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Abstract. In this paper we explore a powerful extension of the notion
of pseudo-free groups, proposed by Rivest at TCC 2004. We identify,
motivate, and study pseudo-freeness in face of adaptive adversaries who
may learn solutions to other non-trivial equations before having to solve
a new non-trivial equation.

We present a novel, carefully crafted definition of adaptive pseudo-
freeness that walks a fine line between being too weak and being un-
satisfiable. We show that groups that satisfy our definition yield, via a
generic construction, digital and network coding signature schemes.

Finally, we obtain concrete constructions of such schemes in the RSA
group by showing this group to be adaptive pseudo-free. In particular, we
demonstrate the generality of our framework for signatures by showing
that most existing schemes are instantiations of our generic construction.

1 Introduction

Background. The search for abstractions that capture the essential security
properties of primitives and protocols is crucial in cryptography. Among other
benefits, such abstractions allow for modular security analysis, reusable and scal-
able proofs. The random oracle model [3], the universal composability frame-
work [7] and variants [1,2,17] of the Dolev-Yao models [9] are results of this
research direction. Most such abstractions (the above examples included) tackle
mostly primitives and protocols and are not concerned with the more basic
mathematical structures that underlie current cryptographic constructions. One
notable exception is the work on pseudo-free groups, a notion put forth by Ho-
henberger [14] and later refined by Rivest [18]. In this paper we continue the
investigation of this abstraction.

Roughly speaking, a computational group G (a group where the group opera-
tions have efficient implementations) is pseudo-free if it behaves as a free group
as far as a computationally bounded adversary is concerned. More specifically, a

� A full version of this paper is available at http://eprint.iacr.org/2011/053
�� Work partially done while student at University of Catania.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 207–223, 2011.
c© International Association for Cryptologic Research 2011

http://eprint.iacr.org/2011/053


208 D. Catalano, D. Fiore, and B. Warinschi

group is pseudo-free if an adversary who is given a description of the group can-
not find solutions for non-trivial equations. Here, non-triviality means that the
equation does not have a solution in the free group. For instance, in a pseudo-
free group given a random element a it should be hard to find a solution for
an equation of the form xe = a, when e �= 1, or for the equation x2

1x
4
2 = a5,

but not for the equation x1x
3
2 = a5. This last equation is trivial since it can be

solved over the free group (it has x1 = a2, x2 = a as solution in the free group)
and a solution in the free group immediately translates to a solution over G.
The notion of pseudo-freeness generalizes the strong RSA assumption (when G

is an RSA group) but also numerous other assumptions currently used in cryp-
tography; see [18] for further details. Rivest’s conjecture that the RSA group is
pseudo-free was largely settled by Micciancio [16] who proved that this is indeed
the case when the RSA modulus is the product of two safe primes.

In its most basic form that had been studied so far, the notion of pseudo-
free groups did not lend itself easily to applications. The problem is that in
most of the interesting uses of the RSA group the adversary is not only given a
description of the group, but often he is allowed to see solutions to non-trivial
equations before having to come up with his own new equation and solution. This
is the case for example in RSA-based signature schemes where one can think of a
signature as the solution to some non-trivial equation. A chosen-message attack
allows the adversary access to an oracle that solves (non-trivial) equations over
the group, and a forgery is a solution to a new equation.

This problem was recognized early on by Rivest [18] who also left as open
problems the design of a notion of pseudo-freeness for adaptive adversaries and,
of course, whether such groups exist. In this paper we put forth such a notion,
prove that the RSA group is adaptive pseudo-free, and exhibit several applica-
tions for adaptive pseudo-free groups. We detail our results next.
Adaptive pseudo-free groups. We first extend the notion of pseudo-freeness
to adaptive adversaries. Informally, we consider an adversary that can see solu-
tions for some equations and has as goal solving a new non-trivial equation. As
explained above, this scenario captures typical uses of groups in cryptography.

Our definition involves two design decisions. The first is to fix the type of
equations for which the adversary is allowed to see solutions and how are these
equations chosen: too much freedom in selecting these equations immediately
leads to potentially unsatisfiable notions, whereas too severe restrictions may
not model the expected intuition of what an adaptive adversary is and may not
allow for applications. In the definition that we propose, equations are selected
from a distribution over the set of equations. Importantly, the distribution de-
pends on a parameter supplied by the adversary. This models the idea that in
applications, the adversary may have some control over how the equations are
selected. Different choices for this distribution lead to a variety of adversaries
from very weak ones where no equation is provided (precisely the setting of
pseudo-freeness proposed earlier), to a setting where the adversary has no influ-
ence on the choice of equations, and ending with the very strong notion where
the adversary basically selects the equations on his own.
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The second issue is to define what is a non-trivial equation in the adaptive
setting. Indeed, previous definitions of triviality do not apply since in our new
setting the adversary knows additional relations between the group elements
which in turn may help him in solving additional equations. We define non-
triviality in a way motivated by existing uses of groups in cryptography and an
analysis of equations over quotients of free groups. Our definition is for the case
of univariate equations but can be easily extended to multivariate equations as
well as systems of equations.
Generic constructions for signatures. Our definition of pseudo-freeness
is parametrized by a distribution over equations. We show that for any distri-
bution in a class of distributions that satisfy certain criteria, one can construct
secure digital signatures and network coding signature schemes. The require-
ments on the distribution include the ability to efficiently check membership
in the support of the distribution, and a property on the distribution of the
exponents in the equation.

Our generic construction for network coding signatures is secure in the vanilla
model based only on the adaptive pseudo-freeness of the underlying group. Any
instantiation of such groups would thus yield network signature schemes secure in
the standard model. Indeed, given the instantiation that we discuss below, our
framework yields the first RSA-based network coding homomorphic signature
scheme secure in the standard model.
The RSA group is adaptive pseudo-free. Next, we turn to proving that
the RSA group is adaptive pseudo-free. We do so for a class of distributions
closely related but slightly more general than the distributions that yield signa-
tures schemes. We show that an adversary that contradicts pseudo-freeness of
the RSA group with respect to the distribution can be used to contradict the
strong RSA assumption. We also prove that the RSA group is pseudo-free for a
weaker version of adaptive adversaries who output their inputs to the distribu-
tion non-adaptively, but in this case the proof is for a larger class of distributions.

We do not attempt to prove adaptive pseudo-freeness of the RSA group for
multivariate equations. While this is potentially an interesting topic for further
research, we are not aware of cryptographic applications where such equations
are used.
Instantiations. An appealing interpretation of the proof of adaptive pseudo-
freeness for the RSA group is that it distills the core argument that underlies
the typical security proofs for signatures based on the strong RSA assumption.
Each such proof explains how a signature forgery can be used to break strong
RSA. In this sense our proof is a generalization to a broader (abstractly defined)
set of equations rather than the particular equations that define an individual
signature scheme.

Indeed, we show that almost all strong RSA signature schemes are instances
of our generic construction. We explain how to obtain the schemes by Cramer
and Shoup [8], Fischlin [10], Camenisch and Lysyanskaya [6], Zhu [19], Hofheinz
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and Kiltz [13]1, and that by Gennaro, Halevi, and Rabin [11] by instantiating
our generic distribution in appropriate ways. The security of all of these schemes
follows as a corollary from the security of our generic construction.
Other related work. In [13] Hofheinz and Kiltz introduced the notion of
programmable hash function (PHF), an information theoretic tool that, when
used in groups where the discrete logarithm is hard, allows for black box proofs
for various cryptographic constructions dealing with adaptive attacks. Among
other things they show how to construct generic signatures from the strong RSA
assumption. Still, PHF and adaptive pseudo free groups seem to abstract away
different aspects of strong-RSA based signatures (for instance PHF can deal with
bilinear groups while our framework allows to encompass network signatures).

1.1 Preliminaries and Notation

In our work we use the notion of division intractable functions. Informally, a
function H is division intractable if an adversary A cannot find x1, x2, . . . , xt, y
such that: y �= xi and H(y) divides the product of the H(xi)’s. It is easy to see
that this notion is satisfied by any function that maps inputs to (distinct) prime
numbers. Such mappings can be instantiated without making any cryptographic
assumptions (see [5] for a construction), but they are not very efficient in practice.
Gennaro et al. introduced in [11] the notion of division intractable hash functions
and also showed how to get practical implementations of them.

For lack of space, we defer the interested reader to the full version for other
standard definitions and notations used throughout the paper.

2 Static Pseudo-free Groups

As warm up, we recall the notion of pseudo-free groups as introduced by
Rivest [18]. To distinguish it from the notions that we develop in this paper
we refer to the older notion as static pseudo-free groups.
Free abelian groups. For any set of symbols A = {a1, a2, . . . , am} we write
A−1 for the set of symbols A−1 = {a−1

1 , a−1
2 , . . . , a−1

m }. Let X = {x1, . . . , xn}
and A = {a1, . . . , am} be two disjoint sets of variables and constant symbols.
An equation over X with constants in A is a pair λ = (w1, w2) ∈ (X∗ × A∗).
We usually write an equation λ = (w1, w2) as w1 = w2 and looking ahead (we
will only consider these equations over abelian groups), we may also write it as
xe1

1 x
e2
2 · · ·xen

n = as1
1 a

s2
2 · · · asm

m where {e1, . . . , en} and {s1, . . . , sm} are integers.
Let (G, ·) be an arbitrary abelian group and α : A→ G be an interpretation of

the constants in A as group elements. We write λα for the equation λ interpreted
over G via α. An evaluation ψ : X → G is a solution for λα if

ψ(x1)e1 · · ·ψ(xn)en = α(a1)s1 · · ·α(am)sm .

1 We remark that for the case of Hofheinz-Kiltz signatures our framework captures a
variant of the main instantiation with non-optimized params. Extending the frame-
work to deal with smaller eponents is an interesting open problem.
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Any equation λ over X and A can be viewed as an equation over the free group
F(A) via the interpretation 1A : A → F(A) that maps a to a. It can be easily
shown [18,16] that the equation λ1A has a solution in F(A) if and only if ∀i =
1, . . . ,m, it holds gcd(e1, . . . , en) | si. We call such equations trivial, in the sense
that these equations have solutions over the free group. All of the other equations
are deemed non-trivial.
Static pseudo-free groups. A computational group consists of a (finite) set
of representations for the group elements together with efficient implementations
for the two group operations. Informally, a computational group is pseudo-free if
it is hard to find an equation which is unsatisfiable over the free group, together
with a solution in the computational group. It is worth noting that if the order of
the group is known then finding solutions for non-trivial equations may be easy.
Therefore, the notion of pseudo-free groups holds for families G = {GN}N∈Nk

of
computational groups where N is chosen at random from the set of indexes Nk

(typically these are the strings of length k) and the corresponding order ord(GN )
is hidden to the adversary.

In the following we recall the formal definition given by Micciancio in [16]
(which is similar to that of Rivest [18]). The adversary that is considered in the
following definition is static (in that it is only allowed to see a description of the
group, but obtains no further information). To distinguish this class of groups
from others that we define in this paper we call them static pseudo-free groups.

Definition 1 (Static Pseudo-Free Groups [16]). A family of computational
groups G = {GN}N is static pseudo-free if for any set A of polynomial size
|A| = p(k) (where k is a security parameter), and PPT algorithm A, the following
holds. Let N ∈ Nk be a randomly chosen group index, and define α : A→ GN by
choosing α(a) uniformly at random in GN , for each a ∈ A. Then, the probability
(over the selection of α) that on input (N,α) adversary A outputs an equation
λ and a solution ψ for λα is negligible in k.

3 Adaptive Pseudo-free Groups

A rough definition. The notion described above requires an adversary to pro-
duce a solution for some non-trivial equation only given some randomly chosen
generators to be used in the equation, but no additional information. In con-
trast, the notion that we develop attempts to capture the idea that an adversary
against the computational group gets to see several equations with solutions,
and then attempts to solve a new non-trivial equation. A typical cryptographic
game that captures this situation involves an adversary A who works against a
Challenger as follows.

Setup. The Challenger chooses a random instance of the computational group
GN (by picking a random index N

$← Nk) from a family G = {GN}N∈Nk
.

Then he fixes an assignment α : A→ GN for the set of constants and gives
(α,GN ) to the adversary.
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Equations queries. In this phase the adversary is allowed to see non-trivial
equations together with their solutions.

Challenge. At some point the adversary is supposed to output a new “non-
trivial” equation λ∗ (defined by (e∗, s∗)) together with a solution ψ∗.

Notice that the above description incorporates an assumption that we make for
simplicity, namely that all equations are univariate. In general, any univariate
equation over A is of the form: xe = as1

1 a
s2
2 · · ·asm

m . For the case of static pseudo-
free groups, this restriction is justified by a lemma that was proved by Micciancio
in [16]. Informally the lemma says that any (multivariate) equation and solution
(λ, ψ) can be efficiently transformed into a univariate equation and solution
(λ′, ψ′). Whilst we extend the definition of trivial equations to the multivariate
case (for lack of space it is given in the full version of the paper), it would
be interesting to see if a similar lemma is possible in the context of adaptive
pseudo-freeness.

The general definition of pseudo-freeness that we sketched above leaves open
two important points: 1) How are the equations for which the adversary sees
solutions produced? and 2) What does “non-trivial equation” mean when other
equations and solutions are given? We discuss and give answers to these two
problems in Sections 3.1 and 3.2 respectively.

3.1 A Spectrum of Adaptive Adversaries

The second phase of the above generic game requires that adversaries be given
non-trivial equations together with their solutions, so we need to clarify how
are these equations produced. Here we identify a whole spectrum of possible
choices. The weakest definition one might consider is one where the adversary
does not have any control over these equations. For instance, this means that,
whenever the Challenger is queried in the second phase, the Challenger chooses
an equation λi (more precisely it chooses its exponents (ei, si)) and gives λi

and its solution in G, ψi, to the adversary. Unfortunately, in such a game the
adversary is not really adaptive: it may receive all the equations and solutions
at once.

The strongest possible notion, and perhaps the most natural one, would be
to consider an adversary that is allowed to choose equations λi (namely their
respective exponents (ei, s

i)) in any way it wants. In particular the choice of the
equations can be done in an adaptive way, namely A asks for an equation, sees
its solutions, then chooses another equation and so on. We call this definition
“Strong Adaptive Pseudo-freeness”. Unfortunately this choice seems to lead to
an unrealizable notion2. We therefore settle on an intermediary variant where
the adversary is allowed to be adaptive, but still cannot choose the equations in
a completely arbitrary way. Instead, we consider a setting where the equations
are selected from the set of all equations according to some distribution over
which the adversary has some limited control. We formulate this limitation via
2 For example, it is not clear at all if a group like Z

∗
N can be proved strongly-adaptive

pseudo-free under any reasonable assumption (e.g. Strong RSA).
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a parametric distribution ϕ over the set of all possible equations. Sampling from
such a distribution requires some parameterM of some appropriate length which
is provided by the adversary. The distribution then produces a tuple of m + 1
integers which for expressivity we write (e, s). Here e is an integer (the exponent
for the variable) and s is a vector ofm integers (the exponents for the generators).
The idea is that once the parameter M is fixed, ϕ(M) is some fixed distribution
from which (e, s) are drawn. Notice that the two ends of the spectrum can be
modeled via appropriate choices of ϕ.

3.2 Non-trivial Equation w.r.t. Other Equations

Our definition of adaptive pseudo-freeness requires an adversary to find a solu-
tion to a non-trivial equation. In the original setting of Rivest, non-triviality of
an equation simply meant that the equation has no solution in the free group. In
our setting, non-triviality is less clear: the adversary is already given solutions for
some equations which may lead to solutions for other equations that are difficult
to solve otherwise. In this section we develop a notion of triviality for equations
given solutions to other equations. Our ultimate goal is to characterize, using
the world and vocabulary afferent to free groups those equations that cannot be
solved in the computational group.
General deducibility modulo equations. We frame the discussion in
slightly more general terms to obtain a framework suitable for talking about
non-triviality of both univariate and multi-variate equations.

Let F be the free abelian group generated by the set {a1, a2, . . . , am} and let
Λ ⊆ F ×F be an arbitrary binary relation on F that models equalities between
words in F (equations with solutions can be thought of as such relations). We
therefore aim to characterize the set of all equalities that can be derived from
Λ. Recall that eventually these equalities are interpreted over computational
groups, hence there are two ways for an adversary to derive new equalities.
The first is to use the group operations and their properties. For example, if
Λ = {a1a2 = a2

1a4}, then it can also be derived that a1a
2
2 = a2

1a4a2 = a3
1a

2
4, where

the first equality is obtained by simply multiplying a2 to the known equation,
and the second equality follows using the commutativity of F and the known
equality. The second possibility reflects an ability that computational adversaries
have (when working against computational groups). Specifically, if an equality
of the form wq

1 = wq
2 can be derived in a computational group, then the equality

w1 = w2 can also be derived (provided that q is relatively prime with the order
of the group). Furthermore, since we search for an abstraction independent of
the order of the group, we have to consider the above possibility for any q. The
following definition is motivated by the above discussion.

Definition 2. Let F be a freely generated abelian group and let Λ ⊆ F × F be
an arbitrary binary relation on F . Let ≡Λ be the smallest congruence on F that:

– Λ ⊆≡Λ

– ∀q ∈ N, ∀w1, w2 ∈ F , wq
1 ≡Λ wq

2 =⇒ w1 ≡Λ w2.
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Then, w1 and w2 are trivially equal with respect to Λ if w1 ≡Λ w2.

Next, we derive an explicit description for ≡Λ. Let

Λ = {(w1,1, w2,1), (w1,2, w2,2), . . . , (w1,t, w2,t)}.
Consider the binary relation RΛ on F defined by: (w1, w2) ∈ RΛ if and only
if there exist l1, l2, . . . , lt ∈ Q such that w1 = w2 · Πt

i=1(w
−1
1,i · w2,i)li . Here,

exponentiation of a word w = as1
1 a

s2
2 . . . asn

n with a rational number l = p/q is
defined (in the obvious way) if and only if q divides gcd1≤i≤n p · si. The following
proposition states that ≡Λ and RΛ are one and the same relation. Its proof is in
the full version of the paper.

Proposition 1. Let RΛ and ≡Λ defined as above. Then (w1, w2) ∈ RΛ if and
only if (w1, w2) ∈≡Λ.

Trivial equations. Using the notion of deducibility modulo equations devel-
oped above we can now specify the class of equations that we consider trivial
(given solutions for the equations in some set Λ). For simplicity, we focus on the
case of univariate equations which is more relevant for the cryptographic appli-
cations of this paper. The definition easily extends to the case of multivariate
equations (for completeness this variation is given in the full version). Assume
that we are given a set of equations

Λ =
{
xek = a

sk
1

1 · · ·ask
m

m

}t

k=1

together with {φk}tk=1, their corresponding solutions. (Notice that these are
equations in a computational group; solutions for these equations may simply
not exist in a free group). Let F be the the free abelian group generated by
{φ1, φ2, . . . , φt, a1, a2, . . . , am} (interpreted as symbols). The equations in Λ in-
duce a binary relation on F which (by a slight abuse of notation) we also call

Λ. So Λ = {(φek

k , a
sk
1

1 · · · ask
m

m ) | 1 ≤ k ≤ t}. The following definition simply is a
particular instance of Definition 2 to the case of univariate equations.

Definition 3. Equation xe∗
= a

s∗
1

1 · · · as∗
m

m is trivial with respect to Λ if the equa-
tion has a solution over F/ ≡Λ.

We use the characterization of ≡Λ that we gave earlier to explicitly determine
the class of trivial equations. Let

xe∗
= a

s∗
1

1 · · · as∗
m

m (1)

be an equation that has a solution over F/Λ. Let φ = φk1
1 · · ·φkt

t a
v1
1 · · · avm

m be
such a solution. From the explicit characterization of ≡Λ there exists l1, . . . , lt
in Q such that

(φk1
1 · · ·φkt

t a
v1
1 · · · avm

m )e∗
= a

s∗
1

1 a
s∗
2

2 · · · as∗
m

m ·Πt
i=1

(
φei

i ·Πm
k=1a

−si
k

k

)li
(2)
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Since equality is standard equality over F , the relation above translates (via
symbol by symbol matching of exponents) into the following requirement. Equa-
tion (1) has a solution if there exist v1 · · · vm, k1 · · · kt in Z and l1, . . . , lt ∈ Q

such that:

1. kie
∗ = ei · li (for all 1 ≤ i ≤ t)

2. vie
∗ = s∗i −

∑t
j=1 ljs

(j)
i (for all 1 ≤ i ≤ m)

The converse of the above statement is also true: if integers v1, · · · vm,
k1, . . . , kt and rationals l1, · · · , lt exist such that Equation 2 holds then
φ = φk1

1 · · ·φkt
t a

v1
1 · · · avm

m is a solution for Equation (1) over F/ ≡Λ.
Finally, we express these two conditions in a more compact matrix form

which will be simpler to use in our proofs. Given the set of equations Λ ={
xek = a

sk
1

1 · · ·ask
m

m

}t

k=1
we define the following quantities:

Σ =

⎡
⎢⎣
s11 · · · st

1
...

...
s1m · · · st

m

⎤
⎥⎦ and E =

⎡
⎢⎢⎢⎢⎣

1/e1 0
1/e2

0
. . .

1/et

⎤
⎥⎥⎥⎥⎦

These quantities are dependent on Λ but we do not show the dependency ex-
plicitly to avoid heavy notation.

Proposition 2 (Trivial equation w.r.t. a set of equations). Equation λ∗ :
xe∗

= a
s∗
1

1 · · · as∗
m

m is trivial w.r.t Λ if and only if:

∃k ∈ Z
t, V ∈ Z

m : e∗(ΣEk + V ) = s∗

where s∗ = [s∗1 · · · s∗m]T .

The proposition follows by simply setting li = ki
e∗
ei

for all 1 ≤ i ≤ t.

3.3 A Definition of Adaptive Pseudo-free Groups

The definition of adaptive pseudo-freeness that we give below is for a set A of
m generators, a computational group {GN}N and is parameterized by a distri-
bution ϕ(·) as discussed in Section 3.1.

Setup. The Challenger chooses a random instance of the computational group
GN (by picking a random index N

$← Nk) from a family G = {GN}N∈Nk
.

Then he fixes an assignment α : A→ GN for the set A of generators and a
specific parametric distribution ϕ for the exponents. The adversary is given
in input the assignment α : A → GN and the descriptions of the computa-
tional group and the parametric distribution ϕ.

Equations queries. In this phase the adversary is allowed to adaptively query
the Challenger on equations and see their solutions. More precisely, A con-
trols the queried equations via the parametric distribution ϕ. Namely, for
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each query it chooses a parameter Mi and hands it to the Challenger. The
Challenger runs (ei, s

i)←ϕ(Mi), computes the solution ψi for the equation

λi, which is xei = a
si
1

1 · · ·asi
m

m and gives (ψi, ei, s
i) to A.

Challenge. Once the adversary has seen the solutions, then it is supposed to
output an equation λ∗ (defined by (e∗, s∗)) together with a solution ψ∗. We
say that A wins this game if λ∗ is a non-trivial equation.

Definition 4 (Adaptive pseudo-free groups). G is a family of adaptive
pseudo-free groups w.r.t. distribution ϕ, if for any set A of polynomial size, any
PPT adversary A wins in the game above with at most negligible probability.

We restate several of the reasons that justify the above definition. Although
the definition is parametrized by a distribution, we feel this is the right way of
modeling an adversary who is adaptive but not all-powerful. As explained, by
varying the distribution one obtains a large spectrum of potentially interesting
instantiations, starting with static pseudo-freeness all the way to strong adap-
tive pseudo-freeness. Finally, we show that for some fixed distributions adaptive
pseudo-freeness implies immediately secure signature schemes.

4 Applications of Adaptive Pseudo-free Groups

In this section we show that adaptive pseudo-free groups yield interesting cryp-
tographic applications. Specifically, we prove that any group that is pseudo-free
with respect to a distribution φ from a class of of parametric distributions that
we specify immediately yields a secure signature scheme. We also explain how
to adapt the distribution and the proof to obtain the analogous result for (non-
strongly) unforgeable schemes.

4.1 Signatures from Adaptive Pseudo-free Groups

The class of parametric distributions ϕ�. In this section we introduce a
specific class of parametric distributions ϕ� : {0, 1}� → Z1+m × {0, 1}a(�). For
any input M ∈ {0, 1}� and an integer 
, ϕ�(M) outputs a tuple (e, s, r) such
that:

– r is a binary string taken according to some efficiently samplable distribution
Dr (that may depend on M), for which collisions happen with at most
negligible probability;

– e = H(r) where H : {0, 1}a(�) → {0, 1}b(�) is a division intractable function
(see Section 1.1) and a(·) and b(·) are polynomials;

– s1 = 1;
– si ∈ Ze (i.e. si < e) ∀i = 2, . . . ,m for some efficiently samplable distribution
Dsi .

Also we require that ϕ�(M) produces an output (e, s, r) for which one can effi-
ciently tell that it belongs to the support of ϕ�(M). Formally, we require that ϕ�
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is equipped with an efficient algorithm V erϕ�
(·, ·, ·, ·) that, on input (e, s, r,M),

outputs 1 if (e, s, r) is in the support of ϕ�(M) and 0 otherwise. Moreover we
require V erϕ�

(e, s, r,M) to be such that, for all PPT adversaries A the following
probability is at most negligible

Pr
[
(e, s, r,M1,M2)←A(ϕ�) : M1 �= M2 ∧ V erϕ�

(e, s, r,M1) = 1
∧V erϕ�

(e, s, r,M2) = 1

]

Signature scheme construction. We now show how to build a signature
scheme from any family of groups G that is adaptive pseudo-free w.r.t. ϕ̂ ∈ ϕ�.

Let ϕ̂ be a parametric distribution taken from the class ϕ� and let G be a
family of groups that is adaptive pseudo-free w.r.t. ϕ̂. Then we have the following
signature scheme PFSig = (KG, Sign,Ver):

KG(1k). Let A = {a1, . . . , am} and X = {x} be the sets of constants variable
symbols. The key generation algorithm selects a random group G from G,
fixes an assignment α : A → G for the symbols in A and finally it sets
vk = (X,A, α,G, ϕ̂) as the public verification key and sk = ord(G) as the
secret signing key. The input space of ϕ̂, M, is taken as the message space
of the signature scheme.

Sign(sk,M). The signing algorithm proceeds as follows:
– (e, s, r)←ϕ̂(M)
– Use ord(G) to solve the equation xe = as1

1 · · ·asm
m . Let ψ : X → G be

the satisfying assignment for x. The algorithm outputs σ = (e, s, r, ψ) as
the signature for M .

Ver(vk,M, σ). To verify a signature σ for a messageM , the verification algorithm
proceeds as follows:
– Check if V erϕ̂(e, s, r,M) = 1 and if the equation xe = as1

1 · · ·asm
m is

satisfied in G by ψ(x).
– If both the checks are true, output 1, otherwise 0.

Security of the signature scheme. In this section we prove the security of
the proposed signature scheme under the assumption that G is adaptive pseudo-
free w.r.t. ϕ̂. In particular we can state the following theorem (whose proof is
omitted for lack of space):

Theorem 1. If G is a family of adaptive pseudo-free groups w.r.t. distribution
ϕ̂ ∈ ϕ�, then the signature scheme PFSig is strongly-unforgeable under chosen-
message attack.

Notice that if one relaxes a bit the requirements on the parametric distribution
ϕ̂, Theorems 1 leads to different flavors of digital signature schemes. For instance,
one might consider the distribution ϕ̂′, which slightly generalizes the parametric
distribution ϕ̂ as follows. ϕ̂′ is exactly as ϕ̂ with the only difference that s2 is
chosen uniformly in ZB for some value B > e. It is easy to rewrite the proof of
Theorem 1 in order to show the following

Corollary 1. If G is a family of adaptive pseudo-free groups w.r.t. distribution
ϕ̂′, then the signature scheme PFSig is unforgeable under chosen-message attack.
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Informally what this corollary is saying is that by (slightly) generalizing the
parametric distribution one gets a signature scheme where unforgeability is guar-
anteed only for previously unsigned messages (i.e. the scheme is not strongly
unforgeable).

4.2 Network Coding Signatures from Adaptive Pseudo-free Groups

In this section we show that our framework allows to encompass network coding
signature schemes as defined and constructed by [4,12]. In particular, by com-
bining previous theorems with ideas from [12] we construct the first RSA-based
network coding homomorphic signature scheme provably secure without ran-
dom oracle. In the following we will represent files V to be signed as collections
(v(1), . . . , v(m)) where each v(i) is a n-dimensional vector of the form (v1, . . . , vn).
To sign V the signer signs every single vector v(i) separately. Informally this is
done using a signature scheme that allows some form of (controlled) malleability.
In this way, if we interpret signatures as solutions of non trivial equations, one
can easily compute solutions for any linear combination of the given equations.
This simple observation, when combined with ideas from [12], can be used to
construct a secure signature scheme for network coding without random oracles.

Our Network Coding Signature Scheme. For lack of space we defer the
interested reader to the full version of this paper or to the works [4,12] for a
background on network coding signatures. Here we describe our network coding
signature scheme. First, however, we discuss some additional details required
to properly present the scheme. As already mentioned, a file to be signed is
expressed as a set of vectors (v(1), . . . , v(m)) of n components each. Such vectors
will be prepended with m unitary vectors u(i) (of m components each). Let us
denote with w(i) the resulting vectors.

Using a similar notation as [12] we denote with Q = {0, . . . , q − 1} (for some
prime q) the set from which coefficients are (randomly) sampled. We denote
with L an upper bound on the path length from the source to any target. By
these positions B = mqL denotes the largest possible value of u-coordinates in
(honestly-generated) vectors. Moreover denoting with M an upper bound on the
magnitude of the coordinates of initial vectors v(1), . . . , v(m), we set B∗ = MB.

Let ϕN be the following parametric distribution. It takes as input some, large
enough, random identifier fid, a vector space V and a bound B∗. Let 
s be a
security parameter and 
 be an integer such that 2� > B∗, compute e = H(fid)
where H : {0, 1}∗ → {0, 1}� is a division intractable function. Next, for each
v(i) = (v(i)

1 , . . . , v
(i)
n ) ∈ V it proceeds as follows. First it samples (uniformly and

at random) a 
+ 
s-bit random integer si and outputs (si, u
(i), v(i)). The global

output of ϕN is then (e, {(si, u
(i), v(i))}mi=1).

Notice that ϕN is a simple extension of distribution ϕ̂′ described above. It is
straightforward to show that it fits the requirements of corollary 1 as well.

Let G be a family of groups that is adaptive pseudo-free w.r.t. ϕN . Then we
have the following signature scheme NetPFSig:

NetKG(1k, n). Let A = {g, g1, . . . , gn, h1, . . . , hm} and X = {x} be the sets of
constants variable symbols. The key generation algorithm selects a random
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group G from G, fixes an assignment α : A → G for the symbols in A
and finally it sets vk = (X,A, α,G, ϕN ) as the public verification key and
sk = ord(G) as the secret signing key. The input space of ϕN , M, is taken
as the set of m-dimensional vectors whose components are positive integers
of magnitude at most M .

Sign(sk, V ). The signing algorithm proceeds as follows. A random identifier fid
for the vector space V is chosen. Next, it runs ϕN (V,B∗, fid) to get back
(e, {(si, u

(i), v(i))}mi=1). Finally, for i = 1 to m, it uses ord(G) to solve the
equation

xe
i = gsi

m∏
j=1

h
u
(i)
j

j

n∏
j=1

g
v
(i)
j

j

Let ψ : X → G be the satisfying assignment for xi and σi = (e, si,
u(i), v(i), fid, ψ) the signature for w(i). The algorithm outputs σ = (σ1, . . . σm)
as the signature for V .

Ver(vk, V, σ). To verify a signature σ for a vector space V , the verification algo-
rithm proceeds as follows
– Check if V erϕN (e, V,B∗, fid, {(si, u

(i), v(i))}mi=1) = 1,3 and if the equa-

tions xe
i = gsig

v
(i)
1

1 · · · gv(i)
n

n hu(i)

1 · · ·hu(i)
m

m are all satisfied in G by ψ(xi).
– If all the checks are true, output 1, otherwise 0.

Combine(vk, fid, w1, . . . , w�, σ1, . . . , σ�). To combine signatures σi, corresponding
to vectors wi sharing the same fid, a node proceeds as follows.
– It discards any wi having u coordinates negative or larger than B/(mq),

or having v coordinates negative or larger than B∗/(mq). Without loss
of generality we keep calling w1, . . . w� the remaining vectors.

– It chooses random α1, . . . α� ∈ Q, set w =
∑�

i=1 αiwi and it outputs the
signature σ = (e, s, w, fid, ψ) on w which is obtained by computing

ψ =
�∏

i=1

ψαi

i , s =
�∑

i=1

αisi

One can easily rewrite the proof of corollary 1 to prove the following.

Theorem 2. If G is a family of adaptive pseudo-free groups w.r.t. distribution
ϕN , then the NetPFSig signature scheme described above is a secure (homomor-
phic) network coding signature.

5 The RSA Group Is Adaptive Pseudo-free

In Section 3 we have defined the notion of adaptive pseudo-free groups and in
Section 4 have shown a class of parametric distributions (called ϕ�) that allows

3 We implicitly assume that the V erϕN verification algorithm rejects immediately if
any of the u coordinates is negative or larger than B, or if any of the v coordinates
is negative or larger than B∗.
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to build signatures from the sole assumption that a family of groups is adaptive
pseudo-free w.r.t. ϕ̂ ∈ ϕ�. At this stage, it is therefore interesting to find a
computational group candidate to be proved adaptive pseudo-free. As proved by
Micciancio in [16], the only group that we know to be pseudo-free is the RSA
group Z∗

N of integers modulo N , where N is the product of two “safe” primes
and the sampling procedure takes elements from QRN . Therefore we aim to
prove adaptive pseudo-freeness for the same group.

A parametric distribution ϕ̂. First of all we need to define the specific
parametric distribution for which we will prove adaptive pseudo-freeness of the
RSA group.

Let us consider the following ϕ̂ :M→ Z×Zm × {0, 1}∗, whereM = {0, 1}�.
For any input M ∈M, ϕ̂(M) outputs a tuple (e, s, r) that is defined as follows:

– r is a random binary string, taken from some sufficiently large input domain.
– e = H(r) where H : {0, 1}∗ → {0, 1}� is a division intractable function.
– s1 = 1.
– s2 is uniformly distributed in Ze.
– For 3 ≤ i ≤ m, each si is taken with an arbitrary (but efficiently samplable)

distribution Dsi in Ze such that the tuple s3, . . . , sm is binding to M4.

The verification algorithm V erϕ̂(e, s, r,M) checks that e = H(r) and that
s3, . . . , sm are binding w.r.t. M . It is straightforward to verify that ϕ̂ is con-
tained in the class ϕ� defined in section 4.1.

We state the following theorem (the proof is omitted for lack of space).

Theorem 3. If the Strong-RSA Assumption holds, then Z∗
N is adaptive pseudo-

free w.r.t. ϕ̂.

As a corollary of the above theorem we can prove adaptive pseudo-freeness of
the RSA group w.r.t. two new parametric distributions ϕ̂s, ϕ̂ch �= ϕ̂ which still
are within the class ϕ� defined in section 4.1. In particular ϕ̂s is a variant of
ϕ̂ where: s2 = 0 and for all i = 3 to m, si ∈ {0, . . . , p} such that p is at most
polynomial in the security parameter (and of course p < e).

Corollary 2. If the Strong-RSA Assumption holds, then Z∗
N is adaptive pseudo-

free w.r.t. ϕ̂s.

The proofs follows from that of Theorem 3. The intuition here is that when the
si’s are small they can be guessed in advance with non-negligible probability.

Instead ϕ̂ch is a variant of ϕ̂ where: s2 = 0 and s3, . . . , sm ∈ Ze are obtained
as output of a chameleon hash function CH(M ;R) computed on the parameter
M and with randomness R.

Corollary 3. If the Strong-RSA Assumption holds, and CH is a chameleon
hash function, then Z∗

N is adaptive pseudo-free w.r.t. ϕ̂ch.

4 This means that there exists an efficient algorithm that on input (M, s3, . . . , sm)
outputs 1 if s3, . . . , sm are created w.r.t. M .
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The proof is the same as in Corollary 2. The intuition here is that one can use the
chameleon property of CH in the simulation to “prepare” the si’s in advance.

Weak adaptive pseudo-freeness of the RSA group. One may also con-
sider a weaker notion of adaptive pseudo-freeness where the adversary is forced
to choose the parametersM1, . . . ,M t of its queries at the beginning of the game,
i.e. before receiving the description of the group from the challenger. In the full
version of the paper we show that the proof of Theorem 3 still holds even w.r.t.
a slightly more general distribution than ϕ̂ where the entire tuple (e, s2, . . . , sm)
needs to be bound to M . It is then trivial to see that starting from a weak-
adaptive pseudo-free group our results of section 4.1 lead to the construction of
signature schemes that are weakly-secure.

6 A Framework for Strong RSA-Based Signatures

In this section we show that, by appropriately instantiating the parametric dis-
tribution ϕ̂, Theorems 1 and 3 yield essentially all the known constructions of
Strong RSA-based digital signatures in the standard model (to the best of our
knowledge). Due to space limits we only briefly summarize these results. Precise
details are in the full version.

Cramer-Shoup’s signatures [8]. While Cramer-Shoup’s scheme seems based
on the difficulty of solving a system of two equations, we observe that for only
one of these two equations the signing process is required to find a solution
(using the secret key) while the other equation is, de facto, a chameleon hash
function computed on the message. Their scheme is then a special case of
our general framework applying via Corollary 3.

Fischlin’s signatures [10]. Fischilin’s scheme can be seen as a special case of
our framework as the distribution of its exponents fits the case of ϕ̂, for
which Theorem 3 applies.

Camenisch-Lysyanskaya’s signatures [6]. This signature can be seen as an
instance of our framework since its distribution is an instance of ϕ̂′, for which
Corollary 1 applies.

Zhu’s signatures [19,20]. Zhu’s scheme is captured by our general framework
as the distribution of its exponents is a special instance of ϕ̂.

Hofheinz-Kiltz’s signatures [13]. Hofheinz and Kiltz show in [13] how to use
programmable hash functions to get a new efficient signature scheme based
on Strong RSA. It is not hard to notice that the security of their scheme
basic scheme5 emerges from Corollary 2.

Gennaro-Halevi-Rabin’s signatures [11]. The scheme in [11] fits our frame-
work for weakly-secure signature scheme (see section 5) when using a distri-
bution in which e = H(m) and H is a division intractable hash function.

5 By basic scheme here we mean the version of the HK scheme where the public
exponents are set as 160-bit primes. The interesting thing about the analysis made
in [13], is that, by using programmable hash functions, one can consider much smaller
primes (i.e. 70 bit long ones). The present formulation of our framework, however,
does not allow for such an optimization.
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A new network signature from Strong RSA. It is easy to see that combin-
ing the results of Theorem 3 and Theorem 2 we obtain a concrete instantiation
of the network coding signature scheme given in Section 4.2 whose security is
thus based on Strong RSA in the standard model. We notice that our scheme is
not as efficient as the one proposed by Gennaro et al. in [12], but it is secure in
the standard model.

7 Conclusion

In this paper we have introduced a formal definition of adaptive pseudo-freeness.
We have shown that under reasonable conditions the RSA group is adaptive
pseudo-free for moduli that are products of safe primes, and exhibited the first
direct cryptographic applications of adaptive pseudo-free groups: under some
mild conditions, pseudo-free groups yield secure digital signature schemes.

There are several interesting problems that we have not addressed. Here we
enumerate some of them. The first obvious one, originally posed by Rivest, is
what other groups used in cryptography are pseudo-free. A new construction
would lead, via our framework, to new signature schemes for example. Our results
for RSA are only for univariate equations. It should be interesting to either
justify this restriction through an analogue of Micciancio’s Lemma, or, if this is
not possible, extend our study to multi-variate equations. The one-more RSA
inversion problem has a strong flavor of adaptive pseudo-freeness but does not
fit our framework. In particular, its relation with the strong RSA problem is an
interesting open problem. Nevertheless, studying the relation between these two
problems within our framework seems to be an interesting direction. Finally,
we manage to prove adaptive pseudo-freeness for a large class of parametric
distributions sufficient for cryptographic applications. It should be interesting
to understand how far one can go with the limitations that we impose on the
adversary by trying to enlarge this class.
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well as for useful suggestions. The work described in this paper has been sup-
ported in part by the European Commission through the ICT programme under
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