
Improved Generic Algorithms for Hard

Knapsacks

Anja Becker�,1, Jean-Sébastien Coron3, and Antoine Joux1,2

1 University of Versailles Saint-Quentin-en-Yvelines
2 DGA

3 University of Luxembourg

Abstract. At Eurocrypt 2010, Howgrave-Graham and Joux described
an algorithm for solving hard knapsacks of density close to 1 in time
Õ(20.337n) and memory Õ(20.256n), thereby improving a 30-year old algo-
rithm by Shamir and Schroeppel. In this paper we extend the Howgrave-
Graham–Joux technique to get an algorithm with running time down to
Õ(20.291n). An implementation shows the practicability of the technique.
Another challenge is to reduce the memory requirement. We describe a
constant memory algorithm based on cycle finding with running time
Õ(20.72n); we also show a time-memory tradeoff.

1 Introduction

The Knapsack Problem. Given a list of n positive integers (a1, a2, . . . , an)
and another positive integer S such that:

S =
n∑

i=1

εi · ai , (1)

where εi ∈ {0, 1}, the knapsack problem consists in recovering the coefficients εi.
The vector ε = (ε1, .., εn) is called the solution of the knapsack problem. It is well
known that the decisional version of the knapsack problem is NP-complete [4].

The first cryptosystem based on the knapsack problem was introduced by
Merkle and Hellmann [10] in 1978, and subsequently broken by Shamir [14]
using lattice reduction. For random knapsack problems the Lagarias-Odlyzko
attack [7] can solve knapsacks with density d < 0.64, given an oracle solving the
shortest vector problem (SVP) in lattices; the density of a knapsack is defined
as:

d := n
log2 maxi ai

.

The Lagarias-Odlyzko attack was further improved by Coster et al. [3] to knap-
sack densities up to d < 0.94. Since solving SVP is known to be NP-hard [1], in
practice, the shortest vector oracle is replaced by a lattice reduction algorithm
such as LLL [8] or BKZ [12].
� The first author was mainly funded by a scholarship of the Gottlieb Daimler- und

Karl Benz-Stiftung.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 364–385, 2011.
c© International Association for Cryptologic Research 2011

Improved Generic Algorithms for Hard Knapsacks 365

The Schroeppel-Shamir Algorithm. For a knapsack of density close to 1
lattice reduction algorithms do not seem to apply. Until 2009, the best algo-
rithm for such hard knapsacks was due to Schroeppel and Shamir [13] with
time complexity Õ(2n/2) and memory Õ(2n/4). This is the same running time
as the straightforward meet-in-the-middle algorithm but with a lower memory
requirement of Õ(2n/4) instead of Õ(2n/2). A drawback is that the Schroeppel-
Shamir algorithm requires sophisticated data structure such as balanced trees
which can be difficult to implement in practice. A simpler but heuristic vari-
ant of Schroeppel-Shamir was described in [5] with the same time and memory
complexity; we recall this variant in Sect. 2.1. We also recall how to solve unbal-
anced knapsack problems, where the Hamming weight of the coefficient vector
ε = (ε1, . . . , εn) can be much smaller than n.

The Howgrave-Graham–Joux Algorithm. At Eurocrypt 2010, Howgrave-
Graham and Joux introduced a more efficient algorithm [5] for hard knapsacks.
While in Schroeppel-Shamir’s algorithm the knapsack instance is divided into
two halves with no overlap, the new algorithm allows for overlaps, which in-
duces more degrees of freedom. This enables to reduce the running time down to
Õ(20.337n) while keeping the memory requirement reasonably low at Õ(20.256n).
We recall the Howgrave-Graham–Joux algorithm in Sect. 2.2.

Our Contributions. The main contribution of our paper is to extend the
Howgrave-Graham–Joux technique to get a new algorithm with running time
down to Õ(20.291n). The knapsack instance is divided in two halves with possible
overlap, as in the Howgrave-Graham–Joux algorithm, but the set of possible
coefficients is extended from {0, 1} to {−1, 0, +1}. This means that a coefficient
ε
(1)
i = −1 in the first half can be compensated with a coefficient ε

(2)
i = +1

in the second half, the resulting coefficient εi = 0 of the golden solution being
εi = ε

(1)
i + ε

(2)
i = (−1) + (+1) = 0. Adding (a few) −1 coefficients brings an

additional degree of freedom that enables to again decrease the running time; we
describe our new algorithm in Sect. 3. We show the practicality of the technique
with an implementation.

Another challenge in solving knapsack problems is to reduce the memory
requirement. We first describe a simple constant memory algorithm based on
cycle finding with running time Õ(20.75n). We show how to improve this algo-
rithm down to Õ(20.72n) running time still requiring constant memory, by using
the Howgrave-Graham–Joux technique. Eventually, we present a time-memory
tradeoff for the Schroeppel-Shamir algorithm downto Õ(2n/16) memory.

2 Existing Algorithms

2.1 The Schroeppel-Shamir Algorithm

We present the Schroeppel-Shamir algorithm [13] under the simpler heuristic
variant described in [5]. We consider a knapsack as in (1) and for simplicity we
assume that n is a multiple of 4. We write the knapsack sum S as:

366 A. Becker, J.-S. Coron, and A. Joux

S = σ1 + σ2 + σ3 + σ4

where each σi is a knapsack of n/4 elements, that is,

σ1 =
n/4∑

i=1

εiai, σ2 =
n/2∑

i=n/4+1

εiai, σ3 =
3n/4∑

i=n/2+1

εiai, σ4 =
n∑

i=3n/4+1

εiai . (2)

We guess a middle value σM of n/4 bits which leads to the equations:

σ1 + σ2 = σM mod 2n/4 and σ3 + σ4 = S − σM mod 2n/4 .

We solve the two equations separately and merge the result. More precisely, we
first construct a sorted list {σ2} of all 2n/4 possible values for σ2. Then for each
possible σ1, we use the sorted list {σ2} to find all σ2 such that σ1 + σ2 = σM

mod 2n/4. This gives a list {σ12} of knapsack values σ12 = σ1 + σ2 such that
σ12 = σM mod 2n/4; the size of the list {σ12} is heuristically Õ(2n/4) and it can
be built in time Õ(2n/4). We build the list {σ34} of knapsack values σ34 = σ3+σ4

such that σ34 = S − σM mod 2n/4 in an analogue way. Eventually, we find a
collision between the two lists {σ12} and {S − σ34} of two elements σ12 and
σ34, respectively. For the right guess of σM we have found elements such that
σ12 + σ34 = S, thereby solving the knapsack problem.

The time required to build the two lists {σ12} and {σ34} is Õ(2n/4). Then by
sorting those two lists the collision can be found in time Õ(2n/4). Since we have
to guess σM which is a n/4-bit value, the total running time is Õ(2n/2) and the
required memory is Õ(2n/4).

Unbalanced Case. We say that a knapsack is unbalanced when the Hamming
weight of the coefficient vector ε = (ε1, . . . , εn) is known and equal to � where
� significantly differs from n/2. As shown in [5], one can adapt the previous
algorithm as follows: instead of taking all possible knapsacks of n/4 elements
we only consider knapsacks of Hamming weight exactly �/4 (assuming that �
is divisible by 4). Note that if the correct solution is not perfectly balanced
between the four quarters, then such solution will be missed. This problem is
easily solved by permuting the order of the elements in the knapsacks until the
Hamming weight of each quarter is equal to �/4. As explained in [5], the expected
number of required repetitions is polynomial in n. Thus, this change does not
modify the value of the exponent in the running time.

For � = τ · n the size of the lists {σ2} and {σ4} becomes
(n/4

�/4

) ≈ 2h(τ)n/4

where:
h(x) := −x · log2 x − (1 − x) · log2(1 − x) .

Again, we can guess a middle value σM modulo 2h(τ)n/4; as previously the two
lists {σ12} and {σ34} can be built in time Õ(2h(τ)n/4) and a collision is found
in time Õ(2h(τ)n/4). Therefore, the total time complexity is Õ(2h(τ)n/2) and the
memory complexity is Õ(2h(τ)n/4).

Improved Generic Algorithms for Hard Knapsacks 367

2.2 The Howgrave-Graham–Joux Algorithm

We consider the knapsack (1). For simplicity we assume again that n is a multiple
of four and additionally that the Hamming weight of the coefficients εi is equal
to n/2. To find a solution x ∈ {0, 1}n, the basic idea of Howgrave-Graham and
Joux [5] is to split the knapsack into two subknapsacks of size n and of Hamming
weight n/4. In other words, we write S as the sum σ1 + σ2 of two subknapsacks
with Hamming weight n/4 chosen among the n knapsack elements,

n∑

i=1

aiyi

︸ ︷︷ ︸
σ1

+
n∑

i=1

aizi

︸ ︷︷ ︸
σ2

= S (3)

where yi, zi ∈ {0, 1}. Clearly, the combination of two solutions y ∈ {0, 1}n and
z ∈ {0, 1}n gives a solution to the original knapsack when the two solutions
do not overlap. In other words, we represent any xi by a binary tuple (yi, zi),
replacing 0 by (0, 0) and 1 by (1, 0) or (0, 1), respectively. As a consequence, a
single solution of the original knapsack problem decomposes into many different
representations. This is used to reduce the overall running time as described in
the following. We choose a modulus M , a random element R ∈ ZM and we only
consider decompositions such that:

σ1 =
n∑

i=1

aiyi ≡ R (mod M) and σ2 =
n∑

i=1

aizi ≡ S − R (mod M) .

Since both σ1 and σ2 are knapsacks of Hamming weight n/4 over n elements,
the expected number of solutions to each of these two modular subknapsacks is

L =

(
n

n/4

)

M
.

Assuming that the lists of solutions of the two subknapsacks can be obtained
very efficiently (in time Õ(L)), it remains to paste the partial solutions together
to obtain a solution to the original knapsack. We therefore search a collision
between the values σ1 and S−σ2, for all y and z in the two lists of solutions. Since
the expected number of such collisions is small, this can be done in Õ(L). To
minimize the overall running time, M is chosen to be as large as possible. More
precisely, one chooses M as a number close to the number of decompositions
of the original solution into two solutions of the two subknapsacks, i.e. M ≈
2n/2. Under these assumptions, the running time would be reduced down to
Õ(2h(1/4)n/2n/2) = Õ(20.3113).

However, there are several technical difficulties with this approach. First, there
is an exponentially small number of bad weights (a1, .., an) where the algorithm
fails. Second, the assumption that the list of solutions of each subknapsack can
be obtained in time Õ(L) is quite strong and difficult to achieve. [5] describes a
heuristic algorithm, supported by an implementation, and claims that it achieves

368 A. Becker, J.-S. Coron, and A. Joux

the Õ(20.3113n) running time. However, May and Meurer recently discovered a
mistake in the analysis of this algorithm [9]; they showed that the asymptotic
running time of the Howgrave-Graham–Joux algorithm is actually Õ(20.337n);
see [2] for more details.

3 New Algorithm with Better Time Complexity

3.1 Theoretical Improvement

Our basic idea is to enhance the algorithm of [5] by allowing more representa-
tions of the solution of the initial knapsack. Instead of decomposing the original
solution into two binary coefficient vectors of weight n/4, we consider decompo-
sitions that contain 0s, 1s and -1s. More precisely, we choose a parameter α and
search for decompositions containing (1/4 + α)n 1s and αn -1s. Put differently,
we split the 1s of the original solution into pairs (0, 1) or (1, 0) as before and the
0s into pairs (0, 0), (1,−1) or (−1, 1). The number of such decompositions is

ND =
(

n/2
n/4

)(
n/2

αn, αn, (1/2 − 2α)n

)
.

As in Sect. 2.2, we choose a modulus M ≈ ND, a random value R modulo M
and search for solutions of the two subknapsacks

σ1 =
n∑

i=1

aiyi ≡ R (mod M) and σ2 =
n∑

i=1

aizi ≡ S − R (mod M) ,

where y and z contain (1/4 + α)n 1s and αn -1s each. The expected number of
solutions to each of these new modular subknapsacks is

L =

(
n

(1/4+α)n,αn,(3/4−2α)n

)

M
.

Using: (
n

xn, yn, (1 − x − y)n

)
= Õ(2g(x,y)n)

where:

g(x, y) := −x log2 x − y log2 y − (1 − x − y) log2(1 − x − y)

we obtain:

log2 L ≈ n ·
(

g(1/4 + α, α) − 1
2
− g(2α, 2α)

2

)
.

Assuming that creating the lists and searching for collisions can be done in time
Õ(L) and minimizing on α, we obtain a time complexity Õ(L) = Õ(20.151 n) for
α ≈ 0.103.

This analysis shows that adding more representations of the original solution
has the potential to give better algorithms. However, there are many obstacles to

Improved Generic Algorithms for Hard Knapsacks 369

achieve such a good algorithm. A first obstacle is that the size of the modulus M
should never be larger than the size of the knapsack elements. Indeed, we want
the knapsack after reduction modulo M to behave like a random knapsack, which
is not the case if M is larger than the original knapsack elements. Thus, we want
to ensure M < 2n. Optimizing for α under this condition, we get α = 0.05677
and L ≈ 20.173 n.

3.2 The Basic Building Block

Before describing our algorithm, we recall a classical basic building block that
we extensively use. This building block performs the following task: given two
lists of numbers La and Lb of respective sizes |La| and |Lb|, together with two
integers M and R, the algorithm computes the list LR such that:

LR = {x + y | x ∈ La, y ∈ Lb s.t. x + y ≡ R (mod M)} .

To solve this problem, we use a classical algorithm [16] whose description is given
in pseudo-code by Algorithm 1.

Algorithm 1. Compute list LR

Sort the lists La and Lb (by increasing order of the values modulo M);
Let Target← R;
Let i← 0 and j ← |Lb| − 1;
while i < |La| and j ≥ 0 do

Let Sum← (La[i] (mod M)) + (Lb[j] (mod M));
if Sum < Target then Increment i;
if Sum > Target then Decrement j;
if Sum = Target then

Let i0, i1 ← i;
while i1 < |La| and La[i1] ≡ La[i0] (mod M) do Increment i1;
Let j0, j1 ← j;
while j1 ≥ 0 and Lb[j1] ≡ Lb[j0] (mod M) do Decrement j1;
for i← i0 to i1 − 1 do

for j ← j1 + 1 to j0 do Append La[i] + Lb[j] to LR

end
Let i← i1 and j ← j1;

end

end
Let Target← R + M ;
Let i← 0 and j ← |Lb| − 1;
Repeat the above loop with the new target;

The complexity of Algorithm 1 is Õ(max(|La|, |Lb|, |LR|)). Moreover, assum-
ing that the values of the initial lists modulo M are randomly distributed, the
expected size of LR is |La| · |Lb|/M . However, this cannot be guaranteed in
general.

370 A. Becker, J.-S. Coron, and A. Joux

Using a slight variation of Algorithm 1, it is also possible given La and Lb

together with a target integer R to construct the set:

LR = {x + y | x ∈ La, y ∈ Lb s.t. x + y = R} .

The only differences are that we sort the lists by value (not by modular values)
and then run the loop with a single target value R (instead of 2).

3.3 Devising a Concrete Algorithm

In order to achieve a concrete algorithm along the lines of the theoretical analysis
from Sect. 3.1, we must be able to solve the subknapsacks that arise after de-
composing the original knapsack problem in a reasonably efficient manner. The
difficulty here is that a direct use of an adapted Schroeppel-Shamir algorithm is
too costly.

Instead, we use the idea of decomposing a knapsack into two subknapsacks
several times. More precisely, we introduce three levels of decomposition; see
Fig. 1 for an illustration. The first decomposition follows the method described in
Sect. 3.1, with a different (smaller) choice for the value α denoting the proportion
of -1s added on each side. At the second or middle level, we decompose each
subknapsack from the first level into two. We also add some new -1s in the
decompositions. The number of additional -1s for each of the four subknapsacks
at the middle level is controlled by a new parameter β. In the last level, we
finally decompose into a total of eight different subknapsacks. At this level, we
use a parameter γ to denote the proportion of extra -1s in the subknapsacks.

σ
(1)
ω σ

(2)
ω σ

(3)
ω σ

(4)
ω σ

(5)
ω σ

(6)
ω σ

(7)
ω σ

(8)
ω

σ
(1)
ω σ

(2)
ω σ

(3)
ω σ

(4)
ω σ

(5)
ω σ

(6)
ω σ

(7)
ω σ

(8)
ω+ + + + + + + = S

σ
(1)
κ σ

(2)
κ σ

(3)
κ σ

(4)
κ

σ
(1)
ν σ

(2)
ν

Golden solution ε
corresponding to sum σε

L
(3)
κ

L
(2)
ν

≡Mν R
(1)
ν

≡Mκ R
(1)
κ + R

(2)
κ

≡Mω R
(1)
ω + R

(2)
ω + R

(3)
ω + R

(4)
ω

≡Mκ R
(1)
κ

≡Mω R
(1)
ω + R

(2)
ω

γ

β

α

Fig. 1. Iterative decomposition in three steps. σ
(j)
χ : partial sum, R

(j)
χ : target value,

Mχ : modulus, α, β and γ : proportion of additional −1s.

Improved Generic Algorithms for Hard Knapsacks 371

Notation. We use a different Greek letter (ε, κ, ω or ν) to denote the coeffi-
cient vectors of each subknapsack. In the original knapsack, we carry on using
the letter ε. At the first level of decomposition, we now use ν(1) and ν(2) for
the coefficient vectors of the two subknapsacks. At the middle level, we choose
the notation κ(1) to κ(4). At the bottom level, we use the letters ω(1) to ω(8).
We then let Nχ(x) denote the number of occurrences of x ∈ {−1, 0, 1} in the
coefficient vector χ. For a knapsack of n elements, we have:

Nε(1) = n/2, Nε(−1) = 0,
Nν(1) ≈ (1/4 + α)n, Nν(−1) ≈ αn,
Nκ(1) ≈ (1/8 + α/2 + β)n, Nκ(−1) ≈ (α/2 + β)n,
Nω(1) ≈ (1/16 + α/4 + β/2 + γ)n, Nω(−1) ≈ (α/4 + β/2 + γ)n .

We always have Nχ(0) = n − Nχ(1) − Nχ(−1). Since all these numbers need to
be rounded to integers for a concrete knapsack instance, we write ≈ instead of
= above. For each of the coefficient vectors χ(j) we introduce the corresponding
partial sum:

σ(j)
χ =

n∑

i=1

χ
(j)
i ai .

To control the size of the lists of solutions that arise at each level of decompo-
sition, we introduce a modulus and target values for each of the subknapsacks.
We denote the modulus corresponding to the bottom level by Mω, we introduce
7 random values R

(j)
ω (for 1 ≤ j ≤ 7) and let R

(8)
ω = S − ∑7

j=1 R
(j)
ω . We solve

the eight modular subknapsacks:

σ(j)
ω ≡ R(j)

ω (mod Mω) for 1 ≤ j ≤ 8 .

We denote by L
(j)
ω , the list of solutions of each of these subknapsacks.

Basic Principle and Modular Constraints. To build solutions at the middle
level κ, we consider sums of two partial solutions from two neighboring lists
L

(2j−1)
ω and L

(2j)
ω containing solutions of the last level. By construction, we see

that:
σ(j)

κ = σ(2j−1)
ω + σ(2j)

ω ≡ R(2j−1)
ω + R(2j)

ω (mod Mω)

which means that all these partial sums already have some fixed value modulo
Mω. To prune the size of the lists of solutions at this level, we add an extra
constraint modulo Mκ (chosen coprime to Mω). Thus, we introduce three random
values R

(j)
κ (for 1 ≤ j ≤ 3) and let R

(4)
κ = S − ∑3

j=1 R
(j)
κ . The new lists of

solutions are denoted by L
(j)
κ .

For the first level, we proceed similarly, adding partial solutions from L
(2j−1)
κ

and L
(2j)
κ . Clearly, the resulting sums already have fixed values modulo Mκ

and Mω. Again, we introduce a modulus Mν , a random value R
(1)
ν and we let

R
(2)
ν = S − R

(1)
ν to reduce the size of the lists.

372 A. Becker, J.-S. Coron, and A. Joux

Finally, the (presumably unique) solution of the original knapsack is found
by searching for a collision of the form σ

(1)
ν + σ

(2)
ν = S with σ

(1)
ν ∈ L

(1)
ν and

σ
(2)
ν ∈ L

(2)
ν . Figure 1 illustrates the technique.

To transform this informal description into a formal algorithm and to analyze
its complexity, we need to specify how the lists L

(j)
ω are constructed. We also

explain how to merge solutions from one level to solutions at the next level and
specify the choices of the moduli Mω, Mκ and Mν in the next paragraph.

Algorithmic Details. The eight lists L
(j)
ω can be constructed using a straight-

forward adaptation of the simple birthday paradox algorithm. It suffices to split
the n elements into two random subsets of size n/2 and to assume that the
1s and -1s are evenly1 distributed between the two halves. As with the case of
binary coefficient vectors, the probability of this event is the inverse of a poly-
nomial in n. Thus by repeating polynomially many times, we recover all of L

(j)
ω

with overwhelming probability. Assuming that the elements in L
(j)
ω are random

modulo Mω, the expected size of L
(j)
ω is:

Lω =
Lω

Mω
=

(
n

Nω(1),Nω(−1),Nω(0)

)

Mω
,

where Lω is the multinomial coefficient that counts the number of ways to
choose Nω(1) 1s, Nω(−1) -1s and Nω(0) 0s among n elements. Since the num-
ber of ways to choose Nω(1)/2 1s, Nω(−1)/2 -1s and Nω(0)/2 0s among n/2
elements is ≈ L1/2

ω for large n, the running time of the construction of each L
(j)
ω

is max(|L(j)
ω |,L1/2

ω).
At the middle level, the expected size of L

(j)
κ is upper bounded by

Lκ =
Lκ

Mω · Mκ
=

(
n

Nκ(1),Nκ(−1),Nκ(0)

)

Mω · Mκ
.

This is only an upper bound on the expected size since the definition of Lκ

ignores the fact that we discard solutions that cannot be decomposed with the
modular constraints of the lower level.

To construct these lists, we match values from L
(2j−1)
ω and L

(2j)
ω modulo Mκ

using Algorithm 1 from Sect. 3.2. We let K
(j)
κ denote the resulting list. We then

remove inconsistent solutions from K
(j)
κ in order to produce L

(j)
κ . We say that a

solution is inconsistent when the vector ω(2j−1) +ω(2j) contains 2s or -2s and/or
does not have the number of 1s, -1s and 0s specified by Nκ(1), Nκ(−1) and Nκ(0).
According to Sect. 3.2, the cost of this step is max(|L(2j−1)

ω |, |L(2j)
ω |, |K(j)

κ |).
Proceeding in the same way, we give an upper bound on the expected size of

L
(j)
ν by

Lν =
Lν

Mω · Mκ · Mν
=

(
n

Nν(1),Nν(−1),Nν(0)

)

Mω · Mκ · Mν
.

1 Or almost evenly when the number of 1s and/or -1s are odd.

Improved Generic Algorithms for Hard Knapsacks 373

Using the same notation as above, the cost to construct the two lists L
(j)
ν is

max(|L(2j−1)
κ |, |L(2j)

κ |, |K(j)
ν |).

Finally, the last step is to apply the integer variant of Algorithm 1 to the two
integer lists L

(1)
ν and L

(2)
ν , obtaining a list K0 of (possibly inconsistent) solutions.

The cost of this step is max(|L(1)
ν |, |L(2)

ν |, |K0|).
To estimate the size of K0, we count the number of expected solutions in a

modular merge modulo the multiple of Mω ·Mκ ·Mν closest to 2n. This overesti-
mates the size of K0 since it is slightly easier to find a knapsack solution modulo
this value than a knapsack solution over the integers. This yields an estimate
equal to:

L2
ν · Mν · Mκ · Mω

2n
.

If K0 contains at least one consistent solution, we obtain a solution of the initial
knapsack problem.

To conclude the description of the algorithm, we need to specify the values
of the moduli Mω, Mκ and Mν . The key idea at this point is to choose each
modulus to ensure that each solution appearing at a given level is represented
(on average) by a single decomposition at the previous level. Indeed, if we add
a larger modular constraint, we lose solutions from one level to the next and if
we choose a smaller constraints, we construct each solution many times which
increases the overall cost. Using binomials and multinomials to compute the
number of decompositions we obtain the following conditions for the values of
the moduli:

Mω ≈ (Nκ(1)
Nκ(1)/2

) · (Nκ(−1)
Nκ(−1)/2

) · (Nκ(0)
Nω(1)−Nκ(1)/2,Nω(−1)−Nκ(−1)/2, �

) ≈
2(1/8+α+2 β−2γ log2 γ−(7/8−α−2β−2γ) log2 (7/8−α−2 β−2γ)+(7/8−α−2 β) log2 (7/8−α−2 β) ,

Mκ · Mω ≈ (
Nν(1)

Nν(1)/2

) · (Nν(−1)
Nν(−1)/2

) · (Nν(0)
Nκ(1)−Nν(1)/2,Nκ(−1)−Nν(−1)/2, �

) ≈
2(1/4+2α−2β log2 β−(3/4−2α−2β) log2(3/4−2α−2β)+(3/4−2α) log2(3/4−2α))n ,

Mν · Mκ · Mω ≈ (n/2
n/4

) · (n/2
Nν(−1),Nν(−1), �

)

≈ 2(1/2−2α log2 α−(1/2−2α) log2(1/2−2α)+(1/2) log2(1/2))n

≈ 2(−2α log2 α−(1/2−2α) log2(1/2−2α))n .

The
 symbol in the above multinomials denotes the number of remaining ele-
ments (corresponding to 0s) after specifying the number of 1s and -1s introduced
to decompose the set of 0s from the lower level.

The overall running time of the algorithm is the maximum of the individual
costs to run Algorithm 1 and the construction of the eight lists, which gives:

Õ(max(max
j

|L(j)
ω |, max

j
L1/2

ω , max
j

|K(j)
κ |, max

j
|L(j)

κ |, max
j

|K(j)
ν |, max

j
|L(j)

ν |, |K0|)) .

374 A. Becker, J.-S. Coron, and A. Joux

Assuming that each list has a size close to its expected value (see Sect. 3.5), the
expected running time is:

T (α, β, γ) = Õ(max(Lω,L1/2
ω ,

L2
ω

Mκ
, Lκ,

L2
κ

Mν
, Lν , L2

ν · Mν · Mκ · Mω

2n
)) .

Since none of the Kχ lists need to be stored, the amount of memory required is:

Õ(max(Lω,L1/2
ω , Lκ, Lν)) .

Finally, there is an additional, very important, parameter to consider, the proba-
bility of success psucc taken over the possible random choices of the R

(j)
χ values.

This parameter is quite tricky to estimate because it varies depending on the
initial knapsack that we are solving. As an illustration, consider the knapsack
whose elements are all equal to 0. It is clear that unless all the random R

(j)
χ are

chosen equal to 0 then the algorithm cannot succeed. As a consequence, in this
case the probability of success is very low. There are many other bad knapsacks;
however, for a random knapsack, the expected probability of success is not too
small (see Sect. 3.4 for a discussion).

Numerical Results for the Complexity Analysis. Minimizing the expected
running time T (α, β, γ) results in:

α = 0.0267, β = 0.0168, γ = 0.0029 .

With these values, we obtain:

Lω ≈ 20.532 n, Lω ≈ 20.291 n, Lκ ≈ 20.279 n, Lν ≈ 20.217 n and
Mω ≈ 20.241 n, Mκ ≈ 20.291 n, Mν ≈ 20.267 n .

As a consequence, we find that both the time and memory complexity are equal
to Õ(20.291 n). We can also check that the product of the three moduli Mω ·Mκ ·
Mν is smaller than the size of the numbers in the initial knapsack, i.e. 2n.

However, we remark that γ is so small that for any achievable knapsack size
n, the number of −1s added at the last level is 0 in practice. Thus, in order
to improve the practical choices of the number of −1s at the higher levels, it is
better to adjust the minimization with the added constraint γ = 0. This leads
to the alternative values:

α = 0.0194, β = 0.0119, γ = 0 .

With these values, we obtain:

Lω ≈ 20.463 n, Lω ≈ 20.295 n, Lκ ≈ 20.284 n, Lν ≈ 20.234 n and
Mω ≈ 20.168 n, Mκ ≈ 20.295 n, Mν ≈ 20.272 n .

We can also remark that by choosing α = β = γ = 0, we recover the time
complexity Õ(20.337 n) given by May and Meurer [9] for the algorithm of [5].
However, in our case, the memory complexity is also Õ(20.337 n), which indicates
that our algorithm can probably be improved in this respect. In the full version
of the paper [2], we also consider the unbalanced case and possible extensions.

Improved Generic Algorithms for Hard Knapsacks 375

3.4 Analysis of the Probability of Success

In order to analyze the probability of success, it is convenient to bear in mind Fig.
1. We are starting from an unknown but fixed golden solution of the knapsack
and we wish to decompose it seven times. (At each step we represent the 0s, 1s
and −1s of the current coefficient vector by a tuple (i, j) where i, j ∈ {0, 1,−1}.)
For each of the seven splits, we add a modular constraint modulo a number
very close to the total number of decompositions. For example, during the top
level split, we are specifying that the sum of the left hand-side after the splitting
should be congruent to R

(1)
ν modulo Mν, to R

(1)
κ + R

(2)
κ modulo Mκ and to

R
(1)
ω + R

(2)
ω + R

(3)
ω + R

(4)
ω modulo Mω. Since the three moduli are coprime, this

is equivalent to simply specifying a value modulo Mν · Mκ · Mω. Each of the
decompositions is considered successful if the current golden solution admits at
least one way of splitting which satisfies the modular constraint. In this case, we
focus on one of the admissible solutions for which we search for a decomposition
in the level below. Fixing the solution on the left-hand side also determines the
solution of the right-hand side.

Clearly, if each of the seven decompositions succeeds, the initial solution can
be found by the algorithm. Assuming independence, the overall probability of
success is at least equal2 to the product of the probability of success of the
individual decompositions. If we do not assume independence, we can still say
that the overall probability of failure is smaller than the individual probabilities
of failure.

Purely Random Heuristic Model. One approach to the analysis of the
probability of an individual decomposition succeeding is to assume that for each
of the possible decompositions, the resulting modular sum is a random value.
We already know that there are knapsacks for which this assumption does not
hold, as illustrated by the all-zero example. This is true for a large number of
random, however, and is a very useful benchmark for the following analysis. For
simplicity, we assume here that the number of possible decompositions is equal
to the modulus M for a large set of random knapsacks.

In this case, it is well-known that for large values of M , the proportion of
modular values which are not attained after picking M random values is close
to e−1 � 0.36.

Experimental Behavior of Decompositions. In Section 5, we describe an
implementation of our algorithm on a 80-bit knapsack. To better understand
the behavior of this implementation, it is useful to determine the probability of
success of each decomposition. Three levels of decomposition occur. At the top
level, a balanced golden solution with 40 zeros and 40 ones needs to be split
into two partial solutions with 22 ones and two -1s each. At the middle level, a
golden solution with 22 ones and two -1s is to be split into two partial solutions

2 The probability can be larger, since we ignore multiple correct splits when they
occur.

376 A. Becker, J.-S. Coron, and A. Joux

0

200000

400000

600000

800000

1e+06

0 200 400 600 800 1000 1200 1400 1600 1800

Knapsack Sums
Random Values

Fig. 2. Cumulative number of knapsacks (in a million) with less than a given number
of not obtained values

with 12 ones and two -1s. Finally, at the bottom level, we split 12 ones and two
-1s into twice 6 ones and one -1.

At the top level, the number of possible decompositions of a golden solution
is larger than

(
40
22

)(
40

2,2,36

) ≈ 256. As a consequence, it is not possible to perform
experimental statistics of the modular values of such a large set. At the middle
level, the number of decompositions is larger than

(
22
11

)(
2
1

)(
46

1,1,44

) ≈ 232. Thus,
it is possible to perform some experiments, but doing a large number of tests
to perform a statistical analysis of the modular values is very cumbersome. At
the bottom level, the number of decompositions of a golden solution is

(
12
6

)(
2
1

)
=

1848. This is small enough to perform significant statistics and, in particular,
to study the fraction of modular values which are not obtained (depending on
a random choice of 14 knapsack elements, 12 1s and two −1s, to be split). The
value of the modulus used in this experiment is 1847, the closest prime to 1848.

During our experimental study, we created one million modular subknapsacks
from 14 randomly selected values modulo 1847. Among these values 12 elements
correspond to additions and 2 to subtractions. From this set we computed (in
Z1847) all of the 1848 values that can be obtained by summing 6 out of the 12
addition elements and subtracting one of the subtraction elements. In each ex-
periment, we counted the number of values which were not obtained; the results
are presented in Fig. 2. On the vertical axis we display the cumulative number of
knapsacks which result in x or less unobtained values. To allow comparison with
the purely random model, we display the same curve computed for one million
of experiments where 1848 random numbers modulo 1847 are chosen. In par-
ticular, we see on this graph that for 99.99% of the random knapsacks we have

Improved Generic Algorithms for Hard Knapsacks 377

constructed the fraction of unobtained value stays below 2/3. This means that
experimentally, the probability of success of a decomposition at the bottom level
is, at least, 1/3 for a very large fraction of knapsacks. Assuming independence
between the probability of success of the seven splits and a similar behavior
of three levels3, we conclude that for 99.93% of random knapsacks an average
number of 37 = 2187 repetitions suffices to solve the initial problem.

Distribution of Modular Sums. When considering the decomposition of
a given golden solution (at any level), we can construct the set B of all left-
hand sides which can appear. For this set B we wish to study the distribution
of the scalar product a · x =

∑n
i=1 aixi (mod M), for given knapsack weights

ai. Let Pa1,..,an(B, c) denote the probability that a knapsack of elements a =
(a1, .., an) ∈ Z

n
M results in the value c modulo M for a uniformly at random

chosen solution (x1, .., xn) from B,

Pa1,··· ,an(B, c) =
1
|B|

∣∣∣∣∣

{
(x1, · · · , xn) ∈ B such that

n∑

i=1

aixi ≡ c (mod M)

}∣∣∣∣∣ .

Our main tool to theoretically study the distribution of the scalar products is
the following theorem [11, Theorem 3.2]:

Theorem 1. For any set B ⊂ Z
n
M , the identity:

1
Mn

∑

(a1,··· ,an)∈Z
n
M

∑

c∈ZM

(
Pa1,··· ,an(B, c) − 1

M

)2

=
M − 1
M |B|

holds.

With this equation we can prove a weak but sufficient result about the proportion
of missed values during a decomposition. Let Λ > 0 be an arbitrary integer. We
want to find an upper bound for the fraction fΛ of “bad” knapsacks modulo
M with less than M/Λ obtained values. First, we remark that for a knapsack
(a1, · · · , an) that reaches less than M/Λ values, at least (Λ − 1)M/Λ values
modulo M are obtained 0 times. Since

∑

c∈ZM

Pa1,··· ,an(B, c) = 1

some values c need to be obtained many times. As a consequence, we find that

∑

c∈ZM

(
Pa1,··· ,an(B, c) − 1

M

)2

≥ Λ − 1
Λ

· M · 1
M2

+
1
Λ

· M · (Λ − 1)2

M2
=

Λ − 1
M

.

3 The limited number of experiments we have performed for the middle level seem to
indicate a comparable behavior. We performed 100 experiments and the number of
not obtained values remained in the range 42% – 43.1%.

378 A. Becker, J.-S. Coron, and A. Joux

This implies that the number Nbad of “bad” knapsacks satisfies:

Nbad ≤ Mn · M − 1
(Λ − 1)|B| .

With this bound, it is possible to construct a variation of our algorithm with a
provable probability of success. Given Λ ≥ 10 as a function of n, we repeat each
split for 2 Λ random and independently picked values. The probability of failure
of such a repeated split is at most e−2 ≈ 0.135, except for a “bad” knapsack.
Thus, the global probability of failure on the seven splits is smaller than 95%. By
choosing M smaller than |B| (but close to it), we ensure that the total fraction
of bad knapsacks is at most:

7
Λ − 1

.

This fraction becomes arbitrarily small by choosing a large enough value of Λ.
Note that the running time is multiplied by (2 Λ)3, since there are three nested
levels of decompositions. If a probability of success of 5% is not sufficient, it is
possible to increase the probability by repeating the complete algorithm with
independent random numbers. A polynomial number of repetition leads to a
probability of success exponentially close to 1 (with the exception of the “bad”
knapsacks).

3.5 Analysis of the Size of the Lists

Concerning the size of the lists that occur during the algorithm, both the simple
heuristic model and the experimental results (see Section 5) predict that the size
of the lists are always very close to the theoretical values at the bottom level
and smaller (due to the overestimation) at the levels above. It remains to use
Theorem 1 to give an upper bound on the size of the various lists.

For the sizes of the lists Lχ, we can use a direct application of the theorem.
The set of concern, B, is the set of all repartitions of 1s, 0s and -1s fulfilling
the conditions of Lχ. The modulus M is the product of all active moduli at the
current and preceding levels. That is, for level ω we have M = Mω; for level κ,
M = Mω · Mκ, and for level ν we take M = Mω · Mκ · Mν .

Once again, we fix an integer Λ and consider the number FΛ of knapsacks for
which more than M/(2 Λ) values c have a probability that satisfies:

Pa1,··· ,an(B, c) ≥ Λ/M .

Due to Theorem 1, we find:

FΛ

Mn
· M

2 Λ
· (Λ − 1)2

M2
≤ M − 1

M |B| ≤ 1
|B| .

As a consequence:

FΛ ≤ 2 Λ

(Λ − 1)2
· M

|B| · M
n ≤ 2 Λ

(Λ − 1)2
· Mn .

Improved Generic Algorithms for Hard Knapsacks 379

The key point is that for a knapsack which is not one of the FΛ knapsacks above
and for most values of c (all but at most M/(2 Λ)), the size of Lχ is smaller than
Λ times the expected value |B|/M , that is,

|Lχ| ≤ Λ |B|
M

.

To bound the size of the lists Kχ, we proceed slightly differently. The set B
consists of 1s, 0s and -1s that are allowed in the L lists and are matched to
construct Kχ. We write M = M1 · M2, where M1 is the product of the active
moduli for the L list and M2 is the modulus that is added when constructing Kχ.
Let σ (mod M) denote the target sum as a new modulo constraint for elements
in Kχ. Let σL (mod M1) and σR (mod M1) respectively denote the values of
the sums in the left-side and right-side lists L. Of course, we have σL + σR ≡ σ
(mod M1). We can write:

|Kχ| =
∑

c ∈ ZM

c ≡ σL (mod M1)

(|B| · Pa1,··· ,an(B, c)) · (|B| · Pa1,··· ,an(B, σ − c))

≤

⎡

⎢⎢⎢⎢⎢⎣

∑

c ∈ ZM

c ≡ σL

(|B| · Pa1,··· ,an(B, c))2 ×
∑

c ∈ ZM

c ≡ σR

(|B| · Pa1,··· ,an(B, c))2

⎤

⎥⎥⎥⎥⎥⎦

1/2

.(4)

Thus to estimate the size of the lists Kχ, we need to find an upper bound for
the value of sums of the form:

∑

c ∈ ZM

c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 .

To do this, it is useful to rewrite the relation from Theorem 1 as:

1
Mn

∑

(a1,··· ,an)∈Z
n
M

∑

c∈ZM

Pa1,··· ,an(B, c)2 =
M + |B| − 1

M |B| .

Given Λ, we let GΛ denote the number of knapsacks for which more than
M1/(8 Λ) values c1 have a sum of squared probabilities that satisfy:

∑

c ∈ ZM

c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 ≥ Λ2

M2
1 M2

.

We find that
GΛ

Mn
· M1

8 Λ
· Λ2

M2
1 M2

≤ M + |B| − 1
M |B| ;

380 A. Becker, J.-S. Coron, and A. Joux

and as a consequence

GΛ ≤ 8
Λ

· M + |B|
|B| · Mn .

Moreover, we can check with our concrete algorithm that we always have |B| ≥ M
for the construction of the lists Kχ. Thus we have GΛ ≤ (16/Λ)Mn. For a
knapsack which is not one of the GΛ knapsacks above and for most values4

of σL mod M1, the size of Kχ is smaller than Λ2 times the expected value
|B|2/(M2

1 M2), that is,

|Kχ| ≤ Λ2 |B|2
M2

1 · M2
.

Note, that this bound includes the case |K0|.

3.6 Provable Variant of the Concrete Algorithm

Following the ideas presented in Sect. 3.4, we can now describe a variant of our
concrete algorithm with provable probabilistic run-time and space requirements.
First, fix a large enough value of Λ. We redefine the notion of a “bad” knapsack
in this section, by saying that a knapsack is bad if it fails to fulfill one of the
three criteria developed in Sect. 3.4 and Sect. 3.5. That is, if there are too many
values that yield incorrect splits or lists of type L or K which are too large. We
find that the total fraction of bad knapsacks is smaller than

7
(

1
Λ − 1

+
2 Λ

(Λ − 1)2
+

16
Λ

)
≤ 140

Λ
for Λ ≥ 7 .

By choosing a large enough value for Λ, this fraction can become arbitrarily
small.

Once again, we consider a variation of the concrete algorithm where at each
level we repeat the choice of random numbers often enough to be successful.
For a “good” knapsack there are three ways a decomposition can fail . Firstly,
we could choose a random value which does not permit a decomposition of the
golden solution; Secondly, we could choose a random value which makes Lχ

overflow; Thirdly, we could choose a random value which makes Kχ overflow.
Note that the last two events can be detected, in which case we erase the lists
that have been constructed for this random value and turn to the next. For each
modulus, the proportion of random values which are incorrect with respect to
at least one criteria is smaller than

Λ − 1
Λ

+
1

2 Λ
+

2
8 Λ

= 1 − 1
4 Λ

.

Thus by repeating each split 8Λ times, we make sure that the probability of
failure of a given split is at most e−2. Once again, this yields a global probability
of success of 5%, which becomes exponentially close to 1 by repeating polynomi-
ally many times. Given a real ε > 0, by setting Λ = 2ε n we obtain the following
theorem:
4 For all but at most 2M1/(8Λ) – the factor 2 in the numerator comes from the fact

that there are two terms to bound in ((4)).

Improved Generic Algorithms for Hard Knapsacks 381

Theorem 2. For any real ε > 0 and for a fraction of at least 1 − 140 · 2−ε n

of equibalanced knapsacks with density D < 1 given by an n-tuple (a1, · · · , an)
and a target value S, if ε = (ε1, · · · , εn) is a solution of the knapsack then the
algorithm described in Sect. 3.3 modified as above finds the solution ε sought
after in time Õ(2(0.291+3ε) n).

We recall that in the theorem, the term equibalanced means that the solution ε
contains exactly the same number of 0s and 1s.

4 Memory Complexity Improvement

In this section we first show a new algorithm of constant memory requirement
and running time Õ(23n/4). We then show how to decrease its time complexity
down to Õ(20.72n) using a technique similar to Howgrave-Graham and Joux
[5]. Finally, we show a time memory tradeoff for Schroeppel-Shamir’s algorithm
down to Õ(2n/16) memory.

4.1 An Algorithm with Running Time Õ(23n/4) and Memory Õ(1)

We describe a simple algorithm that solves the knapsack problem in time Õ(23n/4)
and constant memory, using a meet-in-the-middle attack. This is done by for-
mulating the meet-in-the-middle attack as a collision search problem (see [15]);
then a constant memory cycle-finding algorithm can be used.

We define two functions f1, f2 : {0, 1}n/2 → {0, 1}n/2:

f1(x) =
n/2∑

i=1

aixi mod 2n/2, f2(y) = S −
n∑

i=n/2+1

aiyi mod 2n/2

where xi denotes the i-th bit of x, and similarly for yi. If we can find x, y ∈
{0, 1}n/2 such that f1(x) = f2(y), then we get:

n/2∑

i=1

aixi +
n∑

i=n/2+1

aiyi = S mod 2n/2 .

This gives a solution of the knapsack problem that is only valid modulo 2n/2.
Since there are heuristically Õ(2n/2) such solutions holding modulo 2n/2, and
only a single one that holds over Z, a random (x, y) such that f1(x) = f2(y)
leads to the correct knapsack solution with probability roughly 2−n/2. Below we
show that we can generate such random solution in time Õ(2n/4) and constant
memory. This gives an algorithm with total running time Õ(23n/4) and constant
memory.

From the two functions f1, f2 we define the function f : {0, 1}n/2 → {0, 1}n/2

where:

f(x) =

{
f1(x) if g(x) = 0

f2(x) if g(x) = 1

382 A. Becker, J.-S. Coron, and A. Joux

where g : {0, 1}n/2 → {0, 1} is a random bit function. Then a collision f(x) =
f(y) for f gives a desired collision f1(x) = f2(y) with probability 1/2. The
function f : {0, 1}n/2 → {0, 1}n/2 is a random function, therefore using Floyd’s
cycle finding algorithm [6] we can find a collision for f in time 2n/4 and constant
memory.

However we need to obtain a random collision whereas Floyd’s cycle finding
algorithm is likely to produce always the same collision. A simple solution is to
further randomize the function f ; more precisely we apply Floyd’ cycle-finding
algorithm to f ′ : {0, 1}n/2 → {0, 1}n/2 with f ′(x) = P (f(x)), where P is a
random permutation in {0, 1}n/2. Then a new permutation P is used every time
a new collision (x, y) is required for f .

4.2 An Algorithm with Running Time Õ(20.72n) and Memory Õ(1)

In this section we show how to slightly decrease the running time down to
Õ(20.72n), still with constant memory; for this we use the Howgrave-Graham–
Joux technique recalled in Sect. 2.1. Again for simplicity we assume that n is a
multiple of 4, and that the Hamming weight of the knapsack solution ε is exactly
n/2. As in (3) we write S as the sum σ1 +σ2 of two subknapsacks with Hamming
weight n/4 chosen among the n knapsack elements.

We let W be the set of n-bit strings of Hamming weight n/4. We have #W =
2h(1/4) � 20.81n. We define the two functions f1, f2 : W → {0, 1}h(1/4)n:

f1(y) =
n∑

i=1

aiyi mod 2h(1/4)n, f2(z) = S −
n∑

i=1

aizi mod 2h(1/4)n

where yi denotes the i-th bit of y, and similarly for zi. We consider y, z ∈ W
such that:

f1(y) = f2(z) . (5)

Since f1 and f2 are random functions heuristically there are 2h(1/4)n solutions to
(5). Moreover given the correct solution ε of the knapsack, as in Sect. 2.1 there
are

(n/2
n/4

) � 2n/2 ways of writing this correct solution as σ1 + σ2 = S (see (3)).
All these 2n/2 solutions are solutions of (5). Therefore the probability p that a
random solution of (5) leads to the correct knapsack solution is:

p =
2n/2

2h(1/4)n
� 2−.31n .

The input space of f1, f2 has size 2h(1/4)n. Therefore using the same cycle-finding
algorithm as in the previous section, a random solution of (5) can be found in
time Õ(2h(1/4)n/2). The total time complexity is therefore:

Õ(2h(1/4)n/2)/p = Õ(2h(1/4)n/2) · 2(h(1/4)−1/2)n

= Õ(2(3h(1/4)/2−1/2)n) = Õ(2.72n) .

Finally, we note that it is possible to further improve this complexity by adding
−1s in the decomposition (as in Sect. 3) but the time complexity improvement
is almost negligible.

Improved Generic Algorithms for Hard Knapsacks 383

4.3 A Time-Memory Tradeoff on Schroeppel-Shamir Down to 2n/16

Memory

The original Schroeppel-Shamir algorithm works in time Õ(2n/2) and memory
Õ(2n/4). In this section we describe a continuous time-memory tradeoff down to
Õ(2n/16) memory. That is we describe a variant of Schroeppel-Shamir with:

Running time: Õ(2(11/16−ε)n), Memory: Õ(2(1/16+ε)n)

for any 0 ≤ ε ≤ 3/16. For simplicity we first describe the algorithm with exactly
Õ(2n/16) memory. We write the knapsack as S = σ1 + σ2 + σ3 + σ4 as in (2)
where each σi is a knapsack of n/4 elements.

We guess three values R1, R2 and R3 of 3n/16-bit each and we let R4 such
that R1 + R2 + R3 + R4 = S mod 23n/16. We consider the four subknapsack
equations

σi = Ri mod 23n/16 .

We solve these four equations independently by using the original Schroeppel-
Shamir algorithm. Therefore in time Õ(2n/8) and memory Õ(2n/16) we obtain
four lists {σ1}, {σ2}, {σ3} and {σ4} satisfying the four equations. Eventually to
recover the knapsack solution we merge these four lists using the same merging
procedure as in the original Schroeppel-Shamir algorithm; since each list has size
Õ(2n/16), the merging procedure runs in time Õ(2n/8) and memory Õ(2n/16).
Since we have guessed three values of 3n/16-bit each, the total running time is:

Õ(23n/16)3 ·
(
Õ(2n/8) + Õ(2n/8)

)
= Õ(211n/16)

as required, and the memory consumption is Õ(2n/16).
It is easy to generalize the previous algorithm to memory Õ(2(1/16+ε)n) for

any 0 ≤ ε < 3/16. For this we take the Ri’s of size (3/16 − ε)n-bit each. We
can still build the four lists {σi} in time Õ(2n/8) using Schroeppel-Shamir, but
this time the size of the lists is Õ(2(1/16+ε)n), therefore it requires Õ(2(1/16+ε)n)
memory. The merging procedure now runs in time Õ(2(1/8+2ε)n), still with mem-
ory Õ(2(1/16+ε)n). Therefore the total running time is:

Õ(2(3/16−ε)n)3 ·
(
Õ(2n/8) + Õ(2(1/8+2ε)n)

)
= Õ(2(11/16−ε)n)

as required, for a memory consumption Õ(2(1/16+ε)n).
Surprisingly there remains a gap between our variant of Schroeppel-Shamir

with Õ(2n/16) memory and our constant memory algorithm from Sect. 4.1.
Namely we were unable to find a variant of Schroeppel-Shamir requiring less
than Õ(2n/16) memory, nor a cycle-based algorithm requiring more than Õ(1)
memory.

5 Implementation and Experimental Evidence

In order to verify the correctness of the algorithm presented in Sect. 3.3, we have
implemented it. We ran our implementation on 50 random knapsacks containing

384 A. Becker, J.-S. Coron, and A. Joux

Table 1. Experimental versus theoretical sizes of the intermediate lists

List type Min. size Max. size Theoretical estimate

Lω 12 024 816 12 056 576 Lω =
(80
6,1,73)
1 847

≈ 12 039 532

Kκ 61 487 864 61 725 556
L2

ω
2 352 689

≈ 61 610 489

Lκ 12 473 460 20 224 325 Lκ =
(80
12,2,66)

1 847·2 352 689
≈ 31 583 129

Kν 14 409 247 23 453 644
L2

κ
17 394 593

≈ 57 345 064

Lν 183 447 268 964 Lν =
(80
22,2,56)

1 847·2 352 689·17 394 593
≈ 592 402

K0 178 1 090
L2

ν ·1 847·2 352 689·17 394 593

280 ≈ 21 942

80 elements on 80 bits. The target sum was constructed in each case as a sum of
40 knapsack elements. For each of these knapsacks, we ran our implementation
several times, choosing new random modular constraints for each execution, until
a solution was found. We added two -1s at the first level, one -1 at the second
and none at the third level. At the same time, we collected some statistics about
the behavior of our code.

The total running time to solve the 50 knapsacks was 14 hours and 50 minutes
on a Intel R© CoreTM i7 CPU M 620 at 2.67GHz. The total number of repetitions
of the basic algorithm was equal to 280. We observed that a maximum of 16
repetitions (choice of a different random value in level ν) was sufficient to find the
solution. Also, 53% of the 50 random knapsacks needed only up to 4 repetitions.
On average, each knapsack required 5.6 repetitions.

During the execution of the 280 repetitions of the basic algorithm, we also
noted the length of the lists L and K (still containing inconsistent solutions) that
occurred at each level. The moduli were chosen as primes of size as discussed in
Sect. 3.3: Mω = 1 847, Mκ = 2 353 689, and Mν = 17 394 593. The experimental
and theoretical list sizes are given in Table 1.

We see in Table 1 that the sizes of Lω and Kκ are very close to the predicted
values and do not vary a lot. We refer to the full version of our paper [2] for a
more detailed discussion; see also [2] for implementation results on 96 bits.

Acknowledgments. We would like to thank Alexander May and Alexander
Meurer for pointing out the inconsistency issue in Howgrave-Graham–Joux al-
gorithm. We also thank Dan Bernstein for helpful comments on a preliminary
version of this work.

Improved Generic Algorithms for Hard Knapsacks 385

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: STOC 1998, pp. 10–19 (1998)

2. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks.
Eprint archive (2011)

3. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern,
J.: Improved low-density subset sum algorithms. Computational Complexity 2,
111–128 (1992)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

5. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

6. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algo-
rithms, vol. II. Addison-Wesley, Reading (1981)

7. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J.
ACM 32(1), 229–246 (1985)

8. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 515–534 (1982)

9. May, A., Meurer, A.: Personal communication
10. Merkle, R.C., Hellman, M.E.: Hiding information and signatures in trapdoor knap-

sacks. IEEE Transactions on Information Theory 24, 525–530 (1978)
11. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the

security of the server aided exponentiation. In: Progress in Computer Science and
Applied Logic, Final Proceedings of Cryptography and Computational Number
Theory Workshop, Singapore, vol. 20, pp. 331–224 (2001)

12. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

13. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

14. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem. In: CRYPTO 1982, pp. 279–288 (1982)

15. van Oorschot, P.C., Wiener, M.J.: Improving implementable meet-in-the-middle at-
tacks by orders of magnitude. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 229–236. Springer, Heidelberg (1996)

16. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

	Improved Generic Algorithms for Hard Knapsacks
	Introduction
	Existing Algorithms
	The Schroeppel-Shamir Algorithm
	The Howgrave-Graham–Joux Algorithm

	New Algorithm with Better Time Complexity
	Theoretical Improvement
	The Basic Building Block
	Devising a Concrete Algorithm
	Analysis of the Probability of Success
	Analysis of the Size of the Lists
	Provable Variant of the Concrete Algorithm

	Memory Complexity Improvement
	An Algorithm with Running Time ˜O (23n/4) and Memory ˜O(1)
	An Algorithm with Running Time ˜O (20.72n) and Memory ˜O(1)
	A Time-Memory Tradeoff on Schroeppel-Shamir Down to 2n/16 Memory

	Implementation and Experimental Evidence
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

