sF(s)− f (0+).

Generalizing (A.9) for n order derivative we obtain

L

[
dn

dtn f (t)
]

= snF(s)−
n

∑
k=1

sn−k f (k−1)(0+). (A.10)

��
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Theorem A.5. The Laplace transform of the fractional α-order integral has the
form

L [0Iα
t f (t)] = L

[
1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ

]
=

F(s)
sα . (A.11)

Proof. Using (A.4) we obtain

L [0Iα
t f (t)] = L

[
1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ

]
=

1
Γ (α)

L
[
tα−1]L [ f (t)] =

F(s)
sα .

��
Theorem A.6. The Laplace transform of the fractional α-order integral of n-order
derivative of the function f (t) has the form

L
[

0Iα
t f (n)(t)

]
=

F(s)
sα−n −

n

∑
k=1

f (k−1)(0+)
sα−n+k . (A.12)

Proof. Using (A.4) we obtain

L
[

0Iα
t f (n)(t)

]
= L

[
1

Γ (α)

∫ t

0
(t − τ)α−1 f (n)(τ)dτ

]

=
1

Γ (α)
L

[
tα−1]L [

f (n)(t)
]

=
1

Γ (α)
Γ (α)

sα

(
snF(s)−

n

∑
k=1

sn−k f (k−1)(0+)

)

=
F(s)
sα−n −

n

∑
k=1

f (k−1)(0+)
sα−n+k .

��

A.3 Z-Transforms of Discrete-Time Functions

Theorem A.7. If

Z [xi] =
∞

∑
i=0

xiz
−i. (A.13)

then

Z [xi+1] = zX(z)− zx0, (A.14a)

Z [xi−p] = z−pX(z)+ z−p
−p

∑
j=−1

x jz
− j. (A.14b)
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Proof. Using (A.13) we obtain

Z [xi+1] =
∞

∑
i=0

xi+1z−i =
∞

∑
j=1

x jz
−( j−1) = z

∞

∑
j=0

x jz
− j − zx0 = zX(z)− zx0,

Z [xi−p] =
∞

∑
i=0

xi−pz−i =
∞

∑
j=−p

x jz
−( j+p) = z−p

∞

∑
j=−p

x jz
− j

= z−p
∞

∑
j=0

x jz
− j + z−p

−p

∑
j=−1

x jz
− j = z−pX(z)+ z−p

−p

∑
j=−1

x jz
− j.

��

Theorem A.8. Let X(z1,z2) be the 2D z-transform of the function xi j defined by

Z [xi j] =
∞

∑
i=0

∞

∑
j=0

xi jz
−i
1 z− j

2 . (A.15)

Then

Z [xi+1, j+1] = z1z2[X(z1,z2)−X(z1,0)−X(0,z2)+ x00], (A.16a)

Z [xi−k, j+1] = z−k
1 z2[X(z1,z2)−X(z1,0)], (A.16b)

Z [xi+1, j−l] = z1z−l
2 [X(z1,z2)−X(0,z2)], (A.16c)

Z [xi−k, j−l] = z−k
1 z−l

2 X(z1,z2), (A.16d)

Z [xi+1, j] = z1[X(z1,z2)−X(0,z2)], (A.16e)

Z [xi, j+1] = z2[X(z1,z2)−X(z1,0)]. (A.16f)

where

X(z1,0) =
∞

∑
i=0

xi0z−i
1 , X(0,z2) =

∞

∑
j=0

x0 jz
− j
2 .
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Proof. Using (A.15) we obtain

Z [xi+1, j+1] =
∞

∑
i=0

∞

∑
j=0

xi+1, j+1z−i
1 z− j

2 =
∞

∑
k=1

∞

∑
l=1

xklz
1−k
1 z1−l

2

= z1z2

[
∞

∑
k=0

∞

∑
l=0

xklz
−k
1 z−l

2 −
∞

∑
k=0

xk0z−k
1 −

∞

∑
l=0

x0lz
−l
2 + x00

]
,

Z [xi−k, j+1] =
∞

∑
i=0

∞

∑
j=0

xi−k, j+lz
−i
1 z− j

2 =
∞

∑
p=1

∞

∑
q=−l

xpqz1−p
1 z−(q+l)

2

= z1z−l
2

[
∞

∑
p=1

∞

∑
q=−l

xpqz−p
1 z−q

2

]

= z1z−l
2

[
∞

∑
p=0

∞

∑
q=0

xpqz−p
1 z−q

2 −
∞

∑
i=0

xi0z−i
1

]
,

Z [xi+1, j−l] =
∞

∑
i=0

∞

∑
j=0

xi+1, j−lz
−i
1 z− j

2 =
∞

∑
p=−k

∞

∑
q=1

xpqz−(p+k)
1 z1−q

2

= z−k
1 z2

[
∞

∑
p=−k

∞

∑
q=1

xpqz−p
1 z−q

2

]

= z−k
1 z2

[
∞

∑
p=0

∞

∑
q=0

xpqz−p
1 z−q

2 −
∞

∑
j=0

x0 jz
− j
2

]
,

Z [xi−k, j−l] =
∞

∑
i=0

∞

∑
j=0

xi−k, j−lz
−i
1 z− j

2 =
∞

∑
p=−k

∞

∑
q=−l

xpqz−(p+k)
1 z−(q+l)

2

= z−k
1 z−l

2

[
∞

∑
p=0

∞

∑
q=0

xpqz−p
1 z−q

2

]
,

Z [xi+1, j] =
∞

∑
i=0

∞

∑
j=0

xi+1, jz
−i
1 z− j

2 =
∞

∑
k=1

∞

∑
j=0

xk jz
1−k
1 z− j

2

= z1

[
∞

∑
k=1

∞

∑
j=0

xk jz
−k
1 z− j

2

]
= z1

[
∞

∑
k=0

∞

∑
j=0

xk jz
−k
1 z− j

2 −
∞

∑
j=0

x0 jz
− j
2

]
,

Z [xi, j+1] =
∞

∑
i=0

∞

∑
j=0

xi, j+1z−i
1 z− j

2 =
∞

∑
i=0

∞

∑
k=1

xikz−i
1 z1−k

2

= z2

[
∞

∑
i=0

∞

∑
k=1

xikz−i
1 z−k

2

]
= z2

[
∞

∑
i=0

∞

∑
k=0

xikz−i
1 z−k

2 −
∞

∑
i=0

xi0z−i
1

]
.

��



Appendix B
Infinite Long Cable with Zero Inductance as an
Example of Fractional System

Consider the infinite long cable with zero inductance described by the equations
(B.1):

∂u(x,t)
∂x

= Ri(x, t), (B.1a)

∂ i(x, t)
∂x

= C
∂u(x,t)

∂ t
, (B.1b)

where u(x,t) and i(x,t) are the voltage and current in the point x and time t and
R and C are the resistance and capacitance of unit length cable. Differentiating the
equation (B.1a) with respect x and using (B.1b) we obtain:

∂u(x,t)
∂ t

= α
∂ 2u(x,t)

∂x2 , α =
1

RC
. (B.2)

It is assumed that the voltages (u(0, t) = u0(t)) and u(x,0) are given and the voltage
at the end of the cable is zero u(∞, t) = 0. Solution of the equation (B.2) will be
derived by the use of the Laplace transform method. Let

U(x,s) = Lt [u(x, t)] =
∫ ∞

0
u(x, t)e−stdt, (B.3a)

and
U(p,s) = Lx[U(x,s)] =

∫ ∞

0
U(x,s)e−sxdx. (B.3b)

Applying the Laplace transform to the equation (B.2) we obtain

(
p2 − s

α

)
U(p,s) = − 1

α
U(p,0)+ pU(0,s)+U(0,s), (B.4a)

and

U(p,s) =
1

p2 − s
α

[
− 1

α
U(p,0)+ pU(0,s)+U(0,s)

]
, (B.4b)
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where

U(0,s) =
∫ ∞

0

du(0, t)
dx

e−stdt =
dU(0,s)

dx
=

dU0(s)
dx

. (B.5)

Taking into account that

1
p2 − s

α
=

1

2
√ s

α
(

p−√ s
α
) − 1

2
√ s

α
(

p +
√ s

α
) , (B.6)

and using the Laplace transform of the convolution to (B.4) we obtain

U(x,s) =
∫ x

0

1

2
√ s

α
e(x−y)

√
s
α

[
− 1

α
u(y,0)

]
dy

−
∫ x

0

1

2
√ s

α
e−(x−y)

√
s
α

[
− 1

α
u(y,0)

]
dy (B.7a)

+ U(0,s)cosh

(
x

√
s
α

)
+

U(0,s)√ s
α

sin

(
x

√
s
α

)
,

since

L −1
x

[
p

p− s
α

]
= cosh

(
x

√
s
α

)
, L −1

x

[
1

p− s
α

]
=

1√ s
α

sinh

(
x

√
s
α

)
. (B.7b)

Substituting

cosh

(
x

√
s
α

)
=

1
2

(
ex
√

s
α + e−x

√
s
α
)
, sinh

(
x

√
s
α

)
=

1
2

(
ex
√

s
α − e−x

√
s
α
)

(B.8)
to (B.7) we obtain

U(x,s) =
ex
√

s
α

2

[
U(0,s)+

U(0,s)√ s
α

− 1

α
√ s

α

∫ x

0
e−y

√
s
α u(y,0)dy

]

+
e−x

√
s
α

2

[
U(0,s)− U(0,s)√ s

α
+

1

α
√ s

α

∫ x

0
ey
√

s
α u(y,0)dy

]
. (B.9)

Note that in (B.9) we have the product of the components

e−x
√

s
α

2
and

1

α
√ s

α

∫ x

0
ey
√

s
α u(y,0)dy.
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The first component decreases to zero and the second component increases to infin-
ity with x → ∞. Applying the l’Hospital rule we obtain

lim
x→∞

1
α
√

s
α

∫ x
0 ey

√
s
α u(y,0)dy

ex
√

s
α

=
1
s ex

√
s
α u(x,0)

ex
√

s
α

=
u(∞,0)

s
. (B.10)

By assumption u(∞,s) = 0. From (B.9) for x = ∞ we have

U(∞,s) = lim
x→∞

ex
√

s
α

[
U(0,s)+

U(0,s)√ s
α

− 1

α
√ s

α

∫ x

0
e−y

√
s
α u(y,0)dy

]
= 0,

(B.11)
since the second component tends to zero for x → ∞. From (B.11) we have

U(0,s)+
U(0,s)√ s

α
− 1

α
√ s

α

∫ x

0
e−y

√
s
α u(y,0)dy = 0. (B.12)

From (B.1a) for x = 0 we obtain

I(0,s) = Lt [x(0,t)] =
1
R

dU(0,s)
dx

=
U(0,s)

R
. (B.13)

From (B.12) and (B.13) we have

U(0,s) =
1

α
√ s

α

∫ x

0
e−y

√
s
α u(y,0)dy− RI(0,s)√ s

α
. (B.14)

Note that

1

α
√ s

α

∫ x

0
e−y

√
s
α u(y,0)dy =

1

α
√ s

α
U(q,0), q =

√
s
α

. (B.15)

Taking into account (B.15) from (B.14) we obtain

U(0,s) =
1

α
√ s

α
U(q,0)− RI(0,s)√ s

α
, q =

√
s
α

. (B.16)

By assumption u(x,0) = 0, (U(p,0) = 0) and from (B.16) we have

U(0,s)
I(0,s)

= −R
√

α√
s

. (B.17)

Applying the inverse Laplace transform we obtain

i(0,t) = − 1
R
√

α
d

1
2 u(0, t)

dt
1
2

= − 1
R
√

α
d

1
2 u0(t)

dt
1
2

, (B.18a)
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and

u0(t) = u(0,t) = −R
√

α
d− 1

2 i(0, t)

dt−
1
2

. (B.18b)

Therefore, the voltage u0(t) and the current i(0, t) at the beginning of the cable are
related by (B.18). To find the voltage u(x, t) for given initial conditions we substitute
(B.16) into (B.9) and we apply the inverse Laplace transform with respect to s. Other
examples of fractional linear systems are presented in [292, 213, 251, 260].



Appendix C
Right Inverse of Matrices

Consider the matrix linear algebraic equation

Ax = b, (C.1)

where A ∈ Rn×m, b ∈ Rn, x ∈ Rm, m > n.

Theorem C.1. The equation (C.1) has the solution for every b if and only if the
matrix A has full row rank.

Proof. The equation (C.1) has a solution if and only if rankA = rank[A,b]. From
this condition it follows that the solution of (C.1) for any b there exists if and only
if rankA = rank[A,b]. ��
For m > n the equation (C.1) has many solutions.

Theorem C.2. The set of solutions of the equation (C.1) is given by

x = Arb, (C.2)

where Ar is the right inverse of the matrix A, satisfying the condition AAr = In.

Proof. Substitution of (C.2) into (C.1), yields

AArb = b, (C.3)

since AAr = In. ��
Theorem C.3. There exists the right inverse Ar of A ∈ Rn×m if

rankA = n.

The right inverse is given by one of the formule

a)

Ar = AT [AAT ]−1
+
(

In −AT [AAT ]−1
A
)

K, (C.4)
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b)
Ar = K [AK]−1 , det [AK] �= 0, K ∈ R

m×n, (C.5)

c)

Ar = R

[
In

K

]
A−1

1 , AR = [A1,0], A1 ∈ R
n×n, detA1 �= 0. (C.6)

where R is the matrix of elementary column of operations (Appendix D).

Proof. cos tam

a) If rankA = n, then the matrix AAT is nonsingular (positive defined). In this
case there exists the inverse matrix [AAT ]−1 and the matrix (C.4) satisfies the
condition

AAr = AAT [AAT ]−1 + A
[
In −AT [AAT ]−1

A
]

K = In.

b) If rankA = n, then there exists a matrix K such that det [AK] �= 0 and the matrix
(C.5) satisfies the condition

AAr = AK[AK]−1 = In.

c) Let R be a matrix of elementary column operations satisfying the condition
AP = [A1,0], detA1 �= 0. In this case the matrix (C.6) satisfies the condition

AAr = AR

[
In

K

]
A−1

1 = [A10]
[

In

K

]
A−1

1 = A1A−1
1 = In.

��
Example C.1. Compute the right inverse of the matrix

A =
[

2 0 −3
4 1 1

]
.

a) Using (C.4) and taking into account that

AAT =
[

2 0 −3
4 1 1

]⎡
⎣ 2 4

0 1
−3 1

⎤
⎦=

[
13 5
5 18

]
,

[
AAT ]−1 =

1
209

[
18 −5
−5 13

]
,
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we obtain

Ar =

⎡
⎣ 2 4

0 1
−3 1

⎤
⎦ 1

209

[
18 −5
−5 13

]
+

⎧⎨
⎩
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

−
⎡
⎣ 2 4

0 1
−3 1

⎤
⎦ 1

209

[
18 −5
−5 13

][
2 0 −3
4 1 1

]⎫⎬
⎭
⎡
⎣ k1 k2

k3 k4

k5 k6

⎤
⎦

=
1

209

⎡
⎣ 16 + 19k1−42k3 + 6k5 42 + 9k2−42k4 + 6k6

−5−42k1 + 196k3−28k5 13−42k2 + 196k4−28k6

−59 + 6k1−28k3 + 4k5 28 + 6k2−28k4 + 4k6

⎤
⎦ .

b) The matrix K is chosen so that

det[AK] = det

[
2k1 −3k5 2k2 −3k6

4k1 + k3 + k5 4k2 + k4 + k6

]

= 2k1k4 + 14k1k6 −14k5k2 −3k5k4 −2k2k3 + 3k6k3 �= 0.

Using (C.5) we obtain

Ar =

⎡
⎣ k1 k2

k3 k4

k5 k6

⎤
⎦
[

2k1 −3k5 2k2 −3k6

4k1 + k3 + k5 4k2 + k4 + k6

]−1

=
1

det[AK]

⎡
⎣ k1 k2

k3 k4

k5 k6

⎤
⎦[ 4k2 + k4 + k6 3k6 −2k2

−4k1 − k3 − k5 2k1 −3k5

]

=
1

det[AK]

[
k1k4 +k1k6 −k2k3 −k5k2 3k1k6 −3k5k2

4k2k3 +k6k3 −4k1k4 −k5k4 3k6k3 −2k2k3 +2k1k4 −3k5k4
4k5k2 +k5k4 −4k1k6 −k6k3 −2k5k2 +2k1k6

]
.

c) Using the following elementary column operations we eliminate from A its lin-
early dependent columns

[
2 0 −3
4 1 1

]
R[3+2×(−1)]−−−−−−−−→

[
2 0 −3
4 1 0

]
R[1+2×(−4)]
R[1+3×( 2

3 )]−−−−−−−−→[
0 0 −3
0 1 0

]
R[1,3]−−−→

[−3 0 0
0 1 0

]
.

To find the matrix R we perform on the identity matrix In the elementary column
operations
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⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ R[3+2×(−1)]−−−−−−−−→

⎡
⎣ 1 0 0

0 1 −1
0 0 1

⎤
⎦ R[1+2×(−4)]

R[1+3×( 2
3 )]−−−−−−−−→

⎡
⎣ 1 0 0
− 14

3 1 −1
2
3 0 1

⎤
⎦ R[1,3]−−−→

⎡
⎣ 0 0 1
−1 1 − 14

3
1 0 2

3

⎤
⎦ .

Hence

R =

⎡
⎣ 0 0 1
−1 1 − 14

3
1 0 2

3

⎤
⎦ (C.7)

and

AP =
[

2 0 −3
4 1 1

]⎡
⎣ 0 0 1
−1 1 − 14

3
1 0 2

3

⎤
⎦=

[−3 0 0
0 1 0

]
=
[

A1 0
]

Using (C.6) for
K =

[
k1 k2

]
, (C.8)

we obtain

Ar =

⎡
⎣ 0 0 1
−1 1 − 14

3
1 0 2

3

⎤
⎦
⎡
⎣ 1 0

0 1
k1 k2

⎤
⎦
[−3 0

0 1

]−1

=

⎡
⎣ − k1

3 k2
1
3 + 14

9 k1 1− 14
3 k2

− 1
3 − 2

9 k1
2
3 k2

⎤
⎦ .



Appendix D
Elementary Operations on Matrices

Definition D.1. The following operations are called elementary operations on a real
matrix A ∈ Rn×m

a) Multiplication of any i-th row (column) by the number a �= 0.
b) Addition to any i-th row (column) of the j-th row (column) multiplied by any

number b �= 0.
c) The interchange of any two rows (columns).

In this book the following notation is used.
L[i×a] multiplication of the i-th row by the number a �= 0
R[i×a] multiplication of the i-th column by the number a �= 0
L[i+ j×b] addition to the i-th row of the j-th row multiplied by

the number b
R[i+ j×b] addition to the i-th column of the j-th column multiplied by

the number b
L[i, j] the interchange of the i-th and the j-th rows
R[i, j] the interchange of the i-th and the j-th columns
The elementary operation can be extended to polynomial matrices [89].
The rank of the matrix A is invariant under the elementary operations.
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fractional order 35–37, 93
fractional order cone 145
with delays 40–41

discrete-time systems 84
1D fractional different orders 24–25
1D fractional order 7–10, 92
1D fractional order cone 144
1D fractional order with delays 8
2D Roesser 62–70
2D Roesser fractional order 68
2D Roesser with delays 69
2D fractional different order 78–80
2D fractional order 57–58
2D general model 62
2D general model with delays 69
cone 142
with delays 86

R

reachability
1D fractional discrete-time systems

10–12
cone 146–147
positive 12–15

2D fractional discrete-time systems
positive 58–60

continuous-discrete
positive general model 272–277
standard general model 272–277

fractional continuous-time systems
cone 148–149

positive 37–39
realization

cone continuous-time systems with delays
153–159

cone discrete-time systems 150–153
realization (positive)

continuous-discrete systems general
model

MIMO systems 301–305
SISO systems 294–301

fractional continuous-time systems
MIMO systems 133–140
SISO systems 131–133

fractional discrete-time systems
MIMO systems 123–130
SISO systems 119–123

reduction of singular fractional systems to
equivalent standard fractional systems
258–263

S

solution of the state equation
continuous-discrete systems

general model 267–269
continuous-time systems 82

fractional different orders 42–46
fractional orders 31–35

discrete-time systems 81
1D fractional order 6–7
1D fractional order with delays 4–6
2D fractional different order 73–77
2D fractional order 54–56
2D Roesser fractional order 64
with delays 83

stability (asymptotic)
continuous-discrete systems

positive general model 278–286
continuous-time systems positive

182–185
with delays 185–188

discrete-time systems
1D fractional order with delays

221–223
discrete-time systems positive 161–165

1D fractional order with delays
171–173
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2D fractional order 173–176
2D systems 165–168
relationship between 1D and 2D

systems 168–171
stability (asymptotic) LMI

discrete-time systems positive
2D Roesser 231–232
2D Roesser fractional order 238–243
2D Roessera with delays 233–236
2D systems 232–233
2D systems with delays 236–238

stability (frequency domain)
continuous-time systems

fractional order 189–198
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discrete-time systems
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1D fractional order 176–179
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stability (practical) LMI
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scalar general model 286–292

fractional polynomials 211–219
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continuous-time systems
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discrete-time systems
1D fractional order with delays

221–223
stability (state-feedback) LMI
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2D Roesser fractional order 238–243

state equations
continuous-discrete systems

general model 267, 292
continuous-time systems 82

fractional different orders 42–46
fractional orders 31

discrete-time systems 81
1D fractional order 2
1D fractional order with delays 3
2D Roesser 62–63
2D Roesser fractional order 63–68
2D Roesser with delays 69
2D fractional different order 71–72
2D fractional order 53–54
2D general model 62
2D general model with delays 69
with delays 83

T

theorem
Cayley-Hamilton

1D systems 7
2D Systems 56, 77

convolution 307, 308
transfer matrix

proper
continuos-time systems 130
continuous-discrete systems 293
discrete-time systems 118

strictly proper
continuos-time systems 130
continuous-discrete systems 293
discrete-time systems 118

transform
Laplace 307
Z

1D 309
2D 310



Lecture Notes in Control and Information Sciences

Edited by M. Thoma, F. Allgöwer, M. Morari

Further volumes of this series can be found on our homepage:
springer.com

Vol. 411: Kaczorek, T.;
Selected Problems of Fractional Systems Theory
344 p. 2011 [978-3-642-20501-9]

Vol. 410: Bourlès, H., Marinescu, B.;
Linear Time-Varying Systems
637 p. 2011 [978-3-642-19726-0]

Vol. 409: Xia, Y., Fu, M., Liu, G.-P.;
Analysis and Synthesis of
Networked Control Systems
198 p. 2011 [978-3-642-17924-2]

Vol. 408: Richter, J.H.;
Reconfigurable Control of

Nonlinear Dynamical Systems
291 p. 2011 [978-3-642-17627-2]

Vol. 407: Lévine, J., Müllhaupt, P.:
Advances in the Theory of Control,
Signals and Systems with
Physical Modeling
380 p. 2010 [978-3-642-16134-6]

Vol. 406: Bemporad, A., Heemels, M.,
Johansson, M.:
Networked Control Systems
appro. 371 p. 2010 [978-0-85729-032-8]

Vol. 405: Stefanovic, M., Safonov, M.G.:
Safe Adaptive Control
appro. 153 p. 2010 [978-1-84996-452-4]

Vol. 404: Giri, F.; Bai, E.-W. (Eds.):
Block-oriented Nonlinear System Identification
425 p. 2010 [978-1-84996-512-5]

Vol. 403: Tóth, R.;
Modeling and Identification of
Linear Parameter-Varying Systems
319 p. 2010 [978-3-642-13811-9]

Vol. 402: del Re, L.; Allgöwer, F.;
Glielmo, L.; Guardiola, C.;
Kolmanovsky, I. (Eds.):
Automotive Model Predictive Control
284 p. 2010 [978-1-84996-070-0]

Vol. 401: Chesi, G.; Hashimoto, K. (Eds.):
Visual Servoing via Advanced
Numerical Methods
393 p. 2010 [978-1-84996-088-5]

Vol. 400: Tomás-Rodríguez, M.;
Banks, S.P.:
Linear, Time-varying Approximations
to Nonlinear Dynamical Systems
298 p. 2010 [978-1-84996-100-4]

Vol. 399: Edwards, C.; Lombaerts, T.;
Smaili, H. (Eds.):
Fault Tolerant Flight Control
appro. 350 p. 2010 [978-3-642-11689-6]

Vol. 398: Hara, S.; Ohta, Y.;
Willems, J.C.; Hisaya, F. (Eds.):
Perspectives in Mathematical System
Theory, Control, and Signal Processing
appro. 370 p. 2010 [978-3-540-93917-7]

Vol. 397: Yang, H.; Jiang, B.;
Cocquempot, V.:
Fault Tolerant Control Design for
Hybrid Systems
191 p. 2010 [978-3-642-10680-4]

Vol. 396: Kozlowski, K. (Ed.):
Robot Motion and Control 2009
475 p. 2009 [978-1-84882-984-8]

Vol. 395: Talebi, H.A.; Abdollahi, F.;
Patel, R.V.; Khorasani, K.:
Neural Network-Based State
Estimation of Nonlinear Systems
appro. 175 p. 2010 [978-1-4419-1437-8]

Vol. 394: Pipeleers, G.; Demeulenaere, B.;
Swevers, J.:
Optimal Linear Controller Design for
Periodic Inputs
177 p. 2009 [978-1-84882-974-9]

Vol. 393: Ghosh, B.K.; Martin, C.F.;
Zhou, Y.:
Emergent Problems in Nonlinear
Systems and Control
285 p. 2009 [978-3-642-03626-2]

Vol. 392: Bandyopadhyay, B.;
Deepak, F.; Kim, K.-S.:
Sliding Mode Control Using Novel Sliding
Surfaces
137 p. 2009 [978-3-642-03447-3]



Vol. 391: Khaki-Sedigh, A.; Moaveni, B.:
Control Configuration Selection for
Multivariable Plants
232 p. 2009 [978-3-642-03192-2]

Vol. 390: Chesi, G.; Garulli, A.;
Tesi, A.; Vicino, A.:
Homogeneous Polynomial Forms for
Robustness Analysis of Uncertain
Systems
197 p. 2009 [978-1-84882-780-6]

Vol. 389: Bru, R.; Romero-Vivó,
S. (Eds.):
Positive Systems
398 p. 2009 [978-3-642-02893-9]

Vol. 388: Jacques Loiseau, J.; Michiels, W.;
Niculescu, S-I.; Sipahi, R. (Eds.):
Topics in Time Delay Systems
418 p. 2009 [978-3-642-02896-0]

Vol. 387: Xia, Y.;
Fu, M.; Shi, P.:
Analysis and Synthesis of
Dynamical Systems with Time-Delays
283 p. 2009 [978-3-642-02695-9]

Vol. 386: Huang, D.;
Nguang, S.K.:
Robust Control for Uncertain
Networked Control Systems with
Random Delays
159 p. 2009 [978-1-84882-677-9]

Vol. 385: Jungers, R.:
The Joint Spectral Radius
144 p. 2009 [978-3-540-95979-3]

Vol. 384: Magni, L.; Raimondo, D.M.;
Allgöwer, F. (Eds.):
Nonlinear Model Predictive Control
572 p. 2009 [978-3-642-01093-4]

Vol. 383: Sobhani-Tehrani E.;
Khorasani K.;
Fault Diagnosis of Nonlinear Systems
Using a Hybrid Approach
360 p. 2009 [978-0-387-92906-4]

Vol. 382: Bartoszewicz A.;
Nowacka-Leverton A.;
Time-Varying Sliding Modes for Second
and Third Order Systems
192 p. 2009 [978-3-540-92216-2]

Vol. 381: Hirsch M.J.; Commander C.W.;
Pardalos P.M.; Murphey R. (Eds.)
Optimization and Cooperative Control Strategies:
Proceedings of the 8th International Conference
on Cooperative Control and Optimization
459 p. 2009 [978-3-540-88062-2]

Vol. 380: Basin M.
New Trends in Optimal Filtering and Control for
Polynomial and Time-Delay Systems
206 p. 2008 [978-3-540-70802-5]

Vol. 379: Mellodge P.; Kachroo P.;
Model Abstraction in Dynamical Systems:
Application to Mobile Robot Control
116 p. 2008 [978-3-540-70792-9]

Vol. 378: Femat R.; Solis-Perales G.;
Robust Synchronization of Chaotic Systems
Via Feedback
199 p. 2008 [978-3-540-69306-2]

Vol. 377: Patan K.
Artificial Neural Networks for
the Modelling and Fault
Diagnosis of Technical Processes
206 p. 2008 [978-3-540-79871-2]

Vol. 376: Hasegawa Y.
Approximate and Noisy Realization of
Discrete-Time Dynamical Systems
245 p. 2008 [978-3-540-79433-2]

Vol. 375: Bartolini G.;
Fridman L.; Pisano A.; Usai E. (Eds.)
Modern Sliding Mode Control Theory
465 p. 2008 [978-3-540-79015-0]

Vol. 374: Huang B.; Kadali R.
Dynamic Modeling, Predictive Control
and Performance Monitoring
240 p. 2008 [978-1-84800-232-6]

Vol. 373: Wang Q.-G.; Ye Z.; Cai W.-J.;
Hang C.-C.
PID Control for Multivariable Processes
264 p. 2008 [978-3-540-78481-4]

Vol. 372: Zhou J.; Wen C.
Adaptive Backstepping Control of
Uncertain Systems
241 p. 2008 [978-3-540-77806-6]

Vol. 371: Blondel V.D.; Boyd S.P.;
Kimura H. (Eds.)
Recent Advances in Learning and Control
279 p. 2008 [978-1-84800-154-1]

Vol. 370: Lee S.; Suh I.H.;
Kim M.S. (Eds.)
Recent Progress in Robotics:
Viable Robotic Service to Human
410 p. 2008 [978-3-540-76728-2]

Vol. 369: Hirsch M.J.; Pardalos P.M.;
Murphey R.; Grundel D.
Advances in Cooperative Control and
Optimization
423 p. 2007 [978-3-540-74354-5]


	Title Page
	Preface
	List of Symbols
	List of Figures
	Contents
	Fractional Discrete-Time Linear Systems
	Definition of n-Order Difference
	State Equations of the Fractional Linear Systems
	Fractional Systems without Delays
	Fractional Systems with Delays

	Solution of the State Equations of the Fractional Discrete-Time Linear System
	Fractional Systems with Delays
	Fractional Systems without Delays

	Positive Fractional Linear Systems
	Externally Positive Fractional Systems
	Reachability of Fractional Discrete-Time Linear Systems
	Reachability of Positive Fractional Discrete-Time Linear Systems
	Controllability to Zero of the Fractional Discrete-Time Linear Systems
	Controllability to Zero of Positive Fractional Discrete-Time Linear Systems
	Minimum Energy Control of Positive Fractional Systems
	Fractional Different Orders Discrete-Time Linear Systems
	Positive Fractional Different Orders Discrete-Time Linear Systems

	Fractional Continuous-Time Linear Systems
	Definition of Euler Gamma Function and Its Properties
	Mittag-Leffler Function
	Definitions of Fractional Derivative-Integral
	Riemann-Liouville Definition
	Caputo Definition

	Solution of the Fractional State Equation of Continuous-Time Linear System
	Positivity of the Fractional Systems
	External Positivity of the Fractional Systems
	Reachability of Fractional Positive Continuous-Time Linear System
	Positive Continuous-Time Linear Systems with Delays
	Positive Linear Systems Consisting of n Subsystems
	Linear Differential Equations with Different Fractional Orders
	Positive Fractional Systems
	Fractional Linear Electrical Circuits


	Fractional Positive 2D Linear Systems
	Definition of (Backward) Fractional Difference of 2D Function
	State Equation of Fractional 2D Linear Systems
	Solution of the State Equation of the Fractional 2D Linear System
	Extension of the Cayley-Hamilton Theorem
	Positivity of Fractional 2D Linear Systems
	Reachability and Controllability of Positive Fractional 2D Linear Systems
	Controllability to Zero of Positive Fractional 2D Linear System
	Models of 2D Linear Systems
	Positive 2D Linear Systems
	Positive Fractional 2D Linear Systems
	Positive 2D Linear Systems with Delays

	Positive Fractional 2D Linear System of Different Orders
	Definition of (Backward) Difference of (, ) Order of 2D Function
	State Equations of Fractional 2D Linear System
	Solution of the State Equations of the Fractional 2D Linear Systems
	Extension of the Cayley-Hamilton Theorem
	Positivity of the Fractional 2D Linear Systems


	Pointwise Completeness and Pointwise Degeneracy of Linear Systems
	Standard Discrete-Time Linear Systems
	Standard Continuous-Time Linear Systems
	Standard Discrete-Time Linear Systems with Delays
	Positive Discrete-Time Linear Systems
	Positive Continuous-Time Linear Systems
	Positive Discrete-Time Linear Systems with Delays
	Fractional Discrete-Time Linear Systems
	Fractional Continuous-Time Linear Systems
	Positive Fractional Discrete-Time Linear System
	Positive Fractional Continuous-Time Linear Systems
	Pointwise Completeness and Pointwise Degeneracy of Electrical Circuits
	Standard Continuous-Discrete Linear System Described by the General Model
	Positive Continuous-Discrete Linear System Described by the General Model

	Pointwise Completeness and Pointwise Degeneracy of Linear Systems with State-Feedbacks
	Standard Discrete-Time Linear Systems
	Standard Continuous-Time Linear Systems
	Positive Standard Discrete-Time Linear Systems
	Positive Standard Continuous-Time Linear Systems
	Fractional Discrete-Time Linear Systems
	Fractional Continuous-Time Linear Systems
	Positive Fractional Discrete-Time Linear System
	Positive Fractional Continuous-Time Linear Systems

	Realization Problem for Positive Fractional and Continuous-Discrete 2D Linear Systems
	Fractional Discrete-Time Linear Systems
	SISO Systems
	MIMO Systems

	Fractional Continuous-Time Linear Systems
	SISO Systems
	MIMO Systems


	Cone Discrete-Time and Continuous-Time Linear Systems
	Basic Definitions
	Cone Discrete-Time Systems
	Cone Continuous-Time Systems with Delays
	Cone Fractional Discrete-Time Systems
	Cone Fractional Continuous-Time System

	Reachability of Cone Fractional Systems
	Cone Fractional Discrete-Time Systems
	Cone Fractional Continuous-Time System

	Controllability to Zero of Cone Fractional Discrete-Time Systems
	Cone Realization Problem for Linear Systems
	Discrete-Time Linear Systems
	Cone Realization Problem for Continuous-Time Systems with Delays


	Stability of Positive Fractional 1D and 2D Linear Systems
	Asymptotic Stability of Discrete-Time Linear Systems
	Positive Discrete-Time Systems
	Positive 2D Linear Systems
	Relationship between Asymptotic Stability of 1D and 2D Linear Systems
	Positive Fractional Discrete-Time Linear Systems with Delays
	Positive Fractional 2D Linear Systems

	Practical Stability of Fractional Systems
	Positive Fractional 1D Systems
	Positive Fractional 2D Systems

	Asymptotic Stability of Continuous-Time Linear Systems
	Positive Continuous-Time Linear Systems
	Asymptotic Stability of Positive Continuous-Time Systems with Delays


	Stability Analysis of Fractional Linear Systems in Frequency Domain
	Fractional Continuous-Time Systems
	Fractional Continuous-Time Systems with Delays of the Retarded Type
	Fractional Discrete-Time Systems
	Robust Stability of Convex Combination of Two Fractional Polynomials

	Stabilization of Positive and Fractional Linear Systems
	Fractional Discrete-Time Linear Systems with Delays
	Fractional Continuous-Time Linear Systems with Delays
	Application of LMI to Stabilization of Fractional Linear Systems
	Fractional 1D Linear Systems
	Positive 2D Linear Systems
	Positive 2D Linear Systems with Delays
	Fractional 2D Roesser Model


	Singular Fractional Linear Systems
	Singular Fractional Continuous-Time Linear Systems
	Singular Fractional Electrical Circuits
	Singular Fractional Discrete-Time Linear Systems
	Reduction of Singular Fractional Systems to Equivalent Standard Fractional Systems
	Decomposition of Singular Fractional System into Dynamic and Static Parts

	Positive Continuous-Discrete Linear Systems
	General Model of Continuous-Discrete Linear Systems and Its Solution
	Positive General Model of Continuous-Discrete Linear Systems
	Reachability of the Standard and Positive General Model
	Stability of the Positive General Model
	Robust Stability of Linear Continuous-Discrete Linear System
	Positive Realization Problem for Continuous-Discrete Linear Systems
	Problem Formulation
	SISO Systems
	MIMO Systems


	Appendix A: Laplace Transforms of Continuous-Time Functions and Z-Transforms of Discrete-Time Functions
	Appendix B: Infinite Long Cable with Zero Inductance as an Example of Fractional System
	Appendix C: Right Inverse of Matrices
	Appendix D: Elementary Operations on Matrices
	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




